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Abstract

This paper focuses on the correlation of two successive scalar images for the
purpose of measuring imaged fluid motions. A method is presented for deforming,
or transforming, one image to another. Taylor series expansions of the Lagrangian
displacement field are used, in conjunction with an integral form of the equations
of motion, to approximate this transformation. The proposed method locally corre-
lates images for displacements, rotations, deformations, and higher order displace-
ment gradient fields, and applies a global minimization procedure to insure a global
consistency in the results. An integral form of the equations of motion is employed
and, as a consequence, no spatial or temporal differentiation of the image data is
required in estimating the displacement field. Successive two-dimensional digital
CCD images of fluid motion marked with dye, are used to verify the capabilities of
the method. The utility of the method is also illustrated using a pair of Voyager 2
images of Jupiter.
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1. Introduction

The application of photographic, CCD, and other forms of imaging for the
purpose of estimating flow velocities, has been investigated by many researchers in
fields ranging from fluid mechanics to vision research. In the most common methods
for measuring fluid flow velocities, the flow is seeded with particles, or markers, that
can be easily imaged and tracked. An extensive review of methods using particle
and speckle images for fluid flow measurement is presented by Adrian (1991). The
estimation of the motion and deformation of solids is closely related to that of fluids.
A method of determining displacements and stress intensity factors in solids, using
white light speckle images and image correlation techniques, is presented in McNeill
et al. 1987. In the absence of particles, flows have also been tagged with a line
or grid, e.g., using laser-induced photochemical reactions (Falco & Chu 1987), or
laser-induced fluorescence (Miles et al. 1989). When this is not possible, one can
use markers that occur naturally in the flow, e.g., Bindschadler and Scambos (1991)
have correlated the translation of distinct surface features in ice flows to determine
flow velocities.

Determining motion from successive images is also of interest in animation, as
well as the study of biological and robotic vision. Most investigations along these
lines have taken the form of extracting the motion of objects in an image and, as a
consequence, they focus on the motion of rigid objects and their representations. See
Hildreth & Koch (1987) for a review and Murray & Buxton (1990). This approach
is somewhat different from the interests of Fluid Mechanics where the object of
interest is a fluid, highly deformable and often compressible. Nevertheless, many
results from object motion research apply directly to the motion of fluids and solids.

The proposed Image Correlation Velocimetry (ICV) method that will be de-
veloped in the present discussion has roots in both the correlation methods used
in measuring fluid flow and the deformation of solids, outlined in Sec. 1.1, and the
gradient methods used in measuring optical flows, outlined in Sec. 1.2.

1.1 Correlation methods

Several techniques for determining fluid flow velocities from particle image pairs
(e.g., Willert & Gharib 1991) employ an optimization that relies on some form of a
cross-correlation function, e.g.,

max Eo0(x) E1 (t) d2 x, (1)

with
= x+a- , (2)
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where a is a vector parameter to be determined by the optimization procedure and
A is the correlation region. The distribution of the image irradiance, E(x, t), is
known at times to and ti, i.e.,

Eo(x) = E(x,to) and E,(x) = E(x, t1 ) . (3)

The average velocity, uA , within the correlation region is then approximated by,

a
UA - (4)ti -- to

The drawback of this method, having only two parameters to quantify the motion,
is that it cannot resolve displacements properly where there are large displacement
grad ents within the correlation region. Anticipating this problem, and being very
interested in displacement gradients, researchers in Solid Mechanics, apply tech-
niques which include higher order deformations of the displacement field within a
correlation volume. For example, McNeill et al. (1987) describe a method whereby
a model of the image displacement field (mapping) is used in a least squares opti-
mization procedure, i.e.,

min L Eo (x) - E, (ý) ]2 d 2x (5)a,Va JA

The affine mapping,
S= x+a+(Va).dx , (6)

is used as an example of such a function, and the displacement a and the four
components of Va are treated as parameters to be determined by the optimization
procedure. However, any physically motivated mapping can be used in place of
Eq. 6.

