SECURITY CLASSIFICATION OF 7ris PAGE Lnclassified

- __'_REPORT AD-A961 563 T

e

1a. REPORT SECURITY CLASSIFICATION IR I
nclasstied RINRAR

2a. SECURITY CLASSIFICATION A

2b. DECLASSIFICATION / DOWNG Unlimited
4 PERFORMING ORGANIZATION T NUMT) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
TR-87-819
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
. . (If applicable)
Cornell University Office of Naval Research
6¢. ADDRESS (City, State, and ZIP Code) ' 7b. ADDRESS (City, State, and ZIP Code)}
Department of Computer Science 800 North Quincy Street
Upson Hall, Cornell University Arlington, VA 22217-5000
Ithaca, NY 14853-7501
8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL | 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (f applicatle) NOOOO14—-86~K~0092
Office of Naval Research
8(8 AgDRESS (gfy, State, dn% ZIP Code) 10. SOURCE OF FUNDING NUMBERS
00 North Quincy Street ROGRAN T m— TR
Arlington, VA 22217-5000 ELEMENT NO NO. NO ACCESSION N

11 TITLE (Include Securrty Classification)

The Trainset Railroad Simulation

12. PERSONAL AUTHOR(S)]
Richard A. Brown and Fred B. Schneider, Editcrs, Jacob Aizikowitz, Thomas Bressoud, Tony Lek

13a. TYPE OF REPORT 13b. TIME COVERED 14 DATE OF aspom (Year, Month, Day) |15 PAGE COUNT
Interim FROM TO 93,0 120

16. SUPPLEMENTARY NOTATION

17. COSAT!I CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP __ | process control, real-time testbed, railroad control

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
A prototype real-time process control application is described. A simulator for this
application is available--its interface is specified.

93-04442
WA TR

20. DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
T UNCLASSIFIEDAUNLIMITED (O sAME AS ReT I pTic USERS
22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) | 22¢. QFFICE SYMBOL
Fred B. Schneider (607) 255-9221
DD FORM 1473, 8a mar 83 APR edit:an may be used until exhausted.

SECURITY CLASSIFICATION OF THIS PAGE

All ather editians are absolete

S o 110

The Trainset Railroad Simulation

Richard A. Brown (Editor)*
Fred B. Schneider (Editor)
Jacob Aizikowitz**
Thomas C. Bressoud
Tony Lekas*™**

TR 93-1329 ——
February 1993 @E@@ M_M_* N

NTiS Crasj {
LGHc 1ap 9] i
Unanno g -~)
Jir_o.f.'f'(_‘_;:‘(‘)

b e e LT {
By j

S a e e —

Dot ;T” i
L__.,-___“-_ . S

Avariatiiny Codes]

o

Urst ; SutCia!

8

_! Ayt ‘;‘[()-(‘ {
{
{

I
i
i

P SO

Department of Computer Science

Cornell University
Ithaca, NY 14853-7501

*Department of Mathematics, St. Olaf College, Northfield, MN 55057
**Electronics for Imaging, 950 Eim Avenue, San Bruno, CA 34066
***Digital Equipment Corporation, 9 Northeastern Boulevard, Salem, NH 03079

The Trainset Railroad Sunulation

Richard A. Brown! and Fred B. Schneider, Fditors

Jacob Aizikowitz? Thomas C. Bressoud Tony Lekas?

The RR Project

Department of Computer Science
Cornell University
Ithaca. NY 14850

February 13. 1993

'Department of Mathematics, St. Olaf College. Northfield. MN 53037
2Electronics for Imaging. 950 Elm Avenue. San Bruno. CA 94066
*Digital Equipment Corporation. 9 Northeastern Boulevard, Salem. NH 03079

Copyright (© 1993 Richard A. Brown and Fred B. Sclineider.
All rights reserved.

Permission to copy in whole or in part without payvment of fee 15 granted for
nonprofit educational and research purposes provided that all such whole or
partial copies include the following: a notice that such copying is by permission
of the copyright owners: an acknowledgement of the authors and individual
contributors to the work: and all applicable portions of the copyright notice.
Copying. reproducing or republishing in whole or in part for any commercial
purpose or for other purpose is prohibited without written permission of the
copyright owners.

Contents

Preface

0 Introduction and Overview

Obtaininga Copy
1 Trainset User’s Guide
1.1 Getting Started
1.2 How to Build a Layvout of Blocks and Trains
1.3 Howto Runalayout
1.4 Control Programs

2 Trainset Railroads

2.1 Introduction
2.2 Blocks
2.3 Tramns ..o

3 Automatic Control Interface (ACI)

3.1 Introduction o
3.2 Initial-State Download
3.3 Commands
3.4 Queries
30 Voung . ..o

3.6 Timer Facilities

4 Low-Level Interface (LLI)

4.1 Introduction
4.2 Messages
4.3 Imtiauing Communication
4.4 Imtal-State Download
45 Commands and Queries
4.6 Quit Message From the Simwulator.

A Constants Used by Trainset

21
2]

30
30
30
35

38
3%
39
40
43
45
47

50
50
52
53
53
54

55

B Code Listings: ACI
B.! aci.h. Interface Header File

B.2 acitest.c. Example Using the ACI Interface . . .

C Code Listings: LLI
C.l cpi.h. Interface Header File

C.2 aci.c, Example Using the LLI Interface

D Reference Pages

111

56
36
60

Preface

I became intrigued with real-time systers in the spring of 1986, Here was an
application dornain where using formal methods is justified. because the cost
1n life and property of programmer errors could be so great. Here also was an
application domain where making assumptions about hardware failure modes
1s lnappropriate. and so a system must be able to tolerate so-called Byzantine
failures. My research efforts had been concerned with these two subjects. thus
putting me in the enviable position of having discovered a “problem” for my
various “solutions”.

Attacking a real process-control problem seemed like a good way to get a
better understanding of the area. But, which problemi? The problem had to
be simple enough so that Computer Science issues dominated any application-
dependent details. Yet. the problem could not be too simple or else some key
aspect of real-time systems might be overlooked. 1 was aware that various
research groups (e.g.. at University of Newcastle upon Tyne and at University
of Waterloo) had used electric toy trains as a vehicle [sic] for such research.
and so that was an obvious place to start. After studving a bit of railroading.
however. it became clear that toy trains are not accurate models of reality
they change the problem too much. For examiple, real trains cannot accelerate
or decelerate as rapidly as toy trains do. Therefore. a control program for
a real train must anticipate changes to train speed: a control program for a
toy train need not. Somie of the inaccuracies of toy trains ran be corrected
by modifying the electronics used to control the trains. but dealing with this
and the other customn hardware necessary for integrating a toy train set with
a computer system seemed like a black hole (as only custom hardware can be)
that I should avoid. Thus. I decided to build a railroad simulator along with
support software for constructing railroad layouts. controlling those layouts from
networks of computers, and monitoring such control experiments.

After the first version of the railroad simulator was built, it became clear
that my circumstances were not unique. Other scientists were also becoming
interested in studying real-time programming issues and theyv. too. felt that a
prototype application could be a useful research tool. Courses on real-time sys-
tems would benefit from using this software in laboratory exercises. particularly
because specialized hardware and software were not required. So. we cleaned-

up the code. wrote some user documentation. and put together this software
distribution,

The Trainset system. as our railroad simulation software 1s now known.
is the work ol many people over the last 3 vears. Jacob Alzikowitz defined
aur model of railroads and wrote the first railroad simulator in the spring of
1987: 1t ran under SUNOS Unix. Jacob also supervised MEng. students Ellen
Blood. Anthony Pellegrint. and Jane Smidesang in produang an X10 graph-
1cs interface to the system. Michael Abbott. an undergraduate. then defined
and implemented a high-level interlace to the simulator for use by control pro-
grams. ‘This software was then rewritten and ported to VMS, ULTRIX. and
X11/DECWindows by Tony Lekas. a DEC engineer working with us as part of
a DEC-funded research project at Cornell. Dick Brown joined the project in
Fall 1989, spending that year and the following spring term on a major rewrite
of the svstern and writing documentation for what we had. Dick was assisted
by Thomas Bressoud. who rewrote and documented the lavout editor and part
of the graphies monitor software. Most recently. Donald Wihiardja has helped
us debug the installation procedure.

This software development effort would not have been possible without fi.
nancial support from a number of sources. My research in concurrent and
distributed systems has been funded by grants from the National Science Foun-
dation since 1978 and from the Office of Naval Research since 1983, Dr. Andre
van Tilborg. now the division director for Computer Science at ONR. was es-
pecially supportive as my ONR program manager during the initial stages of
this project. and Gary Koob, his successor. has continued that tradition. Fund-
mg from Digital Equipment Corporation was also critical to the success of this
project. Ed Balkovich of DEC encouraged me to apply for funding under Digi-
tal's External Research Program (ERP) and then served as our corporate liaison.
helping to transfer our research results to engineers at DEC who could benefit
from them. The DEC ERP funds allowed us to procure hardware for the labo-
ratory used to develop this software and to run real-time systems experiments.
John Gannon, the Software Engineering Program manager at NSF for]1988-89.
alerted me to the NSF Software Capitalization Initiative and encouraged me to
apply. Funding from that program supported Dick Brown's stay at Cornell and
is largely responsible for transforming our research prototype into a system that
could be widely distributed.

Fred B. Schneider
Ithaca. New York

Chapter 0

Introduction and Overview

Trainset is a real-time simulation of a railroad. The software consists of a sim-
ulator. an interactive graphics editor for defining railrcad layouts and graphics
monitor programs for displaying the state of the railroad and manually control-
ling it. Two communications interfaces to the simulator are provided.

e The control program interface (CPI) is used by computer programs that
control Trainset railroads. The CPI consists of library routines and data
structures, collectively called the ACY {Automatic Control Interface). and
low-level message formats and related facilities. called the LLI (Low-Level
Interface).

o The monitor interface is used only by the graphics monitor programs.

These interfaces can be in use simultaneously.

Trainset has been implemented in ' language on Digital Equipment Corp.
Ultnix, using DECwindows/X-11 and TCP/IP or DECnet.

This manual introduces Trainset and gives specifications for the railroads it
implements. The document also discusses the mechanics of using Trainset and
provides other information that a researcher or student should know in order to
write control programs that interact with Trainset railroad layouts.

The manual is organized as follows.

Chapter 1 is a tutorial on using the software. It includes instructions for
running a demonstration, creating and simulating a railroad layout and writing
programs to control a Trainset railroad. A simple programming example is
discussed to illustrate the use of the ACI.

Chapter 2 specifies the attributes of simulated railroads that Trainset sup-
ports.

Chapter 3 discusses the ACL. A high-level mechanism is presented for estab-
lishing a connection with a running Trainset railroad simulation and receiving
an initial-state download of that railroad. Commands and queries are described

for interacting with a Trainset railroad. Utlity routines that provide tier
facilities are introduced, and a service is discussed that supports the writing of
fault-tolerant control programs.

Chapter 4 documents the LLI. This information will be of interest to pro-
grammers who wish to bypass the ACI layer or reunplement it for other envi-
ronments.

The appendices include reference pages for the programs that comprise
Trainset and selected code listings.

A separate installation guide accompanies the software distribution.

Obtaining a Copy

You may obtain a copy of the Trainset software. installation instructions and
the text of this manual from either of the Internet sites listed below.

® ftp.cs.cornell.edu (Cornell University)
e ftp.stolaf.edu {St. Olaf College)

In either case. use the file-transfer program ftp to open a connection to the
desired host. Use the login name anonymous. and provide your own Internet
address as the password.

After logging n. issue the ftp command c¢d pub/trainset to access the
Trainset distribution directory. Among the files in that directory are:

o README. which briefly describes Trainset and the contents of the distri-
bution directory,

e install.dvi. installation manual for Trainset (in TFX output format).
¢ ts.dvi. the text of this manual.! and
e trainset.tar.Z, the source code package for Trainset.

See the manual page for ftp(1) for file transfer instructions. Use £tp file type
binary for .dvi and .tar.Z files. The source code package trainset.tar.2
may be unpacked on most Unix systems by issuing the following command:

% zcat trainset.tar.Z | tar xvf -

See the manual pages for compress(1) and tar{1) for more information about
this unpacking procedure.

[print this manual complete with figures. install Trainset at your local site and follow
the printing instructions provided in the installation manual.

Chapter 1

Trainset User’s Guide

1.1 Getting Started

Trainset consists of programs to support interaction with a simulated railroad.
Users can control the railroad manually and watch it in action by using graphics
monitor programs. In addition computer programs. called control pregrams.
may be written to control a Trainset railroad.

The rest of this section gives you a chance to get acquainted with Trainset.
In subsequent sections we explain how to create and run your own railroad
layout and how to use the ACI library.

1.1.1 Invoking the Programs

To start the Trainset software. enter the following ceinmaid.

% ts

(The symbol % is assumed to be your shell srorapt.) Three windows will open
on your display, as shown in Figure 1.1. One of these, the Simulator Window.
1s a terminal window that displays messages from the sitnulation. The other two
windows make up the graphics monitor. The Viewer window shows the current
positions of the raiiroad tracks and trains in a simulation. The Control Panel
window has controls and indicators, including pushbuttons and slide bars: it is
a graphical interface for controlling trains and switch blocks manually.!

The sample ratlroad layout displayed in the Viewer window of Figure 1.1
has two trains and 24 blocks.? Fach train has two ends: one is called the head

'The names of the programs that comprise Trainset are tsim for the simulator, tsview for
the Viewer, tapanal for the Control Panel and tsed for the layout editor. tsed is discussed
in Section 1.2 below.

?A careful reader may observe that the 24 block identifiers in Figure 1.1 range from 1 to
5 and 7 to 25. ldentifier 6 is associated with a subblock of the cross block cr 5. as explained
in Section 2.2.3.

K Viewer
Control
kY,
!
r
g @ g 16}
+
3 M P ———
m 25 K Corzrol Farc, IR
Cortrol
f
i
o
[
| ot
[e
T
[
3
7 i !
. Throttle . Reverse
T Teain 2 !
e Operations! |
ot v oo ,
“- | Ererst
N Simulator_Winaow + el "
his is sim/simulator “_, o s !
Rdded client, channel O. descrip 5. wime 2720, protocol O, ciiemt_id Of4 i
ident message “panel/parellX” H o " Srastop ' |
Addea client. charmel 1. descrip 6. time 5460, protocol 0. client_is 1 /T |
1dent message “dwt,viewer/viewerl¥” 1 it ! i
Throttie { Roverss i

Figure 1.1: Sample railroad layout

{ndicated by an angle bracket) and the other s called the tad findicated by a
square bracket). A block's type (see Section 2.2} 1s defined by s Label

rg for reqular blocks.
st for station blocks,
ja for jen blocks,

cr for cross blocks and

sw for swetch blocks.

Most blocks in the lavout of Figure 1.1 are represented by stratght lines or ares.

eg..

those labelled rg 1. rg 2 and st 11 Five such blocks are thickened 10

indicate that they are occupied by a train. Three blocks (er 5. jn B and sw 14}

have

other block types that are represented by cireled symbols in the layout

The control panel comprises one subwindow for each train and a pushbution
for each switeh block. Each switch block's pushbution can toggle that swich
block’s setting between the straight and turned settings bach tramn’s subwindow
mcludes the following controls and indicators.

L]

Two slide bars labelled Speed and Goal that display the train's current
speed and the goal speed desired for that traimn.

A slide bar labelled Throttle for setting a new goal speed. An operational
train accelerates or decelerates when its goal speed differs from s current
speed.

Two labels showing the name of the train (e.g . Train 1) and its state
(Operational. Derailed or Collided).

Two indicator lights. EmerStop and StaStop. The EmerStop light is iliu-
minated white the train is perforiming an emergency stop. The StaStop
light is Hluminated when the train is capable of petforming a station stop.
described later.

Three pushbuttons. EmerStop. StaStop and Reverse. The EmerStop
pushbution can be used to begin an emergency stop of the train. The
StaStop pushbutton can be used to enable the station-stop feature for
that train. The Reverse pushbutton changes the direction of the train’s
motion if the train is stopped.

1.1.2 Using the Control Panel

The best way to familiarize vourself with the features of the Centrol Panelisto
try them. observing their effects as displaved in the Viewer window Below are

sowe suggested steps for getting acquainted with the systens, using the samiple
layout of Figure 1.1.%

When describing graphics manipulations. we will use the following terms for
mouse-oriented input operations. The mouse button to press and release is the
left mouse button (for standard workstation window managers)

e Lo click on a pushbutton or icon. move the mouse pointer into the push-
button or icon area. then press the mouse button down and release it
tmmediately.

e To drag from gne pownt Lo another in a window, position the mouse cursor
at the starting point. then press the mouse button and hold it down
while moving the mouse icon to the finish point. Finally, release the
mouse button.

o To drag a shide bar to a value v, first position the mouse pointer over the
inner region that contains the indicator arrow for that shde bar graphic.
Then. press the mouse button and hold it down while moving the mouse
cursor right or left until the desired value ¢ is displaved on the numerical
display. Finally. release the mouse button. Due to variation in graphics
display resolution. it may not be possible to enter arbitrary desired values
using a slide bar.

Before starting. identify the controls and indicators for each train and switch
block in the Control Panel window. The Speed. Goal and Throttle slide bars
for each train display the initial value zeio. Each train is operational. and
neither of the StaStop and EmerStop indicator lights is iliuminated.

[r(,”lick (once) on the pushbution for the switch block sw 14 J

When you click on the pushbutton. the switch block toggles between the straight
and turned settings. Observe that there is a delay after pressing the pushbutton
hefore the switch block setting actually changes on the screen. This delay has
two causes: communication time and the time that it actually takes for a switch
block. which is a large mechanical device, to change setting.

;[Click on the switch block pushbuttor again to toggle the switch
!ﬁiock back to the straight setting.

Click on the Stastop and EmerStop pushbuttons for Train 2. |

i
[Do not click on the Reverse pushbutton for Train 2 nor any

| pushbuttons for Train 1 at this time.

*Suggested actions are enclosed in boxes,

6

When the StaStop indicator light is on. we say that train is m station-
stop mode: likewise. the EmerStop indicator light shows whether the train is
in emergency-stop mode. Note that the StaStop indicator light can be tHuun-
nated. but the EmerStop indicator light cannot be illuminated yet. An opera-
tional train’s station-stop mode can be enabled or disabled whether that train
1s moving or not. Emergency-stop mode cannot be enabled for a train unless
that train is moving.

We are now ready to set a train in motion.

train to a value near 40 {m/sec).

Accelerate Train 1 by dragging the Throttle slide bar for that!

Notice that several things happen when you do this.
o The goal speed indicator, labelled Goal. now shows the throttle value.

e The current speed indicator. labelled Speed. begins changing from the
previous speed fzero in this case) towards the goal speed.

o The train at the top of the Viewer window begins moving (forward towards
the left, in this case).

The goal speed 1s not reached instantaneously. A train ordinarily changes speed
at a fixed rate of acceleraiion. as explained in Section 2.3.2. and it takes time
Lo accelerate from 0 to 40 m/sec.

Observe that a block is highlighted in the Viewer window if any part of that
block is occupied by a train.

Drag the Throttle slide bar to about 35 mi/sec, then drag it to
about 45 m/sec before the train has completed accelerating to
a5 m/sec.

This exercise shows that a new goal speed value overrides a previous one when
the throttle is changed. even if a previous goal speed has not vet been reached.

There is a maxirnum speed limit of 60 m/sec for each block in the sample
layout of Figure 1.1. If a train exceeds this limit. that train derails. All minimum
speed limits in the sample layout are zero. Using the editor tsed (see Section 1.2
below) it is possible to create new layouts having different shapes and block
speed limits or to modify the features of an existing lavout. However, there is
no provision for changing the attributes of a layout while it is being simulated.

Next. request an emergency stop.

Click on the EmerStop pushbutton for Train 1.

-~

Observe that the EmerStop indicator light is illuminated while an emergency
stop is in progress and goes off as soon as the stop has completed. Another way
to stop a train is by simply setting that train’s throtile to zero. An emergency
stop. like a throttle change. overrides any prior motion plan. Thus. during an
emergency stop a train’s Goal speed is zero and its current speed decreases
toward zero. There are two important differences between using the throttle to
decelerate to zero and using emergency stop.

e Emergency stops use a larger deceleration rate.

e Nothing can override an emergency stop, other than derailment or collision
of the train.

In particular. dragging the Throttle slide bar has no effect during an erergency
stop. Nor does an emergency stop cause the throttle bar to move. The throttle
1s simply ignored until the emergency stop has completed and the throttle is
dragged again.

Station blocks differ from regular blocks in that they have a station-stop
feature. To test this feature, perform the following steps.

Click on the StaStop pushbutton of Train 1 so that the StaStop
indicator light becomes illuminated (station-stop mode).

Drag that train’s Throttle slide bar to 30 m/sec or less.]

