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Abstract

This study concerns the barotropic interactions between a mesoscale eddy and a

straight monotonic bottom tpography. Through simple to relatively complicated mod-

eling effort, some of the fundamental properties of the interaction are investigated.

In chapter two, the fundamental aspects of the interaction are examined using
a simple contour dynamics model. With the simplest model configuration of an ideal
vortex and a step topography, the basic dynamical features of the observed oceanic

eddy-topography interaction are qualitatively reproduced. The results consist of eddy-

induced cross-topography exchange, formation of topographic eddies, eddy propagation
and generation of topographic waves.

In chapter three, a more complicated primitive equation model is used to investi-
gate a mesoscale eddy interacting with an exponential continental shelf/slope topography
on both f and /3-planes. The f-plane model recasts the important features of chapter

two. The roles of the eddy size and strength and the geometry of topography are studied.
It is seen that the multiple anticyclonic eddy-slope interactions strongly affect the total
cross-slope volume transport and the evolution of both the original anticyclone and the

topographic eddy. Since a cyclone is trapped at the slope and eventually moves on to the

slope, it is most effective in causing perturbation on the shelf and slope. The responses
on the shelf and slope are mainly wavelike with dispersion relation obeying that of the
free shelf-trapped wave modes. On the fl-plane, the problem of an eddy colliding onto a

continental shelf/slope from a distance with straight or oblique incident angles is inves-

tigated. It is found that the straight eddy incident is more effective in achieving large

onslope eddy penetration distance than the oblique eddy incident. The formation of a
dipole-like eddy pair consisting of the original anticyclone and the topographic cyclone

acts to suppress the eddy decay due to long Rossby wave radiation. A weak along-slope
current near the edge of the slope is found, which is part of a outer slope circulation cell

originated from the Rossby wave wake trailing the propagating eddy.
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Model-observation comparisons in chapter four show favorable qualitative agree-
ment of the model results with some of the observed events in the eastern U.S. continental
margins and in the Gulf of Mexico. The model results give dynamical interpretations to
some observed features of the oceanic eddy-topography interactions and provide enlight-

ening insight into the problem. g
Thesis Supervisors:
Drs. Glenn R. Flierl, Professor, and Paola Malanotte-Rizzoli, Professor
Massachusetts Institute of Technology
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Chapter 1 1
Introduction I

I
Strong and localized mesoscale eddies are among the most dominant features in oceanic

flows. Their dynamic properties and role in the general oceanic circulation have been

investigated extensively.. Great attention has been given to these eddies concerning their 3
evolution, propagation and dissipation when they are in isolation. Much understanding

has been achieved during the last two decades of study. The results are summarized in a

collection of research papers edited by Robinson (1983) and in a review by Flierl (1987).

Now it is fair to say that the properties of the eddies in isolation are fairly well understood.

The attention is shifting to nonisolated eddies and eddies in a variable ambient field, for

example, the existence of shear flow or large bottom topography near the eddy field. A 3
typical example of the importance of such effects arises in the study of warm-core and

cold-core rings formed 'y the detachment of a portion of a Gulf Stream meander due 3
to hydrodynamic instability processes. The proximity of these highly energetic eddies to

the Gulf Stream and continental boundary allows them to interact with the Stream and I
the bottom topography. The present study will focus on one of these important issues, 5
i.e., the interaction between an eddy and topography.

Existing evidence shows that the eddy interaction with bottom topography can 3
influence the speed and direction of the eddy propagation (Evans et al, 1985; Kirwan

et al,1984), the eddy shape (Cheney and Richardson, 1976; Kennelly et al, 1985), and 3
the rate of eddy dissipation (Cheney and Richardson, 1976). On the other hand an

I
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eddy encountering continental topography will radiate topographic Rossby waves (Louis

3 and Smith, 1982; Ramp, 1989; Shaw and Divakar, 1991), cause cross-isobath fluid mo-

tion (Morgan and Bishop, 1977; Smith, 1978; Churchill et al, 1986; Joyce et al 1992)

3 and possibly induce topographic eddies (Kennelly et al, 1985). All these are important

processes that affect at least the regional circulation and water mass structure. Due to

3 frequent occurrence of the eddy-topography interactions over length scales much larger

than a single eddy scale, the interactions are likely to have a strong impact on the basin

3 scale ocean circulation, especially on the volume and property exchanges between deep

ocean and continental shelf and slope waters. For example, the Mid-Atlantic Bight shelf

I receives an average 157 km 3/year fresh water from river runoff. To conserve the salinity

on the shelf, Wright (1976) estimated that about 2400 km 3/year (6.8 x 10' m 3 /s) of

shelf water must be transported offshore. The observations show that the eddy induced

3 offshelf transport can account for a significant portion of it (Morgan and Bishop, 197 7;

Smith, 1978; Churchill et al, 1986).

Due to the complexity of the eddy.topography interaction, theoretical investiga-

tion has been limited to study of the translation of an isolated eddy on a sloping bottom.

I Nof (1983) found that a cold (dense) eddy over a uniformly sloping bottom will translate

at 90' to the right of the downslope direction. The translation speed depends only on

I the stratification, Coriolis parameter and the bottom slope. It is independent of the

intensity and size of the eddy. With a rather different dynamic approach, Swaters and

Flierl (1990) investigated the propagation of ventilated coherent cold eddies on a slop-

ing bottom. Their leading-order solution corresponds to a solitary baroclinic monopole

which propagates along shelf at the same speed as that of Nof (1983). The features3 in these models are, however, not quite at the level of strength and the size of bottom

slope as the Gulf Stream ring-continental shelf and slope interactions. Therefore the

3 Iimportant nonlinear propagation tendency is not included in their models. Smith and

O'Brien (1983) were able to study nonlinear eddy-finite topography interaction using a

Stwo layer numerical model. They showed the important difference between an anticv-

* 9IlyrTe nprtn i niy
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clone and a cyclone when interacting with a shallowing topography in the lower layer: I
the anticyclone tends to move downslope and the cyclone tends to move upslope under

the strong influence of nonlinear self-advection associated with the topographic /3-effect.

However Smith and O'Brien (1983) did not investigate the response of the fluid over the 3
topography or the cross topography transport processes, and the topography in their

model was fully contained in the lower layer below a depth of 3000 meters. Later work 3
focused on the topographic Rossby waves generated by a nearshore eddy and their sub-

sequent onshelf oropagation. There are two different assumptions for wave generation I
mechanisms. Louis and Smith (1982) investigated the barotropic radiation by an eddy

over a slope and found that the topographic Rossby waves generated in such a system 5
agree fairly well with the observed velocity from the Scotian Shelf break. With a series of

numerical experiments, Shaw and Divakar (1991) argued that the density advection by I
a warm-core ring is responsible for generating large wave-like velocity oscillations near Ii
shelf break. Their results show better amplitude agreement with the observations than

that of Louis and Smith (1982). In both studies the waves are generated by a source oni

the continental rise or slope, and propagate shor,-ward onto the shelf. Since the waves

so generated are fairly barotropic and the steep slope is an excellent insulator to low ,

frequency waves, the onslope penetration by the topographic waves requires the source

be located on the mid or upper slope (Shaw and Peng, 1987). Therefore the shelf water 3
may be subject to the direct perturbation of the eddy forcing. Other studies involve

the responses on the shelf and slope due to an offshore eddy forcing, such as the work 3
of Chapman and Brink (1987) and Qiu (1990). In these studies the offshore forcing is

prescribed as a boundary forcing and is allowed to translate along the offshore bound- I
ary. The shelf and slope responses and their dependence on the forcing frequency and

stratification are examined. The treatment of the offshore eddy as a boundary forcing

in these studies is a crude approximation. One can examine shelf and slope responses

to the eddy forcing in such indels but not the feedback from the variation of eddy field

and the property exchange between the slope and deep ocean. 3
10 1
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A better approach to the eddy-.topography interaction problem must involve ac-

"tively both the process on the topography and the evolution of the eddy field. The

simplest model of this kind is a system containing an eddy and a step-like topography

I without stratification, friction and external forcing. This model is investigated in chapter

two using the method of contour dynamics. As the potential vorticity interface separat-

ing the fluid in the deep and shallow regions is perturbed by the eddy. relative vorticity is

generated due to the vortex stretching or compression as the fluid column moves across

the step topography. The perturbation velocity field in turn influences the evolution of

the interface itself and the motion of the eddy. The theoretical development of this pro-

I cess is similar to the eddy-shear current interaction problem investigated by Stern and

Flieri (1987) and Bell (1990). The wavelike interface perturbation can be solved analyti-

,'ally for weak or linear interactions. The perturbation grows with increasing nonlinearity

and large interface deformation takes place. Such cases are investigated with a numerical

contour dynamics model for various strength of nonlinearity and size of the topography.

The fundamental features observed in real oceanic situations are qualitatively reproduced

and the interpretation of these results is simple and straightforward. The basic processes

captured by the model are: (1) the eddy-induced cross topography volume transport;

(2) the formation of a topographic eddy and streamer; (3) the generation of topographic

waves and a residual along-topography current; and (4) the eddy propagation. The de-

pendence of these features on the variable model parameters is also investigated. The

propagation of the eddy under the influence of the interface perturbation and the to-

pographic eddy are discussed. The results from this simple model study indicate that

the model contains some of the fundamental physics of tne eddy-topography interaction,

though most finer points are beyond its scope.

This leads naturally to chapter three, the study of eddy-t.)pography interaction

with a barotropic primitive equation (PE) model. A more realistic topography and eddy

as well as friction are included in the model. For simplicity and easy comparison with the

results in chapter two, the density is still assume(] uniform. The topography is assumed

1 11
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to be a single exponential function of the offshore distance. It has the samw form used by

Buchwald and Adams (1968), for purpose of being able to compare directly the dispersion I
relationship of the eddy-induced topographic waves and that of free continental shelf

waves. These restrictions can be easily relaxed in the model. The model experiments are 3
performed on both the f-plane and the /3-plane. The former allows a direct comparison

with the contour dynamics (CD) results. The PE model results, though complicated, 3
can be qualitatively interpreted using the simple CD results for comparison. The most

important changes occur to the cross topography volune transport and the waves over the 3
topography. Unlike the step topography case, the cross topography volume transport over

a continuous topography profile will originate from different part of the slope, depending I
on the topography and penetration distance by the eddy forcing. In the CD case the

interfacial wave excited by the eddy forcing is monochromatic, due to the topographic I
restriction. The topographic waves on a continuous monotonic depth profile, according

to Huthnance (1975), will have an entire set of barotropic trapped modes. The eddy

forcing will excite a subset of these modes at different frequencies and wave numbers. On 3
the planetary /3-plane, an isolated eddy will propagate due to the effect of planetary wave

dispersion. This allows the eddy to be initialized away from the topography. Therefore 3
the collision of ap eddy with continental topography at different incident angles can

be investigated. The oblique incidence and straight collision of an eddy onto a slope I
topography are studied. These experiments represent more realistically the observed

oceanic eddy-topography interactions. The major results from the CD study are still 3
qualitatively app .... ble to explain the /3-plane interactions, but the latter results are

general enough that direct model-observation comparisons are possible. I
Chapter four contains the comparison study of the model results with observations. 3

The Gulf Stream ring-shelf and slope interactions are examined first. Since the existing

observations are limited, no single interaction event is able to illustrate all the important 3
features revealed by the model results. The comparisons are made to different events

with emphasis on the appearance of certain interesting features. The Loop Current eddy U

12 1
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I interactions with the Western Gulf of Mexico slope are also examined. Both comparisons

show not only the qualitative similarities but also some limited quantitative agreement

with the model. The results provide useful insight into the complicated eddy-topography

interaction processes.

Finally the limitations of the model results are discussed and future improvements

I and further investigations are proposed.

I
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Chapter 2 3
Vortex-Escarpment Interactions I

I
2.1 Introduction

The problem of eddies interacting with a continental shelf/slope is rather complex as it

involves a density front, external forcing, irregular bottom topography, mixing, etc. In I
this chapter we shall study this problem in a much idealized framework; i.e, we examine

the interaction process of a vortex with a step-like topography in a homogeneous fluid. I
The simplified system contains an isolated eddy and topography. All external forcings are

dropped. Density is assumed homogeneous over the entire domain, and in this chapter,

there is no mixing or friction of any kind. Furthermore, the topography is taken as an

infinitely long and straight escarpment with the rest of the bottom flat, and the eddy is

represented by either a point vortex or a constant vorticity patch that is initially some 3
distance away from the escarpment. The initial field therefore consists only of a vortex

and a potential vorticity (PV) front, which is due to and coincident with the escarpment. 3
As the system evolves in time, the front deforms and interacts with the vortex. We will

explore, at various strengths of interaction, the motion of the eddy, the time evolution of 3
the PV front, the excitation of frontal waves and the generation of eddies. The purpose

of this study is to model the eddy-topography interaction, to identify major control I
mechanisms and parameters, and to understand qualitatively the evolution of the front-

eddy system and its time and space scales of variation. This will pave the way for a series I
of more complicated modeling experiments that follows in the next chapter. The study !

14 3
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is limited on f-plane in this chapter and will be expanded to include /3-effect in Chapter

3. The f-plane approximation suppresses planetary waves, while the flat bottom/step

topography means that the only topographic Rossby waves are "escarpment waves" due

to the depth discontinuity.

Longuet-Iiggins (1968) studied wave trapping by such a step bottom. He found

that wave motions could exist which propagated along the discontinuity and whose am-

plitude decayed exponentially to either side. The period of the waves is always greater

than the inertial period.

Gill et at (1986) examined the classic Rossby adjustment over a step topography

running perpendicular to the line of the initial jump in surface pressure. They found that

double Kelvin waves were generated and propagated along the step and the flow diverted

parallel to the step, i.e., perpendicular to the initial surface discontinuity (compared to a

flow along the line of the initial discontinuity in the classic Rossby adjustment problem).

There is no mass flux across the step since the adjustment is strictly geostrophic.

With the present formulation, our problem is to study interaction between a vortex

and a PV front. Such a problem is analogous to interaction of a vortex with a shear flow,

which has been addressed previously by a number of researchers (Hedstrom 1986, Stern

and Flierl 1987, Nof 1988, Bell 1990, Stern 1991 and Bell and Pratt 1991). In those

studies the vortex is represented by either a patch of uniform vorticity or a point vortex,

while the PV front is usually associated with a given shear flow. The authors investigated

a wide range of possible scenarios, such as front meadering and waves, formation and

propagation of "streamers", the motion of the eddy and eddy entraining into a shear

flow. There are certain similarities between the current studies and those listed here, so

it is relevant to review them in some detail.

Stern and Flierl (1987) studied interactions between a point vortex and various

kinds of shear flows on the f-plane, where the shear flow was stable to small perturbations

and was represented by a potential vorticity interface. They recognized the importance

15
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of the signs of the vortex and of the shear in the interaction process and showed that I
an anticyclone to the north of a region of cyclonic shear (resembling the situation of a

warm core ring and the Gulf Stream) would generate a localized northward perturbation

on the interface. The resulting interaction between the vorticity anomaly created by this 3
displacement and the vortex resulted in westward propagation of both the disturbance

and the vortex. In the like-signed case the point vortex moved in the same direction as 3
the shear flow. This would excite a resonant lee wave at the interface, resulting in the

vortex moving toward the interface. In the like-signed case the capture of the vortex by I
the shear flow was seen. On the other hand, in the opposite-signed case, the vortex might

capture a segment of the interface by winding it up around itself if the two were initially 3
close enough.

Hedstrom (1986) extended the study of Stern and Flierl (1987) to a two layer

system with PV fronts in both layers. The eddy was far enough from the front so that 3
linear dynamics could be assumed. She found that adding a finite lower layer to the one

layer problem did not qualitatively change the results of Stern and Flierl unless the lower 3
layer also had changes in potential vorticity. The character of the solution was affected

mostly by the ratio of the dominant scale to the deformation radius, since it basically 3
determines the barotropicity or baroclinicity of the solution. She also verified previous

findings that in the linear regime the shear flow-vortex interaction draws the eddy toward 3
the flow through the mechanism of either resonant interaction between eddy and frontal

waves or interaction between heton-like eddies. U
Bell (1990) studied a vortex-potential vorticity interface problem similar to Stern 3

and Flierl (1987) with emphasis on interface waves at small amplitude limit. He in-

terpreted that the resonant lee wave at the interface was due to a radiative transfer of 3
momentum from the vortex to the interface. Thus, from momentum conservation, he

was able to derive a simple solution of vortex drift which was only based on the shape of 3
interface.

I
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Since jet currents arising in geophysical problems are often unstable and asym-

metric, Bell and Pratt (1991) investigated the same type of eddy-shear flow interaction

problem as Stern and Flieri (1985), but using unstable jet profiles. For long range in-

teractions they found that in the barotropic case the jet instability broke the jet up

into eddies which caused the forcing cyclonic (anticyclonic) eddy south of the jet to move

southwestward (northeastward); while in the equivalent barotropic case a steady lee wave

was triggered by the forcing eddy which induced a propagation of the eddy in the opposite

direction from the barotropic case. Their numerical resuits for short range interactions

showed that the forcing eddy could strip fluid from the edge of the jet and the detached

fluid and eddy propagated as a vortex pair away from the jet. They also related this

latter phenomenon to the Gulf Stream warm outbreaks.

Nof (1988) studied an eddy-induced streamer and its propagation as the eddy

comes into contact with a shear flow. He suggested that the formation of streamers was

a result of eddy geometry rather than advection by the eddy's circulating velocity. The

main reason for this was that the interaction process had been treated as a shear flow

intrusion along a rotating solid boundary, and both the shape and the position of the

eddy were not allowed to change. The rate of streamer propagation was found to be

independent of the eddy radius and rotation, and was always one half of the particle

speed along the upstream front of the shear flow.

Stern (1991) attacked a different problem of the strong interaction between an

eddy and a semi-infinite current. Under certain condition satisfied by the eddy and the

flow, the interaction caused the eddy to move towards the edge and into the shear flow.

Eventually entrainment of the eddy into the flow took place. His calculation showed that

the average entrainment velocity was proportional to the square root of the product of

the eddy circulation and the relative vorticity of the shear flow.

In general the interaction can alter the motion of an eddy and induce a frontal

wave, which interacts with the eddy as well as with itself and results in increasing ampli-

17



tude. As the feedback from the interface (front) couples with its own evolution, a series I
of new phenomena appears, such as interface meander and eddy pinch-off (Pratt and

Stern, 1985), and capture of the eddy by the shear flow (Stern and Flierl, 1987).

The relation of the above work to the present problem is that they all deal with 3
interactions between eddies and vorticity fronts. The frontal waves owe their existence

to the vorticity change, which provides a restoring mechanism. In this study it is the 3
change in water depth rather than shear that is responsible for an initial PV front. As

the interaction evolves, the flow field develops from an initially motionless front. The 5
fluid displaced from shallow to deep water generates cyclonic vorticity due to vortex

stretching, while the fluid displaced from deep to shallow water generates anticyclonic I
vorticity due to vortex compression. 3

In this chapter we examine first a point vortex interacting with a small escarpment.

under the quasi-geostrophic approximation. Then we study the same problem with a 3
finite escarpment as well as a finite vortex. The study will concentrate on processes such

as the generation of a topographic eddy, excitation of escarpment-trapped waves, vortex 3
movement and cross-escarpment volume transport. The effects of continuous bottom

topography and planetary # are left to later chapters. 1
2.2 Governing Equations and Matching Conditions I

The governing equations for a barotropic, frictionless fluid in a rotating coordinate system I
with the rigid lid assumption are I

ut+uU'+vu.- fv = -p 7  (2.1a)

vt+uv7 ±+vvy+fu = -pY (2.11) 1

(uh), + (vh), = 0 (2.1c)

where the x-axis is along the escarpment towards east and the y-axis is across the

escarpment towards north; u and v are the velocity components in x and y directions, 3
181
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Figure 2.1: Schematic illustration of the model considered in this chapter. (a) A cross

escarpment section. (b) x-y plane view.

p is the pressure and h is the water depth. The system is illustrated in figure 2.1 with

a step-like topography and an eddy located in the deep water. The step is aligned with

x-axis and described by

h = l Jh1  y<O (2.2)
~h2 - Y > 0

For scaling purpose we may define a velocity scale using the vortex circulation Fo and

the height of the topographic step Ah = h - h 2: - : (FofoAhih)'. A length scale can

be defined as L = (roh/foAh)4 . A physical length of this system is the distance between

the vortex and the topography d, which itself can be nondimensionalized by L. We scale

x and y by d, perturbation velocity u and v by U. t by (foA hi/)- 1h p by fUd and h by

H, and the equations (2.1) in dimensionless form are

ut + 6(uu•l+yv) -f = -pT (2.3a)

Vt + 4-(07V + vv) fIt -Py (2.3b)

(u( ), -, (A •y = 0 (2.3c)
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I
where c = AhL/hd is the Rossby number. It is seen that f is proportional to the ratio

of the relative height of the topography Ah/h and the dimensionless distance d!L. Since 3
L is defined as a function of both Ah and 1 0, it can be considered as a length scale

of perturbation induced by the vortex Fo over the topography Ah. The nonlinearity 3
becomes important if the topography is large and/or the distance diL is small. Also for

the rigid lid assumption to be valid, it requires that foL/!'gW << 1, i.e., the length scale 3
of motion is much smaller than the barotropic deformation radius.

Introducing a transport stream function qy such that ih = -4 and vh = P, I
gives conservation of potential vorticity in the following form,

h )o. (2.4)

Equation (2.4) will be solved for a localized initial disturbance. It requires that velocity

vanish far away from the disturbed area, 3
u, v -0 as X,y ) (2.5)

For finite topography, continuity at the escarpment shows that the normal velocity has

a jump there. If we obtain solutions to (2.4) in regions y > 0 and y < 0, then they have 3
to satisfy certain matching conditions at y = 0. We first integrate (2.3a) over the depth,

which yields U
hut + c((hu2 ),, + (huv),) - fhv - hp- . (2.6)

(2.3b), (2.3c) and (2.6) are integrated over a finite interval (-Ay, Ay) (Ay > 0) across the

escarpment and then we let Ay --4 0. All integrations which do not contain y-derivatives 3
of the integrands are zero and we are left with

[hv1 = 0 (2.7a) I
[EhuvJ = 0 (2.7b) 3

[- 2v +p] = 0 (2.7c)
2

where the square brackets denote the jump of the value inside across y = 0. I
20 3
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These three equations represent in order the conservation of mass, momentum

and energy of the fluid crossing the escarpment. Equation (2.7a) shows a change in nor-

mal velocity at escarpment inversely proportional to the depth change; it corresponds

in (2.7c) a discontinuity in pressure. We recognize (2.7c) is actually the Bernoulli inte-

gral for a steady flow; therefore the Bernoulli function B = V2/2 + p is conserved even

though both normal velocity and pressure are discontinuous across the escarpment. As a

result, no singularity arises in equations (2.3). The infinite pressure gradient across the

escarpment is cancelled by the jump in normal velocity and therefore does not result in

an infinite tangential velocity there. In fact the tangential velocity V is continuous across

the escarpment from (2. 7 a and b),

[ui = 0 (2.8)

Ii This is, however, applicable only to nonlinear cross escarpment flow. It states that the

Scross escarpment flux of tangential momentum must be conserved. The conditions (2.7)

are frequently encountered in studying flow over abrupt topography (Grimshaw and Yi,

1990; Thompson, 1990; Spitz and Nof, 1991).

If equations (2.1) are linearized, the matching conditions will be altered from those

in (2.7). By letting f = 0 in (2.7), we end up with matching conditions for linearized

cross escarpment flow,

[hvl = 0 (2.9a)

[P) = . (2.9b)

I Thus, unlike the nonlinear case, the linear matching condition requires continuity of

pressure across the escarpment, even though the normal velocity is still discontinuous

3 across the escarpment. The linear matching condition, however, does not impose any

constraint on the velocity component tangential to the topography. For example, in

3 section 2.4, the linearized solution shows that the tangential velocity component is dis-

continuous across the escarpment. However, the linear matching condition is a special

3 case of equation (2.7), and therefore both matching conditions (2.7) and (2.9) will be
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consistent in producing the same correct results at linear limit. An example is given

in Appendix A to show they both result in the same dispersion relationship for small 3
amplitude escarpment waves.

2.3 Solution Methodology II
In the case where the depth is given by equation (2.2)., a velocity stream function can be

defined, = IT/h. The flow field which advects the potential vorticity is the solution of 3
the Poisson equation,

VO = q(x,y). (2.10) 3
where q(x,y) represents the relative vorticity in the entire solution domain. The value

of the vorticity and its initial distribution are known everywhere, and the successive I
vorticity distribution can be calculated by marching the system forward in time. The 3
stream function can be sought via the Green's function method, i.e., finding the field V,

caused by a distributed source q(x, y). This is done by integrating the source strength 3
and the Green's function over the entire source space A,

O (x,y) = ff q(ý,'rl)G(xy: &r,)d dy,, (2.11) I
and velocity at any point (x, y) is obtained by taking partial derivatives of V, with respect 3
to x or y,

(u, v)= ()J q( ,'q),(x'y; ' 7) d~dij (2.12)
i9y 8xA

where G(x,y; ,77) is the Green's function at location (x,y) due to source at ((,r7), vor- 3
ticity q is assumed to be piecewise constant in A. Assuming OA is the boundary of A,

and is variable in both space and time, equation (2.12) can be written in the form of 3
contour integrals along OA. For different forms of Green's function, the contour integral

will be formed differently. Assuming that the Green's function consists of two monopoles 3
located at (•, i/) and (ý, -17), and has the form G(x,y; ,r7) = clnr + c2 1nr 0 , where

1'r- = V(x - •)2 + (y y7) 2 and r0 - /(! .o)2 + (y .f ,)2, and c, and c2 are constant co- 3
22 3
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U efficients to be determined. Applying the matching condition (2.7), the Green's function

is found to have the following form,

2h h, +h2 1h[n+?h'2 In r, y ><0

3G(X, Y; ý, 1) 2h-2.3
G ;±• h h2 lnr, y < 0 (2.13)

In r + -. In Y>O
1 h1 -/-h2

Il This Green's function represents the flow field at (x, y) caused by a point vortex at (ý, 71).

3 i 1 and h 2 are the water depths given by equation (2.2). This is a general form of Green's

function on an infinite plane with a step depth change at y = 0. If h, = h 2 , it is the

3 Green's function on an infinite plane with flat bottom. If h2 = 0, Ihecomes the Green's

function on a semi-infinite plane (y < 0) with a vertical wall at y 0. For h, $ h 2 : 0,

the escarpment can be regarded as a partial wall at y = 0, and appears in 2.13 as a

partial image effect to the velocity field.

I To write equation (2.12) in terms of contour integrals, we must turn x and y

derivatives into ý and 17and then we can invoke the divergence theorem. As an example,

consider the expression for the eastward flow at a point north of the escarpment. From

1 (2.12) and (2.13) we have

f+ l q- 2h, - In r ddr - 0 +(In r + h - h 2 In ro) dd.I - y _27r hi+h h 2  Oy 27r h, +h 2

Bringing the constants outside the integral and using

-.0 nr -- lnrOy Or#_a a_
-Int'o = alnro

3 gives

U+ q- 2h,+0 In r ddr~i + a In r7 d1 d7u+ 27r h, -+ h2 A_ 7 2r 171

q+ hi - h2  af I_

2r h.1 + h 2  + 8I nrod7 ,
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which yields

q- 2h1  In r dý + q+ (In r lit ro) d( , (2.1 a)

2ir i+h 2 }aA_ 27r A. tII -'h2

where r and ro are evaluated at y =- oil the boundary aA. Similar manipulations give

q- 2h, Inr d + (lnr-+ - 1n r o )-- dý (2.14t)
27r hi + h 2 DA - a 2'r A, II _f 122

i q-I q- (In r + ±- In 7'o) d + 'jh1_-=I.--q" 2 in rd• (2.11c)
27r A_ h, + h2  2,7r hil ± h2 1A4

S (Inr hi - h2 Inro)Cd+ q+ 2 Inr- d , (2.14d)27_ = h, + +Z 2 27 7 "

where OA_ and OA+ are closed integration paths along the boundaries of A for i1 < 0

and -q > 0, q- and q+ are the vorticity anomalies in these regions, respectively, and £

denotes the 71 coordinate of 8A. As a general statement, we can turn (2.12) into contour 3
integrals as long as the Green's function can be written as a sum of terms each of which

is either symmetric or antisymmetric with respect to x vs. ý or y vs. 71 derivatives. 3
Now we have to evaluate a set of contour integrals (2.14) to get ?I and v. To

be able to do this, OA must be known. In contour dynamics method, OA is evolved in

a Lagrangian way by calculating velocity on OA and time stepping it forward. In the

present problem, 9A consists of both the potential vorticity interiace and the topography;

only the former, also referred as potential vorticity contour, needs to be updated. The y

coordinate of the contour, 4, evolves according to

9L + uc = (2.15)

where uC and vC are the along and across-escarpment velocity components on the contour.

Equation (2.15) shows explicitly the nonlinearity and time dependency of this system.

The problem of solving for the nonlinear evolution of the system defined by equations

(2.1) and condition (2.7) is thus reduced to that of performing contour integrals along

,A for u and v, and time stepping C in (2.15) for new OA.

The advantage of this method in solving the present problem is multiple: it is

simple in mathematical approach, straightforward in physical interpretation and efficient I

I



in numerical computation. It avoids the conventional grids of the finite difference method

and therefore avoids diffusion of any type. The contour dynamics method has been

used widely in studying geophysical flows, such as vortex dynamics (Polvani, 1988),

finite perturbation of shear flow (Pratt and Stern, 1986), eddy-shear flow interaction

(Hedstrom, 1986; Stern and Flierl, 1987; Bell, 1990; Stern 1991) and topographic eddy

generation (Thompson, 1991). More about the contour dynamics method can be found

in recent reviews by Dritschel (1989) and Pullin (1992). The numerical implementatior,

of this method will be discussed briefly in a later section. First we will examine the

fundamental linear behavior of waves trapped at an escarpment and linear interaction of

a vortex with an escarpment.

