
NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A261 612

DTIC

THESIS

PROOF OF FAULT COVERAGE FOR A
FORMAL PROTOCOL TEST PROCEDURE

by

Michael Alan Randall

December 1992

Thesis Advisor: G. M. Lundy

Approved for public release; distribution is unlimited.

93-05780

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
ia. REPORT SECURTY CLASSIFICATION UNCLASSIFIED Ib b RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY 3 OISTRIBUTIONiAVAILABILI1Y OF REPORT

2b. DECLASSIFICATIONiDOWNGRADING SCHEDULE Approved for public release;
distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

§. NAME OF JEFORI ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Namputer acdte Sehlpt. f applicable) Naval Postgraduate SchoolNaval Postgraduate School C S
6c. ADDRESS (Ciy. State. and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IOENTIPICATION NUMBER
ORGANIZATION (if applicable)

8c. ADDRESS (City. State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT ITASK WORK UNIT
ELEMENT NO. NO. NO ACCESSION NO

11. TITLE (Include Security Classification)

PROOF OF FAULT COVERAGE FOR A FORMAL PROTOCOL TEST PROCEDURE

iP AAtA~ O

•aa. wpF •,REP.ORT 13b'. TIME COVERED 114 DATE OF REPORT (Year, Monh, Day) 15. PAGFrUT
aster s nSeS FROM 10/91 TO 12/22 December l992

16. SUPPLEMENTARY NOIATIOIae views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the United States Government.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary andidentity by block number)

FIELD GROUP SUB-GROUP conformance testing, protocol specification

19. ABSTRACT (Continue on reverse if necessary and identify by bbock number)
Due to the speed and complexity of communication networks being designed today, it is imperative to ensure that

they operate correctly. Todays fiber optic networks, which can transmit billions of bits per second over thousands of
miles, are heavily dependent on sophisticated software and protocols which are becoming increasingly difficult to
test. Conformance testing is a method that is used for this purpose: to test the design of a protocol against an imple-
mentation of the design. This thesis provides some insight into the conformance testing problem by first providing
background on some current protocol test methods, and then focusing on a newer method, which is based on a formal
protocol specification. A proof is given that demonstrates the method's error detection capabilities. Two well known
local area network protocols, Token Bus and Fiber Distributed Data Interface (FDDI), are used as examples to illus-
trate how the test method is applied to a specification.

20. DISTRIBUTION'WAVAILABILITY OF 'AMSTRACT 21. ABSTRACT SECU'RITY CLASSiFICATIM•

[UNCLASSIFIED/UNLIMITED D SAME AS RPT. Q DTIC USERS UNCLASSIFIED

a IF REP NSIL INDVDA 22b. TELEPHONE: f chide Area Code) 12cfi ESMO
Lundy (408) 646-2094

DO FORM 1473,84 WAR 83 APR editon may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete UNCLASSIFIED
i

Approved for public release: distributioni is unlimited

Proof of Fault Coverage for a Formal Protocol Test Procedure

by
Michael Alan Randall

Naval Air W14atfre Center. Aircrafr Division
B.S. Computer Science. Universir' of Maryland. Baltimore Count,. 198,

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

December 1992

Author: ,

/ Michael Alan Randall

Approved By:

G. M. Lundy, Thesis Adviser

Anir Zaky, Second Reader

CDR. Gr. eC6 mn

Departnfient of CoJnputer Science

ABSTRACT

Due to the speed and complexity of conununication networks being designed today, it

is imperative to ensure that they operate correctly. Todays fiber optic networks, which can

transmit billions of bits per second over thousands of miles. are heavily dependent on

sophisticated software and protocols which are becoming increasingly difficult to test.

Conformance testing is a method that is used for this purpose. to test the design of a

protecol against an implementation of the design. This thesis provides some insight into the

conformance testing problem by first providing background on some current protocol test

methods, and then focusing on a newer method, which is based on a formal protocol

specification. A proof is given that demonstrates the method's error detection capabilities.

Two well known local area network protocols, Token Bus and Fiber Distributed Data

Interface (FDDI), are used as examples to illustrate how the test method is applied to a

specification.

Accession For
NTIS V(--A&I
DTIC TAB 0
Unai•=.•unccd

Jujt I'! it t ..

By.. ...

,Distrbution/

iii Av•ivllibiity Codes
)Avn)l and~/or

[Dis j Sýiajial

• m m -A----I

TABLE OF CONTENTS

1. INTRODUCTION ... I
A. BACKGROUND ...
B . O B JECT IV ES
C . S C O P E 3
D . O R G A N IZ A T IO N 4........ 4

II. CONFORMANCE TESTING .. 5
A. FUNCTIONAL TESTING 5
B. SPECIFICATION CONFORMANCE 5
C. CURRENT TEST METHODS 6

1. U-M ethod 9
2. RCP-Method .. 10
3. M U IO -M etnod 12
4. M UIO-M ethod with Overlapping .. 13

D . S U M M A R Y ... 14
E. SYSTEMS OF COMMUNICATING MACHINES 15

III. T E ST M ET H O D 18
A . PR ELIM IN A R Y STE PS18
B. TEST SEQUENCE GENERATING PROCEDURE 19
C . R E FIN IN G STE PS ... 21
D . FA ULT CO V ERA G E ... 22

IV. APPLICATIONS OF TEST METHOD 4..... 24
A. TOKEN BUS PROTOCOL SPECIFICATION Y4
B. TEST SEQUENCE GENERATION 27

1. Preliminaries 27

2. Sequence Generation ... 27
3. Fault Coverage for the Token Bus Test Sequence 29

C. FDD[PROTOCOL SPECIFICATION .. 31
D. TEST SEQUENCE GENERATION ... 35

1. Preliminaries .. 35
2. Sequence Generation.. 36
3. Fault Coverage for the FDDI Test Sequence 38

E. IM PROVING TESTABILITY .. 40
1. Token Bus Specification ... 4)
2. FDDI Specification .. 41

V. PROOF OF FAULT COVERAGE .. 42
V I. C O N C L U SIO N 4... 45

A. CONTRIBUTIONS OF THIS RESEARCH 45
B. AREAS FOR FURTHER RESEARCH .. 46
R E F E R E N C E S 48
IN ITIA L D ISTRIB UT IO N LIST 50

iv

LIST OF FIGURES

Figure 1, Conceptual View of Conform ance Testing 3
Figure 2. Testing an Independent Laver 4
Figure 3, Transition Diagram for an Example IUT 7
Figure 4. Specification of Network Nodes 26
Figure 5, Frame Format .. 32
Figure 6, FDDI Receive Token Specification 35
Figure 7, Type 3 error .. 43
Figure 8, States Visited in Protocol Machine 44

LIST OF TABLES

Table 1, U 10 SEQUENCE FOR FIGURE 3
Table 2, TEST SEQUENCE FOR FIGURE 3 BY THE U-METHOD 9
Table 3, TEST SEQUENCE FOR FIGURE 3 BY THE RCP-METHOD I 1
Table 4, TEST SEQUENCE FOR FIGURE 3 BY THE MtqO-METHOD 12
Table 5. PREDICATE ACTION TABLE FOR THE NETWORK NODES 26
Table 6, TEST SEQUENCE FOR THE TOKEN BUS PROTOCOL 2g
Table 7, POSSIBLE TYPE 3 ERRORS FOR FIGURE 4 29
Table 8, PREDICATE ACTION TABLE FOR RECEIVE TOKEN MACHINE 34
Table 9. FDDI RECEIVE TOKEN TEST SEQUENCE 36
Table 10, POSSIBLE TYPE 3 ERRORS FOR FIGURE 5 38
Table 11. EXAM PLE TEST SEQUENCE .. 3.......... ,3

vi

1. INTRODUCTION

A. BACKGROUND

Protocols, in the simplest sense, are rules and procedures that control the flow of

information. For centuries, long before any device that even resembles a modem day

computer was ever conceived, mankind has struggled with designing precise and efficient

corrnmunication protocols. In the 2nd century B.C.. when conrununication protocols

consisted of fire signals, it was observed by the Greek historian Polybius that -- it iV chiefly

unexpected occurrences which require instant consideration and help.'" Essentially. he

noted that it was impossible to have a preconceived code using fire signals that could

communicate these unexpected occurrences [HOLT91]. In modem day communication

protocols, it is still the unexpected sequence of events that often leads to protocol failures,

and the most difficult problem in protocol design is precisely that -- to expect the

unexpected.

The first electronic communication protocols based on the use of the telegraph also

encountered the problems associated with communicating unexpected events. However.

there was almost always a human operator involved who could be relied upon to handle

these problems. In current communication systems, when machines and processes rather

than human operators are used, the same problems exist but now the errors can happen

faster and human intervention 'cannot be counted on to recover from unexpected

occurrences. The protocol design problem is now to determine the responsibilities of these

processes and to establish procedures so that these responsibilities can be negotiated. In

other words, there should be rules that govern the exchange of information, but there should

also be an agreement between the communicating parties about the rules.

Designers of early networks such as the ARPAnet learned that ambiguous rules can

trigger unlikely sequences of events which will ruin even the best design. Entire networks,

with thousands of attached computers can be rendered completely useless by a faulty

protocol. Advances in network and teleconununication technology have resulted "I

increasingly complex communication protocols. Though electronic communication

protocols have been around for many years, it is only recently that their complexity has

begun to dramatically increase. Networks capable of transmitting billions of bits per second

over thousands of miles are now in use. Consequently. the protocols being developed today

are larger and more sophisticated than ever before. They try to offer more functionality and

reliability, but as a result they have increased in size and in complexity. This is due to a

number of factors, most notably the increased speed and capacity of current networks, but

also the desire to make the most efficient use of available resources.

