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Abstract

The pose (position and orientation) of a polyhedral object can be determined with sparse
range data obtained from simple light-stripe range finders. However, the sensing data inher-
ently contains some error which introduces uncertainty in the determination of the object’s
pose. This paper presents a method for estimating the uncertainty in determining the pose
of an object when using several light-stripe range finders. Three dimensional line segments
obtained by the range finders are matched to model faces based on an interpretation tree
search. The object pose is obtained by a least squares fit of the segment-face pairings. \We
show that the uncertainty in the position of the object can be estimated using the covari-
ance matrix of the endpoint positions of the sensed line segments. Experiments with three
light-stripe range finders show that our method makes it possible to estimate how accurately
the pose of an object can be determined.

Arceiot rol o
r..:.__..‘ S v —— .........._...;
FNTIS CRA& b

)

- DHiC 1A8 ! ‘

L Unengetced i1 '

bt st |
‘ I eicipuiisin

oo \X <.

I Distribution !

‘L —

| Auattabiity  Codes

P e e s 2 s e 3 s e}

I L Avall angior
i Dist | Soecial

"

H




Contents
1 Introduction

2 Fast Object Recognition with Three Light-Stripe Range Measurements
2.1 Interpretation Tree Search by Geometric Constraints . . . . . .. . ... ..
2.2 Otdering Sensed Features . . . . .. ... ... ... ........ ...,
2.3 Computing Transformations . . . . . . ... .. ... ... ... ......

2.3.1 Rotation Component . . . . . .. .. ...
2.3.2 Translation Component . . .. ... ... .. ... ... ... ...
2.3.3 Refining the Transformation . . . . . ... . ... .. ... ... ..
24 Simulation . . . .. ... L

3 Geometric Uncertainties in Pose Determination
3.1 Uncertainty . . . .. . . . .. . ...
3.2 Relationship between Sensing Error and Transformation Error . . . . . . . |
3.3 Examples . . . ...

4 Experiments
4.1 Procedure for Experiments . . . . . . . . ... ... ... ... ...
4.2 Experimental Results . . . . . . ... ... .. .. ... .. ... ... ...
4.3 Absolute Accuracy . . . . . . ...
4.4 Relative Accuracy . . . . . . . . ..

5 Conclusion
A Geometric Constraints

B Triplet Constraints
B.1 Surface Normal Constraint . . . . . . ... ... ... .. ... .. . ... .
B.2 Projection Constraint . . .. ... ... ... ... ... .. ... ..

~1 =

x




1 Introduction

Recognizing the pose of a three-dimensional (3-D) object in a workspace is a fundamental
task in many computer vision applications, including automated assembly, inspection, and
bin picking. Many object recognition algorithms have been developed. However, there
has been little attention given to estimating the uncertainty of object pose determinations.
In this paper, we study a problem of estimating uncertainty in determining the pose of a
polyhedral object when using multiple light-stripe range finders.

Simple light-stripe range finders are among the fastest and least expensive ways to acquire
accurate range data. Multiple range finders viewing an object from different perspectives
can usually provide enough constraints to determine the object’s pose. Imagine that a
polyhedral object is placed at an arbitrary pose in the workspace and that we place three
simpie light-stripe range finders above the workspace. Based on an interptetation tree search
technique, 3-D line segments obtained by the range finders can be assigned to model faces
consistent with geometric constraints. Once a feasible interpretation is found that satisfies
the geometric constraints for all line segments, the transformation from the model coordinate
frame to the world coordinate frame is obtained by a least squares method.

As a result of sensing error, the transformation contains inaccuracies. Thercfore, we need
to estimate uncertainty in determining the pose of an object. Using an error analysis based
on the convergence properties of the least squares fit, we obtain a relationship between the
covariance matrix of the line segments’ endpoint positions and the covariance matrix of the
position of each object vertex. The pose uncertainty of the object can then be estimated
from this relationship.

