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2 Rewew of research accopisamerts

[ - REVIEW OF RESEARCH ACCOMPLISHMENTS
UNDER GRANT NUMBER AFOSR-90-0179

We begin by reviewing some of the research that has been compieted and that has been supported
by AFOSR under Grant Number AFOSR-90-0179. For the sake of brevity, we will not go into great
detail in the following discussion; further informaticn concerning these topics can be ganed fom
the appropriate references listed in §I1I. Also, again for the sake of brevity, we will only discuss two
of the areas of research with which we have been concerned. Other research projects are briefly
discussed in §{I.

1. Numerical Solution of Flow Control Problems

Over the past few years we have undertaken a comprehensive research program addressing vanous
issues connected with flow control and optimization problems. Our efforts in this direction have
focused on

e building mathematical models of the physical problems, invoking a minimum of assump-
tions about the physical phenomena;

s rigorously analyzing the mathematical models, for example, to study the existence and
regularity of solutions, to verify the existence of Lagrange multipliers to enforce constraints,
and to derive necessary conditions that optimal controls must satisfy;

* constructing and analyzing discretization methods for determining approximate solutions
of the optimal control and optimization problems, including a rigorous derivation of error
estimates; and

¢ developing computer codes implementing our discretization algorithms. first for the purpose
of showing the efficacy of these methods, and ultimately. to solve problems of practical
interest.

Our success in carrying out the program is evidenced in various ways. We have published, or have
had accepted, numerous articles in top-of-the-line journals; we have been asked to write chapters for
books; we have been invited to lecture at many international conferences both of the mathematical
and engineering persuasions; we were asked to organize and give the main talk at a workshop on flow
control held in November, 1992 at the Institute for Mathematics and its Applications in Minnesota:
and, perhaps most important, our ideas and algorithms are been used and implemented by engineers
interested in flow control and optimization problems. Details concerning the papers, invited talks,
and the Minnesota workshop may be found in §III; a discussion of a setting wherein our ideas are
being implemented is discussed in §1.1.

QOur work on flow control deals with two different classes of methods of solution. In §1.1 we
discuss our work on methods that use sensitivities within an optimization algorithm, while in §1.2
we deal with the adjoint, or co-state, or Lagrange multiplier approach.

1.1. Design of the AEDC free-jet test facility

An example of our efforts in using sensitivities in connection with flow control problems is the
work we are doing in collaboration with engineers at the AEDC facility in Tullahoma, Tennessee.
Our collaborators in this project include John Burns, Gene Cliff, and Jeff Borggard of Virginia Tech.
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and Karl Kaeile and Donald Todd of AEDC.

One of the primary missions of the AEDC facility is to test aircraft engines. Indeed, within
the United States, they have the unique capability of testing full-size #ngines within the coatroiled
environment of a wind tunnel. Ideally, one would like to have the Sow entering the engine in the
test facility to be =xactly the smme as that entering the engine if it were attached w an aurcraft o
flight. Thus, referring to the sketch in the figure, we would like the Sow at a reference plane ahead
of the engine in the test facility to be the same as that in a similarly situated plane ahead of the
engine in Aight. In order to match the flight conditions at the reference plane (the test faciity &
not large enough to accommodate the whole aircraft) one is free 1o choose the forebody shape and
certain inflow parameters such as the total pressure and Mach ausnber; see the Sgure.

REFERENCE
PLANE

ENGINE
CENTERLINE
i N

I

: INFLOW i

l OUTFLOW|

L J
TEST CELL WALL

Thus the optimization problem is easily stated: determine the inflow parameters and the fore-
body shape that minimizes the difference between the flow at the reference plane in the test facility
and that in flight.

