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ARRAY SIGNAL PROCESSING UNDER MODEL ERRORS WITH

APPLICATION TO SPEECH SEPARATION

Abstract

by

Victor C. Soon

In recent years there have been increasing interest in eigenstructure based array

signal processing techniques especially in the areas of radar and sonar processing

and in signal separation applications as found in communications or speech acquisi-

tion/enhancement. However, model errors are not accounted for in these methods.

Unfortunately, the problem of model error is a ubiquitous part of real systems: they

arise from such phenomena as non-ideal sensor characteristics (eg., sensor calibration

errors in phase and gain, etc.), unknown source characteristics and locations, etc.

This report is broadly divided into two parts. The first part examines the effects of

model errors on the performance of existing eigenstructure based methods in array

signal processing. A statistical analysis of the ESPRIT (Estimation of Signal Param-

eters via Invariance Techniques) algorithm under random model errors is performed.

The analysis provides interesting insight into the sensitivity of ESPRIT to model

errors: in particular, for uniform linear arrays of sensors, it is found that the mean

square error of DOA (direction of arrival) estimates found using ESPRIT is almost

totally dependent on errors in sensor phases and not that of sensor gains. The second

part of the report deals with the development of algorithms that take model errors

into account. Two approaches are proposed. The first is based on a signal subspace

constraint on the possible set of model parameters as determined from the array co-

variance. This constraint is incorporated into an iterative procedure which calibrates



the array under model errors and unknown source signals. The second approach

incorporates blind identification and clustering for the source estimation problem un-

der model errors or uncertainties. The proposed approach is shown to be robust to

the silmutaneous presence of such uncertainties such as unknown sensor and channel

gains, unknown combinations of near-field and far-field sources, unknown combina-

tions of narrowband and wideband sources, unknown source spectral characteristics

and unknown number of sources.
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INTRODUCTION

The processing of signals obtained from arrays of sensors is of interest in a wide

range of problems in radar and sonar processing where the presence or absence of

source signals, their direction-of-arrivals (DOA), signal power, etc. are )f interest (see

eg. [53, 50, 83], in speech recognition and teleconference applications where source

signals from spatially distributed locations are to be separated from mixed measure-

ments (the so called "cocktail party problem"), see eg. [25, 36, 32, 12, 16, 57, 22]. In

communications one may be interested in extracting a desired signal from jammer-

contaminated measurements, see eg., [11]. In biomedical signal processing a set of

measurements taken from an array of electrodes may be processed to extract signals

from individual neuronal firings, etc. The rapidly expanding demand for mobile com-

munications such as in cellular telephone technology provides an interesting area of

possible application for array signal processing techniques where their capability of

resolving signals based on their spatial locations may make it possible to increase

channel capacity, see eg., [66]. In radio astronomy, arrays of radio observatories are

used in obtaining higher resolution maps of galaxies and quasars. Radar imaging is

also one application where array signal processing is used.

In most of these applications a common model is assumed to adequately model the
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physical processes in the -%pplications. When assumptions of the techniques in array

signal processing are satisfied, these techniques are capable of providing superior per-

formance as compared to conventional methods. This is the case in DOA estimation

where the modern eigenstructure based methods are capable of resolving DOA an-

gles separations that are much smaller than the conventional (classical) beanforming

method which is limited to the Rayleigh resolution limit. These techniques however

are dependent on model assumptions that may not be true in actual systems, i.e.,

model errors are not accounted for in these methods. Unfortunately, the problem of

model error is a ubiquitous part of real systems: they arise from such phenomena

as non-ideal sensor characteristics (eg., sensor calibration errors in phase and gain.,

etc.), errors in the locations and orientation of the sensors within the array, source

characteristics that deviate from the assumed source model (eg., sources are not ideal

point sources, intensity of sources may favor certain direction of propagation resulting

in unequal intensities observed at different sensors), channel iohomogenities, soarces

in the near-field, etc.

The goal of this report is thus to study the problem of array signal processing

under model uncertainties. A performance analysis of the ESPRIT (Estimation of

Signal Parameters via Rotational Invariance Techniques) , a popular eigenstructure

based method, under random model uncertainties is undertaken to further understand

its robustness to model errors. Two techniques are then proposed for this problem:

the first is based on a signal subspace constraint on the possible sets of model errors

and DOA angles while the second is based on the incorporation of blind identification

techniques with clustering techniques. The integration of these techniques and ideas

may make it possible to apply array signal processing under less ideal conditions.

Chapter 2 presents the model formulation for the array signal processing problem

and its areas of application. Chapter 3 covers the basic mathematical machinery
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needed for the study in the report. Chapter 4 gives a broad overview of various

.aspects of array signal processing, from conventional methods to eigenstructure based

methods and other aspects such as model order estimation and extensions foi coherent

and wideband situations. Chapter 5 presents the performance analysis of ESPRIT

under random model errors. Chapter 6 contains the signal subspace approach to arra"

signal processing under model errors. Chapter 7 presents an approach based on the

incorporation of blind identification and clustering techniques to solve the problem.
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MODEL FORMULATION

In this chapter. we shall cover the basic model formulation of the array signal pro-

cessing problem. Narrowband and wideband formulations are then discussed. Model

parameters such as time delays, direction-of-arrival angles of source signals and chan-

nel coefficients are then looked at. In the final section areas of application for array

signal processing methods are examined.

2.1 Notations and Preliminaries

Throughout this thesis, we assume the following notational convention: All matrix

quantities will be denoted by upper case bold faced symbols while vector quantites

will be denoted by lower case bold facei symbols. Also,

9 (.)t _ Transpose of (.)

e (.)t _ Complex conjugate transpose of (.)

* (.)-1 _ Inverse of (.)

* (.)# - Pseudo-inverse of (.)

* 11 M 11F - Frobenius norm of M

4



* II v - Euclidean norm of the vector v.

* 11 M 112 - 2-norm of matrix M

* m - Number of sensors within array

* n - Number of sources

* (i, vi) - Location of i-th sensor in array

* rik - Time delay of k-th source signal at i-th sensor.

0 Ok - Direction-of-arrival of k-th sour,-e signal measured relative to v-axis.

We write the general formulation of the problem in the following manner. Let the

i-th sensor output be denoted by

General Model
n

xi(t) E ak•(t - Ti ) + 77(t), i --1, 2,... m. (2.1)
kml

where

aik :channel coefficient

Sk k-th source signal

/i(t) : additive noise at i-th sensor.

'ik : Time delay at i-the sensor of k-th source.

Fig. 2.1 shows the model.

The channel coefficients are the result of the sensor and source characteristics -

i.e. the sensors and sources directionality, sensitivity, gains, phases, etc. and channel

parameters, inhomogeneities, etc. The time delays are due to the spatial distribu-

tion of the sensors and locations of the source signals - they are functions of sensor
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Source SouCe

Figure 2.1: Array Signal Processing Model

locations, source locations, distance between sensors, etc. Propagation of the signals

through the channel can be far-field or near field or any combination thereof.

The general problem which is wideband in form is such that the channel and signal

components cannot be separated in the time-domain. However, under narrowband

conditions (which will be discussed in the next section), sk(t) may be assumed to be

baseband and the model written as:

Narrowband Model

x(t) = As(t) + i(t) (2.2)

al2le-j"o-ri , . . One-)"omrin

A = .j"V . a2.ej"2R (2.3)

awle-jhitcif .e.u. aone-fhsgl mn

where wo is the center frequency of the signals.



The specific form of the parameterization of the time delays will be elaborated on

in the sequel.

The following assumptions will be assumed to hold for all the coming discussions

in this thesis.

Assumptions

(Al) The matrix A in Eqn. (2.3) has full column rank.

(A2) s(t) is zero mean stationary with a positive definite covar~ance matrix.

(A3) 77(t) is additive white Gaussian noise, mutually uncorrelated with s(t).

(A4) The number of sources. n is assumed known or estimated previously.

2.2 Narrowband and Wideband Formulations

As from Eqn. (2.1)

xi(t) = aiskk(t - tA), i = 1, 2,. m. (2.4)
k=1

If sk(t) is bandlimited with center frequency wo, we write

sk(t) = ik(t)cos(WOt + 41k(t))

where .3k(t) denotes the envelope of sk(t) and Ohk(t) denotes the phase associated with

Sk(t).

Under narrowband assumptions on sk(t), the time delays rik are small enough

such that .k(t) = gk(t - rik) and Ok(t) O tk(t - rik).

Definition: A baseband signal jk(t) is said to be narrowband if the reciprocal of

its highest frequency component is much larger than the maximum delay time of the

signal propagating through the sensor array in question, see also f781.



The signal is said to be wideband if it is not narrowband.

Thus by demodulating the received signal at the i-th sensor down to the baseband

level through a quadrature demodulator and passing the results through low pass

filters, we can write the outputs as:

n

In - Phase - Component : x,(t) = •_, a~hcos(,Wor~k + •k,(t))Sk(t) (2.5)

Quadrature - Phase - Component : x1(t) - _ ajksin(wo'rk + 'Ok(t))Mkt) (2.6)
k=1I

Combining both the in-phase and quadrature-phase components we can write the

complex valued i-th sensor output as

Xz(t) = - Z aike- IWO'gks(t)e-Ok() (2.7)
k=1

Remark: The result of the quadrature de-modulation of a real valued white gaussian

noise is circular complex valued uncorrelated gaussian noise, see [351.

Writing the array observations as a vector, we get Eqn.(2.2)

x(t) = As(t) + i1 (t) (2.8)

Here s(t) = [.9(t)e-jOI(t)...--,(t)e-JPnt)]T is the source signal vector and i7(t) =

[17(t)... 77.(t)] is the additive observation noise vector. Also,f alie"jwo'r 1. le-•l
ai1e-JuAo", ... a1lne-j""son

A :21 ... : (2.9)

I. ae-J "'rr .. a•nCeJ"vrmn

where wo is the center frequency of the signals. Fig.2.2 shows a block figure

diagram of the quadrature demodulator.

Under wideband conditions, the assumption gk(t) "" gk(t - Tik) and O•(t) = 10k(t -

rk) are no longer valid and the array observations may no longer be written in the



Co*,t)

XLP Filter ----- n-Phase

X LP Filter aQuad-Phase

Sgo t)

Figure 2.2: Quadrature Demodulator Block Diagram

form of Eqn. (2.8), at least not in the time-domain. However, by taking the Fourier

Transform of the general array observations, we get

x(w) = A(w)s(w) + ti(w) (2.10)

al1 e-J w1 • I ... aine-1wl 2n

A a2=e- awTu (2.11)

nmle--Jwrml ... amne-J7T*,,J

where w denotes frequency in radians. The matrix A is usually referred to as the

steering matrix in the literature.

2.3 Time delays, rik and Direction-of-arrivals (DOA),
0 k Relations

In this section, the form of the time delays rik will be discussed. Due to the spatial

distributions of the sources and sensors, different sensors will observe the same signal
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at different time delays. Thus. by selecting the location of the reference sensor as

(0,0), the k-th source signal will be observed at the time delay value r,k at the i-

th sensor. The direction of arrival of the k-th source, denoted by Ok, is defined with

reference to the vertical (v) axis at the reference sensor. Without any loss of generality

one can select the reference sensor location as the origin.

There are two cases of interest.

Far-Field: Consider the far-field case, i.e., the plane wave propagation assump-

tion is valid, see Fig. 2.3. From Fig.2.3, it can be easily shown through simple

analytical geometry that,

ik= {vi cosOk + IAi sinOk} (2.12)
C

where c denotes the velocity of propagation of the signal.

Example (Uniform Linear Array): The uniform linear array (ULA) is an

important special case in array signal processing. It corresponds to the case where

ther sensors are aligned in a single axis and spaced with equal distance d between

adjacent sensors, see Fig.2.4. In this case, the time delays may be written as:
(i?- 1)dsinOk

7ik = (2.13)
c

When the channel coefficients aik are all equal to 1.0, the form of the steering matrix

A from (2.11) is written as

e- -r,, (0) ...

A= [ 1 (2.14)

e-l1"lm-) ... e-Jwrndm-)

where rk E dsifljk The steering matrix A in this case has a special form called

Vandermonde. It has been shown that it has full column rank when the {Tk} terms

are distinct.
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Far-Field Source

Planar WavefSn t

Serisor Array

(010)

Figure 2.3: Far-Field Propogation

Near-Field: For the case where the far-field assumption does not hold the

wavefronts cannot be assumed to be planar but rather are spherical. Fig. 2.5 shows

the situation in the near field. The form for the time delay is then written as

•',k = ''ik(far - field) - If{(,lsin Ok + Vi cosOk)2 - 2R(Vc +/•) (2.15)

where rik(far - field) is the time delay assuming far-field propagation and R is the

range or distance of the source signal from the reference sensor, see also [17]. From

Eqn.(2.15) it can be seen that the near-field time delay has a correction term (1/R)

due to the curvature of the propagating wave. It is obvious that as the range gets

very large, the time delay approaches the far-field form.
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v

IL7

(0.0) (dO) (2d,0) ((m-I)d.0)

Sensor Array

Figure 2.4: Uniform Linear Array (ULA)

2.4 Channel Coefficients Relations

The channel coefficients aik terms are a result of the combined effects of the chan-

nel attenuation characteristics, the sensor characteristics gains and the geometrical

attenuation due to wave propagation.

Channel Attenuation: The channel attenuation characteristics are dependent

on the type of channel in question, for example it may be the atmospheric chan-

nel for radar, underwater sea channel for sonar or the air sound channel for speech

applications. The physical process by which a source signal is attenuated through

these channels are often highly complex and difficult to model. In underwater sonar

channels, signal attenuation is caused by a combination of molecular relaxation pro-

cesses (such as chemical relaxation in salt water) and frictional heat losses due to the
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Source

Sensor Array

Figure 2.5: Near-Field Propagation

relative motion of portions of the transmission medium, see [9, 491.

Sensor Gains: The sensor gains are due to the combined effects of the sensor

receiving characteristics, the gains of the amplifiers and the subsequent conditioning

done on the signals such as quadrature de-modulating, etc.

Geometrical Attenuation: The physics of wave propagation in electromagnetic

and acoustic theory is governed by the wave equation (a d'Alembertian equation),

with vector quantities in electromagnetism and scalar quantities in acoustics. When

a spherical propagation mode is assumed in the wave equation, the intensity of the

k-th signal at the i-th sensor is inversely proportional to P1is which is the radial

distance of the k-th source to the i-th sensor, see for example [55, 491. Thus the

channel coefficient aik are inversely proportional to R]k. Generally, it is clear that the

channel coefficients are not equal to each other since Rik s are not the same. However,

in the case where the dimensions of the array are small in comparison to the distances

R7k, the geometrical attenuations may be assumed to be approximately equal.
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2.5 Areas of Interest and Application of Model

The general model and the narrowband model of Eqns.(2.10),(2.8) and the associated

parameters are a focus of interest in many applications. For example, the time delays

and DOAs of the various source signals are of interest in radar and sonar processing

while the source signals themselves are of interest in communications applications.

2.5.1 Array Signal Processing for DOA Estimation

In this application, the DOA of various source signals are of interest. When the

channel coefficients are known , or normalized to unity, or the sensors in the array

are identical the models can be further simplified to the following.

Wideband Model

x(w) = A(w)s(w) + i7(w) (2.16)

e-jW 12 ... e-i-rin '
e-3jW71 ... 1e-J72n

A (2.17)

e-w'r " "... e-jW~rwn

where w denotes frequency in radians.

Narrowband Model

x(t) = As(t) + p7(t) (2.18)

e-j[ 31 ... 1-."71 n

e-I ta0"21 ...
A =1(2.19)

6e-I jO ... e ' e-J

where wo is the center frequency of the signals.
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Thus given the observation of x(t) over N snapshots or samples, the objective is

to estimate the DOA angles 0 k, for k = 1..., n.

2.5.2 Spectrum Estimation

There is a duality between the estimation of multiple complex sinusoids in noise and

the estimation of DOAs using uniform linear arrays. The scalar observation can be

written as

z(t) = eiAwt+0)si + q1(t) (2.20)

where wi denotes the frequency (in radians) of the i-th sinusoid, Oi denotes the phase

of the i-th sinusoid and si denotes the intensity of the i-th sinusoid. Assuming that

the observation is sampled uniformly at the sampling frequency of f,, the discrete

scalar observation is written as

x(k) z ejW,-(k1)1/1d,)si + 71(k) (2.21)

t=l

By collecting m consecutive discrete observations into a column vector form we get

x(k) = As(k) + 77(k) (2.22)

where s [sie' I S2 e-j' ...--sejO"] 7(k) _= [(k) ti(k- 1).-. - m + I)]t and
Se-J•,t(o)/, . .. e-J .(O)lf,

e-Jw, (2)/1s ... p-jw,(2)1f°

A = j (2.23)
e-•w, (2-)/f ,. . e-W( - /.

Thus the matrix A is in the same form as in the uniform linear array case discussed

in a previous section, i.e., it is Vandermonde.

2.5.3 Signal Separation Applications

The extraction of certain desired source signals from contaminated or jammed obser-

vations can be found in areas such as speech or tele-conferencing processing where
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individual speech signals must be extracted from an environment with background

and other noise sources, in communications where sources of interference may degrade

the received signals and in EMG medical processing where the evoked potentials from

various neurons must be separated. The model may be either narrowband or wide-

band depending on the specific application of interest. Certainly in communications

systems which employ narrowband signals, the narrowband model is appropriate. In

speech applications however, the wideband model is a better representation of the

problem since speech signals are wideband in nature.

Remark: Note that the emphasis in signal applications is on the extraction of indi-

vidual signals from observations where they are mixed. This requires the estimation

of the channel coefficients {ak} and time delays {7)}.

2.5.4 Echo Resolution of Signals with Known Shapes

The problem of resolving echoes of multiple signals of known shape may also be

framed to fit the model of (2.18). This is achieved by a suitable parameterization of

the matrix A in terms of the known shapes, see [7]. Suppose that a signal g(t) of

known shape is used to probe a medium with n scatterers. n echoes of this signal

would be reflected back to the receiving sensor and we write the received sensor output

as n

z(t) = Z sig(t - rT) + 17(t) (2.24)
i=l

where f si) models the random gains due to channel propagation and scatterer char-

acteristics and 7i denotes the time delay of the i-th echo. Next, suppose that the

signal 9 (t) is sent to probe the channel repetitively, say N times and assume that the

echo returns would have died out at the beginning of each probe period. Then there
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is an ensemble of N sensor observation periods, which is written as{n
(t) = si(k)g(t - rj) + r(t ,k = 1, 2.....-..V and t =1,2,.m (2.25)

where si(k) denotes the i-th echo's random gain during the k-th observation interval

and t denotes the discrete time index.

