
AD-A261 597 IENTATIOO PAd
,..- __ 2- 6 ý 1 - 4,;M1

4PAOTI QAIJ OIMA 'rYPIC A,4 OATL$ A.Q0ipio '

P fs December 1992 Fa 91s9n

7f. ?(O*I| ORNt L.,,ATT-O AM() N A 5SS . flcPs..4 QAM~.AllO,

lUsing modular Neural Networks with Local Representý_tions C (AFOSR-89-0500•O
to Control Dynamic Systems " (U) 2305/B3

'• * T.O•Si 611I02F

Professor Christopher G. Atkeson

Massachusetts Institute of Technology kt."T? lUMAIR

Dept. of Brain & Cognitive Sciences, and r).Q. ',..)

The Artificial Intelligence Laboratory
545 Technology Square, Room NE43-771
Cambridge, MA 02139

9.4. K 1454 fth T UQ$W 1" A41.140 4- MiS) AhO AOOALtS$41 &PON. SP~O*_G;#Of Tcs

Air Force Office of Sponsored Research/NE ,GJKV RT Ilb4J4

Electronic and Material Sciences Directorate
Building 410
Bolling AFB, Washington, DC 20332-6448 AFOSR-89-0500

-V -;P LA fTAA D T I C
tpproved for Public Release MAR2 1993
Distribution Unlimited:

UL

The objective of the research was to develop an artificial neural network
with very fast learning. MAny areas of activity and approaches have convinced
us that we can perform training and access sufficiently quickly to allow
real-time learning.

ý.14 ZER"IT"1i. NUMAIA of PA[IS
10

Neural networks, memory-based learning, motor control

1-I-Q.,rr', O..AS1It. S :Q----•"Y' •.' i CQA$S4FCA.$ JnX 1. sicijfi QCASu.nox 20. W"TATIN Of £AS$R.AC

co #•SR? 0' OF s M1AGA oe, A5I7"ACT
unclassified unclassified unclassified SAR

005.4 ý.ý 4Wo~aoS500 sthna~ae fgm JtO iA*# J-490
"•, u-•3 U4. IV.- , t7L' ti" c ! IS • F '

A'csio, Fo-r

NTIS CRA&I 4-
OTIC TAB
Undslnotlncd -

By

MASSACHUSETTS INSTITUTE OF TECHNOLOGY O ,trzbutiof'I
Department of Brain and Cognitive Sciences and AvjildodItty Codes

The Artificial Intelligence Laboratory A
Rmr NE43-771 - 545 Technology Square, Cambridge, MA 02139 DitS i

(617) 253-0788 e cgaqai.mit.edu

December 18, 1992

Steven Suddarth
Program Manager, Neural Networks
Electronic and Material Sciences Directorate r
AFOSR/NE
Bldg. 410
Boiling AFB, DC 20332-6448

Dear Dr. Suddarth,

The following is the Final Technical Report for the grant "Using Modular Neural Net-
works With Local Representations To Control Dynamic Systems" (AFOSR-89-0500)
for the period 9/1/89 - 8/31/92. I also enclose several papers that cover the work done
in that period.

The objective of this research was to develop an artificial neural network with very fast
learning. Major areas of activity included developing cross validation methods to re-
fine parameters such as the distance metric, developing parallel versions of the learning
algorithms which allow implementations to be scaled up by simply adding additional
processing hardware, with a negligible penalty in processing time, and performing nu-
merical experiments on simulated data to test the approach. We have also compared
our approach with other neural network approaches, and found that it provides equal
or better performance. We have implemented versions of this approach on several plat-
forms: serial computers (standard Sun workstations), digital signal processors (Intel
i860), a parallel computer (Connection Machine), and using special purpose digital
circuitry. We showed that we can perform training and access sufficiently quickly to
allow real-time learning, with a real-time implementation of memory-based learning
on a juggling task. We have also cxplored alternative methods such as radial basis
functions and projection pursuit, and developed a more demanding experimental task:
helicopter control.

