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Preface

This DKMS Technology Impact Report (Contract Data Requirements List, Sequence
Number 10) presents the key concepts of DKMS and its major components as they impact
current design technology. The rules and underlying concepts of DKMS and its five major
components are outlined in this report. The five components are:

1. Integration Platform,

2. Shar4d-Based Design Knowledge Representation and Reasoning,

3. High Productivity Computer-Aided Design,

4. Container Object System, and

5. Model Development Support Environment.

Each section presents a technology overview of one of these components, including its
functionality, key concepts, and motivation as they relate to the overall DKMS strategy. A
final subsection for each component summarizes its contribution to DKMS or its impact on
current or future technology.

vii



1.0 DKMS Overview

Henry Ford established a collection of inventions, architectural exhibits, and common

devices that the average person might consider eccentricity in the extreme. However, what

is now known as the Henry Ford museum might better be considered the first serious

attempt to assemble a large technology knowledge base. This facility provided designers,

product engineers, and manufacturing engineers with an environment in which they could

browse design evolution across a wide variety of innovations. The essence of DKMS for

concurrent engineering (CE) is a modern version of this concept. It includes a processable

representation of what it means to design (Design Ontology), a design rule base of stable

design rules (Design Base), and a repository for design objects (1).

•DOCU-UEqTATION Ontology Database: a processable
( representation of what it means to design

G Design Rule Base: stable rules of how
to design

•DODBMS

Design Object Database Management
System: a repository for previous
designs

Figure 1. Design Knowledge Management Architecture

The key integration philosophy applied in DKMS is that infoT-.ation that flows between

different activities (opportunities for concurrent integration) in the product life cycle is made

possible by constraints or relations between these different activities. DKMS focuses on

overall system problems rather than individual ones. This focus differs from general
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efforts in knowledge-asset management systems in that it attempts to blend or merge

existing computer-integrated manufacturing (CIM) capabilities.

1.1 DKMS Motivation

In the 1970s and early 1980s, a crisis was recognized in the United States: The growth rate

of industrial productivity and the quality of American-made products were slipping. This

gave rise to increased investment in automation and modernization of manufacturing

equipment, facilities, systems, organizations, and labor management. In the late 1980s, the

focus shifted to problems in the worldwide competitive position. This forced the U.S. to

acknowledge that many of the previous problems were actually symptoms of deep-rooted

issues that encompassed the entire corporation--from marketing and finance through

research, engineering, manufacturing, and field support. The following are among the key

issues contributing to the erosion of the worldwide competitive position of the United

States:

1. long lead-times to take a concept to rate production,

2. ineffective technology transfer,

3. lack of a total systematic approach to quality management,

4. retiring or otherwise lost knowledge base, and

5. high rates of change in the product definition.

In short, DKMS is part of the answer to the questions, "Why does it take so long to

design/engineer/produce a product? Why are so many past mistakes repeated? Why are we

always the last to use the new ideas and technology produced by our own research

laboratories?" DKMS focuses on the problems associated with acquisition, management,

and effective delivery of engineering knowledge, experience, and rationale. This life-cycle

engineering knowledge must be marshaled to achieve the CE and total quality management

goals.



1.2 DKMS Impact on Technology

Design knowledge management is distinguished from general efforts in knowledge-asset

management and attempts to merge existing CIM capabilities by:

1. its focus on engineering knowledge,

2. its heterogeneous form and the distributed nature of such an
engineering knowledge base,

3. its focus on shape as the primary indexing and organization
mechanism of such engineering knowledge, and

4. its need for consideration of knowledge acquisition, application, and
evolution as well as storage and retrieval.

The prototype DKMS being built was designed from the start to handle 1) life-cycle

engineering knowledge representation, 2) design knowledge acquisition support, 3) design

knowledge storage, 4) design knowledge retrieval, and 5) design knowledge and

information integration services. Many attempts at CIM and CE have failed because the

capability to evolve (systems and data) was not a design goal or cbjective but merely an

afterthought.