By re-writing the scalar observation into a vector form, we get

x(k) = As(k) + q(k) (2.26)

where x = [z(l) x(2) .. X(m)]', s = [Sf S2 q I=(1) q/(2) -. 7(m)] . Here

define the 'steering matrix' A = F-(t - ri) j g(t - r 2) I " g(t - r,,)], with g(t) =

[g(1) g(2) g(m)]'. Thus ýhe model in this case fits the narrowband model with

the steering matrix A parameterized in terms of the signal g(t) of known shape.
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MATHEMATICAL
PRELIMINARIES

In this chapter the basic mathematical results of matrix and perturbation theory

is presented. Two matrix decompositions are covered: the eigenvalue eigenvector

decomposition (EED) and the singular value decomposition (SVD). Orthogonal pro-

jectors and solutions to the deterministic least square problem are presented. The

chapter ends with basic perturbation results oa the perturbations of eigenvalues and

eigenvectors of a Hermitian covariance matrix and the perturbation of a pseudoin-

verse.

3.1 Matrix and Vector Norms

Throughout this thesis we will utilize the following iorms for vectors and matrices.

Definitions: The Euc'idean norm of a column vector v of dimension m is defined

as

II v 11= ( 1V, 12)1/2 (3.1)
i=1

Thus the Euclidean norm is nothing but the length of the vector v.

The 2-norm of the matrix M is defined as that induced by the Euclidean vector

18
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norm as in the following

11 M 112= sup 11 Mv II (3.2)

where the supremum is taken over all vectors v of unit norm.

Finally, the Frobenius norm of a matrix M =_[rmnk] is defined as
M M7

II M II= (Z E I IMk 12)1/2 (33)

i=1 k=i

The norms defined above are also consistent, i.e.,

II MN lj_<l M lII N II (3.4)

I M v lIfIl M 1III v II (3.5)

Next we state certain observations regarding the matrix theory.

3.2 Eigenstructure Decompositions

In array signal processing, the decomposition of a covariance matrix is frequently of ,

interest. The covariance matrix is defined as R = E{xxt}. Thus it is Hermitian and

positive semi-definite.

Given a Hermitian matrix R, there are several different decompositions that are

available. In this thesis, we will be concerned with the Eigenvalue-Eigenvector De-

compostion (EED) and the Singular Value Decomposition (SVD), see [15].

Eigenvalue-Eigenvector Decomposition: Given a Hermitian matrix R of size

rn-by-rn and rank n, where m > n, there exists a decomposition of R in the following

manner

R = UAUt (3.6)



20

where U is a unitary matrix (i.e.. UU t = UtU = I) and A is a diagonal matrix

consisting of the real-valued eigenvalues of R, i.e.,., o '
A = .. (3.7)

Example: Consider the covariance matrix of the observation vector as found in the

narrowband model of Eq.(2.8) and apply assumptions A1-A4 of the previous chapter.

Thus

R = E{xxt} = AQAt + a'I (3.8)

where A has full column rank (from assumption Al), Q is the positive definite co-

variance matrix of the source signals (from assumption A2) and a 2 is the variance of

the additive white Gaussian noise vector (from assumption A3).

Its eigenvalue-eigenvector decomposition can then be found as

R = UsAsUst + oa2UnUnt (3.9)

where U = (U.U,,] is unitary, A. is an n-by-n diagonal matrix of eigenvalues greater

than a 2. The subspaces spanned by the column vectors of U,, U,, are referred to as

signal and null (or noise) subspace. respectively.

Similarly, in the case of the wideband model of Eq.(2.10)

R(w) = E{x(w)xt(W)}

= A(w)Q(w)At(w) + a2(w)I

- Uq(w)As(w)Uqt(W) + o.2(,)Un(W)U.t(w) (3.10)

Singular Value Decomposition: Given a rectangular matrix A of size m-by-n

and rank n, where m > n, the Singular Value Decomposition of A is:

A = UEVt (3.11)
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where U. V are unitary matrices of sizes m-by-m and n-by-n, respectively and F, is

21= a, (3.12)

where ao, i = 1,2,..., n are real.

Remark: The SVD and EED of a positive definite Hermitian matrix (i.e., con-

jugate symmetric) matrix are the same.

3.3 Orthogonal Projectors

Definition: A square matrix P is said to be an orthogonal projector onto the subspace

S if it satisfies the following:

(I) P2 = P, it is idempotent

(II) Range(P) = S

(II1) pt = p, it is Hermitian.

Remarks:

(i) An orthogonal projector onto a given subspace is unique, see [151.

(ii) The orthogonal projector P- which projects onto the subspace orthogonal to

that of P satisfies P- + P = I.

Example: Consider the covariance matrix R = E{xxt} = AQAt + a2l as in

Eq.(3.8). Its eigenvalue-eigenvector decomposition is then

R = UsAsUst + aaUnUnt (3.13)

where U = [U.U,,] is unitary, and A. is ,n n-by-n diagonal matrix of eigenvalues

greater than a2. The subspaces spanned by the column vectors of U,, U,, are referred
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to as signal and null (or noise) subspace, respectively. The orthogonal projector for

the signal subspace may be defined as:

P3 = UsUst (3.14)

The above projector may be shown to satisfy conditions (I-Ill) above. Similarly the

orthogonal projector for the noise subspace may be shown to be

P, = UnUn t (3.15)

Since the eigenvector matrix U is unitary, it follows that the signal subspace orthog-

onal projector is also orthogonal to the noise subspace orthogonal projector, (i.e..

P , I P,,) and that

Po + P. = 1 (3.16)

Example: Consider a matrix A of full column rank and dimensions rn-by-n. The

orthogonal projector PA for the subspace spanned by the column vectors of A can

be shown to be

PA = A(AtA)-fAt (3.17)

Pre-multiplying a vector x by PA is equivalent to projecting the vector x onto the

subspace spanned by A. Thus the result : = PAX lies entirely in the subspace of A

and the difference (or error) vector (i - x) lies in the subspace orthogonal to A, see

also Remark (ii) above.

3.4 Least Squares Solutions

In this section we will be looking at the deterministic linear equation problem of

x = As + 17 (3.18)
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Given that x and A is known. the problem is to estimate s such that the squared

error Tr{(x - A,)(x - A§) t } is minimized for some estimate g.

When A is a square matrix and non-singular, the least squares solution may be

found by inverting A. Thus,

§ = A- x. (3.19)

However, when A is not a square matrix but is rectangular, then the least squares

solution is found by using the pseudo-inverse of A. Thus,

§ = A#x. (3.20)

where A# is the pseudo-inverse of A. The pseudo-inverse of A fulfills the following

conditions, see [15, 511.

(I) A#A = I

(II) AA# = PA, the orthogonal projector onto the subspace of A.

(III) AA#A = A

(IV) A#AA# = A#

When A has rank n and is of dimension m-by-n, (ie.. it has full column rank), we

can write the pseudo-inverse of A as

A* = (A4A)-YAt. (3.21)

Thus the least squares solution for s as found from Eq. (3.20) is i = (AtA)-'Atx.

An equivalent formulation of the least squares problem would be to find the closest

estimate xc which lie within the subspace spanned by A to the actual observation x.

Then the solution for * would be the projection of the actual observation x onto the

subspace of A , i.e.,

X= PAX
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= A(AtA)-'A t x (3.22)

The source signal estimate corresponding to this estimated observation is observed

to be the same as in Eq.(3.20).

3.5 Matrix Perturbation Theory Results

In this section we will state first-order perturbation results for the eigenvectors and

eigenvalues and pseudo-inverse of a matrix perturbed fromn a nominal matrix.

3.5.1 Perturbation of Eigenvalues and Eigenvectors of a
Hermitian matrix

Given a Hermitian matrix R = R + E where R has eigenvalues { Ak, }, k = 1,2,.., m

and eigenvectors {ukl, k = 1,2,..., m, and the perturbation matrix E is Hermitian

and small enough, see [15], then the eigenvalues and eigenvectors of the perturbed

matrix can be written to first order as

ýk Ak + utEu& (3.23)
"' utEuk 

(3.24)
i~k Ak - Ai

In practice, at least in statistical signal processing applications, the covariance

matrix R is often unknown and hence have to be estimated from finite data. Thus,

assuming that the data is wide-sense stationary and that there are N available samples

or snapshots of the observation array, the estimated covariance matrix is

IR = •. • x(i)x(i)t (3.25)
i=V

When the observation vector x(i) is assumed to have a zero-mean gaussian distri-

bution, asymptotically (for large N)

EjA,) = Aj + O(N-') (3.26)
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Cov{A,,Ak} = ± ++O(N') (3.27)
N

where bik denotes the dirac function which is unity for i = k and zero otherwise.

E{fli} = ui + O(N-') (3.28)

COV{&,C6k} = -ikL At)U1u +O(N') (3.29)

See [23).

3.5.2 Perturbations in Pseudo-Inverse

Given a matrix A of full column rank n, we have seen in the Trevious section that

its pseudo-inverse may be written as A# = (AtA)-lAt. Suppose that instead of A.

one is given a perturbed matrix A = A + AA. Then a first-order approximation for

the pseudo-inverse of A may be written, see [19], as

AP = A# + (AtA)-' AAt(I - AA#) - A#AAA# (3.30)

3.6 Complex Differentiation

Array signal processing involves the computation of complex quantitie. Since there

will be a need to take the derivatives or gradient of certain function with respect to

complex quantities, this section presents a summary of the operation, see [18].

Let the complex quantity z be written as z = z, + jz,, where z,, zi denotes the

real and imaginary parts of z respectively. Then the derivative operators with respect

to z and z* are

- + - (3.31)a _ a .8

z a- .-- 49 (3.32)
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This operation is extended to the vector gradient operation in the following manner.

Suppose that w is a complex column vector, with w =1w w2 ... w,]T. Then the

gradient operator is defined to be - = [ "
aw T-7 7"-- 8 wm

Thus

=(ctw) 0 (3.33)
aw

=(w 2c (3.34)

" '(wtRw) = 2Rw (3.35)
0w
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ASPECTS OF ARRAY SIGNAL
PROCESSING

In this chapter we will cover ý'everal conventional methods for array processing such

as beamforming, adaptive beamforming, eigenstructure based methods such as MU-

SIC and ESPRIT and maximum likelihood methods (assuming gaussian distribution

for the observation vector). Also, the estimation of the number of sources using in-

formation theoretic criteria such as the Akaike Information Criterion (AIC) and the

Minimum Description Length (MDL) will be discussed. The conventional methods

are first discussed in the narrowband model case, and where the signal sources are not

coherent with one another (i.e., the source signal covariance matrix is non-singular).

Extensions of these methods to the case where the signal sources are coherent through

the use of spatial averaging using sub-arrays is covered. Finally, the extension to the

wideband case is also discussed.

4.1 Beamforming Approaches

Beamforming is a spatial filtering approaches to array processing. Given that a de-

sired source signal is to be extracted from a desired DOA angle, the outputs of the

observation array are delayed and summed in such a manner as to direct a narrow

27
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beam of sensitivity for signals coming from the desired DOA and suppressing others.

Since time delays may be equivalently represented as phase shifts, the output of a

beam-former may also be viewed as the result of an inner product of the complex

valued beamformer weight vector and the array observation vector, as in

y = wtx (4.1)

where the column vector w denotes the beamformer weight vector. Note that the

weight vector w must be a function of the desired DOA angle. It may or may not

be dependent on the statistics of the observation vector x and this is the manner

by which the different types of beamforming approaches may be classified, see [83).

Beamforming approaches where the weight vector is selected independent of the ob-

servations are classified as data independent, while beamforming approaches whose

weight vectors are dependent on the statistics of the observation data are classified

as statistically optimum.

4.1.1 Conventional Beamformer

The conventional beamformer approach, also known as the delay and sum beamformer

is one of the earliest approach used for array signal processing. This approach is

classified in the data independent category of beamformers as the beamformer weights

are not dependent on the observed data or its statistics.

Intuitively, the idea is to time delay the different array sensor outputs and sum

them in such a manner that the source signal emitted from the desired DOA would

add coherently while those of the interfering and noise signals would add incoherently.

Thus, the resulting beamformer output would increase the SNR of the desired source

signal relative to the other signals, including noise.

This approach can be illustrated easily for a ULA with a single source signal, at
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DOA angle 01. Assume that the channel gains ak are all unity. Thus, the I-th sensor

output is

xz(k) = e-4Ik-i•'i"°i s1  (4.2)

Thus if the beamformer is steered towards a DOA angle of 0, its weight vector w

is defined such that

w = [1.0 e-jA2si•9 ... -j•Ami*1I (4.3)

Thus the output of the beamformer is

y -- wtx -" S( e-9(k-1)(sin91*inO- ) (4.4)

Looking at the power of the beamformer output, we have

I 2=1 \ ~ (sinf{ -(sin8O - sino)} (45)

Looking at the above expression for the beamformer output power, it is clear

that it has a 'sinc-like' Dehavior with respect to the argument (sinG1 - sinG). The

maximum power is found when the beamformer is steered towards the source signal

at the DOA 0 = 01, and that it has a main lobe width of M. The conventional

beamformer would therefore not be able to resolve a case there are two source signals

with DOA angles such that their separation is less than half the main lobe width.

Fig. 4.1 shows an example of a sensitivity plot for a ULA with ten sensors spaced

half a wavelength apart with the beam steered towards 30 degrees. Note that any

two signals with DOA angles that fall within the main lobe would not be resolvable.

The Rayleigh resolution limit for the ULA array is " (in radians). Note that this

inability of the conventional beamformer to resolve two signals with close DOA angles

is related to the array aperture size and not due to the amount of observation data

available.
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Figure 4.1: Conventional Beamformer Example

When a general array geometry is assumed instead of the ULA in the discussion

above, the beamformer weight vector is defined accordingly as

w = [1.0 e-2'jT2 • -j"' (4.6)

where the delays ri are defined as in Eq.(2.12).

When N samples or snapshots of the array observations are available, the smoothed

beamformer power estimate is:
1N

P(O) = y(k) 1
-k=1

= wtRw (4.7)

where R = N Ek, xxt(k).

The conventional beamformer approach is thus summarized as follows:
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1. Estimate R = E{xxt}.

2. P(O) = wtRw. where w(6) = [1 exp(-jworT),... ezp(-joT,_, )]T.

DOA angle estimates are found from peaks of P(O).

Remarks:

(i) As can be seen from Eq.(4.4), the conventional beamformer may be imple-

mented as a FFT in the ULA case. Thus it is an attractive approach due to its

simplicity of implementation.

(ii) Conventional beamformers suffer from the problem of resolution, i.e., source

signals that are situated close to one another in DOA angles cannot be resolved.

(iii) In general, conventional beamformer performance is degraded by the presence

of multiple sources. It performs well however for a single source or for widely separated

sources.

(iv) 'Leakages' or spurious signal power may arise due to the relative,_ high side-

lobe levels of the conventional beamformer. The sidelobe levels may be reduced by

using 'window' functions (also known as taper weights) in the beamformer weight

vector. This is achieved at the expense of reduced resolution capability howeer due

to increased main lobe width.

4.1.2 Linearly Constrained Minimum Variance Beamformer

The linearly Constrained Minimum Variance (LCMV) beamforming approach is based

on minimizing the beamformer output power subject to certain linear constraints,

[83]. Thus interfering signals disjoint from the source signal of interest would have

their power minimized. These constraints may consists of point constraints such as

constraining the signals from certain DOA angles be passed through the beamformer

with specified gains and/or phases, or, that certain inferference signals from certain
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DOA angles be suppressed. Derivative constraints may also be used to control the

beamformer response over a specified range of DOA angles. The LCMV beamformer

problem is stated as follows.

minwtfRw such that Ctw = f (4.8)
w

C is the m-by-p constraint matrix and f is the ?-by-1 specified response vector

(there are p linear contraints on the problem). Using Lagrange multipliers for the

constraints, we write the minimization problem as

= wtRw + (f - Ctw)tA (4.9)

where A = [A• A2 ... ,p]t is vector of Lagrange multipliers.

Taking the gradient of ý with respect to the beamformer weight vector and setting

it to zero (a necessary condition for the minimum), we get

w = R-'CA (4.10)

Using the constraint rq.tation Ctw = f and assuming that the constraint matrix C

has full column rank and the covariance matrix R is invertible, we get

Beamformer Weight Vector: w = R-.C(CtR-'C)-'f (4.11)

Beamformer Power: wtRw = ft(CtR-'C)-lf (4.12)

It is clear that the beamformer weight vector w is dependent on the covariance

of the observation vector R and is therefore classified in the statistically optimum

category of beamformers.

The LCMV beamformer weight vector w may be decomposed into a sum of two

orthogonal vectors wc and w' which are their projections onto the subspace spanned

by C and its orth-gonal complement, see [83]. From Eq.(3.17) in the previous chapter,
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we have that the orthogonal projector onto the subspace spanned by the constraint

matrix C = C(CtC)-YCt, and thus

WC = Pcw

= C(CtC)-Yf (4.13)

where wC is independent of the observation data! Thus the only component of w

which is dependent on the observation data statistics is wc = P~w. Since w' is

orthogonal to C, we may write it as

wC = Db (4.14)

where D is a m-by-(m - p) matrix orthogonal to C (it can be found by applying an

SVD decomposition to C) and b is a (m - p) column vector. Note that constrained

minimization of Eq.(4.8) is reduced to the un-constrained minimization as below

min(wc + Db)tR(wc + Db) (4.15)
b

since Ctw = Ct(wc + CtDb = f. Solving for b, we get

b = -(DtRD)-lDtRwc (4.16)

Thus the LCMV beamformer may be implemented with a combination of a data

independent component and a data dependent component as in Fig. 4.2.

This equivalent formulation of the LCMV beamformer is important in the adaptive

versions of the LCMV beamformer as will be shown next.

4.1.3 Adaptive Beamforming

Statistically optimum beamformers as in the LCMV beamformer above require an

estimate of the observation covariance. Since the statistics of the data may vary with
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Figure 4.2: Block Diagram of LCMV Beamformer

time, adaptive beamformers have been proposed that will track such changes. The

problem may be stated as follows, see [83]:

miný(w) = minE{Iz-w tu12 }

= min {I _ wtr,, -_ W + WtR,.} (4.17)

Here z is the desired respones, u is an input data vector and w is the beamformer

weight vector, 2 is the powerof the desired output, r,, = E{uz"} and R,, = E{uut}.

The solution for Eq.(4.17) can be shown to be

w = R-1rz (4.18)

Adaptive methods for the estimation of w may be implemented using a whole host

of techniques from adaptive filter theory, see [11, 181. Note for example that the

Recursive Least Squares method or the Least Mean Squares method may be used,

[18, 11].

Using the Least Mean Squares (LMS) algorithm to allow for the adaptive updating
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of the beamformer weight vector estimate, we have

Wk+1 = Wk + au(k)e'(k) (4.19)

where e(k) = z(k) - wt(k)u and a is the step size or gain constant.

Example (Adaptive LCMV Bearnformer): The LCMV beamformer consists

of a data independent component wc which may be computed beforehand and a

data dependent component w~which is dependent on the second order statistics of

the data, see Eqs.(4.13),(4.16). Thus the adaptive version of the LCMV beamformer

may be accomplished by defining the quantities

Solution Vector: w = b

Desired Response: Z = wcx

Input Vector: u = Dtx

where the quantities b, wc and D are as defined in the previous section on LCMV

beamformers.

