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SUMMARY

This final report documents a 3-D computational and experimental investigation into

the mechanics of toughening a brittle matrix by incorporating long brittle fibers.

Computationally, small scale failure mechanisms ahead of a crack are explicitly modeled

and merged with a continuum representation of the far field outside the process zone.

Particular attention is given to the interfacial decohesion and frictional slipping near the tip

of a matrix crack which is impinging upon an inclusion. The surface integral and finite

element (SIFEH) method, which employs the principle of superposition to combine the

best features of two powerful numerical techniques, provides an extremely flexible and

efficient computational platform for modeling linear elastic fractures near material

inhomogeneities. Applications to general 3-D fracture growth in multimaterial media

demonstrate the capabilities of the computational technique and are also described. The

computational simulation is being guided by laboratory experiments. Crack growth

observations made on a model (micro-) structure comprising a glass rod embedded in a

cement matrix show the toughening mechanisms of crack pinning and crack bridging in

operation. In a second experiment, interfacial slip evolution was modeled experimentally

for planar bimaterial interfaces. This combined experimental and numerical program has

provided insight into optimal combinations of the key parameters (e.g. residual stresses at

interface, friction coefficient, strength of fibers) to maximize toughness.

This report summarizes accomplishments acheived with support of Air Force grant

AFOSR-89-0005 and contract F49620-92-J-0220.



INTRODUCTION

The key episode in the fracture of a ceramic matrix/ceramic fiber composite is the

"interaction that takes place between an advancing crack front and the fiber-matrix interface

of individual fibers. A "strong" interface will transmit high crack tip stresses inducing
premature fracture of the fibers, while a "weak" interface will blunt the crack tip and allow

the fracture to proceed past intact fibers. The 2-D analysis by He and HutchinsonI gives

the design "rule of thumb" that the fracture toughness of the interface should be less than
one-quarter of the toughness of the fiber to promote favorable toughening mechanisms

such as bridging and pull-out. However, a completely "weak" interface will not generate

the desirable friction tractions to shield the crack tip. An optimum therefore exists with

regard to toughness of the material and physical properties, including interfacial bond,

toughness, and friction characteristics.

Recent investigations, while providing insight to these toughening mechanisms, are
restricted in their applicability by simplifying assumptions whose impact is often difficult to

assess. A number of 2-D analyses have been carried out for cracks near sliding and

bonding interfaces, 1-3 some of these in the context of fibrous inclusions.4 -8 Axisymmetric
models which account for frictional tractions on the interface have also oeen developed 9' 10

for the special case of a single fiber that is completely engulfed by a fracture. Other work

has examined crack pinning by bonded cylindrical inclusions. 11,12

This summary report outlines a combined computational and experimental

investigation aimed at providing a complete fracture mechanics analysis of a crack growing
near a fiber and interacting with the evolving frictional sliding zone at the interface (see
Figure 1). An innovative numerical scheme, the surface integral and finite element hybrid

(SIFEH) method, has been developed to obtain results for cracks near and/or crossing

multiple bimaterial interfaces. The basis and implementation of this technique is outlined.

In addition, novel experimental tools are being employed to verify the computational

solutions and are discussed. Finally, the application of these tools to the mechanisms of

fracture in brittle composite materials are presented. Aocession For
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DESCRIPTION OF COMPUTATIONAL APPROACH

Modeling Requirements:

Until very recently, the direct numerical modeling of the situation depicted in Figure

1 would have been viewed as impractical. The most common tool available, finite

elements, was known to require an extraordinary number of degrees of freedom to capture

the stress singularity along the crack periphery, a situation that was made all the more

untenable by the need to globally remesh after each time step. Thus an alternate approach

was sought.

In formulating the numerical procedure presented here, we have kept in mind that a

suitable computational approach should not only possess sufficient generality to address the

problem of Figure 1, but it should also meet the following efficiency and accuracy

requirements:

Accurate Stress Intensity Factors: The difficulty in modeling a fracture lies in being

able to accurately represent the singularity in stress along the continuous crack front. The

accuracy is usually assessed in terms of the stress intensity factor, which serves both as a

measure of the strength of the singularity and as a criterion for crack growth. It is typically

desirable to maintain the error in stress intensity factor at less than a few percent because of

the error amplification associated with some crack growth laws, especially in metal fatigue.