The core of DKMS consists of a container object representation that facilitates the evolution

of life-cycle artifact definitions and the flow of information between different life-cycle

activities concerning the life-cycle artifacts. Evolution is facilitated by using a service-

based integration platform as a transport layer. Knowledge representation is populated

using shape-based knowledge acquisition and reasoning module interfaces in addition to an

engineering model development support module. The display and modeling capabilities are

supported by an open geometry toolbox that includes geometric data format translators,

surface translators, a generalized constructive solid geometry (GCSG) engine, and form

feature geometry input interfaces to allow rapid construction of geometric integration

services. The toolbox is also used by the shape-based knowledge acquisition module to

capture shape-based design knowledge.

DKMS research appears to have predicted the current software panacea of client-server-

type applications. The trend is to build small manageable modules that are easily and

cheaply integrated into a tools framework that satisfies individual requirements rather than

the monolithic software monsters with the "do-all" mentality of yesteryear. Almost every
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major player in the software market, as well as some hardware manufacturers, is touting a

software architecture to integrate applications and data. The major drawback is that most of

these attempts must design, engineer, and build these applications from scratch using this

new technology. However, DKMS proposes an architecture that integrates existing legacy

applications and data into an integrated homogeneous access format. While this level of
integration can vary widely within DKMS, it is essential that DKMS offer an inexpensive

and less risky way to experiment with CE by providing a legacy application integration

path.

By the final stages of Piase II, the project expectations, results, and technologies greatly

exceeded initial expectations. Not only were the required deliverables completed on time

and on budget, but additional materials that contribute to the overall DKMS project were

produced. These accomplishments include the following.

1. Detailed design documents were completed, including software
requirements specifications documents and user manuals for DKMS
and all its subsystems.

2. The major DKMS components were manufactured, engineered, and
unit-tested.

3. Beta-test information was gathered from as many sources as possihle
using numerous collection methods to maximize potential benefits.

4. Some key subsystems and technologies were integrated into other
environments and projects to further their utilization and continue their
development and refinement.

5. A marketing direction and interest group was developed for some key
DKMS subsystems and technologies.

There were also many potential pitfalls and barriers that have been managed during the
Phase II development, including the following.

1. DKMS compatibility with the evolving standards was maintained.

2. In-depth knowledge of government and private initiatives in
integration schemes and mechanisms was maintained.

3. The difficulty and apparent apprehension of integrating and testing
systems in-situ with "legacy" production systems were addressed.

4. The relative newness and acceptance of CE concepts were addressed.
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5. A project with the scope of DKMS requires an enterprise-wide
cooperational effort that would require inter- and intracompany-wide
planning and implementation-a multi-year effort.

6. While design is "generic," each company, site, or department has
different cultures, philosophies, methodologies, and tools; thus, a true
directed and meaningful beta test is virtually impossible within the
given time frame.

7. Some DKMS technologies are quite diverse and forward-thinking.
Evaluation tasks typically require extensive training.



2.0 Integration Platform (IP) Overview

Under the philosophy, the integration of engineering applications is viewed as an

opportunity to provide greater function to the environment by supplying new services and

resources. If protocols and interfaces can be defined that allow other tools to take

advantage of the functionality provided by the new applications, powerful integrated

environments for system or product development ý-ould result. rhis service and resource-

based approach is directed toward making such environmeiits possible. With a service-

based approach to information integration, an application simply advertises the services it

will provide and their invocation procedures. In essence, the advertisements define

external interfaces that allow other tools or users to take advantage of the functionality

provided by the new application. IP provides the support necessary to organize and

maintain these interface definitions as well as to route the integration service requests.

2.1 IP Motivation

Despite today's open systems with a plethora of available standards, application and data

integration standards are not being addressed. Rather than focusing on the construction of

an "integrated system," the services-based app, -ch to information integration focuses on

the "integration services" that the IP and functional applications will provide. In previous

approaches, the burden was assumed to be on the platform to provide the integration

support desired (1,2,3). This traditional approach has severe problems. One problem is

the need to define comprehensive standards in advance and build applications that meet

these standards. This presumes that an organization can foresee 1) the integration services

that will be required, and 2) the relative demands for those services. Presuming that the

former could be predicted but the latter could not be determined, the trad-tional integration

approaches force a leveling of integration support across all needs. This implies a massive

overhaul of existing legacy systems and unjustifiable modifications by vendors of existing

systems to achieve even minimal integration support.

