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1. INTRODUCTION

In [22i., Plateo states that his teacher, Theodorus of Cyrene,
was the first individual toc prove that ¥3,vS,....,717 were
irraticnal (&, p.Uus. Since then many scholars have wondered
how he did this with the mathematical tools he had at hand,
and. perhaps more puzzling, why he stopped at the number
seventesn. An answer which 13 almost certainly i1ncorrect but
which is nonetheless intriguing was given by J. H. Anderhub in
1918 Csee [3,5,6,1010. He suggested that Theodorus might have
used the following construction. Form the triangle with
vertices at (0,C2, (1,00, (1,12. Note that the hypotenuse has
length 2. Starting now at the point (1,12, draw a line
segment of unit length perpendicular to the hypotenuse and 1n
the counterclockwise direction; this gives a new triangle with
thiz line as one side, the previous hypotenuse ar the other
side, and a hypoternuse of length 7. Continuing 1n thais way,
a spiral. figure (called the wadratwurzelschnecke (105, or
squsre-root ~snzil? emerges with the numbers ¥Yn as the lengths
of the radii (Fig. 15. The last hypotenuse drawn before the
figure overlaps itself has length Y17, and this, 1t was
suggested, was why Theodorus stopped at seventeen (see [510.
Although this 13 almost certainly the wrong answer, the
sequence of points formed by this process was studied on its
ownn mer:ts by Hlawka ({10]; see also [24]D. He proved a
number ¢7¥ results concerning this construction. The study was

then picrked up by Davis [32], who noted that the points could

(&
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rlex plarms by th
z =z -~ wz 7z | C1.13
™ ” Aal
Cwith :o=1) and that they we:e azymptotically an Archimedean
spiral. He then interpolated an aralytic curve to these
points, which he called the Spiral of Theodorus.
Notirg that (1.12 could be considered Euler’s method for the

ordinary differential equation

z = aqaz + 3z 7z |

™ ™ Lo}
with o,ReC and z, a giliven complex number., This 1i1teration,
called the Compiex Generalized Theodorus Iteration (CGTIZ, is
studiea in [3,15,20]. Davis later =suggested the f{urther
i1

P —— T -d § e
gc'ru::';"a 1Z2avloh

v = axy o+ EBEx\V RV (1.e5
lakd 2 » 2]

where / arnd B are real mxm matrices. Vo ies a Qiven nonzeroc
m-vecticr, and Wl i +the Euclidean veclor narm, Tras
iteration, named the Generalized Theodoruc Iteration (... by
the present author, displays a great variety of strange
attractors for appropriate choices of A and B (Figs. 2-53, and
includes the complex GTI az a special case; 1t is studied 1in
[4,15,1=2,19). In this report will summarize some of the

informs .ion contained in (18] and {19] (adding some material

from {(iZ])2 with respect to sufficient boundedness conditions

and as mplotic estimates for this i1teration. Since we are
interes ed 1n boundedness and asymptotics, in stating our
2
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results we will i1gnore ths case where Vo is such that ‘-’n 1
the nu.l wvector for some n (in which case the i1teration

stopsD.

2. BoOuUNDEDNESS

Let us try to find sufficient conditions for boundedness of

the GTI. Taking norms on both sides of (1.2 gives

IV b < BAK-IV I+ 1B
n+4 \a!
Iierating this relation, we find that
n-1
IV I < BART- RV I+ UBI-E han' <z.1>
\a}
L=0

and clearly if HAl<1 then in the limit the norm is bounded by
Bl Cc1 - HAIND

Hence iAlK] 1s sufficient for boundedness of the orbit (for
any Vo). From this and the gimilarity of (1.23 to the linear
system

Vv = ANV cr 2o

n+1 ™
which tas a bounded solution for every Vo when the spectral
radius of A 1s less than unity (and at least one unbounded
soluticn when the spectral radius of A is greater than unitlyd,
it seers reasonable to conjecture that o(AI<1 suffices for the
boundecdness of (1.2, where plAD is the spectral radius of A.
That this is in fact the case follows from two lemmas. We
omit th: rather technical proof of Lemma 1. It is not hard to
establi:hh this result by using an approach similar to that

1o Y ese~t
R A Y o

- Ladal
P -~ Sta b

]
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Taes armA e v ket 3
- Y N ok 4 -l o Nk -

t iz rather tedious to
carry cit the procof in detail (see [1530. Lemma & 135 &

discrets version of an ordinary differential equations result
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LEMMa 1 If iV i 1= unbounded then IV {—sa
™ 12
. LEMMma & Let A be a matrix with plA3<1l and suppose that BInZ
1s a sejuence of matrices with B(n)i—0 as n—w. Then all

solutionis of

Z " CA + BCnD)-zh

tend to zero as n—w.

