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Summary

The stability of inelasic deformation and the tormation of shear bands are examined by considering a
recently developed gradient-dependent theory of slasto-viscoplasticity. The main issues addressed in
the present work are the role of viscosity, inertia and higher order strain gradients in providing intemal
length scales, as welk as the effect of back strass (deformation induced anisotropy) and plastic spin
(texture deveiopment) on the structure of the shear bands in the post localization regime.

Introduction

The problems of constitutive modelling of finite plastic deformations and the associated phenomena of
detormation pattern-tormation and shear banding have been the subjecs of interest among many
investigators during the past two decades, recent reviews can be found in the works of Rice [1], Aifanss
{2a.b) and Zbib and Aifantis [3a,b]. When examining these phenomena, the crucial questions that artse
arg the identification of the basic scaling rmechanisms, the assodated microstnuctural aspects (see for
gxample, Karbel et al. {4]), the appropriate intermnal variables that a constivtive theory should include
and the way the macroscopic constitutive response is related 10 the physicsl microprocesses (see for
example, Aitantis [2] and Drucker {S}).

The stability of plastic flow and the shear banding phenomenon, in pasticuiar, have gained the attenion
of many researchers in both the metallurgical and mechanics communites {1-11). Whils the main
mathematical and physical aspects pertaining 1o he understanding of the mechanisms leading to the
onset of the phenomenon have been examined, work on the characterizaion and gvolution of sheer v
bands including the determination of band widths and spacings has only recently begun. The main
difficulty in this problem lies in the proper modelling of material behavior in e post-localization regine
once the shear bands are formed. This can be atwibuted to the fact that in this regime the deformation
fisld becomes highly imhomogenscous and, therstore, constitutive equations originally proposed for
homogeneous of “near homogeneous” fields become insutficient. To overcome such difficulties, it was
suggested in the work of Afantis and co-workers (2.3, 12-18} to include the higher order strain gradients
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into the constitutive theory of plasticity to account for the heterogenety of plastic flow and capture
intemal deformation waveiengths.

in the present work we first roview the “scale-invarlance” approach outiined in {2] and used in (3] to
obtain physically based constitutive aquasions for the plastic strelching. back stress (modedling
anisoropy) and plastic spn (modelling textre developmént). Such a theory may be viewed as a
compromise batween ‘multisip” crystal plascity averaging models and purely continuurm plasticity
models. The theory is then modiified 10 account for the heterogeneily of plastic flow occurring during
the shear banding proosss. This, in jact. can be directly related to microstruchural inhomogeneities
resulting, for example. from tangied cell structures of dislocations. texture development, elc. This, in
tum, leads o the development of strain hetercgeneities causing the indiation of localized deformation
bands. The macroscopic manifestation of such microscopic events is assumed here o bte the
development of higher order strain gradiemts which would enter into the form of macroscopic
phanomenclogical theory. In fact, we retain e structure of the dlassical theory of plasticty, incuding
tha yleld surfacs (for rase-independent materials), the normality condition and the flow rule, but iInlreduce
higher order strain-gradients into the equation for the flow stress.

In order to axamine the role of higher order strain gradients on the material behavior, we consider a
simpfified one-dimensional problem and investgate he eftect of inertia. viscosity and gradients on the
structure of the Shear band. It is shown that for the quasi-static loading case, highet order strain
gradients are the only source to provide an intemal length scale to the problem for both rate-
independent and rate-dependert matertals. For the dynamic loading case, however, it i shown that
viscosity and inerba. together, are sufficient 1o pro*ide a natural length scale 1o the problem without
resorting 10 higher order strain gradients, but when viscosity is dropped, higher order gradients become
again necessary.

In order to examine the ofiact of piastic spin and anisotropy on the deveiopment of shear bands we
consider a two-dimensional problem. The problem is treated numaerically using the tinite elament
method. It is shown that for the case of shear banding from a ground-state of pure extension (no
shearing), the plastic spin has no influence onthe onsel of instability, but it does affect the development
of severs localization. in fact an increase in the degree of plastic spin decreases "dudtility.” in the
sense that the value ¢f average strain 10 sewere localization and *load collapse” decreases.