The flexibility of the information integration mechanism is important when considering the

overall CE process. Previous integration efforts have focused on a particular domain and
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the way elements within that domain interact (4,5). This vertical integration, while

important and useful, does not address the way that various domains (e.g., marketing,

manufacturing, design) interact.

2.2 IP Impact on Technology

The IP is designed to be a distributed, heterogeneous environment for the integration of
software applications and management of design process artifacts. IP operation revolves

around the generation, management, and execution of service plans. The main concept in

the integration services approach is the "service." A "service" is a functional unit that
performs a service for a requesting agent (software module or user). Normally, services

are operations that integrate two or more existing computer-aided design (CAD), computer-

aided engineering (CAE), or computer-aided m~mufacturing (CAM) tools, though this is

not a requirement.

Service advertisements describe sets of service protocols that have been defined between

different classes of data formats. Each service advertisement bridges two format classes
and captures all operations that can occur between the two format classes. When the IP

attempts to generate a plan, it scans the list of service advertisements to determine if there is

a path from the source format class to the destination format class. If a path is found, the

Integration Services Manager (ISM) examines the service protocols associated with the

service advertisement to determine which service to invoke.

Service contracts define the information necessary to execute a service. These contracts

specify to the ISM what information must be collected to invoke the utility and how to a

perform the invocation once the information is collected. These service contracts represent

actual executable utilities and organize information about these utilities into four units of
information: the utility, the argument specifications, the data specifications, and the

invocation structure.

However, a representation for the registration of services, is not enough. The IP must

have a strategy or plan for manipulating these service representations. A service plan is

simply a sequence of operations that, when performed, provide the requested service. A
service plan can exist as a functional or executable plan. The functional plan is a sequence

of service identifiers that provide the requested service. It is independent of any hardware

7



or software implementation details. True "planning" occurs in the generation of the

functional plan where the object is to find a sequence of services that will provide the
requested service. This process is accomplished by examining the service advertisements

and protocols. An executable plan, produced only when a functional plan is generated

successfully, is a sequence of machine operations derived from the service contracts that

will actually be executed to provide the requested service.

Operationally, every machine that is part of the IP will have an implementation of the ISM

running. Each ISM will have access to information about all available services and the

ability to interpret service requests, build executable service plans based on those requests,

execute the service plans, and, finally, collect and return the results of the service plans.

Figure 2 shows the operation of the ISM and the interaction of key ISM components. The

key components include the service registration tool, the plan builder, the plan

executor/monitor, and the message decoder/encoder.

73 E
Service c Build/Retrieve Execute/Monitor n Service

Request o Service Plan Plan Execution c Result
f -d t -Y - '- - - .. d "

PlanlService Register New
Repository Service Service-

Figure 2. Operation of the Integration Services Manager

The Design Object Manager (DOM) is responsible for managing design artifacts; thus, the

DOM provides functionality for registering data artifacts in the repository and maintaining

8
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Following this simple analogy, design artifacts managed by the DOM can be checked out

by users; however, these artifacts must first be catalogued. During the cataloging process,
the DOM analyzes the version and configuration management constraints of the artifacts to

determine if any configuration management operations are required.

The Integration Services approach to integration provides considerable room for flexibility.
As new tools become available, they can be loaded directly onto the IP. If these tools are to

be integrated into the development process, their integration services are registered with the

ISM. Once this has been accomplished, the tool is completely integrated into the

development environment.

The Integration Services approach, a powerful--yet flexible--means of integrating systems,

focuses on the advertisement and execution of integration services provided by tools. The

approach is aimed at using a standard protocol for interfacing and invoking tools to provide

an environment that will effectively integrate legacy tools from many different vendors.

Although this approach was defined to integrate systems in a CE environment, applying its

concepts to software engineering can be as beneficial to software development as it is to

engineering.