In both these methods, the image data are integrated over a region and require
no spatial differentiation. Since, for two-dimensional images, only a few parameters
are extracted from the optimization, these methods are relatively immune to noise
and lend themselves to fast solutions.

1.2 Gradient methods

A method for determining the velocities of visual features in an image was
presented by Horn & Schunck (1981). This visual velocity is termed "optical flow"
to differentiate it from the velocities of (material) objects in an image, e.g., a shadow
moving across the ground has a perceived velocity that is markedly different from
that of the ground, and a rotating featureless disk will have no visual velocity at
all. The fundamental equation used by Horn & Schunch to determine the optical
flow was.

OE
- + u.VE = 0, (7)
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where E is the image irradiance (a scalar) and u is the optical flow velocity. The
differential terms, 49E/.9t and VE, can be estimated from the image data and the
component of u along VE is calculated using Eq. 7. Methods employing equations
of this type are called gradient schemes. Note that no velocity can be calculated
using Eq. 7 if there are no features or gradients in the image, i.e., if VE = 0.
In addition, because Eq. 7 employs only the component of u along VE. velocity
components along the equi-scalar contours of E cannot be determined using Eq. 7
alone. This limitation was designated the "aperture problem" by Wallach (1976).
The terminology is somewhat misleading and is only used here in reference to the
convention. More appropriate names might be the "characteristic problem," or the
"direction problem," because the problem is finding the velocity along the charac-
teristic direction, E = constant. Gradient schemes also have the problem that finite
difference approximations of the spatial and temporal derivatives are necessary. A
problem with such approximations for the derivatives is related to the Nyquist sam-
pling criterion, where aliasing in the image data can effect the velocity estimates.
To minimize this problem in taking the gradient, the motion between images should
be less than half the smallest local spatial scale, AE, of the E-field, i.e.,

lul (ti - to) 1(8)
AE 2

(cf. Eq. 7), where (t, - to) is the time between images.

The uncertainty of the so-called aperture problem can be solved in some cases
by applying constraints to the motion, e.g., the motion is of a rigid body (see
Murray & Buxton 1990, for example), or a limited class of deformable bodies (see
Terzopoulos & Metaxas 1991).

Horn & Schunck (1981) applied a global constraint to Eq. 7 (in two dimensions),
by solving for u(x,t) using an optimization, i.e.,

u(x,t) + u. VE] + k a2 d2 x, (9)

where a represents the constraint cost function in the optimization process, and
k balances the relative cost of a and Eq. 7. In particular, Horn & Schunck chose
smoothness as a constraint, i.e.,

o 2 ( 2 (10)
ij = 1,2

The idea of including constraints in the optimization process that determines the
velocity field, over an area, is important in the context of the method to be discussed
below. Note that the constraint in Eq. 9 need not be included in the optimization
integral. Instead, it could be included as a feature of the optimization technique.
See Murray & Buxton (1990).
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2. Proposed methodology

A succession of images canl represent anything from the motion of cars on a
highway to the transport of a dye marker in water. We take the view that given
successive image representations, there exists a transformation, or mapping, of the
local image intensity data that takes one image to the next. In many cases, while
the equation of motion of the imaged field may be known, the mapping taking one
image to another may not be. Successive images combined with the equations of
motion, however, often allow us to approximate the mapping.

The mapping of one image to the next can be developed by considering the
Lagrangian displacement field ý(x, t) of the image sequence. Specifically, if x is
the coordinate of a point on an image at some initial time t o, ý(x, t) represents
the coordinate of this point in a subsequent image recorded at a later time t. If we
imagine the image sequence as the result of a continuous recording process, we can
assign a Lagrangian image-flow velocity field, referred to as "optical flow" in the
discussion and literature cited above, i.e.,

u[ý(,(xt), t]-= d X0

to the continuous displacement field C(x, t) that takes an initial point x in the
image recorded at time to, to the point C(x, t) on the image recorded at time t.
We recognize that, for the case where the images represent fluid flow, e.g., successive
images of a convected scalar, the image-flow velocity field, u(x, t), may be quite
different from the fluid-flow velocity field uf((x, t). The extent to which the former
represents a good approximation for the latter is a separate issue that can only be
addressed in the context of the details of the particular imaging process and the
fluid-flow field.