The next time that Train 1 enters a station block (either st 11 or st 16). it
will immediately begin slowing down so that it comes to a halt exactly at the
opposite terminator of that block. Three conditions are required for a train to
begin performing a station stop.

e That train must have station-stop mode enabled.
e That train must have speed at most the station-stop speed.
e That train must be entering a station block.

The station-stop speed (30 m/sec in the sample lavout of Figure 1.1} is specified
for each station block when a layout is created.

Observe that the station-stop indicator automatically goes off as soon as a
station stop begins.

Allow Train 1 te complete a station stop. 7

Unlike emergency stops. it is possible to abort a station stop by changing
the throttle value for che train involved. If a station stop is aborted. then no
station stop is performed until the three station-stop conditions are again met
on eniry into a station block.

A train’s direction can only be changed when that train is stopped.

ey N . .
| Click on Train 1's Reverse pushbutton (once) while that train is
33 stopped.

P

I'Then drag that train’s throttle slide bar to a positive value. e.g..
§30 (m/sec).

Train 1 will begin to move backwards: that is. the head-end retreats and the
tail-end advances.

Up to now. both trains have remained in the Operational state. In order
to become acquainted with another train state. try the following.

Let Train 1 travel (backwards) around the lavout until 1t derails
al block jn 8.

When a train enters a join block (such as jn 8) from the tail terminator
(the one attached to rg 9 in the sample layout), then the train will deraii. If a
train derails. the state label for that train changes to Derailed and the train
stops moving.

Trains that are not Operational do not respond to commands. Thus. once a
train derails, there is no way to set that train in motion again. short of starting
another simulation. Page 35 lists all the conditions under which a train will
derail.

Click on the pushbutton for switch block sw 14 once so that the
switch block changes to the turned setting.

Drag the Throttle slide bar for Train 2 to a positive value, e.g..
30 m/sec.

Observe that attempting to enter a disconnected terminator of a switch block
would cause a train to derail.
Finally. observe what happens when trains collide.

[Allow Train 2 to continue until it collides with Train 1.]

The state labels of both trains involved in a collision change to Collided. Hence-

forth, neither train will respond to any commands, so the demonstration has

ended—in disaster! Fortunately, simulated trains are inexpensive to replace.
Page 36 lists all possible collision conditions.

1.1.3 Shutting the Programs Down

The programs that comprise Trainset may be shut down by selecting Quit
All in the Command menu of the Control Panel or Viewer.

Exercises

1. Start a sinulation of the default layout by issuing the ts command. Set
both trains in motion around the track simultaneously. with Train 1 trav-
elling forward and Train 2 travelling backward.

2. Perform Exercise 1. Then. begin toggling the setting of the switch block
sw 14so that Train 1 always passes through sw 14 when sv 14 is straight
and Train 2 always passes through that switch block when it is turned.

Note: This is not as easy as it may sound! Keeping both trains travelling
along different paths in this layout is a challenge. particularly if both are
moving as fast as possible. Train speed adjustinents and switch block
setting changes must be coordinated and must be issued far enough in
advance so that the trains neither collide nor occupy a switch block while
it changes setting.

1.2 How to Build a Layout of Blocks and Trains

tsedis an interactive graphics editor for defining and modifving railroad layouts.

1.2.1 Invoking tsed

To stast tsed. enter the following command.

% tsed [filename]
The editor may also be invoked by entering:

% ts -edit [filename]

When tsed is started, two windows appear on your display. as shown in
Figure 1.2. The larger window that is overlaid with a grid pattern is the canvas
window (Figure 1.2a). A railroad layout can be created in the canvas window.
The distance between two adjacent parallel dotted lines in the grid is called a
grid division.

The smaller window is called the tools window (Figure 1.2b). It consists of
twelve icons representing operations called the tools that are available in tsed
for creating and modifying blocks and trains. The tools are applied using the
mouse operations described on Page 6. Figure 1.3 shows the tools window
together with the names of its tools.

The tools window contains one or more tools for each of the five types of
blocks in Trainset. Note that the tools window includes two tools for creating
switch blocks. The Switch Block 1 and Switch Block 2 tools differ in the
orientation of the switch block; each is a mirror image of the other. Also. there
are three tools for creating regular blocks: Straight Block, Arc Block 1 and
Arc Block 2. A straight block is a regular block consisting of a line segment.
and an arc blockis a regular block consisting of a circular segment. Arc Block 1

10

Fie CQustamize

JO

D
W
..... D
D
=

Q

IiQc
%

QU — — 1 0D
Message Window

(a) Canvas Window {b) Tools Window

Figure 1.2: tsed Windows

Select Cross Block
Erase Join Block
Straight Block Switch Block 1

Station Block Switch Block 2

Arc Block 1 Train

Arc Block 2 Rotaie

Vo))OI][U E4
Sl NS ==

Figure 1.3: Annotated Tools Window

H

and Arc Block 2 differ only in the radius of the arcs they create. The Are
Block 1 tool creates ares with radius two grid divisions. and the Arc Block 2
tool creates arcs with radius four grid divisions.

The remainder of this section is a two-part tutorial on using tsed for creating
and editing railroad layouts. Section 1.2.2 introduces you to the various tsed
tools. A series of exercises demonstrates how 1o construct a layout and how to
make simple editing changes. Section 1.2.3 explains how to set attributes such
as block speed limits. how to save a layoul in a file. and how to exit from the
editor.

1.2.2 Using the tsed tools
The Current Tool

In tsed. one tool is enabled at any given time: it is called the current tool The
current tool 1s indicated in the tools window by being highlighted. The message
area at the bottom of the canvas window also displays the name of the current
tool. On startup. Select is the current tool.

[e B T
i Click on a tool icon other than Select to choose a different current
tool. Repeat one or more times.

Regular and Station Blocks

Straight regular blocks and station blocks are created in a layout by dragging
with the mouse from one point to another in the canvas window when the
corresponding straight block or station block is the current tool. This procedure
creates a line segment between the starting and stopping points of the drag
operation. The starting point is called the head lerminator of the block. and
the stopping point is called the tail terminator.

{Click on the Straight Block tool icon. —]

Create a horizontal regular block by dragging from right to left
{starting near the middle of the canvas window. as shown in Fig-
lure 1.4a.

All lincar blocks (Straight and Station) created by tsed arc constrained
to be vertical. horizontal or at a +453° diagonal. To aid in alignment. tsed
enforces additional constraints on the placement and length of a block relative
to the dimensions of the canvas window grid.

[Click on the Station Block tool icon. |

T
‘j
-

(a) (b)

"
-

© ’ (d)

Figure 1.4: Tutorial Steps

Now create a station block in the canvas window by dragging from
the right endpoint of the existing straight block to a pomnt further
{to the right. as shown in Figure 1.4b.

When a new block is created. tsed establishes a connection with an existing
block if the new head terminator is within a few pixels of an existing terminator.
tsed also constrains the slope of the new block to match the slope of the existing
block at that terminator.

Station blocks and straight regular blocks appear graphically to be identical
except for their labels. Regular blocks (whether straight or arc) are labelled rg.
and station blocks are labelled st.

The Erase and Select tools are used for modifving objects already on the
canvas window. Erase enables vou to remove a block or train that you have
created. Select enables you to reposition the label for a block or to designate
a block whose attributes you wish to change.

T -
{ Click on the Erase tool icon.

i Now. erase the straight block by clicking on it. J

1 Click on Lthe Select tool icon.]

13

1

I Now drag the label for the station block to a new position above
tthe block.

The result of these changes are shown in Figure 1.4c.

Arc blocks are created by dragging when the current toolis Arc Block 1 or
Arc Block 2. The starting point of the drag operation determines the location
of the arc block’'s head terminator. The extent of the arc is determined by the
ending point of the drag operation and depends on the location of the head
terminator and. if the arc block is attached to another block. the slope of that
block.

[Click on the Arc Block 1 tool icon. |

fCreate an arc block connected to the station block by dragging
from the left endpoint of the station block toward a point that
produces a 90° arc pointing downward. as shown in Figure 1.4d.

When using the Straight Plock. Station Block. Arc Block 1 or Arc
Block 2 tools, you can cancel creation of a block after a drag operation has
already been initiated by finishing that drag operation within a few pixels of its
starting point.

Start dragging to create another arc block connected to the last
arc block, then cancel the creation of a new block by finishing that
drag operation al its starting point.

Iconic Blocks: Crosses, Joins and Switches

The Cross Block. Join Block, Switch Block 1 and Switch Block 2 tools
always create blocks that have a fixed size and shape. In tsed. these blocks are
referred to as sconic blocks. They are created by clicking with the mouse rather
than by dragging.

When an iconic-block tool is current and the mouse cursor is in the canvas
window, the cursor takes the form of the icon for the current tool. Along
the outer circle of such a cursor are enlarged points called hot spots at which
connections with other blocks can be made.

Click on the Join Block tool icon. Observe that the mouse cursor
changes to the form of a join block whenever the cursor is in the
canvas window.

Position the mouse cursor so that the hot spot at its right head
1s over the unattached terminator of the arc block. This requires
slight overlapping between the arc block and the join-block cursor;
see Figure 1.3a.

14

st 2 - : . - . st 2

(a) Before Clicking (b) After Clicking

Figure 1.5: Join Block Creation

i Now click with the mouse and create the join block of Figure l.5bJ

Note that the newly created join block is constrained so that the slope of the
join block and the slope of the arc block agree at their common terminator.

tsed does not make more than one connection when an iconic block is cre-
ated. Thus. during an editing session. it is probably best to create iconic blocks
before creating the regular and station blocks they are attached to.

The Rotate tool enables you to rotate an iconic block clockwise by one hot
spot.

L(.‘Iick on the Rotate tool icon.]

Now click on the join block created in step 15. Observe that the
join block labelled jn 4 rotates so that its tail terminator beconies
the terminator attached to the arc block.

iCIick on the join block a second time to rotate again. J

If an iconic block is not connected to any other block. the Rotate tool
rotates it by one-eighth turns. If a switch block 1s rotated through a full circle
using the Rotate tool. it changes orientation.

Trains

A train may be created in a layout by dragging when Train is the current
tool. The drag operation begins at the position desired for the head end of a
train, continues along the blocks to be occupied by that train, and stops at the
position desired for that train’s tail end. The head end of a train is indicated
in the layout by an angle bracket. and the tail end is indicated by a square
bracket. All blocks occupied by a train are highlighted. The head end of a train
1s constrained by tsed to start in a regular or station block.

15

(b) After Train Creation

Figure 1.6: OQval Layout

16

{Erase all blocks currently on the layout. 'Then. create an oval
{layout as in Figure 1.6a made of four straight blocks and four arc
{blocks. using the Straight Block and Arc Block 1 tools.

It is not necessary that the block identifiers. 1.e.. the -inmbers in the labels.
match those in Figure 1.6a.

[Elick on the Train tool icon. j

Create a train on the oval by dragging clockwise from the point
marked A to that marked B in Figure 1.6a, resulting in Fig-
ure 1.6b.

If, while creating a train, you drag across the starting point, the brackets
that indicate train ends reverse their directions. Also, observe that a whole
block is highlighted if any part of that block is occupied by a train.

You should now feel comfortable with the basic drag and click operations
for creating blocks and trains in a layout. In the next part of this tsed tutorial.
you will learn how to store a layout in a file. how to specify attributes such as
speed limits for individual blocks. and how to exit tsed.

If you would prefer to return to this tutorial at a later time. select Quit?
from the File menu now. and invoke tsed again when you are ready for the
remainder of the tutorial. There is no need to save your present work. since it
will not be used in the second part of the tutorial.

1.2.3 Creating a figure-eight layout file

Qur goal is to create the figure-eight layout illustrated in Figure 1.7 and then
save that layout in a file mylayout.l. All blocks in the layout should have
minimum speed of 0 (m/sec) and maximum speed of 70. except that the station
blocks at the top and bottom of the layout are 10 have minimunispeed of 0 and
maximum speed of 50.

Select New from the File menu. If you are continuing from the first
part of the tutorial, tsed will ask if you wish to discard changes
in the canvas window; click on the Yes button. In response to the
prompt. enter mylayout as the name of the file to be created.

By invoking the New command above. mylayout .l becomes the curren! file
name. This name is indicated in the title for the canvas window. Prior to the
New command there was no current file name. When naming a file. the extension
-1 is automatically appended by tsed if you do not include it. Pathnames that

*Quit will be discussed in detail on Page 21,

X tsed: mylayout.l HEEEENEEEEEEETEE
- Dy R A

Fite

10

F
1

o

3

Figure 1.7: A figure-eight lavout

1%

(hange strasght block attnbutes;
0

j
Minimum Velocity

60
L j

Maximum Velocity

Q

Stop Velocity

i Change l Cance

Figure 1.8: Change Default Block Attributes subwindow

do not begin with a slash /" are interpreted relative to the current working
directory.

The default minimum and maximum speeds for blocks can be changed by
choosing the Change Default Block Attributes entry {rom the Customize
menu. A changed default value applies to blocks created after the change: 1t
does not affect blocks already created. Change Default Block Attributes is
itself a rmenu whose subentries are the various block types.

{Change the default attributes for straight blocks by choosing
|Change Default Block Attributes from th: Customize menu
éand moving the cursor to the right until the subentries appear,
I Select the Straight subentry.

After this step. a subwindow will appear that contains three slide bars as
shown in Figure 1.8 The slide bar on the top determines the mintmum speed
for straight blocks and 1s normally 0. The slide bar in the middle determines
the maximum speed, which is 60 at present. The slide bar on the bottom is
disabled for straight blocks since it defines the station stop speed. an attribute
that is only applicable to station blocks.

Set a new maximum speed by dragging the middle slide bar to 70
Leave the minimum speed at ().

Click on the Change pushbutton to make the new default speed
limits effective.

The steps above change the default inaximumspeed for straight blocks only.
We also need arc blocks and cross blocks that have a maximum speed of 70.

19

Change the default maximumspeed to 70 for arc blocks. using the
Arc subentry in the Change Default Block Attributes menu
under Customize and proceeding as above.

?lso change the default maximum speed to 70 for cross blocks. 1

You are now ready to create the blocks of your layvout. Refer to Figure 1.7
for illustration of the steps below.

Create a cross block near the center of the lavout at an intersection
pomnt of two perpendicular dotted lines in the grid.

Rotate the new cross block once using the Rotate tool. The
subblocks of the cross should form an *x" as opposed to a '+

Create two straight blocks of exactly the same length, each form-
ing the diagonal of a square with sides about 4 grid divisions long,
so that the head terminators of the straight blocks are attached
to the upper hot spots of the cross block.

Note that the grid assists you in determining when blocks have exactly the
same length.

Create two arc blocks with 135° extent and head terminators at-
tached to the straight blocks that you just created.

('reate a station block that connects to both unattached termina-
tors of the arc blocks.

The attributes of an individual block may be customized by selecting that
block with the Select tool and choosing Change Block Attributes from the
Customize menu.

| Click on the Select tool icon. 1

Click on station block st 7 in the canvas window to select it for
customization.

{Choose Change Block Attributes from the Customize menu.T

In the subwindow that appears, set a new maximum speed by
dragging the slide bar in the middle to 30.

The station stop speed is another attribute that may be adjusted for station
blocks using Change Block Attributes. (See Section 2.2.3 for a discussion of
the station stop speed.) We will leave the default vaiue at 30 for this layout.

20

T

P . . .
i Create the fower portion of a figure-eight layout using a procedur

lsimilar to the previous seven steps.

\

IPlace a train on the figure-eight layout. 7

L

You have now created the desired figure-eight layout. It is time to save your
work and exit from the editor.

rSave the figure-eight layout by choosing Save froni the File memq

Either the Save entry or the Save as ... entry in the File menu may be
used to save your work in a file. The difference is that Save as ... always
prompts vou for a file name. while Save uses the current file name if there is
one.

Finally, end the editing session:

I—E(it tsed by choosing Quit from the File menu. ﬁl

The Quit command checks for any unsaved changes before exiting. If any
are found, Quit gives you the option of writing them to a file first. The Close
command is similar to Quit. except tsed does not exit after checking for unsaved
changes. Instead. a Close causes tsed to enter a state with an empty canvas
window and no current filename.

1.3 How to Run a Layout

A railroad layout mylayout created using tsed can be simulated by issuing the
following command.

% ts -layout mylayout
A Trainset simulation will start and search for a file called mylayout .1, first
searching in the current working directory. then in the standard location for
layouts, as explained in the manual page for ts in Appendix D.

1.4 Control Programs

The Automatic Control Interface (ACI) is a library of procedures and data
structure definitions for writing programs that control a Trainset railroad.
The principal data type associated with the ACI. LayoutData. represents
various attributes of the blocks and trains in a railroad layout. LayoutData is
described in Section 3.2 and defined in Appendix B.].
The ACI routines may be classified into five categories.

21

I.

2.

The ACI GetDownload procedure establishes a network connection with a
running railroad simulator and receives a report of the state of the railroad
being simulated. GetDownload returns a pointer to an internally allocated
data structure of type LayoutData holding the state information that has
been received. See Section 3.2 for further detatls.

ACI commands enable a program to change certain attributes of blocks
and trains. Seven command types are available.
e SetSwitch initiates a setting change for a switch block.

e Accelerate and Decelerate initiate changing the speed of a train
at a constant rate for a specified time period.

e SetSpeed initiates changing the speed of a train towards a specified
goal speed.

e SetDirection changes the direction of a train that is stopped.

s EmergencyStop halts a train using a deceleration rate that is quicker
than the rate for Decelerate.

e StationStop enables a train to conie to a complete stop at a known
location in a station block. provided that the train enters that station
block slowly enough.

See Section 3.3 for more details about ACI commands.

ACI queries enable a control program to obtain state information about a
rallroad after a download has been received. Four query types are avail-
able.

e GetBlockOccupancy indicates whether a specified block is occupied.

® GetSwitchPosit returns the setting of a switch block.

¢ GetTrainStatus indicates whether a train is operational.

* GetTrainMotion indicates whether a train is moving.
See Section 3.4 for more information.

ACl voting service procedures. SetSegNumber and NewSeqNumber. interact
with a command arbitration facility in the simulator. This service is useful
when implementing fault-tolerant control programs. See Section 3.5.

ACT utility procedures. InitTimer. GetTimer. AwaitTimer. CancelTimer
and Sleep. provide high-level general purpose timing facilities. See Sec-
tion 3.6.

22

/* demo.c -- simple demonstration ¢f the ACI */
#include "aci.h" /* ACI definitions and declarations =/

#define MAX_HOSTNAME 100

#define POLLING_INTERVAL 0.100 /#* Seconds */
#define POLLIRG_TIMEOUT 200.0 /#* Seconds */
#define NULL (void *#) O /* generic null pointer */

int poll_timeout_flag = 0; /#* flag for terminating polling loops */

/#*#tt*#t**#*##****t***t*#****t#*#i#t**##t****##t###ttttt#t*tti’#t#**##t“#t
* set_poll_timeout_flag is executed by a timer that is used to prevent

* infinite polling loops.
*#******t******#*****!##***##**#*mt*tt**##t#**#t**###l‘t*t#tt#tt#tt*l*#!*‘/

void
set_poll_timeout_flag()
{

poll_timeout _flagt+;
}

/*#*#***ktt#*tt##ﬁ*t*t#**t*##*t#*i***###**t**tttt*#*tt*t**tt#ttt!tt‘-##ttltt
*

* This program shows the mechkanics of the ACI layer of the control

* program interface, by initiating a connection with the simulator,

* receiving the state of the railroad, meving a train, and making some

* gqueries.

»”
*****#**##****#t#**#***#*##*##**t*#*#tt*#tiitt##*tit#tt#*#**#ttt*t#tt*t#tt/

main(arge, argv)
int argc;
char *argv([];

char *progname; /* name of this program */

char *hostname = ""; /% host that is running simulatoxr */

int simnum = O; /* distinguishes betveen simulators running on same host */
Seconds timeout = 20.0; /#* maximum second to connect to simulator */
LayoutData *datap; /¢ pointer to entire received railroad state info */

Figure 1.9: demo.c. an example using the ACI (beginning).

23

TrainData *tp; /* pointers to parts of received layout data */

BlockData *bp;

int T=1, B=1; /* identifiers of a train and a block */
enum Occupancy occ; /* return values from queries */

enum TrainMotion tm;
int n; /% loop counter */

/*
* Collect command line args

*/

progname = *argv++;
it (arge)
hostname = *argv++;
it (argc)
simnum = atoi(*argv++);
if (arge)
timeout = atof(*argv++);

/*

* Connect and get the state of the railroad.
* Then, use received values to check the identifiers T and B.

*/

datap = GetDownload(hostname, simnum, progname, timeout);
it (datap == (LayoutData *) 0) {
printf("couldn’t get initial download!'\n");

exit (1);
}

if (T <= 1 || T >= datap->train_ct) {
printf(“sample train ID %d out of range [1..%d]!'\n", T, datap->train_ct);

exit (1);
}

if (B <=1 || B >= datap->block_ct) {
printf("sample block ID %d out of range [1,.%d]!\n", B, datap->block_ct);

exit (1);

}

Figure [.9: demo.c. an example using the ACI (continued).