Because of society's critical dependence on commurnnication networks and protocols.

it is imperative to adequately test them to ensure they perfonn as intended. This is the goal

of conformance testing.

B. OBJECTIVES

In this thesis, a conformance test method based upon a formal specification of a

protocol will be investigated. This will include a review of some recent conformance test

procedures, along with a discussion of the potential shortcomings which make thtim less,

than ideal for testing real-world protocol implementations. The conformance test method

presented here is an improvement based upon earlier work [LUND90(b)].

The major contributions of this thesis are:

"* an improved conform'ance test method
"* a proof that demonstrates the method's error detection capabilities

"* applications of the test method using real world protocols such as IEEE
802.4 (Token Bus) and ANSI X3T9.5 (FDDI).

Techniques for designing a protocol to allow for greater testability will also he discussed.

C. SCOPE

Specifically. the goal of conformance testing of comnmunication protocols is used to

verify that the behavior of a protocol implementation is consistent with its specification.

Since much effort is put into formally specifying and verifying protocols. it is at least

equally important to test a given implementation for functional correctness. If a formal

specification of a protocol contains an error, a correct implementation of that specification

should pass a conformance test only if it contains the same error. In other words, a

conformance test should fail when the implementation and specification differ. Tile test is

developed from a protocol's formal specification and is applied to an implementation of the

protocol, preferably in a systematic manner. This situation is shown in Figure 1.

Formal Formalts 10Protocol
Protocol - Tester Protocol
Specification , outduts hnplementatiof

Figure 1 : Conceptual View of Conformance Testing

For all practical purposes we assume that the protocol implementation is essentially

unknown. In other words it is simply a "black box," meaning that the test designer knows

nothing about its intemal workings. The only type of experiment we can do with the

implementation is to provide it with sequences of inputs and observe the resulting outputs.

This black box, commonly referred to as an implementation under test (IUT) in the

literature, passes the conformance test only if all observed outputs match those prescribed

by the formal specification [HOLT911. It is difficult to test a protocol implementation in

isolation because many protocol suites are composed of a number of independent layers.

Since the layers are independent, and can be part of a number of different protocol suites,

they should be tested as independent entities. Figure 2 shows the relationships of these

entities.

I N+I I

N-I

Figure 2 : Testing an Independent Layer

In Figure 2, protocol layer N is the actual implementation under test. Since, in the

normal operation of this protocol, layer N must interface with upper and lower layer

protocols, it needs to be tested in that context. The arrows between the protocol layers

indicate the flow of data that occurs in the actual implementation.

D. ORGANIZATION

This thesis contains six chapters. Chapter II discusses some issues inherent in

conformance testing, and provides four example test methods currently in use. A hrief

definition of the systems of communicating machines protocol model is also given. In

Chapter III, the test method is presented in detail. Chapter IV is concerned with the

generation of test sequences for two, well known local area network protocols: Token Bus

and FDDI. This chapter also includes a discussion of the fault coverage provided by the test

sequences as well as suggestions for improving the testability of the protocol specification.

A proof of the fault coverage provided by this test method is given in Chapter V. This thesis

is concluded with Chapter V*T with discussions on the contributions of this research and

ideas for further research in conformance testing.

4

H. CONFORMANCE TESTING

A. FUNCTIONAL TESTING

In order to understand how connunication protocols can be tested, it is necessary to

understand why testing is an important issue. In large, complex communication networks,

administrators need a way to verify that a certain piece of equipment conforms to a

prescribed standard. In an environment where thousands of phone calls or gigabits of data

are being switched each second, it is not acceptable to test equipment by plugging it into

the network. Ideally, we would like to verify conformance to the standard without

necessarily having access to the often proprietary, internal details of the equipment.

According to CHOLT9I], there are two basic goals of functional testing:

"* To establish that a given implementation realizes all functions of the original
specification, over the full range of parameter values.

"• To establish that a given implementation can properly reject erroneous inputs
in a way that is consistent with the original specification.

The trade-offs encountered in these tests are mainly between complexity and

standardization. It is extremely unlikely that a test method could be devised that could test

all possible behaviors of an unknown implementation by simply probing it and observing

its responses. In the conformance testing of protocols, only the presence of desirable

behavior can be tested. We cannot test for the presence of undesirable behavior because

there is always the possibility that some untested sequence of inputs will reveal a flaw in

the implementation.

B. SPECIFICATION CONFORMANCE

The process of conformance testing is based on the generation of test sequences. These

test sequences attempt to exercise 0dl parts of the protocol machine as they are defined in

the specification. In the literature, the actual machine being tested is referred to as the

5

Implementation Under Test dIUT). Some recent conformance testing procedures involve

the use of incompletely specified finite state machines with input/output labels on the

transitions. The usual approach here is to represent the control portion of a protocol as a

finite state machine (FSM) and generate a test 3equence in the fornm of an input/output

sequence such that, if the IUrT conforms to the specification, the application of the above

input sequence will generate the corresponding output sequence as specified in the test

sequence. Since many protocols ale not specified in the maruner described above n.e a:i

FSMs). an approach such as this may compticate the task of the test designer.

The common procedure followed by many current test methods is to test each edge of

the FSM individually, then combine the edge sequences together to fora a test sequence.

Before discussing some specific test methods however, it is necessary to state some

simplifying assumptions. First. we assume that the reference specification being modelled

is a deterministic FSM with a known number of states. Second. the output sequence emitted

by the machine occurs within a known, finite amount of time after the input sequence.

Finally, every state in the FSM is reachable from every other state via one or more state

transitions. For the purposes of this discussion, a state of an FSM (or stop-srate as it is

sometimes calied) is defined as a stable condition in which the machine is awaiting an input

sequence. A transition is defined as the consumption of an input signal. the possible

emission of an output signal, and the possible move to a new state.

C. CURRENT TEST METHODS

The FSMs used to model a protocol specification are commonly represented by

directed graphs. In a given graph, an edge (v,w) with a label a/b means that if the machine

is currently in state v, then it will change to state w and output the symbol h if and only if

the current input symbol is a. Many recent test methods employ his notation. Another

similarity between a number of methods is the use of Unique Input/Output sequences (UIO

sequences). UIO sequences are used within the test sequence to enhance the correctness of

the test. For a given state within an FSM, a UIO sequence can be defined as a sequence of

6

input/output pairs which can only be observed when that input sequence is applied to that

state. The purpose of such a sequence is to ensuie the path by which a given state wa's

reached. Figure 3 shows how the notation is used to label the transitions in an actual R-.I

This example was taken from [-YANG901 and is used because it facilitates comparisons

between the different methods.

All of the states in the [UT in Figure 3 have one or more UIO sequences. For examiple.

the sequence aix bix is a UIO sequence for state i because from no other state can we input

a b and have the machine output x v. Similarly. a possible rlO sequence for state 5 ik (-. :

because from no other state can we input c and have the machine output z. The complete

list of UIO sequences for this implementation is given in Table 1. UIO sequences are

important because of their uniqueness. That is. they can be used to verify their

corresponding state.

Sa/x b/x

b/x 5b/x

a//z
c Y

Figure 3: Transition Diagram for an Example [UT

7

TABLE 1: L0io SEQUENCE FOR FIGURE 3

State UIO sequence Tail state

I b/x a/x 5

1 alx b/x 2

1 a/x c/y 4

1 alx a/x I

I b/x b/y 3

I c/y a/x 5

1 ciy b/x 3

2 b/y 3

3 b/x c/z 1

3 b/x. a/x 4

3 c/y a/z 4

3 c/y c/z 5

4 b/x c/y 5

4 b/x b/x 5

5 c/z I

5 a/z 4

As was mentioned in Chapter I, the tester cannot view the internal structure of the

implementation. The only knowledge the tester has about the JUT are the outputs it emits

in response to the inputs supplied. For this reason. 0TIO sequences are very important. They

allows us to determine the state of the machine before we supplied the input sequence. Tile

column labelled "Tail State" in Table I is simply the state the machine should be in after

we supplied the input sequence. Determining the UIO sequences for each state is an

important first step for many test procedures. The remainder of this chapter describes some

recent protocol test procedures.

1. U-Method

The U-method [SABN851 was one of the first methods used in protocol testing.

Essentially, it consists of 3 parts:

(1) the RESET transition plus the sequence from the initial machine state to the

starting state of the edge being tested. (The purpose of the RESET transition is to "reset"

the machine into its initial state, state I for this machine.)

(2) the label on the edge or transition being tested.

(3) the shortest U10 sequence for the ending state (tail state) of this edge.

The complete test sequence using the U-Method is given in Table 2. A complete test

sequence, or test suite, consists of the concatenation of the first, second and third parts of

every test. The reader may verify that there are 77 steps in the entire test sequence.