In the proposed implementation, local series approximations for the displace-
ment mapping are used in conjunction with an integral form of the equations of
motion. A global nonlinear correlation (optimization) process is employed to esti-
mate the image-flow velocity, vorticity, deformation rate, etc., of the imaged data
field. "Series," in this discussion, will denote "Taylor series."

In the context of fluid mechanics measurements, we will focus on images of
continuous, passive, convected scalars, e.g., dye markers, carried by a fluid. As will
be illustrated using a pair of Voyager 2 images of Jupiter (Sec. 5), however, any
marker in the flow can be used.

The method will be developed for three dimensions and can yield three-
dimensional velocity fields. The method can also obtain two-dimensional velocity
fields from images of two-dimensional flows. In a concession to the limitations of
typical data acquisition systems today, however, the method will be applied here
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to a two-dimensional flow and also to two-dimensional slices of three-dimensional
flows. We note that in some cases, two-dimensional imaging devices can be used to
obtain approximations to three-dimensional image data, e.g., Dahm, et al. 1991. A
short discussion of the implications of correlating two-dimensional slices of three-
dimensional data is presented in Sec. 4.

2.1 Fluid displacement and equations of motion

To see how the image-flow velocity field can be calculated from three-
dimensional image data sets, spaced in time, first consider a Lagrangian description
of a flow being imaged. Figure 1 illustrates the motion of fluid particles within a
volume, V. Fluid elements at x, in a neighborhood V, at time to, are convected to
locations ý(x, t) at a later time t. The displacement field, t(x, t), can be thought
of as a transformation of the field x, at time to, to t(x, t). Given the image
displacement field t(x, t), the image-flow velocity field is then given by Eq. 11.

E _..]( ;(t2t)

S(X;to) = x

FIG. 1 Motion of a fluid volume.

Using this Lagrangian field, t(x, t), one could, in principle, integrate the equa-
tion of motion of the imaged scalar, i.e.,

Oc + U C V 2 C (12)Oct•-+u.Vc = :V~c , (2

to obtain

ci[(x, ti)]--co[V(x, to)]--D V 2c[t(x, r),r]dr = 0 , (13)
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where
co(x) -- c(x, to) and cl(X) = c(x,tl) (14)

represent the c(x, t)-field at times to and tI, respectively, and V is the appropriate
diffusion coefficient.

In the first two examples, the motion of food coloring in glycerine (Sec. 3) and
dilute fluorescein in water (Sec. 4), are examined. In these flows, the diffusion of
the dye markers, in the time interval between successive images, is relatively small
and may be neglected, i.e.,

(ti - to) V « (15)

where, tI - to = 0.1 s is the time between images, f = 50 to 80!Mm is the imaging
resolution, and the diffusion coefficients are no larger than D - 10-9 m 2/s. In
addition, we note that the Schmidt number is large in both flows, i.e.,

SD = /I)> 103 , (16)

where v is the kinematic viscosity. In the first example of the dye marker in glyc-
erine, the fluid flow is two-dimensional, as is the image, and the image-flow velocity
field, u(x, t), is a good representation of the fluid-flow velocity field, uf(x, t). In
the second example, both the flow velocity and the imaged scalar field are three-
dimensional, while the image is two-dimensional. As we will discuss, the image-flow
field need not necessarily represent the flow velocity field, in that case. In the third
example, the motion of the imaged quantity in the Jovian atmosphere (Sec. 5) does
not follow any simple equation of motion. In that example, the derived image-flow
velocity field can be expected to be an even poorer representation of the fluid-flow
velocity field.

In cases where the diffusion of the imaged scalar can be ignored, Eq. 13 becomes

ci[,(x, t1)] -co[(x, t0 )] = 0 . (17)

Equation 17 represents a significant simplification over Eq. 12, its differential coun-
terpart. It contains no spatial, or temporal, derivatives and suffers few of the
drawbacks associated with the gradient methods discussed earlier (Sec. 1.2).