24

/»
* Print some sample values.

*/

printf ("Number of trains: %d. Number of blocks: Yd\n",
datap->train_ct, datap->block_ct);

tp = &datap->trains([T];
print?(“Train %d has length %.2f, with front at block %d offset %.2f\n",
(7] tp->length, tp->front.block, tp->front.offset);

bp = &datap->blocks[B];
printf("Block %d has length %.2f, max speed %.2f and min speed %.2f\n",
vp->length, bp->max_speed, bp->min_speed);
if (bp->type == BT_REGULAR)
printf("This is a regular block, connected to blecks %d and %d\n\n",

bp->t.rg.tail, bp->t.rg.head);
/*
* Perform some accelerations and decelerations of train T.
*/
printf{"beginning acceleration\n");
Accelerate(T, 20.0);
printf(“pausing...\n");
10 Sleep(25.0);

printf(“"beginning deceleration\n");
Decelerate(T, 5.0);

=]

/*
* Travel until block B is occupied (or timeout occurs)

*/
printf(“polling until block %d is reached...\n", B);
poll_timeout_flag = 0;
InitTimer (POLLING_TIMECUT, O, set_poll_timeout_flag);

vhile ((occ = GetBlockOccupancy(B)) == OC_FREE && 'poll_timeout_flag)
Sleep(POLLING_INTERVAL);

Figure 1.9: demo.c. an example using the ACT (continued).

25

133

it (occ == OC_ERROR) {
printf(“error getting block occupancyi\n"};
exit (1);
}
it (poll_timeout_flag) {
printf("polling timed out after %t seconds\n", POLLING_TIMEOUT);
exit (1);
}
CancelTimer();
/* assertion: occ == OC_OCCUPIED */

/%
* Perform an emergency stop, then poll until train stops
*/

printf("performing emergency stop\n");
EmergencyStop(T);

printf("polling until trainp stops...\n");
poll_timeout_flag = 0;
InitTimer {(POLLING_TIMEOUT, 0, set_poll_timeout_flag);

while ((tm = GetTrainMotion(T)) == TM_MOVING && 'poll_timeout_flag)
Sleep(POLLING_INTERVAL);

if (tm == TM_ERROR) {
printf("error when querying about train metion!\n");
exit (1);
}
if (poll_timeout_flag) {
printf("polling timed out after %f seconds\n", POCLLIKRG_TIMEQUT);
exit (1);
}
CancelTimer();
/* assertion: tm == TM_STOPPED #*/

printf("train has s%opped.\n");

exit (0);

Figure 1.9: demo.c. an example using the ACI (concluded}.

26

The example program demo. ¢ (see Figure 1.9) illustrates the use of the ACL
This program connects to a simulation and receives the state of a railroad. then
attempts to move a train in that railroad to a certamn block and perform an
emergency stop. Sonie key points about the code are indicated by numbers D]

etc.

m The include file aci.h contains declarations and definitions required for
compiling a source file that uses the ACI. In order to create an executable.
one must link with the ACI library 1ibaci.a.

E] Time values passed to the ACI timer procedures are always floating-point
quantities representing seconds. An ACl type Seconds is defined for such
quantities.

@ set_polling_timeout is the procedure that will be invoked if a tsuser
timer expires.® Such a procedure cannot be invoked with arguments. so it
changes a global variable polling. timeout in order to inform the main
program about timer expiration.

E] The file aci.h defines a number of data types besides LayoutData. The
type TrainData is used to represent download information received for a
train: likewise. BlockData represents download information for a block.
Both TrainData and BlockData are component types used in the defini-
tion of LayoutData. Enumerated types, including Cccupancy and Train-
Motion, are used for command arguments and query return values. Trains
and blocks have unique positive integer identifiers.

E] GetDownload takes four arguments, returns a null pointer on failure. etc.
Chapter 3 is the reference for this and the other ACI procedures.

Several examples of references to a LayoutData structure follow the invo-
cation of GetDownload. More direct references such as

datap->trains [T-1].length
datap->blocks [B-1].t.rg.tail

could be used in place of those that involve tp and bp in demo.c. Observe
that the index of a train in datap->trains is always one less than that
train’s identifier. A similar remark holds for blocks.

The function PrintDownload in Appendix B.2 includes examples of refer-
ences to every component in a LayoutData structure.

Checkiug the values of T and B at is not strictly necessary in this
program. since their values are known to be valid in this case. It i1s a
good defensive programming practice to include such checks anyway. as
protection against future changes.

5Note: As explained in Section 3.6, a call to InitTimer overrides any prior calls. Thus. we
speak of “the ACI timer,” because only one such timer can be in effect at any time.

27

@ ACI commands such as Accelerate are non-blocking and return no values.
‘They print no warnings about unreasonable arguments. The conunand

Accelerate(T, 20.0);

requests that train T accelerate for a duration of 20 seconds. increasing its
speed during that period at the predefined fixed acceleration.

©10.11| ‘The instruction
Sleep(25.0);

causes demo.c (not the Trainset simulator!) to suspend execution for 23
sec. This is long enough that the subsequent Decelerate command E]
1s unlikely to interfere with the prior Accelerate command E

The train would begin to reduce its speed as soon as the Decelerate
command is received. even if the prior acceleration had not been in eflect
for the acceleration’s entire duration. For example. if the Sleep had been
for 10 seconds instead of 25, then train T would accelerate for about 10
seconds. then decelerate for 3 seconds.

E The query GetBlockOccupancy is used so that train T may reach block
B That query is issued frequently until block B is found to be occupied
or until an error or timeout occurs. This technique of frequent queryving
is called polling. The ACI timer is set up before the shile statement to
provide timeout mechanism for leaving that loop.

! 13’ The loop guard condition shows that there are two ways to leave the loop.

o If occ differs from OC_FREE, i.e.. occ has value OC_OCCUPIED or
OC_ERROR. then the loop will be exited. (Query errors can be caused
by invalid arguments. loss of communication with the railroad. etc.)

s If polling_timeout has a non-zero value. then the loop will be ex-
ited. polling_timeout changes from zero to a non-zero value if the
timer expires {see and the invocatjon of InitTimer).

E 14.13.16| Before concluding that occ = OC_OCCUPIED, which would indicate occu-
pancy of block B. it is necessary to eliminate the other events that can
cause the loop to exit.

i 17[A period of tune elapses between the moment that block B becomes oc-
cupled and the time when the control program demo.c¢ can act on that
information. This time period arises from the following causes.

¢ Delay from polling. Some time necessarily elapses between the
mornent that block B becomes occupied and the time when that sen-
sor is checked. The sensor is checked by each successful call to the

28

18

query GetBlockOccupancy. Thus. if GetBlockOccupancy succeeds
this period is bounded by the execution time of one iteration of the
polling loop. except possibly when block B is found to be oceupied
on the first GetBlockOccupancy query.

¢ Network delay. This is the time required for a sensor value 1o be
communicated to the control program.

¢ Local processing delay. Once the process that is running demo.c
receives a communication that block B was occupied. several further
steps occur: the query function returns: the polling loop exits: checks
are performed in order to deduce that block occupancy was in fact
the reason for loop exit: and the timer is cancelled. Fach of these
steps requires local processing time.

Such delays can affect the correctness of control programs. For example,
the occupancy of a block might change by the time that a control program
could take action on that occupancy information. In particular. it is not
correct to conclude that block B is currently occupied based solely on the
fact that occ has the value DC_OCCUPIED at [E

i [The command EmergencyStop causes a train to reduce its speed to zero

quickly. Unlike Accelerate and Decelerate. the effects of EmergencyStop
cannot be interrupted by another command.

Polling with the query GetTrainMotion is used in demo.c to determine

when the train has come to a complete stop.

Exercises

I.

Write a program that uses the ACI to cause both trains in the sample
layout (see Figure 1.1} to move around the track for five minutes. then
stop. {Compare to Exercise 1 of Section 1.1.2.) The trains need not travel
on different loops.

. As in the loop [12], a timer is set up just before the while statement

in order to guard against an infinite loop. Is this timer necessary. or is
that loop certain to exit in a reasonable amount of time without a timer?
(Hint: Consider the specifications of GetTrainMotion in Section 3.4.4.)

29

Chapter 2

Trainset Railroads

2.1 Introduction

Trainset railroads are idealized versions of real railroads. This chapter dis-
cusses the attributes and operation of Trainset railroads. You will see that
while Trainset railroads are simpler than their real-life counterparts. the sim-
plifications are ones that do not make it appreciably easier to write programis
to control the railroad.

2.2 Blocks

In a Trainset railroad. a layout consists of an assembly of blocks together with
movable trains that occupy some of those blocks. See Figure 1.1 for an example.

Every block is assigned a unique block D) B, a length L, a marimum speed
bmat MX,, and a minimum speed limat AN, We expect!

0 < MN, < MX, < MAXFLOAT.

Each block has a set of terminators that delimit the track implementing that
block.

As in real railroads. each block has an associated sensor called a track crrcuil,
that indicates whether that block is occupied by a train. Polling a track circuit
only returns one bit of information signifving whether the associated track block
15 occupied. Note that it is not possible to learn the exact location of a moving
train from the information returned by a track circuit.

A block may have between two and [our terminators, depending on its type.
There are five types of train blocks: regular. join. switch. cross and station
blocks. These are illustrated in Figures 2.1 2.5.

YMAXFLOAT is the largest floating point aumber on the computer system. The standard
mks units of measure are used throughout this document.

30

rg 2
rg 1

Figure 2.1: Regular Blocks

Two blocks are aftached to each other if each of the blocks has a terminator
that is associaled with the other block. Trainset block layouts are subject to
the following restrictions.

e A terminator may be associated with at most one block.
¢ A block may not be attached to itself.

e Blocks may not be attached to each other more than once. e.g.. circular
track configurations that consist caly of two half-circle blocks are prohib-
ited.

These restrictions make it simpler to describe attachments between blocks. but
do not limit the topology of Trainset layouts. For example. we could easily
construct a circular track configuration using two quarter circles and a semicir-
cle.

It is not necessary that all terminators of a block be attached to other blocks.
Of course, a train will derail if it attempts to exit from a block at an unattached
terminator.

2.2.1 Regular Blocks

Each regular block has two terminators. Such a block can have the shape of a
line segment or a circular arc. See Figure 2.1.

2.2.2 Join Blocks

A join block has three terminators and allows two train routes to merge. Two
of the terminators, called the keads. are each connected to the third terminator,
called the tail

A train can occupy the track between either of the heads and the tail. Trains
can enter a join block at either head and exit through the tal. A train derails
when it either enters a join block at the tail or leaves {romn one of the heads.

Tail
Y

X

7 Yy
Head | dead 2 rg 7

Figure 2.2: Join Block

Heed
y
Subblock
A
Tail
Subblock

Head %« Tail

Figure 2.3: Cross Block

Join blocks are assumed to be LEXN;,;; mcters long measured from the tail
to either head terminator.? At most one train may occupy a join block at any
time. If a second train enters a join block that is already occupied. then a
collision occrrs.

2.2.3 Cross Blocks

A cross block (see Figure 2.3) allows a track to intersect itself. so that “figure
eights” and related designs may be built. A cross has four terminators. and a
train may ounly travel hetween any opposing pair—-turns are not allowed. Thus.
cross blocks behave like two short regular blocks. called subblocks, with the

?Constants such as LENjoin are determined at the time of installation. See the installation
manual for details.

32

Tail

(ﬁq - Turn head
/'y

Straight head = 13

Straight Position

Tail @

»
(D« Tum head
2

Straight head

Tura Position

Figure 2.4: Switch Block

same length and speed limits, that have beeun overlaid at their mdpoints. A
cross block and both of its subblocks are occupied whenever either of those
subblocks is occupied. Cross subblocks are [FNcros, meters long. A collision
occurs when a cross block becomes occupied by two or more trains.

In order to distinguish between the subblocks of a cross block. each has its
own block ID. One of these also serves as the cross block™s ID.

2.2.4 Switch Blocks

A switch block {see Figure 2.4} has three terminators, labelled tasl straight head
and turn head. and consists of a movable track segment that has two settings
and a mechanism Lo inove this track between those settings. Depending on the
setting of the movable track. either the train may travel between the tail and
straight head (in either direction) or between the tail and turn head. Thus. a
switch block can be part of two different train routes, according to that switch
block’s setting.

A switching time Tg i .cn must elapse for a switch block to change from one
setting to the other. The switch setting ts undefined during this time period.
If a switch is commanded to change to one setting (e.g.. straight} while it is
already in that setting or in *he process of changing to that setting. then that
setting-change command has no effect. If the setting-change command was to
switch to the other setting. then the switch begins chanring to the new setting.
It takes a full 7y, o seconds to change to a new setting. even if the switch

33

7

Figure 2.3: Station Block

setting was undefined at the time of the setting change command.
A train attempting to traverse a switch block will derail under the following
circumstances.

e ‘The switch block has undefined setting.
o A switeh change is attempted on the switch block.

e The train enters the turn head terminator of a straight switch. or the
straight head terminator of a turned switch.

Switch blocks are L E Ny meters long nieasured from the tail *o either of
the other terminators. At most one train may occupy a switch block at a time
or a collision wiil occur.

A switch block that 1s occipied vy a deraited or collided train will not respond
tn setting change commands.

2.2.5 Station Blocks

Station blacks are like regular blocks {see Figure 2.1) except that they allow a
train to stop at a fixed specified location. Using a station block is the only way
to be sure of the exact position of a train after it has begun moving. because
track circuits only reveal whether a block was o:cupied sometime in the past.

Each station block 5 has a station-stop-speed VSS,. A station stop begins
whenever a train that is in station-stop mode (see Section 2.3) enters a station
block while travelling with speed at most VSS,. Under these conditions. the
train will automatically begin to slow down so that it will come to a complete
stop exactly at the opposite terminator of the station block.

A station stop by a train can be aborted by commanding that train to change
velocity or acceleration.

34

Figure 2.6: Block occupancy.

2.3 Trains

Every train is assigned a unique train [T and a {ength and has the following
attributes that may change during a simulation.

e A speed v, and an acceleration a..
e Two ends. labelled head and tail, that are points within blocks.
o A direction dir,..

e An emergency-stop mode €s,. and a station-stop mode ss,.. which may be

enabled or disabled,

We expect 0 < v, < MAXFLOAT. The distance along the track between a
train’s ends is always that train’s length L.

Fach train in a layout always occupies a sequence of attached blocks. A
train occupies a block if the interiors of that train and that block intersect. For
example. suppose that the train in Figure 2.6 has just completed a station stop.
so that one end of that train is at a terminator. That train occupies blocks
rg 10 and st 11, but does not occupy block rg 12. If that train moves slightly
to the left {i.e., forward), it will then occupy block rg 12.

A train’s direction dir, determines which of the two ends advances if that
train moves forward. The train end that advances is called the front. and the
other end is called the rear. For example. suppose that the head of a train is
the front. If that train’s direction is changed. then the train’s tail will become
the front and the head will become the rear. A train’s direction can only change
when that train is not moving. that is, when v, = ¢, = 0.

2.3.1 Train States

A train can be in one of three states: operational derailed or collided. Figure 2.7
shows possible transitions between these states.

A train’s state changes from operational to derailed under any of the follow-
ing conditions:

e
//

()pt"f-'i
tiopal /

/ \\
///"\
derailed | ——— ('ollided)
e

Figure 2.7: Irain state transitions.

That train occupies a block and the train’s speed v, violates one of that
block's speed lunits. 1, < MAN, or VX, < 1.

The front of that train exits a block at an unattached terminator.

The front of that train enters a join block at the tail terminator or exits
a join block from a head terminator.

That train occuples a switch block that has undefined setting.
A switch change Is attempted on a switch block occupied by that train.

That train enters the turn head terminator of a switch in the straight
setting or the straight head terminator of a switch i the turned setting.

A train’s state changes to collided if there is another train in the layout such

that either of the following conditions holds.

e Both trains occupy the same switch. join or cross block.

e Both trains occupy the same block at the same point.

2.3.2 Laws of Motion

In Trainset, the acceleration of a train 1s one of the constant values ACC, 0,
—ACC and = Aemer . except during a station stop. We expect

0 < ACC < Aemer < MAXFLOAT.

If the acceleration a, of a train is constant during a time interval [ty £,] and

v{4;) 15 the speed v,. of that train at time {;. then

v{ly) = v(ty) + a, - (1) — to).

36

For such a train, if #(t;) represents the position of an end of that train at time
{;. then
, Coa, ”
2ty) = zx{to) + vita) - (i — o) + 7! (b = ta).

A train’s station-stop mode turns on the station-stop feature for that train.
A station stop begins if the station-stop mode of a train is enabled and that
train enters a station block with speed . satisfying

0< e, < USS,.

where 1SS, is the station-stop speed of that block. ‘The station-stop mode of
that train is disabled as soon as a station stop begins.

A station stop by a train can be aborted by setting that train’s speed or
acceleration during that station stop. If a train perforins a station stop in a
station block and that station stop is not aborted. then all of the {ollowing will
hold upon its completion.

e The train’s speed v, and acceleration a, will be (.
e The train’s front will be at the opposite terminator of that station block.
o The train will occupy that station block.

A station stop’s completion may be cbserved using the query GetTrainMotion
discussed in Section 3.4.

The emergency-stop feature allows a train to stop at a faster rate than
usual. A train performs an emergency stop when its emergency-stop mode
is enabled. During an emergency stop by a train 7. its acceleration satisfies
a4, = —Acmer. The emergency stop finishes as soon as v, becomes 0. At that
time. the emergency-stop mode for T is disabled and its acceleration a; becomes
0.

A train does not respond to commands during an emergency stop. Thus.
emergency stops cannot be aborted.

Chapter 3

Automatic Control
Interface (ACI)

3.1 Introduction

The Control Program Interface (CPI) is used for writing computer programs
that interact with Trainset railroads. It consists of two layers. the Automated
Control Interface (ACI) and the Low-Level Interface (LLI), as illustrated in
Figure 3.1.

The ACI layer consists of library routines that can be used in a control
program to establish communication with a simulation of a Trainset railroad.
obtain the state of that railroad, interact with the railroad’s layout using com-
mands and queries and use the Trainset voting service.! The ACI also provides
some local timer utilities. This layer is intended to meet the needs of most con-
trol program writers.

IThe voting service facilitates writing fault-tolerant control programs. See Section 3.5.

control
program
ACI Trainset
CPI railroad
LLi simulation
i network]

Figure 3.1: Communication interface layers.

38

The LLI laver has most of the same capabilities as the ACL but at a more
primitive level that requires a programmer to manage communication and mes-
sage buffers directly.

This chapter describes the ACI laver. Usage details are described in a ref-
erence format using C language syntax. Chapter 4 presents the LLI layer.
For programming examples that use the ACI layer. see Section 1.4 and Ap-
peundix B.2.

A Trainset ratiroad can accept three kinds of messages from CPI clients.
A state download reques! asks for a railroad’s state. A command can affect a
railroad layout. e.g.. by changing a switch block's setting or setting a train’s
acceleration. A guery requests information about a block or train.

Trainset railroads silently ignore messages that contain syntax errors.

3.2 Initial-State Download

LayoutData *

GetDownload(hostname, simnum, progname, timeout)
char *hostname; /* machine running a simulation */
int simnum; /* identifies a running simulation */
char #*progname; /# name of invoking program %/
double timeout; /% in seconds */

Executing GetDownload causes a network connection to be established with
a railroad simulation and information about the state of the railroad to be
received from that simulation. The download is stored in an internal static data
structure of type LayoutData defined in Appendix B.1.

hostname and simnum? must identify an executing Trainset railroad simu-
lation. and timeout must be positive, or GetDownload will fail. If hostnane is
an empty string. then the local host is used.

The address of the LayoutData structure is returned if execution succeeds.
A message is printed and a NULL pointer is returned on failure. Possible failure
conditions are:

e timeout is not a positive floating-point value.

e A network connection could not be established before timeout seconds
elapsed.

o There is no simulation on the host hostname with identifier simnum.

2gimnum determines which well-known ports are to be used when initializing communication

with a railroad simulation. Multiple railroad simulations may be run simultaneously on the
same host if they use different simnum values.

® An error was detected while parsing the download.

e GetDownload Las aljready been called successtully by tlns client at a prior
tune.

The download consists of the following.

General parameters:

o The number of blocks Nyjoexs and of trains N, in the lavout. Block
IDs range from 1 to Npjocs and train [Ds range from 1 to Nyan

o The standard acceleration rate ACC and emergency-stop acceleration rate
Aemer for trains.

o The switching time Tgy;ecp for switch blocks.

» The voting window W,sige and voling quorum Qm,m‘z for cornmands to
be accepted. See Section 3.3.

For each block:
e The ID & type and length of the block.

e The maximum speed limit MX, and minimum speed limit MN .

