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Abstract

Parzlelizing compilers automatically translase a sequential program into a parallel pro-
gram. They simplify parallel programming by freeing the user from the need to consider
the details of the parallel architecture and the parallel decomposition. A source-level
debugger for automatically parallelized programs hides the parallelism from the user by
providing the illusion that the original sequential program is executing.

To provide a source-level view, a debugger has two tasks. The first task is to make it
appear that programs execute operations in source order. To exploit parallelism, compil-
ers relax the ordering consti.ints implied by the semantics of the source language. As a
resuit, operations are not executed in source order and when a user is debugging a pro-
gram, it may appear that variables are updated out of order. Sequential languages and
languages with explicit parailelism share this probiem. Dynamic order restoration is a
method for making it appear that operations are executed in source order.

The second task is to hide the decomposition of data and computation. A parallelizing
compiler partitions data, duplicates variables, and changes the structure of loops. To
provide a source-level view, the debugger must be able to map variables and statements
in the source programs to their comresponding variables and statements in the target pro-
gram. We call this structural mapping.

This thesis describes a method for implementing dynamic order restoration and struc-
tural mapping in a debugger for automaticaily parailelized programs. Examples are
taken from the domain of loop-based parallelism.
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CHAPTER 1

Introduction

Programming parallel machines is much more difficult than programming sequential
machines. Writing a parallel program requires that the programmer divide the computa-
tion among a set of processors so that the load is equally balanced, add synchronization
if the target architecture is a shared memory machine, and add communication if the tar-
get is a distributed memory machine, Writing a program that is optimized for a particu-
lar architecture makes these tasks especially difficult.

Parallel program generators, also called parallelizing compilers, can ease the program-
mer’s burden by automating some or ail of this work. Some compilers provide a pro-
gramming model that allows the programmer {0 express the algorithm in a manner that
is independent of the number of processes; the compiler decides how to best distribute
the computation. For distributed memory machines, compilers can provide a shared
memory programming mode! and automatically distribute data.

Compilers may make writing programs easier but do not solve the whole problem—
coding is just one step in creating a new program. In particular, debugging can be a very
time consuming and tedious process. Debugging an automatically parallelized program
is difficult because the user did not write the target program that actually executes.
Understanding bow the program works would require that the user know all the details
of the parallelization that the compiler was trying to hide.

My thesis is that a debugger for antomatically generated parallel programs can provide a
sequential view of paralie]l execution. In other words, parallelizing compilers can have
source-level debuggers [Pineo 91][Cohn 91]. The user can set breakpoints and inspect
variables as if they are debugging their source program, even though a parallelized pro-
gram is executing.
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1.1

The rest of the chapter is organized as follows. In Section 1.1, we illustrate some of the
issues in source-level debugging with an example. A description of the various pro-
gramming and machine models employed for parallel machines and their impact on
debugging can be found in Section 1.2. Section 1.3 introduces the approach of this the-
sis for building debuggers. Section 1.4 discusses some related work, and Section 1.5
outlines the presentation of the thesis.

Debugging issues: an example debugging _sassion

There is a wide spectum of programning models and machine architectsres. Program-
ming models and architectures range from sequential o MIMD parallel and from shared
to distributed memory. Each combination of programming model and architecture has
different requirements for source-level debugging. To introduce the main issues in
implementing source-level debugging, we will use a simple example where the pro-
gramming model is sequential and the actual machine is a MIMD, distributed memory
machine.

FIGURE 1-1 depicts a sequential program that initializes all the elements of the array A
w 1 and a two processor parallel program generated by a compiler. In the parallel pro-
gram, processor O executes all the evea iterations of the original loop and processor 1
execut:s all the odd iterations. On a distributed memory machine, the data must be par-
titicaed, For this program, processor ( has all the elemeats of A with even indexes and
processor 1 has all the elements of A with odd indexes.

The main issues that we address in this thesis are setting breakpoin(s, examining and
modifying variables, and reporting the current location of the program counter in the
program. We use the above program to give examples of the problems associated with
these issues. Assume that the user starts execution of the program ang after some time,
the interrupts the program. As depicted in FIGURE 1-2, processor 0 is executing the
loop control of the £or statement and processor 1 is executing the body of the loop. In
the figure, the stop signs indicate the source lines that each processor will execute next.
The debugger must report one statement in the source program as being the currunt
location. To determine this, the debugger must know the relationship between lines in
the source program and lines in the parailel program. In this example, the correspon-
dence is simple, but it can be complicated when the compiler applies transformations
that insert and delete lines and restructure the program.

Next, the user tries to inspect the value of amray element A{2]. The array A has been
divided into two smaller arrays and, as shown in FIGURE 1-3. Array element A[2]
resides on processor 0 and is called A0 {1]; the debugger must know the relationship
between data in the source program and data in the target program. This relationship is
not necessarily static. For example, each processor has its own copy of the loop counter
1 and choosing which copy is the correct one to display is dependent on the state of the
program.

Before actually displaying the value, the debugger must be sure that the value that is
currently in memory is the same one the user would have seen if the source program
were executing. If processor 0 has executed oue iteration of its loop, and processor 1 has
executed three iterations, then the memory of each processor would appear as is shown
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- FIGURE 1-1 Sequential program and its paraliel version
Sequential source program
int i;
int A(30}];
for (i = 0; i < 30; i++)(
Afi} = 1;
)
Processor 0 Processor |
int i0; int il;
int A0[15]; int Al1{15};
for (i0= 0; 10 < 30; i0+=2)( for (il= 1; il < 30; il+=2)(
A0[i0/2] = 1; Al[i1/2] = 1;
} }
FIGURE 1-2 When the user aborts the program, processor 0 is stopped at the foz statement and

processor 1 is executing the assignment.

Processor O Processor 1

int 10; int i1;

int AQ[15]); int Al1(1S];
®, i for (i0 = 0; i0 < 30; i0+=2)( for (il = 1; il < 30; il+=2){
A0([i0/2] = 1; ;@; Allil/2] = 1;

}

!

in FIGURE 14, If we merged both memories to produce the memory of the source pro-
gram, then it would contain the values as shown in the right side of the figure. This state
clearly cannot be the resuit of execution of the sequential program. The loop in the
source program walks through the array A sequentially, but array element A(3] has
been initialized while element A{2] has not. The debugger must detect when such an
inconsistency has occurred so that it does not give the user any misleading information.

SOURCE-LEVEL DEBUGGING OF AUTOMATICALLY PARALLELIZED PROGRAMS 3
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AGURE 13

The relationship of names of variables in the source and target programs

Processor O

memory

name n

(0}

name in
parailel program

Al{0

Al[l}

Alf2]
Al{3}
i1

In this case, telling the user that A (2] has a value of 0 and A[3] has a value of 1 is
misleading because the programmer might incorrectly conclude that the program failed
to initialize element A (2] . In this situation, one possible respoase for the debugger
could be that A (2] has a value of 0 and that A[3] and A[S] cannot be examined.

The state of memory after processor 0 has executed 1 iteration and processor 1 has

executed 3 iterations
Processor
memory

A{0]
AR
Al4]
Al6]

Processor

memory
Afl]
A(3)
A(5]
AN

i

0
1
AL

Sequeatial program
memory

A[0}
All]
A2]
Af3)

A[S]
Al6]
AlT]
il
i.0

| =% $Y «3 -} N «N T <} S8 o

Setting breakpoints can have similar problems. In our example, iteration 3 of the source
program has already executed, but iteration 2 has not yet executed. If the user sets a
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1.2

breakpoint in the loop, the program reaches the breakpoint for iterations 2 and 4 has
already nun past the breakpoint for iteration 3. In this situation, the debugger shouid
warm the user that some breakpoints might be skipped. When breakpoints occur, the
debugger should preseat them to the user in the order that they would have occurred in
the sequential program, ¢ven though they may occur out of source order.

We classify the problems described above into two categories, dyaamic order restora-
tion and ssructural mapping. These are the fundamental services that a debugger for par-
allelized program must provide. This thesis describes bow to implement these services.

Dynamic order restoration casures that the observable order of execution of operations
is the same as in the source program. If the semantics of the source language imply that
operation A is executed before operation B, and in the target program operation A can
be executed before or after operation 13, then a debugger that does dynamic order resto-
ration behaves as if operation A is alv/ays executed before B.

Parallelizing compilers relax the ordering constraints implied by the semantics of the
source language to increase parallelism. The semantics of a sequential program imply
that only one operation at a time is executed; a compiler converts a sequential program
into a parallel program where more than one operation can be executed simultaneously
Compilers remove ordering constraints even when the source language has explicit par-
allelism. We explain this in more detail in Section 1.2.

If operations are executed out of source order, then as described in the example of FIG-
URE 1-4, variables may be updated out of order. A debugger that does dynamic order
restoration must make it appear that they are updated in order. This may include pre-
venting the user from examining variables at some points in the program. Another pos-
sible result of out of order execution is that breakpoints may not occur in source order.
The debugger must present the breakpoints to the user in source order.

Structural mapping relates the source lines and variable names in the source and target
programs. In the previous example, determining that array clement A [3] resides in the
memory of processor | and that it is called A1 [1] is structural mapping.

Structural mapping is also necessary in debuggers for sequential machines; reiating
source code and machine code is an example. In addition, programs can be restructured
by optimizing compilers. Dynamic order restoration is unique to debuggers for parallel-
izing compilers and requires new mechanisms; the debugger must be able to determine
the order in which operations executed. The nature of dynamically reordered operations
also provides for flexibility that is not present for sequential programs. If a constraint is
removed and two operations can occur in order or out of order, then the debugger can
counstrain execution so that they occur in order.

The semantic gap between programming modeis
and architectures

The difficulty of source-level debugging depends upon the gap between the program-

. ming model and the code that executes on the parallel machine. This is in turn depen-
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dent on the semantics of the source language, the architecture of the paraliel machine,
and the way the compiler implements the source language on the machine. All compil-
ers create the need for structural mapping. Some, but not all, need dynamic order resto-
ration. In this section, we sketch out the spectrum of programming modeis provided by
purallelizing compilers and discuss what problems are introduced whea they are imple-
mented on different architectures,

The programming model that the source language allows can be very difercnt from the

architecture. From a debugging standpoing, the two most important compouents of the
mode] are the user view of processors and memory.

In a programming model with a low level of abstraction, the user must explicitly write a
program for each processoc in the system. Compilers can lift the level of abstraction by
adding constructs that directly support parallelism. The cobegin/coend and doall
are two examples. The semantics of these constructs is that there is only one thread at
the beginning of the construct, one thread is spawoed to execute each clause in the
cobagin/coend or each iteration of the doall. After all the threads have completed
their assigned work, there is a join and only one thread continues execution. Data paral-
lel operations are similar; there is one thread of control before the operation begins, the
data perallel operation is executed in parallel, and there is one thread after the operation
completes. These constructs hide the architecture of the parallel machine and the details
of the mapping. The user does not need to know how many processors there are,
whetber the architecture is SIMD or MIMD, and does not need to decide which opera-
tions are executed on each processor. The programming model can be moved one step
farther from the architecture by providing a sequential modei of computation. In this
case, the user does not specify the parallelism—the compiler automatically detects it.

The user view of memory in programming models ranges from distributed memory,
where a processor may only access data in its local memory, to shared memory, where a
processor may access all data uniformly. For programming models with distributed
memory, data can only be moved between processors when the originating processor
sends the data and the destination processor receives it. Other systems provide program-
ming models that are a hybrid; data can be fetched from another processor’s memory
without the owner sending it, or data can be put in another processors's memory without
the destination processor receiving it.

A semantic gap exists when the programming mode! doesa’t match the architecture,
The rest of this section explains which combinations of programming models and archi-
tectures require structural mapping and dynamic order restoration. If the compiler pro-
vides a shared memory model on a distributed memory machine, then the debugger
must also provide the illusion that there is a single address space by translating the vari-
able names and array subscripts in the source program to names and subscripts in the
parallel program.

There is a close match between a SIMD architecture and languages with data parallel
operations; the basic operations of the machine are element-wise. Executing a sequen-
tial language or a language with parallel loops on a SIMD machine requires using the
vectorization techniques of strip mining, loop distribution, etc. These techniques intro-
duce some structural changes but since the target architecture bas a single thread of con-
trol, no dynamic order restoration is required.

SOURCE-LEVEL DEBUGGING OF AUTOMATICALLY PARALLELIZED PROGRAMS




Overview of the approach

A MIMD architecture creates the need for order restoration. If a programming model
with explicit processes is implemented on a MIMD machine, then there is little differ-
ence between the programming model and architecture, However, if a restricted paraliel
model, sach as parallel loops{Poly 89]{Balasundaram 89]{Mehrotra 90){Sussman 91]
or data paraliel model{Chatterjee 91]{Fortrand 92]{Knobe 90] is implemented on a
MIMD machine, then there is a posential for dynamic reordering to occur, depending on
the implementation, A straightforward, but inefficient way to implement a parallel loop
is 0 spawn off processes at the beginning of the loop, have each loop execute some of
the iterations, and then kill all but 2 master process after the loop terminates. If a parallel
loop is implemented in this manner, the semantics of the source language and the actual
execution are a close match. However, most compilers use a mcre efficient method for
implementing a parallel loop. All the processes execute the sequential code outside the
paraliel loop, each process executes some of the iterations of the loop, and all processes
continue execution after the loop terminates{Booth 86]{Cytron 90][Chatterjee
91][Tseng 89]. The processes do not necessarily synchronize at the beginning or end of
the loop, unless data dependences require it. This implementation is more efficient
because the program does not need to spawn and kill processes, and the lack of barrier
synchronizations can reduce idle time. With such an implemenmation, it is possible for
one processor to be executing code before the beginning of the loop while another pro-
cessor is executing iterations of the loop. If the program were to stop in that state, the
order of execution would violate the semantics of the language, which requires dynamic
order restoration.

Executing data parallel operations on a MIMD machine is similar to executing parallet

loops; if a barrier synchronization is done before and after every data parallel operation,
then the semantics of the language and the actual execution are a close match. If the syn-
chronization is not needed, then it can be removed to make the program more efficient.

When the synchronization is removed, two processors can be executing different opera-
tions at the same time{Chatterjee 91}, which violates the semantics and creates a need

for dynamic order restoration in the debugger.

To summarize, structural mapping is aiways needed. The debugger must associate state-
ments in the source and target programs. If the compiler provides a shared memory
model on a distributed memory machine, then the debugger must also provide that
model. When the target program does not obey the ordering constraints of the source
program, as is the case for data parallel, paralle! loops, and sequential models imple-
mented on MIMD machines, then the debugger must also provide dynamic order resto-
ration.

The biggest gap between source program and execution occurs when a single address
space, sequential program is executed on a distributed memory MIMD machine. This is
the main focus of our thesis. However, the methods explained in the thesis apply even
when the programming model is not sequential with a single address space.

Overview of the approach

The principal insight of our approach is that the structural aspects of parallelization can
be expressed in the context of a program which has not been parallelized. For exampie,
in FIGURE 1-5 we have rewritten the sequential program in FIGURE 1-1 as another

SOURCE-LEVEL DEBUGGING OF AUTOMATICALLY PARALLELITED /ROGRAMS 7




sequential program where the distribution of A into two smaller arrays and the duplica-
tion of the loop counter 1 is exposed but the parallelism is not visible.

FIGURE 1-§

1.4

A restructured version of the sequential program in FIGURE 1-1.

int i0,1i1;
int A0({15],A1([15];
for (i0 = 0,il1 = 1; 10 < 30; 10 +=2,1i1+=2)(
AQ(i0/2) = 1;
Al1{il/2) = 1;
}

‘\

Our methodology for constructing debuggers separates the dynamic ordering and struc-
tural mapping issues by breaking the parallelization ransformation of compilation intw
two phases. Instead of translating the program direcdy from sequential to parallel, as is
depicted in the top of FIGURE 1-6, the compiler uses the 2 phase process shown in the
bottom of FIGURE 1-6. The first phase is called distribution and exposes the restructur-
ing necessary for parallelization. It is a sequential to sequential program transformation.
and its output is the f§ program. The second phase is a parallelization transformation
called thread spliting and its output is the parallel » program. Thread splitting is a sim-
ple and general transformation which extracts muitiple threads of control from a single
one. A debugger is constructed by building a debugger for distribution and another
debugger for thread splitting. The debugger for the original transformation can then be
built by composing the two debuggers. The source-level for the debugger for the distri-
bution transformation is the a program and the source-level for the thread splitting
debugger is the B program.

Structural mapping is only done is the debugger for distribution. Dynamic order restora-
tion is only done in the debugger for thread splitting. To implement a different parallel-
izing transformation, we change the distribution, but thread splitting is the same. Since
thread splitting is the only transformation that introduces parallelization in the system,
its debugger can de reused for all parallelizing compilers. In effect, the part of the
debugger that manages parallelism is isolated and is independent of the parallelizing
transformations that a2 compiler uses.

Related work

The two main features that are present in paralle]l program debugging but are not in
sequential program debugging are nondeterminism and the extra information related to
multiple threads of control. Nondeterminism makes debugging difficult because incor-
rect behavior might not be reproducible. Multiple threads of control make debugging
more difficult because the user must ilter through extra imformation when debugging
(e.g. breakpoints can occur on more than one processor at the same time).

SOURCE-LEVEL DEBUGGING OF AUTOMATICALLY PARALLELIZED PROGRAMS



Overview of the approach

FIGURE 1-8 Compiler transtormation from sequentiai to parailel

To solve the first problem, researchers have worked on systems to detect nondetermin-
ism when it is an undesirable property of a program and to coatrol it when it is neces-
sary. Detecting nondeterminism usually relies on a combination of static analysis of
programs and run-time checking [Netzer 91)[Callaban 90}{Emrath 89]{Wang
90])[Dinning 91]. These tools are intended for shared memory machines and check for
unsynchronized accesses to shared variables. In our work, we assume that the program
has been automatically parallelized, so nondeterminism of the type detected by these
debugging tools cannot occur if the compiler is correct. It is possible however, that the
user can mistakenly direct the compiler to parallelize a loop that cannot be correctly
executed in parallel, which could create a nondeterministic program. Nothing prevents
the user from employing otber tools in conjunction with a source-level debugger in this
case. Once all synchronization bugs have been removed, source-level debugging can be
used.

If a program is intentionally nondeterministic, then debugging is difficult because the
problem may not be reproducible when using the debugger. To solve this problem,
researchers are studying how to make the behavior reproducible, either by restricting
execution so that it is reproducible, debugging from traces of a single run, or a combina-
tion of both{Forin 88] [Miller 88]{Leblanc 87][Tolmach 91][Bacon 91). Witha
MIMD execution model, many different possible interleavings of instruction executions
are possible even for a program with deterministic results. This can be viewed as a type
of nondeterminism since the interleaving varies from execution 10 execution. By provid-
ing a source view of execution, we are in effect choosing a single interieaving as the
correct one. In this respect our work is similar to Tolmach [Tolmach 91], who makes a
program deterministic by imposing a total ordering on access w0 shared objects, but
optimistically atlows the program to nm in parallel. Roll back, or restoring the program
to a previous state, is used when the optimistic paralle]l execution violates the chosen
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1.5

ordering. Our work differs because we give the appearance of a total ordering of access
10 all objects in the program but do not necessarily restrict execution 10 the total order-
ing. If Tolmach's method were used to impose a total ardering for all objects, there
could not be any peralielism during execution.

The second featre that distinguishes parallel program debugging from sequential
debugging is the extra information relased to having multiple threads of control. For
example, a sequential machine can only have one breakpoint at a time, but on a parallel
machine, every processor can hit a different breakpoint at the same time. Parallel
machines can also generate more information in the same time tham sequential
machines. To solve this problem, resesrchens have studied ways to filter and present the
information that is presented 1 the user. Visualization and auralization have been used
© graphicaily present information about the status of processors{Heath 91] [Bailey
88]{Zemik 91](Francioni 91]. Another way to reduce the amount of information that a
user must see is to test for high level events associated with the behavior of the program
rather than low level events such as source line breakpoints. Researchers have studied
how to detect and report events promptly without disturbing the state of the system
[Bruegge 91](Aral 88](Bates 83].

By providing a sequential view, we also filter out unnecessary information. Commumi-
cation and synchronization are compiler generated and are not relevant to debugging
and are not visible to the user. Instead of multiple program counters, there is a singie
program counter. We replace the parallel program with an abstraction, the source pro-
gram,

The work that is the most closely related to ours is the debugging of optimized code
[Hennessy 82](Copperman 90][Coutant 88)(Zellweger 84] and the debugging of par-
allelized code by Gupta [Gupta 88] and Pineo [Pineo 91]. Debugging optimized code
is similar becanse it requires structural mapping; however dynamic order restoration is
not present in debuggers for optimized code because there is no parallelism. The differ-
ences between our work and previous work on debugging parallelized code is explained
in detail in CHAPTER 4.

An altemative to the approach we pursue for debugging parallelized programs is to
compile the sequential source program that the user writes for a single processor, and
use conventional single processor debugging toois[Cft 90][Tseng 89). This approach
does not work when the execution environment on the sequential and parallel machines
are not identical, when the program uses more memory than can be accessed by a single
processor, and when the program runs 0o slowly on a single processor.

Another approach is a compromise between providing source-level debugging and mak-
ing the user debug the panallel program. A debugger can do structural mapping, so that
the user can use line numnbers and variables names from the source program, but still
expose the parallelism [CRt 90).

This presentation

In CHAPTER 2, we give some background information oa debuggers and parallelizing
compilers. We define a notation for specifying debuggers and define corectness for a

10
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This presentation

source-level debugger. CHAPTER 3 defines the scope of the problem we are solving
and outlines the overall structure of a compiler and debugger based on thread splitting.
CHAPTER 4 describes the thread splitting transformation and its debugger. CHAPTER
5 describes distribution for loop based parallelism and its debugger. CHAPTER 6 inte-
graes the information in the previous two chapiers to present a complete debugger for a
compiler that does block and cyclic distributions of data and computation. CHAPTER 7
identifies the limitation of the thread splitting appeoach. Chapter 8 summarizes the the-
sis and identifies contributions and funwe work.
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CHAPTER 2

Background

2.1

This chapter provides some background for our work. In Section 2.1, we describe the
execution models for sequential and paralle] programs. Section 2.2 describes the struc-
ture of a parallelizing compiler. Section 2.3 introduces the notation that we use to spec-
ify debuggers and defines correct behavior for source-level debugging. The notation is
used throughout the rest of the thesis.

Sequential and parallel programming modeis

The single processor language used in examples in this thesis is the C language; the
resuits apply for any conventional imperative language such as FORTRAN or Pascal.
Programs with pointers, procedure call, and recursion are allowed. Program flow graphs
must be structured. That is, there cannot be a jump into the middle of a loop. Baker{-
Baker 77] describes a method for generating structured programs from a reducible flow
graph and any flow graph can be made reducible by duplicating code{Aho 86].

The model of execution is a distributed memory MIMD computer. Processor names,
also called processor indexes, are n dimensional vectors. The dimensionality 2 is cho-
sen 10 match the topology of the interconnection network. Parallel programs are
expressed as a collection of sequential programs, one program per processor. One pro-
cess is created on each processor at the start of the program, no processes can be created
after that, The programmer assumes that the processes execute asynchronously on sepa-
rate processors; no assumptions can be made about the relative progress of execution of
processes except for the explicit synchronization,

The topology and connectivity of the processor array are unimportant for debugging.
Our examples use linear processor arrays and 2 dimensional tori with nearest neighbor
connections. The sequential language is augmented with primitives for communication,
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2.2

Commumication must be via send and receive statements that have blocking seman-
tics; that is, a send (0 a processor with a full buffer or receive from a processor that has
not sent the data yet causes the processor to stall until the communication action can be
completed. The amount of buffering for communication does not affect debugging.

In our examples, we use send and receive statcments that move individual data
items. A send statement has two arguments, a distance vector and a value to be sent.
The receive statement also has two arguments, a distance vector and a place to store the
value received. A distance vector is an offset which can be added to the index of the pro-
cessor executing the commumication action to obtain the index of the other processor in
the commumication action. On a 2D array with a NEWS grid (North, East, West, and
South), the processor to the west of processor (i, j) is processor (i, j-1), s0 an offset of
(0,-1) is used to send to the west and an offset of (0,1) is used to receive from the east. If
we want to send to the cast, then the sender uses an offset of (0,1) and the receiver uses
an offset of (0,-1). The processor to the north of processor (i, j) is processor (i+1, j). If
we want send data to the north, the sender uses an offset of (1,0) and the receiver uses an
offset of (-1,0). If a processor array supports communication to non-neighboring proces-
sors, then a distance vector can have a magnitude greater than one.

A mod function is applied to the result of adding the processor index and distance to
“wrap-around™ processor indexes. For example, if a 1-dimensional array has § proces-
sors, and processor 0 executes a send with a distance of (-1), then it is sent to processor
4,

For convenience in writing programs, we also use sendn and receivea which are
variants of send and receivae, These constructs have the same semantics as send
and receive except that they do not use the wrap-around connections of the processor
array. If the processor index plus the distance would go outside the bounds of the pro-
cessor amray, then the communication action is not executed. Reusing our previous
example, if processor 0 executes 3 sendn with a distance of (-1), the sendn is not exe-
cuted. The sendn and receiven are useful when we want the processors on the ends
of the array to behave differently from the rest of the processors.

Parallelizing compiler

The parallelizing compiler, or parallel program generator, takes a program written in
some high level language and outputs a parallel program that can be executed on a par-
aflel machine.

A typical parallelizing compiler has three phases: restructuring, parallelization, and sin-
gle processor compilation. The first phase is restructuring, which consists of source to
source transformations that change the structure of program constructs like loops and
conditionals. Both the input and output are sequential programs. Loop interchange and
strip mining{Padua 86] are some exampies of restructuring transformations. Restructur-
ing is used to increase the locality of reference, increase the potential for parallelism,
and reduce the communicaticn.

The next phase is parallelization, whese the operations and data of the program are
mapped t0 processors to parallelize execution. The input is a single program, with either
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sequential semantics or possibly parallel constructs like doall and cobegin, and the
output is a parailel target program that implements a mapping of work t0 processors.
The output can be either a single program which can be used for all processors or muiti-
ple programs, where each processor gets its own program. Most compilers emit a single
program.

If the input to parallelization has 2 doall or a sequential loop construct, the output is a
program where each processor executes its assigned set of iterations of the loop. As an
example, the sequential program in FIGURE 1-1 is the input to parallelization and the

parallel program below it is the output.

There are two features of the parailelization phase that are important to the rest of this
work. First, the source and target of parailelization perform the same computations; no
changes to the algorithm are made. Second, the parallelization phase preserves the order
of execution of operations in a single thread. In parallelization, we map operations to
processors, but we do not change the computation or the order of execution of opera-
tions.

The final phase is single processor compilation. The tool chain for single processor
compilation consists of a compiler, assembler, and linker. The -esuit of single processor
compilation is an executable which can be loaded into the memory of a processor.

The result of each of the phases of compilation is a version of a program with the same
meaning as the source, but possibly in a different representation. The source version is a
program written in a high-level language with parallel constructs. After parallelization,
the result is a program that is still in a aigh-level language, but with the distribution
explicit. After single processor compilation, the result is a machine language version.
All of these versions of the programs have the same meaning, but only oune is directly
executable by the processor itself.