TABLE 2: TEST SEQUENCE FOR FIGURE 3 BY THE U-METHOD

Edge Edge LabelEdge TEsed Taes Part I Part 2 Part 3Index Tested Tested

el 1--+I RESET RESET RESET bix aix

e2 1-41 alx RESET a/ h 1,/, aI

e3 1-+2 h/ v RESET hh- hi,,

e4 1-..4 C/V RESET cIV hi.x riv

e5 2-41 RESET RESET blx RESET b/.1 ai.v

e6 2-+3 bly RESET bix b/y bix ci:

e7 2-+5 alx RESET b/x a/x cd:

e8 3-41 RESET RESET c/y bix RESET b/.r iux

e9 3-+5 blx RESET ciY bir blx C].

elO 3--45 CO. RESET clyv bi6r c/V

elI 4-1 1 RESET RESET ci' RESET hi A wir

e12 4--+3 bix RESET c/y h/. In V cI:

e13 4-+5 alx RESET c/h a,'r 0-

e14 5--41 RESET RESET c/y a/.r RESET hi1 o1%

9

Edge Edge LabelEde Ege Lbl Part I Part 2 Part 3
Index Tested Tested

e 15 5-- 1 RESET t, ,1. .i,

S e l 6 - 5 -- +)4 •+ :R Er E T < I J r, / , , , ,

The U-Method does not specify a particular order in which to test the edges- it is

up to the tester to ensure that all transitions are exercised. This example begins in the initial

machine state (state 1). and attempts to test the RESET transit.on from state 1 to state 1.

The first part of this test is the sequence from initial state to the starting state of the edge,

in this case since we want to test a transitions emanating from the initial state, only the

RESET transition needs to be executed. The second part of this test is the actual label on the

transition, and the third part is the UIO sequence for the state in which this test ends (stare

I in this example). The second test in the sequence is the al. transition from store I to state

1. The first, second, and third parts are RESET. aix. and b/x ai.r, respectively. Note that, if

a state has more than one UIO sequence, we simply choose one of the shortest, and use it

throughout the entire test whenever the edge being tested ends in that state.

2. RCP-Method

The RCP-method [AH088] is similar to the U-Method in that it uses the test

sequence generated by the U-Method as a starting point. It essentially concatenates the

second and third parts of the U-method to form what is sometimes called a compound edge.

A graph consisting of the compound edges is then constructed, and the Rural Chinese

Postman algorithm is used to find the shortest path in the graph which traverses each edge

at least once. Since this method eliminates the process of visiting the initial state after each

edge sequence, (part I of the U-method) it results in significantly shorter test sequences.

The test sequence for our example machine by the RCP-Method is given in Table 3

10

TABLE 3: TEST SEQUENCE FOR FIGURE 3 BY THE RCP-METHOD

Start Edge Label UIO Connection End
State Tested Tested Sequence Path State

N/A NIA RESET I

1 1--2 bix bi

3 3---'5 civ : I

1 1-4+1 a/ bh. cjo 5

5 5-+4 a/: b-,i (.,v 3
5 5"-+ 1(cI LIJ, -1. 5

5 5--.)1 RESET hi r dir di: 4

4 4-45 7i0- ci: -

1 1-44 e/V b/x c/v a/: bix 3

3 3-45 btx ci: bix 2

2 2--3 b/y bix c/: &ix 2

2 2-+5 ai/r ci: b/x 2

2 2--1 RESET bix aux aiz bix 3

3 3--1 RESET blx aix al: 4

4 4-+3 b/x bix ci: I

I 1-+1 RESET bix aity ai: 4

4 4--)1 RESET b/.v air c/: I

The test sequence in Table 3 is constructed from the graph that is generated from

the RCP tour of Figure 3. (See detail in (AH088]). The compound edge is formed by the

concatenation of the "Label Tested" and "UWO Sequence" columns. Since it is not

necessary to visit the initial machine state after the test of each edge. this method simply

selects one of the outgoing edges from the ending state of the previous test for the next test.

For example, we start the test with the machine in an unknown state, so the RESET

transition is necessary to bring the machine to its initial state (state 1). The b/x transition

emanating from state 1 is then tested and its UIO sequence, b/y, executed, putting the

II

machine in stare 3. From stare 3, the -/y transition is tested and its _1io sequence executed.

putting the machine in state 1. The test sequence continues in such a manner until it arrives

at a state that has no untested outgoing transitions. At this point it is necessary to execute a

".connection path" transition, which takes the machine to a state which has at least one

untested transition. From here, the test proceeds as before. The reader may verify that there

are 55 steps in the complete test sequence. with the reduction being achieved by eliminating

from the test sequence, the path from the initial state to the edge being tested.

3. MUIO-Method

In [SHEN89] it was shown that even shorter test sequences can be obtained, with

the RCP-method if multiple UIO (MUJIO) sequences from each state are used. The idea

behind multiple OIO sequences is to reduce the repetition that results from having to follow

the same 110 sequence every time an edge sequence reaches a given state. The number of

times the UIO sequence for a given state will be repeated is greater than or equal to the

indegree of that state. By allowing the use of different shortest UIO sequences. there is an

increased possibility that we can find a 1IO sequence that will end at a state with an

untested outgoing transition; this effectively reduces the number of connection paths

necessary and, hence, reduces the length of the sequence. The test sequence for Figure 3 by

the MUtIO-method is shown in Table 4.

TABLE 4: TEST SEQUENCE FOR FIGURE 3 BY THE MUIO-METHOD

Start Edge Label UIO End
State Tested Tested Sequence State

N/A N/A RESET I

1 1--1 a/x a/x b/x 2

2 2-+1 RESET a/x b/x 2

2 2--3 b/y b/x c/z I

1 1-4.2 b/x b/y 3

3 3-+1 RESET c/y b/V 3

12

Start Edge Label Uro End
State Tested Tested Sequence State

3 3---.5 b/x ctz I

t--ýf RESET c/y blx 3

3 3--5 /V (:/z I

I t -4 Cy b/x Cly 5

5 5-44 1/z b/x c/y 5

5 5-4I RESET cly a/x 5

5 5-41 ch aix c/y 4

4 4-+1 RESET a/x b/x 2

2 2-45 a/x -lz 4

4 4-43 b/x b/x 1/Z 4

4 4--+5 aix c/z 1

The test sequence presented in Table 4 consists of 44 steps, less than both the U-

Method and RCP-Method. It is 11 steps shorter than the RCP-Method, because it eliminates

the 11 connection path transitions associated with the RCP-Method. The procedure for

generating this sequence is quite complicated and is not discussed here. Interested readers

may consult [SHEN89].

4. MUIO-Method with Overlapping

In [YANG90] it was shown that multiple U5IO sequences can be combined with

overlapping to further condense the test sequence. Overlapping takes advantage of the case

where some ending portion of an edge sequence is identical to the beginning portion of

another edge sequence. Since the length of the test sequence is now dependent upon the

length of the compound edges, one possible way to reduce the length is to combine the

compound edge of one test with the next edge to be tested. Thus. when possible, these two

edge sequences are combined to form one edge sequence which can be used to test both

edges. By using several shortest UIO sequences, there is a good chance that an "untested'

13

UIO sequence can be used to verify that state. A shorter test sequence can now be obtained

because the untested UIO sequence is both verifying the previous state. and beguamg the

test of a different transition emanating from that state. Essentially, a different incoming

edge of a state is concatenated with a different shortest UIO sequence which completes the

second half of the current compound edge and begins the first half of a new compound

edge.

For example. the compound edge for the edge 4--+5 labeled afi in Figure 3 is a, y

c1Z, and the compound edge for the edge 5-41 labeled cOZ is ciz aix civ. With overlapping.

the two compound edges can be combined into the single sequence aix c:z aix c, v which

can be used to test both edges. The procedure given in [YANG90] shows how to combine

the maximum number of compound edges using multiple UIO sequences and overlapping.

When a sequence is derived that contains the maximum number of compound edges, that

sequence is often called afully overlapped transition sequence (FOTS). When overlapping

is combined with the MUIO method and applied to Figure 3. a minimal length test sequence

of 31 steps is generated. The procedure for computing a FOTS is similar to determining

sequence with the MULIO method; details can be found in [YANG9g0.

D. SUMMARY

The apparent goal of the U, RCP, MUIO, and MUIO with overlapping methods seems

to be to shorten the length of the test sequence, and most of these techniques use

complicated, optimization techniques to produce an optimal length sequence. However,

since the purpose of conformance testing is to verify that the behavior of a protocol

implementation is consistent with its specification, it seems that the major emphasis of the

test procedure should be on the correctness of the test sequence rather than on its brevity.

In other words, the purpose of a test method should be aligned with the purpose of

conformance testing, which is to detect errors in faulty protocol implementations.

The techniques presented in the previous section are intended for use with a protocol

described as an incompletely specified finite state machine. Since protocols are rarely

14

specified in this manner, the translation from specification to 1/0 diagram is difficult and

error-prone. Protocol models which are designed for specification purposes tend to have

powerful program language constructs, which simrplify specification, but may prove

difficult to analyze. On the other hand. models which are designed with analysis in mind.

such as the CFSM model used by the previous test methods, might be considered too simple

for the specification of modem, complex protocols [LUND90(bi]. What is needed is a test

method that is based on a protocol specification model that eases the tasks of analysis and

verification.

This paper discusses a confonnance test method for generating a test sequence for a

communication protocol specified as a sYstem of conmunicating machines (SCM). The

SCM specification method was designed with protocol specification and verification in

mind. so it lends itself naturally to conformance testing. A number of current

communication protocols such as GO-BACK-N data link protocol. Token Bus. CSMA/CD,

and FDDI have been specified with SCM. and tested with the procedure presented here.