Using the integral equation of motion (Eq. 17) in place of the differential equa-
tion of motion (Eq. 7) in the optimization (Eq. 9), and generalizing the optimization
to three dimensions then yields an expression for determining ý(x, to) and ý(x, tI),
i.e.,

mi 2 2 )dax:. (18)m (.C1[WXt 0] -Co[WXto)] I + d or
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In the spirit of the correlation methods discussed in Sec. 1.1, where the type
of motion within the correlation volume is limited to translation alone, the present
method restricts ý(x, to) and ý(x, t1 ) to the first few terms of a series approximation
for ý(x, t). While many representations of the displacement field could be employed,
a (Taylor) series representation is used because the first two orders in the series
expansion correspond to physical fluid mechanical quantities, i.e., the velocity vector
and the velocity gradient tensor. More importantly, the series approximation has
the additional benefit of enforcing smoothness in the displacement and displacement
gradient fields within a correlation volume.

2.2 Displacement field and kinematic quantities

In the case of fluid-flow images, the quantity ý(x, t) is a complicated nonlinear
function of the imaging process, the nonlinear convection dynamics, and x. Local
estimates of this function can be made by Taylor series, expanding ý(x, t) in space,
at some time t, in an image correlation volume, V. This yields,

VX,(x0 = Vx,(x;t) + (x - x,) . V(,(x; t) + 1. [(X- _X,) . Vl2 (,(x; t) +.. (19)

In this expression, x, denotes the center of the image correlation volume, V, at
time to, and Vt(x,; t) denotes the gradient of t(x, t) with respect to x, evaluated
at x,. Figure 2 plots the number of parameters used in the optimization process as
a function of the order used in the series expansion, for two and three dimensions.
Figure 3 illustrates the effect of the various orders of the expansion on a two-
dimensional square "volume."

Using a finite difference approximation in time for the velocity, Eq. 11, and the
series representation, Eq. 19, evaluated at times to and t1 , yields an estimate for
the velocity within the correlation volume, i.e.,

u([(x;t),t]_- (x;tl) - (x;to) (20)
tj - to

where to < t < tj. Similarly, taking the spatial gradient of Eq. 20 yields an expres-
sion for the velocity gradient tensor within the correlation volume, i.e.,

Vu [t(x; t), t] = a U [t•(x; t), t] .._ VV•x; t ) - V(x;to) (21)

tl - to

Vorticity, divergence, and strain rate can then be obtained from the components of
the estimated velocity gradient tensor, Eq. 21.
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FIG. 2 This plot shows the rapid increase in the number of parameters used in the
optimization procedure with increasing order of the series expansion. "*" is
for a 2-D expansion and"o" for 3-D.

There is some freedom in choosing the coordinate transformation at the initial
time to, C(x, to). Our choice is to have the coordinate description at the initial time
to correspond with the local Eulerian coordinates at that time, i.e.,

(x,to) = x . (22)

In terms of the series expansion, Eq. 19, this means that

VV(xC;to) -I , (23)

where I is the identity tensor, and all other higher order derivative terms are iden-
tically zero.



Translation (no deformation)

Linear deformation

Quadratic deformation

Cubic deformation J,

Combined translation and deformation -

FIG. 3 The effect if translation and various orders of deformation on a two-
dimensional square "volume." See Sec. 2.2.
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2.3 Seeking a global solution

A solution for the coefficients of the series expansion, i.e., t(x,; t), Vt(x,; t),
etc., can be obtained in a neighborhood around x, using the expansions for
t(x, to) and t(x, t) from Sec. 2.2. The unknown coefficients of the series ex-
pansion, t(xc;t), Vt(x,;t), etc., are treated as parameters in an optimiza-
tion process. To minimize the difference between two data sets (images), in
a least squares sense, for a single correlation volume, we use the optimization,
Eq. 18, in conjunction with the series approximations developed in Sec. 2.2, i.e.,

t'(xý;t0),Vt(xý;t0) ..