The attachments for that block. A block ID is specified for each attached
terminator and 0 for each unattached terminator.

For station blocks, the station-stop speed 1S5,

For subblocks of cross blocks, the block 1D of the cross block.

For each train:
o The ID 7 and length of that train.

o The locations of that train’s head and tail ends. The location of an end
of a train is specified by giving the ID of a block containing that end and
the offset of that end within the block. Offsets are measured from the tail
terminator of a block.

3.3 Commands
A CFI client can cause a change in a Trainset railroad by issuing a command.

Such a change is called a layoui action. Only trains and switch blocks can be
affected by commands.

40

Each cominand gives rise Lo at most one lavoul action. A conunand fails
to cause a layout action if the preconditions of that conumand are not satisfied.
For example. a SetDirection command causes a new direction to be assigned
to a train only if that train is operational and not moving. Also. multiple com-
mands may optionally be required to cause a single layout action. as described
in Section 3.3.

There are seven types of command that a CPI client can send to a Trainset
railroad: SetSwitch. Accelerate, Decelerate. SetSpeed. SetDirection.
EmergencyStop and StationStop. These are specified as follows.

3.3.1 Set Switch

enum NewPosit {KP_STRAIGHT, NP_TURNED};

void

SetSwitch(block_id, new_setting)
int block_id;
enum NewPosit new_setting;

SetSwitch causes the switch block identified by block_id to begin changing
setting to new_setting. A setting change requires 7y cp Seconds to complete.

block_id must identify an unoccupled switch block that is neither in the
selting new_setting nor in the process of changing to that setting: otherwise
no action 1s taken.

3.3.2 Accelerate and Decelerate

void

Accelerate(train_id, duration)
int train_id;
double duration;

void

Decelerate{train_id, duration)
int train_id;
double duration;

Accelerate and Decelerate cause the acceleration ayrain_jq of the train
identified by train_id to be assigned the following value.

+ACC for Accelerate

Upyain id = .
train_id —ACC for Decelerate

41

U rain_id 15 assigned the value O after either duration seconds elapse or the
train’s speed reaches 0. whichever cories first. unless agyain 4 1s changed again
or the train collides or derails.

duration must be nou-negative, and train_id must identdy an operational
tramn that is not performing an emergency stop: otherwise no action is taken. |

3.3.3 Set Speed

void

SetSpeed(train_id, goal_speed)
int train_id;
double goal_speed;

SetSpeed causes the acceleration aypajn_jd of the train identified by train_id
to be assigned the following value.

+ACC if goal_speed > tirain_id

ttrain_id = { 0 if goal_speed = tirain_id
~ACC if goal_speed < tyrajn_id

‘The acceleration dyrain_jq is assigned the value 0 when that train's speed
reaches goal_speed. unless ayrajn_jq 15 changed again or the train derails or
collides before the goal speed can be reached.

goal _speed must be non-negative, and train_id must identify an opera-
tional train that is not performing an emergency stop: otherwise no action is
taken.

3.3.4 Set Direction

void

SetDirection(train_id, new_dir)
int train_id;
int new_dir;

SetDirection causes the direction diryrain_jq train identified by train_id
to be assigned the following value.

tail-to-head if new_dir > 0
dirgrain_iq = { head-to-tail if new_dir < ¢
opposite of diryrain iq if new_dir =0

Here. tail-to-head means that the head end of that train is the {ront end. and
head-to-tail means that the tail end is the front end.

42

The direction diryyain_iq of train_id must identify an operational train
that satisfies

Otrain_id = ttrain_id = U

or no action is taken.

3.3.5 Emergency Stop

void
EmergencyStop(train_id)
int train_id;

EmerrencyStop causes the emergency-stop mode esyrain_iq of the train
identified by train_id to be enabled. This causes an emergency stop to begin
immediately. That train’s acceleration ayrajn_iq 1s assigned the value —Aemer
until the train’s speed vyrain_id becomes 0, at which time aypajn_jg s assigned
the value 0 and esyrain_id 1s disabled.

train_id must identify an operational train, or no action is taken.

3.3.6 Station Stop

enum StationStopMode {SS_DISABLED, SS_ENABLED};

void
StationStop(train_id, new_val)
int train_id;
enum StationStopMode new_val;

StationStop causes the station-stop mode ss¢rain_iq of the train identified
by train_id to be assigned new_val. A station stop (see Section 2.3.2) begins
if an operational train enters a station block with station-stop mode enabled
and with speed vtrain_iq that does not exceed the block’s station-stop speed
V55,.

train_id ust identify an operational train that is not performing an emer-
gency stop; otherwise no action is taken.

3.4 Queries

Queries are the only way that a CPI client can obtain information about a
layout after the initial-state download has been received. There are four query
types: GetBlockOccupancy. GetSwitchPosition. GetTrainStatus and

GetTrainMotion. These queries return very limited information. Thus, facts

43

about the layout's state such as a train’s speed and emergency-stop mode must
be computed by a CPI client program from a knowledge of past values and of the
properties of Trainset railroads. This makes writing process control programs
difficult but realistic.

3.4.1 Block Occupancy

enum Occupancy {OC_FREE, OC_CCCUPIED, CC_ERROR = -1};

enum Occupancy
GetBlockOccupancy(block_id)
int block_id;

The occupancy status of the indicated block is returned. If block_id i1s not
the ID of a block or if a timeout occurs awaiting a reply from the simulation.
OC_ERRCR is returned.

3.4.2 Switch Position

enum SwitchPosit {SP_STRAIGHT, SP_TURNED, SP_UNDEFIKED,
SP_ERROR = -1};

enum SwitchPosit
GetSwitchPosition(block_id)
int block_id;

The setting of the indicated switch block is returned. If block_id is not the
ID of a switch block or if a timeout occurs awaiting a reply from the simulation.
SP_ERROR is returned.

3.4.3 Train Status

enum TrainStatus {TS_CRASHED, TS_RUNNING, TS_ERROR = -1};

enum TrainStatus
GetTrainStatus(train_id)
int train_id;

If the indicated train has state operational. TS_RUNNING is returned. If that
train’s state is derailed or collided, TS_CRASHED is returned. If train_id is not
the ID of a train or if a timeout occurs awaiting a reply from the simulation.
TS_ERROR is returned.

44

3.4.4 Train Motion

enum TrainMotion {TM_STOPPED, TM_MOVING, TM_ERROR = -1};

enum TrainMotion
GetTrainMotion{train_id)
int train_id;

If the indicated train has state operational and at least one of the train’s
speed Utrain_jq Or acceleration dgrain_id is non-zero. TM_MOVING is returned.
Otherwise. TM_STOPPED is returned, except that TH_ERROR is returned if train_id
is not the ID of a train or if a timecut occurs awaiting a reply from the sirnula-
tion,

3.5 Voting

The voling service supports the writing of fault-tolerant control programs for a
Trainset railroad. By default. there is a one-to-one relationship between CPI
client commands (satisfying various preconditions. as des~ribed in Section 3.3)
and layout actions. The voting service makes it possible to require that a simu-
lation receive a specified number Qvoting ©f commands from different CPI clients
within a certain time period Wyoting before a layout acion can occur.

The behavior of the voting service is governed by the following narameters.

e A noling quorum vaing (integer). When the voting service is being
employed, a layout action can be generated only if Qvoting commands
satisfying the conditions below are received from different CPI clients.

* A roting window Wygjn, (floating point, seconds). This is a time !"mit af-
ter which CPI client commands expire. If a command has not contributed
to a layout action within Wyoting seconds after receipt by a simulation,
then that command will have no effect.

* A sequence number seq (integer) that is associated with each CP1 com-
mand.

We expect Qvocing > 0, Wyoting > 0 and seq > 0.

The voting service is enabled only for commands with positive sequence
numbers. Figuratively speaking, commands with different positive sequence
numbers participate in different “elections.”

The following paragraphs provide a specification of the voting service.

Sequence number 0. If a command has sequence number 0. then that com-

mand alone generates a layout action immediately. as described in Section 3.3.
The values of Wy ing and Qvoting have no effect on such commands.

45

conunand sequence

tinnie type client number
Command A 7:22:06 Accel 2 61
B 72213 Accel ! 60
C 72217 Accel 3 61
D 7:22:149 Accel 1 60
E 7:22:25 SetSpeed 2 61
F 7:22:30 SetSpeed 3 61

Figure 3.2: Voting exatuple {positive sequence numbers).

Positive sequence numbers. I a simulation receives Qg pn, OF 1i0re com-
mands with the same positive sequence nunber seg from different CPl chients
during any time period of Wiging seconds or less. then a single layout action 1s
generated. By default. the layout action generated is the action caused (subject
to the preconditions listed in Section 4.3) by the last of those commands.

No commands with positive sequence numbers can otherwise contribute to
fayout actions. C'onmnands with the same sequence number need not have the
sate argunients nor even the same command type. A command can contribute
to the generation of at most one lavout action.

For example. suppose that Wiong = 10 sec. Quoing = 2 and that the
commands in Figure 3.2 are received by a simulation. Then only one layout
action will be performed by that simulation as of the time 7:22:30. That layout
action will be E. occurring at thine 7:22:25. The quorum of commands consists

of " and E.

‘The values of Qy¢ing and Wiogigg are determined when a Trainset railroad
sirmulation is wnvoked. and cannot be changed during a simtation. The default
value for Qying is 2, and the default value for W yping 15 5 seconds.

Sequence numbers can be modificd dynamically by a control program. The
ACT provides an internal sequence-number variable seqq¢) whose value is auto-
matically sent with each command. The value of the variable seqq¢q remains
constant unless explicitly modified. and the inidal value is 0.

In order to employ the voting service. It is necessary to start a simulation
with Quaging > 1 and to send corumands that have positive sequence numbers.
The ACI provides two functions for modifying the value of a sequence nuinber.

3.5.1 New Sequence Number

int
KewSeqNumber ()

The sequence number is incremented and the new value s returned.

3.5.2 Set Sequence Number

int
SetSeqNumber (new_val)
int new_val;

If new_val 1s non-negative. the sequence number seq is assigned new_val.
and that value is returned. Otherwise, seg is left unchanged and -1 is returned.

3.6 Timer Facilities

The ACI layer provides procedures that implement a simple timer service in
which time quantities are represented as seconds in floating point. ‘These rou-
tines affect a program that calls them: they do not themselves interact with
a Trainset railroad. Alternative time-managenient routines or direct svstem
calls may be used "astead of these timer procedures when writing programs that
use the ACI. Thus. use of the ACI timer facilities is optional.

The five timer procedures are InitTimer. GetTimer. AwaitTimer. Cancel-
Timer and Sleep.

3.6.1 Initialize Timer

enum TimerReturn {TMR_SUCCESS, TMR_ERROR = -1};
typedef double Seconds;

enum TimerReturn

InitTimer (first, period, t)
Seconds first; /* delay to first timeout »/
Seconds period; /* wait between successive timeouts */
void (#£)(); /#* fun:tion executed upon each timeout */

InitTimer initializes the timer mechanism to execute the function £{) after

first seconds and every period seconds thereafter. If £irst is zero. the timer
1s innnediately disabled. I peried is zero. the timer executes £() at most once

47

If the value zero is specified instead of a funcuon £, then nothing 15 done on
timeouts except to reset the timer as appropriate. THMR_SUCCESS Is returned
if the operation succeeds. If a time argument is negative or a low-leve] error
occurs. TMR_ERROR is returned.

A call to InitTimer overrides any prior (imer setting. Thus. there 15 no
provision for more than one timer being in effect at any time. The timers used
in other ACI functions, including GetDownload. the ACI queries and Sleep. do
not interfere with InitTimer.

3.6.2 Get Timer Values

enum TimerStatus {TMS_DISABLED, TMS_ONCE, TMS_IKDEFINITE,
TMS_ERROR = -1};
typedef double Seconds;

epum TimerStatus
GetTimer (nextp, periodp)
Seconds *nextp; /* next scheduled timeout #*/
Seconds *periodp; /* delay between successive timeouts

GetTimer stores the seconds remaining until the next timer expiration in
*nextp and stores the current period between timer expirations in *periodp.
The return value is TMS_DISABLED if the timer is currently disabled, TMS_ONCE

if the timer is scheduled to expire once only. TAS_IKDEFINTITE if the tinier is
scheduled to continue indefinitely and TMS_ERROR if a low-level error occurs.

3.6.3 Await for Timer

void
AwaitTimer()

AwaitTimer suspends the calling process until an ACI timer expiration or
another operating system signal occurs.

3.6.4 Cancel Timer

enum TimerReturn {TMR_SUCCESS, TMR_ERRQR = -1};

enum TimerReturn
CancelTimer()

48

*/

CancelTimer cancels an ACT timer. TMR_SUCCESS is returned if the oper-
ation succeeds. CancelTimer fails if a low-level error occurs. in which case
TMR_ERROR is returned.

3.6.5 Sleep

enum TimerReturn {TMR_SUCCESS, TMR_ERROR = -1};
typedef double Seconds;

enum TimerReturn
Sleep(sec)
Seconds sec; /* mar number of seconds to suspend */

Sleep suspeuds the calling process for indicated number of seconds. The
value TMR_SUCCESS is returned if the suspension was not interrupted before the
time limit expired. Otherwise. TMR_ERROR Is returned.

Sleep does not interfere with the operation of InitTimer. Thus, these
functions may be used together, e.g., to set up a polling loop with a timeout.

49

Chapter 4

Low-Level Interface (LLI)

4.1 Introduction

The Low-Lovel Interface (LL1} consists of predefined message formats and re-
lated facilities for communicating with a Trainset railroad sunulation. This
layer is used to implement the ACY layer in the Control Program Interface (see
Figure 3.1).

This chapter gives a sketch of the LLI layer. A reading knowledge of the
(' programming language 1s assumed. The rest of this chapter includes the
following sections.

e Section 4.2 1s external docuruentation for the source file cpi.h (see Ap-
pendix C.1). ‘The internal structure of that file is described. and the source
lines that pertain to the acceleration comumand are discussed as examiples.

® Section 4.3 describes the steps necessary lor a client to connect and identify
itself to a Trainset railroad sinulation.

e Sections 4.4 and 4.5 briefly hist the message formats that are used for
initial-stale downloads. commands and queries. A knowledge of the ACI
layer {Chapter 3) is assumed.

For a programiring example that uses the LLI programming layer. see the
unplementation of the ACH layer in the source file aci.c (Appendix (. 2).
4.2 Messages

In the LLI layer. a control program interacts with a Trainset railroad simula.
tion by sending and receiving messages. An LLI message 1s an ASCII character
string that 1s organized according to one of the message formats delined in

50

#define MSG_CPI_ACCEL "Xa%d,%d:%d:%1f#"
typedef struct {
int client_id; /* unique identifier for this client */
int seq_num; /* label for this command */
int train_id; /* simulator train number »/
double duration; /* time to accelerate in seconds */
} MsgCPIAccel;

#define MSG_CPI_ACCEL_ARGC 4
#define MsgCPIAccelArgs(buff, datap) (buff, MSG_CPI_ACCEL, \
datap->client_id , datap->seq_num , datap->train_id , datap->duration)

#define CreateMsgCPIAccel(buf?, datap) sprintf MsgCPIAccelhrgs(buff, (datap))
#define ParseMsgCPIAccel(buff, datap) sscanf MsgCPIAccelArgs(buff, &(datap))

Figure 4.1: Excerpt from cpi.h relating to acceleration command.

cpi.h. Each such message format consists of fields for representing data. to-
gether with an identifying header and delimiter characters.

For example, consider Figure 4.1. an excerpt from cpi.h. Line m defines a
message format called MSG_CPI_ACCEL. That message format has the following
syntax.

Xa (integer) , (integer) : (integer) : (Hoat) #

There are four fields. The notations (integer) and {float) indicate ASCII repre-
sentations of integer and floating point numbers. The total length of a message
depends on the lengths of the data in its fields.

In general, for each message format in cpi.h there is a type definition of
an associaled data structure whose components correspond to the fields of that
message format, in the same order.! For MSG_CPI_ACCEL, the associated data
structure is called MsgCPIAccel. See the lines near |2|in Figure 4.1.

A comparison of the message format MSG_CPI_ACCEL and the documented
data structure MsgCPIAccel shows that the first (integer) field in that message
format holds the client ID.? the second {ir.teger) field holds the voting sequence
number of an Accelerate command, etc.

For each message format, a macro has been defined that produces a string
in that message format, using values stored in a variable of the associated data

YFour CPl message formats are associated with basic data types that are not explic-
itly defined as structures in cpi.h. These are MSG_CPI_INIT (string). MSG.ACK (string).
MSG_CPIDOWNLD DOBE (integer) and MSG_QUITALL (string).

?A unique client ID is assigned to each CPI client when that client connects to a simulation,
as described below.

al

tvpe for the fields. Another macro has been defined for parsing such a mes-
sage into a variable the associated data type. These macros are provided as
a convenience. In the case of MSG_CPI_ACCEL. the creation acro is called
CreateMsgCPIAccel and is defined by line in Figure 4.1. The message-
parsing macro is ParseMsgCPIAccel defined on line [4].

In general, for any such macro associated with a message format:

o There are two arguments. a character string buffer holding the message
and a pointer to a variable of the associated data structure type holding
the values.

o The run-time replacement value of such a macro is the length of the re-
sulting tnessage. not counting a null byte that is placed at the end of that
message string.3

Thus, the macro CreateMsgCPIAccel behaves like a function with the following
heading.

int

CreateMsgCPIAccel(butf, datap)
char buff{]; /* resulting message is placed here */
MsgCPIAccel *datap; /* points to data values */

4.3 Initiating Communication

Establishing communication between a client and a Trainset railroad simula-
tion requires two steps.

{. Connection. Create a network connection between that client and that
simulation. A simulation provides well-known ports for supported commu-
nication protocol families (e.g., TCP/IP, DECnet) and is capable of socket
or stream transmissions in each case. The fiinction GetSimPort defined in
the source file 1ib/syslocal.c returns the well-known port. given a base
port (provided in 1ib/syslocal.h), a host name and an integer simnum
that distinguishes between multiple simulations running on the same host.
Use standard techniques to open one bidirectional communication line.

N

Registration. Send a registration message to that simulation to declare
a client type (CPI or monitor) and receive a client ID. A registration
niessage for a CPI client has the message format MSG_CPI_IKIT

CPI {one space) (string) %

3Sending a terminating null byte to a simulation as part of a message is optional.

32

where (string) is any sequence of characters that are not the percent sign
% and is conventionally the file name of that client’s executable. The simn-
ulation replies with an acknowledgement message in the format MSG_ACK.
as follows.

ack (one space) {integer) # %

The {integer) field in that message represents the unique client 1D number
to be used in all commands and queries from that client to the simulation.

'The macros CreateMsgCPIInit and ParseMsgAck may be used if desired.
We assume that each client creates only one connection with a simulation.
For the remainder of this chapter. message formats will be cited by name
only. omitting mention of syntax, related macros. etc. See Appendix C.1 for
syntax details.

4.4 Initial-State Download

After initiating communication with a simulation. a CPI client can receive a
report of the current global state of the railroad being simulated. Such a report
is called a dounload.

To request a download. a control program must send a message to a simu-
fation using the message format MSG_CPI_DOWNLD_REQUEST. The acknowledge-
ment from the simulation is the download itself. The download consists of
messages in the following DOWKLD formats.

o MSG_CPI_DOWNLD_GENERAL transmits constants that describe a railroad in
general, e.g., the number of blocks.

e MSG_CPI_DOWKLD_TRAIN describes attributes of trains. One message in
this format is sent per train.

e MSG_CPI_DOWNLD_BLOCK describes a block. MSG_CPI_DOWNLD_LIRK gives
block attachments for a block as described in Section 3.2. One message in
each of these formats is sent per block.

e MSG_CPI_DOWNLD_DONE marks the end of a download.

Only one download request is honared by a simulation per client connection.

4.5 Commands and Queries

e MSG_CPI_SET_SWITCH, MSG_CPI_ACCEL. MSG_CPI_DECEL,
MSG_CPI_SET_SPEED, MSG_CPI_SET_DIR. MSG_CPI_EMER_STO" and
MSG_CPI_STA_STOP request the commands described in Secdon 3.3, No
acknowledgement message Is sent in response to such a command.

a3

e MSG_CPI_BLOCK_OCC requests a block’s occupancy status. A sunulation
responds with a message? "o if that block i1s occupied or " {for “free”)
i 1t s not occupied.

e MSG_CPI_SWITCH_POSIT asks for the current setting of a switch block. The
response is "s* for straight. "t for turned. or "u" for undefined.

e MSG_CPI_TRAIN_STATUS inquires about a train’s status. A sunulation re-
sponds with "r" for running (operational state) or “c" for crashed (col-
lided or derailed states).

e MSG_CPI_TRAIN_MOTION queries whether a train is moving. The response
is *s* for stopped or "m* for moving. A train 1s moving if it is operational
and at least one of its speed and acceleration i1s non-zero. A train i
stopped if it 1s not moving.

