@

NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A261 612
IURRIMATA RN

THESIS %

PROOF OF FAULT COVERAGE FOR A
FORMAL PROTOCOL TEST PROCEDURE
by
Michael Alan Randall
December 1992

Thesis Advisor: G. M. Lundy

Approved for public release; distribution is unlimited.

| 93-05780
g8 3 18 L7 TR

M

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

a. RePOH UK LASS O

UNCLASSIFIED

a URITS CASS BN AUTHOH

b RESTRIC TIVE MARKINGS

3 OIS TRIBUTION/AVATCABILITY SF REFORT

BECLASS JONDOWRGRADING SCREDULE

4. PERFORMING ORGANIZATION REPORT NUMBEN(S)

Approved for public release;
distribution is unlimited
3 TAONITORING ORGANIZATION REPORT NUMBER(S)

W‘GFEMW% OFFICE SYMBSL | 73, NAME OF MONITSHING CRGARIZATION
omputer Science Dept. (+f appiicable) Naval Postgraduate School
Naval Postgraduate School
6¢. ADDRESS (City, State, and 2IP Code) 75 ADDRESS (Crty, State, and ZIP Code)
Monterey, CA 93943-5000 Monterey, CA 93943-5000
£y N} G PROCUREMER T RS TRUMERT IDENTIFICATION RURBER |
ORGANIZATION (if apphicabie)
8c. ADDRESS (City, State, and ZIP Codej 0. SOURLE OF FUNDING NUMBERS
PROGHAM OJECT TASK WORR URIT
ELEMENT NO. | NO. NO. ACCESSION NO

11. TITLE {Include Security Classification)

PROOF OF FAULT COVERAGE FOR A FORMAL PROTOCOL TEST PROCEDURE

Hiciaci ﬂan Ranﬁl

735, TME COVERED
FrRoMm _1 1

I ﬁdstcris Fﬁesis

10 12/

14. DATE OF REPORY (Year. Month, Day)
December 1992

mxcg;cmv

78, SUPPLEMENTARY NOTATION

€ VIEWS expresse

1n this thesis are those of the author and do not retlect the otfficial
policy or position of the Department of Defense or the United States Government.

17.
FIELD

COSATI CODES
GROUP SUB-GRCUP

18. SUBJECT TERMS (Continue on reverse /f necessary and identify by dlock number)
conformance testing, protocol specification

trate how the test method is applied to a specification.

19, ABSTRACT {Continue on raverse If necessary and identfy by block number) X . L. .
Due to the speed and complexity of communication networks being designed today, it is imperative to ensure that

they operate correctly. Todays fiber optic networks, which can transmit billions of bits per second over thousands of
miles, are heavily dependent on sophisticated software and protocols which are becoming increasingly difficult to
test. Conformance testing is a method that is used for this purpose: to test the design of a protocol against an imple-
mentation of the design. This thesis provides some insight into the conformance testing problem by first providing
background on some current protocol test methods, and then focusing on a newer method, which is based on a formal
protocol specification. A proof is given that demonstrates the method’s error detection capabilities. Two well known
local area network protocols, Token Bus and Fiber Distributed Data Interface (FDDI), are used as examples to illus-

DD FORM 1473, 84 MAR

: TRACT TR

[} UNCLASSIFIEDAUNLIMITED [T} SAMEAS RPT. [7] DTIC USERS | UNCLASSIFIED

a2 TBLE TNDIVIBUAL 226, TELEPHONE (Inchide Area Code)] 22¢, E STYMBOL
B Ty N S e iy e Aroa Code) 122 AT

83 APR edition may be used until exhausted
All ather aditions ara obsclete

SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

1

Approved for public release: distribution is unlimited
Proof of Fault Coverage for a Formal Protocol Test Procedure

by
Michael Alan Randall
Naval Air Warfare Cenrer, Aircraft Division
B.S. Computer Science. University of Marviand, Baltimore Counry. [958

Submitted in partial fulfiliment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the
NAVAL POSTGRADUATE SCHOOL

December 1992

Author: // » { ’% L;,{é é{

Michael Alan Randall

Approved By: //-7 //’7 /.7 /
/’lﬂJ /
G. M. Lundy, Thesxs Advisor

A o 2By

Amr Zaky, Second Rcadcr

U\

CDR. Gapu#bgs‘, airman,
Departnfent of Cadnputer Science

ABSTRACT

Due to the speed and complexity of communication networks being designed today, it
is imperative to ensure that they operate correctly. Todays fiber optic networks, which can
transmit billions of bits per second over thousands of miles, are heavily dependent on
sophisticated software and protocols which are becoming increasingly difficuit to test.
Conformance testing is a method that is used for this purpose: to test the design of a
protccol against an implementation of the design. This thesis provides some insight into the
conformance testing problem by first providing background on some current protacol test
methods, and then focusing on a newer method, which is based on a formal protocol
specification. A proof is given that demonstrates the method’s error detection capabilities.
Two well known local area network protocols, Token Bus and Fiber Distributed Data
Interface (FDDI), are used as examples to illustrate how the test method is applied to a

specification.

1 Adccession For

RTIS GFRag&l li
DTIC TaB a

Unanncunced 0

JustiZicatton 4

-r-av
DTIC

By . ..
| Distribution/ |
A»qilubility Codee
~"A'.szil and/er
Dlst b;aolal

iii

1L

.

Iv.

<<

TABLE OF CONTENTS

INTRODUCTTION ..ottt ettt I
A, BACKGROUND ...l i i
B, OBJECTIVES ... e e 2
C. SCOPE ..o 3
D. ORGANIZATION ... PR 4
CONFORMANCE TESTING........coooiiiiitiriiit et 5
A, FUNCTIONAL TESTING ..ot 5
B. SPECIFICATION CONFORMANCEcccccooommiiiiis i S
C. CURRENT TESTMETHODSccoiiiiiiiiie e 6

Lo U-Method ..o 9

2. RCP-Method ...t 10

3. MUIO-Metnod ..ot 12

4. MUIO-Method with Overlappingccoooooiiic 13
D, SUMMARY Lo e 14
E. SYSTEMS OF COMMUNICATING MACHINES ... e 15
TEST METHOD ..o, 18
A. PRELIMINARY STEPS ..ot 18
B. TEST SEQUENCE GENERATING PROCEDURE SRR 19
C. REFINING STEPS ..o et 21
D. FAULT COVERAGE..........coociiiiii ittt s 22
APPLICATIONS OF TEST METHOD........cccooooiiiiiiiiiiiie e 24
A. TOKEN BUS PROTOCOL SPECIFICATION ... 24
B. TEST SEQUENCE GENERATION ..., 27

1. PrelIminaries ... 27

2. Sequence Generation.................ccoeceeeiriceeiiniaiicenenn TSRO 27

3. Fault Coverage for the Token Bus Test Sequence 29
C. FDDIPROTOCOL SPECIFICATION ... 3
D. TEST SEQUENCE GENERATION ..o, 35

1. Preliminariescoccooeiiiiiiiiinicice e 38

2. Sequence Generation...............cococecemmieneenracerererienriereeieenessren e 30

3. Fault Coverage for the FDDI Test Sequence38
E. IMPROVING TESTABILITYcccoiiiiiiiiiiiiincirie e 40

1. Token Bus Specificationcc..ccoiiiiiniiioiiiinn s e, 40

2. FDDISPecifiCationcocooiiiiiiiiiiiiiinc et e 41
PROOF OF FAULT COVERAGEc.ocooiiiiinciic e 42
CONCLUSION ..ottt ettt en et 45
A. CONTRIBUTIONS OF THIS RESEARCH ... 45
B. AREAS FOR FURTHER RESEARCH ... 46
REFERENCES ..., .48
INTTIAL DISTRIBUTION LIST ..o 50

iv

LIST OF FIGURES

Figure 1, Conceptual View of Conformance Testing3
Figure 2, Testing an Independent Layer ... 4
Figure 3, Transition Diagram for an Example IUT ... 7
Figure 4, Specification of Network Nodes ... 26
Figure 5, Frame Format ... A2
Figure 6, FDDI Receive Token Specification ...3§
Figure 7, Type 3 €ITOr ..o 43
Figure 8, States Visited in Protocol Machine ... 44

LIST OF TABLES
Table 1, UIO SEQUENCEFOR FIGURE 3 ... SR 8
Table 2, TEST SEQUENCE FOR FIGURE 3 BY THEU-METHOD 9
Table 3, TEST SEQUENCE FOR FIGURE 3 BY THE RCP-METHOD 11
Table 4, TEST SEQUENCE FOR FIGURE 3 BY THE MUIO-METHOD 12
Table 5. PREDICATE ACTION TABLE FOR THE NETWORK NODES 26
Table 6. TEST SEQUENCE FOR THE TOKEN BUS PROTOCOL 2R
Table 7, POSSIBLE TYPE 3 ERRORS FORFIGURE 4 ... e 29
Table 8, PREDICATE ACTION TABLE FOR RECEIVE TOKEN MACHINE . .. 34
Table 9, FDDI RECEIVE TOKEN TEST SEQUENCE U 30
Table 10, POSSIBLE TYPE 3 ERRORSFORFIGURES................................. 3%
Table 11, EXAMPLE TEST SEQUENCE ..ot 43
vi

I. INTRODUCTION

A. BACKGROUND

Protocols, in the simplest sense, are rules and procedures that control the flow of
infonmation. For centuries, long before any device that even resembles a modem day
computer was ever conceived. mankind has struggled with designing precise and etficient
communication protocols. In the 2nd century B.C.. when comununication protocols
consisted of fire signals, it was observed by the Greek historian Polybius that “__it is chiefly
unexpected occurrences which require instant consideration and help.” Essentially. he
noted that it was impossible to have a preconceived code using fire signals that could
communicate these unexpected occurrences [HOLT91]. In modem day communication
protocols, 1t is still the unexpected sequence of events that often leads to protocol failures,
and the most difficult problem in protocol design is precisely that -- to expect the
unexpected.