Related Work

Our object recognition method is based on the use of simple light-stripe range finders.
Though many 3-D object recognition systems using range image information have been
reported [2], (5], [6], [7], [16] and some range imaging techniques are very fast [1], the reog-
nition processes of these systems are still very slow, making such techniques impractical for
industrial applications. Recognition is slow because these systems extract manv surfaces
and/or edges from raw, dense range images; this process is time-consuming an¢. sometimes
generates incorrect features, which cause difficulty when matching the features to object
models. While a dense range image is appropriate to describe a complex scene precisely,
scenes in industrial applications can usually be simplified by modifying the environment to
enable object recognition using only simple sensors such as light-strire range finders.

It has already been shown that light-stripe range finders are effective in determining the
pose of polyhedral objects in controlled environments where some information about the
object’s pose is alrcady known. Gordon and Seering [8] showed that object pose can be
determined precisely with one simple light-stripe range finder providing that the a prior
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pose of the object is known approximately. Chen [3] proposed a pose determination method
with three known correspondences between line segments and model faces.

Before we determine the pose of an object, we must first determine feature correspon-
dences. To find correspondences between sensed features and model features, an interpreta-
tion tree search method with geometric constraints is used. Grimson and Lozano-Pérez [9]
demonstrated that local unary and binary geometric constraints are very effective in reduc-
ing the size of an interpretation tree. While Grimson and Lozano-Pérez used the position
and iocal surface orientation of a small set of points on the object, Murray and Cook [14]
presented geometric constraints for sensed edges corresponding to model edges. However.
since a light-stripe range finder provides the position and uirection of a 3-D line segment
that lies on an object face, different geometric constraints are required.

A least squares method is usually used to determine the pose of an object, that is, to
obtain the rotation and translation components of a transformation (6], {12]. Grimson [10]
suggested that uncertainty bounds on the object pose can be tightened by propagating initial
errors algebraically through interpretation equations. Ellis [4] showed that the uncertainty
bounds can be tightened by considering the cross-coupling between rotational and transla-
tional uncertainties. In [4] and [10], sensed surface normals were used to estimate the upper
limit of the transformation error. A weighted least squares method for determining an error
bound on the orientation of an object by considering the contribution to the error from each
sensed vertex was shown in [18). A criterion for choosing measurement points to minimize
transformation error by using a sensitivity matrix was discussed in [17]. Since the pose un-
certainty of an object can be represented by the covariance matrix of the position of each
object vertex, we explore a pose uncertainty estimation method that uses the covariance
matrix of the endpoint positions of sensed line segments.

In this section, we introduced the research objective, and reviewed related work. In Sec-
tion 2 an interpretation tree search technique with geometric constraints suitable for line
segments is discussed. In Section 3 we focus om the error analysis for object pose deter-
mination and describe a pose uncertainty estimation technique. In Section 4, experiments
with three light-stripe range finders show that our object recognition method snccessfully
determines the pose of an object and that our pose uncertainty estimation method provides
a useful tool for estimating how accurately the position and orientation of an object can be
determined.

2 Fast Object Recognition with Three Light-Stripe
Range Measurements

The task of model-based object recognition is to match sensed features to model features and
to determine the object pose in a 3-D world coordinate frame. We begin with an example
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TV Camera
Figure 1: A simple light-stripe range finder.

Figure 2: Sensor placement for object recognition. Sensors 0 and 1 are placed on the =
axis, directed toward the origin. Their sensing planes, which are displayed as triangles,
perpendicularly intersect. Sensor 2 is placed on the z axis and its sensing plane lies on the

z-y plane.
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Figure 3: Obtained 3-D line segments on object faces.
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Figure 4: An object recognition result. Estimated transformations w(R,), ¢(R,) and x(R.)
are given in degrees and ¢,, {, and ¢, are given in millimeters. R, is the standard deviation
of the distances between the endpoints of the line segments and the corresponding object
faces. T; shows the elapsed time in seconds (Sun SPARCstation IPC).