4.6 Quit Message From the Simulator

Just before a Trainset simulation exits normally. it sends a message in
the format MSG_QUIT_ALL to all of its clients. Receipt of this message is a
certain indicator that a simulation has finished.

*Note: One-character return strings such as "o’ are sent as two-byte messages from the
simulator, including the terminating null byte.

a4

Appendix A

Constants Used by Trainset

Constant Typical Page
name Description value references’
ACC Standard acceleration rate for trains 1.5 m/sec® 36.40. 41. 42
Aemer Emergency-stop acceleration rate for trains 2.3 m/sec® 36, 37, 40. 43

LENcross Length of a cross block 35 m 33

LENjoin Length of a join block 3Hm 32

LENgyitcn, Length of a switch block dm 34

L, Length of block & 35t0 300 m 30

L, Length of train 7 130 to 500 m 35
MN, Minimuin speed limit on block 8 0 m/sec 30. 36. 40
MX, Maximum speed limit on block B 60 m/sec 30. 36. 40
Nplocks Number of blocks in a layout 3 to 50 40
Necains Number of trains in a layout {to 3 40
Qvoting Voling quorum 2 40. 45. 46
Tewicch Time for a switch block to change settings 2 sec 33, 40. 41
V55, Station stop speed for a station block 30 m/sec 34, 37. 40. 43
Wioting Voting window 3 sec 40. 45. 46

'A boldface number indicates the primary reference for a symbol.

Appendix B
Code Listings: ACI

B.1 aci.h, Interface Header File

/* aci.h -- header file for ACI.
This file defines types and constants and declares functions
found in the ACI library libaci.a .
Created by R. Brown, 4/91 */

/* all units are mks unless othervwise indicated */

/*
* constant definitions
»/

#ifndef MAX_TRAINS

#define MAX_TRAINS 10 /* maximum number of trains in a layout */
#endif

#ifndef MAX_BLOCKS

#define MAX_BLOCKS 100 /* maximum number of blocks in a layout */
#endif

/*
* type definitions for storing a state download

*/

/* BlockType specifies the type of a block */

enum BlockType {BT_REGULAR, BT_STATION, BT_SWITCH, BT_JOIN, 5T_CROSS};

/* BlockTypeData represents data that is specific to a type of block */
union BlockTypeData {

struct { /* BT_REGULAR blocks */
int tail, head; /* terminators */
} rg;

struct { /* BT_STATION blocks */

int tail, head; /* terminators */

double sta_stop_speed; /* station stop speed */
} st;

struct { /* BT_SWITCH blocks */
int tail, straight, turn; /#* terminators =/
} sw;

struct { /% BT_JOIN blocks */
int tail, headl, head2; /* terminators %/
} jn;

struct { /* BT_CROSS (sub)blocks */

int tail, head; /* terminators */

int cross_id; /# block ID of this subblock’s cross block */
} e

};

/* BlockData represents the download information for a specific block */

typedef struct BlockData {
int block_id; /* identifies the block */
enum BlockType type;
double length;
double max_speed, min_speed; /% trains derail that violate these limits »/
union BlockTypeData t; /* additional data that depends on block type »/
} BlockData;

ot

/* Location specifies a position within a block */

struct Location {

int block; /% id of a block containing the location %/

double offset; /* distance from tail of that block to the location */
} Location;

/% TrainData represents the download informatiocn for a specific train */

typedef struct TrainData {

int train_id; /=* identifies the train %/

double length;

struct Location head, tail; /#* init positions of train’s ends */
} TrainData;

/% LayoutData represents all information received in a download */
typedef struct LayoutData {

int block_ct; /+ number of blocks */

int train_ct; /* number of trains */

double acc, emer_acc; /* standard and emergency stop acceleration ratesx/
double switch_time; /+ time required for switch block to change posit %/
int voting_quorum; /+ number of agreeing commands required for an action »/
double voting window; /* time limit after which commands expire */

BlockData blocks[MAX_BLOCKS]; /* block-specific data /
TrainData trains[MAX_TRAINS]; /# train-specific data */

} LayoutData;
/*

* ACI function declarations, with associated type definitions
»/

/* GetDownload, for connecting to a simulated railrcad and receiving
a report of that railroad’s state. =/

LayoutData *GetDownload();

/% ACI commands */

enun NewPosit {NP_STRAIGHT, NP_TURNED};
void SetSwitch();

void Accslerate();

void Decelerate{);

void SetSpeed();

void SetDirection();

veid EmergencyStop();

enum StationStopMocde {SS_DISABLED, SS_ENABLED};
void StationStop();

/% ACI queries */

enum Occupancy {QC_FREE, DC_OCCUPIED, OC_ERROR = -1};
enum Occupancy GetBlockOccupancy();

enun SwitchPosit {SP_STRAIGET, SP_TURKNED, SP_UNDEFINED, SP_ERROR = -1};
enum SwitchPosit GetSwitchPosition();

enum TrainStatus {TS_CRASHED, TS_RUNNING, TS_ERROR = -1};
enum TrainStatus GetTrainStatus();

enum TrainMotion {TM_STOPPED, TM_MOVING, TM_ERROR = -1};
enum TrainMotion GetTrainMotion();

/* changes to voting service sequence number */

int SetSeqNumber{);

int NewSeqNumber();

/* timer facility =/

typedef double Seconds;
enum TimerReturn {TMR_SUCCESS, TMR_ERROR = -1};

enum TimerReturn InitTimer();

enum TimerStatus {TMS_DISABLED, TMS_ONCE, TMS_INDEFINITE, TMS_ERROR = -1};
enum TimerStatus GetTimer();

void AwaitTimer();
enum TimerReturn CancelTimer();

enum TimerReturn Sleep();

B.2 acitest.c, Example Using the ACI Inter-
face

/* $RCSfile: acitest.c,v $ $Revision: 1.8 $ $Date: 92/07/17 10:58:43 $ =/
/* acitest.c -- manual demonstration of the ACI interface. */

#include <stdio.h>
#include “aci.h"

#define TIMEOUT 60.0 /* seconds to contact the simulator */

#define MAXLIRE 100 /* maximum input length */

#define NORMAL O /+ exit code for normal exit */

#define ERROR 1 /#* exit code for error exit */

#define USAGE "Usage: %s [-d] [simhost [simnum]]\n" /* diagnostic msg */
#define QUIT_COMMARD "g" /% user entry for quit command */

enum command_type {
/* commands */
SET_SWITCH = 1, ACCELERATE, DECELERATE, SET_SPEED,
SET_DIRECTICN, EMERGERCY_STOP, STATION_STCP,
/* queries */
GET_BLOCK_OCCUPANCY, GET_SWITCH_POSITION, GET_TRAIN_STATUS, GET_TRAIN_MOTION,
/* other */
SET_SEQ_NUMBER, NEW_SEQ_NUMBER,
QUIT, HELP
¥

struct command {

60

enum command_type type; /% type of this command or query */

char *code; /#* entry code for this command cor query */

char *name; /+ full name of this ACI command or query */

char *args; /* names of arguments required for this command or query s/

H
/* NULL-terminated table of command types, codes and names */

struct command command_table[l = {
/* commands */

SET_SWITCE, "sw", "SetSwitch”, "<block_id> <ne@_posit>",
ACCELERATE, "ac", "Accelerate", "<train_id> <duration>”,
DECELERATE, '"dc", "Decelerate", “<train_id> <durationd>',

SET_SPEED, '"sp", "SetSpeed", “<train_id> <goal_speed>",
SET_DIRECTION, "sd', "SetDirection"”, "<train_id> <new_dir>",

EMERGENCY_STOP, "es", "EmergencyStop", '<train_:id>",
STATICON_STOP, “st", "StatiomStop”, "<train_id> <new_val>",
/% queries */

GET_BLOCK_OCCUPANCY, "o", "GetBlockOccupancy", "<block.id>",
GET_SWITCH_POSITION, "p", “GetSwitchPosition”, “<block_id>",
GET_TRAIN_STATUS, "s", "GetTrainStatus', “<train_id>",
GET_TRAIN_MOTION, “m", “GetTrainMotion", "<train_id>",

/* other */

SET.SEQ._NUMBER, "sn", “SetSegNumber', “<new_val>",
NEW_SEQ_NUMBER, "nn", "NewSeqNumber™, "",

QUIT, QUIT_COMMAND, "Quit", ",

HELP, "7", “Help", “ 1 help",

(enum command_type) O, {char #) 0, (char *) 0, (char *) 0

};

/#t#*********‘***#******#***‘t******i#*t****#i!**#******t**t*t##*/

/* Whitespace takes a char argument c¢. Evaluates to non-zero if
¢ is whitespace, zero otherwise */

#define Whitespace(c) (c == 7 ? || ¢ == '\t* |} ¢ == *\n?)

/*t**#*t**#***#*##****#t***t******‘**tt*****#**l*####*l*#*ﬁt!tt**/

/* CommandLookup determines the command corresponding to a code
entered to identify a command.
Any whitespace characters at the beginning of entry are ignored.

61

Returns the index in the table of the indicated command, or
-1 if the code was empty or the given entry code was not found. */

int
CommandLookup (entry)

char *entry; /* entry code to be interpreted as a command */
{

struct command *p; /* pointer into command table */

while (*entry &% Whitespace(*entry))
entry++;
if (t*entry)
return (-1);
/* entry is non-empty string beginning with a non-whitespace char */

if (*entry == 'h’)
entry = “7%;
/* if request is for Help then entry has value "?'" %/

for (p = command_table; p->type; p++) {
if (istrcmp(entry, p->code)) {
return (p - command_table);
}
}

/* entry does not match a code in the table *»/

printf{(" no match found\n");
return (~1);

/*****#**************#####*#******#t#t*t**ﬁ*#**it**##t##***t#**t*/
/* PrintDownload displays every field received in a download */

veid
PrintDownload(dp, simhost, simnum)
LayoutData *dp; /* data received from download */
char *simhost; /* name of the host system running the simulator */
int simnum; /* identifier for a running simulation on that host */
{
int i; /* loop control */
TrainData *tp; /* utility pointer to data for a specific train */
BlockData *bp; /# utility pointer to data for a specific block */

62

printf("Contents of download from simhost %4s, simnum %d:\n",
simhost, simnum);

printf(“\nGeneral parameters:\n");

printf(" There are %d blocks and %d trains\n",

dp->block_ct, dp->train_ct);

printf(" Train acceleration rates (m/sec): standard %f, emergency stop %f\n",
dp->acc, dp->emer_acc);

printf(" Switches take %f seconds to change position\n",

dp->switch_time);

printf(* The voting quorum is %d and the voting window is %f seconds\n",
dp->voting_quorum, dp->voting_window);

printf{"\nBlocks:\n");
for (iz0; i < dp->block_ct; i++) {
bp = &dp->blocks[il;
printf(" Block %d has type ", bp->block_id);
switch (bp->type) {
case BT_REGULAR:
printf ("REGULAR™);
break;
case BT_STATION:
printf (“STATION");
break;
case BT_SWITCH:
printf (“SWITCHE");
break;
case BT_JOIN:
printf (" JOIN");
break;
case BT_CROSS:
printf (“CROSS");

break;
}
printf(" and lemgth %f meters\n", bp->length);
printf (" Its speed limits are %f (minimum) and %f (maximum)\n",
bp->min_speed, bp->max_speed);
printf(" Its terminators are connected to blocks ");

switch (bp->type) {
case BT_REGULAR:
printf{"%d (head) and %d (tail)\n",
bp->t.rg.head, bp->t.rg.tail);
break;

63

case BT_STATION:
printf{"%d (head) and %d (tail)\n",
bp~>t.st.head, bp->t.st.tail);

printf (" Its station stop speed is %f m/sec\n”,
bp->t.st.sta_stop_speed);
break;

case BT_SWITCH:
printf(‘,d (straight head), %d (turn head) and %4 (tail)\n",
bp->t.sw.straight, bp->t.sw.turn, bp->t.sw.tail);
break;
case BT_JOIN:
printf("%d (headi), %d (head2) and %d (tail)\n",
tp->t.jn.headl, bp->t.jn.head2, bp->t.jn.tail};
break;
case BT_CROSS:
printf("%d (head) and %4 (tail)\n",
bp->t.cr.head, bp->t.cr.tail);

printf (" This is a subblock of the cross block with ID %d\n",
bp->t.cr.cross_id};
break;

}
}

printf (“\nTrains;\n");
for (i=0; i < dp->train_ct; i++) {

tp = &dp->trains[i];

printf(" Train %4 has length %f meters\n",
tp->train_id, tp->length);

printf (" Its head end is in block %d, %f meters from tail terminator\n",
tp->head.block, tp->head.cffset);

printf (" Its tail end is in block %d, %f meters from tail terminator\n",
tp->tail.block, tp->tail.offset);

}

printf("\nEnd of configuration download report\r\n");
return;

/*l*****#**#**###t***ttt*##*****t#***#t*t#**#**t‘#**#*tt**t*tt***/
/* GetValue attempts to locate a value in the string buff.

If buff coatains only whitespace, prompt is printed and standard input
is read until some non-whitespace characters are entered.

64

If a value matching the printf format fmt is found in buff or stdin,
then its value is placed in *valp and a pointer is returned that points
to the first whitespace character after the value.

If the next non-whitespace characters do not scan according to fmt,

an error message requesting user to try again is printed and

NULL is returned. */

char =
GetValue(buff, fmt, valp, prompt)

{

char *buff; /+ buffer that may contain a value »/

char *fmt; /+* printf-style format for reading the value */
char #*valp; /#* to receive value if one is found */

char »*prompt; /» prompt, used to obtain standard input =/

char *p; /% utility pointer %/

/* invar: buff is unexamined */
do {
for (p = buff; #*p && Whitespace(#p); p++)

’

/% *p is null-byte or first non-whitespace */

it (t#p) {
printf (" %s: ", prompt);
gets(buff);
p = buff;
}
/* *p is first non-whitespace char, or p points to beginning of
an unexamined (yet possibly empty) buff */
} while (!#p || Whitespace(*p));
/* *p is non-whitespace */

if (sscanf(p, fmt, valp) '= 1) {
printf("Error reading value -~ try again\n");
return (RULL);

}

/* value was successfully read into =valp =/

while (*p && !Whitespace(*p))
pt+;
return (p);

/* GetInt and GetFloat are macros for getting values of certain types
from buff[] or standard input, via GetValue above */

#define GetInt(buff, valp, prompt) GetValue(buff, "%d", valp, prompt)
#define GetFloat(buff, valp, prompt) GetValue(buff, "%lf", valp, prompt)

/********i***********t*****#*#***##**ti#*##***##t*##t####*t#*t*tt/

main(argc, argv)
int argc; /* number of command line arguments remaining */
char *argv[]; /+ list of command line arguments remaining */

char *progname; /* name of this program */

char simhost[MAXLINE+1]; /#* name of host system running simulator */
int simnum = 0; /* number of this simulator =/

int print_download = 0; /* boolean; set non-zero to print download #*/
char buff{MAXLINE+1]; /* buffer for interactive input */

LayoutData *datap; /* data received from download */

int index; /* index of a command table entry */

char *p, »*tablep; /* utility pointers #*/

struct command *commandp; /* pointer into command table %/

char prompt{MAXLINE]; /#* holds any prompts for user input */

P = progname = *argv++; argc--;
/% invar: there are no slashes in the string progname befors p */
while (*p)
if (*p++ == /)
progname = p;
/* progname is null-terminated program name after stripping directories

if (arge > 0 && #**argv == '-’) {
/% a flag was encountered */
it (!strcmp(*argv, "-d")) {
print_download++;
argc-~; argvt+;
} else {
tprintf(stderr, USAGE, progname);
exit (ERROR);
}
}

/* all flags have been processed */

66

it (argec > 0) {
/* a next argument exists, presumed to be simhost */
if (strlen(*argv) > MAXLIKE) {
fprintf(stderr, "simulator host name tco long, max = %d\n"”, MAXLINE);
exit (ERROR);
}

/* first arg will fit in simhost */

strcpy(simhost, sargv++)};
arge--;

} else {
/* nc more command-line arguments remain */
printf("Enter name of host runring simulator [LOCAL BOST]}: *);
if ('gets(simhost)) {
fprintf(stderr, "error getting host name\n");
exit (ERROR);
}
printf("Enter simulator number on that host [0]: ");
it (i1gets(buft)) {
fprintf(stderr, "error getting simulator number\n");
exit (ERROR);
}
simnum = (*buff) ? atci(buff) : 0;
}
/* simhost contains (possibly empty) null-terminated string AKD
if no argument remains then simnum holds specified or default value %/

it (arge > 0) {
/* another argument second parameter exists, presumed to be simnum */
sscanf (xargv++, "%d”, &simnum);
argec--;

}

/* simnum holds specified or default value #/

printf("Connecting to simulator using %.1f second timeout...\n", TIMEOUT);
it (!(datap = GetDownload(simhost, simnum, progname, TIMEDUT))) {
fprintf(stderr, "GetDownload failed\n");
exit (ERROR);
}

/* download was successfully received */

if (print_download)

67

PrintDownload{datap, simhost, simnum);
printf ("Enter ? for a list of commands\n");

for (5;) {
do {
printf(“%s> *, progname); /* prompt */

butf[0] = ’\0’;
if (!gets(buff))
/% end of input encountered =/
sprintf{buff, QUIT_COMMAND);
for {pzbuff; *p && Whitespace(*p); p++)

/* p points to first non-whitespace char of buff, or null byte */
} while (!*p);
/* buff[] contains a new non-empty null-terminated command */

while (*p && !'Whitespace(*p))
P++;
/* *p is null~byte or first whitespace after command ccde */

if (=p)
*p++ = *\D?;

/* buff is null-terminated string holding a non-empty command code
consisting of non-whitespace c¢hars, and holding QUIT_CCMMAND on ECF,
ARD string p is any remainder of the (null-terminated) input line */

if ((index = CommandLookup{(buff)) ==z -1) {

printf("Unrecognized command code ‘%s’ (enter *?’ for help)\n",
buff);

continue;
}

/* a recognized command code was entered %/
/#» gather arguments for the appropriate ACI routine and call it =/
switch (command_table[index].type) {
case SET_SWITCH:
{

int block_id; /* identifier of the switch block */
enum NewPosit new_posit; /+ desired position */

p = GetInt(p, &block_id, “"SetSwitch. ID of switch block”);

68

it (!'p) continue;

sprintf(prompt, "New position (%d = straight, %d = turned)",
RP_STRAIGHT, NP_TURNED);

P = GetInt(p, &new_posit, prompt);

it ('p) continue;

/* all arguments successfully obtained */

SetSwitch(block_id, new_posit);
break;
}

case ACCELERATE:
case DECELERATE:
{
int train_id; /+ identifier of the train %/
double duration; /# number of seconds to accelerate */

sprintf(prompt, “%s. ID of train”, command_table[index].name);
p = GetInt(p, &train_id, prompt);
it (!p) continue;

sprintf(prompt, “Seconds to Y%s", command_table[index] .name);
P = GetFloat(p, &duration, prompt);

if (!p) continue;

/* all arguments successfully obtained %/

if (command_table[index].type == ACCELERATE)
Accelerate(train_id, duration);
else
Decelerate(train_id, duration);
break;
}

case SET_SPEED:
{
int train.id; /# identifier of the train #/
double goal_speed; /* speed to accelerate or decelerate to */

P = GetInt(p, &train_id, "SetSpeed. ID of train");
if (!p) continue;

P = GetFloat(p, &goal_speed, "New goal speed");
if (!1p) continue;

69

/% all arguments successfully obtained */

SetSpeed(train_id, goal_speed);
break;
}

case SET_DIRECTION:
{
int train_id; /% identifier of the train »/
int new_dir; /* indicator of new direction */

p = GetInt(p, &train_id, "SetDirection. ID of train");
if (!p) continue;

p = GetInt(p, &new_dir,

"New direction (+1 for fromt=head, -1 for front=tail, 0 to toggle)");
if (!p) continue;
/* all arguments successfully obtained */

SetDirection(train_id, new_dir);
break;

}

case EMERGENCY_STOP:
{

int train_id; /* identifier of the train */

p = GetInt(p, &train_.id, "EmergencyStop. ID of train to stop");
if (!'p) continue;
/* all arguments successfully obtained */

EmergencyStop(train_id);
break;

}
case STATION_STOP:
{
int train_id; /#* identifier of the train */
enum StationStopMode new_val;

p = GetInt(p, &train_id, "StationStop. ID of train");
if ('p) continue;

sprintf{prompt, "New mode (%d = disabled, %d = enabled)”,

70

SS_DISABLED, SS_ENABLED);
p = GetInt(p, &new_val, prompt);
/% all arguments successfully obtained */