The first electronic communication protocols based on the use of the telegraph also
encountered the problems associated with communicating unexpected events. However.
there was almost always a human operator involved who could be relied upon to handle
these problems. In current communication systems, when machines and processes rather
than human operators are used, the same problems exist but now the errors can happen
faster and human intervention ‘cannot be counted on to recover from unexpected
occurrences. The protocol design problem is now to determine the responsibilities of these
processes and to establish procedures so that these responsibilities can be negotiated. In
other words, there should be rules that govemn the exchange of information. but there should
also be an agreement between the communicating parties about the rules.

Designers of early networks such as the ARPAnet learned that ambiguous rules can

trigger unlikely sequences of events which will ruin even the best design. Entire networks.,

=

with thousands of attached computers can be rendered completely useless by a fauity
protocol. Advances in network and teleconununication technology have resuited in
increasingly complex communication protocols. Though electronic communication
protocols have been around for many years, it is only recently that their complexity has
begun to dramatically increase. Networks capable of transmitting billions of bits per second
over thousands of miles are now in use. Consequently. the protocols being developed today
are larger and more sophisticated than ever before. They try to offer more functionatity and
reliability, but as a result they have increased in size and in complexity. This is due to a
number of factors, most notably the increased speed and capacity of current networks, hut
also the desire to make the most efficient use of available resources.

Because of society's critical dependence on comumunication networks and protocols,
it is imperative to adequately test them to ensure they perforn as intended. This is the goal

of conformance testing.

B. OBJECTIVES

In this thesis, a conformance test method based upon a formal specification of a
protocol will be investigated. This will include a review of some recent confonnance test
procedures, along with a discussion of the potential shortcomings which make thum less
than ideal for testing real-world protocol implementations. The conformance test method
presented here is an improvement based upon earlier work [LUND90(b)}.

The major contributions of this thesis are:

* an improved conformance test method

+ a proof that demonstrates the method's error detection capabilities

» applications of the test method using real world protocols such us IEEE
802.4 (Token Bus) and ANSI X3T9.5 (FDDI).

Techniques for designing a protocol to allow for greater testability will also be discussed.

C. SCOPE

Specifically. the goal of conformance testing of comununication protocols is used to
verify that the behavior of a protocol implementation is consistent with its specification.
Since much effort is put into formally specifying and verifying protocols. it is at least
equally important to test a given implementation for functional correctness. If a tormal
specification of a protocol contains an efror, a correct implementation of that specification
should pass a conformance test only if it contains the same error. In other words, a
conformance test should fail when the unplementation and specification difter. The test is
developed from a protocol's formal specification and is applied to an implementation of the

protocol, preferably in a systematic manner. This situation is shown in Figure 1.

Formal . Protocol
Protocol —— | Tester otoco X
Specification < 2utputs | Implementation

Figure 1 : Conceptual View of Conformance Testing

For all practical purposes we assume that the protocol implementation is essentially
unknown. In other words it is simply a “black box,” meaning that the test designer knows
nothing about its internal workings. The only type of experiment we can do with the
implementation is to provide it with sequences of inputs and observe the resulting outputs.
This black box, commonly referred to as an implementation under test (IUT) in the
literature, passes the conformance test only if all observed outputs match those prescribed
by the formal specification [HOLT91]. It is difficult to test a protocol implementation in
isolation because many protocol suites are composed of a number of independent layers.
Since the layers are independent, and can be part of a number of different protocol suites,
they should be tested as independent entities. Figure 2 shows the relationships of these

entities.

Tester ot e N

y 4

N-1

Figure 2 : Testing an Independent Layer

In Figure 2, protocol layer N is the actual implementation under test. Since. in the
normal operation of this protocol, layer N must interface with upper and lower layer
protocols, it needs to be tested in that context. The arrows between the protocol layers

indicate the flow of data that occurs in the actual implementation.

D. ORGANIZATION

This thesis contains six chapters. Chapter II discusses some issues inherent in
conformance testing, and provides four example test methods currently in use. A brief
definition of the systems of comununicating machines protocol model is also given. In
Chapter III, the test method is presented in detail. Chapter IV is concemed with the
generation of test sequences for two, well known local area network protocols: Token Bus
and FDDI. This chapter also includes a discussion of the fault coverage provided by the test
sequences as well as suggestions for improving the testability of the protocol specification.
A proof of the fault coverage provided by this test method is given in Chapter V. This thesis
is concluded with Chapter VI with discussions on the contributions of this research and

ideas for further research in conformance testing.

II. CONFORMANCE TESTING

A. FUNCTIONAL TESTING

In order to understand how comumunication protocols can be tested, it is necessary to
understand why testing is an important issue. In large, complex communication networks.
administrators need a way to verify that a certain piece of equipment confonns to a
prescribed standard. {n an environment where thousands of phone calls or gigabits of data
are being switched each second, it is not acceptable to test equipment by plugging it into
the network. Ideally, we would like to verify conformance to the standard without
necessarily having access to the often proprietary, intemal details of the equipment.

According to [HOLT91], there are two basic goals of functional testing:

* To establish that a given implementation realizes all functions of the original
specification, over the full range of parameter values.

* To establish that a given implementation can properly reject erroneous inputs
in a way that is consistent with the original specification.

The trade-offs encountered in these tests are mainly between complexity and
standardization. It is extremely unlikely that a test method could be devised that could test
all possible behaviors of an unknown implementation by simply probing it and observing
its responses. In the conformance testing of protocols. only the presence of desirable
behavior can be tested. We cannot test for the presence of undesirable behavior because
there is always the possibility that some untested sequence of inputs will reveal a flaw in

the implementation.

B. SPECIFICATION CONFORMANCE
The process of conformance testing is based on the generation of test sequences. These
test sequences attempt to exercise all parts of the protocol machine as they are defined in

the specification. In the literature, the actual machine being tested is referred to as the

Implementation Under Test (IUT). Some recent conformance testing procedures involve
the use of incompletely specified finite state machines with input/output labeis on the
transitions. The usual approach here is to represent the control portion of a protocol as a
finite state machine (FSM) and generate a test sequence in the form of an input/output
sequence such that, if the IUT conforms to the specification, the application of the above
input sequence will generate the corresponding output sequence as specified in the test
sequence. Since many protocols are not specified in the manner described above (1e as
FSMs). an approach such as this may compticate the task of the test designer.

The common procedure followed by many current test methods is to test each edge of
the FSM individually. then combine the edge sequences together to for.a a test sequence.
Before discussing some specific test methods however, it is necessary to state some
simplifying assumptions. First. we assume that the reference specification heing modelled
is a deterministic FSM with a known number of states. Second. the output sequence emitted
by the machine occurs within a known, finite amount of time after the input sequence.
Finally, every state in the FSM is reachable from every other state via cne or more state
transitions. For the purposes of this discussion. a stare of an FSM (or stop-srate as it is
sometimes calied) is defined as a stable condition in which the machine is awaiting an input
sequence. A transition is defined as the consumption of an input signal, the possible

emission of an output signal, and the possible move to a new state.

C. CURRENT TEST METHODS

The FSMs used to model a protocol specification are commonly represented by
directed graphs. In a given graph, an edge (v.w) with a label a/b means that if the machine
is currently in state v, then it will change to state w and output the symbol 5 if and only if
the current input symbol is a. Many recent test methods employ ‘his notation. Another
similarity between a number of methods is the use of Unique input/OQutput sequences (UIO
sequences). UIO sequences are used within the test sequence to enhance the correctness of

the test. For a given state within an FSM, a UIO sequence can be defined as a sequence of

input/output pairs which can only be observed when that input sequence is applied to that
state. The purpose of such a sequence is to ensuie the path by which a given state was
reached. Figure 3 shows how the notation is used to label the transitions in an actual 1UT,
This example was taken from [YANGY0] and is used because it facilitates comparisons
between the different methods.

All of the states in the IUT in Figure 3 have one or more ULO sequences. For example,
the sequence a/x bix is a UIO sequence for state i because from no other state can we input
a b and have the machine output x x. Similarly. a possible UIO sequence for state 5 is ¢z
because from no other state can we input ¢ and have the machine output z. The complete
list of UIO sequences for this implementation is given in Table 1. UlO sequences are
imponant because of their uniqueness. That is. they can be used to verify their

corresponding state.

b/x b/x

c/z

&0,

Figure 3 : Transition Diagram for an Example IUT

TABLE 1: U10 SEQUENCE FOR FIGURE 3

State UIO sequence Tail state
| b/x a/x 5
i a/x b/x 2
1 a/x ¢y 4
1 a/x a/x 1
1 b/x bly 3
1 cfy a/x 5
1 c/y b/x 3
2 bly 3
3 b/x c/z |
3 b/x a/x 4
3 cly ajz 4
3 cly c/z 5
4 b/x cly 5
4 b/x b/x 5
5 c/z 1
5 alz 4

As was mentioned in Chapter I, the tester cannot view the internal structure of the
implementation. The only knowledge the tester has about the JUT are the outputs it emits
in response to the inputs supplied. For this reason, UIO sequences are very important. They
allows us to determine the state of the machine before we supplied the input sequence. The
column labelled “Tail State” in Table 1 is simply the state the machine should be in after
we supplied the input sequence. Determining the UIO sequences for each state is an
important first step for many test procedures. The remainder of this chapter describes some

recent protocol test procedures.

