
4OW

DTIC
0--- EL ECTE

"FEB 17 1993S0S-'--'I---

<• Source-level Debugging of Automatically
•I Parallelized Programs

Robert Cohn

23 October 1992

CMU-CS-92-204

School of Computer Science
Carnegie Mellon University
Pitburgh, PA 15213-3890

Mau)
Sumfitted in paoidfu#4llent of the requirement o

for the degree of Doctor of Philosophy

Copyright 0 1992 Robert S. Cohn

Supported in paot by an Intel Corporation Graduate Fellowship and in part by the Defense Advanced
Research Projects Agency, Information Science and Technology Office, under the tide "Research on
Parallel Computing," ARPA Order No. 7330. Work furnished in connection with the research is provided
under prime contract MDA972-90.C-0035 issued by DARPA/CMO to Carnegie Mellon University and
under its subcontract No. 334918-58792 with Networks Systems Corporation.

The views and conclusions contained in this document am those of the author and should not be
intrpreted as representing the official policies, either expressed or implied, of Intel, DARPA or the U.S.
goveunment.

44

.5

S

Keywrds Debgge, cmpilr, aralelim, istibwe meory optmiztio

S••i'ýegie School of Computer Science

Accetiio'i Fof

DOCTORAL THESIS NTIS CRA&M

in the field of L) IC rAS

Computer Science U.,',,,o,..ed

Source-level Debugging of D,..,bo, I
Automatically Parallelized Programs Codes

j A -, i jr~a i r

ROBERT S. COHN ' sue,•d

Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

ACC•E-,E DT•C QEJA-TY Z4•?ECTED .3

'THEsI COMMflnEE cRiX DATE

nHoas COhnearfl cumi DATE

DEPARTMWOMr HEAD t0! 1qIqz. DATE

APPROVED:

DOoN DATE

Source-Level Debugging of
Automatically Parallelized
Programs

Robert Cohn

Abstract

PAuUeliug compilers aulouatically anslaie a sequential progrm into a parallel pro-
garm. They simplify puaflel •s•pamSing by fneemg de usae fnom the need wo consider
the detaW o(the parallel achitecture and the pae decomp im. A source-level
debugger for automatically peralielized programs hides the parallelism, frm the user by
providig the illusion dtt the original sequential program is exectang.

To provide a source-level view, a debugger has two tasks. The first task i to make it
appear that programs execute operations in source order. To exploit parallelism, compil-
ers relax the ordering consmints implied by the semantics of the source language. As a
resul operations are not executed in source order and when a user is debugging a pro-
gram, it may appear that variables are updated out of order. Sequential languages and
languages with explicit parallelism share this problem. Dynamic order restoration is a
method for making it appear that operations are executed in source order.

The second task is to hide the decomposition of data and computation. A parailelizing
compiler paritions data. duplicates variabies, and changes the structre of lMps. To
provide a source-level view, the debugger must be able to map variables and statements
in the source programs to their corresponding variables and statements in the target pro-
gram. We call this structural mapping.

This thesis describes a method for implementing dynamic order restoration and struc-
tural mapping in a debugger for automatically parallelized programs. Examples are
taken from the domain of loop-based parallelism.

IlSOU E LEVEL DEiUO•iN OF AUTOMA•lIAMY PARALLELID COODE

op

soUMacur LEEL L OUUGO AuTamouxca.yU P*AP-LLLS COM IV

Acknowledgments

I would like to thank my advisos Thomas Gross and H. T. Kung. Without Thomas' sup-
poat and acimical feedback I could not have finished this thesis I am grateful to Kung
for askind the tough questions that kept my work honest.

I would als like to thak the members of my thesis commitee. My diswussions with
Bernd Bruegge improved the technical content and presentation of the thesis and David
Padua gave me a valuable outside penpective on my wok.

I would like to thank my friends at CMU for making my time here so enjoyable. Their
friendship and support, especially in the final mouths of thesis was a great help. Special
thanks go to Michael Hemy, who carefully read my thesis.

I would like to thank my brother Richard. who brought me to CMU originally, and also
my parents and sister.

SOURCX LEVEL DOEMGGIG OF AUTOMAltALLY PARALLE.IEND CODE V

vi SOUR=c LEVEL OEUIG0NG OF AJTOIMI *ALLY PMRALLEUSD COMt

Table of Contents

CHAPTER 1 Introduction 1
1.1 Debugging issues an exampie debugging session 2

1.2 The semntic gp between programming models and architectures 5

13 Ova-iewofthe qlroach 7

1.4 Related work 8

1.5 This presentation 10

CHAPTER 2 Background 13
2.1 Sequential and parallel programming models 13

2.2 Paallelizing compiler 14

2.3 Semantics of source level debugging 15

2.4 Summary 22

CHAPTER 3 Approach 23
3.1 Problemscope 23

3.2 What a debugger for parallelization must do 24

3.3 Debugger methodology 28

3.4 Summary 30

CHAPTER 4 The thread splitting transformation 31
4.1 The thread splitting transformation 32

42 The D fumction for thread splitting 40

4.3 Parallel execution while debugging 45

4.4 Effiency 55

4.5 Related work 56

4.6 Summary 58

CHAPTER 5 Distribution transformations 59
5.1 Parallelizingcompilers 60

52 Domain description 61

5.3 Basic loop iteration distribution 62

5.4 o 73

VII SOUICE LEVEL DEBUGGING OF AUTOMATICALLY PARALLELIED COOE

5.5 DIadltaslbutko 77

5.6 Cyclic itdia disltributioms 82

5.7 Summary 87

CHAPT 6 A debugger for a compiler with block and cyclic distributions 89
6.1 Mat multiply 89

6.2 Compilato 92

6.3 C .1c m ltebger imem~r 97
6.4 Debugger 99

6.5 Pefowmance of block and cyclic distributions when debugging 103

6.6 Summary 106

CHAPTER 7 Limitations of thread splitting 107
7.1 Data dependent and independent assignments 108

7.2 Why programs with dam independent assignments can be less efficient 109
7.3 Generatingapprogram 112

7.4 Estimming the overhead of data indepeent assignments 113

7.5 Summary 118

CHAPTER 8 Conclusions 121
8.1 Debuggability ofdistributions 121

8.2 Building debuggers 122

8.3 Contributions 122

8A Futmur woik 123

SOMME LEVIEL DEUGWN OF AIJTOUATICt .Y PARALLROm COOE viii

CHAPTER Introducton

Programming parallel machines is much more difficult than programming sequential
machines. Writing a parallel program requires that the programmer divide the computa-
tion among a set of processors so that the load is equally balanced, add synchronization
if the target architecture is a shared memory machine, and add communication if the tar-
get is a distributed memory machine. Writing a program that is optimized for a paricu-

tar architecture makes these tasks especially difficult.

Parallel program generators, also called parallelizing compilers, can ease the program-
mer's burden by automating some or all of this work. Some compilers provide a pr-
graming model that allows the programmer to express the algorithm in a manner that
is independent of the number of processes; the compiler decides how to best distribute
the computation. For distributed memory machines, compilers can provide a shared
memory pogramming model and automatically distribute data.

Compilers may make writing programs easier but do not solve the whole problem-
coding is just one step in creating a new program. In particular, debugging can be a very
time consuming and tedious process. Debugging an automatically parallelized program
is difficult because the user did not write the target program that actually executes.
Understanding how the program works would require that the user know all the details
of the parallelization that the compiler was trying to bide.

My thesis is that a d*ebugger for automatically generated parallel programs can provide a
sequential view of parallel execution. In other words, paralelizing compilers can have
sotuce-level debuggers [Pineo 91][Coim 911. The user can set breakpoints and inspect
variables as if they are debugging their source program, even though a parallelized pro-
gram is executing.

SOURCE4.EVEL OEUE,•GOl OF AUTOMAliALLY PARALLE.UZD PROGRAMS 1

The M of the dapter is organized a follow& In Section 1.1, we illusama some of the
isues i source-klvel debugging with an examplet A description of the various pro-
grunming and machine models employed for pulolel machines and their impact on
debugging can be fomnd in Section 1.2. Section 1.3 inizoduces the approac of this the-
sis for building debuggers. Section 1.4 discusses soaw related work, and Section 1.5
outlines the presentation of the tesi.

1.1 Debugging issues: an example debugging session

Them is a wide specum of progral ming models and machine arhitecnusm Program-
ming models and atrhitectmu range from sequential to MIMD pmallel and from shared
to distibuted memory. Each combinition of progrmnming model and architecuire has
different requirements for source-level debugging. To introduce the main issues in
implementing souroclevel debugging. we will use a simple example where the pro-
gramming model is sequential and the actual machine is a MIMD, distributed memory
machine.

FIGURE 1-I depicts a sequential program that initializes all the elements of the array A
to I and a two processor parallel program generated by a compiler. In the parallel pro-
gram Vcessar 0 executes all the even iterations of the original loop and processor I
execuVA all the odd iterations. On a distributed memory machine, the data must be par-
titioied. For this program, processor 0 has all the elements of A with even indexes and
processo 1 has all the elements of A with odd indexes.

The main issues that we addrew in dus thesis are setting breakpuin examining and
modifying variable and reporting the cutoet location of the program counter in the
program. We use the above proram to give examples of the problems associated with
these issues Assume that the user starts execution of the program and after some time,
the interupts the program. As depicted in FIGURE 1-2, processor 0 is executing the
loop control of the for statement and processor 1 is executing the body of the loop. In
the figure, the stop signs indicate the source lines that each processor will execute next.
The debugger must report one statement in the source rogram as being the currnt
location. To determine this, the debugger must know the relationship between lines in
the source program and lines in the parallel program. In this example, the correspon-
dence is simple, but it can be complicated when the. compiler applies transformations
that insert and delete lines and restu the program.

Next, the user tries to inspect the value of array element A 121. The array A has been
divided into two smaller arrays and, as shown in FIGURE 1-3. Array element A (21
resides on processor 0 and is called AO E 13 ; the debugger must know the relationship
between data in the source program and data in the target program. This relationship is
not necessarily static. For example, each processor has its own copy of the loop counter
L and choosing which copy is the coxrrect one to display is dependent on the state of the
program.

Before actually displaying the value, the debugger must be sure that the value that is
currently in memory is the same one the user would have seen if the source program
were executing. If processm 0 has executed oae iteration of its loop, and processor 1 has
executed three iterations, then the memory of each processor would appear as is shown

2 SOSMCEI4-VEIL DEBUGGIG OF AUTOMAnCALLY PARALLEULED PROGRAM

flbug lghus m yi dabugin seso

FIGURE 1-1 SequentWIa progrnrn and its pwe" version

Sequential source program

int i;
int A(30];
for (i = 0; i < 30; i+÷)(

Afi] 1;

Processor 0 Processor I
int iO; int il;
int A0(15]; int A1(15];
for (iO= 0; iO < 30; iO+=2)(for (il= 1; il < 30; il*=2)(

AO(iO/21 = 1; Altil/2] = 1;
} I

FIGURE 1-2 When the user aborts the program. processor 0 is stopped at the for statement and
processor 1 is executing the assigMnenL

Processor 0 Processor I
int iO; int il;
fort A0[151; i=t A1(15=;
for (i0 = 0; iO < 30; i+2(for (ii = 1; ii < 30; il+=2)(

A0[i0/21 = 1; A) Alil/2] = 1;

in FIGURE 1-4. If we merged both memories to prxluce the memory of the source pro-
gram, then it would contain the values as shown in the right side of the figure. This state
clearly cannot be the result of execution of the sequential program. The loop in the
source program walks through the array A sequentially, but array element A C 3] has
been initialized while element A (21 has not. The debugger must detect when such an
inconsistency has occurred so that it does not give the user any misleading information.

SOURCE4LEVEL DEBUGGING OF AUTOMAtICALLY PARALLE, PROGRAMS 3

FIGURE 1-3 The relationshp of names of vuiabale in the source and target prograns

Processor 0
Memory

sequmliaA 01 A(prale po'
A[0] AI(0]

A161 ~~31

ii
sequentialnpgop Peo cemom I co1clue that(A(l] Meoy AltO

A(31 Al(l)
A(5] .. A1(21
A(71 A1(31

L J i

In this case, telling the user that A C21 has a value of 0and A E31 has avalue of I is
miseaing because the programmer might hicorrectly conclude that the program failed
to initialize element A (21. In this situation, wne possible response for the debugger
couldbe thtA(2 hasavalueof0andthatA(31 andAE51 cannotbe examined.

FIGURE 1-4 The state of memory after processor 0 has executed 1 iteration and processor 1 has
xecuted 3 iterations

Processor 0 s progm
memorymemory

A(01J A[01]
A(21

Aý (0memomoryA(41
Al]I

A[6 A[21I

A(31 W 31

i]A(4] 1Proess or I A[51I
memory A(6)

A[l] A['7 1

A(51 LO
AMI

Setting breakpoints cm have similr problems. In our example, itueaion 3 of the source
progrn has already execued, but irmiou 2 has not yet executed. If the use sets a

4 SOURCE41-E•L DEBUG OF AUTOMATICALLY PARALLE.ID PRG 3RAW

The dm o 9W btween pmog.ang moden ad wchlotree

beaPkpoint in the loop, the program reaches the breakpouit for iterations 2 and 4 has
already na put the bmakpoint for iteration 3. In this situation, the debugger should
wan the user that some breakpoint might be skipped. When breapouits occur, the
debugger should present them to the user in the order that they would have occured in
the sequential program, even tmough they may occur out of soure order.

We causy the problems described above int two categorie& dynamic onrer resora-
dm nd md•nwawd mapping. These an the fundamental services that a debugger for par-
alializd program must provide. This tbesi describes how to implement these services.

Dynam ordr resoration emmes that the observabe order of execution of operations
is the same as in the source prgram If the semantics of the source language imply that
operation A is executed before operation B, and in the target program operation A can
be executed before or after operation 13, then a debugger that does dynamic order resto-
ration behaves as if operation A is alays executed before B.

Parallelizing compilers relax the ordering constraints implied by the semantics of the
source language to increase parallelism. The semantics of a sequential program imply
that only one operation at a time is executed; a compiler converts a sequential program
into a parallel program where mom than one operation can be executed simultaneously
Compilers remove ordering consuaints even when the source language has explicit par-
allelism. We explain this in more detail in Section 12.

If operations are executed out of source order, then as described in the example of FIG-
URE 1-4, variables may be updated out of order. A debugger that does dynamic order
restoration must make it appear that they are updated in order. This may include pre-
venting the user from examining variables at some points in the program. Another pos-
sible result of out of order execution is that breakpoints may not occur in source order.
The debugger must present the breakpoints to the user in source order.

SWwui mapping relates the source lines and variable names in the source and target
programs. In the previous example, determining that array element A C 31 resides in the
memory of processor I and that it is called l (1] is strctural mapping.

Structural mapping is also necessary in debuggers for sequential machines; relating
source code and machine code is an example. In addition, programs can be restructured
by optimizing compilers. Dynamic order restoration is unique to debuggers for parallel-
izing compilers and requires new mechanisms; the debugger must be able to determine
the order in which operations executed. The natur of dynamically reordered operations
also provides for flexibility that is not present for sequential programs. If a constraint is
removed and two operations can occur in order or out of order, then the debugger can
coustrain execution so dh they occur in order.

1.2 The semantic gap between programming models
and architectures

The difculty of source-level debugging depends upon the gap between the program-
mmrig model and the code that execute on the parallel machine. This is in tum depen-

SOURCE,4.EVWL DIUGGiNG OF AUTOMATICALLY PARALLELU2D PROGRAMS 5

dent a the smandcs ot the soure languase, the arciftecuxe of dte pmallel machine
mad the way the compiler implemens the source language on the machine. All compil-
ers ncre the need for sructu•• l mapping. Some, but not all. need dyamnic order resto-
ration, In this section, we sketch out the spectrua of programming models provided by
parallelzing compilers and discuss what problems an introduced when they am imple-
memed on differmt architectures.

The progrmming model that the soume language allows can be very ditfeet frm the
mrhiectmue. From a debugging mdpohic the two most impormat components of the
model ar the user view of processm and m y.

In a progimnming model with a low level of abstraction, the user must explicitly write a
progran for each processor in the system. Compilers can lift the level of absaction by
adding conscts that directly support parallelism. The cobogiatcoond and doall
am two examples. The semantics of these construct• is that there is only one thread at
the beginning of the construct, one thrad is spawned to execute each claus in the
cobegai~eco or each iteation of the doall. After all the threads have completed
their assigned work, there is a join and only one thread continues execution. Data paral-
lel operatons an similar, them is one thread of control before the operation begins, the
data pralle operation is executed in parallel and them is one dhea after the operation
completes. These constru hide the arhitecture of the paralel machine and the details
of the mapping. The user does noc need to know how many processors than am
whether the architcnus is SIMD or MId., and does not need to decide which opera-
tios ame executed on each processor. The programming model can be moved one step
frther from the architecture by providing a sequential model of computation. In this
case, the user does not specify the paraellist--te compiler automatically detects it.

The user view of memory in programming models ranges from distributed memory.
where a procesm may only access data in its local memory, to shared memory, where a
processor may access all data uniformly. For progranming models with distributed
memory, dat can only be moved between processors when the originating processor
sends the data and the desination processor receives it. Other systems provide program-
ming models that are a hybrid; data can be fetched from another processor's memory
without the owner sending it, or data can be put in another processors's memory without
the esnation processo receiving it.

A semantic gap exists when the programming model doesn't match the architecture.
The rest of this section explains which combinations of programming models and archi-
tectures require swturdal mapping and dynamic order restoratio. If the compiler pro-
vides a shared memory model on a distributed memory machine, then the debugger
must also provide the illusion tha there is a single address space by translating the var-
able names and army subscipts in the source program to names and subscripts in the
parallel progm.

There is a close match between a SIMD architecture and languages with data parallel
operations; the basic operations of the machine are element-wise. Executing a sequen-
tial language or a language with parallel loops on a SIMD machine requires using the
vectoriation techniques of strip mining, loop distributio, etc. These techniques intro-
duce some structural changes but since the target architecture has a single thread of cou-
tal, no dynamic ord rerstoraion is required.

6 IOURCE-LEVEL DEUUGIEG OF AUTOMATICALLY PARALLEL]D PROGRAM

Oyuvew of the approeh

A MIMD architecut aeon the need for order resatadon. If a programming moded
with explici processes is nplemented on a MIMD machine, ten there is little differ-

cam between ft programming model and arcdiec•ne. However, if a resricted paallel
model, sac as pullel loopsiPoly 89sg][m 89]jMdht 90llSussma 911
or dW paraW model(ChamrJee 91](Fomr d 92]fKnobe 901 is implemented on a
MIMD machine, then there is a potential for dynamic reordering to occur, depending on
the imp lation. A straigtorwaid, but inefflcien way to implement a parallel loop
is 10 spawn off processes at the beguming o ithe loop, have each loop execu some of
the iunim, mid then kill all but a mos' process aflr the loop terminams. If a parllel
loop is implemented in this manner, the semantics of the soure language and the actual
execudon ae a close madh. However, most compilers use a mcre efficient method for
implemenng a parallel loop. All the processes execute the sequential code outside the
paralel loop, each process executes some of the iM s of the loop, and all processes
continue execution after the loop terminates(Booth 86][Cyuon 90][Cbauerjee
911]Tseng 89]. The processes do not necessarily synchrnize at the beginning or end of
the loop, unless data dependences require iL This implementation is more efficient
because the program does not need to spawn and kill processes, and the lack of barrier
synchronizanions can induce idle Uime. With such an implementation, it is possible for
one proc:ssor to be executing code before the beginning of the loop while another pro-
cessor is executing iterations of the loop. If the program were to stop in that stat, the
order of execution would violate the semantics of the language, which requires dynamic
order restoration.

Executing data parallel operations on a MIMD machine is similr to executing parallel
loops; if a barrier synchronization is done before and after every data llel operabon,
then the semantics of the language and the actual execution are a close match. If the syn-
chroninaion is not needed, then it can be removed to make the progran mome effcienL
When the synchronization is removed, two processors can be executing diffeent opera-
tions at the same time[Chatterjee 91], which violates the semantics and creates a need
for dynamic order restoration in the debugger.

To summarize, sttural Mapping is always needed. The debugger must associate state-
ments in the source and target programs. If the compiler provides a shared memory
model on a distributed memory machine, then the debugger must also provide that
model. When the target program does not obey the ordering constraints of the source
proa, as is the cae for data parallel, parallel loops, and sequential models imple-
mented on MIMD machines, then the debugger must also provide dynamic order restD-
ration.

The biggest gap between source program and execution occurs when a single address
space, sequential program is executed on a distributed memory MMID machine. This is
the main focus of our thesis. However, the methods explained in the thesis apply even
when the programming model is not sequential with a single address space.

1.3 Overview of the approach

The principal isight of our approach is that the structural aspects of parallelization can
be expressed in the context of a program which has not been parallelized. For example.
in FIGURE 1-5 we have writtem the sequential program in FIGURE I-I as another

SOMM-LEAM OIUGGIG OF AJTOUA UCLYV PARAU.EUUM AOG U 7

seqpmdai popr where tn distributio of L imo two sualle arrays ad the dup~ a-

don of dhe loop counte 1. is expoed but the parallelism is nm visible.

FIGURE 14 A reuucturd version of the sequential program in FIGURE 1-1.

int i0, il;
int AOU15],A115] ;
for (10 a 0,il = 1; J0 < 30; 10 ÷a2,il+*2)(

A0O(±/2J a 1;
AlCil/21 a 1;

Out methodology for constructing debuggers separtes the dynamic ordering and struc-
tural mapping issues by breaking the paralleiaion transfomatdon of compilation into
two phases. Instad of translating the program directly from sequential to prallel. as is
depicted in the top of FIGURE 1-6, the compiler uses the 2 phase process shown in the
bottom of FIGURE 1-6. The Art phase is called distribution and exposes the mstruc-
ing necessay for psialelizaian. It is a sequmtial to sequential pimWgn transformation.
and its output is the 0 program. The second phase is a parllelizadon transformation
called thread sptining and its output is the paallel w program. Thread splitting is a sim-
pie mad geneal tuansformation which extracts multi threads of cmtrol ftom a single
oae. A debugger is constucted by building a debugger for distribution and another
debugger for thread splitting. The debugger for the original transformation can then be
bilt by composing the two debuggers. The soume-level for the debugger for the disti-
bution tbasfornation is the a program aid the source-level for the thnead splitting
debugger is the P PrOgrUn

Strucaural mapping is only done is the debugger for distribution. Dynamic order resuxa-
dion is only done in the debugger fat thread splitting. To implemea a different paallel-
izing transformation, we change the distribution, but threal splitting is the same. Since
thread splitting is the only tranformation that itrodces parallizaion in the system.
its debugger can be mused for all psailelizing compifluL In effect, the prt of twe
debugger tht mang• parallelisa isoaddd and is independent of the parallelizing
trsformation that a compiler uses.

1.4 Related work

The two main features that we presen in parallel program debugging but ae nam in
sequential program debugging we n Cdernainiosm and the extra information related to
Multiple threads of control. No deteinism makes debugging difficult because incor-
rect behavior might not be reproducible. Multiple threads of control make debugging
more dUiu became the user must filter through extra information when debugging
(e.g. bteakpoints can occur on mone th•a one processor at the mme time).

S OUIcE-LEWL DEBUGGING OF AJTOMATICALLY PAR 'Lk ý PROGRAMS

Ovuview a iappm h

RGURE 14 Conpier ra'awoamgon from s.qu..lu to parsil

parallelization

sequentia

spbution slitting E

To solve the first problem, researchers have worked on systems to detect nondetermin-
ism when it is an undesirable property of a program and to control it when it is neces-
say. Detecting ,o, k -- usually relies on a combination of static analysis of
programs and run-time checking [Netzer 91][Cailaan 90][EmrAh 89][Wang
90][Dinning 91]. These tools are intended for shared memory machines and check for
unsync nized sses to saned variables. In our work. we assume that the program
hIs been automatically perallelized. so nondeterminism of the type detected by these
debugging tools cannot occur if the compiler is correcL It is possible however, that the
user can mistakenly direct the compiler to paillelize a loop that cannot be correctly
executed in parallel, which could create a nondetemtic program. Nothing prevents
the user from employing other tools in conjunction with a source-level debugger in this
case. Once all synchronizadon bugs have been removed, source-level debugging can be
used.

If a program is intentionally nondeterministic, then debugging is difficult because the
problem may not be reproducible when using the debugger. To solve this problem,
reseA ches are studying how to make the behavior reproducible, either by restricting
execution so that it is reproducible, debugging from traces of a single run, or a combina-
"tion of both[Forin 881 WMiller 881(Leblanc 8][Tolmach 91][Bacon 91J. With a
MMID execution model, many different possible interleavings of instruction executions
are possible even for a program with deerministic resuWts. This cm be viewed as a type
of nondeterminism since the interleaving varies from execution to execution. By provid-
ing a source view of executio, we ame in effect choosing a single interleaving as the
cora one. In this respect our work is similar to Toimach [Tolmach 91 , who makes a
program deterministic by impoung a total ordering on access to shared objects, but
optimistically allows the progran to un in parallel. Roil back, or restoring the program
to a previous stae, is used when the optimistic parallel execution violates the chosen

SOURCE-LEVEL DEBUGGNG OF AUTOMAliCALJY PARAL.LEUZD PROGRAMS 9

ordering. Our work difer because we give the appearance of a total ordering of acs8
talob4Mects In the ptWp but do not necessarily restict execution to the total order-
ing. If Tolmacit's method were used to impose a total orderin for all objects. that
could not be any parallelism during execuocian.

1the second famv that distinguishes parullel pbugram debugging from sequential
debugging is dhe eMam infarmdto. related to having multiple tbreacs of control. For
example, a sequential machie can only have one bre~qpoiM ata dine, but om a parallel

unchie. every processor cnhit a difeetm breakpoift at the same time. Parallel
ahiecan also generate man information in te same tme than sequential

mahines. To solve this piublm, researdier have studied ways to filter arnd present the
Information that is presented to the am~ Visualization and aurulizmiou have bees wied
to graphically present information about the tms of processongicahei 911 (Baiey
88lzranik 91](FnmncoW 911. Another way to reduce the amount of information that a
Wam must see is to test for high level events; assciated with dfe behavior of the prograni
rather than low level events such as source line breakpoints. Reseachers have studied
bow to detect and report events, promptly without disturbng the state of the system
[Bruegge 91][Aral 88][Bmts 831.

By providing a sequential view% we also filter out unnecesuaty infoenation. Communi-
cation uand wecnmztina compiler generated and am not relevant to debugging
and am not visible to the user. Instead of multiple program countems them is a single
program counter. We replace the parallel prora with an abstraction the source pro-

The work that is the most closely related so, ours athe debugging of optinzad code
(Hennesy 82llCoppmam 90](Coutmn 881(ZelweWe 84] aid the debugging of par-
allelized code by Gupta [Gupta 881 and Pineo Mmne 91). Debugging optimized code
as similar because it requires structural mapping. however dynamic order restoeioo is
not present in debuggers ftr optimized code because theme is no parallelism. The differ-
euce between our work and previous work on debugging paralleLized code is explained
in detail in CHAPTrM 4.

An alternative to the approach we pursue for debugging parallelized programns is to
compile the sequential source program that the user writes for a single processoc. and
use conventionalsingle; proessor debugging tool(Cft 90][lbeg 891. This approach
does not work when the execution emavitument on the sequential and parallel machines
am not identical, when the progra uses more menory than can be accssed by a single
processor and when the program runs too slowly on a single processo.

Another qipprec is a compromise between providing source-level, debugging and mak-
ing the user debug die parallel priogram. A debugger can do structural mapping, so that
the ame can use line numbers aid varbiaes nmes from the source program, but stll
expose the parallelism [Cft 901.

1.5 This presentation

In QIAPTE 2, we give some baitcgrouad inflormation on debuggers and parallelizing
compilems We define a notatio for specifying debuiggers and deMn correctness for a

100 bOR CE-LEW DU3JGWNG OF NJTOUAnCAL&Y PARAIJ.ELIE PROGRAM

This -enuh

uouce-level debugger. CHMEIRT 3 defins the scope of the pbolbn we are solving
md oudines the overall stucture of a cnmpia mad debugger baed on lnead spliting.
CHAPTER 4 dcribes tde •head stIiig mduastm and its debugg. CHAPTER
5 describes dlsibutim for loop based eratlelia and ias debugsger CHAPTER 6 wiv-
guow the in tkm in the prvious two chbqers to pesent a compes debugger for a

copi bmUn does block and cyclic distributions of diam and conapuatlom. CHAPTER 7
idetifies the limitation of die tiead splitting apptoac. Chaper a swumatres the trb-
sik and identifies coambutiou and fume work.

oUI•-LE4L OUEWGGWING OF AUTOMATICALLY PARAUlJB PROGRAMS 1

12mSucKLEVM ELOSSGOEG OF AUOC'IAlUCALY PARAULLELS PROGRAMS

CHAPTER 2 Background

"Tis chapter provides some backgrortm for our work. In Section 2. 1, we describe the
execution models for sequential and parallel programs. Section 2.2 describes the stmuc-
ure of a pwaaelizing compiler. Section 2.3 introduces the notation that we use to spec-
ify debuggers and defines correct behavior for source-level debugging. The notation is
used throughout the rest of the thesis.

2.1 Sequential and parallel programming models

The single processor language used in examples in this thesis is the C language; the
results apply for any conventional imperative language such as FORTRAN or Pascal.
Programs with pointers, procedure call, and recursion are allowed. Program flow graphs
must be structured. That is, there cannot be a jump into the middle of a loop. Baker[-
Baker 77] describes a method for generating stnrctuze programs from a reducible flow
graph and any flow graph can be made reducible by duplicating code[Aho 861.

The model of execution is a distributed memory MIMD computer. Processor names,
also called processor indexes, are n dimensional vectors. The dimensionality n is cho-
sen to match the topology of the int network. Parallel programs ar
expressed as a collection of sequential programs, one program per processor. One pro-
cess is created on each processor at the start of the program, no processes can be created
after that. The programmer assimes that the processes execute asynchronously on sepa-
rate processors; no assumptions can be made about the relative progress of execution of
processes except for the explicit synchronization.

The topology and connectivity of the process army are unimpolrant for debugging.
Our examples use linear processor arys and 2 dimensional tor with neast neighbor
conmections. The sequential language is augmented with primitives for communication.

SOURCE4-EVEL DEBUGGING OF AUTOMATICALLY PARALLEWED PROGRAMS 13

Backmund

Cammimicark. must be via sesd and receive stement that have blocking semam-
tk:r; thi is, a send o a prcessr with a full buffer or receive frm a processor ht has
not sent the doa yet causes the processor to stall until cemmunic aotion can be
Completed. The amunt of buffering for communication does wt affect debugging.

In ur examples, we use send arid receive st ts that move individual data
hemes. A send stae•ment las two argumns, a dist•ce vector and a value to be sent.
The receive swenant also has two argument, a distan•e vector ard a place to sor the
value received. A disMace vector is an offset which cm be added to the index ot the pro-
C executing the mmuniticoa action to obtain the index of the othr processor in
the --mmunica action. On a 2D armay with a NEWS grid (North, East. West, and
South), the processor to the west of processor (L, j) is prcessor (iL j-1), so an offset of
(0,-I) is used 1osendto die west•ad an offset of (0,1) is used to receive fm the east. If
we want to send to the east, then the sender uses an offset of (0,I) and die receiver uses
an offset of (0,-I). The pocesor ID the north of processor (i, j) is processor (i+l, j). If
we want send data to the north, the sender uses an offset of (1,0) and the receiver uses an
offset of (-1,0). If a processor army supp communication to non-neighboring proces-
son, then a distance vector can have a magnitde greater than one.

A mod finction is applied to the result of adding the processor index and distance to
"wrap-around" processor indexes. For example, if a 1-dimensional army has 5 proces-
somr, and processor 0 executes a send with a distance of (-1), then it is sent to processor
4.

FN convenience in writing programs, we also use senda and receiven which are
variants of send and receive. These constructs have the same semantics as ,end
aid receive except that they do not use the wrap-arotud connections of the processor
amay. If the processor index plus the distance would go outside the bounds of the pro-
cessor arwy, then the communicadon action is not executed. Reusing our previous
example, if processor 0 executes a send- with a distance of (-4), the sendA is not exe-
cuted. The sendu and receive am usef when we want the processors on Lhe ends
of the arMy to behave difrently from the rest of the processors.

2.2 Pamrlelizing compiler

"The psallelizing compiler, or parallel program generator, takes a program writte in
some high level language and outputs a parallel program that can be executed on a par-
alsl machine.