Figure 5: An interpietation tree for assignments between k sensed features and m model
features.

of recognizing an object. A simple light-stripe range finder projects a light plane onto the
faces of an object and measures the 3-D line segments created by the light-stripe as shown in
Figure 1. Three identical range finders are placed in the world coordinate frame as shown in
Figure 2. We assume that the light source and viewpoint of each range finder are coincident.
The range finders obtain 3-D line segments as shown in Figure 3. Our matching scheme by
an interpretation tree search assigns the sensed line segments to the corresponding model
faces and uses geometric constraints to eliminate inconsistent segment-face pairings. The
object’s pose is successfully determined as shown in Figure 4. In this section, we describe
our object recognition and pose determination technique.

2.1 Interpretation Tree Search by Geometric Constraints

Let 5y, S, ..., Sk denote sensed line segments gnd M, M, ..., M, denote model faces.
In general, there are m* ways of matching the line segments to the model faces assuming
that each line segment must match to one model face. Though such assignments can be
represented by an interpretation tree as shown in Figure 5, it is not feasible to explore
the entire tree to find consistent interpretations. Rather, geometric constraints are used
to discard inconsistent pairings while searching the tree in a depth-first and backtracking
manner.

Grimson and Lozano-Pérez [9] showed that the interpretation tree search .echnique with
local unary and binary geometric constraints is a useful method to find a consistent set of
pairings (Sy, My, ), (S2, M,,), ..., (Sk, M,,) where M, is the model face which corresponds
to line segment S;. The unary constraints check the consistency of a pairing between a line
segment and a model face and the binary constraints check the consistency of two pairings.
The specific constraints used in our method are given in Appendix A.

These unary and binary constraints are weaker than those in Grimson's work{11} which
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are based on face matching, since line segments carry less information than faces. Therefore,
after applying the unary and binary constraints, we apply triplet constraints which check a
triplet of pairings between line segments and model faces to prune the interpretation tree
more efficiently. As deeper nodes are reached in the interpretation tree, more possible triplet
pairings exist making a triplet constraint check appear to be time-consuming[15]. To speed
the process, we choose three line segments and three model faces under the condition that
two of the line segments must intersect each other. Since the two line segments are therefore
coplanar, two of the three model faces must be the same. The intersecting line segments
can define the normal of the model face on which the line segments lie. The normal of the
other model face can be obtained by solving a quadratic equation since the normal must be
perpendicular to the direction vector of the third line segment. Further details of the triplet
constraints may be found in Appendix B.

2.2 Ordering Sensed Features

The order in which sensed features are matched is very important since early rejection
of inconsistent nodes results in more efficient pruning of the interpretation tree. In our
recognition algorithm, intersecting line segments play an important role in the tree search
because the triplet constraints can be applied to such line segments to rapidly eliminate
segment-face pairings that cannot be consistent. Intersecting line segments should therefore
be used as early as possible to rapidly prune the interpretation tree and save computation
time.

2.3 Computing Transformations

2.3.1 Rotation Component

-

Intersecting line segments are not only used in the triplet constraints, but also to compute
the rotation matrix R of the transformation from the model cootdinate frame to the world
coordinate frame (see Appendix B).

If there are no intersecting line segments, a numerical polynomial-based technique is used
to calculate the transformation after at least three consistent pairings between line segments
and model faces are found. Let u, v and w denote the unit direction vectors of the three line
segments and let @, b and ¢ denote the unit normal vectors of the corresponding model faces.
We can calculate a rotaticn matrix, such that the rotated vectors 2, y and z of the vectors
a, b and c are orthogonal to u, v and w respectively. Chen [3] has presented a similar
polynomial approach to solve the same problem through a canonical configuration to reduce
the number of unknowns to two. It is important to note that there are certain conditions
that must be satisfied by the configuration of the surface normals and the direction vectors
to solve this problem.