1. U-Method

The U-method ([SABINES] was one of the first methods used in protocol testing.
Essentially, it consists of 3 parts:

(1) the RESET wransition plus the sequence from the initial machine state to the
starting state of the edge being tested. (The purpose of the RESET transition is to “reset”
the machine into its initial state, state I for this machine.)

(2) the label on the edge or transition being tested.

(3) the shortest UIO sequence for the ending state (tail state) of this edge.

The complete test sequence using the U-Method is given in Table 2. A complete test
sequence, or test suite, consists of the concatenation of the first, second and third parts of

every test. The reader may verify that there are 77 steps in the entire test sequence.

TABLE 2: TEST SEQUENCE FOR FIGURE 3 BY THE U-METHOD

poge | pdge | Label Part1 | Part2 | Part3
_.;l 1-1 RESE; RESET RESET hix aix
€2 11 alx RESET alx bixaiv
e3 12 biv RESET hix hiv
ed 14 oy RESET Civ hix civ
e5 21 RESET RESET bix RESET bix aly
e6 23 biv RESET bix biv bix ciz
e7 25 alx RESET bix alx olz
e8 31 RESET RESET ¢ty bix | RESET bix aix
e9 35 bix RESET c/v bix bix ois
el0 35 iy RESET ¢ty hix /v iz
ell 4-1 RESET RESET civ RESET bivacx
el2 4-3 bix RESET ¢iy hix hivers
ell 45 alx RESET civ arx iz
eld 51 RESET RESET civalx | RESET hivaiv
9

Edge | Edge Label
t2 Part 3
Index | Tested Tested Pare 1 Par rt
els 5—1 iz RESET civaix T hiv an
el6 54 i RESET ¢ivaix ar s oy iy

The U-Method does not specify a particular order in which to test the edges: it is
up to the tester to ensure that all transitions are exercised. This example hegins in the initial
machine state (srare). and attempts to test the RESET transition from srare 1 to stare 1.
The first part of this test is the sequence from initial state to the starting state of the edge,
in this case since we want to test a transitions emanating from the initial state, only the
RESET transition needs to be executed. The second part of this test is the actual 1abel on the
transition, and the third part is the UTO sequence for the state in which this test ends (stare
1 in this example). The second test in the sequence is the a/x transition from srare / to state
1. The first, second, and third parts are RESET. a/x, and b/x a/x, respectively. Note that, if
a state has more than one UIO sequence, we simply choose one of the shortest. and use it

throughout the entire test whenever the edge being tested ends in that state.

2. RCP-Method
The RCP-method [AHO88] is similar to the U-Method in that it uses the test

sequence generated by the U-Method as a starting point. It essentially concatenates the
second and third parts of the U-method to form what is sometimes called a compound edge.
A graph consisting of the compound edges is then constructed, and the Rural Chinese
Postman algorithm is used to find the shortest path in the graph which traverses each edge
at least once. Since this method eliminates the process of visiting the initial state after each
edge sequence, (part 1 of the U-method) it results in significantly shorter test sequences.

The test sequence for our example machine by the RCP-Method is given in Table 3.

10

TABLE 3: TEST SEQUENCE FOR FIGURE 3 BY THE RCP-METHOD

Start Edge Label v10 Connection End
State | Tested | Tested | Sequence Path State

N/A N/A RESET - - {

| 152 hix biv . kK

3 35 o oz . 1

1 1-1 arx bra aix N

5 S—d aiz bix civ - 1

5 S—i IYH biv ain - S

5 51 RESET hivaix aiz 4

4 45 aix viz - |

1 14 iy bix civ alz bix 1

3 395 bix ciz bix M

2 23 blv bix ¢iz bix 2

2 235 alx WH bix 2

2 21 RESET bix arx alz bix 3

3 31 RESET bix aix aiz 4

4 453 bix bix ciz - t

1 1-1 RESET bix aix alz 4

4 4-1 RESET bix aix ol I

The test sequence in Table 3 is constructed from the graph that is generated from
the RCP tour of Figure 3. (See detail in [AHO88]). The compound edge is formed by the
concatenation of the “Label Tested” and “UIO Sequence™ columns. Since it is not
necessary to visit the initial machine state after the test of each edge. this method simply
selects one of the outgoing edges from the ending state of the previous test for the next test.
For example, we start the test with the machine in an unknown state. so the RESET
transition is necessary to bring the machine to its initial state (stare I). The h/x transition

emanating from stare ! is then tested and its UlO sequence, b/v, executed. putting the

11

machine in stare 3. From srare 3, the ¢/y transition is tested and its UTO sequence executed,
putting the machine in srate /. The test sequence continues in such a manner until it arrives
at a state that has no untested outgoing transitions. At this point it is necessary to execute a
“connection path” transition, which takes the machine to a state which has at least one
untested transition. From here. the test proceeds as before. The reader may verify that there
are 535 steps in the complete test sequence. with the reduction being achieved by eliminating

from the test sequence, the path from the initial state to the edge being tested.

3. MUIO-Method

In [SHENB89] it was shown that even shorter test sequences can be obtained, with
the RCP-method if multiple UIO (MUIO) sequences from each state are used. The idea
behind multiple UIO sequences is to reduce the repetition that results from having to follow
the same UIO sequence every time an edge sequence reaches a given state. The number of
times the UIO sequence for a given state will be repeated is greater than or equal to the
indegree of that state. By allowing the use of different shortest UIO sequences. there is an
increased possibility that we can find a UIO sequence that will end at a state with an
untested outgoing transition; this effectively reduces the number of connection paths
necessary and, hence, reduces the length of the sequence. The test sequence for Figure 3 by

the MUIO-method is shown in Table 4.

TABLE 4: TEST SEQUENCE FOR FIGURE 3 BY THE MUIO-METHOD

Edge

Start Label U100 End
State | Tested | Tested | Sequence | State
N/A N/A RESET 1
1 11 ax a/x b/x 2
2 21 RESET a/x b/x 2
2 23 b/y b/x ¢fz 1
1 122 b/x bly R
3 3ot RESET c/y b 3
12

Start Edge Label U110 End
State Tested Tested | Sequence | State
3 35 b/x ofz 1
{ -1 RESET cfy b/x 3
3 KRN oy ¢/z 1
i t—d cry b/x cfy S
5 54 az b/x cfy h
5 551 RESET c/y alx 5

hEEY | c/z ax cly 4
4 41 RESET a/x b/x 2
2 255 x Wz 4
4 43 b/x b/x a/z 4
4 45 a/x </z 1

The test sequence presented in Table 4 consists of 44 steps, less than both the U-
Method and RCP-Method. It is 11 steps shorter than the RCP-Method, because it eliminates
the 11 connection path transitions associated with the RCP-Method. The procedure for
generating this sequence is quite complicated and is not discussed here. Interested readers

may consult [SHEN89).

4. MUIO-Method with Overlapping

In [YANG90] it was shown that multiple UIO sequences can be combined with
overlapping to further condense the test sequence. Overlapping takes advantage of the case
where some ending portion of an edge sequence is identical to the beginning portion of
another edge sequence. Since the length of the test sequence is now dependent upon the
length of the compound edges, one possible way to reduce the length is to combine the
compound edge of one test with the next edge to be tested. Thus. when possible. these two
edge sequences are combined to form one edge sequence which can be used to test hoth

edges. By using several shortest UIO sequences, there is a good chance that an “untested”

13

UIO sequence can be used to verify that state. A shorter test sequence can now be obtained
because the untested UIO sequence is both verifying the previous state. and beginning the
test of a different transition emanating from that state. Essentially, a different incoming
edge of a state is concatenated with a different shortest UIO sequence which completes the
second half of the current compound edge and begins the first half of a new compound
edge.

For example. the compound edge for the edge 4-»5 labeled a/x in Figure 3 is a:x
¢/z, and the compound edge for the edge 51 labeled ¢/z is ¢/z a/x ¢/v. With overlapping,
the two compound edges can be combined into the single sequence arx ¢/z a/x /v which
can be used to test both edges. The procedure given in [Y ANG90] shows how to combine
the maximum number of compound edges using multiple UTO sequences and overlapping.
When a sequence is derived that contains the maximum number of compound edges, that
sequence is often called a fully overlapped transition sequence (FOTS). When overlapping
is combined with the MUIO method and applied to Figure 3, a minimal length test sequence
of 3| steps is generated. The procedure for computing a FOTS is similar to determining

sequence with the MUIO method; details can be found in [YANG90].

D. SUMMARY
The apparent goal of the U, RCP, MUIO, and MUIO with overlapping methods seems

to be to shorten the length of the test sequence, and most of these techniques use
complicated, optimization techniques to produce an optimal length sequence. However,
since the purpose of conformance testing is to verify that the behavior of a protocol
implementation is consistent with its specification, it seems that the major emphasis of the
test procedure should be on the correctness of the test sequence rather than on its brevity.
In other words, the purpose of a test method should be aligned with the purpose of
conformance testing, which is to detect errors in faulty protocol implementations.

The techniques presented in the previous section are intended for use with a protocol

described as an incompletely specified finite state machine. Since protocols are rarely

14

specified in this manner, the translation from specification to /O diagram is difficult and
error-prone. Protocol models which are designed for specification purposes tend to have
powerful program language constructs, which simplify specification, but may prove
difficult to analyze. On the other hand. models which are designed with analysis in mind,
such as the CFSM model used by the previous test methods, might be considered too simple
for the specification of modem, complex protocols [LUND90(b)]. What is needed is a test
method that is based on a protocol specification model that eases the tasks of analysis and
verification.