A typial paallelizing compiler has three phases: resmicturing, parailelization. and sin-
gle. processor compilation. The fim phase is reivmsl-.-br, which consists of source to
source transformations that change the structure of progiun constructs like loops and
conditionals. Both the input and output am sequential propgras. Loop interchange and
strip miniing[Padua 861 ae some examples of restructuring transfo. Restrctur-
ing is used to increase the locality of reference, increase the potential for parallelism,
and reduce the commmicat

The next phase is paraleization, where the opertions and data of the program ae
mapped ID processors to padalletze execution. The input is a single program, with either

IA aOUJRCE4DEL DEJQI OF AUTOMAflCALLY PARALLEUZED PAoMA

Senulsa of source level debuggft

sequential semanc or possibly paallel constructs like doal. and cobegii, and the
"outpott is a parallel target rogpm that implements a mapping of work to processors.
The output can be either a single programn which can be used for all processors or multi-
pie pmgrams, where each processor gets its own program. Most compilers emit a single

If the input to puullelization has a otal or a sequential loop construct the output is a
progra where each process executes its assigned set of iterations of the loop. As an
example, the sequential program in FIGURE 1-1 is the input to parallelization and the
paallel program below it is the outpuL

There are two features of the parawlelization phase that am important to the remt of this
work. Fuis the source and target of parallelization perform the same computationso no
changes to the algorithm are made. Second, the parallelization phase preserves the order
of execution of operations in a single thread. In parallelizadion, we map operations to
procesors, but we do not change the computation or the order of execution of opera-
tions.

The final phase is single processor compilation. The tool chain for single processor
compilation consists of a compiler, assembler, and linker. The :esult of single processor
compilation is an executable which can be loaded into the memory of a processor.

The result of each of the phases of compilation is a version of a program with the same
meaning as the source, but possibly in a different representation. The source version is a
program written in a high-level language with parallel constructs. After parallelization,
the result is a program that is still in a nigh-level language, but with the distribuion
explicit. After single processor compilation, the result is a machine language version.
All of these versions of the programs have the same meaning, but only one is directly
executable by the processor itself.

2.3 Semantics of source level debugging

In this section, we introduce a notation to describe debuggers, and use it to define the
correct behavior of a debugger for sequential programs. This notation is used to define
debuggers in the rest of the thesis. A debugger is a tool that can be used to execute a
program, inspect and modify its state, and set breakpoints. A debugger is called source-

leveL when it executes the machine language version of a program, but makes it appear
that the source version of the program is executing.

Section 2.3.1 describes the basic functionality of a debugger and the notation used to
define debuggers. In Section 2.3.2, we define correct behavior for a source level debug-
ger. We don't need to introduce parallelism to define the behavior of a source-level
debugger so to simplify the discussion, the definitions in Section 2.3.1 and Section 2.3.2
only apply to a debugger for a sequential program running on a sequential machine. In
Section 2.3.3, we extend the notation to parallel programs and machines. Section 2.3.4
describes bow to compos debuggers.

SOURC64.W ODEDUGGN OF AUTOMlYXC Y PARALLEUD PROGRAMS 15

2W1 Debugger notation
"Tue basic fuictiouality of a debugger includes the ability to set bA ts examine
variables modify variables, and report the curent locatoiL Tbe commands for these
aions me: set, .eamine, where, and run. The set command changes the value
of a variable. Its takes two agunmen the name of the variable and the value to change
it to. The eamaine command inspects the values of variables. Its argument is the name
of the vaiable and the debugger displays its value. MWe V= conmand executes the pro-
gai until a breakpoint or exception is reaced or until the pograo n trmiinafs. The

u= commad takes two zgmAs the progrin to be executed and a list of break-
poins. A prgraog may be single stepped by nmning with a breakpoint list of the special
token AL, 11. The wrwe command determines the curent location in the source pro-
gram, which is the next statement to be executed. The command doesn't take any argu-
mats, and the debugger displays a unique label that identifies the Statem.UL For a high-
level progm, the label can be thought of as a line number in the program.Al of the
cwnmands implicitly take the program state a3 an argument.

A program state consists of the label of the statement about to be executed and the val-
ues of user variables. The part of the state that contains the values of variables can be
thought of as a binding between names and values. If the variable is a scalar variable,
the name is just an identifer. If the variable is an array element, then the name is a an
identifier and army subscripts. Examining a variable looks up the value bound to the
name, while modifying a variable replaces a binding of a name and value with a new
one.

Rather than specify the entire debugger, which includes a user interface and other extra-
neous details, we define a kenm! that processes our small set of commands. We call 'his

the debugger function or D function. The functionality of a D function is:

D.:
Dsutak x Command x State x Program x Bpts x VarName x VarValue --

State I VarValue I Location

The Command argument is any one of the commands described previously. The rest of

the arguments for the D function are arguments for the particular command. Some com-

mands do not need all the arguments for the D function (e.g. run takes a program state,
pogram, and breakpoint list but does not need a variable name or value). In that case, a

dummy value of L is used for the unnecessary argunents (e.g.

D(. run, s, p, (3), .L L)). The Dstack makes it possible to compose debuggers; we

delay an explanation of this until Section 2.3.4. The type of the value returned by a D
function depends on the command Both the sot and run commands create new pro-

gram states. The examine command returns a VarValue, the value of a variable. The
wher, command reuizs the location in a progrin.

In FIGURE 2-1, we deine the behavior of a debugger with a base debugger where the

source and target programs are the same (no compilation is necessary). The base debug-
ger uses an interpreter to directly execute the program.

1 souRCE-LDIEL DEWGGNG OF AITrOMAICWALLY PARALLEUND PROGRAMS

Sammoa$ of sow" WNW debuggon

To model do behavior of the progran. it is assumed that there is an intarpeter funcion,
"I,, where IL(p, s, b) nrtain a new state that is the result of executing a pogran p in

language L on a sate s un= a bmakpoint in the list b is reached or until the program
term•iates. In the new stat, the current label and We values of any variables assiged to
by the statments executed ae changed. If the language L is the mahine code, then IL
models the behavior of the processor and the resulting sate reflecta executing mwhie
i amsic . If L is a high level Imaguage, then L a be an interprue and the resulting
stae melects executing statements of the sourc language. Most of the details of the
sanutics of the language ae orthogonal to the issues that we wish to address about
debugging. For this m•mo, all that information is hidden inside the prgram state and
the I function.

In the base debugger, the label-of fincon extracts the current label from a program
state. '[e access function is used to lookup the value of a variable in a state. The argu-
mens are a program state and the name of a variable. The update function is used to
modify the value of a variable in a smte. It takes a program state, a variable name, and a
variable value and returns a new state where the variable is bound to the new value.

FIGURE 2-1 Dellnition of the base debugger

BaseDebuggerDszct.Command,SeProgramBps,VarName, VarValue)

if (Command =- 'whbe") {
return label-of(State)

if (Command - "examine")
return access(State, VarName)

if (Command -= "set") {
return updatee(State VarName, VarValue)

if (Command - "run")
return IL(Program, Stae, Bpts)

2.3.2 Correctness of soume-level debuggers

For correcties, we require that the behavior observable by the user be the same
whether the base debugger of FIGURE 2-1 is used with a program p written in lan-
guage L, or a source-level debugger is used with a compiled version of the program p.

When defining correcmess, we can't simply require that all the input/output behavior of
the base debugger function and the source-level debugger function be the same. While
the meaning of the two programs are the same, they are different versions and hence the
program states are diffet..

To decide if two debuggers provide equivalent behavior, we require that if we start with
progrun states that am indistinguishable when using debugger functions to examine

SOR1CE4-EVEL DEBUGGING OF AUTOMATICALLY PARALLELIZED PROGRAMS 17

them (using whbre and .zanin. cnmmands) then executing a command that modi-
An die pruam soa& (rui and met) also leads to W dstin Programn sas.

first Introduce definitions for consistencyand conoruency to define conectness. Cowuir-
tency is used to compare program states.

Delinikon 2-1 Two dtats s and s2 are cones•w for debuggers D, and D2
(conslsut(s1 , j2, DI, D2)) 0:
D1(J., wher, s•,4.,.,4) = D2(1., wb e, t2,.L,.J.,) and
Vn (D 1(J. exmine, s , 1,n...)= D2(. exaane. s2,. J. n..)).
Ususfy the debuggers ae obvious fromn the context In Anis cue we onit then and just
say states s, and s2 awe consistent or cosistent(s,, s2).

If two sumes amr consistent for a pair of debuggers, then we camn distinguish the two
stales by using the debugger to examine them. We use the V because the condition on
examining variables must be true for all possible vamble names.

Now we can use dhe consistency of stues to define congruency of debuggers.

Definition 2-2 Two debuggers DO and D2 aM conOgiMwtfor program. p1 and P2
(congruent(Dj, D., p,. p2)) W.

V(:1 , s2)

Conaiszent(S1, SO) -+

Vbconsislent(D0(4.. run, s1,pl, b, L, -), D2(.., run, s2, p2, b, ., Q))

and
V (n, v) consislent(D1 (1, set, si, p,1.•. , v), D2(i., set, p,2 1 , nn,v))

We deftne two debuggers to be congruent for two particular programs if execution of
identical commands on consistent sums yields a new set of consitent stmls The two
commands for modifying staes ae r•un and set. For the z,- command, we use V
because the condition must be true for every possible set of breakpoints. For the set
command, we user because the condition must be true for every possible combination
of variable names and values.

Now dtat we have a way of comparing the behavior of debuggers, we can define correct-
ness for a source-level debugger.

Definition 2-3 A debugger function D is a correct source-level debugger for a transformation A when:

Vp
congruent(D. basedebugger, A(p), p)

where basedebugger Is the debugger defined in FIGURE 2-1. A transformation is a
function that inputs one program and outputs another program The two programs have

8 SOURCE.LEVEL DEBUGGING OF AUTONAIC.ALLY PARAULUE D PROGRAM

Semmnuie of *ow Wi delmogbgh

the wrsn meaning, but eam in dlsif repreentatlons (high-leWv language and machine
"code). In this definition, p is the source program and A(p) is tho target program.

Intuitively, a source-level debugger is conrct if its behavior while executing the target
program is the same as the behavior of the base debugger while executing the source
pmgrn. In the rest of the thesis, when we use the words correct and incorrect to
describe the behavior of a debugger, we are ompring it to the behavior of the bese
debugge. Conrect behavior has also been caled expected behavior by ZelwegaiZell-
weger 84].

Some trasfrmation change the behavior of the program so much that there cannot be
a D fuction. This problem exists for debuggers for sequential machines as well as for
parallel ones. For example, it might noi be practical to allow the user to modify vari-
ables that are part of a common sub-expression[Hennessy 82]. Examining a variable
may not be possible if a dead store (a dead store is a store to a variable that is not used
later in the program) that modifies the variable has been eliminated, and single steppmg
may not be possible if an optimization removes an "unnecessary" loop. An example
from parallelization is when a compiler transforms a sequential algorithm that computes
the stm of an army into a parallel one which does the operations in a different order and
doesn't compite the same intermediate values.

Just because one aspect of the program is not observable by the debugger does not mean
that a debugger cannot be used at all. If a variable cannot be examined because a dead
snore was eliminated, then the debugger should not allow the user to inspect the van-
able; inspecting other variables should not be affected. Furthermore, the debugger
should never give misleading information. The debugger should either behave the same
as a correct source-level debugger or it should indicate to the user that correct behavior
is not possible. Zellweger calls this truthful behavior. We call transformations that have
a correct source-level debuggerfibUy debuggable and transfornations that do not par-
tially debuggable.

2.3.3 Extending the debugger definition to paralle programs

Only a small number of changes are needed to extend the notation from the previous
sections to cover parallel machines as well. The state for a parallel program is a set of
states, one for each processor. Each state contains the current point in the program for
the prmcessor and the value of that processor's variables. A program is a set of single
processor programs. A D function for a parallel program is a set of D functions for sin-
gle processors. When a debugger for a parallel program must perform an action on a
processor, it selects the debugger and state for that processor from the sets. For example,
if the debugger wants to examine the value of a variable in processor 3, it extracts the
stare of the third processor from the set of states, extacts the debugger for processor 3
from the set of debuggers, and applies the debugger to that state to lookup the value of
the variable requested. If the debugging action modifies a state, as is done by the set
command, the resulting state is merged back in to the set of states that is considered the
current stat.

SOURCE-LEVEL OEBUGG1NG OF AMTOMAlICALLY PARALLELIZE PROGRAMS 19

2.3. Composog D ARUntOns
V& coast=c a compiler by composing code Iransfo-6rmations; we also needi a way to
rcoIr,1pos the D fisactimu for those in Uiaiost conssruct a debugger. Vf dhe com-
piler vanlaies the code from source to target in several steps we want to build a debug-
ger for each step individually, then cosismact the debugger for the entir traisfonnadan
by putting together the debuggers, for those steps. For example, some C++ compilers
liii tronslate the C++. code to C code, then vanlate the C code in assembly code. %W~
could build a debugger for such a symse by building a debugger fEm C code, building
sandier debugger thot assumeus the sourc Level is C++ and the taget level is C, and then
put together those two debuggers to construct a new one where the source level as C++
and the targe le-vel is machine code

A stock of debuggers, comprises individual debuggers that translmt requests ftom their
sorc level to their target WMve. Requests wre passed down the stack to the machie
level and results am passed back to the top. One debugger is at a lower level than
another if it is closer to the machine level in the debugger stoc. Ihe lowest level debug-
ger is called the base debugger, which directly executes commands

Each debugger, except the base debugga, assumecs that it can use a lower level debugger
ID manipulate the target state, In effect. a debugger just translates commands to manipu-
lawe sorc-level, objects into commands to manipulate torget-level objects.

For example, if a program trasformiation replaces all occurrences, of the variable i1
with 12. then the debugger for that transfisintiou translates requests to exaniin the
variable i1 to a request to examie the variable 12 and passes on all other requests
tactanged. '[b same applies for the modifying variables. The D function for the
renaming traisformation is called d...±1±2 and can be found below. The function
first select the AmrsD function on the debugger stack. '[be function rest rtea=s

the debugger stack with the first D function removed. The function apply applies a
function to a set of arguments. It has; the same semantics as the Common Lisp(Steele
84] function of the same name. If the variable foo contains fth function bar then
apply (f oo, 1, 2,3) is the sa eas bar (1,2,3).

The firs argument of &±1....2, datack, is the debugger stack. The debugger stack is
a list of D funcuons The top of the stack is the D function tho the current D (unction
can use to manipulate its target state. Each D function peels off the top of the stack when
calling the lower level D function The new top of stack for the lower level debugger is
the D function below it in the stack. When a debugger calls a lower level debugger, it
applies the lower level debugger to a set of arguments. The first argument passed the D
ftimction as the new debugger stock with the fIrs element removed.

The lowes level debugger on the stack (the base debugger) must perform the com-
mands on the real target state; it does not pass on the commaand to a another debugger.

20 UOURZ.LEWL DEDUGGIG OF AUTOAICALL'(PARALLELE PROGRAMS

amm . eof -mm Isyal da ing

d-il ..2(dm.- ,----spMgmambp•mme, valm)

if (command - run) (
MeO apply(firu(dsmzck)je(dszwk),

n.~sopanbpts.1.)
}
if (commmnd - where) (

mem apply(ft(dCzk),s(dsack),
wheve.-.tate I II

if (command - examine)
if (name - "iI")

annuM apP (frds k)z (dstack),exn tnesItia."'J.)
else r.etin apply(fust(dstck),est(dsack),

exunme,stze.Lname..);

if (command - set)
if (name - ir")

return apply(flrsdstack)jest(dstack),
set,stateJL.,1,value)

else retm apply(firsdstack),est(dstack),
setsta•eLname,value);

As an illustration, assume we compose the debugger defined above, d&il-_2, and a
similar debugger for a transformation that z~anues the variables U2 to 13. The base
debugger is called b. The debugger stack for this set of tansformations is (d_±.l_i.2,
4_2-313, b). If the user wants to examine the variable il. then the debugger would be
applied fron the top of the stick as follows:

d-ii1-i2 ((4-di2-i3, b)b, examine, state,ii.i1,.))

Thle debugger d_41_£2 would pass the request to the next debugger on the slack as
follows:

d_i2_i3 ((b), examine, state, I,L, J.i2-, L)

"The debugger d12_i_.3 would pass the request to the base debugger.

"b((e ,examine, state, I4., , *i3. ,1)

The base debugger would look up the value of L3 and pass it back up to d_±2_-3,
which would return it to &_i._.1 2, which would retura the value which is displayed to
the user.

SOURC4-LEWL DEBUGGIWG OF AUTOMA7lCALLY PARALLELIU D PROGRAMS 21

2.4 'Summar

ltb models ot execution for pan"e and sequenial ussehnes were inwoduced. Mwe
smacumr of a pmellelizing compiler has been described& A Dowitiom for speifying
debuggers hu been iwuoducad and it was used to dedn the coaan behavioir for a
suNrc-ee debugger

22SOUIJCUE-LaN DUMJOGIGO OF AUTOIMATICAL P*RtALLEL= PRIOGROAMS

CHAPTER 3 Approach

In this chapw, we desibee approachi for source level debugging. We focus on tie
parallelization phase of compilation, since it spans the gap between sequential and par-
aflul programs. Parilelizatim requires both struaw ral mappuig and dynwamc order res-
toratot. Dynamic order restoration is needed became paralelization converts th
progran's single thread of control to multiple treads of control. hence out of order exe-
cution is possible. Stnrtucral mapping is needed because the mechanics of paralleliza-
tion require that the programn structure be altered.

We attack these problems separately by dividing the paralelization phase of compila-
don into two pats. In the Almt phase, we restructure the code to expose all the structiral
changes necessary for paralelism. In the second phase we parallelize the code by
extracting multiple programs from a single processor program.

In Sectimn 3.1, we define the scope of the problem we solve. In Section 32. we review
the basic functionality of what a debugger for parallelized programs should do. This is
followed in Section 3.3 by an introduction to our methodology for constructing debug-
gens.

3.1 Problem scope

If compilation prallelnzms the progran but does not clmage die computation or tk
order of execution of operations on a processo, then the samne values are computed in
soume program orde and it is possible to build a debugger. If compilation alters the
computo (eg. converting a sequential reduction into a puallel reduction) or cbanges
the order of execution of operations. then it may not be possible to construct a debugger,
depending on dte degree to which the computation has been d'waged In this tbesis, we
only study the problem of debugging when the computatio has am been changed.

SOURCEM.EVL DEUGGI4G OF AUTOMATICALLY PARALN.EDM PROGRAMS 23

As we dscrlb'ed in the peviomS d w oupiled= ca be divided ino three pems
esauc•auing, pwuileflzation, and single puncenor compiladio. A debugger for the

compilr ca be thought of a the composition o debuggems for the individual phaws.
Reatrucnarisg u and single proensar compilation we sequwa to
sequenta- ft matious and cm chanp the cpumttiin Md the order of operatons.
Pualellutlon converts a program fm •equea to pwallel but does not alter the
cmnputatio

Ewh of theta compilatiorn pimes CMjusatinesting dmfalliges to the debugger
wflo. Seqtuential vo sequeutia - sorm ki, whether theyarueapplied byarestuc-

mw or an optniizing compiler for a seq•ouenal language, have mceived a great dal of
attteoufeier8211Winre 78SIFUellWer 84R(Cowutm 881ILrooks 92][Copperanu

90]llHmeay 821.

In this thesis, we only study the debugging problems mucbad with the nisition from
sequential to paralel which occurs during -aallzain~n 91J(Cobn 91]. Pars-
lelizatiou does not change the computatims of a source pogram or the order in which
they mu compumd. To ftor out the problems associated with debugging sequential to
sequetial r-anormnations, we asme that there is either a debugger for the restuctur-
ing phase, or that no restrucuring is dooe by the compiler. Futhermore, we assume that
there is a debugger for the single processor compiler.

3.2 What a debugger for paralle.lzafon must do

The work of the D function can be divided into dyunic order restoration md smtctual
mnpping. In Section 3.2.1, we describe when and why dynmic order restoration is nec-
essary and what it must do. In Section 32..2 we inwer the same questions for stuctual
MWWs.

3.2,1 Dynamwn ardor msration
Dynamic order restoration makes it appear that the order of execution of operations is
the same a the order in the soumre pogrn. It is necessay whenever the compiler
removes ma ordering consraint that was present in the sequential program. Compilers
remove ordering cionstinL to expli the psuilelmi. For example, the semantics of
moat imperative iangtmges imply that itertions of a loop me executed sequentially. If
there m no dependnces between loop itations, then the compiler can geaerate paral-
lel code that does not obey that ordering constraint and allows iterations to be executed
inparalleL

A problem for debugging arises when we allow opeations to be executed in pmalel. If
the pV nun execution is inrrupted became the prognam hit a beakpioim or the user
aborted the pwogm, it may appear that operatious am executed out of source order. Out
of order execution makes it mpowsible for the debugger to point to a position in the
soure progran wher every operation before that poit has been completed and no
operations after that point have been initied. FIGURE 3-1 ilhsratMes this piMnL The
top of the figure is the same sequential and paUrel progrms a in the example used in
the previous chaper. The bottmn of the fig=e contains vm of the execution of the
sequential progrma in the cer column aod Psim of processom 0 and processor I to the

24 96UFRCl-LEML DEMuG OF AUTOMAI1ALLY PAPALLELU• PROGRAM

WhM a debagW for pwuehadon m. do

FIGURE 3.1 PeIreI xecution gives the appearance of out of order executon

Sequential sauce promgm

int 1;
int A(301;
for (i 0; i < 30; i++)(

Ali] = 1;
)

int il; int i2;
int A1115]; int A2(15];
for (il- 0; il < 15; i1÷+)(for (i2= 0; i2 < 15; i2+÷)(

Alil] = 1; A2[i2J = 1;
) .)

Ti= of sequential program

i = 30
Traceof procer 0 Ai] = 1

il= 0i+

il <15 i < 30 Traeofpmocessor1
9171 = • I P- A[i] = 1
i1÷+ i ++ i2 = 0
il < 15 • ,,,,i < 30 i2 < 15
Al[il] = 1 -4-. A[i] = 1 A2[2i2] = 1

i++ "_ i2++

i<30 i2 < 15
* Ali] = 1 - A2ti2l = 1

l12++

EE

SOUcE.EW UEMUG(ING• OF AUTOUAIICAU.LY PARqALLELIED PROGRAMS 2

Mf ud right. The arrows rel operations in the sequential md paralle pogram& The
boxes armd sauem es in the pxocessor 0 ai Nocessor I trac indicate the opea-
dons• h t each processor will execute neit For this pmricular state of the parallel pro-
gram, dtre b no pace in the sequential prog trace that we ca point to and say that
evey operation before that point has been executed and no opeaion aftr that point has
been execulemL

Given a point conisidered the current point in the source execution, operations which
occur aller dt1 point in the source progran, and have already been executed are called
earty and operation which afFppea before the amrraK pon in the sequential execution
and have not be executed yet are called •wL.

FIGURE 3-2 Earty and We opwations

Trame of sequential program

i = 0 Early
Trace of proceusor0 i < = I Law

A(i] = I
iO =0 i++

5 i < 30 TrAw of prcessor 1
iO++ i++ il = 0
io < 15 • , !<3"il < 15
A0[io] = 1 _.i, A[iJ = 1 = 1i++ if++

Si< 30 il < 15
* A~i] 1 u...~r.mAl(il] = 1AM I * l~l

In FIGURE 3-2 we have aother illustration of the same soat of the program. TU box
around the statement in the sequential program trace indicates the statement that the
debugger has chosen as the currnt statement (calling it the current statement implies
that it has not been executed yet). The debugger could have selected other statements as
the murt one; the constraints on choies ae explained in CHAFPER 4. Anything
above the selected line in the sequential trace which has not been executed is a late oper-
ation. The arows for those opemdons ae marked with L's. Anything below the selected
line in the sequential tre which has been executed is an early operation. The arrows
for those operations am marked with E's.

If an eady or late operation changes the value of a variable, and theme is no dynamic
order resation, then the behavior of the debugger will be inconect. For an early oper-
ation, the use should see the value before it was updated. However, only the value after

26 SOUtCBz.mEL DEBUGGING OF AUTOuAncALLY PARALLEL=• PROGRAMs

Who a debugger for perallueizotlw must do

the update is available. In the figur, processor I does an early update to the army Al. If
"the user inspeced Al [1. they would see the new value, 1, when they should have seen
the old value, 0.

If there is a la= operation that modifies a variable, the user should see the value after the
lm operation updaie the vaiable, which has not happened yet In the figure, processor
Ohm a lawe operation tiat updates the army 1O. When inspecting A, the user sees the
pre-update value of 0 when the post-update value of I should be seen.

Dynamic order restoration also ensures that the user sees events such as breakpoints in
the order that they would have occurred in the source program. If a late operation will
cause a breakpoint when it executes, then the user should see the breakpoint associated
with the late operation before seeing the event that made the program stop in its current
state because the late operation has an earlier virtual time.

Dynamic order restoration can either force the parallel program to execute operations in
source order or it can allow the program to execute operations out of order, but not let
the user examine any state that has been modified by out of order operations. Choosing
between these two methods depends on the situation; methods are discussed in CHAP-
TER 4. If the debugger doesn't force execution in source order, each command must
have a set of restrictions to ensure that the user cannot see the efect of out of order exe-
cution. For the where command, the debugger must pick a point in the program to call
the current point. This determines the set of late and early operations. The debugger
must be sure that thee are no laic operations that will cause breakpoints or exceptions.
For the examne command, the debugger must ensure that the user does not inspect a
variable that is written by a late or early operation. For the set command the debugger
must ensure that the user does not modify the value of a variable that is read or written
by a late or early operation. When setting a breakpoint the debugger should ensure that a
breakpoint is not set for an early operation.

Late and early operations ar closely connected to roil-back and roll-forward variables
as defined by Hennessy(Heanessy 821. Variables written by early operations are roll-
back variables. Variables written by late operations are roll-forward variables. Comput-
ing the sets of roll-forward and roil-back variables is sufficient if the debugger wants to
determine if it is safe to examine a variable, but more information is needed if we want
to determine if it is safe to modify variables or set breakpoints. Computing the late and
early operations provides this extra information.

32.2 Structural mapping

Stuctural mapping relates variables and statements in the source code to variables and
statements in the target code. If the program is translated, then stzuctiual mapping is
needed.

Parallelization usually entails some change in the structure of the program. If the com-
piler implements a shared memory model on a distributed memory machine, then the
names for variables used in the source program ar not the same as the names used in
the parallel program. In our example in FIGI RE 3-1, the variable 1 has been renamed.
If the elements of an aray are distributed across a set of processors, as is done for the
array A in the example, then the subscripts used to reference the aray are changed.

SO4R•=-L.EVEL DEBUPGGIG LP AUTOMATICALLY PARALLEIrD PROGRAMs 27

Soam vkiables We loop counterm w replicated an all procssors. even on sh-d me-
ory machines. Futuhermnwe souse variable might wet have the same value as they
would have had in the sequential pwgran. In the example, the loops for both processors
go from 0 to 14 while the loop in the source progragoes from 0 to 29.

The structure of the code is changed as well. Instead of a single program, there is a set of
pigris om for each pe If the compiler conus a sequental loop into a paral-
lel loop, them the loop structure must be changed so that every processor executes a sub-
set of the itemiom.

Smtctura mapping is a uanslatmi of names between objects in the source program and
target prlp=am. When the peogranm uses the debugger to examine or modify a vari-
able, stuctual mapping converm the -me that is used in the source program to the

- in the target program. If that variable happens to be an element of a distributed
aray, theE structural mapping computes which processor the element resides on and the
address at which it is stred. In the example of FIGURE 3-1, structural mapping would
determine that array elementA Li] resides on processor 0 if i is even and processor I is i
is odd. It would also change the index Cii to [1'2]. If a variable is replicated, then the
debugger must know which copy is the appropriate one to examine and which set of
copies is the appropriate one to modify. If a variable does not have the same value as in
the source program, then the debugger must know how to compute the source value
from the target value to examine the variable and it must also know how to compute the
target value from the source value to modify the variable. To examine the loop counter
in the example, we must first decide which processor has the appropriate copy. If it is
processor 0, we multiply the loop counw by 2. If it is processor 1, we multiply the loop
counter by 2 and add 1. For the where command, we must know how to map lines in
the parallel program to lines in the sequential program. To set breakpoints with the run
command, we must know the inverse mapping, from lines in the sequential program to
lines in the parallel program.

3.3 Debugger methodology

The debugger methodology presented in this thesis allows us to separate dynamic order
mestmtion from structural mapping when building a debugger. As is explained later,
dividing the two allows us to study the dynamic order restoration problem independent
of the puallelizing transformation used by a compiler.

A debugger that does dynamic order restoration must kmow the total ordering of opera-
tions in the parallel pmgrm. Structural mapping requires information about the rela-
tionship of lines and variables in the source and target programs. We can separate
structural mapping from dynamic order restoration in a debugger by dividing the paral-
lelizaiton phase of compilation into two steps: dirvibuioa followed by thread sphitting.
The input to distribution is the same as the input to parallelization and is called the a
program. The output of distribution is another sequential program called the A program.
Thread splitting inputs the P progran and outputs the parallel w program, where mo is
the sub-program that executes on processor i. The w program is the output of parallel-
izaion

4�UOJXCE-LVELOUQGM OF AUTOMAlCALLY PARALLELIU.D PROCGRAM

Debugger medwdoingy

The operations in the 0 program have a I o I relationship with the operations of the wo
program. Since the P program is sequentiaL it defines a total ordering of execution of
operations of the o program. The debugger uses the total ordering for dynamic order
esmroraion. All of the structural effects of parallelization have been facted out and
exposed in a program without parallelism (the 0 program). StrutrWal effects include
replicated statements and variables, altered loop sgructures, and distributed va-iables.

The debugger is structured in a mamner simila to the compiler There is a debugger for
distribution and thuead splitting; the debugger for paralelization is the composition of
the two. The debugger for distribution does structural mapping but does not need to do
dynamic order restoration because both the input and output are sequential. The debug-
get for thread splitting does dynamic order restoration and some simple sauctural map.
ping-

A debugger where structural mapping and dynamic order restoration are separated has
two advantages when compared to a debugger where they are done together. The chief
advantage is that it lets us isolate the functionality that manages program parallelism in
a part of the debugger that is reusable for different compilers. When we construct new
parailelizing transfrmatons a new distribution transformation is needed, but the
thread splitting transformation always stays the same. Thus, the part of the debugger
that handles thread splitting can be reused when the debugger is retargeted for a com-
piler that use a different parallelizing transformation.

The second advantage is that strctural mapping is simplified when dynamic order res-
toration has already been done. This is because all problems associated with out of order
execution have been resolved. To illustrate this point we use the previous example of
pafAllelization where processor 0 executes all the even iterations of a loop and processor
1 executes all the odd iterations. In FIGURE 3-3, the top program is the a program, the
middle program is the 0 program, and the bottom program is the oa program. We explain
0 programs in detail in Section 4.1.1, for now it is only necessary to observe the duplica-
tion of the loop counters. Assume that the parallel program is interrupted, and both pro-
cessor 0 and processor 1 are about to execute the assignment statement in the body of
the loop. If the user were to ask to inspect the loop counter, it is unclear which counter is
the appropriate one to show to the user by inspecting the state of the o) program. How-
ever, if we do dynamic order restoration first, we can relate the current state of execution
to a point in the execution of a sequential program, which is our 0 program. In this case,
it would indicate that the next statement to be executed is the assignment to Aii in the
body of the loop in the 0 program, which makes it is clear that the correct copy of the
loop counter to inspect is i1. Doing dynamic order restoration first, in conjunction with
the 1 to I mapping between statements in the 0 and w programs, has simplified struc-
tur mapping.

The main disadvantage of separating structural mapping and dynamic order restoration
is that we must construct the intermediate program called the 0 program, which would
not otherwise be necessary. However, we do not believe that this disadvantage negates
the advantages-we show in CHAPTER 5 that constructing a 0 program for the com-
mon distributions is straightforward.

SOtURC-LEVE DEi OGUGM OF AUTOMIAICULY PARALLELMD PROGRAM S 9

Appmafth

RiURE 3l3 IL andiwpr

z prormm

int i;
int A[301;
for (U = 0; 1 < 30; 1++)(

AU 1

int i0,il;
int A0(15]gAI[15];
for (i0 = 0,il = 1; iO < 30; i0 +=2,il+=2)(

A0[i0] = 1;
Al[il] = 1;

int i0; it il;
int A0[15]; int AI1S5];
o (i.0 = 0; 10 < 30; i0 +=2){ for (i = 0; il < 30; il +=2)(

A0[i0] = 1; Alfil] = 1;

Th next two chapte complete •e description of debugger methodology. Chapter 4
describes the thread splitting transfonmation and its debugger and Chapter 5 describes
distibution and its debugger.