StationStop(train_id, new_val);
break;
}

case GET_BLOCK_OCCUPANCY:
{
int block_id; /* identifier of the block */
enum Occupancy occ; /#* return value from the query */

p = GetInt(p, &block_id, "GetBlockOccupancy. 1ID of block");
if (!p) continue;
/* all arguments successfully obtained */

occ = GetBlockOccupancy(block_id);

if (Lcc == DC_FREE)

printf("Block %d is FREE (unoccupied).\n", block_id);
else if (occ == OC_OCCUPIED)

printf ("Block %d is OCCUPIED.\n", block_id);
else /* occ == OC_ERROR */

printf("Unable to obtain occupancy for block %d\n", block_id);
break;

}

case GET_SWITCH_PCSITION:
{
int block_id; /* identifier of the switch block */
enum SwitchPosit posit; /#* return value from the query */

p = GetInt(p, &block_id, "GetSwitchPosition. ID of switch block");
if (i1p) continue;
/* all arguments successfully obtained */

posit = GetSwitchPosition(block_id);

if (posit == SP_STRAIGHT)

printf("Switch block %d is STRAIGHT\n", block_id};
else if (posit == SP_TURKED)

printf("Switch block %d is TURNED\n", block_id);
else if (posit == SP_UNDEFINED)

71

printf(“Switch block %d has UNDEFINED position\n", block_id);
else /* posit == SP_ERROR #*/
printf("Unable to obtain position of switch block %d\n", block_id);

break;
}

case GET_TRAIN_STATUS:
{
int train_id; /* identifier of the train */
enum TrainStatus status; /* return value from the query =/

P = GetInt(p, &train_id, “GetTrainStatus. ID of train"):
if (!p) continue;
/* all arguments successfully obtained #/

status = GetTrainStatus(train_id);

if (status == TS_CRASHED)

printf("Train %d has CRASHED\n", train_id);
else if (status == TS_RUNNIRG)

printf ("Train %d is RUNNING\n", train_id);
else /* status == TS_ERROR */

printf("“Unable to obtain status of train %d\n", train_id);
break;

}

case GET_TRAIN_MOTION:
{
int train_id; /* identifier of the train */
enum TrainMotion motion; /* return value from the query */

p = GetInt(p, &train_id, "GetTrainMotion. ID of train®);
if (1p) continue;
/% all arguments successfully obtained */

motion = GetTrainMotion{train_id);

if (motion == TH_STOPPED)
print?(“Train %d is STOPPED\n", train_id);
else if (motion == TM_MODVING)
printf("Train %d is MOVING\n", train_id);
else /* motion == TM_ERROR */
printf(“Unable to obtain motion information for train %d\n",

72

train_id);
break;

}

case SET_SEQ_NUMBER:
{

int new_val; /* new value for sequence number */
int seq.num; /* return value from SetSeqNumber */

p = GetInt(p, &new_val, "SetSeqNumber. New sequence number value");
if (!'p) continue;
/% all arguments successfully obtained */

seq_num = SetSeqNumber(new_val);

printf{"Current sequence number value: %d\n”, seq_num);
break;
}

case NEW_SEQ_NUMBER:
{

int seq.num; /* return value from NewSegNumber */
seq_num = NewSeqNumber(};

printf("Current sequence number value: %d\n", seq_num);
break;
}

case QUIT:
{

char confirm[MAXLINE+1]; /* confirmation string */

printf{"Quit. Are you sure you want to quit?\n (y/n, default y) ");
gets(confirm);
/* confirmation response has been received */

if (*confirm == '\0’ || *confirm == ’y’ || *confirm == 'Y?)
exit (NORMAL);
break;
¥

case HELP:
{

struct command *cp; /x pointer into command_table */

printf("%-34s)s\n-——m== = e \n
“entry", "ACI command”);
for (cp = command_table; cp->code; cp++) {
printf("%-4s%-30s%s\n", cp->code, cp->args, cp->name);
}
break;
}

default:
printf("Unrecognized command \"%s\"\nEnter ? for help\n", buff);
break;

[}

Appendix C

Code Listings: LLI

C.1 cpi.h, Interface Header File

/* $RCSfile: cpi.h,v $ $Revision: 1.65 $ $Date: 92/11/24 14:41:00 § =/
/* cpi.h -- cpi message formats. */
/* This file automatically generated by mé¢ from cpi.hm */

/* Messages for initial and final communication with simulator =/

/* first message fcr simulator, identifying self as a CPI client */
#define MSG_CPI_INIT "CPI Y%s%4"

#define MSG_CPI_INIT_ARGC 1

#define CreateMsgCPIInit(buff, str) sprintf(buif, MSG_CPI_IKIT, (str))
#define ParseMsgCFIInit(buff, str) sscanf(buff, MSG_CPI_INIT, (str))

/* standard acknowledgement message fcrmat; client ID is return value */
#define MSG_ACK "ack %s%/"

#define MSG_ACK_ARGC 1

#define CreateMsgAck(buff, str) sprintf(buff, MSG_ACK, (str))

#define ParseMsghck(buff, str) sscanf(buff, MSG_ACK, (str))

/* simulator sends the following message to all clients upon normal exit */
#define MSG_QUIT_ALL "QUIT_ALL %s%%"

#define MSG_QUIT_ALL_ARGC 1

#cefine CreateMsgQuitAll(buff, str) sprintf(buff, MSG_QUIT ALL, (str))

7

i3]

#define ParseMsgQuitAll(buff, str) sscanf(buff, MSG_QUIT_ALL, (str))

/*#**i****‘**tii****#***********t*t#*t*#t**l#.#‘t#‘lt#tl#tt##‘#tttltttlttltt/
/* Messages for configuration download. RAB and JG 4/8C rev 5/91 =/

#define MSG_CPI_DOWNLD_REQUEST "CPI Downld request from %s%i"
#define MSG_CPI_DOWNLD_REQUEST_ARGC 1
#define CreateMsgCPIDownldRequest(buff, str) \
sprintf(buff, WSG_CPI_DOWN’T_REQUEST, (str))
#define ParseMsgCPIDownldRequest (buff, str) \
sscanf (buff, MSG_CPI_DOWNLD_REQUEST, (str))

#define MSG_CPI_DOWNLD_GENERAL "C %d,%d,%1f,%1f, %1 ,%d, %1f#"

typedef struct {
int block_ct, train_ct; /* number of blocks and trains in layout */
double acc, emer_acc; /#* standard and emergency stop acceleration rates */
double switch_time; /* time required for switch block to change posit =/
int voting_quorum; /* number of agreeing commands required for an action */
dcuble voting_window; /* time limit after which commands expire */

} MsgCPIDownldGeneral;

#define MSG_CPI_DOWNLD_GENERAL_ARGC 7

#define MsgCPIDownldGeneralArgs(buff, datap) (buff, MSG_CPI_DOWNLD_GENERAL, \
datap->block_ct , datap->train_ct , datap->acc , datap->emexr_acc , \
datap->switch_time , datap->voting_quorum , datap->voting_window)

#define CreateMsgCPIDownldGeneral(buff, datap) \
sprintf MsgCPIDownldGeneralArgs(buff, (datap))

#define ParseMsgCPIDcwnldGeneral (buff, datap) \
sscanf MsgCPIDownldGeneralArgs(putf, &(datap))

#define MSG_CPI_DOWRLD_TRAIN “T%a,%1f,%d,%1it,%a,%1e#”

typedef struct {
int train_id; /* numerical name of this train */
double length; /* length of train */
int head_block; /* block_id for block holding train head */
double head_cffset; /* offset within head_block of train head */
int tail_block; /* block_id for block holding train tail */
double tail_offset; /* offset within tail_block of train tail »/

76

} MsgCPIDownldTrain;

#define MSG_CPI_DOWNLD_TRAIN_ARGC €

#define MsgCPIDownldTrainArgs(buff, datap) (buff, MSG_CPI_DOWNLD_TRAIN, \
datap->train_id , datap->length , datap->head_block , datap->head_offset , \
datap->tail_block , datap->tail_offset)

#define CreateMsgCPIDownldTrain(buff, datap) \
sprintf MsgCPIDownldTrainArgs(buff, {(datap))

#define ParseMsgCPIDownldTrain(buff, datap) \
sscanf MsgCPIDownldTrainArgs(buff, &(datap))

#define MSG_CPI_DOWNLD_BLOCK "B%d,%1f,%d,%1lf,%1f,%1f,%d#"

typedef struct {
int block_id; /* numerical name of this block =/
double length; /* length of the block in meters =/
int type; /* code for type classification of this block */
double max_speed, min_speed; /* speed above/below which derailment occurs#*/
double sta_stop_speed; /* highest station stop speed---sta blocks only */
int cross_id; /* id for the cross block---for cross subblocks only */

} HMsgCPIDownldBlock;

#define MSG_CPI_DOWNLD_BLOCK_ARGC 7

#define MsgCPIDownldBlockArgs(buff, datap) (buff, MSG_CPI_DOWNLD_BLOCK, \
datap->block_id , datap->length , datap->type , datap->max_speed , \
datap->min_speed , datap->sta_stop_speed , datap->cross_id)

#define CreateMsgCPIDownldBlock(buff, datap) \
sprintf MsgCPIDownldBlockArgs(buff, (datap))
#define ParseMsgCPIDownldBlock(buff, datap) \
sscanf MsgCPIDownldBlockArgs(buff, &(datap))

#define MSG_CPI_DOWNLD_LINK "L%d,'%d,%d,%d,%ds"
typedef struct {
int block.id; /% numerical name of this block */
int type; /% code for type classification of this block */
int tail, head1l, head2; /* block_ids for adjoining blocks */
} MsgCPIDownldLink;

#define MSG_CPI_DOwnLD_LINK_ARGC b
#define MsgCPIDownldLinkArgs(buff, datap) (buff, MSG_CPI_DOWELD_LINK. \

-1

datap->block_id , datap->type , datap->tail , datap->headl , datap->head2)

#define CreateMsgCPIDownldLink(buff, datap) \
sprintf MsgCPIDownldLinkArgs(buff, (datap))
#define ParseMsgCPIDownldLink(butf, datap) \
sscanf MsgCPIDownldLinkArgs{buff, &(datap))

/* The end of an cpi config download may be recognized by searching for
CPI_D"WKRLD_TERM beginning CPI_DOWNLD_TERM_CFFSET from final char received*/

#define CPI_DOWNLD_TERM ’'D’
#define CPI_DUWKNLD_TERM_OFFSET -4

#define MSG_CPI_DOWNLD_DONE "D %d#"

#define MSG_CPI_DOWNLD_DCRE_ARGC 1

#detine CreateMsgCPIDownldDone(buff, val} \
sprintf(buff, MSG_CPI_DOWNLD_DONE, (val))

#define ParseMsgCPIDownldDone(buff, val) \
sscanf (buff, MSG_CPI_DOWNLD_DCKE, &(val))

/**t*#*******#**t***#**##*#*t****#‘###*t*tt*#**#*#t#**tt#t***‘*#***#****#**t/

/* Commands */

#define MSG_CPI_SET_SWITCH "Xh'%d,%d:%d:Y%da"
typedef struct {

int client_id: /* unique identifier for this client */

int seq_num; /% label for this command */

int block_id; /* simulator block number =/

int new_posit; /* new switch position--0 for straight and 1 for turned =/
} MsgCPISetSwitch;

#define MSG_CPI_SET_SWITCH_ARGC 4
#define MsgCPISetSwitchArgs(buff, datap) (buff, MSG_CPI_SET_SWITCH, \
datap->client_id , datap->seq_num , datap->block_id , datap->new_posit)

#define CreateMsgCPISetSwitch(buff, datap) \
sprintf MsgCPISetSwitchArgs{iuff, (datap))
#define ParseMsgCPISetSwitch(buf1i, datap) \
sscanf MsgCPISetSwitchArgs(buff, &(datap))

#define MSG_CPI_ACCEL "Xa%d,%d:%d:%lf#"
typedef struct {
int client_id; /* unique identifier for this client */
int seq_num; /* label for this command */
int train_id; /#* simulator train number =/
double duration; /# time to accelerate in seconds #*/
} MsgCPIAccel;

#define MSG_CPI_ACCEL_ARGC 4
#define MsgCPIAccelArgs(buff, datap) (buff, MSG_CPI_ACCEL, \
datap->client_id , datap->seg_num , datap->train_id , datap~>duration)

#define CreateMsgCPIAccel(buff, datap) sprintf MsgCPIAccelArgs(buff, (datap))
#define ParseMsgCPIAccel(buff, datap) sscanf MsgCPIAccelArgs(buff, &(datap))

#tdefine MSG_CPI_DECEL "Xd%d,%d:%d:%lf#"
typedef struct {
int client_id; /* unique identifier for this client */
int seq_num; /* label for this command */
int train_id; /* simulator train number x/
double duration; /* time to decelerate in seconds */
} MsgCPIDecel;

#define MSG_CPI_DECEL_ARGC 4
#define MsgCPIDecelArgs(buff, datap) (buff, MSG_CPI_DECEL, \
datap->client_id , datap->seq_num , datap->train_id , datap->duration)

#define CreateMsgCPIDecel(buff, datap) sprintf MsgCPIDecelArgs(buff, (datap))
#define ParseMsgCPIDecel(buff, datap) sscanf MsgCPIDecelArgs(buff, &(datap))

#define MSG_CPI_SET_SPEED "Xv%d,%d:%d:%1f#"
typede? struct {

int client_id; /* unique identifier for this client */

int seq_num; /% label for this command */

int train_id; /* simulator train number */

double goal_speed; /* new desired velocity for the train =/
} MsgCPISetSpeed;

#define MSG_CPI_SET_SPEED_ARGC 4

#define MsglLPISetSpeedArgs(buff, datap) (buff, MSG_CPI_SET_SPEED, \
datap->client_id , datap->seq_num , datap->train_id , datap->goal_speed)

79

#define CreateMsgCPISetSpeed(butff, datap) \
sprintf MsgCPISetSpeedArgs(buff, (datap))
#define ParseMsgCPISetSpeed(buff, datap) \
sscanf MsgCPISetSpeedArgs(buff, &(datap))

#define MSG_CPI_SET_DIR "Xf¥%d,%d:%d:%ds"
typedef struct {
int client_id; /* unique identifier for this client =/
int seq_num; /* label for this command */
int train_id; /* simulator train number */
int new_dir; /# indicator of pew train direction %/
} MsgCPISetDir;

#define MSG_CPI_SET_DIR_ARGC 4
#define MsgCPISetDirArgs(butf, datap) (buff, MSG_CPI_SFT_DIR, \
datap->client_id , datap->seq_pum , datap->train_id , datap->new_dir)

#define CreateMsgCPISetDir(buff, datap) sprintf MsgCPISetDirArgs(buff, (datap))
#define ParseMsgCPISetDir(buff, datap) sscanf MsgCPISetDirArgs(buff, &{datap))

#define MSC_CPI_EMER_STOP "Xe¥%d,%d:%d#"

typedef struct {
int client_id; /* unique identifier for this client #/
int seq_num; /* label for this command *=/
int train_id; /* simulator train number */

} MsgCPIEmerStop;

#define MSG_CPI_EMER_STOP_ARGC 3
#define MsgCPIEmerStopArgs(butt, datap) (buff, MSG_CPI_EMER_STOP, \
datap->client_id , datap->seq_num . datap->*crain_id)

#define CreateMsgCPIEmerStop(buff, datap) \
sprintf MsgCPIEmerStopArgs(buff, (datap))

#define ParseMsgCPIEmerStop(buft, latap) \
sscanf MsgCPIEmerStopArgs(buff, &(datap))

#define MSG_CPI_STA_STOP "Xs%d,%d:%d:%a#"

typedef struct {
int client_id; /¢ unique identifier for this client »/
int seq_num; /* label for this command */

80

int train_id; /* simulator train number */
int new_val; /* O to disable and 1 to enable */
} MsgCPIStaStop;

#define MSG_CPI_STA_STOP_ARGC 4
#define MsgCPIStaStopArgs(buff, datap) (buff, MSG_CPI_STA_STOP, \
datap->client_id , datap->seq_num , datap->train_id , datap->new_val)

#define CreateMsgCPIStaStop(buff, datap) \
sprintf MsgCPIStaStopArgs(buff, (datap))
#define ParseMsgCPIStaStop{buff, datap) sscanf MsgCPIStaStopArgs(buff, &(datap))

/90 e o oo R o R K o A R Ko ok K R R Rk R R A
/* Queries %/

#define MSG_CPI_BLOCK_OCC “Xo¥d,%d:%d#"

typedef struct {
int client_id; /* unique identifier for this client #*/
int seq_num; /* label for this command */
int block_id; /* simulator block number */

} MsgCPIBlockOcc;

#define MSG_CPI_BLOCK_OCC_ARGC 3
#define MsgCPIBlockOccArgs{(buff, datap) (buff, MSG_CPI_BLOCK_OCC, \
datap->client_id , datap->seq_num , datap->blcck_id)

#define CreateMsgCPIBlockDcc(buff, datap) \
sprintf MsgCPIBlockOccArgs(buff, (datap))
#define ParseMsgCPIBlockOcc(buff, datap) \
sscanf MsgCPIBlockOccArgs(buff, &(datap))

#define MSG_CPI_SWITCH_POSIT "Xw%d,%d:.%d#"

typedef struct {
int client_id; /» unique identifier for this client =/
int seq._num; /* label for this command */
iat block_id; /* simulator block number */

} MsgCPISwitchPosit;

#define MSG_CPI_SVITCH_PQSIT_ARGC 3
#define MsgCPISwitchPositArgs(buff, datap) (buff, MSG_CPI_SWITCH_POSIT, \

X1

datap->client_id , datap->seq_num , datap->block_id)

#define CreateMsgCPISwitchPo:it(buff, datap) \
sprintt MsgCPISwitchPositArgs(vutf, (datap))
#define ParseMsgCPISwitchPosit(buf?, datap) \
sscanf MsgCPISwitchPositArgs(buff, &(datap))

#tdefine MSG_CPI_TRAIN_STATUS "Xt¥%d,%d:’d#"

typedef struct {
int client_id; /* unique identifier for this client */
int seg_num; /* label for this command #*/
int train_id; /+* simulator train number =/

} MsgCPITrainStatus;

#define MSG_CPI_TRAIN_STATUS_ARGC 3
#define MsgCPITrainStatusArgs(buff, datap) (buff, MSG_CPI_TRAIN_STATUS, \
datap->client_id , datap->seq_num , datap->train_id)

#define CreateMsgCPITrainStatus(buff, datap) \
sprintf MsgCPITrainStatusArgs(buff, (datap))
#define ParseMsgCPITrainStatus(buff, datap) \
sscanf MsgCPITrainStatusArgs(buff, &(datap))

#define MSG_CPI_TRAIN_MOTIOR "Xm%d,%d:%d#"

typedef struct {
int client_id; /* unique identifier for this client »/
int seq_num; /% label for this command */
int train_id; /#* simulator train number »/

} MsgCPITrainMotion;

#define MSG_CPI_TRAIN_MOTION_ARGC 3
#define MsgCPITrainMotionArgs(buff, datap) (butf, MSG_CPI_TRAIN_MCTION, \
datap->client_id , datap->seq.num , datap->train_id)

#define CreateMsgCPITrainMotion(buft, datap) \
sprint? MsgCPITrainMotionArgs(buff, (datap))

#define ParseMsgCPITrainMotion(buff, datap) \
sscanf MsgCPITrainMotionArgs(buf?, &(datap))

C.2 aci.c, Example Using the LLI Interface

/% $RCSfile: aci.c,v $ $Revision: 1.1 $ $Date: 92/07/17 10:58:20 $ */
/% aci.c -- implementation of the Automatic Control Interface of the CPI
R. Brown 6/91, based on specifications and earlier versions #*/

#include <stdio.h> /% for standard error and NULL */
#include <sys/types.h> /* required for acisys.h */

#include "cpi.h" /% low-level interface of the CPI #/
#include "aci.h" /# for data type definitions */

#include “acisys.h" /#* operating system-specific routines */

#define BUFFSIZE 200 /* maximum size of a message */

#define RETRY_INTERVAL 5.0 /* seconds between retries for ConnectToSim */
#define QUERY_TIMEOUT 5.0 /* seconds before giving up on a query response %/
#define EPSILON 0.0001 /+» tolerance for floating point comparisons */

LayoutData layout_da.a, *1dp = &layout_data;

/* data structure for storing the information passed in the download */
int chan; /* socket for communicating with simulator */
int client_id; /% identifier for this client, obtained from simulator*/
int seq._num = 0; /* sequence number, for voting purposes #*/

/*##*#***t*#**tt***i*t*#*#**#‘*t#‘t****#*i#i*#*##t**###l‘#tt*tttt*#i#t*t**#‘t/

/* SendInitMessage sends the simulator the initialization message for this
application. Returns nonzero on success, zero on failure.
RAB 11/30/89 */

int

SendInitMessage(chan, string)
int chan; /% channel descriptor for communication with simulator =/
char string[}; /+* string to send as part of the message tc sim */

char buff[BUFFSIZE]; /# buffer for init message and ack +/
int n; /* length of received init message */
char client_id_string[BUFFSIZE]; /* string representing client_id »/

