OZ0IV4NnsSsD>

<VO—-HP>IJIOWPr

AL-TP-1992-0043

AD-A261 453
ERETCRRREY

DESIGN KNOWLEDGE MANAGEMENT SYSTEM
(DKMS) BETA TEST REPORT

Richard J. Mayer
Thomas M. Blinn

David C. Browne ELECTE
Matthew A. Grisius MAR 02 1993
Arthur A. Keen
Jeffery C. Lockledge

Les Sanders

Y

o)
v

KNOWLEDGE BASED SYSTEMS. INC.
2796 LONGMIRE
COLLEGE STATION, TX 77845-5424 !

HUMAN RESOURCES DIRECTORATE
LOGISTICS RESEARCH DIVISION

93-04266

ARRTIHRIARN " 3y

NOVEMBER 1992 ’

INTERIM TECHNICAL PAPER FOR PERIOD NOVEMBER 1990 - JUNE 1992

Approved for public release; distribution is unlimited.

M 351 030|
AIR FORCE MATERIEL COMMAND

WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6573

NOTICES

When Government drawings, specifications, or other data are used for any
purpose other than in connection with a definitely Governnent-related
procurement, the United States Government incurs no responsibility or any
obligation whatsoever. The fact that the Government may have formulated or in
any way supplied the said drawings, specifications, or other data, is not to be
regarded by implication, or otherwise in any manner construed, as licensing the
holder, or any other person or corporation, or as conveying any rights or
permission to manufacture, use, or sell any patented invention that may in any
way be related thereto.

The Public Affairs Office has reviewed this paper, and it is releasable to the
National Technical information Service, where it will be available to the general
public, including foreign nationals.

This paper has been reviewed and is approved for publication.

\:r AVl A

JOANN M. SARTOR
Program Manager

—<l

BERTRAM W. CREAM, Chief
Logistics Research Division

Form Approvers

REPORT DOCUMENTATION PAGE e s

ERIE Py
ol Tty
[.

 vud N

Daper e wig

Davis Fogm vy Su.ie g,

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

November 1992 Interim - November 1990 - June 1$92
4. TITLE AND SUBTITLE S FUNDING NUMBERS
Design Knowledge Management System (DKMS) Beta Test Report C- F33615.80-C-Co
PE - 65502F
PR - 3005
6. AUTHOR(S) TA - L2
Richard J. Mayer Arthur A. Keen Matthew A. Grisius WU - 03
Thomas M. Blinn Jetfery C. Lockledge
David C. Browne Les Sanders
7. PERFORMING ORGANIZATION NAME(S] AND ADORESS(ES) 8. PERFQORMING ORGANIZATION

REPORT NUMBER
Knowledge Based Systems, Inc.

2746 Longmire
College Station, TX 77845-5424

§. SPONSORING ' MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. S%QNSOR!NGOMTOMYOR!NG
AGENCY REPORT NUMBER
Armstrong Laboratory AL NT; 1952 3043
Human Resources Directorate T iYYes
Logistics Research Division
Wright-Patterson AFB, OH 45433-6573

11. SUPPLEMENTARY MHOTES

Armstrong Laboratory Technical Monitor: Capt JoAnn Sartor, (513} 255-5775. This research
was conducted under the Small Business Innovation Research (SBIR) Program as a Phase it effon!

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. BSTRIBUTION CODE

Approved for public release; distribution is unlimited

13. ABSTRACT (Maximum 200 words)
The Beta Test Report, prepared under a Phase [l Small Business Innovation Research (SBIR} effort,
documents potential use of the Design Knowledge Management System (DKMS) in research and
industry. Industry concerns, gathered from surveys, are addressed in each subsection. The
appendix gives an in-depth overview of the entire DKMS. The DKMS consists of:
Container Object System: a flexible means of storing computer objects and constraints, so that a
design can easily evolve as information changes. Model Design Support Environment; a method for
automatic solution and code generation based on the problem, the "givens”, and the real-world
equations that rule the environment. High-Productivity CAD: a toolbox for CAD designers.
Shape-based Design Knowledge Representation and Reasoning; component which allows shape
information as a key factor in the design. (For exampie: “"Does the shape of this part create
unacceptable stress points?”) Integration Platform: component which helps user select and
translate services.

14. SUBJECT TERMS CAD systems design “design evolution 15. NUMBER OF PAGES
artificial intelligence computer-aided design SBIR program 72
automatic code concurrent engineering shape-based reasoning |16 PRICE CODE
generation design
17. SECURITY CLASSIFICATION 18 EECURITV CLASSIFICATION 19 SECURITY CLASSIFICATION |20 LIMITATION OF ABSTRACT
OF REPORT OFf THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified SAR

NSN 754401 280-5500 S'arda'd Form 298 (Rev 2 89)
ey ANSE g T8
i .“w 2

Table of Contents

Page

| 30 11 7 Lol O v
L0 InTOUCHON L ittt e e et e e e 1
1.1 DEKMS OVerview .o e e e)}

1.2 Purpose of this DKMS Document....................... e e

2.0 Integration Platform (IP).......oi 4
2. TP OVeIVIEW (oot T 4

2.2 BetaTestFeedbackoovoeeiiiiini S

3.0 Shape-Based Design Knowledge Representation and Reasoning (SBDKRR).....7

3.1 SBDKRR OVervVieW ..ot e 7
3.2 BetaTestFeedbackooovviiiiii s 9
4.0 High Productivity Computer-Aided Design (HPCAD) ... 12
4.1 HPCAD OVeIVIEW ..ottt e e e 12
4.2 HPCAD Beta Test Feedback......o.coooiiiii e, 13
5.0 Container Object System (COS) ..o e 14
5.1 QO OVeIVIEW ..ttt e 14
5.2 QOS BetaTestFeedback...........cccoiiiiiiii e 15
6.0 Model Design Support Environment (MDSE) ... 17
6.1 MDSE Overview o oottt et e 17
6.2 MDSE Beta Test Feedback.....coooooiiiiinii 18
7.0 Summary et e et ettt e aa e 21
8.0 Bibliography ..o 23
Appendix

Preface

This document provides the results of industry feedback with respect to the Design
Knowledge Management System (DKMS) project, which was funded by the Armstrong
Laboratory, Logistics Research Division, Wright-Patterson Air Force Base, Ohio 45433
under a Small Business Research Contract, F33615-90-C-0011, Work Unit 3005-L2-03.

The DKMS project was created to investigate some of the problems that have traditionally
restricted the design process. These problems, which include knowledge representation,
constraint propagation, model design, and information integration, are addressed by
DKMS.

The document is divided into eight sections and an appendix.

1. Introduction

()

. Integration Platform

3. Shape-Based Design Knowledge Representation and Reasoning
4. High Productivity Comp.ter-Aided Design

5. Container Object System

6. Model Design Support Environment

7. Summary

8. References

Appendix

The introduction is an overview of the DKMS effort. Sections 2 through 6 contain beta test
feedback for the five subsystems of the DKMS. The summary describes potential areas in

which DKMS could be effectively used. An overview of the major DKMS components is

given in the appendix.

Accesion For

NTIS CRAAI ;‘I
DTIC TAB T
Unannousiced 9]
Justificsuon

By o
Distribution]

PO

Availability Codes

. Avall and/or
Dist Special

A1

1.0 Introduction

1.1 DKMS Overview

DKMS provides a software environment for the development and delivery of intelligent
assistants. These assistants can be used for computer-aided design (CAD), computer-aided
engineering (CAE), and computer-aided manufacturing (CAM) applications in product
design, engineering, manufacturing, and logistics planning.

DKMS can be thought of as an integrated concurrent engineering (CE) system with an
environment that includes facilities for 1) design knowledge representation. including
shape-based associative retrieval and container objects; 2) intelligent user interfaces,
including form-feature interfaces and a generalized constructive solid geometry (GCSG)
engine: 3) engineering performance modeling functionality, including constraint
management and bond graph techniques; 4) data integration support; and 5) configuration
management. This environment is intended to support the rapid experimentation,
prototyping, and development of a new generation of integrated engineering and
manufacturing decision support applications to mcet CE chaiicrizcs. Most importantly, this
architecture will enable the capture and delivery to the engineer of product life-cycle
experience relative to manufacturability, reliability, and maintainability (MR&M).

Notably, in the final stages of Phase II, it was realized that project expectations, results,
and developed technologies greatly exceeded what was first expected. Not only were the
required deliverables completed on time and within budget, but additional materials were
produced that contribute to the overall DKMS project. These accomplishments include the
following:

1. Completed the detailed design documents, including software

requirements specifications documents and user manuals for DKMS
and all its subsystems.

2. Manufactured, engineered, and unit tested the major DKMS
components.

3. Gathered beta test information from as many sources as possible
using as many collection methods as possible to maximize potential
benefits.

4. Integrated some key subsystems and technologies into other
environments and projects to further their utilization and continue their
development and refinement.

5. Developed a marketing direction and interest group for some key
DKMS subsystems and technologies.

There were also many potential pitfalls and barriers which have been managed during the
Phase Il development, includir g the following:

1. Maintined compatibility with the evolving standards.

2. Maintained in-depth knowledge of government and private initiatives
in integration schemes and mechanisms.

3. Addressed the difficulty with and apparent apprehension of integrating
and testing systems in-situ with “legacy’ production systems.

4. Addressed the relative newness and acceptance of CE concepts.

5. Addressed the enterprise-wide ccoperational effort--that would require
inter- and intra-company-wide planning and implementation (a multi-
year effort)--necessary for DKMS.

6. Addressed the issue of generic design. While design is “generic,”
each company, site, or department has different cultures,
philosophies, methodologies, and tools which make a truly directed
and meaningful beta test virtually impossible within the given time
frame.

7. Addressed the training effort necessary for DKMS. Some DKMS
technologies are quite diverse and forward-thinking: therefore,
evaluation tasks typically require an extensive training effort.

1.2 Purpose of this DKMS Document

This document reports the progress of the DKMS beta testing and feedback loop. It also
reflects user feedback gathered through surveys (see Appendix), beta testing,
demonstrations, technical meetings and presentations, and trade show contacts and follow-
ups. Each section is based on a major DKMS component and includes an overview that
was the general basis for evaluations that were common between participants. The

overviews provide a higher-level perspective from a systems point of view. Also within
each section is a subsection detailing feedback. These subsections identify the
requirements necessary to allow technologies from each of the five thrusts of the full
DKMS to be successfully integrated into a business organization. The views and
comments from many participants are from the standpoint of their own business
organizations. Individual viewpoints were also used to evaluate the pros and cons of each
thrust. The feedback is then presented as desired extensions and criticisms of the DKMS
components.

2.0 Integration Platform (IP)

2.1

The DKMS approach to solving the serious problems and challenges facing U.S. industries
is to provide support services that address the assimilation, application. access. and
maintenance of the life-cycle engineering knowledge base. This section provides some

observations on the complexities of the knowledge flow that DKMS (in particular. the 1P

IP Overview

component) was designed to facilitate.

The complexity of the life-cycle tasks of maintainable, reliable. safe. high-performance
systems that employ the current technology within tight cost and schedule constraints
requires the access, assembly, and effective delivery of life-cycle engineering knowledge
assistance and information to the design/engineering activities. It does not matter whether

these engineering activities occur in product, manufacturing, or maintenance arenas and, as

a minimum, such assistance includes the following:

1.

o

Application of previously acquired knowledge in the engineering area
to the task at hand. The product designer must have efficient access to
the product design knowledge accumulated by his/her predecessors.
The manufacturing or process engineer must have access to the
knowledge of previous experts.

Application of knowledge from outside the engineering area to the task
at hand. The product designer must have assistance in the application
of the experiences and lessons learned by the manufacturing and
maintenance engineering discipline.