2.4 Linear Analysis of Vortex Intc"action with Finite Escarp-
ment

The equations (2.14) and (2.15) are usually difncult to solve analytically and therefore

numerical solutions are often sought. But for certain linearized cases, it is possible to

integrate the contour dynamics equations analytically and to obtain solutions for small

amplitude perturbation over a finite escarpment. Small amplitude means that the ratio

of amplitude of contour deformation C to its lateral length scale is of order of Rossby

number E, which itself is small. The vorticity equation in the presence of a point vortex

at location (X, Y) is now written as

V'V, = q+ r5(x - X)6(y - Y), (2.16)

with q, the vorticity anomaly given by

{Aqhl, C < y < 0

q =-Aqh2, 0 < y < £,(2.17)

0, other

where Aq = Ahl/(chih 2), Ah h, - 12, and 17 is the dimensionless strength of the vortex

and will be scaled so that I l 1 in later study.
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The velocity , Id is decomposed into two portions, the perturbation velocity due

to the contour deformation and the velocity due to the point vortex. The forme," is given 3
by equations (2.14) and the latter can be obtained by taking proper x or y derivative of

(2.13). The linearization is based on the assumption of small amplitude perturbations of 3
the potential vorticity interface. The velocity at the interface due to the point vortex at

Y < 0 is approximated by that at y = 0,

F 2h , Y (2.18a)
- 7r hi + h 2 rZ (

F2h3_j - X  (2,18b)
V 27r hi + h2  r2 ' )

where j = 1 for C < 0 andj= 2 for C > 0 andr, (x-X)2 y 2 . Tor nearize the

perturbation velocity (2.14), we take the Taylor series expansion of the integrands about 3
the small parameter C and reduce the integrals along closed path to line integrals, which

yield 3
Aq 2h3 -j~

U -fC d4 (2 .19a)27r2 " hi+h2 f (X- _) 2 +y 2

Aq 2h3-j 0_0 X - ý • 21b
V 2r h1 C -hd (2.19b)

where iý is equal to C rescaled by local water depth to make the areas contained by

S0 d and2>0the same:t= h forC<0ande=h 2CG for L >, 3
The contour evolution equation (2.15) is linearized and becomes

- ut T hj{v(x,0,t) + v,(x, 0)}. (2.20)

where we have let the x coordinate translate with the point vortex in a speed ft = Xt

(perturbation induced velocity excluded due to linearization). The vortex translation 3
speed is now due to both the perturbation advection and the image of the point vortex,

Aq 2h 2  Y I' hi- h 2  (2. 2 1a)
Xt=27r h, + 1v- X ) 2 Cýt 4 Y4 + h2  (.1a

Aq 2h2 X-_ d
Yt = 2-r hi + h2 (X - 02 + Y2 C(ý,t)dý. (2.21b)
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I
I Equations (2.18), (2.19), (2.20) and (2.21) form a complete set for unknowns Z, X

and Y. Similar equations were also obtained in the study of vortex-shear flow interaction

I problems by Stern and Flierl (1987) and Bell (1990). The present formulation differs

from theirs in the existence of a finite escarpment, which, unlike a shear flow, introduces

1an image effect in the velocity field and causes the asymmetry in unscaled front £.

I2.4.1 Free Escarpment-Trapped Waves

In the absence of the vortex, we solve the linearized system of equations (2.19) and (2.20).

We intend to derive a free wave solution and its dispersion relation. Assuming sinusoidal

interface waves of the form ,• = eik(-ct) with k and c being wave number and phase

speed, respectively, and substituting it into equations (2.19), we can obtain

u sgn(y) h L+h Aq e-klyl + ik(-ct) (2.22.-)

I v - Aq e-klfC + ik(x-ct)+ir/2 (2.22b)
hi + h2

where3 = 1 for y > 0 and 2 for y < 0, and sgn(y) = lfor y > 0 and -1 for y < 0. It

is seen that u is 1800 out of phase at two sides of the escarpment and both u and v are

discontinuous across the escarpment.

Substituting 2 and v into contour evolution equation (2.20), and letting ii and v,,

I be zero, it is easy to obtain a dispersion relation for escarpment. trapped waves.

= h1h 2  Ah(
khi+ h2 - (h, (2.23)

I where the wave number k is required to be positive to satisfy the amplitude decay as

jyj ý o0 in equation (2.22). The trapped wave always propagates in the direction with

I shallow water on the right side (northern hemisphere). For a given frequency, long waves

travel faster than short waves. No matter what the wave numbers are, the trapped

waves take only the natural frequency of the escarpment, which depends on the size of
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the topography only and is always less than the inertial frequency f. If the escarpment

is small, i.e., hi = h, h 2 = h - Ah and Ah/h < 1, the wave speed is approximately 3
c = -Aq/2k with Aq = fAh/h the change in vorticity across the wave front. It is

interesting to compare this escarpment wave dispersion relation with that for a barotropic

shear flow front over a flat bottom. In such a case, the PV front is due to the variation

of the velocity shear: uo = U - ay for y > 0 and U for y < 0. where U is a constant

mean current and a > 0 is the shear in the region y > 0. The dispersion relation for

waves at this shear interface is c - U = -a/2k. Except the background mean current

which advects the interface wave in the direction of U, this dispersion relation is similar

to that of the escarpment waves. Both dispersion relations are dependent on the value m

of vorticity jump across the interface and have zero group velocity. Finally the above

discussed interface waves can be compared to one dimensional Rossby wave which has

a dispersion relation c = -_#/k 2. They have an important similarity: they are vorticity

waves and owe their existence to the background vorticity variation.

2.4.2 Small Amplitude Vortex-Escarpment Interaction I
Equations (2.18)-(2.21) can be integrated to give the results for small amplitude vortex- m
escarpment interaction. Before the interface between the two different vorticity regions

is disturbed, C is zero everywhere and coincident with the escarpment. After vortex is

switched on, the interface is forced to deform. Fluid moving across the escarpment gains

relative vorticity due to stretching or compression. Now velocity at any point has two

parts, one due to the vortex field and the other due to interface perturbation. As the

contour evolves, the perturbed interface will influence both its own motion and that of

the vortex. m
In order to linearize the interface equation, we examine the momentum balance of

a perturbed interface. Once the interface is perturbed away from it s equilibrium position,

both the vortex and the perturbation affect interface evolution. For the perturbation to

I
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remain at small amplitude, these two forcings must roughly balance at the interface. In

terms of the momentum balance, this means that the velocity components at the interface

induced by the vortex and by the perturbation are of the same order of magnitude.

Since the length scale of the interface perturbation is of the same order of magnitude as

the distance between the interface and the vortex, the same argument suggests that the

vortex translation velocity is of the same order of magnitude as the perturbation velocity.

Thus the advection term on the left hand side of equation (2.20) can be neglected at the

order of perturbation magnitude squared, provided the interface perturbation is small

everywhere. As a result the equations (2.20) and (2.21) are uncoupled. They can be

written as follows,

Aq 2hlh 2  f- 2 L d F 2hh2 x

- 27r h ±+h2 F 2-, h,+h 2  X2+R2 (2.24a)

= Aq 2h2 ( t) F h2 (2 .
27r h,+T 2  42 + R2 d 47rR hi + h2  (2.24b)

S= 2q 2h 2  _ + R L(ý, t) dý. (2.24c)

The initial conditions are (X, Y) = (0, -R) and Z(x, 0) = 0.

Taking the Fourier transform of (2.2 4 a) in x results in a simple first order ordinary

I differential equation, which is solved to yield

{(kt) -- { iat-1)-kR k>0 (2.25)q I (-e k < 0'

where C(k,t) is the Fourier transform of L in k space and Aq = Ah/E(h1 + h2 ). (2.25)

can be inverted to give

t)-= rq R2  2 (1-cosA!t)±+ + sin Aqt} (2.26)

3 This result is the same as that for the linear eddy-shear flow interaction solved by Bell

(1990). Substituting £ into (2.24b and c) yields

I h2 - rF h--+L-2 (1 - cos Aqt) r hi - h2  (2.27a)2•rR h, + h2 47rR hal + h2

2i r h 2  sin Aqt (2.27b)2t-72rR h, + h2
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Equation (2.26) shows that the interface perturbation consists of three parts. The first

is a stationary bump. For Aq > 0, r < 0 and Y < 0, the bump is toward the vortex 3
and the fluid in it is of cyclonic vorticity. It advects the vortex towards the positive

x-direction at a constant speed -Fh 2/27rR(h. + h 2). The second and third parts are

oscillatory. The part symmetric about x contributes to the oscillation of Xt, and the

asymmetric part causes the interface to tilt periodically, and thus is responsible for the

vortex oscillation in y-direction. The symmetric oscillation of the interface is 1800 out

of phase with the vortex and has frequency Aq, which we already know is the frequency 3
for free escarpment trapped waves. The asymmetric oscillations are in phase. There is

also an image induced vortex translation, together with the advection of the stationary I
cyclonic bump, toward the positive-x direction. The trajectory of the vortex is described

by U
r t F h 2  2

(X+4--t) +(Y-R) 2 =(2irRAq h,+ h 2

It is noted for this kind of problem, vortex-escarpment or vortex-shear flow alike,

a dipole-like structure, containing the vortex and the interface perturbation, will always I
form with oscillatory parts superposed on it. This can be verified for present case by

integrating over entire bump area; it is found it has exactly the same amount but opposite I
circulation as the point vortex. The possible dipole-like structures are shown in figure

2.2 for Y < 0. This figure illustrates the important behavior of interaction between

an eddy and an escarpment. It is seen from equations (2.27) that the height of the 3
escarpment, the strength of the vortex and the vortex-escarpment distance all affect the

vortex propagation, it is the escarpment size that determines the fact that which motion 3
tendency, the perturbation induced or the image induced, will dominate the direction of

vortex motion. In figure 2.2, the cases (a) and (c) correspond to the oceanic situation of 3
an anticyclone or a cyclone interaction with a continental slope, which will be discussed

in more detail in the later sections. I

1
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Figure 2.2: Schematic dipoie structure of the interface displacement at an escarpment
induced by a cyclonic or anticyclonic eddy and the eddy motion tendency. (a) Anticyclone
in deep water, (b) anticyclone in shallow water, (c) cyclone in deep water, and (d) cyclone
in shallow water. The vortex motion induced by the perturbation is in solid arrow and

the image induced in dashed arrow.

3 It is illuminating at this point to examine some of the conservation properties

associated with above discussed problem. First of all, the mass conservation in the

present context has the following form

f_0 hj3 (xt)dx = coi.-tant.

Due to the lack of friction and dissipation, the total momentum, energy and potential vor-

3 ticity are all conserved. Multiplying the vorticity equation (2.16) by yhj and integrating

it over the entire space, after some simple manipulations we get

Al =I hiFY - I aŽq J e
2 (x t)dx

where hi is the fluid depth on the same side as the vortex, and Al = ffs yhjV'V7'' dxdy, the

integration being over the entire fluid domain S. Taking the time derivative of M and

making use of equations (2.26), (2.27b) and mass conservation, it is easy to show that

M is invariant. The quantity M, often defined as pseudomonmentum, is therefore con-

3 served. For more discussions on pseudomonientii. the readers are referred to Dritschel
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(1988) and Bell and Pratt (1992), where they proved that the pseudomomentum for a I
nonlinear stratified system with multiple contours and a flat bottom is conserved. In the

present case, if Y = -R and £(x,t) = Co(x) are given at t --: 0, the pseudomomnentum

conservation can be written as 3
Y=-R-+ 11{ 7 2 (x,t)dx h2 Jh 2(x)Jx}

It shows that since the pseudomomentum is conserved, the y position of the vortex can

be calculated from the displacement of the iitterface. The pseudomonientum equation

shows the vortex must approach the interface if the interface is flat originally and if Aq/F

is positive. I

2.5 Finite Amplitude Interaction of a Vortex with a Small I
Escarpment

2.5.1 Numerical Scheme

The nonlinear terms in equation (2.3) enter the balance at. order O(f), as we expand

unknowns in power of c. This is the case when the interface deformation reaches finite

amplitude. The direct cause of this is that the vortex gets very close to the escarpment,

and the advective effect dominates the momentum transfer. The interface, the,. ore, is 5
drawn to a large deformation by the vortex as strongly nonlinear interaction follows. This

will be discussed in this section. The condition of a small escarpment will be used. The 5
definition of small topography here is that the depth change divided by the mean depth

of the fluid Ah/h is on the order of Rossby number E = U/foL. where U is the velocity 3
scale and L is the length scale of motion. Under this condition, the quasi-geostrophic

approximation will be made, and the stream function of the flow field satisfies a Poisson U
equation, given by equation (2.16), but the vorticity anomaly now is

IAq,

q -Aq, 0 < y < (2.28)
0, other
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where Aq = Ah/eh. Then in (2.7) we can approximate [h] = 0 and resulting matching

conditions are lv] = 0 and [p] = 0, i.e., the discontinuities across the escarpment are on

the order of the Rossby number. We may readily use the Green's function from (2.13)

by setting h, = h 2 and calculate velocity according to

3 u 0 In q(n d( (2.29a)

v = IA n (2.29b)

but solve the nonlinear contour evolution equation (2.15).

The numerical contour dynamics model will be used. We outline briefly its nu-

merical implementation. There is a wide range of applications of this technique; readers

I• are referred to Polvani (1988) and Meacham (1991) for more details on its geophysical

fluid dynamics application and implementation. From a known position of the contour at

a given time, the velocity field is calculated by evaluating contour integrals (2.29) along

3 the interface and escarpment. The contour is then stepped forward to new positions

according to (2.15) using a second order Runge-Kutta scheme. As the contour deforms

3 with time, the points on the contour may become dense in one area and sparse in other

areas; the spacing of the points on the contour is therefore rearranged according to re-

Squired resolution as well as local contour curvature. In addition, points are added and

removed as needed during contour evolution. The contour may be multivalued. Pinch-off

3 and coalescence of a portion of the contour are allowed. At the extreme case a closed

contour may deform to a thread and thus be removed, provided there is essentially no

1 loss of potential vorticity.

3 For single escarpment problem, there are only two distinctive values of constant

relative vorticity induced as £ # 0. The fluid moving across the escarpment into re-

gion y > 0 (0 < y < £) gains negative vorticity due to vortex compression, and that

moving into y < 0 (C < y < 0) gains positive vorticity due to vortex stretching. In

3 the quasi-geostrophic approximation the positive and negative vorticity so induced are

* 33

I



I
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deep deep - I
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I
Figure 2.3: A schematic illustration of the contour integration. (a) The contour integrals

along individual contour enclosing perturbed area and (b) along interface and escarpment
as a whole.

equal numerically. In figure 2.3 a portion of the deformed contour is shown. Nonzero I
vorticity anomalies are only contained in area enclosed by contour £(x, t) and escarpment

y = 0. We only need to evaluate contour integrals along paths that encircle nonzero VVI

as shown in figure 2.3a, in which positive path is defined as counter-clockwise along the

contour with V-i, $ 0 on the left. This can be easily rewritten as two contour integrals,

one along the interface from left to right and the other along escarpment from right to left

as shown in figure 2.3b. To do this one only needs to add a minus sign to the integrand

which is in y > 0. This sign cancels the negative sign for the anomaly strength. I

2.5.2 Solutions and Discussions I

Overview of Numerical Experiments I

The process of quasi-geostrophic vortex-escarpment interaction is studied in this section.

The circulation of the vortex is fixed at r = -1, except otherwise mentioned. In following I
sections we will concentrate on the cases which initially involve only one vortex. It may
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be anticyclonic or cyclonic, and a point or finite vortex. In the quasi-geostrophic system,

only two parameters can be chosen independently, the topographic strength Aq = Ah/c

and the initial distance between the vortex and the escarpment, YO. A periodic boundary

condition in x direction is used at the two ends of the contour to avoid using a very long

contour.

First, a free escarpment-trapped wave experiment is performed which gives the

same dispersion relationship as that given in equation (2.23). The model is then applied

to the case that can be described by the previous linear solution (such as Aq = 1 and

0 = -4). The numerical solution agrees with the analytical solution in predicting

interface deformation and wave dispersion with a discrepancy less than two to three per

cent. The model is tVicn used to perform a series of experiments with large interface

deformation und,-: strongly nonlinear conditions. In these experiments, we will examine

processes f{ cross-topography volume exchanges, interface waves, eddy formation and

vortex movement, etc.. It is impossible to cover the whole parameter space; only typical

responses within the parameter range close to geophysical processes such as oceanic

mesoscale eddies are to be discussed here. Table 2.1 lists the cases to be studied in

this section. In general they can be considered as advection dominated (IYoI small) or

radiation dominated (IYoI large). The linear interaction studied in the previous section

is an example of the radiation dominated case. In this section we will focus on advection

dominated strong interactions.

Numerical Results

We first look at a case where the vorticity due to topography has equal strength as that

of the point vortex, Aq = 1, which is initially located at (Xo, 1'0) = (-r, -0.75). The

interface evolution is shown in figure 2.4. The contour is initially coincident with the

escarpment at y = 0. The water is deeper in y < 0. The vortex is switched on at

t z0 0. The clockwise-rotating vortex velocity field initially causes antisymmetric contour
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Table 2.1 1
Barotropic Quasi-Geostrophic Experiments (c = 0.1) 1

Cases Aq YO Streamer Cyclonic Eddy Volume Exchange I

1 1.0 -2.0 No No 0.1 1
2 1.0 -1.25 No No 0.5 1
3 1.0 -1.0 Yes Yes 0.75 1
4 1.0 -0.75 Yes Yes 0.8 1
5 1.0 -0.5 Yes Yes 0.9

6 1.0 -0.25 Yes No 1.0

7 0.5......Y.s.Y.s.1I
7 0.5 -1.0 Yes Yes 1.5 I

8 0.5 -0.75 Yes Yes 1.6

9 0.25 -1.0 Yes No 4.0

10 3.0 -0.75 No Yes 0.3 3

3
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Figure 2.4: Time evolution of the interface and vortex for case 4 in table 2.1, Aq I
and 10 -0.75. The solid contour stands for the interface and the dashed line for the
escarpment. The vortex is marked by a solid dot at the beginning of an arrow, which
represents the velocity vector of the vortex translation. The time sequence of evolution
starts from t =0 with increment At =4 at upper-left corner and continues with time
increasing to the right and downward.
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deformatiLon toward y > 0 for x < 7r and y <0 for x > 7r. The antisymnietry is

soon broken as the vortex starts moving eastward due to its closeness to the cyclonic I
interface perturbation. Unlike the linear perturbation problem where the interface as

well as the vortex simply oscillates stably, the perturbation continues to grow and forms I
a cyclonic lobe to the east of the vortex. This lobe in turn advects the vortex southward.

The shear of the vortex and the perturbation velocity together force more fluid into the 3
head of the lobe. The neck is stretched to form a thin streamer around the vortex. As

the system evolves, the head detaches from the neck and becomes an eddy. It pairs 3
with the point vortex to form a dipole-like structure and propagates along an arc path

farther southwestward. The shape of the eddy is approximately elliptical and its longer I
axis is almost tangential to its arc path. It is also noted that the distance between

the eddy and the vortex is almost the same as the initial vortex-escarpment distance. I
Since cyclonic vorticity is advected away from the interface, there is more anticyclonic

vorticity than cyclonic vorticity near the escarpment. This vorticity imbalance has two

important dynamic effects: first it, together with the new cyclonic eddy, induces a weak 1
westward along-escarpment current; second the interface has larger crests (£ > 0) than

troughs (£ < 0). The perturbation velocity field (velocity field excluding that i'duced by

point vortex) indeed shows a time dependent, weak westward current developed near the

escarpment during the interaction. This current is mainly in between the escarpment and 3
the topographic cyclone and decays outside this range. There is no such unidirectional

current formed on the shallow side, and the velocity is also much weaker (figure 2.5), 1
The main interface at the escarpment feels less influence from the point vortex

after it drifts away southward. The interface waves are observed to propagate westward I
along the escarpment, with period about 15 dimensionless time; for comparison the 3
corresponding linear wave for Aq z1 has period of 12.6 dimensionless time. Nonlinear

steepening of wave front can be seen from figure 2.4. The wave speed is also slower than 3
the linear wave speed. It should be noted that the interface wave in figure 2.4 propagates

against the vortex velocity field, which advects whole interface eastward. 3
38 3
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Figure 2.5: Perturbation velocity field for the case shown in figure 2.4 at time t =:(a)I 4, (b) 12, (c) 20 and (d) 28.
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Figure 2.6: Time evolution of the interface and vortex for case 2 in ta~le 2.1, Aq = 1 I
and Yo = -1.25. The time sequence of evolution starts from t = 0 with increment
At = 8. Other notations are the same as that shown in figure 2.4. Notice that the
cross-escarpment scale is enlarged. I

The strength of interaction also depends on the distance between the vortex and

the escarpment. By fixing the size of the topography and the circulation of the vortex, 1
we can perform a series of experiments probing the dependence of interaction on initial

vortex position Y0. The parameters and typical behavior of the system are listed in table I
2.1. The results for large 1Y0[ (e.g. 110j > 3) fall into the linear radiative interaction 3
as described by the analytical solution in the previous section. Since the interface wave

generated in this system has zero group velocity, it does not propagate energy away from

the perturbed region. Thus the energy and momentum transfer is entirely confined to the

radiation between the interface and the vortex. The interface and the vortex are locked 3
in a state of resonant oscillation. This process has already been discussed in the previous

section and will not be considered here. For moderate value of 1)-.1 (-3 < Yto < -1) 3
and fixed Aq = 1, the interaction shows gradually increasing nonlinear effects. An

example, case 2 from table 2.1, is shown in figure 2.6. The interface perturbation has 3
40 3
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Figure 2.7: Time evolution of the interface and vortex for case 6 in table 2.1. Aq I and

0 z-- -0.25. The time sequence of evolution starts from t = 0 with increment At = 4.

Other notations are the same as that shown in figure 2.4.

finite amplitude, but never grows to form a streamer or eddy. Once reaching finite

amplitude, the nonlinear self-interaction of the interface will dominate the evolution

process since the vortex is relatively far away. The interface perturbation shows clearly

the sign of nonlinearity with steepening and breaking of the front. The most obvious

role of the vortex, after its initial perturbation of the interface, is to advect the interface

and the frontal structure to the direction opposite t.o the escarpment wave propagation.

One of the major differences between this moderately nonlinear interaction and the other

stronger interactions is that no fluid is drawn away from the escarpment by the vortex

during the interaction. This distinguishes it from a whole set of problems which always

involves cross topography volume fluxes caused by the forcing vortex. On the other hand,

for very small J)0J, such as -`. = -0.25 (case 6 in table 2.1), the vortex will have a much

stronger effect on the interface evolution. Figure 2.7 shows that the streamer is quickly

wrapped around by vortex and no cyclonic eddy is generated. Since it is our intention to
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investigate strongly nonlinear eddy-escarpment interactions with both cross-escarpment I
volume exchanges and topographic eddy formation, the cases represented typically by

cases 2 and 6 will not be dealt with specifically in following studies.

When topography is small, i.e., Aq < 1, it is easier for fluid to cross the escarpment I
and therefore more cross-escarpment volume exchange occurs. This is because more fluid

of weaker vorticity anomaly is needed to balance the vortex forcing. As a consequence, 3
the eddy formed has larger area, and the interfacial wave has larger amplitude and

wavelength. This is indeed the case as shown in figure 2.8 for Aq = 0.5 and Yo = -0.75. I
Compared with figure 2.4 the difference in contour evolution is quite obvious. On the

other hand if topography is large, i.e., Aq > 1, it is harder for fluid to cross the escarpment I
and thus less volume exchange takes place. An example is shown in figure 2.9 for Aq = 3

and Y• = -0.75 (case 10 in table 2.1). When compared with figures 2.4 and 2.8, the

interface perturbation decreases as the topography increases. There are also time and

space scale variations associated with varying parameters. When Aq is even larger (larger

topography or smaller c), such as Aq = 5 for Y0 = -0.75, the interface is too rigid to

detach; it only deforms in a relatively small amplitude pattern and momentum transfer

is radiation-dominated. I

Formation of a Topographic Eddy 3
For certain parameter range, vortex-escarpment interaction shows strongly nonlinear

behavior. There is progressive formation of a high PV tongue, streamer and eddy. The

eddy cannot form if this distance is either too small (such as case 6, figure 2.7) or too large

(such as case 2, figure 2.7) To better understand this eddy formation and detachment, we

will examine in detail the structure of the contour and velocity field for case 4 (Aq = 1

and Y•j = -0.75), shown in figure 2.10. At dimensionless time t = 16, a lobe of cyclonic

vorticity extends to the east of the point vortex. The fluid is continuously pumped into I
the lobe and forms a cyclonic head at the tip of the lobe. The anticyclonic velocity field

42

I



--- -_ _--

- ----------

Figure 2.8: Time evolution of the interface and vortex for case 8 in table 2.1, Aq 0.5
and 1; = -0.75. The time sequence of evolution starts from t = 0 with increment At = 8.
Other notations are the same as that shown in figure 2.4.

due to the negative PV anomaly north of the lobe pushes the lobe towards the west,

where it encounters the vortex velocity field in the opposite direction (t = 18 and 20).

Together they squeeze the lobe neck and force fluid into the head. The cyclonic velocity

field of the growing head then acts to thin the neck and eventually lead to its detachment

from the lobe (t = 22). The lobe then contains only a small amount of fluid and becomes

a streamer around the vortex. On the other hand, if the streamer is advected around

vortex faster than that a head can form, there will be no eddy formed. This process

is compared with the detachment of single-lobe meanders studied by Pratt and Stern

(1986). In their case, the meandering contour wa a shear flow interface, there was no

vortex present, and the meander evolution extracted energy from the current. They found

that in oder for detachment to occur, the lobe must be of relatively large amplitude and

small width. In that case, the basic flow and the anomaly field acted together to thin the

neck and caused eddy detachment. The detached area depended upon the lobe width.

43



--- -- -- _ -1- - --- -- ~--- - - ----- -

r -_ ----- 3
I
I

I
V /

Figure 2.9: Time evolution of the interface and vortex for case 10 in table 2.1. Aq 3 and
10 = -0.75. The time sequence of evolution starts from t = 0 with increment At = 4. 1
Other notations are the same as that shown in figure 2.4.

This is quite similar to the eddy detachment in the present study. The differences are I
that in this study the precondition of the interface is achieved through vortex-interface

interaction and the vortex provides shear and momentum for the eddy formation.

We again study figure 2.8, which corresponds to case 8 in table 2.1 and has a

topography smaller than that in case 4. Since the interface is less rigid due to weaker

topography, the vortex advection dominates the evolution. In contrast to figure 2.4,

which has larger topography, a large volume of fluid of weak PV anomaly is drawn across

the escarpment and wrapped around the vortex faster than it could form a sizable head. I

Only in later stage of interaction is a small eddy formed. There is a lobe formed in the

middle of the thinning streamer, which is in between the vortex and a cyclonic interface I
perturbation northeast of it. The condition for this lobe formation is very similar to the

head formation process in figure 2.10.
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Figure 2.10: Full velocity field for the case shown in figure 2.4 at time t =(a) 16, (b) 18,
(c) 20 and (d) 22.
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The eddy formation over a large escarpment shown in figure 2.9 is quite different H
from those over small escarpment. Due to large Aq, thus strong self-interaction, the 3
disturbance develops quickly into a cyclonic eddy close to the main interface, where it is

subject to strong perturbation shear and vortex advection. The eddy is then advected 3
away from the main interface by the vortex. At the opposite extreme, for very small

Aq (for example, case 9 in table 2.1), the fluid is easily advected across topography and 3
wrapped around the vortex. Little shear is provided by the perturbation field to generate

a sizable cyclonic pool which could balance the vortex field. In such a situation, there is 3
no eddy formed during entire interaction process.

In general, eddy formation requires a proper balance between the vortex and the I
perturbation field in both strength and distance. These conditions also decide the size 3
of the eddy formed. Taking eddy formation in case 3 (Aq : I and Y0 = -1) as the

standard, eddy formation in cases where Aq < 1 is in favor of larger fl]ol, and eddy

formation in cases where Aq > 1 is in favor of smaller 1I)ý.

I
Forced Escarpment Waves

The comparison of figures 2.4, 2.8 and 2.9 also reveals that it appears there are two

active time scales in this system. One is an advection time scale, in which the streamer 3
is advected around vortex; the other is a topographic time scale, in which the interface

wave evolves. It can be seen from figures 2.4, 2.8 and 2.9, the advective process is slower 3
and the interfacial waves evolve, faster as the topography becomes larger. The only factor

that is responsible for these changes is the different Aq in these cases. I
The wave periods are listed in table 2.2 for three different values of Aq. In the

table, the observed wave period is the wave period seen at, a fixed location. It also I
contains influences from processes other than the escarpment wave, such as the point 3
vortex and topographic eddy. For example, north of the vortex, the velocity due to

the anticyclonic point vortex is eastward, opposite to the direction of escarpment waves. I
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Table 2.2

QG Escarpment Waves (c = 0.1)

Aq Ah Linear Observed Corrected
Period Period Period

0.5 0.05 25.1 34 24.7

1.0 0.1 12.6 15 12.6

3.0 0.3 4.2 5 4.5

Therefore, at a fixed point there, the observed wave period is somewhat larger than the

true period; while south of the vortex, the observed period is smaller. Since it is difficult

to remove the influences due to the topographic eddy and the streamers, we will only

use the information north of the escarpment and calculate the wave period by removing

only the influence due to the point vortex. Let Tc and To be the corrected and observed

wave periods, respectively, U be the average velocity at the observation point due to the

point vortex, and co the observed wave speed (co = To/A, A = 21r is wave length), then

I - U/co

The results are listed in table 2.2. The observation point is one fourth wave length

away from the topography. It is seen that the corrected wave period is very close to the

linear escarpment wave period calculated using equation 2.23. In the present case of step

topography, only one wave mode per interaction is excited, which is the resonant mode

associated with the given escarpment size. The observed velocity as a function of time
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at the observation point is shown in figure 2.11 for three cases tabulated in table 2.2

(figure 2.11 a, b and c). The evolution of the escarpment wave clearly follows an internal 3
time scale, depending mainly on the topography; while the interface itself is affected by

a combination of both topography and nonlinear advection. The detached parts of the

interface, i.e., the topographic eddy and streamers, evolve on an advection time scale

defined by external process such as the point vortex here. 3
The waves on the deep side ride on a developing along-escarpment current as

shown in figure 2.11d for case 4. Away from the topography, i at two sides of the I
escarpment is 1800 out of phase. However near the escarpment nonlinearity enters at the

lowest order and u is continuous across the escarpment.

The wave amplitude depends on the size of topography and decays to both sides 3
of the escarpment (figure 2.11 a, b, c, e and f). In general a fixed vortex forcing will

generate larger interface perturbation over small topography than over large topography, 3
but the total perturbation vorticity tends to remain the same. As a result, large interface

change is induced over small topography, i.e., large volume of weak vorticity anomaly, as 3
compared to small volume of strong vorticity anomaly over large topography.

The dependence of wave amplitude on Yo is weak within the strong interaction 1
range of Yo. Results show that from case 3 to case 5, 1-' is halved, but the amplitude 3
of the escarpment wave at y = 7r increases only by less than ten per cent. The wave

frequency is independent of Y0. This is an expected result since the wave dispersion 3
relation is determined only by the internal scales, such as topography, and not by the

external forcing. 3
Vortex Motion 3
Once the interface is perturbed from its equilibrium position, it affects the motion of 3
the point vortex. Figure 2.12 shows the vortex trajectories for the cases listed in table

2.1. With the exception of one case, in which the vortex is initially too far away from 3
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Figure 2.11: Along and across escarpment velocity components vs. time for (a) case 4,
(b) case 8, (c) case 10 at (x, y) = (7/2 /2 and (d) case 4 at (x. y) = (7r/2, -- ,r/2);
along escarpment velocity vs. time for case 4 at (e) x = 7r/2. y = -/4, -,r/2 and 7r, and
(f) x = ir/2, y =-r/4, -- r/2 and
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Figure 2.11: (continued) 3
the interface, all other cases show large southward excu-ions regardless the details of i

interaction.

