AL-TP-1992-0050

AD-A261 594 DTIC

| wmmuummmm I s ELECTE D
MAR2 1993

S IDEF6: A DESIGN RATIONALE CAPTURE
T METHOD CONCEPT PAPER
0 41,
N Fickard 3. Maye mmmwm@ *
G Patricia A. Griffith
Christopher P. Menzel
KNOWLEDGE BASED SYSTEMS LABORATORY:
DEPARTMENT OF INDUSTRIAL ENGINEERING
L TEXAS A&M UNIVERSITY
A COLLEGE STATION, TX 77843
g Michael K. Painter, Capt, USAF
R HUMAN RESOURCES DIRECTORATE
A LOGISTICS RESEARCH DIVISION
O NOVEMBER 1992
Y INTERIM TECHNICAL PAPER FOR PERIOD JANUARY 1990 - MARCH 1991
Approved for public release; distribution is unlimited.
I____ AIR FORCE MATERIEL COMMAND

WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6573

98

NOTICES

When Government drawings, specifications, or other data are used for any
purpose other than in connection with a definitely Government-related
procurement, the United States Government incurs no responsibility or any
obligation whatsoever. The fact that the Government may have formulated or in
any way supplied the said drawings, specifications, or other data, is not to be
regarded by implication, or otherwise in any manner construed, as licensing the
holder, or any other person or corporation, or as conveying any rights or
permission to manufacture, use, or sell any patented invention that may in any
way be related thereto.

The Public Affairs Office has reviewed this paper, and it is releasable to the
National Technical Information Service, where it will be available to the general
public, including foreign nationals.

This paper has been reviewed and is approved for publication.

> 2 ‘g
ik S A N,x o

ICHAEL K. PAINTER, Capt, USAF
Program Manager

[. Q\\b [\M.____

BERTRAM W. CREAM, Chief
Logistics Research Division

REPORT DOCUMENTATION PAGE

Form Approved
OM8 ~ho 07040188

}

Public repOrting burden tor Ty LOERCUION 51 ATOIMation 3 dsimalag 10 480 308 | mCGr DB I8eaGrse 1S LGt g Ine Lme T
Gathenng and Maintaming the data needed, Ind (CMPIBNN) INA P& PA NG TP L 2HeL 1A BT At armatin Seng . immenty fﬁ‘}d B s Durden rolommgte
Ccollecion St intrmManon, nduding sugqgestiing tor Mduang tha Duraen b o

Oawis Highway, Sute 1204 Avhington. v A 222024302 spd 1o the Dt o 3f Maoagement and Hu0g8¢ Paperwire Reguoton Priges,

w B TG O L LBy et ner

Foaty JERet el U thy

N YHNGLON HBAAQUITTeY e By et ate o HGLLN DOP 1131 1 #e

£37080 BY) Wasteagtoa UL 400

Ty BTy settergn

]

4
rELE Ny Ja1d s00ries,

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
November 1992

3. REPORT TYPE AND DATES COVERED
Interim - January 1990 to March 1991

4. TITLE AND SUBTITLE

5. FUNDING NUMBERS

Patricia A. Griffith
Christopher P. Menze!l

IDEF6: A Design Rationale Capture Method Concept Paper C- FQ7624-30-00012
PE - 63106F
PR - 2940
6. AUTHOR(S) TA - 01
Richard J. Mayer Michael K. Painter, Capt, USAF WU - 15

Texas A&M University
College Station, TX 77843

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Knowledge Based Systems Laboratory
Department of Industrial Engineering

8. PERFORMING ORGANIZATION
REPORT NUMBER

Armstrong Laboratory

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Human Resources Direclorate
Logistics Research Division
Wright-Patterson AFB, OH 45433-6573

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

AL-TP-1992-0050

e ——————————————————
11. SUPPLEMENTARY NOTES

Armstrong Laboratory Technical Monitor:

Michael K. Painter, AUHRGA, (513) 255.7775

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

RS ———
13, ABSTRACT (Maximum 200 words)

comments.

specifications.

When explicitly captured, design rationale typically exists in the form of unstructured texiual

In addition to making it difficult, if not impossible to find relevant information on
demand, lack of a structured method for organizing and providing completeness criteria for design
rationale capture makes it unlikely that important information will be documented. Unlike design
methods which serve to document WHAT a design is (Design Specification), the IDEF6 Design
Rationale Capture Method is targeted at capturing WHY a design is the way it is -- or WHY it is not
manifested in some other form -- together with HOW the final design configuration was reached.
IDEF6 was intended to be a method with the representational capability to capture information
system design rationale and associate that rationale with the design models and documentation for the
end system. Thus, IDEFE attempts to capture the logic underlying the decisions contributing to, or
resulting in, the final design. The explicit capture of design rationale serves to help avoid repeating
past mistakes, provides a direct means for determining the impact of proposed design changes,
forces the explicit statement of goals and assumptions, and aids in the communication of final system

RO

P ————————
14. SUBJECT TERMS

design
design history

design rational
17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

IDEF knowledge acquisition [15 NUMBER OF PAGES
information engineering method
information systems methodology 16. PRICE CODE

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

sysiems engmeg;ina
19. SECURITY CLASSIFICATION

OF ABSTRACT
Unclassified

20, LIMITATION OF ABSTRACT

SAR

NSN 7540-01-280-5500

Standard form 298 (Rev 2-89)
Proscnted by ANS atd 739.°8
298132

Table of Contents

Preface ..o e e iv
NY1100004F: | o OO U ORI v
1.0 IDEF6 Method Development Approach...........cooooiiiiiiiiiinnnnnn. 1
2.0 MOtIVALIONS «...iiiiriiieieiiiiei et raae e eeereere e e et ereenae e e aeneevesaens 2
3.0 Nature of Design Rationalecccooooeiiiiiiin . 4