Access to a trace of the decision rationale that led to the most current
state of the product or process definition. The product engineer must
be able to quickly uncover the rationale of the product designer. The
manufactunng engineer must be able to lay open the decision rationale
and assumptions of both the product designers and engineers.

Access to the most current state of the product or process
configuration description.

Man-machine interfaces and protocols which support the capture of
product definition data as the decisions relating to that data are made --

not after the foct. If these don't exist, aelivery of CE support 1s
almost impossible. Similarly, the accumulation of the rationale,
experience, and knowledge bases that CE support would be based on
cannot be affordably achieved without such interfaces.

IP provides the required support for organizing and maintaining standard interface
definitions that allow access to the appropriate knowledge as well as routing the integration
service requests.

2.2 IP Beta Test feedback

At the end of Phase Il of the DKMS effort, IP was at the beta test stage. The onginal
assumptions regarding the use of the BBN CRONUS software as an underlving support
laver proved to be undesirable: a large effort is required to rethink and retoo! this area. The
Integrated Services Planner is a prime candidate for inefficiency due to the inherent
complexities of planning algorithms. The IP planning aspect needs more work to design a
more efficient or, possibly, an optimized planning strategy. Additional effort will be
required to harden the code so that the system will operate reliably in a production

environment.

The initial concern of users is that a prototype system must undergo a formal quality
assurance program. While this is a standard operating procedure in the software industry
when moving from final beta test to production, it was not possible 1o perform a formal

total quality assurance test due to the time constraints of the project.

Another area that must be addressed is system failure recovery. Since IP operates in a
distributed environment, many types of problems related to network operation and
computer resource availability can be encountered. If a certain machine 15 down or
unavailable or the network is not operating properly, [P must have the facilities to recover
gracefully. It is difficult to predict a"! situations that might arise to cause system failure;
therefore, development of failure “2covery facilities must address these problems as they

are discovered.

Initial IP configurations are not sufficient to support production environments. Because
CAD and CAE engineering systems operate on many different platforms, it is critical that
IP be expanded to support additional hardware platforms. Since most UNIX systems are

fairly compatible, expansion along the lines of a selected UNIX implementation seems
most practical, but it is likely that considerable user interface and network development
work will be required regardless of the platforms to which the system is ported. After
expansion to other UNIX-based platforins, there is also a need to support low-cost
machines such as personal computers (PCs) using either MS-DOS or OS/2 or perhaps
DEC VMS-based machines.

For IP to be successful in a production environment, entirely new functionalities are
required. Intertool communication, which would allow tools to pass messages to one
another without using the Integrated Services Manager/Planner as an intermediary, is
necessary. This functionality is particularly useful for tools designed for use in different
areas of the same domain (i.e., a CAD ool and engineering analysis tool in the
manufacturing domain). Another requirement is higher-level integration support. Currently
the IP Data Services Manager operates strictly at the file level: thus, a finer-grained data
object management scheme is necessary. This level of object management support could be
supplied by the Containcr Object System (COS) (see Section 5.0), but affected applications
would need to interface to the COS directly. The management of data from different
applications at the data-element level needs more research and development. The result
would be an even higher level of integration and reliability by offering a standard access

method for common data. It is believed that this scheme would also be more efficient.

3.0 Shape-Based Design Knowledge Representation
and Reasoning (SBDKRR)

J.1 SBDKRR Overview

The physica! world 1 a rich source of constraints for the designer--constraints he/she often
attempts to overcome, yet upon which he/she must first rely in order to partition and control
design evolutic . Different design disciplines treat shape and form differently. To the
architect, shape is a means to express themes. To the microelectronic device designer
characteristics of the physical shape (such as the size of a die or intercomponent spacing)
are naturally provided constraints that must be managed. To the mechanical system
designer, shape is often synonymous with function. Qur contention is that much of a
designer’s rationale 1s based on shape and form-related considerations: however, materials,
processes. and environmental constraints are also important considerations. A primary
goal of the design activity is to produce specifications: a major aspect of these is the
specification of shape and form. During the SBDKRR development effort, the role of
shape-based reasoning was analyzed. Critical relationships were dicovered between shape
concepting and both problem partitioning and solution structuring. When a person
describes a natural shape, one characterization of the involved cognitive processes consists
of the following four generic activities applied recursively:

1. Partitioning ~ breaking the object into separable elements.

2. Classification — categorizing an element with a prototype.

3 Deformation - changing local/global topology to a prototype.

4. Amangement - describing relationships between the elements.
The term “recursive application” implies that the same process of shape description is
normally applied to each element of the partitioning. This recursion appears to continuc

until the prototype classifications of the resulting elements can be clearly established.
When a person forms concepts of shapes, many of the same cognitive activities are

involved. only slightly rearranged. Ii the design situation, the shape-concepting process

appears to proceed recursively with the following steps:
1. Use “function-to-prototype” knowledge to establish a general shape.
2. Use partitioning to separate elements for further specification.
3. Use functional relations to suggest arrangements.

Use deformations to accommeodate constraints of physical form.

Use arrangements to build the whole from the parts.

Use shape description to generate the resulting specifications.

Discovery of this process organization led to some important insights relative to the
capabilities required of the form-feature CAD interface or SBDKRR component of DKMS.
For example, tradiiional constructive solid geometry (CSG) systems operate on the
assumption that the elemental pieces will be defined first, then composed into the whole.
In fact, it appears that this strategy for user interaction only works if an image of the object
is in front of the user and he/she can develop a partitioning strategy that can be
accommodated by the CSG systemn. Since current CAD systems were designed to replace
or augment the draftsman function (which is merely creating the antifact specification), this
style of interface is marginally acceptable. However, to deliver CE knowledge support to
the designer. one must develop a geometry-concepting environment that does not assume
decisions have been made before it is engaged. We believe we have captured the essence
of an interface and a geometry engine that will provide such design-concepting support.

We also believe that the close parallelism between the cognitive activities of design and
those of shape concepting and description argue for a central focus on a powerful shape-
concepting and manipulation DKMS component. Rather than treating the geometry
generation element merely as necessary for artifact specification support, we stress that it is
a critical component in the capture of design knowledge, delivery of design 2Jdvice, and
support for the human-design cognition process.

3.2 SBDKRR Beta Test Feedback

It has become clear that one cannot represent and reason about shape without being able to
represent meaning. The meaning of shape is the existence of constraints relating
uniformities between different life-cycle situations in which shape is significant.
Interpretation of shape is distinct from its meaning and depends on the agent-selection
scheme and awareness of situations and constraints. We may say that SLOT means slot or
POCKET means pocket for part features, but the interpretation of slot in the part may differ
depending on our awareness of relations to other situations (i.e., whether our frame of
reference is that of manufacturing processes such as milling, grinding, or slotting; or

analysis processes such as finite element analysis, mass properties, or kinematics).

Design and development of a situation-based reasoner as an extension of SBDKRR,
tailored to the needs of shape-based representation and reasoning, should be developed. In
a parallel task, useful input could be gained by gathering and formalizing constraints that
describe relations between life-cycle situations of parnts. The design could be based on the
work of Barwise and Perry in Situations and Attitudes |Barwise 83 and the most recent
work by Devlin in Logic and Information [Devlin 91]. The design and implementation of a
prototype situation-based reasoner should also draw on the experience of team members in
the Knowledge-Based Systems Lab at Texas A&M. Much of the work done in the DKMS
Phase I would allow rapid design and development using the DKMS constraint propagator
and SBDKRR reasoning system. The situation system should be designed and
implemented not only as a part of DKMS but also with the goal of integration into a CAD
and data visualization framework.

To effectively communicate our knowledge of the constraints relating the situations which
share uniformities of shape, it is imperative that an effective means of communication be
used. It is equally important in the manipulation by and visual presentation to the user of
the knowledge stored in the system, that the system use a model or perspective of reality
that is compatible with the user’s frame of reference and awareness of situations and
constraints. Thus, if the user is in a feature-based design mode, the system would use a
selection scheme that would present the parts in terms of the feature objects and allow the
user to manipulate them in terms of feature parameterizations. Therefore, in terms of
display, the features would be enumerated as objects and, in terms of manipulation, they
might be represented as situations. For a designer working in terms of a polyhedral

representation, the system would be able to enumerate vertices, faces, and polyhedrons,
and allow the user to manipulate these entities directly, even though they may be the result
of an approximation of a parametric surface in some other situation. For the user working
in terms of parametric surfaces, the part would be represented in terms of its surfaces and
the user would be able 10 manipulate those surfaces using the surface knots. The user may
select other situations and perhaps constraints to which he/she would like the system to be
attuned. For example, if one is designing a part and would like to be kept informed as to
the implications of that part in terms of manufacturability within a certain constrained
situation (such as <machine bridgeport>), it should be possible to attune the system to that

situation and its background constraints and, if necessary, add to or remove constraints.

In our endeavor to represent and reason about the life-cycle implications of shape, and
indeed the meaning and interpretation of shape, it is necessary to gather case studies from
industry. These case studies will be a sampling of constraints that exist between different
life-cycle situations. Encoding these constraints and situations in the framework of
situation theory will provide useful input into the design and development of the situation-
based reasoner. The situations envisioned will be drawn from concept design, costing,
detailed design, manufacturing, process planning, and maintenance for a selection of parts.
These case studies could also be used as a test suite for other research efforts. It is
important that the case studies be sanctioned by independent groups such as the National
Institute of Standards and Technology (NIST) or Society of Manufacturing Engineers
(SME) as a test suite or benchmark for Shape-Based Reasoning and Representation
Systems so that systems can be independently validated.

In general, current CAD systems can be classified as semantically impoverished. It is not
possible to represent the meaning of shape in a CAD system because its representation is
primarily focused on topology and is optimized for speed of geometric and topological
operations. By integrating High Productivity Computer-Aided Design (HPCAD) system
tools and the situation-based reasoner, one can take advantage of the ability of the HPCAD
system to rapidly present and manipulate data visually, and the capability of the situation-
based reasoner to deal with meaning. This would allow one to describe life-cycle situations
and define constraints between them directly on visual presentations of these situations.
For example, a situation may be described in which a part has a slot and a manufacturing
situation may be described which contains certain equipment. Then constraints can be
defined relating the capabilities of the manufacturing situation to the part feature. The

10

marriage of CAD and situation-based reasoning will make it possible for the designer to
assess the life-cycle implications of design decisions via the constraints relating the
different aspects of the product life cycle. Modularity and user interface protocols should
be used to allow interchange or customization of reasoners between CAD systems.

Separation of the man/mode! interface from the CAD system and the situation-based
reasoner is an important design decision because it allows one to more easily include other
means of representation and reasoning, other situation-based reasoners, and other CAD

systems.

i1

4.0 High Productivity Computer-Aided Design
(HPCAD)

4.1 HPCAD Overview

Construction of an HPCAD interface is crucial to the DKMS project and several major
components to enable the acquisition of design knowledge that is form- and shape-indexed.
Existing CAD systems are constructed on a single geometric representation. This limnits the
primitives that the user has to work from and also restricts the availability of analysis
programs. The thrust of the HPCAD Toolkit in this area was to develop the mathematical
foundations and algorithms for a generalized constructive solid geometry (GCSG) system
that will serve as a key component in the advanced DKMS. In the multirepresentation
environments expected in engineering/manufacturing systems. GCSG capability forms the
basis for such high-productivity interfaces, because it makes possible the “seamless™ (and
rapid) manipulation of multiple CSG represemtations. The “seamless™ nature of the
manipvrlation allows the system to translate between various representations without user
intervention. A majonty of the work in the GCSG area is focused on: 1) the
implementation of efficient algorithms for performing Boolean operations over
heterogeneous representations for solid objects, and 2) the implementation of matching
algorithms for these objects. The matching algorithms will be needed to perform
comparisons among objects, either to find a similar object (knowledge delivery) or identify

differences (knowledge acquisition).