+ k o 2 ) d3 x (24)

The optimization implied in Eq. 24, combines many of the best features of corre-
lation methods and gradient methods, while eliminating many of the deficiencies.
Specifically, this optimization method has high immunity to noise, uses the equa-
tions of motion, can incorporate constraints, requires no differentiation to calculate
the displacement field, and can capture displacement gradients within a correlation
volume.

In principle, a single correlation volume covering the entire image and a series
approximation of a high enough order can be used to capture the entire image
displacement field. In practice, however, employing a series approximation beyond
the third order (cubic) term is impractical because of the rapid increase in the
number of parameters in the optimization process with increasing order (see Fig. 2),
and the associated increase in the computational time and complexity. In the
present calculations, when the quadratic term is not sufficient to capture the image
deformation over the entire flow field using a single volume, as is usually the case,
several series expansions residing in smaller, adjacent, correlation volumes are used
in place of the single large volume.

To construct a global optimization using a number of local series expansions, we
require that neighboring correlation volumes, with independent series expansions,
must yield consistent results. In the present method, we use the expansion for the
displacement field about one correlation volume to estimate those of its neighbors.
The displacement field of these neighbors is also estimated in terms of their own se-
ries expansions. The root-mean-square difference between displacements estimated
by neighboring correlation volumes is applied as a constraint cost function. Since
it is necessary to refer to a number of series expansions, it is useful to define the
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V2 j2(Xk2; t)

k1

Vl k20 0k3

JOk8

viI
k6 k5

k7*0 0 0

Vj4

FIG. 4 The kl - k8 solid circles denote the points in Vi used by the constraint cost
function ai. The empty circles denote their counterparts estimated by the
neighbors Vjj - Vj 4 .

taylor series for t(x, t) in a neighborhood Vi centered about xe,, as

ti(x;t) 0 + [(x- 0x,) +(X.;t) .... (25)

When series expansions about multiple points are then employed, the minimization,
Eq. 24, is modified, i.e.,

min I ({ci(X;t)]- c0[X] }2-+ kor ) d3x, Vi . (26)

•(xc, ~ ~ ~ c ;tt),((xc ti))...

This minimization is performed within all the Vi, simultaneously, and the square
of the constraint cost function,

=2 C (Xk;t) (Xk; 0 (27)
j k
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is applied to provide global continuity of the solution. ýj denotes the series expan-
sion about tile "j" neighbors of Vi, and Xk denotes the "k" points of comparison
between the solutions tj and tj. See Fig. 4. In the present method, eight points
about each correlation volume are used for comparison, three with each of four
neighbors. These eight points are sufficient to define the series expansion coeffi-
cients of the correlation volume, up to quadratic order.

The present implementation of the method can solve Eq. 26 for two-dimensional
flow up to the cubic term in the local series expansions, but the series is usually
truncated at quadratic order. The optimization of Eq. 24 is accomplished using a
multidimensional minimization process, with image data between pixels estimated
using bilinear interpolation. See for example Press, et al. (1988).

2.4 Minimization parameters in two dimensions

Typical CCD imaging techmologies today are limited to two-dimensional (spa-
tial) data. This is not a problem if the flow being imaged is also two-dimensional.
This section describes how the method is applied in two dimensions. First, we de-
velop the terms of the series expansion, Eq. 19, for two-dimensional flow. With the
two-dimensional vector J, =x-x ' (28)

1621
as the position, x, relative to the center of the correlation volume, xc, the terms
of the series expansion at a time t1 appear as a constant term,