This paper discusses a confonmance test method for generating a test sequence for a
communication protocol specified as a svstem of communicating machines (SCM). The
SCM specification method was designed with protocol specification and verification in
mind. so it lends itself naturally to conformance testing. A number of current
communication protocols such as GO-BACK-N data link protocol. Token Bus. CSMA/CD,
and FDDI have been specified with SCM. and tested with the procedure presented here.
Recently, a software tool was created which successfully automates the specification
process using SCM [ROTH 92]. This automated tool helps the test designer to analyze the
protocol specification much more easily. This does not necessarily guarantee a greater
ability to produce a better test sequence, but the close relationship between the
specification, verification, and test methods gives some assurance that the implementation

is consistent with its specification.

E. SYSTEMS OF COMMUNICATING MACHINES

In this section the model used to specify the protocol is briefly described. A more
detailed description appears in [LUND91(a)].
A system of communicating machines is an ordered pair C = (M.V}, where
M={m;nm>,..m,
is a finite set of machines, and

V'=‘ vavb"-vn)

15

is a finite set of shared variables. with two designated subsets R; and W, specified for each
machine m;. The subset R, of V is called the set of read access variables for machine m,,

and the subset W; the set of write access variables for m;.

Each machine n; € M is defined by a tuple (§,.59.L,.N,.T;). where

(1) §; is a finite set of states;

(2) 5¢ € S; is a designated state called the inirial srare of m;.

(3) L; is a finite set of local variables,

(4) N; is a finite set of names, each of which is associated with a unique pair (p,a),
where p is a predicate on the variables of Li Ri and a is an action on the variables of

Li v Ri Wi. Specifically. an action is a partial function
aLixRi - LixWi

from the values contained in the local variables and read access variables to the values of
the local variables and write access variables.

(5) T Si x Ni — Si is a transition function, which is a partial function from the states
and names of m, to the states of m;.

Machines model the entities, which in a protocol system are processes and channels.
The shared variables are the means of communication between the machines. Intuitively,
R; and W; are the subsets of V to which m, has read and write access, respectively. A
machine is allowed to make a transition from one state to another when the predicate
associated with the name for that transition is true. Upon taking the transition, the action
associated with that name is executed.

The set L, of local variables specifies a name and a range for each. The range must bhe
a finite or countable set of values.

A system state tuple is a tuple of all machine states. That is, if (M.V) is a system of n
communicating machines, and s, for 1<i<n, is the state of machine m,, then the n-tuple

(5:,81,.--,5,) is the system state tuple of (M,V).

16

A system state is a system state tuple together with its enabled outgoing transitions.
Two system states are equivalent if every machine is in the same state. and the same
outgeing transitions are enabled.

The initial svstem state is the system state such that every machine is in its initial state,
and the enabled outgoing transitions ate the same as in the initial global state.

The global state of a system consists of the system state. plus the values of all
variables, both local and shared. The inirial globul srate is the initial system state. with the
additional requirement that all variables have their initial values. A global state
corresponds to a system state if every machine is in the same state and the same outgoing

transitions are enabled.
Let T(s,,n) =5, be a transition which is defined on machine m, Transition T is enabled
if the enabling predicate p, associated with name n, is true. Transition T may be executed

whenever m, is in state s, and the predicate p is true (enabled). The evecurion of T is an

atomic action, in which both the state change and the action ¢ associated with n occur

simultaneously.

17

III. TEST METHOD

In this section. the test method is described. This description is actually a refined
version of the method described in [LUND90(b)]. The input is a protocol specified as a
svstem of communicating machines and the output is a complete test sequence and an 1/0
diagram. In order to go from the specification of a protocol machine to a test sequence.
identification of the shared and local variables is necessary. The shared and local variables
provide a way for the tester to provide input to and observe output from the machine during
testing. The test of each edge or transition is treated as a separate, individual test. and may
modify some or all of the shared and local variables.

The format of each single edge sequence test is

Syidz....in/01,07....0m SE
where 5y is the state of the machine at the start of the test, ii,, are the values of the input
variables prior to the test, 0,,...,0,, are the values of the output variables after the test, and

Sg is the state of the machine at the end of the test. The input and output variables are

determined before testing begins and are taken from the shared and local variables of the
machine. The procedure consists of preliminary steps, the test sequence generating
procedure, and refining steps. A discussion of fault coverage follows the presentation of the
test procedure. While analysis of fault coverage is not necessary to generate the test

sequence, it does help determine the sequence’'s effectiveness.

A. PRELIMINARY STEPS

1. :rom the machine specification finite state diagram, mark each transition whose
name appears on more than one arc. Assign to each such instance a separate distinguishing
label.

2. From the predicate-action table, note the number of clauses (distinct conditions) in

each enabling predicate. Mark each clause.

18

3. For each shared variable x, detennine if v is an input variable, output variable, or

both. For each x which is both, split x inte two variables, v; and 1 for testing purposes.

4. For each local variable /, determine if / is used as an intertace to the higher laver user
of this protocol. If so. mark / as input, output or both. Each such local variable is an input
variable if it appears in an enabling predicate and an output vaniable if it appears wn an action
on the left side of an assignment arrow. If / is both input and output, split it into variables

Iy and /(for testing purposes.

Step | ensures that each instance of each transition is tested. A protocol specification
may have the same transition name on more than one arc: we want to be certain that every
arc is tested. Step 2 ensures that each clause is tested individually. if possible. An enabling
predicate may consist of several clauses, any one of which might be true. allowing the
transition to execute. In Steps 3 and 4. the shared and local variables are identified. Shared
variables provide the means of communication between the machine and other protocol
entities, and local variables allow communication with the user of the protocol
Collectively, these variables are the means the test designer has of giving inputs to the
machine and observing its actions.

In some SCM specifications, additional variables are defined that are used internally
by the protocol machine and are not visible to the user (upper layer(s) of the protocol; or
the tester. Typically, such variables are counters or array indices. In any case, however.
these variables should not appear in the test sequence since they are not under the direct

control or observation of the tester.
B. TEST SEQUENCE GENERATING PROCEDURE
L. S, initial_state;
2. Let t = (p.a) be an untested transition from state. (This notation simply means that

the current transition being iested, ¢, has the predicate, p. as input and the action. a. as

output).

19

(a) determine the values of the input variables which make exactly one of the
untested values of p true. Check to see if these values allow any other transition from this
state to be executed. If so, set additional input variables to values that ensure that only the
transition being tested is enabled. Fill in the necessary input variables. and mark the others
DC ftor “don'tcare.”

{b) determine and mark the expected values for the output variables; also record
the expected values assumed by the local variables.

(c) determine the expected next state and set S to it.

(d) determine if Sg is transient; if not. label it as a “'stop state” and proceed to (3).
t A state is rransient if one or more of its enabling predicates is true upon reaching the state
This means that the machine can proceed to another state without waiting for further input
from the tester).

(e) attempt to make Sg into a stop state by setting DC values such that. when state
S is reached. none of the enabiing predicates are true. If successful. go to (3)

(f) Sg is a transient state. If more than one transition leaving Sg 15 enabled.
arbitrarily choose one and set inputs not yet specified, so that only one transition leaving
Sg is enabled: set r = (p,a) to this transition.

3. Output this test S iy.iy....i/0y.03....0p, Sg as the next test in the sequence.

4. Mark the clause just tested. If all clauses in transition r are now tested. mark / as
tested. If all transitions are now marked as tested, exit to “refining steps.” Otherwise.
proceed to step (5).

5. Set 5, to Sg. If §, is a stop state, proceed to (2), otherwise, proceed to 2(b).

Step 2(a) attempts to test each clause individually. This is important so that the tester
knows which transition was enabled, and therefore caused the transition to occur. If it is not
possible to separately test each clause, then the test designer must set the input variables so
that the clauses are tested as thoroughly as possible. Perhaps they can be tested in

conjunction with one another.

Steps 2(d.e.f) are crncemed with rransient states. With the existence of such states. it
may be impossible to veuify expected values ot output variables, because e tester might
not be able to determine which transition actually modified the variable. The transient state
and possible multiple transition enablings that cannot be controlled in these steps. might
indicate the need tc modify the specification to allow for better testability.

Step 5 sets starting state of the next test in the sequence to the ending state of the
current test. In order to exercise all parts of the protocol machine. some transitions may
have to be executed inore than once. In this instance. some judgement by the test designe:
may be needed. In the normal operation of the machine. if certain transitions are executed

more than others, the same will likely be true during testing.

C. REFINING STEPS

1. Construct the I/O state diagram from the test sequence.
2. For each state. determine a shorrest UIO sequence (if one exists). Append the Ul1O

sequence for Sg to the end of the test sequence. If no UIO sequence for the current Sg exists,
then continue testing transitions until an Sg with a UJO sequence is visited.

3. Check for converging transitions. (Converging transitions are difficult to test and
may require special attention).

In Step 1, the 1/O diagram is constructed from the test sequence and is a tool tc help
the test designer ensure completeness. This diagram is constructed directly from the test
sequence with the knowledge of “stop states.” The directed arcs in the [/O diagram are
labeled with the corresponding vaiucs of the input and output variables. Transient states
will not appear in the I/O diagram.

The purpose of the final UTO sequence in Step 2 is to verify that the last state which
was reached in the test sequence is indeed the currer: state of the protocol machine. Since

the details concemning the implementation of the machine are assumed to be “hidden” from

the tester, the existence of at least cne state with a UIO sequence is necessary. Without the

U0 sequence, there is no way of knowing that the last transition tested left the machine in
the expected state.

