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Abstract-We explore the application of a novel classification
method that combines supervised and unsupervised training, and
compare its performance to various more classical methods. We
first construct a detailed high dimensional representation of the
speech signal using Lyon's cochlear model and then optimally re-
duce its dimensionality. The resulting low dimensional projection
retains the information needed for robust speech recognition.

INTRODUCTION - SPEECH PREPROCESSING METHODS

Many speech recognition systems, in particular, those based on HMMs,
use LPC derived cepstral coefficients as the first step in preprocessing the
speech data. These cepstra are then typically passed through vector quantiza-
tion (VQ), or used directly as input to the HMM. The VQ step discretizes the
multidimensional input vectors into a small set of possible inputs. This helps
simplify training the system, but also introduces varying degrees of distor-
tion [11]. This limitation is partially overcome by using methods to estimate
output parameters for the continuous space defined by the cepstra. These
techniques also run into problems when the dimensionality of the input vec-
tor gets large. In spite of these potential problems, LPC-based systems have
performed well, especially when augmented with energy and time-differenced
cepstra (11).

Speech recognition systems using ANNs have employed a much more het-
erogenous set of preprocessing techniques. Everything from raw speech to
LPC-based cepstra has been tried [12). However, most have used some form
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of preprocessing inspired by the representation produced by the mammalian
peripheral auditory system. Examples include Mel scale and bark scale spec-
tra. Other more sophisticated techniques exist that produce more detailed
representations.

While there is a tendency for preprocessing based on auditory system
constraints to be used with ANNs and preprocessing based on vocal tract
constraints to be used with HMMs, this is not always the case. For instance,
some current HMM systems include a Mel scale transformation when comput-
ing cepstra, and as mentioned above, LPC-based cepstra have been used with
ANNs. The differences in preprocessing for HMMs and ANNs can be largely
attributed to the fact that ANNs are good at integrating over large dimen-
sional representations, while HMMs do best with much smaller dimensional
input.

In this pape, we focus on ANN techniques for processing the detailed, high
dimensional auditory system representation of speech produced by Lyon's
cochlear model [13]. We explore the application of a novel classification
method that combines supervised and unsupervised training, and compare
its performance to various methods. Our task is feature extraction and clas-
sification of voiceless stops extracted from the TIMIT corpus.

What are features of recognition for speech data

When moving to a much larger representation of the speech data, many
existing techniques such as classifiers, or vector quantizers fail to work, mainly
because of the curse of dimensionality [1]. This problem is related to the
sparsity of high dimensional spaces, and implies that the amount of training
data has to grow exponentially with the dimensionality.

In many cases, it is conceivable to assume that the important informa-
tion for speech recognition ies in a much smaller dimensional space, and
the question becomes, how to find this low dimensional structure, or how to
extract the relevant features from the data. This question can be put in a
much broader statistical formulation, in which one has a data set that lies in
high dimensional space, with a lower dimensional structure and tries to re-
duce the dimensionality of the data, without losing the important structure.
These problems may be addressed using a recent statistical tool called Ex-
ploratory Projection Pursuit [3] which has an effective implementation with
a biologically motivated neural network [6].

LYON'S MODEL OF COCHLEAR PROCESSING

We chose to use a fairly sophisticated auditory model to preprocess the
speech data for our neural network. One reason for doing this was to assess Looe33ioi1 yep7
the feasibility of using such a model as front end for a recognizer. Auditory
models typically produce very large output representations in order to retain DTIC Tpll

much of the detail the higher centers in the brain receive from the cochlea. D]IC o
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The auditory model we used to preprocess the speech data was Lyon's
cochlear model [13] as implemented by Slaney [181. For each time slice, 84
channels of output were produced (for data sampled at 16kHz). Time slices

were separated by 2 msecs. Therefore, for 56 rmsec of speech, the model
produced 2352 bytes of data. While this is still orders of magnitude smaller
than what is transmitted through the auditory nerve to higher centers of the
brain, it is much larger than the data representations typically used for speech
recognition tasks.

The channels in the model correspond to nerve fibers evenly spaced along
the basilar membrane in the cochlea. The center frequencies of the set of

channels are logarithmically spaced, giving the lower frequencies a more dense
representation than the higher frequencies. Neighboring channels overlap to
a large degree. This models the highly redundant representation used by the

mammalian auditory nerve. The band pass regions of the channels increase
linearly with frequency.

Each channel is implemented as a second order digital filter. The entire
filter bank is implemented with a cascade design giving the representation
realistic implitude and group-delay response in addition to making the com-
putation efficient. To model the effects of the inner and outer ear, the signal
is passed through a pre-emphasis stage and then processed by the cascade of
second order filters. The final stage of processing is preceded by half-wave
rectification to model the unidirectional transduction of the basilar membrane
movement by the inner hair cells.

The final phase of the cochlear model passes the output of each channel
through a series of adaptive gain control (AGC) elements. These AGC ele-
ments attempt to keep the output levels of each filter within specific range.