VX;t)= ,f (29)Ss0 '

where the ci are the vector coordinates of the center of the correlation volume at
the time t I, i.e.,

i - (Xc; ti) ,(30)

a linear term,

(X- ')LVtx, 2I .Il C1121 . [112 (31)

where the ai, represent the first order deformations and rotations of the image
field within the correlation volume, i.e.,

a =j = iXa ' (32)

a quadratic term,

2[(XX.).V12 (xc;tl)- a l , 1 al,12  al,22 6 J2 (33)

a2,11 02,12 a2,22 62
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where
1 2 02) 2 i(xc;:t) ,(34)ai~jk =2! j + k - 2 9Xj'9Xk (34

a cubic term,

r 1
1 [ ]i aI,,2 j

3 [(x - x,) V]3 1(x•;t)= l a 1 , 1 1  2 0l122 , 2 2 2  (35)
3a2,111 a2,112 a 2 ,122 a2,222 J,1• J

with

1j( k3 ) 31 3Xa3 tl (36)3!jt - i +j +k-3) 9xj~xj,,xj

and so on for higher order terms. The aik and aijk, are, respectively, related
to the second and third derivatives of the displacement field within the correlation
volume, i.e., by Eqs. 34 and 36.

The velocity and velocity gradient (Eqs. 20 and 21), can also be written in
terms of the parameters of Eqs. 29 and 31 and the series expansions at times to
and tI, i.e.,

_____t)_[U [a, - Xe, (37)
u tl o a 2 - Yc

where
xc -- (38)

XYcI

and

Vu(XCrt) Oulox OulOy 1 1 [a,, - 1 al,2 1] (39)u[v/Ox Ov/Oy] t - to I a 2,1  0 2,2 -1

Alternatively, the velocity gradient can be written in terms of the in-plane vorticity
and rate-of-strain tensor, i.e.,

VU = [/2 I2+ ['2 (40)/2 0 I + 8yy S-Y

where w. is the vorticity, i.e.,

Ca2 ,1  a- ,2 (41)

tl - to

and s•, sYY and s.,, are the components of the rate-of-strain tensor, i.e.,

= a=,1 - 1 (42)
tl - to
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a 2,2 - 1syy- t, -- to '(43)

and
1 0l,2 + 02,1 (44)
2 2 ti -to

An interesting quantity to consider is the second invariant of the rate-of-strain
tensor (see Cantwell 1992, for example), i.e.,

2 2 2

2qa = sx,+2 + (45)

3. Couette flow between concentric cylinders

An apparatus to generate a Couette flow between concentric cylinders was
fabricated for the purpose of testing the method. The cylinders were made from
248mm lengths of stock Plexiglas tubing. The inner and outer radii of the annular
region between the cylinders were nominally 25.2 mm and 40.9 mm. The cylinders
were from stock Plexiglas tubing, so the uncertainties in the radii were ±-1 mm. The
outer cylinder was rotated with a rotation rate of 1.1 rad/s, with the inner cylinder
stationary. In this example, employing a dye marker in glycerine, the fluid flow is
nominally two-dimensional and the marker follows the flow. Hence, the image-flow
velocity field, u, can be accepted as a good representation of the fluid-flow velocity
field, uf.

Images were recorded using a Texas Instruments Multicam MC-1134GN Multi-
Mode B/W Camera. The data were stored digitally using an in-house multiple frame
grabber (12-bit A/D), designed by Dan Lang and Paul Dimotakis of GALCIT, set to
record up to 28 of the 1134 x 468 pixel gray level images from the camera, spaced
by 100 msec (adjustable between 33 and 267 msec). Because the horizontal and
vertical spacing of the pixels were not equal on this CCD, grid spacings and image
correlation volumes with a ratio of 1:1.74 (vertical:horizontal pixels) were used to
yield a uniform spacing of the data in the real image plane. Flow visualization
was performed by randomly distributing red food coloring (dye) on the surface of
the fluid. To provide backlighting for the dye marker, the fluid beneath the surface
contained a translucent white suspension of 31im aluminum oxide (A12 03) particles
in glycerine. When illuminated from the side, this provided nearly uniform white
backlighting for the dye being imaged on the surface. Because of the depth of field
of the imaging and the high density and uniform distribution of the aluminum oxide,
scattering from individual particles was not detectable in the video images.



15

FIG. 5 Initial placement of series expansion neighborhoods. Each square denotes a
control volume. The small circle at the center of each control volume denotes
the center. or control point, of a series expansion.

