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Magnetized toroidal rings are much used in permanent magnet beam-focusing structures
in electron tubes. In the design of such structures it would be useful to know the
axial field profiles of many rings of different aspect ratio. This study describes
comouter compilation of such profiles for rings that are magnetized in either the
radial or axial directions. Graphs depicting both types of profileg are shown together
with the mathematical procedures used in their generation.
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MAGNETIC RINGS: A CATALOGUE OF FIELD PROFILES

INTRODUCTION

Modern electron tubes often require permanent magnet beam focusing structures that
are composed of stacks of axially and/or radially magnetized toroidal permanent magnets.
Some more complex magnetic arrays can effect field modulations such as the production
or elimination of field gradients, the sharpening of transitions in field strength or the
smoothing of aberrations incurred in manufacture or from peculiarities of design. Both
types of toroidal magnets have proven useful as components of such arrays.

Choice of dimensions and magnetic parameters of permanent magnet toroids is
straight-forward for traveling wave tubes and for the structures of permanent magnet
solenoids, but the choice is not so obvious when structural peculiarities demand a custom
ring.

Accordingly, it was decided to generate a catalogue of both radially and axially
magnetized rings of rectangular cross section. Axial fields for different aspect ratios and
bore diameters were generated by computer and plotted as a function of distance from the
center of one of the flat faces of the ring. From these curves peak fields, peak widths and,
in the case of the radially oriented magnets, peak separations are obtained. These are
then plotted as a function of axial ring width for rings of different outer radius.

AXIALLY MAGNETIZED RING

Figure I shows the cross section of an axially magnetized ring, where a and b are the
inner and outer radii of the ring, and L is its width (width is the axial component and
length is the radial component). The pole charge density o is equal to the magnetization
M and is given by

a=M=BR /4n (1)

where BR is the remanence of the magnetic material used.

The magnetic field H at any point along the axis of the ring is given by

H = If +/H2  (2)

where Hl is the magnetic field from the positive poles and H2 is the magnetic field from an

equivalent negative pole distribution. According to Coulomb's Law, the magnetic field at
any point along the axis of the ring is given by

HI =b 21McosOdp
. r 2(3)
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where dP is the thickness of a circular charge element a distance p away from it its axis and
r is the distance of the pole element from the point on the axis at which the field is
qaculated. The cosine term reflects the contribution from the longitudinal component
alone. The transverse components cmncel. a and b are the maximum and minimum vaiue:s
4f p respetively.

By analogy, a similar expression can be writen for H2, the contribution from the
negatively poled plate, with M replaced by -M.

Summation of H1 and R 2, subsequent to integration, yields

,=,8,/2[,..2 +a 2)-%_X(x 2 +e-Y +(X+ c)(X+C)2 +,b2} _ (X +C){(X+C)2 +a2 1Y]

where x is the distance from a face of the ring to the point at which the field is being
determined.

RADIALLY MAGNETtED RING

Figure 2 shows the cross section of a radially magnetized ring where a, b, and c are the
iaime dimensions stated earlier for the axially magnetized ring. The magnetic field H at any
point along the axis of the ring is a combination of three contributions,

H = Hi+ H2 + H3  (5)

where H1 and H2 are the respective contributions from the positive and negative surface
poles. As before, the surface pole density is calculated with Equation 1, and H, and H2 are
obtained through Equation 3 with M being positive and negative for Hi and H2
respectively. H3 is the contribution from a net volume pole distribution and is given by

J= -A0 . 1 = 0 --'f
pOp p (6)

where r is the volume pole density.

Again, Coulomb's Law yields the field from a positive pole element of width dy, a
4istance x away from the ring along its axis. The contribution H3 from the volume pole is

determined by the insertion of the volume pole density in Coulomb's Law. Integration
•ields

13 =(B,/2)ln[ {b+ (b' +(x-c,')Y }la+(a' +x")•}1

1{a+(42 +(X C)2) }b +(b2+X2)A(7
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where x is measured from one face of the ring.
The total magnetic field H results when the fields due to the surface and volume poles

are added viz.

H= (B,,/2a(a + cx -c) 2 )-• -a(a• + x2)- - b(b + (x -C)) + b(b2 + x2 )-

+n b + (b + (x -c)')A}{a +(a 2 +X2)11(8
{a+(a 2 +(XC)2)ý {b + (b2 + X2)m

CATALOGUE COMPILATION PROCEDURE

RPL routines called AXRING and RADRING, Figures 3 and 4, were written to
generate tables of magnetic fields at regularly spaced intervals along the axis of the rings.
The inner radius of the ring was held at 1.0 cm and remanence of the magnetic material
used was 10 kG. The outer radius of the ring was increased from 1.2 cm to 2.0 cm in steps
of 0.2 cm while the ring width was held constant. The magnetic field profiles for axially
magnetized rings of width 0.1 cm, 0.5 cm, 1.0 cm, 2.0 cm, 4.0 cm and 10.0 cm are shown
in Figures 5 through 10. The field profiles of radially magnetized rings of the same
remanence and the same sequence of physical dimensions were calculated and the results
are shown in Figures 11 through 16.

SUMMARY

A. AXIALLY MAGNETIZED RINGS:

A summary of the catalogue for axially magnetized rings is presented in Figures 17
and 18.

1. As expected, the field is maximum at the center of the ring and for a given ring
thickness, the peak field is greater for larger outer radii.

2. Maximum peak fields were obtained when the ring thickness was equal to the inner

diameter of the ring.