3.0 Shape-Based Design Knowledge Representation
and Reasoning (SBDKRR) Overview

The SBDKRR component of DKMS provides the capability to represent and reason about

design knowledge that contains arbitrary geometric structures (generalized structures). The

SBDKRR system can represent multiple compatible descriptions of part geometry through

a mechanism known as a frame of reference. The frame of reference is the mapping-to-

reality definition perceived by the agent or individual interacting with the part and the

constraints to which the agent or individual is attuned relative to the part and its perceived

environment. The frame of reference includes a granularity specification, a directional

system, and a set of spatial prepositions. The granularity specification defines how the

agent perceives the part (i.e., resolution, dimensions, etc.) and consists primarily of

mapping functions such as equality, adjacency, and containment; in other words, the

meaning of adjacency and equality in this agent's view of the world. The directional

system defines data that is used by the agent as reference points. The spatial prepositions

consist of the name and definition concepts (such as between, top, below, and on) that the

individual may use to describe the arrangement of geometric primitives perceived in the

frame of reference. The reasoning strategy employed by the SBDKRR module consists of

the following three phases:

1. a recognition process that extracts elementary geometric patterns from
the product definition,

2. a prototype matcher that assigns prototypes to the geometric patterns,
and

3. an interpretation phase in which the implications of the prototypes are
generated.

3.1 SBDKRR Motivation

The part representation used by conventional CAD systems (including solid modeling) is

incomplete in terms of the semantic and qualitative part descriptions needed for CE (6).

However, for effective CE applications, one would like to identify problem areas in a
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design and provide recommendations interactively during the design creation process (7).
This problem of impoverished part representation has inhibiting effects on the cost-efficient

application of CAE. For example, a hole will be represented as a cylindrical face connected

to the faces around it in a solid modeler. This representation is not suitable for grid
refinement algorithms used in finite element analysis (FEA) that need to know that the hole

is a stress raiser and, consequently, needs a finer mesh. Also, the representation does not
show that the cylinder represents a hole that may be mapped by a process planning system

to drilling, reaming, or boring operations; or that the hole presents problems to

manufacturing because of the way it interacts with other features.

3.2 SBDKRR Impact on Technology

A key issue in shape-based knowledge representation architecture is whether the

representation should be incorporated into or maintained external to the CAD system. The
choice of strategy hinges on the available CAD system. In the literature, both strategies

have been attempted; the choice of strategy should depend on the complexity of the

knowledge stored. Clearly, for parametric-dimension-driven design systems and single-

abstraction spatial reasoners, it would be better to integrate the representation into the CAD

system. However, for large, complex knowledge bases, it is advantageous to separate the
representation from the CAD system to improve maintainability and allow for its

applicabil'ty with multiple CAD systems. Without exception, the external-shape

representation strategy was employed where the available CAD system was either closed or
the data structures employed by the CAD system were unsuitable for integrating with a

knowledge representation. The choice here is to: 1) support a variety of CAD systems by

designing a representation that includes geometric and topological relations and Boolean

operations, and 2) build a system that interfaces to CAD systems that have an open

architecture (i.e., an architecture that allows users access to the data structures and
functions of the system). DKMS is unique in providing both a geometric representation

capability and an interfacing method to open-architecture CAD systems. The geometric
representation is supported through a COS-based implementation of SBDKRR concepts.

CAD system integration is accomplished with the services provided by the IP and High

Productivity CAD (HPCAD) Toolkit.

it



The reasoning strategy employed by the SBDKRR module consists of three phases:

1) Recognition, 2) Pattern Matching, and 3) Interpretation. The geometric algorithms

necessary for the Recognition Phase consist of: 1) predicates such as coplanar, intersect,

and convex; 2) derived properties such as area, perimeter, and volume; and

3) constructions such as convex hull, minimum enclosing box, and Boolean operations.