Recently, a software tool was created which successfully automates the specification

process using SCM [ROTH 92]. This automated tool helps the test designer to analyze the

protocol specification much more easily. This does not necessarily guarantee a greater

ability to produce a better test sequence, but the close relationship between the

specification, verification, and test methods gives some assurance that the implementation

is consistent with its specification.

E. SYSTEMS OF COMMUNICATING MACHINES

In this section the model used to specify the protocol is briefly described. A more

detailed description appears in [LUND9I(a)).

A system of communicating machines is an ordered pair C = (MAV), where

M= Im m .. ,

is a finite set of machines, and

V=(v 1,v,,....v,

15

is a finite set of shared variables, with two designated subsets Ri and Wi specified for each

machine mi. The subset Ri of V is called the set of read access variables for machine in,,

and the subset Wi the set of write access variables for ini.

Each machine ri E M is defined by a tuple (Si.so.Li.Ni,Ti). where

(1) Si is a finite set of states:

(2) so C Si is a designated state called the initial state of mi;

(3) Li is a finite set of local variables,

(4) Ni is a finite set of names, each of which is associated with a unique pair (p,a).

where p is a predicate on the variables of Li u Ri and a is an action on the variables of

L i u R i u Wi. Specifically. an action is a partial function

a:Li x Ri -ý Li x Wi

from the values contained in the local variables and read access variables to the values of

the local variables and write access variables.

(5) T,: Si x Ni -- Si is a transition function, which is a partial function from the states

and names of mi to the states of ini.

Machines model the entities, which in a protocol system are processes and channels.

The shared variables are the means of communication between the machines. Intuitively.

Ri and Wi are the subsets of V to which m, has read and write access, respectively. A

machine is allowed to make a transition from one state to another when the predicate

associated with the name for that transition is true. Upon taking the transition, the action

associated with that name is executed.

The set L, of local variables specifies a name and a range for each. The range must be

a finite or countable set of values.

A system state tuple is a tuple of all machine states. That is, if (M.V) is a system of n

communicating machines, and s,, for i s i , n, is the state of machine tn,, then the n-tuple

(s,,s,s.) is the system state tuple of (MYV).

16

A system state is a system state tuple together with its enabled outgoing transitions.

Two system states are equivalent if every machine is in the same state. and the same

outgoing transitions are enabled.

The initial system state is the system state such that every machine is in its initial state.

and the enabled outgoing transitions are the same as in the initial global state.

The global state of a system consists of the system state, plus the values of all

variables, both local and shared. The initial global state is the initial system state, with the

additional requirement that all variables have their initial values. A global state

corresponds to a system state if every machine is in the same state and the same outgoing

transitions are enabled.

Let 'T(s,,n) = s, be a transition which is defined on machine in,. Transition T is enabled

if the enabling predicate p, associated with name n, is true. Transition T may be executed

whenever mi, is in state s, and the predicate p is true (enabled). The execution of t is an

atomic action, in which both the state change and the action a associated with n occur

simultaneously.

17

III. TEST METHOD

In this section. the test method is described. This description is actually a refined

version of the method described in [LIJND90(b)]. The input is a protocol specified as a

s.,stem of communicating machines and the output is a complete test sequence and an I/O

diagram. In order to go from the specification of a protocol machine to a test sequence.

identification of the shared and local variables is necessary. The shared and locad variables

provide a way for the tester to provide input to and observe output from the machine during

testing. The test of each edge or transition is treated as a separate, individual test. and may

modify some or all of the shared and local variables.

The format of each single edge sequence test is

S i11.12....in/Ol,02,..m SE

where SI is the state of the machine at the start of the test, i1I... in are the values of the input

variables prior to the test, o ,..oom are the values of the output variables after the test, and

SE is the state of the machine at the end of the test. The input and output variables are

determined before testing begins and are taken from the shared and local variables of the

machine. The procedure consists of preliminary steps, the test sequence generating

procedure, and refining steps. A discussion of fault coverage follows the presentation of the

test procedure. While analysis of fault coverage is not necessary to generate the test

sequence, it does help determine the sequence's effectiveness.

A. PRELIMINARY STEPS

1. _'rom the machine specification finite state diagram, mark each transition whose

name appears on more than one arc. Assign to each such instance a separate distinguishing

label.

2. From the predicate-action table, note the number of clauses (distinct conditions) in

each enabling predicate. Mark each clause.

18

3. For each shared variable x, deternune if v is an input variable, output variable, or

both. For each x which is both, split x into two variables, vi anid .xO for testing purposes-

4. For each local variable I, determine if I is used as an interface to the higher laver user

of this protocol. If so. mark I as input, output or both. Each such local variable is anu input

variable if it appears in an enabling predicate and an output variable if it appears in an action

on the left side of an assignment arrow. If / is both input and output, split it into variables

1 and 1O for testing purposes.

Step I ensures that each instance of each transition is tested. A protocol specification

may have the same transition name on more than one arc: we want to be certain that every

arc is tested. Step 2 ensures that each clause is tested individually, if possible. An enabling

predicate may consist of several clauses, any one of which might be true, allowing the

transition to execute. In Steps 3 and 4. the shared and local variables are identified. Shared

variables provide the means of communication between the machine and other protocol

entities, and local variables allow communication with the user of the protocol-

Collectively, these variables are the means the test designer has of giving inputs to the

machine and observing its actions.

In some SCM specifications, additional variables are defined that are used internally

by the protocol machine and are not visible to the user (upper layer(s) of the protocol I or

the tester. Typically, such variables are counters or array indices. In any case, however.

these variables should not appear in the test sequence since they are not under the direct

control or observation of the tester.

B. TEST SEQUENCE GENERATING PROCEDURE

1. S,(-- initial-state;

2. Let t = (p,a) be an untested transition from state. (This notation simply means that

the current transition being tested, t, has the predicate. p, as input and the action, a. as

output).

19

(a) determine the values of the input variables which make exactly one of the

untested values of p true. Check to see if these values allow any other transition from this

state to be executed. If so, set additiowd input variables to values that ensure that only the

transition being tested is enabled. Fill in the necessary input variables, and mark the others

DC for "don't care,"

(b) determine and mark the expected values for the output variables. also record

the expected values assumed by the local variables.

(c) determine the expected next state and set SE to it,

(d) determine if SE is transient; if not, label it as a "stop state" and proceed to 3).

A state is transient if one or more of its enabling predicates is true upon reaching the state

This means that the machine can proceed to another state without waiting for further input

from the tester).

(e) attempt to make SE into . stop state by setting DC values such that, when state

Sr is reached, none of the enabiing predicates are true. If successful, go to (3;.

(f) SE is a transient state. If more than one transition leaving SE is enabled.

arbitrarily choose one and set inputs not yet specified, so that only one transition leaving

SE is enabled. set r = (p,a) to this transition.

3. Output this test S1 il,-..inioI'o2oM SE as the next test in the sequence.

4. Mark the clause just tested. If all clauses in transition r are now tested, mark t as

tested. If all transitions are now marked as tested, exit to "refining steps." Otherwise.

proceed to step (5).

5. Set S, to SE. If S, is a stop state, proceed to (2), otherwise, proceed to 2(b).

Step 2(a) attempts to test each clause individually. This is important so that the tester

knows which transition was enabled, and therefore caused the transition to occur. If it is niot

possible to separately test each clause, then the test designer must set the input variables so

that the clauses are tested as thoroughly as possible. Perhaps they can be tested in

conjunction with one another.

2!)

Steps 2(d,ef) are c,,ncemed with transient states. With the existence of ';,1ch states. it

may be impossible to vý,ify expected values ot output variables, because tie tester might

not be able to determine which transition actually modified the variable. The tiansient state

and possible multiple transition enablings that cannot be controlled in these steps. might

indicate the need to modify the specification to allow for bettet testability.

Step 5 "ets starting state of the next test in the sequence to the ending state of the

current test. In order to exercise all parts of the protocol machine, some transitions ila.

have to be executed more than once. In this instance. soir, .Judgement by the test designet

may be needed. In the normal operation of the machine, if certain transitions are executed

more than others, the same will likely be true during testing.

C. REFINING STEPS

1. Construct the I/O state diagram from the test sequence.

"2. For each state. determine a shoxiest OIO sequence (if one exists). Append the UIO

sequence for SE to the end of the test sequence. If no UIO sequence for the current S_ exists,

then continue testing transitions until an SE with a UIO sequence is visited.

3. Check for converging transitions. (Converging transitions are difficult to test and

may require special attention).

In Step 1, the I/O diagram is constructed from the test sequence and is a tool to help

the test designer ensure completeness. This diagram is constructed directly from the test

sequence with the knowledge of "stop states." The directed arcs in the I/O diagram are

labeled with the corresponding values of the input and output variables. Transient states

will not appear in the I/O diagram.

The purpose of the final UTIO sequence in Step 2 is to verify that the last state which

was reached in the test sequence is indeed the currer, state of the protocol machine. Since

the details concerning the implementation of the machine are assumed to be "hidden" from

the tester, the existence of at least one state with a UIO sequence is necessary. Without the

UIO sequence, there is no way of knowing that the last transition tested left the machine Ui

the expected state.

Converging transitions, identified in Step 3. are distinct transitions. with identical

labels, which originate from different states but end in the same state. They may arise

naturally in the specification of a protocol, but should be marked for careful observation.