3.1 Nature of Design. ..o 4

3.2 Characteristics of the Design Processccccoveevvvieiiiiennnnnn. 9
4.0 Design Rationale Phenomena..............cccieeeviiniiiiiciiininrcnnccennn, w12

4.1 Preliminary Ontology of Design Rationale..........cccceevnnee. 13

4.2 Issues with Design Rationale Capturecoooiiinin. 18
5.0 Preliminary IDEF6 Conceptsocooiiviiiiiiiiiiiiieiiiie e 18
6.0 The IDEF6 Automation Support Environment..............ccccoeennen. 20
7.0 Unallocated Thoughts, Comments, Ideas, Issues, etc............c.....c.. 21
B.0 REfEIeNCES....cceuuiiiiiiieireeiniieciererire et s e rrerrere et e aeereneaeenenae 23

i AcCesign For

/
NTIS CRraal o)
OTiC TAB O
Unannou reg 0
Justificat,

~M..~—-________,_I
8y ; S
B | Oistribution f o
b ——
! Avallabiity Codes
8 -)
! 5 Avail ateor
| Drist Soect
‘ H
QA
i b

Preface

This paper describes the research accomplished at the Knowledge Based
Systems Laboratory of the Department of Industrial Engineering at Texas
A&M University. Funding for the Laboratory's research in Integrated
Information System Development Methods and Tools has been provided by
the Logistics Research Division of the Armstrong Laboratory (AL/HRG),
Wright-Patterson Air Force Base, Ohio 45433, under the technical
direction of USAF Captain Michael K. Painter, under subcontract through
the NASA Research Institute for Computing and Information Systems
(RICIS) Program at the University of Houston.

v

Summary

This paper presents the results of research towards a design rationale
capture method referred to as IDEF6. The purpose of IDEF6 is to
facilitate the acquisition, representation, and manipulation of the design
rationale utilized in the development of enterprise-level information
systems. The term ‘“rationale” is interpreted as the “reason, justification,
underlying motivation, or excuse” that moved the designer to select or
adopt a particular strategy or system feature. More simply, “rationale” is
interpreted as the nature of the answer given to the question, “Why is this
design the way it is?”

IDEF6 will be a method that possesses the conceptual resources and
linguistic capabilities needed (1) to represent the nature and structure of the
information that constitutes design rationale within a given system, and (i1)
to associate that rationale with design specifications, models, and
documentation for the system. The scope of IDEF6 applicability covers all
phases of the information system development process, from initial
conceptualization through both preliminary and detailed design activities.
To the extent that detailed design decisions for software systems are
relegated to the coding phase, the IDEF6 technique should be usable during
the software construction process as well.

The scope of IDEF®6 is being conceived under the following assumptions.

1) IDEF6 is targeted towards facilitating the capture of design
rationale for enterprise-level information systems from system-
level design to detailed design of the implementation of data
structures, algorithms, user interface, and processes.

2) People rarely write down design assumptions or rationale. To
the extent possible, IDEF6 must be able to be incorporated in a
transparent manner into a wide variety of design methods (both
formal and informal). It is unreasonable to expect designers to
sit down at some point in time and “model” design rationale.
Rationale must be captured at the source--at the point in time at
which decisions are made.

1.0 IDEF6 Method Development Approach

The nature of design both as an individual cognitive process and as an
organizational endeavor is an area of intense research. Understanding this
phenomena is important to researchers in artificial intelligence, developers
of next generation computer-aided design (CAD) and computer-aided
engineering (CAE) environments, and initiatives in concurrent
engineering. Design rationale (the focus of this study) is intimately tied to
a conceptualization of the design activity. These considerations led to the
establishment of a recommended three-front approach to the evolution of
IDEF6 as outlined in the following paragraphs.

The first activity in the development of IDEF6 should be focused on the
definition of the characteristics and the nature of design rationale by
analytic means. This will involve characterization of the types of
information used to rationalize a design. This characterization process
requires the study of both completed and ongoing software development
projects to classify information types and understand the time frame and
design process context in which they are relevant. It also involves
discussion with experienced information system designers. The method we
are using is thus essentially to build an ontology of design rationale. As
IDEF5 (Ontology Description Capture Method) evolves, this process will
be augmented by the identification of the types of structures used to
rationalize a design and the building of an IDEFS model of that
information.

The second activity should be focused on the definition of the
characteristics and the nature of design rationale by direct experimentation.
This activity would also experiment with language structures designed
around the concepts identified in the first task. Specifically, we
recommend experimentation with an IDEF6 v0.1 annotation format using
IDEF4 (Object Oriented Design Method) as a test case. IDEF4 models
could be easily extended to include IDEF6 annotations describing
assumptions, constraints, or usage categories underlying IDEF4 entities. In
addition to the annotations, we foresee the need to define an Information
System Constraint Language (ISyCL) slice to accurately capture the
necessary information.

Once the annotations and language facilities are available, we would like to
pursue two avenues for direct experimentation. The first would focus on
the discovery of design rationale from a study of individuals trying to
understand e~isting code. This would primarily involve the observation of
(1) questions asked and (2) answers given or derived. The second avenue

1

for direct experimentation with the IDEF6 v0.1 annotations and the ISyCL
slice would involve structured interviews with the Integrated Development
Support Environment (IDSE) software designers to determine what
rationale can be captured during the design definition process. This
approach could be augmented by building an IDEF3 description of the
design process as experienced during the IDSE experiment. One
characteristic of design rationale we might check is the opinion that “design
rationale only becomes important when there are options, that is, when a
design decision is not completely determined by the constraints of the
situation.” Thus, decision points must be identified, the situations and
constraints associated with those decision points defined, and (if options
exist) the rationale for not only the option chosen but also the reasons for
discarding those not chosen must be recorded.