HPCAD will be responsible for translating geometry from one representation technique or
parameterization to another and from one data representation to another. HPCAD bridges
these representational discontinuities by providing a convenient means of creating services
for translations and for performing Boolean operations on surfaces created in different
modeling systems from different parameterizations. The HPCAD Toolkit also facilitates
the creation of customized CAD systems or can be used in a supporting role, such asin a
shape-based reasoning application like SBDKRR, where the Toolkit routines may be used

as predicates.

12

The Toolkit will support the viewing and manipulating of Bézier and Non Uniform
Rational B-Spline (NURBS) surfaces, solids via polygonal boundary representations (both
winged-triangle and winged-edge representations) and CSG, and hybrid surface/solid
representations using GCSG. Solids may be modified using Euler operators and CSG.
The Toolkit will support the algebraic (exact) translation between parametric as well as
approximate wanslations.

4.2 HPCAD Beta Test Feedback

HPCAD needs full compliance with a number of standards and other nonstandard file
formats (including Product Data Exchange using Step/Standard for the Exchange of
Product Data (PDES/STEP), Initial Graphics Exchange Specifications (IGES), Data
Exchange Format (DXF), etc.) to be fully accepted as a viable toolkit in a production
environment. HPCAD lacks the capability to store created objects or designs and share
common data. HPCAD should have an interface protocol to the COS system to insulate

itself from platform dependencies.

For HPCAD to be more generic, it must have more common interfaces available for
development (e.g., X Windows/Motif, OS/2 Presentation Manager, etc.). The HPCAD
Toolkit needs an intelligent user interface that is responsible for how “objects” are
“presented” to the user screen and how these “presentations™ are interpreted in varying
contexts.

The Design History Manager cannot be fully realized without using a specific user interface
on a specific platform. Currently, all DKMS work is performed as modularly and
generically as possible; this limits any specific customizations.

The HPCAD Toolkit provides the low-level building blocks (such as vector utilities) and
some higher-level construction utilities. While it is certainly possible to build CAE
applications from the Toolkit, the Toolkit may be too primitive for the effective creation of
these applications. There is a need to provide higher-level functions that are common to
CAE applications, such as convex hull generation, surface triangulation, convex
decomposition, and other building blocks that do not require the programmer to “reinvent
the wheel.”

5.0 Container Object System (COS)

5.1 COS Overview

COS proposes a new knowledge representation for CE design called container objects.
These objects incorporate the best qualities of earlier representation efforts. Container
objects have been demonstrated to be an effective solution to the problem of representing
design knowledge within CE applications. COS is used by the other DKMS components
as a common representation for design knowledge. It is composed of: Perspective
Component, Container Object Component, Constraints Component, Generic Functions and
Method Component, and Persistent Storage Component. COS borrows heavily from
earlier object-oriented representation schemes and from later derivatives catled composite-

object systems.

COS extends the notion of objects to make them recursive under composition, thus
enabling instantiation of a group of objects as an entity. This is useful when relative
relationships between members of the group must be isomorphic for distinct instances. A
composite is defined by a template that describes the subobjects and their connections.
These subobjects are created by an instantiation process and are describable in a class
inheritance network. One benefit of composite object classes is the ability to make
modified versions of a template by creating a new subclass which inherits the properties of
the superclass. Facilities for making composite objects are not common in object-oriented
languages, but are fairly common in application languages, such as those for describing
circuits and layout of computer hardware.
Composite objects have the following features to support DKMS:
1. Composite objects are specified by a class containing a description that
indicates the classes and interconnections of the parts. The use of a
class makes instantiation uniform,
2. Instantiation creates instances corresponding to all the parts in the

description. The instantiation process must track correspondence
between the parts in the instantiated object. It fills in all the

14

connections between objects and must permit multiple distinct uses of
identical parts.

3. The instantiation process must be recursive to allow the use of
composite objects as parts. For programming convenience, the
system must either flag as an error the situation where a description
specifies using a new instance of itself as a part or support “lazy
instantiation.” A description of a part which includes itself can result
in the instantiation of objects with an unbound size. Alternatively,
instantiating subparts on demand (lazy instantiation) would allow the
use of potentially unbounded objects because the subparts are
generated only on use.

4. It must be possible to specialize a description by adding new parts or
substituting for existing parts. The description language must allow
specialization of composite objects with a granulanity of changes at the
part level.

5.2 COS Beta Test Feedback

The prototype COS is a vital representation component for all other DKMS elements.
While it 1s very powerful and innovative as a knowledge representation system, it is
implemented in Common Lisp. Although Lisp is a very powerful implementation language
and affords good portability to other platforms, the availability of Lisp compilers cannot be
guaranteed for all platforms. Hence, this restriction must be removed by writing a version
of COS in a more prevalent language. The suggested target language is C++. The
conversion effort should be language-independent while defining the basic data structures
used for representing container object information. This language independence will make
COS independent of any underlying object base that is chosen to handle persistence. Since
Lisp and C++ both provide powerful representations for data, this will not be a tnivial task.
Lisp and C++ also have an enormous number of differences in their approach to
representing programs; therefore, a straight translation of concepts will generally result in
an inefficient and unmaintainable program. Consequently, the algorithmic elements of
COS which take advantage of the capabilities of Lisp will have to be identified, and an
approach more suitable to C++ will have to be used to transiate them. The largest task of
converting to C++ will be aimed at the interface scheme for use in its environment. This
task promises to be one of the greatest challenges of the entire translation effort. The
difficulty involved here is that the effects of commands in a Lisp environment tend to be
persistent; that is, the effects of one command in the Lisp environment are present at the

15

invocation of the next. This greatly simplifies interface issues in a Lisp environment, but
not in a typical C++ environment. Furthermore, use of assessor functions (those functions
designed to retrieve data from data structures) is well-supported by Lisp, whereas C++
uses no assessor functions. Thus, an alternate scheme must be developed for the converted
COsS.

The current COS prototype is susceptible to unforeseen problems and user-caused errors.
The error-handling capabilities must be expanded to gracefully handle errors and
user/programmer mistakes. Furthermore, the prototype satisfies the DKMS Phase 11
representational requirements as a proof of concept. While it is currently efficient enough
for most applications, it remains to be seen how well COS scales up to large. memory-
intensive applications. The efficiency aspects of COS must be investigated to guarantee

that performance is acceptable over a wide range of applications.

Another area that requires more investigation is the use of COS in a distributed environment
such that it encourages concurrency in design and manufacturing processes. While it will
be perfectly suitable for single-user applications as it stands, COS should provide some
utilities for supporting distributed applications. Currently, COS relies on the underlying
transport layer of the persistent object for this capability; it should be added at a higher level
to explicitly allow the COS user more control over concurrency when needed. For
example, two design teams working on a new product design wish to work on separate
components of the product independently. Since component testing will frequently require
accessing the entire product, both teams will import copies of the product representation to
their local machines. However, this situation can easily lead to read/write and write/vrite
conflicts, where one group unwittingly destroys the changes another group has made by
simply writing out their version of the product immediately after the second group has
saved theirs. To prevent this, the following scenario is envisioned. Instead of importing
the entire representation of the product with read and write privileges, each group would be
able to use write privileges on their respective components only, but still be able to read the

representation of the entire product.

6.0 Model Design Support Environment (MDSE)

6.1 MDSE Overview

A primary component in any design support or automated “designer” system is the
engineering analytic model(s). One goal of DKMS 1is to support the
development/refinement of the models of the physical systems or processes used in that

design process

A large part of engineering design involves manipulating models; yet, most computer
models today are coded such that they are resistant to change. Any changes to the existing
models frequently require extensive recoding of very old and largely undocumented code.
New model developments are equally difficult because the engineer has no means of
expressing the model concepts to a computer in a way natural to hinvher. What is needed
is an intelligent model-building system that knows about model concepts, solution
technique types, and implementation methods. The resulting modeling support
environment will provide capabilities in the following areas:

1. Model rationale and knowledge-base capture.

2. Constraint management for supporting the derivation of complex
systems models from first principles as well as test data results.

Of these, the most powerful is constraint management. Design is constraint-oriented: much
of the design process involves the recognition, formulation, and satisfaction of constraints.
Constraint managemcnt can aid designers in identifying and exploring the boundaries of the
design space to determine the most important design parameters, specifications, and
constraints, and in evaluating the global performance of the alternatives to select the most

appropriate ones for detailed analysis and refinement.

The main functionalities to be provided by MDSE include the following:
1. Causality and dependency determination via bipartite matching.

2. Strong component (simultaneous constraints) detection.

17

2. Consistency venfication.

4. Solution sequence generation.

6.2 MDSE Beta Test Feedback

To simplify MDSE delivery and enable integration of a commercially supported Computer
Algebra System (CAS), MDSE must be rehosted on a commonly available workstation.
MDSE is currently implemented on a Symbolics Lisp machine, which has provided
excellent support for the initial development. While beneficial in initial development, the
Symbolics machines have limited distribution. This limited distribution makes delivery of
the code difficult; lack of user familiarity with these machine makes training costly. In
addition, the only CAS available for Symbolics is Macsyma. Macsyma does not support a
programmer interface: therefore, any integration of Macsyma into MDSE can only be
accomplished at a superficial level and may require as much effort as rehosting MDSE on a
workstation. A workstation, in this context, can include any stand-alone, single-user
computer with a graphical user interface. This includes such machines as the Sun
SparcStation but could also include large 486-based PCs with MS-DOS 5.0 running
MicroSoft Windows. The choice of workstation would be dictated by the availability of a
CAS for that platform.

A key feature of MDSE is its ability to generate multiple solution sequences for a given
model. These solution sequences specify which equations are to be solved for what
variable, the order in which they should be solved, and which sets of equations must be
solved simultaneously. It is possible to improve the efficiency of the code that is produced
by that system by examining multiple solution sequences. Generating all possible solution
sequences is, worst case, an intractable problem. In this worst-case scenario, the possible
number of solution sequences grows combinatorically with respect to number of inputs.
Clearly, this is unacceptable. To remedy the problem, the algorithm has been modified to
return when a specitic, predetermined number of solution sequences are found. While this
solves the space/time problem by limiting the amount of computation and storage needed, it
does so in a manner that might ignore very desirable solutions. A more sophisticated
technique for searching the solution space may enable MDSE to find an optimal sequence.

18

The ability to encapsulate information in a subprogram has proven to be uscful in the
development of software systems. The need to break down a problem and write programs
1o solve each subproblem is a capability that all mature programming techniques contain.
This holds true for MDSE as well, yet developing this capability requires extensions to the
constraint management theory that is at the heart of MDSE. Constraint management is a
collection of graph search techniques which allow a program to determine the variable for
which each constraint must be solved and the order in which the constraints must be
solved. This technique is used to generate the solution sequences in the current MDSE.
The original work In constraint management required that each con<traint be solvable for
any number of variables. A subprogram, however, has a specific list of inputs and ouiputs
for which it can be solved. Since a subprogram can only be solved for certain variables, it
violates one of the precepts of constraint management, therefore invalidating the technique
for use with them. This incompatibility means that the theory behind constraint
management must be extended to cover this new case if subprograms are to be included in
MDSE. Extending constraint management in this manner would allow programs within
MDSE to include previously defined programs in their definition. A useful side effect of
this extension is the ability to include user-defined functions and subroutines in MDSE.
This would atlow a user to specify a subprogram extemnally and reference it in the definition
of an MDSE program. Additionally, these “known” solutions or subprograms could be
built as packaged libraries, thereby enhancing efficiency tremendously.