Each AGC is coupled with its nearest neighbors to each side. This helps
model the masking effects found in real cochlear processing. The result-
ing rectangular frequency by time representation forms an image of auditory
nerve activity and is called a cochleagram.

In sum, much of the detail and character of the representation used by
the auditory nerve is retained in the cochleagram representation The task
then becomes how to best use all of this information.

FEATURE EXTRACTION IN HIGH DIMENSIONAL SPACE -
THE BCM MODEL

From a mathematical view point, extracting features from the rectangu-
lar representation of the cochleagram is related to dimensionality reduction
in high dimensional vector space, in which an n x k pixel image is considered
to be a vector of length n x k. In such high dimensional spaces the curse of
dimensionality [1] says that it is impossible to base the recognition on the high
dimensional vectors, because the number of training patterns needed for train-
ing a classifier should increase in an exponential order with the dimensionality,
and therefore dimensionality reduction should take place before attempting



the classification. Due to the large number of parameters involved, a feature
extraction method that uses the class labels of the data, will be biased to the
training data [5), which translates to having features with poor generalization
or invariance properties. Thus, the feature extraction should be unsupervised.
A recent statistical method to address this problem of dimensionality reduc-
tion called exploratory projection pursuit (EPP) (3] assumes that features
can be constructed from projections of the input space onto a small dimen-
sional space. This method defines interesting features as those projections
whose single dimensional projected distribution is far from Gaussian. Since
high dimensional clusters translate to low dimensional multi-modal projected
distributions, a plausible measure of deviation from normality can be based
on a measure of multi-modality of the projected distribution. Intrator [6] has
recently shown that a variation of the Bienenstock Cooper and Munro neu-
ron [2] performs exploratory projection pursui. using a projection index that
measures multi-modality. A network implementation which can find several
projections in parallel is still computationally efficient and therefore may be
applicable for extracting features from very high dimensional vector spaces
of the type generated by the cochlear model.

The unsupervised feature extraction/classification method is presented in
Figure 1. Simila- approaches using the RCE and back-propagation network
have been carried out by [15], and using the unsupervised charge clustering
network by Scofield [17]. Huang and Lippmann [4] described a feature-map
classifier for vowel recognition, in which internal nodes compute kernel func-
tions related to the Euclidean distance between the input and cluster centers
represented by these nodes. The unsupervised vector quantizer was trained
to form the new representation which trained the supervised classifier. Koho-
nen et al. [10] used a similar approach with LVQ network. Review on various
other unsupervised/supervised approaches appears in [12].

Although unsupervised feature extraction has the potential of being less
biased to the training data, its result may be suboptimal since it ignores the
information contained in the class labels. It is possible for example, that
not all the information required for the classification is contained in those
directions which are considered interesting by the feature extractor (some
trivial examples are discussed in (8]). Therefore, it is possible that a hybrid
of unsupervised/supervised feature extractor may yield better performance.

Another way to look at the problem is from the classification side; The
performance of the classifier that reduces dimensionality based solely on the
class labels, may be improved if an additional measure of the information
carried in the projections is added. In the case of a back-propagation classi-
fication network, a local penalty term may be added to the energy functional
minimized by error back propagation. This penalty which is added only to
the hidden layer units, is the projection index defined by the BCM network
[6, 9]. Therefore, the modification equations for the hidden iayer units are
affected by the delta rule [16] and by the BCM modification equations. This
method is described in detail in [7].
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Figure 1: Low dimensional classifier is trained on features extracted from the
high dimensional data. Training of the feature extraction network stops when
the misclassification rate drops below a predetermined threshold on either the
same training data (cross validatory test) or on different testing data.

METHODS

Data - Voiceless Stops from TIMIT

In this work we focused on feature extraction and classification of the
voiceless stop consonants [p, t, k]. The source of our data was the DARPA
TIMIT Acoustic- Phonetic Continuous Speech Corpus (TIMIT). This database
contains utterances from many talkers, with coverage of all the major dialect
regions in the United States.

All tokens used in these experiments consisted of a stop followed by a
vowel. We used only four vowel contexts [aa, no, er, iy] in the training set.
These vowels give a reasonable, but not complete coverage of the vowel space.
This restricted set allowed us to test how well the feature extraction general-
ized to new vowel contexts.

These tokens were drawn from the utterances of 268 different talkers.
Multiple talkers and various sentential contexts contribute to a fair degree
of variability between tokens of the same CV type. The segment boundaries
we used were exactly those provided with TIMIT. We made no attempt to
sharpen or correct any misalignments that might exist in the data.

For each CV type, an average over the 25 tokens used for training is
presented in the cochleagrarn matrix shown in Figure 2. The vertical axis is
frequency, low to high from top to bottom, and the horizontal axis is time for
each cochleagram. Looking at the lower left corner of the images, it can be
seen that [p]s have low energy at the high frequencies, [t]s have a sharp burst
in the high frequencies, and [k]s have diffuse energy in the high frequencies.
These features tend to distinguish between the three voiceless stops for the
cochleagram representation.