Unfortunately, these general polynomial-based methods are very sensitive to noisc as
well as computationally expensive ince an eighth-degree equation must be solved. On the
other hand, our method which uses intersecting line segments is very fast and robust since
a transformation is obtained by solving a quadratic equation in the triplet constraint check.
Polynomial-based methods are therefore used only in the rare cases in which no intersecting
line segments exist.

2.3.2 Translation Component

Next, we solve the translation component ¢ of the transformation. A point p in the world
coordinate frame is related to a corresponding point P in the model coordinate {rame

p=RP +1t (1)

Suppose that a line segment S;, whose endpoints are b; and e;, corresponds to a model face
M,,. Any point X = (X,Y, Z)T on the model face satisfies the equation

N'X+D, =0 (2)

where N, and D,, are the unit normal and offset of the model face M, respectively. If the
point p is on the line segment S;, the squared distance from the point to the corresponding
model face is given by

(A = (NT (R (p — 1))+ D). (3)

The translation component ¢ is therefore obtained by minimizing the sum of the integral
of the squared distance along each line segment over all pairings of an obtained feasible
interpretation (S;, M) fori=1,... k

k e;
E= Ad,’2d,' (1
.E/b.-( )2ds (4

where ds; is an element of line segment S;.

If the residual E of fitting the model faces to the line segments is small enough, and
if the endpoints of line segments S; for ¢ = 1,... & pass the additional test that they are
near to the model face M,,, then this interpretation is regarded as a globally consistent
interpretation.

2.3.3 Refining the Transformation

After an interpretation is deemed globally consistent, the rotation and translation compo-
nents of the transformation are improved by another least squares process. Both initial
rotation and translation values are used simultaneously to refine the fit of the sensed line
segments to the model faces.
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Table 1: Recognition results for 1000 trials.

Successful | Failed | Recognition

Conditions trials trials | time (sec)

Unary & binary constraints
No triplet constraints 895 105 10.1
No feature ordering

Unary & binary constraints
Triplet constraints 949 51 0.7
No feature ordering

Unary & binary constraints
Triplet constraints 949 51 0.’
Feature ordering

2.4 Simulation

We run simulation to test the effectiveness of our object recognition method. We use a
polyhedral object as shown in Figure 1. Three hypothetical light-stripe range finders are
placed in the world coordinat: frame as shown in Figure 2. The object is then randomly
located in the world coordinate frame. A simulation proceeds as follows:

e As input data for the recognition program, a range finder simulator czalculates the line
segments which the three light-stripe range finders would get from viewing the object.

o Feasible interpretations are obtained by performing the interpretation tree search with
the geometric constraints.

-

o Each feasible interpretation is verified by comparing object vertices found using the
recognition algorithm with the correct values. If all estimated positions of the vertices
are near enough to corresponding correct positions, the interpretation is regarded as
correct.

The results of 1000 trials are shown ir Table 1. All failed trials correspond to multi-
ple interpretations which include some correct and some incorrect interpretations. Adding
the triplet constraints reduces the average recognition time to 0.7 seconds and the number
of failed trials to half. The triplet constraints are very efficient not only in pruning the
interpretation tree, but in improving recognition performance.

The ordering of line segments is also important. A typical example is shown in Figures 4
and 6. The intersecting line segments No.5 and No.1Z in Figure 4 play a crucial role to
decrease the number of nodes of the interpretation tree. As a result of ordering the line
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Figure 6: The number - nodes visited in the interpretation tree without feature ordering
and with feature ordering. Ordering line segments for the tree search dramatically speeds
pruning the interpretation tree.

segments so that the intersecting line segments are examined first, the computation time is
decreased from 20 seconds to 0.3 seconds.

One problem with this recognition technique is that it takes a long time to recognize an
object if there are no intersecting line segments. In most trials, however, intersecting line
segments appear on object faces, which is a characteristic when using multiple range finders.
As a result, the average computation time for object recognition is about 0.1 second.