Converging transitions, identified in Step 3. are distinct rransitions. with identical
labels, which originate from different states but end in the same state. They may arise
naturally in the specification of a protocol, but should be marked for careful observation.
The existence of such transitions complicates the role of the test designer and makes error
detection difficult. The example protocol machine tested in a Chapter 1V contams
converging transitions, and the analysis of the test sequence generated from this machine

will reveal their effects on the quality of the test sequence.

D. FAULT COVERAGE

For the fault coverage for the protocols presented in this paper, four classes of faults
are considered [MIL.L90].

* Type 1: The output of an edge is altered.

» Type 2: The input of an edge is altered (without causing non-determinism).
* Type 3: A tail state of an edge is altered.

» Type 4: A head state of an edge is altered (without causing non-determinism).

Head state and tail state refer to the state in which an edge begins and ends.
respectively, and a fault can be defined as a transition in the implementation under test
which is not defined in the specification. When testing for faults in an implementation of a
protocol, detecting faults of types 1, 2 and 4 are generally trivial. It tums out that a test for
the presence of those categories of faults is automatically performed when a test sequence
is checked for the presence of a type 3 fault.

For example, a type 1 fault would be detected when the test of an sequence produced
output different from that which was expected. A type 2 fault would be discovered when,
for instance, no output was generated in response to an input which should have caused a
change in an output variable. In this case, the machine wouldn’t execute the transition
because the enabling predicate(s) would not be enabled. A type 4 error is typically detected

in 2 similar manner. The non-detenminism requirement for type 2 and type 4 errors is

necessary if, in the IUT, the enabling predicate of one edge is altered such that it is
equivalent to another enabling predicate emanating from that edge. This would result in a
non-deterministic protocol machine, which is clearly untestable.

Detection of type 3 faults are the most difficult to detect since a single error can go
undetected until the very last edge sequence test. Moreover. if the error occurs in an edge
that exists more than once in the specification, the fault might not be detected. It is worth
noting that, when an error is detected by a test sequence, the tester cannot deduce what type
of error exists in the protocol implementation: only the existence of some type of error is

known.

IV. APPLICATIONS OF TEST METHOD

In this section the test generating procedure is illustrated using two well-known local
area network protocols: Token Bus and FDDI. The protocols are first specified as a sysrem

of communicating machines and then the procedure is given.

A. TOKEN BUS PROTOCOL SPECIFICATION

The specification of the Token Bus network. originally presented in [LUNDY0(a)}.
consists of the predicate action table (Table 5), the specification for each machine. given in
Figure 4, and the shared variable MEDIUM, also shown in Figure 4. This single shared
variable is used to model the bus, which is “shared” by each machine. A transmission onto
the bus is modelled by a write into the shared variable. The fields of this variable
correspond to the parts of the transmitted message. The first field, MEDIUM 1, takes the
values T, or D, which indicate whether the frame is a token or data frame; the second field,
DA, contains the address of the station to which the message is transmitted (DA for
“destination address”); the next field, SA, contains the originator’s address (SA for “source
address”); finally, the data field contains the data block itself.

The network stations, or machines, are defined by a finite state machine, a set of local
variables, and a predicate-action table. The initial state of each machine is state 0, and the
shared variable is initially set to contain the token with the address of one of the stations in
the “DA” field.

The value of local variable nexr is the address of the next downstream neighbor, and
this is initialized so that the entire network forms a logical ring. Local variable i is used to
store the station’s own address, and as implied by their names, local variables ourbuf and
inhuf are used for storing data blocks to be transmitted to, or received from other machines
on the network. Qutbuf is an array, and can store a potentially large number of data blocks.

The local variable j is used to index into this array. The variable cn serves to count the

24

number of blocks sent; it is an upper bound on the number of blocks which can be sent
during a single token holding period.

The initial state of each machine is state 0, local variables j and ¢ are initially set to
1. and inbuf and ourbuf are set to empty. The shared variable MEDIUM initially contains
the token, with the address of one station in the DA field. Thus the initial system state tuple
i5 (0.0..,0) and the first transition taken will be ger-rk, executed by the station which has its
local variable i equal to MEDIUM DA.

Each machine has four states. In the initial state, 0. the station is quiescent. merely
waiting to either receive the token, or a message from another station. If the token appears
in the variable MEDIUM with the station’s own address. the transition to state 2 is taken.
When taking the get-tk transition, the machine clears the communication medium and sets
the message counter, cfr, to i. In state 2, the station transmits any data blocks it has, moving
to state 3, or passes the token, retumning to state 0. In state 3, the station will return to state
2 if any additional blocks are to be sent, until the maximum count k is reached. When the
count is reached, or when all the station’s messages have been sent, the station returns to
state 0.

The receiving station, as with all stations not in possession of the token, will be in state
. The message will appear in MEDIUM, with the receiving station’s address in the DA
field. The rcv transition to state 1 will then be taken, the data block copied. and the
MEDIUM cleared by the ready transition. By clearing the medium, the receiving station
enables the sending statiun to return to its initial state (0) or to its sending state (2).

For this simplified specification, the channel is assumed to be error free. This means
that the clearing of the medium by the receiver may be taken as an acknowledgment by the
sender. Thus, there is no need for timers, time-outs or error checking on the channel.
Although many of the finer details of the IEEE Token Bus network are omitied, this
specification contains the main idea of the Token Bus protocol, and provides enough detail

for the generation of a test sequence.

TABLE 5: PREDICATE ACTION TABLE FOR THE NETWORK NODES

trangsition predicate action
rcv MEDIUM.(,DA) = (D.i) inbuf «~ MEDIUM (SA. data)
ready true MEDIUM « O
get-tk MEDIUM.(1,DA) = (T.i) MEDIUM « O: ¢tr e |
pass outbuf[j} = 9 MEDIUM e (T.next. i.)
Xmit outbufjl # MEDIUM « outhuf [j}:
ctre—ctr B L outbut 1] — O e B

moreD MEDIUM = & A (outbufljl # QD

Actr Sk)
pass-tk MEDIUM = & Atoubufljl=& | MEDIUM « (T.next.i.)

Vetr=k+ 1)

I DA SA data

MEDIUM

DA SA data

inbuf

t DASA data

outbuf

moreD

cir: (1,2, k+1)

i: (my address)

(1,204

next: {address
of next station)

Figure 4 : Specification of Network Nodes

26

B. TEST SEQUENCE GENERATION

First the preliminary steps are cartied out. these determine the exact format of the tests
(i.e., the input and output variables). Then the tests are generated. The numbering below

corresponds to the steps in the test procedure. for ease of reference.

1. Preliminaries

(1) All transition labels are unique. so no action is required.

(2) The pass-tk transition has two distinct clauses:
(MEDIUM = O A outbufljl = 0)and (MEDIUM = O Acrr = k+1) We will mark
the former as pass-tk’ and the latter as pass-rk. (Thus, the pass-tk’ transition represents the
case when the machine has no more data to send during the current token holding period
and the pass-tk transition represents the case when the machine has sent the maximum
number of messages during the current token holding period).

(3) The shared variable MEDIUM is both an input and an output variable.

(4) The local variable ourbuf is both an input variable and an output variable, and
inbuf is an output variable only.

Note that in Step 2, the more-D transition is not separated into two different clauses
because all three conditions must be true for the transition to be enabled. Also note that /.
next, j, and ctr are local variables, but since they are not used as an interface to a higher
layer user of this protocol, they are not “visible” to the tester and are not shown in the test
sequence.

From these preliminary steps, Qe can see that the test will take the following form:

Sy MEDIUM; outbuf; | MEDIUM g outbufg inbuf S¢.

Now we are ready to begin generating the test sequence.

2. Sequence Generation
(1) We begin in the initial state, 0. In step 2. we may choose any untested

transition emanating from state 0; take the ger-rk transition.

2(a) According to the predicate-action table, to enable this transition the t field of
MEDIUM must be set to T and the DA field to the station’s address, which is assumed to
be i. The remaining fields may be any values, and are indicated by an ‘v’ in Table 6. The
other input variables are set to “don’t care™ or DC.

2(b) When the transition occurs, MEDIUM is set to empty.

2(c) Sg is set to the expected end state for this test, which is state 2.

(3) Noting that the next state is a stop state, this completes the furst test in the
sequence, and the appropriate values are output (Tablc 6).

(4) This clause and transition are now marked “tested.”

(5) The value of S, is now set to 2. and another iteration starting at step 2 is called

for.

TABLE 6: TEST SEQUENCE FOR THE TOKEN BUS PROTOCOL

transition | Sy | MEDIUM, O(Tb‘z':' MEDIUM,, °;’1"";')0 inbuf | Sg
get-tk -O (T.i,x.x) DCDC 7] - - - 2
Xmit 2 DC X DC X o - - 3
moreD k! 1%} DC Y - . - 2
Xmit 2 DC DC Y Y -9 - 2
pass-tk 3 2 X DC (T.next.i, D) - - 0
rcv 0 (D.ix.x) DC DC - - - {(x.X.SA. 1
data)

ready 1 DC bC DC %] - - - 0
get-tk 0 (T.i,x,x) DC DC %) - - - 2
pass 2 DC @ DC I (T.nexti. @) .. . 0
get-tk 0 (T.i.x,x) DC DC) - - - 2
Xmit 2 DC X DC X g - - 3
pass-tk’ 3 2 DC @ (T.oext,i,3) - - - 0

28

The next iteration of the procedure arbitrarily selects the Xmir transition, and the
values selected are shown as the second test entered in Table 6. The expected ending state
of this second test is 3.