3.4 Summary

We identified the scope of the problem we am trying to solve, which is the paraleliza-
tim phase of compilation. Dynamic order restration and sru-tural mapping are needed
for debugging parallelizabion. We described a methodology for factoring out dynamic
order restoration from parallelizatioa, so that it can be handled separaely from smu'c-
nmapg.

30 SOURC-LE41EL DEBUGGINg.. OF AUMTOMATICALLY PARALLEU2ED PROGRO 48

CHAPTER 4 The thread splitting
transformation

is chapt describes the thread splitting transformation and its debugger. The thread
splitting transfonmation convert a sqlemmIla program into a pamllel program. Its
source is the P program and th target is the, o program. All of the changes which ame
necessary for distribution are exposed in the 0 program. These changes inude the rep-
licaion and distribution of variables and the restructuring of loops. In addition. eveay
staement in the P program is labeled with the Processor on which the statement should
be executed. Thread splitting uses the labeling w generati a parallel program.

The 0 program has an execution model of a single thread of control executing in multi-
pie, disjoint address spaces. In generating the w program, we extract one thrend of con-
trol for each address space. Thnm is a one to one mapping between statments in the 0
program and statements in the ca program. The order of execution of statements in the,
program defines a total ordering of operations in the W program, which is used for
dynamic order resoramo.

We first define a debugger which forces the execution order of statements in the parallel
program to be in the same order as in the 0 program. This is a brue force method of
doing order restoration. We then define a debugger that allows the parallel program to
execute unrestricted. Depending on the state that the program happens to stop in, the
debugger may not be able to allow the user to examine or modify some variables. The
debugger must ensure that it provides truthful behavior, it cannot supply any informa-
uon to die user that conradicts the behavior of a correct debugger.

We describe the thread splitting transformation and the language of 03 programs in Sec-
tion 4.1. In Section 4.2. we define the debugger that executes statements in the same
order as the 0 program. We describe how to allow parallel execution in Section 4.3. In
Section 4.4, we discuss einciency issues related to dynamic order restration. Finally,
we describe some work related to the issues discussed in this chapter in Section 4.5.

SOURE-LLEVEL DEBUGGING OF AArrOMAlWAL 1-Y PARALLuzL1D PROGRAMS 31

The #Wftd qUng •ft" nf

4.1 The thread splitting trnsor on

Thead spapuing is a simple tanmforation where we extrct multiple prgrams from a
single prgrmn. Each stmement of the source program is maked with a procsmr index
label haidicumes which processor should execute that statemeaL The semmaics am
d"sM so dt aflr thread splitting, we have a parallel program with the same meanng
W l0 source progam.

V& st de &A the Ia=~ of Pu poogrmn =d its semantics a Section 4. 1. . We then
dmcribe how code generation wrks for thread splitting in Section 4.1.2 and conclude
with an example in Section 4.1.3.

4.1.1 The Waguage for 0 pnro and O N semantics
The model of eecutioa for a A pga is that of a single thread of control executing in
multiple addres spaces, SIMWL style. Each swmient is annotaed with the address
spaces that the cu t statemen should operate on.

The language for programs is the language of source programs augmented with addi-
tional constructs for commmnication and the specification of the mapping of statements
to proceso. Its semantics are the same as the somu program with some exceptions
noted below. In the thesis, the source language is sequential so the semantics of the lan-
guage of 0 programs are sequential as well.

4.1.1.1 Pronessor Ind=x lidwi
All statements have at least one processor index label (PEL). The value of the PIL's indi-
cames which processors execute the stement in the parallel progran. A PIL is an n ele-
ment vecto for an n dimensional processo armay and must be a coupile-time constant.
If The value of a PIL is not a valid processor name (out of range, non-integer), then the
PEL is invalid. Invalid PiL's can only occur if the compiler is incorrect.

A single PIL is written as a comma separated list of integers enclosed in "<>'. The
length of a PIL is the same as the dimensionality of the processor array If there is more
than one PM for a statement, they am separated by commas. Some examples of state-
ments with PIL's can be found below:.

<1>,<2>,<3> b = 1;
<2>, <4> C = 2;

There is one distinct address space for every valid value of a PEL. Variable declaration
statements ncrate one copy of a variable for every PIL for that statement. The PlL's
determine which address space those variables reside in. Other statements such as
assignments, conditionals. etc., always reference the copy of the variable that is in their
namespace, which is determined by the PIL for that statement. If the statement has more
than one PIL, side effects of the execution of the smament affect every address space
named by a PIL. Assignment statements have straightforward semantics for multiple
PIL's. For a statement like the following, the effect is to set both the copy of C in <2>
and the copyofo in<4: to the value 2.

32 bOURCE-LEVEL DEBUGGING OF A6 rOATlICALLY PARALI.LIED PROGRAMS

Tb. tih d aspitn truomMien

<2>,<4> c = 2;

For stements with control flow. such as loops and conditionals any side effects in the
loop heade or cmdition affect every address space named by a PIL. For example, in the
sttement below die side effects of the statement am to initialize the variable i to 0 os
loop enry and to in~eaent the loop counter for every iteration of the loop. The seman-
tics of the statement ae to initialize the copies of i in address spaces 0 and 1 toaOs
loop entry and to imrement both copies of the loop counter for every iterato.

<0>,<1> for (i = 0; i < n; i++)

Note that having the same variable in multiple address spaces does not mean that all the
copies always have the same values. It is legal to assign one copy a value, but not oth-
ers. For example, the following statements can be part of a legal program.

<1>,<2> int c;
<1> c =2;
<2> c= 4;

The compiler must follow 3 rules in assigning PIL's. If they are not obeyed, then the

behavior of the program is undefined. The rules are:

1. A variable cannot be referenced in address space p unless it has been declared in
address space p.

2. Statements with data dependent control flow may only have multiple PILs if the
control flow is the same for all copies of the staftment. For example, the result of the
test of the conditional must be the same using the copy of a in <1>, <2>, and <3> in
the statement below.

<1>,<2>,<3> if (C == 2)

3 When one statement is lexically nested inside another, as is the case for the if and
for stazement, the set of PIL's of every statement inside must be a subset of the
PIL's for the enclosing statement. For the program below the condition part of the
if, must have <1> and <2> as PIL's because statements contained inside have those
Pn$s.

<1>,<2>,<3> if (a == 1)
<1> c=l:

else
<2> c =2;

"401.1.2 Rep wd dist construaf
It is impossible to write programs where the size of the processor army is not known at
compile-time because PIL's must be compile time constants. The implications of con-
stant PIRs are discussed in CHAPTER 7. Two run-time variables and two constructs
must be added to the source language to make it possible to create programs that are
parameterized by the size of the processor array.

SOURCE-LEVEL DEDUGGING OF AUTOMATICALLY PAR.J.LELIZD PROGRAMS 33

The if d = opk% bmwno• n

The vulables me -up and -L4. They we pxsfaced by anaduo re to scpa them
uto w v•ukbleL 713 vuble _.V comm dw th =ize of do pice armay aid Ls jm-

dtaizad by the nm-time syUm. The variasbe _d COaMM die iedex of the cure pr-
wuam and is also initialized by the rn-time sysa. Both the sie of the army and
pmlacem indbee can be n dimensional numbers forn dimnsio.al processor arrays. In
this cum - and -.L4 ane 4 element arrays.

The camnucM me rep and d1st. They Mpurely a 3bOrhmmi for writing piosrMS
dus an €olpm aud independent of tfe size of the procmor amy. The rep is used to

ean a smemem with multiple Pils and the dist is used to e-mp multiple copies of
a s3mmen, eh with a diffent PIL Loop-ie control is used to geneaM offss
which am added to the PIL's of swemmuts in the body to gerate distinct PILs for
every copy. The syntax of the two meme is:

rep var = low to highwith off0erbo0y

dist var low to high with offsetbody

Tokes in italics am syntactic variables. The ar is a variable name The low and high
are expresions that Ms functions of constants, variabla defined by a d1st or rep,
and _p. 1W offset is a PIL that is a function of constats, var, and _pip. For a dist,
body is a staznnMe or block of statements. For a rep, body is a single statement. The
scope of var is body. The var may be refrenced in low and high expressions in rep and
d4st statements in tde body, but not in may other stement of the body.

The rep and d4Lst am special statecmnts which am not executable and do not ave
their own PIL's. They do change the sematics of executable statements Contained in the
body. A diet is used to Caeate multiple copies of a block of statems which cn den
be distributed acous a set of prcessors One copy of the body is crated for each possi-
ble value of the 4st variable: which is bounded from below and above-by low and
high with a step size of 1. The copies of the block age excued sequentially in te order
that they au genmred The offset is added to the PIL of every statement in the body.
The PL"s in the body can be any value. The offset can have a different value for every
copy of the body because it is a function of var. As an example, in the dist below,
hee copies of the body au createw. The value of the offset vects am <0,0>, < 1,0>,

and <0O>.

dist b = 0 to 2 with (
<0> C = 1;
<0> D = 2;

When we expand the above dist we obtain:

34 SOURCE-.EV4 L DE3UGU G OF AUTOMATWALLY PARALLELIUD PROGRAWM

The Uvmd eifng trwongo

(

<0> C = 1;
<0> D = 2;

)--
(

<i> C = ;
<1> D 2;

)
(

<2> C 1;
<2> D =2;

)

A rep is used to generate multiple PIL's for a single statemeUL One PEL is generated
for every possble value of the rep variable by adding the current value of the offset to
the PIL for the statement that is the body of the rep. In the statement below, the rep
creates 3 PIL's for die statemC.

rep a = 0 to 2 with <a>
<5> b = 1;

If we expand the above rep, we obtain:

<5>,<6>,<7> b= 1;

A rep only generates the PIL's for a single stuement, even if that statement contains
other staements. For example, if the body of a rep is a for stautent then multiple
PIL's awe generated for the for statement, but the body of the loop is not changed. This
makes it possible to replicate loop control aross a set of processors but still distribute
the body of the loop. If we want to replicate the body of the for as well, then a rep
must be used for every statement of the body. In the example below we want to replicate
the for statement and its body on every processor of a 2 processor linear army. Each
statment must have a rep.

rep a 0 to 1 with <a>
<0> for (i = 0; i < n; i++) (

rep a = 0 to 1 with <a>
<0> b4+;

rep a = 0 to 1 with <a>
<0> C++;

)

If we were to expand the rep's in the above program we would obtain:

<0>,<1> for (i = 0; i < n; i++)
<0>,<1> b++;
<0>,C<l> C++O

SOURCE4A-VII. DEUG OF AUTOMATIGALLY PARALJ.EWM• PROGRAMS 36

71W OKOWd Spitting tranueoimaton

7b simplify aode generation, we require ti the proga for each Wocessor be idend-
cal. This occars under the following condit. If we exmid all the rep and dist coD-
sffu-s of a prouni, then for every statement in the program and for every processor
iade p in the processor aray. there shoulk be exactly one copy of steament s tn the
expanded program that has p as one of its PRL's. We list two examples of valid programs
below. In the first program, ther is exactly one copy of every siment for every pro-

diet a = 0 to _inp[O]-1 with <a,O>
dist b a 0 to .np(1]-l with <O,b>

<0,0> i = 1;

Expauim g this program for a 2W prcessor amay yiekds:

<0,0> i = 1;
<0,1> i = 1;
<1,0> i = 1;
<1,1> i = 1;

In the following program, ther is less than one copy of each statement for each proces-
su but each copy has multiple PIs.

dist a = 0 to _np0O]-1 with <a,O>
rep b = 0 to _np(1]-1 with <O,b>

<0,0> i a 1;

Expmd the rep and dist coutmucts for a 2W2 processor army yieds:

<0,0>,<0,1> i :1;

<1,0>,<1,1> i = 1;

"The effect of this resulction is that evey summem of the 0 program is executed in
every address space. Of coue, in some sitations we want only a single processor to
execume a stment. The rictn does noCt pW iL In FIGUR 4-1 the• is an
example of a p prWa that places a different stawement on every processor and below
it is the progrm rewritten so that the same code can be used on every processor.

"lnis restriction simplifies code generation because it allows us to emit a single program
for all processorg it does not place a undue biuden on the compiler writer All the
compilers that we ame fmiliw with aready generae a single program for all proces-
sors(Ib-s 90][Cft 90][Susmm 91][Chanejee 91]WBeg 891. We belie that most
compilers do no generate different code for eh processor because it makes it dificult
to make a progran that cm be rnm on a varying number of pmcessors. Furthermor, it is
much more expensive to compile and load many programs versus compiling and load-
ing a single program for all processors.

41.1.3 Cominunleation
During the course of a computation, data must be moved from am processo to another.
This data movement must be expressed in the 0 propam as a movement between

36 SOUR=-LIw#L DW•BU NG OF AUTOMUIICALLY IARALLELUD PROGAMS

The Udwed qaMlg trwo Mih

""FIURE 4.1 progra that map den stmseit to h prceor and an equvalent
programrn O rms the same satMemnt to each pocessor

<0> A 1;
<1> A 2;

dist b = 0 to _np(0]-1 with
<0> if (_id(O =-- 0)
<0> A = 1;

dist b = 0 to _np(0[-i with
<0> if (_id[1] == 1)
<0> A = 2;

address spaces. For this reason, we include send and receive primitives in the Lan-

guage of , progams.

In the program, co-munuication must be inserted into the program so that a send is
always executed before its corresponding receive. If the send is not executed before
the receive, then the program may deadlodc dhring debugging. Furthermore, the
PIL's of the sending and receiving processors must match the connectivity of the proces-
sor army. In our mesh connected 2D army, the value sent in the statement below:

<3,5> send((0,-1),7)

can oily be received by a staement with a PIL of <3,4> that does a receive with direc-
dio (0,1).

To simplify our examples, we sometimes group several cmmunicao actions together
into a single primitive. For example, instead of constructing a broadcast operation out of
send and receives, we use a broadcast primitive.

4.1.2 Code generation
When we apply thread splitting to the 0 program, we extract a program for every pro-
cessor. The progranm for processor p consists of all the stenments in the P program with
a PIL of p.

We require that there is exactly one copy of every statement in the 0 program for each
processor so code generationis a s ghtforward the program for a processor is the same
as the 0 program with the PIL's, rep, and dist constructs removed.

SOURCE4.EVEL DEDUGONG OF AUTOMAliCALLY PARALLEU[D PM 4QRAM 37

As an eampe if we apply *ab d sphtg to the second pegurim in FIGURE 4- . we
would obtain th following w pnlum:

if (_id[O] 0)
A = 1;

if (_d1 == 1)
A = 2;

The alp - behaves a if thee Is a single thnenof conm A executing in multiple,
dhjoint addu spa•s. Aftr thl soulinag the msulting pnrg is a set of inde-
pedent treads each executing = As own addrss spae. In the oei d program in FIG-
URE 4-1, the semanti•s of the laguage for 0 prog imply that both copies of the
st staement am executed ny. In the w prSgram, thba is no syncmuiza-

tioo enftece this constint processor 0 could execute the sttem t before, at the
same imz., or aatr ya comaa- I executes its copy of the same statement.

4.3 E.a mphn loop pipeilnig
In this secti, we Present an eunmple that demonstrtes the use of PIMs, rep, diet,
aid communicatio

we stat with the a pirogrm found in prt (a) ot FIGURE 4-2. We use o pipelining to
ditribu the work ID process. In " pipelining, the work of a body of a single iter-
atlas is spWad acWss several processorsfSusmnan 91]. Inmterediae values in the loop
ieration ae pussed f•nm processor to proces•o. pat (b) of FIGURE 4-2 diustntes the
flow of datz between processors.

Put (c) of FIGURE 4-2 shows the P puroun; the program to fth right is fth sane pro-
gram whee ft rep ad diet have been expnded. Each sument has been annotated
with the aSpprorte PIL 11e variable declaaton has been placed inside a rep so tam
ech processor cm have its own copy. The for loop is mapped to ad pnressors, so it is
placed inside a rep. Each processor mus follow a differen execution path tbough Che
body of the loop, so the body is placed inside a diet. Since the value of A is produced
in one processor and consmed in mother, its value is transferred between processors
usig send and ,eeive.

This prosram illustras the rules for using PILs and commiuicadon. For coamunica-
tion. the sends must appear before receives. Procmsor 0 sends a value and processor 1
receives it, so the dist is writen so that the copy of the code for processor 0 is before
processor 1. If the prnoa were changed so that processor I sent the value to processo
0. then the diet would have to be changed so that the copy for pxcessor appears
beow the copy for processor 0. Ihis can be done by changing the offset in the diat to

Rule I for PI's equ=res that a variable must be declared in every address space in
which it is ued. This rule is satisied by our example and my other valid program
because every statement must have a copy on every processo thus every variable is by
default declared in every address spew. -

' SOURC-LEVL OC QMG OF AUTOMATICALLY PMALLdW= PROWPM

The Um 14 spift~ng tiuneoinmuodo

ROURE 4.2 Thread Ipfktkt eanyqIe for kop p~e.8nft

(a) a uprga (b) mWipig of opermiom Wo PrOMSa

int i,A~b(30J,c[30J,g(30]; nocmiiw Proemeor 1
for (i u 0;1i < 30; 1++) (rA I

A a blil c ei); \04-Si

g(i] = A 2; I\

(c) P program and its expanded version

rep a = 0 to 1 with <a> <0>,<1> mnt i,A,b(30],c(301;
<0> int i,A,b(301,cE30]; <0>,<l> for (i = 0; i < 30;i++)

rep a = 0 to 1 with <a> <0> if L-id(O] = 0) (
<0> for (i = 0; i < 30;i++) <0> A = b(i] *c~iJ;

dist b = 0 to 1 with <0> send((1),A);
<0> if (...idEQ] = 0) () else (
<0> A = b(i] *c(i]; <0> receive((-l),A);
<0> send(U),A); <0> g~i] = A *2;

)else f
<0> receive((-l),A); <1> if (_id(0] = 0)
<0> g[i) A * 2; <1> A = bNil * i]

)<1> send((1),A);
else (

<1> receive((-1),A);
<1> g[i] A *2;

(d) w program

int i,A,b!301,ct30];
for (i =0; i < 30;i++)

if Lid(0] ==0) (
A = bfiI c(i];
send(U() ,A);

)else (
receive((-1) ,A);
g(i] = A * 2;

SOIMM42MVE DEKWOMN OF A4JTOMAIICALLY PARALLEUEMD PROGRAMS3

The hedpltU trunlomq

Rule 2 for PIL's requires that a smeut with d dependent control flow and multl
PIL's behave de same for every PIL. The for sament obeys this rule became we
kiow tha the copyof ihe vable I in <0 is always the same as the copyof the var-
able in <1>, hame the branching ofthe for is always the same in all ddress spaces.

Rule 3 for PILs specifies that if one staftemt is nested inside mnotei the PILs for the
i aner Mment muit be a subset of the PILs for the oater stament. The body of the
for loop omntW statments with a PIL of <> ,and <I>, so the for loop header must
have PWs thdt include <0> and <i>.

The result of thread splitting is showni pu (d) of FIGURE 4-2.

4.2 The D function for thread splitting

lbhe program, which is the source program for the thread splittig trin sfg aadon,
defines a total order of operadons in the w program. Thread splitting removes all the
order constraints between processor that aren't the result of communication. If the w
pIogram is intemrpted during execution, either by a user intermq program exception,
or breakpoint, then the state of the program is net necessarily consistent (see Definition
2-I) with any state of the 0 program because there may be early or late operations. The
debugger for thread spliting must do dynamic order restoration to provide corect
behavior (see Definition 2-3). One way to do dynamic order restoration is to foni dhe
execution of operations in the to program to be in the same order as they are executed in
the 0 program. Since the P program has sequential semantics, we must execute the w)
program one operation at a time. We call this executing with a sequew al schedule.

An alternative to executing with a sequential schedule is to allow the program to exe-
cute in parllel and detect when the program is not in a state tot is consistent with a
state of the program. Tbe debugger can then prevent the user from doing anything
that would lead to incorrect behavior, such as examining a variable when it has been
updated by an early operadon.

Either method requires a way for the debugger to determine at nm-time what order the 1
program would have executed the operations of the w programn. Executing with a
sequential schedule follows this ordering when detrmining what smement on what
processor executes next. If we allow parallel execution, then the ordering is used to
determine if there are my late or early opmatons.

lbs oaeling is determined by assigning virtual times to the execution of statements. By
comparing the virtual times of statements, we cam decide which one should be executed
first. In the ms of this chaper, we will also use the tsm the virtual time of a processor.
The virtual time of a processor is the vitual time of the statement that the processor will
execute next.

In Section 42.1, we define the properties dtt a virtual time must satisfy and describe
how to compute the virtual time of a statement. V& will then show how the virtual time
can be used to construct a D function which executes the program with a sequential
schedule in Section 4.2.2. In Section 4.3 we show how to allow the program to execute
in parallel while debugging.

40 1OUI1ca.EWEL DE0UQG OffAUTOMATlCALLY PARALLEUND H

The 0 fumnadm for threedall Wag

4.2.1 Computing vilttuu Urn..
Each execution of a statement is called an ismce of a statement The execution ordr
of insamces of the P program defines a total ordering. There is a I to I mapping between
isMces in the P program and insnces in the w program.

We want to assip virtual dmes to the awcution of statemets in the w program so that
we co determune what ruder they wouid have been executed in the 0 program. Each
in.mt of a statement in the A progam is assigned a virtual time greater than the vir-
tual time of the previous instance. More formally:

Equation 4.1 a, occurs before 2 in the 0 programp virtuaLtirne(p1) < vitual~tim(p2)

s, and s2 am statement instances in the 0 program. p, and p2 am their corresponding
statement instances in the o) program, respectively. If two statements on different pro-
cessors have the same virtual time, then both of those statements am derived from the
same statement in the 0 program.

In the following section we present a method for computing virtual times; this method
satisfies Equation 4.1.

4.2.1.1 Computing virtual time. for the 0 program
FMrt, we describe a method for assigning virtual times to statement instances in the 3
program so that the virtual time of instances are strictly increasing during execution of
the program, Next, we describe how we can assign the same virtual times to the corre-
sponding statement instances in the (o program.

Thei vft time of a processor is a tople of 2n+ 1 numbers where n is the maximum
level of nesting of loops in the program. It is retresented below as a vector called w/ime.
A program without any loops has 0 levels of nesting and hence has one counter A vir-
tual time tj is greater than a virtual time t2 if t, is lexicographically greater than 12.

Virtual time is advanced by executing statements of a program. Virtual time can be com-
puted by following these rules:

1. Initially, nesting = 0

2. After enatring a loop, nesting++

3. After exiting a loop, vYime(2*nesting] = 0, wine(2*nesring+l] = 0, nesting-

4. After branching to the top of a loop, wime[2*nesting]€-i
S. For each statement, vtim4e2*nesting+l] = line number of the statement about to be

executed

For a d4it sttement in a 0 program, each copy of the body must have a viru time
greate thun the previous copy. A dist is treated like a loop where each copy of the
body is a loop iratim. When entering a loop, Wimefnest] is the line number of the
dist and nesting is incremented by 1. For every copy of the dist, vtime(2*nest+ l] is
the value of the dit• variable, which is smictly increasing. Since all copies of a state-
ment in a rep correspond to the same stememt, a rep does not need special treannent
every copy created by the rep has the sawe vimru time. For the program in FIGURE
4-3, the sequence of virtua tnes for an execution where k). 1is:

SOURCE-LEVEL ODiUGGWG OF AU1OMA1ICALLY PARALLELO PROGRAMS ,%1

ThI "In spWMng I NOW

(2,0 , 0,0, 0), (3, 0, 4,0,4), (3,,04,0, 5), ,(3,04, 1,4),(3,0,4, 1,5),(3, 1.4,0,4),
(3,1.4.0.5), (3. 1.4. 1.4). (3.1.4,1.5)

4.2.1.2 Computing the virtual time of a e*WtAsent during excution of the wo program
When a processor stops executing, the debugger must compute the virtual time of the
current statemea. We want to precompulte as much of the virual time for a staltement as
paosible. In the o program of FIGURE 4-3, the left hand column is the vitual tim rem-
p/&e for eadh smem t. A varable in the virtual time templase indicates tlht the value
should be takl fromn a diet varable or a loop count'. The value of the 1st, 3rd, 5th,
.... 2a+l posidoes of the vimfl dm can be determined statically from the prgrm
couter and are put of the virtual time tempiate. The value of couners for a dint can
be determined htm dhe processor index which is also static infrmation, and the value
of counters for loops can only be determined at nm-time.

FIGURE 4.3 Sequential and parael progam

a program:
11: k = 1;
12: for(i = 0; i < 4; i++)
13: AMi] = i;
0 program:
1 rep a = 0 to _np[O] with <a>
2 <0> 11:k = 1;
3 dint b = 0 to _np[0] with
4 <0> 12: for (i._id(0l*2;i<(_id[0]+1)*2; i++)
5 <0> 13: A(i-_idJ0]*2] = i;
w program:
(2,0,0,0,0) 11:k = 1;
(3,b,4, i,4) 12:for (izid(0I*2;i<(_id(0V+1)*2; i++)
(3,b,4,i,5) 13: A[i-_id[0]*2] = i;

The value of the counters that are associated with lookp are the number of times the
loops have executed. This can usually be detemined fom the value of the loop counters
that already exist in the program. In the example, i can be used for the counter in the
fourth position. Loop counts for virtual time always stm by 0 and are incremented by 1.
The counters for loops written by the user may not necessarily do this. In the thesis, we
assume that all loop counters am nomalized so that they always begin at 0 and have
increments of 1.

The counter value for a diet consmtct is more difficult to determine. The dint vari-
able is not a real variable dth exists in the progran. The processor index label of a state-
meot inside a rep or diet is a function that maps the value of the rap and dint
variables to a processor index. We want the inverse, a function that maps the processor
index to the value of the dint variables. Since we require that every statement be
mapped to every processor exactly one, we know that the processor index label fumc-

42 OURMELEVEL ODEBUGG OF AUTOUAICALY PAPALaLý PROGRoM

The D function for threed splNg

tido is a I to I mad onto umppigto rep and diet vaiables and must have an invere.
We use a brute force approach to find the inverse. We compute all the pl-oble combina-
ioes of values of rep and d4it variables for a stanaeti and compute the associaled

proceso index. If we pu the results in a table indexed by the processor index, we can
compute the rep and ditt variables from the processor index. The table has a fixed
size because there can only be oue entry per proceusor For the example in FIGURE 4-3,
the diet variable b always has the value 0co processor 0, and 1 on processor 1.

In Oae example of FIGURE 4-3, the virtual time of a processor executing the fi state-
ment is (2,0,0,0,0). If processor 0 is stopped at the second statement and the value of the
loop countr is 0, then the vrtual time is (3,0,4,0,4). If processor 1 is stopped at the third
statement and the value of the loop counter is 3, then the virtual time is (3,1,4,3,5).

The discussion above assumes that the entire program is a single procedure. Our virtual
time method can be extended to handle programs with procedure call and recursion in a
staightforward manner. Within a procedure, virtual time is computed the same way. We
shall call this vtM: for procedure virtual time. As part of the normal calling sequence,

every time a procedure is called the program saves the return address on the program
stack. For each return address on the stack, we compute a v,. The virtual time of the

program, or VPM5 is computed by building a vector of vp 's, where the first one is the

one deepest on the stack (earliest in time), the second element is the second deepest on
the stack, and so on. The virtual time is now a vector of vector. Recursion does not
change the way the virtual time is computed. Virtual times are can be ordered using a
lexiacogralic comparison.

As mentioned in the previous chapter, program flow graphs must be reducible. This is
because the virtual time scheme we presented assumes the program is structured, there
must be an identifiable loop structure.

422 D function for thread splitting with a sequential schedule

If we execute the parallel program according to a sequential schedule, then no additional
order restoration need be done; the debugger must only do structural mapping. We can
execute with a sequential schedule by executing the statements in virtual time order.

Sauctural mapping for thread splitting is straightforward because of the simple mapping
between statements and variables in the 0 and (a programs. The restriction that all pro-
grams of the (o program be identical simplifies the problem further. There is one copy of
every variable in every name space and one copy of every statement for every processor.
If the user sets a breakpoint on a statement, then we want to set a breakpoint on every
copy of that statement in each address space. If the where command is used to inspect
the current location, we use the location of the processor with the lowest virtual time
because this is the statement that is executed next. If the user wants to inspect or modify
a variable in the P program, they must specify which copy they waL A crpy of a vari-
able can be referenced with its nane in the address space and the processor index. For
example if the user wants to inspect the copy of the variable C on processor <1,2>, they
would use the name (C< 1,2>).

SOURCE-LEVEL DEBUGGIG OF AUTOMATICALLY PARALLELOD PROGRAMS 43

The e apqItt trinefor on

ls D function that execums accodlng to a sequmntial schedule is listed below. The
purallel progra sate is a sequence of states one for each process. The argument dsack
is a list of debugger stacks, one for each pmcessor. The argumnent program is a list of
program, one for each processor. The dspace function determines the index of the
processor that a particular variable is a member. The function minnj-_ime retarmn the
index of the processor with the mi•mmum virtual time. The slect function picks one ele-
mInt out of a list, baed an the index supplied. It is used to extract the appropciae
deb- er stock fIm the duak paramaet.

For every commaId but run, the debugger decides which processor this command acts
on aId posses on the command to that proceusor. If ezonine or set ame used, then the
processor selected is the one on which the variable resides. For the where and run
commands, the processor selected is the one with the lowest virtual time.

For the run command, we repeatedly single step the program until we reach a break-
point or the program terminai After every step, we must determine wh-ch processor
should be the next one to single step.

debugger(dstack.gadtate grmptsname,value)
{

/* decide which processor this command acts on '/
if (command - where I command - step)

idex - mn-virt._ time(state);
else index = adspece(name);

/' select the debugger stack, processor state
and program for the processor *1

stack I select(do ackindex);
stalel = select(staleindex);
progruml = select(progrmn,index);
debtl f=rst(stack1);

/* pass the command to the lower level debugger *1
if (command - run)

/* single step until we hit a breakpoint
or the program terminates */

locationsappy(debl,rest(stack1),
wbhem.sel,p1ogram1l,bpts~name,value)

while (location not a member of bpts and
no exAptios yet) (

stalel=
apply(debliest(stackl),

nm,stale l,programl,alame,value);

merge stateI into state
I* decide which processor to act on 1
index - mivirtjtime(state);

/* select the new processor state, debugger stack
aId pogram I/

44 SOURCE-LEVEL DEBUGGWNG OF AUTOMATICALLY PARALLELI2ED PROGROML

Pmwuke" mseauon while debugging

uck1 = se~lectdssak,index);
- s•W = select(stwejndex);

progranl a select(programijudex);
debI a f=rskstacdl);

location
ue~ly(deb l,eu(stzk1),

wselm,,w,programI ,bptsamevalue)

merge state I into state
retrmn sta•

if (command - where) {
relumn apply(debliest(stackl).

wh -t•are,programl,bptslname,value)
if (command - examine)

return apply(debl,rest(stackl),
examine,statel,progran 1,bpts,name, value);

if (conmand - set) {
stail = apply(deblrest(stac.i),

set,stsl I,programl,bpts,name,value);
merge state 1 into state
return state

4.3 Parallel execution while debugging

While executing the parallel program with a sequential schedule permits full debugga-
bility, it has the drawback that execution is very slow. Another option for dynamic order
restoration is to let the program run in parallel, and detect when the program in not in a
state that is consistent with a state of the 0 program.

Parallel execution creates two problems. The first is that events such as breakpoints and
exceptions may occur in the parallel program in a different order then they would have
occured in the sequential pogramn. Virtual times are used to detemine the correct order
for presenting events to the user. The second problem is that when the parallel program
stops, it might not be in a state that is consistent with any state of the 0 program. If we
allow the user to examine or modify variables, then the behavior might not be correct
(as defined by Definition 2-3). The debugger must detect when the state of the program
is not consistent with a state of the 0 program and prevent the user from doing anything
that will cause incorrect behavior. A debugger can also provide mechanisms that make it
"possible for the user to put the program into a state that is consistent with a state of the 0

program.

We begin with Section 4.3.1, which defines some terms. The basic functioning of the
debugger is described in Section 4.32, which introduces the sub-components.