93 3 1 069 ~93-0428298 8 z 081 ~IEI| lNlll t/

To Steven Suddarth December 18, 1992 Page 2

The funds provided by the Air Force had a large impact on education as well as on
research, providing partial support for several graduate students and undergraduates.
Ying Zhao (Mathematics, a woman) received her PhD from the MIT Mathematics
Department for work done under this grant. She was also sapervised by Prof. Peter
Huber in the Mathematics Department. Sherif Botros (Brain and Cognitive Sciences)
explored using radial basis functions for motor learning and optimization. Gerrie Van
Zyl (Mechanical Engineering) built the juggling robot robot testbed for learning meth-
ods. Gideon Stein (Electrical Engineering and Computer Science) explored digital
implementation technologies for our learning approach and programmed the Intel i860.
Chiqian Xie (Mechanical Engineering) worked on the learning control of flexible objects,
an important and difficult class of learning problems since the order (dimensionality of
the state vector) is not known. Stefano D'Aquino (Electrical Engineering and Computer
Science) explored analog implementation technologies. Several undergraduates received
prizes for their thesis work under this grant, including Peter Gordon ("An Associative
Content Addressable Memory", S.B. in Electrical Engineering and Computer Science,
May 1990. Awarded Second Prize in the David Adler Memorial Thesis Competition
by the Undergraduate Thesis Committee of the Department of Electrical Engineering
and Computer Science), and Paul Sajda, ("Machine Implementation of a Human Mo-
tor Task: The Yo-Yo Robot", S.B. in Electrical Engineering and Computer Science,
May 1989. Awarded Second Prize in the David Adler Memorial Thesis Competition
by the Undergraduate Thesis Committee of the Department of Electrical Engineering
and Computer Science). The students played a major role in the research, and also
learned a great deal. This research has also been incorporated in several courses, in-
cluding courses on motor learning, computational approaches to motor learning, and
nonparametric regression applied to learning and optimization.

Sincerely, ,

Christopher G. Atkeson
Associate Professor

cc: Dr. Harry Klopf

Final Report: Using Modular Neural
Networks With Local

Representations To Control Dynamic
Systems

Christopher G. Atkeson

The objective of this research was to explore an artificial neural network
architecture that simply remembers experiences and builds local models to
answer particular queries. The reason we are interested in a memory-based
approach is that it offers the possibility of fast training and minimal inter-
ference. The approach is to model complex systems using many simple local
models. This approach avoids the difficult problem of finding an appropriate
structure for a global model. To implement this approach a two-part artificial
neural network is designed. One part uses a local representation to remember
the training data set, and the second part is trained on selected portions of
the training set to form local models as needed. This network architecture
can be simulated using k-d trec data structures on standard serial computers
and also using parallel search on a massively parallel computer such as the
Connection Machine. The performance of the network was initially evalu-
ated by using it to control simulated dynamic systems. The ultimate goal is
to demonstrate successful control of actual dynamic systems such as a robot
helicopter.

One scientific contribution was to develop and demonstrate the utility of
non-parametric methods for adaptive control. Memory-based control pro-
vides a new and possibly better method for solving control problems such
as the robot trajectory following problem. Another contribution is to the
study of learning in intelligent systems. Demonstrating that learning a local
representation is fast and efficient and that the problems of limited memory
capacity can be overcome is an important contribution to the continuing de-
bate between proponents of local and distributed representations. This is of
great relevance to neuroscientists who study biological systems, as well as to
computer designers. This research will also contribute to our understanding
of human learning. We currently do not understand how humans learn mo-
tor tasks. Comparing the behavior of memory-based learning algorithms to

I

actual human learning may" give us insight into how humans learn and how
they might be taught more effectively.

Memory-based learning provides one approach to fast training, in that
the representation is trained by storing experiences in a large memory. This
corresponds to winner take ill noworks which use a iocal representation,
and can be used to perform warest neighbor search for relevant experiences.
Locally weighted regression is a form of memory-based learning in which a
model is fit to relevant experiences in order to make a prediction. Locally
weighted regression approximales complex functions using simple local mod-
els, as does a Taylor series. During training, experiences are stored in a
memory. When a query munst be answered, experiences relevant to the query
are found and combined to form a local model. Examples of types of local
models include nearest neighbor, weighted average, and locally weighted re-
gression. Each of these local models combine points near to a query point
to estimate the appropriate output. Locally weighted regression uses a rel-
atively complex regression procedure to form this model, and is thus more
expensive than nearest neighbor and weighted average memory-based learn-
ing procedures. For each query a new local model is formed. The rate at
which local models can be formed and evaluated limits the rate at which
queries can be answered. However, we have found that locally weighted re-
gression can be implemented in real time, and it has been implemented for
online robot learning of a challenging control task (a juggling task known
as "devil sticking"). We used commercially available microprocessors (Intel
i860 and Texas Instrument, FNS320C30). We have also found that memory-
based learning avoids interference between new and old data by retaining and
using all the data to answer each query.