4.2 Eigenstructure Based Approaches

In the past two decades there have been increasing interest in eigenstructure based

approaches for array signal processing. Unlike the conventional beamforming ap-

proach or the LCMV beamforming approach, the eigenstructure based approaches

are capable of (theoretically) resolving very closely separated source signals. This has

led to these methods being called high resolution or super resolution methods, since

they are capable of resolving source signals with DOA separation of less than the

Rayleigh resolution limit as found in a conventional beamformer.

The two eigenstructure based methods that will be covered in this section are

called MUltiple SIgnal Classification (MUSIC) and Estimation of Signals Parameters
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via Rotational Invariance Techniques (ESPRIT), see (52, 50]. Before we proceed to

a discussion of these two methods, we shall first discuss the basic subspace relations

upon which these two methods rest.

Consider the narrowband observation covariance as in Eq. (3.8) and its EED

decomposition

R = E{xx€} = AQAt + cr2I

- U,A,Ut + nu2 ut (4.20)

Here U, of dimension m-by-nUn of dimension m-by-(m - n) are the signal subspace

and noise subspace eigenvector matrix respectively. The signal subspace eigenvector

matrix U. spans the column vectors of the steering matrix A and thus there exists a

non-singular matrix T such that

Us = AT (4.21)

This is easily shown by considering the following. Suppose that there is no noise, and

thus a2 = 0. Then we have

UAUt = AQAt (4.22)

Then by post multiplying both sides of the equation above with U,A-', we get Eq.

(4.21), where T = QAtUA;1. Note that T is square and of full rank (it is non-

singular). It is also straightforward show that

U.UtA = A (4.23)

It is also clear that the noise subspace eigenvector matrix U, is orthogonal to the

steering matrix A, i.e., U,, I A, since

RUn = AQAtU+ a2 U

= a2 U (4.24)
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This implies that

AU,_ = 0 (4.25)

These relations comprise the backbone of most eigenstructure based algorithms

such as MUSIC or ESPRIT. The signal subspace relation of Eq. (4.21) is used in the

development of ESPRIT while the orthogonality of the noise subspace to the steering

matrix as in Eq.(4.25) is used in MUSIC.

4.2.1 MUltiple SIgnal Classification (MUSIC)

MUSIC was proposed by Schmidt in, see [52, 53], and independently by Reddi. see

[45]. It exploits the orthogonality of the noise subspace to the steering matrix by defin-

ing a cost which measures the "closeness" to orthogonality of an estimated steering

matrix relative to the noise subspace. From Eq.(4.25), it is clear that

Uuta(0) =0, O=Ok fork= 1,2,.--,n (4.26)

where a(0) is a steering vector.

The MUSIC cost function is thus defined to be

l
P(O) =I V$a(6) 112 (4.27)

When the array manifold is known, i.e., the collection of all possible steering vectors

a(8) for all possible DOA angles is known, the n DOA estimates may be found from

the n highest peaks of the cost function P(O) as the DOA angle parameter is swept.

Thus MUSIC replaces the multidimensional search as implied in Eq.(4.25) with a one

dimensional search over the range of possible DOA angles.

Remark: MUSIC requires the array manifold to be known or measured (cal-

ibrated) beforehand. Thus, while it has the attractive feature that it is an one-

dimensional search procedure, it does require a calibration table (a lookup table) of
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the array manifold values which may prove costly in terms of memory size (depending

on the grid size of measured calibration values).

In theory the orthogonality relation in Eq.(4.26) should hold regardless of how

close the angle separation of the DOA of any pairs of source signals are. Thus MUSIC

is capable of resolving source signals with DOA separation that are much smaller than

that of the conventional beamformer. Under finite though large sample conditions.,

however, it has been shown that MUSIC does exhibit a resolution threshold behavior,

[23].

In general. a one dimensional search is necessary in the implementation of MUSIC

to the array signal processing problem. In the case of ULA with identical sensors

however, as may have been noticed by the reader by now, an elegant method may be

used instead of searching for the DOA angles. In this case, a variant of MUSIC called

Root-MUSIC can be applied. Note that the steering vector a(z)(G) is Vandermonde

and may be written as a(e) = [1.0 Z, ... z("-I ]t, where z _ e{-j•"s"°}. Then

Eq.(4.26) may be written as

Uta(z) = 0, at z = e{J i"O9l (4.28)

Form the polynomial

D(z) =U1 Ua(z) 112 (4.29)

The polynomial D(z) = 0 for Z = ef-A.71in0h, i.e., it has zeros on the unit circle

corresponding to the true DOA angles. Thus the Root-MUSIC method, see [31, forms

the polynomial D(z) from the estimate of the noise subspace eigenvector matrix and

solves for roots lying on the unit circle.

In the past few years, the performance analyses of MUSIC and its variants have

been a subject of intense interest. Of particular note is the work found in [23], which

is one of the first papers to analyze MUSIC. See also [62, 63, 43]. What is clear from
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these analyses is that MUSIC provides DOA estimates that are asymptotically un-

biased, gaussian distributed and in general is not equivalent to Maximum-Likelihood

estimates, see next section and also [64, 621. In the case of uncorrelated source

signals however, MUSIC and ML methods are asymptotically equal in MSE. The

Root-MUSIC and MUSIC methods are asymptotically equivalent as has been shown

in [431.

4.2.2 Estimation of Signal Parameters via Rotational In-
variance Techniques (ESPRIT)

In contrast to MUSIC which utilizes the noise subspace relation of Eq.(4.25), ESPRIT

exploits the signal subspace relation of Eq.(4.21 ), namely the fact that the steering

matrix A is spanned by the signal subspace eigenvector matrix. The rotational in-

variance component comes into play here because ESPRIT assumes that A has a

certain special invariance structure, see [50]. Specifically, A must have the structure

that it may be partitioned in the following manner.

A = B 1(4.30)

where B is a steering sub-matrix and 4 is a diagonal matrix such that

[ .= (4.31)

Here ESPRIT assumes an array structure composed of two sub-arrays we shall call

X and Y sub-arrays, where each sensor in X is matched (identical) to its pair in Y

and spaced at a distance d from each other, see Fig. 4.3 for example. Note that only

the sensor pairs (also known as doublets) need to be matched and different sensor

characteristics for different pairs are allowed. Using simple geometry to calculate

the time delay difference between the sensors of a sensor pair, we can see that the
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Figure 4.3: Esprit Subarrays Example

difference in time delay for a signal coming from DOA angle Ok at the i-th sensor in X

and its pair in Y is Arik = dsin~k. Thus if the observation column vector is arranged

by concatenating the observations from the X sub-array on top of the observations

from the Y sub-array, then the steering matrix A which results will fulfill the required

rotational invariance as in Eq.(4.30). From the fact that the steering matrix A is

spanned by the signal subspace eigenvector matrix, see Eq. (4.21), there exists a

non-singular matrix T such that

AT =U

[EX]T (4.32)

where Ex, Ey are matrices partitioned from U, with dimensions corresponding to

the size of the X and Y sub-matrices. Furthermore, the matrices Ex, Ey both span
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the same subspace due to the structure of the steering matrix A. Thus. there exists

a matrix %P such that

Ex'P = Ey (4.33)

Notice however that due from Eq.(4.32)

BT'Q = BtT (4.34)

Since T is non-singular and B has full column rank this implies that the eigenvalues

of W are exactly the diagonal terms in V! Thus the ESPRIT algorithm comprises

primarily the estimation of the signal subspace eigenvector, its partitioning into sub-

matrices Ex, Ey solving for %P from Eq.(4.33) and finally the extraction of the eigen-

values of T. The DOA angles may thus be extracted from the phase terms in the

eigenvalues.

Remarks:

(i) 'P may be solved from Eq.(4.33) by using either Total Least Squares (see

[50, 15]) in which case the algorithm is called TLS-ESPRIT or by ordinary least

squares in which case it is called LS-ESPRIT.

(ii) ESPRIT circumvents the need for a search procedure and for knowledge of/or

calibration of the array manifold. Thus it is an attractive alternative to MUSIC. It

requires however the special rotational invariance structure of the array which entails

matched sensor pairs (matched in terms of characteristics and alignments).

Performance analysis of ESPRIT avre been conducted by Stoica et., al, [63], Rao

et., al, [44], Ottersten et., al, [35]. One interesting result of Stoica/Nehorai is that

the performance of MUSIC is aymptotically better than that of ESPRIT. The DOA

estimates have been shown to be zero mean, gaussian distibuted, see for example

[351. It has also been shown that asymptotically, TLS-ESPRIT and LS-ESPRIT are
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equivalent, although simulations have suggests that TLS-ESPRIT is superior in low

SNR and small snapshot size cases, see [50. 44].

4.3 Maximum Likelihood (ML) Methods

There are two formulations for maximum likelihood methods for the narrowband array

signal processing problem, the so called stochastic maximum likelihood formulation

and the deterministic maximum likelihood formulation. The deterministic tag here

refers to the assumption that the source signals themselves are deterministic, the

observations however are still random since the additive noise is AWGN. Maximum

Likelihood methods are of interest in all facets of estimation theory since under certain

conditions, ML estimates have mean square errors that are asymptotically equal to

the Cramer-Rao lower bounds, see (29].

4.3.1 Stochastic Maximum Likelihood

In the stochastic ML formulation the source signals have zero mean, temporally white

gaussian distributions such that

E{s(t)st(0)} = Qbq (4.35)

E{s(t)st (ý)} = 0 (4.36)

Writing the probability density function for N snapshots of the observation array, we

get

fO(I, XN _ex 1 x'R-Xk} (4.37)(2r) N12 7et(I-) k=1

where 19 is a column vector of the parameters to be estimated which includes the n

DOA angles, the entries of the source covariance matrix Q and the noise variance cy2.

The mawxmum likelihood method entails finding the estimate of the parameter vector
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E such that the probability density function in Eq.(4.37) is maximized. Taking the

negative log of the pdf (since the log function is monotonic) this is equivalent to

6 = min 1o9(det(R))+ XR-'x (4.38)

k=1-

Allowing for the fact that the source covariance matrix is Hermitian, the total num-

ber of parameters that must be estimated is n DOA angles+m 2 real and imaginary

parts of source covariance matrix+l noise variance. This minimization is thus often

computationaly expensive as it essentially means that a multi-dimensional (specifi-

cally (n + m2 + 1)) search must be conducted. The non-linearity of the minimization

criterion of Eq.(4.38) further compounds the problem due to the likely existence of

local minima solutions.

For methods proposed to solve for the estimates of the stochastic ML estimates.,

see [341 and the references therein. For performance analysis, see [34] - the stochastic

ML method is asymptotically efficient if the global minimum of Eq.(4.38) is found.

See also [64, 62].

4.3.2 Deterministic Maximum Likelihood

In the deterministic ML formulation, the source signals are assumed to be determin-

istic signals, i.e., they are not random processes. The observations however would

still be gaussian distributed due to the additive white gaussian noise component. As-

suming that there are N snapshots of the observation array vector, we can write the

probability density function of the observations as

1 1 IV I
fe(x,.-. ,xN)= (2iro 2),N/ 2 "exp ---2a2 (xj - ASk) t (Xk- Asf) (4.39)

where sk, k 1,..., N are the deterministic source signal vectors and A is the steering

matrix. The parameters within the parameter vector ( that must be estimated are
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the n DOA angles, the N signal source vectors and the noise variance, a2 The t

of Eq.(4.39) may also be viewed as a conditional pdf (conditioned on N realization

of the source signal vector). Taking the negative log of Eq.(4.39), we get

,{Ok, = min rnNloga' + ) ((xk As)t(xAs) 4.40)iXh),100} ý k=1

Taking the derivative with respect to the noise variance a.2 and setting to zero, we

can solve for its ML estimate as

2 1 N

a= mN -(xk - ASk)t(Xk - Ask) (4.41)rrNk=1

Next, taking the derivative of the log likelihood function with respect to the deter-

ministic source signal vector Sk and setting to zero, find that their ML estimates

are

sk = (AtA)-fAtx (4.42)

Plugging these ML estimates for the noise variance and source signal vectors into the

minmization of Eq.(4.40), we get the compressed deterministic ML problem

{Ok} minTr{PAR} (4.43)
{Gk )

where P• = I - PA and I. - N xkxt.

Remark: The deterministic ML problem is a nonlinear minimization problem

and thus computationally expensive. Various methods have been proposed for this

problem, see [4, 84]. Statistical performance analysis have been conducted, see [64,

62, 34] etc.

4.4 Cramer Rao (CR) Bounds

Given any unbiased estimator of the parameter vector (, the error covariance ma-

trix of its estimated parameter vector is lower bounded by the Cramer Rao bound.
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Specifically, given any estimate E such that

and C = E(((§ - )(§ - 0)'}

then the error covariance matrix C is lower bounded such that

C >_ J-1 (4.44)

where J is the so-called Fisher Information matrix and the inequality is taken to mean

that C-JJ-1 > 0, i.e., it is non-negative definite. Let the pdf of the observation vector

be denoted by fr(x). Then the Fisher Information matrix is defined asJ{(4.45)
J = E { 'fe(x) ('fe(x) (4.45)

= -E { ( a x) t } (4.46)

The CR bound thus provides a benchmark by which the 'goodness' of an unbiased

estimator may be measured. This is why maximum likelihood estimators are often

of interest since under certain regularity conditions, the error covariance matrix of

a maximu-.1 likelihood estimator will approach the CR bound asymptotically. i.e.. it

is asymptotically efficient. An unbiased estimator whose error covariance matrix is

asymptotically equal to the CR bound is an asymptotically efficient estimator.

In general the evaluation of the CR bound for an arbitrary pdf of the observation

data may prove to be a formidable task. Fortunately, for the case where the pdf is

gaussian, the CR bound attains relatively simple forms.

We can consider two formulations for the assumption of gaussian distributed ob-

servation data vectors, namely the stochastic where the source signals are also zero

mean, gaussian distributed (temporally white) as discussed in the previous section
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on the Stochastic ML estimator and the deterministic where the source signals are

considered to be deterministic, as discussed in the section on the Deterministic ML

estimator.

4.4.1 Stochastic CR Bound

Using the formulation as found in the Stochastic ML, the Fisher Information matrix

J can be shown to be (see [2, 51]) comprised of the following element entries

J1 k = N Tr R-l aRR-1 8R (4.47)

Here N denotes the number of snapshots available and R is the observation covariance

matrix.

Remark: For explicit evaluations of the stochastic ML see [64, 34] etc.

4.4.2 Deterministic CR Bound

In the deterministic case with the formulation as in the Deterministic ML discussion

previously, the CR bound matrix have been evaluated by Stoica and Nehorai in [62]

where
2 ( N

= Real [Xt(k)D1P.DX(k)] (4.48)

where X(k) = L'iag{x(k)}, i.e., a diagonal matrix with its diagonal entries taken

from the elements of the observation vector x(k) and D defined such that its i-th

column vector is di = a(*) evaluated at 0 = Oi.

Remark: Stoica and Nehorai derived the above expression and discussed several

important special cases of interest, [621.
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4.5 Information Theoretic Model Order Identifi-
cation

Throughout this thesis it shall be assumed that the number of source signals is known,

see assumption A4. In practice however, the number of source signals would also

have to be estimated from the observed data. Two model order estimation criteria

which have gained a lot of attention in the literature are the Akaike's Information

Criterion (AIC), see Akaike, and the Minimum Description Length (MDL) criterion,

see Rissannen, Schwartz.

Both methods attempt to find the model order that best fits the given family of

parameterized model pdf f(x I E). AIC is proposed as a measure (see Akaike, [11)

where it was shown that minimizing the AIC is asymptotically equivalent to mini-

mizing the Kullback-Leibler function which is a measure of the statistical "distance"

of the true model pdf and the estimated model pdf. MDL (see Rissanen, Schwartz,

[46, 54]) is derived by treating the problem as that of determining the minimum code

length that will describe the observation data. Thus the AIC and MDL are stated as

AIC(k) = -21ogf(x I (k)) + 2k (4.49)

1
MDL(k) = -logf(x I &(k)) + -klogN (4.50)

2

where G is the model parameter vector and 6(k) is its ML estimate, k is the number

of free adjusted parameters in the model and N is the number of snapshots of the

observation data. The model with the minimum AIC or MDL is selected as the one

that best fits the observed data.

Wax and Kailath [77] had applied AIC and MDL to the problem of determining the

number of source signals in the narrowband array signal processing problem. Using

the statisti.-ai assumptions in the Stochastic ML model, these criteria are shown to
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be b --AI(mn ) m-f")N

AIC(h) = -2log . ) + 2h(2m- h) (4.51)

m--h •., m--i A )NI

MDL(hi) = -log • . ) + h(2m - h)logN (4.52)

where h denotes the estimated number of source signals and A, denotes the eigen

values of the estimated covariance matrix of the array observation vector Rt arranged

in order of decreasing magnitude.

Thus the estimated number of sources are picked from the value that minimizes

these equations depending on which criterion is to be used.

Remark: Wax and Kailath, [77] showed that for the AIC and MDL criLeria as

in Eqs.(4.51), (4.52), that AIC is inconsistent, ie. asymptotically it tends to over-

estimate the number of sources. MDL however is asymptotically consistent. Exten-

sions of these information theoretic model order estimation methods for wideband,

coherent sources may be found in [20, 78, 75].

4.6 Spatial Averaging for Coherent Sources

In the development of the eigenstructure based approaches thus far, it has been

assumed that no two source signals are fully coherent with each other, i.e., the source

signal covariance matrix is positive definite (assumption A2). In the situation where

two or more source signals are coherent, the application of MUSIC would only resolve

the non-coherent source signals. Similarly, the ESPRIT algorithm would also fail as

the signal subspace eigenvector matrix would have a rank less than the rank of the

true steering matrix.

In the case of coherent sources, the technique of spatial averaging has been pro-

posed in [56]. Spatial averaging assumes the use of a ULA with m identical sensors
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divided into L overlapping subarrays each of size p sensors. The multiple covariance

matrices of these sub-arrays are then summed and divided by L, thus getting an av-

erage covariance matrix upon which the eigenstructure based method is applied. In

[561 it was shown that this pre-processing of the data would lead to the averaged

source covariance matrix being of full rank, provided that the number of subarrays

are greater than or equal to the number of sources, L >_ n. Note that the number

of sensor within a subarray p must also be greater than or equal to the number of

sources n. Thus the use of spatial averaging to alleviate source coherence problems

lead to a tradeoff with respect to the available array aperture (i.e., it leads to a smaller

aperture being used. less than the available one) since L subarray covariance matrices

need to be averaged. It has been shown also that spatial averaging requires at least

50 percent more sensors for the same effective array aperture as before, see [411.

4.7 Wideband Extensions

Wideband extensions for array signal processing fall roughly into two camps or types

of approaches, the so-called incoherent and coherent approaches. Both are applied in

the frequency domain and may be used to extend most eigenstructure based methods

to the wideband case.

4.7.1 Incoherent Approach

Intuitively, the incoherent approach for wideband array processing may be summa-

rized as follows: take the frequency transform of the observation data which divides

the data into several frequency bins. Apply the desired narrowband estimation tech-

nique then on data at various frequency bins. Finally, use the estimates found at the

different frequency bins to arrive at some sort of average estimate. Thus individual
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narrowband processing is done at various frequency bins with a tinal averaging of the

results.