Proor: Since K A3<1 there exists a matrix norm H'NA such that
HAHA<1. We will choose this to be a natural matrix norm and
will al=oc dencte by H-ﬂA the wvector norm which 1nduces it.
Let € equal Cl—HAﬁAD. Now <since all matrix norms are
equivalent in the senss that if HMEn)Ha—43 then NMSn?ﬁB~4O, we
have from our hypothesis that ﬁECnDHA~4O. Hence w= can choose
s W osuch Lthat HBZ()HAiefE for all (8N

z = (A + B
n+g 12
(for sore zoD N times to progduce the vector zZ. Setl “oTT anc
o = (A + BIN + nJd
n+1 »
Vrx0., Clearly o =z for all 20. Now
1 N+
G = CA + BIN + nio>x% - A + RINDD»
g (6]
and so
b 0 2 HA + BON + ol % 0 %A + BONOH =liw H
N+t A A A o A
™
= liw Hf n A + BCN + 1D
o A A
=20
. ihen
ial
lw i < fiw b n ciiag + IBCN + i21t D
et A o A A A
=D
- ™
< Hew H n (1 - & + 2>
L =0
™
= Jlw |l n 1 - e~ &)
L=0




which ~learly tends to zerc as ri—o. Hence Hw 5.’A-—+O as r—a
"
=2 tha't lz H‘—»O as n-—m, and so by the equivalence of vector
n
™m
norms on [k we have that lz #-s0 as n—ow. This completes the
n

procf. o
We may now chTw the desired result.

THEOREM 1: If pCAD<1 then the sclution of (1.22 is bounded.

PrRoOOF: Suppose the contrary and choose a Vo such that IV i is
Aa)
unbounded. By Lemma 1, HVhH—am. Defins BCn)=B/NVhH. By the
hypothes s, IEIrYil—D.  Consider the iteration
z = CA + BIn2DOxz
n+1 ™
with z“=Vo. Clearly znzvn for all n. The conditions of Lemma
2 are mel and so IV I—0 as n-—wm. But this contradicts 1V i
n n

unbounded, which establishes the result. o
It it alsc pozzible to show that 1f X AY>1 then there exists
a V  such that 1V ] is unbounded (see section 5. In this
ial

sense the GlJ is surprisingly similar to the linear system

In tl= particutar case A=0 a delsziled analysis is possikble
{16,177, This case i< related to the power method for the

numerjcal sclution of eigenvalue problems.

3. ASYMPTOTICS

This leaves the question of boundedness for the case pl{AD=1.
It is possible to construct examples showing that when A is
unmispeciral the orbits of the GITI may be always bounded for
one cho.ce of B and always unbounded for ancther choice of E.

However, a genersl statement about the asymptotics of the

m




e

£ v ek o v ; .
PR =20 t};lt, Lhat 13, when

AKAILT and any eigenvalues of A tlat lie on the umit circle
are simple Ci.e. have as many linearly i ndependent
eigenvesticrs as their multiplicityd, In this case the linesr
system (2.22 has the property that all solutions are bounded
Calthough in general the bound will depend on V D. Before

Led
stating the corresponding result for the GTI, we state:

HUKUWARA'S THEOREM! Let zt be any solution of

z = CA + BOLOD»z Cz2.12
1+1 t
for t=0,1,&,... where A 13 & conztant mairix and
(‘tx
Y IRILSH < o
t=1

Suppoze that A is of bounded type, s that all sclutions of
,&=A*yh’ are bounded for t20. Then every soclution of (3.12
is bounded.

This result, an analogue of a theorem from differentizal
eguaticons, may be found i [23). The proof there uses the ﬂ

vector norm, but the argument is valid for any vector norm and

compatible matrix norm. We will now use 1t to prove an

1

ymptenlo resuit for the GTI.

1
il

=1

[

THeorEM & Let A be of bounded type i1n (1,22, Then

€KX
Ti7kv il = @
W =O n
FrRoOOF: Suppose the contrary, i.e. that for some Vo we have
w0
LisiVv il ¢« o cz.
n=0O i

and corstruct such a sequence {V > by using this VO and (1.20.
ial
Define B(no>=B-liV I and consider the iteration
™
Y = (A + B{rDIxY
r+s ™

where ~& st Y sV . Clearly Y1 =V for all nzd; the two

~l

4
[




sequences are identical. Now
@ w
T HBIndH = ¥ WBIARV U
Lo o n= n
m -
= fEL L l/bvnh
n=0
which Dby supposition 1is bounded. Therefore by Hukuwara's .