The cyclonic perturbation formed to the northeast of the vortex expels the vortex i
away from the escarpment. The stronger the perturbation, the larger the southward

excursion of the vortex. Subsequent formation and detachment of a cyclone in some cases

causes further southwestward vortex translation in the form of a dipole-like structure. It 3
may eventually drift northward and re-interact with the escarpment. This implies that

interaction of an anticyclone with topography is intermittent, and multiple interactions 3
may happen, resulting in a net westward vortex drift. Since the contours become very

complicated before reaching this stage, only one example will be shown here to illustrate 3
this process. Figure 2.13 shows the contour evolution following figure 2.4 from time t = 36

to 96. The eddy trajectory is shown in figure 2.14. The vortex is advected mainly by 3
the topographic cyclone in a dipole-like structure and drifts back to reinteract with the

escarpment. During the second interaction, the topographic cyclone, together with the i
interface perturbation, causes the vortex to move along a cycloid trajectory, and results
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trajectories of point vortices

0.0 [0 Aq=l.0. Yo=-2.0 .,
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- 0 Aq=3.0, Y0=-0.75
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Figure 2.13: Time evolution of the interface and vortex for case 4 in table 2.1, Aq

and 10 -0.75. The time sequence of evolution follows figi~re 2.4 and starts from t 363 wit~h increment At =8. Other notations are the samie as that shown in figure 2.4.
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trajectory of point ^orrrr.-
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Figure 2.14: The trajectory of the point vortex for case shown in figure 2.13. 3

in a net westward vortex drift. Also the topographic cyclone is greatly perturbed when

it passes through in between the point vortex and the escarpment. It deforms in shape 1
and spins off fluid filaments. The effect from the unrealistically complicated contours at

large time does not distort the trajectory seriously, indicating that the vortex motion is

not dominated by the interface perturbation during the second interaction. 3
Cross-Escarpment Volume Exchange 3
The conserved potential vorticity is used as a tracer for mass movement. The cross-

escarpment volume exchange is defined as the volume of fluid with anomalous potential

vorticity at one side if the escarpment. This includes both the volume of interface waves 1
and that detached from the interface. This volume is plotted against time in figure

2.15 for the deep side. In general, cross-escarpment volume transport increases as either I

distance IY0 decreases or topography Aq weakens. The change of Aq has the most

dominant effect on the volume exchange. Comparing the transported volume for cases 4, 3
8 and 10, it is seen that the volume exchange roughly increases linearly with the decrease

of Aq. For most cases (except the case Aq = 0.25 and 1' = - 1). the cross escarpment 3
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Figure 2.15: ('ross escarpment t.,nsported volume for quasi-geostrophic cases.

volumes reach stationary values in less than one corresponding linear wave period. The

3 volumes then oscillate around these values. The frequency of the volume oscillation is

close to that of the corresponding escarpment wave, and depends mostly on the value

S1 of .Aq. The variation of 1Y3 affects the value of the transport. more t han its frequency of

oscillation. From Y3 = -2 to Y3  -1, the frequency of area oscillation shown in figureI 2.15 only increases shightly, and then stays almost unchanged through Y0  -0.25; while

S~the net area increases several fold for the same parameter range. the amplitude of the

area oscillation is relatively constant. The oscillation is due to the existence of a standing

S~oscillation of the interface, similar to that shown in the linear solution of equation (2.26).

In fact the cross topography volume transport approaches an asymptotic value I if Aq = 1

3 is held fixed and U, goes to zero. This is because that the vortex tends to generate an

interface perturbation that can only have a total vorticity not larger than that of the

3vre itself, which is -1. A unit volume of perturbation in the cAse 1 contains

the same amount of vorticity but with opposite sign. The nonlinearity is important only

3 near the interface, where it contributes to maintain a nonzero average cross-escarpment

*1-5
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volume and affect the wave frequency. Since cross-topography motion is stronger with

the increase of nonlinearity, the decrease of IYoI results in the increase of nonlinearity, 3
and thus the increase of net cross-escarpment transport. At large time, multiple eddy-

topography interactions are possible. For the specific case shown in figure 2.13, the 3
second interaction does not contribute to the net cross-topography volume transport..

I
Summary I
We have studied in this section the strong advective interaction between a point vortex

and an escarpment under the quasi-geostrophic assumption. As the vortex is initially

close enough to the escarpment, it can advect fluid across it. This volume transport

increases as the vortex gets closer to the escarpment and as the size of the escarpment 3
decreases. The cross-escarpment transported volume is in the form of interface displace-

ment at the topography and a detached topographic eddy. This cyclonic topographic 3
eddy pairs with the original anticyclonic vortex ii, a dipole-like structure and strongly

influences the vortex motion. This, together with the fact that an anticyclone is expelled I
when approaching a shallow topography, results in a net westward vortex motion. Inter-

face waves are generated and display a resonant response to the vortex forcing. Due to I
the loss of cyclonic vorticity anomaly at the interface from the detachment of topographic

eddy, the net anticyclonic vorticity anomaly ieft at the vorticity front and the detached

cyclone in the deep water combine to drive a westward along-escarpment current.

2.6 'Vortex-Finite Escarpment Interaction 3
Flow over finite topography experiences horizontal divergence or convergence, which was 3
neglected in flow over quasi-geostrophic topography. Meanwhile the discontinuities in

velocity and pressure field discussed in section 2.2 arise. The Rossby number, assumed 3
small in the quasi-geostrophic approach, can now be of order one and comparable to the

topography. These, together with some other changes in parameter ranges, naturally lead

54 I
I



us to the investigation of interaction of a vortex with a finite escarpment. The results

will be compared with that of the previous quasi-geostrophic studies. In this section, we

will also study the case of a cyclone interacting with an escarpment.

2.6.1 Numerical Scheme

Although the vorticity anomaly q in equation (2.16) is still piecewise constant on integra-

tion contours, the perturbation cyclonic and anticyclonic anomalies are no longer equal

and are given by equation (2.17). There is stronger positive anomaly generated than

negative anomaly. However, neither is this a contradiction to vorticity conservation nor

will it cause any peculiar behavior to the system, because the circulation of the cyclonic

anomaly and that of the anticyclonic anomaly are the same. It may have some effects

on the system evolution due to the fact that the anticyclonic field indeed has weaker

strength and is more widely spread than the cyclonic field.

The same vorticity equation 2.16 governs the stream function field of flow across

both finite and quasi-geostrophic topography. But unlike the quasi-geostrophic problem,

here Ah/hi and e can be order one. The ratio Ah/chi and the dimensionless vortex

strength r, however, like those in QG problem, are finite. The interface perturbation

induced by the vortex, thus the integrated vorticity, is on the same order of magnitude as

the circulation of the vortex, and both are of order of Rossby number. Therefore despite

some important differences discussed above, we may expect similarities between these

two models of the interactiop processes.

The contour integrals in (2.14) can be evaluated as two continuous contour in-

tegrations, just as in the QG case: one integral along the interface from left to right

(counter-clockwise if the contour is self closed) and another along the escarpment from

right to left. Due to the fact the integrand takes more than one constant value along

either one of these two paths, it is necessary to keep track of the order of the path, i.e., to

which side of the escarpment the original path belongs. Then the proper value as well as
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the Green's function is chosen. In numerical implementation, this is done by finding all I
the zero crossings (i.e., escarpment crossing) of the interface, using the fact that no two 3
positive (negative) zero crossings can be next to each other and they can be arranged in

either ascending or descending order. The integrand is then easily decided for a portion

of the contour according to its two neighboring zero crossings.

The velocity at the escarpment also requires special handling, because the sudden I
change of normal velocity across y = 0 may cause a contour point to overshoot their

neighboring points. Any point that moves across y = 0 in given time interval At must I
be adjusted properly. Based on continuity, an average velocity for fluid parcels flowing

across y = 0 can be computed to an accuracy O(LAh); readers are referred to Appendix

B for details.

2.6.2 Solutions and Discussions 3
Numerical Results

The study in this section is parallel to that of section 2.5, but emphasizes the differences

between them. In order to compare this to previous results directly, the same limiting

values of parameter ratios as that in section 2.5 will be used. Like the previous section,

the value r F -1 is fixed except otherwise mentioned explicitly, and only Aq and 1' are

allowed to vary. In QG case varying Ah or c is equivalent to varying Aq alone. This is

not true for finite topography case, because the Green's function now depends on depth. I
In the study below c = 1 is always assumed except as otherwise indicated.

The model is tested first for a small amplitude wave trapped at a finite escarpment.

An experiment is performed with Aq = I (h-2 /h = 0.5) and an initial sinusoidal interface 3
of amplitude 0.1 (scaled by the depth to have equal PV anomaly on both sides of the

escarpment). The resulting dispersion relation agrees well with that given by section 3
2.4.1 and the relative error is less than 3% for calculation time twice the wave period.

I
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The parameters for numerical experiments in this section are listed in table 2.3.

First we examine case 4 from the list, Aq = 1 and I' = -0.75 (for c = 1, this corresponds

to an escarpment height one half of the water depth). The interfaces are shown in

figure 2.16 and should be compared with QG case in figure 2.4. The two cases have

quite similar results qualitatively. They both show formation of a cyclonic lobe, which

evolves into a thin streamer and a well defined cyclonic eddy. Nonlinear waves are

generated at the escarpment and propagate westward. However there are pronounced

differences between these two examples. Due to finite topography, the image effect to

x-component of velocity field is present. It advects the point vortex eastward in addition

to the same effect by interface perturbations. As a result the point vortex has a larger

excursion to the east of its initial position than in QG case. This also influences the

interface perturbation by pushing the cyclonic lobe closer to the main interface instead

of extending directly southward in figure 2.4. Another consequence due to finite depth

change is that the anticyclonic perturbation spreads over an area twice as large as that

of cyclonic perturbation. Since at any point the influence due to the perturbation field

depends upon the distance between them, this larger scale perturbation anomaly can

make a difference for near-field evolution. In the far field, the perturbation velocity can

be treated as though it were generated by a point source of vorticity, so that the dimension

of the anomaly is not so important. This near-field effect of the interface perturbation

has an influence on its own evolution. When part of the cyclonic perturbation is drawn

away by the vortex, the interface region is left with net anticyclonic vorticity. This

unbalanced vorticity will drive a westward along-escarpment current on the deep side,

which is stronger than that in QG cases because of the large perturbation strength at

large E.

Like that in figure 2.4, figure 2.16 also shows two distinct time scales for advection

and interface waves. But each time scale in figure 2.16 is correspondingly slower than

that of QG case in figure 2.4. The eddy formation at t = 28 in figure 2.16 roughly

corresponds to that at t = 20 in figure 2.4, but occurs a'qut 8 dimensionless time units
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Table 2.3 I

Barotropic Finite Topography Experiments (E = 1) U
Cases Aq Y0  Streamer Cyclonic Eddy Volume Exchange

1 1.0 -2.0 No No 0.2

2 1.0 -1.25 No No 0.7

3 1.0 -1.0 Yes Yes 0.8 1
4 1.0 -0.75 Yes Yes 0.9 1
5 1.0 -0.5 Yes Yes 1.0 3
6 1.0 -0.25 Yes No 1.1

7 0.5 -1.0 Yes Yes 1.6 I
8 0.5 -0.75 Yes Yes 1.8 I
9 0.25 -1.0 Yes No 3.6

10 3.0 -0.75 No Yes 0.2

I
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Figure 2.16: Time evolution of the interface and vortex for case 4 in table 2.3, Aq = 1
and 1ý = -0.75. The solid contour stands for the interface and the dashed line for the

escarpment. The vortex is marked by a solid dot at the beginning of an arrow, which
represents the velocity vector of the vortex translation. The time sequence of evolution
starts from t = 0 with increment At = 4 at upper-left corner and continues with time

increasing to the right and downward.
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later. This is largely due to the image effect, whicl! ouses the vortex to move parallel to

the initial interface, thus hindering the perturbation from growing southward.

In figure 2.17 the perturbation velocity fields at four times are plotted. As outlined

in Appendix B, the velocity of a fluid parcel moving across topography is represented by

an average velocity, therefoie avoiding possible numerical instability. The convergence

(divergence) of velocity when crossing the escarpment from shallow to deep (from deep

to shallow) can be clearly seen, which was not present in figure 2.5 of QG problem. The

perturbation-induced along-escarpment flow westward in deep water is observed, similar I
to that described in figure 2.5.

When Aq = 0.5 (topography is 1/3 of the water depth for c = 1) the results (figure

2.18) show more agreement with the corresponding QG case figure 2.8. If topography is

very small, then QG approximation will be valid, and the results will be essentially the

same for both finite topography and QG calculations. 3
In figure 2.19 topography extends to 3/4 of the water depth for E = 1. The

interface response shows large asymmetry because of the large depth change. The image

effect is also stronger, which causes a rapid eastward vortex drift. The larger anticyclonic

interface perturbation tends to shear off its base, and hence to form an isolated blob. For

even larger topography, such as an escarpment height which takes up 4/5 of the water

column (Aq = 4 for c = 1), the interaction is then dominated by momentum radiation

and the interface and the vortex are locked in an oscillatory state. In such a case the

interface deforms irregularly and the vortex drifts eastward.

Two experiments with f = 0.5 and 3 were performed, in which Aq = 1 and I
Yo = -0.75 are fixed. The results of contour evolution are plotted in figures 2.20 and

2.21. For small c, the escarpment is also small (since Aq ij fixed), which results in a

weak image effect and a slightly faster eddy evolution than the E = 1 case shown in figure

2.16. The result is essentially in between figure 2.4 and figure 2.16. For larger f (hence

larger Ah for fixed Aq) cases, the velocity image is stronger, and thus the distance of
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Figure 2.17: Perturbation velocity field for the case shown in figure 2.16 at time t (a)

4, (b) 12, (c) 20 and (d) 28.
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Figure 2.18: Time evolution of the interface and vortex for case 8 in table 2.3, Aq = 0.5
and Yo = -0.75. The time sequence of evolution starts from t = 0 with incri-nent At = 8.
Other notations are the same as that shown in figure 2.16.

the vortex eastward drift is larger. The result shows a pronounced difference from small I
E cases and bears some similarities to figure 2.19, which has the same depth change. 3

- Later in this section, we will also study the problem where the vortex has finite

area or is cyclonic. The results will be compared with the corresponding point vortex or

anticyclonic vortex cases. I
Formation of a Topographic eddy

For corresponding range of parameter ratios, the eddy formation processes for finite

topography are similar to those in QG calculations. Compare figures 2.16., 2.18 and 2.19

with figures 2.4, 2.8 and 2.9. respectively; the eddies formed have correspondingly similar

size and location. The slight difference is, as we have mentioned previously, the time that

the eddy formed and detached. This is most obvious in figure 2.4 and figure 2.16. and

less obvious for other cases. I
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Figure 2.19: Time evolution of the interface and vortex for case 10 in table 2.3. Aq 3
and 1 3 = -0.75. The time sequence of evolution starts from t = 0 with increment At 4.

Other notations are the same as that shown in figure 2.16.

I It should be noted that the eddy strength in the present finite escarpment cases

and in the QG calculation differs in order of magnitude. But it is only the ratio of

this strength to the Rossby number that matters in the momentum balance; the great

similarities shown here for eddy formation and evolution merely reflect this important

property. With this ratio fixed, the variations in the Rossby number and topography can

j also affect system evolution. The influence of varying E and Ah is small when their values

are small, such as QG or cases close to the QG parameter range, because at small c the

I Green's function tends to be less dependent on depth change. For large E, the results are

sensitive to th. Rossby number and size of topography. Comparison of figures ..16, 2.20

3i and 2.21 illustrates this effect. Unlike figure 2.16 and 2.20 where c is relatively small,

figure 2.21 shows that the eddy is formed close to the main interface in a short period of

time. The eddy size is also larger than those of small c case. resulting in a more balanced

dipole structure with the vortex.
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Figure 2.20: Time evolution of the interface and vortex for case _Aq 1, E = 0.5 and
-0.75. The time sequence of evolution starts from t = 0 with increment At 7ý 4. I

Other notations are the same as that shown in figure 2.16.

Forced Escarpment Waves i
Linear wave analysis in section 2.4 shows that with Aq fixed the wave period will increase

as the height of escarpment increases, but with the Rossbv number fixed wave period

will decrease as the height of escarpment increases. This is proved to be true also for 3
nonlinear perturbations by the contour dynamics calculation. For example, from QG to

finite escarpment, the topography varies by an order of magnitude, while f also changes i
in proportion to keep Aq fixed. The resulting change in escarpment waves can be seen

by comparing figures 2.22a, b and c with figures 2.11a, b and c. respectively. There

are two important changes seen from QG to finite escarpment. Firstly the wave period

increases (compare table 2.2 with 2.4); and secondly the wave amplitude increases in the

shallow side and decreases in the deep side (figure 2.22 e and f). The latter is due

to the large depth change in these cases. The increase of wave period with increasing

Ah for fixed value of Aq can be observed from figure 2.22a, g and h and table 2.5 for
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Figure 2.21: Time evolution of the interface and vortex for case Aq= 1. e = 3 and
Y3 = -0.75. The time sequence of evolution starts from t = 0 with increment At = 4.
Other notations are the same as that shown in figure 2.16.

I finite escarpment cases. For fixed Aq, it is seen that when f is small in both table 2.2

and table 2.5, the corrected wave period is close to the linear wave period given by

theoretical results. As E becomes order one and larger. the nonlinearity and change in

i Ah tend to have a larger effect on the escarpment waves. With the height of escarpment

fixed, the variation of Rossby number has a strong influence on the interaction, because

3 it effectively changes the vorticity anomaly and thus the momentum balance between the

vortex and the perturbation. The increase of f with Ah fixed means a decrease of Aq or

3 weaker vorticity anomaly, and thus leads to an increase of escarpment wave period.

* Vortex Motion

The trajectories of the vortices plotted in figure 2.23 are similar to those in figure 2.12, but

the vortex now has a larger eastward excursion due to the image effect. The southward

3 ivortex excursions are slightly larger for the finite topography cases. If the numerical
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Table 2.4 3
Finite Escarpment Waves (f = 1) I

Aq Ah Linear Observed Corrected
Period Period Period I

0.5 1/3 31.4 58 31.1 1
1.0 1/2 18.8 30 20.3

3.0 3/4 10.5 14 11.1 I
I

calculations continue for a longer time, the vortex will drift westward in figure 2.23. 1
Figure 2.24 shows the interface development following figure 2.16 from time t = 36 to

100, and figure 2.25 the path of the vortex. Compared with figures 2.13 and 2.14, the

patterns of the dipole-like structures and vortex trajectories are both very similar, but 3
the westward drift and the amplitude of north-south oscillation of the vortex in the finite

escarpment case are about twice as large as that of the QG case. 3
It is noted in figure 2.23 that vortex trajectories divert clockwise with decrease

of Aq and distance IY0I. At large Aq and 1Y01, the vortex tends to have larger eastward I
excursions, and gradually shift southwestward at smaller Aq and ýYo. This effect is less

obvious in figure 2.12 due to the lack of image effect.
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Figure 2.22: (continued)
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Table 2.5

Finite Escarpment Waves (Aq = 1

f Ah Linear Observed Corrected

Period Period period

0.5 1/3 15.7 22 16.5

1.0 1/2 18.8 30 20.3

3.0 3/4 31.4 52 36.3

trajectories of the point vorticies
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Figure 2.23: The irajectories olt tlie ponl vortices.
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Figure 2.24: Time evolution of the interface and vortex for case 4 in table 2.3, Aq I
and I0 = -0.75. The time sequence of evolution follows figure 2.16 and starts from

t = 36 with increment At = 8. Other notations are the same as that shown in figure
2.16. 5

II

trajectory of point vortex
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Figure 2.25: The trajectory of the point vortex for case shown in figure 2.24. 3
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Figure 2.26: C-ross escarpment transported volume.

Cross- Escarpment Volume Exchange

Figure 2.26 shows the cross-es carp ment transport verses time. The similar pattern and

dependence on Aq and I" as that in figure 2.15 are clearly observed. A similar volume

transport occurred in both models. This is because the ratio Ahi/fhi and F are compara-

ble in both models. The time for cross- es carp ment transported volume to reach its first

maximum is longer than the corresponding QG case, in accordance with the finite depth

change. The area oscillations for cases with A.q = I are all in phase, with period close to

that of corresponding escarpment waves. The slight increase in volume transport (except

case Aq = 3) is a reflection of the fact, that vortex stayed close to escarpment for longer

time, thus causing more cross escarpment volume flux. This agrees with eddy movement

in figure 2.23; instead of going quickly southward like the QG cases, the vortex translated

southeastward with a relatively slower southward velocity.
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Finite Vortex-Escarpment Interaction 5
In this section we will examine the consequence of a finite vortex interacting with a large

escarpment. In the contour dynamics model, we only need to replace the point vortex

with a circular vortex of uniform vorticity. Numerically, this means initializing a circular I
contour which encloses fluid of constant value of PV.

A finite vortex differs from a point vortex in several aspects. Because of its finite

area, it deforms in shape and thus varies in velocity. Unlike a point vortex, a finite 3
vortex has no singularity in its velocity field and is a more realistic approximation to a

geophysical eddy.

We briefly examine three cases here, which all have the same finite vortex and

initial position, but different topography. The vortex is circular with radius 1/\/- and

vorticity anomaly -1. The initial position of the eddy center is at (7r, -0.75). The inter-

face evolution is shown in figures 2.27, 2.28 and 2.29 for Aq = 0.5, 1, and 3, respectively.

In all the cases the Rossby number is fixed at t 1. 1

In general the results are similar to the corresponding cases with a point vortex

shown in figures 2.16, 2.18 and 2.19 (the finite vortices and the point vortices used have

the same constant circulation). The cross-escarpment. transported volume is about the

same for each corresponding pair of cases, and so is the pattern of interface deformation. I
The reason is that as the finite vortex moves away from the interface, its effect on the

interface can roughly be represented by a comparable point vortex of the same circulation I
and located at the center of vorticity of the finite vortex. There are, however, pronounced

differences between the results of point vortex and finite vortex models. The biggest

difference, comparing figure 2.29 to figure 2.19, is that there is no eddy detached from n

the interface in the former. The deformation of the finite eddy is the key to this. Firstly,

deformation of the finite vortex during interaction affects momentum transfer between 3
the interface and the vortex by altering the vortex velocity field. Secondly, when the

circular vortex is enlongated to elliptical shape, its long axis always extends parallel to 3
725
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Figure 2.27: Time evolution of the interface and finite vortex for case with Aq = 0.5,
S= 1. The vortex has uniform vorticity of value - 1 and radius 0.564. The solid contours
stand for the interface and vortex, and the dashed line for the escarpment. The vortex
center is at (x, y) = (,r, -0.75) at t = 0. The time sequence of evolution starts from
t = 0 with increment At 8 at upper-left corner and continues with time increasing to
the right and downward.

Figure 2.28: Time evolution of the interface and finite vortex for case with Aq I and
c = 1. The time sequence of evolution starts from t = 0 with increment At = 4. The
rest are the same as that in figure 2.27.
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Figure 2.29: Time evolution of the interface and finite vortex for case with Aq = 3 and
E = 1. The time sequence of evolution starts from t = 0 with increment At = 4. The j
rest are the same as that in figure 2.27.

the interface, and its length acts like a barrier to keep the perturbation from extending I
southward. In all cases, the shape of the vortex deforms periodically from circular to

elliptical. As the interface evolves, the longer axis of the varying vortex rotates clockwise

and always tends to align with the nearest perturbation interface. When perturbation

field is strong, it may draw a filament off the deforming vortex (figure 2.29).

The escarpment waves are approximately the same for both the point vortex and

the finite vortex cases. This is expected since the escarpment wave dispersion property

does not depend on the forcing change. However, the wave generated by a finite vortex

has slightly smaller amplitude and observed period than that by a point vortex. It is

due to the fact that the periodic deformation of the finite vortex absorbs part of the I
the momentum, thus reduces its impact on the interface. For the same reason the finite

vortex tends to have a smaller eastward excursion than the point vortex. This is especially

obvious for cases of small escarpment.
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Fi,-ure 2.30: Time evolution of the interface and vortex for cyclonic vortex case Aq = 0.5,
c = 1.0 and E' = -0.75. The time sequence of evolution starts from t = 0 with increment
At = 4. Other notations are the same as that shown in figure 2.16.

Cyclonic Vortex-Escarpment Interaction

Unlike an anticyclone, a cyclone perturbs the interface in such a wz~y that the perturbation

velocity field initially advects the cyclone toward the topography. Thus, instead of being

expelled, a cyclone is trapped to the topography. This results in a stronger vortex image

and hence an enhanced westward vortex propagation during the interaction.

The results of interface evolution for interaction between a cyclonic point vortex

and an escarpment are shown in figures 2.30, 2.31 and 2.32 for c = 1 and Aq = 0.5, 1.0 and

3.0, respectively. In these results the vortex-induced cyclonic perturbation is to the left

of the vortex, and therefore advects the vortex toward the topography. The anticyclonic

perturbation directly north of the vortex tends to move the vortex westward, as does the

image vortex. Thus both the vortex and the interface perturbation propagate westward,

while the cyclone also moves onshore. The process then varies for different values of Aq.
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Figure 2.31: Time evolution of the interface and vortex for cyclonic vortex case Aq = 1.0,
S= 1.0 and Y0  = - 0.75. T he tim e sequence of evolution starts from t = 0 w ith increm ent

At = 4. Other notations are the same as that shown in figure 2.16.

In small topography case as shown in figure 2.30, the vortex and the interface perturbation I
propagate at approximately the same speed. As the vortex gets closer to the topography,

it also causes more cyclonic perturbation to its left. The cyclone at the leading edge of

the vortex dominates its northward motion, while the contribution from the anticyclonic 3
perturbation north of the vortex mainly contributes to the westward vortex propagation.

In addition, in figure 2.30 the weakness of the topography provides less constraint for 3
cross topography motion, and eventually the vortex is advected across the escarpment

into the shallow water. The cyclonic perturbation forms a streamer, which, unlike the

previous studies on anticyclone cases, does not develop into a topographic eddy.

For cases with larger topography, such as that in figures 2.31 and 2.32, the initial I
phase is the same as that described above. The vortex propagates westward and toward u
the topography. The interface perturbation now travels faster than the vortex and thus

has a varying effect on vortex motion. As the anticyclonic pert.urbation reaches the po- 3
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Figure 2.32: Time evolution of the interface and vortex for cyclonic vortex case..q = 3.0,

f = 1.0 and Y0 = -0.75. The time sequence of evolution starts from t = 0 with increment
At = 4. Other notations are the same as that shown in figure 2.16.

sition northwest of the point vortex, a cyclonic perturbation develops to the northeast

of the vortex; they both have the effect of advecting the point vortex away from the

topography. Meanwhile, the cyclonic velocity field of the vortex suppresses this inter-

face deformation. A periodic interaction pattern develops: the interface and the vortex

oscillations are coupled, and together with the image effect, this results in a net west-

3 wward vortex drift at the end of each period. The net drift distance is larger for the case

with larger topography due to the stronger image effect (figure 2.33, except cases such

as shown in figure 2.30). It is also seen from figure 2.33 that in oscillatory cases the

average position of the vortex is closer to the escarpment than the initial position. The

cross-escarpment transported volume (area in two-dimensional space) is plotted in figure

2.34. The transports are correspondingly less than that of the anticyclone-escarpment

interaction cases shown in figure 2.26. The volume transport oscillates with a fixed fre-

quency the same as that of the vortex oscillation and a. constant amplitude for each case
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Figure 2.33: The trajectories of the cyclonic point vortices in time period length 32 for
_q 0.5 and 40 for Aq = 1 and 3.
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Figure 2.34: Cross escarpment transported volume induced by cyclonic vortex.
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1 of Aq = 1.0 and 3.0. As expected the smaller topography displays larger contour defor-

nmation. It is also obvious from figures 2.33 and 2.34 that the vortex and the area oscillate

in phase, which results from the phase locking behavior of the interface perturbation and

3_ the vortex motion.

The studies above were repeated with finite cyclonic vortex patch replacing the

point vortex in each case. The results show qualitative agreement in both the interface

perturbation and the net westward eddy drift. The amplitude of north-south vortex3 oscillation is much smaller for the finite vortex case. Instead, the finite vortex deforms its

shape periodically from circular to elliptical in accordance with the interface oscillation.U In the small topography case, the finite vortex climbs onto the escarpment like the case

shown in figure 2.30 but tends to ride on the escarpment instead of crossing it. In all the

cases, the westward motion of the finite eddy is appreciably slower than the point vortex.

Summary

I Vortex interaction with a large escarpment in a barotropic fluid is qualitatively similar

to the QG cases discussed in the previous section. The ageostrophic nonlinear advection

causes fluid to cross the topography, which evolves to form the streamer and topographic3 eddy. Excitation of escarpment-trapped waves is seen in both. However, there are differ-

ences between them. Due to the large depth change, the stronger image effect causes a

I larger eastward vortex drift and thus affects the interface evolution and eddy formation.

Unlike in the QG problem, the interaction depends on not only the ratio of Ah and f but3 also the individual values of them. In both QG and finite escarpment cases, the excita-

tion of the escarpment waves is achieved through the mechanism of resonant oscillation,

3 in which only one natural escarpment wave mode is excited.

There are important differences between a cyclone and an anticyclone when in-

teracting with an escarpment. First, a cyclone is trapped at the topography and may

move across the topography into shallow water; second, a cyclone tends to move faster
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westward than an anticyclone and has no eastward excursion; third, a cyclone causes less

cross-topography transport than the corresponding anticyclone case. 3
Barotropicity and the rigid lid impose strong constraints on the study in this

section. They disallow any vertical change of horizontal velocity. The vertical adjustment I
of fluid crossing the escarpment is simplified to a vertically constant horizontal divergence

or convergence, which assumes instant and uniform compression or stretching of the fluid 3
column over the whole depth. One should be cautious when applying this model to

problems where topography takes up most of the water column. The validity of the

shallow water model is in question when the aspect ratio of the fluid (h/L) or the depth

change (Ah/h) is not small. Thompson and Flierl (1991) have shown that the product of

the Rossby number based on topographic length scale and the aspect ratio must be small

for the shallow water model to be valid. In general, treating a slope as a topographic step

is only appropriate for the problem in which particle cxcursions in one period is larger 3
than the cross topography width.