Semantics of source levei debugging

In this section, we introduce a notation to describe debuggers, and use it to define the
correct behavior of a debugger for sequential programs, This notation is used to define
debuggers in the rest of the thesis. A debugger is a tool that can be used to execute a
program, inspect and modify its state, and set breakpoints. A debugger is called source-
level when it executes the machine language version of a program, but makes it appear
that the source version of the program is executing,

Section 2.3.1 describes the basic functionality of a debugger and the notation used to
define debuggers. In Section 2.3.2, we define correct behavior for a source level debug-
ger. We don’t need to introduce parailelism to define the behavior of a source-level
debugger so to simplify the discussion, the definitions in Section 2.3.1 and Section 2.3.2
ounly apply to a debugger for a sequential program running on a sequential machine. (n
Section 2.3.3, we extend the notation to paralle! programs and machines. Section 2.3.4
describes how to compose debuggers.
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2.3.1 Debugger notation

The basic functionality of a debugger includes the ability to set breakpoints, examine
variables, modify variables, and report the current location. The commands for these
actions are: set, examine, vhare, and run. The set command changes the value
of a variable. Its takes two arguments, the name of the variable and the vaiue to change
it to. The examine command inspects the values of variables. Its argument is the name
of the variable and the debugger displays its value. The run command executes the pro-
gram until a breakpoint or exception is reached or until the program terminates. The
run command takes two arguments, the program to be executed and a list of break-
points. A program may be single stepped by nmning with a breakpoint list of the special
token ALL. The where command determines the current location in the source pro-
gram, which is the next statement to be executed. The command doesa’t take any argu-
ments, and the debugger displays a unique label that ideatifies the statement. For 2 high-
level program, the label can be thought of as a line number in the program.All of the
commands implicitly take the program state as an argument.

A program state consists of the label of the statement about to be executed and the val-
ues of user variables. The part of the state that contains the values of variables can be
thought of as a binding between names and values. If the variable is a scalar variable,
the name is just an identifier. If the variable is an array ciement, then the name is 2 an
identifier and array subscripts. Examining a variable looks up the value bound to the
pame, while modifying a variable replaces a binding of a name and value with a new
one,

Rather than specify the entire debuggesr, which includes a user interface and other extra-
neous details, we define a kemel that processes our small set of commands. We call “his
the debugger function or D function. The functionality of a D function is:

D: ‘
Dstack x Command x State x Program x Bpts x VarName x VarValue —
State | VarValue | Location

The Command argument is any one of the commands described previously. The rest of
the arguments for the D function are arguments for the particular command. Some com-
mands do aot need all the arguments for the D function (¢.g. run takes a program state,
program, and breakpoint list but does not need a variable name or value). In that case, a
dummy value of L is used for the unnecessary arguments (€.g.

D(L, nm, 5, p, (3), L, 1)). The Dstack makes it possible to compose debuggers; we
delay an explanation of this until Section 2.3.4. The type of the value returned by a D
function depends on the command. Both the set and xun commands create new pro-
gram states. The examine command returns a VarValue, the value of a variable. The
whers command returns the location in a program.

In FIGURE 2-1, we define the behavior of a debugger with a base debugger where the
source and target programs are the same (no compilation is necessary). The base debug-
ger uses an interpreter to directly execute the program.

18
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To model the behavior of the program. it is assumed that there is an interpreter function,
I, where I,(p, 5, b) returus a new state that is the result of executing a program p in
language L ou a state s until a breakpoint in the list & is reached or until the program
terminates. In the new state, the current label and the values of any variables assigned 0
by the statements executed are changed. If the language L is the machine code, then /;
modeis the behavior of the processor and the resuiting state reflects executing machine
instructions. If L is a high level language, then /; can be an interpreter and the resuiting
state reflects executing statements of the source language. Most of the details of the
semantics of the language are orthogonal to the issues that we wish to address about
debugging. For this reason, all that information is hidden inside the program state and
the / function.

In the base debugger, the label_of function extracts the current label from a program
state. The access function is used to lookup the value of a variabie in a state. The argu-
ments are a program state and the name of a variable. The update function is used to
modify the value of a variable in a state. It takes 3 program state, a variable name, and a
variable value and returns a new state where the variable is bound to the new value.

FIGURE 2-1

232

Definition of the base debugger

BaseDebugger(Dstack,Command, State, Program, Bpts, VarName, Var Value)
{
if (Command == “where™) {
return label_of (State)
if (Command == “examine™) {
retum access (State, YarName)
if (Command == “set’™) {
return update (State. VarName, VarValue)
if (Command == “nm"™)
return [;(Program, State, Bpts)

Correctness of source-level debuggers

For correctness, we require that the behavior observabie by the user be the same
whether the base debugger of FIGURE 2-1 is used with a program p written in lan-
guage L, or a source-level debugger is used with a compiled version of the program p.

When defining correctness, we can’t simply require that all the input/output behavior of
the base debugger function and the source-level debugger function be the same. While
the meaning of the two prograins are the same, they are different versions and hence the
program states are different.

To decide if two debuggers provide equivalent behavior, we require that if we start with
programn states that are indistinguishable when using debugger functions to examine
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them (using where ax examine commands) then executing a command that modi-
fies the program state (xun and set) also leads to indistinguishable program staes. We
first introduce definitions for consistency and congruency to define comrectness. Consis-
tency is used to compare program states.

Definition 2-1

Two states s, and s, are consistent for debuggers D, and D,

(consistent(s,, 55, Dy, D)) it

Dy(L, where, 3,, L, 1, 1) = Dy(1, where, £, 1, 1, 1) and

Va (D,(L, examine, $,, L, #, 1) = D,(L, examine, s5,, L. 1, 1)) .

Usually the debuggers are obvious from tha context. in .nis case we omit them and just
say states 5, and 5, are consistent or consistent(s,, $,).

If two states are consistent for a pair of debuggers, then we cannot distinguish the two
states by using the debuggers to examine them. We use the V  because the condition on
examining variables must be true for all possible variable names,

Now we can use the consistency of states to define congruency of debuggers.

Definition 2-2

Two debuggers D, and D, are congruentfor programs p, and p,
(CWM(Dp Dzn P:- pz)) it

V(s 5,)
consistent(s,, £,) —>
Vbcousisteat(D, (1, um, 5, p), b, 1, 1), Dy(L, rum, sy, py, b, L, 1))
and
V (n, v) consistent(D (1, set, 5,, p,, L, 1, v), Dy(L, set, 5, pa, L, 1, V)

We define two debuggers to be congruent for two particular programs if execution of
identical commands on consistent states yields a new set of consistent states. The two
commands for modifying states are run and set. For the zun command, we use V
because the condition must be true for every possible set of breakpoints. For the set
command, we useV because the condition must be true for every possibie combination
of variable names and values.

Now that we have a way of comparing the behavior of debuggers, we can define correct-
ness for 3 source-level debugger.

Definition 2-3

A debugger function D is a correct source-level debugger for a transformation A when:
Vp

congruent(D, basedebugger, A(p), p)

whare basedebugger is the debugger defined in FIGURE 2-1. A transformation is a
function that inputs one program and outputs another program. The two programs have

- 18
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the same meaning, but are in dilferent representations (high-level language and machine
code). in this definition, p is the source program and A(p) is the target program.

Inmitively, a source-level debugger is correct if its behavior while executing the target
program is the same as the behavior of the base debugger while executing the source
program. In the rest of the thesis, when we use the words correct and incorrect to
describe the behavior of a debugger, we are comparing it to the behavior of the base
debugger. Comrect behavior has also been called expected behavior by Zellweger{Zell-
weger 84).

Some transformations change the behavior of the program so much that there cannot be
a D function. This problem exists for debuggers for sequential machines as well as for
parallel ones. For exampie, it might not be practical to allow the user to modify vari-
ables that are part of a common sub-expression[Hennessy 82). Examining a variable
may not be possible if a dead store (a dead store is a store to a variable that is not used
later in the program) that modifies the variable has been eliminated, and single stepping
may not be possibie if an optimization removes an “unnecessary” loop. An exampie
from parallelization is when a compiler transforms a sequential algorithm that computes
the sum of an array into a parallel one which does the operations in a different order and
doesn’t compte the same intermediate values.

Just because one aspect of the program is aot observable by the debugger does not mean
that a debugger cannot be used at all. If a variable cannot be examined because a dead
store was eliminated, then the debugger should not allow the user to inspect the vari-
able; inspecting other variables should not be affected. Furthermore, the debugger
should never give misleading information. The debugger should either behave the same
as a correct source-level debugger or it should indicate to the user that correct behavior
is not possible. Zellweger calls this truthful behavior. We call transformations that have
a correct source-level debugger fully debuggable and transformations that do not par-
tially debuggable.

Extending the debugger definition to paraliel programs

Only a small number of changes are needed to extend the notation from the previous
sections to cover parallel machines as well. The state for a parallel program is a set of
states, one for each processor. Each state contains the current point in the program for
the processor and the value of that processor’s variables. A program is a set of single

processor programs. A D function for a parallel program is a set of D functions for sin-
gle processors. When a debugger for a parallel program must perform an action on a
processor, it selects the debugger and state for that processor from the sets. For exampie,
if the debugger wants t0 examine the value of a variable in processor 3, it extracts the
state of the third processor from the set of states, extracts the debugger for processor 3
from the set of debuggers, and applies the debugger to that state to lookup the value of
the variable requested. If the debugging action modifies a state, as is done by the set
comman, the resulting state is merged back in to the set of states that is considered the
current state.
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2.3.4 Composing D functions

‘We coustruct a compiler by composing code transformations; we also need a way 0
compose the D functious for those transformations to construct a debugger. If the com-
piler wransiates the code from source to target in several steps, we want to build a debug-
ger for each step individually, then construct the debugger for the entire transformation
by putting together the debuggers for those steps. For example, some C++ compilers
first transiase the C+-+ code to C code, then translate the C code w0 assembly code. We
could build a debugger for such a system by building a debugger for C code, building
another debugger that assumes the source level is C++ and the target leveld is C, and then
put together those two debuggers to construct a new one where the source level is C++
and the target level is maching code.

A stack of debuggers comprises individual debuggers that translate requests from their
source level to their target level. Requests are passed down the stack o the machine
level and results are passed back to the top. One debugger is at a lower level than
another if it is closer to the machine level in the debugger stack. The lowest level debug-
ger is called the base debugger, which directly executes commands.

Each debugger, except the base debugger, assumes that it can use a lower level debugger
to manipulate the target state. In effect, a debugger just translates commands to manipu-
late source-ievel objects into commands to manipulate target-level objects.

For example, if a program transformation replaces all occurrences of the variabie 11
with 42, then the debugger for that transformation translates requests to examine the
variable 11 to a request to examine the variable 13 and passes on all other requests
unchanged. The same applies for the modifying variables. The D function foc the
renaming transformation is called 4_11_12 and can be found below. The function
£irst selects the first D function on the debugger stack. The function rest rewms
the debugger stack with the first D function removed. The function apply applies 2
function to a set of arguments. It has the same semantics as the Common Lisp{Steele
84] function of the same name, If the variable £o0 contains the function bar then
apply(foo0,1,2,3) is the same as bar(1,2,3).

The first argument of 4_11_12, dstack, is the debugger stack. The debugger stack is
a list of D functions. The top of the stack is the D function that the current D function
can use to manipulate its target state. Each D function peels off the top of the stack when
calling the lower level D function. The new top of stack for the lower level debugger is
the D function below it in the stack. When a debugger calls a lower level debugger, it
applies the lower level debugger to a set of arguments. The first argument passed the D
function is the new debugger stack with the first element removed.

The lowest level debugger on the stack (the base debugger) must perform the com-
mands on the real target state; it does not pass on the command to a another debugger.
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d_il_i2(dstack,command,state,program, bpis, name, value)
{
if (command == run) (
return apply(first(dstatck),rest(dstack),
, nm,state,program,bpts, L L)

if (command == where) {
return apply(first(dstack),rest(dstack),
where,state. L. L.1)
}

if (command == examine) {
if (name == “{1™)
retum apply(first(dstack),rest(dstack),
examine state, | "i2" 1)
else return apply(first(dstack),rest(dstack),
examine state, L ,name, | );
}

if (command == set) {
if (name == “i1™)
return apply(first(dstack),rest(dstack),
set.state, |, "i2", value)
else return apply(first(dstack),rest(dstack),
set.state, L name, value);

}

As an illustration, assume we compose the debugger defined above, d_11_42,and a2
similar debugger for a transformation that renames the variables 12 to 13. The base
debugger is called b. The debugger stack for this set of transformations is (4_41_12,
d4_13_13, b). If the user wants to examine the variable 11, then the debugger would be
applied from the top of the stack as follows:

d_il_i2((d_i2_i3,b),examine, state, l,L,”il”", 1))

The debugger &_11_ 12 would pass the request to the next debugger on the stack as
follows:

d_i2_i3((b),examine,state,l,Ll,"i2",1)

The debugger d_12_13 wouid pass the request to the base debugger:
b((),examine,state, ), l,,*i3°,1)

The base debugger would look up the value of 43 and pass itback uptod_12_43,

which would retum it to d_11__412, which would retum the value which is displayed to
the user.
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24 Summary

The models of execution for paralle] and sequential machines were introduced. The
structure of a parallelizing compiler has been described. A potation for specifying

debuggers has been introduced and it was used to define the correct behavior for a

source-level debugger.
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CHAPTER 3

Approach

3.1

In this chapter, we describe our approach for source level debugging. We focus on the
parallelization phase of compilation, since it spans the gap between sequential and par-
alle] programs. Parallelization requires both structural mapping and dynamic order res-
toration. Dynamic order restoration is needed because paralielization converts the
program’s single thread of control to multiple threads of control, hence out of order exe-
cution is possible. Structural mapping is needed because the mechanics of paralleliza-
tion require that the program structure be altered.

We attack these problems separately by dividing the parallelization phase of compila-
tion into two parts. In the first phase, we restructure the code 1o expose all the structural
changes necessary for parallelism. In the second phase we paralielize the code by
extracting multiple programs from a single processor program.

In Section 3.1, we define the scope of the problem we solve. In Section 3.2, we review
the basic functionality of what a debugger for parallelized programs should do. This is
followed in Section 3.3 by an introduction to our methodology for constructing debug-
gers.

Problem scope

If compilation parallelizes the program but does not change the computation or the
order of execution of operations on a processor, then the same values are computed in
source program order and it is possible to build a debugger. If compilation alters the
computation (¢.g. convesting a sequential reduction into a parailel reduction) or changes
the order of execution of operations, then it may not be possibie to construct a debugger,
depending on the degree to which the computation has been changed. In this thesis, we
only study the problem of debugging when the computation has not been changed.
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As we described in the previous chapter, compilation cam be divided into three phases:
restructuring, pamllelization, and single processor compilation. A debugger for the
compiler can be thought of a2 the composition of debuggers for the individual phases.
Restructuring transformations and single processor compilation are sequeatial
sequential transformations and can change the computation and the order of operations.
Parallelization converts a program from sequential to paraliel but does not aleer the
computation.

Each of these compilation phases can present interesting challenges to the debugger
writer. Sequential 10 sequential ransformations, whether they are applied by a restruc-
turer or an optimizing compiler for a sequential language, bave received a great deal of
m[FeilerszSZ][Wam 78)(Zellweger 84)[{Coutant 88][Brooks 92}{Copperman
90)(Heomessy 82].

In this thesis, we only study the debugging problems associased with the transition from
sequential to parallel, which occurs during perallelization[Pineo 91}[Cohn 91). Paral-
lelization does not change the computations of a source program or the order in which
they are computed. To factor out the problems associated with debugging sequential to
sequential ransformations, we assume that there is either a debugger for the restructur-
ing phase, or that no restructuring is dooe by the compiler. Furthermore, we assume that
there is a debugger for the single processor compiier.

What a debugger for parallelization must do

32.1

‘The work of the D function can be divided into dynamic onder restoration and structural
mapping. In Section 3.2.1, we describe when and why dynamic order restoration is nec-
essary and what it must do. In Section 3.2.2 we answer the same questions for structural
mapping.

Dynamic order restoration

Dynamic order restoration makes it appear that the order of execution of operations is
the same as the order in the source program. It is necessay whenever the compiler
removes an ordering constraing that was present in the sequential program. Compilers
remove ordering coustraints to exploit the parallelism. For example, the semantics of
most imperative languages imply that iterations of a loop are executed sequentially. If
there are no dependences between loop iterations, then the compiler can generate paral-
lel code that does not obey that ordering constraint and allows iterations to be executed
in parallel

A probiem for debugging arises when we allow operations to be executed in parallel. If
the program execution is interrupted because the program hit a breakpoint or the user
aborted the program, it may appear that operations are executed out of source order. Out
of order execution makes it impossible for the debugger to point to a position in the
source program where every operation before that point has been completed and no
operations after that point have been initiated. FIGURE 3-1 illustrates this point. The
top of the figure is the same sequential and parallel programs as in the exampie used in
the previous chapter. The bottom of the figure contains traces of the execution of the
sequential program in the center column and traces of processor 0 and processor 1 to the
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RGURE 3-1 Paraliel execution gives the appearance of out of order execution

Sequential source program
int i;
int A(30];
for (i = 0; i < 30; i++)(
Alil = 1;
}
Processor 0 Processor 1
int il; int i2;
int Al1(1S}: int A2{1%);

for {(il= 0; il < 15; il++)({ for (i2= 0; 12 < 15; i2++)(
Alfil) = 1; A2[i2] = 1;
} )
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:
R2++ ]
®

SOURCE-LEVEL DEBUGGING OF AUTOMATICALLY PARALLELIZED PROGRAMS




left and right. The arrows relate operations in the sequential and parallel programs. The
boxes around statements in the processor O and processor 1 traces indicate the opera-
tons that each processor will execute next. For this pasticular state of the parallel pro-
gram, there is no place in the sequential program trace that we can point to and say that
every operation before that point has been executed and no operation after that point has
been executed.

Given a point considered the current point in the source execution, operations which
occur after that point in the source program, and have already been executed are called
early and operations which appear before the current point in the sequential execution
and have not been executed yet are calied laze.

AGURE 3-2

Early and late operations

Trace of sequential program
i=0 [E]Ewly

0 O
10+«
i0 < 15

i< 30
Tweofr:ocmO/A[l] 0
i0 = ivs
10 < 15 i< 30

Trace of processor 1

A[l] =

1++ i1 =0
il < 15

[ <30 ]

AO[iO0} = 1 e A{i] = 1 Al[il] =

e+ il++
i 30 ﬁn tis |
Ali) = 1 Al(il] =1 ;
|

In FIGURE 3-2 we have another illustration of the same state of the program. The box

asound the statement in the sequential program trace indicates the statement that the i
debugger has chosen as the current statement (calling it the current statement implies M
that it has not been executed yet). The debugger could have selected other statements as

the current one; the constraints on choices are explained in CHAPTER 4. Anything

above the selected line in the sequential trace which has not been executed is a late oper- .
ation. The arrows for those operations are marked with L’s. Anything below the selected

line in the sequential trace which has been executed is an early operation. The arrows

for those operations are marked with E’s.

If an early or late operation changes the value of a variable, and there is no dynamic
order restoration, then the behavior of the debugger will be incorrect. For an early oper-
ation, the user should see the value before it was updated. However, only the value after
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the update is available. In the figure, processor 1 does an early update to the array Al. If
the user inspected A1 [1], they would see the new value, 1, when they should have seen
the oid value, 0.

If there is a late operation that modifies a variable, the user should see the value after the
late operation updates the variable, which has not happened yet. In the figure, processor
0 has a late operation that updates the asray A0. When inspecting A1, the user sees the
pre-update value of 0 when the post-update value of 1 should be seen.

Dynamic order restoration also ensures that the user sees events such as breakpoints in
the order that they would have occurred in the source program. If a late operation will
cause a breakpoint when it executes, then the user shouid see the breakpoint associated
with the late operation before secing the event that made the program stop in its current
state because the late operation has an earlier virtual time.

Dynamic order restoration can either force the parallel program to execute operations in
source order or it can allow the program to execute operations out of order, but not let
the user examine any state that has been modified by out of order operations. Choosing
between these two methods depends on the situation; methods are discussed in CHAP-
TER 4. If the debugger doesn’t force execution in source order, each command must
have a set of restrictions 0 ensure that the user cannot see the effect of out of order exe-
cution. For the whaze command, the debugger must pick a point in the program to call
the current point. This determines the set of late and early operations. The debugger
must be sure that there are no late operations that will cause breakpoints or exceptions.
For the examine command, the debugger must ensure that the user does not inspect a
variable that is written by a late or early operation. For theset command the debugger
must ensure that the user does not modify the value of a variable that is read or written
by a late or early operation. When setting a breakpoint the debugger should ensure that a

breakpoint is not set for an early operation.

Late and early operations are closely connected to roll-back and roll-forward variables
as defined by Hennessy[Hennessy 82]. Variables written by early operations are roll-
back variables. Variables written by late operations are roll-forward variables. Comput-
ing the sets of roll-forward and roll-back variables is sufficient if the debugger wants to
determine if it is safe to examine a variable, but more information is needed if we want
to determine if it is safe to modify variables or set breakpoints. Computing the late and
early operations provides this extra information.

Structural mapping

Structural mapping relates variables and statements in the source code to variables and
statements in the target code. If the program is translated, then structural mapping is
needed.

Parallelization usually entails some change in the structure of the program. If the com-
piler implements a shared memory model on a distributed memory machine, then the
names for variables used in the source program are not the same as the names used in
the paralle! program. In our example in FIGU™RE 3-1, the variable 1 has been renamed.
If the elements of an array are distributed across a set of processors, as is done for the
array A in the example, then the subscripts used to reference the array are changed.
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Some variables like loop counters are replicated on all processors, even on shared mem-
ory machines. Furthermore, some variables might not have the same value as they
would have had in the sequential program. In the example, the loops for both processors
go from 0 to 14 while the loop in the source program goes from 0 to 29.

The structure of the code is changed as well. Instead of a single program, there is a set of
programs, one for each processor. If the compiler converts a sequential loop into a paral-
lei loop, then the loop structure must be changed so that every processor executes a sub-
set of the iterations.

Structural mapping is a ranslation of names between objects in the source program and
target programs, When the programmer uses the debugger to examine or modify a vari-
able, structural mapping converts the name that is used in the source program to the
naime in the target program. If that variable happens to be an element of a distributed
array, then structural mapping computes which processor the element resides on and the
address at which it is stored. In the example of FIGURE 3-1, structural mapping would
determine that array element A [i] resides on processor ( if i is even and processor 1 is i
is odd. It would also change the index ([{] to {i/2]. If a variable is replicated, then the
debugger must know which copy is the appropriate one to examine and which set of
copies is the appropriate one to modify. If a variable does not have the same value as in
the source program, then the debugger must know how to compute the source value
from the target value to examine the variable and it must also know how to compute the
target value from the source value to modify the variable. To examine the loop counter
in the example, we must first decide which processor has the appropriate copy. If it is
processor 0, we multiply the loop counter by 2. If it is processor 1, we multiply the loop
counter by 2 and add 1. For the wheze command, we must know how to map lines in
the paralle! program to lines in the sequential program. To set breakpoints with the run
command, we must know the inverse mapping, from lines in the sequential program o
lines in the parallel program.

Debugger methodology

The debugger methodology presented in this thesis allows us to separate dynamic order
restoration from structural mapping when building a debugger. As is explained later,
dividing the two allows us to study the dynamic order restoration problem independent
of the parallelizing transformation used by a compiler,

A debugger that does dynamic order restoration must know the total ordering of opera-
tions in the parallel program. Structural mapping requires information about the rela-
tionship of lines and variables in the source and target programs. We can separate
structural mapping from dynamic order restoration in a debugger by dividing the paral-
lelization phase of compilation into two steps: distribution followed by thread splitting.
The input to distribution is the same as the input to parallelization and is called the a
program. The output of distribution is another sequential program called the B program.
Thread splitting inputs the B program and outputs the parallel @ program, where o; is
the sub-program that executes on processor i, The o program is the output of parallel-
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The operations in the  program have a 1 to 1 relationship with the operations of the ©
program. Since the B program is sequential, it defines a total ordering of execution of
operations of the ® program. The debugger uses the total ordering for dynamic order
restoration. All of the structural effects of parallelization have been factored out and
exposed in a program without paralielism (the B program). Structural effects include
replicated statements and variables, altered loop structures, and distributed variables.

The debugger is structured in a manner similar to the compiler. There is a debugger for
distribution and thread splitting; the debugger for parallelization is the composition of

the two. The debugger for distribution does structural mapping but does not need to do
dynamic order restoration because both the input and output are sequential. The debug-
ger for thread splitting does dynamic order restoration and some simple structural map-
ping.

A debugger where structural mapping and dynamic order restoration are separated has
two advantages when compared to a debugger where they are done together. The chief
advantage is that it lets us isolate the functionality that manages program parallelism in
a part of the debugger that is reusable for different compilers. When we construct new
parallelizing transformations, a new distributica transformation is needed, but the
thread splitting transformation always stays the same. Thus, the part of the debugger
that handles thread splitting can be reused when the debugger is retargeted for a com-
piler that uses a different parallelizing transformation.

The second advantage is that structural mapping is simplified when dynamic order res-
toration has already been done. This is because all problems associated with out of order
execution have been resolved. To illustrate this point we use the previous example of
parallelization where processor 0 executes all the even iterations of a loop and processor
1 executes al" the odd iterations. In FIGURE 3-3, the top program is the @ program, the
middle program is the B program, and the bottom program is the @ program. We explain
B programs in detail in Section 4.1.1, for now it is only necessary to observe the duplica-
tion of the loop counters. Assume that the parallel program is interrupted, and both pro-
cessor 0 and processor 1 are about to execute the assignment statement in the body of
the loop. If the user were to ask to inspect the loop counter, it is unclear which counter is
the appropriate one to show to the user by inspecting the state of the ® program. How-
ever, if we do dynamic order restoration first, we can relate the current state of execution
to a point in the execution of a sequential program, which is our §§ program. In this case,
it would indicate that the next staternent to be executed is the assignment to Al in the
body of the loop in the f program, which makes it is clear that the correct copy of the
loop coumter to inspect is 11. Doing dynamic order restoration first, in conjunction with
the 1 to 1 mapping between statements in the f§ and @ programs, has simplified struc-
tural mapping.

The main disadvantage of separating structural mapping and dynamic order restoration
is that we must construct the intermediate program called the §§ program, which would
not otherwise be necessary. However, we do not believe that this disadvantage negates
the advantages—we show in CHAPTER 5 that constructing a f§ program for the com-
mon distributions is straightforward.
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Approach
AGURE 33 a. B, and ® program
@ program
int i;
int A[30];
for (i = 0; 1 < 30; i++){
Afi] = 1;
}
p program
int 1i0,1i1;
int A0{15],A1[15};
for (i0 = 0,i1 = 1; 10 < 30; i0 +=2,1il1+=2)¢{
@ A0(iO0] = 1;
Al[il] = 1;
}
@ program
g o
int i0; int il;
int AQ0(15]; int A1{1S]:

for (i0 = 0; 10 < 30; i0 +=2){ for (il = 0; il < 30; il +=2)({
@. A0[iO] = 1; @: Al[il] = 1;
} }

3.4

The next two chapters complete the description of debugger methodology. Chapter 4
describes the thread splitting transformation and its debugger and Chapter 5 describes
distribution and its debugger.

Summary

We identified the scope of the problem we are rying to solve, which is the paralleliza-
tion phase of compilation. Dynamic order restoration and structural mapping are needed
for debugging parallelization. We described a methodology for factoring out dynamic
order restoration from parallelization, so that it can be handled separately from struc-
uiral mapping.
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CHAPTER 4

The thread splitting
transformation

This chapter describes the thread splitting transformation and its debugger. The thread
splitting transformation converts a sequential program into a parailel program. Its
source is the B program and the wmrget is the o program. All of the changes which are
necessary for distribution are exposed in the B program. These changes in.lude the rep-
lication and distribution of variables and the restructuring of loops. In addition. every
statement in the B program is labeled with the processor on which the statement should
be executed. Thread splitting uses the labeling W generate a parallel program.