Effective Modeling of Crack Propagation: This is achieved by keeping the total

number of degrees of freedom in the problem to a minimum while providing a facility for

remeshing the element topology as the crack front advances. The fact that the geometry of

Fig. I may be viewed as consisting of multiple growing fractures (i.e. the approaching

main crack plus an undetermined number of slip zones on the interface) renders many of

the existing numerical techniques impractical for this application.

Accurate Representation of Near-Inteiface Crack Tip Fields: When there remains

but a narrow ligament separating an advancing fracture from a bonded bimaterial interface,

the form of the singularity at the crack tip is known to deviate dramatically from the

homogeneous case. As this is also reflected in the magnitude of the stress intensity factor,

we can expect the interface to have pronounced effect on the fracture growth near bonded



fibers/inclusions. This class of problems is important both as a precursor to the onset of

interfacial slip and to the limiting case of interfacial friction.

Surface Integral Method:

The effectiveness of the surface-integral method at modeling 3-D fractures in

infinite regions is now well established. 13' 14 It is based on representing a fracture as a

distribution of force multipoles (or displacement discontinuities). Superimposing the

differential effects of the constituent multipoles leads to the governing integral equation

below:

s("R) = i y 8(ý) dA(1

where the scalar function s evaluated at i can represent any one of the displacement or

stress components, 8 is the crack opening, E is a material constant relating crack opening to

the equivalent multipole strength, S, is the fracture surface, and y, also known as the

fundamental solution (or influence function), defines the effect on s of a multipole of unit

strength. The influence functions can be found by differentiating the relevant point force

solution in accordance with a Taylor series expansion (for details see Refs. 15,16). Thus

we may note that the range of problems that can be solved by this method is limited by the

availability of the point force solution.

The application of Eq. (1) requires that we first establish the magnitudes of the

crack openings. An approach that works well is to generate a system of equations using

boundary collocation, i.e., the known traction boundary conditions are enforced on the

crack surface at as many points as there are unknown nodal values of crack opening.

However the resulting equations are all singular at i-=• to the degree of being

indeterminable. To bound the integrand, we subtract a singular function which by virtue of

its being physically equivalent to a rigid-body translation, does not alter the equality. The

following singular, but integrable, equation results:

S= ITE Y[( - S dA (2)



a i

where t(x-) refers to the tractions acting on the surface of the fracture and ST spans the entire

crack plane.

The advantages of the surface integral method may be summarized as follows.

First, only the surface of the fracture has to be discretized; this considerably simplifies the

process of remeshing the fracture as it grows. Second, the singularity at the crack tip does

not require special treatment because its essential features are explicitly contained within the

influence functions of the multipole. Third, accurate stress intensity factors can be obtained
using coarse element meshes provided that a p 1/2 variation of crack opening is assumed in

the near-tip region, where p is the perpendicular distance from the crack front.

Surface Integral and Finite Element Hybrid Method:

With the existing library of influence functions being quite limited, the surface

integral method cannot be directly applied to the problem of a fracture near an arbitrarily
shaped region of material inhomogeneity. Thus to retain with such problems the
advantages of a surface integral analysis, it has been combined with the finite element

method using incremental superposition. The resulting hybrid method opens up the
possibility of accounting for a wide range of volume effects, including material

13.17,18 19 .13.20inhomogeneities , thermal effects , and plasticity.

The following derivation of the governing hybrid equations considers the case,

shown in Figure 2, of a fracture which is fully embedded within a region of material
inhomogeneity (referred to here as the subregion). It has been assumed that the only

influence functions available for use are those for a multipole in an infinite, homogeneous

region. It has further been assumed that the interface is sufficiently far away from the crack
front so as not to either alter the form of the crack tip singularity or produce strong coupling

at the interface, where the component methods will be joined.