3. For thin rings, i.e. where the width of the ring is less than the inner diameter, the

width of the magnetic field profile is an order of magnitude wider than the width of the ring

itself.

4. For rings of width equal to or greater than the inner diameter of the ring, the peak
width, to zero field, is the same as the ring width.
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5. For rings of width considerably larger than the inner dimeter, the magnetic field is
maximum close to but within the edges of the ring; the field in the interior of the ring is
Aomewhat less than the peak field.

IL 44"ldl.¥MAm ,iITZJ Rl~

A summary of the catalogue for radially magnetized rings is presented in Figures 19

and 20.

1. The field at the center of the ring is zero and increases as the edges are approached.
Again, for a given ring width, the larger the outer radius, the higher the peak field.

2. Peak fields are maximum when the width of the ring is twice the inner diameter,
increasing the ring width beyond this ratio yields diminishing return as far as field strengths

ire concerned.

3. For narrow rings where the width of the ring is less than the inner diameter, the peak
sleparation is up to an order of magnitude higher than the ring width.

4. For ring widths equal to or greater than the inner diameter of the ring, the peak
separation is of the order of the ring width, with the peak close to but outside of the ring
itself.

5. As the rings get much wider than the inner diameter, the fields remain zero in the
interior of the ring along its axis with significant magnetic fields close to the two surfaces.

EXAMPLE OF MAGNETIC RING MODULATION

An application of magnetic field modulation through the use of radially, as well as
kxially, magnetized rings is illustrated in the following example 1. A permanent magnet
field source was designed to provide a constant axial field of 2.0 kOe in the larger of two
chambers and 0.5 kOe in the smaller of the two tandem permanent magnet solenoids as
shown in Figure 21. Figure 22 shows the original bichambered model and its on-axis field
'profile whereas Figure 23 displays the equivalent ring modified model and the resulting
field along its axis. Comparison of Figures 22 and 23 shows how the presence of a radially
magnetized ring internal to the junction of the two solenoids affects the transition in field
*values: in the absence of the above mentioned ring, the transition is narrowed by
'approximately 50%.

Also, as Figures 22 and 23 indicate, the field gradient in the circuit chamber arising

from flux "leakage due to imperfect cladding at the ends is reduced by the strategic
rdacement of axially magnetized rings, one outside and another inside the circuit chamber.

figure 24 illustrates the details of transition narrowing by placement of the radially

driented ring at the junction of the chambers.
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PROCEDURE; /* This procedure, AX-RING, asks for the name for a table it will
generate, upon being told the number of rows 'R' and the number
of columns 'C' it should have. The table cell values are
determined by a function that calculates the magnetic field at
0.1 cm intervals along the axis of an axially magnetized ring;
where: M = remanence of the magnetic material

L = axial width of the ring
D = is the outer radius of the ring

The inner radius of the ring is 1 cm and the calculated function
is symmetrical about one edge of the ring. */

TNAM--GETTABLE("Name of new table:",TRUE);
A=GETNUMBER("Number of rowsany odd number:");
M--GETNUMBER("Remanence of magnetic material in kG:");
L=GETNUMBER("Width of axially magnetized ring in cm:");

C=I;
DO D=1.1 TO 2 BY.1;

R=I;
DO X=-(A-1)/20 TO (A-i)/20 BY 0.1;
VALUE= M*1000*(X/SQRT(X**2 + 1)

-X/SQRT(X**2 + D**2)
+(X+L)/SQRT((X+L)**2 + D**2)
-(X+L)/SQRT((X+L)**2 + 1))/2;

SET ROW R COL C OF TABLE(TNAM) TO VALUE;
SET ROW R COL 0 OF TABLE(TNAM) TO X;
R=R+I;
END;

C=C+I;
END;

DISPLAY TABLE(TNAM);
END;

Figure 3. RPL routine for obtaining field profiles for axially magnetized rings.
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PR•CEDURE; /* This procedure, radring, asks for the name of a table it will
generate, upon being told the number of rows 'RV and the number
of columns 'C' it should have. The table cell values arc
detc. ,-mined by a function that calculates the magnetic field at
0.1 cm intervals along the axis of a radially magnetized ring;
where: B = remanence of the magnetic material

L = axial width of the ring
D = outer radius of the ring

The inner radius of the ring is 1.0 cm and the zero of the
x-axis sits on the left edge of the ring. *1

TNAM=GETTABLE("Name of new table:",TRUE);
A=GjETNUMBER("Number of rows:'");

---GETNUMBER("Remanence of magnetic material in kG:");
L=GETNUMBER("Width of radially magnetized ring in cm:");
C=I;
DO D=1.1 TO 2.0 BY 0.1;

R=I;
DO X=-(A-1)/20 TO (A-l)/20 BY 0.1;
VALUE= B*500*(!/SQRT(I+(X-L)**2)-1/SQRT(1+X**2)

-D/SQRT(D**2+(X-L)**2)
+D/SQRT(D**2+X**2)
+LOG(D+SQRT((X-L)**2+D**2))
-LOG(I+SQRT(I+(X-L)**2))
-LOG(D+SQRT(D**2+X**2))
+LOG(I+SQRT(I+X**2)));

SET ROW R COL C QF TABLE(TNAM) TO VALUE;
SET ROW R COL 0 OF TABLE(TNAM) TO X;
R=R+I;
END;

C=C+1;
END;

DISPLAY TABLE(TNAM);
END;

Figure 4. RPL routine for obtaining flueld profiles for radially magnetized rings.
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