A Gradient-Dependen Theory of Elasto-Plasicity
Woe consider a continuous medium under dynamic loading conditions whose moton Is govemed by the
linear momentum aquation,
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dvevpy, (1)
where o is the Cauchy stress lensor, p is the mass denaity, and v is the veloGty vector fleld.
Assuming that the solid undergoes large deformations, we can decompose the deformation gragient F
into efastic F*, piastic F* and rotation R™ parts such that F « R™ F* £~ 38 proposed by Zbib and Aifanus
{3a]. Following their method, one can then obtain the decomposition

D:D'-0°. oW - W @
whare the streiching D is the symmetric part of the velodty gradient, D* and D” are the elastic and
plastic stretching respectivedy. w is the spin of the materad {(substructure), W is the antisymmetric part
of the velocity gradient (spin of the continuum) and WP is the plastic spin. The elastic strain rate D is
given by Hooke's law, modified for iarge deformations, as

D - (C7'8: § - $-uS:Su, &
whare [C*] is the elasticity tensor and $ is the corotationsl stress rate.

Using a scale-invartance argument and a maximization procedure, Allantis and co-workers [e.9. 2,3]
have been able to derive axplicit expressions for the plastic stretching D” and plastic spin W’ based on
the process of crystal slip and dislocation gide. For kinematic hardening plasiicity modeis X fumns out
that the plastic anisotropy can be represented by the back stress a whose evolution s, in fact,
determined by the plastic spin W”. As a special case of this tormulation one obtains the following
constitutive equations

0 - L(8'-e). i - 1D*-Gr ;& - i-veeaw “)
© = W-W WP . [(«D”-D"a),
where prime indicaes devialoric part while, b, ¢ and { are material parsmeters. [As ususl, 7=
{2 0" . D"Y'? denctes the eftective strain and ¥ = (3 . 8/2)'? the offective stress].

Equation (4), suggess hat the plastic spin is a measure of noncoaxiality between the back stress and
the stretching. s impication to large deformaion has been examined in detad by the authors [3]. In
Jarticular, it was shown that W has a considerable eitect on the development of axial stress (or strain)
in a fixed (or frge) end torsion of a cylindrical bar and that the vaiue of the parameter { can be oblained
from such torsion tests. [The results of Zbib and Aitantis {3} suggested that [ has very small values;
in fact, by defining [ = a/s,. whers g, is the inftial yield stress, they obtained, for example, a 4.5 for
AL-1100}]. The implication of the piastic spin to localization is examined in the last saction of this paper
in connection with the numerical analysis.
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Rate-Dependent Materials

The flow sirgss T appearing in aquation (4), and its dependence on strain and strain rale determings
whether the material & rate-independent or rate-dependant In additon to this dasscal interpretation
of the flow stress, it was proposed o {23} that higher order gradients of micro (dislocation densities)
of Macro (strain) vanables be induded in the respective constitutive equation in order 10 capluré the
details of deformation patleming and shear banding phenomena. For the case of macro shear bands,
for example, the following gradient-dependent axpression for the flow stress was proposed

- - . . -~ - - 5)
STt k(Y )T, s OV -G VY ¢

whonxG.;)bthemualhonmousstreaandC,mandc,(ﬂmhsowodgm

coefficients. This simple expression provides an intemnal length to the theory of plasticity and, hence.
makes possidle the investigation of pattern-forming instabiities in the deformation fleld.

Upon combining equations (3} and {4) with (2) we obtain the lollowing gradient-dependent constitutive
equation for rate-dependent elastic-viscoplastic materials with isotropic/kinematic hardening

T t 6,
I L O AL s § ®
s Y Y
where u can be defined as the aonlinear total viscosity, wih a homogeneous pant u, and an

inhomogeneous past y,.

When elastic effects are neglected §°«0) for fasge plastic deformations, then we obtain the following
constitutive relation for a gradient-dependent viscoplastic material with isotropic/Ainematic hardening

S - 2,D.a-pt; ™
where p = - ¥S/3 is the hydrostalic pressure. This eQuation is reminiscent fo that describing a
Newltonian viscous fiuid (without o and a gradient-dependent viscosity).

Rate-| Matedals

The dependence of the flow stress x on § indicates viscoplastic behavior. Plastic behavior is abtained
by dropping in (5) the dependence an 1. In this case ¢ and the condition of loading or unloading are
oblained from the yield function F and the consistency condition £ = 0. The leading-unioading
conditions are given by
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_ . |F-0and¥>0ory 0= 8)
Feydp-t. \ m:qormutmm
i F=0 and y <0~ unioading

where J; = (8'-a){S'-a 2. The consistency condition F= 0 then yleids

oty vy - Ay. S8 ©
where the “sffective’ hardening moduus 7 is given by

Sun e o an Frges Lo Cr oon {10)

A A A A

Relation (3) is a differential equation for the loading index 7 . This is a major difference botween the

present theory and the classical thaory of plasticity. The loarting index now should be eated as an
independent variable govemed by equation (9). {This could be treated numerically and incorporated
in usual finite element programs where squations (9) can be solved independently at each integration
incrament.