A solution can be found by superimposing the results of the three models shown in

Figure 2. Model I is an uncracked finite element model of the complete bounded domain.
Model II is a surface integral model of the fracture in an infinite, homogeneous region.
Since the results of Model U are not valid beyond the interface because of the mismatch in

material properties, " is equivalently represented as a finite body being held in equilibrium



by tractions RC. Model III is an uncracked finite element model of the subregion. It has

been introduced to meet the requirement of displacement continuity at the interface. Since

the component models of Figure 2 individually satisfy equilibrium and strain compatibility

within the limits of their respective formulations, all that remains to define the solution is to

enforce both the prescribed boundary conditions and the traction/displacement continuity

across 3. This is accomplished through the application of corrective tractions and

displacements.

Overall traction continuity across 3 is obtained by cancelling the tractions on the

external boundaries of the two subregion models, i.e., models II and HI. This is done by

calculating a pair of nodal load vectors, representing the external traction distributions on

each model, and applying the negative of both vectors to the interface nodes of model I.

Thus the finite element equations for model I will have the standard form but wi.h two

additional load vectors on the right-hand side:

[K]UFEI = {R} - {RCJ - {RSUB} (3)

where [K] is the finite element stiffness matrix for model I, { UFE) is the vector of

unknown finite element nodal displacements, and { R) is the vector of prescribed nodal

loads acting on model I. Defining the correction load vectors: {RC } is a nodal force

approximation of the surface integral tractions acting on 3 and thus may be reexpressed in

terms of crack opening displacement; I RSUB) refers to the nodal support reactions induced

in model IlH by the imposition of nodal displacements (USUB) on the interface:

fRC) = [G]f8}; {RSUBI = [KSUB]{USUB} (4)

where [KsUB] is the finite element stiffness matrix for the subregion.

Displacement discontinuity across !, being already assured in model I, is enforced

by requiring the interface nodes in model M to displace as the negative of displacements

which are computed at the corresponding locations in model II:

{ USUB ) = - IU = -[LINT]{& 8) (5)

thus effectively cancelling the discontinuity in the displacement field introduced in model [I

when we truncated the surface integral domain at l.



The enforcement of traction boundary conditions at the crack surface is based on the

surface integral equations of model HI. Since the fracture has not been explicitly accounted
for in either finite element model (i.e. I or lID, these models will produce nonzero
tractions, (TC) and {TSUB}, at locations coincident with the surface of the fracture. To

cancel these extraneous tractions, they are reversed in sign and applied as additional

boundary conditions in the surface integral formulation:

[C]18} = JT} - {TC - [TSUB} (6)

The evaluation of if I and (TSUB} is based on the equations of those finite elements in

models I and III, respectively, which would contain the fracture if it was to be explicitly

modeled. Since the mesh topologies of finite element models I and III are identical for the

subregion, it follows that:

{TC} = [S]{UF1; {..UBJ = (S]{USUB} (7)

where the same [S] applies to both {T C and {TSUB).

The final step in this derivatior is to rewrite the above expressions as a system of

equations in terms of designated primary variables UFE and 8. Two coupled systems of

equations result when we substitute Eqs. (4) and (5) into (3), and Eqs. (7) and (5) into (6).

When written in partitioned matrix form, they are expressed by:

SG-KtLSUB U )=RL (8)

Thermally-induced strains can be modeled with the SIFEH formulation. Linear,

isotropic thermal effects are computed as correction load vectors and superimposea on the

model presented above.2 1 The resulting coupled system of equations takes the following

form:

K G-KSUBLENr uFE R+RTT (9)
1 S C-SLINT 1(8 I(T-TTH)



where {RTH) and [TTH I represent, respectively, the loading in the finite element model

and on the crack surface due to thermal effects. Both correction load vectors can be

computed using the surface integral and finite element formulations.