The B program has an execution model of a single thread of control executing in ulti-
ple, disjoint address spaces. In generating the o program, we extract one thread of con-
troi for each address space. There is a one (0 one mapping between statements in the
program and statements in the @ program. The order of execution of statements in the
program defines a total ordering of operations in the @ program, which is used for
dynamic order restoration.

We first define a debugger which forces the execution order of statements in the parailel
program to be in the same order as in the B program. This is a brute force method of
doing order restoration. We then define a debugger that allows the parallel program to
execute unrestricted. Depending on the state that the program happens 1o stop in, the
debugger may not be abie to allow the user to examine or modify some variables. The
debugger must ensure that it provides truthful behavior; it cannot supply any informa-
lion 10 the user that contradicts the behavior of a comrect debugger.

We describe the thread splitting transformation and the language of B programs in Sec-
tion 4.1. In Section 4.2, we define the debugger that executes statements in the same
order as the f§ program. We describe how to allow parallel execution in Section 4.3. In
Section 4.4, we discuss einciency issues related to dynamic order restoration. Finally,
we describe some work related to the issues discussed in this chapter in Section 4.5.
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4.1

The thread splitting transformation

4.1.1

4.1..1

Thread spliting is a simple transformation where we extract multiple programs from a
single program. Each statement of the source program is marked with a processor index
label that indicates which processor should execute that statement. The semantics are
chosen 30 that after thread splitting, we have a parallel program with the same meaning
as the source program.

We first define the language of f} programs and its semantics io Section 4.1.1. We then
describe how code generation works for thread splitting in Section 4.1.2 and conclude
with an example in Section 4.1.3.

The language for § programs and its semantics

The model of execution for a § program is that of a single thread of control executing in
multiple address spaces, SIMo style. Each statement is annotated with the address
spaces that the current statement should operate on.

The language for B programs is the language of source programs augmented with addi-
tional constructs for communication and the specification of the mapping of statements
0 processors. [ts semantics are the same as the source program with some exceptions

noted below. In the thesis, the source language is sequential so the semantics of the lan-

guage of f§ programs are sequential as well.

Procsasor index labels

All statements have at least one processor index labet (PIL), The value of the PIL's indi-
cates which processors execute the statement in the parallel program. A PIL is an n ele-
ment vector for an n dimensional processor array and must be a compile-time constant.
If ihe value of a PIL is not a valid processor name (out of range, non-integer), then the

PIL is invalid. Invalid PIL’s can only occur if the compiler is incorrect.

A single PIL is written as a comma separated list of integers enclosed in “<", The
length of a PIL is the same as the dimensionality of the processor array If there is more
than one PL. for a statement, they are separated by commas. Some examples of state-
ments with PIL’s can be found below:

<1>,<2>,<3> b = 1;
<2>,<4> c = 2;

There is one distinct address space for every valid value of a PIL. Variable declaration
statements create one copy of a variable for every PIL for that statement. The PIL’s
determine which address space those variables reside in. Other statements such as
assignments, conditionals, etc., always reference the copy of the variable that is in their
namespace, which is determined by the PIL for that statement. If the statement has more
than one PIL, side effects of the execution of the statement affect every address space
named by a PIL. Assignment statements have straightforward semantics for muitiple
PIL’s. For a statement like the following, the effect is to set both the copy of ¢ in <2>
and the copy of ¢ in <4> to the value 2.
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<2>,<4> ¢ = 2;

For statements with control flow, such as loops and conditionals, any side effects in the
loop header or condition affect every address space named by a PIL. For exampie, in the
statement below the side cffects of the statement are to initialize the variabie 1 to 0 on
loop entry and to increment the loop counter for every iteration of the loop. The seman-
tics of the statement are t initialize the copies of 1 in address spaces 0 and 1 to 0 on
loop entry and to increment both copies of the loop counter for every iteration.

<0>,<1> for (i = 0; i < n; i++)

Note that having the same variable in multiple address spaces does not mean that all the
copies always have the same values. It is legal to assign one copy a value, but not oth-
ers. For example, the following statements can be part of a legal program.

<1>,<2> int c;
<1l> c 2;
<2> c 4;

The compiler must follow 3 rules in assigning PIL's. If they are not obeyed, then the
behavior of the program is undefined. The rules are:

1. A variable cannot be referenced in address space p unless it has been declared in
address space p.

2. Statements with data dependent control flow may only bave multiple PIL’s if the
control flow is the same for all copies of the statement. For example, the result of the
test of the conditional must be the same using the copy of ¢ in <1>, <2>, and <3> in
the statement below.

<l>,<2>,<3> if (¢ == 2)

3. When one statement is lexically nested inside another, as is the case for the L £ and
for statement, the set of PIL’s of every statement inside must be a subset of the
PIL’s for the enclosing statement. For the program below the condition part of the
1£, must have <1> and <2> as PIL’s because statements contained inside have those
PIL’s.

<1>,<2>,<3> if (a == 1)

<i> c=1;
else

<2> . c = 2;

Rep and dist constructs

It is impossible to write programs where the size of the processor array is not known at
compile-time because PIL’s must be compile time constants. The implications of con-
stant PIL’s are discussed in CHAPTER 7. Two run-time variables and two coastructs
must be added to the source language to make it possible to create programs that are
parameterized by the size of the processor array.
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The variables are _np and _14. They are prefaced by an underscore 10 separate them
from user variables. The variable _np contains the size of the processor array and is ini-
talized by the run-time system. The variable _14 contains the index of the current pro-
cessor and is also initialized by the rup-time system. Both the size of the array and
processor indexes can be # dimensional numbers for £ dimensional processor arrays. In
this case _np and __14 are » clement arrays.

The constructs are rep and dist. They are purely a shorthand for writing programs
that are compact and independent of the size of the processor array. The rep is used ©0
create a statement with multiple PIL’s and the dist is used o create multiple copies of
a staement, each with a different PIL. Loop-like control is used to generate offsets,
which are added to the PIL’s of statements in the body to generate distinct PIL’s for
every copy. The syntax of the two statements is:

rep var = low to highwith offset body
dist var = low to high with offser body

Tokens in italics are syntactic variables. The var is a variable name. The low and high
are expressions that are functions of conswants, variables defined by a2 dist or rep,
and _np. The offset is a PIL that is a function of constants, var, and _np. For a dist,
body is a statement or block of statements. For a rep, body is a single statement. The
scope of var is body. The var may be referenced in low and high expressions in rep and
dist statements in the body, but not in any other statement of the body.

The xep and dist are special statements which are not executable and do not have
their own PIL’s. They do change the semantics of executable statements contained in the
body. A dist is used to creste multiple copies of a block of statements which can then
be distributed across a set of processors. One copy of the body is created for each possi-
ble value of the dist variable, which is bounded from below and above by low and
high with a step size of 1. The copies of the block are executed sequentially in the order
that they are generated. The offser is added to the PIL of every statement in the body.
The PIL’s in the body can be any value. The offset can have a different value for every
copy of the body because it is a function of var. As an example, in the dist below,
three copies of the body are created. The value of the offset vectors are <0,0>, <1,0>,
and <2,0>.

dist b = 0 to 2 with <b> (
<0> C = 1;

<0> D = 2;

}

When we expand the above dist we obtain:
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<0> C =1;
<0> D= 2;
}
{
<1l> C=1;
<i> D= 2;
}
{
<2> C = 1;
<2> D= 2;

}

A zep is used to generate multiple PIL's for a single statement. One PIL is generated
for every possible value of the rep variable by adding the current value of the offset 10
the PIL for the statement that is the body of the rep. In the statement below, the rep
creates 3 PIL's for the statement.

= 0 to 2 with <a>

X

r a
<5> b 1;

If we expand the above rep, we obtain:
<5>,<6>,<7> b = 1;

A zep only generates the PIL's for a single statement, even if that statement contains
other statements. For example, if the body of a rep is a for statement, then mulitiple
PIL’s are generated for the £or statement, but the body of the loop is not changed. This
makes it possible to replicate loop control across a set of processors but still distribute
the body of the loop. If we want to replicate the body of the £ox as well, then a rep
must be used for every statement of the body. In the example below we want to replicate
thezorstammemandnsbodyonevayplmsorofupmoasorhnwmy Each
statement must have a rep.

rep a = 0 to 1 with <a>
<0> for (i = 0; i < n; i++) (
rep a = 0 to 1 with <a>

<0> bs+;
rep a = 0 to 1 with <a>
<0> CH+;

)
If we were to expand the rep's in the above program we would obtain:
<0>,<1> for (1 = 0; 1 < n; i++) (

<0>,<1> b++;
<0>,<1> C4+;
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To simplify code generation, we require that the program for each processor be identi-
cal, This occurs under the following condition. If we expand all the rep and dist con-
structs of a program, then for every statement s in the program and for every processor
index p in the processor array, there should be exactly one copy of statement s in the
expanded program that has p as one of its PIL’s. We list two examples of valid programs
below. In the first program, there is exactly one copy of every statement for every pro-
Cesson;

dist a = 0 to _np(0]-1 with <a, 0>

dist b = 0 to _np(l]~-1 with «<0,b>
<0,0> i=1;

Expanding this program for a 2x2 processor array yields:

<0,0> i=1;
<0,1> i=1;
<1,0> i=1;
<1,1> i=1;

In the following program, there is less than one copy of each statement for each proces-
sor, but each copy has multiple PIL’s.

dist a = 0 to _np(0]-1 with <a,0>
rep b = 0 to _npf{l]-1 with <0,b>
<0, 0> i=1;

Expand the rep and dist constructs for a 2x2 processor array yields:

<0,0>,<0,1> 1 = 1;
<1,0>,<1,1> i = 1;

The effect of this restriction is that every statement of the B program is executed in
every address space. Of course, in some situations we want only a single processor to
execuie a statement. The restriction does not prevent it In FIGURE 4-1 there is an
example of a B program that places a different statement on every processor, and below
it is the program rewritten so0 that the same code can be used on every processor.

This restriction simplifies code generation because it allows us (0 emit a single program
for ail processors; it does not place an undue burden on the compiler writer. All the
compilers that we are familiar with already generate a single program for all proces-
sors[Ribas 90][CRt 90]{Sussman 91]{Chatterjee 91][Tseng 89]. We believe that most
compilers do not generate different code for each processor because it makes it dificuit
0 make a program that can be run on a varying number of processors. Furthermore, it is
much more expensive to compile and load many programs versus compiling and load-
ing a single program for all processors.

Communication
During the course of a computation, data must be moved from one processor to another.
This data movement must be expressed in the f§ program as a movement between
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AGURE 41

412

program that maps different statements to sach essof and an equivaient
gromﬂ\ammowmmmtouchmm B

<0> A=1;
<1l> A= 2;

dist b = 0 to _np(0]~1 with <b>
<0> if (_1id[0] == 0)
<0> A=1;

dist b = 0 to _np[0]~1 with <b>
<0> if (_id[1] 1)
<0> A= 2;

address spaces. For this reason, we include send and receive primitives in the lan-
guage of § programs.

In the B program, communication must be inserted into the program so that a send is
always executed before its corresponding receive. If the send is not executed before
the Teceive, then the program may deadlock during debugging. Furthermore, the
PIL’s of the sending and receiving processors must match the connectivity of the proces-
sor array. In our mesh connected 2D amray, the value sent in the statement below:

<3,5> send((0,-1),7)

can only be received by a statement with a PIL of <3,4> that does a receive with direc-
tion (0,1).

To simplify our ¢examples, we sometimes group several communication actions together
into a single primitive, For example, instead of constructing a broadcast operation out of
send and receives, we use a broadcast primitive,

Code generation

When we apply thread splitting to the § program, we extract a program for every pro-
cessor. The program for processor p coasists of all the statements in the  program with
aPILof p.

We require that there is exactly one copy of every statement in the § program for each
processor so code generation is straightforward; the program for a processor is the same
as the B program with the PIL’s, rep, and dist constructs removed.
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As an example, if we apply thread splitting to the second program in FIGURE 4-1, we
would obtain the following © program:

if (_id[0] == 0)
A=1l;

if (_id[1l] == 1)
A s 2;

The B program bebaves as if there is a single thread of control executing in multiple,
disjoint address spaces. After thread splitting, the resuiting © program is a set of inde-
pendent threads each executing in its own address space. In the second program in FIG-
URE 4-1, the semantics of the language for 8 programs imply that both copies of the
first stement are executed simultaneously. In the © program, there is no synchroniza-
tion to enforce this constraint; processor O could execute the statement before, at the
same time, or after processor 1 executes its copy of the same statement.

Example: loop pipelining
In this section, we present an example that demonstrates the use of PIL's, rep, diast,
and communication.

We start with the a program found in part (a) of FIGURE 4-2. We use loop pipelining to
distribute the work to processors. In loop pipelining, the work of a body of a single iter-
ation is spread across several processors{Sussman 91). Intermediate values in the loop
iteration are passed from processor to processor; part (b) of FIGURE 4-2 illustrates the
flow of data between pracessors.

Part (c) of FIGURE 4-2 shows the 8 program; the program to the right is the same pro-
gram where the rep and dist have been expanded. Each statement has been annotated
with the appropriate PIL. The variable declaration has been placed inside a rep so that
each processor can bave its own copy. The £for loop is mapped to all processors, 5o it is
placed inside a xep. Each processor must follow a different execution path through the
body of the loop, so the body is placed inside a dist. Since the value of A is produced
in one processor and consumed in another, its value is transferred between processors
using send and receive.

This program illustrates the rules for using PIL’s and communication. For communica-
tion, the sends must appear before receives. Processor 0 sends a value and processor 1
receives it, so the dist is written so that the copy of the code for processor 0 is before
processor 1, If the program were changed so that processor 1 sent the value to processor
0, then the A1 st would have to be changed so that the copy for processor 1 appears
before the copy for processor 0. This can be done by changing the offset in the diat 0
<1-bo>.

Rule 1 for PIL’s requires that a variable must be declared in every address space in
which it is used. This rule is satisfied by our example and any other valid program
because every statement must have a copy on every processog thus every variable is by
default declared in every address space. -
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FIGURE 42 Thread splitting exampie for loop pipelining
(2) & program (b) mapping of operations to processors
int i,A,b{30},c(30]},g(30]; Processor 0 Processor 1
for (i = 0; i < 30; i++) ( A .
A = bli) * c(i]; P fxl"x]
gli] = A * 2; //\\ \\V/\\
) bG] cfil 2
(c) B program and its expanded version
rep a s 0 to 1 with <a> <0>,<1> int i,A,b{30],c(30};
<0> int i,A,b([30),<c{30]; <0>,<1> for (i = 0; 1 < 30;i++) (
rep a = 0 to 1 with <a> <0> if (_id(0) == 0) ¢
<0> for (i = 0; i < 30;i++) <0> A = b(i] * c[il;
dist b = 0 to 1 with <b> <0> send((1),A);
<0> if (_id{0] == 0) ( } else {
<0> A= b[(i] * ¢c(i]; <0> receive((-1),4);
<0> send((1),A); <0> gli] = a * 2;
) else { }
<0> receive((-1),A); <1> if (_id([0] == 0) (
<0> gli} = A * 2; <i> A = b[i] * <c[i];
} <1l> send((1),A);
} else {
<1l> receive({(-1),A);
<1l> gl{i] = a * 2;
}
}
(d) ® program

int i,A,b[30],c(30];
for (i = 0; i < 30;i++)
if (_id(0} == 0) (
A = b(i] * cli];
send({1l),A);
} else {
receive((-1),A);
g(i} = A * 2;
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Rule 2 for PIL’s requires that a statement with data dependent control flow and multipie
PIL’s behave the same for every PIL. The £or statement obeys this rule because we
know that the copy of the variable 4 in <0> is always the same as the copy of the vari-
able in <1>, hence the branching of the £ox is always the same in all address spaces.

Rule 3 for PIL’s specifies that if one statement is nested inside anothes the PIL's for the
inner statement must be a subset of the PIL's for the outer statement. The body of the
£or loop contains statements with a PIL of <(> and <1>, so0 the oz loop header must
bave PIL’s that include <0> and <1>.

The result of thread splitting is shown in part (d) of FIGURE 4-2,

The D function for thread splitting

The § program, which is the source program for the thread splitting transformation,
defines a total order of operations in the © program. Thread splitting removes all the
order constraints between processors that aren’t the result of communication. If the ®
program is interrupted during execytion, either by a user interrupt, program exception,
or breakpoint, then the state of the program is not necessarily consistent (see Definition
2-1) with any state of the § program because there may be early or late operations. The
debugger for thread splitting must do dynamic order restoration to provide correct
behavior (see Definition 2-3). One way to do dynamic order restoration is to force e
execution of operations in the ® program to be in the same order as they are executed in
the § program. Since the f§ program has sequential semantics, we must execute the ®
program one operation at a time. We call this executing with a sequential schedule.

An altemative to executing with a sequential schedule is to allow the program to exe-
cute in parallel and detect when the program is not in a state that is consistent with a
state of the P program. The debugger can then prevent the user from doing anything
that would lead to incorrect behavior, such as examining a variable when it has been
updated by an early operation.

Either method requires a way for the debugger to determine at run-time what order the

program would have executed the operations of the © program. Executing with a

sequential schedule follows this ordering when determining what statement on what

processor executes next. If we allow parallel execution, then the ordering is used to
determine if there are any late or early operations.

'The ordering is determined by assigning virtual times to the execution of statements. By
comparing the virtual times of statements, we can decide which one should be executed
first, In the rest of this chapter, we will also use the term the virtual time of a processor.
The virtual time of a processor is the virtual time of the statement that the processor will
execute next,

In Section 4.2.1, we define the properties that a virtual time must satisfy and describe
bow to compute the virtual time of a statement. We will then show how the virmal time
can be used to coastruct a D function which executes the program with a sequential
schedule in Section 4.2.2. In Section 4.3 we show how to allow the program to execute
in parallel while debugging.
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4.2.11

Computing virtual times
Each execution of a statement is called an instance of a statement. The execution order

of instances of the § program defines a total ordering. There is a 1 to 1 mapping between
instances in the  program and instances in the o program.

‘We want to assign virtual times (o the execution of statements in the ® program so that
we can determine what order they would have been executed in the § program. Each
instance of a statement in the § program is assigned a virtual time greater than the vir-
tual time of the previous instance. More formally:

84 occurs before s, in the f§ program «» virtual_time(p,) < virtual_time(p,)

81 and s, are statement instances in the § program. p; and p; are their corresponding
statemient instances in the @ program, respectively. If two statements on different pro-
cessors have the same virtual time, then both of those statements are derived from the
same statement in the B program.

In the following section we present a method for computing virtual times; this method
satisfies Equation 4.1.

Computing virtual times for the § program

First, we describe a method for assigning virtual times to statement instances in the

program so that the virtual time of instances are strictly increasing during execution of
the program. Next, we describe how we can assign the same virtal times t0 the corre-
sponding statement instances in the © program.

The virtual time of a processor i8 a tuple of 22 + 1 numbers where 7 is the maximum
level of nesting of loops in the program. It is represented below as a vector called vtime.
A program without any loops has 0 levels of nesting and hence has one counter. A vir-
tual time 7, is greater than a virtual time ¢, if 1, is lexicographically greater than ¢,.
Virtual time is advanced by executing statements of a program, Virtual time can be com-
puted by following these rules:

1. Initially, nesting =0

2. After entering a loop, nesting++

3. After exiting a loop, viime{2*nesting] = 0, vtime{2*nesting+1] = 0, nesting--
4. After branching to the top of a loop, vtime[2*nesting]++
5.

For each statement, vtime{2*nesting+1] = line number of the statement about to be
executed

For a dist statement in a § program, each copy of the body must have a virtual time
greater than the previous copy. A dist is treated like a loop where each copy of the
body is a loop iteration. When entering a loop, vtime{nesr] is the line number of the
d1ist and nesting is incremented by 1. For every copy of the diat, viime(2*nest+1] is
the value of the dist variable, which is strictly increasing. Since all copies of a state-
ment in a zep correspond to the same statement, a rep does not need special treatment;
every copy created by the zep has the same virtual time. For the program in FIGURE
4-3, the sequence of virtual times for an execution where k > 1 is:
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2.0,0,0,0),3,0,4,0,4),(3.0,4,0,5),(3.0,4,1,4),(3,0,4,1,5), (3, 1,4,0,4),
3.1,4,0,5),3.1,41,4,3,1,4,1,5)

Computing the virtual time of a statement during exscution of the ® program
When a processor stops executing, the debugger must compute the virtal time of the
current statement. We want to precompute as much of the virtual time for a statement as
possibie. In the @ program of FIGURE 4-3, the left hand column is the virtual time tem-
Pplate for each statement. A variabie in the virtual time template indicates that the value
should be taken from a dist variable ar a loop counter. The value of the 1st, 3rd, Sth,
.+es 201 positions of the virtual time can be determined staticaily from the program
counter and are part of the virmal time template. The value of counters for a dist can
be determined from the processor index which is also static information, and the value
of counters for loops can only be determined at run-time.

FIGURE 43

Sequential and parailel program

a program:
11: k =1;
12: for(i = 0; i < 4; i++)
13: Ali] = i;
B program:
rep a = 0 to _np{0] with <a>
<0> 1l1:k = 1;
dist b = 0 to _np(0] with <b>
<0> 12: for (i=_4id[0]1*2;i<(_id[0]+1)*2; i++)
<0> 13: Ali-_id[0]*2] = i;
program:
oolopo) ll:k = 1,’
4,1,4) 12:for {i=_1d[{0]*2;i<c(_id[0}+1)*2; i++)
4,i,5) 13: A{i~-_id{o0}*2) = i;

Aaﬁem‘uN.“

[REWEY
- ® =
oo

The value of the counters that are associated with loops are the number of times the
loops have executed, This can usually be determined from the value of the loop counters
that already exist in the program. In the example, 1 can be used for the counter in the
fourth position. Loop counts for virtual time always start by 0 and are incremented by 1.
The counters for loops written by the user may not necessarily do this. In the thesis, we
assume that all loop counters are normalized so that they always begin at 0 and bave
increments of 1.

The counter value for a dist construct is more difficult to determine, The dist vari-
able is not a real variable that exists in the program. The processor index label of a state-
ment inside 2 rep or dist is a function that maps the value of the rep and dist
variables to a processor index. We want the inverse, a function that maps the processor
index to the value of the dist variables. Since we require that every statement be
mapped to every processar exactly once, we know that the processor index label fumc-
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tion is a 1 to 1 and onto mapping t0 rep and A1 st variables and must have an inverse.
We use a brute force approach w0 find the inverse. We compute all the p<._ible combina-
tions of values of rep and dist variables for a statement, and compute the associated
processoc index. If we put the results in a table indexed by the processor index, we can
compute the rep and dist variables from the processor index. The table has a fixed
size because there can caly be one entry per processor. For the exampie in FIGURE 4-3,
the dist variable b always has the value 0 on processor 0, and 1 on processor 1.

In the example of FIGURE 4-3, the virtual time of a processor executing the first state-
ment is (2,0,0,0,0). If processor 0 is stopped at the second statement and the value of the
loop counter is 0, then the virwal time is (3,0,4,0,4). If processor 1 is stopped at the third
statement and the value of the loop counter is 3, then the virtual time is (3,1,4,3,5).

The discussion above assumes that the entire program is a single procedure. Our virtual
time method can be extended to handle programs with procedure call and recursion in a
straightforward manner, Within a procedure, virtual time is computed the same way. We
shall call this v,,,. for procedure virwal time. As part of the normal calling sequence,
every time a procedure is called the program saves the return address on the program
stack. For each return address on the stack, we compute a V., . The virtual time of the
program, Of v, is computed by building a vector of v ., s, Where the first one is the
one deepest on the stack (earlicst in time), the second element is the second deepest on
the stack, and so on. The virtual time is now a vector of vectors. Recursion does not
change the way the virtual time is computed. Virtual times are can be ordered using a
lexicographic comparison.

As mentioned in the previous chapter, program flow graphs must be reducible. This is
because the virtual time scheme we presented assumes the program is structured, there
must be an identifiable loop structure.

D tunction for thread splitting with a sequentiai schedule

If we execute the parailel program according to a sequential schedule, then no additional
order restoration need be done; the debugger must only do structural mapping. We can
execute with a sequential schedule by executing the statements in virtual time order.

Structural mapping for thread splitting is straightforward because of the simpie mapping
between statements and variables in the B and @ programs. The restriction that all pro-
grams of the « program be identical simplifies the problem further. There is one copy of
every variable in every name space and one copy of every statement for every processor.
If the user sets a breakpoint on a statement, then we want to set a breakpoint on every
copy of that statement in each address space. If the where command is used to inspect
the current location, we use the location of the processor with the lowest virtual time
because this is the statement that is executed next. If the user wants to inspect or modify
a variable in the B program, they must specify which copy they want. A copy of a vari-
able can be referenced with its name in the address space and the processor index. For
example if the user wants to inspect the copy of the variable C on processor <1,2>, they
would use the name (C,<1,2>).
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The D function that executes according 1o a sequential schedule is listed below. The
paralle] program state is a sequence of states, one for each process. The argument dstack
is a list of debugger stacks, one for each processor. The argument program is a list of
programs, one for each processor. The ad_space function determines the index of the
processor that a particular variable is a member. The function min_virt_time returns the
index of the processor with the minimum virtual time. The select function picks ooe cle-
ment out of a list, based on the index supplied. It is used to extract the appropriate
debugger stack from the dstack parameter.

For every command but zun, the debugger decides which processor this command acts
on and passes on the command to that processor. If examine or set are used, then the
processor selected is the one on which the variable resides. For the wbere and xrun
commands, the processor selected is the one with the lowest virtual time.

For the run command, we repeatedly single step the program until we reach a break-
point or the program terminates. After every step, we must detennine whuch processor
should be the next one to single step.

debugger(dstack,command,state, program,bpts,name, value)
{
/* decide which processor this command acts on */
if (command == where | command == step)
index = min_virt_time(state);
else index = ad_space(name);

/% select the debugger stack, processor state
and program for the processor */

stack] = select(dstack,index);

statel = select(state,index);

program|1 = select(program,index);

debl = first(stack1);

{* pass the command to the lower level debugger */
if (command == nm)
/% single step until we hit a breakpoint
or the program terminates */
location=apply(deb1, rest(stack1),
where,statel,program 1, bpts, name, value)
while (Jocation not a member of bpts and
DO exJeptions yet) (
state] = :
apply(debl,rest(stack1),
run,state1,program1,all, name, value);

merge state1 into state
/* decide which processor to act on */
index = min_virt_time(state);

/* select the new processor state, debugger stack
and program */ -
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stack] = select(dstack.index);
state] = select(state, index);
program1 = select(program.index);
debdl = first(stackl);

location
=apply(debl,resi(stack1),
where, statel program1,bpes, name, value)
}

merge state] into state

return state
if (command == where) {

return apply(debl,rest(stack1),

where,state,program 1,bpts,name, value)

if (command == examine)

return apply(debl,rest(stack1),

examine,statel,program 1,bpts,name, value);

if (command == set) {

statel = apply(debl,rest(stac:. i),

setstate I, program 1,bpts,name, value);
merge statel into state
retum state

4.3 Parallel execution while debugging

While executing the paralle! program with a sequential schedule permits full debugga-
bility, it has the drawback that execution is very slow. Another option for dynamic order
restoration is to let the program run in parallel, and detect when the program in not in a
state that is consistent with a state of the B program.