The third activity should focus on the conceptualization of the necessary
automated support for IDEF6. It is expected that IDEF6 will be truly
useful only within the context of a sophisticated, automated, design support
system because it must serve as the bridge which connects the various
perspectives on an evolving design that are generated over the design life
cycle. Thus, it must be supported in an environment that allows direct
"windowing" into various artifacts of the design process (e.g. requirements
specs, IDEFO, 1, 3, 4, and 5 models, PDL descriptions, and code). While
the strict form of IDEF6 may be based on a classification of design
rationale information, it must nevertheless be designed with usage in an
automated environment in mind. Hypertext capabilities and alternative
versioning are among the capabilities that must be explored. The
development of requirements for such an environment will be part of this
IDEF6 automation support conceptualization task.

The remainder of this report details the results of our analysis in the first
and third areas described above. This first phase focused primarily on
identification of technical issues and proof of viability of the strategy
outlined above.

2.0 Motivations

To support the evolution of integrated information systems with lifetimes
which may extend over many career periods requires the explicit capture
and storage of design rationale in a computer-manipulatable form.
However, capture of design rationale is also important during the
development phase of large-scale systems. In these situations, the logic
(chain of arguments or reasons) behind the design is invaluable to the
downstream developers, testers, and integrators.

2

The idea of environments for the purpose of software design specification
and analysis is not new. In some sense, all the common utilities that
comprise programming environments--compilers, debugging tools, version
management tools, and so on -support the design and development of
software. Such tools, of course, are inherently limited by their applicability
only at the stage of immediate code production. Computer-aided software
engineering (case)! environments attempt to bring automated support to the
design stage. In specific situations, they have demonstrated an ability to
accomplish the purpose for which they were intended. Even so, existing
case tools are inherently limited in at least two important respects. First,
case tools are intended to document various aspects of what a design is, but
they were never intended to document why a design exists, certainly not in
any methodical way that cuts across design representations. Second, even
when design rationale comments exist, they are just that--unstructured
textual comments. There have been no tools (or methods) designed to
gather the design rationale that can only be gleaned from recordings of the
design decisions that are made over time and in the course of working
through various aspects of a design. The only coherent record of the
design rationale for a software system exists solely in the head of a lead
designer for the system. For large systems, even the lead designer will
never acquire all of it. In such cases, the rationale is distributed across
many people, and at any one time, parts of it will have been forgotten or be
unavailable. Sympathize with the implementors; pity the maintainers.

The consequences of the loss of design rationale are all too familiar to
software engineers: past mistakes are repeated, and decisions made
contrary to the original design assumptions solve one problem but create
three more. In software design, the local changes are fairly easy (as long
as they are really local); it is the global changes (restructuring) that are
difficult. One motivation of design rationale capture is to force software
designers to carefully plan the global structure.

One benefit of maintaining design rationale is that it forces designers to
state goals as well as assumptions. Goals, like assumptions, are frequently
unstated. Forcing their statement for the purpose of rationale capture will
inevitably lead to a more focused, disciplined approach to design. In
addition, the area of information system development has had a long-
standing need for “languages of thought” to leverage the capabilities of the
designer or to communicate specifications to other members of the design
team. As discussed later in this document, much of design thinking appears

1 Lower-case letters are used to distinguis between Computer-Aided Software Engineering and Computer-
Aided Systems Engincering (CASE).

to be abductive in nature, with experience-directed insights being fashioned
and rationalized in the context of the current task. This rationalization may
be the only basis for understanding why a system is the way it is. Without
the capture of this chain of reasoning or arguments, communication of the
design becomes difficult and error-prone.

Another motivation for rationale capture is that the definition of
subsystems and subsystem boundaries is an experimentation process with
each designer discovering the boundaries he/she finally imposes.
Knowledge of the paths of inquiry that faiied, the path to the final success,
and the final result is key if the organization is to avoid costly errors.

3.0 Nature of Design Rationale

In considering the nature of design rationale (why and how), we must
contrast it with the related notions of: 1) design specification (what), and 2)
design history (steps taken). Design specifications describe what should be
realized in the final physical artifact. Design rationale describes why the
design specification is the way it is and how the specified artifact is
intended to work. This includes such information as: principles and
philosophy of operation, models of correct behavior, and models of how
the artifact is intended to behave as it fails. The design process history
records the steps that were taken, the plans and expectations that led up to
these steps, and the results of each step.

3.1 Nature of Design

What is design? Why can some people do it well and others not? Why does
the design process for systems require so much time and remain so error-
prone? What mental processes are involved in understanding another
person's design? What information constitutes the essence of a design
- description? Why_ in some situations, does a short passage and a sketch
communicate far more than volumes of structured documentation? While
complete answers to all of these questions are not necessary for our task, a
consistent characterization of the set of “reasonable” answers is needed to
effectively define the Design Rationale Capture (DRC) method
requirements. In this section, we present our characterization of the nature
of design.

The nature of design is characterized by the following points of view.

1) Characteristics of the design situation - both the circumstances
in which design occurs and the elements constituting an instance
of a design process.

2) Characteristics of the cognitive skills or “generic activities” of
the human designer - including a characterization of the
distinguishing reasoning methods.

3) Characterization of predominant design strategies under various
design situations - arrangements or orderings of the design
activities to deal with different design situations.