SOURCE-LEVEL DEBUGGMG OF AUTOMA .ALLY PARALLELIzED POGRAms 45

Jim thread sPWA~ng trunstonnstion

"I.. TWM.
In thi section we define some terms that are used in the diacsusiom of perallel exewu-
donr. Ila cocepts of virtual time, and committing ev=Wam r taken hom Jefferson's
Time Warp Openating System(Jeffcrson 851 (Jefferon 871. An event is an ocaurwe~
carnal by the executmo of the progiau thsatrquires some debugger action, lik beak-
Paine Or exceptions. The w~nUa tune of an event is the virual time of the statement that
caused the evcnt. A bmeakpoint or exception as pendig if it hos occurred but hasn't been
pueented to fth ter yet. Comwiuin =s ~vn is the act of preenting a pending event to
the tuier. In some situa=6tihe, debugger may not be abl to let the use examine a vari-
able, modilfy a vubiabe, or 34 a breakpoint mid s3il maintain - i rect behvior. In this
me, th debugger tells the user that it cannt complete th action. We call this disallow-
big a commaid. In some cues we may want to allow a processo or set of processors to
execute until they reach a specific virtual timie. NW call this rollforward.

4.3.2 Debugger
The debugger functions as follows. The user stamt the program, and it exectues in paral-
lel. Next, an event such as a breakpoint or exception occurs on one or more processors
or the user aborts execution of the program. The debugger stops all processors and
detennime their virtual times. All events are marked as pending. The debugger then
pickcs a virtual time in the execution of the A program to represent to, the user as the cur-
rent diae, we call this the 0 time. For corrmc behavior, it must appear to the user that all
operations with a lower virtual time have been executed and that no operations with a
higher virtual time have been executed yet. Picking the A itim is explained in Section
4.3.3. After selecting the 0 time, the debugger can present pending events to the user,
mid wait for the user to execute some commands. If the state of the progrinu is not con-
sistent with a stae of the 0 psugrana, then the debugger must disallow some commands.
The method for deciding if commands should be disallowed can be found in Section
4.3.4. In Section 4.35, we conclude with a description of what the debugger can do to
help the user if a command is disallowed.

4.3.3 Choon asing the 0 Urn.
In some cases, we have some flexibility about what time the debugger picks as the
tMe. Ibis decision deternmies which operation are early and which operations are late,
which in turn determines which variables may be inspected or modified and where
breakpoints can be set Possible choices range from the earliest virtual tme of all the
processors to the latest virtual time. If we pick fth earliest virtual time, then we can be
sute that there are no Lafte operations. The debugger should never pick a time earlier than
the earliest processor because it would only increase the number of early operations
without decreaing the number of lawe operations. If we pick the latest virtal timie, then
we cmi be sure that there are no early operations. Thbe debugger should never pick a time
later than the laest processor because it would in==as the number of lat operations
without decreasing the number of early operations.

Interrupts by the user are not tied to a particular statement of the progrmn, beamdnchr is
some flexibility for choosing the 0 time when this occurs. If our only concern is to min-
lanize the number of early and late operations, then the best time is the latest virtual time
of all the processors. With this choice, thme aren't any early operations, and we can roll

46 SOtIRCE4-LEVL OE5IOGWFG OF A*JTOMAT.ZALLY PARALLEWED PROGRAMS

Pwe "meti whia duuggin

forwuar all the processors with a virtual me lower than the A tme Mail there ae DO
amore om emation.

Ellminating all the lat nd early operations is benficial because the current state will
be conisten with a state at the 3 program . In such a sate, tde debugger will not disal-
low my commads. However, rolling forward to the latest virtual time may prevent the
debugger from having a timely response to iterrpts. For example, it a loop has 1,000
iteraicns, and each processor is assigned a block of 100 contiguou iterations, t one
picessor will immediately execute iteration 900 of the loop. If we chose the highest
virtual time as the P3 time, then for an inmerupt the debugger would always roi forward
to at least iteation 900 in progran, no matr when the interrupt occurs and how long it
takes for the program to get to iteration 900.

For intenips we believe that a timely response is more important than being able to
stop in a state where there are no early operations. Since it simple to roll processors for-
ward, the 0 time should be the virtual time of the earliest processor. The user can late
decide to roll processors forward to eliminate early and late operations, but they still
have the opportunity to inspect earlier state.

Unlike interrupts, there is no choice in the selection of the 13 time when breakpoints or
exceptions are pending. If the debugger is to present events in source order, the 13 time
must be the time of the earliest pending event. Before committing the event, the debug-
ger must roll forward all processors with late operations to make sure that ther are no
late events If there are any late events, then they would have a virtual time less than the
13 time of the breakpoint or exception so they must be presented first. If new events
occur during roll forward, those events become pending, and the new 03 time is the time
of the earliest pending event.

To summarize, user interrupts are handled differently from events such as breakpoints
and program exceptions. If the program is running and an event occurs, we stop all lX-
cessors and determine their virtual time. TheU time is chosen to be the time of the earli-
est pending event. We then roll forward all processors to that 0 time. Another event may
occur during roll forward; if it does the debugger handles it the same as if the program
were fruming and an event occurred. Once roll forward is complete, we commit the
event by letting the user know that a breakpoint or an exception has occurred. If the user
continues execution and there are still events pending, then the debugger acts as if the
program we runming and another event just occurred.

If the use interrupts execution of the program and there are no events pending, we stop
all processors and determine their virtual time. The 0 time is the lowest virtual time of
all the processors and no roll forward is necessary because there are no late operations.
For either events or interrupts, we never stop the program with any late operations
because the 1 time is always the lowest virtual time of all the processors.

4.3.4 Disallowing user commands

After the program has stopped, it may not be in a state that is consistent with execution
of the 03 program. If it is not in a consistent state, then using the debugger to examine or
modify the program state might lead to incorrect behavior of the debugger. To avoid
incorrect behavior, the debugger must decide which commands to disallow. A command

OURCE-LEVEL DEBUQMNG OF ATOMATWALY PARALLELIMD PROGRAMS 47

The tM ed npRn tsplntting

most be disallowed if its behvior chIsged by carly operations. For example, an eAy
write a variabe would cam the debugger w display the wrmg value if the user

-xmk do variablý

Computing the set of early opeatiom is the fJIM step in decidin if a command should
be disallowed. We explain this in Section 43.4.1. Next. the debugger must determine
t effect dot the early operaio. have on the pi'ticulf comman. In Section 4.3.42
aid Section 4.3.4.3, we explIn what type oa early opemdons will came incorrect
behvior for each of the debugger comm=ds

"4.l4 Computin de Set of early operation.
Te set ofr eary operations we th instances of statemts that ar exetcued that have a
virtual due greaftr than or equal to the P dime. Tbere can be no gewale and practical
method to compute the exact set of early operations because the execution of some
operations can be data dependent For example. if there wet a condidonal inside a loop,
aid the loop executes some early iterations, we would have to know which way the con-
ditional branched in the pan to know if the operation contained in the then clause are
early operations. This would require the debugger to record a complete utace of execu-
don of operations until it is certain that the operations me mn early.

We can use a conservative approximation for the set of early operations. In this context,
a conservative approximation includes all operations that are executed early and may
include some operations which were not executed early. This may lead us to incorcy
disallow a command, but we will never permit a command that should have been disal-
lowed.

We can compute the set of early operatim for one processor by computing for each
statement the set of possible virtual times over the entire execution of the program. We
then eliminate all the virtual times that are less than the P time or greater than or equal to
the current time of the processor.

Computing the set of virtual times for a statement is a straightforward extension of the
method we use to compute the current virtual time of a processor, as is described in Sec-
tion 4.2.1.2, For each statement, we start with the virtual time template. The values for
dist variables can be determined ftm the processor index. To compute the set of vir-
tual times possible, we initially assume that the value for all loop counters in a virtual
die template have a range from 0 to -a. Next we remove virtual times from the set that
we less than the P time or greater than the current time.

For the example w program in FIGURE 4-4, assume that processor 0 stopped at virtual
time (2.3,6,2,6) and proces 1 stopped at virtual time (2,6.3,1.4). The 0 time would be
(2,3,6,2,6). For processor 0, the 0 time is the same as the current time of the processor
so we know that the am no early operations. For processor 1, there ae early opera-
dons. The first line of the w program has the virtual time set of (2,n ,2,0,0) where
0 <an:5 --. The first vial dtie of the set that is greater th• or equan tothe f time is
(2,4.2,0,0), so we can bound n from below by 4. The highest virtual time that is less
than the current time is (2,6,2,0,0), so we can bound a from above by 6. This leaves

(2,2,.,OO), 4 n:a 5 6 as the set of early operations for the first statemen.

46 SOURCE-LEVELA DEBUGGOG OF AUTOMATiCALLY PARAL.INB•D PROGRAMS

Naolu mmudon while dsbugN~nG

The secoad lUme of the w poipwa is conained inside a diet. Its vimrtal dme tcmplam
conins the ,ist variable a, which has a value of0 on pcessmo 0 and I on pocessor
I. Becase the virtual thie templaie of the swmnaet is different on each processor, the
virtual dme set of the smemaut oa each processor is differmt. On processor 1. the set is
(2.n.3.1.4). where 0 n ý 5.i. Mhe low esvirtual time greater thin or equal to the 0 time
is (2,4,3,1,4). The highest vintual die that Is less than the cunrmt dme is (2,5,3,1,4).
This leaves (2,.3,1,4), 4 n:5 a 5 a the set olearly operations for the second smemeneu

For the third stamment of the (o program, there a•e two loop comnters. The set is
Mnt.6m,6 where 0• S•, x: -ad 0 S m S---. For' the low time, 3 and 2 we choe as

values of the j and k loop counems becamse that is their value in the 0 time. The low
time is (2,3,6,26) and the high tme is (25.,6,-,,6). The set of early opations is
(2.3.6^6), 2 S m S.- and (2,n6am.6), 4Sn S 5 and 0 Sm in -. The set of early oper-
ations for the fourth statemeat of the w program is (2.3,6^m.8), 2 S m5 - and
(2n,6.8), 4 5 n S5 and 0O<m<in .

RGURE 4-4 • program and (o program

Sprogram:
1 rep a = 0 to _np[O] with <a>
2 <0> for (j = 0; j < n; j++) (
3 dist a = 0 to -np[0] with <a>
4 <0> b = 1;
5 rep a = 0 to _np[0] with <a>
6 <0> for (k = 0; k < m; k++)
7 rep a = 0 to _np(0] with <a>
8 AIk] =b;
9)
(o program:
2.,j,2,.,0 for (j = 0; j < n; j+,) (
2,j,3,a,4 b = 1;
2,j,6,k,6 for (k = 0; k < 10; k++)
2,j,6,k,8 Aik] = b;

4.3.4.2 Exmnining and modifying variables
If we allow the user to examine or modify a variable when them am early or late opera-
dons, we must observe the same dependence rules that a compiler must observe when
scheduling code. These rules determine when operations may be reordered. We use the
terminology from data dependence{Padua 86] to phrase the constraints.

There is aflow dependence between two operations when one operation som to a vari-
able and a later operation reads it, without any intervening stows. In the following
example, the second statement is flow dependent on the first statement because the first
statement stores into a and the second statement reads a.

SOURCE-LEVEL DEBUGGING OF AUTOMATICALLY PARALLELOD PROGAMS 49

lb.k~f thea m- sincirmon

a a1;

b-a;

There ian ouWw dep ende between two opertons when they store to the sae
variable and th re i=noerening stores. In the following example, there is an output
depndence between the first and second statement becau• they both store so the same

b =1;
b =2;

Them is an wi dpepnde between two operations when one operatim reads a vari-
able and a later aem writes the sme variable.

If the user wants to examine a variable, then there can be no late or early writs. Exam-
ining a variable is treated the same as a read of the variable at the point in the program
corresponding to the 0 time. If there are late writes of the examined variable, then
allowing the user to look at its value would be the same as moving a read before a write,
which violates a flow dependence. If there is an early write, then we would be moving a
read after a write, which violates an anti dependence.

If the user wants to modify a variable, there can be no Iae or early operations which
read or write the variable. A late reads violates an anti dependence, a late write violates
an output dependence, an early read violates a flow depmdence and an early write vio-
lates an output dependence.

In Section 4.3.4.1, we compute the set of operations that awe early; we can use this infor-
mation to determine which variables have early reads or writes. If a statement has an
early execution, then the variables in that statement have early reads or writes. Since the
early execution information is conservative, the early read and write information is con-
servative as well.

In the example in FIGURE 4-4, we concluded that processor 0 has no early operations,
thus it doesn't have any early reads or writes, and all variables on that processor can be
examined and modified at the current poi in the execution of the proran. Processor I
has executed some early operations. The first statement has been executed early, so we
can conclude that the variables J and n have early reads and the variable j has an early
write. Because the second statement has been executed early, we cm conclude that the
variable b has some early writes. The third statement has also been executed early, so
we ca conclude that the variables k and b have early reads and the variable k and the
aray A have some early writes. The only variable that doesn't have an early wrt is n
on processor 1. so that is the only variable that can be examined by the user Every vari-
able on processor I has an early read, so none of them can be modiied.

We have conservatively assumed that if a statement has an early read or write of an
army, then the entire stray has an early read or write. If we have more information about
which element of an army each iteration of the loop references, we cm compute finer
grain information about which elements of the army have early reads or writes. In the
example progrm, we know that iteration i of the loop in the third smtement wries de-
mnt A [ii. If the current time of processor 1 is (2.3,6.4.6) and the time of procesor 0 is

so aoucE- .EEVEI DEuBGNGS OF AUTOUATWIA"YL PARALLELINO PROGRAM

Pu emmuion whie dbugWng

still (2,3Aa026) as it was in Me previous example, then the 0 time is still (2.3,6.6). The
"only early opmralionas e ofpbocessor I on stement 3, which is (2.3,6^.,6) where
2q:a5 3. In this cue, there am early writes of the array elements An] where
2: s3.

43.43 Seltin brupluonft.
It a breakpoint is st an a statiaent that ha early executions, diem some of the break-
paizta that tie oxogram would have normally reached will be missed. The debugger can-
not be ertmi became die st ofearly operations is conservative; we only know tdit the
staement might have been executed early. If the user sets a breakpoint on a statement
with early executions, then the debugger should warn the user tdt some breakpoits
might have been missed The debugger has enough information to tell the user which
iterations the missed breakpoints come fhum.

4.3.5 What to do when commands am disallowed

When a command is disallowed because some processors have executed early opera-
dons, the user might be able to get the information that they need another way. They
might inspect another variable or set a breakpoint on another statement. However, in
some cases, they may have to inspect a particular variable. In this situation, they could
try to run their program again and hope that the next time it stops in a state that has the
information they need. Even if we run the program again, it might not stop in a better
state on successive viaes.

Thre are several ways that a debugger can help this problem. It can rena the pWogram
from the beginning and stop in a state with the same 0 time, but no early operations. The
debugger could also restrict execution of the parallel program so that when it stops at a
breakpoint, it will be in a state without any early operations. We call this a consistent
breakpoint because the program stops in a state that is consistent with a state in the exe-
cution of the 0 program. Consistent breakpoints can sacrifice some or all of the parallel-
ism of the program but might cost less in the long run when compared to repeatedly
erurnuing the program.

Both of these choices can be viewed as a special case of roll forward. The first is roiling
forward all the processors from the beginning of the program and stopping at a specified
virtual time, which in this case happens to be the cumut 0 time. The second is rolling
forward all processors to the virtual time of the next potential breakpoint.

We first introduce the mechanisms that ame needed for roll forward in Section 4.3.5.1.
We then explain how roll forward can be used to do rerun in Section 4.3.5.2 and consis-
tent breakpoints in Section 4.3.5.3.

4.3.5.1 Roll forward
For roll forward, we want to advance the execution of all processors until they have exe-
cuted all statements with a virual time lets than some target time t. We shall call the
staement in the P program whose virtua time is the same as the target time the target
statement. To roll forward, we could just single step every processor and check the vir-
tual time after every step, stopping when the cumreit time of a processor is greater than
or equal to t. However, this is very costly. Instead we would like to compute in advance

SOURCE-LEWL DEBUGGING OF AUTOMATICALL• IARALLEUJD PROGRAMS 51

The Ued • rnon• o

do statem dat cut processor should stop at, and = a pkmk• there. If dtat saw.
m is uklde a loop then the Ar thm that the stmeatm execu•es Enh not be the
time thd we wa to stop. The bralkpoim must be conditioned n tie virtual time being
great than or equal to the target tdm. We shall call the stmet ad the vimml time
dt a pocesms should stop at the leW upper bound (LUB) because a is the lowest vir-
tad time of the processor that is grearer -lum ar equal ID the target time. For my given
lae tdm, each pracesor will bv it own LUB.

St can comput he LUB for each proccuor by uiarting at the target staeent in the
Pwgpm and traing the contol Sow tntil we fiAnd one statement and viua tame for
e l aro 1 r. Every ti we find a PIL for a paccueor that does nwe yet have a LUB,
we P n -l the virtual time and stmement as the LUB for that prome and then mnove
the processor from the list of piom orus that do not have LUB's. This method of finding
LOB's asumes tha the program xecues the stascment at the arget time. If the comroi
flow never gets to the target satment, them is no guarantee that it will get to the LUB
either. The previous method that single steps until we reach the tapt time always
wors.

The pogram in FIGURE 4-5 illusates this procedure. The program at the op is a •
program and the program below it is the same 0 program with the -ep and dlit con-
snus expanded. All of the following discussion refers to the expanded 0 program.

If the target time is (2,3,5,1,6), thin we star the search for the LUB at the second
asginum to the vanriabe a because only this statement can have the mrt tme as a
virttad time. The stement •s m4Ve ID processor1. so tdis is the LUB for pmroessor 1.
If we traw the execuidon of the progam, we skip over theeis clae and execute the
next If statement. The if state•erA is mapped to both procesors, so this statement is
the LUB fo prcessor 0. The virtual time of the LUB is in the same iteratio as r, ta-r.
get time, (23,12,0,0). When tracing control flow, we never have to trace the body of an
if stmaeme aft checking fth part of the statement et contains the condition. Recall
that the PIL's of the condition ln of an if statement must be a superset of the Pl~s of
the statements in the body. If we don't get a match on the PIL of the line with the condi-
tion. we cannot get a match on any PIL in the body. This is important because we cannot
predict future behavior of the program, and cannot know whether o trace the then or
else clause when searching for the LUB.

For this example, when we want to roll forward to a tawrget time of (2,3,5,1,6), the
debugger sets a breakpoint on line 6 on processor 1. When the value of the loop cownter
I is 3 when executing this samnent, the debugger stops the processm0 For processo,
the debugger sets a breakpoint on line 12, and stop the procs when it reaches the
beakpoint and the value of I is 3.

Another example illunstes how to ace contrl with loops If the target virtual time is
(2,3,16,1,17), then the starting point in the program is the last statement in the loop. This
statement is mapped to processor 1, so this is the LUB for that processor. If we trace the
execution of the program, we follow the loop beck path to the beginning of the loop.
"The loop header is mapped to prmcessor 0, so this statement is the LUB for that proces-
so The virtual time of the LUB is in do next iterat•on of the loop, (2,4,0,0,0). Just like
the If, we neve have to trace dhough the body of a loop after checking the hader
becausie the PIL's of thehlr am a supes of the PL's of the body. If we do no geta

62 SOUWcuLWt EO NG OF AwrOMATu uLLY PARALLELJMD PROGRAMS

Pmrl inceudon whie d~bigngg

RFURE 46 A 1 program nd its expanded velson.

Virtul dine Fprpmm

1 rep for m 0 to 1 with <m>
(2,i,0,0,0) 2 <0> for (i = 0; i < 10; i++) (

3 rep for m = 0 to 1 with <m>
(2,4•.3,0,0) 4 <0> if (a am 1) (

5 dist for n = 0 to 1 with <n>
(2,i,S,n,6) 6 <0> a = 2;

7)else.
8 dist for n = 0 to 1 with <n>

(2,i,8,n,9) 9 <0> b = 2;
10 }
11 rep for m = 0 to 1 with <m>

(2,i,12,0,0) 12 <0> if (a == 1) (
13 dist for n = 0 to 1 with <n>

(2,i,13,n, 14) 14 <0> c = 2;
15)else(
16 dist for n = 0 to 1 with <n>

(2, i,16,n,17) 17 <0> d = 2;
18 1
19

VMutual tke program with expanded rep and dist

(2,i,0,0,0) <0>,<1> for (i = 0; i < 10; i++) (
(2,i,3,0,0) <0>,<i> if (a == 1) (
(2,i,5,0,6) <0> a = 2;
(2,i,5,1,6) <1> a - 2;

} else {
(2, i,8,0,9) <0> b = 2;
(2, i,8,1,9) <1> b 2;

)

(2,i,12,0,0) <0>,<1> if (e == 1). (
(2, i,13,0,14) <0> c = 2;
(2,i,13,1,14) <1> c - 2;

)else (
(2, i,16,0,17) <0> d = 2;
(2,i,16,1,17) <1> d = 2;

)

SOURCE-LEVEL OEBUGGING OF AUTOMATICALLY PARALL.EUA• PROGRAMS 53

Th. dind SpUmgtrunIot

hou ornmy PIL of the hmkra, we cannot get a match on my PIL in the body. This is
imaportat because we cannt predict the future beh~Avar of the looP. other thian to know
dot If the "oo executes die body, it will always execute the header one moire time to
check if it should execute die nuxt iteration.

435 PAMu
oRe iram, we waint to put the pirogram in stase where it has the same 0 time asthe cur-

amsae but dim am no early opeatic... We can do this by starting the prora from
die beginning and rollig ftward to the 0 thne.

When we -u a program the ftna s=w should be the same as the original stare, excepit
that there should not be any early operations. Mwe state is the samie if the program is
demenninate and the execution envirounmen is reproduced. Code produced by thead
splitting is determinate, thus diere cannot be any schedule dependent bugs that prevent
mruna from reaching the desired state. To reproduce the execution envirmnent, external
I/O must be the same., memory should be minialized the sane way, etc. Reproducig the
execution environment can be difficult. However, users typically design their programs
so dhat they can be mmn because debugging a program usually requires that the pro-
gram be rn in may times. A debugger cam make this easier by initializing memory and
logging and playing back any external IIO(Pan 88].

4.&U5. Cani~lta briskpolnts
When users set breakpoints they are usually interested in the state of the pirogrm at that
point in the execution. Rather then letting the programa run unrestricted, we can use a
consistent breakpoint, where die debugger controls execution so that the program breaks
in a state that is consistent with a stat of the 0 program. This eam reduce the parallelism
of aprogram. We set breakpoints without specifying the iteiration; if the breakpoint is set
on a statement inside a conditional, the progiram could stop at any iteration. If we want
to be sure that we have not executed any early iterations then we must execute one iter-
ation at a time.

A consistent bireakpoint emn be implemented with roll forwardL For each bireakpoint set
by the ame, we compute the time of the next breakpoinL This can be done: by finding the
smalles virtual time in the set of virtual times for a breakpoint statement that is greater
tha or equal to the 0 time. For each processor, we must check if there ame any early
operations, assuming that the time of the earliest brveakpoint is tie next P time. If there
ame early operations for that 0 time. then we canno have a consistent breakpoint Next,
for every puocessor we compute one LtJB for each breakpoint sand roil forward to die

IV the breakpoint is in a conditionial or a loop, then die breakpoint may or may not occur,
depending on whether die program executes the body of the conditional or loop. If the
breakpoint does occuir, then the roil forwad mechanism leaves the progran in a state
where there ame no early operations. If the breakpoint does not occur, then the other pro-
cessors may or may not stop at the LUD for the breakpoint since we only guarantee that
a processor will reach a LUB if the progiram reaches the target statement

If a pimcessor stops at the LUB for a breakpoint, and the breakpoint does nic occur, then
we must restart the processor. The difficulty is knowing when it is safe to irestart If any
processor runs punt the targt virtual tme then the breakpoint will not occur If any pro-

54 SOURAM-ULdWL ODUGGXING OF AUTOMATICALLY PARALLEUZED PROGRAMS

cessns are stopped at the LUB and other processors an still nnming we must poll the
rwining processors for their virtual time util they all stop at the LUB or one of the pro-
cessors nuts pest their LUB. If a processo rums past its LUB, we stat over. Ihe debug-
ge stpop all processors, computes the eliwet virtual time for each breakpoint and the
new LUB's, amn continues the roll forward.

If we need to break at every iteration of a parallel loop, then there is little parAlelim•
dint can be exploited in that panr of the program. However, them may be parallelism ear-
lier in the program. Consistent breakpoints allow the user to take advantage of parallel-
ism in prts of the program that the user does not care about, while avoiding the need for
remun. In the worst cae, using consistent breakpoints is comparable to executing with a
sequential schedule.

4.4 Efficiency

A debugger with dynamic outer restoration must do extra work when compared to a
conventional debugger for sequential progrms; however, we believe that the additional
work is small enough to make dynamic order restoration practical. In this section we
examine why there is extra work and estimate the cost. There are two main sources of
additional work for the debugger when compared to a debugger for sequential pro-
grams: the information that must be computed to decide if commands are disallowed
and re-execution when commands are disallowed. We discuss each of them below.

During normal execution, no additional work is necessary. When a program stops exe-
cuting because of a breakpoint, exception, or intemupt, the debugger first computes the
viral time of each processor to determine the current time. Determining the virtual
time takes a constant cost per pacessoc After the current time is set, the debugger rolls
forward all processors with late operations. The debugger must compute the LUB for
each processor when rolling forward. Computing the LU13 of a processor is linear in the
size of the program. Rolling forward takes time, but since useful work is being exe-
cuted, we do not consider this extra. After roU forward is complete, the debugger com-
putes the set of early operations on each processor, which is linear in the program
length. From the set of early operations, the debugger can compute the set of variables
with early reads and writes, which is also linear in the program length. Computing early
reads and writes with a resolution of individual array elements can require some data
flow analysis. However, this information can be precomputed at compile-time. All the
work described above must be done every time the program stops and is linear in pro-
gram length and the number of processors. If either the program size or the number of
processors is so large that the time is significant, we could use the parallel processor to
compute the information; the problem can be partitioned by dividing the program or
dividing by processor.

If a command is disallowed, the user may decide to re-execute the program. If the pro-
gram is re-executed frequently, the cost can be significant; in some cases, it could be
better to execute the program with a sequential schedule so that commands are never
disallowed. The number of times it is necessary to re-execute a program depends on
what variables mu examined and modified and where breakpoints are set, and is thus
dependent on the user. We believe that the expense of re-execution will in general be

SOURCSLEW4.EL 0ESUG NG OF AUTOMAT1CALLY PARALLEI OW PROGRAMS 55

Te. Uvmd sputum tramuf.nnow

mEL, especially when it is cnmpaed to the cost of executing with a sequential sched-

Firt, if a prognou has a factor otin speedup when executing on the parallel machine, the
debugger would have to rerun the program n mes before execution would be as slow as
sequential executim For massively parallel machins a can be quit high.

Secod, after wxexcuti•g the pogram ce, the program is in a state without early
operations, so no commands are disalowed in that state and reexecution is not needed
again uMil the us" continues execution.

ThiK the use cm use consistent breakpoints to nsure that re-execution is never neces-
smy. As explained in the previous section, if we set a consistent breakpoint in a parallel
loop the program execut sequentially, so any breakpoint, exception or intefrupt would
put the program in a state without amy early operations. In the worst case, the use. can
use consistm breakpoints to execute the program with a sequential schedule.

4.5 Related work

Gupta stulies the problem of providing source level debugging for programs that have
been trace scheduled for VLIW (Very Long Instruction Word) machines [Gupta 881.
Since a VLIW can execute many operto in the same instruction word, it can be
viewed as a tighty synchronized parallel machine. Our work focuses on the dynamic
namre of execution on MIMD machines. In a MIMD machine, the processors are not
tightly coupled and the relative order of execution of two operations on different proces-
son can change, which creates the need for dynamic order restoration. It is unnecessary
for a VLIW because the parallelism is statically scheduled. Gupta's work focused on
static reordering of operations, which we do not consider in this thesis. However, we
can apply his results to the problem of structural mapping. For this reason, Gupta's work
on the strucural problem is complementary.

Pineo and Soffa study soure-level debugging for automatically parallelized code
[Pineo 91]. They only attempt to solve the problem of presenting the correct data values
to the user, they do not consider modifying dam or control flow.

Their method exploits the features of single assignment languages. Over the lifetime of
a program, a variable will have many versions, oe version for each time it is assigned a
value. They make the versions explicit in the program by converting the imperative,
sequential program to a sequential program in single assignment form. Every time a
variable is assigned a value in the imperative program, a new variable with a unique
name is created in the single assignment program. If a variable is assigned a value in a
loop, scalar expansion is applied so that every imtradon will assign a different variable.
If the bounds of a loop am not known before the loop begins, then space must be incre-
mentally allocated for variables during the execution of the loop. Each position in the
source program has associated with it the versions of all the variables that are live at that
point. Only one version of each variable can be live at one point in the program. After
this conversion, the program is paallelized.

56 SOURc-LEVEL DEBU N OF AurOMATICALLY PAOALLELI• rOGRAMS

Rdd 'work

Whm debugging with our method, the debugger must determine if the current value of
the vaiable is the correct one to inspet for the current 0 time. In their method, evey
variable is only assigned one value, so they must determine which copy of the variable
is the correc one for the curet point in the pxrgram. To determine which copy, they
me the prournm counter in the source program and the value of loop counters in the
souce program. In their system. they do not present the user with a model dot only a
singl loop iteration is being executed at one time, so the user must provide the loop
coucnr values when exaninin variables (e.g. examine variable a from iteration 5).

As Plneo points out, the single assigment transformation is not sulmciat to solve the
plobiom on MIMD machines. Even if a variable can only be assigned to once, it still has
two values during the lifetime of a program: unnitialized and initialized. After the first
version of the variable in the source program has been initialized, it is still possible that
the copy that we want to inspect has not yet been initialized. To solve this problem,
Pineo proposes initializing all memory locations to 0 and when the debugger is asked to
display a variable that happens to be 0, the debugger reports that the value is 0 or the
value is not ready yet (the debugger does not have enough information to distinguish the
two cases). Alternatively, if the hardware supports detection of reading uninitiWiized
variables, this cam be checked automaticaly. Our virtual time scheme eliminates the
need for special hardware and still can give precise answers about the values of vari-
ables.

The are four key differces between Pineo's and our work First, we provide control
flow that is consistent with the sequential program. Not providing source program con-
trol flow places a greater burden on the user of understanding the parallel stature of
the program.

The second difference is that Pineo's method requires extra space for the storage of data.
a large change in the parallel code. The conversion to single assignment form can
require significant increases in space and computation solely to support debugging. To
reduce the space requirements, Pineo performs name reclamation to re-use storage for
multiple versions of the same variable when it isn't necessary to keep all the versions
around for debugging or parallelization. In benchmark programs, Pineo measures a 10%
increase in storage that can be attributed solely to debugging; however, the number can
be much higher for individual programs.

The third difference is that saving multiple versions of a variable ensures that a current
value of a variable can be found if we run the program long enough so that the value is
initialized. In our method, the current value might have been overwritten and can only
be found by rernning the program. The single assignment method pessimistically uses
extra space and computation in case the user might need to see a value. We believe that
it is more effective to not do the extra work, and rerun the program when it is not possi-
ble to provide a current value of a variable because it has been overwritten.

The fourth difference is that the single assignment method can support reordering of
stoaes on the same processor, while our method cannot. As described earlier, this capa-
bility comes at a potentially large cost, and the user must pay the cost even when there is
no reordering of stores. However, saving extra copies of variables to achieve the same
result could be added to our model if desired.

SOU.4CE4.WL DEBUGGING OF AUTOMATICALLY PARALLEU•D PROGRAMS 57

The t-ed splifting trane lonni

4.6 Summary

In this cbapor, we daemn the tiread splitting transfonnmaion and its D function. We
show that thread splitting is debuggable if a sequential schedule is used. In a sequential
schedule, we cxecule the samenaus of the w program in the smu order as they are cw
coed by the P prognm. ibis ordeing is determined by an assignment of virtual times to
swoemUU. When we allow the program to execute in parallel, we may stop in a state
thai i nocosisbm with a stm ofthe P progam. If we allow the user to examine or
modify varimbles in thns s., the behavix at the debugger might be correct. The debug-
ger must detePr if allowing fe user to modify or examine or vaiable will cause incor-
ORcI beCUvior.

z. ~SOURCE-LEVEL DEBJOGIG OF AJTOMAT1CALLY PARAULLIL= PROGLRAMS

CHAPTER 5 Distribution
transformations

In the distribution phase of compilation, code and data are assigned to processors for
execution. Distribution is accomplished in different ways on different machines. On
shated memory machines, the parallel DO can be implemented with fork/join parallel-
ism1 where a master thread forks off other threads which each execute a subset of the
iterations[Stevens 901. After all the iterations have been executed the threads join, so
that only the master thread continues execution. Compilers for distributed memory
machines usually use a different model, called SPMD, where the same program is exe-
cuted on all processors. Every processor executes the sequental code and when the par-
allel loop is executed, every processor executes its assigned iterations [Tseng 89].
Synchronization is not done after every parallel loop; it is only done on an as-needed
basis. The thread splitting model was designed to support SPMD programs. The rest of
this chapter will assume SPM] type loop distribution.