3 Geometric Uncertainties in. Pose Determination

Now we can determine the pose of an object. However, due to sensing error inherent in
measuring line segments, the obtained transformation contains some error, which causes

uncertainty in the position of the object. This section describes our technique for estimating
the pose uncertainty.

3.1 Uncertainty

The object pose itself is obtained by minimizing the sum of the squared Jistances between
sensed line segments and corresponding object faces, and hence the transformation error

is defined as a perturbation around the correct transformation with respect to the sensing
error.

Let the rotation component R and translation component t of the transformation be
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denoted by

1 0 0 cosp O sing cosk ~sink O !,
R=] 0 cosw =-sinw 0 1 0 sink cosx O |, t=1] 1t (5)
. 0 sinw cosw —sing 0 cosg 0 0 1 t,

where w, ¢ and & are rotation angles around z, y and = axes in the world coordinate frame.
Ifz = (1,,t,t,,w, 9, k)T denotes the six transformation variables, the transformation error
is defined by

Az = (At At,, A, Aw, A, Ax)T.

In addition, we define the sensing error of the endpoints {zs,—\, y2i—1, 22—1) and (rs,. ya..
24;) of line segment S; as

As = (Ary, Ay, Az, .o, Argi, Ayag, A.’gk)r.

3.2 Relationship between Sensing Error and Transformation Er-
ror

Our object recognition technique finds pairings (S;, M,,) between line segments and model
faces. Due to sensing error, a point p on a line segment S; lies off the corresponding object
face M, by a distance Ad; given by equation (3). As we mentioned in Section 2, the pose
of the object is determined minimizing the residual £ of equation (4) in terms of . The
necessary condition for £ to reach an extremum is given as
BE_aE_aE‘_BE'_BE__aE_O "
A T A PR TR )
Now to examine the uncertainty in the transformation caused by sensing error, we lin-
carize these non-linear equations around the apprc;xjmate solution (2, 8¢) which corresponds
to the correct transformation and endpoints,

AAz > —BAs (7)

where A is the Hessian matrix of E with respect to 2 and B is the Jacobian matrix of %f—:
with respect to s.

Then we relate the object vertex position error to the transformation error dz. The
position of a vertex v; in the world coordinate frame is related to a vertex Vj in the model
coordinate frame by

v; = RV, + 1. (8)

The position error A v; is then given by
Av; = DjAz ("
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where D; is the Jacobian matrix of v; with respect to #. By substituting equation {7) into
equation (9), the relationship between the position error and the sensing error becomes

Av; % -D;A"'Bls. (10)
The covariance matrix C, of the vertex v; is given by

C

Yy

= E(Av;av0))
= D;(AB)C,(A™B) D (1n)

where C, is the covariance matrix of the line segments’ endpoint positions. The elements
of the covariance matrix C, show how uncertain the vertex position is, and hence the r. y
and z components of the position error of each vertex can be approximated as

{(Avj,, Advj,,Av;,) = (\/Cu,”, ‘,/C":z'z‘ \/C‘,)“). {(12)

3.3 Examples

The following are some examples of estimating the uncertainty in pose determination. Given
the shape of an object, a transformation 2 for the object and a placement of three light-
stripe range finders, a range finder simulator calculates line segments which would appear
on the object. We assume that all endpoints of obtained line segments have the same error
(zero mean Gaussian white noise ¥(0,1)) and that any two endpoints are independently
measured and their respective errors are not related (though the mechanism of the sensing
error of a range finder is complex in practice [13]). Thus, the covariance matrix C, of the
endpoint positions of the line segments becomes the identity matrix. We can estimate the
uncertainty of each vertex of the object with equation (11).