2.7 Conclusions

Through simple physical arguments and modeling, we have investigated in this chapter

the interaction process when an anticyclone or a cyclone encounters a step-like topogra- 3
phy. The important processes occurring in the model include cross topography exchange,

topographic eddy formation, vortex propagation and topographic trapped waves.

In the anticyclone case, the vortex is expelled away from the topography and may

advect across it a volume of high PV fluid. This fluid from the shallow side may detach

from its origin and evolve into a cyclonic topographic eddy, which subsequently influences

the propagation of the 3riginal vortex. Due to the advection of positive vorticity away

from the interface, there is more negative vorticity anomaly near the topography. This

negative anomaly and the topographic eddy cause a weak westward current in Lhe region

between them. In contrast to the commonly accepted result that a steady deep forcing 3
803
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I can not penetrate onto a frictionless continental slope (Wang 1982, Csanady and Shaw

1983 and Vennell 1988), a varying eddy forcing in deep water is able to induce inotion over

a step topography by exciting topographic waves. The wave trapped at. the step depends,

on both the topography and the Rossby number. The far field wave is linear and obeys

the linear dispersion relation of free escarpment waves. which is monochromatic due to '.he

topographic constraint. The cross-topography volume transport is dependent strongly

on the size of the topography and weakly on the initial eddy position. It usually takes

place within one free wave period as the vortex comes in contact with the topography.

Multiple vortex-topography interactions are possible and need further investigation.

A cyclone behaves very differently fLoin an anticyclone when interacting with a

shallow topography. The interface perturbation evolves in such a way that it attracts the

cyclone toward the topography. As it moves close to the topography, the cyclone drifts

increasingly rapidly westward under increasing image effect. It can move across the

escarpment into the shallow water. If the strength of the topography front is sufficiently

large compared with that of the vortex, the cyclone will just induce a wave-like frontal

perturbation and oscillate with it while propagating westward in a cycloid path. The

cross-topography exchange induced by an impinging cyclonic vortex is usually much

smaller than that of a comparable anticyclone.

i'
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Chapter 3

Mesoscale Eddy-Continental Shelf/Slope Interactions I
I

The study in the previous chapter shows that even with a very simple model the vortex-

topography interaction can produce a flow field with relatively rich dynamic structure.

The mo '. important processes identified in the model results are (1) cross-topography

volume exchange, (2) formation of a topographic eddy and (3) generation of topographic

trapped waves. These processes can find their qualitative counterparts in the real ocean, I
and they all play important dynamic roles at least in the regional ocean near continental

margins. Therefore they deserve further investigation. In a more general study, the re-

strictions imposed by the previous contour dynamics model, such as the step topography,

idealized vortex and constant planetary rotation, must be relaxed.

In this chapter a primitive equation ocean circulation model will be used to in-

vestigate the problem of interaction between an oceanic niesoscale eddy and waters on a I
continental shelf and slope (shelf/slope in the following). The model incorporates major 3
important factors that were previously simplified or neglected, except the density strati-

fication and external forcing. According to our present knowledge in this area, even with 3
the barotropic assumption, the model will provide us with dynamically significant and

complicated structures deserving thorough investigation. The results from this study will 3
allow some quantitative analysis and comparison with observations.

I
I
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3.1 Introduction and Background

Although the simple model in chapter two is able to capture some important dynamic

features of eddy-topography interaction, it falls short of producing details that enable

quantitative model-observation comparisons. For example, tile topographic wave in the

previous model is monochromatic and always in resonance with the eddy forcing. This

is obviously unrealistic and is an artifact due to the simplification of the model topog-

raphy. The study, however, provides us with enlightening diagnosis of the fundamental

interaction mechanisms. Based on the qualitative understanding of the process, further

modeling effort will emphasize not only the qualitative features but also the quantita-

tive understanding of the interaction dynamics. The increasing model complexity and

sophistication will increase the degree of difficulty in interpreting the model results; thus

the previous model results will be needed to shed light on the present work.

Both isolated niesoscale eddies and shelf/slope flows have received great scientific

attention individually during the past two decades(see Flierl (1987), Mysak (1980) and

Brink (1991) for reviews in these subjects). The theories about isolated eddies and about

waves and currents on shelf/slope are now relatively well developed and understood. On

the other hand, with frequent discoveries of mesoscale eddies in the continental margins

and their interaction with shelf/slope waters, the knowledge on coupled eddy-shelf/slope

dynamics is not yet adequate. There have been only a few modeling studies on inesoscale

eddy-topography interactions. The most relevant were the work by Smith and O'Brien

(1983) and Smith (1986). Smith and O'Brien (1983) examined the propagation of an

isolated eddy when interacting with a western bounding topographic slope. They used a

two layer primitive equation model with a linear bottom topography contained totally in

the lower layer and explored the problems associated with eddy motion and its vertical

structure as well as a range of parameter dependence. With a topography shallowing

toward the west they found that the combination of planetary and topographic /3-effects

can result in very different propagation tendencies for a cyclone and an anticyclone. It
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induces nonlinear self-advective motion which causes a cyclone to imove upslope and an I
anticyclone to move downslope. In the cyclone case, the westward eddy propagation 3
is due both to the planetary 03 and the topography-induced nonlinearity, and thus the

eddy can propagate at a speed faster than that on a /3-plane with a flat lbottom. In the 3
anticyclonic case, the eddy may propagate eastward in the form of a vortex pair resulting

from the enhancement of a trailing cyclonic dispersion center by the topographic vortex

stretching effect. They also found that the barotropic eddy remains barotropic during

the interaction and exhibits larger decay due to topographic wave dispersion. Due to the 3
sloping topography, a baroclinic eddy tends to have deep compensation and a reverse

nonlinear energy cascade from the barotropic to the baroclinic state is possible. 3
The same model as Smith and O'Brien (1983) was used by Smith (1986) to study

the interaction of Loop Current eddy with topography in the Western Gulf of Mexico.

The results indicate strong dependence of the eddy evolution on its lower layer amplitude. 3
For strong lower layer flow, the topography-induced nonlinear self-advection is dominant

over dispersion, and the eddy would move downslope away from the topography. A vortex 3
pair emerges as seen by Smith and O'Brien (1983). For weak lower layer eddy strength,

the fast topographic dispersion dominates the lower layer eddy evolution, allowing the

upper layer eddy to propagate independently of topography. The eddy motion is thus

dominated by interaction with the lateral boundary. In such a situation, the eddy is soon 3
eroded by topographic dispersion.

The above two studies are very helpful in understanding eddy propagation and I
evolution when interacting with a finite bottom topography. They, however, did not 3
explore either the responses on the shelf and slope, or the exchange across the topography

induced by the strong eddy advective field. These further aspects of the eddy-topography 3
interaction are of great importance to continental shelf/slope dynamic processes.

Partially due to the lack of reliable observations, there has not been much effort 3
to address directly this two-way interaction process known to be common to many con-
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I tinental margins of the world. An alternative approach has been adopted by a number

3 of investigators to study the shelf/slope response to an offshore forcing, in which the

forcing is prescribed along an offshore boundary and is allowed to propagate along the

boundary and to depend on space and time. Malanotte-Rizzoli (1984) investigated non-

linear Rossby wave radiation over a quasigeostrophic topography due to a large scale

propagating boundary forcing. She found that the boundary forcing acts on the interior

field through a resonant mechanism, which itself is a result of nonlinear radiation and

can be described by a solitary wave solution. In her study the bottom topography is

on the same order as the planetary /3-effect. and shallows in the same direction as the

3 planetary 3. Therefore the system dynamics is not critically constrained by the presence

of topography.

Chapman and Brink (1987) examined the effects of fluctuating offshore pressure

3 forcing on a continuously stratified shelf/slope. For periodic forcing, they found that

the shelf/slope response is heavily dependent on the forcing period. When the period

3 is less than 10 days, the response is dominated by near resonance with free coastally

trapped waves; for longer period forcing the response is mainly confined near the forcing

3 field to a range about the first baroclinic Rossby deformation radius. In either case

the shelf response is weak and nearly barotropic. They found that a propagating eddy

3 forcing located near the continental slope can not penetrate onto the shelf, and the eddy

velocity field is blocked by the topography. As a result, the alongshore velocity structure

I is squashed and has maximum on the shelf break. They also found a bottom intensified

jet near the shelf break which is part of the eddy-induced circulation on the shelf.

In a recent study Qiu (1990) investigated the shelf/slope response to forcings

3 Ithat represent a propagating offshore eddy and a meandering western boundary current.

For a traveling boundary forcing, his results show that the responses are dominated

by the boundary trapped-topographic Rossby waves and are dependent strongly on the

propagation speed of the forcing. When bottom friction is included, the inviscid results

3 only hold at large propagation speeds; at small speeds the planetary : is imnprtant. For
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oscillatory forcing, the peak response is on the shelf and tends to shift from onshore to

offshore as bottom friction is included. 3
There have been a few studies focusing on the topographic wave generation by an

eddy over sloping topography. Louis and Smith (1982) investigated the mechanism of

topographic wave generation by barotropic radiation from an eddy on a slope. This is

basically the dispersion of the eddy constituents into barotropic topographic wave coin-

ponents. The theory was applied to the Scotian Slope and Rise to explain the observed

velocity oscillation. Good agreement was found though the model's wave amplitude

was somewhat smaller. In a recent paper Shaw and Divakar (1991) proposed a differ-

ent mechanism of topographic wave generation. Using a numerical model they showed I
that topographic waves were generated by density advection in a barochinic eddy over a •

sloping bottom. The wave amplitude is dependent. on the eddy strength. Their results

show that an eddy of the strength of a typical Gulf Stream warm-core ring can generate

topographic waves of the observed amplitude.

The models reviewed above are linear, except Smith and O'Brien (1983) and Smith 3
(1986). Shaw and Divakar (1991) included density advection. It appears that when the

response on the shelf/slope region is considered, linear dynamics will be sufficient; when I
eddy propagation and dispersion are considered, regardless the size of bottom slope, the

nonlinearity is dominantly important. The eddy-shelf/slope interaction borders on two

different physical domains and spans different dynamic regimes. Previous research either I
treated processes in only one domain with others parameterized in terms of a boundary

forcing, or investigated only partial dynamics over the whole domain. It is difficult to

understand the interaction process without the active involvement of dynamics from

both sides. The study proposed here is an effort to address the interaction between 3
a mesoscale eddy and shelf/slope waters. The "forcing" field itself is also part of the

dynanmic field which evolves on its own and through the feedback fromn interaction with 3
shelf/slope. The results will include not only the responses of the shelf/slope and eddy

I
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evolution, but also the exchanges of mass, momentum and properties across the slope

boundary.

This chapter is organized as follows: section 3.2 describes the model formulation

and the numerical model; section 3.3 contains the model results and analysis of f-plane

eddy-shelf/slope interaction; section 3.4 discusses the results of interaction on a /3-plane

and finally section 3.5 gives the summary of the study in this chapter.

3 3.2 Model Formulation and Numerical Method

3.2.1 Model Formulation

The current model is based on the incompressible Navier-Stokes equations in a rotational

coordinate frame. The physical domain is a rectangular basin with continuously varying

bottom topography and with a homogeneous density fluid. The dynamical equations are

similar to that listed in section 2.2, but with possible internal and bottom friction terms

included. The governing equations can be written as:

ut+uua.+vuUy -fv -p:,+D. (3.1a)

vt + uv, + vv+fu +fy -P+ D,, (3.1b)

3 (uh), + (vh), = 0 (3.1c)

where all the variables are defined in the same way as that in equation (2.1); D,, and

D, are the frictional terms.

3 The topography h assumes the exponential form used by Buchwald and Adams

(1968) but with dierent constant parameters. The topographic height is the largest

at the northern boundary and decreases southward, i.e., in the negative y-direction, for

a horizontal length 1. After that the bottom is flat. The topography only varies in

3 cross-channel direction as in the following:

h He 2b(L-y) + ho, L I < y < L (3.2)I = He2b' t4ho, 0 <y <. L- I
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where L is the width of the basin and I the width of the topography, chosen to be 600 kin I
and 150 km throughout this chapter, respectively. H, ho and b are topography constants.

Three sets of constants will be used in this study to represent different types of shelf/slope

topography and they are: 3
(A) H =50m, ho Om and b= 10-?--

(B) H=4m, h 0 =467n and b= 1.828 x 10-'7n-1

(C) H = 400m, ho =Omn and b =3.068 x 10-6in-1 I

These topographic profiles are plotted and shown in figure 3.1 for a north-south section.

Topography A is a standard reference which the results from other cases are compared

with. Its slope ranges from 0.001 on shelf to 0.017 on slope. Topography B has a longer

and flatter shelf and a steeper slope. C is approximately linear. The water depth in the

flat bottom ocean is about the same for all three topographies and C has a greater depth

at the coast than A and B.

Since the density is homogeneous, the field will be initialized with an isolated eddy I

structure only. From continuity, a depth-integrated flow is horizontally nondivergent.

Therefore a transport streamfunction V/, is introduced and its value specified over the

entire domain by

.O(x,y,0) = ,oe-(r/ro), (3.3)

where r = V/(x - xo)2 + (y - yo) 2 , (xo,yo) is the initial location of the eddy center, r0 is

the eddy e-folding radius, Oo is the eddy swirling transport within a unit vertical thick-

ness. The constant a is a steepness parameter, specifying the radial vorticity gradient of

the eddy. Equation (3.30) represents a barotropic monopole and is known to be unstable

when a given barotropic instability criterion is met. Depei.ding on the horizontal vor- I
ticity shear and on the relation to the perturbation (Pedlosky, 1979, p4 3 5), the transfer

of eddy mean energy to eddy turbulent kinetic energy can happen and the eddy will I
break into turbulent patches. For the monopole, there exists a critical value, oa such

that for a < a,, the monopole is stable to small amplitude perturbations. It. has been 3
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Figure 3.1: Three topography profiles to be used in this chapter with labels on each curve

I corresponding to topography (A), (B) and (C) given in the text. The inner panel shows
the portion of sloping bottom of the outer panel.

I shown by Carton and McWilliams (1989) that for the eddy described by equation (3.3),

cc = 1.92. When a is smaller than a,, the steep vorticity structure holds the monopole

together from being broken up through transfer of energy to turbulent flows. On the

other hand, too small an a will result in a very steep vorticity structure, which requires

higher spatial resolution to resolve the eddy and is potentially problematic numerically.

A value a = 1.9 is used throughout this study. Radial profiles of streamfunction, velocity

and vorticity are shown in figure 3.2 with r0 = 50km and a0 = 0.602075r 0 .

On the two boundaries parallel to the isobaths, the no flux boundary condition is

used. Fluid particles are allowed to slide along the boundaries freely.

v = O, &u/Oy = O on y=0, L (3.4)

3 To choose the boundary condition at the two cross basin boundaries, the following con-

siderations should be inclcded: (1) no net flow through the boundaries; (2) no or small

I reflection from the boundary, i.e., the boundaries only absorb momentum and do not
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Figure 3.2: Profiles of (a) streamfunction 4,, (b) swirling velocity r and Ic) vorticity C

along a radial tine for ro = 50km and iko = 0.602075r 0 .

feedback; (3) the boundary conditicn should not affect the solution. The first one is a

direct statement of mass conservation in the basin. The second consideration is only an

approximation. Since wave generation on the topography is expected, these waves will

eventually reach the boundary of the finite domain. A periodic boundary condition is

not recommended because the waves will reenter the basin and thus increase the energy I
level of the fast-propagating components in the wave power spectrum. An open bound-

ary condition is also not chosen, simply because the dispersive nature of the topographic I
waves is not known beforehand and also the third factor is involved. The boundary con-

dition chosen for this study, though the simplest but by no means the best, is a sponge

layer. Within a given distar e next to a cross basin boundary, a dampiig term of the

form -ru or -rev is added to the right hand side of the x or y momentum equation

(3.1), respectively. Here r, = co(D - d(x))/D, and co is a constant of the dimension of an

inverse time. 0 < d(x) < D is the distance away from the boundary. 4'o-1 is the time scale

necessary to relax the fields toward a given value (zero here). and D is the ihickness of theli
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sponge layer. For this study cj 1 is chosen to be one day and the layer thickness D = 70

km. No matter what are the choices of co and D within a given range of value, there

will be a certain fraction of incoming momentum reflected by the sponge layer. In gen-

eral, the sponge boundary is more effective in absorbing shorter and slower propagating

waves. The fast propagating long waves may be partially reflected but re-emerge from

the sponge layer with considerably weakened amplitude. Later numerical experiments

show that this condition is adequate for the present problem. An improvement on this

boundary condition could be the combination of a sponge and the Orlanski radiation

conditions. Since the numerical experiment with a sponge condition in a domain twice

the size of the one used here does not show much change, it is decided not to adopt the

mixed sponge-radiation conditions.II
3.2.2 Numerical Model

The system formed above will be solved nur ally over a physical domain 720 km

long in x and 600 km wide in y. The numerical model to be used is a semispectral

primitive ocean circulation model (SPEM) developed by Haid.ogel et al (1991a). The

3 model is designed for regional to basin scale ocean modeling problems and allows both

irregular basin geometry and finite amplitude bottom topography. The formulation,

implementation and application of SPEM can be foind in detail from Haidvogel et al

(1991a) and Haidvogel et al (1991b). Here only a brief summary of the model and its

adaptation to the present problem are given.

3I The model utilizes the incompressible Navier-Stokes equations of fluid flow with

the Boussineq and hydrostatic approximations. For the purposes of accommodating

irregular basin geometry and finite topography, the cartesian equations are rewritten by

the application of two coordinate transformations. The first is a transformation of (X, y)

coordinate Into a boundary-fitted curvilinear, orthogonal coordinate system, (ý, 77) (not

used in the present problem of a rectangular domain). In the second transformation, a

I
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stretched vertical o-coordinate is adopted, where the vertical coordinate z is replaced by

the topography-following variable

S= 1 + 2(z/h).

In the stretched coordinate, the new coordinate system spans the range -1 < a < 1. The

model equations become somewhat more complicated after these two transformations and

the details can be found from Haidvogel et al (1991a). The model also assumes a rigid

lid, which eliminates surface gravity waves. 3
A centered, second-order finite difference approximation is adopted in the horizon- I

tal. The well known Arakawa "C" grid is used for the horizontal arrangement of variables,

which guarantees the conservation of the first moments of the variables u, v, w and p. 3
The vertical dependence (a) of the model variables is represented as an expansion in a

finite set of Chebyshev polynomials. It is restricted so that only the lowest-order polyno- 3
mial has a nonzero vertical integral, which isolates the external mode (depth integrated

component of the field) in the amplitude of the lowest-order polynomial. In practice, 3
the actual variable values are taken at "collocation" points ar chosen to correspond to

the location of the extrema on the highest-order polynomial and are solved explicitly in 3
the model. In the present study the density is assumed uniform and there is no vertical

dependence of any kind. A minimum number of o,, will be used, which can not be less I
than three due to the model formulation. Therefore only three vertical coordinates are

used. For the problem treated in this chapter, there is no stratification, and no vertically

dependent boundary condition and forcing, thus an initially barotropic field will remain

barotropic at all times. This is not affected by the number of vertical collocation points

in the model.

The solution of the discrete equations proceeds in the following sequence of steps.

First the N internal modes (N = 2 here) of the velocity distribution (the part of the

velocity which has zero depth average) are calculated by time stepping of the transforined

equations (3.1a and b). A leapfrog time-stepping scheme is used in the above procedures. I
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I To calculate the velocity components for the horizontally nondivergent, depth integrated

flow, a transport streamfunction V, is introduced that

ii = -0,,/h, f, = 0&. (3.5)

3 By taking the curl of the depth-integrated momentum equations, the pressure terms are

I eliminated and a vorticity equation for - is obtained. This vorticity equation is then time

stepped as above and the streamfunction is determined by solving a generalized linear

3 elliptical equation.

To stabilize the numerical computation an internal friction in the form of bihar-

I monic friction is used to consume the small scale enstrophy due to he nonlinear cascade.

It is desirable that this friction be as small as possible, not to affect the motion on the

larger scales. It also pays an additional physical role in regulating the rate of eddy de-

cay and flattening the eddy structure (McWilliams and Flierl, 1979). The value of the

biharmonic friction coefficient used in this study is a relatively small one v 4 = 109 m 4/s.3 There is no bottom friction used in the model, except mentioned explicitly.

3.2.3 Model Verification

The SPEM model after being configured for the present application is tested for an

isolated eddy evolution on a fl-plane. Results are compared with previous work. All

experiments performed here are initialized with the streamfunction given in equation

(3.3) and r0 and Oo from figure 3.2. The maximum eddy swirling velocity is 0.5 m/s. At3 mid-latitude, the Coriolis parameter is about fo = 10-4 s-' and 3 = 1.6 x 10" - 1 Is-1.

The conventional Rossby number R 0 = Vm,,/fro = 0.1 is fairly small for f-plane dynam-3 ics, indicating that the role of nonlinearities are fairly unimportant in the momentum

balance, especially in the region away from the eddy on the shelf. For a f-plane eddy,

* a different measure of the ratio of nonlinearity to planetary rotation can be defined as:

Q =V,,,V/flm?' = 12 which indicates the dominant importance of nonlinearity for isolated

3 eddies on the 3-plane. The order of magnitude difference between R0 and Q separates
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two different dynamical regimes that wele mentioned earlier: a linear, f-plane regime 1
for the shelf/slope responses and a nonlinear, O3-plane regime for the eddy evolution and

propagation.

First the evolution of a linear anticyclone and a nonlinear anticyclone on the /-

plane in a flat bottom basin is calculated using SPEM. The results show that in the

linear case the eddy translates westward at an average speed -0,44 cm/s for the first j
60 days and leaves behind a slowly propagating weak Rossby wave wake. The merid-

ional translating rate is identically zero. The linear propagation accelerates during the

finite computational period, and the speed cited before at the end of the calculation has 2
not reached its asymptotic limit. When nonlinearity is included, the westward propaga-

tion rate increases above the linear value and meridional propagation is seen. Over the

60 day period, the average westward and southward propagation rates are -1.54 cm/s

and -4.45 cm/s, respectively. The rates are comparable with the results obtained by I

McWilliams and Flierl (1979), which are -1.59 cm/s and -5.28 cm/s over a period of I
78 days for similar conditions. Since the eddy used here is not exactly Gaussian as that 5
used by McWilliams and Flierl (1979), the comparison is affected slightly. Neverthe-

less, above agreement indicates that the present model results are both qualitatively and 3
quantitatively consistent with the previous theory.

With inclusion of type A topography, a monochromatic topographic wave experi-

ment is performed. The results show that for the initial condition of a single frequency-

wave number wave (satisfying the dispersion relation of shelf waves over the topography), I
the wave persists in its shape during propagation until it hits the sponge boundary. The 5
back scattering from the boundary is relatively small and the wave is hardly distorted.

An estimate of wave energy density shows that the reflected waves have less than 5% of

the total energy. Thus the sponge condition seems to work reasonably well in damping

the incoming waves. Since there is no net flow through the boundary, the condition will

be used in all later numerical experiments.
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Figure 3.3: Eddy KE density decay: (1) nonlinear /3-plane eddy with biharmonic friction,
(2) linear, inviscid /3-plane eddy and (3) purely frictional decay of an f-plane eddy.

It is desired that the internal biharmonic friction be small so that it does not cause

large frictional eddy decay while stabilizing the numerical computation. The decaying of

eddy kinetic energy (KE) density is examined for three cases: (1) nonlinear /3-plane eddy

with- biharmonic friction, (2) linear, inviscid /-plane eddy and (3) purely biharmonic

frictional decay of an f-plane eddy. The results are plotted in figure 3.3. (2) shows a

quick decay of the eddy KE due to fast Rossby wave dispersion. By adding nonlinearity,

the rate of eddy decay due to linear wave dispersion is significantly reduced (curve (1)).

Finally it is seen from (3) the frictional effect counts less than one third of the total decay

in (I). Therefore even for strong nonlinearity, Rossby wave dispersion still plays a major

role in eddy decay, while the frictional decay is minor on the same time scale. These

results agree well with McWiliams and Flierl (1979).
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3.3 Eddy-Shelf/Slope Interaction on an f-Plane

Given the importance of planetary /3-effect, it is certa;nly a fundamental terni to be

included in the model study. However, from the previ,,us argument for the dynamic 3
regime separation, the interaction process may be investigated to a certain extent without

actually going into the /3-plane. A topographic /3 parameter /3 T = fos/h can be defined, I
where s is the topography slope. The ratio between topographic /3 and planetary /3

is: 13 T7/3 = 10 -,- 100 for the topography and the parameter range of this study. Like 3
nonlinearity, planetary /3 may be neglected where the topographic control is dominant.

This approximation enables us to examine the shelf process on the f-plane and to compare 3
the results with the previous insights obtained from the contour dynamics calculation.

The major shortcomings are related to the eddy evolution. The important planetary I
dispersion and decay of the eddy are suppressed, as is the associated nonlinear self-

advection. However, it is felt that a better understanding of the process with complete

dynamics will be achieved successively after the basic mechanisms are fully understood. 3
The O3-effect is left to next section.

Several numerical experiments are performed to model the process of eddy-shelf 3
and slope interactions. The cases and parameters are listed in table 3.1. The study may

be categorized as follows in terms of its parameter dependence: (1) different initial eddy- 3
slope distance from the slope to the center of the eddy, (2) size and strength of the eddy

(nonlinearity), (3) topography, (4) cyclone or anticyclone and (5) bottom friction. The I
results are discussed with reference to case F1, which is called the standard or reference

case. I

3.3.1 Standard Case U
Similar to the previous contour dynamics study, the eddy is initially positioned close 3
enough to the slope so that it starts to interact with the slope water right after time t = 0.

In the real ocean, this initial condition may correspond to a Gulf Stream warm-core ring I
96 3
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Table 3.1

Cases Eddy Eddy Initial Topography Comments
Rotation Radius (kin) Distance (kin)

F1 -1 50 65 A Standard Case

F2 -1 50 50 A Small Distance

F3 -1 50 80 A Large Distance

F4 -2 50 80 A Double Strength

F5 -1 75 80 A Large Eddy

F6 -1 50 65 B Steep Slope

F7 -1 50 65 C Small Topography

F8 1 50 65 A Cyclone

F9 1 50 80 A Cyclone

F10 1 50 80 B Cyclone

F1l -1 50 65 A Bottom Friction

f-Plane Eddy-Topography Interaction Experiments.
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spin-off onto the continental topography by a large meandering process. Since part of

the eddy velocity field is initially on the topography, both vortex tube stretching caused 3
by cross-isobath advection and topographic wave dispersion will be effective. When the

eddy moves away from the topography, the eddy dispersion ceases and the eddy is subject I
to the influence of its own asymmetry, perturbed field and topographic eddy formation.

Figure 3.4 (case F1 of table 3.1) shows contour plots of streamfunction, relative I
vorticity and potential vorticity as they evolve in time. The eddy induces a large defor- I
mation of the slope potential vorticity (PV) front. A seaward disturbance develops to the

northeast of the eddy which also strongly affects the eddy propagation. The slope distur- -
bance continues to grow under the eddy advection and in turn acts on the eddy with a

growing seaward moving tendency. Eventually the disturbance separates from the slope I
into the deep ocean and forms a cyclonic topographic eddy. The separation process takes

place during day 12 to 14 and corresponds to a peak in the offshore transported volume. 5
Immediately after the separation, the original eddy and the newly formed topographic

eddy form a vortex pair, which decides the subsequent eddy propagation. The strength 3
of the cyclone is much weaker than the original eddy; therefore, thie resulting eddy prop-

agation is along an anticyclonic loop in favor of the strong eddy. Figure 3.5 shows the 3
trajectories of the positions of the spatial maximum and minimum of the eddies. It is

seen that both eddies will go back to the slope and undergo a second interaction. During m

the second interaction, the topographic cyclone is reabsorbed by the slope and a new II
topographic cyclone emerges. A net drift of the eddy center about 10 km westward is

seen at the end of the loop. This trend continues every time the eddy loops back to the

slope and results in a persistent net westward along-slope drift. This process is weakened

by the loss of eddy energy and volume and may last only a few interactions. It is seen 3
the cyclone strength from the second interaction is only two-thirds of that of tie first

one. 5
As observed from figure 3.4, the initial circular eddy is elongated as it interacts

with slope water. The radial symmetry is first perturbed by the development of a slope I
98 3

I



III I

II i-^ '

gO C--•

I - = _

i__ _ _ _ , ... .- -- I' - •

I :

I

ii I S



I

AIR)-

El l. .. ..... .I.F 
I

I Iý j

.1

I I

S......... , . _ _ _ __. . ._._......

QI.II

1 04 q

oo 
I

I I



Path of the Eddy Cen';pr600

500

400

300.

200i

100 i

0,I
0 200 400 600

X (kin)

Figure 3.5: The trajectories of the vorticity minimum (solid curve) and maximum (dash
curve) for the original eddy and topographic eddy, respectively. The direction of motion
is clockwise.

disturbance. The perturbation velocity field exerts a strong shear on the original eddy and

further stretches its already elongated shape. During this period, the topographic cyclone

forms and separates from the slope water. The eddy propagation speed accelerates upon

the topographic eddy separation. The stretched leading and trailing edges of the original

vortex are bent around the cyclone to form long streamers and are quickly dissipated by

subgrid scale processes. There is a continuous loss of eddy volume around this period

which is illustrated in figure 3.6a. Here the eddy volume is the eddy area multiplied by a

constant depth factor. The eddy area (A) is defined as the area bounded by the radius of

the eddy e-folding swirling transport. Meanwhile the eddy kinetic energy density (defined

as ffA 1(u 2 v 2) dx dy/A) decreases for the original eddy and increases for the topographic

eddy (figure 3.6b). Between day 18 and 20, both eddies experience drastic decreases in

volume. This corresponds to the extreme elliptical shape and strong streamer events for

both eddies after the topographic eddy separation from the slope. The original eddy
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Figure 3.6: Upper panel: The area (the volume is the area times a constant ocean depth)
of the original eddy (dash line) and the topographic eddies (solid line) vs time; lower 3
panel: The Kinetic energy density of the original eddy (dash line) -tnd the topographic
eddies (solid line) vs time.
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volume and KE remain roughly unchanged for the rest of the time. The topographic

eddy undergoes the changes of birth and death. Figure 3.6 shows that during days 36

to 40, the first topographic eddy is reabsorbed by the slope water; around day 48 a ncw

topographic cyclone emerges. The size (thus the volume) and the KE density of the

second cyclone are slightly weaker than the first one, because of the decrease in original

eddy strength caused by loss of the eddy volume and frictional decay.