In order to explain our ideas in connection with this problem, we introduce some notation. The
mathematical structure of our problem is similar to that of any optimization or control problem.
First we have certain state variables, i.e., variables that serve to describe the state of the system. In
our context these are given by the pressitre p, the internal energy e, the density p. and the momentum
field pu, where u denotes the velocity. We collectively denote the state variables by ¢. Next, we
have control variables or design parameters which we collectively denote by g. In our context these
include certain inflow conditions such as the total pressure and Mach number, as well a3 a finite set
of parameters that determine the shape of the forebody. (Typically, the forebody is defined as a
combination of Bezier curves that are determined by a finite set of parameters.) The next ingredient
is an objective or cost functional J that in general depends on the state and may also depend on

e
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the controls. In our case we can use
1 R
T = / - U P ()
2 Car

where ['pp denotes the reference plane and U, denotes the velocity field at the reference plane
in flight. (The latter is obtained through experimental measurements.) The final ingredients are
constraints which in our context we denote by F{p, g} = 0. These are merely the flow equations, or
in a practical setting, discretized versions of the fow equations. Then, the problem in hand is the
following minimization problem: find controls g and states ¢ such that J{u) is minimized, subisre
to F(¢.g) =0.
The approach used at AEDC for solving this optimization problem relies on the Gauss-Newton
method:
Start with an initial guesa g for the design parameters.
Fork=0,1,2,...,
1. use the discretized flow equations to find a state ¢, such that Flos. i) = O
2. compute the sensitivities (J0/8g)l,,
3. solve for the increment § from

d¢ de Jo!
Al =—| 5 8=8B{ri. 51 .
(59 o Og 90) (r o 89*9»)

where A(-,-) and B(-, '} are appropriately defined bilinear forms and r denotes an appro-
priate residual.
4. Set gry1 =ge +6
The iteration is terminated whenever |8, or perhaps | 7{uy) ~ J{ux_;)}, is smaller than some
prescribed tolerance.
Two key observations concerning the above algorithm are that Step 1, the state calculation, has

been carried out using PARC-codes developed at AEDC and that for Step 2. the calculation of the
sensitivities, finite difference approximations

8| _ elgr) - ¢(3) )
ag g g% — g

are used, where J is some value close to gi, and ¢(j) satisfies the constraint equations F(9,§) = 0.
Thus, using (2), Steps 1 and 2 require multiple state calculations; indeed, one needs N + 1 state
calculations, where N denotes the total number of design parameters. The necessity of multiple
state computations make this approach prohibitively expensive, especially in three-dimensions.

Our first task was to make the calculation of Step 2 more efficient. We were constrained,
for practical purposes, to use existing PARC-codes, or small variations of these. In this context,
we suggested that the sensitivities should be computed directly as solutions of the state equations
F(¢,g) = 0 differentiated with respect to the design parameter, i.e.,

()5
3¢ l(su.gn)/ 99

Note that (8F/3¢)l(4,..) 80d (9F/Dg)l(4,.5,) depend only on gr and ¢, so that they may be

3
" B (3)
evaluated after Step 1. Then, one may solve the linear system (3) for the sensitivities (8¢/39)l,, .

(#a.00) '
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We have determined how to compute the sensitivities within the PARC environment, and vari-
ants of a 2-D PARC code have been developed both at Virginia Tech and AEDC which in fact
compute the sensitivities. Currently these codes have been run for the inflow and forebody design
parameters. Results are very encouraging, e.g., savings of factors of 5 to 10 over the use of the
difference approximation (2) have been demonstrated.

1.2. Analysis and approzmimation of adjoint methods for fow control

As was mentioned above, the structur. of a flow control or optimization probiem involves
objectives that express why one wan:s to control the flow. Such goals are usually expressed in terms
of the minimization of a cost functional Also, we have constrasnts that determine what kind of flow
one is interested in. The nature of the How is expressed in terms of a specific set of fow equations,
e.g., Euler, Navier-Stokes, stationary, time dependent, incompressible, compressible, etc. Finally,
one has available control mechanisms or design parameters that are to be used to meet the objective.
Controls are expressed in terms of unknown data in the problem specification.