/% send the initialization message */

sprintf(buff, MSG_CPI_INIT, string);

if (SendMsg(chan, buff, strlen(buff)) < 0) {
perror(“SendInitMessage: SendMsg failed");
return (0);

83

}

/* wait for, verify acknowledgement */
it ((n=RecvMsg{chan, buff, BUFFSIZE)) < 0) {
perror{“SendInitMessage: can’t receive acknowledgement");
return (0);
}
buff[n] = *\0*;
if (sscanf(buff, MSG_ACK, client_id_string) != 1) {
fprintf(stderr, “SendInitMessage: expected ack, received \"%s\"\n", buff);
return (0);

}

sscanf(client_id_string, "%d", &client_id); /#* extract unique id */

return (1);

/e etk o oo e oo o o e AR K R R ok R Rk kR kR ok Rk kR R s Rk ek kR kR kR kR Rk k)

/*
We trust the simulator’s download... */

LayoutData »

GetDownload(hostname, simnum, progname, timeocut)
char *hostname; /* machine running a simulation */
int simnum; /* identifies a running simulation */
char sprogname; /* name of invoking program */
double timeout; /* in seconds */

static GetDownloadSucceeded = 0; /* set non-zero on first successful call */

char buff[BUFFSIZE]; /* buffer for hclding one message */

union {
MsgCPIDownldGeneral gen; /* for unpacking message of general attributes »/
MsgCPIDownldBlock block; /* for unpacking message of block attributes */
MsgCPIDownldLink link; /* for unpacking message of block attachments */
MsgCPIDownldTrain train; /# for unpacking message of train attributes =/
int val; /* for receiving integer value passed with MsgCPIDownldDone */

} msg;

int incomplete; /* non-zero if the download is found to be incomplete */

int recv_msg_status; /* return value from RecvMsg */

int i; /#* loop comtrol #/

34

if (GetDownloadSucceeded) {
fprintf(stderr, "GetDownload has already been called successfully\n");
return (NULL);

}

/* there have been no prior successful calls =/

if (timeout <= 0) {
fprintf(stderr, "GetDownload: KNon-positive timeout %.1f\n", timeout);
return (NULL);

}

/* valid timeout was specified */

if (!=hostname) {
GetLocalHost(buff, sizeof(buff));
hostname = buff;

3

while ((chan = ConnectToSim(hostname, simnum)) == -1) {
timeout -= RETRY_INTERVAL;
if (timeout < EPSILON) {
fprintf(stderr, "GetDownload: Could not connect to simulator\n');
return (NULL);
} else {
fprintf (" retrying...\n");
Sleep(RETRY_INTERVAL);
}
}

/* a connection to the desired simulation has been established */

if (!SendInitMessage(chan, progname)) {
fprintf(stderr, “GetDownload: Could not send init message\n");
CloseChan(chan);
return (NULL);

}

/% CPI initialization message has been sent and acknowledged */

CreateMsgCPIDownldRequest (buff, progname);

if (SendMsg(chan, buff, strlen(buff)) < 0) {
perror("MsgCPIDownldRequest SendMsg failed");
fprintf(stderr, "GetDownload: Could not send request for download\n");
CloseChan(chan);
return (FULL);

/* Download has been requested.
The simulator’s expected response is the download itself. */

/* receive download %/

/* invar: all CPIDownld messages s0 far have been parsed */
while ((recv_msg_status = RecvDownldMsg{chan, buff, BUFFSIZE)) > 0 &&
ParseMsgCPIDownldDone(buff, ms~.val) !=
MSG_CPI_DDWNLD_DONE_ARGC) {
/* new message of length recv_msg_status that is not DownldDone
has been received */

buff [recv_msg_status] = *\0’;

if (ParseMsgCPIDownldGeneral (buff, &msg.gen) ==
MSG_CPI_DOWNLD_GENERAL_ARGC) {

ldp->block_ct = msg.gen.block_ct;
ldp->train_ct = msg.gen.train_ct;
ldp->acc = msg.gen.acc;
ldp->emer_acc = msSg.gen.emer_acc;
ldp->switch_time = msg.gen.switch_time;
ldp->voting_quorum = msg.gen.voting_quorum;
ldp->voting_window = msg.gen.voting_window;

if (ldp->block_ct > MAX_BLOCKS || ldp->train_ct > MAX_TRAINS) {
fprintf(stderr,
"GetDownload: MAX_TRAIRS (%d) or MAX_BLGCKS (%d) too smallln",
MAX_TRAINS, MAX_BLOCKS);
return (NULL);

}

} else if (ParseMsgCPIDownldBlock(buff, &msg.block) ==
MSG_CPI_DOWNLD_BLOCK_ARGC) {
int index = msg.bleck.block_ id - 1;
/* this block’s index in 1ldp->blocks[] %/

1dp->blocks[index] .block_id = msg.block.block_id;

ldp->blocks[index] .length = msg.block.length;

ldp->blocks[index] .type = (enum BlockType) msg.block.type;

ldp->blocks [index] .max_speed = msg.block.max_speed;

1ldp->blocks[index] .min_speed = msg.block.min_speed;

if ((enum BlockType) msg.block.type == BT_STATION)
1dp->blocks[index].t.st.sta_stop_speed = msg.block.sta_stop_speed;

86

if ((enum BlockType) msg.block.type == BT_CROSS)

ldp->blocks{index].t.cr

.cross_id = msg.block.cross_id;

} else if (ParseMsgCPIDownldLink(buft, &msg.link) ==
MSG_CPI_DOWNLD_LIFK_ARGC) {
int index = msg.link.block_id - 1;

/* this block’s

index in ldp->blocks([] */

switch (ldp->blocks[index].type) {

case BT_REGULAR:

case BT_STATION:

case BT_CROSS:
ldp->blocks[index].t.xg

ldp->blocks[index].t.rg.

break;
case BT_JOIN:

ldp~>blocks[index].t. jn.
1dp->blocks[index].t. jn.
ldp->blocks[index].t. jn.

break;
case BT _SWITCH:
1dp->blocks[index].t.sw

ldp~>blocks[index].t.sw.

ldp->blocks{index].t.sw
break;
}

.tail = msg.link.tail:
head msg.link.headi;

tail = msg.link.tail;
headl = msg.link.headi;
head? = msg.link.head2;

.tail = msg.link.tail;
straight = msg.link.headi;
.turn = msg.link.head2;

} else if (ParseMsgCPIDownldTrain(buff, &msg.train) ==
MSG_CPI_DOWNLD_TRAIN_ARGC) {
int index = msg.block.block.id - 1;

/* this train’s

index in ldp->trains[] =/

ldp->trains[index] .train_id = msg.train.train_id;
ldp->trains(index] .length = msg.train.length;
ldp->trains[index] .head.block = msg.train.head_block;
1dp->trains[index] .head.offset = msg.train.head offset;
1dp->trains[index] .tail.block = msg.train.tail_block;
1dp->trains[index] .tail.offset = msg.train.tail_offset;

} else { /* unrecognized message format */
fprintf(stderr, "GetDownload: Unrecognized message from simulator\n");
fprintf(stderr, "%s\n", buff);

return (NULL);

87

3

if (recv_msg_status <= Q) {
fprintf(stderr, "GetDownload: Failed in attempt to receive a message\n");
return (NULL);
}
/% There were no failures to receive a message, and
all received messages have been successfully parsed and data stored in
layout_data, and one Done message was received */

/* check to see whether download was complete */

incomplete = O;

/* we will assume thatv all of the fields from MsgCPIDownldGeneral were
received and stored properly in layout_data if bleck_ct is nonzero */

it (11dp->block_ct) {
fprintf(stderr, "GetDownload: incomplete download (missing General)\n");
incomplete++;

}

for (i = 0; i < ldp->block_ct; i++) {
/%* we will assume that all of the fields from MsgCPIDownloadBlock were
received and stored properly in layout_data if block_id is nonzero */
if (11dp->blocks[il.block_id) {
fprintf(stderr, "GetDownload: incomplete download (missing Block %d)\n",
i+1);
incomplete++;
}
/* we will assume that all of the fields from MsgCPIDownloadLink were
received and stored properly in layout_data if tail is nonzero */
if ('ldp->blocks[il.t.xrg.tail) {
fprintf(stderr, “GetDownload: incomplete download (missing Link %d)\n",
i+ 1);
incomplete++;
}
}

for (i=0; 1 ¢ ldp->train_ct; i++)
/* we will assume that all of the fields from MsgCPIDownloadTrain were
received and stored properly in layout_data if train_id is nonzero */
if (!ldp->trains[i].train_id) {
fprintf(stderr, "GetDownload: incomplete download (missing Train %d)\n",
i+ 1);

88

incomplete++;

}

if (incomplete)
return (NULL);
/* a complete download was successfully received */

GetDeownloadSucceeded++;
return (&layout.data);

PR T e L Y P L R et Y Y

/* commands =/

void

SetSwitch(block_id, new_posit)
int block_id;
enum NewPosit new_posit;

MsgCPISetSwitch msg; /% data structure for message construction */
char buff [BUFFSIZE]; /* buffer for outgoing message */

msg.client_id = client_id; /* identifier of this client »/
msg.seq_num = seq.num; /* voting sequence number */
msg.block_id = block_id;

msg.new_posit = (int) new_posit;

CreateMsgCPISetSwitch(buff, &msg);
if (SendMsg(chan, buff, strlen(buff)) < 0) {
perror{"SetSwitch: SendMsg failed™);
}
}

void
Accelerate(train_id, duration)
int train_id;
double duration;
{
MsgCPIAccel msg; /#* data structure for message construction */
char buff[BUFFSIZE]; /#* buffer for outgoing message */

89

msg.client_id = client_id; /* identifier of this client s/
msg.seq.num = seq.num; /* voting sequence number */
msg.train_id = train_id;

msg.duration = duration;

§

CreateMsgCPIAccel(buff, &nmsg);
if (SendMsg(chan, buff, strlen(buff)) < 0) {
perror(“Accelerate: SendMsg failed");
}
}

void

Decelerate(train_id, duration)
int train_id;
double duration;

MsgCPIDecel msg; /* data structure for message construction */
char butf(BUFFSIZE]; /* buffer for outgoing message */

msg.client_id = client_id; /* identifier of this client #/
mSg.seq_num = Seq_num; /* voting sequence numbar =/
msg.train_id = train_id;

msg.duration = duration;

CreateMsgCPiDecel(buff, &msg);
if (SendMsg(chan, buff, strlen(buff)) < 0) {
perror(“"Decelerate: SendMsg failed");
}
}

void

SetSpeed(train_id, goal_speed)
int train_id;
double goal_speed;

MsgCPISetSpeed msg; /* data structure for message construction x/
char buff[BUFFSIZE); /¥ buffer for outgoing message */

msg.client_id = client_id; /* identifier of this client #»/
RSg.seq_num = seq_num; /#* voting sequence number %/
msg.train_id = train_id;

msg.goal_speed = goal_speed;

90

CreateMsgCPISetSpeed(buff, &msg);
if (SendMsg(chan, buff, strlen(buff)) < 0) {
perror(“SetSpeed: SendMsg failed”);
}
}

void

SetDirection(train_id, new_dir)
int train_id;
int new_dir;

MsgCPISetDir msg; /* data structure for message construction */
char buff{BUFFSIZE]; /+* buffer for outgoing message */

msg.client_id = client_id; /* identifier of this client »/
msg.seq_num = seq_num; /* voting sequence number %/
msg.train_id = train_id;

msg.new_dir = new_dir;

CreateMsgCPISetDir(buff, &msg);
if (SendMsg{(chan, buff, strlen(buff)) < 0) {
perror{“SetDirection: SendMsg failed");
}
}

void
EmergencyStop(train_id)
int train_id;
{
MsgCPIEmerStop msg; /* data structure for message construction */
char buff[BUFFSIZE]; /» buffer for outgoing message */

msg.client_id = client_id; /* identifier of this client */
msg.seq_num = seq_num; /* voting sequence number */
msg.train_id = train_id;

CreateMsgCPIEmerStop(buff, &msg);
if (SendMsg(chan, buff, strlen(buff)) < 0) {
perror("EmergencyStop: SendMsg failed");
}
}

91

void
StationStop(train_id, new_val)
int train_id;
enun StationStopMode new_val;

MsgCPIStaStop msg; /* data structure for message construction */
char buff[BUFFSIZE]; /» buffer for outgoing message */

msg.client_id = client_id; /% identifier of this client */
msg.seq_num = seq_num; /* voting sequence number *»/
msg.train_id = train_id;

msg.new_val = (int) new_val;

CreateMsgCPIStaStop(buff, &msg);
if (SendMsg(chan, buff, strlen(buff)) < 0) {
perror(”StationStop: SendMsg failed");
}
}

/****#*#*!*ﬁ******#***#***i**i**##**t**‘#tt*#tt#**‘t*tt#!*#t*#l‘*t/

/* Queries */

enum Occupancy
GetBlockOccupancy(block. id)
int block_id;
{
MsgCPIBlockOcc msg; /* data structure for message construction »/
char buff[BUFFSIZE]; /* buffer for outgoing message %/
int n; /* return status from RecvMsgTimed */

msg.client_id = client_id; /* identifier of this client »/
nmsg.seq_num = seq_num; /* voting sequence number #*/
msg.block_id = block_id;

CreateMsgCPIBlockOcc(butf, &msg);
if (SendMsg(chan, buff, strlen(buff)) < 0) {

perror ("GetBlockDccupancy: SendMsg failed™);
}

12 ((n = RecvMsgTimed(chan, buff, BUFFSIZE, QUERY_TIMEQUT)) < 0)
return (OC_ERROR);
/* response successfully received from simulator and stored in buff »/

switch (burf{0]) {
case '0’: vreturn (OC_fCCUPIED);
case ’f’: return (OC_FREE):
default:
buffn] = °\o’;
fprintf(stderr, “GetBlockOccupancy: unknown simulator response \"%s\"\n",
buft);
return (OQC_ERROR);

enum SwitchPosit
GetSwitchPosition(block_id)
int block_id;
{
MsgCPISwitchPosit msg; /% data structure for message construction */
char buff[BUFFSIZE]; /»* buffer for outgoing message */
int n; /% return status from RecvMsgTimed */

msg.client _id = client_id; /* identifier of this client »/
msg.Seq_num = seq_num; /* voting sequence number */
msg.block_id = block_id;

CreateMsgCPISwitchPosit(buff, &msg);

if (SendMsg(chan, buff, strlen(buff)) < 0} {
perror(”GetSwitchPosition: SendMsg failed");

}

if ({(n = RecvMsgTimed(chan, buff, BUFFSIZE, QUERY_TIMECUT)) < 0)
return (SP_ERROR);

/% response successfully received from simulator and stored in buff */

switch (buff[0]) {
case ’s’: return (SP_STRAIGHT);
case 't’: return (SP_TURRED);
tase 'u’: return {SP_UNDEFINED);
default:
buffln] = ’\0’;
fprintf(stderr, "GetSwitchPosition: unknown simulator response \"%s\"\n",

93

buff);
return (SP_ERROR);
}
}

enum TrainStatus
GetTrainStatus(train_id)
int train_id;
{
MsgCPITrainStatus msg; /* data structure for message construction */
char buff{BUFFSIZE); /* buffer for outgoing message */
int n; /* return status from RecvMsgTimed */

msg.client_id = client_id; /# identifier of this client #*/
msg.seq _num = seq_num; /* voting sequence number */
msg.train_id = train_id;

CreateMsgCPITrainStatus(buff, &msg);

if (SendMsg(chan, buff, strlen(buff)) < 0) {
perror(“GetTrainStatus: SendMsg failed");

}

if ((n = RecvMsgTimed(chan, buff, BUFFSIZE, QUERY_TIMEOUT)) < 0)
return (TS_ERROR);

/* response successfully received from simulator and stored in buff */

switch (buff[0]) {

case 'c’: return (TS_CRASHED);

case ’r’: vreturn (TS_RUNNING);

default:
buffin] = ’\0’;
fprintf(stderr, "GetTrainStatus: unknown simulator response \"%s\"\n",
buff);
return (TS_ERROR);

}

}

enum TrainMotion
GetTrainMotion(train_id)
int train_id;
{
MsgCPITrainMotion msg; /#* data structure for message construction »/
char buff [BUFFSIZE]; /* buffer for outgoing message */

94

int n; /* return status from RecvMsgTimed */

msg.client_id = client_id; /% identifier of this client */
msg.seq_Dum = seq.hum; /% voting sequence number */
msg.train_id = train_id;

CreateMsgCPITrainMotion(buff, &msg);

if (SendMsg(chan, buff, strlen(buff)) < 0) {
perror("GetTrainMotion: SendMsg failed");

}

if ({n = RecvMsgTimed(chan, buff, BUFFSIZE, QUERY_TIMECUT)) < 0)
return (TM_ERROR);

/* response successfully received from simulator and stored in buf?f =/

switch (buff[0]) {

case ’s’: return (TM_STOQPPED);

case ’'m’: return (TM_MOVIKG);

default:
buffn] = '\0’;
fprintf(stderr, “GetTrainMotion: unknown simulator response \"%s\"\n",
buff);
return (TM_ERROR);

}

}

/*#t##************##***********##****##*#*‘#*‘#‘*it*“#‘!*‘*‘tt**/
/* Voting Sequence Fumber */

int
SetSegNumber (new_val)
int new_val;
{
if (new_val < 0)
return {-1);
else {
seg_num = new_val;
return (seg.num);
}
}

int

95

NewSeqNumber ()
{

return (++seq_num);

}

a6

Appendix D

Reference Pages

acitest(l) 98
ts(l) . . e 99
tsed(l) 111
tsim(l) . .. L 117
tspanel(l) 119

97

acitest (1)

Nane
acitest - manual test of CPI interface in Trainset

Syatax
acitest [-d] [simhost [simnum]J

Description
acitest is an example program included with the Trainset
software. Jts source code illustrates the use of the upper
layer (called the ACI) of the Control Program Interface
(CPI). When invoked and connected to a running railroad
simulation (see tsim(1)), it enables a user to interactively
perform each ACI command and query. The effects of each
action may be observed using the monitor programs tspanel(1)
and tsview(1).

Options and Arguments

-d Causes the state information received from a simulation
to be printed during startup.

simhost
Specifies the name of a host that is rumning a simula-
tion of a railroad. If an empty string is specified,
the local host is used. If the simhost argument is
omitted, a value is requested interactively.

simnum
An integer that determines which invocation of the tsim
simulator (at the indicated host) is to be used. The
default value is 0. The monitor programs and the
desired invocation of tsim should use the same value
for number.

See Also
ts(1), tsim(1), tspanel(1), tsview(1).

98

ts(1)

Name
ts - launch Trainset applications

Syntax
ts [flags...]
ts -edit [file] [-layout file] [-tsroot dir] [X11-
options]

Description
ts invokes (*‘launches’’) applications related tc the Train-
set railroad simulation software in a computing environment
that may involve a heterogeneous network of computing sys-
tems. ¥With no options, ts typically starts a demomstration
consisting of a simulation of 2 sample railroad, arn Xit
application that graphically displays the current state of
the railroad, and another X11 application that provides for
manual control of the railrocad. ts options enable the user
to select which applications are to be launched, choose the
railroad layout to be simulated, specify the host to launch
from, etc.

Programmers may write software that interacts with Trainset,
including programs that automatically control a railroad and
custom versions of the basic Trainset software. ts provides
a configuration mechanism for adding launch information
describing such programs to its database,

When invoked with -edit as the first command-line option, ts
invokes the tsed editor for railroad layouts and launches no
other applications. The options -tsroot and -layout are
Tecognized by ts in the case of -edit, and may appear either
in an envircnment variable TSOPTS or on the command line.
file names the layout data file tc be edited. file may be
presented as the second command line argument if it does not
begin with a dash ‘-’. It may also be provided using the
-layout option. -tsroot specifies the tsed search paths for
layout data files, as discussed in Search Paths belows. In
addition, any additional options on the ccmmand line, in

99

ts(1)

particular options recognized by X11, are passed on to tsed.
Applications

Trainset consists of application programs that support
interaction with a simulated railroad. Railroads are
represented by layouts that consist of trains and blocks of
track. Users of Trainset may write programs that use the
Control Program Interface (CPI) to control such 2 railroad.
For more information, see the manuals for Trainset.

The standard applications that comprise Trainset imclude the
follewing.

tsim Simulator of railroad layouts.

tsed Editor for interactive creation and modifica-
tion of a layout.

tsview A graphical display of the state of a layout
during a simulat.on.

tspanel A graphical control panel for manually
operating a layout’s trains and switch
blocks.

In addition, programs that demonstrate the CPI, including
acitest and demo, are provided in the Trainset distribution.

Control Codes

In ts, applications are referenced by control codes that are
strings consisting of an uppercase letter optionally fol-~
lowed by any combination of lowercase letters, digits,
underscores and periods. The following control codes are
conventionally defined in the main configuration file for
ts:

Sim, S, Tsim Trainset railroad simulator.