The existence of such transitions complicates the role of the test designer and makes error

detection difficult. The example protocol machine tested in a Chapter IV contains

converging transitions, and the analysis of the test sequence generated from this machine

will reveal their effects on the quality of the test sequence.

D. FAULT COVERAGE

For the fault coverage for the protocols presented in this paper, four classes of faults

are considered fMIL.L901.

"* Type 1: The output of an edge is altered.
"• Type 2: The input of an edge is altered (without causing non-determinism).
"- Type 3: A tail state of an edge is altered.
"- Type 4: A head state of an edge is altered (without causing non-determinism).

Head state and tail state refer to the state in which an edge begins and ends,

respectively, and a fault can be defined as a transition in the implementation under test

which is not defined in the specification. When testing for faults in an implementation of a

protocol, detecting faults of types 1, 2 and 4 are generally trivial. It turns out that a test for

the presence of those categories of, faults is automatically performed when a test sequence

is checked for the presence of a type 3 fault.

For example, a type I fault would be detected when the test of an sequence produced

output different from that which was expected. A type 2 fault would be discovered when,

for instance, no output was generated in response to an input which should have caused a

change in an output variable. In this case, the machine wouldn't execute the transition

because the enabling predicate(s) would not be enabled. A type 4 error is typically detected

in a similar manner. The non-determinism requirement for type 2 and type 4 errors is

22

necessary if, in the IUT, the enabling predicate of one edge is altered such that it is

equivalent to another enabling predicate emanating from that edge. This would result in a

non-deterministic protocol machine, which is clearly untestable.

Detection of type 3 faults are the most difficult to detect since a single error can go

undetected until the very last edge sequence test. Moreover, if the error occurs in an edge

that exists more than once in the specification, the fault might not be detected. It is worth

noting that, when an error is detected by a test sequence, the tester cannot deduce what type

of error exists in the protocol implementation: only the existence of some type of error is

known.

23

IV. APPLICATIONS OF TEST METHOD

In this section the test generating procedure is illustrated using two well-known local

area network protocols: Token Bus and FDDI. The protocols are first specified as a system

(f communicating machines and then the procedure is given.

A. TOKEN BUS PROTOCOL SPECIFICATION

The specification of the Token Bus network, originally presented in [LUND9O(a•j,

consists of the predicate action table (Table 5), the specification for each machine, given in

Figure 4, and the shared variable MEDIUM, also shown in Figure 4. This single shared

variable is used to model the bus, which is "shared" by each machine. A transmission onto

the bus is modelled by a write into the shared variable. The fields of this variable

correspond to the parts of the transmitted message. The first field, MEDIUM.r. takes the

values T, or D, which indicate whether the frame is a token or data frame; the second field,

DA, contains the address of the station to which the message is transmitted (DA for

"destination address"); the next field, SA, contains the originator's address (SA for "source

address"); finally, the data field contains the data block itself.

The network stations, or machines, are defined by a finite state machine, a set of local

variables, and a predicate-action table. The initial state of each machine is state 0, and the

shared variable is initially set to contain the token with the address of one of the stations in

the "DA" field.

The value of local variable next is the address of the next downstream neighbor. and

this is initialized so that the entire network forms a logical ring. Local variable i is used to

store the station's own address, and as implied by their names, local variables ourbuf and

inhuf are used for storing data blocks to be transmitted to, or received from other machines

on the network. Outbuf is an array, and can store a potentially large number of data blocks.

The local variable j is used to index into this array. The variable ctr serves to count the

24

number of blocks sent; it is an upper bound on the number of blocks which can he sent

during a single token holding period.

The initial state of each machine is state 0. local variables j and cn- are initially set to

I, and inbuf and ourbuf are set to empty. The shared variable MEDIUM initially contains

the token, with the address of one station in the DA field. Thus the initial system state tuple

is (0.0..,0) and the first transition taken will be get-tk. executed by the station which has its

local variable i equal to MEDIUM.DA.

Each machine has four states, In the initial state. 0. the station is quiescent. merely

waiting to either receive the token, or a message from another station. If the token appears

in the variable MEDIUM with the station's own address, the transition to state 2 is taken.

When taking the get-tk transition, the machine clears die communication medium lutl sets

the message counter, ctr, to 1. In state 2. the station transmits any data blocks it has, moving

to state 3, or passes the token, returning to state 0. In state 3, the station will return to state

2 if any additional blocks are to be sent, until the maximum count k is reached. When the

count is reached, or when all the station's messages have been sent, the station returns to

state 0.

The receiving station, as with all stations not in possession of the token, will be in state

0. The message will appear in MEDIUM, with the receiving station's address in the DA

field. The rcw' transition to state I will then be taken, the data block copied. and the

MEDIUM cleared by the ready transition. By clearing the medium, the receiving station

enables the sending station to return to its initial state (0) or to its sending state (2).

For this simplified specification, the channel is assumed to be error free. This means

that the clearing of the medium by the receiver may be taken as an acknuowledgment by the

sender. Thus, there is no need for timers, time-outs or error checking on the channel.

Although many of the finer details of the IEEE Token Bus network are omitted, this

specification contains the main idea of the Token Bus protocol, and provides enough detail

for the generation of a test sequence.

25

TABLE 5: PREDICATE ACTION TABLE FOR THE NETWORK NODES

transition predicate action

roy MEDIUMit,DA) m---f* I n bluf'4-- MED[UM.SA. datap

ready true MEDIUM -- 0

get-tk MEDlUM.(t,DA) = (Ti) MEDIUM 0- 0. ctr i

pass outbuf[j] = 0 MEDIUM •- (T. nexr. i. 0)

Xmit outbuffj] • 0 MEDIUM - outbuf UtjI
01, 4-- 41r 9 1L oulbuf~t [-C 4.. : 4.- 1 + 1

moreD MEDIUM = 0 A (outbuflj 0 -- --
A ctr! -k)

pass-tk MEDIUM -0 A ^outbuflj] 0 MEDIUM *-- (T. next. i. 0)
Vctr=k+ 1I

t DA SA dataMEDIUM ili I' It

re y DA SA data

tDA SA data

Xmit so 3ourbuft

m i (my address) j. (1,2,..,k)

c (1,2k+1i) next: (address
of next station)

Figure 4: Specification of Network Nodes

26

B. TEST SEQUENCE GENERATION

First the preliminary steps are carried out. these determine tht exact format of the tests

(i.e.. the input and output variables). Then the tests are generated, The numbering below

corresponds to the steps in the test procedure. for ease of reference.

1. Preliminaries

(1) All transition labels are unique. so no action is required.

(2) The pass-tk transition has two distinct clauses:

(MEDIUM = 0 A ourbuf[j] = 0) and (MEDIUM = 0 A ctr = k + I We will mark

the former as pass-tk' and the latter as pass-tk. (Thus, the pass-tk' transition represents the

case when the machine has no more data to send during the current token holding period

and the pass-tk transition represents the case when the machine has sent the maximum

number of messages during the current token holding period).

(3) The shared variable MEDIUM is both an input and an output variable.

(4) The local variable outbuf is both an input variable and an output variable, and

inbuf is an output variable only.

Note that in Step 2. the more-D transition is not separated into two different clauses

because all three conditions must be true for the transition to be enabled. Also note that I.

next, j, and ctr are local variables, but since they are not used as an interface to a higher

layer user of this protocol, they are not "visible" to the tester and are not shown in the test

sequence.

From these preliminary steps, we can see that the test will take the following form:

SI MEDIUM, outbuf1 / MEDIUM0 outbuf0 inbuf SE.

Now we are ready to begin generating the test sequence.

2. Sequence Generation

(1) We begin in the initial state, 0. In step 2. we may choose any untested

transition emanating from state 0; take the get-tk transition.

27

2(a) According to the predicate-action table, to enable this transition the t field of

MEDIUM must be set to T and the DA field to the station's address, which is assumed to

be i. The remaining fields may be any values, and are indicated by an 'x' in Table 6. The

other input variables are set to "don't care" or DC.

2(b) When the transition occurs, MEDIUM is set to empty.

2(c) SE is set to the expected end state for this test, which is state 2.

(3) Noting that the next state is a stop state, this completes the first test in the

sequence, and the appropriate values are output (Table 6).

(4) This clause and transition are now marked "tested."

(5) The value of S, is now set to 2. and another iteration starting at step 2 is called

for.

TABLE 6: TEST SEQUENCE FOR THE TOKEN BUS PROTOCOL

transition S, MEDIUM, outbufl M outbufo inbuf SE(1 2) EDIUMo (1 2)

get-tk 0 (T,i,x,x) DC DC 0 2

Xmit 2 DC X DC X 0 -

moreD 3 0 DC Y -

Xmit 2 DC DC Y Y -0 .

pass-tk 3 0 X DC (T,next,i,0) 0

rev 0 (Dj,x.x) DC DC (x.x.SA.
data)

ready I DC DC DC 0 D|

get-tk 0 (T.i,x,x) DC DC 0 2

pass 2 DC 0 DC (T~next.i.0) 0

get-tk 0 (T,i,x,x) DC DC 0 -

Xmit 2 DC X DC X 0 - 3

pass-tk' 3 0 DC 0 (T.next,i,O) 0

28

The next iteration of the procedure arbitrarily selects the Xniir transition, and the

values selected are shown as the second test entered in Table 6. The expected ending state

of this second test is 3.

At the next iteration, the iworeD transition is chosen, followed by the Xmit transition

back to state 3. We now exercise the pass-tk transition using the

(MEDIUM = 0 A ctr = k+ 1) predicate. which leads us back to the initial state of).

