
A -A261 526 F& jvv

0 .W i*W11411 
06"04"fl~ 1U 4~~ngm~~ or * a "p of an

1. AGENCY USE ONLY (L*#V* Wank) a. REPORT DATE 3. REPORT ffýgAwb OATIS COVIND

II I-Julyv 9?2 31 Dece-mhpr 92
,L TITLE AMO SUSITME S. PUNOiNG NUJMIERS

On The Stabilit'y of Finite olastic Deformations

~AUTHOA(S) 9--o O~-05

HYM. Zbib and E.C. Aifantis

7. PIMUMNG ORGANIZATION NAME S$ AND AOORESES0S 1 . PERFORMING OR1GAKLZATION
(7XI- REPIORT NUMIER

Hougton, MI 49931

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ISSUE) 10. SPIONSORING i MONITORING
AGNP1POTNME

U. S. Army Research Office AEC EOTNME

P. 0. &ox 12211
Research Triangle Park, NC 27709-2211 -7j' 46 -~-

11. SIJPPUMENTARY NOTES
The viev, opinions and/or findings contained in this report are those of the
author(&) and should not be construed as an official Department of the Army
position, policy,_or decision, unless so designated by other documentation.

Ile. DISTRIBUTION / AVALASIJYT STATEMEN4T IM ¶2.ISTRISUTION COO6

Approved for public release; distributiom unlimited.

IS. ABSTRACT (AMaximum 2W0 won*)

The stability of inelastic deformation and the formation of shear bands are
examined by considering a recently developed gradient-dependent theory of elasto-
viscoplasticity. The main is ues addressed in the present work are the role of
viscosity, inertia and higher order strain gradients in providing internal length
scales, as well as the effect of back stress (deformation induced anistropy) and
plastic spin (texture development) on the structure of the shear bands in the post
localization regime.

93-03326

14. SUIJECT TERMG Ilk NUMBER Of PAGES
Stability of Plastic Deformations

1 .P UC 
C OOS

VA. SECURUTY CLASSIFICATION IL SECURITY CLASSIFICATION ig. SECURMT CLASSIFICATION 20. USUATION Of AISTRACT
OF RE PORT OF THIS PAG" OF AXSTRACT

UNCLASSIFIED I UNCLASSIFIED UNCLASSIFIED MJ
N514 7540..i-2wisO Stardard Folm 294 (Rov 289)

ft~nt OwMWUdMI
M14 31



On the Stability of Finite Plastic Deformations

HMM Zbdb By )t;

Washington State Unroersity _____ ___

Pullman, WA 99t64-M9O. UISA, and CC

E.C. Atlantis

Michigan Technological University Ds
lfougton, Mi 49931, USA and
Aristotle University at Thessalonliki
Thessalonikci 54006. GREECE 1W

Summary
The stability of Inelask deformation and the fowtomon at shear bands are eaimined by conside"hi a
recently developed gradent-dependent theory of elato-vlsooplastolty. The main Issues addressed in
the present work are ie* role of viscosity, inertia and higher order strain grailentts In providing Internal
length scales, as well as the effect of back stres (def oiwatlon Induced anisotrp) and plasic spi
(texture development) on the structure of the shieer bands in the post locizaln regime.

Introduction

The problems of constitutive modelling of fin dte plastic deformations and the associated Pherinomer of
deformation pattern-tormation and shear banding have been the suiecbf of interest among flaiay
investigators during the past two decades, recent reviews can be found in the works of Rice Ii11, Aitmift

[2a.b] and Thib and Aitainti 13a~b). W~hen examining these phenomena, the crucial questions that afse
are the identificationi of the basic scaling mechianisms, the associated mio'vtructural aspect (see for

example, Korbel et aL. 1411. the appiropriate intemal v~ariables that a oonstutive theory should inckde

and the way the maroscopic constitutive response Is related to the physicis miciroprocesses (see for

example. Alt antis 121 and Drucker 151).