Consider an example of this wideband extension approach for beamforming appli-

cations. Note that first an FFT is taken of the observation data and then individual

narrowband beamformers are applied to the frequency transformed data. Finally the

various beamformer outputs are added and inverse FFT is performed yielding the

final output estimate y(t).

In the case of MUSIC, an incoherent approach was proposed in [78], where the

cost function P(O) is defined as

1
P(O) = II Uf(wk)ta(wk,9) 12 (4.53)

Here U,(wk) denotes the noise subspace eigenvector matrix of R(wk), the observation

covariance matrix at frequency Wk, see Eq. (3.10).

See [65] and [781 for extensions of this type for MUSIC. Extensions for ESPRIT

are found in [33].

4.7.2 Coherent Approach

The coherent approach for wideband processing is based on the idea that the obser-

vation data at the various frequeny bins should be added coherently in some manner

before the narrowband eigenstructure based method is applied. Intuitively the addi-

tion of the information at the various frequency bins would tend to improve the SNR

of the data. This approach was proposed in Wang and Kaveh, see 175]

Define the transformation matrices T(wk) such that:

T(wk)A(wk) = A(wo), k =1....,J (4.54)
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where w• denotes the focusing frequency to which the steering matrices of other

frequencies are focused to. Note that this requires knowledge of the true DOA angles

which is exactly the quantities to be estimated! This dilemma is circumvented by

using a rough estimate of the DOA angles such as that found by using conventional

bearaforming. Then the various covariance matrices at the different frequencies are

summed in the following manner.

J

= E T(wk)R(Wk)T(wk)t (4.55)
k=1

Finally the desired narrowband method is applied on the focused covariance ma-

trix R,. Extensions to MUSIC for this approach can be found in [20. S, 273. Tlhe

extensions for ESPRIT can be found in [21].
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ANALYSIS OF ESPRIT UNDER
RANDOM MODEL ERRORS

5.1 Introduction

Eigenstructure based algorithms for array signal processing has gained considerable

interest in recent years. Algorithms such as MUSIC [53) and ESPRIT [50] have been

proposed generally for the DOA estimation problem. Much work on performance

analysis of these algorithms has been directed to studying the effects of noise and

finite number of snapshots, with no errors assumed on the sensors gains/phases,

locations etc. , see, e.g., [231,[35].

This chapter presents analysis results on the MSE of ESPRIT DOA angle esti-

mates with errors in the array sensors. Such errors include random errors in the sensor

gains and phases, random errors in sensor locations and random errors in sensor pair

alignments. Both MUSIC and ESPRIT perform well when the sensors in the array

are either calibrated (i.e., the array manifold is known) as in MUSIC or the sensors in

a sensor pair are matched perfectly as in ESPRIT. In practice, however, this may not

always be possible due perhaps to external environmental effects on the array, dete-

rioration of electronic components, measurement errors, etc. As a consequence, there

52
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has been interest in the performance analysis of these methods under model errors.

Analysis of MUSIC under various model errors can be found in [821-[681. Analysis

of ESPRIT where the steering matrix errors are modeled as uncorrelated, zero-mean

Gaussian distributed can be found in [30, 68]. In [68, 69], the analysis of ESPRIT

under model errors are performed using its formulation as the minimization of a cer-

tain cost function. The MSE expressions obtained therein are very complicated due

to its parameterization in terms of not only the DOA angles but also other 'nuisance'

parameters [351, such as the real and imaginary parts of the steering matrix, the mag-

nitudes of the elements of a diagonal matrix, etc. In this chapter, a direct approach

towards the analysis of ESPRIT under model errors is taken where the DOA angles

are the sole parameters considered. This approach yields simple MSE expressions

that are related explicitly to the model errors. As such, it provides interesting insight

into the performance sensitivity of ESPRIT to model errors.

5.2 Problem Formulation

Throughout this chapter, the superscripts 'H', 'T', '*' and '#' denote the Hermitian,

transpose, complex conjugate and the Moore-Penrose pseudo-inverse of a matrix,

respectively. Also. n denotes the number of narrowband far-field sources, m denotes

the number of sensors within a subarray, mo denotes the total number of sensors

(i.e. m0 < 2m) and {1p,vi} and {ft1J,7i} denote the sensor locations in the X and Y

(possibly overlapping) subarrays respectively.

Here, we will be concerned with the situation where the covariance matrix is as-

sumed known (i.e., the finite sample effects on data covariance matrix are not in-

vestigated here). Under nominal conditions, the sensor pairs within the X and Y

subarrays are matched perfectly, with a distance spacing d between them [50]. By



54

appropriate choice of coordinates, one can rewrite the sensor locations within the X

and Y subarrays to be {O,, vi} and {1, + d, v,}, respectively. Then. the observation

vectors from the X and Y subarrays can be written as:

X subarray : x = rAs + q., and Y subarray : y = PAts + q, (5.1)

Here r denotes the diagonal array of nominal sensor gains and phases, namely,

F = Diag{aie34', .. , a,,,ej'O}, and A is the steering matrix defined by the set of distinct

DOA angles {10k} (the DOA angles are measured with reference to the normal of the

sensor pairs),

A ,..a (5.2)

The individual steering vector at DOA angle Ok is defined as

ak = [exp{-j--2(r sinOk + VlcosOk)}...

exp jL-(T(I',StnOk + V.,CoSOk)}]1. (5.3)

Furthermore, t = Diag{exp(-j 2 dsinOj), ..,exp(-j 9d.sine,)}, A is the wavelength

of the narrowband signals, s is the source vector and IT.,77, denote the additive noise

vectors at the X and Y subarrays, respectively.

It is assumed that the matrix A has full column rank, the narrowband sources are

incoherent and the noise vectors are uncorrelated zero mean processes with covariance

4TI see assumptions A1-A4.

5.2.1 General Formulation of Error Models

Under small array model errors and using first order approximation, a general for-

mulation of the array signal processing problem under model errors can be derived,

namely,

X subarray : x = (rA + OA,)s+t7, and Y subarray : y = (FA + 0Av)ts t-qj, (5.4)



The (9A., 9A. terms are dependent on the types of error model in question. These

different error scenarios are derived as below.

Errors in Sensor Gains and Phases: OA, = Ar",A and OAY = AIr1 A where

Arx = Diag{(Aal + +jaA¢,)em.(}. (5.5)

Ary = Diag{(zAi + jaIAO1 )ej-0.... ,(Ad, + jacr"Ak,)emo-}. (5.6)

Here {(Aa,, &LA)} and {(Adi, Aji)} denote errors in the sensor gains and phases of

the X and Y subarrays respectively.

proof: Consider the i-th perturbed sensor gains and phases: (a, + Aai)ej(I+41).

Using first order approximation with eJi(t*+A0,) I- el'-(1 + j'A~) and discarding all

terms higher than first order, the error terms of the above is found.

Using the same approach for the other error models, we get

Errors in Sensor Locations: 9A, = r/AX and OAY = rAAY where

2ir
LAAZ = -j-T-(VDag{A•~,. .•,Apm,}As + Diag{Avi,.. . ,Aum}Ac). (5.7)

21rAAZ = -jT-(Diag{Api,..,Au,)}A, + Diag{(Avj,...,.Z,)}Ac). (5.8)

Here {(A/i, Auv)} and {((Ap, AFti)} denote errors in the sensor locations of the X and

Y subarrays respectively, A, = [a, sin0j, ... , asinO,) and A, = [acosOi, ... , a, cose,].

Errors in Sensor Pair Alignments: In this case, the sensor pairs within the X

and Y subarrays are perturbed by small alignment errors such that they are rotated

by small angles from the nominal aligned direction. Hence, aAr = rAAZ and aA.

= rAA, where
.7rd

ZXA = -J '- "D"ag{I3,. A,. (5.9)

AAV = +1--r-Diag{(1,,. .3,}A,. (5.10)
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Here {5If} denote the small angle rotations from the normal of the sensor pairs due

to misalignment errors and A, is as defined previously.

Remark: Note that the random sensor error assumptions here enter directly into

the sensor parameters such as gains/phases, locations and alignments as opposed to

the uncorrelated Gaussian error assumptions imposed on the steering matrix (i.e., on

8A, aA.) in [30, 681 which may not be physically justifiable.

5.3 Analysis of ESPRIT under Small Array Per-
turbations

Let the covariance matrix be R = E{zzH}, where z [ and let its eigen-
2X I

decomposition be R = E,A4,Ef + a 2 E,,EH. The ESPRIT algorithm solves for IF

from E,' = E. and estimates the DOA angles from its eigenvalues. Here E, and E.

are the signal subspace eigenvector matrices for the X and Y subarrays, respectively,

[50], see Chapter 4.

Under the general model of Eq. (5.4), the application of the ESPRIT algorithm

will result in perturbation of the eigenvalues of is as the next theorem shows.

Theorem 1 Given the general formulation of the perturbed array signal processing

problem of Eq. (5.4), the perturbed k-th eigenvalue of 4P can be written as

S--k + A4 where AG = CkbT(AMy - aAM,)ek. (5.11)

Here, 4 = exp (- ), bk = eT(rA)+ and ek is defined as the n x I unit vector

with unity value at the k-th element position and zero elsewhere.

Proof The signal subspace eigenvector matrix E, spans the perturbed steering ma-
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trix (PA + dAý)• . Thus. there exists a non-singular matrix T such that:

Es[- E = -(rA+0A.) T. (5.2)

Solving for the least squares solution of 4 and using a first order approximation for

the pseudo-inverse of (PA + OA.,), [19J, see also Section 3.5.2, yields

-= T-' {I + (LA)0(AM - IT. (5.13)

Since the eigenvalues of a matrix are invariant under a similarity transformation, the

eigenvalues of *' are the same as the eigenvalues of

{ I + (rA)+(OAy - aA.)} t (5.14)

Using first order perturbation approximation, [15] and see also Section 3.5.1, for the

perturbed k-th eigenvalue yields

S= 'k + Tker(rA)+(aA• - aA1 )e&. (5.15)

The proof is done.

Having found the perturbed eigenvalues of 'is, the next step in ESPRIT is to solve

for the estimated DOA angles. The next lemma gives a convenient form for evaluating

the mean squared error of the k-th estimated DOA angle.

Lemma 1 Given the perturbed eigenvalue & = & + A4, the mean squared error of

the corresponding estimate of the k-th DOA is

E "Ilk 1I2}') I ( A )'Ej - Re . (5.16)
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Proof: Note that Ck = 6-''n and that ýk = ýk + ý. = k where

Ok = Ok + AOk Using first order approximation and sin(Ok) Ž sin(Ok) + !%Okcos(Ok)

we get

k+A4=(l + /rk)eJ { (A2I -cOS AOk} (5.17)

where Ark denotes the perturbation in the magnitude of the estimated eigenvalue ýk.

Discarding all term higher order terms except for first order, we get

Ark - 2rdcosOk 0 k }(5.18)
Solving for I AOk 12 yields the desired result.

Using Lemma I and Theorem I we get the following corollary.

Corollary 1 The mean-square-error of the ESPRIT doa estimates under model er-

rors:

Ell A~k I') = 2 2rdCOOk {brMOkbZ - Re (bTMlkbk)}. (5.19)

Let Dk = Diag{ak}, a diagonal matrix formed from the elements of ak and the matrix

terms Mok, Mik be specified as follows.

Errors in Sensor Gains and Phases

Mok = DkE{vkvH}DH and Mik = DkE{VkVTI}DT. (5.20)

where

Vk = [e'"'(Aa, - Aa,)+ ±jaeu1(Az, - A01)..

... e34 .m(Aam - Aam) + jam ejorn (A( - AO',)IT. (5.21)

Errors in Sensor Locations

Mok = rDkE{vkvk}(rDk)H and Mlk = rDkE{vkv }(rDk)r. (5.22)
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where

Vk [(AA - Aj;4)sflnOk + (A-111 - V)Ok.

.. .(Ap. - A--/Im)SinOk + (AF,• - AVm)COSOk ]T. (5.23)

Errors in Sensor Pair Alignments

Mok and Mik are as defined in Eq. (5.22-) where

= + 27rdcosO [13, i . (5.24)

Proof: Since the proofs for the different error scenarios follow the same line of

argument we shall present only the proof for the sensor gain and phase error model.

Note however, that

OAX = ArFA and aAY = arA (5.25)

Using Theorem 1, the perturbation in the k-th eigenvalue G is

S= Ykb (ArY- Ar,)Aek

= &•b(rk Y - Ar,)ak (5.26)

No~e however that defining Vk and Dk as in the corollary and Eq.(5.21), we can

re-write the above as

AG = 4kb.DkVk (5.27)

Apply Lemma 1 and the proof is done.

Remark: In general, the matrix terms Mok,Mlk are not diagonal. However in

the case where the X and Y subarrays do not overlap and the sensor errors (i.e.,

gain/phase, location or alignment errors) have zero means and are uncorrelated, these

terms are found to be diagonal and more explicit expressions for Mok, Mik can be
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derived. The next corollary follows from Corollary I under the non-overlapping,

uncorrelated error assumption.

Corollary 2 Suppose that the subarrays do not overlap and that

1. The errors in sensor gains and phases are zero mean, uncorrelated with variance

aa and a,,, respectively. Then

Mok = 2Diag{a2 + or2,,., a 2 + 2 a,2}(5.28)

and
Mik = 2Diag{ei 2 (' (a2 a . .. ea, , • (ao - (5.29)

2. The errors in sensor locations are zcro mean. uncorrelated with variance c2 and

a2 respectively. Then

Mok = 2 (E2) s2 (a28in2Ok + a2COS2 Ok) rrH (5.30)

and

Mik = -(2r) 2 (asin20k + aCO8 Ok) rrT. (5.31)

3. The angle errors in sensor pair alignments are zero mean, uncorrelated with vari-

ance a2. Then

MOk = 21dcosOk ) oWrrH (.5.32)

and

Mik = a2irdcso) rrT (5.33)

5.4 Discussion of Important Special Cases

In the subsequent discussion, it will be assumed that the nominal sensor gains and

phases are unity and zero, respectively. The first part of the discussion deals with
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the one and tow-source special cases under an arbitrary geometry array (the nominal

array geometry must still fulfill t0- ESPRIT invariance requirement of course). The

second part of the discussion is conc.-rned with an arbitrary number of sources under

the assumption of large m (number of sensors) and ULA structure for the array.

5.4.1 Arbitrary Array Geometry - One and Two Source
Case

For non-overlapping subarrays, simple closed form solutions for the one source case

and approximate solutions for the two source case can be found for the errors as in

Eqs. (5.28)-(5.33) and Eq. (5.19). Note that for the one source case. it is easily shown

that

I bi 1'= and Re{bTD bi} I 1 (5.34)m mn

Proof- The pseudoinverse of the one-source steering matrix a, can easily be shown
at

to be equal to . Thus the quantities in Eq.(5.34) are easily found.

For the two source case, the MSE is expressed approximately in a simple form

when the number of sensors in a subarray m is large enough such that I aa 2 1< m.

bk2-1 nd T 2 1
bk - and Re{bkDkbk} I .--. k = 1,2. (5.35)m rn

proof: The evaluation of the pseudoinverse of a two-source steering matrix A is

straightforward albeit tedious. After some manipulation it can be shown that

bt = 1 ( t _ ata2 at) (5.36)

bt = a( 1t )(at-a---'aa) (5.37)

(5.38)

Next assuming that I aH a2 j< m the quantities of Eq.(5.35) are found.
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Thus the same mean-square-error expressions is found for the one and two-source

case. The following results then follow for one and two source signals.

Sensor Gain and Phase Errors

Applying Eq. (5.35) to the case of errors in sensor gains and phases of Corollary

2, we get

Ell LAOk 12 :- ( rdcosO (539)

Remark. Thus, for the one and two source case and large m, the ESPRIT DOA

MSE under errors in sensor gains and phases are affected only by the sensor phase

errors.

Sensor Location Errors

For uncorrelated errors in sensor locations

Ell Ak 121 ý 2 (1\ ( 2szin 2Ok + a2cOS2Gk) (5.40)

m dcosOk/ '

Sensor Pair Alignment Errors

For uncorrelated errors in sensor pair alignments

E{ , 12• 2Ok _ 1- (5.41)
m

5.4.2 Uniform Linear Array (ULA) - n sources

We now turn to the special case of a uniform linear array (ULA) and where the total

number of sensors mo is assumed to be large. There are two cases for the selection

of the ESPRIT subarrays discussed here. The subarrays are chosen from the ULA to

be either non-overlapping (i.e. , m = mo/2, the so-called interleaved array. 135]) or to

have maximum overlapping (i.e. , m = m0 - 1), with the distance spacing between

sensors in a sensor pair kept at d.
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Before continuing on with the evaluation of the various MSE expressions, we first

recall from Appendix G of [62) that for a ULA with m sensors that

lim 1 AtA = I (5.42)n-.o IT

Thus this implies that
1itb•--e'(AIA)-'At -at (5.43)
m

for large m. Also note that

a'D= [11 1]... (5.44)

Having found these useful quantities the examination of the MSE for the non-

overlapping and maximally overlapping subarravs begins.

Non-Overlapping Subarrays

The non-overlapping case involves the evaluation of the expressions in Corollary

2 and the use of Eqs. (5.43), (5.44).

For the case of zero mean, uncorrelated errors in sensor gains and phases it can

be shown that

bT'MokbZ mo/2- + a )and Re{b Mikbk} •_ m0/2 -(. (5.45)

Hence, applying Theorem 1, we find

E Ia•,2,=4)2L' k = ,.n. (5.46)

Proof: The Mok, Mik terms are found from Corollary 2 and yields

Mok 2(a2 + or2)I and Mik = 2(a 2 (5.47)

Using Eqs.(5.43) and (5.44) yields Eq.(5.45).

Similarly, for the other two error scenarios we get
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Sensor Location Errors

For the case of zero mean uncorrelated errors in sensor locations

EllAO I') 4 ( T1k) 2 (SZn2k + o Co'O Ok) (5.48)

Sensor Pair Alignment Errors

For the case of zero mean uncorrelated errors in sensor pair alignments

9
E{I Azk I') - -La} (5.49)

Mo

Subarrays with Maximum-Overlapping

The case with maximum overlapping of subarrays is handled in a similar manner.

Note however that the evaluation of the matrix terms MoA, Mjk is different from the

Non-overlapping case.

Sensor gain and phase errors

For zero mean, uncorrelated errors in sensor gains and phases, it can be shown,

when the subarrays are selected such that they have maximum overlapping (i.e.

M =mo - 1), that

bT 2 2 2 2
_Mokb 2(a a•) and Re{b Mikbk) - -(a2 - 0),. (5.50)

Hence,

E{I 0,2 121 - k = 1,.., n. (5.51)

Proof: Consider the evaluation of Mok. It requires the evaluation of E{vkvt} with

Vk as defined in Eqs.(5.20),(5.21). With maximally overlapping subarrays we get

E 2 -
] 0(

Ejvkvk}=- a + al) (5.52)

L0 -1 2
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Also,
-I2 1 -l

E{vkvk1[ (j - Oo) (5.53)

Thus, from Eqs.(5.20) and (5.43) we have

2 -i O
b'kM~kb; -__( •[-...11 -1 .2 -1 (a2 -a)( ..[it"-.4

1 -1 2

This is equal to the expression for b'.Mokb, found in Eq.(5.50). b.Mlkbk is deter-

mined in the same manner. The proof is done.