The general problem of deriving the 0 program for a particular distribution can be more
difficult than generating the parallel code itself. The 5 program (the 3 program is the
step before thread splitting) is essentially the parallel program combined into a single
thread of control. The order of operations in this thread 3f control must be compatible
with the order of operations in both the o) program and the a program. Furthermore, the
communication in the single thread must be ordered so that it will not deadlock
(receives must follow sends).

In this chapter, we describe how to derive the P program for a limited domain taken
from loop based parallelism. From a description of the distribution of the program we
can automatically derive the 0 code and its associated D function. To give some context
and demonstrate the relevance of the domain we have chosen, we briefly describe how a
compiler that takes advantage of loop-based parallelism can translate a loop nest into a
parallel program in Section 5.1. We describe the doman of source programs in Section
5.2. In Section 5.3, we introduce the basic method for distributing iterations among pro-

SOURCE-LEVEL OEBUGGM4G OF AUTOMA11CALLY PARALLEUZ PROGRAMS 5s

OWstrbudon vardaneonstons

omms. Thi Is su i•ent to do the block umapisp employed by most compilers. Sec-
*w 5.4 describes bow cuminkmi cia be insawd into the programn, and Section 5.5

peemts the basic method for distributing dma. In Section 5.6, we exmend the basic
method for distribution of iterations and dam so that we can support cyclic and block-
cyclic distributims of iterations and data as well.

&1 Paralelizlng compilers

For dis;trb0d memory machines, compiles usually distribute the data and then use the
location of the darn to dermine where ID pertfbn the computation One commonly
used strategy is the owner computes rule. which assigns the computation to the proces-
sot that owns the variable where the result is to be stored. In this case. the distribution of
iterations matches the distribution of data.

Two important fLctors for determining bow to distribute the data are locality and load
balancing. A program has good locality when the data items that a processor needs are
usually on that processor. If the processor must execute a statement that needs a value
from another processor then that value must be fetched by the processor Th better the
locality, the less time spent shipping darn around, which leads to good performance. The
other actor is load balancing; if the work of a program is not evenly distributed, then
some processors will be under-uilizod and the performance will be poor. Locality and
load balancing ohf place condicting constraints on the mapping of data and computa-
tio. If all the data and computmaon were placed on one processor, then no communica-
tim would be necessay at run tinme. However became one processor is doing all the
work, the load balancing is not good. The more computation is distributed, the better the
load balancing, but the locality becomes worse which leads to more communication.

Nested loops with regular access pattems am good candidates for parallelizauon for dis-
tibuted memory machines because the compiler can trade off locality and load balanc-
ing at compile time. Algorithms for determining the best distribution are beyond the
scope of this thesis, but have been studied extensively in the litevua[e(Gupta
92][Wboley 91]ILi 91][Knobe 901.

The example in FIGURE 5-1 illustrates some of the constraints for deciding bow to dis-
tnibum data and computation and the different ways for mapping dam to processors. In
the loop, iteation 0 stores its result into aE1], so if a El] resides on processor 1, then
we want to execute iteration 0 on processor 1. Iteration 0 also accesses army elements
bI0] and b[(], so we want to put those elements on processor 1 as well. Essentially,
when , -..distribute the array b acoss the processor array, we shift it to the right by one
and assign two elements per processo. Assigning location based on locality is called
allgnment In this example the amray b is aligned to the army a so that no un time comn-
municaton is necessary to execute an ieradion of the loop. TIh domain examined in this
chapter allows us to express mappings similar to those necessary for the example in
FIGURE 5-1.

so SOURC-LEVE. DEBUGGMO OF AUTOMANICA.Y)ARALLElUr. PROGRAMS

Domain deocription

RGURE 5-1 The plamment of data and aertone for a loop

for (i = 0; i < 10; i++)
ati+11 - b(2*i] + b12*i+lj;

Proesor 0 Processor 1 Procesor 2

a[O1 a~l o &[21
b(0[,b[1], Ib[2],b([311
iteration 0itervaton 1

5.2 Domain description

In our domain, source programs ame limited to nested loops. The iterations of a loop may
be distributed or replicated across a set of processors or all executed on the same proces-
sor. We will use the C syntax of for loops. However, loops where iterations are distrib-
uted must be of the following form:

f or (counter = low; counter < high; counter += step)

For loop control low, high, and step may be expressions but may not change value once
the loop has begun. The body of the loop may contain any statements in the language.
including conditionals and loops, but may not change the loop counter. This is essen-
tially the semantic equivalent of a FORTRAN DO loop.

To specify the parallelizing transformation, the compiler must determine the mapping of
loop iterations to processors, the description of int-processor communication, and the
decomposition of data. To simplify the presentation, the generation of 5 code will be
presented as a three step process: distributing iterations, inserting communication, and
distributing data.

The first step, iteration distribution, restructures the loop and adds processor index
labels so that the appropriate loop iterations will be performed on each processor. Com-
munication statements am inserted into the loop in the second step. Finally, global
names and addresses for distributed data are replaced with local names in the third step.

Code generation and debugging procedures are described for each step. The final Output
will be the P program and the debugging function for the transformation between the (x
program and the, program.

SOURCE-LEVEL DEBUGGWG OF AJTOUATIALLY PARALLEI PROGRAMS 61

Dhlbution bieltarnmtone

5.3 Basic loop Iteration distribution

In this section, we introduce the basic method for distributing loop itemroas. Mom
complicated distribuions build upon this model.

The distribution of loop iterations on processors will be described as a mapping between
delenm s of the iteration space and the processor space. The uqmg is determined by

the compiler. An iseration space for a q deep loop nest is the q dimensiona space Nq.
Each point in the space corresponds to ow loop iteraion the value of the loop countms
for that iteration = the coordinates of the poimt. FIGURE 5-2 shows a doubly nested
"loop ad its corresponding 2 dimensional iteratio sce. The processor space for a r

dimensional processor array is the r dimensional space N. Each point corresponds to
one processor. The mapping assigns a set of iteration to be executed on each processor.

FIGURE 5-2 Iteration space of a doubly nested loop

for (i = 0; i < 6; i++)
for (j = 0; j < i; j++)

}
)

5 13

t 10 1 [0 41 0
0 00100100

i

Each processor executes its assigned iterations in the same order that they were exe-
cuted in the original program.

We only consider a limited class of linear mappings. A linear mapping from a q dimen-
sional iteration space to a r dimensional processor space can be described with T, a
r x q matrix and o, a r element vector. The T matrix and o vector am chosen by the
compiler which decides the mapping. The mapping is computed by:

Equation 5.1 p = LT(O +oJ

62 SOURCE-LEVEL DEBUGGING OF AUTOMATICALLY PARALLELZD PROGRAMS

BIsW loop Notaton dituibution

where i is a point in the iteraton space (ieration idrex) and the result p is a location in
"the pocessmr space (processor index). Since processor indexes are composed of inte-
gers, the result of T(i) + o is always rounded down (floor function). Mappings that
result in a processo index that does not correspond to an actual pucessor index am
invalid and canote occur if the compiler is correct

Mappings will furnher be restricted so that in every row and column of T at most one
element is non-zero. In effect, the iteratmion space is divided into slices thaa parallel to
one axis of the iteration space. These slices am distributed along a dimension of the pro-
cessor space. The dotted lines in FIGURE 5-2 show one possible way of slicing the iter-
atioa space. Our notation permits more complicated linear mappings, for example
mappings that slice the iteration space with cuts that are noa parallel to the axes. Sup-
porting moe general linear mappings does not make debugging more difficult, but com-
plicates the generation of loop bounds for distributed loops; it is not considered in this
thesis.

When it is necessary to map the same loop iteration to more than one processor, an ele-
ment of T may also be the special symbol o. Arithmetic expressions that contain * will

be evaluated as follows: V (c * 0): * x (c) ,x (0) = 0, -=,
C

*modn = *,and * +c = .If a component ofaprocessorindex iscomputed tobe,
then that component takes on all possible values for that dimension of the array. For

example, in a 2x5 array, the procesur index [12 represents the processor indexes ,

and I

The mapping described above is sufficiently general to do the block distribution. distri-
bution by row, and distribution by column. which is used by most parafleliZing compil-
er. It does not include the cyclic mapping because it is non-linear. In Section 5.6, we
extend the basic iteration distribution to handle cyclic distributions.

5.3.1 Examples

In this section we will give examples of various iteration mappings and their transfor-
mation matrices.

The first example is a mapping where the offset vector o is non-zero. The mapping in

FIGURE 5-3 converts an iteration index into a processor index by adding [01 Each

square represents one iteration, the coordinates of the iteration is the processor index
that executes the iteration. We have labeled the iterations on the comers with their itera-
ton indexes.

In Ws example, a row of processor executes one entire iteration of the outer loop. Iter-
ations of the inner loop are spread across each row. If we swap the columns of the map-

SUURCE41EVEL OEBUi•GG OF AJTOMAYWALLY PARALLEMED PROGRAMS 63

Diewmtion trvandloretlone

FGURE 5- ftertdon mapping with an ofat

source program
for (i = 0; i < 6; i++) (

for (j = 0; j < i; j++)

)
)

assignment of iterations to processors
7 j

specicatlon of mapping 6 (5,0) (5,5)

5 0000003 111
r= 4 00000

14, OL dimension 0 3C 1 310 oproceusr 000
r2 ay 2 000

1 1300
0 0(nm

0 1 2 3 4 5 6 7

dimension I of processor aray

ping matrix, then we would obtain a mapping that is the transpose of the one above;
colmms execute outer loop iterations and inner loops are spread across each column.

Sometimes it is desirable to map all the iterations of a loop to a single processor. The
mapping matrix in FIGURE 5-4 assigns each iteration of the outermost loop to a differ-
ent processor, but does not distribute the innennost loop.

If a loop is distributed across a dimension, but more than one iteration is mapped to the
same processor, than a matrix element with an absolute value less than one I should be
used for the appropriate dimensio. The matrix in FIGURE 5-5 maps 2 iterations of the
outer loop to each row of processors, and spreads the iterations of the inner loop so that
each processor gets 3 iterations of the inner loop for a total of 6 iterations. Processors
near the boundary of the iteratim space will get less iterations. Using a coefficient
greater than I will spread iterations so ta not every processor will have work to do.
For example, if the value 3 is used, then only every third processor will execute an iter-
ation.

When a negative coefficient is used, the iterations with successively increasing loop
counter values can be mapped to processors with successively decreasing processor

64 9oURMC4 W UUGGSE G OF .JTOMAT.ALLY PARA,.LELMD PROGRAMS

Bs p k drbuion

FIGURE i-4 teradon mapping that puts a dimension on the same processor

7

5s • (5,0)-(5.5)

T [1o 4

0 2

0 C3 (0,0)

0 1 2 3 4 5

dim
1

FIGURE 5-5 Mapping that places more than one iteration on the same processor

3

T =[1/2 103J 2 (5,3)-(5,5)

dim 1-! (3,3)

ý[[(1,0).(1, 1)
o 0 (0,0)

0 1 2

dim
1

indexes. A * in T will result in a processor index that contains a *. In the example of
FIGURE 5-6, the outer loop is distibuted by row and every column in the row executes
the entire inner loop for that row.

SOtIRCE-LEWL DEBUGGING OF AurOMA7ICALLY PARALLEU O PROGRAM 65

FIGURE 54 Mapping where iterations am duplkated on several processors

7

6s 22 2 (510)-(5.5)

4 o (4,0)-(4,4)
00 3 jPG j PG (3.0)-(3,3)

oO O D D D o,o)-a1
0 00 3C 0 (1 :11 0-0)

0 1 2 3 4 S

Y

5.3.2 Code generation

The code generaion problem is to take a mapping and a loop nest and generate a [pro-
gram with a procsor index labelling. The labelling should be chosen so that when
thread splitting is applied, the output will be a parallel progran where each processor
executes the appropriate set of iterations. Futhemore, the order of execution of itema-
tioms in the 0 program must be the sme as it was in the original program. If the com-
piler wants to change the order of execution of iterations on a single processor, then that
can be done as a part of the resoucnming phase.

Each row of the T matrix detamines how iterations ar mapped to one dimension of the
processor aray. If an element in column c of row r is neither a zero nr a *, then the iter-
ations of the cth loop in the nest are distrbuted across dimension r of the processor
army. If all the elements of row rat 0, then loop iterations ae not distbuted across
dimesion r of the pocessor array. If an element in the tow is a then iterations am
replicated on that dimension of the processor army.

Algorithm 5.1 takes a mapping and source code and outputs the [program. The algo-
tithn is divided into 4 phases, as marked. Phase 1 analyzes the T matrix to decide which
loops are distributed, replicated, and not distributed.

Phase 2 handles the case when work is not distrbuted across a dimension of the proces-
sor space. An example is when iterations ame only assigned to one cohlnn of processors
in a 2 dimensional array; work is not distributed across the columns of the pmcesso
space. We use conditionals to prevent the processor that are not assigned any iterations
from executing. We first emit a diat to distribute copies of the code across the dimen-
sion. Then an •f statement is used to restric execution to tie appropriate prcessors.

S9SOURCE-LVEWL DESUGOGU OF AUTOMATICALLY PARAULIUD PROGRAMS

BUs b brndon detibutoo

Phome 3 of the algoridtn emits each loop of the nest If tha loop is distrbuted, a 4.st
is emisted dha distribt•s the loop code crouss t appropni• a dimeni Iterations ae
disft•bed ftm low values to high values if uthe is a positive value in loopscale and
am distributed from high values to low values if thee is a negative value in loopscale.
For some pngrams, it is not known at compile-tume whether the loop should go from
low to high or high to low. An example is where the sip of the sLop for a loop is
unknowu at compile-tine. If the siip is not kown, then we must emit two loops, one
that distibutmes from low to high and mother that distributes from high to low. A comdi-
tioal selects which copy should be executed at run-time. The restriction that PlUs be
constant forces us to emit two loops for these siatios. The reasom for constant PL's
and the effect of their limitations am described in CHAPTER 7. For the rest of this
chapter, we amume that we kiow at compile-tme whether loops should be distributed
from low-valued processous to high-valued processors or vice vesa.

If the compiler emits a loop in phase 3 that is distributed, the bounds of the loop are
p e by processor index so that each instance created by the dist will exe-
cute its assigned loop iterations. If the loop is not distributed, it is emitted unchanged.

Phase 4 of the algorithm emits the loop body. For every dimension of the processor for
which iterations awe replicated, we emit a rep. Then we emit the body itself, with a PIT
of 0.

The auxiliary functions compslicebegin and comp-sliceend are used to compute the
fiat and last iteratious that a processor should execute in a distributed loop.

Algorithm 5.1 Generate 0 program for a mapping matrix and offset.
Iapuir

depth - depth of loop nest
dim - dimension of processor space
lTdnl[depthJ - mapping matrix
o[dim] - offset vector
counter/depth] - names of loop counters of nest, where

cowUer[O is outemost loop
upperldepthj - upper bound expressions for loop nest
lowerldepth] - lower bound expressions for loop nest
step[depthl - step size expressions for loop nest
body - body of loop nest

O•u•. P loop nest
Inkudfafm stavge:

looprypeldeph]j- the type of loop, dist if the loop is distributed, rep is the loop is
replicated, and ndist if it is neither

looppdim(depth] - dimension of processor array that the loop is distributed over
loopoake/depthl - scale factor if loop is distributed
DIST- iterations are distributed across dimension d if d e DIST
REP - iteratiom are replicated across dimension d ifd e REP
NDIST- iterations are not distributed across dimension d if d e NDIST

SOJIUc-4EVE DtDUGOING OF ,JTOUA7WALLY PARAL.ELZE PROGRAMS 67

Olerlbutikn trwwdanmtSm

ph~d:

NDIST a REP= DIST - 0
remeck tow r of T do

if r is all zeo's then
NDIST = NDIST . r

em-
Itelememt c ofw r is a'' thn

REP a REP u r;
loopf~iaicI - ,
looptypeici - e,

euuil

if elemet c ofow ris anmben then
DIST= DIST vr,
looppdimc] - r,
loopscolkcJ - n;
loo0typeIc) = dist.

emidoCaddo

/* for dimensions of the puo w array that don't have distributed or repliated loops,
emit a dht to dism'bute eveything across the dimension, and then emit an if so
that only the correct Processos execute work I

WNDIST * 0 thee
fonach d e NDIST

emit a diat for dimension d
foreach d e DIST u REP

emit rep for dimension d
/* build a condition stuing, with one condition per member of NDIST*/
foreseh d e NDMIST

condition - condition 1i "and .jd[d) - o[d)";
emit if statemeat with PIEL of 0 and condition as the condition

/* each iteration emits one loop of nest DW
for l O to depth-I {

/* emit the diat if the loop is distributed'!
if looxpypel[L -= din then

emit dist that distributes its body across dimension looppdimnlJ
DIST - DIST - looppdisn(IP

/* for all the dimensions of the priessor arry that don't have dim yet.
emit a rep *1

foreaoch d e REP u DIST
emit a rep for dimension d;

S8 SOUR.--LEWVL LaKIGG OF AJTOMA ALLY PARALLEUED PROGRAMS

Bobloo@p i•on detobtion

P now emit the loop header 1
If loop(y[lp == dist then

emit loop wi PIL of 0
loop lower bound is:

compsticebegioUtdflooppdimilif, lowerfl],oopscak[l],offset[l);
new upper bound W

comp-stice-endLidtlooppdimg1)], upper[l),loopscale[IoffsetlD);
step size is unchanged

dmlf loop is not distributed, emit it unchanged;

phase4:
/* loops an done, nowdo the body/
foreach statement s e body

forench d e REP
emit a rep for dimension d,

emit s with PEL of 0I

End of Algorithm

Awdilary ftwadom-

camp...slicebegin(slice,lower,c,offset):
maxlower,(slice-offseO/c)

comp-slice-end(slice,upper,c,offset):
min(upper,(slice+1-offset)Ic-l)

L.3.2.1 Examples
To illustrate how the algorithm works, we use three examples, one for each of the types
of loops: distributed, replicated, and not distributed. All of the examples will share the
same cx program, which is the two deep loop nest found at the top of FIGURE 5-7. The
program is mapped to a 2 dimensional processor array.

In part (a) of FIGURE 5-7. we start with a loop which is neither distributed nor repli-

cated. All the iterations are executed on a single processor, []2. After phase I of Algo-

rithm 5.1 NDIST contains 0 and 1 while REP and DIST are empty. In phase 2, we emit
a diet for dimensions 0 and 1, but don't emit any rep's. We then emit an if with
conditions for the two dimensions contained in NDIST These conditions restrict the rest
of the program to executing on a single processor. In phase 3. when we emit the loop,
there are no members in DIST or REP so we don't emit any rep's or more dist's. The
loop and body are emitted unchanged.

In art (b) of FIGURE 5-7, we have an example of a loop where the outer and inner
loops are distribute. Afier phasel, DIST has dimensions 0 and 1 in it and NDIST and
REP are empty. Because NDIS Tis empty, we can skip phase 2. For phase 3, we first
emit a diet for dimension 0, then remove 0 from DIST. We then emit a rep for dimen-

SOURCE-LEVEL OEBUGthG OF AUTOMATICALLY PARALLEI PROGRAMS 69

ROMIE 5-7 Code gnwaon uwAmplep for Algorithm 5.1

a program
for (i a a; i < n; i++)

for (j = 0; j < 2; j++)
a~i)][j) = 1;

Mapping 1 programs

(a) Code genmtion for a mapping with out dismibued and replicated loops

dist -a = 0 to _np[0] with <a,0>
dist -b = 0 to _np(1] with <bO>

)02 0,0> if (_idtO] == 2 & ...id(1] == 1)
T= [= <0,0> for (i = m; i < n; i++)

<0,0> for (j = 0; j < 2; j++)
<0,0> a1ilti] = 1;

(b) Code generation for mapping with distributed loops

dist _a = 0 to _np[0I with <a,0>
rep _b a 0 to _np(1] with <Ob>

<0,0> for (i = comp_s1icebegin(_id[0],m,1,0);
i < com_:slice-end(_id[0] ,n,I, 0) ;

r~ 0= Lol++
1 0 =dist _c = 0 to _np[l] with <0,c>

<0,0> for (j = comp_s1ice begin(_id[1],0,1,0);
j < compsliceend(_id(1],2,1,0);
j++)

<0,0> a(i][j] = 1;

(c) Code genrauion for mapping with replicated loops

rep _a = 0 to _np[O] with <a,O>
rep _b = 0 to _np(1] with <b,0>

<0,0> for (i = m; i < n; i++)
rep _a = 0 to ...np[O] with <a,0>

T=[;o0 rep _b = 0 to _np(1] with <bO>
<0,0> for (j = 0; j < 2; j++)

rep _a = 0 to _np(0] with <a,0>
rep _b = 0 to _np[l] with <b,0>

<0,0> ati][ji = 1;

70 SOtLRCE-LEV•,. D063100K OF AUTOMA1CALLY PARAU.LLELD PROGRAM

Book loop Nvdo damtbuton

sirn 1. followed by the outer loop. On the second iteration of the loop in phase 3, we
emit a d4it for dimension 1 and remove it from DIST We don't emit any rep's, and
then we emit the loop. In phase 4, we emit the body.

In put (c) we have an example of a loop that is replicated on all pocessors. After phase
1, REP contains 0 and 1, DIST is empty, and NDIST is empty. Since NDIST is empty,
we skip phase 2. In phase 3 for the first iteration of the loop, we emit rep's for the 0 and
1 dimension, we then emit the oum loop unchanged. In the second iteration, we do the
same thing. In phase 4, we emit rep's for the 0 and 1 dimenasion, followed by the body.

S.3.3 Debugging

With respect to debugging, iteration distribution mainly alters the control flow. The con-
trol flow is changed by the addition of extra code to ensure that every processor exe-
cutes it assigned iterations. We discuss control flow first, and then describe data
structures afterwards.

For the run and where commands, the D function must make it appear that the control
flow of the target program is the same as the control flow of the source program. When
executing the target program, the debugger must skip the extra statements that are exe-
cuted in the 0 program but do not correspond to statements executed in the 3ource pro-
gram. We can skip statements by repeatedly single stepping until we are past them,
which can be done if the compiler-inserted statement cannot cause exceptions.

There are two types of stateents that the 0 program executes that do not correspond to
statements in the a program. The first are if statements inserted by phase 2 of Algo-
rithm 5.1. These can be easily recognized. The second type are called inactive loops.
Inactive loops are assigned iterations to execute that are all below the low bound or all
above the high bound of the origimal loop in the a program.

To explain why inactive loops occur, we use the example in FIGURE 5-8. In this figure,
we have expauded the program from pat (b) of FIGURE 5-7 assuming a 2x2 processor
array. A processor in row i executes iteration i of the outermost loop. If the low bound of
the outer loop has a value of 1, then processors in row 0 do not execute any iterations. In
this case, the loop on line I isan inactive loop. If the high bound of the outer loop is 0,
the processors in row I do not execute any iterations. In this case, the loop on line 12 is
an inactive loop. An inactive loop is detected by comparing the low and high bounds for
the original loop to the low and high bounds for a distributed loop. If the bounds for a
loop are completely outside the original bounds, then the loop is inactive. From the
example, if the original low bound (m) is I and the high bound (n) is 1, then the loop on
line 1 is inactive because its high bound is 0. Being inactive is not a static attribute; the
status can change every time a loop is executed.

For data, we exclude modifying loop counters while debugging. Changing a loop
counter of a distributed loop would require that we also change the current position in
the program. For example, if we set the loop counter to iteration 1, we would also have
to change the current position to the loop which executes iteration I (use the T matrix to
compute which statement). -

SOURCE-LVEL OEBUGGWG OF A&TOMAIICALLY PARALLELI ED PROGRAMS 71

DitrmbutIn tmmaformathne

FIGURE S4 1 program from par (b) of FIGURE 5-7 expanded for a W2 processor array

1 <0,3>,<O,1> Zor (i = comp-sice-beqin(_id(0],m,1,0);
2 i < comp-slic*_end(_id[0],n,1,0);
3 i++)
4 <0,0> for (j = co.P.slic*-begin(_id[1],0,1,O);
5 J < coWps1ice_end(_id[1],2,1,0);
6 j++)
7 <0,0> ati] [i] = 1;
8 <0,1> for (j = comp-alice begin(_id[1],0,1,0);
9 j < comp-slice,-end(_id(1],2,1,0);
10 j++)
11 <0,I> ali][j] = 1;
12 <1,0>,<1,1> for (i = comp-:slice_begin(_id(0],m,J,0);
13 i < compsliceend(_id(O],n,1,0);
14 i-&+)
15 <1,0> for (j = comp-s1ice-begin(_id[1],0,1,O);
16 j < comp.slice-end(_id[1],2,1,O);
17 j++)
18 <1,0> ali]lj] = 1;
19 <1,1> for (j = comp-slice_.begin(_id[1],0, 1,0);
20 j < comp .slice_end(_id(1l,2,1,0);
21 j++)
22 <1,1> afi][j] = 1;

'lTe D fuction for iteration distribution can be tfund below. lbs run command takes a
list of statements in the brenkpoint list and sets a breakpoint for every copy of the state-
meat (there is one copy on each processor). It then runs the program. If the program
stops at an inserted statement or an inactive loop, then it single steps until it reaches a
statement that is not. Single stepping over loops that are inactive may not be possible if
the execution of the loop control causes an exceptioR The debugger must pick the first
processor that does not execute an inactive loop to report to the user as the current line.
This case is not included in the D function. The wher, command simply peels off the
processor index off the label when reporting the currnt location. The set command
prevents the uset from modifying a loop counter and the examine command just
passes the command through to the lower level debugger.

72 V XUACE-LEVEL EODU" G OF AUTOMATICALLY PARALLEI D PROGRAMS

DlemtonDbtributon(ds•kgcmmmd..mm m evalue)
(

nwbpts= 0
if (command- rim)

foreach label I e bpts
foreach processor index p
imwbpts - newbpt u (p1J)

newstat a apply(f dstatck).,rdstadk)razust p,nb,L.)
if we stop at U) insaed stateient or an inactive loop

single step until we reac a statement that is nethier
retun newstate

if (command - where)
w = apply(fusr(dstatck),zz(dstack),wherestateI)
pee the processor index off w and return just the label

if (command - exmnine)
return apply(first(ds=ck)exsdstack),examinsw.te..Lname.I.);

if (command = set)
if (name is a loop counter for a distributed loop)

set is not allowed
else retuan apply(first(dstatck),est(dstatck),set,stae,i.namevalue);

5.4 Communication

In this section, we describe how the compiler can insert communication into the parallel
program and how it affects the debugger. Communication between processors is neces-
sary when one processor must access data that is local to another processor Because we
only study the problem of finding bugs in the user program, communication has little
impact on debugging. Bend and receive operations are not visible to the user in the
original sequential program and thus commuincation code can be ignored by the debug-
ger. We assume that the compiler inserts communication into the program correctly and
that communication never fails.

The only difficulty lies in code generation of the P program: because there is only one
thread of control, sends and receives must be inserted into the (] program so that a
receive is always executed after the corresponding send. This requirement can compli-
"cate the structure of some programs.

The compiler specifies communication by giving the position in the loop nest and the
code to perform the communication. Sometimes it is only necess, sy to communicate at
t6 beginning or end of processing a block of iterations rather than on a per-iteration

level. Since the blocking of iterations is not visible in the source code, the compiler can-
not name a position to insert the code if the action is only to be performed once per
block. For a per-block action, the compiler must give the nesting level of the loop and
whether the action is to be performed before or after processing of a slice.

SOURCE-LEVEL EOL4UGIG OF NUTro•A CALL.Y PARALLEUZD PROGRAMS 73

A action is performed on every processm thm the cntuning iteration is
pefmed on; if the itniton is replicated across a dimension. so is the communicaion
action.

If a variable reference in a loop body is aon-local. then that value must be received from
anothe processor during the course of te computation. The vriable refernce must be
neplaced with the name of tie temporary in which the value is received. In addition to
he actions, the compir also gives a set of variable references and the

expeinonswhich replace them.

S.4.1 Code generaion
zend's aid r".sve's we mapped to the same processors as the rest of the loop itera-
tion. In general, communication staments mint the procesor index label of the sur-
rounding iteration Per-block communication is treated the sane as other
CnDaunicatimO It is inserted inside the diet: before the loop if it precedes the block
and after the loop if it follows the block. In the body of the loop, the appropriate array
references ae replaced with the substitute references.

5.4.2 Examples

In this section we will give examples of common usages of codmunication in program.
We will show the user code, the generated code, and diuss how to demonstate that the

pogram can still be executed sequentially after the commuricaion is inserted.

One use of commnication is to tUasnmit values that are produced in one iteration and
consumed in a later one. If the iterations are mapped to different address spaces, then
the value must be sent from the processor that generates the value to the processor that
uses it As an example, consider the following loop that sums the elements of u armay:

sum= 0;
for (i = 0; i < n; i++)

sum = sum + Cli]

There is a flow dependence: the value of sun used in the tight land side is the value

stred in the left hand side in the previous iteration. If the iteration distribution is

T = [o 1 and o = g, successive iterations am mapped to successive processors and
the value of su must be sent from processor to processor. Communication code would
be inerted as follows:

74 SOURC-LEVEL DEBUGGING G AUTOUATICALLY PARALLELUJD PROGRAM

Conwmankadon

rep a = 0 to _np-1 with <a>
"<0> sum =0;

dist a - 0 to _np-I with <a>
<0> for (i = corp_s1ic*_begin(_id,0,1,0);

i < conp_slic*_*nd(_id,n, 1,O) ;

i++) (
<0> receivern((-1) ,sum)
<0> sum = sum + Cti]
<0> sendn((1),sum)

Each cell receives sum from its left neighbor adds to it, and passes it on to its right
neighbor. Recall from CHAPTER 2 that the semantics of receiven and sendn imply
that the first celi should not receive anything and the last cell should not send anything.
This communication is used to satisfy a flow dependence. Flow dependences always go
forward in virtual time because the use must occur after the generation of the value in
the 0 program.

Another common communuication usage is a broadcast operation. The code below is
mapped to a I dimensional processor army:

for (i = 0; i < n; i++)
c = b[i] ;

The iteration dismbution is T = [*3 and o = [H] (every processor executes every iter-

ation), and the array b is distributed. We explain data distribution in the next section.
assume that processor n has army element b En]. Every processor executes every itera-
tion of the outer loop, thus it needs every element of the array b. For every iteration of
the i loop, the processor that has b [i] must broadcast its value to all the other proces-
sons.

rep a = 0 to _np[O] with <a>
<0> for (i = 0; i < n; i++) (

rep a = 0 to _np(O] with <a>
<0> bcast(b(i],id[0]==itimp);

rep a = 0 to _np[O] with <a>
<0> c = tmp;

)

In a broadcast, the selected processor sends out its copy of the data and all the other pro-
cessors must receive iL It is not necessary to make the actual &and and receive state-
ments in a broadcast visible to the user who wrote the ax program, so we use the beast
function to hide the details of the broadcast operation. The first argument is the data
item to be broadcast, the second argument is the expression that is me on the processor
that is the source of the broadcast, and the third argument is the destination variable of
the broadcast. The reference to b C i I in the loop body is replaced with tap. All the
sends and receives used to perform one beast operation occur in a single iteration of
the loop, so we can be sure that there is a sequential executon of the program--the
program does not deadlock.

SOURM-LEVEL CEBUGOG,• OF AUTOMAIICLV PARALLEUZ.D PROGRAMS 75

ODIsribumon twumfomstlons

In the beginnang of Section 5.4. we mentioned that if a receive is executed befor the
corresn•ding send in a f pnro=L then a w program that is deadlock free cn deadlock
wile debugging. This is because debugging can force the (o proga to execute opera-
dons in the same order as the 0 program. and if a receive is before its corresponding
send. the receive never completes. The extra synchronization that the debugger enforces
casa the deadlock.

