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Stimulation of human sense organs is initially represented for a brief period by a literal,
labile, and modality specific neural copy. The term iconic memory stands for the initial
representation of visual stimuli, and echoic memory is its counterpart for auditory stimula-
tion (1). The latter form of memory is essential for integrating acoustic information
presented sequentially over an appreciable pericd of time (2). Memory experiments suggest
that the duration of echoic memory lasts about 2 to 5 s (3). We lack physiological evidence
regarding the locus of echoic memory, although psychophysical experiments (4) suggest a
central rather than peripheral site for memory storage.

The nature of decay of sensory memory is by no means clear. The simple decay of sen-
sory memory could be reflected by an increase in uncertainty of the comparison of recenty
heard memory items with a probe item. However, even this may be constrained by the possi-
bility that subjects retain general information about the context, while they lose information
about the specific item. Early in this century, Hollingworth (5) discovered the central ten-
dency: The judged magnitude of a stimulus (measured in different modalities) lies near the
middle of the range of stimuli employed in the experiment (6). The range of stimuli also has
effects on subsequent judgements of these stimuli (7). Experiments employing the method
of partial report (8) suggest that the decay of sensory memory is a passive process, so that it
may well be reflected in reproducible characteristics of neuronal activity.

Experiments with animals (9) suggest that the presence of a neuronal memory trace is
indicated by a decrement in the responses of single cells when a stimulus is presented repeti-
tively. Advances in magnetoencephagraphy (MEG) have made it possible to noninvasively
determine the strength of neuronal activity in specific sensory regions within the human
brain with high sensitivity and temporal resolution (10). This technique revealed that the
neuronal activation trace in primary auditory cortex established 100 ms following the onset
of a tone stimulus (the N100 component) decays exponentially with time, and the lifetime in
association cortex is several seconds longer than that in primary cortex (11). Also, these
findings confirm the idea that short-term memory traces are modality specific (12). Further,
the results are consistent with the conjecture that the N100 component of the event related
potential or field may well play a role in echoic memory, while no evidence was found for a
role of the source of this component in short-term memory scanning (working memory) (13).

Four right-handed adults (two males and two females) volunteered as subjects after pro-
viding informed consent (14). The task for the subject was a two-alternative forced choice:
press one button if the probe tone appeared louder than the test tone or the other button if it
appeared softer (15). No immediate feedback was provided, but subjects were informed of
the experimental results after the end of each session. A total of 6,000 trials were collected
for each subject. All the analyses were based on the data after excluding the first 20% of the
trials of every session, since it was during this first set of presentations that the range of the
loudness in the session was established. For each delay condition, a cumulative Gaussian
distribution was fit to the psychophysical data of loudness judgements. The equal-loudness
point was defined as the mean of the Gaussian distribution, and the uncertainty was the stan-
dard deviation of the distribution. Separate magnetic field recordings of auditory evoked
responses of similar tones were also collected for the subjects for whom there were no exist-
ing MEG data (11).
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Figure 1 illustrates the neuromagnetic data with which the psychophysical data were
compared. The strength of the N100 component of the response of primary auditory cortex
increased with the interstimulus interval (ISI) and approached a maximum value for I1SIs
exceeding a few seconds. In all cases, such curves could be fit by the mathematical expres-
sion A(1-e(*1o)/%), where the amplitude A, lifetime T, and time of decay onset t, are fitting
parameters (16). We emphasize that the shape of the curve in each case is determined by a
single parameter 1. The difference between the response strength obtained for very long ISIs
and those for shorter ISIs provides a measure of the diminishing activation trace. According
to the relationship just given, the activation trace decays exponentially with time: Ae"(t©/%,
For each subject, the left and right hemispheres have essentially the same lifetimes for the
N100 activation trace (11). Moreover, the lifetime of the activation trace for the subsequent
component with 180-ms latency (P180) was the same as the N100 component (17) for each
individual subject. This result suggests that the lifetime may well be characteristic of the
cortical area, since sources for both N100 and P18C lie in the primary auditory cortex (18).
By contrast, lifetimes for responses that arise in the association auditory cortex are
significantly longer than those of primary cortex (11).