Remarks: Thus, when the subarrays are chosen with maximum overlappping, the

MSL of ESPRIT estimates are smaller by a factor of 2mo than when the subarrays

are pon-overlapping. This is intuitively satisfying as in this case, the subarrays have

a larger aperture than in the non-overlapping subarrays case. Again, the MSE are

affected only by the phase errors.

"The expressions for the other error scenario is analogously

Se isor location errors

For uncorrelated errors in sensor locations and with maximum overlapping subar-

rays

E~.~& 2}~3  1 )2 (u~sin'Ok +olCOS2Ok) (5.55)ElI AOk I') ý M2m( dcosOk

Comparison with MUSIC under sensor gain and phase errors

The MSE expressions for MUSIC under random model errors can be found in

[67]. As before, by arguments similar to those found in [62], for the case of zero

mean, uncorrelated errors in the sensor gains and phases, the MUSIC MSE is

E{I AOk 1)} C, n-- )rdsOk ( + ), ,k= 1,..n. (5.56)
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Remarks: It can be seen that the MUSIC MSE is affected by both errors in gains

and phases. In contrast ESPRIT is affected only by phase errors. Furthermore, from

Eqs. (5.46), (5.51) and (5.56) it is clear that the MUSIC MSE is smaller when the

number of sensors mo is large. The fact that the MSE of MUSIC is less than that for

ESPRIT for large mo is also consistent with the results in [63]. Similar observations

for ESPRIT and MUSIC can be made for the other model error scenarios.

5.5 Extension of Results to DOA-dependent Sen-
sor Gain and Phase Errors

In the previous discussions, it has been assumed that the sensor gain and phases errors

are independent of the DOA angles of the source signals. Surprisingly all the previous

results concerning the MSE errors for this error model still holds when this model

is generalized to the case where the errors are dependent on the DOA angles (i.e.,

the errors are different for different angles). Specifically, consider the case where the

errors in gains and phases are different for different DOAs. Then for the perturbed

model in the general model of Eq. (5.4), we write

0Ar = [Aria, I Ara•] (5.57)

and

oAV = [4ra, I"" . f.\a] (5.58)

where the terms Ark, Ark are the first order perturbation terms for the k-th DOA

angle of the X and Y sub-arrays respectively.

Thus Theorem 1 can still be applied using these generalisations for the sensor gain

and phase errors thereby giving the k-th perturbed eigenvalue from Theorem 1 to be

AG = 4bW(Ark - Ark)ak (5.59)
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From this equa t ion we can see that it is in the same form as the DOA independent

error model and hence all the previous discussions regarding the sensor gain and phase

error model would still hold.

5.6 Simulations

Two uncorrelated sources are given at DOA angles -20 and -10' both with unit

power. The X and Y subarrays are taken from a uniform linear array with distance

spacing between the sensors in sensor-pairs taken to be d = ;!. The nominal sensor

gains and phases are unity and zero respectively. Zero mean. uncorrelated errors in the

sensor gains and phases are introduced with standard deviations of 10' and 4 degrees.

respectively. The total number of sensors mo is varied from 6 to 20 and a hundred

trial runs are used to average the MSE of the TLS-ESPRIT (see [50]) DOA estimate

for both the non-overlapping and maximum overlapping case. Their respective Root-

MSE are plotted in Figs.5.1, 5.2 where the solid line depicts the approximate Root-

MSE for the non-overlapping case as computed from Eq. (5.46), the dashed line gives

the approximate Root-MSE for the maximum-overlapping case as computed from Eq.

(5.51) while the symbols '`' and '+' denote the simulation Root-MSE of ESPRIT for

the non-overlapping and maximum-overlapping cases, respectively. The approximate

Root-MSE for MUSIC as computed from Eq. (5.56) shown by a dotted-line and the

simulation Root-MSE for MUSIC denoted by the symbol o' are plotted in these

figures.

5.7 Conclusions

The MSE expressions of the ESPRIT DOA estimates under three random model error

scenarios are derived assuming that the covariance matrix is known. Solutions for the
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Root-MSE of -20 deg. DOA cstimate vs. No. sensors1.2 ,,

0.9.
0.68-

0.4-

0.2 - .. . ..

--------- 
--------------------

0

6 8 10 12 14 16 is 20

No. of scnmrs

Figure 5.1: Estimate of DOA at -20 deg.

ESPRIT MSE with an arbitrary ESPRIT array geometry and one and two sources

are given. Approximate solutions for a uniform linear array (ULA) and arbitrary

number of sources with a large number of sensors are also given. Solutions for both

cases suggest that ESPRIT is affected only by phase errors. Furthermore, it is shown

that ESPRIT with maximum-overlapping subarrays will exhibit lower MSE (which

decreases at the rate -'o) than ESPRIT with non-overlapping subarrays (which de-0

creases at the rate •). When compared to MUSIC estimates (whose MSE decreases

at the rate -1), it is found that MUSIC estimates will generally give a lower MSE

than ESPRIT. The simulation MSE are well in accordance with the analytical results.



69

Root-MSE of -10 deg. DOA estimate vs. No. sensors
1.2

0.4-

--..-.... . ... - - 0 ... -- 0.-

0 
0 0

6 80 12 14 16 18 20

No. of sensors

Figure 5.2: Estimate of DOA at -10 deg.
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A SIGNAL SUBSPACE
APPROACH TO MODEL
ERRORS

6.1 Introduction

Eigenstructure methods such as MUSIC 153] and ESPRIT 150] have gained consid-

erable interest in recent years due to their superresolution capabilities in resolving

closely spaced sources. These methods are hampered however by the requirement of

a known array manifold (i.e. , the collection of array signal vector for all possible

direction of arrival (DOA) angles) as in MUSIC or that the sensor subarrays as in

ESPRIT be matched.

It has been observed that in practice, even after hardware calibration, sensor

arrays still suffer from gain and phase errors, location errors, etc. , [401. The effects

of random array model errors on the DOA estimates, in terms of their mean-square-

error (MSE) and sensitivity, of algorithms such as ESPRIT and MUSIC have been a

subject of many recent studies (see e.g. [13]-[60]). These studies have shown that the

mean-square-error (MSE) of their DOA estimates will increase due to these errors.

As a result, several methods have been proposed for DOA estimation under various

70
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array model errors. For the case of DOA estimation with unknown sensor gains and

phases., a method applicable only to uniform linear arrays is proposed in [38]. In

[79, 39] methods based on the orthogonality of the noise subspace to the steering

vector are proposed. This algorithm involves the computation of the inverse of a

matrix that is close to being singular when the SNR (Signal-to-Noise Ratio) is high

and when the estimates of the DOA angles are close to the true ones, as will be

shown in Section III of this paper. Calibration methods using known DOA angles

and experimental results on an ultrasonic sensor array testbed is presented in [40]. An

approach requiring uncorrelated sources is found in [61 while a maximum-likelihood

based algorithm which requires known field covariance (i.e. . the covariance matrix

with no sensor gain and phase errors) is proposed in [141.

Studies of the Cramner-Rao lower bounds of the DOA estimates in the presence

of random sensor locations errors and an algorithm for DOA estimation under these

errors can be found in [47], [48]. The algorithm in [48] requires that sources do not

overlap either in time or in frequency. An algorithm for estimating unknown sensor

locations is proposed in [31] but requires that the DOA angles be known. An iterative

maximum-likelihood algorithm was proposed in [80].

In this paper, a constraint on the set of sensor gains and phases and DOA angles

consistent with the signal subspace is studied. This constraint is shown to yield

a simple way of computing the sensor gains and phases for a given set of DOA

angles. The issue of uniqueness of the set of sensor gains and phases and DOA

angles is examined. It is shown that when the DOA angles are known, the estimates

of the sensor gains and phases computed using the constraint are asymptotically

unbiased. When the DOA angles are unknown, an iterative procedure incorporating

the constraint is proposed. The iterative procedure is shown to be able to handle

other array error models, notably, errors in sensor locations and errors in sensor-pair
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alignments of ESPRIT-type subarravs. Simulation results are presented to show that

the iterative procedure outperforms conventional ESPRIT under array model errors.

6.2 Definitions and Model Formulation

The following notational convention is used in this paper. All matrix quantities will

be denoted by bold faced capital letters while vector quantities will be denoted by

bold faced small letters. (.)T, (.)t, (.)-1 denote matrix transpose, matrix conjugate

transpose and matrix inverse respectively. The determinant of a matrix is denoted as

Det(.).

The vector norm used here is the Euclidean vector norm denoted as t. • and the

matrix 2-norm will be denoted as 1 • 112. The 2-norm of a matrix M is defined as that

induced by the Euclidean vector norm, [15]:

11 M 112= max II Mu I1 (6.1)Hlu1=1.0

The notation Diag{v} is taken to denote a diagonal matrix formed from the

elements in the column vector v.

We now define the nominal model of the DOA estimation problem.

Let m be the number of sensors in the array, n be the number of narrowband far-

field sources and {xi, yi } be the location of the i - tt1 sensor in the array. The nominal

sensor gains and phases are assumed to be equal to unity and zero, respectively. Then

the nominal model for the nar. )wband array signal processing problem can be stated

as follows:

z= As +7 (6.2)

where z denotes the observation vector from the sensor array, A is the steering matrix

defined by the set of distinct DOA angles {Ok} (the DOA angles are measured with
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reference to the y-axis of the sensor array),

A = i L a(0 ) a(, 0,) (6.3)

Here, the nominal steering vector at DOA angle 0 as

a(O) = (I exp{-j27r(xisin± + ycosO)1...

A...exp{-j--•(x,-IsinO ,_cs)] (6.4)

where A is the wavelength of the narrowband signals, s is the source vector and q

denotes the additive noise at the sensor array.

The following assumptions are made throughout this paper.

(A.1) The array of m sensors is unambiguous. [341, i.e. , it satisfies the prop-

erty that for any collection of k <_ m distinct DOA angles, {Ou}s=1....k, the matrix

[a(0 1),... a(Ok)] has full column rank, where m > n, and n is known.

(A.2) The source covariance matrix Q = E{sst} is positive definite.

(A.3) s and .1 are mutually uncorrelated and are stationary processes.

(A.41 77 is additive white Gaussian with covariance E{r77rt} = all.

From the observation vector z the nominal covariance matrix can be expressed as

Ro = E{zzt} = AQAt + oaI. (6.5)

6.3 Array Processing Under Unknown Sensor Gains
and Phases

III.1 Computation of Sensor Gains and Phases

For unknown sensor gains and phases the array model would be written as:

z = rAs + q (6.6)
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with F being the diagonal matrix of unknown DOA angie independent) sensor gains

and phases where

F = Diag{1, ae,.., _L }

with ai and 0b denoting the i-th sensor gain and phase. respectively. We assume that

all sensor gains are non-zero. Without loss of generality, the first diagonal element in

r is assumed to be unity.

Computing the covariance matrix of z yields

R = E{zzt} = (IA) Q (FA)t 2"I. (6.7)

Taking the eigenvector-eigenvalue decomposition of R gives

R = EAEt + a'E,,E$. (6.8)

where E, denotes the eigenvector matrix of R associated with the signal subspace

spanned by rA, A, is the eigenvalue matrix associated with it and E,• denotes the

eigenvector matrix associated with the noise or null subspace with eigenvalue a2.

Thus, the solution set of sensor gains and phases and DOA angles are constrained

such that

E,E'rA = PA, (6.9)

The constraint of Eq.(6.9) is equivalent to

E.Etra(o,) = ra(O), i = 1,2,. .. , n. (6.10)

By defining Di = Diag{a(0j)}, a diagonal matrix composed of the components of the

steering vector a(01 ), and v as the m x I column vector formed from the diagonal

components of f, i.e. , v = [I a1ejoi . . . a,,,_lejo'-1 JT, we can rewrite Eq.(6.10) as

E s EtDiv = Div,i = 1, 2,.... , n. (6.11)



Since Di is a diagonal matrix composed entirei%\ of the steering vector a0 1 ) (see

Eq.(6.4)), it is also unitary. i.e. DtD, = DID1 = I and therefore

DE.EID v =v.i = 1.2,-...n. (6.12)

In other words, from Eq.(6.12), the vector of the sensor gains and phases must be an

eigenvector with unit eigenvalue of the matrices Wi as defined by

= D!EsEtD,. (6.13)

We note that Wi has n unity eigenvalues and m - n zero eigenvalues. Observe that

the constraint of Eq.(6.9) can now be re-stated as the set of n eigenvector constraints

of Eq.(6.12). This set of constraints will be used in computing the sensor gain and

phase vector v. The following theorem shows how these n eigenvector constraints can

be combined into a single eigenvector constraint.

Theorem 2 Let Di and Wi be defined by Eqs. (6.11) and (6.13), respectively.

Then (v, 1) is an eigen-pair (eigenvector-eigenvalue pair) for W, = D'"s,

i = 1,2, .. , n if and only if (v, n) is an eigen-pair for

n 
nW= W, = E D!E,3EtD,. (6.14)

t=1 i

where v is the vector defined in Eq. (6.11). Furthermore, the eigenvalue n is the

largest eiqenvalue of W.

Proof: It is easy to see that if v is an eigenvector with unit eigenvalue for the matrices

Wi for i = 1,2,.. -,n, then it will also be an eigenvector with eigenvalue equal to n

for W.

So, we need only show that if v is an eigenvector of W with eigenvalue n, then it

is also an eigenvector of Wi with unit eigenvalue.



Suppose that Wv = nv. \Ve write v =: v 6i i. w.iere v has unit norm. Then.

1V 11= n < Z I 1 6.15)

Since the 2-norm of a Hermitian. semi-positive definite matrix is equal to its largest

eigenvalue. we get 11 Wi 112= 1.0. From Eq.(6.15) and the definition of the matrix

norm as in Eq.(6.1), we conclude that

11 WiV 11= 1.0, 1 = 1,2, ,n. (6.16)

Eq. (6.16) is sufficient to ensure that V and consequently v is an eigenvector of W;

with unit eigenvalue.

To show that n is the largest eigenvalue of W, we need to show that 11 W 112= n.

Suppose that WV = nV. Then, from the definition of the 2-norm of a matrix as in

Eq.(6.1), we get

11 W 112ý >n. (6.17)

However, we also have

11 W 112< Z II w, 112= n. (6.1s)
3=l

Therefore, 11 W 112= n.

Remark: Theorem 2 provides a way to compute the sensor gains and phases given

the DOA angles, utilizing the signal subspace constraint of Eq. (6.9). As such.

calibration of the array for sensor gains and phases can be done for known DOA

angles.

The following corollary is an immediate consequence of the previous result.

Corollary 3 The eigenvector v found in Theorem 2 is also an eigenvector associated

with the zero eigenvalue of M, where

n

M = E DtE,,EtDj. (6.19)
i=1
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Remarks: [n [79], an alternative approach was taken to arrive at related results.

The approach of [79] is based on the orthogonality of rA to the noise subspace and

a solution for v was proposed as :

v = e~M eo. (6.20)

where, eo = [1 0... OJT. It is seen from the previous corollary that, at the true

DOA angles, the matrix M is singular. In simulations, it has been observed that

the estimate of this matrix tends to have a large condition number, although it is

usually still invertible (due to noise, errors in DOA estimates, etc. ). In (39] the

orthogonality of rA to the noise subspace is also exploited. From the requirement

that Etra(Ok) = 0, k = 1,2,.., n, the minimum singular vector of the matrix G is

proposed as the the gain/phase vector estimate, where
EtD1

Et D2
G 3 (6.21)

Note that the evaluation of the large matrix G as in [39] is not neccessary. Note that

the right singular vectors of G are the eigenvectors of GtG and therefore,

GG = EED = M (6.22)
i=t

Thus from Corollary 3, the proposed estimate of the gain/phase vector of [391 and

the method suggested by Theorem 1 are equivalent.

At this point however, it is not immediately apparent that the computed eigen-

vector v is unique. This issue is investigated in the sequel.

111.2 Uniqueness Issues



Given the signal subspace constraint of Eq. i6.9). there are three questions that

should be addressed.

First, given A, is the corresponding sensor gain and phase matrix r as constrained

by Eq. (6.9) unique? Second. given the sensor gain and phase matrix r. is the

corresponding steering matrix A unique? Third, is there only one pair of sensor gain

and phase matrix r and steering matrix A which are consistent with the constraint

of Eq. (6.9)?

We examine the first question in the folowing result which gives a sufficient con-

dition for the affirmative.

Theorem 3 If m > 2n - 1 and if all size n subarrays of the array are unambiguous.

then for a given A (as defined by the given set of DOA angles), the set of senso, gains

and phases as constrained by Eq.(6.9) is unique.

Proof Appendix.

Remarks

1. If the condition in Theorem 3 are fulfilled, the matrix W of Theorem 2 would

yield only one eigenvector associated with the eigenvalue n.

2. The condition in Theorem 3 that all size n sub-arrays be unambiguous imposes

certain constraints on the geometry of the array. It is also equivalent to requiring

that all n x n sub-matrices of A be non-singular. For the case of two sources, this

condition is readily met. The determinant of any sub-matrix of A can then be written

as:

Det(akl ak2)"-(asilcak2 -a i2akl)),i k. (6.23)

The quantity in Eq.(6.23) will be zero if and only if: steak2 =ai2akl. After some alge-

braic manipulation, this implies that 01 = 02, and hence would violate the assumption
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that A has full column rank.

The second question is: given the sensor gain and phase matrix r. is the corre-

sponding set of DOA angles (i.e. A) as constrained by the signal subspace constraint

unique? The answer is also affirmative with the condition of (A.1) proving to be

sufficient in this case. This follows directly from the proof for Theorem 1 in [76].

The two questions addressed so far only guarantee that there is a one-to-one

correspondence between the set of sensor gains/phases and the set of DOA angles such

that the constraint is fulfilled. It leaves open the question of how many distinct pairs

of sensor gains/phases and DOA angles there are. This leads to the final question, i.e.

is the set of sensor gains/phases and DOA angles consistent with the constraint Eq.

(6.9) unique? This question is still an open one. We can however, state a neccessary

condition which must be fulfilled.

Neccessary condition: For uniqueness of the pair (r.A) as constrained by Eq. (6.9),

it is neccessary that for all diagonal matrices A and all steering matrices A1 j. A,2,

we have A, 5# AA 2.

Proof Suppose there exists a diagonal matrix A such that A, = AA 2. Thus, if the

pair (r, A1) satisfies the signal subspace constraint Eq. (6.9), then the pair (LA. A2)

which is distinct from the previous pair would also satisfy the constraint.

Remarks:

1. It can be easily shown that a linear array would violate the above neccessary

condition. In [381 and in [79] it has been shown that a linear array would not yield

unique solutions for the set of sensor gains and phases and DOA angles.