One of the key advantages of the hybrid method is that the surface integral model of

the fracture can be set up independently of the finite element model of the surrounding

domain. The implication of this for crack propagation analysis is that only the fracture

surface has to be remeshed as the crack advances through the fixed finite element model

This feature has facilitated the development of a fully automatic remeshing algorithm,

suitable for use on remote supercomputing facilities where interactive inspection of the

crack mesh may not be available. The remeshing strategy is based on first representing the

crack front as a parametric cubic spline and then dividing the fracture surface which it

encloses into two domains: a leading edge region where tip elements assume a p 112

variation of the crack opening, and an interior region where it suffices to employ low-order

interpolation functions to capture the variation in crack opening. In the leading edge region

where the shape and size of the tip element plays such a critical role in determining the

accuracy of the stress intensity factors, heuristics are employed to construct the element

geometries. The interior of the fracture is discretized by first dividing it into nearly convex

subregions using a modified version of the algorithm proposed by Bykat 22 and then

triangulating each subregion in succession using a method of geometric decomposition

developed by Chae .23

DESCRIPTION OF EXPERIMENTAL INVESTIGATION:

The Resource Extraction Laboratory has developed a unique laboratory facility for

the study of fracture growth near material inhomogeneity. Experimental simulation has

supported and directed development of the SIFEH code. The apparatus used in this role

are described in the following sections.

Crack Interaction Apparatus (CIA):

The model system is composed of 1.8 cm diameter glass rods embedded in large

cement cylinders. The specimens are tested in the specially designed crack interaction

apparatus (CIA) shown schematically in Figure 3. The CIA allows independent control of

the axial and radial stresses exerted on the specimen during testing. By internally



pressurizing a precrack cast into the cement, a quasi-static fracture is propagated in the
specimens, perpendicular to or,- or more rods (fibers). Brief deviations from a hydrostatic
stress boundary condition leave small stairstep markings on the fracture surface, thereby

recording the history of an advancing crack as it approaches and bows around the glass

inclusions. Successive stages in crack development can be observed on each of the

resulting halves of a ruptured specimen. By coating the glass rods prior to casting, the

friction coefficients may be controlled and its impact assessed. Figure 4 shows

representative crack growth patterns for high and low friction interfaces.

Interfacial properties for coated glass rods cast in cement are determined

experimentally with push-out tests. Glass rods (fibers) are driven from the surrounding

cylindrical specimens (in a state of hydrostatic compression) using an Instron test
apparatus. Load-displacement histories are then evaluated to determine cohesion and

frictional slip properties.

Interfacial Separation Experiment (ISE):

ISE simulates the growth of the slip zone on a planar interface normal to a

pressurized crack. The apparatus uses transparent materials with variable crack geometries

and interfacial friction coefficients to visually observe interfacial slip between the media.
(see Figures 5,6) Computer mapping of measured interface displacements determines the

shape and size of the evolving zone.

APPLICATIONS:

Crack Growth Near a Planar Bimaterial Interface:

The growth of a pressurized fracture toward a bonded bimaterial interface was

modeled using the previously described surface integral method. The near-interface crack

tip fields are accurately captured by employing the influence functions for a dipole near a

planar bimnaterial interface (see Figures 7,8 and Tables 1,2). These influence functions

explicitly account for the presence of the interface so that only the surface of the fracture

has to be discretized. To obtain the fracture shape shown in Figure 9, points along the

initially circular crack front were incrementally advanced in proportion to the local values of
(KI-KIC) with KIC representing fracture toughness.



Fracture Intersecting Multiple Bimaterial Interfaces:

The surface integral formulation could not be directly applied to model a fracture

intersecting two bimaterial interfaces because the corresponding influence functions were

not available. Superposition of results derived with sets of bimaterial influence functions

and application of appropriate correction loads allows accurate modeling of near-interface

fracture behavior. Results obtained for fractures near two planar bimaterial interfacrs are

presented in Figures 10-14 and Table 3.

Interaction of Multiple 3-D Mixed Mode Fractures:

Toughening brittle materials with second phase brittle fibers involving tailoring

microstructures, material properties, fiber spacing, interfaces, etc. to create an environment

that favors the growth of smaller flaws over the continued growth of some dominant

propagating flaw. Assessing the resulting pseudo-ductility involves the interaction of

multiple fractures. There are relatively few solutions in the literature for mixed-mode

interaction of numerous cracks. The surface integral method accurately replicates thtse

existing solutions, but is not limited to simple geometries or loading. Figure 15 illustrates

the variation in the stress intensity factor with distance between two parallel cracks.