The stability of plastic low and the shear banding phenromenion. In partilmtar. hav, gained t1he atte'~

of many researchers in both the mretalluirgica aind mechanics corrnunito [1-1 1). While Mie main

mathematical and physical aspects pertaining to the understanding of the mechanisms leading to the
onset of the phenomenon have been examined, wort on the charactenzalon and evolution of stows
bands including fte ciaernxnation of band widths. and speangs has only recently begun. The main

difficulty in this problem lies in the proper modelling of material behavior in toe postl-localization repiae
once the shear bands are formed This can be attribuled to the fact that in this regime the deformalon

field becomes highly kinhomogenaous and. therefore, conistitutive equations originally proposed tr

homogeneous or *near homogeneous* fields become insufficient. To overromea such difficulties, it a

suggested in the work cO AMantis and co-workers [2.3. 12-1 8) to include the higher order strain gradiaft

D Besde.F Stein (Eds,)
Finite lcirasti Djefrmations.-
Theory, arnd A~9Wxaions
ILUTA.M Sariwslun Hannover/Germanr 199
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Into ft cOnsiftutive theory of plasticity to aeoOUt for the heterogeneity of plastic flow and cature

Internal deformation wavelengths.

In the present wvrl we first review the -scals-invaflaflce approach outlined in t21 and used in (3 to

obtain physically based constttutive equailofns for the plastic stretching. back stress (mrodelling

anisohropy) and plaski spin (modeling tex~a, developmnent), Such a theory may be viewed as a

comipromie between 'mufttshl crystal plasticity averaging models and purely continuum plasticity

models. The 11eo" is then modified to account for the heterogeneity of plastc flow occuriring dunrig

the showr banding process. Thes, in ýact. can be directly related to microstruc*.wal ifihomogmrietes

resutftg for example, from tangled cell sfneftres of dislocations, torture deveilopmnent. etc. flus, in

turn, leads to the developmentl of strain heateogeneities causing the initiation of localized delonration

bands. The nlacoscopic manifestationf such microscopic events is assumbed here to be the

development of higher order strain gradensm which wouild enter Into the form of rivcnrospic

phenomenological theory. In fact we retain toe structure of the classical theory of plasticity. Inx*d*a

the yield surface (for rawsindepenident materials). the normaifty condition arid the flow rule, but k*,duc

hiowe oirder strain-gradients into the equation for ite flow stress.

In order to excamiine toe role of higher order strain gradieints on the material behavior, we consier a

simplified one-dimensional problem and invufigale the effect of Inertia. visoositly and gradients en the

stnicture of the Shear band. it is shown 11t far the quasi-static loadng cawe, higheir order strain

gradients are the only source to provide an internal length scat. to the problemr far both rat.-

independent arnd rate-dependent materials. For the dynamic loading case, however, ft I sho that

viscosity and inerta. together, are sufficient ID pro'aide a natural length scale to the problem without

resor*in to higher order strain gradlients, but when viscosity is dropped. hihe order gradients become

again necessary.

In order to examine the effect of plastic spun and aniasotropy on the deveI nent~l of Shear baaswe

consider a two-dimensloniaj problem. The problem Is treated numerically usicg the ftnftt alemeri

method. It is shown thiat for the case of shwa banding from a ground-state of pure extension (no

shearing), the plastic spin has no infiluence on' the onset of instability. but 11 does affect the develtipmenit

o1 severe localization. In tad,. an increase in the degree of plastic spin decreases 'ductility.* in the

sense that the value of average strain to severe localization and *load collapse' decreases.

A Gradient- Deoenderil Theory of Elasto-Ptaslicity

We consideor a continuous medium under dynamic loadhng conditions whose motion Is governed by the

linear momentum eqaion,
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d~v P(4.

where a Is the Catchly sV*ss tenSor. p is ftl mjasS density, and v is the velocity vector field.

Assuming that the solid undergoes large deloiMAllons, we can decoMpos* tIN deformation gradient F

Into elastic r, plaski P' and rotation W parts such~ thal. F -" Fr F- Pa proposed by Zbib and Arantis

(3a). Following their method, one can then obtan the decomPOsitio

where thle Stretdliril 0 Is the Syrmmetric Pan of the velocity grad"Ir~ " aD" ar.e the elastic and

plastic stretching respectively. (0 is the spin of the mafstda (substrucre). W Is Mhe NSniymnitrC Part
of tte velocity gradient (spini of the oontlnum)an)md WP is fth p astic spin. The elastic sVran rate W i

given by Hooke's low, modified for large delev%0allo. as

D@ v (C ~ t - 1*1-w(3

Where (Cl is the eW~tetcty tensor and Is 01e cOSSrotlne Stress rale.