To illustrate how the, 1,,i al model is formed in locally weighted regression
we will first consider a Klobal model formed using unweighted regression.
The inputs of each trainis datait point form a row in the matrix X, and
the outputs form a corrf'sepi,,ding row in the vector y. The structure of the
model is chosen so it is 1i,,Ai iH) the unknown parameters, which appear in
the vector P3 and are relatd hlv the set of linear equations

X3 = y

Since there are more equations (data points) than unknown parameters, the
parameters /3 are chosen by minimizing the sum of the squared fitting errors.

2

min (X3 - y) T (X0 - y)

This sum is minimized by the solution of the normal equations:

(XTX) 3 = XTy

We can think of this process as minimizing the energy of a set of identical
springs connecting the data points to the model surface. A problem with
unweighted regression is that points distant to the query point have as much
influence on the answer to the query as nearby points (for equally spaced
data).

Locally weighted regression reduces the influence of distant points on
the query answer by weighting the data according to its distance from the
query point. In order to do this one needs to know what the query point is
and to have a distance metric and a weighting function that transforms the
calculated distance into a weight:

d.= m.j(Xtj -

wi = d-P

Each row of X and y is multiplied by the weight for that point, wi. We
can think of locally weighted regression as minimizing the energy of a set of
springs whose spring constants decrease with distance from the query point.

Often there is not enough data in all directions, which leads to an ill-
conditioned regression probem. The estimates are stabilized by adding small
positive numbers to the diagonal of the XTX matrix. This technique is
known as ridge regression in statistics. It is equivalent to adding fake data
in each direction that has a small weight and a zero output value. The ridge
regression constants can also be thought of as Bayesian priors on the variance
of the estimated parameter vector 3.

(XTX + A),3 = XTy

We use off-line cross validation to estimate reasonable values for the fit
parameters: the distance metric inj, weighting function w; = di-", and ridge

3

regression parameters Aj. Since we are using a local model that is linear in the
unknown parameters .3, we can compute derivatives of the cross validation
error ej = ýj - y, with respect to the fit parameters:

O de, Oe,
49m 1 Op A(1)

and minimize the sum of the squared cross validation error using a Levenberg-
Marquardt procedure.

Lookup has three stages: forming weights, forming the regression matrix,
and solving the normal equations. Let us examine how the cost of each of
these stages grows with the size of the data set and dimensionality of the
problem. We will assume a linear local model.

Forming and applying the weights involves scanning the entire dta set,
so it scales linearly with the number of data points in the database (n). For
each of d input dimensions there are a constant number of operations, so 1he
number of operations scales linearly with the number of input dimensions.

=i f (rMj(Xii - q)2)

Note that we can eliminaie points whose distance is above a threshold,
reducing the number of points considered in subsequent stages of the com-
putation.

Each element of XTX and XTy is the inner (dot) product of two columns
of X or y. The architecture of digital signal processors is ideally suited for
this computation, which consists of repeated multiplies and accumulates.
The computation is linear in the number of rows n and quadratic in the
number of columns (d2 + d * o), where d is the number of input dimensions
and o is the number of output dimensions.

Solving the normal equations is done using a LDLT decomposition, which
is cubic in the number of input dimensions, and independent of the number of
data points. Other more sophisticated and more expensive decompositions,
such as the singular value decomposition, do not need to be used since the
ridge regression procedure guarantees that the normal equations will be well-
conditioned and this cost is small compared with forming XTX.

The most straightforward parallel implementation of locally weighted re-
gression would distribute the data points among several processors. Queries

4

can be broadcast to the processors, and each processor can weight its data
set and form its contribution to XTX and XTy. These contributions can be
summed and the full normal equations solved on a single processor. The com-
munication costs are logarithmic in the number of processors and quadratic
in the number of columns (d2 + d * o), and independent of the total number
of points.

We have implemented the local weighted regression procedure on a 33MHz
Intel i860 microprocessor. The peak computation rate of this processor is
66 MFlops. We have achieved effective computation rates of 20 MFlops
on a learning problem with 10 input dimensions and 5 output dimensions,
using a linear local model. This leads to a lookup time of approximately 20
milliseconds on a database of 1000 points.

A question that often arises with memory-based models is the effect of
memory limitations. We have not yet needed to address this issue in our
experiments. However, we plan to explore how memory use can be minimized
based on several approaches. One approach is to only store "surprises". The
system would try to predict the outputs of a data point before trying to store
it. If the prediction is good, it is not necessary to store the point. Another
approach is to forget data points. Points can be forgotten or removed from
the database based on age, proximity to queries, or other criteria. Because
memory-based learning retains the original training data, forgetting can be
explicitly controlled.