4) Types of knowledge possessed by designers - characteristics of
the content and structure of knowledge used to recognize the
design situation, perform the design activities, and interact with
the related product development processes within a particular
organizaiion.

One means of characterizing design is by the type of situation in which it
occurs. The following are characteristics of the design situation [Goel 89,
Friel 88, Ramey 83] that we have chosen to describe the environment of
use for IDEF6.

1) Many degrees of freedom - the problem constraints do not
determine the solution.

2) A large solution space - there may be an infinite number of very
good solutions.

3) Delayed/limited feedback - the time between commitment or
specification to realization of the artifact is long.

4) High cost of action - benefits are realized for correct decisions;
penalties are paid for incorrect decisions.

5) Lack of clear right/wrong decision (evaluation) criteria.

6) Input consists of goals and intentions that are generally unclear
and subjective.

7) Complexity of the problem addressed varies.

8) Many, poorly understood parameters or subproblem
interactions.

9) A large search space - parameters may take on a large number
of possible values that could be reasonable in some context.

10) Existence of referents (reusable system elements) - many of the
problems faced by the designer have already been solved before,
at least to some extent.

11) Need for producing a specification of an artifact.

12) Need for languages of thought to leverage the capabilities of the
designer or to communicate the specifications.

13) Inherently iterative process.

14) Involves learning a mapping of the problem space onto the
design space - the iterations are not random trial and error but
rather later iterations employ knowledge gained from previous
iterations on the same problem.

Another means of characterizing design is by the generic activities that take
place during a design process. The set of generic design functions identified
in [Goel 89 and Mayer 89] include the following:

1) Extensive problem structuring - partitioning, decomposition,
establishment of minimal conditions and constraints.

2) Fitting of prestructured approaches - use of knowledge of
previous problem structures or solution approaches to force
structure into the problem and to provide a means of
understanding how the current situation maps into previous
situations.

3) Performance modeling - use of mcthematical idealizations
designed to reliably predict the performance (steady state or
dynamic) of a proposed solution or of the problem situation and
its environment to assist in the understanding of each.

4) Prototyping - building artifacts that mimic the p.oblem situation
or a proposed solution in certain ways in order to evoke

information/decisions from the domain experts or to
demonstrate feasibility of a concept.

5) Application of personalized stopping rules - completion criteria
for level-to-level decision-making, component identification,
and determination of the completeness of a design effort.

6) Use of a limited commitment strategy - the use of multiple
contexts for decisions allowing them to be reversed by
elimination of the context.

7) Minimal decision-making strategy - a preferred design decision-
making strategy that leaves open the maximum number of
alternatives as the result of each decision.

8) Initiation and propagation of commitments and constraints
discovered throughout the design process.

9) Solution decomposition into “leaky” modules - toleration of the
delay in specification of the components that form the interfaces
between proposed modules of a solution.

10) Use of hierarchies of idealizations - in general, sets of
descriptive models that fit together into a hierarchy such that
models lower in the hierarchy can represent all the relations and
objects of their parents as well as some additional relations. This
allows the quick determination of how more detailed decisions
might compromise the commitments made on more global or
higher priority issues.

11) Artificial symbol systems - special purpose (often graphical)
languages for representing critical information that must be
identified or managed during the design process.

12) Process-driven reasoning - envisionment of courses of eve.iis,
causality consequences, and enablement relations to determine if
the design will “do the right thing.”

Design strategies can be considered “mecta-plans” for dealing with the
complexities of frequently occurring design situations. They can also be
viewed as methodizations or organiza‘‘ons of the primitive design activities
identified above. Three types of design strategies are considered within the
IDEF6.

1) External constraint-driven design - design carried out under
situations where the goals, intentions, and requirements are not
well-characterized, much less defined. These situations often
result when the designer is brought into the product
development process too early.

2) Characteristic-driven design - design in a closely controlled
situation in which strict accountability and proof of adequacy
are rigidly enforced. These design situations often involve
potentially life-threatening situations.

3) Carry-over-driven design (sometimes referred to as “routine”
design).

Analysis of the life-cycle and generic activities views presented above and
our experience indicate that the following knowledge classes are evident in
the practice of system design.

1) Knowledge of basic principles.

2) Knowledge of the general design process in a domain.

3) Knowledge of available components.

4) Knowledge of previous solution approaches.

5) Knowledge of available engineering performance models and
workable modeling approaches.

6) Knowledge of test capabilities and results (e.g., what sorts of
data can be affordably, reliably, or physically acquired).

7) Knowledge of the human network (i.e., where the knowledge and
information exist in an organization or professional association).

8) Knowledge of the requirements, design goals, design
decision/evaluation process, and design environment of the
current problem.

9) Knowledge of political or governmental constraints.

In summary, design as a cognitive endeavor has many characteristics in
common with other activities, such as planning and diagnosis. It can be

8

distinguished by the context in which it is performed, the generic activities
involved, the strategies employed, and the types of knowledge applied. A
major distinguishing characteristic is the focus of the design process on the
creation (refinement, analysis, etc.) of a specification of the end product.

3.2 Characteristics of the Design Process

Understanding the characteristics of design “modes”--delineation of major
classifications of design activities during the product life cycle--is an
important step in understanding the nature of design rational. The design
process is a part of a product life cycle. It is a predominant activity early
in the life cycle as well as in the sustaining engineering activities after the
product has been produced. The notion of a design life cycle 1s a
convenient device often used to help produce an understanding of the basic
design processes, particularly for administrative purposes. The design
process from such a view is assumed to begin at some point, continue
through maturity, and eventually stop. This view of design as a series of
incremental and sequentially interdependent steps is an attempt to order the
steps of the process in such a fashion that each step can be considered an
independent state except for its occurrence relative to the other states that
surround it. With its chronologically ordered events, the life-cycle model
of design, particularly one embedded within a product life cycle, is an
effective tool for understanding the administratively oriented aspects of
design evolution. With it, we can understand the role IDEF6 might
provide for the project administrator to capture resource-based rationale
for design strategy decisions.