Parallel execution creates two problems. The first is that events such as breakpoints and
exceptions may occur in the parallel program in a different order then they would have
occurred in the sequential program. Virtual times are used to determine the correct order
for presenting events to the user. The second problem is that when the parailel program
stops, it might not be in a state that is consistent with any state of the B program. If we

allow the user to examine or modify variables, then the behavior might not be correct

(as defined by Definition 2-3). The debugger must detect when the state of the program
is not consistent with a state of the § program and prevent the user from doing anything
that will cause incorrect behavior. A debugger can also provide mechanisms that make it
possible for the user to put the program into a state that is coasistent with a state of the

program.

We begin with Section 4.3.1, which defines some terms. The basic functioning of the
debugger is described in Section 4.3.2, which introduces the sub-componeats.
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Torms

In this section we define some terms that are used in the discussion of parallel execu-
tion. The concepts of virtual time, and committing events are taken from Jefferson’s
Time Warp Operating System(Jefferson 85] [Jefferson 87]. An event is an occurrence
caused by the execution of the program that requires some debugger action, like break-
points or exceptions. The virtual time of an evens is the virtual time of the statement that
caused the event.’ A breakpoint or exception is pending if it has occurred but hasn’t been
presented to the user yet. Committing an event is the act of presenting a pending event to
the user. In some situations, the debugger may not be able to let the user examine a vari-
able, modify a variable, or set 2 breakpoint and still maintain correct behavior. In this
case, the debugger tells the user that it cannot complete the action. We call this disallow-
ing a command. In some cases, wa may want 1o allow a processor or set of processors 0
execute until they reach a specific virtual time. We call this roll forward.

Debugger

The debugger functions as follows. The user starts the program, and it executes in paral-
lel. Next, an event such as a breakpoint or exception 0CCurs on 0ne Of MOre Processors
or the user aborts execution of the program. The debugger stops all processors and
determines their virtual times. All events are marked as pending. The debugger then
picks a virtual time in the execution of the B program to represent to the user as the cur-
rent time; we call this the f time. For correct behavior, it must appear to the user that all
operatious with a lower virtual time have been executed and that no operations with a
higher virual time have been executed yet. Picking the B time is explained in Section
4.3.3. After selecting the § time, the debugger can present peading events to the user,
and wait for the user to execute some commands. If the state of the program is not con-
sistent with a state of the B program, then the debugger must disallow some commands.
The method for deciding if commands should be disallowed can be found in Section
4.3.4. In Section 4.3.5, we conclude with a description of what the debugger can do to
belp the user if a command is disallowed.

Choosing the j time

In some cases, we have some fiexibility about what time the debugger picks as the
time. This decision determines which operations are early and which operations are late,
which in arn determines which variables may be inspected or modified and where
breakpoints can be set. Possible choices range from the carliest virtual time of all the
processors to the latest virtual time. If we pick the carliest virtual time, then we can be
sure that there are no late operations. The debugger should never pick a time earlier than
the earfiest processor because it would only increase the number of early operations
without decreasing the number of late operations. If we pick the latest virtual ime, then
we can be sure that there are no early operations. The debugger should never pick a time
later than the latest processor because it would increase the number of late operations
without decreasing the number of early operations.

Interrupts by the user are not tied to a particular statement of the program, bence there is
some flexibility for choosing the B time when this occurs. If our only concem is to min-
imize the number of carly and late operations, then the best time is the latest virtual time
of all the processors. With this choice, there aren’t any early operations, and we can roil
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forward all the processors with a virtual time lower than the B time until there are no
more late operations.

Eliminating all the late and early operations is beneficial because the curmrent state will
be consistent with a state of the B program. In such a state, the debugger will not disai-
low any commands. Howeve, rolling forward © the latest virtual time may prevent the
debugger from having a timely response to interrupts. For example, if a loop has 1,000
iterations, and cach processor is assigned a block of 100 contiguous iterations, then one
processor will immediately execute iteration 900 of the loop. If we chose the highest
virtual time as the §§ time, then for an interrupt the debugger would always roll forward
to at least iteration 900 in program, no matter when the interrupt occurs and how long it
takes for the program (o get to iteration 900.

For interrupts, we believe that a timely response is more important than being able to
stop in a state where there are no early operations. Since it simple to roll processors for-
ward, the § time should be the virtal time of the earliest processor. The user can late
decide to roll processors forward to eliminate early and late operations, but they still
have the opportunity to inspect earlier state.

Unlike interrupts, there is no choice in the selection of the f§ time when breakpoints or
exceptions are pending. If the debugger is to present events in source order, the p time
must be the time of the earliest pending event. Before committing the event, the debug-
ger must roll forward all processors with late operations to make sure that there are no
late events. If there are any late events, then they would have a virtual time less than the
B time of the breakpoint or exception so they must be presented first. If new eveats
occur during roll forward, those events become pending, and the new J time is the time
of the earliest pending event.

To summarize, user interrupts are handled differently from events such as breakpoints
and program exceptions. If the program is running and an event occurs, we stop all pro-
cessors and determine their virtual time. The § time is chosen to be the time of the earli-
est pending event. We then roll forwarg all processors to that B time. Another event may
occur during roll forward; if it does the debugger handles it the same as if the program
were running and an eveat occurred. Once roll forward is complete, we commit the
event by letting the user know that a breakpoint or an exception has occurred. If the user
continues execution and there are still events pending, then the debugger acts as if the
program were running and another event just occurred.

If the user interrupts execution of the program and there are no events pending, we siop
ail processors and determine their virtual time. The f time is the lowest virtual time of
all the processors and no roll forward is necessary because there are no late operations.
For either events or interrupts, we never stwp the program with any late operations
because the B time is always the lowest virtual time of all the processors.

Disallowing user commands

After the program has stopped, it may not be in a state that is consistent with execution
of the f§ program. If it is not in a consistent state, then using the debugger to examine or
modify the program state might lead to incorrect behavior of the debugger. To avoid
incorrect behavior, the debugger must decide which commands to disallow. A command
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must be disallowed if its behavior is changed by early operations. For example, an carly
write of a variable would cause the debugger to dispiay the wrong value if the user
examined that variable.

Computing the set of early operations is the first step in deciding if 2 command shouild
be dissilowed. We explain this in Section 4.3.4.1. Next, the debugger must determine
the effect that the early operations have on the particular command. In Section 4.3.4.2
and Section 4.3.4.3, we explain what type of early operations will cause incorrect
behgvior for cach of the debugger commands. '

Computing the set of early operations

The set of early operations are the instances of statements that are executed that have a
virtual time greater than or equal to the B time. There can be no general and practical
method to compute the exact set of early operations because the execution of some
operations can be data dependent. For example, if there were a conditional inside a loop,
and the loop executes some early iterations, we would have to know which way the con-
ditional branched in the past to know if the operations contained in the then clause are
early operations. This would require the debugger 1o record a complete trace of execu-
tion of operations until it is certain that the operations are not carly.

We can use a conservative approximation for the set of early operations. In this context,
a conservative approximation includes all operations that are executed early and may
include some operations which were not executed early. This may lead us o incorrectly
disallow a command, but we will never permit a command that should have been disal-
lowed.

We can compute the set of early operations for one processor by computing for each
statement the set of possible virtual times over the eatire execution of the program. We
then eliminate all the virtual times that are less than the § time or greater than or equal to
the current time of the processor.

Computing the set of virtual times for a statement is a straightforward extension of the
method we use to compute the current virtual time of a processor, as is described in Sec-
tion 4.2.1.2. For each statement, we start with the virtual time template. The values for
dist vasiabies can be determined from the processor index. To compute the set of vir-
tual times possible, we initially assume that the value for all loop counters in a virtual
time template have a range from 0 10 o», Next we remove virtual times from the set that
are less than the f time or greater than the current time.,

For the example o program in FIGURE 4-4, assume that processor O stopped at virtual
time (2,3,6,2,6) and processor 1 stopped at virtual time (2,6.3,1,4). The f§ time would be
(2,3,6,2,6). For processor 0, the P time is the same as the current time of the processor,
so we know that there are no eariy operations. For processor 1, there are early opera-
tions. The first line of the @ program has the virtual time set of (2,#,2,0,0) where

0<n S oo, The first virtual time of the set that is greater thar or equal o the f time is
(2,4.2,0,0), so we can bound 2 from below by 4. The highest virtual time that is less
than the current time is (2,6,2,0,0), so we can bound » from above by 6. This leaves
(2,7,2,0,0), 4 Sn <6 as the set of early operations for the first statement.
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The second line of the © program is contained inside a dist. Its virtual time templae
contains the A4 st variable a, which has a value of 0 on processor 0 and 1 on processor
1. Because the virtual time templase of the statement is different on each processor, the
virtual time set of the statement on each processor is different. On processor 1, the set is
(2,n,3,1,4), where 0 < 11 S oo, The lowest virtual time greater than or equal to the f time
is (2,4,3,1,4). The highest virtual time that is less than the current time is (2,5,3,1,4).
This leaves (2,8,3,1,4), 4 <a < § as the set of early operations for the second statement.

For the third statement of the ®© program, there are two loop counters, The set is
(2,1,6,m.6) where 0 S S o and 0 S m S oo, For the low time, 3 and 2 are chosen as
values of the § and k loop counters because that is their value in the p time. The low
time is (2,3,6,2,6) and the high time is (2,5,6,=,6). The set of early operations is
(2,3,6,m,6), 2S m< o0 and (21,6,m,6), 4S8 S S and 0 S m S oo, The set of early oper-
atious for the fourth statement of the ® program is (2,3,6,m,8), 2 S m < oo and
2,n6m38),4sns5and 0<m< oo,

FIGURE 44
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P program and @ program

B program:

1 rep a = 0 to _np(0] with <a>

2 <0> for (j = 0; 3 < n; j++) (

3 dist a = 0 to _npl[0}] with <a>
4 <0> b=1;

5 rep a = 0 to _np(0] with <a>
6 <0> for (k = 0; k < m; k++)

7 rep a = 0 to _np{0] with <a>
8 Alk) = b;

9 }

® program:

2,9,2,0,0 for (3 = 0; 3 < n; j++) (

20j03lal4 b = 10'

2,3,6,k,6 for (k = 0; k < 10; k++)
2,j,6,k,8 Alk] = b;

Examining and modifying varisbles

If we allow the user to examine or modify a variable when there are early or late opera-
tions, we must observe the same dependence rules that a compiler must observe when
scheduling code. These rules determine when operations may be reordered. We use the
terminology from data dependence{Padua 86] to phrase the constraints.

There is a flow dependence between two operations when one operation stores to a vari-
able and a later operation reads it, without any intervening stores. In the following
example, the second statement is flow dependent on the first statement because the first
statement stores into a and the second statement reads a.
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a=1;
b = a;

There is an output dependence between two operations when they store to the same
variable and there are no intervening stores. In the following example, there is an output
dependence between the first and second statement because they both store to the same
varisble.

b=1;
b= 2;

There is an anti dependence between two operations when one operation reads a vari-
able and a later one writes the same variable.

If the user wants to examine a variable, then there can be no late or early writes. Exam-
ining a variable is treated the same as a read of the variable at the point in the program
corresponding to the P time. If there are late writes of the examined variable, thea
allowing the user t0 look at its value would be the same as moving a read before a write,
which violates a flow dependence. If there is an early write, then we would be moving a
read after a write, which violates an anti dependence.

If the user wants to modify a variable, there can be no late or early operations which
read or write the variable. A late reads violates an anti dependence, a late write violates
an output dependence, an carly read violates a flow dependence, and an early write vio-
lates an output dependence.

In Section 4.3.4.1, we compute the set of operations that are early; we can use this infor-
mation to determine which variables have early reads or writes. If a statement has an
early execution, then the variables in that statement have early reads or writes. Since the
carly execution information is conservative, the early read and write information is con-
servative as well.

In the example in FIGURE 4-4, we concluded that processor O has no early operations,
thus it doesn’t have any early reads or writes, and all variables on that processor can be
examined and modified at the current point in the execution of the program. Processor 1
has executed some carly operations. The first statement has been executed early, so we
can conclude that the variables J and n have early reads and the variable  has an early
write. Because the second statement has been executed early, we can conclude that the
variable b bas some early writes. The third statement has also been executed early, so
we can conclude that the variables k and b have early reads and the variable k and the
array A have some early writes, The only variable that doesn’t have an early write is n
on processor 1, so that is the only variabie that can be examined by the uses Every vari-
able on processor 1 has an early read, so none of them can be modified.

We have conservatively assumed that if a statement has an early read or write of an
array, then the entire array has an early read or write. If we have more information about
which element of an array each iteration of the loop references, we can compute finer
grain information about which elements of the array have early reads or writes. In the
example program, we know that iteration i of the loop in the third statement writes ele-
ment A [i]. If the current time of processor 1 is (2,3,6,4,6) and the time of processor 0 is
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4.3.5.1

still (2,3,6,2,6) as it was in the previous example, then the P time is still (2,3,6.2,6). The
only early operations are of processor 1 on statement 3, which is (2,3,6.4,6) where
2<n < 3. In this case, there are early writes of the array elements A [(a] where
25883,

Setting breaipoints

If a breakpoint is set on a statement that has early executions, thea some of the break-
points that the program would have normally reached will be missed. The debugger can-
not be certain because the set of early operations is conservative; we only know that the
statement might have been executed early. If the user sets a breakpoint on a statement
might have been missed. The debugger has enough information to teil the user which
iterations the missed breakpoints come from.

What to do when commands are disallowed

When a command is disallowed because some processors have executed early opera-
tions, the user might be able to get the information that they need another way. They
might inspect another variable or set a breakpoint on another statement. However, in
some cases, they may have to inspect a particular variable. In this sitiation, they could
try to run their program again and hope that the next time it stops in a state that has the
information they need. Even if we run the program again, it might not stop in a better
state on successive tries.

There are several ways that a debugger can help this probiem. It can rerun the program
from the beginning and stop in a state with the same f time, but no early operations. The
debugger could also restrict execution of the paralle! program so that when it stops at a
breakpoint, it will be in a state without any early operations. We call this a consistent
breakpoint because the program stops in a state that is consistent with a state in the exe-
cution of the § program. Consistent breakpoints can sacrifice some or all of the parallel-
ism of the program but might cost less in the long nun when compared to repeatedly
rerunning the program.

Both of these choices can be viewed as a special case of roll forward. The first is rolling
forward all the processors from the beginning of the program and stopping at a specified
virwal time, which in this case happeas to be the current f time. The second is rolling
forward all processors to the virtual time of the next potential breakpoint.

We first introduce the mechanisms that are needed for roll forward in Section 4.3.5.1.
We then explain bow roll forward can be used to do rerun in Section 4.3.5.2 and consis-
tent breakpoints in Section 4.3.5.3.

Roll forward

For rol] forward, we want to advance the execution of all processors until they have exe-
cuted all statements with a virtual time less than some target time ¢. We shall call the
statement in the P program whose virtuz! time is the same as the target time the target
statement. To roll forward. we could just single step every processor and check the vir-
tual time after every step, stopping when the current time of a processor is greater than
or equal to 2. Howevey, this is very costly. Instead we would like to compute in advance
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the statement that each processor should stop at, and set a breakpoiat there. If that state-
ment is ingide a loop, then the first time that the statement executes might not be the
time that we want 10 stop. The breakpoint must be conditioned oa the virtual time being
greater than or equal to the target time, We shail call the statement and the virtual time
that a processor should stop at the least upper bound (LUB) because it is the lowest vir-
tual time of the processor that is greater than or equal © the target time. For any givea
target time, each processor will have its own LUB.

We can compute the LUB for each processor by starting at the target statement in the §
program and tracing the control flow until we find one statement and virtual time for
each processor. Every time we find a PIL. for a processor that does not yet have a LUB,
we record the virtual dme and starement as the LUB for that processor, and then remove
the processor from the list of processors that do not have LUB's. This method of finding
LUB’s assumes that the program executes the statement at the target time. If the coutrol
flow never gets to the target statement, there is no guarantee that it will get to the LUB
either. The previous method that single steps until we reach the target time always
works,

The program in FIGURE 4-5 illustrates this procedure. The program at the top is a B
program and the program below it is the same P program with the rep and dist con-
structs expanded. All of the following discussion refers to the expanded § program.

If the target time is (2,3,5,1,6), then we start the search for the LUB at the second
assignment to the variable a because only this statement can have the target time as a
virwai ime. The statement /s mapped o processor 1, so this is the LUB for processor 1.
If we trace the execution of the program, we skip over theelse clause and execute the
next 1£ statement. The 12 statemert is mapped 1 both processors, so this statement is
the LUB for processor 0. The virtual time of the LUB is in the same iteration as the tar-
get time, (2,3,12,0,0). When tracing control flow, we never have to trace the body of an
1£ statement after checking the part of the statement that contains the condition. Recall
that the PIL’s of the condition line of an 1£ statement must be a superset of the PIL's of
the statements in the body. If we don't get a match on the PIL of the line with the condi-
tion, we cannot get a match on any PIL in the body. This is important because we cannot
predict future behavior of the program, and cannot know whether to trace the then or
else clause when searching for the LUB.

For this example, when we want to roll forward to a target time of (2,3,5,1,6), the
debugger sets a breakpoint on line 6 on processor 1. When the value of the loop counter
1 is 3 when executing this statement, the debugger stops the processor. For processor 0,
the debugger sets a breakpoint on line 12, and stops the processor whben it reaches the
breakpoint and the value of 1 is 3.

Another example illustrates how o trace control with loops. If the target virtual time is
(2.3,16,1,17), then the starting point in the program is the last statement in the loop. This
statement is mapped to processor 1, so this is the LUB for that processor. If we trace the
execution of the program, we follow the loop back path to the beginning of the loop.

The loop beader is mapped to processor 0, so this statement is the LUB for that proces-
sor. The viral time of the LUB is in the next iteration of the loop, (2,4.0,0,0). Just like
the 41£, we never have (o trace through the body of a loop after checking the header

because the PIL’s of the header are a superset of the PIL’s of the body. If we do not get a
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RAGURE 4§ A B program and its expanded version.
Virtual time B program

1 rep for m = 0 to 1 with <m>
(2,1,0,0,0) 2 <0> for (1 = 0; 1 < 10; i++) (

3 rep for m = 0 to 1 with an>
(2,:.3,0,0) 4 <0> if (a =2= 1) (

5 dist for n = 0 to 1 with <n>
(2,1,5,n,86) 6 <0> a = 2;

7 } else (

8 dist for n = 0 to 1 with <n>
(2,1,8,n,9) 9 <0> b = 2;

10 }

11 rep for m = 0 to 1 with <m>
(2,1i,12,0,0) 12 <0> if (@ == 1) (

13 dist for n = 0 to 1 with <n>
(2,1i,13,n,14) 14 <0> c = 2;

15 } else {

16 dist for n = 0 to 1 with <n>
(2,1,16,n,17) 17 <0> d = 2;

18 }

19 )
Virtual time B program with expanded rep and dist

(2,1,0,0,0) <0>,<l> for (i = 0; 1 < 10; i++) {

(2' iIBIo'O)
(2,i,5,0,6)
(2,i,5,1,6)

(2,i,8,0,9)
(2,i,8,1,9)

(2,1,12,0,0)
(2,1,13,0,14)
(2r il 13111 14)

(2,1,16,0,17)
(2,i,16,1,17)

<0>,<1> if (a == 1) (
<0> a = 2;
<1l> a=2;
} else (
<0> b = 2;
<1l> b= 2;
)
<0>, <l> if (@ == 1). (
<0> c = 2;
<1l> ¢ = 2;
} else {
<0> d = 2;
<l> d = 2;
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match on any PIL of the header, we cannot get a maich on any PIL in the body. This is
important because we cannot predict the future bebavior of the loop, other than to know
that if the loop executes the body, it will always executs the header one more time 10
check if it should execute the next iteration,

Rerun

For rerun, we want to put the program in state where it has the same P time as the cur-
rent state, but there are 00 carly operations. We can do this by starting the program from
the beginning and rolling forward to the f§ time.

When we rerun a program, the fina] state should be the same as the original state, except
that there should not be any early operations. The state is the same if the program is
determinate and the execution environment is reproduced. Code produced by thread
splitting is determinate, thus there cannot be any schedule dependent bugs that prevent
rerun from reaching the desired state. To reproduce the execution environment, external
/O must be the same, memory should be initialized the same way, etc. Reproducing the
execution environment can be difficult. However, users typically design their programs
so that they can be rerun because debugging a program usually requires that the pro-
gram be run many times. A debugger can make this easier by initializing memory and
logging and playing back any external /O(Pan 88].

Consistent breakpoints

When users set breakpoints, they are usually interested in the state of the program at that
point in the execution. Rather then letting the program run unrestricted, we can use a
consistent breakpoint, where the debugger controls execution so that the program breaks
in a state that is consistent with a state of the B program. This can reduce the parallelism
of a program. We set breakpoints without specifying the iteration; if the breakpoint is set
on a statement inside a conditional, the program couid stop at any iteration. If we want
to be sure that we have not executed any carly iterations, then we must execute one iter-
ation at a time, :

A cousistent breakpoint can be implemented with roll forward. For each breakpoint set
by the user, we compute the time of the next breakpoint. This can be done by finding the
smallest virtual time in the set of virtual times for a breakpoint statement that is greater
than or equal to the § time. For each processor, we must check if there are any early
operations, assuming that the time of the earliest breakpoint is the next B time. If there
are carly operations for that § time, then we cannot have a consistent breakpoint. Next,
for every processor we compute one LUB for each breakpoint and roll forward to the
target time.

If the breakpoint is in a conditional or a loop, then the breakpoint may or may not occur,
depending on whether the program executes the body of the conditional or loop. If the
breakpoint does occur, then the roll forward mechanism leaves the program in a state
where there are no early operations. If the breakpoint does not occus then the other pro-
Cessors may or may not stop at the LUB for the breakpoint since we oanly guarantee that
a processor will reach a LUB if the program reaches the target statement.

If a processor stops at the LUB for a breakpoint, and the breakpoint does not occur, then
we must restart the processor. The difficulty is knowing when it is safe to restart. If any
processor runs past the target virtual time then the breakpoint will not occur. If any pro-
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cessors are stopped at the LUB and other processors are still running we must poll the
running processors for their virtual time until they all stop at the LUB or one of the pro-
cessors runs past their LUB. If a processor runs past its LUB, we start over. The debug-
ger stops all processors, computes the earliest virtual time for each breakpoint and the
new LUB’s, and coatinues the roll forward.

If we need to break at every iteration of a parallel loop, then there is little parallelism
that can be exploited in that part of the program. However, there may be paralielism ear-
lier in the program. Coasistent breakpoints allow the user to take advantage of parallel-
ism in parts of the program that the user does not care about, while avoiding the need for
renm. In the worst case, using consistent breakpoints is comparable to executing with a
sequential schedule.

Efficlency

A debugger with dynamic order restoration must do extra work when compared to a
conventional debugger for sequential programs; however, we believe that the additional
work is small enough o make dynamic order restoration practical. In this section we
examine why there is extra work and estimate the cost. There are two main sources of
additional work for the debugger when compared to a debugger for sequential pro-
grams: the information that must be computed to decide if commands are disallowed
and re-execution when commands are disatlowed. We discuss each of them below.

During normal execution, no additional work is necessary. When a program stops exe-
cuting because of a breakpoint, exception, or interrupt, the debugger first computes the
virtzal ime of each processor to determine the current time. Determining the virtual
time takes a constant cost per processot After the current tiine is set, the debugger rolls
forward all processors with late operations. The debugger must compute the LUB for
each processor when rolling forward. Computing the LUB of a processor is linear in the
size of the program. Rolling forward takes time, but since useful work is being exe-
cuted, we do not consider this extra. After roll forward is complete, the debugger com-
putes the set of early operations on each processor, which is linear in the program
length. From the set of early operations, the debugger can compute the set of variables
with early reads and writes, which is also linear in the program length. Computing early
reads and writes with a resolution of individual array elements can require some data
flow analysis. However, this information can be precomputed at compile-time. All the
work described above must be done every time the program stops and is linear in pro-
gram length and the number of processors. If either the program size or the number of
processors is so large that the time is significant, we could use the parallel processor to
compute the information; the problem can be partitioned by dividing the program or
dividing by processor.

If a command is disallowed, the user may decide to re-execute the program. If the pro-
gram is re-executed frequently, the cost can be significant; in some cases, it could be
better to execute the program with a sequential schedule so that commands are never
disallowed. The number of times it is necessary to re-execute a program depends on
what variables are examined and modified and where breakpoints are set, and is thus
dependent on the user. We believe that the expense of re-execution will in general be
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small, especially when it is compared to the cost of executing with a sequential sched-
ule.

Firse, if a prograni has a factor of » speedup when executing on the parallel machine, the
debugger would have to rerun the program » times before execution would be as siow as
sequential execution. For massively parallel machines, 2 can be quite high.

Second, after re-executing the program once, the program is in a state without early
operations, so no commands are disallowed in that state and re-execution is not needed
again until the user continues execution.

Third, the user can use consistent breakpoints 0 ensure that re-execution is never neces-
sary. As explained in the previous section, if we set a consistent breakpoint in a parallel
loop the program executes sequentially, so any breakpoint, exception or interrupt would
put the program in a state without any early operations. In the worst case, the use. can
use consistent breakpoints to execute the program with a sequential schedule.

Related work

Gupta studies the problem of providing source level debugging for programs that have
been trace scheduled for VLIW (Very Long Instruction Word) machines [Gupta 88].
Since a VLIW can execute many operations in the same instruction word, it can be
viewed as a tightly synchronized parallel machine. Our work focuses on the dynamic
namre of execution on MIMD machines. In a MIMD machine, the processors are not
tightly coupled and the relative order of execution of two operations on different proces-
sors can change, which creates the need for dynamic order restoration. It is unnecessary
for a VLIW because the parallelism is statically scheduled. Gupta’s work focused on
static reordering of operations, which we do not consider in this thesis. However, we
can apply his results to the problem of structural mapping. For this reason, Gupta's work
on the structural problem is complementary.

Pineo and Soffa study source-level debugging for automatically parallelized code
[Pineo 91]. They only attempt to solve the problem of presenting the correct data values
to the user; they do not consider modifying data or control flow.

Their method exploits the features of single assignment languages. Over the lifetime of
a program, a variable will have many versions, one version for each time it is assigned a
value. They make the versions explicit in the program by converting the imperative,
sequential program (0 a sequential program in single assignment form. Every time a
variable is assigned a value in the imperative program, a new variable with a unique
name is created in the single assignment program. If a variable is assigned a value in a
loop, scalar expansion is applied so that every iteration will assign a different variable.
If the bounds of a loop are not known before the loop begins, then space must be incre-
mentally allocated for variables during the execution of the loop. Each position in the
source program has associated with it the versions of all the variables that are live at that
point. Only one version of each variable can be live at one point in the program. After
this conversion, the program is parallelized.
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When debugging with our method, the debugger must determine if the current value of
the variable is the correct one to inspect for the curreat § time. In their method, every
variable is only assigned one value, so they must determine which copy of the variable
is the correct cne for the current point in the program. To determine which copy, they
use the program counter in the source program and the value of loop counters in the
source program, In their system, they do not present the user with a model that only a
single loop iteration is being executed at one time, 30 the user must provide the loop
counter values when examining variables (e.g. examine variable a from iteration 5).