Using a scaleinvarlince arugMW a m~k~M poeue Alaits and cowow (e.g. 2,31

have been able to derive explicit expressions Wo lIeI Plastic stretching tV md plasti SpiW W batted On
the process of orysWd slip and dislocation gindt. Fnr Kinemattic hardertilg plasticity Models ii twnsM O1t

that the plastic anisotropy can be repro$e~e by "i back stress L whose eVoluto it. In too.

determined by ft plastic spin W'. As a speia case of thits tormMAon one obtains the following

c~onstitujtive equations

0' S-4 a 1D~Oe v -i.w (4)

*W-W'. W, - C(aD'-0'u),

where prime Indicats deviatlorte pail while, h, 0 and C are material parameters. (As usual. 7

(20'. D)edenote this teffctve stran and; 7 .(. S,2)'* the offedikve sStres.

Equation (4), suggeft that the plastic spin is a measure of nonooaxaldty between Ithe boac saleis Mid

the stretching. its W9111icaltion to large detornillin has been examined in detai by the authmr 131. In
dasticular. It was shamn that WO haes a considerabfecste on the development of axial stress (or strain)

In a fixed (or free) enld torsion of a cylindrical ba and tha the value of the paninieter ý can be obtained

from such torsion 19Ms. ['The results of ZbIb aid AMtantis (3) suggested that ý has very small values;

in fact, by defining ý - a/d,, where a, is the initial yield stress, they obtained, for example, a - 4.5 for

AIL- ft100). The irnplication of the plastic spin to localization Is examined in the last section of this paper

in connection with thle numerical analysis.
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Rate- Oependent, Materals

The flow strOSST appearing in eqtonr (4), and its dependence on strain and Strain rate deterrnknes

whether the material is rate-independent or rate-dependeit. In addition to this classical interpretation

of the flow stress, it was proposed in (2.3) that higher order gradients of ftcro (dislocation densities)

or macro, (strain) vanables be inclded in the respectve constiutve equation in order to capture the

details of deformation patterning anid shear banding phenomea. For the case of maco shear bands.

for example, the following gradient-dspendent expiresson for the flow stmes was propose

* ~if (7-T r"r, q ivyC WI'

where icx-, Is the usual homopneofs stress and C, (y) and C, (T) am the so-caleid gradlient

coettlcierit. This simople expression proivides an internal length to the theory of plasticity and, hence.

makes possible the investialior, of pattern-forming Instabifes In fte defonrIedon field.

Upon combining equations (3) and (4) with (2) we obtain the following gradient-dependent cionstitutive

equation Jar ratep-dependent elasti-viscoplastic materials with Isotropdicedniematic hardeniing

** ~ * -ii,; ~ !a(6)

where it can be defined as the renlnear toital viscosity. with a homogeineou part si~ a&M an

Inhomogenieous part Mi

When elastc effects are neglected fD.O) for large plastic deformations, then we obton the following

constitutive relation tor a gradierit-dapendent visoopastlc material with lsotopl 1101Metkc hardenin

3 - 2;LD-&-pt; (7

where p a- rW3 is the, hydrostaf pressre. This eqtmtlon Is renriniscent to that describing a

Newtonian viscous fluid (wifthot a ad a gradlient-dependent viscosity).

Rate-Indecendent Materials

The dependence of the flow stress iron ? indicates viscoplastic behavior. Plastic behavior is obtained

by dropping in (5) the dependence an ?. In this case ? and the condition of loadiing or unloadlng are

obtained from the yield function F and the consistency condition F-0. The loading-unloading

conditions are given by
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F-J- ýOadY> rY- (8)

F-0 and Y <0- unloading

where J' (S'-a S'- a)/2 The conlsitency condition 0- 0 then yields

C,V''Y.2qV'. V___ '(9)

where toe effedcI' hardening modulus hP is giburt by

dhC, dc dC ,VdC2 d~t1 97 (10)
'il, 2-~ d y dy C;

Retation (9) is a differential equation f or the loac*V index ;.This is a maWo difforencie between the

present theory and the classical theory of plasticty. The loaning index raow should be. treated as an

independent variable governed by equation (9). rThis could be treated numerically and incorporated

in usual finite element programrs where equatins (9) can be solved independently at each integration

increment.

The One-Dimensioinal Problem Lmoth and Timer Scales

in order to lustrate the implicaticons of the theory outlined in the preevious section to VI* shear banding

problem, we consider the simple sharng of an infinite block in tOe x direction. We ansure tha the

state of stress is pure shear such Oil S., . Sy.. t(b are The onlynonzero iornponfle fl Sl. Sunui~latly.