At the next iteration, the moreD transition is chosen, followed by the Xmit transition
back to state 3. We now exercise the pass-tk transition using the
(MEDIUM = 0 Actr = k+ 1) predicate. which leads us back to the initial state of ().

The remaining untested transitions are executed in a similar manner resulting in a finul
test sequence of 12 tests. The values of the input and output variabies for all of these tests

are shown in Table 6.

3. Fault Coverage for the Token Bus Test Sequence
The procedure for determining fault coverage consists of taking each outgoing
transition from each state in the specification and modifying that transition so that it has a
different tail state. For example, in a correct implementation of the Token Bus protocol, the
get-tk transition has a tail state of 2. In an incorrect implementation, the ger-tk transition
could have a tail state of 0,!. or 3. In this specification, Figure 4, there are 4 states and 7
transitions, so there are 28 possible tail states. Subtracting the 7 tail states in a correct IUT,

leaves 21 possible type 3 errors. These are listed in Table 7.

TABLE 7: POSSIBLE TYPE 3 ERRORS FOR FIGURE 4

State | Transition Possibletnd Result
State
0 — get-tk ”0 detected
0 ger-tk 1 detected
0 get-tk 3 detected
0 rev 0 detected
0 rey 2 detected
0 rey 3 detected

29

State | Transition Possibldind Result
State
1 readyv | detected
1 ready 2 detected
1 readyv 3 detected
2 Xmit 2 detected
2 Xmit 0 detected
2 Xmit 1 detected
2 pass 2 detected
2 pass 1 detected
2 pass 3 undetected
3 moreD 3 detected
3 moreD 0 detected
3 moreD 1 detected
3 pass-tk 3 detected
3 pass-tk | detected
3 pass-tk 2 undetected

As an example of how this test sequence can be used to detect an error, consider
the error that could be associated with the rcv transition. In order for the rcv transition to be
executed, the machine must be in szate 0 and the predicate MEDIUM .(t.DA) = (D .i) must
be true. The rcv transition then places the source address of the sender and the data into
local variable inbuf (inbuf « MEDIUM.(SA.data)). If this transition were to end in stare 0,
then either the rcv transition must be executed again, or the ger-rk transition is executed. If
the rcv transition is executed repeatedly, the machine will be in deadlock. and the error

detected. If, on the other hand, the ger-rk transition is executed, MEDIUM will be modified

(MEDIUM «) mistakenly. and the error will be detected. This type of procedure is
applied to every possible, single type 3 error to determine if it can be detected.

A check of the 21 possible erTors against the test sequence (Table 7) shows that
all faults will be detected with the tollowing 2 exceptions: (1) when the pass transition ends
in state 3 (instead of state 0) and (2) when the puss-rk transition ends in state 2 {instead of
state 0). Closer inspection reveals that these particular errors are not detected because they
involve converging transitions.

Note from Table 4 that the enabling predicates and the corresponding actions for
the pass-tk and pass transitions are almost identical. Furthermore, both transitions emanate
from different states but end in the same state, state 0. If, in a faulty unplementation,
transition pass-tk ended at state 2. the error would go undetected because the machine
would instantaneously move from srare 2 to state U; this is the correct state in an
implementation where the error in the pass-tk transition does not occur. The pass transition
is executed because the enabling predicate for the pass transition must be “true” in order
for the pass-tk transition to have executed earlier. In general. errors involving converging

transitions are difficult to detect and are given further treatment in chapter V.

C. FDDIPROTOCOL SPECIFICATION

The Fiber Distributed Data Interface (FDDI) is a high speed, token ring, local area
network recently developed by the American National Standard Institute (ANSI). Because
of its reliability and high speed, FDDI is a very complex protocol. This is evidenced by its
specification. The ANSI specification of this protocol contains two distinct machines. each
with six states, and a total of approximately 60 transitions. Furthermore this work contains
some undesirable ambiguities that could complicate testing. Recent work [LUNDYL()]
involving FDDI has produced an SCM specification of an improved FDDI protocol which
allows for proofs of protocol correctness and for the development of test procedures. This
improved specification, though it is more precise than the ANSI specification, is also more

complex; it includes two machines with a total of more than 100 states and 250 transitions.

H

In order to effectively test such a specification, it is necessary to break each machine
into distinct, separately testable entities. and perform localized testing: tha is the approach
taken here. The specification provided here is a portion of the MAC receiver state diagram
illustrated in [LUNDS1(b)]. Since this work involved an improved FDDI specification.
some refinements to the example machine were necessary to make it more closely aligned
with the ANSI specification. The purpose of the machine used in this example is.
essentially, to analyze the stream of symbols being received by the MAC layer and
determine whether or not they represent the token.

This specification consists of the predicate action table (Table 8) and the state diagram
of the receive token machine (Figure 6). A complete description of the notation used in this
example is beyond the scope of this thesis. however interested readers can consult
[LUND91(b)]. The brief description that follows should be sufficient to allow for an
understanding of the operation of the example machine. For the predicates in Table 8, each

symbol represents a field of an FDDI frame; this frame format is shown in Figure 5.

PA SD | FC DA}l SA INFO {FCS| ED | FS

Figure 5 : Frame Format

Each field of the frame has the following meaning:

+ Preamble (PA) - consists of 16 or more idle symbols (I;..I,,¢) that signal a
start transition for synchronization of station’s clock

» Starting Delimiter (SD) - consists of two symbols (J and K) that signal the
start of receiving a frame

» Frame Control (FC) - consists of two data symbols. For our purposes. FC
will either contain (n,n) indicating a bit pattern other than the token, or FC
will be equal to Token, which indicates that the frame contains a the token.

L
3

= Destination Address {DA) - consists of a number of symbois that indicate the
destination address of the frame.

* Source Address (SA) - consists of a number of symbols that indicate the
source address of the frame.

* Information (INFO) - consists of zero or more symbols that represent the
message carried by the frame.

* Frame Check Sequence (FCS) - consists of a number of symbols that serve to
detect errors within the frame.

 Ending Delimiter (ED) - consists of one terminate symbol (T) that indicates a
frame ending. The field is necessary to provide a criteria for acceptance of a
valid frame. The ED must be met before a frame is accepted.

» Frame Status (FS) - consists of control indicator symbols that follow the
ending delimiter of a frame.

The example machine has four states. In the initial state, 0, the machine is quiescent,
merely waiting to either process a symbol stream or to reset. It MAC Reset is true, a reset
occurs and the machine remains in its initial state. If the preamble (PA,) is equal to /,, then
the first idle symbol has been detected in the symbol stream, and the machine moves to
state 1. From state I, a reset or invalid signal from the physical layer would cause the
machine to return to its initial state; however, if PA, is equal to the maximum number of
idle symbols and the first symbol of the starting delimiter (/) has been received, the
machine moves to state 2. The machine would then move to srate 3 if the rest of the starting
delimiter was received correctly and the frame control symbol was set to the token. From
state 3, the strip _on_tk transition would be taken if a preamble is detected with only one
idle symbol, and the frame control indicates a value other than the token. The
format _error_on_tk would be exercised if, in addition to the above conditions, the ending

delimiter was not equal to the terminate symbol or the preamble did not contain an idle

symbol. Finally, the roken rcvd transition is taken if the terminate symbol is received

correctly.

It is important to emphasize that this specification comprises a very small portion of

the entire FDDI specification, and the only way to test such a complex specification is te

break it down into more manageable parts. The example given here is representative of the

complexity that would be associated with other machines in the FDDI specification.

TABLE 8: PREDICATE ACTION TABLE FOR RECEIVE TOKEN MACHINE

transition predicate action
Reset MAC_Reset = true T_Neg « T_Max:
Signai_Starnt PH_Indication(symbol) = PAr{I] A TVX « reset: TVX « enabled: SIGNAL
tsymbol = PA (|} idle:
Invalid PH_Invalid = true SIGNAL FO_Emor:
Stant PH_Indication(symbol) = PA([1,.Iy,,] | Idle « off: SIGNAL RC_Start:
SD,(1}
Token PH_Indicationtsymbol) = {PA,{1,..1,,.). | SIGNAL PDU_Tk:
SD{IK}} A FC, = Token
Stip_on_Tk | PH_Indication(symbol) = {PA,[I}..,,). | SIGNAL idle:
SD,[JK]. FC,[n.n]. PA (1]}
Format_Error | PH_Indication(symboi) = PA,[1; I ,,J. | SIGNAL FO_Error
on_Tk SD,[JK]. FC,[n.n], (— PA[1;] v
—EDJ{T.T))
Token_Rcvd | PH_Indication(symbol) = PA {I;. I ., }. | SIGNAL Tk_Rcvd:

SD,[JK]. FC,[a.n], ED,[T.T]

Resety

Tnvalid, : I
Signal_Stan |
gal_ -

[ﬂV:lﬁd:

Reset,,

Resety | | Invakid,

Strip_on_Tk
Fommat_Emor_on_T1k
Token Rcvd

-

Figure 6 : FDDI Receive Token Specification

D. TEST SEQUENCE GENERATION
These steps are similar to those provided for the Token Bus test sequence. Again. the

numbering below corresponds to the steps in the test procedure.

1. Preluminaries

(1) There are four reset transitions and three invalid transitions, and these are
labeled with subscripts corresponding to the number of the state from which they originate.

(2) Each enabling predicate has one clause.

(3) The shared variables T_Neg and 7VX are output variables.