Given a model as shown in Figure 1, a sensor placement as in Figure 2, and the same
transformation as in Figure 4, an estimated uncertainty on each vertex of the object is shown
in Figure 7. In this figure, the lengths of three bars on each vertex along z, y, = directions
are given by equation (12), and show how uncertain the position of each vertex is.! The
position error depends on the pose of the object with respect to the range finders. that is, the
spatial distribution of line segments on the object faces. Another example with a different
transformation is shown in Figure 8. Figure 9 shows the object in the same pose as Figure 8,
but with a different sensor placement. The position error in Figure 9 is much larger than
that in Figure 8 as a result of the line segment distribution on the object faces.

In general, as the number of different faces on which line segments fall increases, pose
determination accuracy also increases. Note that position error cannrot be estimated by

'For display purpose. those lengths equal 128v;,, 124v,,, and 124v;, respectively.
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Figure 7: An uncertainty estimation result after recognizing the object. Three bars on each
vertex show the uncertainty in pose determination. E,(mm) is the average position error of
all vertices.

the method described here when the surface normals of all the object faces on which line
segments lie are coplanar. In this case, the translation component cannot be estimated by
the pose determination technique because there is an unconstrained degree of {reedom.

4 Experiments

This section presents experimental results in recognizing an object and estimating pose
uncertainty. First, the procedure of our experiments, which include image processing for
extracting 2-D line segments and computing the positions of 3-D line segments in the world
coordinate frame, is described. Then, experimental results are shown and compared with
simulation results.

4.1 Procedure for Experiments

Each light-stripe range finder is composed of a TV camera with a 16mm lens and a laser
diode projector whose wavelength is 670 nm. The laser beam is spread by a cylindrical lens
to generate a light plane. The baseline length between the TV camera and the laser projector
is about 100 mm. We place three identical range finders above the workspace as shown in
Figure 10. The distance between each range finder and the workspace center is about 350
mm and each range finder’s absolute accuracy of measuring 3-D coordinates is £ 0.5 mm
within the workspace.
For each range finder, line segments are extracted by the following procedure:
12
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Figure 8: An uncertainty estimation result with the same sensor placement as in Figure 7
but a different object pose.

Iswrpretation Ne. & -~ SUCCRSS

Rue~11600 e 411 Res 080
fye 4038 . 599 Br. 177
Rz -4 B= 4 Ne o0

Figure 9: An uncertainty estimation result with the same object pose as in Figure 8 but a
different sensor placement.
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Figure 10: Sensor placement for experiments.

Take an image with the laser diode projector off.

Take an image with the laser diode projector on.

Compute image differences and detect edges.

Track those edges and find the endpoints of the 2-D line segments.

Compute the positions of 3-D line segments using projective transformation coefficients
(coefficients are calculated during calibration).

Once all the 3-D line segments have been found, apply the object recognition technique.
Finally, estimate the uncertainty of each calculated vertex position.

4.2 Experimental Results

An object like the one depicted in Figure 1 is placed at an arbitrary pose in the workspace.
Each range finder takes two images (one with the laser diode on, one with the diode off} and
detects edges as shown in Figure 11. Figure 12 shows obtained 3-D line segments and object
recognition and position error estimation results. For comparison, Figure 13 shows a simu-
lation result with the same object pose under the same sensor placement as the experiment
shown in Figure 12. The recognition time in the experiment is 0.67 sec, while only 0.05 sec in
the simulation. In the experiment, the geometric constraints used in the interpretation tree
search were weakened to allow for error in the measurement, thus, increasing the number of

14




Sensor 0 Sensor 1 Sensor 2

Input images ( Laser on )

Edge images

Figure 11: Input images for the three light-stripe range finders and extracted edge images.
The object is placed on a support cube whose size is 60 x 60 x 60 mm. The cube is not
regarded as a part of the object.

visited nodes. Note that the "ine segments No. 0 and No. 1 and the line segments No. 6 and
No. 7 in Figure 12 are not connected. Edge tracking often fails to detect a correct junction
of two line segments on a concave object edge as a result of interreflection of the light plane.
Nevertheless, recognition succeeded because our matching technique uses assignments of line
segments to model faces instead of relying on exact matching of line segment endpoints to
model edges.