As Pineo points out, the single assignment transformation is not sufficient to solve the
probiem on MIMD machines. Even if a variable can only be assigned to once, it still has
two values during the lifetime of a program: uninitialized and initialized. ARter the first
version of the variable in the source program aas been initialized, it is still possible that
the copy that we want to inspect has not yet been initialized. To solve this problem,
Pineo proposes initializing all memory locations to 0 and when the debugger is asked to
display a variable that happens to be 0, the debugger reports that the value is 0 or the
value is not ready yet (the debugger does not have enough informatioa to distinguish the
two cases). Alternatively, if the hardware supports detection of reading uninitialized
variables, this can be checked automatically. Our virtual time scheme eliminates the
need for special hardware and still can give precise answers about the values of vari-
ables.

There are four key differences between Pineo’s and our work. First, we provide control
flow that is consistent with the sequential program. Not providing source program con-
trol flow places a greater burden on the user of understanding the parallel structure of
the program.

The second difference is that Pineo’s method requires extra space for the storage of data.
a large change in the parallel code. The conversion to single assignment form can
require significant increases in space and computation solely to support debugging. To
reduce the space requirements, Pineo performs name reclamation to re-use storage for
multiple versions of the same variable when it isn’t necessary 1o keep all the versions
around for debugging or parallelization. In benchmark programs, Pineo measures a 10%
increase in storage that can be attributed solely to debugging; however, the number can
be much higher for individual programs.

The third difference is that saving multiple versions of a variable ensures that a current
value of a variable can be found if we run the program long enough so that the value is
initialized. In our method, the current value might have been overwritten and can only
be found by rerunning the program. The single assignment method pessimistically uses
extra space and computation in case the user might need to see a value. We believe that
it is more effective to not do the extra work, and rerun the program when it is not possi-
ble to provide a current value of a variable because it has been overwritten,

The fourth difference is that the single assignment method can support reordering of
stores on the same processor, while our method cannot. As described earlier, this capa-
bility comes at a potentially large cost, and the user must pay the cost even when there is
no reordering of stores. However, saving extra copies of variables to achieve the same
resuit could be added to our model if desired.
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4.6 Summary

In this chapter, we define the thread splitting transformation and its D function. We
show that thread splitting is debuggable if a sequential schedule is used. In a sequential
schedule, we execute the statements of the ® program in the same order as they are exe-
cuted by the B program. This ordering is determined by an assignment of virtual times to
statements. When we allow the program to execute in parallel, we may stop in a state
that is not consistent with a state of the f program. If we allow the user to examine or
modify variables in this state, the behavior of the debugger might be carrect. The debug-
ger must detect if allowing the user to modify or examine or variable will cause incor-
rect behavior.

SOURCE-LEVEL DEBUGGING OF AUTOMATICALLY PARALLELIZED PROGRAMS



CHAPTER §

Distribution
transformations

In the distribution phase of compilation, code and data are assigned to processors for
execution. Distribution is accomplished in different ways on different machines. On
shared memory machines, the parallel DO can be implemented with fork/join parallel-
ism, where a master thread forks off other threads which each execute a subset of the
iterations[Steveas 90]. After all the iterations have been executed the threads join, so
that only the master thread continues execution. Compilers for distributzd memory
machines usually use a different modef, called SPMD, where the same program is exe-
cuted on all processors. Every processor executes the sequential code and when the par-
allel loop is executed, every processor executes its assigned iterations [Tseng 89].
Synchronization is not done after every parallel loop; it is only done on an as-needed
basis. The thread splitting mode! was designed to support SPMD programs. The rest of
this chapter will assume SPMD type loop distribution.

The general problem of deriving the B program for a particular distribution can be more
difficult than generating the parallel code itself. The 8 program (the B program is the
step before thread splitting) is essentially the parallel program combined into a single
thread of control. The order of operations in this thread of control must be compatible
with the order of operations in both the ® program and the « program. Furthermore, the
communication in the singie thread must be ordered so that it will not deadlock
(receives must follow sends).

In this chapter, we describe how to derive the P program for a limited domain taken
from loop based parallelism. From a description of the distribution of the program we
can automatically derive the § code and its associated D function. To give some context
and demonstrate the relevance of the domain we have chosen, we briefly describe how a
compiler that takes advantage of loop-based parailelism can transiate a loop nest into a
parallel program in Section 5.1. We describe the doma.a of source programs in Section
5.2. In Section 5.3, we introduce the basic method for distributing iterations among pro-
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oessors. This is sufficient to do the block mappings employed by most compilers. Sec-
tion 5.4 describes how commumication can be inserted into the program, and Section 5.5
presents the basic method for distributing data. In Section 5.6, we extend the basic
method for distribution of iterations and data so that we can support cyclic and block-
cyclic distributions of iterations and data as well,

Parallelizing compilers

For distributed memory machines, compilers usually distribute the data and then use the
location of the data to determine where to perform the computation. One commonly
used strategy is the owner computes rule, which assigns the computation to the proces-
sor that owns the variable where the result is © be stored. In this case, the distribution of
iterations matches the distribution of data.

Two important f2ctors for determining how to distribute the data are locality and load
balancing. A program has good locality when the data items that a processor needs are
usually on that processor. If the processor must execute a statement that needs a value
from another processor, then that value must be fetched by the processoc The better the
locality, the less time speat shipping data around, which leads to good performance. The
other factor is load balancing; if the work of a program is not evenly distributed, then
some processors will be under-utilized and the performance will be poor. Locality and
load balancing often place couflicting coastraints on the mapping of data and computa-
tion. If all the data and computation were placed on one processor, then no communica-
tion would be necessary at run time. However, because one processor is doing all the
work, the load balancing is not good. The more computation is distributed, the better the
load balancing, but the locality becomes worse which leads to more communication.

Nested loops with regular access patterns are good candidates for parallelization for dis-
tributed memory machines because the compiler can trade off locality and load balanc-
ing at compile time. Algorithms for determining the best distribution are beyond the
scope of this thesis, but have been studied extensively in the literamre{Gupta
92]{Wholey 91][Li 91){Knobe 90].

The example in FIGURE 5-1 illustrates some of the constraints for deciding how to dis-
tribute data and computation and the different ways for mapping data to processors. In
the loop, iteration 0 stores its result into a{1], so if a (1] resides on processor 1, then
we want to execute iteration O on processor 1. [teration 0 also accesses aray elements
b{0] andb(1], so we want to put those elements on processor 1 as well. Essendally,
when v, distribute the array b across the processor array, we shift it to the right by one
and assign two elements per processor. Assigning location based on locality is called
alignment. In this example the array b is aligned to the array a so that no run time com-
munication is necessary to execute an iteration of the loop. The domain examined in this
chapter allows us to express mappings similar to those necessary for the example in
FIGURE 5-1.
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AGURE 5-1

The placement of data and iterations for a loop

for (i = 0; i < 10; i++)
ali+l] = b[2*1] + b{2*i+l1];

Processor 0 Processor 1 Processor 2

a0} afl] al2]
b[0], b{1] b{2],b(3]
iteration 0 teration 1

5.2 Domain description

In our domain, source programs are limited to nested loops. The iterations of a loop may
be distributed or replicated across a set of processors or all executed on the same proces-
sor. We will use the C syntax of £ox loops. However, loops where iterations are distrib-
uted must be of the following form: :

for (counter

= low; counter < high; counter += step)

For loop control low, high, and step may be expressions but may not change value once
the loop has begun. The body of the loop may contain any statements in the langvage,
including conditionals and loops, but may not change the loop counter. This is essen-
tially the semantic equivalent of a FORTRAN Do loop.

To specify the parallelizing transformation, the compiler must determine the mapping of
loop iterations to processors, the description of inter-processor communication, and the
decomposition of data. To simplify the presentation, the generation of  code will be
presented as a three step process: distributing iterations, inserting communication, and
distributing data.

The first step, iteration distribution, restructures the loop and adds processor index
labels so that the appropriate lpop iterations will be performed on each processor. Com-
munication statements are inserted into the loop in the second step. Finally, global
names and addresses for distributed data are replaced with local names in the third step.

Code generation and debugging procedures are described for each step. The final output
will be the P program and the debugging function for the transformation between the a

program and the § program.
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5.3 Basic loop lteration distribution

In this section, we introduce the basic method for distributing loop iterations. More
complicated distributions build upon this model.

The distribution of loop iterations to processors will be described as a mapping between
elements of the iteration space and the processor space. The mapping is determined by
the compiler. An iteration space for a g deep loop nest is the ¢ dimensional space N¥.
Each point in the space corresponds to one loop iteration; the value of the loop counters
for that iteration are the coordinates of the point. FIGURE 5-2 shows a doubly nested

loop and its cosresponding 2 dimensional iteration space. The processor space fora r

dimensional processor array is the 7 dimensional space N'. Each point corresponds to
one processor. The mapping assigns a set of iterations to be executed on each processor.

FIGURE §-2

Equation 5.1

iteration space of a doubly nested loop

for (i = 0; i < 6; i++) {
for (j = 0; j < i; j++) (

}

L
O N W oW

Each processor executes its assigned iterations in the same order that they were exe-
cuted in the original program.

We only consider a limited class of linear mappings. A linear mapping from a ¢ dimen-
sional iteration space to a r dimensional processor space can be described with T, a
rx ¢ matrix and o, a r element vector. The T matrix and o vector are chosen by the
compiler which decides the mapping. The mapping is computed by:

p=LT(@)+o]
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§.3.1

where i is a point in the iteration space (iteration index) and the result p is a location in
the processor space (processor index). Since processor indexes are composed of inte-
gers, the result of T' (i) + o is always rounded down (floor function). Mappings that
result in a processor index that does not correspond to an actual processor index are
invalid and cannot occur if the compiler is correct,

Mappings will further be restricted so that in every row and column of T at most cne
element is non-zero. In effect, the iteration space is divided into slices that are parallel to
one axis of the iteration space. These slices are distributed along a dimension of the pro-
cessor space. The dotted lines in FIGURE 5-2 show one possibie way of slicing the iter-
ation space. Our notation permits more complicated linear mappings, for example
mappings that slice the iteration space with cuts that are not parallel to the axes. Sup-
porting more general linear mappings does not make debugging more difficult, but com-
plicates the generation of loop bounds for distributed loops; it is not considered in this
thesis.
When it is necessary to map the same loop iteration to more than one processor, an ele-
ment of T may aiso be the special symbol *. Arithmetic expressions that contain » will
L ]
be evaluated as follows: ¥V {(c#0):*x (¢) = *, *x (0) =0, i L
*mod s = *,and * +¢ = *_ Ifacomponent of a processor index is computed to be *,
then that component takes on all possible values for that dimension of the array. For

example, in a 2x5 array, the processor index [;:l represents the processor indexes .

The mapping described above is sufficiently general to do the block distribution, distri-
bution by row, and distribution by column, which is used by most parallelizing compil-

ers. It does not include the cyclic mapping because it is non-linear. In Section 5.6, we
extend the basic iteration distribution to handle cyclic distributions.

Examples

In this section we will give examples of various iteration mappings and their transfor-
mation matrices.

The first example is a mapping where the offset vector o is non-zero. The mapping in
FIGURE 5-3 converts an iteration index into a processor index by adding @Each
square represents one iteration, the coordinates of the iteration is the processor index
that executes the iteration, We have labeled the iterations on the comers with their itera-
tion indexes.

In this example, a row of processors executes one entire iteration of the outer loop. lter-
ations of the inner loop are spread across each row. If we swap the columns of the map-
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specification of mapping

terstion mapping with an offset

source program
for (i = 0; 1 < 6; i++} (
for (j = 0; j < i; j++) (

}

assignment of iterations to processors
i,
(5.5
O

a
- |10
T [01} a
dimension Q

of processor
o= aray

0oooo
aooo
ooao

O = N W e

noooooos

0.0
01 2 3 4 5 6 7

dimeasion 1 of processor array

ping matrix, then we would obtain a mapping that is the transpose of the one above;
columns execute outer loop iterations and inner loops are spread across each column.

Sometimes it is desirable o map all the iterations of a loop to a single processor. The
mapping matrix in FIGURE 5-4 assigns each iteration of the outermost loop to a differ-
ent processor, but does not distribute the innermost loop.

If a loop is distributed across a dimension, but more than one iteration is mapped to the
same processor, than a matrix element with an absolute value less than one 1 should be
used for the appropriate dimension. The matrix in FIGURE 5-5 maps 2 iterations of the
outer loop to each row of processors, and spreads the iterations of the inner loop so that
each processor gets 3 iterations of the inner loop for a total of 6 iterations. Processors
near the boundary of the iteration space will get less iterations. Using a coefficient
greater than 1 will spread iterations so that not every processor will bave work to do.
For example, if the value 3 is used, then only every third processor will execute an iter-
ation.,

When a negative coefficient is used, the iterations with successively increasing loop
counter values can be mapped to processors with successively decreasing processor
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AGURE 54 iteration mapping that puts a dimension on the same proceasor
7
6
5 5 (5.00(5.5)
I'= [1 0] 4
99 dim 3 @
0 0 2 Q
-3 .| O
o | O 00
01 2 3 4 65
dim
1
ARGURE 5-5 Mapping that places more than one iteration on the same processor
3
r=[1/2 0] s (5:3145.5)
L0 173 ) - 4.3)(4.4)
dim
0 Ll 0OGd
o= 0
(1,0).(1,1)
°1 0 oo

0 1
dim
1

indexes. A * in T will result in a processor index that contains a *. In the example of
FIGURE $5-6, the outer loop is distributed by row and every column in the row executes
the entire inner loop for that row.
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Mapping where iterations are duplicated on several processors
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Code generation

The code generation problem is to take a mapping and a loop nest and generate a  pro-
gram with a processor index labelling. The labeiling shoukl be chosen so that when
thread splitting is applied, the output will be a parallel program where each processor
executes the appropriate set of iterations. Furthermore, the order of execution of itera-
tions in the P program must be the same as it was in the original program. If the com-
piler wants to change the order of execution of iterations on a single processor, then that
can be done as a part of the restructuring phase.

Each row of the T matrix determines how iterations are mapped to one dimension of the
processor array. If an element in column ¢ of row r is neither a zero nor a *, then the iter-
ations of the cth loop in the nest are distributed across dimension r of the processor
array. If all the elements of row r are 0, then loop iterations are not distributed across
dimension r of the processor array. If an element in the row is a *, then iterations are
replicated on that dimension of the processor array.

Algorithm 5.1 takes a mapping and source code and outputs the § program. The algo-
rithm is divided into 4 phases, as marked. Phase 1 analyzes the T matrix to decide which
loops are distributed, replicated, and not distributed.

Phase 2 handles the case when work is not distributed across a dimension of the proces-
sor space. An example is when iterations are only assigned to one column of processors
in a 2 dimensional armay; work is not distributed across the columns of the processor
space. We use conditionals to prevent the processors that are not assigned any iterations
from executing. We first emit a di st to distribute copies of the code across the dimen-
sion. Then an 1£ statement is used to restrict execution to the appropriate processors.

SOURCE-LEVEL DEBUGGING OF AUTOMATICALLY PARALLELIZED PROGRAMS




Basic loop heration distribution

Phase 3 of the algorithm emits each loop of the nest. If that loop is distributed, adist
is emitted that distributes the loop code across the appropriate dimension. Iterations are
distributed from low values to high values if there is a positive value in loopscale and
are distributed from high values to low values if there is a negative value in loopscale.
For some programs, it is not known at compile-time whether the loop should go from
low to high or high to low. An example is where the sign of the step for a loop is
unknown at compile-time. If the sign is not known, then we must emit two loops, one
that distributes from low to high and another that distributes from high to low. A condi-
tional selects which copy should be executed at run-time. The restriction that PIL's be
constant forces us to emit two loops for these situations, The reason for constant PIL’s
and the effect of their limitations are described in CHAPTER 7. For the rest of this
chapter, we assume that we know at compile-time whether loops should be distributed
from low-valued processors to high-valued processors or vice versa.

If the compiler emits a loop in phase 3 that is distributed, the bounds of the loop are
parameterized by processor index so that each instance created by the dist will exe-
cute its assigned loop iterations. If the loop is not distributed, it is emitted imchanged.

Phase 4 of the algorithm emits the loop body. For every dimension of the processor for
which iterations are replicated, we emit a rep. Then we emit the body itself, with a PIL
of 0.

The auxiliary functions comp_slice_begin and comp_slice_end are used to compute the
first and last iterations that a processor should execute in a distributed loop.

Algorithm 5.1

Generate B program for a mapping matrix and offset,
Input:
depth - depth of loop nest
dim - dimension of processor space
T\dim](depth)] - mapping matrix
o{dim] - offset vector
counter{depth] - names of loop counters of nest, where
counter[0] is outermost loop
upper{depth] - upper bound expressions for loop nest
lower({depth] - lower bound expressions for loop nest
step{depth] - step size expressions for [oop nest
body - body of loop nest
Output: § loop nest
Intermediate storage:
looptype({depsh] - the type of loop, dist if the loop is distributed, rep is the loop is
replicated, and ndist if it is neither
looppdim{depth] - dimeusion of processor array that the loop is distributed over
loopscale{depth] - scale factor if loop is distributed
DIST - iterations are distributed across dimension d if d € DIST
REP - iterations are replicated across dimension d if 4 € REP
NDIST - iterations are not distributed across dimension d if d € NDIST
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Method:
phasel:
NDIST = REP = DIST = ;
foreach row rof T do
if r is all zero's then
NDIST = NDIST v r;
endif
if clement cof row ris a ‘*’ then
REP=REPuUT;
looppdim{c] = r;
looptype(c] = rep;
endif
if element ¢ of row r is a number n then
DIST=DISTu r:
looppdim{c] = r;
loopscale[c] = n;
looptype[c] = dist
endif
enddo

phase2:

/* for dimensions of the processoc array that don’t have distributed or replicated loops,
emit a dist to distribute everything across the dimension, and then emit an if so
that only the comect processors execute work */

ENDIST # & then
foreach d ¢ NDIST

emit a dist for dimension d
foreach d € DIST u REP
emit rep for dimension d
/* build a condition string, with one condition per member of NDIST ¥/
foreach d € NDIST
condition = condition v “and _id[d] == ofd]";
emit if statement with PIL of 0 and condition as the condition
endif

phase3:
/* each iteration emits one loop of nest */
for | = 0 to depth-1 (
/* emit the a1 st if the loop is distributed */
if looptype(l] == dist then
emit dist that distributes its body across dimension looppdim/i]
DIST = DIST - looppdim{l];
endif
/* for all the dimensions of the processor array that don't have dists yet,
emit a zep */
foreach d e REP L DIST
emit a rep for dimension d;
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" /* now emit the loop header */
it looptype(l] == dist then
emit loop with PIL of 0
loop lower bound is:
comp_slice_begin(_id[looppdim[1]), lower{l],loopscale(l],offset(1});
new upper bound is:
comp_slice_end(_id{looppdim{1]}, upper(1],loopscale[1],offses(1]);
step size is unchanged
elseif loop is not distributed, emit it unchanged;
}

phased: _
/* loops are done, now do the body */
foreach statement s € body
foreach de REP
emit a rep for dimension d;
emit s with PIL of 0
}

End of Algorithm

Auxiliary functions:

comp_slice_begin(slice Jower,c,offset):
max(lower, (slice-off'set)/c)

comp_slice_end(slice,upper,c,offset):
min(upper, (slice+1-offset)/c-1)

53.2.1 Examples
To illustrate how the algorithm works, we use three examples, one for each of the types
of loops: distributed, replicated, and not distributed. All of the examples will share the
same a program, which is the two deep loop nest found at the top of FIGURE 5-7. The
program is mapped to a 2 dimensional processor array.

In part (a) of FIGURE 5-7, we start with a loop which is neither distributed nor repli-
cated. All the iterations are executed on a single processor, B] After phase 1 of Algo-

rithm 5.1 NDIST contains 0 and 1 while REP and DIST are empty. In phase 2, we emit
adist for dimensions 0 and 1, but don’t emit any rep’s. We then emit an 1£ with
conditions for the two dimeusions contained in NDIST. These conditions restrict the rest
of the program to executing on a single processor. In phase 3, when we emit the loop,
there are no members in DIST or REP so we don’t emit any rep’s or more dist’s. The
loop and body are emitted unchanged.

In part (b) of FIGURE 5-7, we have an example of a loop where the outer and inner
loops are distributed. After phasel, DIST has dimensions 0 and 1 in it and NDIST and
REP are empty. Because NDIST is empty, we can skip phase 2. For phase 3, we first
emit a dist for dimension 0, then remove 0 from DIST. We then emit a zep for dimen-

SOURCE-LEVEL DEBUGGING OF AUTOMATICALLY PARALLELIZED PROGRAMS 69

+L




RAGURE 57 Code generation sxampies for Algorithm 5.1
O program

for (i am; i < n; i++)
for (j = 0; 3 < 2; j++)
a(i] (3] = 1;

Mapping B programs

(a) Code generation for a mapping with out distributed and replicated loops

dist _a = 0 to _np[0] with <a, 0>
dist _b = 0 to _np{l] with <b, 0>

<0,0> if (_id[(0] == 2 & _id[1l] == 1)
T= [O‘f] 0= <0, 0> for (i = m; i < n; i++)
00 1 <0, 0> for (j = 0; j < 2; j++)
<0, 0> alilf{i] = 1;

() Code generation for mapping with distributed loops

dist _a = 0 to _np[0] with <a, 0>

rep _b = 0 to _np(l] with <0,b>
<0, 0> for (i = comp_slice_begin(_id(0],m,1,0);
i < comp_slice_end(_id{0],n,1,0);

ie+)
r= [(l)gl ?= [gl dist _¢ = 0 to _np([l) with <0,c>
<0, 0> for (j = comp_slice_begin(_id[1},0,1,0);
j < comp_slice_end(_id(1},2,1,0);
Jee)
<0, 0> afil(j) = 1;

(c) Code generation for mapping with replicated loops

0 to _np(0) with <a, 0>
rep b _np{l] with <b, 0>
<0,0> for (i i < n; i+s+)
A rep _a 0 to _np{0] with <a, 0>
T= [ 0] 0= [‘f] rep _b = 0 to _np(1l] with <b, 0>
0* 0 <0, 0> for (j = 0; 3 < 2; j++)
rep _a = 0 to _np(0] with <a, 0>
rep _b = 0 to _np(1l] with <b,0>
<0, 0> afilj] = 1;

rep _a

[T}
8 o
o
o
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sioun 1, followed by the outer loop. On the second iteration of the loop in phase 3, we
emit a dist for dimension 1 and remove it from DIST. We don't emit any rep'’s, and
then we emit the loop. In phase 4, we emit the body.

In part (c) we have an example of a loop that is replicated on all processors. After phase
1, REP contains O and 1, DIST is empty, and NDIST is empty. Since NDIST is empty,

we skip phase 2. In phase 3 for the first iteration of the loop, we emit rep’s for the 0 and
1 dimension, we then emit the outer loop unchanged. In the second iteration, we do the
same thing. In phase 4, we emit rep’s for the 0 and 1 dimension, followed by the body.

Debugging

With respect to debugging, iteration distribution mainly alters the control flow. The con-
trol flow is changed by the addition of extra code to ensure that every processor exe-
cutes it assigned iterations. We discuss control flow first, and then describe data
stryctures afterwards.

For the run and where commands, the D function must make it appear that the control
flow of the target program is the same as the control flow of the source program. When
executing the target program, the debugger must skip the extra statements that are exe-
cuted in the B program but do not correspond to statements executed in the source pro-
gram. We can skip statements by repeatedly single stepping until we are past them,
which can be doune if the compiler-inserted statement cannot cause exceptions.

There are two types of statements that the B program executes that do not correspond to
statements in the o program. The first are 1£ statements inserted by phase 2 of Algo-
rithm 5.1. These can be easily recognized. The second type are called inactive loops.
Inactive loops are assigned iterations to execute that are all below the low bound or all
above the high bound of the original loop in the a program.

To explain why inactive loops occur, we use the example in FIGURE 5-8. In this figure,
we have exparded the program from part (b) of FIGURE 5-7 assuming a 2x2 processor
array. A processor in row i executes iteration i of the outermost loop. If the low bound of
the outer loop has a value of 1, then processors in row ( do not execute any iterations. In
this case, the loop on line 1 is an inactive loop. If the high bound of the outer loop is 0,
the processors in row 1 do not execute any iterations. In this case, the loop on line 12 is
an inactive loop. An inactive loop is detected by comparing the low and high bounds for
the original loop to the low and high bounds for a distributed loop. If the bounds for a
loop are completely outside the original bounds, then the loop is inactive. From the
example, if the original low bound (m) is 1 and the high bound (n) is 1, then the loop on
line 1 is inactive because its high bound is 0. Being inactive is not a static attribute; the
status can change every time a loop is executed. '

For data, we exclude modifying loop counters while debugging. Changing a loop
counter of a distributed loop would require that we also change the current position in
the program. For example, if we set the loop counter to iteration 1, we would also have
to change the current position to the loop which executes iteration 1 (use the T matrix to
compute which statement). —
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AGURE 58
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B program from part (b) of FIGURE 5-7 expanded for a 2x2 proceasor array

<0,3>,<0,1> for ( i = comp_slice_begin{(_id([0]),m,1,0);
i < comp_slice_end(_id([0],n,1,0);
iee)

<0,0> for ( j = comp_slice_begin(_id(1]},0,1,0);
j < comp_slice_end(_id([1],2,1,0);
J++)

<0, 0> afilf{il = 1;

<0,1> for ( j = comp_slice_begin(_id(1],0,1,0);
j < comp_slice_end(_id(1],2,1,0);

10 J++)

11 <0,1> ali](j] = 1;

12 <1,0>,<1,1> for ( i = comp_slice_begin(_id[0],m,1,0);

13 i < comp_slice_end(_id[C],n,1,0);

14 iss)

15 <1,0> for ( j = comp_slice_begin(_id{1l],0,1,0);
16 j < comp_slice_end(_id(1]),2,1,0);
17 J++)

18 <1,0> afillj) = 1;

19 «<1,1> for ( j = comp_slice_begin(_id{1},0,1,0);
20 j < comp_slice_end(_id(1},2,1,0);
21 Je+)

22 <1,1> alil[j] = 1;

‘Ihe D function for iteration distribution can be found below. '1he run command takes a
list of statements in the breakpoint list and sets a breakpoint for every copy of the state-
ment (there is one copy on each processor). It then runs the program. If the program
stops at an inserted statement or an inactive loop, then it single steps until it reaches a
statement that is not. Single stepping over loops that are inactive may not be possible if
the execution of the loop control causes an exception. The debugger must pick the first
processor that does not execute an inactive loop to report to the user as the current line.
This case is not included in the D function. The whexre command simply peels off the
processor index off the label when reporting the current location. The set command
prevents the uses from modifying a loop counter and the examine command just
passes the command through to the lower level debugger.
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DlteratioaDistribution(dstack. command, state. program, bpis,name, value)
{
pewbpts = @
if (command == run) (
foreach label 1 € bpes
foreach processor index p
newbpts = newbps U (p))
newstate = apply(firsi(dstatck) rest(dstack),nun,state,p.ab, 1. 1)
if we stop at an insested statement or an inactive loop
single step until we reach a statememt that is neither
return newstate
}
if (command == where) {
w = apply(firsa(dstatck),rest(dstack), where state 1 1, 1)
peel the processor index off w and retumn just the label
}
if {(command == examine) {
return apply(first(dstack).rest(dstack).examine,state, L.name, L );
)

if (command == set) {
if (name is a loop counter for a distributed loop)
set is not allowed
else retumn apply(first(dstatck) rest(dstatck),set, state, L.name, value);
} .