1 Performance Comparisons

Two methods, CMAC (Albus 1975ab) and sigmoidal feedforward neural net-
works, were compared to the approach explored in this paper. The parame-
ters for the CMAC approach were taken from Miller, Glanz, and Kraft (1987)
who used the CMAC to model arm dynamics. The architecture for the sig-
moidal feedforward neural network was taken from Goldberg and Pearlmutter
(1988, section 6) who also modeled arm dynamics.

The ability of each of these methods to predict the torques of the sim-
ulated two joint arm at 1000 random points was compared. Figure 1 plots
the normalized RMS prediction error. The points were sampled uniformly
using ranges comparable to those used in (Miller et al 1987). Initially, each
method was trained on a training set of 1000 random samples of the two joint

5

_ 1.4 * .* Neural network
Cr. 1.3 -- Quadratic LWR
W 1.2 _
UJ 1.1 "

01.0o

cc 0.9e0 0.8
0.7
0O.6

CC 0.5
0.4 -
0.3
0.2
0.1
0.0

0 1 2 3 4 5 6

Figure 1: Performance of various methods on two joint arm dynamics.

arm dynamics function, and then the predictions of the torques on a separate
test set of 1000 random samples of the two joint arm dynamics function were
assessed (points 1, 3, and 5). Each method was then trained on 10 attempts
to make a particular desired movement. Each method successfully learned
the desired movement. After this second round of training, performance on
the random test set was again measured (points 2, 4, and 6).

The data indicate that the locally weighted regression approach (filled
in circles) and the sigmoidal feedforward network approach (asterisks) both
generalize well on this problem (points 3 and 5 have low error). The CMAC
(diamonds) did not generalize well on this problem (point 1 has a large error),
although it represented the original training set with a normalized RMS error
of 0.000001. A variety of CMAC resolutions were explored, ranging from a
basic CMAC cell size covering the entire range of data to a cell size covering
a fifth of the data range in each dimension. A cell size covering one half the
data ranges in each dimension generalized best (the data shown here).

After training on a different training set (the attempts to make a par-
ticular desired movement), the sigmoidal feedforward neural network lost its
memory of the full dynamics (point 4), and represented only the dynamics
of the particular movements being learned in the second training set. This
interference between new and previously learned data was not prevented by
increasing the number of hidden units in the single layer network from 10
up to 100. The other methods explored did not show this interference effect

6

(points 2 and 6).

2 Other Methods Explored

In the pursuit of fast training iniet hods we explored a variety of techniques for
fast or real time function approximation, including radial basis functions and
projection pursuit regression. A graduate student, Sherif Botros, looked at
ways to speed up radial basis function based learning, and make it more effec-
tive (Botros and Atkesoii. 199) -). Radial basis functions are a form of neural
network model in which the hidden units are multidimensional "bumps".
The function to be learned is approximated by summing the bumps:

f(x) = ycig(I x - xI1)

For fixed bump locations arid shapes, estimating ci is a linear regression prob-
lem, making this approach attr•.ctive for linear adaptive control methods. In
our research we have foutd that the choice of distance metric is critical. We
have found heuristics for estimating good initial metrics, which can be refined
using nonlinear parameter estimation techniques. Using these techniques we
have found that radial basis functions are currently the most effective neural
network approach to modeling robot arm rigid body dynamics. A remain-
ing challenge is that the I?3F approach generally leads to a large regression
problem, which is difficult to implement in real time.

Another graduate st ,i,'itt. Ying Zhao, tried to understand learning based
on projection pursuit re're-.ssion (Zhao and Atkeson, 1991a, 1991b). Projec-
tion pursuit regression is a form of neural network model in which the hidden
units are general one dinv,T'iwonal functions rather than sigmoids:

'(x) = Eg,(0, x)

One can view one hiddenliv, sigmoidal neural networks as a specialization
of projection pursuit il,, W, It k•:

fX E ZC(9TX + ± 6)

We are exploring heurist izs to choose good initial directions (0,) for hidden
units. We have also foutd that projection pursuit learning networks work
better on angular smooth functions than on Laplacian smooth functions.

7

Here "work better" means that for fixed complexities of hidden unit functions
and a certain approximation accuracy requirement fewer hidden units are
required; or given a fixed number of hidden units a better accuracy can be
achieved. As of yet we have no real time implementation of projection pursuit
learning networks.

8