Theorer., “Yrﬁ is bounded. Then HVﬁH is bounded, thalt is, 3IM>0
such that HVh"<M for all n. But then Nl/VhH>1/M and since

= This contragiction

[

120V ~x30  we cannot have C
bal

establishes the result. o

inn fazt a siightly more general result hoids. If ¥k is any
vector norm angd (-2 is any funcition that 1s continuocus on
[O,a) and positive on (0,2, and if A is of bounded type, then

any sclution Gf

v = A%V + BxV ~TCHV 1D
n+4 n ™ A2l
must be such that
o
I 1/§(thﬂ) =
nzO

This mav be shown in a completely analogous manner (se= {15]
for detsils and spplicationsh.

Thecrem = establishes that, when o(A)=l but A ix of bounded
type, 1f Lthe orbits diverge then they do so in a way that is
not. much worse than linear (since the sum of the reciprocals
of the norms diverges). In fact if flAl=1 in the spectral norm

then 1t i1s a fact that ths divergence 1s &t most linear, a3

can be seen by setting lal=1 in C2.1) to get

&

v I = Iiv It + ntigl
[ [o]
ar the symplotic eztimate. We will later consider this point -
in grea sr delail when we show in szection 5 that 1if A 13 of

bounded typs Lhen the divergence is always at most linear.

1€(d

_




In ordsr to refine our asymptotic estimates cof the previous

sectior, we wilil need a formula for the sclution of the
iterat.orn (1.25. Giver: an 1teration of the form
z = AliLO%z + W
L t-1 t-1

with o &g o giver, vectors and AJtl a time-varyving matrix,

the so.uticon can always be written 1n the form
t
=¥y Y -y
b L

8«0

z © G .
1+ L] - t+1 (<]

where ¢ .= the 1rait:al condition = , and €Y 2> 15 a fundamerntal
O

matrix set of solutions for

z = AltL=c Cd.17
t-1
{that  1s, Y =1 nd Y =ACrnoxY D [E1]. For the GTI, the
o n+q ]
o . . . r
matrix A 1s constarnt, and 2,5V, s given Furthermore, Y =4
b} ~

for the linear syster (2.0 corresponding to (& 15, and

T
YV = An"v + T An'luE*V VA VAR (4.25
net o) 1 t
t =0
is the saluticon of (1.1, This is called the Green’s Function
Representation of the sciuticn. We will use this form of the

GTI to address the questions of boundedness and asymptotics.

5. A Direct Approach to Boundedness

The apj-osch used in the se:ond section to show that AL

sufficex for the boundsdnecs of (1.2 13 the one originally

’g:l




employ—d by the author 1n [1E3 and alsc appears arn [181 A

“

nore a.rect method, however, was used by the author 1n (18]
and we now give this method

Suppose that pCAdX<1. Ther there exists some natural matrix
norm I “a such that "A”a < 1. Using I HO to represent the
vector norm which induces this matrix norm as well, we have

from C<£.22 that

™ ,
NN P AU I N A
N+t O o tz0 t t {Ke

A fovdu N Trius

Aal
R N 7 YA AN DU T sl -V Y B
Lad o (23 o & o [s} [e]

+1

where + is & positive constant such that

IvVE AEVE < K
o
for ai: nonzerca vectors V. Such a k exists since &ll vector
. - m o .
norme are equivalent on KB (123 Summing the geometric series
and ccliecting like terms gives
Vo 2 eind + kBl oL - BAE D
ey O o O
WHOEr e il »e &% h—ean, Hence KV ho iz asymptotically bounoed.
™
and by the eguivalence of vector norms so = WV KL An

kgl

asymplionic bound for HVnHo is given by
k-NENa/Cl - HAHOD
in terns of the oa-norm. When the spectral norm of A is less
than urity the corresponding bound using that norm,
IBi-CL - liAlD,

iz gene-ally fairly tight.