MDSE uses a CAS to solve equations for a particular variable. Ideally, a CAS would
always return a closed-form solution for the expression. Unfortunately, in many cases this
is not possible and numerical methods must be used. The closed-form solution is always
the most desirable because it is completely accurate, can be solved quickly, does not rely on
an initial “guess,” and cannot fail to converge. Clearly, the more frequently a closed-form
solution can be found, the more robust MDSE would be. The CAS currently embedded in
MDSE was created as an experimental tool and is capable of finding closed-form solutions
in a very restricted set of equations. While it is useful in establishing the viability of the
concepts behind MDSE, it is not sufficient to solve the kind of problems MDSE was
designed to handle. Further work needs to be done to extend MDSE to solve larger, less-
restricted sets of equations.

Communication protocol for CASs should be defined to enable full modularity between
systems; this would enable MDSE 1o use different CASs by rewriting the protocol handler

for ¢ given CAS. This protocol must delineate how equations are passed to the CAS for
solution and how results of that solution procedure will be passed back to MDSE. The
exact definition of the protocol will depend on the specific CAS chosen.

To simplify the initial construction of models, MDSE should be extended to include the
ability to define models based on an icon-driven interface. The icons would represent
subcomponents of a more complex device, such as the piston, cylinder, and orifice of a
pump. These subcomponents (or macros) would contain information concerning different
features of the object. For example, these macros could be assigned a “material type” that
could be combined with others to represent a higher-level macro concerning its physical
properties. In addition, macros could contain a set of relationships commonly used in
modeling. These simple macros would serve as a shorthand for collecting information on a
svstem. These macro interactions could be described during the model specification stage
within MDSE.

The majority of engineering constraints are not expressed as equations but as inequalities.
Since good design is an optimization of a number of acceptable alternatives, its
requirements are likely to be phrased in terms of what qualifications an acceptable design
must meet. The engineer is expected to find an optimum design which meets these
requirements. Directly supporting this type of constraint will enable 4 modeler to express
his/her model in terms that correspond directly to the specification 1t is intended to fulfill; by
extending MDSE to handle inequalities, it can produce a model that finds an optimal
design. This changes the model from simply predicting system performance to actually
suggesting the design parameters--a clear improvement for users of this technology.

20

7.0 Summary

The current DKMS could be usable as a base or starting point for a CE platform for almost
any engineering automation effort in the Government, defense contractor, and commercial
industrial sectors. DKMS could provide a quantum improvement over any available design
automation concept available today. It could also serve as a means to promote better
university/industry/government ties because it would provide a direct vehicle for moving
design, manufacturing, and field experience into the classroom. Initial production
installations are anticipated to very aggressive small business communities that must
leverage scarce resources, 2) Department of Detense (DoD) installations for which
management of knowledge bases over long life-cycle weapor ., ..o i o cnitical issue,
3) National Aeronautics and Space Administration {*ASA) Space Station and deep space
missions for which knowledge bases will span multicareers, and 4) commercial industries
for which reduction in product developmient tiiae i+ iitical ro the maintenance of a
competitive position. The results of the DKMS project have been focused primarily on
mechanical device design support. By including industrial, university, and government
reedback as a part of the Phase II development, Knowledge Based Systems. Incorporated
(KBSI) is in a very good position to set up either investment or industry development
partnerships to fund the Phase Il commercialization that could address other domains as
well. Because of the modular nature of the approach taken, KBSI will also be able to
structure investment support for commercialization of DKMS one piece at a time. This
modularity, combined with the diverse body of feedback from the potential user community
and beta test sites, will also allow KBSI to fund selected pieces of this commercialization

itself.

The technology resulting from the DKMS project will provide support tor design engineers
to better integrate the trade-off of various design attributes such as performance. cost,
schedule manufacturability, and supportability. It will also significantly reduce the
engineering cycle time and manpower requirements for both initiai product design and
sustaining engineering of a product. The resulting system could truly provide a framework
for CE initiatives beyond those demonstrated in this Phase 1l effort. By supporting the
knowledge-based delivery of production and maintenance experience to the (nitial product

designers, an order of magnitude reuuction in redesign and engineering change requests
will be realized. Finally, because of the integration support and HPCAD support offered
by DKMS, it will find use in many areas other than product design. For example, in
manufacturing planning and production planning, access to the design rationale and design
knowledge bases will allow automation of a number of these “manufacturing ergineering”

activities and will significantly reduce quality and reliability problems in the final product.

22

8.0 Bibliography

[Barwise 83] Barwise, J., and Perry, J. Situations and Anitudes. MIT Press, Cambndge,
MA, 1983,

[Devlin 91] Devlin, K., Logic and Information, Volume {: Siwation Theory. Cambndge
University Press, Cambridge, MA, 1991.

IDKMS 90| A Design Knowledge Management System (DKMS), SBIR Phase 1 Final
Report, Knowledge Based Systems, Inc., Dayton, OH, April, 1990. Contract
F41622-89-C-1018, AFHRL, WPAFB, OH.

{KBSI191a] Knowledge Based Systems, Inc. Beta-Test Training Document, KBSI-
DKMS-90-STR-01-0492-01, Volume 1, AL/HRGA, Wright-Patterson AFB, June,
1991.

(KBSI91b] Knowledge Based Systems, Inc. Software Design Document for the
Container Object System, KBSI-DKMS-90-SDD-04-0392-04, Volume 4 of 5,
AL/HRGA, Wright-Patterson AFB, October, 1991.

[KBS191¢}] Knowledge Based Systems, Inc. Software Design Document for the High
Productivity CAD Toolkit, KBSI-DKMS-90-SDD-03-0392-04, Volume 3 of 5.
AL/HRGA, Wright-Patterson AFB, October, 1991.

[KBSI91d] Knowledge Based Systems, Inc. Software Design Document for the Model
Design Support Environment, KBSI-DKMS-90-SDD-05-0392-04, Volume 5 of 5,
AL/HRGA., Wright-Patterson AFB, October, 1991.

[KBSI191e] Knowledge Based Systems, Inc. Software Design Document for the
integration Platform, KBSI-DKMS-90-SDD-01-0392-04, Volume 1 of 5,
AL/HRGA, Wright-Patterson AFB, October, 1991.

[KBSI91f] Knowledge Based Systems, Inc. Software Design Document for the
Shape-based Design Knowledge Representation and Reasoning System, KBSI-
DKMS-90-TR-02-0492-01, Volume 2 of 5, AL/HRGA, Wright-Patterson AFB,
October, 1991.

[KBSI91g] Knowledge Based Systems, Inc. Software Requirements Specification for
the High Productivity CAD Toolkit, KBSI-DKMS-90-SRS-03-0392-01, Volume 3
of 5, AL/HRGA, Wright-Patterson AFB, July, 1991.

[KBSI91h] Knowledge Based Systems, Inc. Software Requirements Specification for

the Conmtainer Object System, KBSI-DKMS-90-SRS-04-0392-01, Volume 4 of 5,
AL/HRGA, Wright-Patterson AFB, July, 1991.

23

[KBSI91i] Knowledge Based Systems, Inc. Software Requirements Specification for
the Model Design Support Environment, KBSI-DKMS-90-SRS-05-0392-02,
Volume 5 of 5, AL/HRGA, Wright-Patterson AFB, July, 1991.

[KBSI91j] Knowledge Based Systems, Inc. Software Requirements Specification for
the Integration Platform, KBSI-DKMS-90-SRS-01-0392-01, Volume 1 of §,
AL/HRGA, Wright-Patterson AFB, July, 1991.

[KBSI 91k} Knowledge Based Systems, Inc. Software Requirements Specification for
the Shape-based Design Knowledge Representation and Reasoning System, KBSI-
DKMS-90-SR$-02-0492-01, Volume 2 of 5, AL/HRGA, Wright-Patterson AFB,
July, 1991.

|KBSI91l] Knowledge Based Systems, Inc. Container Object System (COSj
Programmer’s Manual, KBSI-DKMS-90-SUM-04-0392-01. Volume 4 of 5,
AL/HRGA, Wright-Patterson AFB, May, 1991.

{KBSI91m] Knowledge Based Systems, Inc. High Productiviy CAD (HPCAD)
Programmer's Manual, KBSI-DKMS-90-SUM-03-0392-001, Volume 3 of 5,
AL/HRGA, Wright-Patterson AFB, May, 1991.

{KBSI 91n] Knowledge Based Systems, Inc. /ntegration Platform (IP) User's Manual,
KBSI-DKMS-90-SUM-01-0392-01, Volume 1 of 5, AL/HRGA, Wright-Patterson
AFB, May, 1991.

|{KBSI 91o] Knowledge Based Systems, Inc. Maodel Design Suppor: Environment
(MDSE) User's Manual, KBSI-DKMS-90-SUM-05-0392-01, Volume § of §,
AL/HRGA, Wright-Patterson AFB, May, 1991,

{KBSI 91p] Knowledge Based Systems, Inc. Shaped-Based Design Knowledge
Representation and Reasoning (SBDKRR) User’'s Manual, KBSI-DKMS-90-SUM-
(02-0492-01, Volume 2 of 5, AL/HRGA, Wright-Patterson AFB, May, 1991.

[KBSI 91q] Knowledge Based Systems, Inc. Technology Impact Report, KBSI-

DKMS-90-STR-01-0292-03, Volume 1 of 1, AL/HRGA, Wright-Patterson AFB,
February, 1992.

24

Appendix: Beta Test Survey Report

Table of Contents

LSt Of I UTeS v
Pre A v
1.0 Design Knowledge Management System (DKMS) ...l 1
Ll Introduction. .o 1
1.1.1 Purpose of this Document................ R U I

1.1.2 Organization of this Document....................c.o 2

2.0 Integration Platform (IP) ... 3
2.1 INtrodUuCtioN. ... 3
2.2 Overview of the Functionality......................a03
2.2.1 TPasPartof DKMS..... ... 3

2.2.2 Key Components and Their Useocooiiiiiinn. 4

2.2.3 Underlying Conceptsoooiiiiiiiiiiiii e 6

3.0 Shape-Based Design Knowledge Representation and Reasoning (SBDKRR).....7

3.1 IntroduCtion. ..o e 7
3.2 Overview of the Functionality.................cocooi 8
3.2.1 Shape-Based Reasoning as Part of DKMS...................... .8
3.2.2 Kev Components and Their Useoooooiiiiiiiiene. 9
323 Key CONCEPLS .. vttt et e 10
3.2.3.1 Form-Feature Representation........................... 10
3.2.3.2 FrameofReference.............oovviiiiiiiiinnenn. 11
3.2.33 Granularity... ..o 12
3.2.3.4 Directional and Biasing Systems....................... 12
3.2.3.5 ReasONING......coiiiiiiiiiiiii i nes 12
4.0 High Productivity Computer-Aided Design (HPCAD)c.....l. 15
4.1 Introduction.. .o i 15
4.2 Overview of the Functionality.................coiiiiiiii s 15
4.2.1 Key Components and Their Usecocviiiiininnennen. 15

i

4.2.2 Underlying Concepts PP 16

5.0 Container Object System (COS) ..o e 18

5.1 IntroduCtion. .o 18

5.2 Overview of the Functionality.................oooi 20

5.2.1 Key Components and Their Useoo, 20

5.2.2 Underlying Conceptsooooviiiiiiiiiiiiiiiiiiiiiii i 21

6.0 Model Design Support Environment (MDSE) ... 22

6.1 INrOU T O M . i e e 22

6.2 Overview of the Functionality.............oooooi 22

6.2.1 MDSE within DKMSo 22

6.2.2 Key Components and Their Use.......... 22

6.2.2.1 Definitionof Terms ... 23

6.2.2.2 Method ..o 28

6.2.23 Example ... 32

7.0 BiblOgraphy . o 37
i

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.