Results correlate well with the solutions in Ref. 26. Similar results are obtained for two

coplanar cracks as shown in Figure 16.

Surface Cracks:

The SIFEH method has proven useful for modeling surface cracks in bounded

domains. The bimaterial influence functions are combined using superposition as shown in

Figure 17. The case of a semi-circular surface crack in a finite-thickness plate under

uniform tension was used to test the approach. This geometry was investigated by Raju

and Newman" using finite element methods and has been verified by subsequent studies.

With minor refinement of the finite element mesh in the region of the surface flaw, the

SIFEH method accurately represented the stress intensity factors along the crack front as

shown in Figures 18 and 19. Similar results were obtained for the case of semi-elliptical

surface crack geometries. The hybrid code used for these analyses can be used without

modification to model near-interface cracks in bounded, bimaterial regions.



Evolution of Frictionally Constrained Interfacial Slip:

The extent to which fibers affect the cracking of a brittle matrix is determined by the

interfacial characteristics; it is therefore important to include the evolution of frictional

sliding at the matrix/fiber interface in the computational models. A Coulomb friction

criterion is employed and the interface is treated as locally sticking or slipping. If the

driving shear at the interface, t;D, is of lower magnitude than the normal compression

multiplied by a constant friction coefficient, OaN , then the shear transmitted across the

crack faces is the driving shear, rD, and the interface is sticking. If the magnitude of driving

shear exceeds the normal compression times the friction coefficient, the shear transmitted

across the fares is g.LN (in the direction of TD) and the interface surfaces slip relative to one

another. Thus, computationally, the shear traction imposed at each point on the crack faces

does not exceed the magnitude of the normal traction multiplied by the friction coefficient_

If the normal traction is tensile (loss of contact) there is no shear traction transmitted across

the open crack. Conditional statements have been incorporated into the computational

methodology to determine which of these conditions, stick, slip, or separation, prevails at

each of the elements. Since we are dealing with slip zones evolving in time it is necessary

to check these criteria at each time step.

Since, however, the shear at the interface is a boundary condition which depends

upon the nature of the solution - specifically the normal stress - the shear magnitude and

orientation lag one iteration behind the rest of the solution. This condition is expressed by:

("+At) (t)(
r = rb fot)w

•Týt = 9.N for (,CF)lta (10

•+At) = 0 for (fG•) < 0

with rtr = frictional shear, tD = driving shear at interface, ji = friction coefficient, aN =

normal compressive traction (i.e. a negative value denotes interfacial tension), and

specifies the time or loading increment. Correspondingly, me governing singular integral

equations are cast in a form which allows the specification of the non-linear traction

boundary condition induced by the frictional interface at each time-step:



Main Crack:

O(s) y(-U)S-,x ) dA + t 8UC (-c) dA Gill)

Sliding Zone:

(Y~X O(X)= Js YN(~XljS) Ss(xs) dA + fJyN'?xC) 8(x-C) dA (12)

'r() ON(X) yTx j i'r's) 8s(x-s) dA + Jy'r(U'C) S(KC) dA (13)

where R denotes the locations of the collocation points, 3c are the spatial coordinates of the

main crack surface, Sc, is are the spatial coordinates of the sliding zone surface, Ss, a are

the prescribed tractions, aN are the normal stresses induced by the displacements and

loading of the main crack and slip zones (see Figure 1), oR are the initial normal stresses at

the interface (e.g. from thermal mismatch at processing), 8 are the opening and sliding

displacements, and 7 are the singular kernels.

The solution methodology satisfies specified traction and displacement boundary

conditions. The interfacial sliding zone is iteratively determined within each time-step of

matrix crack propagation; during each iteration any tendency for reverse sliding or frictional

sticking is checked.