The life-cycle design model is only ~ne view needed to understand the
IDEF6 requirements because IDEF6 is targeted at the capture of the
individual designer’s rationalization process which takes on an ad-hoc
application of numerous skills (described later). This ad-hoc approach is
not chaotic, however, it is certainly not linear as life-cycle models would
imply. What the life-cycle partitions do provide is a characterization of the
types of specifications that emerge from the design process and a
framework for describing the more basic design activities (as certain of
those activities predominate certain portions of the life cycle). Figure 1
illustrates the predominate modes of design commonly found in
information system development {[Ramey 83].

Sustaining Engineering of a Product

Conceptual Design

Preliminary Design

Detailed Design

Product Development

Figure 1. Modes of Design

Depending upon the level of application within the solution artifact, the
purpose of conceptual design is primarily the structuring of the problem.
This includes both the discovery or analysis of requirements and the
identification of the boundaries of the solution space [Friel 88]. The
purpose of preliminary design is to separate the promising from the
unlikely solutions. Ultimately, the objective of the designer is to select the
optimal solution approaches to the problems posed. In the detailed-design
mode, the designer undertakes three major tasks [Ramey 83]:

1) identify and define interfaces between system elements,

2) separate subsystems (elements requiring further structural
definition) from components (elements requiring no further
structural definition), and

3) detail the characteristics that will govern the realization of
components.

This is called a detailed-design mode because it deals with the detailing of
component definitions. These activities have nothing to do (necessarily)
with a particular placement in time--that is, preliminary design is not a
“sketchy detailed design” and vice versa. The detailed-design mode is

10

focused sharply on identification of the detailed characteristics of
components to the end that those components may be reliably realized by a
supplier.

If we take a strictly technical view of the design process and abstract away
the structural influences of the life-cycle model to identify the cognitive
primitives (generic activities) of design, this results in what Ramey refers
to as “patterns” of behavior. All such patterns are present to some extent
in each life-cycle step. However, certain patterns predominate in each step.
For example, the following are predominant generic activities in
preliminary design.

1) Generation of plausible design alternatives (primarily based on
historical precedence [Ramey 83, Friel 88)).

2) Identification and exploration of the boundaries of the design
space (principally the identification of constraints).

3) Evaluation of the global performance of the alternatives to
select the most appropriate ones for detailed analysis and
refinement. If a candidate is found to violate a set of the
constraints, the following actions can be taken:

a) alter the candidate solution,
b) try a different candidate solution, or
¢) change the original design specifications.

In summary, we characterize the design process as one which involves the
continued re-invocation of a set of primitive design modes (patterns of
design behavior). In a project context, life-cycle phases may be
superimposed on the process; however, at best they characterize the
predominant mode during a time interval. In fact, all modes will be
exhibited to some extent during the course of any particular life-cycle
phase. This conclusion has several implications for the task of capturing
design rationale. First, it implies that design rationale will, from the
beginning of the design process, involve reference to: 1) structural aspects
of the problem, 2) boundaries of the solution space, 3) elements of the
solution space, 4) interfaces and subsystems, and 5) characteristics of
component realizations. Accommodation of these references will be
challenging because the formal life-cycle documentation-that would
normally house such information will not have been created.

11

4.0 Design Rationale Phenomena

A general characterization of design rationale is: “The beliefs and facts as
well as their organization that humans use to make (or justify) design
commitments and propagate those commitments.”

In our investigation into the nature of design rationale, we have
characterized both “types” of design rationale and *“mechanisms” for
representation of these types. The types of design rationale identified
include arguments based upon the following.

1) The philosophy of a design, including:
a) process descriptions of intended system operation, and
b) design themes expressed in terms of particular object types
standing in some specific relations or exhibiting some
specific behavior.

2) Design limitations expressed as:
a) range restrictions on system parameters, and
b) environmental factors.

3) Factors considered in tradeoff decisions, including:
a) level-of-requirements matching,
b) project budget or timing constraints,
¢) general method of doing business in the organization,
d) technology available to realize (implement) the design, and
e) technology available to test the resulting product.

4) Design goals expressed in terms of:

a) use or lack of use of particular components,

b) achievement of particular structural arrangements,

c) priorities on problems requirements,

d) product life-cycle characteristics (e.g., disposable versus
maintainable, robustness, flexibility), and

e) design rules followed in problem or solution space
partitioning, test/model data interpretation, or system
structuring.

5) Precedence or historical proof of viability.
6) Legislative, social, professional society, business, or personal

evaluation factors or constraints.

12

Possibly due to the commonness of the carry-over strategy or the
complexity of design rationale expression, the most common rationale
given for a design is that it worked in a previous situation. Without making
judgment on this phenomena, a design-knowledge management capability,
as a minimum, must be able to record historical precedence as well as
statements of beliefs and rationalizations for why a current design situation
is identical to the one the previous design serviced. This phenomena may
be less common in software design rationale. The malleability of the
medium gives rise to the belief that we can be creative each time. But then
we expect the product to perform as reliably as if it were a modification of
last year’s model; this is unrealistic. Note in software, as contrasted with
hardware, creating a new model based on last year’s doesn’t mean the same
thing. In software, the reused parts are literally copied whole, not rebuilt
from the same plans, so you lose the opportunity to fix small design flaws,
and the interaction of the new parts with the old is likely to be much less
well-understood.