5.4 Communication

In this section, we describe how the compiler can insert communication into the paralie!
program and how it affects the debugger. Communication between processors is neces-
sary when one processor must access data that is local to another processor. Because we
only study the problem of finding bugs in the user program, communication has litle
impact on debugging. Send and receive operations are not visible to the user in the
original sequential program and thus communication code can be ignored by the debug-
ger. We assume that the compiler inserts communication into the program correctly and
that communication never fails.

The only difficuity lies in code generation of the f§ program; because there is only one
thread of control, sends axi receives must be inserted into the f program so that a
receive is always executed after the corresponding send. This requirement can compli-
cate the structure of some {} programs.

The compiler specifies communication by giving the position in the loop nest and the
code to perform the communication. Sometimes it is only necess. sy to communicate at
th* beginning or end of processing a block of iterations rather than on a per-iteration
level. Since the biocking of iterations is not visible in the source code, the compiler can-
0ot name 2 position to insest the code if the action is oaly to be performed once per
block. For a per-block action, the compiler must give the nesting level of the loop and
whether the action is to be performed before or after processing of a slice.
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A commumication action is performed on every processor that the containing iteration is
performed on; if the iteration is replicated across a dimension, so is the communication
action,

If a variable reference in a loop body is non-local, then that value must be received from
another processor during the course of the computation. The variable reference must be
replaced with the name of the temporary in which the value is received. In addition to
the commumication actions, the compiler also gives a set of variabie references and the
expressions which replace them.

Code generation

Send’s and Teceive’s are mapped to the same processors as the rest of the loop itera-
tion. In general, communication statements inherit the processor index label of the sur-
rounding iteration. Per-block cooummication is treated the same as other
communication. It is inserted inside the dist: before the loop if it precedes tbe block
and after the loop if it follows the block. In the body of the loop, the appropriate array
references are replaced with the substitute references.

Examples

In this section we will give examples of common usag:s of communication in programs.
We will show the user code, the generated code, and discuss bow to demonstrate that the
program can still be executed sequentially after the communication is inserted.

One use of communication is to transmit values that are produced in one iteration and
consumed in a later one, If the iterations are mapped to different address spaces, then

the value must be sent from the processor that generates the value to the processor that
uses it. As an example, consider the following loop that sums the elements of an array:

sum = 0;
for (1 = 0; i < n; i++) {
sum = sum + C{i]

}

There is a flow dependence: the value of sum used in the right hand side is the value
stored in the left hand side in the previous iteration. If the iteration distribution is
T = [o 1] and 0 = [g], successive iterations are mapped to successive processors and

the value of sum must be sent from processor to processor. Communication code would
be inserted as follows:
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rep a = 0 to _np-1 with <a>
<0> sum = 0;
dist a = 0 to _np-1 with <a>
<0> for ( i = comp_slice_begin(_id,0,1,0)};
i < comp_slice_end{_id,n,1,0);

i+es) |
<0> receiven((-1),sum)
<0>» sum = sum + Cf{i]
<0> sendn((1), sum)

}

Each cell receives sum from its left neighbor, adds to it, and passes it on to its right
neighbor. Recall from CHAPTER 2 that the semantics of receiven and sendn imply
that the first cell should not receive anything and the last cell should not send anything.
This communication is used to satisfy a flow dependence. Flow dependences always go
forward in virtual time because the use must occur after the generation of the valye in
the B program.

Another common communication usage is a broadcast operation. The code below is
mapped to a 1 dimensional processor arsay:

for (i = 0; i < n; i++)
¢ = bli];

The iteration distribution is T = [+] and 0 = [q] (every processor executes every iter-
ation), and the array b is distributed. We explain data distribution in the next section;
assume that processor n has array element b [n]. Every processor executes every itera-
tion of the outer loop, thus it needs every element of the array b. For every iteration of
the 1 loop, the processor that has b [1] must broadcast its value to all the other proces-
Sofs,

rep a = 0 to _np(0] with <a>
<0> for (i = 0; i < n; i++) {
rep a = 0 to _np(0] with <a>

<0> bcast (b{i], id[0]==1i, tmp) ;
rep a = 0 to _np(0] with <a>
<0> c = tmp;

)

In a broadcast, the selected processor sends out its copy of the data and all the other pro-
cessors must receive it. It is not necessary to make the actual send and receive state-
ments in a broadcast visible to the user who wrote the o program, so we use the becast
function to hide the details of the broadcast operation. The first argument is the data
item to be broadcast, the second argument is the expression that is true on the processor
that is the source of the broadcast, and the third argument is the destination variable of
the broadcast. The reference to b (4] in the loop body is replaced with tmp. All the
sends and receives used to perform one beast operation occur in a single iteration of
the loop, so we can be sure that there is a sequential execution of the program—the B
program does not deadlock.
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In the beginning of Section 5.4, we mentioned that if a receive is executed before the
corresponding send in a B program, then a ® program that is deadlock free can deadlock
while debugging. This is because debugging can force the @ program to execute opera-
tions in the same order as the § program, and if a receive is before its corresponding
send, the receive never completes. The extra synchronization that the debugger enforces
causes the deadlock.

We use the following exampie to illustrate how commmication can incorrectly be
inserted into a program (0 create a negative time dependence.

for (i = 0; 1 < n; i+e)
b{i] = af{i] + af(i+1l) & n}

If we were to use the iteration distribution of 7 = 1] and 0 = [g], then the program
after iteration distribution would be:

dist a

= 0 to _np-1 with <a>
<0> for ( i

= comp_slice_begin(_id,0,1,0);
i < comp_slice_end(_id,n-1,1,0);
i+4)
<0> b(i] = a{i] + a{(i+l}) % n)

Assume that the data is distributed so that processor ( has array element a (i) and b {{].
According to the iteration distribution, processor i is assigned to execute iteration i. To
execute its iteration, the processor already has a [i] and b ({] local, but must fetch
a(i+ 1) from an adjacent processor. We could insert communication into the program
as follows:

dist a

= 0 to _np~1 with <a>
<0> for ( i

= comp_slice_begin(_id,0,1,0);
i < comp_slice_end(_id,n,1,0);

ied)
<0> send((~-1),a{i+l]);
<0> receive({l),tmp);
<0> b{i] = a[i] + tmp;

)

This § program deadlocks because iteration i receives a value from its neighbor to the
right. Its right neighbor executes iteration i + 1, so iteration i + 1 must execute the
send statement before iteration i can complete its receive statement. When debug-
ging, we must be able to execute the iterations in arder; if we try to execute iteration i
without executing iteration i + 1, the program deadlocks, However, when executing the
® without the debugger, the program can complete without deadlock. The loop itera-
tions execute in parallel without any synchronization except whatever is forced by the
send and recaive statements, so iteration i + 1 can execute before iteration i.

The correct way to write the f§ program for this example is to do the communication in a
separate loop before the computation loop. Since iteration i is assigned to processor i,
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Data distribution

§4.3

5.5

the computation loop is a left to right pass over the array. The commmunication loop
sends values from processor i + 1 10 processor i, which is a right to left pass over the
array. Putting the communication and computation in separate loops resolves the order-
ing conflict, but might result in a slightly less efficient program.

Debugging

Since the communication is not visible in the source program, the debugging function
ignores communication statements that have been inserted; when running, it skips over
them by repeatedly single stepping.
I{Dmmmﬂdon(dsuck,mmmd,sm,mmbpm.mme.vame)

if (command == run) {
newstate apply(first(dstack),rest(dstack),rum, state.program,bpts, L, L)
if (stopped at a communication statement)
single step until we reach a statement
that is not communication
retum newstate
}
if (command == where) {
return apply(first(dstatck),rest(dstack),where,state, L. 1 . 1)
}

if (command == examine) {
return apply(first(dstack),rest(dstack),examine,state, L name,.L );
}

if (command == set) {
return apply(first(dstack),rest(dstack),set, state, L name, value);
}

Data distribution

When we distribute iterations of loops to processors, we must also distribute the data
that those loop iterations access. Data distributions are specified in the same way loop
iteration distributions are specified; there is a linear mapping between the elements of
multidimensional data arrays and the multidimensional processor arrays. Data can be
replicated by using “*" in the mapping. As before, we limit the type of distribution to
the case where there is at most one non-zero element in every row and every column of
the distribution matrix. In effect, data arrays are decomposed along one or more dimen-
sion and distributed as slices of the original data array. Array references will be repre-
sented by a vector of the subscripts for each dimension. For example, reference
ali][J+i](1])is:
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The mapring of array clements (0 processor indexes is identical to the mapping of itera-
tions to processor indexes. The processor index of an array element can be computed
from the array index as follows:

p=LT@ +o]
where T is the transformation matrix and o is the offset. In the exampie in FIGURE 5-
9, an array is divided into 2x2 slices as determined by the T matrix. Processor m gets

—

FAGURE 59

Relationship between giobal and local array addresses

Ta [1/2 o] 2
0 172

0 1 2 3 array index

0 1 processor index

A global address is the set of array indexes of an array element in the sequential pro-
gram; a local address is the set of array indexes used in one processor of the paraile!
program. To convert the global address w0 a local address, we subtract a constant offset
from all addresses so that the location of the element in the slice with the smallest
address, which we shall call i, is translated to the origin. In the example of FIGURE 5-

9.wewomdsubu'actg] from an array reference on processor (1,1) to convert a global

address to a local address. For some types of mappings it is necessary to locate i, at
some point other than the origin. For example, we might want to leave row 0 unused so
that we can put a copy of a row there that has been mapped to an adjacent processor. We
call this offset 5. -
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Equation 5.4

5.5.1

5.5.1.1

In general, the relationship between global and local addresses on a processor p is as
follows:

l=g-igp)+s

where [ is the local address, g is the global address, and iy(p) is the address of the array
element with the smallest lexicographic value that is on processor p.

iy can be computed from the mapping matrix T, offset 0, and Equation 5.2. Given a p,
we want © find the minium value of i such that p = | T (i) +0]. The value of iy is
found by computing 7° (p - 0) where T" is found by inverting all the non-zero ele-
ments of T, replacing all *'s with 0, and then taking the transpose. For example:

0 0* 002
T=10 00 T=]o00
17200 000

Note that we cannot simply solve Equation 5.2 for i because neither the floor function
nor T are necessarily invertible. If we substitute the value for iy in Equation 5.2 we
obtain:

l=8-T(p-0)+s

Code generation

When generating the  program, the indexes for references to distributed variables mus:
be rewritten (o reflect their new location in memory. For the body of the loop nest, we
will assume that all array references to distributed variables will reference data elements
that are local to the processor. If it were necessary 1o access a non-local element, then
this would have been replaced with a reference to a local variable during the stage that
adds communication to a program.

Example
If the 3 dimensional array B were mapped to a 2 dimensional processor array as follows:

-
r=|0 1730 0= s =
172 0 0
then

02 .
T = 30 pz&:[?ﬂ
00 ‘
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We can use Equation 5.4 to convert the giobal address to a local address. If we substitute
the above values into Equation 5.4, we obtain:
l=g=-T(p-0)+s

- fi0z-0)

2% _id[1] -2
= g-| 3x_id[0]
0

-

This is used for any reference to the amray B. The array subscript B{1] (I +k] (2]
would be remapped to:

2x _id[1]
l=g-|3x_id{0} -1
0

(i1 [2x_iaqny -2
= i+~ | 3x_idf0]
2 0

[i—2x _id(1] +2

= |j+k-3x_id{0]

L 2

which in the program would appear as:
Bli-2*_1a[{1]1+2)[J+k-3*_1ia(0]](2)

The more complicated addressing needed to reference distributed variables is not neces-
sarily inefficient. Note that the variable _1d is loop invariant so the entire offset is loop
invariant and need not be computed inside the loop. Furthermore, every reference to the
same variable will have the same offset, so the offset must be computed at most once for
every distributed variable before the loop begins.

5.5.2 Debugging

Distributing data does not directly change the structure of the program, thus the fow
control is unchanged. If the user wants to examine or modify data, the debugger must
determine which processor has the data and the local address of the data on that proces-
sor.

The debugging function for the data distribution transformation is as follows:
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DDataDistribution(dstack,command,state, program, bpts,name, value)
|
if (command == ryn) {
return apply(first(dstack),rest(dstack),run,state,prograr,bpts,.L, .1 )
}

if (command == where) {
return apply(first(dstack),rest(dstack), where state, L. L, 1)
}

if (command == examine) {
if (name is distributed)
return apply(first(dstack),rest(dstack),
examine,state, ., global2local(name),.L);
else { /* copy to look at is on same processor as the current statement */
w = apply(first(dstack),rest(dstack), where,state, 1 1, 1)
i = processor index of current statement w
retum apply(first(dstack),rest(dstack),examine, state, | (name, i), L );
}
)
if (command == set) {
if (name is distributed)
return apply(first(dstack),rest(dstack),
set,state, L global2local(name), value);
else (
foreach processor i { /* change ail copies */
state = apply(first(d),rest(d),set,s, L. (name,i),v);
retrn state

}
}

The function global2local uses Equation 5.2 to compute the processor number and
Equation 5.4 to convert the global address to a local address.

5521 Exampie

A three dimensional array A is distributed as follows on a 2 dimensional processor
array:

r=[0°* 0 o: s = |of then:
0012
00

T =100
02

The users wants to inspect the variable A[1]{2){11]. To compute the processor index:
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P=LT() +o}
1
3 [30102] 2 *
0oz,
- "]
6

To compute the local address:

l=g-T(p-0)+s

- 136

The value can be found on any processor in column 6 with a local address of
Afl)([a3(1).

5.6 Cyclic iteration distributions

A linear mapping model, as described in the previous sections, does not always perform
well when the work is aot uniformly distributed across iterations. For example, the work
performed by one i‘eration of the outer loop of the nest in FIGURE 5-2 increases with
every iteration. If outer loop iterations are distributed evenly across a one dimensional
processor aray, then the last processor does much more work than the first processor;
the load balancing is poor. Any linear model that parallelizes the outer loop must divide
the iterations equaily amoung processors.

One mapping model that is used to better distribute the load for such a case is called a
cyclic distribution. In this model, a processor wil! execute every » iterations, where x is
usually the number of processors. On an 7 processor array, processor p would execuie
iterations p, p+ &, p+ 2n, .... It is also possible to cyclically distribute blocks of itera-
tions in the same way. If thé number of iterations is sufficiently larger than the number
of pracessors, then each processor will have a nearly equal amount of work for triangu-
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Cyclic eration distributions

Equation 5.5

5.6.1

5.8.1.1

lar probiems, Cyclic distributions have disadvantages, however. If iteration 2 produces
a value that is used by iteration n + 1, then the value must be sent from one processor o
another for a block size of 1. If a cyclic distribution were aot used, both iterations could
be part of the same block and assigned to the same processor, reducing the frequency of
communication,

Cyclic distribution of loop iterations usually requires that we distribute the data arrays
in the sane way. We will describe distributing iterations first and data second.

Reration distribution

We can extend the description of the mapping of iterations to processors to include
cyclic by rewriting Equation 5.1 as:

p=|T()+o)modn

where mod is an elementwise modulo operation and 7 is a vector that contains the size
of the array in every dimension.

The algorithm for generating code and D functions as presented previously will no
longer work because the modulo fimction makes the mapr~ non-linear. Instead of
adapting the code generation and D functions to include v, ..« distributions, we will do
a transformation on the source program before generating the f program, and then use
the standard code generation algorithm. The transformation changes the shape of the
iteration space in a manner that makes it possible to use a linear mapping to do the
cyclic distribution.

The user gives a T and o assuming Equation 5.5 will be used for the mapping. A trans-

formation is applied to the loop nest to generate another loop nest, 7, 2, and a D func-
tion. The code generation algorithm (Algorithm 5.1) is applied to the new loop nest,

using T and 2 to specify the mapping.

Code generation

We can extend the mapping model to include the cyclic distribution by applying a loop
transformation called strip mining{Padua 86] to the original sequential program. An
example in FIGURE 5-10 is used to illustrate this. The left hand side of the figure is a
loop and its triangular iteration space. The 1 dimension is the vertical axis and the J
dimension is the axis coming out of the page. If we apply strip mining to the outer loop,
then that loop will be repiaced with two loops. Inside the body of the loop, the value of
the original loop counter can be computed by summing the two new loop counters. The
new loop and iteration space is on the right hand side of the figure. The 1 dimension is
replaced with the tmp and newi dimensions, which are horizontal and vertical, respec-
tively.

After strip mining is applied, a linear mapping can be used to achieve the desired assign-
ment of iterations to processors. In FIGURE 5-11, amapping of T = [g | (ﬂ and
o = ] could be used o achieve a cyclic mapping of iterations to processors.
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(R _
Distribution transformations
AGURE 510 Trianguilar iteration space that is changed by strip mining
Original loop and iteration space Loop and iteration space after strip mining
for (i = 0; 1 < 6; i++) for (tmp = 0; tmp < 6; tmp += 2)
for (j = 0; § < i; j++) ... for (newi = 0; newi < 2; newi++)
for (j = 0; § < i; Jj++)
(i = tmp + newi)...
A
5 2
4
3 | & newi 1 @@
.| @ :‘>
1 J | 0 o ﬂg;
0 0O
% < =~
j 0o 2 4

The general procedure for the cyclic distribution is as follows. The input is a loop nest
where the mth loop in the nest is of the form:

for (k = 1; k < h; k += s)

T and o are the parameters to the mapping. The mth column of T is the column that
describes the mapping of loop m. Since this loop is distributed, it has one non-zero ele-
ment ¢ at position 7. A new nest will be output which is the same except loop m is
replaced with the code below. The variable k, 1, b, and s refer to the loop above.

newl = (({(c*l+oim])/_np(r])* npir])-olm})/c;
for (Lt = newl; t < h; t += _nplri/c}
for ( k = max{0,1-t);
k < _npir)/c - max(9,t+_npirl/c - h);
kK += 8)

The original loop counter can be reconstructed by adding _t and k. Uses of the loop
counter in the rest of the loop must be replaced with _t + k.

The complicated loop control arises from the requirement that it be possible to use a lin-
ear mapping for the new loop nest. For a linear mapping, the iterations of a loop may not
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FIGURE 5-11

5.6.12

Mapping of the iteration space after strip mining

A T=[01q

newi 1 U@@ o= g . @
o | ol
o| oQ@F

D

“wrap around” from the end of the processor array to the beginning; the assignment of
iterations to processors must be strictly monotouic; from low indexes to high indexes or
high indexes to low indexes. For the rest of this paragraph we assume that mappings
only go from low indexes to high indexes. To ensure that wrap around does not occur,
we must make sure that the iteration of the inner loop wherek = 0 is always assigned
to the first processor in that dimension, which in some cases requires padding by adding
extra iterations on to the beginning of the original loop. The variable newl is the new
low bound that has been adjusted for padding. However, we do not want to really exe-
cute these extra iterations, 0 we use the max condition in the low bound computation in
the inner loop to skip over those iterations. The max condition on the high bound of the
inner loop ensures that we do not execute any extra iterations after the original high
bound.

The new T matrix is the same as the oid one except that an extra column of zero’s is
insersted into the mth position; the mth column (the new one) is the mapping for the new
outer loop (it isn’t distributed) and column m + 1 determines the mapping of the inner
loop. The padding of iterations makes an offset unnecessary, so the o vector is the same
except that a 0 is used for the processor dimension that the loop is distributed along.

Oebugging

When single stepping, the debugger must skip over the outer loop. Modifying a loop
countes is possible for this transformation, but since the iteration distribution which fol-
lows does not permit it, there is no reason to do it for this transformation. If the user
examines the loop counter, the debugger simply returns the sum of the two new loop
counters.
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Equation 5.8

5.8.2

Date distribution

Now we will describe how o do cyclic data distributions. It is very similar to cyclic iter-
ation distributions. We can extend the description of the mapping of data elements to
processors by rewriting Equation 5.2 as:

p=|T@E +ojmodn

where mod is an elementwise modulo operation and 7 is a vector that contains the size
of the array is every dimension.

In the same way that we do a cyclic distribution of l00p iterations by turning a n deep
loop nest into a 7 + 1 deep loop nest, we will distribute data by tuming a 2 dimensional
data array into a # + 1 dimensional data array before we do the distribution. An exam-
ple is shown in FIGURE 5-12. The one dimensional array A with 8 elements has been
chanzed into a 2 dimensional array that is 4 rows by 2 columns. Some of the mappings
from source elements to target elemeats are denoted by arrows from one object to
another.

FIGURE 5-12

5.82.1

g:\yening a 1 dimensional array into a 2 dimensional array in preparation for a cyclic

ribution.
A[0
Afl]

AR Afojo1}Aqoit]
A[3] A[[O]FA[1][1]
Al4] Ap)[o){ap)|
Al | lapiofapi

Al@

La

Code generation

All references to a distributed data array must be rewritten to reflect the new structure.
The general procedure is as follows. The input is an array reference where the mth index
in the reference is of the form: [e] . T and o are the parameters to the mapping. The
mth column of T describes the mapping of index i in the reference. Since this dimen-
sion will be distributed, it has one non-zero element ¢ at position 7. A new reference
will be output which is the same except subscript m is replaced with the two subscrints
below:

[(c*e+o{m])/_nplr]l] (e~ (c*e+o(m])/_np(r]]

The new T matrix is the same as the old one except that an extra column of zero’s is

‘inserted into the mih position; the mth column (the new one) is the mapping for the new

first index and column m + 1 determines the mapping of the new second index. The
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Summary

padding of data clements makes an offset unnecessary so the o vector is the same
except that a 0 is used for the processor dimension that the array dimension is distrib-
uted along. The s vector, which is used 1 compute the local address, is unchanged.

The address computation appears 0 be much more complicated than the original refer-
ence, but this will not necessarily result in less efficient code. Array references in loops
like these are usually linear functions of loop counters, which can be generated effi-
ciently. The new indexes are linear functions of the old index 30 the new indexes will
still be linear functions of loop counters if the original index was one. In this case, it
might be more expensive to initiate the loop, but the cost per iteration to compute array
references need not increase.

5.622 Debugging
The D function for this transformation is straightforward; the control flow is not altered,
only array references are changed. When the user uses the debugger to examine or mod-
ify a variable, it must map the source reference into a target reference using the proce-
dure described in the previous section.

5.7 Summary

This chapter introduces a notation for describing the translation from sequential to par-
allel. There are three parts, the mapping of iterations to processors, the inter-processor
communication, and the mapping of data to processors. The description coutains the
information that the debugger needs to generate the D function for the sequential trans-
formation and the B program. The notation is general enough 0 do the block and cyclic
distributions of data and iterations that most parallelizing compilers emplioy.
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CHAPTER 6

A debugger for a compiler
with block and cyclic
distributions

6.1

The previous two chapters describe the componeats for the compiler and debugger for
the thread splitting and distribution transformations. In this chapter, we integrate those
components and demoastrate how they work together for block and cyclic distributions.

We first introduce a matrix multiply program in Section 6.1, which is used as an exam-
ple throughout the chapter. In Section 6.2, we use matrix multiply to show a complete
translation from a to © for block and cyclic distributions. In Section 6.3, we describe
the information that is passed from the compiler to the debugger. We then show how
that information is used by describing some of the basic debugging operations in Sec-
tion 6.4. We conclude by examining some performance issues related to debugging in
Section 6.5.

Matrix muitiply

The code for matrix multiply is depicted below. To simplify the code, we don’t include
any initialization, we assume that the A, B, and C arrays are properly initialized else-
where. The program is a triple nested loop, each loop will be called by the name of the
loop counter: k, 4, and 3. The 1 and 7 loops have no dependences, so they can be exe-
cuted in parallel, but the k loop has a dependence.

11: for (k¥ = 0;k < d;k++)

12: for (i = 0;1i < d;i++)
13: for (j = 0;3 < d;j++)
14: C{il(j) += A[i) [k]I*B{k]1[]]):

A compiler or user chooses the distribution of computation and data to minimize com-
munication while distributing work. The distribution determines what communication is
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necessary, There are many ways to choose to parallelize matrix muitiply; we only
describe one way. The parallelization decision is driven by the way the loops access
data. FIGURE 6-1 illustrates how matrix multiply accesses its data for the k=1 iteration
of the outer loop and the first few iterations of the 4 loop. Iteration m of the 1 loop oaly
accesses row m of the arrays € and A, If we distribute the 1 loop across processors and
divide € and A by rows so that row m is on (he same processor that executes iterationm
of the 4 loop, then we never need to move the C or A ammays between processors. [tera-
tion a of the k loop accesses row n of the B array, 30 every time the program begins the
1 Joop every processor needs a copy of the same row @) of the B array. If the B armay is
divided by rows, then the processor that has row 2 must broadcast it before beginning

the 4 loop.

FGURE 6-1 Data accesses of matrix multiply
C A B
tml, 0 EHIH
C A B
ot EHZH
C A B
k=1, 2 W ::H ﬁ
We start by describing the parallelization that uses a block distribution. The A, B, and ¢
arrays are distributed by row. Each processor gets 2 rows of each array (processor m
gets row 2m and 2m + 1). All processors execute every iteration of the k loop. For each
iteration of the k loop, processor m executes iterations 2m and 2m + 1 of the 4 loop.
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Since the iterations and rows of A and C are distributed the same way, DO COMIMAMICA-
tion is needed for these arrays. Before a processor begins executing iteration m of the 4
loop, it must fetch row 5 of the B array, where a is the current value of the loop counter
k. Each processor executes all the iterations of the 3 loop.

To motivate the steps in the translation, we first we show the final parallel code; in the
next section we go through the steps of generating it.

for (k = 0;k < d;k++) (
for (€t = 0; £t < 4; te+)
bcast (_id==k/2,b(k-2*_id] (t],tmp({t]):
for (i = 2*_id; i < 2*_id+l;i++)
for (§ = 0;5 < n;j++)
Cli-27_id)([j] += A[i-2*_id) (k] *tmp(]j];
}

The beast primitive implements 2 broadcast for a single element. The first argument is
true if the processors should broadcast the value, or false if the processor is a recipient
of the broadcast. The second argument is the value to be broadcast. This value is
ignored on the processors that are receiving the broadcast value. The third argument is
the location that should receive the broadcast value. It is ignored on the processor that
sends the broadcast value. The variable _14 contains the processor index.

The cyclic distribution is similar 1 the block distribution. The A, B, and C arrays are
again distributed by row. The difference is in the rows and iterations that are assigned to
each processor. Each processor gets 2 rows of each array (processor m gets row m and
m+ p, where p is the number of processors). All processors execute every iteration of
the k loop. For each iteration of the k loop, processor m executes iteration m and m + p
of the 1 loop. Since the iterations and rows of A and C are distributed the same way, no
communication is needed for these arrays. Before a processor begins executing iteration
m of the 1 loop, it must fetch row n of the B array, where n is the current value of the
loop counter k. Each processor executes all the iterations of the J loop.

The final parallel code is as follows:

for (k = 0;k < d;ke+) (
for ( £t = 0; £t < d; t++)
becast (_id==k%_np,b[k$_np-_id] (t],tmp(t]);
for (£ = 0; t < d; t += _np)
for (i = 0; i < _np: i++)
for (j = 0:3 < n;j++)
Clt/_npl{il(j) += Aft/_npl(i]l[k])*tmp{j]
}

The variable _ap contains the number of processors. The difference between the two
programs is in the way local addresses are computed and the bounds for the 1 loop.
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6.2 Compllation

Now we show the compilation process for matrix muitiply using block and cyclic distri-
butions. The steps are iteration distribution, inserting communication, data distribution,
and thread splitting. The resulting program is compiled by a single cell compiler which
generates the executable.

Block distribution .