An interesting phenomenon takes place on the shelf/slope as fluid is advected

across isobath by the original eddy. The slope fluid crosses slope-deep ocean boundary

at about 200 angle. It is subject to a combination of three propagation tendencies:

topographic 3, nonlinear self-advection and advection by the eddy. For the cyclone

on the slope, topographic 13 induces an along-isoba 1i motion tendency, which is also

accompanied by a shoreward nonlinear propagation due to the steepening of the eddy

I vorticity gradient. These two tendencies are in the opposite direction to the motion

caused by the original offshore eddy. However, the advection from the original eddy

is dominant and advects the cyclonic disturbance toward the deep ocean. Figure 3.7

gives the accumulated volume transport across the slope associated with this advective

I process. This transport is defined as the total volume of fluid with the potential vorticity

of slope origin but found in the region of flat bottom ocean. It is seen that most of the

I volume transport takes place within 10 to 12 days from the beginning of the interaction

and majority of the transported volume represents the fluid originating near the edge of

I the slope. The upper slope water, though disturbed by the eddy, does not move off the

slope. As the eddy moves away, the disturbance relaxes and causes oscillations on the

shelf. This will be discussed later in this section.

SConsidering the cross-isobath transport process, it is well known '":,.t strong

ageostrophic mechanisms are needed to force fluid to cross the topographic slope. In

a system without external forcing, the possible ageostrophic mechanisms are nonlinear

advection, time dependence and bottom friction. Figure 3.8a shows the individual terms

from momentum equation (3.1a) as functions of time at a location on the slope about.
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Figure 3.7: The accumulated cross-slope volume transport for case Fl. The curves are
(1) total volume transported; (2) volume transported from upper slope area 7.5 km away
from the slope-deep ocean boundary; (3) volume transported from upper slope area 15
km away from the slope-deep ocean boundary. 3
81 km northeast of the eddy center. The cross-isobath velocity is initially zero at this I
location and grows quickly into an offslope current balanced primarily by a alongshore

pressure gradient. The restoring mechanism due to the potential vorticity constraint on

a sloping bottom tends to bring the disturbance to equilibrium by inducing an oscilla-

tory motion. Instead the eddy velocity field forces a sustained continuous cross-isobath

motion that lasts about eight days at this location. It is seen from figure 3.8a that terms

uo9u/Ox (curve B) and viu/Oy (curve C) are substantially larger during this period. The 3
oscillation due to the vorticity restoration can be seen superimposed on the curves of

-fv (curve D)and -apidx (curve E). As expected the biharinonic friction term (curve 3
F) is small at all time (bottom friction is not used here). After the eddy drifts away the

motion at this slope location evolves into a well defined periodic oscillation. The second m

interaction takes place west of this location around day 34" the result can be seen from

the increasing magnitude of the nonlinear advection terms in Figure 3.8b, which shows

the variation of the terms at a location closer to the center of the second interaction. The

104 3
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Figure 3.8: Time variation of the individual terms in equation (3.1a) at two locations.
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two interactions are qualitatively the same though the second is somewhat weaker than

the first and they last about the same time length. The curve C for term vu, is positive, 3
indicating slopeward momentum flux during the interaction.

To demonstrate the importance of nonlinear advection in eddy-slope interaction 3
process, case F1 is repeated without the nonlinear terms in the momentum equations.

The results differ greatly from that of Fl. First, no slope volume is transported offslope

into the deep ocean and there is n( subsequent formation of a topographic eddy as it II
happens in case Fl. Second, the eddy does not move. The part of the eddy that is initially

on the slope radiates topographic Rossby waves. The core of the eddy within 50 km e-

folding radius is, however, almost not affected by the interaction, since the eddy center

is 65 km away from the topography. The slope disturbances are mainly the topographic 3
waves from the eddy radiation and have weaker strength than that observed in case F1,

due to the lack of onsiope momentum flux. The results show that the nonlinearity is part 3
of the crucial dynamics of the interaction process.

It is seen that the dynamic features observed in previous contour dynamics study I
are reproduced here but with richer and complicated details, such as the cross-slope

volume transport, topographic eddy formation and propagation and evolution of the

original eddy. The rest of this section devotes to the further analysis of these features •

and their variation under different parameter range.

3.3.2 Dependence on Initial Eddy Position I

It is obvious that the strength of the interaction depends on the initial distance between I
the eddy and the slope. The fact that reflects this dependence most is the change in the

rate of cross-slope transport. Cases F1, F2 and F3 from table 3.1 are examined for their

transport rates. In all three cases the total transport increases roughly linearly with time. II
But for the close interaction case F2, the transport process takes place in a relatively

short period of time. The values of the total volume transport, the interactio time 3
106 3
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(defined as the time from t =- 0 to the first topographic eddy separation) and the rate of

transport are listed in table 3.2 for these three cases. It is noted that the total transport

across slope into tile deep ocear does not vary greatlv with the initial distance, but the

rate of the transport does. When close to the slope, the eddy has a relatively stronger

interaction with the slope water but the interaction lasts for a relatively short period of

time: vice versa for an eddy initially far away from the slope. Since the cross-topography

volume transport is mainly due to the eddy nonlinear advection, a weak advection in a

long interaction time may transport across slope as much volume as a strong advection

in a short interaction time. The difference is in the composition of the transported water

mass. In a strong interaction, certain amount of fluid from the upper slope is advecte(.

off slope: while in a weak interaction only the fluid in the nearest vicinity of the slope

boundary is transported into the deep ocean. Comparison of cross-slope transport for

cases F1 and F2 showy in figure 3.7 and 3.9 indicates that F2 has about 1 0 i in 3 volume

transported from upper slope area with depth shallower than 740 rn and F1 virtually has

none from that depth. This differs from the contour dynamics calculation shown in figure

2.26. where the volume transport increases as the initial distance between the eddy and

the topography decreases and the interaction time is independent of the initial distance.

The differences between the two are due to several factors, the most important due to

the use of continuous slope in present study, which allows easy transport of near slope

edge water and longer interaction time as the eddy moves away from the slope.

From the above analysis the strength of the interaction has a direct influence

on topographic eddy generation. Careful examination shows that the circidation of the

topographic eidy is indeed larger as the original eddy is initially closer to the slope. Table

3.3 lists the relevant numbers of the original eddy and the topographic eddies form,-d

in three cases. The sizes of the topographic eddies are almost the same for all three

cases. The interaction with the closest initial ed!dy-slope distance produces the strongest

topographic eddy. This is not unexpected given the similar total volume transport but

different origin of the eddy water from various (lepthhs of the slope for these cases.
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Figure 3.9: The accumulated cross-slope volume transport for case F2. The curves are 3
(1) total volume transported; (2) volume transported from upper slope area 7.5 km away

from the slope-deep ocean boundary; (3) volume transported from upper slope area 15
km away from the slope-deep ocean boundary; (4) volume transported from upper slope 3
area 22.5 away from the slope-deep ocean boundary.

Table 3.2 1
Total Volumie Length Rate of I

Case Transported of Time Transport
(102rn 3 ) (Days) (10 6 m 3/s) 3

F1 5.6 12 5.4

F2 5.8 8 8.4

F3 5.6 20 3.2

Dependence of Volume Transport on Eddy Position 3
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Table 3.3

Maximum
Case Circulation Vorticity Radius

(10in 2) ( 10-'s-1) (kin)

F1 0.65 0.32 38

F2 0.80 0.54 39

F3 0.40 0.11 38

The
Original -1.3 -0.64 50

Eddy

The Characteristics of Topographic Eddies

It has been seen before that the eddy motion is dominated initially by the slope

PV front disturbances and then by the dipolar advection. The eddy center trajectories

for six cases are plotted in figure 3.10. According to the figure, the eddy propagation can

be roughly divided into two stages. In first stage, the eddy is expelled from the slope

due to the interaction with the cyclonic slope disturbance and the effect of topographic

fl associated nonlinearity. The closer the eddy is initially to the slope, the farther it is

expelled southeastward. The eddy trajectories at this stage agree qualitatively with that

of the contour dynamics calculation shown in figure 2.23. In the second stage the cyclonic

slope disturbance has separated from the slope and formed a topographic eddy, which

forms a dipole-like structure with the original eddy. The propagation is mainly due to

the dipolar advection. Depending upon the strength of the interaction, the eddies may

propagate back to the slope and result in multiple interaction. Theoretically the multiple

interaction is inevitable except only in the case in which the dipole is a symmetric one.

1.09



I
Eddy Center Trajectory

-20 Legena -
c3F1
hF2 a

-40 o F3 3
* F4

-60 * F5 Cie
+ F6

-80 " I

--100 , S

-120 -AI

-140 .

-160 -"

-180 & •

-200 C ,
-80 -40 0 40 80

X (km)

Eddy Center Trajectory I

0-3

:+
0+~04+

= -to e+ 04

+ + M M %o

09

0- LO

r3÷

-80,

-40 -30 -20O -10 0 10 20 30 40
X (kin)I

Figure 3.10: Trajectories of the eddy centers for cases F1 to F6 histed in table 3.1. The I

marks represent the eddy center locations at the beginning of a day. The lower panel isI
a blowup of the center portion of the upper panel.

I
I

I0 mI

_60- 3 + !



In reality the friction consumes momentum and the multiple interaction is conditional.

Of the three cases here, F1 and F2 show multiple interaction and F3 is too weak to have

it. One may expect that in the second stage, planetary j3 effect, will be effective, which

will be investigated in the next section.

1 3.3.3 Dependence on Eddy Strength and Size

The eddy-topography interaction depends on the characteristics of the eddy. The depen-

dence on the eddy strength and size will be the most interesting and relevant topics to

this study. In this section, two cases F4 and F5 are examined and compared with case

F3. In case F4, everything is the same as that in F3 except that the eddy in F4 has

I circulation and swirling transport twice as that of F3. The eddy e-folding radius in F5 is

one and a half the the radius of the eddy in F3, while the eddy circulation and swirling

transport are kept the same. Table 3.4 gives some results of the interaction.

Since the velocity field in case F4 is twice as strong as that of case F3, it seems

I likely to advect more fluid across the slope. The change is, however, very small. The

volume transport in F4 increases only slightly. Due to the strong eddy velocity as well

as the strong slope disturbance, the interaction in F4 takes only about half as long time

as that in F3. The topographic eddies generated in these two cases have roughly the

same size, but the circulation and maximum vorticity in F4 are more than doubled.

I This means that the cross-slope transport in F4 consists of more upper slope water

due to the stronger eddy advective field. This result indicates that the strength of the

I cyclonic topographic eddy grows proportionally with the strength of the original eddy.

The resulting eddy center trajectory is approximately the same as that in F3 but with the

eddy in F4 moving twice as fast. It is seen from figure 3.10 that the two eddy trajectories

are close before the topographic eddy separates from the slope. Upon the separation, a

I dipole structure forms and subsequently dominates the eddy propagation. The original

eddy in F4 undergoes a larger loop trajectory and tends to move southward faster thanI!i
I1



U
I

Table 3.4

Case F3 F4 F5

Total Volume
Transported 5.6 6.5 8.8

(101 2 rm 3 ) __

Length
of Time 20 10 1.5

(day) . . ._
Rate of

Transport 3.2 7.5 6.8
(10 6 M 3 /S)

Cyclonic Eddy
Circulation 0.40 0.90 1.02
(10W m/s) ______

Maximum
Vorticity 0.11 0.20 0.65

(10-4S-1)

Cyclonic
Eddy Radius 38 38 50

(kin)

Influence of Eddy Strength and Size 1

I
the eddy in F3. This is due to the increase of the dipole strength in case F4, which is

roughly doubled from that of F3.

The strongest influence comes from the variation of the size of the eddy. Starting

from the same initial position, the eddy velocity field reaches farther onto the topography I
in F5 than that in F3. It also causes a larger size disturbance since the eddy spreads over

a larger area. Potentially this can cause a larger cross-slope transport with more upper- U

slope fluid involved. Table 3.4 shows this is indeed the case. The volume transport

and topographic eddy circulation increase by factors of 1.6 and 2.5 from that of F3,

respectively. The maximum vorticity found at the center of the topographic cyclone is 3
112
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now 0.65 x 10- 4 s- 1, representing approximately the slope water from 600 meter depth

isobath. As a comparison, the maximum,, vorticity found in the topographic eddies in

cases F3 and F4 are those from 900 and 840 meter isobath. respectively. The interaction

I time lengths are also different among these three cases. It can be seen from table 3.4 that

the strong interactions usually are shorter while the weak ones last longer; the strength

I of the interaction may be compensated by the change of interaction time, such as that in

F3 and F4. Unlike the variation of eddy strength, the effect of wide-spread eddy velocity

Iin F5 is not significantly compensated by the change in interaction time and results in a

drastic increase in the total volume transport and the size of the topographic eddy. The

rate of volume transport and eddy circulation are more than doubled with respect to F3.

The eddy undergoes the largest excursion in a group of six cases (figure 3.10). Since the

I original eddy can not pull out a pool of slope water with circulation larger than its own,

the limiting case of the interaction is a balanced dipole as mentioned before.

3.3.4 Dependence on Topography

The topographic effect is examined by comparing results of using topography A, B and

C. For topography A ana B the depths at the coast and at the deep ocean are roughly the

same but the e-folding lengths b-1 differ. Topography B has a flatter shelf and a steeper

slope than topography A (figure 3.1). The topography A, used in all the previous cases, is

always deeper than B at any given location on the shelf/slope. The topography C differs

drastically from A and B by having a larger water depth at the coast (400 m). If a fluid

column is moved across the slope into the deep ocean from the same starting location,

the vortex tube stretching is largest in topography B and smallest in C. Therefore the

amount of cyclonic circulation generated is also largest in B and smallest in C. On the

other hand, if the same original eddy and initial position are used for these topographies,

the amount of cyclonic vorticity generated due to advecting fluid across topography must

be the same. Therefore in the case with topography B, i.e., F6 in table 3.1, there will

be less fluid from upper slope moving into the deep ocean than that in case F1 with
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Figure 3.11: The accumulated cross-slope volume transport. for cases F6 (left panel) and
F7 (right panel). The curves are (1) total volume transported: (2) volume transported
from upper slope area 7.5 km away from the slope-deep ocean boundary; (3) volume
transported from upper slope area 15 km away from the slope-deep ocean boundary.

topography A, while the case with topography C, i.e., case F7, will have more fluid from

upper slope. This is seen through comparing figures 3.7 and 3.11. The total volume I
transport of F6 and F7 is roughly the same as that of Fl. but the transport in case

F6 (F7) clearly consists of less (more) upslope fluid than that in case Fl. This result

differs from the contour dynamics results, where the cross-escarpment transport increases 3
with decreasing topography height due to the step topography. Since the perturbation

vorticity generated on the slope by the original eddy is not larger than the effective 3
vorticity of the original eddy itself, the original eddy tends to generate an amount of

perturbation cyclonic circulation proportional to its own anticyclonic circulation on the 3
slope, regardless the size of the topography. In case F7 the eddy does not advect a large

volume of low vorticity fluid from the edge of the slope due to the eddy size and interaction 3
time limit. Instead it extracts fluid from upper slope area where the depth is shallow and

the large vortex stretching provides the circulation. Unlike the sloping topography, the I

114 3
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volume transport across the escarpment in the contour dynamics calculation is equivalent

to the circulation generated. To generate a given amount of perturbation circulation in

the contour dynamics model the mechanism requires that a large volume transport must

occur in a small escarpment case, and a small volume transport in a large escarpment

case. For the present case of continuous slope, the large difference lies in the volume

coming from the upper slope area, as shown in comparison of figures 3.7 and 3.11.

Similar eddy trajectories for case F1 and F6 are expected given only the slight

difference in topographic eddy circulation and size and is seen from figure 3.10.

1 3.3.5 The Effect of Bottom Friction on Shelf/Slope Responses

I To examine the effect of bottom friction on shelf/slope responses, case F1l is studied in

this section. For the present barotropic problem, the bottom friction is treated as a body

force acting on the whole water column. The friction is assumed linearly proportional

to the velocity component in the same direction, for example, rfu in the z-momentum

I equation. The friction coefficient r! is dependent upon the local water depth and vanishes

in the deep ocean. Therefore it only dampens the motion over the topography and does

I not affect the eddies in the deep ocean. rf is

S{rD/h, LL-I<y<L (3.6)I! {O, O<y<L-l' (36

I where rD = 3 x 10- rn/s.

Figure 3.12 shows the volume transport of this case and is compared with case

I Fl. It is known that for steady flow the friction is ageostrophic and helps to increase the

cross-isobath flow component. But here it weakens the time dependent cross-slope motion

I forced by the eddy and actually results in a slight decrease in cross-isobath transport.

This in turn affects the eddy propagation and causes a small deviation from the eddy

trajectory of Fl. The major effect of bottom friction is the dampening of the shelf/slope

I waves caused by the eddy disturbance. Its discussion follows shortly below.
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Figure 3.12: The accumulated cross-slope volume transport for case F11. The curves are
(1) total volume transported; (2) volume transported from upper slope area 7.5 km away I
from the slope-deep ocean boundary; (3) volume transported from upper slope area 15
km away from the slope deep ocean boundary.

3.3.6 Cyclonic Eddy

It has been known that a cyclone behaves quite differently from an anticyclone when

approaching a bottom topography. Contour dynamics calculations have shown that de-

pending upon the strength of the PV front, a cyclonic vortex may either propagate onto

or along a step topography. The cyclone-shelf/slope interaction will be investigated in

this section.

Parameters of the cases to be examined are listed in table 3.1. The same eddy

as in case F1 but with reverse circulation is used here. Figure 3.13 shows the evolution

of streamfunction, vorticity and potential vorticity fields for case F9. Initially the

cyclone moves towards the slope and perturbs the fluid on the slope. It disturbs the

water column shoreward and induces a small anticyclonic structure on the slope. A

dipole-like structure forms at the slope edge (day 16 and after in figure 3.13). The I
anticyclone on the slope will contribute to increase the westward propagation speed of

116

I



i

I0

I>

v 0UU

lp•

02 0

0 0

;i 0I 
II,

Ia

0

IO

___________ 
____117__



I
I
I

I I

I ... I
SI I

SI |

I
_ U

I I

~ I I



IShallow u

UtI Un

Deep

Utj Ud

Figure 3.14: Schematic illustration of eddy motion tendency for a dipole-like structure
near the edge of a slope. Ut, Ud and U, (u,, ud and u,) are velocity components of the
original eddy (topographic eddy) due to topography j3, dipole advection and nonlinear

I self-advection, respectively.

the cyclone. Figure 3.14 illustrates the motion tendency for both eddies. It is noted that

I the anticyclonic disturbance on the slope tends to adhere to the cyclone instead of being

advect ed offshore. Under topographic 13 and nonlinear efr-cts the cyclone moves westward

and onshore, and the anticyclone moves westward and offshore. Since the topographic

03-induced velocity is proportional to both eddy strength and bottom slope, the cyclone,

which is stronger and on a steeper lower slope, has a tendency to move westward faster

than the anticyclone. On the other hand, the anticyclone is advected westward by the

cyclone in this dipole-like structure at a rate faster than the motion of the cyclone due

to the advection by the anticyclone. These two effects balance each other and the two

eddies propagate westward roughly at the same speed. Meanwhile, the cyclone continues

moving slopeward under the influence of nonlinear effect, against the slope eddy. There* are two effects associated with the onslope anticyclonic disturbance: first, together with

sloping bottom, it retards the upslope motion of the cyclone; second, it speeds up the

westward propagation of the cyclonic eddy as two eddies get closer. Figure 3.15 shows
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Figure 3.15: Propagation speed for the cyclonic eddy in case F9. Curve A is alongshore
velocity and curve B is cross shore velocity.

the propagation speed of the cyclone. As the center of the cyclone gets very close to the 3
slope, the westward propagation speed almost increases exponentially to 0.18 m/s, while

the slopeward speed increases linearly and slowly, with value about 0.02 - 0.03 m/s.

The-cyclone will eventually move onto the slope with considerably weakened strength

due to topographic Rossby wave radiation. It effectively causes large disturbances on

shelf and slope.

An estimate (figure 3.16) shows that for case F9 between day 0 and day 35 when

approaching the topography, both the KE density and the volume of the original eddy

stay relatively constant. From day 35 to 45, the eddy area gradually decreases as part of

the eddy reaches over the topography, but the eddy KE density is affected only slightly. 3
The small increase in the eddy KE density in this period is due to the loss of part of

the eddy volume that is less energetic than the average eddy KE. Between day 45 and 3
55, the eddy is moving quickly onto the slope and undergoes a drastic decrease in the

eddy KE and volume. By day 56 almost the whole cyclonic eddy has moved onslope. 3
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Figure 3.16: The time history of kinetic energy density of the original eddy (upper panel)
and area of the original eddy (lower panel). Case F9
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Figure 3.17: Cyclonic eddy center trajectories for cases F8. F9 and F10.

This is accompanied by strong topographic Rossby wave radiation on the slope after day

56 as seen from figure 3.13. Generally on an unbounded slope, the eddy that moves I
across isobaths will stop at the location (the arrest position) where the eddy rotation is

balanced by the vortex stretching or compression. The eddy breaks apart quickly and

radiates rapidly propagating Rossby Waves. 3
- The effect of a steeper topography is seen when comparing results of cases F9

(topography A) and F10 (topography B). For a given eddy the topography B has the I

arrest position farther downslope than topography A. The effect of this difference is

reflected in the eddy center trajectories which are plotted in figure 3.17. The eddy center

in case F9 reaches upslope a few kilometers more than that of case F1O. As the eddy

approaches the slope, the perturbations on the slope and the topographic /3 effect strongly I
affect the eddy motion. When the eddy oscillates on (off) slope, its westward propagation

speed accelerates (decelerates), as seen in figure 3.17.

Comparison between the results of F8 and F9 indicates that the change of initial I

eddy position does not cause any qualitative changes in the interaction process. The 15

I
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kmn difference for the eddy positions in figure 3.17 is due to rearranging the eddy initial

locations to the origin in the plot.

From continuity, an amount of slope water about the same size as the onslope

portion of the original eddy must be displaced offslope. This volume exists mainly in the

form of a small seaward displacement of the slope-deep ocean PV front and is not well

resolved in the present grid resolution.

3.3.7 Generation of Waves on the Shelf/Slope

One of the most important features in the eddy-shelf/slope interaction is the generation of

topographic waves. Observational evidence suggests that some of the velocity fluctuations

on the continental slope and rise are related to the offshore mesoscale eddy activities

(Hogg, 1981). Shoreward propagation of topographic waves was found to be associated

with the radiation field of Gulf Stream warm-core rings (Louis et al, 1982; Ramp, 1989).

Eddies in continental margins can cause seaward perturbations of the slope PV front,

which subsequently propagate along isobaths in the same direction as continental shelf

waves (Halliwell and Mooers, 1977). There have been many other observations that relate

the offshore mesoscale eddy activities to the shelf/slope processes, but the topic of shelf

wave generation by mesoscale eddies remains not well understood. The investigation in

this section tries to shed some light on the problem.

Several studies have been proposed to address the shelf/slope responses to offshore

eddy forcings. These studies can be roughly divided into two types according to their

treatment of the offshore forcings. The first type treats the forcing like an isolated

momentum source sitting on a sloping bottom and radiating topographic Rossby waves

(Louis and Smith, 1982); or in a baroclinic case, an isolated eddy undergoes internal

adjustment process of its density and velocity fields on a sloping bottom and generates

topographic waves due to vertical density advection (Shaw and Divakar, 1991). The

sccond type uses a boundary forcing. The forcing is prescribed on a given boundary of
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the physical domain (usually parallel to the isobath) and is allowed to propagate along

the boundary (Malanotte-Rizzoli, 1984; Chapman and Brink, 1987; Qiu, 1990). These 3
studies show that the shelf/slope responses depend on the propagation speed and period

of the forcing, stratification and friction. I
In this section a different mechanism of topographic wave generation is explored.

Based on the observations of Halliwell and Mooers (1979), the large seaward displace-

ments of shelf/slope front caused by Gulf Stream warm-core rings usually move south- II
westward along isobaths. Their dominant interaction wave length ranges between 100

and 200 km, the period between three and seven weeks, and the propagation speed 2

- 11 cm/s. The observations also indicate that the eddies do not force large shoreward

perturbations of the slope front at their northwestern edge. Similar frontal perturbations 5
were also observed by a hydrographic survey south of Cape May in the Mid-Atlantic

Bight. Morgan and Bishop (1977) found that during the interaction between a Gulf 3
Stream warm-core ring and a slope front, the water in the inner slope was displaced

seaward from its mean position as the outer slope water was drawn across the slope into 1
the deep ocean. According to the observations of Kirwan et al (1984), temporary offshore

motion can occur after an anticyclone (the Loop Current eddy in their study) encounters 5
the topography.

A question to be asked is how the forced displacement of slope water will behave

after the eddy forcing relaxes. Unfortunately there have not been any direct observations I
on this subsequent shelf/slope adjustment process. However, observations do show some

fast propagating frontal disturbances moving along the shelf/slope front (Halliwell and 3
Mooers, 1979). They are possibly frontal trapped waves with unknown origin. A plausible

mechanism for the evolution of shelf/slope disturbances after the relaxation of the eddy 3
forcing is that the disturbances break apart and disperse as topographic waves.

Evidence supporting this mechanism is taken from the numerical results of present I
study. In figure 3.18 potential vorticity contours are plotted at day 4 and clay 16 for the
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Figure 3.18: Potential vorticity (PV) contours at day 4 (upper panel) and day 16 (lower
panel). The inner and outer plots show the potential vorticity contours at the same time
but with different ranges and increments of the values. The outer plots illustrate the
perturbation on the shelf and slope, while the inner plots focus on the slope PV front
and the eddies.
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eddy-topography interaction case Fl. At day 4, a seaward disturbance develops northeast

of the eddy, but no obvious shoreward displacement is seen on the opposite side. The 3
disturbance is seen reaching the inner shelf. At day 16 the eddy moves offshore and the

disturbance relaxes. Since potential vorticity is approximately conserved, the variation of 3
PV contours represents the pattern of the dynamic field, similar to the previous contour

dynamics. The contours clearly show patterns of oscillations and propagation. Another 1
plot, figure 3.19a shows the time history of the alongshore velocity component at three

cross shelf locations. The wave-like velocity oscillations are obvious and highly correlated I
at the three locations with a cross-shore phase lag for two adjacent locations of about

six days. Shown in figure 3.19b is the alongshore velocity component along the 91 meter I
isobath contour. The horizontal axis shows along-isobath distance, and individual curves i
stacked vertically represent the alongshore velocity, plotted every six hours for the first

20 days. The along isobath wave propagation is observed. Even the wave dispersion 5
can be seen in the plot: the fast-traveling long waves outpace the slow traveling short

waves toward the left. The cross-shore velocity shows the same type of oscillations but 5
with amplitude less than half of the alongshore velocity. Some questions are asked: Are

these motions shelf/slope waves? What is their dispersion relation? What conditions 3
do shelf/slope responses depend on? The answers will be sought as the following study

focuses on the responses on the shelf/slope. In next section, the further explanations 3
are sought to support the theory of the shelf wave generation and a momentum balance

study will be performed to show that the shelf/slope responses are indeed governed by a I
set of linear wave equations.

Free Shelf/Slope Trapped Waves 3
It is helpful to review first the properties of free shelf waves. Propagation of free waves

over an exponential topography has been studied extensively in the past. It is well known I
that any straight continental shelf of monotonic depth profile supports a complete set of
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I Figure 3.19: Upper panel: Alongshore velocity vs time at three cross-shelf locations 150
km away from the western basin boundary. From top to bottom the locations are: 30 kin,
67.5 km and 105 km away from the coastal wall; Lower panel: snap shots of alongshore

velocity on the 105 meter isobath contour (30 km away from the coastal wall) from day
0 to day 20 with interval of 6 hours. The horizontal axis is the alongshore distance in
number of grids (it gives the distance in km if multiplied by 7.5 ), and the velocity at a

given time is plotted as a curve stacked vertically with increasing time. The theoretical
long wave phase speed is shown as straight lines extending out of the plotting frame. The

j numbers I to 6 near each straight line mark free shelf trapped modes I to 6, respectively.
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barotropic trapped modes (Huthnance, 1975). The most relevant to the present study

is the problem of a free wave propagating along an exponential slope by Buchwald and 3
Adams (1968). For bottom profiles A and C given in the form of equation (3.2), the

dispersion relation is given implicitly by following two equations,

m2 + k 2 + b2 + 2bf k/a = 0. (3.7a)

tanm1 = -rn/(b + k), (3.7b)

where the frequency ar is a function of the alongshore wave number k, and b and I are

defined the same as that in equation (3.2). The parameter m can be eliminated to give

a single relation for a- and k. One important point regarding this dispersion relation

is that for short waves (kl >> 1) the group velocity of each mode is in the opposite

direction to the phase velocity. The group velocity changes sign when passing through

an intermediate wave number. At this wave number the group velocity vanishes, and a

resonant type of wave behavior may be expected.

Generation of Shelf Waves

According to Huthnance (1975), the barotropic trapped modes on a monotonic slope with I
straight isobaths make a complete set. With external forcing applied, this implies that.

momentum transfer into slope wave modes is possible provided the forcing frequency is

not specified (otherwise the shelf response has the same frequency as the forcing which I
may not be in the range of the shelf trapped waves), such as the forcing by an atmospheric

disturbance traveling along the shelf (Gill and Schumann, 1974). In the case of an offshore 3
eddy forcing, the momentum may either be radiated onshore (Louis and Smith, 1982)

or transferred onshore through direct eddy-shelf/slope contact. In the present f-plane 3
study, when the eddy drifts into the flat bottom region, the topographic wave radiation

is suppressed. Therefore the shelf/slope response is due to direct. eddy contact with the 3
shelf/slope water. The eddy imparts energy and momentum to the shelf. The subsequent

process is the adjustment of the shelf/slope water to this perturbation.
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Assume that the velocity at a given shelf location can be expanded into a suni of

harmonic waves

u(x,y,t) - U.(y) cos(krx - o,,t + 0,,, (3.8)

where U,,(y), k, and 0, are, respectively, the amplitude, wave number, frequency and

phase of the n-th mode of the wave. In order for it to represent shelf-trapped waves, k,

and o,, must satisfy the shelf wave dispersion relation equation (3.7). Since the relation

between k,, and a,, is not known a priori, it is difficult to check k,, and c,, directly against

equation (3.7). Careful examination of figure 3.19 reveals that the alongshore velocity is

not a wide band signal but rather is a mixture of a few dominant waves with distinct wave

numbers and frequencies. For each given k and o,, the energy density may be computed,

which will give the distribution of energy which has been transferred into different wave

modes. This can be further compared against the dispersion relation (3.7) to see if the

I peaks of wave energy lie in the (k, ar) range of the shelf wave dispersion. For the observed

motion to be linear shelf-trapped waves, its major energy peaks must lie on or close to

the shelf wave dispersion curves.

This is done by calculating 2-D wave power spectral density in (k, ar) space. The

power spectrum for the alongshore velocity record shown in figure 3.19 (case F1 in table

3.1) is calculated and plotted in figure 3.20. This velocity record is observed on the

inner shelf away from the eddy and therefore contains a very small direct eddy signal.