At use the following example tD lsre ho ommuwiato can iorrecdy be
hlneml into a program to rmm a negative tine dependenc.

for (i 0; i < n; i++)
b(i] = a(i] + a[(i+l) % n]

Ifweww=etousetheiterationdistributionof T = ando = [Oj, dten heprogram

after iteration distribution would be:

dist a = 0 to _np-1 with <a>
<0> for i = comp_s1icebegin(_id,O,1,0);

i < compslice._end(_id,n-1,1,0);
i++)

<0> b[i] = a(i] + a[(iel) % n]

Assume that the data is distributed so that process i has army lelnent a Ci] and b Ci].
According so the iteration distibution, process i is assigned to execute iteration i. To

ecute its iteration, the processr already has a (i] and b Ci] local but must fetch
a Ci +1] from an adjacent processm We could insert ommuict into the program
as follows:

dist a i 0 to _np-1 with <a>
<0> for (i = comp_s1icebegin(_id,0,1,0);

i < compslicoend(_id,n,1,0);
i++) (

<0> send((-1),a(i+1j);
<0> receive((I),tmp);
<0> b(i] = a(i] + tmp;

)

Ihis 0 program deadlocks because iteration i receives a value from its neighbor to the
right Its ight neighbor executes iteration i + 1. so iteration i + I must execute the
send statement before itmation i can complete its receive statemienL When debug-
ging, we must be able to execute the iterations in oder. if we try to execute iteration i
without executing iterAtion i + 1, the prgran deadlocks. However, when executing the
w without the debugger, the program can complete without deadlock. The loop itera-
dions execue in paralle without any synchronizaton except whatever is forced by the
send and re £eive stememns so iteration i + I can execute before iteration i.

Th correct way to write the 0 program for this example is to do the communication a
spmara loop before the cmnpuation loop. Since iteratioa i is assigned to processor i,

716 SOURCEU-LEVL DEBUtX OF AMTOIATICALLY PARALLELMW PPOGRAM

Dam a dribu M

the computati loop is a left to right pass ova the array. The commmicatiu loop
sends values ftm proceso i + 1 to process i, which is a dight to left pas ove the
aMy. Putting the communication and computation in separate loops resolves the order-
ing cnflct but might result in a slightly less efficient program.

.4.3 Debugging

Since the -mmuation is not visible in the source program, the debugging function
ignoes cowmmunication stateets that have been inserad when running, it skips over
thm by repeatedly single stepping.

Dommuni stiduack~cmm dmdwtzpmsrm, bpts, me,vatae)
(

if (command - run)
newstate apply(fint(dsrack),res(dstwack),nm,staeprogrnam,bpts,.i)
if (stopped at a communication statement)

single step until we reach a statement
that is not communication

return ewstate
}
if (command = where)

return apply(first(dstatck),rest(dstack),wherstaze,.i.L.)

I
if (command = examine)

return apply(ftrs(dstack),resdstack),examine, sate ,name,.L);
}
if (command - set) {

return apply(fist(dmck)jest(dstack),sesta ,name.,vaJue);

5.5 Data distribution

When we distribute iterations of loops to processor we must also distribute the data
that those loop iterams access. Data distributions are specified in the same way loop
iteration distributions are specified; there is a Linear mapping between the elements of
multidimensional data arrays and the multidimensional processor arrays. Data can be
replicated by using "*" in the mapping. As before, we limit the type of distnibution to
the cam where thene is at most one non-zero element in every row and every column of
the distribution matrix. In effect, data ways we decomposed along one or more dimen-
sion and distributed as slices of the original data awfay. Army references will be repre-
sented by a vector of the subscripts for each dimension. For example., reference
ali. [11+1] (1 is:

SOJICU-LEWL DEBUMGOI OF AUTOUATICALLY PARALLAUU I PROGAAMS 77

The tsping of may elements to pwumw waden is idena&w to the mqpping of ite-
ms to w um indexes. Ihe procuaw index of an army elmnem can be computed

from the array index as follows:

Equaon L2 p - LT(q +oJ

wh= T is the Umcrmatd mmrx and o is the offseL. in the exmple in FIGURE 5-

9, an awy is divided io 22 slices as demined by the T marx. Processor [es

theslice ntining 2J, N2. [,Jg3 x [J3
FIGURE .9 Rehiionship betwenn global and locad aray addreans

1/2 o 2E 01/2J

o= 0 0ý°/
0

0 1 2 3 array index

0 1 processor index

A global address is the set of aray indexes of an array element in the sequential pro-
Sr1m; a local addres is the set of army indexes used in one pwossor of the pwallel
pwgF3. To convet the global addess Do a local address, we subtract a comaumt offset
ftom all addresses so that the Iocaion of the elmeant in the slice with the smallest
addrs, which we shall call i., is nmsamed to the origin. In the example of FIGURE 5-

9, we would subtract 2 fom an army efaeence an pmcessor (1,) toconvert a global

address to a local addres. For some types of mappings it is necessary to locate io at
some point other a the oigin. For example, we might want to leave mow 0 unused so
dth we can put a copy of a mw thete that ba been mapped to an adjacent pmcesso We
call this offet s.

73 11UOMELEWL DEBUGGING OF AUTOMAflCALLY PARAULEMD PfROGAM

lftm dkbmrallon

In jenaaL the relationsip between globil and local addresses on a processor p is as
"-folows:

Equation U, +

wbere I is the local address, S is the global address, and i0 (p) is the address of the army

element with the •m•ilest licographc value that is on processor p.

i. can be computed from the maping matrix T, offset o, and Equation 5.2. Given ap,

wewuatto•fndtheminiumvalueof i suchtat p = LT(O +oj.The valueof io is
found by computing 7 (p - o) where 7 is found by inverting all the non-zero ele-

meats of T, replacing all *'s with 0, and then taking the transpose. For example:i[02]
= 0"= 1002
/2 0 0 00

Now that we can simply solve Equation 5.2 for i because neither the floor function
nor T are necessarily invertible. If we substitu the value for i. in Equation 5.2 we

obtain:

Equation 5.4 1 = g-r(p-o) +s

55.1 Code generation

When generating the 0 program, the indexes for references to distributed variables must
be rewritten to reflect their new location in memory. For the body of the loop nest, we
will assum that all array references to distributed variables will reference data elements
that are local to th processor. If it were necessary to access a non-local element, then
this would have been replaced with a reference to a local variable during the stage that
adds communication to a program.

.5.1.1 Exmpl.e
If the 3 dimensional army a were mapped to a 2 dimensional processor army as follows:

,then

- 3] P = L.d(0•

SOURCE-LEVEL OEBUGGiNG OF ALITOMATWCALY PARALLELOW PROGRAMS 79

Vk can e Eqmuion 5.4 to convert t glolbl address to a local addreu. If we subsitue

the above values into Equation 5.4, we obtai

I - [3- •-)+

S)2

= .+i- d[O]J

This is used for any refuere to the army B. The army subscript (± C iIIJ k 1 (21
woild be r ogamned ou

I = g k_[3 x - id jO i]

li~t-it4(x +l)II [+-._ ())()

The moro €opilcared addesaing needed to r•efence dlsmnbe~d variables is not neces-
salyiecen Not tha th vaai _.d is oop iuviua so th aiir offset is loop

- viblewll hv tesneofst o .h Ffstms b e mueda fs ni for

5.2.2 Debugging

Distributgdarn does not direcdly caige die stucm of the piogrun. thus the flow
cumuoi is unchanged. If the use waits to examine or modify data, the debugger must
detemine which pm cess lr apeda as d the local ad:ees of the daa on t r

sat.

The demugping o ncteon fore the ded dis Wbibet vaiaonles is as fonlows e

80 IKUOUq.LEWL OEBUQGGB OF AUTOUA1M .LY PMhALLELJD IPROGAMS

Oda dk*mdo

DD8W31sftftdon(ds -omdsfpmSnambpWmvu u)

if (command - run)(
Fmoun apply(Wrudsck)),est(dstack)rnz we,progropmu ts.L4)

J
if (command - where) (

return appy(fistack)sest(dtmak),whejte

if (command - examine)(
if (name is distributed)

return pply(frstclamck),reszdstack),
examinestate I global2local(naa)4.);

else (/* copy to look at is on same processor as the crrent statement /
w = apply(fiWdsck),mst(dstwk),wbrueawe-o L.L)
i processor index of current statement w
retma appl(fidstack),restdstack),exainestam,(nune,i)J.);

I

if (command - sa)
if (name is distributed)

remm apply(first(dstack)est(dstack),
set,saUfe,.global2local(naine),value);

else (
knxach processor i (I* change all copies ~

stam = apply(firsd),rest(d),set,s,.L(name,i).v);
return state

The function global2local uses Equation 5.2 to compute the processor number and
Equation 5.4 to convert the global address to a local address.

s.s5± Exanple
A three dimemsional army A is distributed as follows on a 2 dimensional processor
army,.

T= 0 1/

71e users wants to inspect the variable A[l][2[11h1. To compute the processor index:

UOtMUNLWLAf OEUJGGNG OF AUTOMATICALLY PARAU.ELUND PROGRAMS S

p - LT(g) +oJ

= Ir .l
oL 1/2

lb compute the local address:

1= g-r(p-o)+s

,-[0 2] 0i](

The value can be found on any processor in column 6 with a local address of
A[l] [23 [13.

&6 Cyclic Iteration distributions

A linear mapping model, a described in the previous sections, does not always perform
well whn the work is not uniformly disthbuted across iterations. For examnple, the work
performed by one ieadou of the outer loop of the nest in FIGURE 5-2 increases with
every iteratia. If outer loop iterations are distributed evenly across a one dimenional
processor ary, then the last processor does much more work than the firt proce3s
the load bhlancing is poor. Any liheat model that purallelizes the outer loop must divide
the iterations equally among processor

One mnqqpg model that is used to better distribute the load for such a case is called a
cyclic distribution In this model, a processor wilg execute everyn iterations, where n is
usually the number of processors. ON an x processor array, processor p would execute
iteratiom p. p + n, p + 2n. It is also possible to cyclically distribute blocks of itera-
dons in fhe same way. If the nunber of iterations is sufficiently larger than the number
of processor• then each prcessor will lave a nearly equal anount of work for uiangu-

2 bOAUciP4-ML OeBLIGJOG OF AUTOMAlICALLY PARALLEL2WD PRIOGRAM

clic 9a! a dlstnluln

a prblemas. Cyclic distributions have disadvantages, however. If iteration n produces
a value the is used by iteration n+ 1, then the value must be sent fimopocessor to
another for a block size of I. If a cyclic distribution were not used, both iterations could
be pat of the same block mad assigned to the same processor, reducing the frequency of

Cyclic distribution of loop iterations umlly requires that we distribute the data rays
in the me way. We will describe distributing iteramions first and data second.

S.6.1 Iwaon diutributlon
We cat extend the description of the mapping of iterations to processors to include
cyclic by rewriting Equation 5.1 as:

Equation 5.S p = LT(i) +oJ roods

where mod is an elementwise modulo operation and n is a vector that contains the size
of the ary in every dimension.

The algorithm for generating code and D functions as presented previously will no
longer work because the modulo function makes the mapA,, mon-lineaz. Instead of
adapting the code generation andD functions to include o .. distributions, we will do
a transformation on the source program before generating the 0 program, and then use
the standard code generation algorithm. The tansformnation changes the shape of the
iteration space in a manner that makes it possible to use a linear mapping to do the
cyclic distribution.

The user gives a Tand o assuming Equation 5.5 will be used for the mapping. A trans-

formation is applied to the loop nest to generate another loop nest, t, b, and a D func-
tion. The code generation algorithn (Algorithm 5.1) is applied to the new loop nest,

using t and a to specify the mapping.

5.6.1. Code gereaton
We can extend the mapping model to include the cyclic distribution by applying a loop
mmsformation called strip mining(Padua 86] to the original sequential program. An
example in FIGURE 5-10 is used to illustrate this. The left hand side of the figure is a
loop and its triangular iteration space. The i dimension is the vertical axis and the j
dimension is the axis coming out of the page. If we apply strip mining to the outer loop,
then that loop will be replaced with two loops. Inside the body of the loop, the value of
the original loop counter can be computed by summing the two new loop counters. The
new loop and iteration space is on the right hand side of the figure. The i dimension is
replaced with the tup and new. dimensions, which are horizontal and vertical, respec-
tively.

After strip mining is applied, a linear mapping can be used to achieve the desired assign-

ment of iterations to processors. In FIGURE 5-11. a mapping of T = i0 1 0] and

o [j could be used to ahieve a cyclic mapping of iterations to processors.

SOURCS-LE-L VhUtJMW OF AJTO•UA7ALLY PARALLEUD PROGRAMS 63

FIGURE 6-10 Tdanguiw ftu ution space that i changed by SdM mining

Original loop and iteratom space Loop and ifteation space aftr strip mining

for (i = 0; i < 6; i++) for (tap a 0; t•p < 6; tap ÷= 2)
for (j = 0; j < i; j++) ... for (newi a 0; newi < 2; newi++)

for (j = 0; j < i; j÷+)
(i a tP. + newi)...

2

3 newi 1

1 0 1

Sj 0 2 4
trap

The general procedure for the cyclic distribution is as follows. The input is a loop nest

wher the mth loop in the nest is of the form:

for (k = 1; k < h; k += s)

T and o am the pa-ameters to the mapping. The mth column of T is the column that
describes the mapping of loop m. Since dts loop is distributed, it has one non-zero ele-
meat c at position r. A new nest will be output which is the same except loop mis
replaced with the code below. The variable k, 1, h, and a refer to the loop above.

newi = ((((c*l+otm])/_np(r])'_npir1)-otml)/c;
for (-1.t f newi; t < h; t += _np(r]/c)

for (k = max(0,1-t);
k < _np[rJ/c - max(O,t÷_npfr]/c - h);
k += s)

The original loop comnter can be reconstructed by adding _t and . Uses of the loop
counterinterestof theloopmustbereplacedwith _t + k.

The complicated loop control arises from the requirment that it be possible to use a lin-
ear mapping for the new loop nest. For a linear mapping, the iterations of a loop may not

64 SOMcE.•LVEL DEMIGOO OF AUTOUATICALLY PMALPJEUI D PAuGRAM

Cyclic hterami dthrbution

FIGURE 5-11 Mapping of the iteration spae after strip rnining

ý L T [010]

2

newi 1 ol 109

0 2 4
tmp

"wrap around" from the end of the processor array to the beginning; the assignment of
iteraions to processors t be strictly monotonic; from low indexes t high indexes or
high indexes to low indexes. For the rest of this paragraph we assume that mappings
only go from low indexes to high indexes. To ensure that wrap around does not occur,
we must make sume that the iteration of the inntr loop wherek a 0 is always assigned
to the fist processor in that dimension, which in some cases requires padding by adding
extra iterations on to the beginning of the original loop. The variable newv is the new
low bound that has been adjusted for pWdding. However, we do not want to really exe-
cute these extra iterations, so we use the mm condition in the low bound computation in
the inner loop to skip over those iterations. The maz condition on the high bound of the
inner loop ensues that we do not execute any extra iterations after the original high
bound.

The new T matrix is the same as the old one except that an extra column of zero's is
inseted into the mth position; the mth column (the new one) is the mapping fir the new
outer loop (it isn't distributed) and column m + 1 determines the mapping of the inner
loop. The padding of iterations makes an offset unnecessary, so the o vector is the same
except that a 0 is used for the processor dimension that the loop is distributed along.

S.6.1.2 Debugging
When single stepping, the debugger must skip over the outer loop. Modifying a loop
counter is possible for this transformation, but since the iteration distribution which fol-
lows does not permit it, there is no reason to do it for this transformation. If the user
examines the loop counter, the debugger simply mtims the sumn of the two new loop
counters.

SOURCE4,LEL DEBUJGGNG OF AUTOMATICALLY PARALLELID PROGRAMS 8a

6.6.2 D Jltribudlan
Now we will describe how to do cyclic data distributions It is very similar to cyclic iter-
aion distributions. We cam extend the description of the mapping of data elements to
procesuors by rewriting Equation 5.2 as:

Equ on . p = LT(O+o modn

where mod is an elementwise modulo operiotm and n is a vector that contains the size
o the army is every dimension.

In tde same way that we do a cyclic distribution of loop iterations by turning a n deep
loop nest into a n +1 deep loop nest. we will distribute data by turning a n dimensional
data array into a n+ 1 dimensional data army before we do the distribution. An exam-
pie is shown in FIGURE 5-12. The one dimensional array A with 8 elements has been
chuned into a 2 dimensional array that is 4 rows by 2 columns. Some of the mappings
from source elements to target elements are denoted by arrows from one object to
mother

RGURE S-12 Converting a I dimensional array into a 2 dimensional array in preparation for a cyclic
distribution.

A[4 A2[0 0A21ri

S.6.2.1 Code generation
All refeences to a distributed data array must be rewritten to reflect the new structure.
TU general procedure is as follows. The input is an array reference where the mth index
in the reference is of the form: [*I. T and o are the parameters to the mapping. The
mth column of T describes the mapping of index i in the reference. Since this dimen-
sion will be distributed, it has one non-zero element c at position r. A new reference
will be output which is the same except subscript m is replaced with the two subscripts
below:

[(c*e+o [m])/_np(r] [e- (c'e+o[m])/_np[r] I

The new T ,at.rix is the same as the old one except that an extra column of zero's is
inserted into the mtb position; the mnu column (the new one) is the mapping for the new
first index and column m+ 1 determines the mapping of the new second index. The

U SOURCE-LEVEL DEBUGGIN OF AUTOMAICALLY P .RALLIED PROGRAMS

Suminey

padding of daut elemems makes an offset unces3ay so Me o vector is the same
except that a 0 is used for the processor dimension that the array dimension is distnib-
uted aling. The s vectr, which is used to compue the local address, is unchanged.

The address computation appear to be much more complicated the the original refer-
cam but this will am necessarily result in less elficiem code. Array references in loops
like these Reustauly linear fitions of loop counters, which cm be generated effi-
ciendy. The new indexes awl functions of dte old index so the new indexes will
stll be linea functions of loop counters if the original index was one. In this case, it
might be more expensive to initiate the loop, but the cost per iteration to compute array
references need noa incnese.

L.6.22 Debugging
The D function for this Uansformation is straightforward; the control flow is not altered,
only array references are changed. When the usa uses the debugger to examine or mod-
ify a variable, it must map the source reference into a target reference using the proce-
dure described in the previous section.

.7 Summary

This chapter introduces a notation for describing the translation from sequential to par-
alleL There are three parts, the mapping of iterations to processos, the inter-processor
communication, and the mapping of data to processors. The description contains the
informaion that the debugger needs to generate the D function for the sequential trans.
formation and the 0 program. The notation is general enough to do the block and cyclic
distributions of dam and iteraions that most parllelizing compilers employ.

SOtuCE.LEVEL D GM G OF AUTOMATIALLY PARALLELUO PROGRAMS 87

aB SOtPICE.EWL oEBuGOMo OF AUTOMATICALLY PARALLEISED PROGAMAS

CHAPTER 6 A debugger for a compiler
with block and cyclic
distributions

The previous two chapters describe the componaits for the compiler and debugger for
the dth splitting and distribution mamformatioas. In this chapter, we integrate those
components and demonstrate how they work togetmer for block and cyclic distributions.

We firt introduce a matrix multiply program in Section 6.1. which is used as an exam-
pie throughout the chapter. In Section 6., we use matrix multiply to show a complete
translation from a to o for block and cyclic distributions. In Section 6.3. we describe
the infornation that is passed from the compiler to the debugger. We then show how
that information is used by describing some of the basic debugging operations in Sec-
tion 6.4. We conclude by examnining some performance issues mlated to debugging in
Section 6.5.

6.1 Matrix multiply

The code for matrix multiply is depicted below. To simplify the code, we don't include
any initialbztion, we assume that teX A, 5, and c arays art property initialized else-
where. The program is a triple nested Ioop, each loop will be called by the name of the
loop counter k, i, and J. The L and I loops have no dependences, so they can be exe-
cuted in parallel, but the k loop has a dependence.

11: for (k a O;k < d;k++)
12: for (i = O;i < d;i++)
13: for (j = O;j < d;j++)
14: C(i](j] += A(i](k]*B(kj(j];

A compiler or user chooses the distribution of computation and data to minimize com-
municatiou while distributing wok. The ditrmibution determines what communication is

SOURCE-L-EVL DEBUGGING OF AUTOMA71CALLY PARALLELOn PROGRAMS s9

A dibuW for, a oonVh fth lwek mo cyalle dkabuft.

ews..). Tnhe am mmy ways t to o pDmleflw8 mrizi mulily; we only
*ucribe Ow way. MWs perallediom decisin as driven by fth wy fth imp mcess
d FIGU 6-1 &IWuM bow arix mAlly was its dern for the k-1 iteration

Sfthe ouer loop aid the AM few iterations ot the i loop. ieraton m of dtw- ± op only
a Csu row a ot the arrays C and A. If we distuibute the i loop wos prowssors aud
divido C andA by rows so thiat owa is n the swns processor that wecuses iteationm
of the loop. then we never need to move the c or A arys between procenos Ihera-
don a af te k loop aw = row it of fth 3 way, so every time dprogan begin the
i oop evey pmemor neds a opy of the saw row s) of the army. If the army is
divied by rows. them the pwoerssodwt has row a must brodcast it betore beginn
the ± loop.

FIGURE 6.1 Ode accems of mIlrix mufm

C A B

kni, iO

C A B

b-l, i,-l

SA B

kal, i=2

t start by describing the pwallelization that uses a block distribution. TheA 3, and c
arrays are distributed by row. Each processor gets 2 rows of each array (processor m
gets row 2m and 2*+ 1). All processors execute every iteration of dte k "oo. For each
itarawio of the k loop, proaessmor m executes iteratons 2m and 2m+ 1 of the L loop.

go 1OURCIA EL DENUJOMNG OF AUTOM CALLY PARAULEUJD PROC. AMS

Since the itraioms and tows of &A nde are distributed the same way, no commuica-
tion is needed fur these armys. Before a processor begins executing iteration m of the i
loop. it must fttch tow a of the a army, where a is the current value of the loop counter
k. Each p=essor executes all thw iterations of the I loop.

To motivate the steps in the translatio we first we show the lro1 parallel code; in the
next section we go dtougb the steps of geneting it

for (k a O;k < d;k++) (
for (t = 0; t < d; t++)

beast (_id==k/2, b[k-2*_id][t], ip[t]) ;

for (i = 2*_id; i < 2*-id+l;i++)
for (j = 0;j < n;j++)

C(i-2*_id] [j] += A[i-2*_id1 [k]*tmp(j];

The bcast primitive implements a broadcast for a single elemenL The Irst argument is
truw if the processors should broadcast the value, or false if the processor is a recipient
of the broadcast. 7U second argument is the value to be broadcast. This value is
ignored on the processors that we receiving the broadcast value. The third argument is
the location that should receive the broadcast value. It is ignored on the processor that
sends the broadcast value. The variable -_d contains the processor index.

The cyclic distribut is similar & the block distribution. The A, 9, and c amays are
again distributed by row. The difference is in the rows and iterations dhamt are assigned to
each processor. Each processor gets 2 rows of each army (processor m gets row m and
m + p, where p is the number of processors). All processors execute every iteration of
the k loop. For each iteration of the k loop, processor m executes iteration m and m + p
of the i loop. Since the iterations and rows of A and c are distributed the same way, no
commumication is needed for these arays. Before a processor begins executing iteration
m of the i loop, it must fetch row n of the aarmy, where m is the current value of the
loop counter X Each processor executes all the iterations of the I loop.

The final parallel code is as follows:

for (k O;k < d;k++) (
for (t = 0; t < d; t++)

bca•t(_id==k% _np,b[k% _np-_id] [t],tmp[t]);
for (t = 0; t < d; t += _np)

for (i = 0; i < _np; i++)
for (j = 0;j < n;j÷+)

C(t/_np][i][j] += A[t/_np] i][k]*tmp(j]

The variable _up contains the number of processors. The difference between the two
programs is in the way local addresses ae computed and the bounds for the i loop.

SOURCE4.EVEL DEBUGGING OF AUTOMATICALLY PARALLEL.D PROGRAMS 91

A dasbosr for a eomplws with bWok and w cye dlgsbuwt.o

62 Compiltion

Now we sbow the compiabion pratess for matrix multiply using block and cyclic fti-
bum TMe s am iration distribution, nserting commuinicaton, dact distribution,
and thre splitting. Te resulting program is compiled by a single cell compier which
genems the executable.

6.1S BlocI dhtutbulon
We sftt with the block distribution. The distr km is specided by the mapping of iter-
ad=on to procesmsors the mapping of dama ID processors, and the communication I %
stat with th mapping of itamonm to processos. We want to give each processor 2 iter-

ado=nsofftei loop. so theiteratkiondisuibutioonis: r= - O 2 0],0 - a~. Whenwe
apply this distribution to the program by using Algorthm 5.1. we obtain the following
program

rep a = 0 to _inp-1 with <a>
<0> for (k = Q;k < d;k÷+)

dist b = 0 to _np-1 with
<0> for (i = comp_sice_begin(_id,0,2,0);

i <= couVs1iceend(_id,d,2,0);
i++)

<0> for (j = O;j < d;j÷+).
<0> C[i] CjJ += A(il [k)*Btk] [)];

In the next phase, the compiler inserts c .cion. As was described in the previous
section, for iteration n of the k loop, the processor that has row x of the B array must
broadcast that row to all pmcessors before beginning the i loop. For this reason, the
compiler inserts a broadcast before loop L The references to the army B, must be to the
local copy received, so the compiler also repiaces references to B (k] [i] in the loop
with tn IJ I. After communication is inserted, we have fe following program:

rep a = 0 to _np-1 with <a>
<0> for (k = O;k < d;k÷÷) (

rep a = 0 to _np-1 with <a>
<0> for (t = 0; t < d; t++)

rep a = 0 to _np-1 with <a>
<0> bcast(2*_id==k,B(k] [t],tmp~tt);

dist b = 0 to _np-I with
<0> for (i z compslicebegin(_id,0,2,0);

i <= co -p9sice-end(_id,d, 2,0);
i++)

<0> for (j = O;j < d;j++)
<0> C[i][j] +- A[i][k]*tmp[j];

Next, ft compiler conver global addresses to local addresses. Each of the arrays am
distributed so th•t eb processor geas 2 rows. The mapping is specied by:

t.• SOURCE-LEVEL OE3UGN• Q OF AUTOMAIICALLY PARALLELOND PROGRAMS

Te acupilp umss fhe above specikmido and Equsaion 5.4 to compute the mapping
betweme global aese m local k uaddme as follows. Arays A,, k and C all have die
same uiping, so we only need to show the global to local mapping once.

T= [2 o] o0-SP

r= 2

i = g-r(p-o) +s

In the code we must subiract 2 J.d hum the first index of a global address. This gives
us the following program:

1 rep a = 0 to _np-1 with <a>
2 <0> for (k = 0;k < d;k÷+) (
3 rep a = 0 to _np-1 with <a>
4 <0> for (t = 0; t < d; t++)
5 rep a = 0 to _np-1 with <a>
6 <0> bcast(2*_id==k,B[k-2*_id] t],tmp(t]);
7 dist b - 0 to _np-1 with
8 <0> for (i = comp_s1ice-begin(_id,0,2,0);
9 i <= comp-sice-end(_id,d,2,0);
10 i++)
11 <0> for ? j = O;j < d;j++)
12 <0> C(i-2*_id][j] ÷=
13 A(i-2*_id] k]*tmp(j];
14

In the next step, the compiler applies thread splitting, which removes the PR's and the
rep and diet coasmucts to yiekld

SOUIM4-LEVS. OEUUGGWG OF AUTOMATICALLY PARA.LEUI rD PROGRAMS 93

A dbuggsw fW a comp4whe wh bliok mnd cyclic dtMrbudone

1

2 for (k a O;k < d;k++)
3
4 for (t a 0; t < d; t++)
5
6 bcastf(2*_id==k,Btk-2*_id] [t],tmptt]);
7
8 for (i a cWp..lico..bgin(_id,0,2,0),ni=O;
9 i <= comp_1ice..nd(_id,d,2,O);
10 i++,ni++)
11 for (j a O;j < d;j++)
12 C~i-2*_id] j] +=
13 + A~i-2*_id][k]*tmptj] ;
14

Reoal that fte thra splitting debugger we prsewied in Whe previous chapter assumes
tda loops are normalized (stat at 0 and count by 1). In riis exampIe, istead of normal-
izing the i loop, we intoxhuce a new variable called nat (normalized 0it stats at 0
and couam by I in the i loop. Whenever we need the loop count for the ± loop, we ref-
aerce ibs vPAb instead of the loop couter L.

TIb program is then compiled by a single processor compiler that generates an exrcut-
able which can be loaded into every processor of the paralid machmne.

6.2.2 Cyclic distr on
We wa=t to do a cyclki distribudon for the i loop and the A and C arrays. The compiler
must suip mine the loop and be anrays before applying the bmic distribution. After strip
mining, the code is as listed below. %A have sbnplihed army index aid loop index
expresaona when possible.

for (k = O;k < d;k++)
for (_t = 0; t < d; t += _np)

for (i = 0;i < _np;i++)
for (j = O;j < d;j++)

C[_t/_np]j (i [jc] +
AC_t/_np] [i][k]*B~k] [j] ;

After suipmmng. the ribuon fortheloopsT = [oare. o = [].o = Tbedis-

troutmfor the A and c arrays am identical: T= [oo]o jJs= 0 J.me

distribution for the a anry is the same as in the previous example: T = [2 0],

Next, the compiler applies Algorithm 5.1, to obtain the following program:

94 SOUJRC4.EVEL DEOUGMG OF AUTOMAlCAL.Y PARALLEULZD VIOQRAMS

rep a = 0 to .np-i with <a>
<0> fcr (k = O;k < d;k+÷)

rep a a 0 to _np-1 with <a>
<0> for (_t a 0; t < d; t += _np)

dist b a 0 to _np-i with
<0> for (i a comp..lice*.egin({id,0,I,0);

i <= comnpsic*_end(_id,_np,1,0);
i++)

<0> for (j = O;j < d;j++)
<0> C[_t/_np] i][j] +=

A[_t/_np] [i] (kj*B(k] [j];

In the next phase, the compiler inserts communication. The broadcast occurs before the
t loop executes. In the source progrmn, the compiler decides to insert t broadca
after the k loop. The references to the rmay %, must be to the local copy received, so the
compiler also replaces referer-es to b (k] Cj I in the loop with tap tj 1. After commu-
nication is inserted, we have the following program:

rep a = 0 to _np-1 with <a>
<0> for (k = O;k < d;k+÷) (

rep a = 0 to _np-1 with <a>
<0> for (t = 0; t < d; t++)

rep a = 0 to _np-1 with <a>
<0> bcast (_id%_np==k, B[k]It], tmp[t]);

rep a = 0 to _np-1 with <a>
<0> for (_t = 0; t < d; t += _np)

dist b = 0 to _np-I with
<0> for (i = comp_s1ice_begin(_id,0,1,0);

i <= comps iice_end(_id, np,1,0);
i++)

<0> for (j = O;j < d;j++)
<0> Cct/nip][i][j] +=

A(_t/_npl [i] [k]*B(k] [j;

Next, the compiler converts global addresses to local addresses. Array B has the same
mapping as before, while A and C have a different mapping, so we only need to show
the global to local mapping once.

SOURcE-LEML DEDUMOUG OF AUTOMATICALLY PARALLELUD PROGRAMS 95

A dubuggarfor a eaniple wilk blan gal W yW l CV IC IImUtdo4

m~ g- r(p-o) +y

= S{ Li] -)+9

In fte code we most subtrat -.id from the second index of a globa address This gives
US the foUlowing progiwn

1 rep a a 0 to _njp-1 with <a>
2 <0> for (k = 0;k < d;Jc.+) f

3 rep a 0to np-1 with <a>
4 <0> for (t =0; t < d; t++)
5 rep a = 0 to _.np-l with <a>
6 <0> bcast(-idtjlp==k,B(kl Et.2*...id],tmp~t]);
7 rep a = 0 to _.np-1 with <a>
8 <0> for (_.t =0; t <d; t +=..jp)
9 dist b =0 to -..np-l with
10 <0> for (i = comp...slic*_begin(_id,0,1,0);
11 i <= coop....ljce_*n.rd(id,..np,1,0);
12 i++)
13 <0> for d(= Odj < d;j++)
14 <0> C[_t/_~.np)[i-_.Adlij +=
15 Al~t/...np][i-...idl fkj*tmp(j];
16

In fte net step, fth compile applies thead splitting, which removes fth PH~s and the
rep and diet conusmas to yiekt

96 OURC54ZWL DOEPJGGNG OF AAITOMXAT1ALLY PARALLEUUD PROQAAMS

1

2 for (k = O;k < d;k++) {
3
4 for (t = 0; t < d; t++)
5
6 bcast(_id%_npu=k,B[k] [t-2*_id],tmp[t]);
7
8 for (_t a 0; t < d; t += _np)
9
10 for (i = comp.slice.begin(_id,0,1,0),ni=0;
11 i <= comV_9slice_end(_id,_np,1,0);
12 i++,ni++)
13 for (j = 0;j < d;j++)
14 C[_t/_np]([i-_id] j] +=
15 A[_t/_np] [i-_id] [k] *trap[j];
16 }

This program is then compiled by a single processor compiler that generates an execut-
able which can be loaded into evey processor of the parallel machine. Instead of nor-
malizing the i loop, we introduce a new variable, n±, that has the normalized count.