We have shown that oAl suffices for boundedness. In an
arnalagois way we canh show that if oL AD>] then there must exist

some Vt such that IV I 1= unbounded. CA =s1milar approach has

10




Lren B opluyEl Ly WOSFD Chuan, ser [LTID. For, considersns
C4&. 87, wa have that
1 - t
fgw A v . - -
(AVEEN I hAT Y B - [{ T AT xExV AUV D tt |
ey o t 1 i
120
Cusing i1he spectral normd. Lett A be an eigenvalus of A such
that | I=p{A) and choose Vo to be an eigenvector of A
associated with the eigenvalue A. Then we have
+1 - ¢ :
™ n—
AV 1 IV o - ‘ T A %BxV IV " ‘
N+ o t t

t=0

and since the norm of the sum is at most the sum of the norms,
™

Vo> ‘]x;““uv Lo ¥ HAb R
N+t L e ]
t=z0
> ’POIM"“ - WBE-C1 — ALY N - BARD
with £ =iV . If we let
L8] (&}
c = Nl CHAE - 12
ther c>»7 and
Vo2 ‘p I - cnan™?t 4 c‘
N+ Q !
in terms of c¢. Now polAdD={A|+e for some €2, SO
ooz ‘p (AT - ccqng + &7 4 ¢
T+ 0
> ’p\lﬂ.ﬂ(po - el o+ erfrla™t ac 5 15

If € 1v eguul Lo zero, we may now choose P .o be greater than
c in order to have HVHH—am. Otherwise, the term involving €
will grow arbitrarily large, again giving "Vn“—am.

Agairn, w& remark that +the GTI (1.13 has boundedness
properties similar to those of the linear system (2.20. In
the nex. secltion we will derive improved asymptotics for the
indeterninate case where A has unit spectral radius. Before
Gouling S0 lel us collect the information above as a theorem.
THEOREM 3: Consider the iteration (1.20. If plAD<1 then the

iteraticn is bounded for any Vo, and 1f pELAJ>1 then there

[
[




existes & Vo suuls that the iteration 1s unboundesd.
£
&

Improved Asymptotic Estimates

From (S.12 1t is immediately apparent that when oL{AJ>»1 the

divergence will, in general, be exponential. This again
lesves the case plAD=1. As before, let us first loock at the
case where A is of bounded type. Using the spectral matrix

norm, J4.2) gives

. ™ '
pvow o< jATTW G+ ‘[ T AT xBxv SV i { 6.1
n+g [»} 1 t
Lz0
n
<K + T W& nBi
1 t =0
where K 20 is a bound on liA"“vot: Cwhich in genera: will
depend on VOD. Now since A is of bounded type, WAl is also
boundec<. that is, IA"I<K for some K>O. Thus
™
v = ! <
SUPLEESE SRR 1T o
t=o

£ K + K.n
4 2
showing that the divergence is nio worse than linear.
If plAY=1 but A is nol of bounded type thern it is possible
to show that HA"I=0C(n™ C(in fact WA I=0(n®™> where r<m is the

maximal degree of all nonlinear divisors of A associated with

unimodular eigenvalues), where A i mxm. Hence from (6.13 we
have
n t
Vo< AT av_n o+ nA - Bl
rneg (v ]
t=o
and clearly #IV ’ﬂ diverges at mnst as ocn™h. CIn fact, it
e

diverge= as ocn¥>, and hence in the worst case as ©n">>.

Hernce, when plad=1, if Lhe jteration diverges then 11 doss s=o

[y
2]
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- Y . o wen s b o P— N B ~
aYommEt opmignomrally. We write otrozozm g
THEORFM 4 Consider (1.&) and suppose that K AV=1 and the
iteration is unbounded. If all eigenvalues of A with unit

modulus are simple then the divergence 1s no worse than
linear. Otherwise the divergence 1s no worse than polynom:al

of order m, where m is the order of A.

7. Limit Sstis

Let us &S=fans T(A,E,¥OU Lo be the limit ser {or w-l:inect set
[13]5 of the i1teration; that is, YeT(A,E,VO) if there erists

ar, 1ncreasima subseguence nNli13 such that V. —aY as 1-—a when
iy

the 1reti1a) condition iz V Two thearems follow &z~ily from
)
the mat=srisl 1nm (127
TreoreM T Supposs that {or some Yn the segusnce 4V 2 13
Lol

bounde - Then FCA.E,Vh) 15 & non-empty compast  set and
V —aplCA B,V T 5% n—o.

L4 [ 8]

FrooF: Clearly the closure of ' is simply T and so I is
closed. The boundedness of <V > aimplies that T©' is aiso

™
boundes Hernce [ i= compact (by definmition. Ey the

Bolzanc -Weierstrass Theorem [22], T is not empty.