Figure §&.

List of Figures

Integration Platform Architecture ..o 4
Key Functionality of the Integraticn Platform O |
Examples of Nonmanifold Topologies ... 10
An Example of a Frame of Reference ... 11
Table Top Equation Matching 34
Table Leg Equation Matching ... 34
Table Volume Equation Matching35
Table Density Equation Matching ..o 35
iv

Preface

This document is the foundation for discussions related to establishing potential beta test
site users for the Design Knowledge Management System (DKMS) and acquainting them
with the current software capabilities. This report is also to be used as a survey for
evaluating the applicability of the various DKMS components within the beta test site user
engineering environment. This manual begins with a brief introduction to DKMS; each

subsequent section addresses a major component of DKMS.

1.0 Design Knowledge Management System
(DKMS)

1.1 Introduction

DKMS is a software environment which provides support for and control over the design
development process. It is a heterogeneous integration environment designed to be
configurable to the design development practices of a particular site.

DKMS was conceived in response to the difficulty of acquiring, representing, reasoning
with, and applying design knowledge. With the advent of concurrent engineering (CE)
(made possible by more powerful and economical computer hardware resources), the
complexity of design knowledge management has increased dramatically. As designs
become more complicated, more management is required to ensure that the software
systems are produced in a consistent manner, on time, and within budget. It is also
important to ensure that the systems are reliable and maintainable. Another design factor is
the need to use past experience in the development of new products. This may be as simple
as reusing a function produced for another system or as complicated as reusing an entire
design knowledge base or development strategy.

This report reflects the functionality, features, key components and their uses, and any
pertinent underlying concepts of the various DKMS components as they currently exist.

1.1.1 Purpose of this Document

This Beta Test Survey Report aids in understanding and evaluating the key concepts of
DKMS as they relate to the beta-release software. This document is intended as a
management overview, not an all-inclusive report of DKMS capabilities.

In this release, the document presents a brief description of each DKMS component and
outlines the roles and underlying concepts of each. This report is not meant to be used as a
tutorial or supplement to the training guide. Installation procedures and tutorial information

are detailed in the actual Beta Test Training Document [DKMS 91]. This document
outlines the content and format the DKMS software will contain in the current and future
releases. It also elicits feedback to make future releases of this and other documents easier

to use.

1.1.2 Organization of this Document

The remainder of this report is divided into five major sections reflecting the major DKMS
components as they currently exist. Though we expect no major changes in the document
or software structure, the conteats of this and other DKMS manuals will grow as the

system reaches completion.
This report is divided into the followir.p sections:
1. Integration Platfc... .P).

¥

2. Shape-Based Lresign Knowledge Representation and Reasoning

(SBDKREK,.
3. High Productivity Computer-Aided Design (HPCAD).
4. Container Object System (COS) .
5. Model Development Support Environment (MDSE).

Each section presents an overview of the functionality of a component and the key concepts

as they relate to the overall DKMS strategy.

2.0 Integration Platform (IP)

2.1 Introduction

IP operates in a distributed, heterogeneous environment and attempts to provide a realistic
integration strategy that supports function and data integration in addition to providing
design artifact management facilities. IP allows the user access to various utilities and tools
via services provided in the DKMS environment. It also supports the design process by
managing the design artifacts produced during development by preserving their design
history.

2.2 Overview of the Functionality

2.2.1 IP as Part of DKMS

IP allows the user access to various utilities and tools via services provided in the DKMS
environment. A service is an activity/program that is supported by the system and can
invoke tools and programs on objects or object sets to produce the desired result or side
effect. Using the interface provided by IP, the user can list the services the system
supports and add new ones to the database of services. The user can also browse and
query the service descriptions.

Figure | illustrates the IP architecture. The Platform Interface handles the flow of
information and data to and from the applications connected to the IP. The user can directly
access IP via the User Session Interface. This application program allows the user to make
queries and requests directly to the platform. The Artifact Manager is the component of the
system that handles all information stored about design artifacts. Information such as latest
version, location, artifact formal, and access policies is managed by the Artifact Manager.
The Integration Service Manager (ISM) works in conjunction with the Integration Service
Planner (ISP) to handle service requests from the users and applications for access to the
system. The Facilitator executes the requested services either locally or remotely across the

network. The Network Manager handles service requests and data that are sent over the
network. The Data Services are simply the collection of programs and utilities that provide
the services. The functions of the various components are described in greater detail in the

following sections.

Platform Interface

--

Facilitator

Network Manager (" Data Services)

I Service
é Service
‘ Service
Network Manager

orvice
(remote) L Service

Figure 1. Integration Platform Architecture

2.2.2 Key Components and Their Use

IP is responsible for monitoring and controlling the generation znd execution of integration
service plans. The key IP components for providing services are the ISM and ISP. The
ISM is responsible for receiving and executing integration service requests. By doing this,
the ISM spawns background plan management processes for each request. monitors the
progress, and collates the results. Part of the process of providing a service is the
generation of service plans to provide more complex services; plan generation is performed
by the ISP.

Figure 2 shows the key functionality that supports service requests. The user can define
new services through the Register Service component. These services are then available to
all hosts within the DKMS platform. The ISP can use these service descriptions to build

more complex services.

Scrvice RBtl;;ld/ — Il:i/)l(g;:lt’(?r/ Service
Request ceve Result
¢q Plan Plan
Plan/Service Register New
Repository [- Service Service

Figure 2. Key Functionality of the Integration Platform

Using the User Session Interface to IP. the user can add new services, browse existing
ones, or use information provided in existing service descriptions in their own services.
The user can also invoke the ISP to generate service plans that he/she could edit or extract.

The extracted plans can be included in the user application code.

The Artifact Manager provides a high-level object and knowledge-based system that has the
flexibility to change and the ability to track entities in a software system as it develops. The
functionality of the Artifact Manager includes information/data history management,
versioning and configuration management, access control construction of composite
objects (across multiple databases), and constraint propagation. The ability to manage this
information comes from the COS (s2e Section 5.0 for more information on COS), which is
called by the Artifact Manager to access artifact information.

The key components of the Artifact Manager are:

I. CGS - aflexible, high-level object-oriented system.

2. Versioning and Configuration Management System — allows different
levels of version control.

3. Access Control System — allows user authorization and enforces the
authorization control.

4. Browser/Editor System - allows user to browse a heterogeneous mix
of databases and extract the required information,

2.2.3 Underlying Concepts

IP takes a service-based approuch to integration. Rather than focusing on the construction
of an “integrated svstem,” emphiasis 18 on the “integration services™ IF and funcuonal

applications provide.

The advantages of this approach are:

1. Flexibility - allows the use of machine-specific services of one host
on other machines.

2. Shorwer Software Development Time - facilitates reuse of code in the
form of services (because the services are designed to be independent
modules).

3. Integration - assists in the use of new tools with the DKMS platform.

4. Reuse - existing data, information. and knowledge can be reused.

5. Remote Execution - automatically handles remote execution without
user intervention, thus shielding the user from the intricacies of
network protocols.

6. Product Data Evolution - inciudes factors like problem report
generation, change request processing, message passing. status report
generating, and status browsing.

7. Knowledge Base Evolution Control - includes user-defined factors
like rules and organization policies, constraints on the product base.
policies that require approval, context, and principles of design.

The purpose of the IP is to realize a new approach to the challenge of integrating a large
software system. This is accomplished by assisting the user in providing data in the form
required by the various components using the platform. The services approach taken by
the IP allows the generation of plans based on requests for data or functionality. To carry
out the plans, services are provided which perform a specific data manipulation operation
or provide a speciric function. These operations can be linked together to create a new kind
of service. By providing 1 networking capability, the system can carry out plans and

services on other hosts and, therefore, facilitate integration even further.

6

3.0 Shape-Based Design Knowledge Representation
and Reasoning (SBDKRR)

3.1 Introduction

In SBDKRR, it is believed that “featurization™ of a part is an interpretation process that
occurs within a particular context. The same physical phenomena (a part) is partitioned and
abstracted differently by different agents in different coniexts. Different agents in different
contexts are attuned to different perceptions. This difference of attunement implies that
different information is extracted from the same phenomena. Even in simple natural
language phenomena, in which one might suppose that exactly the same attunement to the
words in a sentence exists, interpretation of a sentence changes from context o context.
Attunement and interpretation are infiuenced by the acquired knowledge of the agents in the
context. The implications of this view of featurization as an interpretation process impact
many aspects of CE applications, from the user interface to the informatior: tegration
mechanisms. For example, if one accepts that expert performance in the complex domains
of engineering and manufacturing requires expertise acquired through experience and
specialized training, it is unreasonable (and probably undesirable) to expect designers to
effectively think in terms of m. 1ufacturing features except in the most trivial cases. This
belief is based on a wealth of historical evidence arising from the Group Technology

domain.

The technical approach to the shape-based representation and reasoning problem may be
broken into three main themes: 1) representation, 2) reasoning, and 3) architecture. The
knowledge representation scheme is recursive and includes the concepts of frame of
reference (FoR), granularity, and constraints. SBDKRR uses a multilayered reasoning
approach that implements 1) geometric algorithms for extracting uninterpreted patterns from
part descriptions, 2) graph search algorithms for protowype matching of shapes, and
3) Artificial Intelligence (Al) inferencing algorithms for interpreting the prototypical shapes.

3.2 Overview of the Functionality

3.2.1 Shape-Based Reasoning as Part of DKMS

The complexity of today’s products requires the assembly of large teams to accomplish the
CE of a product throughout its life cycle. At present, these teams are used as the life-cycle
design and analysis information pipelines through which the emerging design is iterated
until it satisfies the design requirements. The “To Be” situation emphasizes parallelism of
tasks that are driven by design ideas constrained by the life-cycle implications of those
ideas. Initiatives towards CE must include many different organizations in design,
engineering, manufacturing, and field support that operate as a virtual design team. The
key to successful CE application is the capture of life-cycle knowledge and the timely,
effective delivery of it to the appropriate decision-making event. Much of the knowledge
applied in or communicated between these activities cannot be represented in linguistic
terms easily because it is primarily shape-based or shape-indexed. Shape-and feature-
based knowledge refers to that engineering, manufacturing, and maintenance knowledge
associated with the geometric properties of the part. Because these shapes do not
necessarily have names, they cannot be represented in traditional knowledge representation
schemes. Also, traditional, literal, pattern-matching schemes do not work for purposes of
knowledge retrieval or reasoning on these shapes.

The part representation used by conventional computer-aided design (CAD)--including
solid modeling--systems is incomplete in terms of the semantic and qualitative part
descriptions needed for CE. In addition, the closed architectures of these CAD systems
makes delivery of the life-cycle knowledge to the decision-making event difficult.
However, for effective CE applications, we would like to identify problem areas in a
design and provide recommendations interactively during the design-creation process. This
problem of impoverished part representation also has inhibiting etfects on the cost-efficient
application of computer-aided engineering (CAE). For example, a hole is represented as a
cylindrical face connected to the faces around it in a solid modeler. This representation is
not suitable for grid refinement algorithms used in finite element analysis that need to know
1) that the hole is a stress raiser and, consequently, needs a finer mesh; 2) that the cylinder
represents a hole that may be mapped by a process planning system to drilling, reaming, or

boring operations; or 3) that the hole presents problems to manufacturing because of the
way it interacts with other features.

SBDKRR provides the capability to represent antecedents or consequences of design
knowledge that contains arbitrary geometric structures (generalized shapes). SBDKRR
also addresses the application of these results to feature-based knowledge representation
used for geometric references that have named prototypes {(e.g., hole, slot, pockets).