The psychometric functions of this experiment enable us to test the hypothesis that
echoic memory is a direct reflection of the decay of the physiological activation trace in pri-
mary auditory cortex. As shown in Figure 2, the subjective equal loudness match displays a
strong dependence on time since the test tone. In all cases it decays towards the mean of all
stimuli. Thus, although memory for specific features of acoustic stimuli is lost shortly after
exposure, subjects draw upon longer-term, global experience of the stimulus pattern. This is
true if the mean loudness is greater or less than the loudness of the test tone. The observed
shift is significantly greater than the uncertainties in the measurements. These resuits are
consistent with the "central tendency” effects (6, 19) and provide a neural modality-specific
basis for sensory memory. As echoic memory decays, judgement is more heavily biased
toward the patterns of recent experience and, as described by Berliner and colleagues (20),
tends toward the middle of the range of presented stimuli. As illustrated in Fig. 2, an
exponential decay adequately describes this trend: C + De%, where the amplitudes C and D
and the lifetime 7 are fitting parameters. In this way a unique lifetime can be defined for a
subject’s memory of the loudness of the sound (21). Similar behavior was observed in four
subjects whose individual memory lifetimes range from 0.8 to 3 s. The loss of sensory
memory and the growing dominance of a longer term memory is not accompanied by a
marked increase in the uncertainty for the loudness of the probe that best matches the test for
a given delay.

The correspondence between the physiological lifetimes of the neuronal activatior. trace ————,
and the behavioral lifetimes for remembered loudness is quite accurate across subjects (Fig.
3). However, a comparatively slight systematic bias appears in the values for behavioral life- g
times which depends on whether the mean loudness of probe tones is greater or less than the
loudness of the standard tones. This bias may well arise from differences in the precise .
sequence of probe tones and how they influence the mean loudness toward which the e
subject’s judgement decays. In any event, The close quantitative agreement for all subjects

suggests that the evolution of the perception is associated with the decay of the cortical e
memory trace. o LDuTIoN |}
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These results suggest that noninvasive measurements of cortical activation lifetimes
may provide an objective and meaningful characterization of sensory memory lifetimes for
individual subjects. This was achieved in the present study by exploiting an advantage in
MEG whereby the precise location and orientation of the neuronal source current is esta-
blished (10, 11), so that its field pattern can be predicted. This information identified loca-
ticns over the scalp where the magnetic field of only that particular source was appreciable.
Another feature of this technique is its rapid time response, which permits changes over frac-
tions of a second to be well characterized. The present study suggests that extensions of
these procedures may be capable of characterizing a variety of memory functions that are
supported by cortical areas of other sensory modalities.
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FIGURE CAPTIONS

Fig. 1. Peak magnetic field strength near the scalp approximately 100 ms after the onset of a tone
burst stimulus (the "N100" component) increases with interstimulus interval, as shown for both hemi-
spheres of subject SW. The field sensor was placed over the left hemisphere at a location where it
monitors activity in the primary auditory cotrex.

Fig. 2. Remembered loudness of a tone determined by a forced-choice match with probe tones
presented at different delays after the test tone. Data represented by the open symbols were obtauned
when the mean loudness of the test and probe tones was 2.5 db greater than that of the test tone. Data
represented by closed symbols were obtained with the mean loudness 2.9 db lower. Error bars denote
the standard deviation for each delay.

Fig. 3. Agreement across four subjects between behavioral lifetimes for the decay of the loudness of a
tone following its presentation and physiological lifetimes for the decay of thc neuronal activation
trace in primary auditory cortex. Open symbols denote behavioral lifetimes when the mean loudness
of the probe tones is higher that of the test tones, and closed symbols denote the results when the
mean loudness is lower.
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