(4) The local variables PH_Indication. FH Invalid, and MAC_Reset are tput
variables and local variables Idle, RC _Start, PDU_Tk. FO_Error TK_Rcvd. and Flags are
output variables.

From these preliminary steps, we can see that the test will take the following form:
Sy PH _Indiation PH_Invalid MAC Reset| T _Neg TVX Idle RC_Start PDU_Tk FO_Ervor TK Revd Flags Sg

Now we are ready to begin generating the test sequence.

tad
n

2. Sequence Generation

(1) We begin at the initial state, 0. In step 2. we may choose any untested
transition emanating from state 0: take the rescty; transition.

2(a) According to the predicate action table, to enable this transition, MAC Reser
must be set to “true.” The remaining input variables are set to DC.

2(b) When the transition occurs. T_Neg issetto T _Max.

2(c) Sg is set to the expected end state for this test, which is stare ().

(3) Noting that the next state is a stop state, this completes the first test in the
sequence. The appropriate values are now output (Table 9).

{4) This transition is now marked “tested.”

(5) The value of Sy is now set to 0, and another iteration starting at step 2 is called

for.
TABLE 9: FDDI RECEIVE TOKEN TEST SEQUENCE
PH_Indication MAC Re_ [PDU T| FO TK
transitton | §; rymbon | THInvald | oot [T-New| TVX (et il % [Ervor] Reva |FR® S5
eset, _ - [
Signal_Start{ 0 1PA[I;} A symbol DC . reset | on - - . - . !
=PA L) enable
Invalid, 1 DC true DC - - - on a
Signal_Start | 0 §PA [1;] A symbol DC DC - reset | on - - - . . §
=PA[1,] enable
Reset, ! DC DC vve BT Max] - - - . - - . 0
Signal_Start} ¢ |PA(1;] A symbel DC DC - reset | on | - - - - - 1
=PA (]} enabie
Start 1 PAIL,.1L) DC DC off | on - - - clear | 2
SO0
Resey, 2 DC DC wue BT Max - . - - - . . v
Signal_Start} 0 1PA L} A symbol DC DC - reset fonji - - - - - 1
=PA (1] enable
Start 1 PA (1,1} DC DC - - off | on - - - cdear | 2
SD,{1]
Invalid, 2 DC true DC - - - - - o - . 0
Signal_Start | O [PA{I,] A symbol DC DC - reset | on - - - t
=PA{I,) enable
Start { PA(1,.5...] DC DC - - off | on . - . clear | 2
SD,J]

PH_Indication MAC . Re_ |PDU T} FO TK
- ’ - ~ i ~ - - -
transition | S, tsymboh) PH_Invalid Reset T Neg| TVX |ldie Start N Erear] Revd Flags | S,
Token 2 PA,[I,«L,,‘,) DC D on 1
SD,{JK] ~ FC,
=Token
Strip_on_Tk{ 3 PAIL L u) DC DC on |
SD,[JK).FC,[n.n],
PAIL,)
Start | PA L T ne nc nff [on cieae |2
sD, (1]
Token 2 PAIL. 1] DC nC on 1
SD,{JK} A FC,
=Token
Format_Error| 3 PA{I,..1,..} DC DC 0 t
_on_Tk SD [JK1LFC, [n.n].
(= PA,“,]V
- ED[T.TH
Start { PALL;) DC DC off | on clear | 2
sD,(J)
Token 2 PA L. 1] DC DC on 1
SD,{IK] A FC,
=Token
Token_Revd | 3 PA L. L) DC DC - on i
SD,{JK]). FC,[n.n).
ED,[TT]
Start 1 PA (LI) DC pC - off | on clear | 2
3D,[J)
Token 2 PA L. L) DC DC on 1
SD,[JK] A FC,
=Token
tnvalid, DC true DC on 0
Signal_Start| O IPA ;] A symbol DC DC reset | on t
=PA [1,} ensble
Stant 1 PA L 1) DC DC off | on chear |2
SD. 1
Token 2 PALL, L] DC DC on 1
SD,[JK] AFC,
=Token
Reset, k] DC DC true JT_Max]
Signal_Start | ¢ [PA [I,] A symbol DC DC reset | on i
=PA [1] enabie

The next iteration of the procedure arbitrarily selects the signal_start transition.

and the values selected are shown as the second test entered in Table 9. The expected

ending state of this second test is 1. At the next iteration, the invalid, transition is chosen.

followed by the signal_start transition back to state 1.

The remaining untested transitions are executed in a similar manner resulting in a
final test sequence of 29 steps. The vulues of the input and output variables for all of these

tests are shown in Table 9.

3. Fault Coverage for the FDDI Test Sequence

Thedeterminationoffaultcoverageforthistestsequenceisidenticaltothe TokenBustest
sequence. In this specification, Figure 6. there are 4 states and 13 transitions. so there are
52 possible tail states. Subtracting the 13 tail states in a correct IUT, leaves 3Y possible type

3 errors. These errors along with the results of each test are listed in Table 10.

TABLE 10: POSSIBLE TYPE 3 ERRORS FOR FIGURE §

Possible
State Transition End Result
State
0 reset, I undetected
0 reset, 2 undetected
0 reset, 3 undetected
0 signal _start 0 detected
0 signal_start 2 detected
0 signal_start 3 detected
1 reset, 1 detected
1 reset, 2 undetected
1 resef, 3 undetected
1 invalid; 1 detected
1 invalid; 2 undetected
1 invalid, 3 undetected
1 start 0 detected
1 start 1 detected

38

Possible
State Transition End Result
State
1 start 3 detected
2 resets 2 detected
2 resets 1 undetected
2 resets 3 undetected
2 invalid- 2 detected
2 mvalids 1 undetected
2 invalid- 3 undetected
2 token 0 detected
2 roken 1 detected
2 roken 2 detected
3 resety 1 undetected
3 reset; 2 undetected
3 resety 3 detected
3 invalid; 1 undetected
3 invalidy 2 undetected
3 invalid; 3 detected
3 strip_on_tk 0 detected
3 strip_on_tk 2 detected
3 strip_on_tk 3 detected
3 format_error_on_tk 0 detected
3 format _error_on_rtk 2 detected
3 format_error_on_tk 3 detected
3 token_rcvd 0 detected
3 token_rcvd 2 detected
3 token_rcvd 3 detected

A check of the 39 possible type 3 errors against the test sequence (Table 9) shows
that there are 15 faults which are not detected. Note that in each such instance. the error is
not detected because it occurs in the presence of one or more converging transitions; any
single, type 3 error that does not involve a converging transition will be detected.

For tnstance, consider the error that could be associated with the sienal starr
transition. In order for this transition to be executed, the machine must be in srare 0 and the
predicate PH Indication(symbol) = PAr[l;] ~ (symbol = PA,[I;]) must be true. This
transition then resets and enables the valid transmission tirner (7VX) and enables the «{fe
signal. If this transition were to end in srare 0. then either the signal _start transition must
be executed again, or the reser, transition is executed. If the signal_srarr transition is
executed repeatedly, the machine will appear to be in deadlock, and the error will be
detected. The same result, deadlock, will also occur if reset, is repeatedly executed. Again,
as in the previous example, this type of procedure is applied to every potential single, type

3 error to determine if it can be detected.
E. IMPROVING TESTABILITY

1. Token Bus Specification

The fault coverage for the test sequence presented for the Token Bus protocol
reveals two ways in which the protocol specification’s testability is compromised.

First, from Figure 4, note that state [is a transient state. Since the only transition
emanating from this state is ready, and the enabling predicate for ready is “true.” the
machine moves from state | back to state 0 without any input from the tester. The prohlem
is easily resolved, however, by adding the action for the ready transition to the action for
the rcv transition, and then removing the readv arc from the predicate action table and the
sta:e diagram; this eliminates the need for stare ! in the state diagram. It is likely that the
designer of the specification merely included stare I in the original specification. in order

to facilitate its understanding. Fortunately, the presence of the transient state in the original

40

example does not have an adverse effect on the fault coverage provided by the test
sequence. However, this is not always the case.

The second problem the test sequence reveals is the existence of the converging
transitions mentioned earlier. This situation is more difficult to resolve. The purpose of
these two transitions is to bring the machine back to its initial state once it (a) possesses the
token but has no data to send (pass). or (b) has already sent the maximum number of
messages allowed during a single token holding period (pass-rk). Since the goal of the
transitions is essentially the same (i.e. to pass the token to the next machine it is difficult
for the test sequence to distinguish between them. In this case, the tester should mark the

transitions as a potential problem and continue testing.

2. FDDI Specification

The major problem that analysis of the test sequence reveals about this
specification is the existence of converging transitions.

In Figure 6 there are thirteen transitions, seven of which are converging
transitions. There are four converging reser transitions whose purpose is to retum the
machine to its initial state upon the “resetting” of the MAC layer. The three imvulid
transitions ending in state 0, which indicate to the MAC layer that the physical layer has
encountered an invalid frame, are also converging transitions. Although these errors go
undetected by the test sequence, the occurrence of any one of them in an implementation
that is otherwise error free, would not affect the normal operatien of the protocol. This is
because all of the reser transitions and all of the invalid transitions have exactly the same
function, respectively.

While it is comforting to note that, in this case, the presence of these errors does
not adversely affect the test sequence, this will not always be so. Unfortunately, there is
little that the tester or protocol designer can change in this instance without altering the

operating characteristics of the machine.