In the present investigations, only the outer cylinder was rotated, hence the
velocity field can be written as (e.g., Schlichting 1979),

ur(r, 9) uo(r, O) r/r, - r/r(
•oro - 0 andoro ro/r1 - r/r46)

where r, 9, ur, and u0 are the radial and angular positions and velocities, respec-
tively, Qo is the rotation rate of the outer cylinder, and r, and r, are the inner
and outer radii of the cylinders. In this flow, the divergence is zero, i.e.,

V.u =0, (47)

and the vorticity is uniform. i.e.,

2 f"(0w•(rO) -e,.Vx×u(rO) = -. (48)
1 -(r/ ,)
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FIG. 7 Displacement of series neighborhoods estimated using higher order terms in

the correlation process.

vorticity reflect the expected variations of the vorticity within the flow.

[sec-V] V u[sec- 1 ]

Theoretical: -3.6 ± 0.1 0.0

Experimental: -3.6 ± 0.3 -0.1 ± 0.1

TABLE 1. Comparison of theoretical and experimental vorticity and divergence.
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FIG. 8 Difference between Couette flow images under the mapping, quantified by
the value of the optimization functional (arbitrary units), as a function of
the number of terms in the two-dimensional series expansion.
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4. Cylinder wake flow. Two-dimensional slices of three-dimensional data

hi this section, we present the results of applying the two-dimensional cor-
relations to two-dimensional slices of a three-dimensional flow in the wake of an
impulsively started circular cylinder. Here, the cylinder is 1.75 cm in diameter and
45.5 cm long. It is drawn through a distribution of fluorescein dye in water at a
speed of 1.27 cm/s. The Reynolds number in this case is,

Ud
Re - U , 220 , (49)V

where U is the cylinder speed, d is the cylinder diameter, and v is the kinematic
viscosity.

IUEE U EHEEE
E-EEEEEE,
MENEM.MEEN

E..EEEEEE..E
Eu...uiii".

a lantnsonngonhdEu

FIG. 9 Initial placement of series expansion neighborhoods. Each square denotes a
control volume. The small circle at the center of each control volume denotes
the center, or control point, of a series expansion.



20

The CCD camera and data acquisition system are the same as for the Cou-
ette flow test case (Sec. 3). Laser sheet illumination is provided by a Continuum
model YG661-10 frequency-doubled YAG laser. The laser was operated at 532 nm,
300 mJ, 5 ns pulses width, at a rate of 10 Hz. The flow here is three-dimensional in
both the velocity field and scalar distribution.

Fic. 10 Displacement of grid after 100 ms, estimated using the nonlinear correlation

process.

Figures 9 - 14 demonstrate the method on images of a vortical structure forming
in the wake of the cylinder. These images were taken after the cylinder had traveled
about 8 diameters. The image at the initial time is shown in Fig. 9, and 100 ms later,
in Fig. 10. In this case, the series approximation used in the correlation process was
expanded to quadratic order. Figure I1I shows the displacement of the centers of
tihe correlation volumes.

The two-dimensional vorticity is displayed inl Fig. 12. A large vortical region
can be seen in the wake of the cylinder. The two-dimensional divergence, presented
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FIG. 11 Displacement of centers of grid over 100 ins.

in Fig. 13, exposes the three-dimensionality in the flow. Figure 14 plots the second
invariant of the rate-of-strain tensor. Note the region of strain (rate) that seems
to follow the periphery of the large vortical structure. This could be a region of
vorticity, from the previously shed vortical structure, that is being strained around
the current one.

As a general observation, an important issue arises when imaging a two-
dimensional (planar image) slice of a three-dimensional field of a continuous scalar,
c(x, t), as in the previous example. An out-of-plane component of the fluid-flow ve-
locity, uf, coupled with an out-of-plane component of the scalar gradient, Vc(x, t),
will contribute to the in-plane image-flow velocity u. In this case, the equation for
the in-plane image flow can still be written as,

c OC _9C Oc DC(t-+ Ox &t OX =0 (50)

where we have assumed that the image irradiance E(x, t) is proportional to the two-
dimensional slice of the scalar concentration, c(x, t), and where the in-plane image-
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FIG. 12 Contours of constant plane-normal vorticity, V x u = -v -. Solid
contours denote zero-vorticity. Long dashes denote positive values and
short dashes negative. Contours spaced by 0.5s- 1 .

flow velocity, u = (u, v) = dý/dt (Eq. 11), is the one derived from the minimization
function, as described above.