In our own work on adjoint methods, we have considered a large variety of objectives and
control mechanisms in the context of incompressible viscous 8ows. We have rigorously analyzed
these methods with regard to the existence and reqularity of optimal solutions and the existence
of Lagrange multipliers, we have derived optimality systems that determine optimal controis and
states, we have defined and analyzed finite element algorithms. and we have developed codes that
implement the algorithms.

Among the objectives that we have treated are the following; this list is not exhaustive, but is
merely representative. First, we have flow tracking wherein one wishes the velocity feid to be as
close as possible to a prescribed field. If u and Uy denote the velocity field and a prescribed velocity
field, respectively, then we want to control the flow so that u is “close” to Uy. For example, one
can minimize the functional

Ji(u) = il:fn’“ - Ugtdn

where 2 denotes the flow domain. A second objective we have treated is viscous drag minimization.
This can be accomplished by minimizing the integral of the dissipation function, i.e.,

) = § [ 19w + (T e,

where u denotes the viscosity coefficient. Another important objective is the avoidance of hot spots,
i.e., places where temperature peaks occur, along bounding surfaces since often such phenomena iead
to meltdown or to flexural failures. Such difficuities may be avoided by minimizing the functional

J2(T) =/r T ~T.J2dr,

where T denotes the temperature, I, the portion of the boundary along which one would like to
avoid hot spots, and T, a desired temperature distribution.

One of the control mechanisms that we have considered is the velocity, or mass fux, along
portions of the boundary, i.e., injection or suction of fluid Thus, if ['. denotes the portion of the
boundary covered by orifices, we would seek a control g such that a desired objective functional is
minimized, subject to the appropriate flow equations, and also such that

u=g onl,.
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A second control mechanism that we have considered is heating or cooling along bounding surfaces.
For example, one could seek a control g such that a desired objective functional i munimized, subject
to the appropriate How equations, and also such that

fd-;:q on{‘c,

where ', denotes the portion of the boundary aloag which one allows the control 1w act and J:0n
denotes the normal derivative at the boundary. A third type of control 18 a distrsbuted control
e.g., one could try to effect control through the body force in the Navier-Stokes equation or a heat
source in the energy equation. Thus, one would seek a coatrol, defined on the How dommn @ or
on a portion of {2, such that some functional is minimized and subject to the appropriate Sow
equations. Physically, one may effect such control through a magnetic feld acting on an iomzed
fuid or electrically conducting fluid in the first case, or through radiation mechamsms or a targeted
laser beam in the latter case. Recently we have begun studying, in the context of adjoint methods,
shepe controls; in this case control is effected by adjusting the shape of the low domain. The shape
of the flow domain may be changed in many ways. For example, one could use leading and;or
trailing edge flaps, or movable walls, or rudders. or propeller pitch. A related problem is the optimal
design problem. Here, we want to choose a low domain, e.g.. the exterior of an airfoil, so that some

objective is achieved.

1.3. Computational results for a cooling control problem

In order to illustrate the type of resuits that we can obtain using adjoint methods, we consider
the problem of avoiding hot spots along the top wall of a rectangular channel. We assume that
the How is incompressible and convection driven so that buoyancy etfects can be neglected. and
thus temperature effects on the mechanical properties of the flow, i.e., the velocity and pressure.
are negligible. We are interested in the design of heating and cooling controls such that hot spots
are avoided along a portion of the boundary, and thus we assume that the flow is stationary. As
a result of our assumptions sbout the flow, the state variables, i.e., the velocity u, pressure p, and
temperature 7", are required to satisfy the continuity equation, the Navier-Stokes equations, and the
energy equation.

In order to avoid hot spots, we minimize the functional

ITa =3 [ W-TEa e [ e, (@
where T is required to satisfy the flow equations along with boundary conditions. In particular,
along I'., the part of the boundary along which controls are allowed to act, we have that 3T /6n = g.
T, denotes the part of the boundary along which we wish to match the temperature T to a desired
temperature distribution T,. The above functional has been penalized by a norm of the control;
this is necessary since we are not placing any a priori constraints on the size of the control. The
pa. ameter § is used to adjust the relative sizes of the two terms contributing to the functional.