111.3 Calibration of Sensor Array

Known DOA angles



If the DOA angles are known a-priorl, then Theorem I can be applied directly. The-

orem 2 provides sufficient conditions for uniqueness of the estimate of the sensor gain

and phase vector. Therefore, the eigenvector associated with the largest eigenvalue

of the matrix W (as defined in Theorem 1) is taken to be the estimated sensor gains

and phase vector. Suppose that N snapshots of the observation vector z are taken

and the covariance matrix is estimated as:

OWz()z(i)t (6.24)11

The estimate of the sensor gain and phase vector in Theorem 1 can be shown to

be asymptotically unbiased. Using first order perturbation analysis. the estimated

signal subspace eigenvector matrix can be written as t. = E, + AE,, where AE, is

the perturbation in the signal subspace due to the finite number of snapshots and

noise effects. Thus, we get the estimated matrix W = W + AW, where

N

AW = -- Dt(AE, E t + EAEt + AEAEt)DI (6.25)
t--1

Let the eigenvalues of W be denoted by {g1} where g1 = n > g2 _> "' > g, and

their associated unit norm eigenvectors by {Vk}. Thus, we have vi = ' where v =
IlVII

[1 oaelej1 ... ami•e-4"'m- ]T. Then the estimate of the sensor gains and phases vector

is written as

V1 + ZAVIV = eT(vT + Avl)eo (6.26)

where &I = [1 &iJ' ... &,,,_Iejl''- ]T, eo = [1 0... 0]T and

AV, = k•{v i W(62}

=2 (n (6.27)

Approximation to first order yields

'C - v+ 11 v 11 Avi- 11 v 11 v(ervieo) (6.28)



Thus, see [23] for evaluation of E{..E,AEj} atid E{AE,}, we obtain

E{•} = v + O(N-') (6.29)

Hence, when the DOA angles are known. the estimates of the sensor gains and phases

as computed from Theorem I are asymptotically unbiased.

Unknown DOA angles

In the case where both the set of sensor gains and phases and the DOA angles are not

known, an iterative procedure which utilizes the constraint Eq. (6.9) is proposed. The

algorithm starts with the initial DOA estimates found by assuming nominal sensor

gains and phases and applying the eigenstructure algorithm. This algorithm can be

either MUSIC or ESPRIT or any other eigenstructure-based algorithm. The iterative

procedure is summarized in the following:

Step I. Given the previous DOA angle estimates, compute the matrix W where W =

Z!, DiEsE Di. Here, Di = Diag}a(Oj)}. Evaluate the eigenvector v associated with

its largest eigenvalue and use it as the updated estimate of the sensor gains and phases.

Step II. Apply an eigenstructure method to estimate the DOA angles. using the up-

dated sensor gains and phases to modify the method appropriately where I' =Diiag{v}.

Step III. Check for convergence of the estimates of the sensor gains and phases and

DOA angles according to some convergence criterion. If converged, stop. If not, go

to Step I.

In the above procedure, Step II specified for the use of ESPRIT can be stated as

follows. The matrix rA is defined as

HA seriB n m

Here r rx o B Bis the nominalisteering matrix of the X-subarray and ý
HereF= 0 y '1
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is the rotational invariance diagonal matrix. \Ve partition the matrix E,. E

Then solve for the matrix If from the equation:

E.,: = ['r,.r'Ey. (6.30)

The DOA angle estimates are then computed from the eigenvalues of XF, [50). In

Section V, the use of ESPRIT in the iterative procedure will be called M-ESPRIT

(Modified-ESPRIT).

6.4 Array Processing Under Other Error Models

Under appropriate assumptions, other model error scenarios can be cast in the same

form as Eq. (6.6). One assumption that is needed is that:

(B.1) The magnitudes of the DOA angles lie within a "narrow" enough angular

region such that their cosine values are approximately equal to each other, i.e.

cosk ý- cosOA = const, for k # i.

Errors in Sensor Locations (see [60]): Under small errors in sensor locations,

denoting the perturbed location of the k-th sensor as (Xk + Axk, Yk + Ay), we write

the model as:

z = .s +, (6.31)

where [ .i(01 ),.. ,i(08,)] w'ith W(0k) = 2ka(0k) and

S= 1-j2irsinOk Diag{lAxi, ... Ax
A

j 27cosOk Diag{Ayl, .. ,Ay,). (6.32)
A

If the sensor location errors are such that AXk <« Ayk, i.e. the error is much less

along the x-axis than the y-axis (which is likely to be the situation in an underwater
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towed array, [671) and using assumption (B.1). we can approximate the matrix ti by

a constant matrix F where

IF : I - j'--Diag{Ay,,......y I xconst.

Thus the model can be written as in Eq. (6.6).

Errors in Sensor-Pair Alignments (see [60]): In ESPRIT, two subarrays, denoted

here as X- and Y-subarrays are configured in such a way that their observation vectors

are related by a rotational invariance diagonal matrix. Each sensor in the X-subarray

is paired with a sensor in the Y-subarray and all of these sensor pairs are aligned

such that their normal face the same direction, (see Fig. 1). A source of error would

then be the misalignments of these sensor-pairs such that they are rotated about

their mid-points by small angles {1 3k}k1 ..... Here m is tri, number of sensors in a

subarray. We write the model as:

z= As+q (6.33)

where

Where 4 is tlie rotational invariance matrix defined by

4 =Diag{exp(-j4--sinO,),....exp(-j•- sinO, ) }

and

fix = [rxIb(01),. .. ,rxb(O.)] (6.34)

HY = ere,b(0,), ryb(O.)] (6.35)

Here
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"Xk=I-J1-dcscqDiag{t:- ... 3m}

and

f'Yk rck=I \ Diag{Ildi, - 0"'.

Here, d is the spacing between the sensors in a sensor-pair and b(Ok) is the nominal

steering vector of the X-subarray at angle Ok.

Under assumption (B.1), we can write the error model in the same form as Eq.

(6.6) with

rx ý- I-j j Diag{/3i,---.i,,m} × const.

ry = I+j' A -Diag{i31,... ,O,} x const.

Thus, the problem of estimating DOA angles under the scenarios of errors in

sensor locations (where errors in the y-axis dominates) and where the sensor-pairs

in ESPRIT type of subarrays are mis-aligned can also be handled by the proposed

iterative algorithm also.

Remark: The situation where more than one type of errors are present can still be

handled by the iterative procedure as their combined error model would still be of

the same form as that of the single error model.

6.5 Simulation Examples

Example 1 (Errors in sensor gains and phases)

The ESPRIT subarrays used in the simulation experiments are configured as in

Fig. 4.3. The total number of sensors in the array is eight, i.e. m = 8, and the spacing



between sensor pairs is taken to be d = 7. Nominal sensor gains and phases are unity

and zero respectively.

There are three uncorrelated sources at DOA angles of -30, +5, and +20 degrees.

all at the same SNR level. The means and MSEs are averaged over two hundred

trials. ESPRIT and M-ESPRIT are applied with fifty iterations of M-ESPRIT per

trial.

Fig. 2 shows a typical plot of the MSE vs. SNR for the estimate of the DOA at +20

degrees. The solid and dashed-lines denote M-ESPRIT and ESPRIT, respectively.

Four hundred snapshots are taken per trial and errors are introduced such that the

gains are perturbed by up to 8 percent of their nominal values while the phases are

perturbed by up to 9 degrees.

Next, the SNR is fixed at 20 dB and the snapshot size (N) is varied. The sensor

phases are perturbed by up to ±17 degrees (with zero nominal phase) and the sensor

gains by up to 8 percent of the nominal gain of unity. Fig. 3 shows a typical plot of

the MSE for the estimate of the DOA angle at +20 degrees. As before, the solid and

dashed-lines denote M-ESPRIT and ESPRIT, respectively.

M-ESPRIT is able to provide better DOA angl- estimates than conventional ES-

PRIT as can be seen from Figs. 2 and 3. Our experiments also suggests that the

DOA angle estimates of M-ESPRIT show smaller bias as opposed to ESPRIT esti-

mates which demonstrate significant bias.

Example 2 (Errors in sensor gains, phases and locations)

There are three uncorrelated sources at DOA angles of -20, +5 and +20 degrees all

at SNR of 30dB. Five hundred snapshots are taken per trial and the means and MSEs

of the DOA estimates averaged over two hundred Monte Carlo trials are evaluated.

The sensor locations are perturbed in the y-axis by up to 0.OA while no error is
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induced in the x-axis. and the sensor gains and phases are perturbed by up to 10

percent and ± 90 d-grecs respectively.

The M-ESPRIT algorithm (two hundred iterations per trial) and the conventional

ESPRIT algorithm are applied and the estimated means and root-MSE of the DOA

estimates are tabulated in Table 1. As can be seen from Table 1, the iterative al-

gorithm is able to give better DOA estimates under these combined errors than the

conventional ESPRIT algorithm.

6.6 Conclusions

The problem of array signal processing under unknown sensor gains and phases is

studied. A signal subspace constraint is used to yield a simple way of computing the

sensor gains and phases from a given set of DOA angles. The question of uniqueness

of the set of sensor gains and phases and DOA angles is discussed. When the DOA

angles are known a-priori, the estimates of the sensor gains and phases are shown to

be asymptotically unbiased. For the case where the DOA angles are also unknown, an

iterative procedure is proposed. The approach in the paper is shown to be applicable

to two other model error scenarios under appropriate assumptions. These scenarios

are: unknown sensor locations and unknown rotation of sensor pairs in ESPRIT type

subarrays. Simulation experiments show that the iterative algorithm provides better

DOA estimates than does the conventional ESPRIT.
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Proof of Theorem 3 We argue by contradiction. Suppose. for a given A. that there

exists two sets of sensor gains and phases as defined by the matrices r 1 and r 2 such

that r 1 :A r 2 and they both fulfill Eq.(6.9).

Then E 8 lEtrjA = rjA and EEtr 2 A = [2A This implies that rank[AIAA] =

n, where A =L'r-2 = Diag{ 1, A,, -', A,,,, ). Thus,

rank[A - AAIAA] = n (6.36)

Writing out this matrix explicitly, with A [aik], wve have

[0 ... 0 1 ... 1

[A -AA IAA ] - (1 - A1)alj *(,1 -la)a ,, ... alal'n

(I1- A,.-i)am-l.. "" (1-- Am-I)a,,-l, Am,,-la.•-. "'" Am,-la•-,n
(6.37)

Consider the (n + 1) x (n + 1) sub-matrix of Eq.(6.37) found by taking the block from

the first row to the (n + l)-th row and the first column to the (n + l)-th column. We

can write this as:

0 0 1

submatrix[A - AAIAA] = - : . (6.38)

(1 - A, )a n.t " . (1 )a n.n , na,.j

This sub-matrix is singular from Eq.(6.36). Taking the determinant and using the

fact that every n x n sub-matrix of A is non-singular, we conclude that

1I(1 - A.) = 0 (6.39)
i=1

Hence, from Eq.(6.39), for at least one i, it must be that Ai = 1.0. Using the same

reasoning repeatedly as in eqs.(6.37)-(6.39), we can show that at least (m - n) of the

A, terms are equal to 1.0.



We next show that the remaining (n - 0) A, terms are also equal to 1.0. \Vithout

loss of generality we can assume that the lirst om - n) A, terms have been shown to

equal 1.0. We now consider the matrix [A{AA] with these (m - ri) unit values of A,

plugged into the matrix.

Consider the (n + 1) x (n + 1) sub-matrix of [AfAA] found by taking the block

from the first to the (n + 1)th column and the (m - 2n + 1)th row to the (m - n + 1 )th

row. Note that the assumption that m > 2n - I ensures that there are enough rows

such that this is possible. Then[ am--2n+l1. am-2n+ln am--2n+l,l

submatrix[AIAA] = (6.40)
am-n,1 • am-n.n am-n.1

a mrt-n-b1, .. a Om--n+l1,n A\rn-n+l arn-n+1,1

Subtracting the last column vector from the first column vector in Eq.(6.40) we get

the matrix:

0 amr-2n+1,2 """ -2n+l.n am-2n+l,l

"1"(6.41)
0 am-n,2 [.(1 a.-,, am-n.-

(I - A,,_,,+I)a,-,,+Ij a,,,-n+l ... am,-.n+l,n Am.-+a.-,+I.J

Taking the determinant of Eq.(6.41) which is equal to zero. and using the fact that

any n x n sub-matrix of A has to be non-singular, we get the result that either

amn-+liA = 0 or Am,,,-+i = 1.0. Since all the elements of A have unit magnitude as

can be seen from Eq. (6.4) implying a-.n+i,1 34 0, we conclude that Am._n+l = 1.0.

Using similar reasoning, we can show that

Ai= 1 .0,i=m-n+1 ... ,m-. (6.42)

Hence, we can write A = I or equivalently ri = r 2 . This contradicts our initial

assumption that r" o r 2 . 13
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TABLE I

Mean (deg.)
True DOA -20 +5 +20
ESPRIT -14.279 11.690 43.372J

M-ESPRIT -18.949 2.052 21.290 I
Root-MSE (deg.)

True DOA -20 +5 +20
ESPRIT 5.721 6.690 23.372

M-ESPRIT 1.060 2.976 1.311

MSE of etimgm of DOA a +20 deg. with M-ESPRIT and ESPRIT vs. SNR

0 ---------------------------------------------------------------------

-o-

S-20-

-25

-30

-35-

to 15 20 25 30 35 40 45 50

SNR (riQ)

Figure 6.1: Plots of MSE DOA estimate at +20 degrees vs. SNR



MSE of estimse of DOA aa +20 deg. with M-ESPRrT and ESPRrT vs. N
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log(N)

Figure 6.2: Plots of MSE DOA estimate at +20 degrees vs. N



7

A BLIND IDENTIFICATION
APPROACH TO SIGNAL
SEPARATION

7.1 Introduction

In recent years, there has been interest in wideband array signal processing - i.e.,

the processing of wideband signals obtained from arrays of sensors. This is of interest

in such diverse areas as in radar and sonar processing, where parameters of inter-

est include the direction-of-arrival (DOA) of multiple signal sources, their respective

power, signal copy, time delay estimation, or as in speech processing where the de-

sired speech source signals are extracted from corrupted or mixed recordings from

microphone arrays (the so-called 'cocktail party problem'); or as in biomedical signal

processing where EMG recordings from multiple sensors are processed.

In practical applications, robustness is often a major problem for many modern

array signal processing techniques. Most algorithms assume certain array structure

with known or accurately calibrated characteristics such as sensor gains/phases and

locations. In reality, errors always present in actual physical systems and as a result

these algorithms may not perform as well or even fail completely [601,[68, 691.

91
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Consider the teleconference scenario where an array of microphone is set before

an audience. The speakers may be distributed near or far away from the array and

there may be interference sources such as fan hum, music, etc. In this situation it

is not realistic to assume that the speaker locations are known a-priori. Note also

that the relative powers of the speakers would be stronger when they are directly

facing the array and not as strong otherwise. This scenario shows that the source

locations and sensor gains cannot be assumed to be known. Thus there is a need for

new algorithms or approaches that is robust to these types of uncertainties.

7.1.1 A New Approach and Its Features

In this chapter, a new method based on the so called blind identification is proposed

for the source estimation (signal copy) problem. By exploiting signal characteristics

such as statistical independencies, the proposed approach allows maximum uncertain-

ties associated with sensor array and signal propagation environment. The key feature

of the proposed algorithm is its robustness against the following model uncertainties:

9 Unknown Sensor Gain.. Complete calibration of sensors may be costly. Sensors

may have different gain patterns in different directions. While most methods

assume known sensor gains, the proposed method is not only insensitive to gain

uncertainties, it also provides estimates of array sensor gains.

* Unknown Combinations of Near-Field and Far-Field Sources: The proposed

method can deal with near-field and far-field sources simultaneously. It offers

source location estimates for near-field sources and direction of arrival estimates

for the far-field sources. Such capability is potentially important in applications

such as robotic vision.
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9 Unknown Combinations of Narrowband and 1l'ideband Sources: The sources

may be a combination of wideband signals such as voices and narrow-band

signals such as humming noise with unknown frequency locations. The proposed

approach is able to estimate each source and in fact identify their frequency

characteristics (narrow-band or wideband).

* Unknown Source Spectral Characteristics: The sources can be overlapping or

non-overlapping in their unknown power spectra. The proposed approach fully

utilizes the entire freqency band to obtain joint estimates of the signal location

and channel parameters.

* Unknown number of signals: The proposed method does not assume that the

number of signals is known. A new clustering-based technique is proposed to

determine the number of sources. Such a method is crucial when the number

of sources can not be determined at a particular frequency. As an example,

consider the case where there are four sources, two of which have overlapping

spectra disjoint from the other two. Then any estimation of the number of

sources at any particular frequency would yield less than four sources.

The proposed method will be demonstrated both for wideband scenarios such as

separate multiple voice sources and for narrowband plus wideband scenarios, involving

near-field and far-field sources and different array uncertainties.

7.1.2 Related Works

In radar and sonar applications, the directions-of-arrivals of multiple sources are of

much interest. A variety of eigenstructure-based methods have been developed for

estimating DOAs of these sources and when the model assumptions of these methods

are satisfied, they are capable of giving good estimation performance. see eg., [53, 501.
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However. in the presence of sensor errors or model uncertainties, these metLuds would

deteriorate or fail altogether.

Sensor errors in the actual physical array system can arise from changes in the envi-

ronment in which the sensor array is placed. the degradation of electronic components.

calibration errors which result in uncertainties in the sensor gains and phases. As a re-

sult of this, several eigenstructure-based approaches have been proposed for the DOA

estimation problem under sensor errors for narrowband sources. see [81, 80, 6]. These

methods are usually iterative in nature and involve some sort of multi-dimensional

search over the space of the unknown sensor parameters and DOA angles. Conse-

quently, these methods are computationally intensive and may suffer from ronvergence

to local minimum solutions.

Microphone array processing have been proposed for speech de-reverberation. en-

hancement and noise reduction, co-channel interference rejection and extraction of

desired speech sources from noise or jammer contaminated observations, see [25, 36,

32, 12, 16, 57, 22]. The use of microphone arrays has a host of intriguing and excit-

ing applications such as a front end for automatic speech recognition, teleconferences

and hands-free cellular telephony in cars. Most of these approaches are based on

the beamformer concept in array signal processing, where the individual outputs of

the array are delayed and summed in such a way as to produce a narrow beam of

sensitivity towards the direction of the desired signal. These approaches however re-

quire model assumptions that are not easily satisfied such as identical microphones.

ideal point sources for the source signals, calibration of the microphone array, known

source locations or in the far field, etc.

This chapter is organized as follows. After pi,-senting the problem models and

assumptions in Section 2, we summarize certain results in blind identification and

estimation of independent sources in Section 3. In Section 4. we outline the proposed
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approach and give detailed discussions. \Ve present simulations separating multiple

voice sources to demonstrate our approach. We conclude with some comments on

some variations and future work.