We start with the block distribution. The distribution is specified by the mapping of iter-
ations to processors, the mapping of data to processors, and the communication. We
start with the mapping of iterations (0 processors. We want to give each processor 2 iter-
ations of the 1 100p, 5o the iteration distribution is: T = [g 2 ¢].0 = [g] . When we
apply this distribution to the program by using Algorithm 5.1, we obtain the following
program:

rep a = 0 to _np-1 with <a>
<0> for (k = 0;k < d;k++)
dist b = 0 to _np-1 with <b>

<0> for { i = comp_slice_begin(_id,0,2,0);
i <= comp_slice_end(_id,d,2,0);
i++) ’

<0> for (j = 0;3 < d;jee) .

<0> Clil(j]1 += A{i])(k]*B[k][3];

In the next pbase, the compiler inserts communication. As was described in the previous
section, for iteration n of the k loop, the processor that has row » of the B array must
broadcast that row to all processors before beginning the i loop. For this reason, the
compiler inserts a broadcast before loop i. The references to the array B, must be to the
local copy received, so the compiler also replaces references to B(k] {31 in the loop
with tamp [ ]. After communication is inserted, we have the following program:

rep a = 0 to _np-1 with <a>
<0> for (k = 0;k < d;k++) (
rep a = 0 to _np~1 with <a>

<0> for (t = 0; £t < d; t+s)
rep a = 0 to _np-1 with <a>
<0> beast (2*_id==k,Blk] [t],tmp(t]):
dist b = 0 to _np-~1 with <b>

<0> for { i = comp_slice_begin(_id,0,2,0);
i <= comp_slice_end(_id,d,2,0);
i++)

<0> for (3 = 0;3 < d;j++)

<0> Cli)(j] += A(i])(k]*tmp(]]:

}

Next, the compiler converts global addresses to local addresses. Each of the arrays are
distributed so that each processor gets 2 rows. The mapping is specified by:
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The compiler uses the above specification and Equation 5.4 to compute the mapping
between global addresses and local addresses as follows. Arrays A, B, and C all have the
same mapping, so we only need (o show the global to local mapping once.

r-Rd o=[g :== p=(id

r=[]

l=g-T(p~0)+s

.=g-§]([_ia]-[6_|)+

Exgﬂ

0

In the code we must subtract 2*_14 from the first index of a global address. This gives
us the following program:

1 rep a = 0 to _np-1 with <a>

2 <0> for (k = 0;k < d;k++) {

3 rep a = 0 to _np~1 with <a>

4 <0> for (t = 0; t < 4; t++)

S rep a = 0 to _np-1 with <a>

6 <0> becast (2*_id==k,B{k~2*_id] [t],tmp(t]);
7 dist b = 0 to _np-1 with <b>

8 <0> for ( i = comp_slice_begin{_id,0,2,0);
9 i <= comp_slice_end(_id,d,2,0);
10 ive)

11 <0> for ¢ j = 0:3 < &;j++)

12 <0> c{i-2*_id][3] +=

13 A(i-2*_id]) (k] *tmp(]j]:

14 }

In the next step, the compiler applies thread splitting, which removes the PIL's and the
zep and dist constructs to yield:
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8§22

1

2 for (k = 0;k < d;k++)

3

4 for (t = 0; t < d; t++)

S

6 beast (2*_id==k,B[(k~2*_id] (t],emp{t]);
7 )

8 for ( i = comp_slice_begin(_id,0,2,0),ni=0;
9 i <= comp_slice_end{_id,d,2,0);

10 iste,nies)

11 for (j = 0;7 < d;j++)

12 Cli-2*_id}(j] +=

13 + A[i-2*_id) [k]*tmp(§];

14 )

Recall that the thread splitting debugger we presented in the previous chapter assumes
that loops are normalized (start at 0 and count by 1). In this example, instead of normal-
izing the 1 loop, we introduce a new variable called ni (normalized i) that starts at 0
and counts by 1 in the 1 loop. Whenever we need the loop count for the 1 loop, we ref-
erence this vesiable instead of the loop counter 1.

This program is then compiled by a single processor compiler that generates an exrcut-
able which can be loaded into every processor of the parallel machine.

Cyclic distribution
We want o do a cyclic distribution for the 1 loop and the A and € arrays. The compiler
must strip mine the loop and the arrays before applying the basic distribution. After strip
mining, the code is as listed below. We have simplified array index and loop index
expressions when possible.
for (k = 0;k < d;kes)
for (Lt = 0; £t <d; t += _np)
for (i = 0;i < _np;i++)
for (3 = 0;9 < d;j++)
Cl_t/ np]l{il(j] +=
Al e/ _npl il [kK]*B(K])(]];

After strip mining, the distribution for the loops are: T = [9 0 1 0.0 = [g] . The dis-
ribution for the Aand C arrays are identical: T = [9 1 ], 2 = [g]. 5 = .Tbe
distribution for the B array is the same as in the previous example: T = [3 q].

0= @.:z .

Next, the compiler applies Algorithm 5.1, to obtain the following program:
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rep a = 0 to _np-1 with <a>
<0> fer (kK = 0;k < dike+)
rep a = 0 to _np-1 with <a>

<0> for (Lt = 0; t <d; t += _np)
dist b = 0 to _np-1 with <b>
<0> for ( i = comp_slice_begin{_id,0,1,0);
i <= comp_slice_end{_id,_np,1,0);
i+e)
<0> for (7 = 0;3 < d;j++)
<0> cl_t/_npll[i)[]] +=

Al_t/_npl[i] [k]*Bl{k](j];

In the next phase, the compiler inserts communication. The broadcast occurs before the
t loop executes. In the source program, the compiler decides W insert the broadcast
after the k loop. The references to the array B, must be to the local copy received, so the
compiler also repiaces referer-es to b (k] {J] in the loop with tmp [§1. After commu-
nication is inserted, we have the following program:

rep a = 0 to _np-1 with <a>
<0> for (k = 0;k < d;k++) ¢
rep a = 0 to _np-1 with <a>

<0> for (£ = 0; t < d; t++)
rep a = 0 to _np-1 with <a>
<0> bcast (_idt_np==k,B{k]} {t],emplt]);
rep a = 0 to _np~-1 with <a>
<0> for (Lt = 0; t <d; t += _np)
digt b = 0 to _np-1 with <b>
<0> for ( i = comp_slice_begin{_id,0,1,0);
i <= comp_slice_end{(_id,_np,1,0);
i++)
<0> for (3 = 0;3 < d;3++)
<0> c{_t/_nplli]l{3] +=

A(_t/ npl (i) (k) *B[k][5];
}

Next, the compiler converts global addresses to local addresses. Array B has the same
mapping as before, while A and C have a different mapping, so we only need to show
the global to local mapping once.
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r-pi1d o=@ =[] p-0d

Ig—

In the code we must subtract _14 from the second index of a global address This gives

us the following program:

1 rep a = 0 to _np-1 with <a>

2 <0> for (k = 0;k < d;k++) |

3 rep a = 0 to _np-1 with <a>

4 <0> for (¢t = 0; t < d; t++)

) rep a = 0 to _np-1 with <a>

6 <0> becast (_ids_np==k,B[k] [t-2*_id],tmp(t]);

7 rep a = 0 to _np-1 with <a>

8 <0> for {_t = 0; t < d; t += _np)

9 dist b = 0 to _np-1 with <b>

10 <0> for ( i = comp_slice_begin(_id,0,1,0);
11 i <= comp_slice_end(_id,_np,1,0);
12 ie+)

13 <0> for (3 = 0;7 < d;3++)}

14 <0> cl_t/_npl(i-_id] {j] +=

15 Al_t/_np}li-_id)[k]*tmp(j]};
16 }

In the next step, the compiler applies thread splitting, which removes the PIL's and the
rep and dist constructs o yield:
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Compileridebugger interface

1

2 for (k = 0;k < d;kee) {

3

4 for (t = 0; t < d; t++}

5 .

6 becast (_id$_np==k,B(k] {t-2*_id),tmp(t]);
7

8 for (Lt =20; t <d; ¢t += _np)

9

10 for ( i = comp_slice_begin(_id,0,1,0),ni=0;
11 i <= comp_slice_end(_id,_np,1,0);
12 i++,ni+s) ;

13 for (j = 0:j < d;j++)

14 Cl_t/ np)(i~-_id] (j] +=

15 Al_t/.nplli-_id] (k]l*tmp(]];

16 }

This program is then compiled by a single processor compiler that generates an execut-
able which can be loaded into every processor of the parallel machine. Instead of nor-
malizing the 1 loop, we introduce a new variable, n4, that has the normalized count.

Compiler/debugger interface

6.3.1

In this section, we describe the information that must be passed from the compiler 1o the
debugger. We first list the information necessary for distribution in Section 6.3.1 and the
information for thread splitting in Section 6.3.2. We use the matrix multiply examples
for both.

Distribution

Examples of the information that the compiler must pass to the debugger for the distri-
bution phase of compilation can be found in FIGURE 6-2. The left hand side is the
information for the cyclic distribution and the right hand side is for the block distribu-
tion. The rest of the section explains what information is needed for each part of the dis-
tribution transformation.

If the compiler uses a cyclic distribution for iterations or data, it strip mines loops or
arrays first. The information that the D function needs is the position of the 1oop in the
program, and the name of the loop counters for the inner and outer loops. If any vari-
ables have been strip mined, the compiler passes the debugger the name of the variable
and the dimension that has been split.

For iteration distribution, the compiler must pass the debugger the line number of each -
distributed loop, the name of the loop counter, the expression for the low bound, and the
expression for the high bound. It must also pass the line numbers of any statements that
it inserted. In this example, neither examples have inserted lines.

The D function for communication single steps over code that has been inserted for
communication; the compiler passes these line numbers to the debugger.
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FIGURE 62 Information passed from the compiler to the debugger for distribution
Cyclic distribution Block distribution
loop strip mine
loop postion inner loop _outer ioco_
8 i _t
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A 0
iteration distribation iteration distribution
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line number line number
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6.4

The D function for data distribution changes global names to local names for all user
commnands to examine and modify variables. If the data is distributed, it uses Equation
5.2 to compute the processor index and Equation 5.4 to convert the global address w a
local address. For non-distributed variables, it examines the copy of the variable on the
processor at the current location. If the user modifies a variable, it modifies all copies.
The compiler must pass to the debugger the names of distributed variables and the map-
pog.

Thread splitting

Example of the information that the compiler must pass to the debugger for the thread
splitting phase can be found in FIGURE 6-3. All of the information that the compiler
must pass the debugger about thread splitting is concerned with computing the virtual
time and the set of early operations.

In the table, there is one line of information for every statement of the program. The vir-
tual time template has been described previously. Read and write are the set of variables
that are read or written by statement of the program. The line also contains the rep and
dist statements contained in each statement of the program.

By plugging in the values for the i st variable and the loop counters, the debugger can
compute the virtual time of a statement. The value of loop variables is taken from the
program state, and the value of the dist variabies for a processor index can be com-
puted from the rep and dist statements and PIL’s in a program. The virtual time tem-
plate can aiso be used to compute the se of early operations for a state of the program.
With the set of early operations, together with the read and write information for every
statement, the debugger can compute if a program has early reads or early writes,

Debugger

8.4.1

This section explains how the D functions for distribution and thread splitting work
together to form an entire debugger. We start oy giving an example of how virtual time
is computed in Section 6.4.1. This is followed by a description of bow the debugger
commands are implemented assuming a block or cyclic distributinn in Section 6.4.2. We
then explain how the basic mechanisms for the thread splitting debugger, roll forward
and consist.. it, breakpoints are affected by using a biock or cyclic distribution in Sec-
tion 6.4.3 and Section 6.4.4.

Computing virtual time

Computing the virtual time of a statement is central to the ability to determine the cur-
rent location and decide if user commands are disallowed. To compute the virtual time
of a statement, v. 2 need two things: the position in the program, which determines the
virwal time template, and the value of the parameters in the template. The parameters
are the value of A1 st variables and the value of loop counters. The value of dist vari-
ables can be computed statically for each statement from the processor index. The value
of the counters are deter: .ined at nn-time,
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AGURE &3 Information passed from the compiler to the debugger for thread spiitting
Block distribution
line number virmal time templase  reads writes PIL rep and dist statements
1 rep a = 0 to _np{0]-1 with <a>
2 (2.k,2,0,0,0,0,0,0) kd k <>
3 rep a = 0 to _npl[0]-1 with <a>
4 (2,.£4,4,4,0,0,0,0) td t L1
5 rep a = 0 to _np(0]-1 with <a>
6 2k4.16,0000  ktmpB mpB <>
7 dist b = 0 to _np-1 with <b>{
8 (2.k,7,b,8,0i,8,0,0) id i <>
9
10
n 2k.7,0,8,0i,11,§,11)  jd i <<
12 2k,7,b,8,ni,11,5,12) ijkAmpC C <>
13 }
14
Cyclic distribution
line mmnber virtual time template  reads writes PIL rep and dist statements
1 ‘ rep a = 0 to _np(0]-1 with <a>
2 (2k2,00,000,0,00) kd k <0
3 rep a = 0 to _np(0]1-1 with <a>
4 (2k4.14,0000,0,0) td t <>
5 rep a = 0 to _np{0)-1 with <a>
6 (2k4,.6,0,0,0,0,0,0) k.tmmp,B tmpB <>
7 rep a = 0 to _np(0]-1 with <a>
8§ (2kS8,.18,0,00,0,00) Ld t <
9 dist b = 0 to _np~1 with <b> |
10 2k8,_t9.b,10,ni,10,0) id i <>
11
12
13 (2k8,t9,b,10,ni,13,j,13) jd j <>
14  (2,k.8,_19)b,10,ni,13,j,14) C_tijAtmp C <>
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Each statement can potentially have its own mapping between processor indexes and
values of diat variables. When the debugger is invoked, it computes this mapping by
expanding the rep and dists of a program. For every statement with a PIL, we record
the statement number from the § program, the value of the PIL, and the value of the
dist variable. As an example, we compute the mapping for the statements in the block
distributed program. Assume that there are only 2 processors; _np is equal to 2. We
only need to know the value of dist variables, 50 we can ignore everything before line
7. Furthermore, the PIL for every stasement is the same, so the mapping is the same for
all statements. The mapping is as follows:

dist variable value processor index
0 v
1 1

The mapping for the cyclically distributed program is the same.

After a processor is stopped because of an event, its virtual time is computed as follows.
From the line number, we geta virtual time template. If the template has dist variables
in it, their values are obtained from the table that maps processor indexes to dist vari-
ables. If the template has any loop variables in it, their values are obiained from the loop
variables in the program.

As an example of computing the virtual time, if processor 1 stops at statement 13 in the
cyclically distributed program, the virtual time template is
(2,k.8,_t,9b,10,n4,13,,13). If the value of the loop counters are k=3, _t=l nisl,
and 3=2, then the current virtual time on processor 1 is (2,3,8,1,9,1,10,1,13,2,13).

Selecting the § t..ne, setting breakpoints, examining and moditying
variables, and reporting the current location

Before the debugger can decide if commands should be disallowed, it must compute the
carly operations. It must first choose t the B time, which is computed from the virtual
time of each processoc The P time, along with the virtual time template is used to deter-
mine if each statement has been executed early. For the cyclically distributed program,
if the virtual time of processor 0 is (2,3,8,1,9,0,10,1,13,5,13), and the virtual time of
processor 1 is (2,3,8,1,9,1,10,1,13,2,13), then the § time is the minimum, or
(2,3,8,1,9,0,10,1,13,5,13). For cyclic distributions in general, the p time is the time of
the processor that has executed the least number of outer loop iterations. For the block
distribution, it is the first processor that has not executed all of its iterations.

After computing the virwal time sets for each statement and processor, we conciude that
statements 13 and 14 have early executions on processor 1. The rest of the section
assumes that the program is in the state described above.

If the user wants to set a breakpoint on line 13, the debugger for distribution sets a
breakpoint on every copy of that statement; there is one copy for each processor. The
debugger for thread splitting must check if any of those statements are early. For our
example, line 13 ou processor 1 has an early execution, so the debugger must disallow
this breakpoint. If the user sets a breakpoint on line 2, then the debugger for thread split-
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ting wouid set a breakpoint on both copies. The thread splitting debugger determines
that there are no early executions for any of the copies of line 2 and sets the breakpoints.

If the user examines the variabie &, then the debugger for distribution inspects the copy
of 4 that is [ocal to the processor executing the current statement. That is processor 0.
On processor 0, there are no early operations, thus there cannot be an early write of the
variabie &, 30 the thread splitting debugger does the read of the variable 4 on processor
0. If the user tries 10 modify the variable 4, then the debugger for distribution modifies
all copies of the varisble. The debugger for thread splitting checks if there are any early
reads or writes for the variable 4 for all copies. Processor 1 has early execution of state-
ments 13 and 14, and from checking the tabls in FIGURE 6-3, it concludes that there is
an carly read of the variable 4. It must disallow the modification of the variable 4
because one copy can’t be modified.

If the user does a vhere command, the debugger for thread splitting passes back the
current statement, which contains the statement number and processor index. The distri-
bution debugger just peels off the processor index and returns the statement number. In
the current state, the thread splitting debugger passes back line 13 on processor 0 as the
current line and the distribution debugger passes back line 13 is the current statement.
This is reported to the user as the current line.

Roli forward

Roll forward is used for three purposes. It is used to advance execution of a program so
that there are no late operations, to renun the program to a particular f time, and to nm a
program with a consistent breakpoint. The virtual time template and current virtual time
are used 1o find the LUB for each processor, which is the point in the program at which
it should stop.

If the desired point in the block distributed program is k=3, ni=1, and =2 on state-
ment 11 of processor 0, then if we substitute the values into the virtual time template of
(2,k,7,b,8,n4,11,4,11) we have a virtual time of (2,3,7,0,8,1,11,2,11). This is also the
LUB of processor 0. For processor 1, the LUB is at the beginning of its copy of the 4
loop. This is at statement 11, with a virtual time of (2,3,7,1,8,0,11,0,11).

We use FIGURE 6-4 to illustrate the general conditions for finding the LUB for each
processor. We use a block distribution with a block size of 3 and a cyclic distribution
where each processor gets 3 iterations. In the block distribution, for processors that exe-
cute iterations carlier than the target time, the LUB is the first thing after the loop; the
processor executes its entire block. For processors that execute iterations after the target
time, the LUB is the first iteration that it executes; the beginning of the block. For the
cyclic distribution in the figure, o is the outer loop counter and 4 is the inner loop
counter (the inner and outer loop are the resuit of the strip mine). The LUB for a proces-
sor is either the same or next iteration of the outer loop, depending on whether the pro-
cessor comes before or after the processor executing the target time.,

Consistent breakpoints

If the user sets a consistent breakpoint in a program, then we must compute the LUB for
that breakpoint. FIGURE 6-5 illustrates where the LUB is for each processor before we
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FIGURE 64 The position of the LUB for a given target time with the block and cycilc distribution
Processor index Processor index
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start execution of the loop. For the block distributed program, the LUB for each proces-
sor is the beginning of the block. If we reach a LUB for a processor without hitting a
breakpoint first, then the new LUB for that processor is the end of the loop.

For a cyclic program, the LUB is always the next iteration that the processor executes.
After we pass a LUB for a processor, the new LUB for that processor is the next itera-
tion it executes.

Performance of block and cyclic distributions
when debugging

We conclude this chapter by investigating some performance related issues of debug-
ging for the block and cyclic distributions. The actual performance that a uscr sees is
dependent upon the particular program, its communication, where the user decides to
stop the program, and what variables are inspected or modified. However, it is possible
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AGURE &6

Time

The position of the LUB for consistent breakpoints with block and cyciic distributions
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0 make some simple statements about the relative performance of the loop distribution
models. For the following analysis, we assume that all processors complete loop bodies
at the same rate. This is true if there is no synchronization in the loop body, and the
work in each iteration is data independent.

Early operations

The more early operations there are, the more likely it is that we would have to disallow
a command. The block and cyclic distributions can be expected to have diferent behav-
ior in terms of the number of early operations.

We count the number of early loop iterations to compare which distribution has more
early operations. For both distributions, the f§ time is the earliest virtual time of all the
processors. Under the equal progress assumption, for a block distributed loop the earli-
est virtual time is aiways on the first processor. This is because all of the iterations on
the first processor have virtual times less than the iterations of all the other processors,
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Hence, ail the iterations executed by all the processors except for the first one are early.
This is 3 (p - 1) where s is the number of iterations executed on one processors and p
is the number of processors. For the cyclic distribution, iterations are assigned in round
robin fashion. While iteration { is in progress on processor 0, iterations i + 1 through
i+ p~ 1 are in progress on the other processors. All the iterations in progress on all but
the first processor are early, but all other iterations already completed are not early. The
number of early operations for the cyclic distribution is at most p — 1. In comparison we
would expect a loop that is block distributed to have many more early operations, bence
it is more likely that commands would be disallowed when using this distribution.

6.5.2 Parallelism during roll-forward

‘When we want to stop the program at a particular virtual time, for example we are roll-
ing forward a set of processors, then we would like 0 execute the program with the
maximum parallelism available so that we may reach that point as quickly as possibie. If
we have a block distribution and we want to stop at virtual time {, then we can allow all
processors with an index less than [ i/b] to execute their complete loops, while proces-
sors with an index greater than [[i/67 cannot not execute any iterations, The degree of
parallelism available is thus determined by the desired loop iteration; the higher the loop
iteration the more parallelism that can be exploited.

For the cyctic distribution, since iterations are assigned to processors in a round robin
fashion, we can allow all of the processors to execute the first | i/p] iterations that they

are assigned. The remainder, which is { — [ i/p ] p are executed by processors O through
i-Li/pip-1.

Thus, a cyclic distribution will reach the target point faster because it can exploit more
parallelism, If we want to execute the first i iterations of the source loop, then the block
distribution will take min (n/p, i) steps, where n is the total number of iterations to be

executed. The cyclic distribution will take [iJ steps to complete the first [in itera-
p p

tions and 1 more step to complete the remainder, which is i—p[

317

6.5.3 Synchronization overhead of consistent breakpoints

When we execute a biock or distributed loop with a consistent breakpoint set, we cannot
take advantage of any parallelism, because the breakpoint may stop at any iteration, If
we want to stop in a state without any early iterations, we can only execute one iteration
at a time.

iJ.Tnewmnsmm
P

The execution of a loop wnhaconsxsmzbreakpmntshouldbeslowermmeseqmn-
tial version of the loop because extra synchronization must be done. Synchronization
occurs whenever a program reaches its LUB; a breakpoint occurs and the processor
waits for the debugger to let it go forward. The debugger lets it go forward when all the
iterations with lower virtual times complete. As described in Section 6.4.4, each proces-
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6.6

sor of the block distributed program must synchronize before executing any of its block
of iterations. Ounce it has passed its LUB it does not need © synchronize again until the
end of the loop. The cydlic distribution must synchronize before every iteration.

The block distribution can be expected to synchronize less than the cyclic distribution;
hence consistent breakpoints will be faster for the block distribution. For the block dis-
tribution, if the real breakpoint occurs in iteration i, then the number of synchronization

points is l."”_"J.Faacythcdhuihmon. the number of synchronization points is i.

Summary

We have presented examples of compilation and debugger functions for programs with
block and cyclic distributions. We also examined some performance issues related to
debugging. The cyclic distribution can be expected to have less early operations and
bence is less likely to disallow a command. It is also able to exploit more parallelism
when rolling forward to a particular virtual time. However the block distribution can be
expected to have less overhead when executing with a consistent breakpoint.
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CHAPTER 7

Limitations of thread
splitting

In this chapter, we identify the types of parallelizing transformations for which it is pos-
sible to construct a debugger using the thread splitting methodology. The main charac-
teristic of a transformation that determines if it is sustable is the type of assignment it
uses 1o map operations in the source program to processors. An assignment of a sequen-
tial program is specified by giving each operation a processor index label (PIL). The PIL
is the processor that executes the operation in the parallel program. We call an assign-
ment of operations to processors daia independent when the PIL’s are constant. We call
an assignment of operations to processors with non-constant PIL’s a data dependent
assignment. Thread splitting only allows data independent assignments because PIL's
must be constant,

A data independent assignment is desirable because it makes it possible for the debug-
ger to take advantage of static program information, which is important for efficiency.
However, most parallelizing transformations use data dependent assignments; a practi-
cal compiler and debugger must be able to support both.

If a ransformation uses a data dependent assignment, source programs for the transfor-
mation can be rewritten so that a data independent assigmunent can be used to achieve
the desired mapping of operations to processors. Thus, a debugger need only allow data
independent assignments. However, a program generated in this way may be less effi-
cient than a program generated from a data dependent assignment. For transformations
where the assignment is data dependent but known at compile-time, the loss in effi-
ciency is small. This includes the block, cyclic, and block-cyclic distributions. For
transformations where the distribution of operations to processor is dynamic, the loss in
efficiency can be significant, This includes user mapped and dynamically load balanced
distributions.
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7.1

In Section 7.1, we define data independent and data dependent assignments and describe
their relationship o thread splitting and debuggers. Section 7.2 explains why a program
generated with a data independent assignment can be less efficient than a program gen-
erated with a data dependent assignment. Section 7.3 shows how to rewrite a program
30 that a dats independent assignment can be used. Section 7.4 describes how to bound
the overbead for an assignment of a ransformation and analyzes the commonly used
distributions,

Data dependent and independent assignments

Generating a paralle] program from the sequential one can be modeled as an assignment
of operations t0 processors. The assignment can be thought of as the specification of the
distribution. Alternatively, a distribution can be thought of as an implementation of an
assignment.

An assignment is data independens if, for all executions, an operation is always exe-
cuted on every member of the same set of processors, even if the operation is executed
move thap once. An operation may be executed more than once if it is inside a loop. A
Gata independent assignment is shown in FIGURE 7-1. All iterations of the first loop are
always executed on processor 0, all iterations of the second loop are aiways executed on
processor 1, and all iterations of the last loop are always executed on processor 2.

FGURE 7-1

Examples of data depsndent and data independent schedules

data independent assignment
<0> for (1 = 0; 1 < n/3; i++)
<0> b=1;
<1l> for (i = n/3; i < 2*n/3; i++)
<l> b=1;
<2> for (i = 2*n/3; 1 < n; i++)
<2> b =1;

data dependent assignment

<i/3> for (i = 0; i < n; i++)
<i/3> b=1;

An assignment is data dependens if the function that assigns operations to processors is
dependent on data in the program. An example can be found in FIGURE 7-1. The resuit
of dividing the loop counter by 13 is the index of the processor that executes the iteration.
In general, any distribution of loop iterations (e.g. block and cyclic) requires a data
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dependent assignment. Thread splitting cannot be used directly when a data dependent
assignment is desired because only constant PIL's are allowed.

A data independent assignment is desirable because it makes it possible for the debug-
ger to take advantage of static information about the assignment of operations to proces-
sors in a program, Static information is useful for mechanisms related to virtual tme
such as computing carly operations, rolling forward a program, and counsisteat break-
points. If the debugger does not take advantage of static information, then it would not
be practical to provide some of these mechanisms.

A simple example of how a debugger can take advantage of static information can be
found in FIGURE 7-1. If we use a data independent assignment as is shown in the top of
the figure, and the cusrent statement is selected to be the third statement (the £ox loop),
then it is clear that processor 0 should have executed all of its iterations and processor 2
should not have executed any iterations if we want the current state to be consistent with .
a state of the B program. By contrast, if we have the data dependent assignment found in
the bottom of the figure and the current line is chosen to be the second line of that pro-
gram, then the debugger must know something about the behavior of the function in the
PIL’'s and the variables they reference to determine which iterations each processor
should execute.