4.3 Absolute Accuracy

We estimated the absolute accuracy in pose determination with the sensor placement shown
in Figure 10. The object is located with a known transformation (Case 1 ~ 6), and the object
pose is estimated 10 times for each transformation. The mean and standard deviation of
position errors (equation (12)) of each vertex are calculated. Table 2 shows the averages of
the means and standard deviations of the position errors for all vertices. For all cases, the
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Figure 12: Experimented 3-D line segments and object recognition and position error esti-
mation results for an arbitrary pose.

Figure 13: Simulated 3-D line segments and object recognition and position error estimation
results for the object pose shown in Figure 12.
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Table 2: Absolute accuracy in pose determination. The object pose is estimated for the
object with a known transformation. In all cases, w = 0°, ¢ = 0°, and ¢, = -6.75 mm.

] Av, Av, Av,
Transformation (mm) | (mm) | (mm)
t, = 5mm, t, = -5mm | Mean ]| -0.-6 | -0.10 | -0.04
Case 1 K =0° Std_| 0.52 | 030 | 0.15
t. = 5mm, ¢, = Omm | Mean || -0.35 | -0.34 | 0.06
Case 2 k=0 Std | 049 | 0.38 | 0.13
e
t, = 5mm, t, = Omm | Mean || -0.31 | -0.39 | 0.24
Case 3 K = 30° Std [ 020 | 0.14 | 0.07
t; = 0mm, t, = -5mm | Mean | 0.66 | 0.22 | 0.34
Case 4 x = 30° Std | 032 | 0.18 | 0.09
t; = 10mm, ¢, = Omm | Mean }| -0.11 | 0.04 | 0.11
Case 5 k= 60° Std || 0.16 | 0.13 | 0.15 |
t. = 10mm, {, = -5mm | Mean | -0.32 | 0.06 | 0.12 |
Case 6 x = 60° Std | 027 | 0.24 | 0.16

standard deviations of vertex position errors are within 0.6 mm. These values are consistent
with the simulation results for the same transformations.?

4.4 Relative Accuracy

The relative accuracy in pose determination was estimated as follows.

—

. The object is placed at an arbitrary pose in the workspace.
2. The object pose is estimated initially.
3

. The object is moved in the z direction by 5mm.

-

. The object pose is estimated again and compared with the initial pose.

n

. Steps 3 and 4 are repeated..

Figure 14 shows the experimental results. The estimated z component of the translation
changes linearly by 5mm and the y component is almost constant. The difference between

2In the simulation the standard deviations of vertex position errors are about 0.5 mm assuming the
measurement error of the range finder to be ¢ = 0.3 mm.
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Figure 14: Relative accuracy in pose determination.

the actual and estimated translation components is within £ 0.25 mm. Similar experiments
for 10 different initial object poses resulted in almost the same relative accuracy.

5 Conclusion

We have presented a method for estimating uncertainty in determining the pose of a pnly-
hedral object when using multipie light-stripe range finders.

An object recognition method based on an interpretation tree search has been used to
determine the object pose. In this method, 3-D line segments obtained by the range finders
are consistently matched to model faces based on geometric constraints. We have introduced
triplet constraints to dramatically speed pruning of the interpretation tree.

We have determined the relationship between uncertainty in object pose determination
and sensing error. The pose error of an object cap be estimated from the covariance matrix
of the endpoint positions of sensed line segments.

Experiments with simple light-stripe range finders show that our method makes it possible
to estimate how accurately the pose of an object can be determined.
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Appendix

A Geometric Constraints
This appendix gives unary and binary constraints used in our object recognition method.

e Length constraint (Unary constraint)
If a line segment lies on a model face, the length of the segment must be less than or
equal to the maximum distance between two vertices of the model face.

e Distance constraint (Binary constraint)
If two line segments lie on two different model faces, the range of distances between
the two line segments must be within the range of distances between the corresponding
two model faces.

e Adjacency constraint (Binary constraint)
Two adjacent line segments from the same range finder must be assigned to two adja-
cent model faces.?

o Intersection constraint (Binary constraint)
If two line segments which come from different range finders intersect each other, these

line segments must be assigned to the same model face.