The frequency and wave number bands for the spectrum are relatively narrow, mainly

concentrated in the low frequency and small wave number region. Due to the finite

alongshore distance (720 km) the velocity record is taken, the long wave energy may

not be properly resolved in this spectral approach. This will be discussed in more detail

later in this section. The spectrum is integrated over individual frequency and wave

number bands to give the wave energy at a given (k, o,) band. This is then divided by

the total energy over the entire (k, ca) space to yield the percentage power carried by the

wave in that (k, o-) band. The results are plotted on the theoretical dispersion diagram

for free shelf trapped waves. Figure 3.21 shows the alongshore wave energy in (k, a,)
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Figure 3.20: 2-D power spectrum density of alongshore velocity for case Fl.
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Figure 3.21: Spectral energy density scatter plot on the shelf trapped wave dispersion
diagram for Case F1. The curves are the theoretical solution of the dispersion relation
equation (3.7) with bi = 1.5 for the first five shelf trapped wave modes excluding the
Kelvin wave mode. From upper to lower curves in order, they are modes 1, 2 , 3, 4 and
5, respectively. 3
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Figure 3.22: Spectral energy density scatter plot on the shelf trapped wave dispersion
diagram the same as figure 3.21 for Case F3 (large initial distance between the eddy
center and the topography).

space plotted on dispersion curves solved from equation (3.7) with b! = 1.5 (topography

A). Only five free wave modes are shown and the zeroth mode, or Kelvin wave mode is

not shown due to the use of a rigid lid. The major part of the wave energy (Ž 80%)

lies in a narrow frequency and wave number band (0.05 < o- < 0.1 and 3 < IkJ •_ 9),

corresponding to dimensional values of wave period and wavelength (7.3 < T < 14.5 days

and 105 < L < 314 kin). About 90% of the wave energy is distributed among modes 4, 5

and 6 (not shown), with mode 5 counting more than 50% of the total energy. The group

velocities of these waves are in the same direction as the wave phase velocities.

The shelf response of case F3 is shown in figure 3.22. Except for the fact that the

initial eddy-slope distance is larger in F3, the other conditions are exactly the same as

that of Fl. As discussed previously, the interaction of F3 is a weaker one in terms of the

perturbation intensity and there is not a second interaction. But the interaction lasts

twice as long as that of Fl (see table 3.2). The shelf responses show roughly the same
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pattern as figure 3.21. The only difference is that the spectral density has a lower power

level than case Fl. The shelf/slope responses of case F4 are examined in the same way

and their pattern of the modal energy distribution in (k, a) space is similar to that of

F1 and F3. 5
A common feature observed in the above cases is the isolated energy peak on

mode 2 curve around resonance (k, or)=(-6, 0.25), where the group velocity vanishes.

Almost nothing is seen from mode 3. There are two possible explanations for this mode

2 response. The first, it is directly induced by the eddy disturbance through the resonant

response of mode 2. The second is that the waves excited on mode 2 have group velocity I
in both directions. The positive propagating cg can be seen from figures 3.19b and 3.22,

and the waves with negative group velocity reach the western sponge boundary and 3
are partially reflected to give waves with positive c. The mode 2 responses are waves

with fast phase speed and their energy accumulates around the (k, a7) band of zero c. .

Therefore the waves with positive group velocity contain the artifact due to the boundary

condition used. However, this artifact is unlikely to be dominant because the scattered 5
waves are dampened significantly by the s, . ,e layers. The mode 2 energy is also very

small, about less than 5% of the total wave energy. I
To see if a larger size eddy can affect the pattern of the response, case F5 is 3

examined. Figure 3.23 shows that mode 5 is still the most energetic wave mode, but

its energy peak is slightly flattened. Corresponding to the weakened peak, more energy I
spreads over higher modes at a higher frequency band. The increase of mode 2 energy

is clearly seen. There is also a tendency for the shelf response to shift toward longer

wavelengths. This is directly a result of the larger size eddy in this case.

The topography effect is examined with case F7, which uses topography C with U
bi = 0.46 as given in section 3.2.1. The result, figure 3.24, shows that the most energetic.

response now moves slightly towards the lower modes. The modes (3 and 4) count

for about 70% of the total energy. There is also more energy transfer into the two 3
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Figure 3.23: Spectral energy density scatter plot on the shelf trapped wave dispersion

I diagram the same as figure 3.21 for Case F5 (large size eddy).
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lowest modes around the resonant band (where the group velocity is zero). However, the

responses follow closely the dispersion curves of free shelf waves. 3
As seen from above cases, the lower modes (such as modes I and 2) appear to

be much weaker than the higher modes in the energy spectra. This, however, does not ,

necessarily mean the lack of lower mode response on the slope. The theoretical long wave

speed is calculated for free shelf trapped modes and is plotted in figne 3.19 as a tilted line I
for each of the first six modes. It is seen that these long wave phasc speeds represent fairly

well the phase propagation observed in figure 3.1T,. The existence of the lower modes I
is obvious from the comparison of the theoretical and observed phase propagation. The

reason that they do not show up strongly in the spectral plot is that the long waves

(lower modes) propagate much faster than the short waves (higher modes). Most of the

long wave energy exits the finite domain and is dissipated in the sponge boundary layer

in a short period of time, while the energy of the slow propagating short waves stays 5
in the domain. To demonstrate the existence of an energy source for the generation of

long waves, the spectrum of the eddy forcing at the edge of the slope is also calculated 3
in k-r space. It is found that 75% of the forcing energy lies within the long wave range

of 0 < Jki < 2, or in dimensional units, L > 470 km. This portion of the eddy fVrcing

will excite long waves over the slope, and also transfer energy into higher modes. Even

though the long wave is not properly resolved in the energy spectra due to the spatial I
limit, this does not affect the arguement that the shelf/slope responses are dominated by

shelf trapped wave modes. I
In all the above cases, the shelf/slope responses carry characteristics matching that 3

of the shelf-trapped waves. To see how the responses vary across the shelf and slope, the

alongshore velocity (the time history is shown in figure 3.19a) energy spectra of case FI 3
at three cross-shelf locations west of the eddy disturbance are examined. The energy-

frequency diagram is given in figure 3.25. Consistent with the previous results of the 2-D 3
power spectrum, all three curves indicate the energy peaking in a narrow frequency band

centered at a = 0.06 and very small energy at high frequencies. The response amplitude U
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Figure 3.25: Frequency domain alongshore velocity energy spectral density for case F1
at taree locations as shown in figure 3.19a.

decreases exponentially seaward, an indication of shelf trapping. The alongshore velocity

spectra at locations east of the eddy disturbance are also examined. The most energetic

responses are short waves, and some of these waves have group velocity opposite to the

dirertion of the phase speed. They are found to have amplitudes at. least one order of

magnitude smaller than the disturbance west of the eddy. This also serves as a good

indication for small boundary reflection from the downstream sponge boundary layer.

The cross-shelf structure of the waves shown in figure 3.19 is examined using

empirical orthogonal modes. Figure 3.26 shows the empirical eigenfunctions of the first

three modes for the cross-shelf structure of the alongshore velocity. The velocity is from

a cross-shelf section 210 km west of the initial location of the eddy, thus minimizing

the direct eddy influence. The first mode accounts for about 51% of the total variance

at this section. It displays clearly the exponential seaward amplitude decay and cross-

shelf variation. "rhe second and third modes account for 25.-C and 12'C of the variance,

respctively. Their cross-shelf variation decays toward outer slope. but with maximum
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Figure 3.26: The eigenfunctions corresponding to the first three empirical eigen modes
of alongshore velocity at a cross-shelf section west of the eddy. Case Fl.

amplitude in the mid-shelf. These three modes combine to give 88% of tue total variance 3
observed at this section. They show the shelf-trapping effect for the responses on the shelf

and slope, but by no means they represent the true cross-shelf structure of the theoretical 3
shelf-trapped modes. Tht cross-shelf structure in equation (3.8) for the topography A

given by equation (3.2) has the following form: 3
U,,(y)-= A, eb(L" )bl sin 7"(L -y) +mcos M, (L -y)} (3.9)

1 1
where A,, is the amplitude and m is the parameter defined by equation (3.7). The first

five cross-shelf modes are solved for k = 6 and plotted in figure 3.27. It is seen from

the figure that all modal amplitudes (normalized) decay exponentially offshore and the

third mode has amplitude close to zero at the location y = 570km. Since the previous I
spectral density are calculated using the alongshelf velocity at a location 30 km away

from the coast, the weak mode three response in the figures of the spectral density can 3
be attributed to this cross-shelf modal variation. The prominence of mode five can be

explained in part by its first peak at this location. The relation oetween the dynamical
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Figure 3.27: The normalized cross-shelf structure of the first five dynamic modes calcu-
lated from equations (3.7) and (3.9) for wave number k = 6. Letters A to E represent
modes 1 to 5, respectively. The x-axis is in unit km.

I modes and the empirical modes can also be seen by comparing figures 3.26 and 3.27.

The large coastal amplitude seen in the first empirical mode corresponds to the positive

amplitude for all five dynamical modes and the first negative peak near y = 565km

I matches the large negative amplitude of three higher dynamical modes, while the lower

modes propagate out of the domain and contributed less. The seaward decay of the first

empirical mode is reflected by the cancellation of the positive and negative values of

the dynamical modes. The high-order remnant from the combination of the dynamical

Smodes is likely shown in the higher empirical modes, such as the mid-shelf amplitude

peaks seen in the second and third empirical modes. It should be pointed out that the

I direct influence on the empirical modes from the original eddy is very small due to the

large distance between the eddy and the location where the velocity record is taken.

I The frictional effect on the shelf response is investigated with case Fll. The

I energy-dispersion diagram shows the response has the same modal energy structure as
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Figure 3.28: Frequency domain spectral energy density for case F 11 at three cross-slope
locations the same as in figure 3.25. The solid, dashed and dot-dashed curves are in order
from inner-shelf to outer-slope.

that of case F1 shown in figure 3.21, but the amplitude is significantly weaker. Figure U
3.28 is a plot of energy spectra for case FI1 similar to figure 3.25. The friction dampens

the inner shelf response by a factor of 50 and causes the peak response to shift seaward.

In summary, the topographic waves are generated through eddy-shelf/slope in-

teraction process. They are induced by the eddy forced shelf/slope disturbance. They

propagate along isobaths with shallow water on the right and exhibit dispersion relations I
close to those of the free shelf-trapped waves. The peak response is centered in a narrow

wave number and frequency band depending upon both the eddy structure and the to- I
pography. The excitation of shelf wave modes by eddy disturbance depends largely on

the geometry of the shelf/slope profile and on the size of the eddy, and weakly on the

eddy initial location and eddy strength.

I
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3.4 Eddy-Shelf/Slope Interaction on a !3-Plane

On the /3-plane, an axially symmetric eddy will propagate westward and disperse rapidly

as dispersive planetary Rossby waves (McWilliams and Flierl, 1979). As the longer

wavelength Rossby wave components of the eddy propagate faster, the gradients on the

leading western side are weakened and that on the trailing eastern side are steepened.

This asymmetry results in an eddy self-advection tendency which is in the same direction

as the flow on the strong gradient side. The resulting eddy propagation is southwestward

(northwestward) for an anticyclone (cyclone) with a rate depending upon the size and

strength of the eddy. The inclusion of the planetary / will also increase the eddy decay

rate over the purely frictional decay as seen in section 3.2.3. One of the important changes

from previous f-plane study is that now the eddy may be initialized away from the

topography and subsequently propagate toward it. This is considered more realistic than

the previous field initialization. There are other changes associated with this. The Rossby

wave dispersion and frictional decay will weaken the strength of the eddy before it reaches

the slope. The fast propagating Rossby waves will arrive at the slope before the eddy

and perturb the slope water. There will be other important changes due to the inclusion

of planetary /3, but no fundamental changes of shelf/slope responses are expected. This

is because, as mentioned earlier, the topography control is dominant and the dynamic

properties on shelf/slope are not altered at the lowest order by including /3-effect. The

resulting changes in the eddy propagation and strength may affect the duration of the

interaction, and the subsequent processes of multiple interactions. These potentially

important changes associated with /3-effect no doubt deserve thorougl investigation.

The propagation tendency of an isolated eddy on a /3-plane must be considered

when the field is initialized. Since an anticyclone (cyclone) goes southwestward (north-

westward) on a planetary /3-plane, if initialized in a flat bottom ocean, an anticyclone will

never reach a topography along the northern boundary. Therefore a western boundary

or southern boundary topography will be used with water depth shallowing in the same
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Figure 3.29: Schematic propagation tendency diagram for cyclone and anticyclone: (a)
planetary ,3-plane without topography; (b) f-plane with sloping bottom; (c) planetary
8-plane with sloping bottom. The topography slopes up westward. After Smith and
O'Brien (1983). 1
direction. This also makes the dynamics more inter-ting due to the existence of an angle

between the planetary and the topographic .3. By varying this angle we may study the I
effect of an eddy impinging on the slope from different directions. For a cyclone either a

western boundary or northern boundary topography may be used.

Interesting combinations of the eddy propagation tendencies were discussed by 3
Smith and O'Brien (1983). Their figure 3 is reproduced here in figure 3.29. The topog-

raphy is upslope to west. The configuration of topographic J and planetary i produces

the following results: the nonlinear advective tendency associated with the dispersive

steepening on the wake side of the eddy acts meridionally in the planetary /3-plane and

zonally for prescribed topographic slope. The fact that nonlinear propagation has a zonal

as well as a meridional component indicates that the topographic slope can significantly I

I
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alter the nonlinear propagation, especially when the nonlinear propagation is as large as

the planetary /3 and the topographic 3 components.

In present study, the eddy is initialized in the deep flat-bottom ocean and sub-

sequently propagates toward a west-bound topography. Upon reaching the topography,

the simple scaling in the previous section shows that the topographic control is dominant

over planetary /3, and the anticyclone (cyclone) is expelled away from (trapped at) the

topography. In the case of an anti cyclone, the eddy will move on and off the topography

under the influence of planetary and topographic /3-effects. According to the propagation

tendency shown in figure 3.29, the eddy will also move along slope. The eddy propagation

is also influenced by the slope frontal disturbance and generation of topographic eddy.

In addition, the eddy decay and volume change may also affect its propagation.

In this section the problem of eddy-topography interaction oil a /3-plane will be

investigated. In the light of previous f-plane discussion, the emphases are on the differ-

ences between f and /3-plane interactions, especially the eddy propagation. In addition

to the parameter range studied before, the effect of different incident angles as an eddy

impinges on a slope will also be examined. In fact the study below will be divided into

I two groups according to the incident angle: oblique incidence and straight collision of a

deep ocean eddy onto a topographic slope. Table 3.5 lists all the cases and parameters

for the numerical experiments to be examined in this section.

3 3.4.1 An Anticyclone Impinging on a Slope at an Oblique An-
gle

The oblique incidence of an anticyclone onto a straight line slope is shown schematically

3a in figure 3.30. This is an analog to many observed eddy-slope topography interactions.

For example, in the North American continental slope and rise area, Gulf Stream warm-

gI core rings often propagate southwestward near the edge of the slope and interact with

shelf/slope waters (Smith, 1983; Churchill et al, 1986). In figure 3.30, the isobaths
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Table 3.5

Cases Eddy Eddy Initial Topography Comments
Rotation Radius (kin) Distance (kin)

B1 -1 50 150 A Oblique Incident 3
B2 -2 50 150 A Double Strength

B3 -1 75 150 A Large Eddy I

B4 -1 50 100 A Small Distance I

B5 -1 50 150 A Bottom Friction

B6 -1 50 150 C Topography C

7 "1 I
B7 -1 50 150 A Right Incident

B8 -1 50 100 A Right Incident

B9 -1 50 150 C Right. Incident I
B10 1 50 150 A Oblique Cyclone

B11 1 50 150 A Right Cyclone

/3-Plane Eddy-Topography Interaction Experiments.

I
142 3

I



NIE

A AIIi
I

I- �% I, combined NL

*r
I€IT

h y) ' 't

Figure 3.30: Schematic plot of anticyclonic eddy-slope interaction with an oblique inci-
dent angle. The isobath is north-south and the slope shallows monotonically to west.
The arrows marked with / and NL represent the velocity components due to the plane-
tary 3 and nonlinear self-advection, respectively. Their combination gives the vector in
between and has an angle a to the vector NL.

run strictly north-south, and the oblique incident angle a is the same angle defined by

tan-l(vp/viv), where v# and vN are the components of eddy propagation speed due to

planetary /3 and nonlinear self-advection, respectively. If Q = V/3r 2 is the ratio between

nonlinearity and planetary /3, ca will increase as Q decreases (McWilliams and Flierl,

1979). For linear case, Q -' 0, the eddy will collide onto the slope at a = •r/2. In general,

Q is nonzero and large, and 0 < a < 7r/2.

Case B1 from table 3.5 will be examined first. It has the same topography and

eddy as the case Fl in the previous f-plane study. The eddy center is initially 150 km

away from the slope. For #3 = 1.6 x 10"1 and the parameter Q = 12, the nonlinearity is

fairly dominant in this case. The results of flow field evolution are plotted in figure 3.31

for streamfunction, relative vorticity and potential vorticity contours. To minimize the

change in the model formulation, the coordinates in the numerical model are arranged

such that north is toward the right in figure 3.31. The topography shallows to the west.
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The no-flux condition is applied at the eastern and western walls. The sponge layer

boundaries are now at the northern and southern ends of the domain and cross the

topography. In figure 3.31 the eddy propagates westward due to the planetary /3-effect.

The subsequent Rossby wave dispersion flattens the gradient in the leading western side

of the eddy and steepens the gradient in the trailing eastern side. The asymmetry

is responsible for a southward nonlinear eddy self-advection. For this case, the rate

of nonlinear propagation is almost twice that due to the /3-effect only, resulting in an

incident angle about 260. The familiar Rossby wave wake behind the moving eddy appears

to the northeast. The eddy initially accelerates (figure 3.32a and b) and reaches the

maximum speed (-5.5, 2.8) cm/s around day 25 before it starts to feel the influence of the

topography. After that it decelerates. The development of a cyclonic slope disturbance

together with the topographic fl-effect causes a quick reversal of the eddy propagation to

the east around day 45. Meanwhile a cyclonic topographic eddy separates from the slope

and subsequently forms a dipole-like eddy pair with the original eddy and dominates

its propagation. After the separation of the cyclone, the shape of the anticyclone is

considerably distorted, and the long and thin streamers are formed at two longer ends

of the eddy (figure 3.31 at day 56). About 20% of the eddy volume is lost through these

streamers. This process of volume loss is similar to the f-plane situation discussed in the

previous section.

The second interaction happens around day 70. The dipole breaks apart since

the cyclone is trapped by the topography and moves away southward. In the second

interaction only a small amount of the slope water (less than one third of that in the

first interaction) is advected across the topography. However, due to the loss of cyclonic

vorticity from the slope front by the eddy advection, a weak along-slope anticyclonic

anomaly develops on the edge of the slope and propagates slowly along isobath toward

left (figure 3.31 at day 104). Time history of this onslope anticyclonic anomaly shows that

it is dispersive and propagates along-isobath to the south (the left in figure 3.31) under

the effect of topographic /3. After the second interaction, there is no intensive cyclone
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Figure 3.32: Eddy center trajectory (upper panel) and velocity components (lower panel)
for case B1. In the upper panel, the dot marks represent the eddy positions at the
beginning of every two days. In the lower panel, the curves A and B are the along- and
across-shore velocity components, respectively.
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Figure 3.33: The accumulated cross-slope volume transport for case B1. The curves are
(1) total volume transported; (2) volume transported from upper slope area 7.5 km away
from the slope-deep ocean boundary.

I formed on the periphery of the original eddy. The eddy motion is again controlled by the

planetary /3 and eddy self-advection. Surprisingly in figure 3.32a the eddy now moves

southeastward against the planet;ary 3-effect. The reason for this is the dominance of the

-nonlinearity in the eddy propagation. Comparing the streamfunction contours at day

32 with that at days 80 and 104 in figure 3.31, the long axis of the elliptically shaped

anticyclone, due to the planetary wave dispersion, has rotated clockwise approximately

1.57r, from the northwest orientation to the southwest orientation. The nonlinear self-

advection that favors the steep gradient side of the eddy will overcome the planetary

/3-effect and cause the eddy to propagate southeastward. The planetary 3 will eventually

Ii slow down the propagation and reverse it to the southwest direction.

Figure 3.33 gives the total cross-slope transported volume. It is seen that the

first interaction produces about 3.5 x 1012 rn3 transport at a rate of 2.9 Sv (1 Sv3l 106 mt /s). The majority of the volume is from the vicinity of the slope edge. In thc second

interaction the first topographic eddy is released to the slope and accumulated volume

transport actually decreases. By day 90 only about 1012 m3 slope water is observed
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to be transported into the deep ocean. This result ir,licates that multiple eddy-slope

interactions may not contribute to increase the cross-slope volume transport, and in fact

it may reduce the accumulated transport by transporting the water back onto the slope.

The multiple interactions may cause quick decay of the original eddy strength, and thus

result in weakened subsequent interactions. The strength of the interaction, indicated

by the cross-topography volume transport, is dependent upon seeral factors. Among

them are the eddy strength and size, the topography and the eddy incident angle. The

average KE der.sity and the area of the original eddy are shown in figure 3.34. It can be

seen that on the way to the topography both the KE density and the area of the eddy

decay at roughly constant rates, due to the Rossby wave radiation and internal friction. I
When the first interaction takes place, the eddy KE has dropped to 3/4 of lhe initial

value in about 50 day period. Within the next ten days of the interaction, both the I
KE and the area undergo drastic decrease, corresponding to the volume loss discussed

above. After this event, the KE and the area stay almost constant for the rest of the

time. Other than the strong decay associated with the eddy-topography interaction, the 3
planetary Rossby wave dispersion is the major source of eddy decay. The relatively small

KE decay during the final 40 days in figure 3.34 indicates the planetary wave dispersion

is suppressed during the period the eddy is propagating against the f-induced tendency.

In case B4, the eddy is 50 km closer to the topography than that in case B1. As I
expected a stronger interaction process follows. The first interaction starts around day

14 and the total volume transport increases to 5 x 1012 m3 during an interaction period I
about 10 days (figure 3.35). The volume transport also consists of more upslope fluid.

Two interactions, having roughly equal strength, take place in case B4. The decrease of

eddy strength during the two interactions combines to a total 50% loss in the original I
eddy circulation. After the second interaction, there is a strong dissipation process in

the wake of the moving dipole structure, resulting sharp strength decrease in both the 3
original and the topographic eddies. This process is shown in figure 3.36 using relative

vorticity field at day 56, 64 and 72. As the original eddy tries to advect across-slope a 3
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Figure 3.34: The time history of the average KE density (upper panel) and the area
of the original Pddy (lower panel, the eddy volume is thearea multiplied by a constant
4septh) for case 131.

149



I

""I I
2-""i3

"E-0
,.-2

E •:

o 0 40 80 120> Time (day)

I
Figure 3.35: The accumulated cross-slope volume transport for case B4. The curves are
(1) total volume transported; (2) volume transported from upper slope area 7.5 km away

from the slope-deep ocean boundary; (3) volume tranzported from upper slope area 15 I
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Figure 3.36: From left to right, the relative vorticity field at day 56. day 64 and day 72
for case B4.
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I pool of cyclonic slope water, it also releases the first cyclonic topographic eddy and sheds

I a portion of its own volume onto the slope (day 56). Forming a dipole-like structure,

both the original eddy and the topographic eddy separate from the slope and leave

behind a wake of mixture of water from both the original eddy and the slope (day 64).

Strong dissipation takes place in the wake. By day 72, a well defined 3-plane dipole has

j formed and propagates eastward. The final result is, therefore, very different from the

one discussed previously. This is largely attributed to the difference in the eddy strength

II and the slight change of the eddy incident angle at the time of interaction. The original

eddy in case B4 impinges on the topography at a larger incident angle and with a very

I small loss of its energy and volume (less than 10% of the total) to Rossby wave dispersion

and frictional dissipation, compared with about 25% loss in case B4.

The importance of the eddy strength and size has been examined in the previous

f-plane model. The results there indicate that the interaction time and the transport rate

depend strongly upon the eddy strength, but their combination gives only weak change

in total volume transport; while the total transport depends strongly upon the size of

the eddy. It is interesting to see how these results change on the 3-plane with an eddy

impinging on the slope from a distance. The cases examined here are B1, B2 and B3,

where the eddy in B2 has a swirling transport twice as that in B1, and the eddy in B3

has an e-folding radius one and a half the eddy radius in B1. The corresponding results

are listed in table 3.6 for comparison.

I Comparing with the f-plane results in table 3.4, the /3-plane interactions are

relatively weaker, with smaller total cross-slope volume transport. This is related to

the eddy weakening due to planetary wave radiation. However, the general patterns of

the responses are similar in both groups. The volume transport rate depends largely

upon the eddy strength and the total volume transport depends largely upon the eddy

size. The large size eddy causes more transport of upslope water than the smaller eddy

with equal or twice the swirling transport. There are important differences between

j the interactions on f-pl-, and /3-plane. The multiple interactions together with the
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Table 3.6 I
Case B1 B2 B3

Total Volume I
Transported 3.5 4.8 5.2

(10' 2mS) I
Length
of Time 14 8 12

(day) 5
Rate of

Transport 2.9 6.9 5.0
(10 6 m 3 /s)

Cyclonic Eddy
Circulation 0.3 0.5 0.9

(105m
2

/S)
Maximum

Vorticity 0.1 0.20 0.6

(10-4
s-')

Cyclonic
Eddy Radius 30 35 37 5

(km)

The Effect of Eddy Strength and Size on 3-Plane. 5

I
I
I
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Figure 3.37: Trajectories of the eddy centers on the 4f-plane for cases B1, B2, B3 and
B6 listed in table 3.5. The marks represent the eddy center locations at the beginning of

every two days.

planetary /3-effect can seriously alter the eddy propagation from that on the f-plane,

which will affect directly the subsequent interactions. For example, the large portion of

the cross-slope transported volume is released back to the slope during the subsequent

interaction in most of the /3-plane cases. In case B2, the transport resulting from the

second interaction is less than 1/4 of the first one. The eddy propagation after the second

interaction is therefore not controlled by the topographic eddy but by the nonlinear self-

advection and the /3-effect. Comparison of the eddy trajectories in cases BI and B2 (figure

3.37) shows that they have roughly the same trajectory before the first interaction, but

the eddy in B2 travels faster. After the second interaction, the eddies in both cases travel

southeastward under nonlinear self-advection. Being initially stronger and spending less

time in planetary dispersion, the eddy in B2 has a larger eastward drift than the eddy in

B1. At the end of the calculation, the eddy in B2 has started to change its course back

to the normal 3-induced propagation. Comparing the eddy strength deptitclence on f
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and fl-planes, the volume transport processes are similar. This is not unexpected: the

process of transporting water off the shelf depends only on f-plane dynamics; but the

eddy propagation, a 3 sensitive process, is very different for the two situations.

The effects of the eddy size change is more visible. The increase of the eddy

size results in an increase of eddy westward propagation speed and a decrease in the

southward speed (the nonlinear-self advection decreases when the eddy size increase). A I
large eddy will arrive at the west-bound slope quicker than a small eddy, provided they

start from the same initial position. Therefore the large eddy retains a larger portion of I
its initial strength due to the shorter dissipation time. The large eddy also has a larger I
incident angle to the topography due to its faster westward speed and slower southward

speed. This implies a stronger interaction between the large eddy and the topography.

In case B3 a large cross-slope volume transport of about 5.2 x 10" n7 is induced by

the large eddy over a time period 12 days. The values of the maximum vorticity and

the topographic eddy circulation indicate that a substantial amount of fluid is from the

shallower water area. In fact the transported volume comes from as far as 25 km upslope,

which corresponds to a water depth 630 m. As discussed before, the strong eddy-slope

interaction is accompanied by the generation of an intensive topographic eddy and the

decrease of the original eddy size and strength. In figure 3.38 the flow field for B3 is

shown at three times during the period of topographic eddy formation. At day 24 a U
strong cyclonic disturbance develops on the slope and subsequently moves across-slope

into the deep ocean forced by the original eddy advection. The streamers are drawn fromll

the enlongated original eddy at two longer ends by the intensive cyclone and the slope 3
disturbance (day 32), resulting in a continuous loss of the eddy volume. Until about

day 40 the original anticyclone has lost nearly half of its initial volume and KE in 12 3
days. The history of these changes are plotted in figure 3.39 for both the area and the

average KE of the eddy. The sharp changes are obviously seen from the figure. After day

40 the circulations and the sizes of both the original eddy and the topographic eddy are

almost eqiial, thus they form an approximately symmetric dipole structure and propagate 3
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eastward away from the topography. This result differs completely from the results of

both B1 and B2, where the majority of the volume transport is released back to the

slope and the eddy propagation is under the influence of nonlinear eddy self-advection.

As indicated by the eddy trajectory in figure 3.37, the eddy propagates eastward away

from the topography.

In general the above results suggest that the cross-slope volume transport depends

largely on the eddy size and weakly on the eddy strength. If the original eddy is much

stronger than the topographic eddy, it may release the topographic eddy back to the

slope and the accumulated volume transport may be much smaller. With equal swirling

transport, the cross-slope volume transport is favored in the case of a larger radius eddy.

Comparisons between the results of B1 and B6 show the effect of different topog-

raphy on the interaction. The interaction process of B6 is very similar to that of B1.

Closer examination reveals that the cyclonic perturbation field extends farther upslope in

B6 due to the smaller topography C used. After the topographic eddy separates from the

slope, the two cases have not only the same structures and patterns in the streamfunction

and vorticity fields, but also the same numerical values in the ranges of these fields. This

may imply some simple intrinsic properties of the eddy-slope interaction regardless of

the changes in topography size. The similarities persist for the rest of the interaction.

Further comparison of the volume transport shows that the two cases have roughly equal

total cross-slope volume transport, where 90% of the transport in B6 relative to about

15% of the transport in B1 is from the upper slope area, figures 3.33 and 3.40. The

topographic eddies in these two cases have the same amount of circulations. This sug-

gests that when interacting with bottom topography, an eddy tends to generate a fixed

amount of vorticity perturbation, which is proportional to the eddy circulation and in-

dependent of the topographic slope. The same is also suggested by the previous contour

dynamics study in chapter two. This is the intrinsic property in the eddy-topography

interactions. For different topographies, the amount of the circulation generated is not

necessarily proportional to the amount of cross-slope volume transport. For the cases
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Figure 3.40: The accumulated cross-slope volume transport for case B6. The curves are

(1) total volume transported; (2) volume transported from upper slope area 7.5 km away

from the slope-deep ocean boundary; (3) volume transported from upper slope area 15

km away from the slope-deep ocean boundary. I

discussed here, the volume transport is fairly constant, whereas the composition of the 3
water mass varies with the size of the topography. The above results do not vary in gen-

eral from the f-plane to the /3-plane; recall the discussions in section 3.3.4. As expected

the similarities in the eddy trajectories for cases B1 and B6 are observed in figure 3.37.