Why programs with data independent assignments
can be less efficient

The execution overhead introduced by rewriting a program so that a data independent
assignment can be used is inberent in how much is known at compile-time about the
assignment. If the assignment is known at compile-time, then the overhead is low. If
there are points in execution of the program where the assignment can only be resolved
at run-time, there is some gverhead. The total overhead depends on bow often the
assignment must be resolved at nm-time.

To illustrate the differences between data dependent and data independent, we describe
an example where the assignment cannot be known at compile-time. We describe how
to write the program so that a data dependent assignment can be used, then show how a
data dependent version can be more efficient.

If we are allowed to use a data dependent assignment, we can simply give each opera-
tion in the B program a PIL that computes the processor which should execute it. In the
® program, which is generated from the §§ program, only the processor that is assigned
the operation executes it.

An example of a data dependent assignment is found in FIGURE 7-2. In this program, a
user-defined map is used to determine which processor executes each iteration; iteration
i of the loop is executed on processor map [i]. Because the array map is set at run-time,
any processor can éxecute any iteration. Assume that at run-time, before executing the

loop, the program computes the set of iterations that each processor must execute. The

result is stored in two arrays—its and umap. For processor p, its [p] is the number
of iterations executed by that processor and {umap (p] {0], umap (p] (11, ...,
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umap [p] [its (p] 1]} is the set of iterations that processor p executes. In the pro-
gram, each processor just executes its assigned set of iterations acconding to the 4ts
and umap arrays.

The PIL for each statement uses the map amray to specify which processor executes the
iteration. Some statements have a PIL of map (1] and others bave a PIL of map [1+1]
because the variabie 1 is incremented in the middle of the loop. In the o program, cach
processor only executes its assigned iterations and does not execute the loop control for
any other iterations.

The B program that must be used for a data independent assignment is very different for
this example. In general, if there is a point m in the control flow of the § program where
any one of a set of processors s can be assigned the same computation c, then for every
processor p in s, there must be one execution path starting at 7 that has a copy of the
computation ¢ with a PIL of p. A conditional in the program decides at run-time which
path to execute, in effect deciding which processor should execute the computation ¢. In
the o peogram, which is extracted from the § program, every processor in 5 must exe-
cute the conditional. The processor that is assigned the current instance of ¢ executes the
path which contains ¢ as well.

This is illustrated by the program with a data independent assignment in FIGURE 7-2.
As before, a user-defined map is used to determine which processor executes each itera-
tion. Because any processor can execute any iteration, there must be one execution path
through the loop body of the f program for each processor. In the © program in the fig-
ure, every processor executes the loop control once for every iteration of thefl program
and a conditional decides if the processor executes that particular iteration. By compari-
son, a program where a data dependent assignment can be used is much more efficient
because each processor only executes the loop control for its assigned iterations.

Overhead is any work present in a program with a data independent assignment that
need not be present in a version of the program with a data dependent assignment. For a
particular data independent assignment, the overhead the program incurs is dependent
on the way the f program is written, If we know at compile-time how work is assigned
to processors, then we can change the structure of the program so that we can reduce the
number of processors that can potentially execute the next operation. By doing this, we
reduce the overhead of the program. If the assignment is known completely at compile-
time, then there is no overhead because we can construct a program where only one pro-
cessor executes the next iteration.

The example in FIGURE 7-3 illustrates the way we can exploit compile-time knowl-
edge of the assignment to reduce overhead. The program on top is the & program; below
are two possible B and o programs for the same assignment. For the assignment, itera-
tion { of the o loop is executed on processor i/3. We assume that there are 3 processors
in the example. In the first B program, there is one execution path through the loop body
for each possible assignment of an iteration of the a loop. That is, if an iteration is
assigned to processor 0, the body of the first 1 £ is executed, if an iteration is assigned to
processor 1, the body of the second 1¢£ is executed, and 30 on. In the ¢ program, every
processor executes the loop control for every iteration as well as its assigned iterations.
In the second § program, we have created three copies of the & loop. Because there are

110

SIUCE-LEVEL DEBUGGING OF AUTOMATICALLY PARALLELIZED PROGRAMS




L VR MR
Why programs with data Independent assignments can be less efficient
FIGURE 7-2 Examples of data dependent and data independent schedules

data dependent assignment
P program

<0>,<1l>,<2> i = -1;
<map{i+l]l> for (t = 0; t < its[_id]; te+)(

<map{i+l]> i = umap[_id][t];
<map{i]> b=1;
}
 program
i=-1;

for (t = 0; t < its{_id]; t++){

i = umap[_id](t];
b=1;
)
data independent assignment

B program
<0>,<1>,<2> for (i = 0; i < 2; i++) {
<0> if (map(i] == _id)
<0> b=1;
<1> if (mapl[i) == _id)
<l> b =1;
<2> if (map(i] == _id)
2> b=1;

}
® program

for (i = 0; 1 < 2; i++) {(
if (map{i] == _id)
b = 1;
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multiple copies of the loop, at every point in the execution of the B program, only one
processor can execute the next iteration of the o program. In the o program every pro-
Cessor only executes its assigned iterations,

FIGURE 73

G program

Two possibie ways of writing a f§ program for the same assignment

for (i = 0; 1 < n; i++)

b=1;

B program

<0>,<1>,<2> for (i = 0; i < n; i++) {

@ program
for (i = 0; 1 < n; i++) {

<0> if (_id == i/3) if (_id == i/3)

<0> b=1; b= 1;

<l> if (_id == i/3) }

<l> b=1;

<2> if (_id == i/3)

<2> b=1;

}
B program ® program

<0> for (i = _id*n/3; i < (Lid+1)n/3; i++) for ( i = _id*n/3;

<0> b=1; 1< (_id+1)n/3;

<1l> for (i = _id*n/3; i < (_id+1)n/3; i++) i+s)

<1> b=1; b=1;

<2> for (i = _id*n/3; i < {(_id+1)n/3; i++)

<2> b=1;

7.3 Generating a § program
In this section, we describe bow to structure a § program to minimize overhead when a
data independent assignment i< used. We want to be able to describe the assignment of a
transformation independent of the particular program to which it is applied. For this rea-
son, we use a simple model of a program as a single loop with a singie statement body.
The iterations of the loop are mapped to a 1 dimensional processor array.
For distribution, the compiler inputs an a program, and uses a combination of condi-
tionals, loops, and sequences of code to produce a § program with a data independent
assignment such that each processor executes the appropriate iteration of the loop from
the a program. Each construct is useful for differ . puitemns in the assignment.
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1f the assignment follows some finite sequence that is fixed at compile-time, then we can
create multiple copies of the loop body of the & program as a sequence and assign cach
copy to the appropriate processor. An example is shown in part (a) of FIGURE 74. The
pattern is (0,2,0,1,1,2) so we create 6 copies of the loop body and give them PILs from
the sequence. If the assignment repetitively assigns an iteration to the same processor,
then we can put the body of the a program in a loop and give it the PIL of the processor.
This is illustrated in part (b) of FIGURE 7-4 where a data dependent number of itera-
tions are assigned to processor 0. If at some point in the program, the assignment of an
iteration can only be determined at run-time, then a conditional can be used W select
which processor executes the next iteration. In part (c) of FIGURE 744, iterations can
either be mapped 1o processor ( or processor 1. The conditional selects which processor
executes the iteration.

Each of the above constructs can be comhkinad, For example, if the assignment repeat-
edly assigns iterations to the same scquence of processors, then we replicate the body
according to the sequence and place that inside a loop.

Estimating the overhead of data independent
assignments

The overhead of using a data independent assignment depends ou the parallelizing
transformation, the program, and the data the program is executed on. ‘D determine if a
parallelizing transtormation is suitable for thread splitting, we would like to bound the
extra work for all programs generated by a parallelizing transformation.

It is not important how an assignment decides how to map iterations to processors; our
main concern is the set of possible assignments for all programs. For this reason, we
describe the result of assignment without specifying how it is done. A schedule of a
loop represents the assignment of iterations to processors for a single execution of the
program. A program can have different schedules if the program is executed on differ-
ent data. The schedule can be represented by a string of numbers p,, p,, ..., p, where
iteration i is executed on processor p;. For the estimation of overhead, we assume that
all programns terminate, thus schedules are finite,

For each parallelizing trunsformation, there is a set of schedules possible for all execu~
tions of the single loop program. The set of schedules can be specified with a regular
expression, where every schedule possible for that transformation is contained in the set
of strings defined by the regular expression.

To denote a regular expression, we use numbers, which represent processor indexes,
pasrentheses, and the operators | and *. The operator | is used for selection of altemates.
If there is a regular expression (a | b), then the set of strings in the language is a and b.
The operator * (also called closure) is used for repetition 0 or more times. The expres-
sion a(b*) has the following strings in its language: a, ab, abb, abbb ...

A regular expression was chosen to represent the set of schedules for several reasons.
First and most important, there is a straightforward method for placing an upper bound
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FGURE 74 Converting loops with data depandent PiLs into ioops with data independent PiLs
(a)
Assignment is 2 of processor indexes <0> i = 0;sy;
aﬁm-(ﬂ&al.ld) <2> i= 1;38;
for (i = 0; i < 6; i++) <0> i = 2;8;
% _> <l> i = 3;8;
<1> i = 4;s8¢;
<0> i=8;9;
Assignment is a repetitive
sequence of processor indexes
assignment = 1(0)*
for (i = 0; 1 < n; i++) <l> 8;
L TH —><0> for (i = 1;i < n; i++)
<> $:
(©)
Assignment is conditional
. . <0>,<1> for (i = 0; i < n; i++)
assigument = (041 <0>,<1> if (condition)
for (1 = 0; i < n; i++) . <0> U
81; else
<1l> 87
on the overhead of a parallelizing transformation given the regular expression defining

the set of schedules. This is explained in detail in Section 7.4.2.

Second, a regular expression is always sufficient @ describe a superset of the set of
schedules for a program. While we may not always be able to write a regular expression
that includes exacty the set of schedules possible for a parallelizing transformation, we
can always find one that inciudes every possible schedule. That is, there may be addi-
tional strings in the language that are not schedules of the program. For example, the set

of schedules for a program where

statements are only mapped to processors 0 and 1 is
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always contained in (0i1)* 30 this regular expression can be used (o describe any set of
schedules.

Third, the regular expression is simple to write. The regular expression defining the set
of schedules captures the information necessary to measure the overhead, but leaves out
most of the details that are irrelevant. Writing the regular expression is much easier than
writing the 8 program. In Section 7.4.1, we list all the regular expressions for the com-
mon distributions. They are short and have simple structures.

Fourth, the strocture of the regular expression suggests a structure for implementing an
efficient § program. To generate a f§ program, every number can be replaced with a copy
of the body with the number as a PIL, every -clause can be replaced with a conditional,
and every closure can be replaced with a loop. The regular expression does not coneain
enough information to generate a complete B program because it is missing the condi-
tions for assignment to a particular processor. That is, if we had (0 1 1) we know that the
iteration is assigned to processor 0 or 1, but we do not know when it is assigned to each
Processor.

Regular expressions for transformations

In this section we give the reguiar expressions for the common parallelizing transfc.ma-
tions. The four distributions employed by most parallelizing compilers are block, cyclic,
block-cyclic, and user mapped.

In the block distribution, contiguous blocks of iterations are divided among processors.
The general form for a 1 dimensional processor array where processor indexes range
from O to n is (0*1%2%... n*). A schedule is some number of iterations executed on pro-
cessor 0, followed by some iterations executed on processor 1, and so on. The block size
is typically the same for ail processors. However, depending on the program, some pro-
cessors on either end may not be assigned any iterations and the first processors on
either end that are assigned iterations may only execute a partial block. For example, if
there is a block size of 4, then some of the schedules that are possible for an array of
length 3 are: 0000211112222, 11112222, and 00111122, The regular expression is general
enough to express all of these schedules. It also includes some schedules that are not
possible for a block distribution, such as one that skips a processor when assigning iter-
ations (e.g. 0022). Including the extra schedules in the set does not increase the potential
overhead, as is shown later,

For a cyclic distribution, iterations are assigned in a repeating pattem. The general form
is (0 N1 D2 N...(n 1)012...0)*(0 H)(1 )2 1)...(n ). The i-clause (i [) means that i may or
may not appear in the schedule. A schedule can start and end anywhere in the repeating
pattern. Some possible schedules for a three processor array are 012012012, 1201212,
and 1201201201. The regular expression we chose to represent the set of schedules
includes some schedules which cannot occur when using a cyclic distribution, such as
02012012 and 01201202.

The block-cyclic distribution is a combination of the two previous ones. The general
form is 0*1*2*...0*(0*1*2%...0*)*0*1%2*...n*. Some possible schedules for a three
processor array are 001122001122, 12200, and 00112200112,
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For the mapped distribution, the assignment of iteratiouns is determined by the contents
of a mapping array which is set at run-time. Since nothing is known at compile-time, the
regular expression defining the set of schedules must be very general. It has the form (0
11121... #)*, Any schedule is possible for this distribution. A dynamically load bai-
anced distribution is one where the assignment of work to processors can be changed at
nm-time based on dynamic conditions. The regular expression describing the set of
schedules for a dynamically load balanced program is the same as the mapped distribu-
tion because the schedule is not known at compile-time.

Computing the overhead from a regular expression

In this section, we describe how to determine if programs generated by a parallelizing
transformation are expected to have high overhead. We first explain how to compute the
upper bound of the overhead for a single execution of a program. We then make some
assumptions about the expected behavior of programs to estimate the overbead for ail
programs under a singie parallelizing transformation.

In the ideal case, each processor executes exactly the work that is assigned to it. In our
model, the unit of work is a loop iteration. For every iteration a program executes, it
must also execute the loop control once (updating the loop counter, checking it against
the bounds); we count any additional loop control or any conditionals not contained in
the loop body as overhead.

Given a regular expression defining the set of schedules for a program and a schedule of
one execution of a program, we can bound from above the overhead of the program for
the execution. The procedure is as follows. We have a pointer to a position in the sched-
ule and a pointer to a position in the regular expression. Both pointers start at the begin-
ning. At each step, we advance the pointer in the regular expression according to the
current value pointed to in the schedule, and then advance the pointer in the schedule by
1 position. There are three constructs in the regular expression: sequences of symbols, |-
clauses, and closures, We explain each of them below.

For a sequence, the next symbol of the schedule must match the next symbol of the reg-

ular expression. If they do not match, there is an error; this cannot happen if the regular

expression includes the set of possible schedules. If there is 2 match, we advance the

pointer in the regular expression by 1 position. When there is a I-clause in tbe regular

expression, we pick one branch and advance the pointer to the beginning of it. If the

pext symbol in the schedule is the same as the first symbol in the left side of the I-clause,

we move the pointer (o the left side. If the next symbol of the -clause is the same as the

first symbol in the right side, we t0 move the pointer to the right side. If neither matches,

there is an error. If both match, then we follow both paths in parallel and pick the one

that ends without error and has the least overhead. Computing overhead is explained in

the next paragraph. When the branch of a I-clause is finished, we advance the pointer in RS
the regular expression to the first symbol after the I-clause. When there is a closure (*), ~
we can cither move the pointer in the regular expression to the first symbol after the end

of the closure or move it to the first symbol in the closure. The decision about skipping

to the end or moving to the beginning of the closure is made the same way as the deci-

sions for the l-clause—we compare the next symbol in the schedule to the two possible

next symbols in the regular expression. After the pointer is advanced beyond the last

symbol in a closure, we move it to the beginuing of the closure.
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Overhead is computed as we step through the regular expression. Stepping through a
sequence incurs no overhead. For a l-clause, every processor in either clause incurs one
unit of averhead. For a closure, every processor contained anywhere in the closure
incurs one unit of overhead for every repetition of the body of the closure. After finish-
ing the schedule, we sum up the overhead for each processor and subtract off the num-
ber of irerations that were executed, because a program must execute the loop control
once for every iteration. An overbead number is an indication of bow much we can lose
by using a data independent assignment. It is not an exact measure of time because we
doa’t know how much of the overhead is executed in parallel and we don't know the rel-
ative cost in execution time of loop control versus the body of the Joop,

The above method allows us to determine the overhead for one execution of one pro-
gram. We really want to determine the expected overhead of a transformation oa all exe-
cutions of all programs. If we make some assumptions about the behavior of programs
we can estimate the overhead. The two assumptions that we need to make are that loop
iterations execute many times and that the number of processors is not larger than the
number of iterations.

For the block distribution, the set of schedules is (0¥1*2%... #*). There can only be
overhead if a processor in the sequence does not execute any iterations. Thus, the over-
head can at most be equal to the number of processors and can only be significant if the
number of processors is much higher than the number of iterations to be executed. This
is not a common case, so the block distribution does not incur significant overhead.

For the cyclic distribution, the set of schedules is

O D1 N2 N...n NO12...0)*(0 (1 X2 D)...(n ). The overhead occurs in the |-clauses
which is at the beginning or end of a schedule. If the closure is executed a significant
number of times, then its cost will dominate and the overhead will be negligible.
Because we assume loops will execute many times, the overhead of the cyclic distribu-
tion is expected to be small.

The block-cyclic distribution is also expected o have low overbead because it is a com-
bination of block and cyclic. Overhead is low when the pattern repeats many times and
the number of processors is not much greater than the number of iterations, which is
believed to be the common case.

The mapped distribution is an exception in that it has high overbead. The set of sched-
ulesis (011121... n)*; there is an overhead of 1 for each processor for every iteration
of the loop. Unless the work of a loop body is very large, that is, much larger than the
work it takes for every processor to execute the 1oop control for one iteration, the
mapped distribution incurs too much overhead and cannot have an efficient data inde-
pendent assignment. The same conclusions hold for a dynamicaily load balanced pro-
gram.

Why the computed overhead s an upper bound

Our computation of the overbead for a schedule of a program is pessimistic; using a reg-
ular expression to measure overhead can only give us an upper bound. The answer is not
exact because there can be more than one correct regular expression that we couid use
for a set ot scberjules, and each one can lead to a different estimate of overhead. How-

SOURCE-LEVEL DEBUGGING OF AUTOMATICALLY PARALLELIZED PROGRAMS 17




Umitations of thread spiitting

15

ever, we believe that choosing a regular expression that leads 0 an accurate answer is
straightforward; for each of the distributions in the previous section, we used the most
“natural” regular expression, and obtained the right answer. For the distributions with
low overbead, it is only the beginning and end of the schedules that are not known at
compile-time, the cost of the middle dominates and can be completely determined at
compile-time. For the user mapped distribution, nothing is known at compile-time about
its bebavior, 30 it is simpile to model accurately as well.

The overhead that we estimate from a regular expression is pessimistic for several rea-
sons. First, the regular expression that we choose might include schedules that are not
possible executions of a program. The unnecessary schedules might require more flexi-
bility in the assignment that adds extra overhead. A trivial example of an overly general
regular expression is (01 1121... a)® which includes all possible schedules for proces-
sors O through », bence it could be the specification for any set of schedules. Using this
reguiar expression as the specification of the set of schedules when we really have 2
block distribution would lead to the incorrect conclusion that there is significant over-
head.

We might use a regular expression that includes extra schedules for two reasons. First, a
regular expression bas limitations on the languages that it can generate. For example, a
regular expression can have a sequence repeat a fixed number of times or an unlimited
number of times, but it is not possible to specify a regular expression where the number
of repetitions is the same as the number of repetitions in another part of the string. An
example where this applies to schedules is the block distribution, where the size of the
blocks can change from program to program, but are constant across processors for one
particular program. When we specify the set of schedules for a block distribution, we
cannot require that the block sizes be the same acToss processors.

Another reason we might use an overly general regular expression is that it is too
tedious to exactly specify the set of schedules. In practice, using overly general sched-
ules is not a provlem. For all but the mapped distribution, we bave used an overly gen-
eral schedule, but we still concluded that the overbead was low.

Even if we find a regular expression that exactly defines the set of schedules for a trans-
formation, it is possible that there is another regular expression that defines the same set
of schedules, but has a lower overhead. For example, the regular expressions
1*1*1%1*1*1* and 1* define the same language, but the first one has more overhead for
short schedules because we must skip over more closures.

Summary

In this chapter, we describe data independent and data dependent assignments of opera-
tions to processors. Thread splitting directly supports data independent assignments. If a
transformation uses a data dependent assignment, the source program must first be
rewritten so that a data independent assignment can be used. The conversion can add
overhead o the program. We explain why this overhead occurs and describe how to
coustruct a f§ program that minimizes the overhead. We then describe a method to mea-
sure the overbead for a single execution of a program, and use it to estimate the over-
bead for the common distributicns. In general, if the assignment is known at compile-
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Summary

time, then the overbead is low. In specific, the block, cyclic, and block-cyclic distribu-
tions have littie overhead, while it is expected that the user mapped and dynamically
load balanced distributions will have a great deal of overhead.
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CHAPTER 8

Conclusions

8.1

Research in parallelizing compilers, especially for distributed memory machines, still
has far to go before it will have the level of maturity found in compilers for sequential
machines today. Debuggers for these compilers are an even newer topic of research.
This thesis identifies some basic methods, but there is still much work to do in extend-
ing the types of transformations and source languages that can be debugged. We hope
that good debugging tools will belp move parallel programming into the mainstream.

This chapter summarizes some of the conclusions about debuggability of transforma-
tions in Section 8.1. In Section 8.2, we outline some conclusions concerning the con-
struction of debuggers. The major contributions are listed in Section 8.3. In Section 8.4,
some areas for future work are identified.

Debuggability of distributions

In CHAPTER 5, we showed that the common distribution models: block, cyclic, and
block-cyclic can be debugged at the source-level. The following characteristics make it
possible: the order of execution of operations on a single processor is preserved, and the
values that are computed are the same in the source and target programs. The user
mapped distribution also obeys these properties, but since the assignment of iterations to
processors is not know at compile-time, it cannot be implemented efficiently with our
method.

From a debugging viewpoint, the round-robin style scheduling of the cyclic distribution
has two advantages over the block distribution. The benefits result from the fact that the
order that work is completed in the parallel program is closer to the order that operations
are executed in the sequential program. This is advantageous when the user interrupts
the paralle! program; there are less early operations, It is also better when trying to run
the program so that it will stop at a particular virtual time; more parallelism can be
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exploited to reach that time quickly. If consistent breakpoints are used, then the block

distribution is superior. As shown in CHAPTER 6, the round robin scheduling of itera-
tions of the cyclic distribution requires much more synchronization than the block dis-
tribution.

Building debuggers

8’3

In addition 0 identifying the types of ransformations that can be debugged, our work
debuggers can be structured to be independent of a particular parallelizing transforma-
tion.

First, the debugger must know the structural relationship between variables and lines in
the source and target programs. This correspondence cannot be represented by a simple
table look-up because the relationship is dynamic and may require a computation to be
performed. An example of a dynamic case is when there are multiple copies of a loop
counter. An example that requires computation is when an array is distributed and it
requires computation to compute the processor index and local address.

Second, the debugger must know the source ordering of operations in the parallel pro-
gram. From that information, the debugger can determine what order to present eveats

such as breakpoints. It also uyses the order to compute late and early operations which s -

then used to determine if a command should be disallowed. The source ordering can be
specified with a program (the § program). If the f program has a data independent
assignment, the debugger can take advantage of static information. However, if a

dynamic distribution is necessary, then data dependent assignment must be supported
efficiently by the debugger.

Contributions

Source-level debugging for automatically parallelized programs is a new area of study.
Our work has identified the general problems that a debugger must solve and bas pro-
vided solutions for some of the common parallelizing transfonmations.

First, we have identified the basic services that a source-level debugger must perform.
They are structural mapping, which is necessary for sequential debugger as well, and
dynamic order restoration, which is unique to MIMD execution. Second, we have devel-
oped a methodology that allows us to separate structural mapping from dynamic order
restoration when constructing a debugger. This allows us to isolate the part of the
debugger that manages paralletism in a module that is independent of the distribution,
Third, we have developed techniques for implementing dynamic order restoration. This
includes mechanisms for virtual time, handling out of order events, disallowing com-
mands, and roll forward.
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Future work

8.4

Future work

841

84.2

8.4.3

844

The work presented in this thesis can be extended in many ways. In this section, we dis-
cuss some of the areas that need future work.

Distribution models

‘The thread splitting model is sufficiently general to handle the common distributions
where the assignment of operations to processors is known at compile-time. Some sys-
tems, particularly those that support dynamic load balancing, use more dynamic distri-
butions that cannot be determined at compile-time. T efficiently support these types of
distributions, thread splitting must be adapted to allow data dependent assignments.
When the assignment is data independent, computing the virtual time and the set of late
and early operations only requires information about the control flow of the program.
Adding the capability to handle data dependent assignments requires that the compiler
give more information to the debugger about the program behavior.

Sovrcr languages with explicit paralielism

Somc examples of source languages with explicit paralielism are data parallel languages
~acluding languages with vector operations) and languages with parallel loops. When
programs with explicit parallelism are executed efficiently on MIMD machines, they
can require dynamic order restoration. The techniques that are used for dynamic order
restoration when the source language is sequential must be extended when the source
language bas explicit parallelism.

Roll back mechanisms

In the thesis, we assume that roll forward is inexpensive and that roll back is more
costly. This is because roll back is implemented by re-executing the program from the
beginning. If roll back were inexpensive, some of the basic methods for implementing
dynamic order restoration might be different. As described, the debugger tries to pro-
vide truthful behavior in the presence of early operations. If roll back is inexpensive, the
debugger can use it to eliminate early operations from a program state in the same way
that the debugger can use roll forward to eliminate late operations.

Reversible execution[Pan 88](Tolmach 91}{Feidman 88}, which has been proposed as
a method for debugging parallel programs, could be used to make roil back less cosdly.
Interaction between the debugger and reverse execution facility presents some interest-
ing possibilities. For example, a general reverse execution facility must be able to roll
back to any previous state of the program. However, a source-level debugger only needs
to roll back to a much smaller set of states. This information could permit the reverse
execution facility to reduce the need for storage.

Computation of early operations

In the thesis, we describe conservative methods for computing the set of early opera-
tions. If we use more aggressive metkads, we decrease the number of falsely labelled
carly operations. This decreases the chances of disallowing a command, which in tum
may reduce the need for re-execution of the program.
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We discuss two ways that the debugger can be more exact in the computation of early

operations. First, if a conditional has already been executed, we assune that both

branches of a conditional were executed. If 2 loop has already been executed, we -~
assume that an infinite number of iterations were executed. This information is clearly .
conservative because a conditional only executes one branch and a loop only executes a
finite set of iterations, If the debugger records dynamic information abowt the program
while it is executing, for example branching information and loop counts, thea it couild .
more precisely compute the set of operations that were executed which would in turn

allow the debugger to more precisely compute the set of early operations,

4

Second, if the debugger has precise information about which loop iterations are exe-
cuted, it can use that information to determine which array elements the loop iterations
have accessed. By defauit, the debugger must assume that all elements of an array are
accessed if a loop body accesses an array. If the element that a loop iteration accesses is
ounly dependent on the iteration number, then the debugger can determine the exact set
of elements that have been accessed. Deciding if array subscripts are only dependent on
iteration numbers requires data flow information such as the set of loop invariant vari-
ables and induction variabies.

Performance debugging

Another interesting topic is source-level performance debugging. After the user has
debugged the program, the next step is usually tuning. For parallel programs, aming is
especially important because speed is the motivation for using a parallel machine.
Understanding the performance of a parallel program requires that the user understand
how computation and data are distributed. However, it isn’t necessary that the user
know all of the details of the distribution and a source-level view while tuning the pro-
gram can ease some of the programmer’s burden. Many of the techniques presented in
this thesis for relating sequential source and parallel target would also be useful for per-
formance debugging in this context.
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