6.3 Compiler/debugger Interface

In this section. we descibe •te info•mation that must be passed from the compiler to the
debugger. We first list the information necessay for distribution in Section 63.1 and the
informatio for thread splitting in Section 6.32. We use the matrix multiply examples
for both.

6.&1 Distribution

Exmnples of the information that the compiler must pass to the debugger for the distri-
bution phase of compilation can be found in FIGURE 6-2. The left hand side is the
information for the cyclic distribution and the right hand side is for the block distribu-
don. The rest of the section explains what information is needed for each part of the dis-
tribution transformation.

If the compiler uses a cyclic distribution for iterations or data, it strip mines loops or
arrays first. The information that the D function needs is the position of the loop in the
program, and the name of the loop counters for the inner and outer loops. If any vari-
ables have been strip mined, the compiler passes the debugger the name of the variable
and the dimesion that has beea split

For iteration distribution, the compiler must pass the debugger the line number of each
distnrbuted loop, the name of the loop counter, the expression for the low bound, and the
expression for the high bound. It must also pass the line numbers of any statements that
it imerted. In this example, neither examples have inserted lines.

The D function for communication single steps over code that has been inserted for
communication; the compiler passes these line numbers to the debugger.

SOURCE-LEVEL MUUOGlNG OF AUTOMA-TIALLY PARALLEIMF' PROGRAMS 97

A debugo for a ompnler with block and cyclio dobuton

FIGURE 6-2 Infolon passied from the cx•ipdr to the debugger or dfrbutlon

Cyclic distribution Block distribudon

Imp strip ,,,

loop -oto Inner "co Oute 0
8 i _t

data strip mine

variable name dimension

A 0

iteration ditritiom iteration distributmo

loop position coDU -r low bound high bound loop position counter low bonmd high bound
10 i 0 d 8 i a d

imserted communiction inserted communication

line number line number

4 4

data distribution data distribution

variable name T 0 s variable name T o s

A 1oi] jJD A C20] 2I - OG

B[2 0] I ýI ýJB[0]I~

C oo ~C [2 0] g~ jýj

OS ~~SOWIJcE-LEVEL DE3IJGNGW OF AuTOMATICALLY PAR UAJELM~ PROGRAMS

"The D fatico for data distribuion chatps global numne to local names for all us
commands to examine asd modify variables. If the dma is distributed, it uses Equatn
5.2 to compute the processor index and Equation 5.4 to conver the global address to a
local address For non-distributed variable, it examines the copy of the variable on the
procsor at the curunt location. If the user modifies a variable, it modifies all copies.
The compiler must pass to the debugger the names of distributed variables and the map-
ping.

U.3.2 Thread splitting

Example of the inforatmion that the compiler must pass to the debugger for the thread
splitting phase can be found in FIGURE 6-3. All of the information that the compiler
must pan the debugger about thread splitting is concerned with computing the virtual
time and the set of early operations.

In the table, there is one line of information for every statement of the program. The vir-
tual time template has been described previously. Read and write are the set of variables
that are read or written by statement of the program. The line also contains the rep and
diet statements contained in each statement of the program.

By plugging in the values for the diet variable and the loop counters, the debugger can
ompute the virtual time of a statement. The value of loop variables is taken from the

program state, and the value of the dist variables for a processor index can be com-
puted from the rep and diet statements and PlL's in a program. The virtual time tem-
plane can also be used to compute tbe set of early operations for a state of the program.
With the set of early operations, together with the read and write information for every
statement, the debugger can compute if a program has early reads or early writes.

6.4 Debugger

This section explains how the D functions for distribution and thread splitting work
together to form an entire debugger. We start oy giving an example of bow virtual tine
is computed in Section 6.4.1, This is followed by a description of bow the debugger
commands ame implemented assuming a block or cyclic distributinn in Section 6.4.2. We
then explain how the basic mechanisms for the thread splitting debugger, roll forward
and comsis.. it, breakpoints are affected by using a block or cyclic distribution in Sec-
don 6.4.3 and Section 6.4.4.

6.4.1 Computing virtual time

Computing the virtual time of a statement is central to the ability to determine the cur-
rent location and decide if user commands ae disallowed. To compute the virtual time
of a statement, % e need two things: the position in the program, which determines the
virtual time template, and the value of the parameters in the tewpiate. The parameters
are the value of diet variables and the value of loop counters. The value of diat vari-
ables can be computed statically for each statement from the pocessor index. The value
of the counters are deter ied at nmu-time.

SOURCE-LEVEL DEBUGGNG Of AUTOMATICALLY PARALLELIED PROGRAMS 90

A debugar fora comnpI~e wfth block and cy~ci dkrbudons

ROURE lawnfmiulon pesaed trom the cwnrpig to fte dbugWe for fthred spfttin

Blck &disrbution

Hmn numbe virUal tm =eplaW marni writes P11. mp ad 41st staumenta
I rep a = 0 to .jip[O]-1 with <a>
2 1"k,,,0101001%) k.d k <0>
3 rep a = 0 to _np[0]-1 with <a>
4 aXk4,t,4.O,0,0.O) Ld t <0>
5 rep a = 0 to _.np(0]-1 with <a>
6 (2,k.46.0,.0.0,0) kttmipB tinpB <0>
7 dist b =0 to _.np-1 with (
8 (2,k,7,b,8,xm.8O,O) W, i <0>
9
10
11 4Zk,7,b,8,ll1j,11) jd j D
12 (2,k,7,b,8,all1j,12) i~jkAtmpC C <0>
13
14

Cycilc distribution

lmn number virtWam tme mplasc rads writes PU.. rp and dist staements
I rep a = 0 to _..np(O]-l with <a>
2 Q.",0,0,00,0,0,,,,0) k~d k <0:b
3 rep a = 0 to _np(01-1 with <a>
4 O.k4,4,4,0.0,0,0,0,0) t <or>
5 rep a = 0 to ...np[Oj-1 with <a>
6 (Uk4,L-6,O,0,0,0,OO) kttzntp, tnpB <0>
7 rep a = 0 to _np(01-l with <a>
8 (2,kgt,,8.O.O,O,O,O,0) .j,,d *.t <0>*
9 dist b =0 to .jip-1 with l
10 2,k8,t,9,b,10,ni,10,0) W, i <0>ý
11
12
13 (2,k8,.tb,9,10,zm,13,j,13) j~d j <0>-
14 (2,kt,9,b,1O,m,13,j.14) C,t.LjijAtunp C <05.
151
16

100 Sounc-AWL DEwOL4 G OF AUTOMANICALLY PARALIUEL3E PROGRAMS

A Ii lbuIgger irieri

Each sUM=e can potentially have its own mapping between processor indexes and
values of 41st vatiables. When the debugger is invoked, it computes this mapping by

expanding the rop and dist al a program. For every smaement with a Mi., we record
the stament number from the 0 program, the value of the PIL, and the value of the
diet varable. As an examnpe, we compute the mapping for the samments in the block

distibutd progmin. Assume tha" thee ae only 2 processors _up is equal to 2. We
only need to know the value of diet varables, so we can ignore everything before line
7. Funaautxu the PIL for every statmentt is the sam, so the mapping is the sme for
all staftem The mapping i as follows:

diLst variable value procs index
0
1 1

The mapping for the cyclically distributed program is the same.

After a processor is stopped because of an event, its virtual time is computed as follows.
From the line number, we get a virtual time template. If the template has diet variables
in it, their values are obtained from the table that maps processor indexes to dist vari-
ables. If the template has any loop variables in it, their values are obtained from the loop
variables in the program.

As an example of computing the virtual time, if processor I stops at statement 13 in the
cyclically distributed program, the virtual time template is
(2,k,8,,_t,9,b,lOi13,j,13). if the value of the loop counters ame k=3, _t= , ni-i,
and Ja2, then the current virtual time on processor I is (23,8.1,9,10,1,13,2,13).

6.42 Selecting the 0 tCme, setting breakpoints, examining and modifying
variables, and reporting the current location

Before the debugger can decide if commands should be disallowed, it must compute the
early operations. It must first choose t the 0 time, which is computed from the virtual
time of each processor The 0 time, along with the virtual time template is used to deter-
mine if each statement has been executed early. For the cyclically distributed program,
if the virtual time of processor 0 is (2,3,8,1,9,0,10,1,13,5,13), and the virtual time of
processor I is (2,3,8,1,9,1,10,1,13,2,13), then the P time is the minimum, or
(23,8,1,9,0,10,1,13,5,13). For cyclic distributions in general, the 0 time is the time of
the processor that has executed the least number of outer loop iterations. For the block
distribution, it is the first processor that has not executed all of its iterations.

After computing the virtual time sets for each statement and processor, we conclude that
statements 13 and 14 have early executions on processor 1. The rest of the section
assumes that the program is in the state described above.

If the user wants to set a breakpoint on line 13. the debugger for distribution sets a
breakpoint on every copy of that statement them is one copy for each processor. The
debugger for thread splitting must check if any of those statements are early. For our
example, line 13 on processor I has an early execution, so the debugger must disallow
this breapoint. If the user sets a breakpoint on line 2, then the debugger for thread split-

SOURCE-LEVEL 0EBUGGINQ OF AUTOMA11CALLY PARALLEIZED PROGRAMS 101

A deDb W for o compiler with block md cyeci dtrlhbutionm

tin would set a breakpoint on both copes. The thead splitting debuea determines,
that dhm am no ealy executious for any ot the copies of line 2 and sets the brekpoits.

If the user examines the variable d4 then the debugger for distribution imspect the copy
of 4 thmt is local to the processor executing the current statement. That is processor 0.
On processor there are no eaty operatioM thus there cuanot be an early write of the
vail 4, so Ut thread splitting debugger does the read of the variable don processor
a. If the uer tries lo modify the variable 4. then the debugger for distribution modifies
all copies of the variable. The debugger for thre.l splitting checks if there an any early
tMds or writes for the variable d for all copies. Processor 1 has early execution of sate-
ments 13 and 14, and from checkig the tabl in FIGURE 6-3, it conclude that there is
an early read of the variable d. It must disallow the modification of the variable d
became one copy can't be modified.

If the user does a where command, the debugger for thread splitting passes back the
current statement, which contains the statement number and processor index. The distri-
bution debugger just peels off the processor index and returns the statement number. In
the curent state, the thread splitting debugger passes back line 13 on processor 0 as the
current line and the distrutiom debugger passes back line 13 is the current statement.
This is reported to the user as the current line.

6.4.3 Roll forward
Roll forward is used for three pwup It is used to advance execution of a pmgram so
do there an no lawe operation, to tmm die program to a particular 0 time, and to rum a
program with a coosistem breakpoint. The virtual time template and current viual time
am used Io find the LUB for each proceo, which is the poiat in the program at which
it should stop.

If the desired point in the block distributed pogram is k-3, n=i1, and j .2 n sate-
met 11 of pocessor 0, then if we substitute the values into the viral time template of
(2,k.7.b, 8.nl,1JU) we have a virtual time of (2,3,7,0,8,1,11.2,11). This is also the
LUB Of Processor 0. For pocesso 1. the LUB is at the beginning of its copy of the £
loop. This is at statement 11, with a virtual time of (2,3,7,1,8,0,11,0,11).

We use FIGURE 6-4 to illustrate the general conditions for finding the LUB for each
processor. We use a block distribution with a block size of 3 and a cyclic distribution
where each processor gets 3 iterations. In the block distribution, for processors that exe-
cute iterations earlier than the target time, the LUB is the firt thing after the loop; the
processor executs its entire block. For procems that execute iteratiom after the target
tMe, the LUB is the firt iteraion that it executes; the begiutamng of the block. For the
cyclic distribution in the figure, a is the outr loop counter aid I is the imer loop
counter (the inmer and outer loop ae the result of the strip mine). The LUB for a poces-
SOr is either the same or anext iteration of the outer loop, depending on whether the pro-
cessor comes before or after th processor executing the target time.

S.44 Coisletut brmalk ints
If fte user st a Consistet breakpoint in a prograu, then we must comp•ct the LUB for
the breakpoin FIGURE 6-5 illustrates wher the LUB is for ech processor before we

SOURCE-LEEI ODEUGGI OF AL OMATIALY PApALLZED pROGRAM

Cc iiilidmge Ww a

FIGURE 6-4 The position of the LUB for a given target time with the block and cyclc d•tbtAblon

Processor idex PrcS index,

Block 0 1 2 Cydic 0 1 2
Distribution ON Distributiom

i=l 0=04-I

ini aonoi-1

i=2 oO,i=2

i-3 Target dime o1,i=3 Target time

Time i=4 LB 0mue o 1,i.4 -.-- LUB

i=5 o=1,-5 .1-0- LUB

i=3 -- LUB om2,i6 -0 LUB

iin4 o,2j=7

i=5 o=2,i=8

4- LUB

start execution of the loop. For the block distributed program, the LUB for each proces-
sor is the beginning of the block. If we reach a LUB for a processor without hitting a
breakpoint first, then the new LUB for that processor is the end of the loop.

For a cyclic program, the LUB is always the next iteration that the processor executes.
After we pass a LUB for a processm, the new LUB for that processor is the next itera-
tion it executes.

6.5 Performance of block and cyclic distributions
when debugging

We conclude this chapter by investigating some perfonnance related issues of debug-
ging for the block and cyclic distributions. The actual performance that a uscr sees is
depedent upon the particular progrun, its communication, where the user decides to
stop the program. and what variables ae inspeed or modified. However, it is possible

SOURCE.LUVL OEDUGON OF AU'OMAMCALLY PARALLELID PROGRWAM 103

A debu• er for a GomlorW with blook and cycli dierbudoa

RGURE 'The position of he LUS for consistent breakpoints wi block and ccle detrbtIons

Plaes index prcessr index

Block 0 1 2 Cydlic 0 1 2
Disftrbutio , Dstrsbudon

mo .4- LUD c,.0,IuO -a- LUB

iuul osO,1l '-d. LUB

i-2 oo20.i-2 -- LUB

i-3 * LUB ol,,i=3

Time i-4 Time o-1.i-4

i-5 o-li-5

i=3 - LUB 0-,2.66

W4 o,2.i-7

i-5 o2.i=8

to make some simple sements about th relmive peufmannce of the loop distribution
models. Fot the following mlysis, we assume tha all processors complete loop bodies
at the sme rate. ibis is ame if theri s no synchronization in the loop body, and the
work in each itmeatio is dat independent

6.51 Ealy opelatons

The more early operados them am the more likely it is that we would have to disallow
a command 1h block and cyclic distributions can be expected to have diferent behav-
io in taes of the number of early operations.

We count the number of earily loop iterations to compare which distribution has more
early operations. For both distributions, the 0 time is the earliest viA time of all the
processors. Under the equal prgress assumption, for a block distributed loop the earli-
at virtual time is always on the frst processor This is because all of the iteraions on
the first processor have virtual times less than the derations of all the other processors.

104 SOLU .E.LUW o DIEniUCNOM OF AUTOMAliCALLY PARALIJL D PROGRAMS

Coipu'dauggairInterim.

Heince all the iteraons execud by all the processors except for the fist oai are early.
"This is s(p- 1) where s is the number of itation executed on oe processors and p
is the number of processors. For the cyclic distribution, iteratims are assigned in round
robin fahion. While iteration i is in progress on processor 0, iterations i + I through
i + p - I are in prgress o the other processom All the itentions i progress on all but
the flirt processor ar early, but all other iterations already completed are not early. The
amber of early operations for the cyclic distribution is at most p- i. In comparison we
would expect a loop that is block distributed to have many more early operations, hence
it is more l•ely dtt commands would be disalowed when using this dismnoution.

6.5.2 Parallelism durng rall-forward

Whe we want to stop the program at a particular virtual time, for example we are roil-
ing forward a set of processors, then we would like to execute the program with the
maximum parallelism available so that we may reach that point as quickly as possible. If
we have a block distribution and we want to stop at virtual time i, then we can allow all
processors with an index less than L i/bJ to execute their complete loops, while proces-
sors with an index greatm rth r i/bl camom not execute any iterations. The degree of
parallelism available is thus determined by the desired loop iteration; the higher the loop
iteration the more parallelism that can be exploited.

For the cyclic distribution, since iterations are assigned to processors in a round robin
fashion we can allow all of the processors to execute the first L i/pJ iterations that they
an assigned. The remainder, which is i - L i/pJp are executed by processors 0 through
i- Li/pJp- 1.

Thus, a cyclic distribution will reach the target point faster because it can exploit more
parallelism. If we want to execute the first i iterations of the source loop, then the block
distribution will take min (nip, i) steps, where n is the total number of iterations to be

executed. The cyclic distribution will take [J steps to complete the first i Ip itera-

tions and 1 more step to complete the remaimner, which is i-p . The total is thus

6.53 Synchronization overhead of consistent breakpoints
When we execute a block or distributed loop with a consistent breakpoint set, we cannot
ak advatage of any parallelism, because the breakpoint may stop at any iteration. If
we want to stop in a state without any early iterations, we can only execute one iteration
at a time.

The execution of a loop with a consistent breakpoint should be slower than the sequen-
tial version of the loop because extra synchronization must be done. Synchronization
occurs whenever a program reaches its LUD; a bmakpoint occurs and the processor
waits for the debugger to let it go forward. The debugger lets it go forward when all the
iterations with lower virtual times complete. As described in Section 6.4.4, each proces-

SOJ4 -LEVEL. DEMUGIMQ OF AUTOMATCALLY PARALLEUZED PFROGAM 106

A debuguW fora conopor wMUi block and atio digibudong

at oa de block dbulbund p omrS must synchroze befom exeaca'ng my of its block
of himiom. Once it Jim pued its LUB it does o need to synudc nize apin util the
end o the loop. The cyclic distribution must synehronize before every iration.

TMw block fd ughwa cm be expected to sysebmaize less than the cyclic distribution;
hence cmdslM brakpoint; wil be fs1w for the block distribution. For fh block dis-
vlbulon, if mral tbrekpolnt occrs in iaslki i, dten de nnber o syndtoizao

-* s [PI-F y~ dubk n umbthe ~ at .~tzposnsw a.

6.6 Summary

We have pented eanples of compilationmd debugger functions for programs with
block and cyclic distribution. We also examined some peformance issues related to
debugging. The cyclic distribution can be expected to have less ealy oper•aos and
hence is less likely to diallow a command. It is also able to exploit mr parallelism
when tolling forward to a particulm virtual time. However the block diribution can be
expected to have less ovedhead when executing with a conasntu breakpoint.

106 1o1111:O4IM MORK OF MUTOUAcAUX PARMLMYD PROG,•M

CHAPTER 7 Limitations of thread
splitting

In this chapter, we identify the types of pwAlllizing anonntios for which it is pos-
sible to costruct a debugger using the thread splitting methodology. The main charac-
teristic of a trasformation that determines if it is suitable is the type of assignment it
uses to map operations in the source program to processor. An assignment of a sequen-
tial program is specified by giving each operation a processor index label (PIL). The PU,
is the processor that executes the operation in the parallel program. We call an assign-
meat of operations to processors daa iudependem when the PIL's ame constant. We call
an assignment of operations to processors with non-constant Pl's a data dependent
assignment. Thread splitting only allows data independent assignments because PIU's
must be Constant.

A data independent assignment is desirable because it makes it possible for the debug-
ger to take advuntage of static progran information, which is important for efficiency.
However, most pdallelizing tram ao use data dependent assignments; a practi-
cal compiler and debugger must be able to SUpffo both.

If a tnansmiation uses a data dependent assignment, source programs for the transfor-
mation can be rem•mitl so that a data independent assignment can be used to achieve
the desired mapping of operations to processors. Thus, a debugger need only allow data
independent assignments, However, a program generated in this way may be less effi-
cient than a program generated from a dam dependent assignment. For transformations
where the assignment is data dependent but known at compile-time, the loss in effi-
ciency is small. This includes the block, cyclic, and block-cyclic distributions. For
truasfosmadons where the distribution of operations to processor is dynamic, the loss in
efficiency can be significant. This includes use mapped and dynanically load balanced
distributions.

SOWAULEWL DMIGOU NG OF AUTOUAIlCALLY PARALLEUUD PROGRAMS 1(i

Unimlonis of du.nd epng

To Seiaon 7.1, we defne dam indeendem and dua dependent maigne--m and descibe
te 1deiniQs to thed splitting gad debugge. Section 7.2 explains why a program
gelmmnl with a dat idendet assuignagsan be less emcient than a pogram gen-

mated with a daf dePedeM assignment Section 7.3 shmos how to rewrite a proam
soh d a data Winde assignment can be used. Section 7.4 describes how to bound
db worhd for an assignment of a truaformation and analyzes the cumnonly used

7.1 Data dependent and Independent assignments

Geinadg a pmlel pogram frm ft sequential one can be modeled as an assignment
of operations to processors. The asigment can be thogh of as fte specification of the
distMiuon. Aleratively, a distribution can be thought of as an implemntwio of an
assimneut

An assigment is daza independent if, for all executions, an operation is always exe-
cured an evey member of fth same se of pmcessors, even if ft operation is executed
nmxe thin once. An opq aon may be executed more than once if it is inside a loop. A
" independent assignment is shown in FIGURE 7-1. All iterions of the filst loop are
always executed on processor 0, all iterations of the second loop am always executed on
prcms 1, and all iterations of the last loop ae always executed on processor 2.

FIGURE 7-1 Exarrpl•s of data dependent and data ndependent schecdues

data ndp.ndent assignment
<0> for (i : 0; i < n/3; i++)
<0> b = 1;
<1> for (i = n/3; i < 2"n/3; i++)
<1> b 1;
<2> for (i a 2*n/3; i < n; i++)
<2> b = 1;

daft depeden amm sntm

<i/3> for (i = 0; i < n: i++)
<i/3> b z 1;

An assgment is data dependent if the fiaction that assigns operations to processors is
dependent on data il the pogram. An example can be found in FIGURE 7-1. The result
of dividing the loop counter by 3 is the index of the processor that executes the iteration.
In general any distribution of loop iterations (e.g. block and cyclic) requires a data

108 SOUE-LVEL CEBUG OF AUTOMAAICALLY PmARUUja D PROGRAMS

Why pIopwuhw wit def lodepnxmkemignmsts can be Iwo WfliuM

dependent assipnE. Threrad splitting canmnot be used directly when a data dependent
assiginem is desired because only constant PIL's anr allowed.

A dta independent assignment is desirable because it makes it possible for the debug-
ger to take advantage of static infomation about the assignment of operations to proces-
son in a program. Static information is useful for mechanisms related to virtual time
such as computing early operations, rolling forward a program, and consistent break-
points. If the debugger does not take advantage of static information, then it would not
be practical to provide some of themc mechanism.

A simple eample of how a debugger can take advantage of static information can be
found in FIGURE 7-1. If we use a da=n independent assignment as is shown in the top of
the figur and the current ststement is selected to be the third statement (the for loop),
then it is dear that processor 0 should have executed all of its iterations and processor 2
should not have executed any iterations if we want the current state to be consistent with.
a state of the 0 program. By contrast, if we have the data dependent assignment found in
the bottom of the figure and the current line is chosen to be the second line of that pro-
gram, then the debugger must know something about the behavior of the function in the
PIL's and the variables they reference to determine which iterations each processor
should execute.

7.2 Why programs with data Independent assignments
can be less efficient

The execution overhead introduced by rewriting a program so that a data independent
assignment can be used is inherent in how much is known at compile-time about the
assignment. If the assignment is known at compile-time, then the overhead is low. If
there are points in execution of the program where the assignment can only be resolved
at rnm-dime, there is some overhead. The total overhead depends on bow often the
assignment must be resolved at run-time.

To illustrate the differences between data dependent and data independent, we describe
an examnple where the assignment cannot be known at compile-time. We describe how
to write the program so that a data dependent assignment can be used, then show bow a
data dependent version can be more efficient.

If we are allowed to use a data dependent assignment, we can simply give each opera-
tion in the 5 program a PIL that computes the processor which should execute it. In the
wo program, which is generated from the 0 program, only the processor that is assigned
the operation executes it.

An example of a data dependent assignment is found in FIGURE 7-2. In this program, a
use-defined map is used to determine which processor executes each iteration; iteration
i of the loop is executed on processor map Li]. Because the array map is set at run-time,
any processor ca execute any iteration. Assume that at run-time, before executing the
loop, the program computes the set of iterations that each processor must execute. The
result is stored in two xrays.--s and umap. For processor p, its 1p] is the number
of iterations executed by that processor and (umapq p I 10 1, uuap (p] (11,

SOUaCE-t.bl. DEUUGG OF A•JTOUA, CALLY PARALLEU.G PROGRAM 109

Lie~doi.. of Uweed Opi~a

vm [p) I itst(p]-11) is the set ofi adonstoatprcessorp =c . In the pro.
gram. each processor just executes it assigned set of itetdons according to the its
and umnp arrays.

The PUL for each stament uses the map array to specify which processor executes the
iteatmo. Some statments haveaPIL ofnmp [EL andodien smveaPU.ofmap [i.11
bease th variable i is incenenied in the middle of the loop. In the to progrun, each
promesor only executes as asusned iteradiu and does no execuf tht loop control for
my as iftratlns.

we f progrzam dt must be used for a daa independent assignment is very dlfferen for
this exnmple. In general, if thue is a point m in the control flow of the program where
my one of a set of processors j can be assigned the same computation c, then for every
processor p in s, theie must be one execution path starung at m that has a copy of the
computation c with a PIL of p. A conditional in the program decides at run-time which
path to execute, in effect deciding which processor should execute the computation c. In
thew program. which is extracted from the program. every proceor in s must exe-
cut the conditionaL The processor that is assigned the curtent intance of c executes the
path which contains c as well.

This is illusuated by the program with a dam independent assignment in FIGURE 7-2.
As before, a use-defined map is used to determine which processor executes each itera.
tio. Because any processor can execute any imraion, there must be one execution path
through the loop body of the 0 program for each processor. In the to program in the fig-
ure, every processor executes the loop control once for every itration of the program
and a conditional decides if the processor execuws that particular iteration. By compari-
son, a program where a data dependent assignment can be used is much more eflicient
because each processor only executes the loop control for its assigned iterations.

Overhead is any work present in a program with a dam independent assignment that
need not be present in a version of the program with a data dependent assignment. For a
particular data independent assignment, the overhead the program imcurs s dependent
on the way the P program is written. If we know at compile-time how work is assigned
to processors, then we can change the stracte of the progamn so that we can reduce the
number of processors that can potentially execum the next operation. By doing this, we
reduce the overhead of the program. If the assignment is known completely at compile-
tme, then thde is no overhead because we can construct a program whewe only one pro-
ceasor executes the next iteration.

The example in FIGURE 7-3 ilustrates the way we can exploit compile-time knowl-
edge of the assignment to reduce overhead. The program on top is the ot program; below
am two posible P and m progrms for the same assipment. For the assignment, itwA- A

don i of the cz loop is executed an processor i/3. We assume that tere are 3 processors
in the example. In the first 0 program, the is one execution pa* dtough the loop body
ft each possible assignment of an iteration of the a loop. That is, if an iteration is
assigned to processor O. zie body of the stm it is executed, if an iteration is assigned to
Processor 1, the body of the second if is executed, and so on. In the to program. every
pocessor executes the loop conmrl for every itmaion as well as its assigned iterations.
In the second P program, we have creased thee copies of the ct loop. Because there ar

110 I31MC- IL 0ESUGO OF AUTOMATICALLY PARALLELW PROGRAMS

Why pronsm with dm Independent assignm• n tca be I. efItent

FIGURE 7-2 Exanmp* of data depndemr and data indenendem schedudes

data dependent assignment

<0>,<l>,<2> i a -1;
<map[i+1]> for (t 0 0; t < its[_id); t++)(
<map[i+11> i = umap[_id]It];
<mapjij> b = 1;

I

0) pMgram

i = -1;
for (t = 0; t < its[_id]; t+÷)(

i = umaplid](t];
b= 1;

)

data independent assignment

S•propm

<0>,<1>,<2> for (i = 0; i < 2; i++) (
<0> if (map(i] == -id)
<0> b = 1;
<4> if (map[i] == _id)
<1> b = 1;
<2> if (map(i =_id)
.:2> b:i;

cnprogram

for (i = 0; i < 2; i÷+) (
if (map(i] == -id)

b = 1;

SOURCE-LEVEL DE3WGINQ OF AUTOMATICALLY PARALLEUZED PROWM 111

UniIol of ethmmd spfting

multiple copies of the loop, at every point in the exutcun of the 5 program. only one
prcmsor can etecute the net ieration of the a prgram. In the () progrwn every pro-
cessor only executs its assigned iteraioms.

FIGURE 7-3 Two poesible ways of writing a 0 program for the same assignmet

for (i = 0; i < n; i++)
b= 1;

~progam t program
<0>,<1>,<2> for (i = 0; i < n; i++) (for (i = 0; i < n; i++)
<0> if (-id == i/3) if (Lid == i/3)
<0> b = 1; b = 1;
<1> if (-id == i/3)
<1> b = 1;
<2> if (-id =- i/3)
<2> b = 1;

~program 0D progrAM
<0> for (i = _id*n/3; i < (_id+l)n/3; i++) for (i = _id*n/3;
<0> b =; i < (_id+l)n/3;
<1> for (i = _id*n/3; i < (_id~l)n/3; i++) i++)
<1> b =i; b 1;
<2> for (i = _id*n/3; i < (_id+l)n/3; i++)
<2> b=1;

7.3 Generatng a 0 program

In tids section, we descib bow to stwrure a P program t minimize overhead when a
data independent assignment i- used. We want to be able to descibe dt assignment of a

a independeat of the particular progrun to which it is applied. For this rea-
son, we use a simple model of a prwgam a a single loop with a single staament body.
The iterations of the loop ame mapped to a I dtnemsional processor array.

For distribution, the compiler inputs an x program, and uses a combination of condi-
tionals, loops, and sequences of code to produ a P program with a data independent
assignment such that eacb processor executes the appropriase iteration of the loop from
t ct apogram. Each consmo-is usea for differ z., pViuas in the assignment.

112 uoLIU'cE-.L.WL. DEBUGG OF AUTONATI•C .Y P LLEOwn PROGRAMS

G•--~ng a b pwoumm

If the assignment follows some finite sequence that is fixed at comnpile-ume, then we can
ere multiple copies of the loop body of te a program as a sequence and assign each
copy to the appropriate processor. An example is shown in pa (a) of FIGURE 7-4. The
pitter is (,2,O,1,1,2) so we c'eate 6 copies of the loop body and give them PLs from
the sequence. If the assignment repetitively assigns a iteram o to the same processoc,
then we can put te body of the a program in a loop and give it he PIL of the procews.
Thns Is illustraed in pat (b) of FIGURE 7-4 where a dam dependent swnber of item-
om am assigned to processor 0. If at some point in the program. the assignmen of an

iteration can only be determined at rum-time then a conditonal can be used to select
which procesmr executes the next iteratio. In part (c) of FIGURE 7-4, iterations can
either be mapped to processor 0 or processor 1. Tl coniditional selects which processor
executes the iteation.

Each of the above constructs can be com%-,.ýý For example, if the assignment repeat-
edly assigns iterations to the same sqjence of processor then we replicate the body
according to the sequence and place that inside a loop.

7.4 Estimating the overhead of data independent
assignments

The overhead of using a data independent assignment depends on the parallelizing
transformation, the pmogram, and the data the program is executed on. 1b determine if a
paralllizing transtormation is suitable for thread splitting, we would lie to bound the
extra work for all programs generated by a parailelizing transformation.

It is not important how an assignment decides how to map iterations to processors; our
main concern is the set of possible assignments for all programs. For this reason, we
describe the result of assignment without specifying how it is done. A schedule of a
loop represents the assignment of iterations to processms for a single execution of the
program. A program can have different schedules if the program is executed on differ-
ent data. The schedule can be represented by a string of numbers p., p2 p, where

iteration i is executed on processor pi. For the estimation of overhead, we assume that

all programs terminate, thus schedules ae finite.

For each parallelizing trdnsfonration, there is a set of schedules possible for all execu-
tions of the single loop program. The set of schedules can be specified with a regular
expression, where every schedule possible for that transfonnation is contained in the set
of strings defined by the regular expression.