The same bottom friction defined by equation (3.6) is used in case B5, with the 3
rest of the conditions exactly the same as those in case B2. Like the f-plane case Fll,

the results of B5 show a slight decrease in the total cross-slope volume transport from I
that of B2, largely due to the dampening of the perturbation momentum on the slope.

Consequently the eddy center trajectories differ for these two cases; the eddy propagation

in B2 is slightly more dominated by the topographic eddy process. The effect of frictional I
dampening of the shelf/slope responses has been discussed in the previous f-plane study;

the result applies also to the 3-plane situations. 3

I
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3.4.2 An Anticyclone Impinging on a Slope at a Right Angle

If an eddy collides with a slope topography at a right angle, will the resulting interactions

be the same as that with an oblique incident angle? If not, how do the results vary? This

will be investigated in this subsection.

For the present configuration of the problem, the right angle incidence is achieved

by rotating the coordinate system to a degree that the topography has a proper angle

to the north. In such a coordinate system the eddy will propagate onto the slope at

a 900 angle to the isobath. On the 13-plane the anticyclone propagation tendency has

two components: a /3-induced westward tendency and a resulting southward eddy self-

advection. They combine to give a southwestward propagation tendency as shown in

figure 3.29. Denoting the westward and southward propagation speed by uw,, and u., the

counterclockwise angle between the north and the direction of the eddy propagation is

given by 0 = 7r/2 + tan- 1(u,/uo). Therefore in the new coordinates if the topography

is still given by the same expression as equation 3.2, north is then the direction with a

clockwise angle 0 with respect to the isobath contours. For the anticyclonic eddy used

in the standard cases F1 and B1, this angle is approximately 0 = 7r/2 + tan-'(15/7).

After this coordinate rotation one should realize that not only the eddy incident angle

changes, but also the resulting direction of the eddy propagation tendency relative to the

topography changes. This configuration represent the collision of an anticyclonic eddy

with a southwest-bound slope topography.

Case B7 from table 3.5 is studied first, which has comparable parameters to case

B1. The interaction process is described by the picture of the eddy center trajectory,

shown in figure 3.41. The eddy movements reveal that three strong interactions take

place during the 120 day simulation. A topographic eddy forms in each of the interac-

tions and subsequently dominates the original eddy propagation. Since the original eddy

accelerates and approaches the slope, the increasing inertia enables the eddy to climb

high onto the slope. Therefore the perpendicular interactions are most effective for the
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Figure 3.41: The trajectory of the eddy vorticity center for case B7. The dot marks

represent the eddy positions at the beginning of every two days.

eddy penetration onto the slope. During the first interaction the original eddy reaches I
20 km farther upslope than the eddy in case B1. The strong dipole motion resulting from

the first interaction causes another straight eddy incidence onto the slope in the second I
interaction, in which the original eddy climbs even farther upslope. The subsequent in-

teraction also shows similar behavior. The reversal of the eddy propagation direction I
from seaward to slopeward after the first and the second interactions occurs relatively

abruptly, associated with a sharp increase in the curvature of the eddy trajectory. Besides I
the dipole propagation, the planetary 3 and nonlinearity play important roles in regu-

lating the eddy motion in the above processes. A few snap shots of the streamfunction

and vorticity fields in figure 3.42 illustrate part of the interaction process. By day 24 the

eddy is sufficiently close to the slope and induces a slope disturbance. The cyclonic slope

disturbance is forced by the eddy advection and separates from the slope at day 32. The 3
original eddy is also strongly perturbed from circular to elliptical shape by the flow in-

duced by movements of the slope front and the formation of the topographic cyclone. As 3
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the dipole-like eddy pair separates fro n the slope around day 40, the original eddy suffers I
a continuous loss of volume and momentum through the formation of streamers at the

two longer ends of the eddy. As the eddy pair propagates through the flat bottom region

in the basin (day 48), the planetary #6 and nonlinear self-advection become important. I
Together with the eddy mutual advection, they speed up the eddy slopeward propagation

to about 12 cm/s, which is twice the incident speed of the first interaction. Therefore

the second interaction is particularly strong, as shown in figure 3.42 at days 56 and 64.

By day 64, the eddy size is considerably smaller than the initial size. It is interesting to 3
note that the cyclonic topographic eddy, trapped at the topography after breaking up

with the original eddy, moves mainly along the outer slope edge due to the existence of I
an anticyclonic disturbance on the inner slope edge. The mechanism for this is the same

as that discussed in section 3.3.6 for the cyclone-slope interaction process. The sharp I
changes of the eddy size and KE occur mainly in the first two interactions (figure 3.43).

Compared with an oblique incidence case such as B1, the straight collision interactions

in B7 result in much larger variations of the original eddy properties. For example, after

the second interaction at day 80, both the strength and the size of the original eddy

fall below 1/3 of the original values. The large changes take place during the first and 3
second interactions, especially in the second interaction, with the eddy area decreasing

by 50%. Corresponding to this sharp eddy volume decrease, there is an increase in the 3
total cross-slope volume transport aiLd the formation of the second topographic eddy as

shown in figure 3.44 and in figure 3.42 at day 64. It can be seen from figure 3.44 that the

initial cross-slope transport is from the immediate vicinity of the slope. After day 20,

the eddy collides with the slope and causes a sharp increase in volume transport. As the I
second interaction takes place, the new transport adds to that from the first interaction

and results in a large accumulated cross-slope volume. The average total transport for

the first two interactions is approximately the same as that in case B1, shown in figure

3.33. However, the interaction in B7 is much stronger and involves more fluid from. the

upslope area. 3
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Figure 3.44: The accumulated cross-slope volume transport for case B7. The curves are
(1) total volume transported; (2) volume transported from upper slope area 7.5 km away
from the slope-deep ocean boundary; (3) volume transported from upper slope are? 15
km away from the slope-deep ocean boundary; (4) volume transported from upper slope
area 22.5 km away from the slope-deep ocean boundary.

The interaction becomes stronger if the eddy is initially closer to the topography. 1
In the case of oblique eddy incidence, such as case B4, this is attributed to the difference

of the eddy strength and size at the time the interaction occurs. The Rossby wave I
dispersion and frictional dissipation weaken the eddy strength and reduce the eddy size.

This decay is larger for the eddy initially farther away from the topography. Another

effect related to this initial eddy location is the eddy incident speed at the time of

collision. This effect is particularly important for the right angle eddy incidence. Figure

3.45 gives the eddy trajectory for case B8, where the eddy is initially 50 km closer to

the slope than the eddy in B7. The eddy, having a short distance to accelerate, can not

reach upslope as far as the eddy in B7 in the first interaction, and subsequently induces

a cross-slope volume transport containing less upslope fluid as well. Calculations show

that the average accumulated cross-slope volume is 5 x 1012 in for B8 relative to about

3.5 x 1012 in3 for B7. Thus there is more cross-topography volume transport generated

in B8 than in B7. Since the differences in eddy size and strength are small in these 3
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Figure 3.45: The trajectory of the eddy vorticity center for case B8. The dot marks
represent the eddy positions at the beginning of every two days.

two cases at the time of collision (about 5% in strength and less in size), they can not

explain the large differences in the total volume transports and the eddy trajectories.

The plausible explanation is the difference of eddy incident speed, which results in the

differences in the eddy upslope penetration distance and the interaction time. The eddy

in B7 accelerates to a top slopeward speed of 6 cmIs at day 18, while that in B8 reaches

only 4 cm/s at day 12 just before the collision. Upon collision, the topographic effect

slows down the speed of eddy propagation and eventually turns it seaward. This slight

difference in collision momentum enables the eddy in B7 to reach slightly higher upslope

and to draw water across slope from shallower area. Examination of cases B7 and B8

shows that they contain approximately the same amount of total cyclonic perturbation

circulation of 5.5 x 10' m 2/s, but have different interaction time. 8 days in B7 and 12

days in B8. The eddy in B8 stays close to the slope edge for a longer period of time and

transport more lower slope water across the edge. Therefore the total volume transport

in B8 is larger than that in B7, but the transport in B7 contains more upsiope volume,

which keeps the perturbation circulation in the two cases roughly the same.
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A final case in this group is B9, which is similar to B7 but using topography C.

In this case the anticyclonic eddy impinges on a smaller topography than tile previous

cases. From the previous discussion, the amount of the perturbation vorticity generated

depends mainly on the strength and the size of the incident eddy at the time of collision. 3
For the same anticyclone as that in B1 impinging on a smaller topography, there are two

patterns of volume transport that enable the generation of an equal amount. perturbation 3
circulation. In the first case, more volume transport from lower slope is generated; in the

second, the,: is less volume transport but it contains more upper slope water. Since the 3
eddy more easily moves farther upslope onto a small topography, it is likely to advect

more upper slope water across the topography. The results show that B9 and B7 have i

approximately the same circulation of 5.5 x 10' m 2 /s, and the total volume transport of

3.5 x 1012 mi; but in B9 more than 50% of the volume is transported from upper slope i
area at least 15 km away from the slope boundary compared with only 25% in B7. This

result applies also to the oblique incident case. One important difference between cases

B7 and B9 is the decay of the original eddy during the period of interaction. The average

decay rate in B7 due to the eddy-topography interaction is much larger than that due

to the radiation and frictional dissipation; while the interaction-induced decay rate in 3
B9 is smaller than the corresponding planetary and frictional decay rate. This indicates

that the eddy volume and KE loss during the interaction with a small topography is also 3
small. This is because the front disturbance is relatively weak in strength for a small

topographic slope. When it retreats from the slope after the collision, the original eddy 3
is less distorted in its shape and does not form large streamers. This effectively reduces

the eddy volume and KE loss through these streamers. The formation of the dipole-like I
structure acts to suppress the planetary long wave dispersion, since the dipole contains

less long wave energy than the isolated eddy (Flierl, 1987). Furthermore, within the same

120 day time period, there are five interaction events taking place in B9 relative to three

in B7. The changes of eddy volume and KE density in case B9 are plotted in figure 3.46,

to be compared with figure 3.43. Approximately 60% KE density and 70% volume of 3
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Figure 3.46: The time history of the average KE density (upper panel) and the area

of the original eddy (lower panel, the eddy volume is the area multiplied by a constant

depth) for case B9.
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the original eddy are retained after five interactions in B9, relative to 20% KE and 40%

volume retained after three interactions in B7.

3.4.3 Cyclone-Shelf/Slope Interactions 3
Two cases are examined in this subsection for collision of a cyclonic eddy with a slope I
topography, one obfique incidence and one straight collision. Since a cyclone moves north-

westward on a planetary /3-plane, the straight collision case requires that the topography 3
is to the northwest of the eddy, with isobath running southwest to northeast. For the

eddy similar to the one used in case B1 but with opposite circulation, the coordinate 3
rotation is approximately 9 = r/2 - tan- 1(15/7) for case Bli.

For the oblique eddy incident case B10, the topography is west-bound. The 3
streamfunction, relative vorticity and potential vorticity fields are plotted in figure 3.47.

The original eddy center trajectories are plotted in figure 3.48. Once it feels the influence I
of the topography, after about 40 days of propagation, the eddy starts to change its course

of propagation. Its northward (along slope) speed slows down and westward (slopeward)

speed accelerates due to the topographic /3 and associated nonlinear effect, respectively. 3
If the streamfunction fields at day 40 and 56 are compared, it can be seen that the longer

axis of the elliptical eddy has rotated counterclockwise about ir/2. The eddy nonlinear I
self-advection is now slopeward, causing the slopeward eddy acceleration. The average

slopeward speed before day 40 is approximately 2.5 cm/s, that jumps to 4.8 cm/s aver- I
aged over next 20 days. After day 64 the eddy moves quickly onto the slope. It breaks

apart on the slope due to strong topographic Rossby wave radiation and vortex tube 3
compression (day 72). Strong shelf disturbances are observed across the slope to the

coastal wall, which are dispersing into topographic waves. The small scale structures are I
observed seaward along the edge of the slope to balance the onslope eddy fluxes. It is

expected that the original eddy will undergo a drastic change in its volume and energy I
level during the interaction. Figure 3.49 illustrates this process. Starting around day
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Figure 3.48: The trajectories of the eddy vorticity center for cases B10 and 311. The
dot marks represent the eddy positions at the beginning of each day.

56. both the KE density and the volume of the original eddy diminish virtually to zero I
within about 10 day period. Not surprisingly no major seaward transport is produced

by this strong slopeward flux of mass and momentum. I
The straight eddy-slope collision case 311 shows no qualitative difference from

case B10. Its eddy trajectory is also shown in figure 3.48. After the eddy moves into

the distance within which the topographic influence becomes dominant, the rest of the 3
interaction process is roughly the same as that of B10. There are, however, slight quan-

titative differences between them and can be seen by comparing the eddy center tra-

jectories. First, upon collision with the slope, the eddy in 311 has an impinging speed

larger than that in B10, due to the fact the nonlinear advection speed is slopeward and 3
approximately twice as fast as the f-induced eddy speed; second, less eddy decay has

occurred in B1l than in B10 before it reaches the slope: thus the eddy is stronger in I
311. These result in a slightly stronger interaction in Bl1, seen from the fast along-slope

eddy propagation represented by the space between the dlot marks in figure 3.48. This is I

170 3
I



Eddy Area and Kinetic Energy Density
0.1t0

IN 0.08

EE- 0.06 -

S0.04-

,,,0.02-

1 0.00 r-
0 20 40 60 80 100

0.6

E 0.5-

o0.4

0.1-

10 20 40 60 80 100
Time (day)
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consistent with the f-plane results shown in figure 3.17. The slope front oscillations are

the cause of the uneven eddy propagation speed near the slope boundary.

The cyclone-topography interactions have no qualitative difference whether they

are defined on f-plane or /3-plane. The reason is that the cyclone is trapped at the slope

and the topographic #3-effect is always dominant over the planetary /3-effect as long as

the ratio O3T//3 is large, where O3 T = f 0 h,/h is the parameter of topographic/3. I

3.4.4 Velocity Field and Momentum Balance I

Close examination of the streamfunction field such as the one shown in figure 3.31 in- -
dicates that the perturbation flow field induced by the eddy tends to be insulated from

the shelf/slope area. This is not unexpected due to the topographic constraint on the 3
current (Wang, 1982; Csanady and Shaw, 1983; Vennell, 1988). One the other hand, the

momentum perturbation penetrates the slope to reach the inner shelf and excites wave I
motions. It is interesting to examine the eddy-induced perturbation flow field and to

relate it with the different stages of the interaction and the cross-slope processes. I
Since the original eddy field itself is perturbed, it is difficult to separate it from the 3

so called eddy-induced or perturbation field. This, however, does not affect the far field

seriously, since the eddy field decays exponentially in space. To examine the development 3
of the perturbation velocity field, case BI (shown in figure 3.31) is considered. As the

eddy approaches the slope, the Rossby wave wake formed behind the eddy also moves I
toward the topography. By day 56, a pair of the counter rotating cells has formed from

the trailing Rossby wave wake. The cyclonic cell pushes against the steep slope edge I
and causes the crowding of streamlines there. The corresponding vector velocity field is

shown in figure 3.50. It can be seen from the figure that the double cell structure north of I
the original eddy drives a slopeward flow with velocity roughly 5 - 8 cm/s. Due to the

topographic insulation this slopeward transport is unable to reach upslope and thus turns

into a narrow along-isobath current flowing south at. the edge of the slope. This current 3
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is seen extending downstream across the edge of the original eddy field. It is called here

the eddy-induced slope current. The size and the strength of this current vary in space 3
and time depending upon the interaction process. It is relatively persistent throughout

the remaining interaction and shifts slowly downstream along the slope. This should be 3
dependent on the individual case with regard to the eddy incident angle and strength

of the interaction, etc. In the straight collision case, the trailing Rossby wave wake now 3
pushes the slope from the left side of the original eddy. The slopeward flow associated

with the cyclonic cell circulation turns into an along-slope current similar to the case 3
just discussed. For the cyclone-slope interaction, there is a similar development of the

eddy-induced slope current from the evolving Rossby wave wake. The current is in the U
opposite direction to the previous anticyclone-slope interaction cases and lasts only as

long as the original eddy is not totally on the slope. After the eddy moves fully onto the

slope, the eddy breaks apart into strong topographic waves and the eddy-induced slope 3
current disappears. This along-slope current is first pointed out by Chapman and Brink

(1987). When studying the shelf and slope responses to a translating offshore eddy, they 3
found a narrow jet-like feature on the slope ahead of the eddy (to the left of an anticyclone

when facing shoreward) with alongshore velocity in the opposite direction to that in the 3
eddy. They suggest that this jet is the offshore edge of the shelf circulation cell which

feeds into the original eddy. The present study shows agreement in the eddy-induced 3
alongshore current and further suggests that the current may extend to the eddy trailing

edge on a 3-plane. The circulation pattern shown in figure 3.50 tends to suggest that I
the jet is part of the outer-slope circulation cell. This does not exclude the possibility

that the shelf circulation also feeds into the jet as in Chapman and Brink (1987), but the I
shelf circulation may simply be too weak to be seen.

The eddy induced perturbation current was also observed in the previous con-

tour dynamics investigation. In that case the perturbation PV front and the cyclonic

topographic eddy tend to generate a residual current in the deep water between the es-

carpment and the eddy. The strength of the current is dependent on the magnitude of 3
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- the perturbation for the given topography, since the current is driven by the vorticity

anomaly. It is difficult to detect if such a current exists in the present study, because the

amplitude of the PV frontal deformation is small and the influence from the original eddy

is dominant and not easily separated. The eddy-induced slope current discussed in this

section is clearly different from the vorticity anomaly driven residual current. The slope

current is caused by the eddy momentum radiation and the blocking by the topographic

slope. It should be noted that, though all the cases studied in this chapter show the3 existence of the eddy induced slope current at various stages of the interaction, none

show a permanent current.

I In the study of the f-plane interaction problems, it is shown that linear dynamics

3• prevails except when the strong eddy advection is involved. The cross-slope transport

process tends to be dominated by the nonlinear dynamics. This property must not change

from the f to the /-plane, since the inclusion of the /3-effect does not affect the dynamic

balance of the momentum equations. On a /3-plane it remains to be seen if the condition

of an eddy impinging on a slope from a distance can result in any change. An experiment

like case B4 but with only linear momentum equations is performed. Without nonlinear

3 advection the eddy will move westward over a flat-bottom ocean, and impinges upon

a western boundary topography at a right angle. Due to the lack of advection, cross-

3 slope volume transport is virtually none. As the eddy presses against the slope under

the planetary /3-effect, it undergoes an interaction process very different from case B4.I• The contours of streamfunction, relative vorticity and potential vorticity are potted in

figure 3.51 at various times. There is no north-south (along slope) excursion of the eddy

center. The part of the eddy reaching on the slope leaks mass and momentum through3 strong topographic wave radiation. This affects the shape and strength of the eddy and

causes strong slope disturbances. The results again strongly suggest that nonlinearity is3 a key mechanism to the eddy-slope interactions. It may only be numerically large for

certain processes, such as in cross-slope volume transport, and eddy propagation, but the

3 consequent interaction and field evolution are fundamentally affected.
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Figure 3.52: Time variation of the individual terms in equation (3.1a) at a location 7.53 km upslope, ie (x, y) = (345, 458) km for case B1. The legends are: (A) ut, (B) uu,,

(C) vuy, (D) -fv, (E) -p. and (F) u 4V%.

The variations of the individual terms in the x momentum equation at a fixed

slope location are plotted in figure 3.52 for case B1. The lowest order balance is between

I -fv and _p., except during the two interaction processes. The sharp increase in the

magnitude of uu, and vu, indicates the strong advection associated with the eddy velocity

field. The friction term Y 4V 4u stays small during the entire interaction.

Both x and y momentum balances are shown in figure 3.53 for case B7. Two

if the three interaction events are seen at this location. During the interaction period,

the nonlinear terms are important at the lowest order in the x- momentum equation,

but not in the y momentum equation. The large vaiues of r',, in figure 3.53a indicate

strong cross-slope eddy nomentum fluxes associated with the interaction events. For

anticyclonic eddy-slope interaction the result is always f p-r since .fv and vzte
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I have the same sign; it will be seen shortly this situation reverses for cyclonic eddy-slope

interaction. The y momentum balance shows that to a good approximation the cross-

slope momentum balance is always geostrophic, even during the period of interaction.

I Comparison between figure 3.53a and b also indicates that the along-slope velocity con-

tains more lower frequency components than the cross-slope velocity. At this location,

it is likely due to the influence from the propagating original eddy field, which is seen to

cause the persistent positive u there.

The final example, B10, concerns the interaction between a cyclone and a slope.

The previous results show that the original eddy dissipates quickly once the interaction

starts and the associated cross-slope volume transport is very small. Figure 3.54 gives the

change of the individual terms in the u momentum equation. Immediately after the eddy

reaches the location around day 61, all terms except the biharmonic friction term increase

sharply. The antisymmetry of the time history indicates the passing of the cyclonic eddy.

The reversal of the cross-slope velocity at this location also implies the smallness in

cross-slope transport. The velocity in the trailing side of the eddy is larger than the

leading side, because the topographic wave radiation causes the nonlinear steepening on

the trailing side. As already mentioned before, now I - fvI > I - p.I when nonlinearity

is important. After the passing of the eddy, the perturbed slope front oscillates. The

magnitude of individual terms in both u and v momentum equation suggests the balance

among the linear terms except the friction term. The flow field after the eddy passing

can be described by following linear momentum equation:

ut - fv = -p. (3.10a)

vt + fu = -py (3.10b)

These are the same equations describing the free continental shelf waves studied by

Buchwald and Adams (1968). It is natural from this result that, one would explain the

shelf/slope responses in terms of the shelf-trapped waves. The eddy forcing generates a

strong slope disturbance, which disperses into a series of shelf wave components aft,-r the
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relaxation of the eddy forcing. This has been discussed in the previous f-plane study

and will be discussed more below.

3.4.5 Topographic Waves on the Shelf/Slope

It has been shown in the previous section that on the f-plane shelf waves are excited

through the interaction of an eddy with shelf/slope water. The estimate in section 3.3

shows that the topographic /3 is about one to two orders of magnitude larger than the

planetary 3 for the topography and the parameter range of this study. Since shelf waves

are vorticity waves, the topographic control being dominant over the planetary 13 on

the shelf and slope suggests that the planetary /3-effect is negligible there. Therefore

the discussion of shelf waves in the previous section applies also to the situation on the

planetary /3-plane. With an eddy impinging on a slope, it remains to see how this change

and the different incident angles can affect the excitation of shelf waves.

Due to the planetary wave dispersion on the /3-plane, the long wave components

of the original eddy propagate faster than the eddy center does. Thus before the eddy

reaches the topography, the fast long waves will arrive.

The velocity field perturbation on the slope due to this planetary Rossby wave

radiation is, however, rather small. The record from three locations downstream to the

Rossby wave propagation shows that the velocity is oscillatory with amplitude less than

1 cm/s. The velocity increases sharply and the oscillation frequencies go up as the inter-

action occurs. These are seen from the alongshore velocity record plotted in figure 3.55 for

case B1. The large change in the amplitude starts around day 40 when the topographic

waves excited by eddy-slope interaction propagate through these locations. The similar

patterns of velocity variations are observed in other cases as well. The pre-interaction

Rossby wave signals are always weak in the velocity record and are overwhelmed by the

succeeding strong topographic waves. Their contribution to the shelf energy spectra is
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Figure 3.55: Alongshore velocity vs time at three cr-iss-shelf locations 1.50 kin away from
the left boundary for case B1. From top to bottom the locations are: 30 kin, 67.5 kmi
and 105 km away from the coastal wall.

not the same as the radiation loss of the eddy energy since the latter spreads over the

entire space. i

- The dispersion relations of the waves caused by an eddy impinging on topography

are examined and compared against the theoretical shelf wave dispersion relations. This is 5
done in the same way as in the previous section. In figure 3.56 the wave spectral energy as

a function of frequency and wave number is plotted on the shelf wave dispersion diagram i
for case B1. It is known from the previous f-plane study that long wave energy may

not be properly resolved by this spectrum if the the domain size. over which the velocity

record is taken, is not large enough. This, however, does not affect the arguement that

the observed responses are dominated by shelf trapped waves. It can be seen that the

waves with modes 5 and lower contain approximately 707- of the total energy in the

spectrum. The frequency and wave number bands for the most erergetiw waves are close

to those from the previous f-plane cases, such as that shown in figure 3.21. 'The near- i
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Figure 3.56: Spectral energy density scatter plot on the shelf trapped wave dispersion
diagram for Case B1. The curves are the theoretical solution of the dispersion relation
equation (3.7) with bi = 1.5 for the first five shelf trapped wave modes excluding the
Kelvin wave mode. From upper to lower curves in order, they are modes 1, 2 , 3, 4 and
5, respectively.
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Figure 3.57: Spectral energy density scatter plot on the shelf trapped wave dispersion

diagram for Case B7. The dispersion curves are the same as those in figure 3.56

resonant responses seen in some of the f-plane cases are too weak to be observed in case 3
BI. The general patterns of the shelf responses on the 14-plane are consistent with the

f-plane dynamics that governs the shelf/slope responses. I
With the eddy impinging on a slope at a right angle, the resulting waves tend

to shift slightly toward higher frequency and wave number bands. Figure 3.57 is for

case B7. The most energetic waves now have wave number and frequency centered

around (-7, 0.07) instead of (-5, 0.05) in figure 3.56 for case B1. The case with right

angle incidence also has larger wave amplitudes due to less eddy energy loss and faster

incident speed at the time of the collision. The straight incidence eddy tends to geierate

slope perturbations with smaller alongshore scale than the oblique incidence due to the 3
near zero alongshore eddy propagation speed in the former case. This is likely to be

the reason that the most energetic wave numbers in case B7 shift toward larger wave 3
numbers compared with that of case B1.

I
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Figure 3.58: Alongshore velocity vs time for case B10 at three cross-shelf locations 150
km away from the left boundary. From top to bottom the locations are: 30 kin, 67.5 km
and 105 km away from the coastal wall.

The results of the cyclone-slope interaction are shown in figure 3.58 for case B10.
It has been seen already from figure 3.47 that the original eddy moves onto the slope after
day 64 and strongly radiates topographic waves. The perturbation velocity on the slope

is exceptionally strong, close to 40 cm/s at inner shelf. as shown in figure 3.58 at three
downstream locations across the slope. At all three locations the strong influences of the
eddy passing through the lower slope are clearly seen as the large velocity events occur-

ring between day 70 and 85. These are not the direct original eddy velocity field, but the
strong wave-like and rapidly propagating perturbations generated by the impinging orig-
inal cyclone. The slower propagating shelf/slope waves subsequently propagate through

these locations shown as smaller amplitude oscillations following the eddy events. The

alongshore velocity along the 105 meter isobath contour (37.5 km away from the coast
wall) is plotted in figure 3.59 from day 65 to 95. The large amplitude waves are seen

to propagate rapidly to the left and then are followed by the smaller amplitude waves.
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Figure 3.60: Spectral energy density scatter plot on the shelf trapped wave dispersion
diagram for Case B10. The dispersion curves are the same as the figure 3.56

A series of short waves with right-going group velocity is also observed. These possibly

consist of the short wave disturbances and the short wave components of the original

eddy. The amplitudes of these short waves are small compared with those left-going long

waves. The corresponding alongshore velocity energy scatter plot for the velocity record

of in figure 3.59 is shown in figure 3.60. The basic structure of the energy distribution

among different wave modes are the same as the two cases discussed previously. A small

amount of short-wave energy with right-going group velocity is seen to follow the mode

1 dispersion curve. The major responses are in high mode waves with (k, 0') centered

around (-5. 0.05).

The shelf/slope responses on the O-plane caused by the eddy-topography interac-

tion are similar to the f-plane situation. The transfer of the eddy perturbation energy

into shelf wave modes is governed by the f-plane dynamics. Therefore, the results from

the previous section on the dependence of shelf response upon various other parameters

will apply directly to the 3-plane situation.

187



3.5 Summary and Conclusions 1I
In this chapter the interactions of a mesoscale eddy with a shelf/slope topography are

studied. Due to the different dynamics governing the motion of the isolated eddy, the 3
problem is investigated separately on the f-plane and the planetary 3-plane. The major

differences exist in the eddy movements and its time dependent decay. Some quantitative 3
changes in the interaction processes are observed as the consequences of the 13-dependent

activities. There are, however, no fundamental differences in shelf/slope responses and 3
cross-slope exchanges between the results of these two models. Therefore some of the

f-plane results may apply directly to the corresponding 1-plane problem. Particularly 3
the results of the cyclone-topography interactions are similar on both the f-plane and

the 1-plane, due to the fact the eddy is trapped to the topography and topographic 13 is

always dominant over planetary 13.

The most important results of this chapter are summarized below.

1. The cross-slope exchanges are determined by the strength and the size of the eddy, I
and the penetration of the eddy onto the slope. For given penetration distance,

the strong or large eddy will cause the upper-slope fluid to cross the topography

and result in a strong interaction; while the weak or small eddy will mainly advect 3
across topography the fluid from the immediate vicinity of the slope boundary.

The large onslope penetration will cause volume transport from upper-slope and

perturb the shelf water more effectively.

2. The properties of the topographic eddy are strongly dependent on the strength I
of the interaction. The size of the topographic eddy does not vary much with

the interaction strength, but the circulation and intensity of the topographic eddy

depend strongly on it. 3
3. Multiple eddy-topography interactions are possible for an anticyclone interacting

with a shallowing slope. The multiple interactions may not contribute to increase
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a
I the cross-topography volume transport. On the other hand, they may reduce the

accumulated volume transport by transporting the water back onto the slope.

4. On the /3-plane the interaction is dependent upon the eddy incident angle. The

3 perpendicular eddy incidence is the most effective for eddy penetration onto the

slope.

5. The eddy-topography interaction may result in the losses of eddy volume and mo-3 mentum. In general it also increases the eddy decay rate over the radiation and

frictional decay rate. But the formation of the topographic eddy and the subse-

3 quent dipole-like eddy pair may suppress the planetary decay and thus reduce the

eddy decay rate.

6. The cyclone ;s trapped to the slope and consequently breaks apart quickly on the

3 slope due to the intense topographic wave radiation. It is, therefore, more effective

in inducing motions on the shelf. It does not, however, cause large offslope volume

* transport.

7. The continental shelf waves are generated through eddy-slope interactions. These

waves are intermittent, and propagate along isobath contours with the coast on the

* right.

8. An eddy-induced residual current on the /-plane is observed. The current is part

I of the offshore circulation cell and is opposite to the direction of the original eddy

circulation.

In particular, the major differences and similarities between the f-plane and /3-

I plane eddy-topography interactions are summerized and compared against each other.