Other important rationales for a design are simply, “it feels better” or “it
seems more balanced, symmetric.” Clearly, there is an important aesthetic
side to software design.

Finally, software design rationale includes expectations about how the
design will evolve through the development process itself (e.g., how the
program structure wi'l probably change). Such expectations do not appear
to be as well-defined as similar expectations seen in mechanical hardware
design.

The important general conclusion about the nature of design rationale is
that it takes the form of a trace of a reasoning process. This trace starts
with the element of the design being justified and provides a set of
supporting arguments that ultimately “ground” (terminate) to proven
elements of the problem or design space. This chain of arguments may
also terminate in previously rationalized design elements.

4.1 Preliminary Ontology of Design Rationale

Webster's dictionary [Webster 88] defines ontology as “the branch of
metaphysics dealing with the nature of being, reality, or ultimate
substance.” Practically, an ontology can be viewed as a description of the
kinds of things, both physical and conceptual, that make up a given domain
and the relationships among them as represented by the terminology in that
domain. For example, an ontology for semiconductor manufacturing
might describe wafers and reagents and the relationships between them. In

13

the domain of antomotive fasteners, an ontology might address machine-
threaded bolts, protective sealants, and machine-threaded bolts with sealant.
An ontology can also be viewed as the skeleton or framework for a
knowledge-based system. It lays out the concepts, terminology, and
structure which will be used to organize specific knowledge in the
knowledge base.

The development of design rationale ontology starts with the identification
of a set of commonly used terms or phrases that express elements of
rationale. An example of such a term is “satisfies”; an example of such a
phrase is “is satisfied by." These are used in statements having the
following structures.

1) Design feature A satisfies the requirement B.
2) Requirement B is satisfied by design feature A.

The next step is to catalogue the intuitive meanings of those terms. Because
the nature of design is poorly structured, this is a formidable task. For
example, if A satisfies only B, then if B goes away, logically so should A.
However, in practice, A may be retained because of feared detrimental side
effects or because it is benign. That is, there is a momentum to design;
design initiation may be pushed by requirements, but designs tend to take
on a life of their own and may resist continued responsiveness to
requirements. This may or may not be detrimental in specific cases; there
can be benign unresponsiveness to changes in requirements. Such
complexity in the process is naturally reflected in the semantics of the
terminology used in that context.

When dealing with a term that specifies a relation, delineation of the types
of arguments that can be used with that term is another important part of
the ontology. In the “satisfies” relation, the house of quality notion would
prescribe that only user requirements (alias constraints) make their way
into requirements documents. But design is also constrained in many other
ways--hardware/software constraints, imagination limitations of designer,
etc. The characterization of all types of constraints that really affect a
design and hence can participate in a “satisfies” relationship is likely to be a
formidable task. Similarly, it is nontrivial to determine what constitutes a
"design feature" in a program design, a database design, or an information
system design. Possible collections of such "features" might include the
following.

1) Any of the design concepts (e.g., class, feature, slot, function)
representable in IDEF4.

14

2) Programming language constructs. (Should these ever be part of
a design rationale or should only logical design terms be used?
When programmers record design rationale (or change
rationale) they will most likely want to use programming
language terms. If the design notation used closely tracks
language constructs, it might be possible to do an auto-translate
for the record. This gets into the whole problem of maintaining
threads of rationale from requirements through maintenance.)

3) Schema definitions for a database system.

4) Procedure definition (either automated or manual).

5) File descriptions, window layouts, menu items, etc.

The meaning of the term “satisfies” is also complicated by the number of
individual concepts participating in a use of the term. For example:

1) design features A & B & ... & G satisfy requirement Z,
2) design feature B satisfies requirement Y, and
3) design features A & H satisfy requirement X.

This type of complexity affects the difficulty of updating rationale as well
as using rationale information to assist in extricating unneeded features if
one of the requirements goes away.

As described in the previous sections, designs evolve. One challenge in the
development of an ontology for design rationale is to determine the manner
in which the interpretation of statements can change as the objects referred
to in them mutate over time. For example, in the following typical
sequence note that of the “satisfies” relation may be sensitive to substitution
of equals (or near equals?) for objects that stand in that relationship over
time.

1) Design feature A satisfies requirement Z.

2) Requirement Z evolves into requirement Y.

3) Design feature A is irrelevant to requirement Y.
4) Design feature B replaces design feature A.

Another facet of the semantics of design rationale is dealing with the
modality and belief aspects of the objects (both constraints and design
features) with which such rationale statements must deal. The difference
between stated requirements, unstated but actual (e.g., hardware)
requirements, and perceived requirements must be delineated. Perceived
requirements may come and go quickly in the grey area between
requirements analysis and design. For example, we thought we needed a

15

status-line data structure in a particular knowledge-based designer window
because we perceived a requirement for maintaining a certain collection of
information. Further problem analysis revealed that the required decisions
could be based on a simpler set of information that required no additional
data structure, so the status line was removed.

Characterizing the concepts and processes associated with system
organization/partitioning in the rationale formulation process will play an
important role in the ontology of design rationale.

Software systems are often represented using different, orthogonal
representations as part of the design process (e.g., structure charts,
Program Description Language (PDL) descriptions). However, within a
representation, different partitionings are not normally given, unless as
design alternatives. A design rationale, however, may reference an
unlimited number of views that subdivide a design in different ways. "If
you look at it from this point of view" would be a common comment. The
point of view taken will in no way depend on some "natural” way of
subdividing the system; rather it will depend on at least:

1) the purpose of the rationale giver (RG),

2) the background understanding of the RG, and

3) the RG's perception of the background understanding of the
rationale receiver (RR). (Note a problem here: in general, the
RG will not know (or even be able to take a good guess at) the
background understanding of the RR).