Considering the transport of the three-dimensional iso-scalar surfaces (see
Fig. 15), we find that the two-dimensional u = (u, v) in-plane image-flow velocity
components are related to the three-dimensional uf = (uf, vf, wf) fluid-flow velocity
and the three-dimensional scalar gradient components. In particular, we have,

Oc Oc/Ox
U = Uf + Wf 9 (Dc/Dx) 2 + (9c/ly) 2

=c Dc /dy (51)
S= Vf + "f ,z (D)c/Ox) 2 + (Dc/Dy)2

As can be seen. by substituting Eq. 51 in Eq. 50. these relations recover the three-
dimensional transport equation for a conserved scalar field c(x. t) I in the case of
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FIG.. 13 Contours of constant. divergence(, V - u = As il Fig. 12. 011.

contotirs are spaced by 0.5s-1.

negligible diffusion, i.c:.,

9c 9c "c ac ac
"+lf T -M +Ir- + 'f- + r- = 0.
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FIG. 14 Contours of constant second invariant of the rate-of-strain tensor (Eq. 45).

_ _ [ ()2 +(,)2 _ I ( ,+,)2] Contours spaced by 0.5s-2.2•-- ax'z a(y -- a(-y ax I, •

We can see that if wf is small, or if Dc/Oz is small, or both, by the measure in Eq. 52,
then the in-plane image-flow velocity field can be accepted as a good representation
of the in-plane fluid-flow velocity field.

Finally, since this method estimates the in-plane image-flow velocity u, and
not the fluid-flow velocity uf, its application to two-dimensional image slices of
three-dimensional scalar field data is identical to its application to two-dimensional
scalar data.
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Z

c(x, to) = const.

/ . ----c(x, t1) = const.

2-D image plane
x/

FIG. 15 Two-dimensional slices of a three-dimensional scalar field c(x, t). uf in-
dicates the 3-D fluid-flow velocity and u is the resulting two-dimensional
in-plane image-flow velocity.

5. Voyager 2 images of Jupiter

The method is also illustrated on a pair of the images of the atmospheric dy-
namics of Jupiter taken by Voyager 2. These images were taken from the "Voyager
Time-Lapse, Cylindrical-Projection Jupiter Mosaics," by Avis & Collins (1983).
640 x 350 pixel subimages of rotations 349 and 350 were used in the correlation
process. The subimage spans 1680 to 970 longitude and 00 to -46' latitude (the
equator is at the top of the image). The subimage from rotation 349 is shown in
Fig. 16, with an overlay of the initial placement of the correlation volume neighbor-
hoods. The vertical line on the left is a reference line which is to be deformed using
the mean zonal velocities of Jupiter from Limaye (1985). Figure 17 shows the same
region, one rotation later, with the associated grid deformed by the nonlinear cor-
relation method. On the left is the reference line from Fig. 16, carried by the mean
zonal flow. The displacement of the centers of the correlation volumes is shown in
Fig. 18.
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FiG. 18 Displacement of grid control points (centers of correlation volumes) after
one rotation. The lines on the left denote the displacement via the mean
zonal flow of Jupiter.

6. Conclusions

Series expansions of image displacement, in conjunction with a global nonlinear
correlation method, can be used to measure fluid velocities, and velocity gradients,
from pairs of continuous, convected, scalar images. It is shown that increasing
the order of the expansion can improve the accuracy of the results. The proposed
method does not require discrete particles and may also be used in situations where
there is a natural marker already in the flow, e.g., species concentration can be
used to measure velocities in compressible flows. T.'e method is developed for
three-dimensional data sets and demonstrated on two-aimensional images of fluid
flow.
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