The prototype Matching Phase uses graph algorithms such as articulation, biconnected and

triconnected components, and depth first search (8). To support the Interpretation Phase,

artificial intelligence inferencing algorithms have been modified for use with these

geometric algorithms. These inferencing methods include: abduction (9), truth

maintenance, and constraint propagation (7). The combination of these methods plus the

pattern-matching and shape-recognition SBDKRR components creates a geometric

reasoning capability unique to DKMS.
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4.0 High Productivity Computer-Aided Design
(HPCAD) Overview

One set of services for which the IP was developed is the translation of geometry from one

representation technique or parameterization to another and the translation of geometry from

one data representation to another. The HPCAD Toolkit bridges these representational

discontinuities by providing a convenient means of creating services for translations, and

performing Boolean operations on surfaces that have been created in different modeling

systems and from different parameterizations. The HPCAD Toolkit also facilitates the

creation of customized CAD systems and can be used in a supporting role (such as in a

shape-based reasoning application) in which the Toolkit routines may be used as

predicates.

The Toolkit will support viewing and manipulation of B6zier and NURBS surfaces, solids

via polygonal boundary representations (both winged-triangle and winged-edge

representations), and constructive solid geometry (CSG) as well as hybrid surface/solid

representations using GCSG. Solids may be modified using Euler operators and CSG.

The Toolkit will support the algebraic (exact) translation between parametric and

approximate translations. It will also directly support data exchange between standard data

formats such as Initial Graphics Exchange Specifications, Data Exchange Format, and

Product Data Exchange.

4.1 HPCAD Motivation

To support design engineers in the rapid development of product specifications and

engineering prototypes, a design environment must:

1. use a solid modeling representation and organization that is
isomorphic to the representations used to perceive and structure the
design situation;

2. support the rapid entry of a design concept or intent into the CAD
system;
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3. intelligently set default dimensions, spatial orientation, and surface
blends;

4. allow inheritance and/or merging of design attributes between parts or
components (e.g., blending, comer radii, etc.);

5. manage and propagate constraints specified in the product needs
analysis or in design goal specifications and enforce those constraints
in the evolving solid models;

6. relate the design attributes and designer rationale to the components of
the evolving product definition;

7. capture, store, and reason about an efficient rep, esentation of the

designer's intent;

8. transparently control the configuration of the design artifacts; and

9. support rapid browsing and modification of the above information
about an evolving design.

Most conventional solid modeling or CAD systems are inadequate for mechanical design

due to the complexity of design modifications, difficulty of manipulation, and lack of
product information (e.g., material properties, surface finish, tolerance, surface condition,

etc.). However, the above requirements have been used as guidelines in the development

of the HPCAD Toolkit.

4.2 HPCAD Impact on Technology

Some of the most significant advances in HPCAD development, with respect to
technology, have been in the GCSG area. A GCSG algorithm has been developed to

support the incorporation of sculptured surfaces (e.g., Bdzier curves and surfaces, B-spline
curves and surfaces, and super quadrics) into a shape/feature-based HPCAD system. The

GCSG algorithm provides the capability to combine definitions of assorted geometric
solids which have been stored in different representations by performing Boolean
operations on the solid objects. For instance, one may want to intersect an object

represented as a polyhedral representation with an object represented as a B-spline

representation. The existence of multiple solid representations can only be partly credited

to the historical use of a variety of CAD packages in engineering/manufacturing enterprises.
The variety of representations can also be credited to the greater efficiency or effectiveness
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of certain representations for specific purposes. Thus, the use of multiple solid
representations is inherent to the engineering process. Consequently, an open toolbox of

geometric routines is needed to translate geometry between applications and perform mixed

representation Boolean operations on solids and surfaces. The emerging HPCAD Toolkit

components will fill this need. Also inherent within the engineering process is the need for

design evolution capabilities. Current solid modeling environments make this evolution
difficult because of their limitations with respect to reversibility. The HPCAD Euler-based

CSG provides a solid model modification and editing capability not currently available in

systems other than the DKMS.
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5.0 Container Object System (COS) Overview

The primary impetus behind the COS design and implementation is the overwhelming need

for a design knowledge representation that can support the CE design process. This

research is based on the observation that for any design knowledge representation scheme

to be appropriate for CE applications, it must satisfy the following criteria:

1. be able to express CE types of design knowledge,

2. allow simultaneous modification of various design components, and

3. promote product design evolution.

Except for the DKMS COS, no existing representation satisfies all these requirements. The

working hypothesis is that a knowledge representation scheme will adequately support

product design evolution if its representational constructs are defeasible (i.e., they allow

dynamic reorganization of descriptive knowledge).