-t., w = j02 are the only nonzero components of 0. Moreover, we assumie isotropic hardening with

no back stress. Then it can be shown that equations (1 )-(3) reduce to

where G is the elastic shear moduina, fP is the plastic strain rate. and v Is the velocity field in the x

direction. Various classes of materia behavior are considered below.

Elastic-Pftsbc Materaias

a) No gradients: C, . C, - 0.

For this case we drop the dependence on y from equation (5) and obtain f - H. where H xW.iia

TPhn equalons (11) (with y - v,) yield a rather familiar partial differential equation

ive, I G e G (12)

where fth sujbscript y indicates parlial derivative. The type of this differential equation Is governed by

the sign of H. If H > 0 the equation is hypenboct and traveling waves with a speed oqua to c exist.

However, Owen H < 0 fth equation becomes elliptic anO wave trapping ocicurs [191. In this respect the
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problem Is '-posed" due to the charge ol type occurring in lif governing differential equation as the

material enter the softening regime (H < 0).

b) WIth gradients: C, - constIr. C, . oonstarg.

The problem of "11t-posedness" Is eliminated by Introducing higher order gradients. TIb can be seen

by considering equation (5) (With no dependence on 4 whii upon neglecting elasticity from (11),

(y~~and oombining, wit (11), gves

p Hu,i, -C, u,,,, -2C2 u,,,, (13)

with u denoting the dispac0wr•ent. Now " character ci this lfeirenotal equatlon Is Independent of H

and Is detetmined by C, which is a constant. Therefore, the system does not change type Moreover.

equation (13) can be nondimensionalized by introducing the foblowing *natural time (ij and length (4)

scales
1 PC, T (14)

Then with the nondimensional varieales
F. /- u -. t, (15)

equation (13) becomes

This suggests that the width of the shear band (wj Is proporilonal to Lie.,

When H > 0, it is shown in [3] that the homogeneous state is stable and, therefore, shear bands do not

intiate. They do, however. when HM 0; i.e. according to (17) at H - 0, w -- -, and as JHI -. - (in

the softening regime) w -4 0. corresponding to severe localization. This is consistent with the

quantitative result given in [12.13] where equation (16) is solved numerically with the inotia term on

the left hand side set equal to zero- The resut ltr 70/30 brass is shown in Figure 1 and compared with

the experimental ones obtained recently by Joshi et a). [20]. Note that such nondimensionalizatlon

cannot be performed on equation (12) for which a *natural' length scale cannot be defined-

Elastic-•,,scop(astfc Matenals

For this case we drop the gradient terms from equation (5) and assume that (S)z can be Inverted to

tormaity read

Then equation (i) can be substilutled into (11), which combined with (11), yields
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'j CIA(19)

This partial dfferent•lal equation is al"ays hyperbolic since the Speed of the propagating ways c is real
and equal to the speed of the elastic wave (radless of VW sign of the hardening modulu ark). This
result for elasti'c-"copasllc matenais Is different than that for the elas8tc-plestlc materials gNen by (12)

where Ohe wave speed OM th character of the governing differential equation Is deternrned by the sign

of H. Moreover, in this case one can also define natura* length and time scales as

which with the aid of the nondimenisonal variables (15) can reduce equation (19) into the form

where uwv/c. Thi nondimensionalization i'rThes that the band width Is proportional to for in view of

(20) and (19)2,

" 1 (22)

In the static case, however, equation (1 1), Imples that r is homogeneous in yand. therefore, one has

only equation (18) which has no length scale. Hence, higher order gradients should be considered and

the oigigial equaion (5) yeds

4(1)-,K(M,) -CT,,-C•. (23)
where rtt) Is a function of time only since oiy . 0 for the static case. Equation (23) has been solved
In [13] numerically where it is shownI tlat the band width is independent of the mesh size and depends
only on the values of C, and C, as can be seen from Figure 2.