Matrix Fractures Interacting with Fibers:

A parametric study in two-dimensions revealed that the key parameter characterizing

the impact of a nominally compressive frictional interface on matrix crack growth is the
"frictional grab", F" = g(YR/do. This is a measure of the cohesiveness of the interface

based on the nominal, pre-existent compression, ;R. (Refer to Figure 1.) For values of GR

on the order of or greater than the driving stress qo, this nominal compression is dominant

over the component of normal interfacial stress generated by the driving stress. If T'G is too

jow the interfaces offer no resistance to the crack opening near the periphery of small

cracks and the fibers actually attract the matrix fracture. If T'G is too large the fibers will

indeed tend to inhibit the progress of the fracture however the stress concentration in the

fiber will be too severe rupturing the fibers. Models of a matrix crack propagating past a



fiber (a snapshot of one of these sequences is shown in Figure 20) were constructed for

the purpose of moving fractures past frictional interfaces to determine the propensity for

growth and also the longitudinal tension within the fibers.

Figures 21, 22, and 23 each show the successive stages of growth of a long crack

front as it encounters and passes by a fiber for three values of frictional grab which span a

range pertinent to potential brittle composite systems. It is clear from the preceding that

larger frictional grab numbers, with the corresponding restricted local crack openings, lead

to increases in effective matrix toughness. The transition for matrix toughening occurs near

'-4=0.01.

As previously noted, however, the larger the frictional grab, the higher the stress

concentration in the fiber, since load transfer from the matrix occurs over a shorter

distance. Infinite frictional grab (a perfect bond) would imply an infinite stress

concentration, i.e. a stress intensity in the fiber. The resulting increase in propensity for

fiber failure puts a practical limitation on the magnitude of 'FG. The limitation is expressed

here in terms of the longitudinal tensile stresses within the fiber. During the course of the

three simulations shown in the figures, this component of stress was monitored inside the

fiber. In the single fiber model employed, the stresses in the fiber continue to grow without

bound as the crack moves past since there is an ever decreasing area of matrix and only one

fiber to assume the load being shed from the matrix. In a real composite the cracks will, of

course, be of finite extent with additional fibers present to share the burden of the strain

energy released by the advancing crack. Nonetheless, the stresses measured in the

simulations are useful if interpreted in a relative sense. We can determine what percent

increase in the severity of stress accompanies a specified enlargement of the frictional grab

parameter.

From these simulations we can establish the important features of the design

criterion we seek. A reference condition which facilitates comparison of the three is that

point at which the main crack first encounters the fiber. As one might expect for this

configuration, the maximum stress concentration in the fiber occurs at the point nearest the

main crack. (It is noteworthy that the position of maximum stress concentration in the fiber

follows the main crack periphery as it sweeps around the fiber. The magnitude of the

concentration factor increases until the crack engulfs the fiber and then the magnitude



drops. This suggests that the probability of fiber failure peaks when the main crack has

almost enveloped the fiber.)

Figure 24 plots the maximum local stress concentration of the tensile stress aligned

with the fiber axis for the range of frictional grab values discussed previously. Depending

upon the particular fiber, it may be more appropriate to use the stress averaged over a

significant area (e.g. the fiber cross-section in the plane of the main crack) when

considering the likelihood of fiber failure under an experimentally determined maximum
tensile stress. An appropriate oO for use in scaling the fiber failure stress would be the first

matrix cracking strength of the composite. Once the horizontal line indicating fiber failure is

placed on Figure 6 the useful range of "TG can be ascertained and used as a guide for the

manufacture and processing of tough composites.

CONCLUSIONS

Three-dimensional computational and experimental investigations have resulted in

novel tools for the investigation into the toughening mechanisms due to incorporation of

brittle fibers in brittle matrices. Application of the surface integral and finite element hybrid

(SIFEH) method to a wide variety of fracture geometries in bimaterial media have shown

the technique to be a flexible and efficient tool. Incorporation of thermally-induced strains

and interfacial decohesion/frictional slip have further enhanced the capabilities of the

method. When combined with experimental studies, the method developed will help brittle

composite manufacturers tailor the material properties to suit material demands.
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Figure 1. Physical model of a main crack impinging on a fiber-matrix
frictional interface.
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Figure 3. Hydraufic fracturing test apparatus used to grow quasi-static
cracks toward cylindrical inclusions. Independent control of the axial and
radial pressures permits periodic marking of the crack front.
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Figure 4. Representative photographs showing the local influence of a
brittle inclusion on fracture propagation. The two contrast the growth
patterns around a brittle fiber for a "strong" (a) and a "weak" (b) interface.
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Figure 5. Vector plot showing the onset of sliding on a planar interface
ahead of a pressurized circular crack.
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Figure 7. Fracture (under plane strain conditions) approaching a single e
planar bimaterial interface. See Table I for results.