The remaining untested transitions are executed in a similar manner resulting in a final

test sequence of 12 tests. The values of the input and output variables for all of these tests

are shown in Table 6.

3. Fault Coverage for the Token Bus Test Sequence

The procedure for determining fault coverage consists of taking each outgoing

transition from each state in the specification and modifying that transition so that it has a

different tail state. For example, in a correct implementation of the Token Bus protocol, the

get-tk transition has a tail state of 2. In an incorrect implementation, the get-tk transition

could have a tail state of 0,. or 3. In this specification, Figure 4, there are 4 states and 7

transitions, so there are 28 possible tail states. Subtracting the 7 tail states in a correct IUT.

leaves 21 possible type 3 errors. These are listed in Table 7.

TABLE 7: POSSIBLE TYPE 3 ERRORS FOR FIGURE 4

State Transition Possible~nd Result
State

0 gei-rk 0 detected

0 get-rk I detected

0 ger-tk 3 detected

0 1,0c 0 detected

0 r,(c 2 detected

0 rcv 3 detected

29

State Transition Possibldnd ResultState

I ready I detected

1 ready 2 detected

1 ready 3 detected

2 X771it 2 detected

2 Xmit 0 detected

2 Xmit I detected

2 pass 2 detected

2 pass I detected

2 pass 3 undetected

3 moreD 3 detected

3 ,noreD 0 detected

3 rooreD I detected

3 pass-rk 3 detected

3 pass-tk I detected

3 pass-tk 2 undetected

As an example of how this test sequence can be used to detect an error, consider

the error that could be associated with the rcv transition. In order for the rcv transition to be

executed, the machine must be in state 0 and the predicate MEDIUM.(t.DA) = (DAi) must

be true. The rcv transition then places the source address of the sender and the data into

local variable inbuf (inbuf +- MEDIUM.(SA.data)). If this transition were to end in state 0,

then either the rcv transition must be executed again, or the get-tk transition is executed. If

the rcv transition is executed repeatedly, the machine will be in deadlock, and the error

detected. If, on the other hand, the get-tk transition is executed, MEDIUM will be modified

30

(MEDIUM ,-- 0) mistakenly. and the error will be detected. This type of procedure is

applied to every possible, single type 3 error to determine if it can be detected.

A check of the 21 possible errors against the test sequence (Table 7) shows that

all faults will be detected with the following 2 exceptions: (.1) when the pass transition ends

in state 3 (instead of state 0) and (2) when the pass-rk transition ends in state 2 (instead of

state 0). Closer inspection reveals that these particular errors are not detected because they

involve converging transitions.

Note from Table 4 that the enabling predicates and the corresponding actions for

the pass-tk and pass transitions are almost identical. Furthermore, both transitions emanate

from different states but end in the samre state, state 0. If, in a faulty implementation.

transition pass-tk ended at state 2. the error would go undetected because the machine

would instantaneously move from state 2 to state 0; this is the correct state in an

implementation where the error in the pass-tk transition does not occur. The pass transition

is executed because the enabling predicate for the pass transition must be "true" in order

for the pass-tk transition to have executed earlier. In general. errors involving converging

transitions are difficult to detect and are given further treatment in chapter V.

C. FDDI PROTOCOL SPECIFICATION

The Fiber Distributed Data Interface (FDDI) is a high speed, token ring, local area

network recently developed by the American National Standard Institute (ANSI). Because

of its reliability and high speed. FDDI is a very complex protocol. This is evidenced by its

specification. The ANSI specification of this protocol contains two distinct machines. each

with six states, and a total of approximately 60 transitions. Furthermore this work contains

some undesirable ambiguities that could complicate testing. Recent work [LUND9IbIj

involving FDDI has produced an SCM specification of an improved FDDI protocol which

allows for proofs of protocol correctness and for the development of test procedures. This

improved specification, though it is more precise than the ANSI specification. is also more

complex; it includes two machines with a total of more than 100 states and 250 transitions.

3'

In order to effectively test such a specification, it is necessary to break each machine

into distinct, separately testable entities, and perform localized testing: tha, is the approach

taken here. The specification provided here is a portion of the MAC receiver state diagram

illustrated in [LUND91(b)J. Since this work involved an improved FDDI specification.

some refinements to the example machine were necessary to make it more closely aligned

with the ANSI specification. The purpose of the machine used in this example is.

essentially, to analyze the stream of symbols being received by the MAC layer and

determine whether or not they represent the token.

This specification consists of the predicate action table (Table 8) and the state diagrani

of the receive token machine (Figure 6). A complete description of the notation used in this

example is beyond the scope of this thesis, however interested readers can consult

[LUND91(b)J. The brief description that follows should be sufficient to allow for an

understanding of the operation of the example machine. For the predicates in Table 8, each

symbol represents a field of an FDDI frame; this frame format is shown in Figure 5.

PA SD. FCI DAj SAl INFO FcSED I FS.

Figure 5 : Frame Format

Each field of the frame has the following meaning:

"• Preamble (PA) - consists of 16 or more idle symbols (Ir..l&ax) that signal a
start transition for synchronization of station's clock

"* Starting Delimiter (SD) - consists of two symbols (0 and K) that signal the
start of receiving a frame

" Frame Control (FC) - consists of two data symbols. For our purposes. FC
will either contain (n,n) indicating a bit pattern other than the token, or FC
will be equal to Token, which indicates that the frame contains a the token.

32

- Destination Address (DA) - consists of a number of symbols that indicate the
destination address of the frame.

- Source Address ISA) - consists of a number of symbols that indicate the
source address of the frame.

- Information (INFO) - consists of zero or more symbols that represent the
message carried by the frame.

- Frame Check Sequence (FCS) - consists of a number of symbols that serve to
detect errors within the frame.

- Ending Delimiter (ED) - consists of one terminate symbol MT) that indicates a
frame ending. The field is necessary to provide a criteria for acceptance of a
valid frame. The ED must be met before a frame is accepted.

- Frame Status (FS) - consists of control indicator symbols that follow the
ending delimiter of a frame.

The example machine has four states. In the initial state, 0. the machine is quiescent.

merely waiting to either process a symbol stream or to reset. If MACReset is true, a reset

occurs and the machine remains in its initial state. If the preamble (PA,) is equal to 1,, then

the first idle symbol has been detected in the symbol stream, and the machine moves to

state 1. From state 1, a reset or invalid signal from the physical layer would cause the

machine to return to its initial state; however, if PA, is equal to the maximum number of

idle symbols and the first symbol of the starting delimiter (J) has been received, the

machine moves to state 2. The machine would then move to state 3 if the rest of the starting

delimiter was received correctly and the frame control symbol was set to the token. From

state 3, the stripontk transition would be taken if a preamble is detected with only one

idle symbol, and the frame control indicates a value other than the token. The

fornatrerror on tk would be exercised if, in addition to the above conditions, the ending

delimiter was not equal to the tenminate symbol or the preamble did not contain an idle

33

symbol. Finally, the tokenoiwd transition is taken if the terminate symbol is received

correctly.

It is important to emphasize that this specification comprises a ven small portion of

the entire FDDI specification. and the only way to test such a complex specification is tI

break it down into more manageable parts. The example given here is representative of the

complexity ihat would be associated with other machines 'M the FDDI specification.

TABLE 8: PREDICATE ACTION TABLE FOR RECEIVE TOKEN MALHINE

transition predicate action

Reset MACReset = true TNeg +- TMax.

Signal-Start PHIndication(symbol) = PAr(I] A TVX <-- reset: T"FvX - enabled: SIGNAL
(symbol = PAJ11]) idle:

Invalid PHInvalid = true SIGNAL FOError:

Start PH-Indication(symbol) = PAJll..lmsil Idle +- off: SIGNAL RC_Sian:

I SDIV1
Token PH_Indication(symbol) -PAAH!..maJ, SIGNAL PDU_Th:

SDrJK] I AFCr = Token

Stripon_Tk PHIndication(symbol) = I PAR[I..mx], SIGNAL idle:
SDr[JKI. FC,[n,n]. PA[I J]I

FormatError PHIndication(symbo) = PA,[I-1.. ,.ji SIGNAL FO_Error:
_on_1k SDAJK], FCa.n]1, 1-, PAr[II] v

-EDA[T.T])

TokenRcvd PH_Indicatioo(symbol) PAr[I..IaSIGNAL TkRcvd,
SD,[JK], FC,[n.nJ. EDr'T.T]

34

Reqet•

r1n vaii J

0 Signal StIll

Reqeto
Invalid,

Reset, Invalid, Stant

Tc~en 2

Stri-nj~i..k
Format Error on T .

Token Rcvd

Figure 6: FDDI Receive Token Specification

D. TEST SEQUENCE GENERATION

These steps are similar to those provided for the Token Bus test sequence. Again. the

numbering below corresponds to the steps in the test procedure.

1. Preliminaries

(1) There are four reset transitions and three invalid transitions, and these are

labeled with subscripts corresponding to the number of the state from which they originate.

(2) Each enabling predicate has one clause.

(3) The shared variables TNeg and IVX are output variables.

(4) The local variables PHIndication. PH_Itvalid, and MACReset are input

variables and local variables Idle, RCStart, PDUTk. FOError. TK_Rcvd. and Flogs are

output variables.