The One-Dimensional Problem: Langth and Time Scales
in order to Mustrate the implications of the theary outlined in the previous section to he shear danding
problem, we consider the simple shearing of an infinite block in the x direction. We assume that the

state of stress is pure shear such it S_ « S, = t{#§ are the only nonzero components of 8. Similarly,
¢, = &, = ¥2 are the only nonzero components of D. Mcreover, we assume isotropic hardening with
no back stress. Then it can be shown that equations (1}-(3) reduce to

L AP 1
aypv,ta(yﬂ. {11

where G is the elastic shear modulus, ¥ is the plastic strain rate, and v Is the velocty fieid in the x
direction. Various cdlasses of materia behavior are considered below.

Eiastic-Plastic Materials

a) No gradients: C, = C, =« 0.

For this case we drop the dependence on 'y' from equation {5) and obtain y’ - UH, whare M = 3 w3y
Tron equalions (11) (with y = v ) yield a rather familiar partial difterential equation

oy JN(GHY, ., GH .
vcv,, F[FTG],V" S (12)

where the subscript y indicates parial derivative. The type of this differential equation is govemed by
the sign of H. #f H > O the equation is hyperbokc and travetiing waves with a speed equal to ¢ exist.
However, when H < 0 the equation becomes etliptic and wave trapping occurs [19]. ln this respect the




20

problem is “ik-posed” dua 1o the change of type occurting in he goveming differential equation as the
material enter the softening regime (H < Q).

b) With gradients: C, = constant, C, » constant.
The problem of "lll-posedness” is efiminated by introducing higher order gradients. This can be seen
by considering equation (5) (with no dependence on y) which upon neglecting elasticly from (11),
{r=v") and combining with (11}, gives

pU=Hy,-Ciu 20U L., (13
with u denoting the displacemernt. Now the chasracter of this dtteremial squation s independent of H
and is determined by C, which is a constant. Therefore, the system does not change typs. Moreover,
equation (13) can be nondimensionalized by introducing the loffowing *natural” time (v) and length (A
scales

EFC|
YL N
WA
Then with the nondimensional variables

e

(14)

;&{' (—rzyi. f=z—, (15)
equation (13) becomes

_ 26\~ -
7 Giiy [3)‘7?’;;; (18)

This suggests that the width of the shear band (w} I8 proportional 1o / Le.,

we ( & ]'“_ 07
iHl

When H > 0, itis shown in [3] that the homogeneous state is stable and, therefors, shear bands do not
initiate. They do, howaver, when H < 0; i.e. accordingto {17} at H = 0, w — w, and as [H]| ~» = (in
the softening regime) w — 0. comesponding to severe localization. This is consistent with the
quantitative result given in [12.13] where equation (16} is soived numerically with the inertia term on
the left hand side set equati te zero. The result for 70730 brass s shown in Figure 1 and compared with
the experimental ones obtained recently by Joshi et al. [20]. Note that such nondimensionalization
cannot be performed on equation (12) for which a “natural” length scale cannot be defined.

Elastic-viscopfastic Materals
For this case we drop the gradient terms from equation (5) and assume that (5), can be inveried to
formafly read

-1 18)

Then equation (18) can be substituled mo (11), which combined with (11), yields
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L a a
g'G;V=C‘V" - 6‘;;;?: » C’=—; (‘9)

This partial difterential equation is always hyperbolic 8ince the speed of the propagating wave ¢ is real
and equal 1o the speed of the elastic wave (regardiess of the sign of the hardening modulus 3fx). This
result for elastic-viscoplastic materials is differant than that for the elastic-plastic materials given by (12)
where the wave speed and the character of the goveming differential equation is determined by the sign
of H. Moreover, in this case one can aiso define *natural® length and time scales as

CAM
6Z| . kon, (20)
n{ed) on
which with the aid of the nondimensional variables (15) can reduce equation {19} into the form
- - = of
w; "c”ﬁ{ng;)ﬁ- @

where vav/c. This nondimensionalization implies that the band width is proportional 16 / or in view of
{20) and (19),,

W w1 . (a)
(@13} Bp

in the static case, however, equation (11), implies that ¢ is homogeneous in y and, therefore, one has

only equation (18) which has no length scale. Hence, higher order gradients should be considered and

the original aquation (5) yields

Hf=x(y.7)-Cyv, - Cyv3 @
where t(t) is a function of time only since dt/dy = O for the static case. Equation (23) has been soived
In [13] numerically where it is shown that the band width is independent of the mesh size and depends
only on the values of C, and C, as can be seen from Figure 2.