Throughout this chapter, we assume the following notational convention: All

matrix quantities will be denoted by upper case bold faced symbols while vector

quantites will be denoted by lower case bold faced symbols. Also, the symbols (.)C,

(.)t, (.)1 and (.)# will denote the transpose of (.), the complex conjugate transpose

of (.), the inverse of (.) and the pseudo-inverse of (.) respectively.

7.2 Models and Assumptions

The problem of estimating multiple sources is illustrated in Figure 7.1. From the

k-th Source Source

•~~ ... ......
,

djk
Rk .

Ok dik

i-th Sensor

$e'sigure 7.1: Estimation of Multiple Sources

signals collected by m sensors {xi(t)}, our objective is to estimate the n sources
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{si(t)}. A wideband model is given in time domain by

n

xi(t) =E aikSk(t - r,) + (t), i = 1,2, , m. (7.1)
k=1

where

xi(t): received signal at the ith sensor.

m: the number of sensors (known).

aik: (unknown) channel coefficient that characterizes attenuation of the kth source at

the ith sensor as the results the sensors and sources directionality, sensitivity,

gains, geometrical spreading, etc. Without loss of generality, the first sensor is

taken as a reference and alk = 1.

sO: the k-th (unknown) source signal.

rik: (unknown) time delay at the i-th sensor of the k-th source. Again, the delays are

taken as the relative delays with respective to the reference sensor and Tik = 0.

The delays are related to the path difference given by rik -= 24-1, where dik is the
I C

path difference of the k-th source to the i-th sensor (relative to the reference

sensor) and c is the speed of propagation. See Figure (7.1). The time delays

are due to the spatial distribution of the sensors and source locations (i.e., the

DOA angles 0 k and ranges Rk). Propagation of the signals through the channel

can be far-field or near field or any combination thereof.

n: the number of sources (unknown).

The corresponding frequency domain description of the above model is obtained

by taking Fourier transform of the time domain model

x(w) = A(w)s(w) + q(w) (7.2)
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where, x(w), s(w). and q(w) are the Fourier transform of x(t),s(t) and 77(t), respec-

tively, and
1.0 ... 1.0

Aa21e-JWt21 ... a 2ne-Jwn (7.3)

aem 1-r'l ... aone-)Wmrmn

The problem then is to estimate the gains aik (the channel coefficients), delays rik

(or DOA angles Ok and ranges Rk) and the individual signals, sk(t).

Remarks: Considerable simplification of the problem can be achieved if the

sources are all narrowband. However. most signals of interest (such as acoustic ones)

are not narrowband signals. Consider the following case for a speech signal. For a

speech signal with a bandwidth of 4kHz, the time delays would have to be much less

than .25 milliseconds to meet the narrowband assumption. At a sound velocity (in

air) of 340 m/s, this implies that the path lenghts of the signal to any two sensors

cannot differ by more than .085m. Thus, in order for the narrowband assumption to

be valid, all the sensors within the array must lie within a distance of 8.5cm or less

from each other! It is therefore essential to consider the wideband case.

The key assumption used in the proposed approach is signal (statistical) inde-

pendency. Although such an assumption appears rather restrictive, it holds approxi-

mately among signals from different sources. It is also important to note that, from

our simulations of using different speech and music signals, our algorithm performs

well even if there is no proof that the signals involved are statistically independent.

Specifically, the assumptions adopted in this chapter is given as follows.

Basic Model Assumption

Al: s,(t)'s are zero-mean and mutually independent.

A2: i~j(t)'s are zero-mean Gaussian noise independent of s,(t)'s.
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7.3 Proposed Approach

The central idea of thc- proposed approach stems from the idea of applying blind

identification techniques to the frequency domain model

x(w) = A(w)s(w) + i(w) (7.4)

where matrix A(w) contains the informatio i of source location and channel charac-

teristics as specified by (7.3). The source can then be extracted from the observation

by applying least-square methods to (7.4). A schematic diagram of the proposed

approach is shown in Figure (7.2).

Signal and Channel / ignal and Channel
x(t) x(S) Parameter Estimatio arameter Estimai-m

I Based on a Single td on All

Frequency requencles
A A ýClustering Algorith

st)

Figure 7.2: Schematic Diagram of Propbsed Approach

We must, however, pay special attention to certain subtleties due to the fact that

the spectra of the source signals are unknown. Because each source may or may

not have energy at a particular frequency, not all the source locations and channel
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parameters can be estimated. The challenge is to obtain estimates at each frequency

and combine them to form joint estimates. We shall next discuss the functions of

blocks in the schematic diagram.

7.3.1 Blind Identification and Estimation of Independent
Sources

The so-called blind identification and estimation deals with the problem of estimat-

ing source signals when the transmission channel is unknown [10. 70]. This seemingly

ill-posed problem is approached by exploiting the statistical properties of the source

signals. In the context of signal estimation problem considered in this chapter. the

statistical independency of different sources enables us to allow various model uncer-

tainties as outlined in the Introduction.

The basic identification and estimation (blind) problem considered in this chapter

involves a linear model

x(t) = As(t) + n(t) (7.5)

where x is the observation random vector, matrix A corresponds to the channel

characteristics, s(t) is the source random vector, and n(t) is the measurement noise.

The objective of blind identification and estimation is to identify and estimate both

A and s(t) from x(t). In particulai, we deal with the folowing questions:

Given x(t) generated from independent source s(t), nonsingular channel parameter

matrix A, and additive Gaussian noise n(t),

Q1: to what extend A and s(t) can be determined?

Q2: how to estimate A and s(t).

These questions have been resolved recently [73], [74), and their answers are sum-

marized in the following.
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Theorem 4 The channel parameter matrix A is uniquely determined by the obser-

vation statistics up to post multiplications of a diagonal matrix and a permutation

matrix if and only if all except perhaps one source are non-Gaussian.

An important implication of the above theorem is that the waveforms of the inde-

pendent sources can be recovered from the observation without knowing the channel

as long as they are non-Gaussian. Although scales and orders of these signals can not

be determined without further information, it is hardly a problem in practice since

the waveforms of these signals are obtained. Such kind of identification is referred to

as waveform- preserving blind identification.

There are different methods of determining the channel parameter matrix from

the statistics of the observation. Using the fourth-order moments, Cardoso proposed

the fourth-order blind identification algorithm (FOBI) [101. The FOBI algorithm has

the restriction that the source signals must have distinct kurtoses and be noise-free.

A slight extension can be obtained when the noise is spatially white or the noise

.tatistics are known [70], [61]. Algorithms using cumulants of arbitrary-orders was

presented in [741. These algorithms eliminates the restrictions on the source and

applies to arbitrary unknown Gaussian source.

7.3.2 Source Location Estimation using a Single Frequency

At a fixed frequency w0 , we can estimate, by a applying blind identification method,

K columns of matrix A(w) that correspond the AK signals having energy at Wo,. Con-

sequently, we obtain the estimates of the gain factors {ai, } and the phases {C-I, }

corresponding to these K signals. The key question addressed here is how to infer

the locations of the K sources from the estimates {e-w°h }.

There are two ways to go about estimating the source locations from the estimates
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of {e-lr', }, found by using blind identification. The first approach applies when a

certain uniqueness condition imposed on the sensor and source holds. In [591, several

closed form solutions for the source locations given the relative path differences is

proposed that may be readily applied to the present problem. Note however, that the

relative path differences are determined from the estimates of {e-1 } which limit

the path difference values (to avoid phase wrapping) such that

S_ Imax{I dik 1} < 7r. (7.6)
C

Unfortunately, it is impossible to verify the above condition since dik's are unknown.

A more useful (sufficient) condition can be obtained easily as

S•r < -,, (7.7)
C

where r is the maximum radial distance of the sensor array. The above constraint

can of course always be satisfied if only the low frequencies are used. The advantage

of this method is its simplicity while the disadvantage is that the entire frequency

range is not fully utilized. Note also that the sources may themselves not contain

much energy at low frequencies. Thus, a method that is able to exploit the full range

of available frequencies is more attractive, and the next subsection presents one such

method.

Source Location Estimation Method

Instead of obtaining source location estimates from the relative path differences, this

method obtains the source location estimates from {je1C } directly, and hence avoid

the problem of phase wrapping.

Consider the sensor pair (i,i) located at the same radial distance and separated

by an angle of 180 degrees, see for example Fig. 7.3. This type of sensor pair can be
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Figure 7.3: Sensor Pair

found in common array configurations such as ULAs (uniform linear arrays), circular

arrays and cross arrays. Then their path differences (relative to the reference sensor

at the origin) are
dik = aisir(Ok + Ibi) - CO 2)• o (Ok + 60). (7.8)

dik -etisin(Ok + 46j) - .)"Lcos'(Ok + 00). (7.9)

where Rk denotes the range of the k-th source relative to the reference sensor, 0k. is

the DOA angle of the k-th source relative to the reference sensor (measured from the

vertical axis), cii is the radial distance of the 1-th sensor from the reference sensor and

Oi is the angle position of the i-th sensor relative to the reference sensor (measured

from the horizontal axis).

Both the path differences in the (i,•) sensor pair have the same curvature term

-cos 2(Ok + Oj). This fact is used in decoupling the search for the DOA angles from
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the search for the source range.

Suppose that the application of blind identification at a frequency of "; yields the

following for the steering elements of the (i, 1) sensor pair.

ai(0k, Rk) = [( + )} " CS(Ok + 00)1 (7.10)

We ignore the gain terms since they appear in the magnitudes of the steering elements

and can be normalized to unity once estimated. Then consider the problem of fitting

the steering vector for the (i,Z) sensor pair, say ci(O, R), with the estimated blind id.

estimate, using

fi(O, R) =11 c'(O, R)ai(Ok•. R) 112 (7.11)

where
r[erp{-j~aisnO ¢)]z~ ,•sin(D + €i)} 1 wai2

c,(O, R) = + O - exp{Ojc.aiosl ( + €,)} (7.12)L ~P{)jin"(G Ji~ c 2R

Note however that the terms involving R and Rk are eliminated in the above fitting

function since they appear as scaling phases and have unit magnitude. The function

is thus dependent only on the angle 0 and attains a maximum value at the angle

0 = Ok. For L sensor pairs we define the fitting function as

L
f(O) = II c(O)fi 111 (7.13)

where

C [(O) ezp{-j, sin (O i,} 1 (7.14)
- exp{jýaisin(O + 0)})

and fij denotes the blind identification estimate of ai(Ok, Rk). The DOA estimate for

the k-th source is then found by

Ok = arg {max f(O)} (7.15)

Remark: The k-th source range can be estimated once the k-th DOA is estimated

by defining a fitting function similar to the one above.
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The k-th source range can also be estimated independently of the DOA angle

estimate through the use of a cross-array structure, see Fig. 7.4 for an example of

a cross-array. In this case the search for the range can be conducted in parallel

Ati-h Sensor

"i--t Sensor

Figure 7.4: An Example of a Cross Array

to the search for the DOA angle. Note that the cross-array can be viewed as con-

sisting of two sensor pairs, which we shall denote as (i,) and (Z", -') with locations

({ai, Oi}, {ja,, ,-ir}) and ({a,, Oi+7r/2}, {a,, 0,- r/2}) (in polar form), respectively.

Thus the path differences for the (i, ) sensor pair is as found in Eqs. (7.8), (7.9) while

the path differences for the (i', -') sensor pair are found to be

a,
dik -aicos(Ok + 0i) - 2-Rsin'(Ok + 00-). (7.16)

2Ri2

d•k= .-a~cos(Ok + ck) - -•-sin 2 (Ok + c~). (7.17)2Rk
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Writing the steering elements of the sensors within the cross-array

exp{-j-•aisin(Ok + (i) expf ' cos2 (Ok + ',)}
expfj-aiszin( Ok + Oi )}expf 'To2 • i}(.Sai(Ok, Rk) C + ) p Sn(Ok + ( (7.18)

expl- j'acos(Ok + o,)}exp{j .j-jsin 2 (Ok + Pi)}

Define a 2-by-i vector bi(Ok, Rk) from ai(Ok, Rk) by the following procedure: The

first element in bi(Ok, Rk;) is set equal to the product of the first and third elements

of ai(Ok, Rk) and the second element in bi(Ok, Rk) is set equal to the product of the

conjugates of the second and fourth elements of ai(Ok, Rk). Writing out this vector

explicitly,

bi (Ok, Rk) = 1 exp{-j--rai(sin(Ok + (N) + cos(Ok + Oi))} (7.19)L p{ . Q
2a} j

Thus the range has been decoupled from the DOA angle and using a similar fitting

function as previously, we estimate the range for the k-th source as

Rk = arg {mnaxg(R)} (7.20)

where

g(R) =11 d!(R)6i, 12  (7.21)

and 6i denotes the blind identified estimate of bi(Ok, Rk) while

d,(R) = 2- (7.22)exp{ -J c 2R

Thus the estimation for the DOA angle and range of the k-th source can be performed

in parallel since they are decoupled from each other.

7.3.3 Source Location Estimation using a Range of Fre-
quencies

At this stage of the proposed approach. a clustering technique is applied to the mul-

tiple estimates of source locations and gains found for a given range of frequencies.
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The final source locations and gains estimates are computed as the averages of the

estimates found within the clusters.

There is a question of why processing over a range of frequencies would be ad-

vantageous compared to that of just using a single bin. The obvious answer would

be the fact that more information is available through the use of multiple frequency

bins as opposed to using just a single bin. Furthermore, clustering of the multiple

source estimates found over a range of frequencies is a natural way to consolidate

the information contained in the given range of frequencies. The reasons for this are

twofold.

First, at any particular frequency, the sources may not be all present. Thus. in

order to estimate all the source locations and gains, it necessary to consider more than

just a single frequency bin. Suppose that at a particular frequency bin, K sources are

present. Then only the source locations of the K sources present can be estimated.

At the next frequency bin, say M sources are present and their source locations

estimated. The sources at this frequency may or may not be found in the previous

frequency. Note however that the sources that are present at both frequencies would

give source location estimates that are close to each other (ideally, the same source

locations), while the location estimates of the sources that are absent at the previous

frequency would be further away (disjoint from the other sources). By sweeping

through a range of frequencies and clustering the resulting source location estimates,

then all the source locations may be found from the clusters.

The second reason for clustering has to do with the effect of observation noise on

the estimates and the varying relative source signal powers over a frequency range.

The quality of data at different frequencies may vary significantly over the range of

frequencies on which the blind identification algorithm is applied. This is because that

the source signals may have different power spectral characteristics, thus varying the
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relative energies of the source signals at different frequencies. Note however that at

the frequencies where the signal powers are strong (i.e.. high SNRs), the corresponding

source location estimates found through blind identification should be near to the true

parameter values. The frequencies where the signal energies are small or almost non-

existent would yield parameter estimates that are erratically distributed (the "outlier

estimates") since the information contained within those frequencies are strongly

dominated by the spurious observation noise power. Note that the noise components

at different frequencies are mutually uncorrelated and therefore it is not likely that the

"outlier estimates" would map to the same locations for different frequencies. Thus

the application of blind identification over a range of frequencies would yield clusters

of estimates which are near the true parameter values and other *outlier' estimates

which are erratically distributed. It is clear then that any post processing of the

multiple source location estimates would neccessitate the omission of the "outlier"

estimates which fall outside these clusters.

We present one clustering technique in the following which is simple and have

found to work well in simulations. Note however, that there are various other clus-

tering techniques found in pattern recognition. see [371, which may be used at this

point.

One clustering method is by the use of a 2-D histogram of the multiple estimates

of the source locations. The modes (i.e., the bins within the histogram where the

highest count of source location estimates fall into) of the histogram is selected as the

center of the clusters. This method is summarized below.

Clustering via 2D Histogram

* Collect all the source location estimates into a 2-D histogram. The number of

source signals can be found by determining the number of clusters present in
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the 2-D histogram of the source location estimates. Find their modes.

9 For a specified cluster size (AO and AR) of the modes, pick up all the source

location estimates falling within such a cluster size and their corresponding

gains. Compute the averages of these estimates.

This averaging of the estimates falling within a cluster may be viewed as a weighted

averaging of all the parameter estimates found in the range of frequencies of interest.

That is,

for the k-th source location

jk = +ZFIk1j(WL) (7.23)
'k I

Rk = 41 RIkR(wt) (7.24)

for the k-th source gains

--= I- Z g(W,) (7.25)

where

(0(wj), R(w,)): Source location estimate found at frequency W1.

g(wj): Vector of gain estimates found at frequency w.

ANk: k-th source location cluster.

Ilk: Indicator function defined as follows

I 1, if(E(w),()) EAk (7.26)
= {= 0 otherwise.

Here Njk = E Ilk.

Remark: Other weighting strategies may be employed instead of the indicator func-

tion weights given above, such as one employing variable weights which give greater
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weight to the estimates closer to the cluster centers and less weight to estimates

further away.

Note that the post-processing of the estimates through clustering as proposed

above is fundamentally different from the coherent approach as in [75) and the inco-

herent approach as in [78]. Both the approaches in [75. 781 applies pre-processing of

the observation data and not post-processing of the parameter estimates. In [75], the

observation data at different frequencies is focused onto a single frequency while in

[781, the observation data is averaged across different frequencies.

7.3.4 Source Separation

This is the stage where the final source location and channel gains estimates is used

to extract the source signals from the observation.

The source signal vector s(t) can be estimated in a number of ways. The most

straightforward way is to use the estimates of the gains and source locations, {aik, Ok, Rk},

to solve for S(w), i.e.,

S(w) = A(w,)#X(:) (7.27)

An alternative approach to extract the different source signals using the estimated

source locations and gains would be to use spatial filters (beamforming approach) to

extract the individual signals, see [83] for the various beamforming approaches that

may be applied.

7.3.5 Summary of Proposed Approach

In summary, the proposed approach proceeds in the following manner.

Proposed Approach

1. Apply FFT to data x(t).
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2. At the current frequency, estimate the number of sources present in the obser-

vation. This can be accomplished by examining the singular values of the covarince

matrix or through such criteria as found in [77. 26].

3. Apply Blind Identification to X(w). The locations of the signal sources are

estimated from the estimated matrix A(w) and the channel gains are estimated from

the magnitudes of the same matrix. Collect these estimates of gains and source

locations.

4. Go to the next frequency and return to Step 2, unless the maximum desired

frequency has been exceeded. If so, go to Step 5.

5. Apply a 2-D clustering technique onto the collection of source locations. Such

clustering methods can be a simple histogram or the methods as found in pattern

recognition, [37]. The number of sources is estimated from the number of clusters.

Using these clusters, estimate the averages of the various source locations and asso-

ciated gains.

6. Using estimates of {aik,Ok,Rk}, extract {S,(w)} from X(w), i.e, S(w) =

7. Inverse FFT to obtain s(t).

Discussions

Unknown Sensor Gains: As is clear from the previous section. the proposed ap-

proach is able to estimate the unknown sensor gains.

Unknown number of signals: The number of sources is estimated after clustering

is performed on the source location estimates. Thus the total number of sources

present over the whole range of frequency bins is determined. This is as opposed to

the estimation of number of sources at any particular frequency bin which may be
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less than the total number of sources. As an example. consider the case where there

are four sources, two of which have overlapping spectra disjoint from the other two.

Then any estimation of the number of sources at any particular frequency would yield

less than four sources.