From these preliminary steps, we can see that the test will take the following fonn:

S, PH Indiation PHInvalid MACReset / TNeg TV17X dle RC_Strar PDUTk FO Errm TK Ri d Flags S3

Now we are ready to begin generating the test sequence.

35

2. Sequence Generation

(1) We begin at the initial state, 0. In step 2. we may choose any untested

transition emanating from state 0: take the resctr. transition.

2(a) According to the predicate action table, to enable this transition, MACA -Reset

must be set to 'true.-The remaining input variables are set to DC.

2(b) When the transition occurs. TNeg is set to TMax.

2(c) SE is set to the expected end state for this test, which is state 0.

(3) Noting that the next state is a stop state, this completes the first test in the

sequence. The appropriate values are now output (Table 9).

(4) This transition is now marked "tested."

(5) The value of St is now set to 0, and another iteration starting at step 2 is called

for.

TABLE 9: FDDI RECEIVE TOKEN TEST SEQUENCE

triw~oi 1 PH Iedlcatlon MAC T NeeT Il Re, PDILUT Fo TK

-srbl Reset start It Error Revd

Rc -0O DC DC true asT .

Signal Stan 0 PAJ[I11 A symbol DC DC reset on -

=PA4II, enable

Invalid, I DC Irne DC on 0 -

SignaLStart 0 PA,1I11 A symbol Dc DC - reset on I
=PAJI11 enable

Reset, I DC DC true Tjdas -- (

signal-Start 0 PAHJ A symbol DC DC - reset on - .

-PA,H1 J1 enable

Start I PA,.tI,,,.j. DC DC - - off on 1 t~
SD,13 ______

Peset 2 2 DC DC true TMax

SignaL Start 0 PA,1IIJ A syMbol DC DC - reset on
- PAA 1 J1 enable

S tart I PA4,..I1-,,,. DC DC -off on fetls 2
________ 5SD,[JI ____

Invalid2 2 DC true DC -- . ,

Signal-Start 0 PAf 111 A symbol DC DC rsto
__________- PA,1, nal

tat I PA4,1A..I], DIC DIC - off leaf

______SD,()) II___[_,_I_

36

train S, PH-ndkatlo P ,%1AC Rc PDUJ T FO_ TK FlavRest nStare k Error Rcvd

Token 2 PA,1It..i,,. DC Df: -

SDIJK1 A FC,
=Token

Swrip on.*Tk 3 PA,[l..I,,,J. DC DC on
SDj[JK],FC,[n,n),

PA.II ,,

Star I PA,[,/ [_.J. DC DC - ff ,,n '

SD,IJ _

Token 2 PA,(ly..l_,,] D. DC ,

SD,fJK. A FC,
=Token

Format-Error 3 PA,I..1I,,,. DC DC ,
On,'_k SD.IXKI.FC,fn.ni.

i-_ PAJ I,) v
- ED,IT.T))

Start I PA,I/..Il,,. DC DC off on lea 2

SDJj _

Token 2 PA,[I.I,,,•] DC DC ,on

SD,.[KI A FC,
=Token

Token Rcvd 2 3 PA,[I1..I,,. DC DC .

SD,[JK). FC,[n.nl,
ED, (T.TJ

Start I PA,[I,..I_,,, DC DC off on clew 2

SD,[J]

Token 2 PA4Il..I,,J DC DC " on 3

SD,IJKI A FC,

=Token

tnvalid., 3 DC true DC , - "n

SignaLStart 0 PA,(lt A symbol DC DC ret•e on

= PAJ11 enable

Start I PA,4I,..,I,. DC DC off on t r 2

SD,"'

Token 2 PAJIl.,,",, DC DC on

SD,[JKI A FC,
-Token

Retet 3 DC DC true TMax I I

SignaLStat 0 PA,[IIA symbol DC DC reset on

= PA4lj enable

The next iteration of the procedure arbitrarily selects the. signalstart transition.

and the values selected are shown as the second test entered in Table 9. The expected

ending state of this second test is 1. At the next iteration, the invalid, transition is, chosen.

followed by the signalstart transition back to state I.

37

The remaining untested transitions are executed in a similar manner resulting in a

final test sequence of 29 steps. The values of the input and output variables for all of these

tests are shown in Table 9.

3. Fault Coverage for the FDDI Test Sequence

Thedeterminationoffaultcoverageforthistestsequenceistdentic altotheTokenB ustest

sequence. In this specification, Figure 6. there are 4 states and 13 transitions. so there are

52 possible tail states. Subtracting the 13 tail states in a correct PLrT, leaves 39 possible type

3 errors. These errors along with the results of each test are listed in Table 10,

TABLE 10: POSSIBLE TYPE 3 ERRORS FOR FIGURE 5

Possible
State Transition End Result

State

0 reset, I undetected

0 reset, 2 undetected

0 reset, 3 undetected

0 signal start 0 detected

0 signal start 2 detected

0 signalstart 3 detected

I reset, I detected

1 reset, 2 undetected

1 reset, 3 undetected

1 invalid, I detected

I invalid, 2 undetected

I invalid, 3 undetected

I start 0 detected

1 start I detected

38

Possible
State Transition End Result

State

I Srat 3 detected

2- reset, 2 detected

2 reset, I undetected

2 resert 3 undetected

2 invalid, 2 detected

2 Invalid, I undetected

2 im'alid' 3 undetected

2 token 0 detected

2 token I detected

2 token 2 detected

3 reset3 I undetected

3 reset3 2 undetected

3 reset? 3 detected

3 invalid3 I undetected

3 invalid3 2 undetected

3 invalid3 3 detected

3 strip onrtk 0 detected

3 strip on tk 2 detected

3 strip on tk 3 detected

3 format error on tk 0 detected

3 format error on rk 2 detected

3 formaterror on tk 3 detected

3 token rc'd 0 detected

3 token rcvd 2 detected

3 token rcvd 3 detected

39

A check of the 39 possible type 3 errors against the test sequence (Table 9) shows

that there are 15 faults which are not detected. Note that in each such instance, the error is

not detected because it occurs in the presence of one or more converging transitions, any

single, type 3 error that does not involve a converging transition will be detected.

For instance, consider the error that could be associated with the vqnal/ qrr

transition. In order for this transition to be executed, the machine must be in state 0 and the

predicate PH_!ndication(symbnol) = PArt111 A (synibol = PA,.[11JI must be troe This

transition then resets and enables the valid transmission tuner (TVX) and enables the idle

signal. If this transition were to end in state 0. then either the signalstart transition must

be executed again, or the reset,, transition is executed. If the signal_starr transition is

executed repeatedly, the machine will appear to be in deadlock, and the error will be

detected. The same result, deadlock, will also occur if reset, is repeatedly executed. Again.

as in the previous example, this type of procedure is applied to every potential single, type

3 error to determine if it can be detected.

E. IMPROVING TESTABILITY

1. Token Bus Specification

The fault coverage for the test sequence presented for the Token Bus protocol

reveals two ways in which the protocol specification's testability is compromised.

First, from Figure 4, note that state I is a transient state. Since the only transition

emanating from this state is ready, and the enabling predicate for ready is "true." the

machine moves from state I back to state 0 without any input from the tester. The problem

is easily resolved, however, by adding the action for the ready transition to the action for

the rcv transition, and then removing the ready arc from the predicate action table and the

staxe diagram; this eliminates the need for state I in the state diagram. It is likely that the

designer of the specification merely included state I in the original specification. in order

to facilitate its understanding. Fortunately, the presence of the transient state in the original

40

example does not have an adverse effect on the fault coverage provided by the test

sequence. However. this is not always the case.

The second problem the test sequence reveals is the existence of the converging

transitions mentioned earlier. This situation is more difficult to resolve. The purpose of

these two transitions is to bring the machine back to its initial state once it (a) possesses the

token but has no data to send (lass). or (b) has already sent the maxibnum nuler of

messages allowed during a single token holding period 1pass-rk). Since the goal (if the

transitions is essentially the same (i.e. to pass the token to the next machine it is difficult

for the test sequence to distinguish between them. In this case. the tester should mark the

transitions as a potential problem and continue testing.

2. FDDI Specification

The major problem that analysis of the test sequence reveals about this

specification is the existence of converging transitions.

In Figure 6 there are thirteen transitions, seven of which are converging

transitions. There are four converging reset transitions whose purpose is to return the

machine to its initial state upon the "resetting" of the MAC layer. The three inwvalid

transitions ending in state 0, which indicate to the MAC layer that the physical layer has

encountered an invalid frame, are also converging transitions. Although these errors go

undetected by the test sequence, the occurrence of any one of them in an implementation

that is otherwise error free, would not affect the normal operation of the protocol. This is

because all of the reset transitions'and all of the invalid transitions have exactly the same

function, respectively.

While it is comforting to note that, in this case, the presence of these errors does

not adversely affect the test sequence, this will not always be so. Unfortunately. there is

little that the tester or protocol designer can change in this instance without altering the

operating characteristics of the machine.

41

V. PROOF OF FAULT COVERAGE

This chapter is concerned with determining the fault coverage produced by the test

method we have been discussing. Essentially, the testing problem is a matter of determining

the equivalence of two machines. the specification machine and the machine

implementation. If the two machines are equivalent, then the machine implementation,

seen as a black box, should generate the same output as the specification machine when

both are presented with the same input. Again, since very little can be assumed about the

internal structure of the implementation machine, the only way to determine equivalence is

to probe both machines with input sequences and compare the resulting output sequences.