If there is opportunity for feedback from the RR (in which case he/she may
express lack of understanding), one strategy the RG may use is to change
the partitioning--"Let's look at it from a slightly different point of view."
Thus there is no invariant frame of reference.

One might suppose, initially, that partitioning may be different if the
purpose of the design rationale is documentation versus explanation.
However, documentation may be viewed as a form of generally directed
explanation. The typical length of the documentation is a direct reflection
of the documentalist's inability to make any assumptions about the
background understanding of the audience. In an automated system in
which user profiles are available, more assumptions might be made which
could increase the succinctness of effectively communicated design
rationale statements.

16

Considering the implications of dynamically shifting system-partitioning
gives rise to several salient issues. Suppose we have partitionings, P1 and
P2, of a system, S, and rationales, R1 and R2. Such partitionings are
collections of design features.

1) If R1 explains P1 and R2 explains P2, where P1 and P2 are
overlapping partitionings of S, then is there any sense in which
R1 and R2 combine? What are the consistency requirements
between R1 and R2, if any? Or is the requirement just that R1
and R2 not be inconsistent? How do, or may, requirements for
consistency vary over time?

2) If R1 explains P1 and R2 explains P2, where P1 and P2 are non-
overlapping partitionings of S, then is there any sense in which
R1 and R2 combine? Are there any consistency requirements?
(Note that there are likely interactions that would imply
consistency requirements but which are not obvious from the
given partitionings. Another partitioning may be required to
adequately show the interactions.) How do, or may,
requirements for consistency vary over time?

3) If P3 is a new partitioning at time T2 that involves parts of A
and B, and if rationale R3 explains P3, then what are the
consistency requirements between P1 or P2 and P3? R3 may or
may not reference R1 and/or R2.

4) Assume constraints (user requirements and other constraints)
are denoted Cx and design features are denoted Fx. In the case
of R1 = (F1 satisfies C1 assuming P1 at T1) and R2 = (F2
satisfies C1 assuming P2 at T2), since C1 didn't change, one can
conclude that either F2 or F1 satisfies C1 and that the choice of
P2 may have affected the choice of F2 over F1.

Other terms/phrases that must be considered in an ontology of design
rationale include:

1) system,

2) subsystem,

3) component,

4) requires/is required by,

5) constrains/is constrained by,
6) bounds/is bounded by,

7) supports/is supported by,

8) creates/is created by, and

9) translates/is translated by.

17

4.2 Issues with Design Rationale Capture

One of the reasons for the loss of rationale is partly rooted in the long lag
time between specification of the software artifact and its completion.

There are basic problems with the Kind of Thing that Design Rationale
is. A notable difficulty with the expression of design rationale is that it (as
a concept) exhibits a resistance to being uniformly understood. It shares
this characteristic with all other forms of “explanation” that Artificial
Intelligence (AI) researchers have tried to deal with over the last 20 years.

One of the problems with the capture of design rationale is that it requires
the statement of characteristics beyond the minimum specifications
required to produce the product. Since the major goal of design has
traditionally been the construction of specifications for artifacts so
complete that any realization of them will satisfy the requirements (and
thereby solve the problems), the underlying logic of the decisions that
contributed to, led up to, or resulted in such a design description is not
normally recorded. After all, their inclusion into the traditional document
structures used to record the design artifacts may cause confusion or at best
complicate the acquisition/interpretation of the critical information being
communicated by these artifacts. In addition, as noted by Friel [Friel 88)
and Goel [Goel 89], a designer may make hundreds of focused component
decisions or, through interpretation of test results, may implicitly make
thousands of configuration decisions in a very short time. Lack of efficient
methods for the capture and representation of these decision alternatives
and considerations is a primary impediment to the capture of design
rationale.

5.0 Preliminary IDEF6 Concepts

Moving beyond text capture and association for the support of design
rationale capture becomes quite complex. We approached controlling this
complexity by examining the typical questions a user might ask about a
design knowledge base. The information required to answer these questions
then becomes requirements for the Design Rationale Capture (DRC)
"method"” to capture and manage. We partition these into several types of
questions about: (1) specified artifact composition and structure, (2) object
purpose or function relative to the intended behavior of the artifacts, (3)
causality/enablement characteristics of the established relations between
individual objects or subsystems, (4) supportability of particular beliefs
used as rationale for design decisions, (5) the design process (how it was

18

planned and carried out), and (6) device behavior or failure (the proverbial
“What if ..?” questions).

In general, our approach uses several strategies based on a sit-ation theory
structured description of the evolving design and its situation (objects in
relations in situations which are in planned involvement relations with
other situations). Type 1 questions are answered through information
access of the materials design bili. The key to Type 2 questions is the
recognition of the difference between purpose and function. At an initial
level, function can be explained by knowing the dependence or
independence of an object in the device relative to the environment of
operation of the device [Forbus 84]. At a more detailed level, knowledge
of inter- and intra-state phenomena is required. Questions about purpose
require knowledge of the events in the planned operation of the device and
then an association of an object's existence with its role in those events.
Supportability questions can be answered by collecting and displaying the
set of support from problem and first principle premises (or assumptions)
to the fact in question [Hobbs 86]. In this area, a major role is played by
engineering-discipline-specific “thematic abstraction units” (commonly
agreed upon assumptions) to establish grounding conditions tor many
assumptions [Dyer 83]. Questions about the design process itself can be
addressed with the use of qualitative simulation and planning techniques, as
in Allen {85] and Wilensky [83]. Finally, the answe: to “What if”” questions
appears to be relegated to simulation (either gralitative or quantitative)
[Kuipers 84, Laughton 85].