3.2.2 Key Components and Their Use

In the development of the shape-based design knowledge representation scheme, some key
questions that need to be addressed include:

1. How do we create a representation for form features that allows us to
map into difierent frames of references?

2. Do we need to use a nonmanifold topology to represent our part
geometry in order to keep our representation neutral (i.e., when we
need manifold topologies, why don’t we use a mapping function)?

3. When we reason about shape, are we using an internalized (Naive)
representation that is nonmanifold and non-Euclidean?

4. How do we use this representation to deliver knowledge to and from
CAD systems”?

The representation for shape-based knowledge that has been developed is outlined in this
section. Note that by explicitly including the concept of dimensionality in granularity, there
is not always a tidy substructure/ superstructure or refinement relation between
granularities. This allows one to speak of an Affine, Cartesian, or manifold granularity of
a part. An example of the nonmanifold topology of this scheme used to represent
volumetric features is shown in Figure 3.

Feature
Volumes

Nonmanifold
Edge

\ 7/ Relations

‘/ﬁ T H\é/';
> N

Feature
Volumes
Figure 3a Figure 3b Figure 3¢
A part with feature Cellular representation An edge sharing more than
volumes. of part and features. two faces is nonmanifold.

Figure 3. Examples of Nonmanifold Topologies

3.2.3 Key Concepts

3.2.3.1 Form-Feature Representation

A shape-based knowledge representation should include 1) a unique identifier for space
description elements, 2) the ability to describe relations about shape compositions, 3) FoR
(see Figure 4), and 4) a set of logical constraints describing the shape t3 ne or composition.
The initial definition for a form-feature representation is:

(Shape N F n C S) where,
N 1s afeature name,
F is the FoR,

m is a set of primitive element specifications or feature specifications,
and

10

C is a set of constraints (geometric, topological, etc.. relating elements
of © in FoR F).

) From inside,
Fr_on_m outside, this is the front.
this 1s the front.

Figure 4. An Example of a Frame of Reference

3.2.3.2 Frame of Reference

It is important to establish an FoR for the spatial descriptions since 1) the spatial
prepositions used may be used in a deictic, intrinsic, or extrinsic manner: 2) adjacency
relations are sensitive to the FoR granularity; and 3) all spatial metrics must be declared
relative to some coordinate frame. To permit reuse of FoRs, the inheritance of reference
frames is allowed.
An FoR is defined as:

(FoR N G D L S) where

N is the FoR Name;

G is the granularity of the FoR;

D s the direction and biasing system used in the FoR (e.g., a Cartesian
coordinate or four-dimensional frame that includes x, y, z, and time);

L is a set of directional labels used in the FoR (e.g., top, bottom, left,
right); and

S is inherited FoRs.

3.2.3.3 Granularity

Different grains may ‘“smooth” objects, reduce “insignificant” objects to points, or map into
spaces of different dimensionalities. Thus, spatial relations can be defined over entities in
the abstraction spaces if they are indexed with the granularity of that space. Each grain
definition must include a set of primitive mapping functions such as indistinguishability.
adjacency, and membership.

Various relations may hold between grains. For example, we can say that Grain 1 refines
Grain 2 if Grain | draws at least as many distinctions as Grain 2. A full theory of
granularity should allow an agent to abstract away irrelevant detail from a problem by
moving to coarser granularity. This is useful, for example, in maintaining compatibility
between the design model of a part, its finite element model, its manufacturing model, and
its assemb!y model. Granularity is very useful for dealing with time as either a discrete
event or an interval. This allows one to compatibly represent a machining process as an
interval at one granularity and as an instant at another. The initial definition for granularity
is:

(Granularity N d S) where,

N is granularity specification name,

Jd s a set of primitive mapping functions (e.g., adjacent, in, same), and

S isasetof inherited granulanties.

3.2.3.4 Directional and Biasing Systems

A space may include metrics that need not necessarily be Cartesian because one may define
metrics on spaces that do not have “straight line” concepts or define only partial orders over
arange.

3.2.3.5 Reasoning

The shape-based reasoning strategy employed has three main stages: 1) a pre-attentive
recognition stage that uses geometric algorithms to extract geometric and topological
patterns, 2) an attentive stage that uses graph-search algorithms to match prototypes, and 3)

an introspective stage that uses artificial intelligence algorithms to assess the impact of these
shapes.

3.2.3.5.1 Recognition Process

The recognition process involves three kinds of geometric and topological algorithms: 1)
predicates, 2) constructions, and 3) properties.

3.2.3.5.1.1 Geometric and Topological Predicates

Examples of geometric predicates include coincident, coplanar, concave, convex, star-
convex, collinear, perpendicular, parallel, inside, outside, on, above, below, interference,
and same.

Examples of topological predicates include same, adjacent, articulation, and
depression/protrusion.

Notably, the concept of proximity pervades th: definition of all these predicates.
3.2.3.5.1.2 Geometric and Topological Constructions

The geometric and topological constructions are needed 1o extract geometric and topological
information that is not explicitly encoded, or to use as representations that are better suited
for property calculations. Examples of these constructions include convex hull, smallest
enclosing box, smallest enclosing cylinder, smallest enclosing sphere, Voronoi diagram,
union, intersection, difference, negation, projection, sweep, and binary space partition.

3.2.3.5.1.3 Geometric and Topological Properties

The geometric and topological propcrties that may be needed are length, area, volume,
normal, and aspect ratio.

3.2.3.5.2 Prototype Matching

The prototype matching stage takes uninterpreted geometric and topological patterns and
matches them to prototypes in a prototype knowledge base. These algorithms are of a

13

graph-search nature, such as connected components, articulation points, and minimum
spanning trees.

3.2.3.5.3 Prototype Interpretation

The interpretation of prototypes involves the use of abductive reasoning. Abductive
reasoning uses conjectures 1o explain observations and has a default prediction mechanism.

14

4.0 High Productivity Computer-Aided Design
(HPCAD)

4.1 Introduction

The HPCAD Toolkit is a C++ library of object-oriented classes, methods, and functions
that allows a programmer to create mechanical CAD/Computer-Aided Manufacturing
(CAM)/CAE applications (electrical engineering CAD applications are not supported).
Since HPCAD is not an application in its own right, it is not an executable program. Itisa
resource that a programmer would access to add high-level CAD/CAM/CAE functionality
to a program.

4.2 Overview of the Functionality

The HPCAD Toolkit provides both high- and low-level CAD functionality for
programming CAD/CAM/CAE applications. The Toolkit allows for the creation of either
full-blown applications with a wide range of capabilities or specific, single-purpose
applications.

The HPCAD Toolkit is not tied to any particular graphical user interface to allow for
maximum portability and application interface control, nor is its implementation tied to any
specific platform.

4.2.1 Key Components and Their Use

The HPCAD Toolkit is broken into the following five modules:

1. Solid Module — contains the classes, methods, and functions that
relate to polyhedral CAD applications. The knowledge representations
that are supported include the winged-edge and winged-triangle
structures. The operations on these polyhedral solids include
constructive solid geometry (CSG) operations (e.g., union,
difference, intersection) and Euler operations (e.g., move-face,

15

extrude-face, lift-vertex). Also included are functions for translating
between different polyhedral representations.

2

Curve and Surface Module — contains the classes, methods, and
functions that relate to free-form surface CAD applications. The
knowledge representations that are supported include nonuniform
rational B-splines (NURBS) curves and surfaces, and Bézier curves
and surfaces. Many surface creation methods are provided. Also
included are functions for translating between different curve and
surface representations.

3. Hybrid Object Module ~ contains the classes, methods, and functions
that relate to combining polyhedral and surface objects. Both the
Solid Module and Curve and Surface Module are necessary for hybrid
object functionality. CSG operations (e.g., union, difference,
intersection) are provided for operating between different curved
surfaces or between a curved surface and a polyhedral solid. Also
included are functions for translating between the hybrid object
structure and different curved surface and polyhedral solid
representations.

4. Geometric Display and Transformation Module — contains the classes,
methods, and functions for generically displaying and transforming
objects in three-dimensional (3D) space. Included are functions that
control how objects are viewed, as well as those which transform
objects (e.g., rotation, translation, scaling) in 3D space. These
functions operate with virtually no direct links to a specific interface.
These links must be provided by the programmer.

5. Support Functions Module — contains the classes, methods. and
functions used to provide the basic functionality in the other modules.
Included in this module are list and vector-related classes and
functions. The lists behave similarly to lists in the Lisp programming
language. The vector functions are very low-level geometric
operations upon which the higher-level geometric functions in the
other modules are built.

4.2.2 Underlying Concepts

The HPCAD Toolkit takes a function library approach to provide maximum functionality
and flexibility. This gives Toolkit users the ability to fully customize applications and
create them with whatever graphical user interface is desired.

The advantages of HPCAD are:

1. Open Architecture — allows users to write programs that can tie into
existing applications (e.g., AutoCad).

16

Object-Oriented Approach — provides a clearer understanding of
system behavior. It also provides enhanced reuse of code and
increased maintainability.

Efficient Algorithms — provide for fast and robust execution. Every
attempt has been made to provide for all special cases.

Generalized CSG (GCSG) ~ combining polyhedral solids and curved
surfaces is highly desirable for many or most designs. This is also
performed with little or no approximation, depending on the
representation of resulting object.

Geometric Translations — translating between different geometric
representations is extremely important for the sharing of product data;
therefore, Toolkit provides many different functions for translating
between winged-edge solids, winged-triangle solids, NURBS
surfaces, Bézier surfaces, and boundary representations (BREPs).

17

5.0 Container Object System (COS)

5.1 Introduction

Modern engineers use a myriad of automated tools to aid them in the design process. A
major thrust in current tcchnology is to make these tools “intelligent.” This requires vast
amounts of stored knowledge and information. However, the question must be asked,
“What is the bes: way to represent all this design knowledge that will allow it to be
managed as an evolving asset?” Answering this question involves dealing with some tough
issues. Unfortunately, none of the existing representations deal with all of them
adequately.

COS proposes a new knowledge representation for CE design called container objects.
These objects incorporate the best qualities of earlier representation efforts. The container
object has been demonstrated as an effective solution to the problem of representing design
knowledge within CE applications.

The task of representing knowledge has proven quite formidable. It seems that, every few
years, some new scheme becomes the focus of industry knowledge engineers and
computer scientists. Among these schemes can be found such proposed representations as
rules, frames, objects, and even neural networks. Unfortunately, after users accumulate
some experience with the latest representation, its shortcomings become all too obvious.
Efforts to develop a single, unifying, knowledge representation scheme which effectively
expresses many different (and changing) kinds of knowledge have not been entirely
successful.

The CE paradigm places great demands on any candidate knowledge representation
scheme. In particular, three issues must be addressed. First, this scheme must be
powerful enough to express the concepts within a design domain, such as geometric,
temporal, and hierarchical information. Second, it must not force its implementation to
inhibit the simultaneous utilization and modification of the design of systems and
subsystems by different users. Furthermore, in any useful implementation the effects of

any updates on the rest of the system must be computable and available to those < ure
designing the affected components. Finally, perhaps the most subtle demand CE places on
knowledge representation schemes is that they must allow product descriptions to evolve
naturally over time. Without this capability, the product design cannot h: casily and
efficiently modified and updated as the design process progresses. It the representation
cannot capture all types of design knowledge or induces a communication bottleneck in any
of its implementations, it will certainly not be adequate for a CE application.

Many proposed knowledge representation schemes have suffered from an inability to
support product design data evolution. The source of this shortcoming is that
representations of descriptive knowledge are almost always based on rigid structures that
are not amenable to continual reorganization. Adding, modifying, and deleting descriptors
is usually not allowed and is never endorsed. This rigidity prohibits the evolution of object
descriptions, since the elements necessary to describe the final product usually are not
known at the beginning of the design process. Unfortunately, nearly all current
representation schemes suffer from the this problem.