1
I
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3

f-plane 3-plane 3
Anticyclone Anticyclone I
Volume Transport Volume Transport
It is dependent on the bize and It is slightly smaller than the cor-
strength of the original eddy, the responding f-plane case due to the
distance between the eddy and the eddy decay. It is also dependent on
top',graphy, and the geometry of the eddy incident angle. I
the topography.

Topographic Eddy Topographic Eddy
Formed due to vortex stretching Similar to the f-plane eddies.
of the slope water advected sea- The results var. slightly depending
ward by the original eddy, the to- upon the incident angle of the orig-
pographic eddy is cyclonic and may inal eddy.
be transported back to the slope.

Motion and Decay of the Orig- Motion and Decay of the Orig- I
inal Eddy inal Eddy
Multiple eddy-slope interactions Both differ from f-plane case due to 3
are possible. A net westward the planetary 3-effect. The results
alongslope drift (facing the coast) depend strongly on the eddy inci-
result. Eddy-slope interaction pro- dent angle. Both eddy-slope ipter- 3
duces a quick loss of eddy kinetic action and planetary Rossby wave
energy and mass at rates much radiation cause the eddy to decay.
larger than frictional decay. The dipole suppresses the radiation U

decay.

Shelf/Slope Waves Shelf/Slope Waves 5
They are shelf/slope trapped Similar to the f-plane case.
modes.

Residual Current Residual Current
It is not observed explicitly. It is observed near the edge of the

slope and is opposite to .he direc- I
tion of thb original eddy circulation.

Cyclone Cyclone 3
It is trapped at the topography and Virtually similar to the f-plane
does not induce much transport. case. The eddy decays slightly
Effective in causing shelf/slope per- faster due to the planetar. " effect. 3
turbations.

I
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I It is recognized that the barotropic assumption of this study puts a strong con-

straint on the applicability of the model results to the realistic oceanic situation. In

the light of this study, future investigations will focus on the effects of stratification and

J density fronts in the eddy-topography system. It is expected that three-dimensional field

evolutions will add new aspects into the system, such as the frontal instabilities, upwelling

and density driven currents. The present study achieves, however, important progress in

understanding the fundamental dynamics of the eddy-slope interaction and the responses

of both the eddy and the shelf/slope. The results enable some direct comparisons with

the oceanic observations. In next chapter, the observations from some areas of the world

ocean are discussed and compared with the present model results.

I
I
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Chapter 4 1
Comparison of Model Results with Oceanic Observations I

I
Observations in many of the world continental margins show that niesoscale eddies fre-

quently interact with bottom topography. In particular eddy-topography interactions

are often observed near oceanic western boundaries, where mesoscale eddies form due to 3
unstable current meanders and baroclinic instability processes. In this chapter the inter-

action processes observed on the eastern continental margins of the United States and i
in the Gulf of Mexico will be examined and compared with the model results from the

previous chapters. It is hoped that the model-observation comparisons will provide phys- I
ical insight into complex, real world eddy-topography interactions and enable a better

understanding of the interaction processes. I

4.1 Gulf Stream Ring and Topography Interactions I

There is a persistent frontal boundary separating shelf and slope water near the conti- I
nental shelf break in the Mid-Atlantic Bight. Frequently this front is perturbed by Gulf

Stream warm-core rings (WCRs here after) incident on the slope region. The frontal dis- I
turbances can develop into unstable wave-like distortions (Halliwell and Mooers, 1979; 1
Ramp et al, 1983) and form shelf water streamers which extend seaward and sometimes

spiral around the ring (Morgan and Bishop, 1977; Bisagni, 1983; Evans et al, 1985; Joyce i
et al, 1992). The seaward disturbances may detach parcels of shelf water and form smaller

cyclonic eddies in the slope region (Cresswell, 1967; Wright. 1976; Kennelly et al, 1985). 3
192 3
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Figure 4.1: Salinity field at 10 m depth. After Morgan and Bishop (197/7).

A significant amount of cross-shelf/slope exchange is attributed to these ring-induced

I events (Morgan and Bishop, 1977; Smith, 1978; Churchill et al, 1986; Joyce et al, 1992).

Figure 4.1 shows an instantaneous salinity field at 10 m depth in the Mid AtlanticI Bight adapted from a paper of Morgan and Bishop (1977). A tongue of fresher shelf water
i is drawn across the shelf/slope front by a Gulf Stream WCR (characterized by salinity

higher than 35 psu) drifting close to 200m isobath, though the spatial resolution of the
I hydrographic stations is somehow coarse compared with the dimension of the tongue.

S~The size of the tongue is roughly 80 km long, 30 km wide and 50 m thick, extending
I seaward due to the advection of the anticyclonic ring induced velocity i~eld. This feature is

i similar to the initial field development of the anticyclone-topography interaction from the
moe iuain uhas thtshown in figure 3.18a, the potential vorticity field for case

L F1 at day 4. However, the observed shelf water tongue extends seaward approximately

! perpendicular to the isobath contour, while the model result shows that the offshore flow
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is tangential to the eddy perimeter and intersects the isobath contour at an angle. This is

likely due to the strong perturbation velocity field caused by barotropic vortex stretching,

which tends to advect the original eddy to the right against the cyclonic tongue.

Generally the observations suggest that these tongues are caused by a ring ad-

vecting shelf water around its perimeter. The tongues are usually connected to their

origins as they encircle the WCRs. Further evidence is given by Churchill et al (1986). I
They find that in a cross shelf-slope temperature section the same water mass appears

on both sides of the WCR 83D. They show that it is a band of middle or outer shelf

water drawn seaward by the WCR. Instead of extending from surface to bottom, the

tongues usually have thickness of 50 to 100 meters in the upper water column. In the

model, as the tongue is drawn from shallow water to deep water, the vortex stretching I
effect is exaggerated due to the barotropic assumption. The stretching generates strong

velocity shear in the tongue, which affects the propagation of the original vortex. The

original eddy advects the cyclonic tongue away from the front, and then the tongue tends

to separate from its origin and evolve into a cyclonic topographic eddy. This process is 5
also described in chapter two on topographic eddy formation during vortex-escarpment

interaction. S
Similar to the formation of topographic cyclornes in the model results, observations

also show the existence of small cyclones in the vicinity of Gulf Stream WCRs (Kennelly

et al, 1985; Evans et al, 1985). Possibly formed in the slope region, these cyclones are 3
approximately 40 to 50 km in diameter and have lifetimes of several weeks. The study

by Kennelly et al (1985) indicates that the water mass in the cyclones is formed north 5
of the ring center and is of 0helf origin, containing a mixture of both shelf and slope

water. The velocity of the cyclone is fairly barotropic over a depth range of upper 1000 1
m of the water column and with a maximum value about 60% of that of the WCR. Some

formation mechanisms for these small cyclones have been proposed. Kennelly et al (1985) 1
cite baroclinic instability and the tendency for the original eddy to spin up a barotropic

modon as possible mechanism. The present model results suggest that vortex stretching I
194 3
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Figure 4.2: Satellite image of WCR 82B during May 5, 1982. High-resolution image
highlighting a ringlet adjacent to 82B with acoustic-Doppler-obtained velocity vectors
superimposed. Adapted from Kennelly et al (1985).

of the shelf water tongue is another possible mechanism for cyclonic eddy generation.

From figure 4.2, adapted from Kennelly et al (1985) , one can clearly see the formation

of a small cyclone off the head of a shelf water tongue drawn seaward by WCR 82B.

Another cyclonic feature to the southeast of 82B can also be seen. The two cyclones

are advected clockwise around the WCR. This is very similar to the interaction process

shown in figure 3.34 at day 56 for case B4. Figure 3.34 shows the flow field during the

second eddy-topography interaction. A cyclonic topographic eddy is forming from the

seaward flowing shallow water tongue. The interaction perturbs the shape of the original

eddy elliptically. The cyclone from the first interaction is still seen to the left of the

original eddy. The comparison shows that even the orientation of the elliptical eddy is

roughly in the same direction as observed by Kennelly et al (1985). The small cyclones

in the model usually end up moving back onto the slope and being destroyed there.
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Their lifetime, about 20 to 30 days, is close to the lifetime of the cyclones observed by

Kennelly et al (1985). The fate of the cyclones observed by Kennelly et al (1985) is not

clear. Presumably they are either entrained into WCRs, absorbed by the Gulf Stream,

or dissipated and mixed on the slope as occurs in the model. According to Kennelly et al

(1985) detached cyclones are found throughout the slope water, with observed lifetimes of

1 to 2 weeks. The mechanism causing the separation of these cyclones from the perimeter 3
of a WCR is not known. Several possibilities are proposed here. Firstly, it may be due

to the ring interacting with the shelf/slope front. The cyclones tend to be trapped at the 3
front and dissipate there. Secondly, it may be affected by the ring-ring or ring-stream

interactions. Finally baroclinic instabilities may cause the ringlet to detach. Only the I
first mechanism can be studied with the present model.

The seaward flowing shelf water tongues and small cyclones are important features

of cross shelf/slope transport. They play a significant role in the maintenmnce of shelf and 3
slope water mass properties. Wright (1976) indicates that in the Mid Atlantic Bight about

2400 km 3/year of shelf water must be transported offshelf to maintain the salt balance

due to a fresh water runoff about 157 krn3 /year onto the shelf. The ring-shelf/slope

interactions may be responsible for a significant portion of the total exchanges. The I
estimates of the ring-induced transport for a single interaction event vary greatly from

available observations. They strongly depend on two factors: the rate of transport and I
the duration of the interaction. A reasonable estimate of the duration is the time length of

ring-induced shelf streamer events. According to Evans et al (1985), the average duration

of such events is approximately two weeks. Using this and available observations, the 3
measured rate of seaward transport and the net total transport. in a single interaction

event are shown in table 4.1. No corrections are made about, shelf and slope water mixing 3
or transport back to the shelf. The estimates in this table are prone to different sources of

errors and are considered only as orders of magnitude. The transport varies for different 3
eddies and interaction strength, as suggested already by the numerical calculations. The

barotropic model results tend to give larger transport rates than observations. If the 3
196 3
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Table 4.1

Authors Rate of Transport Net Transport
(106 m 3/S) (10 12 M3 )

Morgan and Bishop 0.0089 0.011
(1977)

Smith (1978) 0.19 0.23

Bisagni (1983) 0.15 0.18

Churchill et al 0.048 0.058
(1986) _

Joyce et al 0.87 1.1
(1992)

This study 2.9 3.5

Estimated eddy induced volume transport from different sources.
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model transport of a slab-like seaward flowing tongue with just, upper 100 meters is

considered, the transport rate and total transport become 0.3 x 106 vn3 is and 0.35 x 3
1012 mi3 , respectively. These are close to the average values of the observed transport.

The major uncertainty here is the total time of the model interaction compared with

that in the observations. The former is about two weeks, while the latter is obscure and

is commonly assumed to be about two weeks (Evans et al, 1985; Churchill et al, 1986) 3
to two months (Smith, 1978). In addition, the present numerical results suggest that the

occurrence of multiple eddy-topography interactions acts to transport water back onto I
the shelf. The total accumulated transport is effectively reduced by this mechanism. In I
observations it is difficult to resolve the occurrence of multiple interaction events, since

instability processes, eddy-eddy or eddy-stream interactions and external forcing can

strongly affect eddy propagation.

The movement of Gulf Steam Rings can be monitored by freely drifting buoys or 3
identified from satellite images. Recent measurements enable very accurate tracking of

rings, especially warm-core rings, through their surface thermal signatures. The general I
results agree with the historical data that rings propagate on average southwestward

with speeds ranging from several to a few tens of centimeters per second. The ring I
trajectories and speeds vary as they encounter bottom topography and interact with the

Gulf Stream. Warm-core ring 82B was studied using satellite-derived AVHRR thermal

images for about a half year time period in 1982 by Evans et al (1985). During that period 3
82B propagated southwestward in the Mid Atlantic slope region and finally merged with

the Gulf Stream near Cape Hatteras. Figures 4.3a and b are adapted from Evans et

al (1985). On average the ring propagates southwestward roughly following the isobath

contours. When it encounters the irregular bottom topography at the Hudson Canyon 3
in J.D. (Julian Days) 109-123, the ring turns westward and its speed increases from 2.5

cm/s to about 7 cm/s. The subsequent event resembles an eddy incident onto a shallow 1
topography with an oblique angle. The eddy center experiences a, depth change of about

400 m. As in the model resuit-_, the ring is expelled sowtheastward from the topography 3
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Figure 4.3: Upper panel: The location of ring center track for 82B relative to bottom
topography. Letters are placed to major event locations: A, ring formation (Juhan days
39-56, J.D. here after); B, 82B and the Gulf Stream encounter (J.D. 77); C, cold shelf
water entrainment (J.D. 85-95); D, Hudson Canyon passage (J.D. 109-123); E, cold shelf
water entrainment (J.D. 132-139) ; F, the Gulf Stream streamer entrained into 82B; G,
start of Wilmington-Delaware Canyon passage (J.D.153); H. cold entrainment period3 (J.D. 168); I, Cape Hatteras area, the Gulf Stream encounters with 82B (J.D. 183-238).
Lower panel: WCR 82B absolute translation speed versus time. After Evans et al (1985).
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into the deep water. At the same time a cross-shelf volume transport is induced by the

ring velocity field and shelf water entrainnient is observed. The ring ellipticity increases 3
and its major axis orientation rotates from north-south to east-west. Meantime a cyclonic

vortex to the northeast of 82B is seen and is associated with a strong streamer that wraps

cold shelf water around the east side of 82B. After J.D. 123 (position D) the planetary

and topographic fl-effects again apparently dominate the ring's motion, which is back 3
towards southwestward with a speed of about 5 cm/s. Evans et al (1985) notice that as a

ring moves toward shallow topography such as in the ring-topography interaction during I
J.D. 109-123, there are often cyclonic vortices generated to the northeast of the ring.

These vortices are usually advected clockwise around the ring and cause entrainment I
into the WCR. Ring-topography interaction and cyclone formation also affect the size 3
and the shape of WCR 82B. These features are qualitatively similar to the present model

results. 3
A case of a Gulf Steam cold-core ring (CCR) impinging on a shallow topography

is reported by Cheney and Richardson (1976). Their figures 6 and 7 are adapted here as 3
figure 4.4a and b. In a series of hydrographic surveys, they find that a CCR encounters

the Blake Plateau in the western Sargasso Sea, where the water depth shallows from I
5000 m to less than 1000 in. The ring undergoes large changes as it climbs onto the

Blake Plateau. The decay rates of the ring's available potential energy, kinetic energy I
and azimuthal transport increase four fold. There is a significant loss of ring volume

and its radius shrinks from 75 km to less than 30 km. As the ring moves onto the

Blake Plateau, it loses part of the lower ring structure and the ring bottom is squashed. 3
The model results indicate strong Rossby wave radiation taking place in such a situation,

thereby weakening the strength of the CCR and contributing to the increased ring energy 3
decay rate. According to Cheney and Richardson, the topography had little effect on the

movement of the ring. In contrast, the model results show accelerated eddy propagation 3
toward the topography. This may be due to the baroclinic structure of the ring, which

presumably decouples the strong topographic influence from the upper layer ring motion. 3
200 3

I



I
IA;E )4

I4
TURNPR

=~S I 0 1 T

TR9NPO1 91"2~

, PM100 OUT v I E R RIDGE
10 00 5 0 -00 IS BLK I

DISTANCEUTE FRMIENERIGEo

O ABYSSAL PLAIN

Figure 4.4: Left panel: Decay sequence described by contours of available potential
energy density. Contours are in units of 10' ergs/g. Bottom depth is shown for the
passage of the ring onto the Blake Plateau. Right panel: Decay of available potential
energy. transport and kinetic energy relative to 1000 rn. V'ariation of the depth under
the center of the ring is shown below. After Cheney and Richardson (1976).
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Direct observation of shelf waves induced by mesoscale eddies is difficult, though

some limited evidence is available in the work of Halliwell and Mooers (1979), Louis et al 3
(1982) and Ramp (1989). Basically, eddy-induced topographic waves are divided into two

types: across-shore propagating topographic Rossby waves and alongshore propagating 3
shelf-trapped waves. Shoreward propagating topographic Rossby waves originating from

a nearby source have been studied by a number of investigators: Hogg (1981), Louis and 3
Smith (1982), Shaw and Peng (1987), Ramp (1989) and Shaw and Divakar (1991). Since

the slope is an excellent insulator of energy transmission at longer time scales (> 10 3
days), topographic Rossby waves originating from the deep ocean or the lower continen-

tal rise can not readily penetrate the continental slope. Shaw and Peng (1987) and Shaw I
and Divakar (1991) show that for sources on the upper rise, some of the energy can reach

onto the shelf. Ramp (1989) pr'wides observational evidence for onshore-propagating

topographic Rossby waves due to a nearby warm-core ring on the slope. His calculation 3
gives group velocities of-il and -40 km/day at the shelf break region near Georges Bank

for acress-shore and alongshore propagation, respectively. The alongshore-propagating 3
shelf-trapped waves are generated by a shelfward flux of momentum and forced water

column perturbation due to direct eddy-shelf contact. ijnlike shoreward propagating 3
topographic Rossby waves, continental shelf waves are coastally trapped and propagate

only along isobath contours with amplitude generally decreasing offshore. Ramp's (1989) 1
results show both alongshore and across-shore wave propagation. He calculated an along-

shore wave propagation of 40 km/day (or .46m/s), though no cross-shore wave amplitude I
information is given. These alongshore wave components may contain both the waves

directly excited by the eddy forcing and the shoreward propagating topographic waves

that are refracted to alongshore direction as they shoal. However, given the proximity of

the source location and increasing dissipation near coast, the wave refraction effect must.

be relatively small. Ramp (1989) also argues that the shelf and slope waves so generated 3
cannot travel very far alongshore due to strong frictional dissipation in shallow water.

Since the shelf and slope responses are fairly barotropic (Louis et al, 1982; Chapman 3
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Iand Brink, 1987; Ramp, 1989), bottom friction can be modeled as a body force on the

entire water column. Ramp estimates that on the 325 in isobath, using bottom drag

CD = 2 x 10' and water particle velocity Vb = 20 cmis, the alongshore dissipation

Ilength scale for the wave is about 325 kim. This length scale is even smaller in shal-

lower water. This result basically agrees with the results of frictional shelf/slope model

experiment. The model results further indicate that the location of the maximum shelf

response shifts seaward. Since eddy-topography interaction is intermittent, the shelf and

I slope waves also show intermittency. This property can used as an indicator to detect

such waves in a time series observation (Louis et al, 1982).I
4.2 Loop Current Eddy in the Gulf of MexicoI
The unstable Gulf of Mexico Loop Current can detach anticyclones with radii of about

j 100 km into the Gulf of Mexico. These eddies are known to propagate southwestward

into the western gulf where they collide with the continental shelf and slope. The western

I gulf is bounded to the north and south by continental boundaries. The collision of a Loop

Current Eddy (LCE) with the western gulf boundary is physically similar to the present

model study of an anticyclone colliding against a western boundary.

Kirwan et al (1984) use satellite-tracked drifters deployed in a LCE to study eddy

evolution and propagation. Their results indicate that the southwestward propagation of

an LCE slows down as it encounters the western gulf slope. The eddy shape is perturbed

ellipticdlly during its interaction with the shelf and slope. After reaching its maximum

shelfward penetration distance, the eddy moves temporarily northeastward. According

to the present study, this is likely due to the combined effects, of the cyclonic shelf/slope

perturbation velocity and topography-induced nonlinear self-advection of the LCE. The

east-west orientation of the elliptical eddy also agrees with the model res-:ts. It is difficult

to detect whether or not the eddy's long axis rotates during the interaction.
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In another study, Vidal et al (1992) examine the collision of a LCE against the

western gulf shelf and slope. Upon colliding, the anticyclonic LCE sheds approximately 3
one third of its volume (about 2 x 104 km' 3 ) and its strength is considerably weakened.

Their observation tends to indicate that the lost nmomentum and relative vorticity of the

eddy due to the collision probably support the shear flow to the north and south along

the western gulf shelf break. Similar behaviors are found in the present x1,1merical study.

In the model, the along-topography current is observed during the eddy-slope collision. It

is usually associated with a weak cyclone to the northeast of the original anticyclone for I
the case of eddy impinging a west-bound slope. The strength of the cyclone is enhanced

through close interaction with the original anticyclone. The near-slope portion of the

cyclone is squashed against the slope and thus intensifies a jet-like along slope current

(such as that shown in figure 3.29 at t=56 days). A smaller temporary cyclonic feature

can also be seen to the south of the original eddy. During this interaction the anticyclone 3
also loses a portion of its volume and energy as shown in figure 3.32, and transports a

certain amount of slope water into the deep ocean.

Cyclonic eddies to the north of slope-colliding LCE's in the western Gulf of Mex-

ico have been observed quite frequently (Merrell and Morrison, 1981; Hamilton, 1992). I
Figures 4.5a and b show two examples. Merrell and Morrison estimated a net eastward

(offshore) transport of 29.7 x 106 ma•/s between the centers of the cyclone and anticyclone. I
The transported fluid consists of mixtures of LCE water (i.e., Subtropical Underwater)

and Gulf Common Water. The anticyclone is greatly enlongated in east-west d-ection.

The influence of this eddy pair on the excharge between the shelf and the western gulf is 3
not known for this event. According to the present model results, the cross-shelf trans-

port may be enhanced and the eddy pair may have a tendency to move offshore. This is 3
unlikely to be true for the case observed by Merrell and Morrison (1981) because of the

large eddy size. In figure 4.5b from Hamilton (1992), two cyclonic features are seen north I
of the anticyclonic eddy. The one to the northeast can be explained as a trailing "yclone

due to the Rossby wave dispersion mechanism discussed previously. The cyclone north 5
204 3

I



I

YEAR 5 COMPOSITE 1 4/ 5/87 TO 5/30/87
"98 97 W 96 W 95 w 94 w 93 92 92 v w 90 U '9 w 88 Id 87 V

129 N Ii J T 29N

2 N -,to 28°

27- N 27 w

2-- 25 N C5 "gI j I Eov
1. sP~j 24 2N 24 N

22- 23 23 N

98 w 97 y 9 95 V 94 W 3 V 92 w 91 V 90 V 89 V 88a w 7 W

DEPTH OF 15.00 (DEG C) TEMPERATURE SURFACE

Iw

Figure 4.5: Left panel: Depth contours in meters of the 15°C isotherms as observed in

April 1978. Centers of the anticyclonic and cyclonic circulation features are denoted by

H and L, respectively. After Merrell and Morrison, 1981. Right panel: Depth contours
in meters of the 150C isotherms romposited from observation during April 5 to May 30,
1987. After Hamilton, 1992.
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of the anticyclone is on the slope and is likely generated by the velocity perturbation

of the anticyclone-cyclone eddy pair. But Hamilton (1992) found that both cyclones 3
have stronger deep signals in 80 C isotherm than the anticyclone, which implies that tile

anticyclone may not play an important role in the formation of the northern cyclone 3
in the early stage. Another possible interpretation also exists that the anticyclone may

influence the formation of the cyclones when its lower portion contacts with the slope. 3
As the anticyclone is expelled seaward, its lower portion may be weakened by bottom

friction and topographic wave radiation. The process is likely baroclinic and is beyond I
the scope of this study. Hamilton (1992) also finds that after six months the anticyclone

moves northward alongshore and that there is only one cyclone observed to the north I
on Louisiana slope. It is not known if this cyclone is the remnant from one of the two

previous cyclones. In the model, alongshore eddy propagation in the opposite direction

to shelf waves may occur temporarily as the eddy is expelled away from the slope. The I
topographic /3-effect tends to cause the anticyclone to move in the same direction as the

shelf waves. Due to the fact that the LCE becomes more surface intensified as it drifts 3
into the western gulf (Vidal et al, 1992), the interactions between LCE and continental

slope are more baroclinic than the previous Gulf Stream ring cases, the comparison here

is somewhat more problematic. Usually the shelf/slope responses are more barotropic,

while the eddy propagation is more baroclinic. 3
4.3 Summary 3
The comparison between the model results and observations shows that they are qualita- 3
tively consistent. Due to the complicated nature of observed eddy-topography interaction

processes, the comparison has to be made using different events to highlight the partic-

ular features contained in the observation. Some encouraging agreement is found for the

most important processes produced by the model, such as cross-topography exchange, I
topographic eddy formation, eddy decay, and to a lesser degree, eddy propagation. Evi-
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1 dence is taken from Gulf Stream rings and Loop Current Eddies, and more can be found

from other shelf and slope regions where mesoscale eddies are active. It is realized that

the effect of stratification is lacking in the model and that other mechanisms may also

contribute to the above mentioned processes. For example, baroclinic instability may

also assist the formation of observed small cyclones in the real ocean, where the cross

shelf or slope volume transport is mainly confined to the upper 100 in depth. How-

ever, the model results provide some clear physical insight into the problem, highlight

I dynamic mechanisms for certain important features and shed light on the complicated

eddy-topography interaction processes.

I
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Concluding Remarks I

Through a simple to relatively complicated modeling effort, somne fundamental H
aspects of the eddy-topography interaction process are investigated, such as the eddy-

induced cross-topography exchange, topographic eddy formation, eddy propagation and

topographic wave generation. The contour dynamics approach in chapter two, though

having simple structure, produces the basic features of the interaction and sets up the

framework for subsequent study. The primitive equation modeling, inheriting the same

fundamental dynamics, recasts the important features of eddy-topography interaction

and provides more realistic picture for both the eddy evolution and the shelf/slope re-

sponses. The comparison between the model results and the observations shows good

qualitative agreement in many aspects and provides dynamical interpretations to some I
important features, such as the formation of topographic cyclone, the variation of the

size, shape and strength of the eddy and the responses on the shelf and slope. Rough I
quantitative comparison for cross-slope volume transport seems possible allowing some

margin of error due to the mechanisms not included in the model.

The model is limited by some assumptions, and the most important ones are the 3
density homogeneity, the exponential topography with no alongshore variation and the

idealized bottom friction. Other factors which may be important in influencing oceanic

eddy-topography interaction but are not an intrinsic part of the modeled interaction

process are currents, wind and thermal forcing. The model would be greatly improved I
by the inclusion of stratification, which would enable a more realistic treatment of the

eddy as well as the shelf/slope density front. It would also introduce density adjust- I
ment processes into the interaction, reduce the vortex stretching compared to the purely

barotropic case, and permit barocinic instability processes. Observations show that most

of the cross-shelf/slope exchange takes place in the upper 100 to 200 meters depth, and

that the cyclonic eddies formed around the ring perimeter are not as intense as the topo-

graphic eddies found in the present study. Eddy propagation in a baroclinic ocean will
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also be different from that in a barotropic model ocean (McWilliams and Flierd, 1979),

and so will the planetary dispersion of the eddy components. The use of more realis-

tic topography may alter extensively the model responses on the shelf and slope. The

improved model would probably produce some results that are more quantitatively com-

parable with observations, such as volume of cross-topography transport and strength

of topographic eddies. Other results, such as topographic waves on the shelf/slope, may

become more obscure.

The restrictions on the study in chapter three can be relaxed readily in the nu-

merical model. However, care must be taken to ensure that the numerical computation

properly resolves the flow field in the presence of both large topography and density

stratification using the vertical sigma-coordinate. Future work will investigate the role of

density stratification in eddy-topography interaction processes and study the evolution

of shelf and slope density fronts and cross-frontal exchanges. The focus will still be on

the same important dynamical features identified by the simple contour dynamics model,

but possible new mechanisms will be sought to better interpret the results.
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APPENDIX A I
It can be shown for small amplitude escarpment waves that the correct dispersion rela-

tionship can be derived using either linear or nonlinear matching condition. Since the

linear condition is valid only at small amplitude limit, it is a special case of the nonlinear

condition. The nonlinear matching condition, equation (2.7), is the exact condition that

a cross escarpment flow has to satisfy and is valid regardless of the amplitude limit. I
Nonlinear condition

We consider equations (2.16) and (2.17) without point vortex. The small amplitude

limit allows us to approximate V2i/P by only ?P,, in the region between the interface

and the escarpment. The potential vorticity interface is assumed to be sinusoidal 771 =

a, sin k(x - ct) for y < 0 and rq2 = a2 sin k(x - ct) for y > 0, respectively. Integrating V,,,,

on each side of the escarpment over the small interval between the interface and y = 0,

we can get I
ulo. = ul,, + ahh71  (A.la)

u]o+ = ul, 2 - c&2r72 (A.lb)

where a = fAh/hlh2 . Now we consider the interface over one wave length, with 712 > 0

in x < xo and r77 < 0 in x > x0 . The stream function for small amplitude wave takes the

form
= Aekm/sink(x - ct), Y < 0 (A.2)

Be-kY sin k(x - ct), y > 0

For x < xO, substituting ?k and 77 into (A.1) and matching v o- v 0+, we get

k(A + B) = ah 2a2. (A.3) I

Similarly, we can obtain

k(A 4- B) = cahia. (A.4)

I
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(A.3) and (A.4) give h1a, = h 2a2. Substituting (A.2) into (2.Ta) yields hI A - h2 B.

Applying these results to (A.4) for y < 0, we get
A = f hi h2  (A.5)

k hi -• h2  .

From ijt = , we get the contour equation •' + ci = constant. Substituting •, and r7

into this equation, and letting the constant be zero, we obtain

A = -cal. (A.6)

Compare (A.5) with (A.6), we immediately get
f hi - (A.7)

c- k h, + h 2

The same result can be obtained by considering the contour on y < 0 side.

Linear condition

The matching conditions obtained from linearized version of equation (2.1) are

[ut] f[v] (A.8a)

[p] 0 (A.S8,)

[vh] = 0 (A.8c)

Substituting (A.2) into (A.8a) to yield

f A-B
k A+B'

and using (A.8c), we end up with (A.7).
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APPENDIX B I
When the escarpment is finite, the flow across it experiences finite jump in velocity.

For a particle crossing the escarpment within a given time step, the velocity used in

contour dynamics calculation is taken to be an average of the velocity on both side of the

escarpment. This average velocity can be calculated to an accuracy of order O(Ah/h)

If the particle travels a distance Ay in a time interval At,

Ay = vAtl + ,2At 2 =- At I
where v1 , v2 and At,, At 2 are the velocity and travelling time in the region of water

depth h, and h2, respectively; f; is the average velocity in the whole time interval At,

and At, + At 2 = At. Using equation (2.7a), for particle crossing the escarpment from

h2 to h , we obtain 1
- Ag2  h2  AY2

At T, A t

where A• 2 is the distance the particle travelled at y > 0 side during the time interval

At 2, it is of the same sign as v2. Similarly, for particle crossing the escarpment from h,

to h2, we obtain

AY,+h(1  - A'Y'
At hT At

with Ay, being the distance the particle travelled at y < 0 side during the time interval

At 1 , and of the same sign as vj. I

2
I
I
I
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