The problem now is to figure out the right set of inputs and outputs (test sequences) to

determine whether or not the machines are equivalent.

In many ways this problem is related to the state verification problem, which has been

shown to be unsolvable. However, by limiting the number and type of errors that can occur

in an implementation, it is possible to devise a procedure that generates a test sequence

which is guaranteed to detect certain types of serious errors. The occurrence of an error in

a machine that contains converging transitions presents special problems for the test

designer, so care is taken in specifying exactly what constitutes a converging transition.

Two transitions t1 = (p1 , a1) and t2 = (P2, a2) are converging transitions if all of the

following conditions hold:

(1) transitions q and t2 have different head states but the same tail state:

(2) (PI = P2) or (PI = P2);

(3) (a, = a2) or their actions on all output variables are identical.

42

In the absence of converging transitions. it is possible to devise a method (hat will

provide good fault coverage, as is evidenced by the following proof This proof is by

contradiction.

Let X' be a protocol implementation under test (ItTl) of a protocol machine X,

specified by SCM.

Theorem: If (1). X has no converging transitions, and (2), the last transition in the test

of X is a LUIO sequence. then the test sequence will detect any single type 3 error.

Proof: Suppose not. Then there is such a machine which can be unplemented with a

single type 3 error, which the test sequence will not detect.

Let H be the state of the IUT at which the error occurs: that is. from which the

transition, say 'P'. goes to the wrong state (Figure 7).

P E, correct
state

-. E actual
NN... . . - -" " state

Figure 7 : Type 3 error

Now from the initial state to H, the test sequence has progressed correctly.

TABLE 11: EXAMPLE TEST SEQUENCE

SI INPUTS OUTPUTS SE

H-I H

H E

43

St INPUTS OUTPUTS SE

E, E,

F-I F

F FE

Let (H, El, E2,..,, F,...FE) be the sequence of states as expected to be visited by the

test sequence and shown in Table 11.

H E2 Q2 UIO sequence F

\ p
P U10 sequerce

Figure 8: States Visited in Protocol Machine

Similarly, let E',,..., F'E be the actual sequence taken by the faulty IUT (Figure 8).

Since no error is detected, the sequence Q'J, Q'2--- is exactly equivalent to Q1, Q2....

However, F,... FE is a UIJO sequence, hence. F',... FE must be exactly the same sequence

of states and transitions, or else condition I is violated. Otherwise, F,... F'E must be F.... FE.

Then there must have been a converging transition in the sequence Q), Q'-,.... which

violates condition II. QED.

44

VI. CONCLUSION

A. CONTRIBUTIONS OF THIS RESEARCH

The goal of this thesis was to present a procedure which generates a test sequence for

a communication protocol. that takes as input a protocol specified as a ýv.rcrm ,J

coninunicating machines, and gives as output, a complete test sequence. Three recent

conformance test procedures were ieviewed and their suitability for testing current

con-uunication protocols was discussed. A brief specification of two well known loca area

network protocols was given using SCM and test sequences were generated and analyzed

to determine the fault coverage they afforded. Finally. a proof was given that shows the

error detection capability of this test method.

The test method introduced here further demonstrates the flexibilitv of the SCM

model. A protocol can be specified, verified and tested using techniques hased on this

model. In the test procedure, every instance of every transition in the machine specification

is tested along with each clause in the enabling predicates. The preliminary steps determine

the input and output variables, the sequence generating procedure produces the test

sequence, and the refining steps assist in determining fault coverage. It was shown that this

method provides good fault coverage in the absence of converging transitions.

The example test sequences for Token Bus and FDDI demonstrate the application of

the specification and testing methods associated with the systents of conmiunicating

machines model. Since these protocols are in wide use today in many networks, their

presence as examples illustrates further the usefulness of this test method. Indeed, a test

designer would have a difficult time trying to generate a test sequence for these protocols

using any of the test methods discussed in Chapter MI. Again, using a protocol specification

method that has testing in mind yields much better results than using a specification method

that was designed without regard to conformance testing.

45

F

The proof of fault coverage presented here is important to the test designer because it

provides assurance that, under certain cucumstances, a serious error in a piotocol

implementation will be detected. While some of the current literature discusses the

correctness of a test sequence. the main emphasis seems to lie in shortening the sequence

length. Our procedure. however, emphasizes the ability of the sequence to detect errors

rather than achieve an optimal test sequence length. After all, if the protocol test method is

automated, the length of the test sequence is of little importance, the fault coverage

provided by the sequence is the important part. It is again necessary to emphasize that test

methods can only test for the presence of desirable behavior in a protocol machine. It is not

possible to exhaustively test for the presence of undesirable behavior since one cannot

foresee all possible errors that could occur in an implementation.

B. AREAS FOR FURTHER RESEARCH

Further research might concentrate on extending the error detection capabilities of this

method to detect multiple errors or perhaps to detect them in the presence of converging

transitions. Since this method treats a protocol implementation as a "black box" the test

designer knows nothing about the internal workings of the machine. the tester can only

monitor the output of the machine in response to certain inputs. For this reason, L110

sequences are needed to verify the state of the machine at a given instant. It would be

interesting to see how different "distinguishing sequences" could be used to better perfonn

this function in the presence of errors.

The recent automation of the specification and analysis portion of the SCM model

[ROTH 921, opens the door for the possible automation of the test method introduced here.

The procedure is fairly straightforward requiring the intervention of the test designer on

matters such as transient states and transitions with multiple clauses, but by starting with

simple protocols that do not contain any of these complicating factors it is reasonable to

assume that the procedure can be automated.

46

By showing the types of faults that commonfly go undetected by test sequence'., thii

research also provides some insight Mio de'Sigjninlg protocol s-ic ,at ale !eiter

suited for testing.

47

REFERENCES

[AHO881 Aho. A. V., Dahbura. A. T.. Lee, D and Uyar. NI U., "Ail Optinization
Technique for Protocol Confonnance Test Generation Based on I!l()
sequences and Rural Chinese Postmtn Tours," Pro(cedinjs)/ the ,rth
Syrnposiunl on Pt•,oroco SIN ct'Ifrh1i,. Testing anid 1•erifi tiot. IFIP. June
1)88. pp 75-86

f["OLTQI I Holtzman, Gerard, J.. De'si tn and lI idation ofComiputer Protoo/s. Prentice
Hall Software Series. Englewood Cliffs. NJ 07974.

ILLND9I(a)I Lundy. G. M. and Miller. R. E.. "Specification and Analysis of a Data
Transfer Protocol Using Systems of Communicating Machines.- Distr tbted
Co mrputing, Springer-Verlag. December 1 9) !.

LUND9l(b)] Lundy. G, M. and Elnii.:,., J L,. "A Formal Model of the MAC Layer of ail
Improved FDDI Protocol," M S Thesis, Department of Computer Science.
Naval Postgraduate School. Monterey, CA, 199 1.

flLrNDgI9aý1Lundy, G.M.. and Charbonneau, L. J.. "Modeling the Token Bus Protocol
with Systems of Communicating Machines". M. S. Thesis. Department of
Computer Science, Naval Postgraduate School, Monterey. CA. 1990.

[L-rND90 b,}Lundy, G. M.. and Miller, Raymond E.. "Testing Protocol Implementations
Based on a Formal Specification." Proceedings of the 3rd Interariomal
Workshop on Protocol Test Systeens. IFIP. North Holland. 1990.

[MWLL-901 Miller, Raymond E.. and Paul. Sanjoy, "Two New Approaches to
Conformance Testing of Communication Protocols," TR-90-31, Department
of Computer Science, University of Maryland. 1990.

[ROTH 921 Rothlisberger. M. J.. "An Automated Tool for Validation of Network
Protocols." M.S. Thesis, Department of Computer Science. Naval
Postgraduate School. Monterey, CA. September 1992.

ISABN85] Sabnani, K. K.. and Dahbura, A. T. "A new technique for generating
protocol tests." Proceedings of the 9th Data Cornniuncations Sy'iii,'st Iom.
IEEE Computer Society Press. September 1985, pp. 36-43.

[SHEN891 Shen. Y. N., Lombardi, F.. and Dahbura. A. T.. "Protocol Confoimance
Testing Using Multiple UIO sequences." Proceedings of the 9th Syi-mposuml
on Protocol Specification, Testing. and Veriftcation. IFIP, 1989.

,49

[YANG90] Yang. B., and Ural. J., "Protocol Conformance Test Generation Using
Multiple UIO Sequences with Overlapping." Preedin s)fSICti M XI • I

Philadelphia. PA, September 1990). pp. 1 18- 125

49

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria. VA 221314

Dudley Knox Library 2
Code 52
Naval Postgraduate School
Monterey. CA 93943

Dr. G. M. Lundy
Computer Science Department, Code CSLn
Naval Postgraduate School
Monterey, CA Q3943

Director, Force Warfare Aircraft Test Directorate
Naval Air Warfare Center. Aircraft Division
Patuxent River. MD 20670

Mr. Michael A. Randall
Force Warfare Aircraft Test Directorate
Communications Information Operations Section
Naval Air Warfare Center, Aircraft Division
Patuxent River. MD 20670

Prof. Raymond E. Miller
A. V. Williams Bldg.
Dept. of Computer Science
University of Maryland
College Park, MD 20742

Prof. Deepinder Sidhu
Dept. of Computer Science
University of Maryland, Baltimore County
Catonsville, MD 21228

50