The primary impetus for the research described herein is an overwhelming need for a
design knowledge representation that can support the CE design process. This research is
based on the observation that for any design knowledge representation scheme to be
appropriate for CE applications, it must do the following:

I. express CE types of design knowledge,
2. allow simultaneous modification of design components, and

3. promote product design evolution.

No existing representation satisfies all these requirements. The working hypothesis is that
a knowledge representation scheme will adequately support product design evolution if its
representational constructs are defeasible (i.e., if they allow dynamic r:2organization of
descriptive knowledge). To this end, this research proposes the use of objects with
extremely malleable descriptions (i.e., container objects) as the basis for design knowledge
representation within CE applications.

The objective of this research is to devise a representation that satisfies the three CE design

needs stated. Many existing representations satisfy the first two needs; only the promotion

of product design evolution remains elusive. This suggests that the best approach is 10
extend or reform some existing representation scheme that satisfies the first two so that i
ultimately satisfies this remaining need. For this reason, the container object representation
utilizes a great deal of prior work and research in the area of knowledge representation. In
particular, it borrows heavily from earlier vbject-oriented representation schemes and from

later derivatives called compaosite object systems.

5.2 Overview of the Functionality

5.2.1 Key Components and Their Use

COS is used by the other DKMS components as a common representation for design

knowledge. It is composed of the following components.

1. Perspective Component — provides the user with the means to
manipulate perspectives. It allows the user to define, retrieve. and
modify perspectives, and is responsible for updating the container
objects whose descriptions contain the perspective being modified.
The external interface to this component 1s composed of the functions
relative to the manipulation and modification of perspectives.

2

Container Object Component — provides the user with the means to
maaipulate container objects. It allows the user to create, destroy,
retrieve, and modify container objects by adding and deleting
perspectives 1o these objects. It also provides the means to initialize
and modify container object attribute values. The external interface to
this component is composed of the functions relative to the
manipulation and modification of container objects.

3. Constraints Component - provides the user with the means to
manipulate constraints. It is responsible for the propagation of the
constraints defined in the system. The external interface to this
component is composed of the functions relative to the definition and
manipulation of constraining relations and constraints.

4. Generic Functions and Method Component - provides the user with
the means to manipulate generic functions and methods. It contains
the functions that allow the user to create and delete generic functions,
and to create methods. The external interface to this component is
composed of the functions relative to the manipulation and
maodification of generic functions and methods.

5. Persistent Storage Component - performs the functions in the COS
associated with storing information in a nonvolatile medium. The

20

external interface to this component is composed of the persistent
storage functions.

5.2.2 Underlying Concepts

COS is based on the container object representation scheme in which container objects
represent real-world or conceptual entities and are described using perspeciives. A
perspective is a data organization structure similar to the notion of a class in conventional
object-oriented languages. A perspective may be visualized simply as a set of essential
properties which an object having this perspective must possess. Perspectives are
composed of two types of descriptive elements: attributes that correspond to basic
properties such as height or length, and components that correspond to the “parts” of an
obiect and are used to create composite objects. Descriptive elements can be dynamically

added or deleted from a perspective.

An object description is composed of perspectives. Each perspective corresponds to a
different view of the cbject. For example, a bag can be viewed as a suitcase or a box.

Perspectives can be dynamically added or deleted from an object definition.

Constraints are simply boolean expressions attached to containers which always have the
value “TRUE" when evaluated. Some atomic elements of a constraint should be references
to container attributes that can be the container to which the constraint is attached, or some
component of the container to which the constraint is attached. A constraint may be defined
at the perspective level so that all container objects described using the corresponding
perspective are also constrained, or may be defined at the container-object level, so that
only a specific container object is constrained.

To give COS the ability to act upon its elements, methods are provided. A method is a
reusable sequence of instructions designed to work with specific data organization schemes
(in this case, perspectives). The method must maintain information regarding its name, the
data types (perspectives) upon which it may operate, place-holding identifiers called
arguments, and, of course, the sequence of instructions called the hody.

21

6.0 Model Design Support Environment (MDSE)

6.1 Introduction

MDSE provides a modeler with a framework for 1) producing accurate, timely models in a
cost-effective manner; 2) leveraging the productivity of experienced modelers; 3) allowing
inexperienced modelers to create more sophisticated models; and 4) preserving the
knowledge of the expert modeler in such a way as to provide intelligendy guided access.

6.2 Overview of the Functionality

6.2.1 MDSE within DKMS

MDSE is a “CAE tool” component of DKMS. This tool allows a designer ta easily create
performance prediction models for the systems being designed. In its final version, MDSE
will allow a DKMS user to attach these analytic models to designs within HPCAD. In
addition, it will provide a computer algebra facility for use by other DKMS applications.

6.2.2 Key Components and Their Use

MDSE is a tool for the computer-assisted devciopment of computer models. It includes
software for the creation, ma‘ntenance, and modification of engineering models and their
numerically oriented software implementations. It combines several technologies to

accomplish this goal, each of which constitutes a mature field in its own right.

The technologies in MDSE are:
1. Computer Algebra,

2. Constrair’ . :anagement,

22

Dimensional Analysis,

P

Automated Code Generation, and

W

Automated Documentation Generation.

The MDSE methodology emphasizes separation of knowledge acquisition and model
development. To this end, the mathematical equations used for the analysis in a field are
broken into two separate components: the state variables representing physical properties,
and the equations representing relationships and correspondences. By creating this
separation, it is hoped that reuse of engineering modeling knowledge and accuracy of the
associated model implementation software can be improved. Through the MDSE interface,
accumulation of the engineering modeling rationale and knowledge is simplified to make
the system as unobtrusive as possible.

An additional advantage of this approach is that knowledge about modeling in a particular
engineering domain can be separated from software implementation knowledge. This
allows engineering users who do not understand the intricacies of programming to create
sophisticated models in that domain and produce executable software implementations of
those models. The modeling support is provided by an ability to reuse and tailor models
created by experts in the domain. This support also includes the automatic generation of
solution procedures for a constructed model, which allows the modeler to concentrate
his/her attention in the area in which it will be most beneficial.

The knowledge acquired and stored in this manner can be passed on to future modelers.
Much of the modeling done today is documented after the code is written, at which point
the rationale for many decisions made in the model development process are lost.

6.2.2.1 Definition of Terms

MDSE maintains several knowledge bases concerning the field in which the modeling
occurs. Using these bases, MDSE assists a user in creating, modifying, and maintaining
numerically oriented software. MDSE has several concepts which, while fairly intuitive,
must be understood by the user for the system to make sense.

23

6.2.2.1.1 Physical Properties

The most basic descriptor is the physical property. This property describes some feature of
an object (such as its weight, length or density) in several significant ways. A physical
property is specific to a class of objects; for instance, “average interior car temperature” is
an example of a physical property for the object class “car.”” The list of attributes
maintained for each characteristic contains, as a minimum, those attributes listed in the
following table.

24

Name

A descriptive name of the physical property.

Symbol A shorter descriptor for the physical property, limited to six characters, to
be used in actual code generation.

Parent The name of the physical property used to copy the default values
initially. Physical properties initially copy all their default values from
one other physical property. This is the name of that physical property.

Source How the value was obtained (e.g., from direct measurement, a different
model of the object, or reference material).

Range The minimum and maximum values the physical property value can
assume.

Unit Unit of measurement in which the value is expressed (e.g., inch,
kilogram, etc.).

Default A default value for the physical property.

Type Real, integer, complex, etc.

Constant If the value is a constant that never changes, it is “‘true.” If any software
module ever solves for this value, it is not a constant; consequently, the
value will be “false.”

Granularity The smallest interval that concerns the modeler. For instance, if we only
care about the time to the nearest second, its granularity is one second.

Uncertainty The extent to which the value of this property is unknown (e.g., if a
temperature is measured to within .1 degree, because of instrument error
its value is 1). Granularity and uncertainty differ in that granulanty is a
matter of intent, while uncertainty is a result of the physical limitations of
the measuring instrumentation.

Citation Reference noting the work from which this characteristic was taken,
especially if a reference work.

Background Where material can be found which describes this physical property.

Comment Any important information not classified by the above categories.

25

By maintaining these features of a physical property, we can maintain the links to the
information source on which the modeler is basing his/her decisions. This simplifies the
process of updating the knowledge and, hence, the software. In addition, it can help a
modeler who is not the oniginal author to gain insight into the ideas used in the original
model.

6.2.2.1.2 Relationships

MDSE refers to abstract mathematcal statements as “Relationships.” Examples of such
relationships include 1) formulas from the physical sciences, 2) empirically derived
relationships, and 3) mathematical definitions. Relationships are not specific to a particular
object instance, but rather to the class of objects. That is, F = Ma is a relationship while
“the force of bullet x913rq with mass 2 grams and acceleration of 350 m/sec2” is not. In
the process of modeling a specific product. determining how the generic relationships are
mapped to physical properties of the parts of that product is a separate step in the
performance model development and its software solution implementation. We will
capitalize on this fact in the MDSE design to allow the abstraction of these relationships,
thereby making them available for reuse. MDSE also supports the separation of
relationships into the following two basic categories:

1. Absolute — implying that the relationship was derived from first
principles, and

(g4

Empirical - meaning the relationship is the result of curve fitting data
or some similar technique.

26

Relationships store the following information:

Name A name for the relationship.

Type Whether the equation is empirical or absolute.

Source Whether this equation has been derived by the author, from a reference
work, or has been developed in another program or model.

Citation A reference from the literature.

Uncenainty A percentage error inherent in the relationship. Applying only to
empirical relationships, it is related to the error in the curve fit.

Background Where material can be found which describes this physical property.

Limitations Any restrictions that limit the application of the relationship.

Data Set This information is kept for empirical relationships that refer to the set of
data used to derive the relationship. This is used to automatically
generate limitations to the circumstances in which the relationship can be
applied. thus keeping modelers from misapplying empirical relationships
because they are only defined within specific parameters related to the
data set from which they are generated.

Comment Any important information not classified by the above categories.

6.2.2.1.3 Programs

A modeler decides to create a piece of software: thus he/she defines a “Program.” A

program definition includes 1) a set of relationships, 2) a set of physical properties, and 3)

a mapping between them. This mapping defines a set of equations. An equation is defined

as a relationship with physical properties mapped to each of its variables. It is important to

note that a relationship can be used to detine an equation more than once.

Programs also have information stored with them that should guide the modeler in two

aspects:

whether this program will meet a specific need, and

whether this program is defined such that it may contain information
to help solve another problem.

27

To meet these goals, the following information is maintained for each program.

Problem Specification

A textual description of the problem this program is meant to
solve.

Problem Example

An example of such a problem.

Solution Method

In general terms, the method that will be used to solve this
problem. The emphasis for this description is to help the future
modeler visualize the problem and its solution.

Solution Example

A step-by-step explanation of how the problem was solved.

Caveats

Limitations of the solution including operations or applications that
shouid not be tried using this problem solution.

Approaches Not
Tried

Approaches that were considered and an explanation of why the
chosen solution seemed superior.

Comment

Any important information not classified by the above categories.

6.2.2.2 Method

This section discusses how MDSE works and how it can be fit into an organization.

6.2.2.2.1 Modeling

MDSE breaks modeling into two separate tasks: the collection of relationships and physical

properties, and the organization of those into models. Separating these tasks allows a

modeler to focus on the visualization and analysis for the model rather than the coding of

the solution techniques. In addition, the knowledge bases can be maintained by persons

without modeling experience, thereby reducing the cost of database maintenance.

When MDSE is in full use within an organization, it should be the central repository for all

test data, measurements, and information on the domain that the organization needs to

model. It is intended that MDSE have access to all this data in order to minimize the data

collection effort.