100

ts(1)

Panel, P, Tspanel
Control panel application.

Viewer, V, Tsview
Viewer application for observing a simula-
tien.

Acitest, A Acitest program that allows manual experimen-
tation with CPI interface features.

Demo, D Demonstration of the CPI interface discussed
in the Trainset manual.

Any of the ts options -args, -delay, -direct, -display,
-host, -tsroot, -xterm and -xtermargs can be localized to
apply to a specific application by prefixing that option
with the appropriate control code(s). For example, either
‘Sim:-host loki’ or 'S:-host loki’ specifies that the simu-
lator should be launched at the site loki. Also,
‘PV:-display thor:0.0’ causes the panel and viewer applica-
tions to display graphics output on the X11 server thor:0.0.
Arbitrary arguments can be passed to applications using the
-args option prefixed by the appropriate control code, e.g.,
‘Myprog:-args "-level 4 -trace'’. Quoting (e.g., using ‘"’')
enables spaces to be included in the argument strang.

If the colon that terminates a prefix is followed immedi-
ately by a character (e.g., dash ‘-’) that cannot be part of
a control code name, then that colon may be omitted. For
example, ‘Sim-host loki’ is equivalent to ‘Sim:-host loki’.

An alia: facility is provided for associating multiple con-
trel codes with a single application. Aliases may be
declared in configuration files (discussed below) or by
using the -alias option. The alias feature can be used to
change the associations between control -sdes and applica-
tions. For example, suppose that a control code
Train_contrel_2 is associated with an application that has

161

ts(1)

been written locally. Then the ts option ‘-alias
T=Train_control_2’ assigns the control code T to represent
that local application. Train_control_2 is a better identif-
ier, but the alias T is more convenient as a prefix. Also,
‘-alias Demo=T’ could be used to associate the control code
Demc with that local application instead of the standard
Trainset demonstration progran.

The -dup option may be used to invoke multiple copies ¢f an
application. This feature supports the launching of repli-
cated programs. -dup clones the launch information gathered
so far for the application in question and associates a con-
trol ccde with the copy. The launch attributes in the two
copies may thereafter be modified independently.

Search Paths

The directory tsroot identifies the location of the Trainset
installation in the local file system. Tsroot may be speci-
fied as the value of an environment variable TSROOT or on
the command line using the -tsroot option.

Ts searches for its own configuration files in the direc-
torias ., ./1lib, tsroot and tsroot/lib (in that order).

Layout data files for a simulation are sought in the direc-
tories ., ./layouts, tsroot, tsroot/layouts and
tsroot/trainset/layouts. The default extemsion ‘.1 is
~~pended (if omitted) to a layout data file name by Trainset
applications anc. searching is repeated if a file with the
given name was not found. If no layout data file is speci-
fied, the file tsroot/layouts/sample.l is used.

Binaries for Trainset applications are sought using the
environment variable PATH as usual.

Launching Applications

Unless the -edit option is specified, ts gathers infcimation

102

ts(1)

from the following sources, in order, before launching
applications.

Main configuration file
This file associates control ccdes with applications,
contains invocation information for applications (e.g.,
name of executable and default arguments) and provides
a default list of applications to be launched. See
ts.config(5) for the file format. The name of the main
configuration file may be specified with the -config
option. Th: default main configuration file is
tsroot/ts.config.

Auxiliary configuration files
One or more additional configuration files may be
designated to supplement the main configuration file.
These are specified by the ts options -confign where n
is a single digit. Auxiliary configuration files are
processed in increasing order of n. The values of n
need not be contiguous. Auxiliary configuration files
enable individual users and groups of users to install
their own applications and customize launching informa-
tion for applications that appear in the main confi-
guration file. Attributes for the launch are either
overridden or appended as appropriate. If a non-empty
list of applications to be launched is included in an
auxiliary configuration file, it overrides any prior
list. There are no default auxiliary configuration
files.

Environment variables TSROOT, TSOPTS and DISPLAY
If there is an environment variable TSROOT, it is
treated as the default value for tsroot (see Search
Paths above). If there is an environment variable
TSOPTS, it is treated as a list of ts options that are
parsed prior to the options specified on the command
line. If there is an environment variable DISPLAY with
value X11~-display, then the option -xtermargs Xil-
display is implicitly processed just prior to any

103

ts(1)

opticns in TSOPTS.

Command line options
See QOptions below.

The significance ¢f the ordering above is that later values
override or are appended to earlier values. For example, a
-host option in TSOPTS overrides any HOST entries in confi-
guration files, and ‘Sim:-args "-window §"’ on the command

line appends to the arguments for the Sim application that

were collected from configuration files and TSOPTS.

Launching at a remote host is accomplished by invoking ts at
the remote site, as described in ts.remote(8). The
information that is passed to a remote ts consists of an
options list that is assembled by the local t¢s after scan-
ning the local sources listed above. That options list con~
sists of the following.

A ~launch option listing the applications toc be
launched at that site.

A -display option, unless no -display attribute was
given and there is no local DISPLAY environment vari-
able.

Any applicable control-code specific ~display options.
-simhost and -simnum options.

Any local command-line options that remain after remov-
ing ~host and -launch (+) optioms.

The remote ts gets its launch information first from
Temote-site configuration files, then from remote-site
environment variables and finally from the options list that
was assembled at the local sitve. (Note that values for
attributes such as -delay and -tsroot may be passed to the
remote site only if they are specified in local command-line

104

ts(1)

options.)
ts provides two methods for launching applications.

xterm Method

If the configuration file attribute XTERM for an appli-
cation is a string of positive length or 1f the -xterm
option is used, then the application is invoked in an
xtern(1) window that is created for that purpose. That
application’s standard input and output will be associ-
ated with the xterm window. Arguments can be passed to
xterm using the -xtermargs option discussed below.

Direct Method
Applications that are launched without using the xterm
method are invoked asynchronously by the ts process,
and share that process’s standard output. The standard
input for all such applications 1s /dev/null, except
the last application launched by the direct method
inherits the ts process’s standard input as well as
standard output. Thus, an interactive application
(e.g., acitest(1)) may be launched using the direct
method provided that it the last such application
specified. See the Examples section.

xterm is the default launch method. The direct method is
currently implemented for the local host only, 1.e., the
host at which the ts command was entered. Thus, any -host

options are ignored for applications launched by the direct
method.

Options

-alias controli=control?
Declares the control code controlil to be an alias for
the control code control2. The two codes may then be
used interchangeably for referring to the application
launch attributes associated with control2, if there is
such an application. The symbol ‘=’ is optional.

103

ts(1)

~dup controli=control2
Make a copy controll of the application launch attra-
butes associated with control2. Since the two control
codes represent different copies, a change in the
attributes referenced by controll will have no effect
on the attributes referenced by control2. This is use-
ful for invoking multiple copies of the same applica-
tion, e.g., parallel copies of the same CPI program for
controlling a railroad. The symbol ‘=’ is optional.

-args arglist
Provides program~specific arguments to be passed to
applications. This option is ordinarily prefixed by
control codes, e.g., ‘Sim:-args "-update 0.5"’.

-config filename
Specifies the name of the main configuration file.

~confign filename
Specifies the name of the nth auxiliary configuration
file.

-delay seconds
Specifies an integer number of seconds to pause just
after launching each application.

-direct
Specifies that applications should be launched using
the direct method.

-display Xii-display

Indicates the display for X11 output. The envircnment
variable DISPLAY is set to¢ Xil-display for the applica-
tions that are launched, and ‘-display Xii-display’® is
appended to the list of arguments for xterm. The
latter effect is approximately equivalent to -xtermargs
"-display Kii-display"”; this does not affect applica-
tions launched by the direct method, but such applica-

106

ts(1)

tions can still obtain the value Xlil-display by
examining the environment variable DISPLAY.

-adit filename
Invoke the tsed editor to create or modify a layout
data file of blocks and trains to be simulated. It
filename is a relative path (does not begin with ‘/°),
a file with that name is searched for using the search
path for layouts. If such a file is found, its path is
passed to tsed for modification. Otherwise, filenanme
is passed, so that a new layout data file with that
name may be created relative to the current working
directory. The -edit option should not be used in com-
binaticn with any other ts options.

-host hostname
ts seeks configuration files and invokes executables at
the site hostname, except when specifically overridden
by other ts options.

-layout filename
The railroad layout to be simulated is described in
filename, which must be in the format produced by tsed.
See Search Paths above.

-~launch control...
Specifies that the indicated applications (only) should
be invoked. The default list of applications to launch
is determined by the first lines of configuration
files.

-querum n
Sets the simulator voting quorum value to n,

Equivalent to ‘Sim:-args "-quorum n"’.

-tsroot dirname
Specifies the value of tsroot.

-simhost hostname

107

ts(1)

Specifies the host on which to invoke the simulator.
Equivalent to ‘Sim:-host hostname’.

-simnum humber
number determines which well-known port is to be used
when initializing communication with a railroad simula-
tion. Permissible values for number are installation-
dependent and typically include the range 0 tc 89.
Applications that are launched with a given value for
numnber can only comnect with a simulation that was
launched with that same -simnum value number; thus,
multiple railroad simulations may be run simultaneously
on the same host if they use different values for
number. It is convenient to assign several unique
values of pnumber to each Trainset user in order to
avoid collisions among users.

-update seconds
Specifies the frequency that the simulator sends state
update reports to graphics monitor programs (control
panel and viewer). seconds may be a decimal value,
e.g., 0.5. Equivalent to ‘Sim:-args “-update
seconds"’.

-window seconds
Sets the simulator voting window value to seconds.
Equivalent to ‘Sim:-args "-window seconds'’.

~xterm
Specifies that applications should be launched using
the xterm method.

-xtermargs args
Provides arguments to be passed to xterm(1), for appli-
cations to be launched using the xterm method. Enclose
args in quotes if it contains embedded spaces.

+control. ..
Same as -launch control.

108

ts{1}

args Any options that are not listed above are passed to
xterm(1) for applications launched using the xterm
method. Thus, the options args 1s approximately
equivalent to -Xtermargs "args'.

Examples
Start the standard programs (as listed in in configuration
files) using their default methods. Use the default layout
data file to define the railroad being simulated. Send all
graphics output to the X11 server specified in the environ-
ment variable DISPLAY, and interpret any options listed in
the environment variable TSOPTS.

ts

Seek a file oval.l as described in Search Paths above for
layout data files. If it is found, then start the standard
programs as before, with the simulator tsim using that file
oval.l to define the railroad layout.

ts -layout oval.l

Start the standard programs as before, except send cutput
for the Panel application to thor:0 and send all other
graphics output to the Xi1 server loki:0. Send updated
information to any running graphics monitor programs (e.g.,
Viewer and Panel) every 3/4 second.

ts -display loki:0 -update .75 Panel:"~-display thor:0"

109

ts(1)

Bugs

Launch the applications S, V and A using their defaunlt
methods. Unless these control codes have been reassigned,
they refer to the Simulator, Viewer and Acitest applica-
tions.

ts +SVA

Launch the applications S, V and A using the direct method.
Output for the various applications will be intermingled on
the screen. Since A is specified last, that application can
be operated interactively. The direct method 1s useful for
debugging new applications and for systems that do not sup-
port the program xterm(1i).

ts +SVA -direct

The Temote invocation facility is not currently implemented.

Unpredictable results may occur if a control code is made a
duplicate of itself.

See Also

tsed(1), tsim(1), tspanel(1), tsview(1), ts.config(s),
ts.remote(8).

110

tsed(1)

Hame
tsed - Trainset layout editor

Syntax
tsed [file] [-layout file] [-tsroot dir] [Xii-options
]

Description

tsed is an interactive graphics editor for defining and
modifying railroad layouts for use in the Trainset railroad
simulation software. On startup, tsed displays two windows:
(1) 2 canvas window on which the layout is created. The
window contains a set of pulldown menus along the top, a
message area at the bottom, and is overlaid with an align-
ment grid, and (2) a tools window consisting of icons
representing the operations available for creating and medi-
fying blocks and trains.

With no file or options specified, tsed starts with a blank
unnamed layout. The options -tsroot and -layout are recog-
nized by tsed and may appear either in the environment vari-
able TSOPTS or on the command line. file names the layout
data file to be edited. file may be presented as the second
command line argument if it dces not begin with a dash ‘-’.
It may alsc be provided via the -layout option. -tsroot
identifies the location of the ts installation in the file
system and is used to determine the location o¢f auxiliary
files needed by tsed. These are searched for in tsroot,
tsroot/1lib and tsroot/trainset/lib if tsroot is specified
and then according to the PATH environment variable. tsed
uses tsroot to search for layout data files in the following
order: ., ./layouts, tsroot, tsroot/layouts and
tsroot/trainset/layouts. The default extension ‘.1’ is
appended tc a layout data file name and the search repeated
if the given file was not found.

tsed also recognizes the standard Xi1 application optionms.

11

tsed(1)

Layout Tools
The layout tcols lie in two columns of icons in the tools
window and are called (top to bottom, left to right) Select,
Erase, Straight Block, Station Block, Arc Block 1, Arc Block
2, Cross Block, Join Block, Switch Block 1, Switch Block 2,
Train, and Rotate. Select, Erase, and Rotate manipulate
existing blocks. Straight Block and Station Block create
linear blocks. Arc Block 1 and Arc Block 2 create circular
arc blocks. Cross Block, Jein Block, Switch Block 1, and
Switch Block 2 create fixed size iconic blocks. The current
tool is shown highlighted by inverting its colors and is set
by clicking on it. Clicking the left mouse button in the
canvas area invokes the current layout tool. tsed provides
the following layout tools:

Select Move block labels by dragging within their
boundaries. Select a block by clicking on it
whether or not it’s already selected and dis-
card any other selection.

Erase Remove a block or train from a layout by
clicking on it.

The four tools, Straight Block, Station Block, Arc Block 1,
and Arc Block 2, create regular and station blocks using a
drag technique to determine the position of the head and
tail terminators of the block. If the start point or end
point of the drag is within a few pixels of the terminator
of an existing block, tsed attempts to establish a connec-
tion. In such a case, tsed constrains the slope of the new
block to match the slope of the existing block at the termi-
nator.

Straight Block Create a straight regular block. The block
is constrained to be vertical, horizontal, or

at + or - 45 deg diagonal.

Station Block Create a station block. Created and con-
strained in the same way as straight block

112

Arc Block &

Arc Block 2

tsed(1)

above.

Create a circular arc regular block. The
start point of a drag determines the location
¢f the head terminator of the block. The
radius of the circular arc is two grid divi-
sions. The extent of the arc is determined
by the angle given by the head terminator and
the end point of the drag. The extent of the
arc is constrained to be a multiple of 45
deg.

The same as Arc Block 1 but with a radius of
four grid divisions.

The four tools, Cross Block, Join Block, Switch Block 1, and

Switch Block 2,

fixed size and

create iconic blocks, blocks that have a
shape. They are created by simply clicking

the mouse, whose cursor takes the form of the icor for the

current tool.

Along the outer circle of such a cursor are

enlarged points called hot spots at which connections with
other blocks can be made. When a connection is established,
the newly created iconic block 1s constrained so that the
slope at the connecting hot spot and the slope at the exist-

ing terminator

agree. tsed does not establish more than one

connection when an iconic block is created.

Cross Block

Join Block

Switch Block 1

Switch Block 2

Train

Create a cross block.
Create a join block.

Create a switch block whose turn head is 45
deg counter clockwise from its straight head.

Create a switch block whose turn head is 45
deg clockwise from its straight head.

Create a train. The drag operation for
creating a train begins at the position

113

tsed (1)

Rotate

Pulldown Menus

desired for the head end of a train, contin-
ues along the blocks to be occupied by that
train, and stops at the pesition desired for
that train’s tail end. The head end of a
train 1is indicated by an angle bracket, and
the tail end 1is indicated by a square
bracket. All blocks that are occupied by a
train are highlighted. The head end of a
train is constrained to start in a regular or
station block.

Rotate an iconic block c¢lockwise about its
center to the next hot spot.

The pulldown menus File and Custcnmize lie in a menu bar
along the top of the canvas window They contain commands
which you execute by pulling down the menu and releasing the
mouse button on the command.

The File menu contains the following commands to operate on

files:

New

Open

Save

Save A4s

Close

Clear the current layout and lreate a new
enpty layout, requesting a layout name from
the user.

Open an existing layout using a layout data
file typed by the user. The search is the
szme as specified above.

Save the current layout under the current
file name, if one exists. If one does not,

then it is the same as executing Save As

Save the current layout under a new name
specified by the user.

Close the current layout and clear the can-

114

tsed{t}

vas,

Quit Exit the application after first checking for
any unsaved changes.

The Customize menu contains the following commands to alter
the appearance of the current layout and the attributes of
the blocks contained within:

Change Block Attributes
Change the attributes of a selected block
{See Select above). If no block is selected,
a warning beep is sounded.

Change Default Block atiributes
Change the default creation attributes of a
block type. This is a hierarchical menu
whose submenu are the various block types.

Labels Change the appearance of the labels on the
current layout. This is a hierarchical menu
vhose submenu entries are: Names -- Labels
are block names; Speeds -- Labels indicate
the minimum, maximum, and stop velocities
associated with each block; Hide Labels --
Hide the labels in the current layout.

Hide/Show Grid Hide (Show) the grid lines in the canvas win-
dow. FNote that this does not turn the grid
alignment and constraints off, it merely
removes the grid from view.

Files
tsroot/lib/tsed.uid

See Also
ts(1), layout data file description

Bugs / Restrictions

tsed(1)

Due to a bug in the DEC Xqdsg server, tsed causes the X
server to crash when using the Arc Block 1 and Arc Block 2
tools with X servers from Ultrix 4.0 and Ultrix 4.1. There
is ro problem in Ultrix 4.2 and the Ultrix 4.2 X server can
be used with Ultrix 4.0 and 4.1.

116

tsim{1)

Name

tsim - Trainset railroad simulation
Syntax

tsim [flags...]
Description

tsim simulates a Trainset railroad. The Trainset software

consists of this simulator, an interactive graphics editor

tsed(1) for defining railroad layouts and graphics monitor
prograns tspanel(1) and tsview(i) for displaying the state

of the railroad and manually controlling it. See The Train-
set Railroad Simulation for more information.

The programs tsim, tspanel and tsview are ordinarily invoked
using the launch program ts(1).

Interfaces

tsim provides three interfaces. The control program inter-
face (CPI) is used by computer programs that control a
Trainset railroad. The CPI is fully documented and enables
researchers and students to write contrel programs for
investigating issues such as real-time computing and fault-
tolerance. Programs such as acitest(1) that illustrate the
CPI are included in the software distribution.

The other two interfaces are used internally by Trainset.
They are: the layout interface, for reading files that
describe a railroad and its initial state, as produced by
tsed; and the monitor interface, for communication between
tsim, tspanel and tsview.

Options
-layout layoutfile

The railroad layocut to be simulated is described in the
layout data file layoutfile, which must be in the for-

tsim(1)

mat produced by tsed. Specify a complete absolute or
relative path for layoutfile,.

-guorun n
Sets the voting quorum value for this simulation to n.

-simnum number
Number determines which well-known ports are to be used
when other programs are initializing communication with
this simulation. Permissible values for number are
installaticon-dependent and typically include the range
0 to 100. Multiple instances of tsim may be run simul-
taneously on the same host if they use different values
for number.

-update seconds
Specifies the frequency that tsim is to send state
update reports to graphics monitor programs, Seconds
may be a decimal value, e.g., 0.5.

~-window seconds

Sets the voting window value for this simulation to
seconds.

See Also
ts(1), tsed(1), tspanel(1), tsview(1l), acitest(1).

tspanel(1)

Name
tspanel, tsview - Trainset railroad monitor programs

Syntax
tspanel [-simhost hostname] [-simnum number] [-tsroot
dir]
tsview [-simhost hostname] [-simnum pumber] [-tsroot
dir]

Description
tspanel is a graphical interface for manually controlling
and displaying quantitative state information about a simu-
lation of a Trainset railroad. tsview displays the state of
a Trainset railroad, including location of trains aid set-
tings of switches. Thess programs enable a user to estab-
lish initial conditions of train motion and switch settings
in a railroad and to monitor the progress of a simulation.
Each program receives regular reports of the railroad
layout’s state from the Trainset simulator, tsim(1). See
The Trainset Railroad Simulation for more information.

tspanel and tsview are ordinarily invoked using the launch
program ts(1).

Options

-simhost hostname
Specifies the host that is running the simulator tsinm.

-simnum number
nunber determines which invocation of the tsim simula-
tor (at the indicated host) is to be used. The monitor
programs and the desired invocation of tsim should use
the same value for number.

-tsroot dir

(DECwindows implementation only.) Specifies directory
for locating uid startup file, e.g., tsroot/tsview.uid

119

tspanel (i)

or tsroot/lib/tsview.uid.

Limitations
Currently implemented on DECwindows only.

See Also
ts(1), tsim{1).

120