5.1 COS Motivation

The CE paradigm places great demands on any candidate design knowledge representation

scheme. In particular, three issues must be addressed. First, this scheme must be

powerful enough to express the concepts within a design domain, such as geometric,

temporal, and hierarchical information. Second, it must not force its implementation to

inhibit the simultaneous utilization and modification of system and subsystem designs by

different users. Furthermore, in any useful implementation, the effects of any updates

must be computable and available to those designing the affected components. Third,

perhaps the most subtle demand CE places on knowledge representation schemes is that

they must allow product descriptions to evolve naturally over time. Without this capability,

product design cannot be easily and efficiently modified and updated as the design process

progresses.

Many proposed knowledge-representation schemes have suffered from an inability to

support product-design-data evolution. The source of this shortcoming is that
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representations of descriptive knowledge are almost always based on rigid structures which

are not amenable to continual reorganization. This rigidity prohibits the evolution of object

descriptions, since the elements necessary to describe the final product usually are not

known at the beginning of the design process. Unfortunately, nearly all current

representation schemes suffer from this problem.

5.2 COS Impact on Technology

The core of DKMS consists of an object representation that facilitates the evolution of the

definition of life-cycle artifacts and the flow of information between different life-cycle

activities concerning the life-cycle artifacts. COS permeates nearly every DKMS

component based on the common need to store, retrieve, and modify "container objects."

The name "container object" derives from a basic assumption about how a modeled entity

should be represented. The view of the container-object-based representation agrees with

the traditional view of objects in that all descriptive information regarding a real-world

entity should be considered state information which is local to the stored representation of

that entity (10). Unlike the rigid descriptors used by traditional object systems, a
"container object" is one in which the stored representation simply contais all the

information describing its real-world entity; very little structure is assumed.

The rigidity of traditional object systems stems, in part, from the assumption that the

existence of an object depends on its description. There is usually not a convenient or

natural way for the designer to tell the system, "I know that we need an engine, but I

haven't decided on the type of engine yet, so I do not know what characteristics it will

have."

In the Container Object Paradigm, the separation of existential knowledge from descriptive

knowledge makes this possible. The descriptive knowledge associated with a container

object is represented much like the descriptive knowledge in other object representations;

existential knowledge is captured by a nonqualitative characteristic property, unique to that
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object, called the haecceity.1 By distinguishing between object haecceity and description,

a container object representation allows the programmer to declare the existence of objects

without describing them.

Philosophers have noted that existence of an object per se should be distinguished from the
collection of descriptive properties it exemplifies. Linguistically, this translates into the

previously discussed idea that the declaration of the existence of an object should be
separate from its description. To capture this idea, the container object representation has a
statement to declare existence, and others to add and delete descriptions (perspectives).

Whereas haecceity is the basis for representing existential knowledge about container

objects, the basis for representing descriptive knowledge is a data organization structure

called a perspective.2 A perspective, p, may be visualized simply as a set of essential
properties which an object having that perspective must possess. That is, a perspective is

used to describe some real-world concept by enumerating all and only those properties
which convey the essence of the real-world concept. A simple example might be described

as follows.

A person can be described by many essential attributes, such as sex, race, mother's name,

father's name, etc. Therefore, a model of an actual person could be described by a person
perspective having some or all of those attributes. Then, in the model, if an object, o, has

(or is given) the perspective person, o must possess those properties tl at d'-fine the person

perspective. Therefore, if person contains a property race, then o should possess an
attribute called race which should also be associated with some value.

The difference between a perspective and a regular class is that perspective description

information can be dynamically added to or removed from a container object description.

t The term "haecceity" (pronounced "heck-say¢-it-ee") derives from medieval philosophy,

especially the Schoolman Duns Scotus, and has been revived in recent developments in thc

philosophical issues surrounding modality and modal logic. See, e.g., (11).