Effect of Plastic Son: Numerical An•asis
For the numencal analysis considered here, we neglect elasticity and assume tait the material is
viscoplastic exhibiting kinernatIcAsotropic strain hardeftng and softening acoording to the constitutlve

equations (4), (5) and (7). This, in turn, results into a convenient viscous flow FEM formulation (211 with
a nonlinear secanl stiffness matrix, and eliminates the severe numerical limitations associated with usual
elasto-pastic formulations. In fact, equation (7) and fe momentum equation (1), with the inertia term
neglected, along with the usual finite element formulation yield 121)

IK(X,V,;)r/.F.. F.,. (24)

where K Is the secant stiffness matrix which is a nonlinear function of the nodal velodty vecr V, nodal

position vector X and strain gradients ;,. F, is the boundary force vector and F. Is the body force vector

arising from the back stress 4. The nonlinear dependence on V arises from the fac that the visoosity

p iS nonlinearfy related to y
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Equation (24) Is solved for V using the secat method. An explicit Inllgratioo scheme with a constant

tife step using the Newton's forward method Is used to integrate the velty and the evolution equation

for the back stress (4), This integration algorlthm along with the secanV method to handle nonllnearfties

in V and by continuously updating the geonmetry at each time incament to handle the geometric

nonflnearltbes, proved to be very efficient and produced stable results.

For the numerical analysis we use the followg power law expression to mode( the isotropic hardening

and softening

r,¥, ) - - .n. - ,

where %, is the initial yield stress, m > 0 and n > 0 are the strain rate sensitity and strain hardening

exponents respectvely, v < 0 is the 'strain softenlng' exponent, and "oya and y, are material

oonstants [211. For a typical stnrucural steel we use te values v,-=4000V MPa. h - 400 MPA, C = 4.0,

n= 0.1, m. 0.01, v -2.0, Tyo2xtO=, "o-1.0 s6c". y1 ,2.0 l It is notedthat for the present case

the gradient effects are dropped by setting C, - C*, 0.

The numerical method is used to analyze the development of shear bands in a plane-strain tensile test.

Due to symmetry, only one-quarter o the tensile specimen is examined. The one-quarter Is meshed

into 350 rectangular elernents each consisting of four croSs-trianguar elements. The specimen Is

deformed ir, tension with a constant cross-head speed of V - 0.01 cm/Sec. A length to width aspect

ratio of 3 is used. A brief summary of the results are shown in Figures 3-7 which are sufficient to

illustrate th effects of viscosity and plastic spin on the shear bands development. Figure 3 shows the

mesh of the specimen with two 'cross* shear band clearly formed. A closer look at the bands is given

in Figure 4 where only one-quarter of the specimen is shown. it can be seen •r t• figure that the

width of the band spans over at least two elements. The corresponidg strain oontours are shown in

Figure 5 indicating the severity of the strain in the band and the fact hat the strain %e verJes only

across the band with constant contours a"lo It The effect of the plasic spin is examined by varying

the value of C-A•0.. fWhen C-0 the corotailonal rate given by (4), reduce to the usual Jaumman rate].

Figure 6 shows P/Pr versus U/L for various values of a where P Is load. P, Is yield load, U Is elongation

and L Is specimen length. The sharp drop in the load-displacement ourve for U/. > 0.2 corresponds

to the development of the shear band. The band seems 1o initiate around UIL - 0.2. ih seems that the

parameter a has no influence on the curve until the band becomes severe around U/IL - 0.25. This Is

expected since the plastic spin influences the shearing mode which (for the present problem of initially
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stretching model) becomes significant only when the band forms. The resul, thus, suggests that the

plastic spin does not Influeme the initiation of shear bands from a stretching mode (see also Tvergaard

and Glessen 122)), h may hemeve from a shearing mode. An Increase in the degree of the plastic spin

seems to decease "dudil" in the sense that the value of the average strain to final load *collapse*

decreases as a Increases.

Finaliy, Figure 7 shows the vanation of the kinetic energy E/E_ where E.a na'W2. mis the total mass.

and V Is Me imposed bound ' veiocity. it can be seen from the figure that the kinetic energy remns

almost constant in the early stages of deformation 1w increases steadily uni tde shear band initiales

around U/L =- 0.2, resulting 1o a sharp increase In the kinetic energy. Thereafter, he kinetic energy
reaches another -steady- state once the band is completely formed. Note that V/E, Is slightly less than

1.0. TnIs Is expected since lie material outside the band moves rigidly wvt velocity V.
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Figure I. Shear bavdvdth versus Strain Figure 2. Effect of mesh size
i h 7 0 / 3 0 B r a s ,, , 

A ) A ? ' 0 . 1 ~, 8 ) a * y - 0 5
A) rolling angle of 450,
B) rolAiu angle up 0.

Figure 3. Deformed Mesh. Figjre 4. Deformed meshes, Figure S. Strain Contours.
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Figure 6. Effec of plaszic spin On Figure 7. Effect of plastic spin on
Load-extesion curve,. Kinetic energy.
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