Etfect of Plastic Spin: Numerical Analysis

For the numerical analysis considered here, we neglect elasticity and assume that the material is
viscoplastic exhibiting kinematic/isotropic strain hasdening and softening according 10 the constitutive
equations {4), (5) and (7). This, in tum, results into a convenient viscous flow FEM formulation (21) with
anonlinear secant stitfness matrix, and eliminates the severe numerical limitations associated with usual
elasto-plastic formudations. in fact, equation (7) and the momentum equation (1), with the inertia term
neglected, along with the usual finite element formutation yleld [21)

KXV V-F - F,, (24)
where K is the secant stiffness matrix which is a nonlinear function of the nodal velocity vector V, nodal
position vector X and strain gradients ¢,. F, is the boundary force vector and F, is the body force vector
arising trom the back stress &. The nonlinear dependence on V arises from the fact that the viscosity
u is nonfinearly related to ; .
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Equation (24) is solved for V using the secam method. An expildit integration scheme with a constant
time step using the Newton's forward method is used to integrate the velocity and the evolution equation
for the back stress (4),. This integration algarithm along with the secani method % handle nonlinearttios
in V and by continuously updating the geometry at each time increment 1o handle the geomsetric
nonfinearities, proved to be very efficient and produced stable results.

For the numerical analysis we use the foilowing power law axprassion fo model the isotropic hardening

and softening
- -\ -y
Rl
Yo Yo Y4
where <, is the initial yleld stress, m > 0 and n > 0 are the strain rate sensitivity and strain hardening
axponents respectively, v < 0 is the “strain softening” exponent, ahd y,v, &nd v, are material
constants {21). For a typical structural steel we use the values 1,=400'3 MPa, i = 407 MPA, C = 4.0,

Nw=0.1, Me0.01, va-20 0=2x10% 7,10 sec’', v,=2.0 . 1tis noted that for the present case
the gradient effects are dropped by setting C, = C, » 0. '

The numaerical method is used o analyze the developmant of shear bands in a plane-strain tensile test.
Due to symmetry, only one-gGuarter of the tensile speciman is examined. The one-quarter is meshed
into 350 rectangular elernsnts each consisting of four cross-triangular elements. The specimen is
delormed iri tension with a constant cross-head speed of V = 0.01 cvsec. A length 1o width aspect
ratio of 3 is used. A brief summary of the results are shown in Figures 3-7 which are sufficient o
illustrate the effects of viscosity and plastic spin on the shear bands development. Figure 3 shows the
mesh of the specimen with two *cross® shear band cloarty formed. A doser look at the bands is given
in Figure 4 where only ona~quarter of the specimen is shown. it can be seen from the figure that the
width of the band spans over at least two slements. The corresponding strain contours are shown in
Figure 5 indicating the saverity of the strain in the band and the fact that the strain fleld varies only
across the band with constant conours along . The effect of the plastic spin s examined by varying
the value of (=a/a, [When {=0 the corotational rate given by (4), reduces to the usual Jaumman rate].
Figure 6 shows F/P, versus U/ for various values of 4, where P is load, P, is yield foad, U is elongation
and L is specimen length. The sharp drop in the load-displacement curve for UL > 0.2 comesponds
10 the davelopment of the shear band. The band seems 10 initiate around UL « 0.2. N seems that the
parameter a has no influence on the curve until the band becomes severe around UL ~ 0.25. This is
expected since the plastic spin influences the shearing mode which (for the present problem of initially
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stretching moded) becomes significant only when the band forms. The result, thus, suggests that the
plastic spin does not influence the initiation of shear bands from a stretching mode (see also Tverpaard
and Glessen [22}}, ! may however from a shearing mode. An increasa in the degree of the plastic spin
seems to decrease "ductiily” In the sense that the value of the average strain to final load “collapse®
decreases as a increases.

Finally, Figure 7 shows the variation ot the kinelic energy E/E, where E, « mV'/2, m is the total mass,
and V is the imposed bound ; veiocity. it can be seen from the figure that the kinetic energy remains
almost constant in the early stages of deformation hen increases steadity untl the shear band initiates
around UL = 0.2, resulting %o 8 sharp increase in the kinetic energy. Thereafter. the kinetic energy
reaches another “steady” state once the band is completely formed. Note that E/E, is siightly less than
1.0. This is expected since $¢ material outside the band moves rigidly with velocity V.
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Figure 8. Strain Contours.
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