STo denote a regular expression, we use numbers, which represent processor indexes,
pas atheses, and the operators I and *. The operator I is used for selection of alternates.
If there is a regular expression (a I b), then the set of strings in the language is a and b.
The operator * (also called closue) is used for repetition 0 or more times. The expres-
sion a(b*) has the following strings in its language: a. ab, abb, abbb

A regular expression was chosen to represent the set of schedules for several reasons.
First and most important. there is a straightforward method for placing an upper bound

SOURCE-LEEWL DEBJGGI, OF AUtOMATCMALLY PARALLEUI, PROGRAM 113

i ~l d - is olfl i i ii I iil

FiGRO E 7-4 Coanverting loops with data dapenden Plla into loops h data independent PiUs

(a)
Asuignmnentis a seouecm of pocessor indexes <0> £ M = I
assgnmnt-(%.2 1. 1.2) <2> ± = 1; 31;

for (i a 0; i < 6; i+÷) <0> i a 2;st;
"-1; <1> j a 3; St;

<1> i =4; s;
<0> i = ; St;

(b)

Assignment is a repetitive
sequea= of piocesso indexes

assignmem M 1(0)*
for (i = 0; i < n; i++) <1> t

<0> for (i = 1;i < n; i+÷)

<0> $1;

(c)
Assignment is condidoaal

assinment=()* <0>,<l> for (i = 0; i < n; i++)<0>.<1> if (condition)

for (1 = 0; i < n; i++) M <0> 31;
$I; else

<1> $1;

on the overead of a paallelizing transformaion given the regular expression defining
the set of schedules. This is explained in detail in Section 7.4.2-

Sewoed, a regular exprsmon is always sufficient aD describe a supsm of the set of
schedules for a pgroan. While we may nac always be able to write a meuar exprssion
that includes exactly the set of schedules possible for a puallelizing transformation, we
can always fAnd one that includes every possible scedule. That is, there ay be adl-
donal strings in the language that are not schedules of the program. For example, the set
ot schedules for a pogram where stenents ar only mapped to processors 0 and I is

114 OUMUL---EL r., GMNQ OF AUTOUATICALLY PARALLEUNZED PROAS

11 £abiprogi•

always contaned in (0l1)* so this regular expression can be used to describe my set of

Third, the regular expression is simple to write. The regular expression defining the set
of schedules captures the infonmation necesry to measure the overhead, but leaves out
mto of the deils that irrelevan Writing the regular exnpesio is much easier than
writing the 0 Program. In Section 7.4.1, we list all the regular expressions for the com-
mon distribution. They ae short and have simple strucaes.

Fourth, the structure of the regular expression suggests a structure for implementing an
efficient 0 progmnm. To generate a 0 progEn, every number can be replaced with a copy
of the body with the number as a PIL, every kcause can be replaced with a conditional,
and every closure can be replaced with a loop. The regular expression does not contain
enough information to generate a complete 0 program because it is missing the condi-
tions for assignment to a particular processor. That is, if we had (011i) we know that the
iteration is assigned to processor 0 or 1, but we do not know when it is assigned to each
poceSo.

7A.1 Regular expressions for transformations

In this section we give the regular expressions for the common parallelizing tansfc.ma-
tons. Th four distributions employed by most parallelizing compilers are block, cyclic,
block-cyclic, and user mapped.

In the block distribution, contiguous blocks of iterations ame divided among processos.
The general form for a I dimensional processor array where processor indexes range
from 0 to A is (0"12"... n*). A schedule is some number of iterations executed on pro-
cessor 0, followed by some iterations executed on processor I, and so on. The block size
is typically the same for all processors. However, depending on the program, some pro-
cesso on either end may not be assigned any iterations and the first processors on
either end that are assigned iterations may only execute a partial block. For example, if
there is a block size of 4, then some of the schedules that are possible for an array of
length 3 are: 000011112222, 11112222, and 00111122. The regular expression is general
enough to express all of these schedules. It also includes some schedules that are not
possible for a block distribution, such as one that skips a processor when assigning iter-
ations (e.g. 0022). Including the extra schedules in the set does not increase the potential
overhead, as is shown later.

For a cyclic distribution, iterations are assigned in a repeating pattern. The general form
is (0 DU 1)(2 D ... (n 1)(012...n)*(0 0(I 1)(2 1)...(n I). The I-clause (i I) means that i may or
may not appear in the schedule. A schedule can start and end anywhere in the repeating
pattern. Some possible schedules for a three processor array are 012012012, 1201212,
and 1201201201. The regular expression we chose to represent the set of schedules
includes some schedules which cannot occur when using a cyclic distribution, such as
02012012 and 01201202.

The block-cyclic distribution is a combination of the two previous ones. The general
form is 0*1*2*...n*(0*1*2*...n*)00*1*2*...n*. Some possible schedules for a three
processor army are 001122001122, 12200, and 00112200112.

SOURCE-LEVEL DEBUGGING OF AUTqATfCALLY PMM.LELCD PROGRAMS 115

Umdledons o throad awputting

For the moped distribudo, the asignm of himiotias Is determined by the comtent
oa mpping Way which is set at m-time. Sine ndting is known at compde-tde. the
regular expression defining the set of schedules must be very general. It has the oanm (0
11121 ... n)*. Any schedule is possible for this distribution. A dynmically load bal-
anced distribution is one where the assignment of woink to processors can be changed at
n-time based on dynamic coditiosm. The regular expression describing the set of

schedules for a dynamically load balanced progrmn is the same as the mapped distribu-
don because the schedule is nam known at compile-time.

7A4.2 Comput"ng the ovoread fronm a regular expression
In this section, we describe how to determine if pogrms generated by a purallelizing
rsfom tionu ame expected to have high overhead. We fist explain bow to compute the

upper bound of the overhead for a single execution of a progrmz. We them make some
atssmptions about the expected behavior of programs to estimate the overhead for all
Programs under a single parallelizing transtormation.

In the ideal case, each processor executes exactly the work that is assigned to it. In our
model, the unit of work is a loop iteration. For every iteration a program executs it
must also execute the loop control once (updating the loop counter, checking it against
the bounds); we count any additional loop control or any conditionals not contained in
the loop body as overhead.

Given a regular expression defining the set of schedules for a program and a schedule of
one execution of a program, we can bound fromn above the overhead of the program for
the execution. The procedure is as follows. We have a pointer to a position in the sched-
ule and a pointer to a position in the regular expression. Both pointers stan at the begin-
ning. At each step, we advance the pointer in the regular expression according to the
current value pointed to in the schedule, and then advance the pointer in the schedule by
I position. There wie three constructs in the regular expresion: sequences of symbols, I-
clauses, and losures. We explain each of them below.

For a sequence, the next symbol of the schedule must match the next symbol of the reg-
ular expressim. If they do not match these is an eno this cannot happen if the regular
expression includes the set of possible schedules. If there is a match, we advance the
po1ler in The regular expression by l position. When there is a I-cidase in the regular
expression, we pick one branch and advance the pointer to the beginning of it If the
next symbol in the schedule is the same as the first symbol in the left side of the I-clause.
we move the pointer to the left side. If the next symbol of the I-clause is the same as the
first symbol in the right side, we to move the pointer to the right side. If neither match.
there is an error. If both match then we follow both paths in parallel and pick the one
that ends without error and has the least overhead. Computing overhead is explained in
the next paragraph. When the branch of a klause is finished, we advance the pointer in
the regular expression to the first symbol after the i-clause. When there is a closure (*),
we Can either move the pointer in the regular expression o the iM symbol after the end
of the dcosure or move it to the first symbol in the closum The decision about skipping
to the end or moving to the beginning of the closure is made the same way as the deci-
sioma for the I-clause--we compare the next symbol in the schedule to the two possible
next symbols in the regular expression. After the pointer is advanced beyond the last
symbol in a closure, we move it to the begimaing of the closure.

116e SOt -LIEL DEOUGWfG OF AUTOMAMiCALLY PARALLIELIMID PI•XOtAMS

Qedhing a b progrerm

Overhead is computed as we step through the regular expression. Stepping troumg a
sequaece incurs no overhead. For a -clause, every processor in eisher clause incurs one
unit of overaead. For a closure, every processor contained anywhere in the closure
incus one unit of overhead for every repetition of the body of the closure. After finish-
ing the schedule. we sum up the overhead for each processor and subract off the num-
ber of itrations that were executed, because a ropgram must execute the loop control
once for every iterauion. An overhead number is an indication of bow much we can lose
by using a data inidepedeat assignnmen It is not an exact measure of time because we
don't know bow much of the overhead is executed in parallel and we don't know the rel-
ative cot in execution time of loop corml versus the body of the loop.

The above method allows us to determine the overhead for one execution of one pro.
gram We really want to determine the expected overhead of a transformation on all exe-
cutions of all programs. If we make some assumptions about the behavior of programs
we can estimate the overhead. The two assumptions that we need to make are that loop
iterations execute many times and that the number of processors is not larger than the
number of iterations.

For the block distribution, the set of schedules is (0"1"2"... n*). There can only be
overhead if a processor in the sequence does not execute any iterations. Thus, the over-
head can at most be equal to the number of processors and can only be significant if the
number of processors is much higher than the number of iterations to be executed. This
is not a common case, so the block distribution does not incur significant overhead.

For the cyclic distribution, the set of schedules is
(0 I)(1 (2 I).. .(n D(012...n)*(0 l)(1)X2 I).. .(n I). The overhead occurs in the I-clauses
which is at the beginning or end of a schedule. If the closure is executed a significant
number of times, then its cost will dominate and the overhead will be negligible.
Because we assume loops will execute many times, the overhead of the cyclic distribu-
tioo is expected to be small

The block-cyclic distribution is also expected to have low overhead because it is a com-
bination of block and cyclic. Overhead is low when the pattern repeats many times and
the number of processors is not much greater than the number of iterations, which is
believed to be the common case.

The mapped distribution is an exception in that it has high overhead. The set of sched-
ales is (0 1121 ... n)*; there is an overhead of I for each processor frevery iteration
of the loop. Unless the work of a loop body is very large, that is, much larger than the
work it takes for every processor to execute the loop control for one iteration, the
mapped distribution incurs too much overhead and cannot have an efficient data inde-
pendent assignment. The same conclusions hold for a dynamically load balanced pro-
gram.

7.4.3 Why the computed overhead Is an upper bound

Our computation of the overhead for a schedule of a program is pessimistic; using a reg-
Wix expression to measure overhead can only give us an upper bound. The answer is not
exact because there can be more than one correct regular expression that we could use
for a set ot &bedules, and each one can lead to a different estimate of overhead. How-

SOURCE-LEVEL DEBUGGING OF AUTOMATICALLY PARALU.E.j. PRGRAM 117

LWiAon ol throf d spltting

erm. we believe that choosing a regular expression tihtlads so a- ' mwawr is
sII ow for each of t distrilutons in the previous sectim, we used the most
"aawr' regular exptession, and obtained the right answer. For the dlwtibtioNm with
low overhead. it is only the beginning and end of the schedules that ae not known at
compile-ume, the cost of the middle dominates and can be completely determined at
oompile-time. For the user mapped distributiona, noting is kown at compile-ame about
its behavior, so it is simple to model accurately as wel.

7ae overhead that we estima from a regular expression is pessimistic for severa tea-
ser. First, the regular expeumsn dmtt we chooe might inchlud schedules dia an not
possible execution of a program. The ueessary schedules might nquwe more aexi-
bWity in the assignment that adds exta overhead. A trivial example of an overly general
regular expression is (011121 ... n)* which includes all possible schedules for proces-
sors 0 through m6 bence it could be the specillcation for any set of schedules. Using this
regular expresion as the specification of the set of schedules when we really have a
block distrbution would lead to the incorrect conclusion that there is sigificant over-
head.

We might use a regular expression that includes extra schedules for two reasons. First, a
regular expression has limitations on the languages that it can generate. For example, a
regular expression can have a sequence repeat a fixed number of times or an unlimited
wmmber of times, but it is not possible to specify a regular expression where the number
of repetkitins is the same as the uumber of repetitions in another part of the string. An
example where this applies to schedules is the block distribution, where the size of the
blocks cm change from progrant to pogn=, but are conmt across pocessor for one
particular Ptograma. When we specify the set of schedules for a block disrnbution, we
canot require that the block sizes be the same aw s processors.

Another reason we might use an overly general regular expression is that it is too
tedious to exactly specify the set of schedules. In practice, using overly general sched-
ules is not a problem. For all but the mapped distribution, we have used an overly gen-
eral schedule, but we still concluded that the overhead was low.

Even if we find a regular expression that exactly defines the set of schedules for a tru=-
formaton, it is possible that ther is another regular expression that defines the same set
of schedules, but has a lower overhead. For example, the regular expressions
1*1*1*1*1'* and 1P define the same language, but the first one has more overhead for
short schedules because we must skip over more closures.

7.5 Summary

In this chaper, we describe data independent and dama dependent assignments of opera-
tions to processor. Thread splitting directly supports data independent assignments. If a
trasfonnation uses a data dependent assignment, the source progran must first be
rewritten so that a data independent assignment cm be used. The conversion can add
overhead to the program. We explain why this overhead occurs and describe bow to
construct a 0 program dt minimizes the overhead. We then describe a method to mea-
sun the overhead for a single execution of a progrmn, and use it to estimate the over-
head for the common distributions. In general, if the assignment is known at compile-

lie SOIMCI4JL ODIEJGING OF AdTOMAflCALLY PARALLEULD PROOAMS

tim then te ovurhed is low. In specific, die block, cyclic, md block-cyclic dignibu-
tiom ham litle oveahead, while it is expected that ft user mapped aad dynamically
load balaced disvibuions will have a great deal of overheA.

SOURM4•IE-1 DEBUGGING OF AMJTrMA11ALLY P ALNA UI D PROGRAM 119

Unituoa. of 11ea spa"n

120 iOUR ("EWlrf ENGOMQ~I Of AUTOM ilCALY PARALLEUHD PROGRAMS

CHAPTER 8 Conclusions

Research in para elizing compilers, especially for distributed memory machines, still
has far to go before it will have the level of maturity found in compilers for sequential
machines today. Debuggers for these oDmpiles are an even newer topic of research.
This thesis identifies some basic methods, but te=e is still much work to do in extend-
ing the types of u- - arions and source languages that can be debugged. We hope
that good debugging tools will help move parallel programming into the mainstream.

This chapter summarizes some of the conclusions about debuggability of transforma-
tioms in Section 8.1. In Section 8.2., we outline some conclusions concerning the con-
struction of debuggers. The major contributions ae listed in Section 8.3. In Section 8.4,
some areas for future work are identified.

8.1 Debuggability of distributions

In CHAPTER 5, we showed that the common dismliution models: block, cyclic, and
block-cyclic can be debugged at the source-level. The following characteristics make it
possible the order of execution of operations on a single processor is preserved, and the
values that are computed are the same in the source and target programs. The user
mapped distribution also obeys these properties, but since the assignment of iterations to
processors is not know at compile-time, it cannot be implemented efficiently with our
method.

From a debugging viewpoint, the round-robin style scheduling of the cyclic distribution
has two advantages over the block distribution. The benefits result foro the fact that the
order that work is completed in the parallel program is closer to the order that operations
are executed in the sequential program. This is advantageous when the user interulpts
the parllel program; there ame less early opamions. It is also better when trying to run
the program so that it will stop at a particular virtual time; mote parallelism can be

SOURCE-L.EVEL DEUGGING OF AUTOMA1CALLY PARALLJE rLn PROGRAMS 121

exploimed to teach that time quickly. If cosistent bemkpoimts ae used, then the block
disrbudon is super.i As shown in CHAFM 6, the round robin scheduling of itera-
dons ot the cyclic damution miuires much morm o than the block dis-
tribution.

8.2 Building debuggers

IT addition to identifying the types of a 6fo dam that cam be debugged. our work
ho also made clew what information the debugger weeds from the compiler and how
debuggers cm be smdmmed to be independent of a particular parallekzing uavsforma-
don.

Fins tew debugger must know the srctural relmionship between variables and lines in
the source and target programs. This coresponden cannot be represented by a simple
table look-up because the relationship is dynamic and may require a computation to be
performed. An example of a dynamic case is when there awe multiple copies of a loop
counw. An example that requires computation is when an array is distributed and it
requires computation to compute the processor index and local address.

Second, the debugger must know the source ordering of operations in the parallel pro-
gram. From that information, the debugger can detmnine what order to present events
such as breakpoints. It also uses the order to compute late and early operations which is
then used to detemine if a command should be disallowed. The source ordering can be
specifled with a program (the A progonm). If the 0 program has a dam independent
asignme, the debugger can take advantage of static information. However, if a

dynamic distribution is necessy, then data dependent assignment must be supported
efficiently by the debugger.

8.3 Contributions

Source-level debugging for automatically parallelized programs is a new area of study.
Our work has identified the general problems that a debugger must solve and has pro-
vided solutions for some of the common parallelizing transformations.

Firt, we have identified the basic services that a souce-level debugger must perform.
They ate structural mapping, which is necessary for sequential debugger as well, and
dynamk order restoration, which is unique to MIND execution. Second. we have devel-
oped a mehodology that allows us to separate sauctural mapping fom dynamic order

orstoxadon when constructing a debugger. This allows us to isolate the pat of the
debugger that mange parllelism in a module that is indepdent of the distribution.
Third. we have developed techniques for implmendag dynamic order restoration. This
includes mechanisms for virtual time, handling out of order events, disallowing corn-
mmds, and roll forward.

in owwzc-LW oEuaGIJGW OF NJTOUATICALLY PARALLELMa PROGRAMS

Future work

M4 Future work

Mw work presented in this thesis can be extended in many ways. In this section, we dis-
cons some of the areas that need future work.

$..1 Di bution models
The thread splitting model is suffic•aely general to handle the common distributims
where the amigamzent of operations to processors is known at compile-time. Some sys-
teums, paticularly those that support dynamic load balancing, use more dynamic disti-
butions that cannot be determined at compile-time. Ib efficiently support these types of
distriutions dtrad splitzing must be adapted to allow data dependent assignments.
Who the assignment is data independent, computing the virtual time and the set of late
and early operatom only requires information about the control flow of the program.
Adding the capability to handle data dependent assignments requires that the compiler
give more information to the debugger about the program behavior.

8.4.2 Soisp"c language with explicit paallelism

Some examples of source languages with explicit parallelism are data parallel languages
,."cluding languages with vector operations) and languages with parallel loops. When
programs with explicit parallelism are executed efficiently on MIMD machines, they
cim require dynamic order restoration. The techniques that are used for dynamic order
restoration when the source language is sequential must be extended when the source
language has explicit parallelism.

8.4.3 Roll back mechanisms

In the thess, we assunme that roll forward is inexpensive and that roll back is more
costly. This is because roll back is implemented by re-executing the program from the
beginning. If ronl back were inexpensive, some of the basic methods for implementing
dynamic order restoration might be differenL As descnrbed, the debugger tries to pro-
vide truthful behavior in the presence of early operations. If toil back is inexpensive, the
debugger can use it to eliminate early operations from a program state in the same way
that the debugger can use roll forward to eliminate late operations.

Reversible executon(Pan 88][Tolmach 91]geldman 881, which has been proposed as
a method for debugging parallel programs, could be used to make roll back less costly.
Interaction between the debugger and reverse execution facility presents some interest-
ing possibilities. For example, a general reverse execution facility must be able to roil
back to any previous state of the program. However, a source-level debugger only needs
to roil back to a much smaller set of states. This information could permit the reverse
execution facility to reduce the need for storage.

8.4,4 Computation of early operations

In the thesis, we describe conservative methods for computing the set of early opera-
tions. If we use more aggressive mettbds, we decrease the number of falsely labelled
early operations. This decreases the chances of disallowing a command, which in turn
may reduce the need for re-execution of the program.

$OURCE-LEVEL DEI.kJaNG OF AUTOUAMCALLY PARALLE•UZnD P60GRAMS 123

Canclusione

StA discuss two ways that the debugger c be more exac in the computation of ealy
operations. First if a conditional hbs alreaiy been executed, we asmem that both
briaches of a conditional were executed. If a loop has already been executed, we

umne that an infinite number of iteatziom were executed. This information is clealy
conmsevative because a conditional only executes one brah and a loop only executes a
finite set of iteratiom. If the debugger records dynamic informadozn about the prgram
while it is executing. for example kanching information and loop countu, then it could
mo precisely compute the set of operamion that were excued which would in tmu
allow the debuggr to mome precisely compute dhe set of early operadn.

Secood, if the debugger has precise information about which loop iterations are ex-
cuted, it cam use that information to determine which array elements the. loop iterations
have accessed. By default, the debugger must assune that all elements of an array are
accessed if a loop body accesses an aray. If the element that a loop iteration accesses is
only dependent on the iteration nunber, then the debugger can detemnine the exact set
of elements that have been accessed Deciding if army subscripts are only dependent on
iteratin numbers requires data flow information such as the set of loop invariant vari-
ables and induction variables.

$AS Peafomusic debugging

Another interesting topic is source-level performance debugging. After the user has
debugged the progam, the next step is usually tiing. For parallel progra•s, tuming is
especially importmnt because speed as the motivation for using a parallel machine.
UndersandWng the performance of a parallel program requires that the user understand
how computation and data am distributed. However, it isn't necessay that the user
know all of the details of the distribution and a source-level view while tuning the pro-
gram can ease some of the prgramnmer's burden. Many of the techniques presented in
this thesis for relating sequential source and parallel target would also be useful for per-
fmmce debugging in this context.

124 SOURCE-ULVEL OESUGGNG OF AUTOMATICALLY PAR.ALLELD PROGRAMS

Bibliography

[Aho 86] Aho, A., Sethi, R., and Ullman, 1. Compilers: Principles, Techniques, and
Tools. Addison-Wesley, Reading, Massachusetts, 1986.

[Aral 88] Aral,. Z_ and Gertner, L High-level debugging in Parasight. Workshop on Paral-
lel and Distibwed Debugging, pages 151-162. ACM, Madison, Wisconsin,
May, 1988.

[Bacon 91] Bacon, D.F. and Goldstein, S.C. Hardware-assisted replay of multiprocessor
programs. Proceedings of the ACMIONR Workshop on Parallel and Distributed
Debugging, pages 194-206. ACM, Santa Cruz, California, May, 1991.

(Bailey 881 Bailey, M.L, Socha, D., and Nockin, D. Debugging Parallel Programs using
Graphical Views. Proceedings of 1988 International Conference on Parallel
Processing, pages 46-49. IEEE, August, 1988.

[Baker 77] Baker, B.S. An algorithm for structuring programs. Journal of the ACM.
24(l):98-120, 1977.

[Balasundaram 89] Balasundaram, V., Kennedy, K., Kremer, U., McKinley, K., Subhlok, J. The
ParaScope editor, an interactive parallel programming tool. Proceedings of
Supercomputing '89, pages 540-550. Reno, NV, November, 1989.

[Bates 83] Bates, P. and Wileder, J. C. An Approach to High-Level Debugging of Distrib-
uted Systems. Johnson, M. S. (editor), Proceedings of the ACM SIGSOFTISIG-
PLAN Software Fingineering Symposium on High-Level Debugging, pages 107-
111. ACM, Pacific Grove, California, August. 1983.

(Booth 86] Booth, M. and Misegades, K. Microtasking: a new way to harness multiproces-
sors. Cray Channels. 8(2):24-27, Summer, 1986.

[Brooks 92] Brooks, G., Hansen, G. J., and Simmons, S. A new approach to debugging opti-
mized code. Proceedings of the ACM SIGPLAN '92 Conference on Program-
ming Language Design and Implementation, pages 1-11. ACM, San Francisco,
California, June, 1992.

[Bruegge 91] Bruegge, B. A portable platform for distributed event environments. Proceed-
ings of the ACWIONR Workshop on Parallel and Distributed Debugging, pages
184-193. ACM, Santa Cruz, California, May, 1991.

SOURMCE LEVEL DEBUGGING OF AUTOMAUlCALLY PARALLE.ZED CODE 125

[Callahan 90] Callahan, D., Kennedy, K., and Subhlok, L. Analysis of event synchronization
in a parallel programming to. Second ACM Sigplan Symposium on Principles
and Practice of Parallel Programming, pages 21-30. ACM, Seattle, WA,
March, 1990.

[Cft 90] CF77 Compiling System, Volume 1: Fortran Reference Manual Cray Research,
Inc., 1990.

[Chatterjee 91] Chatterjee, S. Compiling data-parallel programs for efficient execution on
shared-memory multiprocessors. PhD thesis, Carnegie Mellon University,
October, 1991.

[Cohn 91] Cohn, R. Proceedings of the ACMWONR Workshop on Parallel and Distributed
Debugging, pages 132-143. Santa Cruz, California, May, 1991.

[Copperman 90] Copperman, M.and McDowell, C. E. Detecting Unexpected Data Values in
Optimized Code. Technical Report 90-56, Compliter Research Laboratory, Uni-
versit.' of California at Santa Cruz, October, 1990.

[Coutant 88] Coutant, D. S., Meloy, S., and Ruscetta, M. DOC: A practical approach to
source-level debugging of globally optimized code. Proceedings of the 1988
Conference on Programming Language Design and Implementation, pages
125-134. Atlanta, Georgia, June, 1988.

[Cytron 90] Cytron, R., Lipkis, J., Schonberg, E. Proceedings of Supercomputing '90, pages
398-406. New York, NY, November, 1990.

[Dinning 91] Dinning, A. and Schonberg, E. Detecting access anomalies in programs with
critical sections. Proceedings of the ACM/ONR Workshop on Parallel and Dis-
tributed Debugging, pages 85-96. ACM, Santa Cruz, California, May, 1991.

[Emrath 89] Emrath, PA., Ghosh, S., and Padua, D.A. Proceedings of Supercomputing '89,
pages 580-588. Reno, NV, November, 1989.

[Feiler 82] Feller, P.H. A Language-Oriented Interactive Programming Environment Based
on Compilation Technology. PhD thesis, Carnegie-Mellon University, May,
1982.

[Feldman 88] Feldman, S. and Brown. C. IGOR: A System for Program Debugging via
Reversible Execution. Workshop on Parallel and Distributed Debugging, pages
112-123. ACM, 1988.

(Forin 88] Forin, A. Debugging of heterogeneous parallel systems. Workshop on Parallel
and Distributed Debugging, pages 130-140. ACM, Madison, Wisconsin, May,
1988.

125 SOURCE LEVEL OEBUGNG OF AUTOUAI.ALLY PARALLELM CODE

(Fortrand 92] Fox, G., Hiranandani, S., Kennedy, K., Koelbel, C., Kremer, U., Tseng, C., Wu,
M. FORTRAN D Language Specification. 1992.

[Francioni 91j Francioni, J., Albright, L., and Jackson, J. Debugging parallel programs with
sound. Proceedings of the ACMIONR Workshop on Parallel and Distributed
Debugging, pages 68-75. ACM, Santa Cruz, California, May, 1991.

(Gupta 88] Gupta, R. Debugging code reorganized by a trace scheduling compiler. Karta-
shev, L.P. and Kartashev, S.L.(editors), Supercomputing '88. International
Supercomputing Institute, Inc., 1988.

(Gupta 921 Gupta, M. and Banerjee, P. Demonstration of automatic data partitioning tech-
niques for parallelizing compilers on multicomputers. IEEE Transactions on
Parallel and Distributed Systems. 3(2): 179-193, March, 1992.

[Heath 91] Heath, M.T. and Etheridge, J.A. Visualizing the performance of parallel pro-
grams. IEEE Software. 8(5):29-39, September, 1991.

[Hennessy 82] Hennessy, J. L. Symbolic Debugging of Optimized Code. ACM Transactions on
Programming Languages and Systems. 4(3):323-344, July, 1982.

[Jefferson 85] Jefferson, D. Virtual Time. ACM Transactions on Programming Languages and
Systems. 7(3):404-425, July, 1985.

[Jefferson 87] Jefferson, D. and others. Distributed Simulation and the Time Warp Operating
System. Technical Report TR CSD-870042, Department of Computer Science,
UCLA, 1987.

[Knobe 90] Knobe, K. and Lukas, J., and Steele, G. Data Optimization: Allocation of Arrays
to Reduce Communication of SIMD Machines. Journal of Parallel. d Distrib-
uted Computing. 8102-118, February, 1990.

[Leblanc 87] LeBlanc, T. J. and Mellor-Crummey, J. M. Debugginf Varallel Programs with
Instant Replay. IEEE Transactions on Computers. C-36(4):471-482, April,
1987.

[Li 91] Li, J. and Chen, M. The data alignment phase in compiling programs for distrib-
uted-memory machines. Journal of Parallel and distributed computing.
13(2):213-221, October, 1991.

(Mehrotra 90] Mehrotra, P. and Van Rosendale, 1. Programming distributed memory architec-
tures using Kali. Technical Report ICASE Report No. 90-69, Institute for Com-
puter Application in Science and Engineering, October, 1990.

SOUACE LEVEL DEBUGGING OF AUTOMATICALLY PARALLEUZD CODE 127

(Miller 88] Miller, B.P. and ChoL J.-D. A mechanism for efficient debugging of parallel
programs. S1GPLAN '88 Conference on Programming Language Design and
Implementation, pages 22-24. ACM, Atlanta, GA, June, 1988.

[Netzer 911 Netzer, RI.. and Miller, B.P. Improving the accuracy of data race detection.
Third ACM S1GPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, pages 21-24. ACM, Williamsburg, VA, July, 1991.

(Padua 86] Padua, D. and Wolfe, M. Advanced Compiler Optimizations for Supercomput-
ers. Communications of the ACM. 29(29):1184-1200, December, 1986.

[Pan 88] Pan, D.Z. and Linton, M.A. Supporting reverse execution of parallel programs.
Workshop on Parallel and Distributed Debugging, pages 124-9. ACM, 1988.

[Pineo 91] Pineo, P. P. and Soffa, M. L Debugging parallelized code using liberation tech-
niques. Proceedings of the ACMIONR Workshop on Parallel and Distributed
Debugging, pages 108-119. Santa Cruz, California, May, 1991.

[Poly 89] Polychronopoulos, C.D., Girkar, M., Haghighat, M.R, Lee, C.L., Leung, B.,
and Schouten, D. Parafrase-2: an environment for parallelizing, partitioning,
synchronizing, and scheduling programs on multiprocessors. International
Journal 7•f igh Speed Computing. 1(1):45-72, May, 1989.

[Ribas 90] Ribas, H. B. Automatic Generation of Systolic Programs from Nested Loops.

PhD thesis, Carnegie Mellon University, June, 1990.

[Steele 84] Steele Jr. G.L. Common Lap. Digital Press, 1984.

[Stevens 90] Stevens, K.G., Jr. and Sykora, R. The Cray Y-MP: a user's viewpoint. COMP-
CON Spring '90, pages 12-15. IEEE, San Francisco, CA, February, 1990.

[Sussman 91] Sussman, Alan. Model-Driven Mapping of Computation onto Distributed Mem-
ory Parallel Computers. PhD thesis, Carnegie Mellon University, September,
1991.

[Tolmach 91] Tolmach, A.P. and Appel, A.W. Debuggable Concurrency Extensions for Stan-
dard ML Proceedings of the ACM/ONR Workshop on Parallel and Distributed
Debugging, pages 120-131. ACM, Santa Cruz, California, May, 1991.

[Tseng 89] Tseng, P. S. A Parallelizing Compilerfor Distributed Memory Parallel Comput-
ers. PhD thesis, Carnegie Mellon University, May, 1939.

[Wang 90] Wang, J.-Z. Debugging parallel programs by trace analysis. Technical Report
UCSC-CRL-90-11, Computer Research Laboratory, University of California,
Santa Cruz, March, 1990.

SO1CE LEVEL OMEWuIMN OF AUTDOMTCALLY PARALMLRLD CODE

[Wumen 78] Warren, H.S. and Schlaeppi, H.P. Design of the FDS interactive debugging sys-
temn. Technical Report RC7214, IBM Research Report, July, 1978.

[Wholey 91] Wholey, S. Automatic data mapping for distributed-memory parallel comput-
ers. PhD thesis, Carnegie Mellon University. School of Computer Science,
1991.

[Zellweger 84] Zellweger, P. T. Interactive Source-Level Debugging of Optimized Programs.
PhD thesis, University of California at Berkeley, May, 1984.

[Zenik 91] Zernik, D. and Rudolph, L. Animating work and time for debugging parallel
programs - foundation and experience. Proceedings of the ACM1ONR Workshop
on Parallel and Distributed Debugging, pages 46-56. ACM, Santa Cruz, Cali-
fornia, May, 1991.

$

SOURE LVEL CEDUGGING OF: AUtOIMA•CLY PAALLEu D C vg}{OD 129l