41

V. PROOF OF FAULT COVERAGE

This chapter is concemed with determining the fault coverage produced by the test
method we have been discussing. Essentially. the testing problem is a matter of detennining
the equivalence of two machines: the specification machine and the machine
implementation. If the two machines are equivalent, then the machine implementation,
seen as a black box. should generate the same output as the specification machine when
both are presented with the same input. Again. since very little can be assumed about the
internal structure of the implementation machine, the only way to determine equivalence is
to probe both machines with input sequences and compare the resulting output sequences.
The problem now is to figure out the right set of inputs and outputs (test sequences) to
determine whether or not the machines are equivalent.

In many ways this problem is related to the state verification problem, which has been
shown to be unsolvable. However, by limiting the number and type of errors that can occur
in an implementation, it is possible to devise a procedure that generates a test sequence
which is guaranteed to detect certain types of serious errors. The occurrence of an error in
a machine that contains converging transitions presents special problems for the test
designer, so care is taken in specifying exactly what constitutes a converging transition.

Two transitions ¢; =(p;. a;) and t; = (p;, a;) are converging transitions if all of the
following conditions hold:

(1) transitions ¢; and ¢, have different head states but the same tail state:

(2) (p; =p2) o1 (p; = p);

(3) (a; = a3) or their actions on all output variables are identical.

42

In the absence of converging transitions, it is possible to devise a method that wijl
provide good fault coverage. as is evidenced by the following proof This proof is by
contradiction.

Let X' be a protocol implementation under test (IUT) of a protocol machine X,
specified by SCM.

Theorem: If (1), X has no converging transitions, and (2), the last transition in the test
of X is a UTO sequence, then the test sequence will detect any single type 3 error.

Proof: Suppose not. Then there is such a machine which can be implemented with a
single type 3 error. which the test sequence will not detect.

Let H be the state of the IUT at which the error occurs; that is. from which the

transition, say ‘P’, goes to the wrong state (Figure 7).

P correct
state

... actual
““““ NS state

Figure 7. Type 3 error

Now from the initial state to H, the test sequence has progressed correctly.

TABLE 11: EXAMPLE TEST SEQUENCE

S; | INPUTS | OUTPUTS | Sg

St INPUTS OUTPUTS | Sg
F-1 F
E Fg

Let [H, E,|, E;,..., F,.. Fg) be the sequence of states as expected to be visited by the

test sequence and shown in Table 11.

O LN Ve N Ve W Ny

A}

AN
A U10
~ Qo Qv Q' sequerce
Figure 8 : States Visited in Protocol Machine

Similarly, let E’y,..., F'g be the actual sequence taken by the faulty IUT (Figure 8).
Since no error is detected, the sequence Q’y, Q',... is exactly equivalent to Q,, Q...
However, F.... Fg is a UIO sequence: hence, F’,... F'g must be exactly the same sequence
of states and transitions, or else condition I is violated. Otherwise, F,... F'g mustbe F.... Fg.

Then there must have been a converging transition in the sequence Q’y. Q’;.... which

violates condition II. QED.

VI. CONCLUSION

A. CONTRIBUTIONS OF THIS RESEARCH

The goal of this thesis was to present a procedure which generates a test sequence tor
a communication protocol. that takes as input a protocol specified as a svsrem of
communicating machines, and gives as output, a complete test sequence. Three recent
conformance test procedures were ieviewed and their suitability for testing current
communication protocols was discussed. A brief specification of two well known local area
network protocols was given using SCM and test sequences were generated and analyzed
to determine the fault coverage they afforded. Finally. a proof was given that shows the
error detection capability of this test method.

The test method introduced here further demonstrates the flexibilityv of the SCM
model. A protocol can be specified, verified and tested using techniques hased on this
model. In the test procedure, every instance of every transition in the machine specification
is tested along with each clause in the enabling predicates. The preliminary steps deterine
the input and output variables, the sequence generating procedure produces the test
sequence, and the refining steps assist in determining fault coverage. It was shown that this
method provides good fault coverage in the absence of converging transitions.

The example test sequences for Token Bus and FDDI demonstrate the application of
the specification and testing methods associated with the systems of communicating
machines model. Since these protocols are in wide use today in many networks. their
presence as examples illustrates further the usefulness of this test method. Indeed. u test
designer would have a difficult time trying to generate a test sequence for these protocals
using any of the test methods discussed in Chapter II. Again, using a protocol specification
method that has testing in mind yields much better results than using a specification method

that was designed without regard to conformance testing.

45

The proof of fault coverage presented here is important to the test designer because it
provides assurance that, under certain circumstances, a serious error i a protocol
implementation will be detected. While some of the current literature discusses the
correctness of a test sequence, the main emphasis seems to lie in shortening the sequence
length. Our procedure. however. emphasizes the ability of the sequence to detect errors
rather than achieve an optimal test sequence tength. After all, if the protocol test method is
automated, the length of the test sequence is of little importance: the fault coverage
provided by the sequence is the important part. It is again necessary to emphasize that test
methods can only test for the presence of desirable behavior in a protocol machine. [t is not
possible to exhaustively test for the presence of undesirable behavior since one cannot

foresee all possible errors that could occur in an implementation.

B. AREAS FOR FURTHER RESEARCH

Further research might concentrate on extending the error detection capabilities of this
method to detect multiple errors or perhaps to detect them in the presence of converging
transitions. Since this method treats a protocol implementation as a “black box™ the test
designer knows nothing about the intemal workings of the machine: the tester can only
monitor the output of the machine in response to certain inputs. For this reason, UlO
sequences are needed to verify the state of the machine at a given instant. It would be
interesting to see how different “distinguishing sequences” could be used to better perform
this function in the presence of errors.

The recent automation of the specification and analysis portion of the SCM model
{ROTH 92], opens the door for the possible automation of the test method introduced here.
The procedure is fairly straightforward requiring the intervention of the test designer on
matters such as transient states and transitions with multiple clauses. but by starting with
simple protocols that do not contain any of these complicating factors it is reasonable to

assume that the procedure can be automated.

46

By showing the types of faults that commonly go undetected by test sequences, this
research also provides some insight imo designing protocol sproiiicn, . ahat are hetter

suited for testing.

47

REFERENCES

[AHO88] Aho. A, V. Dahbura. A. T.. Lee. D.. and Uyar, M. U.. "An Optimization
Techmque for Protocol Contormance Test Generation Based on U{O)
sequences and Rural Chinese Postman Tours,” Proceedings of the Sth
Svmposium on Prorocol Specificarion, Testing and Verification, IFIP. June
1088 pp. 75-86

{HOLTO1} Holtzman, Gerard, J .. Design and Validation of Computer Protocols. Prentice
Hall Software Series. Englewood Cliffs, NJ 07974.

[LUND9Y1(a)] Lundy, G. M. and Miller. R. E.. “Specification and Analysis of a Data
Transfer Protocol Using Systems of Communicating Machines.” Distrthuted
Compuring, Springer-Verlag. December 1991.

{LUND91(b)] Lundy, G. M. and Elmi:o. J L.. "A Formal Model of the MAC Layer of an
Improved FDDI Protocol,” M S Thesis, Departinent of Computer Science,
Naval Postgraduate School. Monterey, CA, 1991.

[LUNDYXalLundy, G.M.. and Charbonneau, L. J., “Modeling the Token Bus Protocol
with Systems of Communicating Machines™. M. S. Thesis, Deparunent of
Computer Science, Naval Postgraduate School, Monterey, CA. 1990.

[LUND90tb)]Lundy. G. M., and Miller, Raymond E.. “Testing Protocol Iimplementations
Based on a Formal Specification.” Proceedings of the 3rd Internanonal
Workshop on Protocol Test Svstems, TFIP. North Holland. 1990.

{MILL90] Miller, Raymond E., and Paul. Sanjoy, “Two New Approaches to
Conformance Testing of Communication Protocols,” TR-9()-3/. Department
of Computer Science. University of Maryland, 1990.

fROTH 92] Rothlisberger, M. J.. “An Automated Tool for Validation of Network
Protocols.” M.S. Thesis, Depanment of Computer Science. Naval
Postgraduate School. Monterey, CA, September 1992.

[SABN85] Sabnani, K. K., and Dahbura, A. T.. “A new technique for generating
protocol tests.” Proceedings of the 9th Data Communications Sympaosium,
IEEE Computer Society Press, September 1985, pp. 36-43.

{SHENB9] Shen. Y N., Lombardi, F. and Dahbura. A. T.. “Protocol Confoimance
Testing Using Multiple UIO sequences.” Proceedings of the 9th Svmposiunt
on Protocol Specificarion, Testing. and Verification, IFIP, 1989

48

[YANG90] Yang. B., and Ural, J.. “Protocol Conformance Test Generation Using
Multiple UTO Sequences with Overlapping.” Proceedings of SIGCOMM Q.
Philadelphia. PA, September 1990, pp. 118-125

49

INITIAL DISTRIBUTION LIST

Defense Technical Infonmation Center
Cameron Station
Alexandria, VA 221314

Dudley Knox Library
Code 52

Naval Postgraduate Schaol
Monterey. CA 93943

Dr. G. M. Lundy

Computer Science Department, Code CSLn
Naval Postgraduate School

Monterey, CA 93943

Director, Force Warfare Aircraft Test Directorate
Naval Air Warfare Center. Aircraft Diviston
Patuxent River. MD 20670

Mr. Michael A. Randall

Force Warfare Aircraft Test Directorate
Communications Information Operations Section
Naval Air Warfare Center, Aircraft Division
Patuxent River. MD 20670

Prof. Raymond E. Miller
A. V. Williams Bldg.
Dept. of Computer Science
University of Maryland
College Park, MD 20742

Prof. Deepinder Sidhu

Dept. of Computer Science

University of Maryland, Baltimore County
Catonsville, MD 21228

50

[

tv

ty