2.0 0.9682 0.686 0.9416 0.717
1.25 0.9202 0.404 0.7887 0.625
1.15 0.9078 0.298 0.7250 1.003
1.10 0.9010 0.278 0.6787 1.693
1.00 0.8841 0.139 0.o21. -

Table 1. Comparison of Cook and Erdogan's28 plane strain solution with
the 3-D surface integral results.

E~ 1 2' V2
C

A BE = 4.45x 10'; vL = 0.35

-- 2a - E 2 = 1.00 x 10 7 ; V, = 0.30

Figure 8. Fracture (under plane strain conditions) intersecting a planar r
bimaterial interface. See Table 2 for results.

c/a ( (% Deviation)A - (% Deviation)3

1.0 0,8840 0.147 '
.75 0.8734 0.000 0.5597 -5.245
.50 0.9124 -0,642 0.7916 -1.395
.25 0.9984 -1.723 0.9524 -1.008
0.0 1.144 -2.97 1.083 -0.923
-. 25 1.378 -4.149 1.194 -0.870
-.50 1.774 -5.203 1.287 -0.946
-.75 2.621 -5.304 1.364 -1.132
-1.0 - - 1.360 0.354

Table 2. Comparison of Erdogan and Biricikoglu's 29 plane strain solution
with the 3-D surface integral results.
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Figure 9. Snapshot from an animation showing the blunting of a fracture as
it reaches a planar bimaterial interface. The fracture lies in the softer
medium.
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Figure 10. Fracture (under plane strain
conditions) approaching two planar
bimaterial interface. See Table 3 for
results.

Fracture I n terffaee

a/h % Deviation

0'.3 1.040 0.970 Figure 11. 1/8 symmetric hybrid modei !d
0.3 1.040 0.570 used with the double interface problem.
0.6 1.156 0.522

0.9 1.611 2.611

Table 3. Comparison of Hilton and Sih's
plane strain solution with the 3-D hybrid
results.

F, 2 L'I Observation Point

Sa h

Figure 12. Elliptical fracture approaching Figure 13. 1/8 symmetric model of the te
two planar bimaterial interfaces. The elliptical fracture in a tri-layered domain. n
fracture has been represented by its
surface integral discretization.
tion.
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Figure 14. Dependence of K, on the value of a/h for a 3-D elliptical fracture
in a tri-layered domain. Results for two different ratios of the elastic moduli
are presented. Values of K, were recorded at the observation point indicated

in Figure 12.
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Figure 15. Variation of Mode I and Mode II stress intensity factors with a
distance between parallel circular cracks.
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Figure 16. Variation in maximum stress intensity factor with distance ance
between coplanar cracks.
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Figure 17. Component geometries used with the hybrid method to model a
surface crack in a bounded domain.
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Figure 18. Specimen geometry and corresponding hybrid model
used in fatigue crack growth study.
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Figure 19. Comparison of SAFE and experimental results for
growth of a surface crack in a thick plate.



Figure 20. Snapshot of a simulation of a matrix crack moving toward and
around a fiber with FG--O. 1



Figure 21. Crack-front profiles for a wide crack propagating past a fiber
with a frictional interface, Fq=0.01. The arrows indicate direction of
propagation.

Figure 22. Crack-front profiles for a wide crack propagating past a fiber
with a frictional interface, FGT=O.1. The arrows indicate direction of
propagation.

4-____-4
Figure 23. Crack-front profiles for a wide crack propagating past a fiber
with a frictional interface, Fg=i .0. The arrows indicate direction of
propagation.
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Figure 24. Design trend for optimal determination of interfacial frictional
grab. The maximum local stress concentration in the fiber is presented as a
function of Grab for a single fiber in the reference state. The shaded region
denotes values at which matrix toughening will not occur and at which there
is no prospect for arresting small cracks.