One strategy we might pursue based on the situation model is to cast
rationale as the formation of involvement relations between a designer in a
particular decision-making situation and one of a number of different
“constraining” situation types. The types of constraint situations identified
so far include:

1) Conventional Constraints - e.g., historical precedence, societal
(both marketing and professional);

2) Nomic Constraints - e.g., Laws of nature;

3) Necessary Constraints - e.g., model-based (analytic or
ontologic);

4) Requirements Based Constraints - e.g., customer or contractual
requirements;

5) Goal Based Constraints - e.g., customer, project team or
personal; and

6) Resource Constraints - e.g., time, skills, manpower, money.

19

6.0 The IDEF6 Automation Support Environment

The IDEF6 task addresses the problem of capturing design rationale. As
such, it must not be associated primarily with code documentation but
rather must be a method usable during requirements analysis and design.
The goal, of course, is to produce an automated capability for the
recording and subsequent browsing of design rationale. To be etfective,
such a capability would necessarily have to be embedded within a
comprehensive analysis/design environment since design rationale typically
evolves piecemeal. It is possible that IDEF6 will evolve into a series of
adjuncts to other modeling tools rather than being a stand-alone method.
Thus, IDEF4 models, for instance, might be extended (or annotated) with
IDEF6 elements.

1) Tool should have on-line capability to reference constraints
(i.e., software requirements + resource constraints + business or
legal constraints).

2) IDEFS5 models of concepts for various design artifact types will
be useful (e.g., relational databases, data flow diagrams, IDEF4
models, C system programs).

3) Design issues regarding automated support:

a)
b)

c)
d)
e)

f)
g)

h)

Unobtrusiveness

Generality across design tools

Ontology usage and development

Need something like a system document examiner
Environmental dependency - Must IDEF6 itself be
configurable as an IDSE would be?

Use with versioning system?

Capability to use information in it to help generate
documentation. (Note that this is different from
documentation in that consistency with the implementation is
not maintained.)

Should the IDEF6 “tentacles” extend into tools that are
primarily used for requirements development? (There is
sometimes a fine line between requirements analysis and
design.)

4) Tool should support:

a)
b)

design rationale capture
design rationale browsing

20

¢) design rationale usage (clipping) in report/documentation
production

S) Need expectations (or knowledge base) of conventional
organization patterns. A knowledge base would probably need
to be built for each tool/formal representation (e.g., IDEF1) .

6) Sources of rationale input:
a) context
b) parsable language
¢) text or graphical annotations

7.0 Unallocated Thoughts, Comments, ldeas, Issues, etc.

1) What is the level of abstraction in software design (analogous to
points-and-lines vs. features in geometric modeling)? Ideally,
software design occurs at the logical structure level rather than
at the language level. But we suspect that software design
frequently occurs at the language level.

2) Should IDEF6 reference strictly software program design?
Database design?

3) How should IDEF®6 relate to the Life Cycle Artifact database
proposed for the IDSE?

4) What is the relationship of IDEF6 to a version control system?

5) Further research is needed to determine the degree of similarity
between design approaches used by different designers for the
same problem. This research would probably be related to the
“routineness” level. Particular attention should be paid to how
the designer's level of concern with code generalization affects
the design decisions.

6) IDEF6 must be able to handle the “why not” questions as well as
the “why” and “how."

7) The software development process should be expanded to
include a semiformalized way of recording overall design
rationale.

21

8.0 References

Allen J. F., “Towards a General Theory of Action and Time,” Artificial
Intelligence (23), 1985, pp 123-154.

Dyer, M., "In-depth Understanding, A Computer Model of Integrated
Processing for Narrative Comprehension,” MIT Press, Cambridge,
MA, 1983.

Forbus, K., "Qualitative Process Theory,” Artificial Intelligence (24), pp
85-168, 1984.

Friel, P. Griffith, "Modeling Design Reasoning in Automotive
Engineering,"” PhD Dissertation, 1988, Texas A&M University.

Goel, V. Pirolli, P., "Motivating the Notion of Generic Design with
Information Processing Theory: The Design Problem Space,” Al
Magazine, Vol 10, No. 1, Spring 1989.

Hobbs, J., "On the Coherence and Structure of Discourse,” in "The
Structure of Discourse, L. Polanyi Ed. Ablex Publishing Corporation,
Norwood, NJ, 1986.

Kuipers, B., "Commonsense Reasoning About Causality: Deriving
Behavior from Structure,” Artificial Intelligence 24, pp. 169 - 123,
1984.

Laughton, J., "Qualitative Reasoning in Mechanical Design,” Technical
Report #XXXX, Department of Computer Science, University of
Texas, Austin, TX, 1985.

Mayer, R. J., A. A. Keen, and C. J. Su "Design Knowledge Management
System,” SBIR Phase I Final Report, 1989.

Ramey, T. L., "Guidebook to Systems Development,” Internal Research
Report, Hughes Aircraft Co., El Segundo, CA, 1983.

Webster, "Webster's Ninth New Collegiate Dictionary,” Merriam-Webster
Inc, Springfield, MA, 1988.

Wilensky, R., "Planning and Understanding, A Computational Approach to
Human Reasoning,” Addison-Wesley Publishing Company, Reading,
MA, 1983.

22 U 8. Government Printing Office: 1993 -~ 750061 60246