When a new node at the i th level is reached in the interpretation tree, a new pairing
(S;, M,,) is generated, which must be subjected to the unary constraints. Also : — 1 new
induced pairs of pairings, [(S;, My,), (Sj, M,,)] for j = 1,...,i — 1 must be subjected to the
binary constraints.

B Triplet Constraints

In this appendix, we present two triplet constraints used in our object recognition method.

B.1 Surface Normal Constraint

Intersecting line segments can define the normal of the face on which the line segments lie.
In Figure 15, let s, and s, denote the unit direction vectors of intersecting line segments

3Two model faces which share a vertex are regarded as adjacent.
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Figure 15: Surface normal constraint. For the counstraint to be satisfied, the transformed
surface normal Rmj should be on the plane my whose normal is s; and also on the conical
surface defined by the surface normal n;, and the angle ¢,3;.

S, and S, respectively. The unit normal of a plane m;,, on which those line segments lie. is
represented by
n s, xs,
12 = —
| . x s

Let m, be the unit normal of a model face, M,, which is assigned to the two line segments,
and let R denote the rotation component of the transformation from the model coordinate
frame to the world coordinate frame. The unit normal of model face M, in the world
coordinate frame, which is given by Rm,, is set to equal the unit normal n,, of the plane
712 OF —n,,. One direction is chosen such that the normal of the plane 7, is directed toward
the range finders from which the line segments S; and S, were obtained.

(13)

Let S;3 denote another line segment which does not lie on the plane m;5. A possible model
face M;, matched to the line segment S;, must satisfy the following conditions:

o The angle between the two model faces is invariant under a rigid transformation, that
is, L(Rm,, Rm,) = ((m,, m;) = ¢13.

e The direction vector of the third line segment is perpendicular to the normal of the
assigned model face, that is, s, L Rm,.

Consequently, the unit normal Rm, of the transformed model face M; can be obtained by
solving the following equations simultaneously.

my,myz + My,Myy, + My, M3, = COSP3
33z M3y + S3yM3y + S3.M3,; = 0 { l'*)
2 2 2
my, +my, +my;, = 1
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Figure 16: Projection constraint. The projected points of the endpoints of line segments S,
S, and S; must be within the ranges {; and l; respectively.

where
my, M3, 83z
Rm,=| my, |, Rmy=| my, |, 8,=| 33,
™My | m3; 33;

If no real root exists to these equations, the chosen triplet [(Si, My), (S», M), (S5, M;)] is
inconsistent, and this interpretation is discarded. Since the surface normals Rm, and Rm,
in Figure 15 correspond to two unit surface normals, m, and m,, in the model coordinate
frame, the rotation matrix R can be computed [9].

B.2 Projection Constraint

A triplet surviving from the surface normal constraint is subjected to another triplet con-
straint. Suppose that the surface normal of a plane m; is defined by the vector product of
the transformed normals Rm, and Rm, of two model faces A, and A3 in Figure 16.* Let
P denote the intersection point of the line {;; (the intersection line of the two transformed
model faces) with the plane m3. When any point on the transformed model face M, is
projected onto the plane m; along the direction of the line /i3, the projected point will be
within the range denoted by [, on the plane 7);. Similarly, the projection of any point on the
transformed model face M; will fall on the range l;. Since the three line segments S, S, and
Sy are on the transformed model faces M, M; and M; respectively, the projected points f

%The two model faces M, and M3 are not necessarily adjacent.
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the endpoints of the line segments must fall within the corresponding ranges. If one or more
endpoints are out of the ranges, the triplet [(S;, M), (S2, M), (S3, M3)] is inconsistent.
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