28

6.2.2.2.2 Knowledge Base Support

Both relationships and physical properties are arranged in . hierarchy, with the default
values of each being inherited: this reduces the effort required to enter information.
Further, locating a relationship or physical property is simplified because of the logical
structuring enforced by the hierarchy. For example, consider a relationship empirically
developed from test data on the saturation pressure versus temperature in an air and water

mixture. This relationship takes the form:

7259.2

Saturation-Pressure = exp(14.7276 - W)'

This is an instance of the Antionne Equation (which relates the saturation pressure to the
temperature for any two liquids, given three coefficients), an empirically derived

relationship of the fom:

. b
aturati ssure = exp(a - =——
Saturation Pressure = exp(a T+

where a, b, and ¢ are determined on the basis of the gases in the mixture.

MDSE might store such a relationship in the following form:
Saturation Pressure vs. Temperature Relations
Antionne’s Equation
Antionne’s Equation for water and air

This allows a user to enter data in the following manner, building up the information
through inheritance.

29

Relationship 1

Name

Saturation Pressure vs. Temperature Relations

Relationship 2

Name Antonne’s Equation
Parent Saturation Pressure vs. Temperature Relations
Type Empirical
Source Book
Citation Reid and Sherwood, *“Properties of Gases and Liquids.” McGraw-Hill
Background Thermodynamics Textbooks
Uncertainty 2%
Comment Refer to Reid and Sherwood for more accurate temperature-pressure
relations.
. . /
Form Saturation pressure = exp a -
\ T+c¢

30

Relationship 3

Name Antionne’s Equation for water and air
Parent Antonne’s Equation

Data Set Unknown

Limitations T <€ 32.0

The tinal definition is:

Name Antionne’s Equation for water and air
Parent Antionne’s Equation
Type Empirical
Source Book
Citation Reid and Sherwood. “Properties of Gases and Liquids.” McGraw-Hill
Background Thermodynamics Textbooks
Uncertainty 2%
Comment Refer to Reid and Sherwood for more accurate temperature-pressure
relations.
Form Saturation pressure = exp (a -)
T+c
Data Set Unknown
Limitations T < 32.0 |

This structure allows the modeler easy access to similar relationships. If the modeler felt

the uncertainty inherent in this empirical relationship was too large, he/she could simply

travel up the hierarchy to a level with the correct generic relationship, then look at other,

more-specific relationships that had lower uncertainty.

31

6.2.2.3 Example

A scenario of use is the easiest way to understand how this process proceeds. The user in
this scenario is a table manufacturer. Assume the user wants a program to calculate the
weight of a table for shipping. He/she would first examine the database of past
relationships for those relating to the problem, specifically by searching for the keyword
“weight.” The following relationship might be encountered:

mass

nsity = —————.
density volume

Density can be easily established (either through direct measurement or by examining
reference works); therefore, a search should be performed for the word “volume.” This

would uncover the relationship:

length * depth * width = volume.
Since some relationships in this system have been defined, the physical properties in the
system can be examined. The table has a total volume--the volume of the table top
combined with the volume of the four legs. Further, the length, width, and depth of the
top and legs is known. A physical property entry for each of these can be created; for the
sake of brevity only the entry for the table leg length is shown here.

32

Name

table-leg-length

Source Measurement

Range (18.0 , 48.0)

Unit Inch

Default 36.0

Type Float

Constant No

Granulanty 1

Confidence Factor High

Citation None

Comment This property decides how tall the table will be.

Potential software solutions can be produced based on this information. First, the software

production component of the system can be used to define a “program.”

Problem Specification

Given the geometric description of a table, find its weight.

Problem Example

What is the weight of a cherry end table with a 24" x 36" x
1" top and 2" x 2" x 24" legs?

Solution Method

Find the volume of the table and the density; use them to find
the weight.

Solution Example

Unknown.

Caveats

This model is only accurate with tables which have
rectangular solids for legs and top.

Approaches Not Tried

More complex geometrics may more accurately predict the
weight of complex tables.

Comments

A simple model for table weight.

33

This program gives a framework in which equations can be constructed by matching
physical properties to relationships. The relationship for volume must be used multpie

times; therefore, start by describing the table top as illustrated in Figure S,

length * depth * width = volume

yd T

table-top-width table-top-height table-top-depth op-volume

Figure 5. Table Top Fquation Matching

This equation describes the relationship between the physical properties wable-top-width,
table-top-height. table-top-depth, and top-volume. The modeler must keep in mind that it is
the act of matching physical properties to the variables within a relationship that transforms
the relationship into an equation. The same relationship can be matched to the ~hysical
properties table-leg-height, table-leg-depth, table-leg-width, and leg-volume. as illustiated
in Figure 6.

length * depth * width = volume

N T

table-le ieight table-leg-depth table-leg-width leg-volume

Figure 6. Table Leg Equation Matching

The relationship between the volume of the individual components and the overall volume
has not yet beer delineated. This relationship could have been defined from the start;

however, it is also possible to define it at tis point. "nter the relationship:

total-volume = top-volume + 4 * leg-volume

and match it s illustrate-s in Figure 7.

34

otal-volume = top-volume + 4 * leg-volume

total-volume top-volume leg-volume

Figure 7. Table Volume Equation Matching

Software production can begin using these equations. To produce software, the
programmer must know which physical properties are known at rua time. This is done by
selecting them from a list of all the physical properties in the detined equations. The
physical property table-mass 1s not in any equation: therefore, an additional equation 1s
required. From the list of relationships, the following equation. which has a relationship
tor mass. can be tound:
. sy
density = =5~
< 7 volume
Further, the density of the material from which the table made can be determined and the
volume has already been computed. Therefore, this relationship can be used o find the

mass ot the table by matching 1t us shown in Figure ¥.

table-mass

e

~ mass
density —_—
volume
N
table-matenal-density total-volume

Figure 8. Table Density Equation Matching

Now the table-mass occurs in the list of possible unknowns, and table-top-width, table-
top-height, table-top-depth, table-leg-height, table-leg-depth, table-leg-width, and table-
material-density can be selected as the knowns. The system presents two sequences for

solving these equations: one of which would allow solving for leg volume first. the other

s

would allow solving for top volume first. Since the ordering of these equations is

irrelevant, the first solution sequence can be selected first.

Having received all necessary input from the user, the subprogram for solving this program
is written to a file. The subprogram is documented with all the information the user has
entered about the various physical properties and relationships. This allows someone who
has the code, but not the MDSE, to understand the code and its purpose. The added
benefit of having the documented subprogram in FORTRAN or C is the flexibility of
moving the developed software to faster hardware.

In addition to software creation, MDSE has facilities for examining the relationships and
programs that are developed. It can perform “sensitivity analysis” that allows the modeler
to examine any physical property in terms of the other related properties in the program. A
modeler often must t:y to distinguish between important features of the object being
modeled and incidental characteristics that have little impact on the object as a whole. The
sensitivity analysis can be used to determine when a physical property has such trivial

effect.

36

7.0 Bibliography

[DKMS 91] Knowledge Based Systems, Inc. DKMS Betra Test Training Document.
KBSI-DKMS-90-STR-01-1291-01, Volume 1, Contract F33615-90-C-0011,
AL/HRGA. Wright-Patterson Air Force Base, OH. December 1991,

[IKBSI91a] Knowledge Based Systems, Inc. Beta Test Training Document, KBSI-
DKMS-90-STR-01-0492-01, Volume 1, AL/HRGA, Wright-Patterson AFB, June,
1991.

[KBSI91b] Knowledge Based Systems, Inc. Software Design Document for the
Container Object System, KBSI-DKMS-90-SDD-04-0392-04, Volume 4 of 5,
AL/HRGA. Wright-Patterson AFB, October, 1991.

[KBS191c] Knowledge Based Systems, Inc. Software Design Document for the High
Productivity CAD Toolkit, KBSI-DKMS-90-SDD-03-0392-04, Volume 3 of 5.
AL/HRGA. Wright-Patterson AFB, October, 1991.

[KBSI91d] Knowledge Based Systems, Inc. Software Design Document for the Model
Design Support Environment, KBSI-DKMS-90-SDD-05-0392-04, Volume 5 of 5,
AL/HRGA, Wright-Patterson AFB, October, 1991.

[KBSI9le] Knowledge Based Systems, Inc. Software Design Document for the
Integration FPlattorm, KBSI-DKMS-90-SDD-01-0392-04, Volume 1 of 5.
AL/HRGA. Wright-Patterson AFB, October, 1991.

[KBSI91f] Knowledge Based Systems, Inc. Software Design Document for the
Shape-based Design Knowledge Representation and Reasoning System, KBSI-
DKMS-90-TR-02-0492-01, Volume 2 ot 5, AL/HRGA. Wright-Patterson AFB,
October, 1991.

[KBSI91g] Knowledge Based Systems, Inc. Software Requirements Specification for
the High Productivity CAD Toolkir, KBSI-DKMS-90-SRS-03-0392-01, Volume 3
of 5, AL/HRGA, Wright-Patterson AFB, July, 1991.

[KBSI 91h] Knowledge Based Systems, Inc. Software Requirements Specification for
the Container Object Svstem KBSI-DKMS-90-SRS-04-0392-01, Volume 4 of 5,
AL/HRGA, Wright-Patterson AFB, July, 1991.

[KBSI91t] Knowledge Based Systems, Inc. Software Requirements Specification for
the Model Design Support Environment KBSI-DKMS-90-SRS-(15-0392-02, Volume
5 of 5, AL/HRGA, Wright-Patterson AFB, July. 1991.

[KBSI91j] Knowledge Based Systems, Inc. Software Requirements Specification for

the Integration Platform, KBSI-DKMS-90-SRS-01-0392-01, Volume | of 5,
AL/HRGA, Wright-Patterson AFB, July, 1991.

37

[KBSI 91k} Knowledge Based Systems, Inc. Software Requirements Specification for
the Shape-based Design Knowledge Representation and Reasoning System KBSI-
DKMS-90-SRS-02-0492-01, Volume 2 of 5, AL/HRGA, Wright-Paterson AFB,
July, 1991,

{KBSIO1l] Knowledge Based Systems, Inc. Container Object System (COS)
Programmer’s Manual, KBSI-DKMS-90-SUM-04-0392-01, Volume 4 of 5,
AL/HRGA, Wright-Patterson AFB, May, 1991,

[KBSI9Im| Knowledge Based Systems, Inc. High Produciivity CAD (HPCAD)
Programmer’s Manual, KBSI-DKMS-90-SUM-03-0392-01, Volume 3 of 5,
AL/HRGA. Wright-Patterson AFB, May, 1991.

[KBSI91n] Knowledge Based Systems, Inc. Integration Platform (IP) User's Manual,
KBSI-DKMS-90-SUM-01-0392-01, Volume 1 of 5, AL/HRGA, Wright-Patterson
AFB, May, 1991,

IKBSI9lo] Knowledge Based Systems, Inc. Model Design Support Environment
(MDSE) User's Manual, KBSI-DKMS-90-SUM-05-0392-01, Volume S of 5,
AL/HRGA, Wright-Patterson AFB, May, 1991.

[KBSI91p] Knowledge Based Systems, Inc. Shaped-Based Design Knowledge
Representation and Reasoning (SBDKRR) User’s Manual, KBSI-DKMS-90-SUM-
02-0492-01, Volume 2 of 5, AL/HRGA, Wright-Patterson AFB, May, 1991.

[KBSI91lg] Knowledge Based Systems, Inc. Technology Impact Report, KBSI-

DKMS-90-STR-01-0292-03, Volume | of 1, AL/HRGA, Wright-Patterson AFB,
February, 1992.

aU.S.Government Printing Office; 1993 - 750-061/60240

38