Unknown Source Spectral Characteristics: The proposed approach is not de-

pendent on the spectral characteristics of the sources. Thus, the sources can be

overlapping or non-overlapping in their power spectra.

Unknown Combinations of Narrowband and Wideband Sources: The sources

may be a combination of narrowband and wideband signals. Our approach is able

to still cluster the narrowband sources even though the number of points within the

narrowband source cluster is relatively less than the number of points within the

wideband sources. This is achieved through the use of time segmentation of the

observation data, i.e., by exploiting the fact that the number of points within the

narrowband cluster may be increased by using multiple observation intervals. Note

that the 'outlier' e~timates would tend to distribute themselves erratically with dif-

ferent observation intervals while the 'good' estimates would tend to stay near the

true estimates.

Unknown Combinations of Near-Field and Far-Field Sources: Source loca-

tion estimation is performed for all sources, regardless of whether they are far-field or

near-field. Thus the fact that the sources may consists of both far-field and near-field

sources is immaterial to the proposed approach.
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7.4 Simulations

7.4.1 Simulation 1: Three Near Field Sources

The array is a cross array consisting of five sensors located at (0,0) (reference sensor),

(.5,0), (-.5,0), (0,.5), (0,-.5) meters. Three source signals. one of interfering white

noise with power equal to 2.0, while the others are a male speech sequence and a

female speech sequence, both of unit power. The interfering white noise signal is

located at a range of 5 meters and angle 20 degrees, the male speech signal is located

at a distance of 1.5 meters and angle -5 degrees while the female speech sequence is

tocated at a distance of 1.5 meters and angle 20 degrees. Additive observation noise

is taken to be AWGN (additive white gaussian noise) with variance equal to (.) 2.

Speed of propagation is taken to be 340 m/s.

The channel attenuations in the model is assumed to be due only to geometrical

attenuation of the signal sources (from the spherical spreading of the wavefront) and

thus the gains aik are inversely proportional to the distances R.,,, i.e., the distance

between the i-th sensor and the k-th source. The gains are computed to be ak =

RjkIPýk, where the gains for the first sensor are normalized to unity. Then the gains

are
1.0 1.0 1.0
1.1 1.5 1.44
1.03 .92 1.06 (7.28)
.91 .75 .76

.96 .97 .86

16000 samples of observations from the array is taken at a sampling rate of 8000

Hz.

These samples are then chopped into 30 blocks of non-overlapping intervals of 512

samples each and 512 point FFT is applied to these intervals. Wideband blind identi-

fication is then applied on the data for frequency bins ranging from 50 Hz to 1.6 kHz.
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Figure 7.5: Simulation 1: Typical observations from sensors no. I and 2.

Note that this selection of frequency bins does not satify the constraint for avoiding

phase wrapping and therefore the closed form least squares based methods cannot be

applied. The source locations are estimated using the Approximate Method. Figs.

7.6 show the 2-D histogram plots of the source location estimates.

It is clear from the 2-D histogram that there are three definite clusters and there-

fore there are three souce signals present.

Picking the size of the clusters to be AO = 5 deg and AR =2 meters, i.e., all

source location estimates falling within this distance from the modes of the clusters

are collected and averaged, we find that the final estimated DOA angles. ranges and

gains are: (19.79 deg, 4.21 meters), (-4.48 deg, 1.65 meters) and (19.1.5 deg., 1.83

127
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Figure 7.6: Simulation 1: 2-D Histogram of the Source Location Estimates.

meters), respectively, and their corresponding gains are

1.0 1.0 1.0
1.12 1.5 1.36
1.06 .95 1.06 (7.29)
.9 .75 .8
.98 1.05 .88

Using these averaged gains and source location estimates, the source signals are ex-

tracted from the observation data. The true and separated speech sequences is shown

in Figs. 7.7-7.8. Computation of the correlation between the estimated and the true

speech sequences shows the correlation to be 99 percent and 95 percent respectively.
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0.1 [ ,True Speech no. I
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FEstimate of Speech no. I0. 1
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Figure 7.7: Simulation 1: Plots of Estimate of Speech no. 1.

7.4.2 Simulation 2: Near-Field (Wideband) Source and Far-
Field (Narrowband) Source

The shape of the array is the same as in Simulation 1, except that the radial distances

of the sensors from the reference is set to 0.25 meters. The wideband source is a speech

source located at range of 1.5 meters and angle -45 degrees. The narrowband source

is synthetically generated to contain sinusoidal lines at the frequencies of 55. 60 and

65 Hz. It is situated at a range of 20 meters and angle of 5 degrees. Thus we have

a combination of wideband near-field source and narrowband far-field source in the

observations. Both sources are at unity power. Additive observation noise is taken

to be AWGN with variance equal to (.1)2. Speed of propagation is taken to be 340
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0.1 True Sph no. 2
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0
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0.06 Estimate of Speh no.2 2
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Figure 7.8: Simulation 1: Plots of Estimate of Speech no. 2.

m/s.

The channel attenuations in the model is assumed to be due only to geometrical

attenuation of the signal sources (from the spherical spreading of the wavefront) and

thus
1.0 1.0
1.12 1.01

.89 1.0 (7.30)

.89 .99

1.12 1.0 O

As done previously, 16000 samples are collected and 30 sub-intervals of 512 points

each are obtained. The range of frequencies over which the proposed approach is

applied is from 15 Hz to 234 Hz, giving a total of 15 frequency bins. The proposed
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Figure 7.9: Simulation 2: Typical observations from sensors no. 1 and 2.

algorithm is applied to the FFT of the data. Then. another 30 sub-intervals of 512

points each is obtained from the same observation set by shifting the sub-intervals

window by 200 points and the proposed approach is again applied. Next, the same

procedure is done for a sub-interval window shift of 400 points, and also for a shift

of 600 points. Finally, the collection of source location estimates is clustered using a

2D histogram, shown in Fig. 7.10. Two clusters are evident from the histogram.

Picking the size of the clusters to be AO=e 5 deg and AR =2 meters, i.e., all

source location estimates falling within this distance from the modes of the clusters

are collected and averaged, we find that the final estimated DOA angles, ranges and

gains are: (-44.6 deg, 1.43 meters) and (5.23 deg., 25 mete. ), respectively, and their
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Figure 7.10: Simulation 2: 2-D Histogram of the Source Location Estimates.

corresponding gains are
1.0 1.0
1.17 .99
.88 1.0 (7.31)
.89 1.0
1.16 1.0

Using these averaged gains and source location estimates, the source signals are ex-

tracted from the observation data. The true and separated speech and narrowband

sources are shown in Figs. 7.11-7.12.
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0.1 .True Spec~h Source
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Figure 7.11: Simulation 2: Plots of Estimate of Speech Source.

7.4.3 Simulation 3: Far-Field Sources

It is assumed that the number of sources is three and the number of sensors (i.e.,

microphones) is four. The sources are two male speech signals and a female speech

signal, respectively with no multipaths. The sources are located in the far field with

DOA angles of -40, +10 and +50 degrees respectively. The four sensors are located

at (0, 0), (1, 0), (1, 1), (0, 1) meters respectively. The speed of propagation is taken as

340 meters- per-second.
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True Narrowband Source
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Figure 7.12: Simulation 2: Plots of Estimate of Narrowband Source.

The gains are arbitrarily selected as follows:

1.0 1.0 .0
1.2 1.5 0.5 ( .20.7 0.9 1.5 (.2

1.7 0.9 2.0

16,000 time samples of the microphone array are taken at a sampling rate of 8000

samples/s. The signal sources are all of equal power, with the total energy of a signal

source summed over the 16,000 samples set to unity. The separation of the speech

signals from the array observations is desired. The time samples are divided into 30

sub-intervals of 512 samples each and 512-pt FFT taken over the 30 sub-intervals.

Wideband blind identification is then applied across the frequency spectrum ranging
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from 93.75 Hz to 703.125 Hz, giving a total of 40 frequency bins. DOA estimates are

found. The incoherent clustering algorithm is applied to obtain the final DOA and

gain estimates. Using these estimates, individual estimates of the speech sources are

made, using (7.27).

Modes of DOAs are found to be at: -41 deg., +10 deg., and +50 deg. A plot of

the histogram of the DOA estimates is shown in Fig. 7.13.

8

7-

6-

4-

3-I

2-

0 1
-100 -80 -60 -40 -20 0 20 40 60 80 100

Figure 7.13: Simulation 3: Histogram of DOA estimates

Picking the size of the clusters to be AE) = 5 deg, i.e., all , we find that the final

(incoherent) estimated DOA angles are:

Est. DOAs:-40.667 deg., +10.417 deg., +50.0 deg.

Also, using the sensor gains correponding to the collected DOA estimates, we find
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that the final gain estimates are:

1.0 1.0 1.0
1.196 1.709 0.504 (733)0.702 1.06 1.14 (.3

1.794 1.23 1.572

Figs. 1 (a,b) show two typical observations from the array. It can be seen from Figs.

2(a,b), Fig. 3(a,b), Fig. 4(a,b) that the speech signals are succesfully separated from

the array observations.

0.1 True speech signal no. I

0.05

-0.05

-0.1 -10 2000 4000 6000 8000 19000 12000 14000 16000

0.1 , Estimate of spech signal no. I

0.05

0

-0.05-

-0.1-
0 2000 4000 6000 8000 10000 12000 14000 16000

Figure 7.14: Simulation 3: Estimate of Speech no. 1
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Fige 7 Estimate of SpeEh signal no. 2
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Figure 7.15: Simulation 3: Estimate of Speech no. 2

7.4.4 Simulation 4: Non-stationary Source and Speech Source

The scenario is the same as is in Simulation 2, except that the narrowband source

is now replaced by a non-stationary source. The non-stationary source is generated

by scaling a gaussian distributed source differently at each time instant, thus making

the source have different ensemble variances at different times.

The proposed approach is applied over a frequency range of 50 Hz. to 1.6 kHz.
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Figure 7.16: Simulation 3: Estimate .c' jpeech no. 3

1.0 1.0 1.0 1.0
1.12 1.01 1.07 .927

True Gains .89 1.0 Estimated Gains .89 .984 (7.34)
.89 .99 .943 1.03
1.12 1.0 J 1.11 .992

The true source locations are: (1.5 m, -45 deg.) and (20 m, 5 deg.)

The estimated source locations are: (1.31 m, -45.08 deg.) and (25 m, 4.393 deg.).

From fig. 7.17, it is clear that the speech signal is succesfuly separated from the

non-stationary signal.
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Observation at sensor no. 5

0.05O
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0.1Estimated Speeh Source

Figure 7.17: Simulation 4: Typical observaion and estimated speech source.

7.4.5 Simulation 5: Non-stationary Source and Two Speech
Sources

The scenario is the same as is in Simulation 1, except that the white noise interference

source is now replaced by a non-stationary source. The non-stationary s')urce is

generated by switching between uniform and gaussian distributions every 250 time

samples where their variances are different.

The proposed approach is applied over a frequency range of 50 Hz. to 1.6 kHz.
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Figure 7.18: Simulation 5: Typical observations from sensors no. I and 2.

1.0 1.0 1.0 1.0 1.0 1.0
1.1 1.5 1.44 1.1 1.4 1.31

True Gains: 1.03 .92 1.06 Estimated Gains: 1.04 .87 1.07 (7.35)
.91 .75 .76 .894 .77 .81

.96 .97 .86 .99 .905 .89

Using these averaged gains and source location estimates, the source signals are ex-

tracted from the observation data.

Computation of the correlation between the estimated and the true speech se-

quences shows the correlation to be 99 percent and 94 percent respectively.
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Figure 7.19: Simulation 5: 2-D Histogram of source location estimates.

7.5 Extension of Approach to Multipath Cases

The proposed approach is also applicable to the multipath case, specifically the spec-

ular multipath scenario, i.e., perfectly coherent multipaths are present. In this

subsection, we will discuss the application of wideband blind identification to this

problem.

For ease of discussion, assume I multi-ath signal and n other signals.

The observation at the i-th sensor is written as

xi(t) = J:=, aiksk(t - Tk) + 00s(t - ý,) + 17i.
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Figure 7.20: Simulation 5: Plots of Estimate of Speech no. 1.

(/5,4) denotes the multipath g&as and delays. Thus the signal sI(t) has a direct

and a multipath component.

In the frequency domain,

X(w) = A(i)S(W) + 7(w)

where

(1.0 + .l-..') ' 1.0A.w..=(7.36)

(a2,e-•wT21 + 32 e-jw(2) .. , a,,,. (7.36)

+ ~ am,,e-wTrr~ +Je'
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Figure 7.21: Simulation 5: Plots of Estimate of Speech no. 2.

Blind identification is then performed. The signal with multipath can be distinguished

from the other signals (with no multipaths) by examining the column vectors of the

matrix &(w). The magnitudes of elements within the column vector associated with

the signal si(t) would vary with different w's while those with no multipaths would

have constant magnitudes. Therefore, the estimates of {aik, to,}, for i = 2,..., m,

k = 2, ... , n can be found directly from A. Estimates of {aii, rii} and {I0,, ýj} may be

found from the estimates of A(w) at several different frequencies.

In general however, the use of blind identification raises the problem of scaling

and ordering indeterminacy of the signals, see t70]. When there are several signals

with multipaths this indeterminacy is undesirable because in order to solve for the
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direct and multipath parameters, estimates of A must be made at several frequencies.

However with several signals with multipaths, their corresponding column vectors

in A may be scaled and ordered differently at different frequencies. Since signals

with no multipath can be easily distinguished from signals with multipath (as noted

previously) it is assumed that A contains only those column vectors corresponding to

signals with multipaths. Without loss of generality, we consider the case where there

axe two signals each with a multipath. Thus,

[(1.0 + O1 1 e-j'-1 ) (1.0 + I0i2 e-JW6) 1
(a 2 le-j 7"1' + O32 1e- '• ) (a 22e-j" 12 + 022 p) -22) (7.37)

etc etc

To eliminate the unknown scaling of the column vectors in the blind identified value

of (7.37), a 'normalized' matrix A(w) is defined by dividing the column vectors of the

estimate of the matrix with their first elements, i.e.,

1.0 1.0

S= I•,i-"•, ,+ ,•-J•,,(7.38)

etc etc 1

Thus the unknown scaling of the column vectors in A at different frequencies have

been eliminated. Next the problem of ordering of the column vectors is examined.

Define
A (M = aewi + ,3 2 e-J••,2) (7.39)

1 + 3ew 4

When the separation between adjacent bin frequencies (Aw) are small enough such

that I AwKrik I<< 1.0, I AWik I<< 1.0, then

fW(wo + AW) = f/(wo) - jAwgi(wo) (7.40)

where,

gi(M) = (a2 ir2 ie-J••' + • 2'•ie •M2, - fi(woi3 i) (7.41)
1 + 3,e-w,74
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Similarly at the bin frequency Lo + -Aw, we have

f1(wo - Aw) f,(wo) + jAwgi(wo) (7.42)

Now consider the ratio of differences:

f,(wo + AW) - fk(wo) (7.43)
Piki= fP(wo + AW) - A (Wo)

it can be seen from (7.40) and (7.42) that generally, pAM is equal to -1.0 for i = k = I

and not equal to -1.0, otherwise. Thus, given the matrices A(wo), A(wo + Aw),

A(wo - Aw) (with possibly different and unknown permutations of their column

vectors), the ratio in (7.43) can be used to determine their correct ordering.

Thus the re-scaling and re-ordering of the column vectors may be accomplished

as follows:

Scaling: Define the 'normalized' matrix A(w) as in (7.38).

Ordering: Given the matrices A(wo), A(wo + Aw), A.(wo - Aw).

1. Suppose the correct column vectors in -(wo + Aw), A(wo - Aw) are to be

associ.,ted with the i-th column vector in A(wo). Denote the second element in the

i-th column vector of A(wo) as a.

2. Denote the elements in the second row of A(wo+Aw), A(wo-Aw) as {1i, p2, ... }

and {v 1, v2, ...} respectively. Here the term yk denotes the second element of the k-th

column vector in ,.(wo+Aw) and similarly for v,. Define the differences 611k = ik -a,

and 5Vk = V, - a.

3. Compute the ratios: 6'. The ratio closest to the value of -1.0 would signify

the correct ordering of the column vectors, i.e., the (j, k) index of the ratio denotes

that the j-th column vector of A(wo + Atw) and the k-th column vector of Awo - Aw)

are associated with the i-th column vector of A.(wo).
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7.6 Extension of Approach to 3-D Scenario

The proposed approach may also be extended to the case where 3 parameters deter-

mine the source location (eg., range, azimuth angle and elevation angle). Conside fig.

7.22. The path differences (relative to the reference sensor which is assumed to be at

k-th sourc

RkI.

Refernce
sensor

Figure 7.22: 3-Dimensional Scenario for Sources and Sensors

the origin) can then be shown to be

d {- c - (d[ )2} (7.44)

lk ik 2Rk t i

where df, = ai{sin-yk sinýj sin (Ok + Oi)}, is the far-field component of the time

delay.

Similarly, to the previous discussion on the sensor pairs in the 2-D case, the estima-

tion of the azimuth and elevation angles may be decoupled from the estimation of the

range through the use of a specific sensor pair configuration. Specifically, suppose that
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the i?-th sensor associated with the i-th is located at the location (c0,, -r + 7r -

Then its path difference for the k-th source is written as

di k=- -d',-1- d7.45)

where dfk is as defined previously for the i-th sensor. Thus, by defining a fitting

function similar to the one in the 2-D case, the search for the azimuth and elevation

angles (Ok, -yk) is decoupled from the range search.

Remarks:

(i) The search for the source range may be performed once the azimuth and

elevation angles are estimated.

(ii) On the other hand, it may be possible to configure the sensor array structure

analogously to the cross-array strucutre of the 2-D case, such that the source range

can be estimated independently of the azimuth and elevation angle estimation.
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CONCLUSIONS

We conclude the with the following summary of the results of this investigation.

* An analysis of ESPRIT under random model errors is conducted which provides

insight into its performance and robustness against such random model errors

as unknown sensor gains and phases, unknown sensor locations and unknown

rotations of sub-arrays within the ESPRIT array. In particular, it is shown that

in the case of Uniform Linear Arrays (ULA), the bulk of the Mean-Square-Error

(MSE) of ESPRIT is due to the sensor phase errors as opposed to the sensor

gain errors.

"* An approach based on a signal subspace constraint is proposed for array sig-

nal processing under model errors. This approach yields asymptotically unbi-

ased estimates of the sensor gains and phases when the DOA angles are known

a-priori. When both sensor gains/phases and DOA angles are unknown, an

iterative version of the approach is given.

"* A novel approach using blind identification is developed for the source estima-

tion problem under model errors and uncertainties. By using clustering tech-

niques in conjunction with blind identification, it is shown that the proposed

134
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approach is robust against the silmutaneous presence of such uncertainties such

as unknown sensor or channel gains, unknown combinations of near-field and

far-field sources, unknown combinations of wideband and narrowband sources.

unknown source spectral charateristics and unknown number of sources. As

such, it shows promising potential in such application areas as speech separa-

tion/processing and mobile communications.
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