Now W —I mzans that infCNVn—YN:YeF)—AO as n-——wo {1327
Suppose the contrary. Then we can find a subseguence of (Vn>,
indexed by, say. nli2, which remains a finite distance from T,
Now an> is a bounded infinite segquence and so by the

Bolzano-Weierstrase Thecorem it contains a limit point. But

that pc'nt must be in T, which 1s a cortradiction. o




THEOREM £ Suppose that for some ‘v’o the sequence <V 2> s

Lal

bounds ~ & O&"(AR. \'01‘ . Ther  TCAJK, \«'( Do1s positivelyv
»

invariant.

Froor: fine
TCV)Y = AV + B»xV/iVi C7.1>
so that
\' = TV 3
n+d n
is the iteration under consideration. Since O, the

transformalion T is continuous in some ne:ghborhood of any

peint YTer . Fix Y and choose a subsegquence ni.> such that

Vo Y. By the continuity of T, we have that

nivy

TV D—=0TIYD

Ny

ar i-—a  Rut

s N+ q

<o that
\ —TCYD

™mivy
where miid=nlid+1, Hence T{Yl>el, arnd T 1s positivelv
invariant. o

I fa L. 3t 1= ¢le=~r frop the above that TWYrel whernever Yol

and TAY, is defined. In other words, TT\{O> is positively
invariant. Further topological results on discrete dynamical

system=s that can be extendsd to this ca<e (with some care
taken near the origind) may be found in [14)].

Suppose  that YeI'CAE, VOD s so that VNU—OY for some
increas: ng subseguence n(id. Since the transformation

T: K —F  of (7.1> has the property that

TC-VI = =-TCVD

14




O v
- - - ;- hd - - =
tends o =Y: that 1s. =Y WA E. -V Ir a similar way, 1t
Q
. - _ - LT =S YL N S Ve - vy -
easy to ses Lhat Teld-A,-E,V I and YT ~4. -2, -}
O (8]

- R Y b - - J— - - o \ J s Y
Iin t-e Cazs ot a gA\.lbal atiracter., T\A.E‘ Y 4 1% ITioeennlsEr e
& . T = - - — % e - — jord —— > Y - . - s N
i . ior Lhe particuiar A and B undes consL.deraticn oLt s
(o]
case, it focllows from the above +Lhat ths attractor is

centrally symmetric, i1.e. Ye implies -Ye, and that the same
attractor is found when A and E are replaced by -A and -~-B.

ively. Scme of Lhe attractors displaved bv this

- — - -
&, Tiscu=zion

s Generslired Theodoruyus Iteratlion 1s 10 SOmE  wavi:  Very
=1milsar to Lhe simpie linear =svystem (
contairs some very complicated structures (Figs. 2-53. It 1is
likely that the attraclors are, in general, sitrange but nct
alway=> chactic (see [21J; soms compulational evidences toc Lthis
effect has been provided by James Heyman of the Naval
Fostgrazduate School inm his study of the uwuse of chactaic

dizzret s dynamical systems, particularly the Hénon attractaor,

- - o [ - - - - - - - — - - - - . -
a3 pseodorandom number generators (personal communicationl.

-l
(3
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bowas v L ST N e s ~oa i arP-AbG»AVI»_ s i LT b PRI N d b =D P ‘
o= P P - - - b ~ - et b e -
ares &7e in Drogress Due Lo the preszent plelhors o

definitiocns of the term= “chacs’” and “fractal’ (see [1Z10 1t

is difficult toc prove arything substantative about the chaolic
nature cf the attractors  Lbut, &3 rnoted 1n [z21, many
L 3 - -y - — - - - -~ - o~ -y - - “ -
well-known sirangs attractors are still awalling arailyticsal

verification of +the observed qualitative festures cf the
underlying iterations and differential systems. One aspect of
the GT7 which wo feel is particularly relevarnt to the field is
the va=t array of gecmetirically distinct attraclors Lo be
fournd in the GTI for different choicezs of Lthe matr:ces A and

E: ever. though thesze two mairices essentially reprezent eight

’

parameters. the number of distinct attracters 13 still
P L S SRy N — - - e 3 - - - - b A e e =6~ —_ e -
A N &t v o Q. = LR ASLES awa © s ST, e D T o M R
map  wi*h this propsriy Further invesitigaiion of  this
peoulia" ity seems warranited. Hopefuliv tne figurez ciied here
and irn {17 will motivete resesrch on the guestion cof the

number of distinct atiractors which can belong to & single
2°n. &= ithe works by Gleick [TI. Devaney [(£1. and
ZZ,Z0) have served to help malivate and anform this

author.,
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