Figure 2: The output of Lyon's cochlear model for the 12 CV pairs. jFrom
top to bottom [k, t, p], and from left to right [aa, ao, er, iy]. Each image is
the average of 25 tokens from each CV type showing 75msec of speech aligned
to burst release. White areas represent high energy.

Training

In the first experiment features were extracted from the large represen-
tation of the speech segment using a BCM network. Here the B1CM weights
were only affected by the unsupervised modification rule. Classification was
accomplished by training a small back-propagation network with the output
of the BCM network as shown in Figure 1. An important issue of avoiding
over fitting (in either of the nets) was addressed by testing (during training)
on a third set of tokens (Pseudo test set).

In the second experiment the modification of the hidden units of a 3 layer
back-propagation network, was a combination of the BCM synaptic modifica-
tion equations, and the error propagated from the top layer. The performance
of the networks in the first and second experiments were compared to the per-
formance of a simple back-propagation network.

Testing



Training 4 Vowels 4 Vowels 7Vowels
Method Training Testing Testing

BCM B-P 81% 73.8% 72.7%
BCM/B-P 92.6% 83.8% 81.5%
B-P 98.7% 84.8% 78.2%,

Table 1: Comparison between classification using (1) projections from BCM
unsupervised learning as input to back-propagation; (2) a hybrid of BCM
unsupervised learning and supervised learning via error back-propagation;
and (3) a plain back-propagation net.

We used two generalization paradigms to test the feature extraction and

classification ability of the system. First, the standard type of generalization
to new instances of the same class was carried out. For each of the 12 CV

types, we tested with 25 novel instances'. This kind of generalization requires
the system to categorize instances that fall within the region of the input spacc
it has had experience with. Many recognition systems are specifically focused
on this kind of generalization. However, the second kind of generalization,
where a system trained with a limited set of contexts generalizes well in
new contexts, is possibly more important. If a system can transfer to new
contexts, or to a region of the input space it has not experienced, the set of
abstract features it is using must be capturing highly relevant aspects of the
input training space. The ability to discover such features strongly suggests
the technique being used is well suited for robust speech recognition. We
demonstrate this kind of generalization by training on four vowel contexts
[aa, ao, er, iy], and testing with the seven vowel contexts [uh, ih, eh, ae, ah,
uw, ow].

RESULTS AND DISCUSSION

A comparison between the different training methods is shown in Table 1.

The low dimensional projections of the cochleagrams discovered with BCM
learning, served as input to a small back-propagation network to yield the first
set of results. This training method yielded reasonable performance on the

training set, and very nearly the same performance on the two test sets. The
small difference in generalization to instances of the same-4-vowel-contexts
test set and generalization to instances from the new-7-vowel-contexts test
set implies the features discovered with this method are good abstractions,
and robust. The weight matrices of the eight units used in the BCM network
are shown in Figure 3.

Features distinguishing between the different bursts are evident. The
synaptic weight image on the top row, furthest to the right shows a white area
in the high frequencies which corresponds to a distinguishing feature between

1There were only 21 new tokens available for [paol. All cther CV groups had 25 tokens.



[t] and [k]. The image directly below is useful for distinguishing [p] from the
other two stops.

Figure 3: The synaptic weight matrices for 8 units after unsupervised training
on 25 tokens of each CV type.

The results of the second training method, in which error back-propagation
was modified to incorporate BCM-like constraints, are shown on the sec-
ond line of Table 1. This novel integration of supervised and unsupervised
techniques boosted the performance significantly over the previous training
method. However, the pattern of results are very much the same; good and
nearly equal performance with both types of generalization.

In contrast, this pattern was not found with the plain back-propagation
net. While it did achieve the best performance of the three networks on the
training set, it did not transfer its good generalization performance on the
same-4-vowel-contexts to the new-7-vowel-contexts test set. Straight back-
propagation training only attempts to minimize errors with the training set.
It does not necessarily search for abstract features.

At this point, the only comparison we can make with HMM performance
is very loose. Niles [14] constructed a baseline HMM system to classify the
standard set of 39 phonetic classes in TIMIT. The speech was preprocessed
using an order-18 LPC cepstral analysis, and then VQ codebooks for the
cepstra, time-differenced cepstra, log energy, and delta log energy were used
as input. A three state HMM was trained up for each phoneme. This system
classified 82.0 percent correct when tested with just the voiceless stops. While
this does give a ballpark indication that the systems we investigated here are
doing reasonably well, any further comparison is precluded by methodological
differences. For instance, Niles trained the HMMs for voiceless stops with all
phonetic contexts, while our tokens always had a following vowel. Also, the
HMM system was used as a baseline system, and was not fine tuned.

These preliminary results suggest that BCM training can be beneficially
incorporated into a network architecture/training-paradigm for speech recog-



nition. Moreover, the cochleagram input representation produced by Lyon's
cochlear model contains details about the speech events that are useful in
classifying speech tokens. A set of experiments making specific, quantitative
comparisons between the system we have proposed here and current 11MM
methods is planned.
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