2 The term perspective comes from the KRL paper (12). However, the definition used

here is substantially different than the one used in the KRL paper.
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Thus, a container object is not necessarily given a particular data type (e.g., an item that

starts as a toaster may evolve to an automobile). Therefore, the COS supports the subtle

CE demand for supporting the natural evolution of product descriptions over time. This

dynamic reorganization of descriptive knowledge gives the COS a major technical

advantage over current representation systems.

19



6.0 Model Developm it Support Environment
(MDSE) Overview

The MDSE component of DKMS is a method for the computer-assisted development of

computer models. MDSE is a system for the creation, maintenance, and modification of

engineering models and their numerically oriented software implementations. It combines

several mature technologies, such as computer algebra, constraint management,

dimensional analysis, object-oriented databases, automated-code generation, and

automated-documentation generation.

6.1 MDSE Motivation

The management of design knowledge involves support for the creation and maintenance of

engineering models that are often no more than FORTRAN subroutines. By the time a

piece of engineering analysis software is in use, it is often obsolete. The state of the art in

the product technology and associated modeling techniques changes so quickly that it is

difficult to keep software up-to-date. Clearly, basing design decisions on models that have

become outmoded is a mistake.

6.2 MDSE Impact on Technology

MDSE emphasizes the separation of knowledge acquisition and model development.

Mathematical equations used for analysis in a field are broken into two separate

components: the state variables representing physical properties and the equations
representing relationships and correspondences (Figure 3). Reuse of engineering modeling

knowledge and accuracy of the associated model implementation software is improved

because of this separation. Accumulation of engineering modeling rationale and knowledge
is simplified to make the system as unobtrusive as possible.

20



Relationship
Relationship and . j Physical Property
Description -ia- Physical IDescription

Property
Analysis 7

Relationships Physical
Properties

Intelligent Database SRetrieval C om ponents

Model M Model Models &
Verification Generation Programs

Utilities

Software
Genera t ion

Figure 3. MDSE Architecture

21



Both relationships and physical properties are arranged in a hierarchy, and the default

values of each are inherited. This reduces the effort required to enter information. Further,

locating a relationship or physical property is simplified because of the logical structuring

enforced by the hierarchy. This structure allows the modeler easy access to similar

relationships. If the modeler felt that the uncertainty inherent in this empirical relationship

were too large, he or she could simply move up the hierarchy to a level with the correct

generic relationship, then look at other, more specific relationships which have lower

uncertainty.

A new model definition consists of: 1) defining a program, 2) selecting a set of

relationships and physical properties for that program, 3) mapping the physical properties

to the variables in the relationships, and 4) selecting the physical properties that will be
known at the time the model will be run. With this definition, constraint management can

be applied to find the potential sequences in which the equations can be solved. These

sequences may vary in the number of sets of simultaneous equations and the size of those

sets. These factors may make one solution sequence preferable to another; therefore, the

sequences are presented to the user for perusal.

Traditional engineering analytical modeling support has focused on either domain-specific
"customized" modelers (e.g., an automotive cooling system modeler) or generalized

mathematical-equation solving packages. Domain-specific modelers suffer from

traditionally high development and maintenance costs as well as a lack of reusable modeling
knowledge and code. At the other end of the spectrum are the prepackaged, generalized,

mathematical-solver software packages which, while less expensive to implement, provide

little or no support for the actual engineering model development process. MDSE bridges

the gap between the reusability and flexibility of the mathematical packages and the

modeling power of domain-specific modelers.
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7.0 Conclusions

The successful application of design knowledge management will provide a massive

improvement over any currently available design automation concept. DKMS technology
will provide support for design engineers to better integrate the trade-off of various design
attributes such as performance, cost, schedule manufacturability, and supportability. An

order of magnitude reduction in redesign and engineering change requests can be realized

by supporting the knowledge-based delivery of manufacturing and maintenance experience

to the initial product designers. Finally, DKMS will be useful in many areas other than
product design because of the integration and HPCAD support it offers. For example, in
manufacturing planning and production planning, access to the design rationale and design

knowledge bases will allow automation of a number of these manufacturing engineering
activities and significantly reduce quality and reliability problems in the final product.

DKMS will also promote better university/industry/government ties in that it would provide
a direct vehicle for moving design, manufacturing, and field experience into the classroom.
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