The flow domain is the rectangular channel depicted in the accompanying figure. All computa-
tions were carried out using piecewise linear finite elements on a triangular mesh.
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In the next dgure we show the uncoatrolled temperature :n the interior as weil as along the top
(wall) and right | yutflow) boundaries. One sees that there are many peaks aiong the top boundary.
and that there are peaxs in the temperacure at the top and bottom of the outflow doundary.

- ~
32
- s
22 ~
9 - ! :
M
ESE R EE S R S B T L L o .
Top: level lines of the uncontrolled temperature;

Bottom-left: uncontrolled temperature along the top wall [';;
Bottom-right: uncontro. * temperature along the
right (outflow) boundary [ wv;.
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Next, we have a hesat Jux concrol acting along ["., the top boundary, so that
ar
_— on [,
{—}r‘ y -

where g denotes the control. We also have that [, = I",, the top boundary, with the target ~emper-
ature along [, appearing in the functional {4) taken to be

T, = min{3.3, 11375z - 1} on[, =Tl.. ‘5)

This function ensures a continuous transition with respect to the indow temperature which s set o
T = 1. In the next fgure we display the optimal temperature T and co-state in zhe interior and the
optimal temperature I" and control 7 along the top wall T, = [',. We see from the graph of T along
Ty that we have very effectively matched the ziven distribution T, given by (5). The controi in this

case involves both cooling and heating.

Control and target temperature on the top wall .

Top: level lines of the optimal temperature;
Left-center: optimal temperature along the top wall 'y = [';
Right-center: optimal control along the top wall I'¢;

Bottom: level lines of the optimal co-state.
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Next, we choose [, = ["vy, the right or outflow boundary, so that ", # [.; we now have the

target temperature

Ts = 3.3 en 'y, =y (8}

Again, in the next fdgure, we display the optimal temperature T and co-state in the interior, the
optimal temperature T along the outfBow boundary [, = "y, and control 7 along the top wail ..
Once again, an excellent job is done of matching to the prescribed temperature distribution {6).
Note that the optimal control requicres cooling along the top boundary only :n the viciuty of the
outflow boundary, i.e., near the location at which we are trying to match the Jow temperature 20

that given by (6).

Sy
R ~3.33 -

Control on the top wall ['. and target temperature on the right (outflow)
boundary ', = Cx:.

Top: level lines of the optimal temperature;

Left-center: optimal temperature along the outflow boundary I'y = [ vy;
Right-cen.ar: optimal control along the top wall ['.;

Bottom: level lines of the optimal co-state.
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2. Analysis and Approximation of Macroscopic Models for Superconductivity

Superconductivity is one of the Grand Challenges identified as being crucial to future economic
prosperity and scientific leadership. Much of the research in superconductivity addresses the mi-
crostructure of superconductors; one goal of that research is to predict new high critical temperature
superconducting materials that may then be used in beneficial technological applications. Parallel
to these efforts, it is important to study the macroscopic behavior of superconductors. Indeed, once
new and usable materials are identified, their incorporation into superconducting devices depends
on being able to model these devices and to numerically simulate their physical behavior. Thus,
scientists, engineers, and mathematicians who wish to design superconducting devices and/or who
wish to study the physics of superconductivity are in need of robust and efficient algorithms and
codes for the numerical simulation of superconducting phenomena. Qur goals are:

e to develop, analyze, and implement algorithms that are applicable to high-temperature
superconductors; and
e to use these codes to study, in collaboration with physicists and material scientists, super-
conducting phenomena.
We have already passed a necessary stepping stone towards meeting these goals, namely the devel-
opment and implementation of methods for low-temperature superconductors. In addition, we have
obtained new analytical results in this setting. A summary of the results obtained are reported on
in the papers listed in §III. Our work on superconductivity is receiving widespread recognition. We
have been invited to numerous meetings and workshops on the subject, and physicists at government
labs, universities, and industry have expressed interest in collaborating with us and using our algo-
rithms. One collaborative program that has been initiated is with the group at Oxford University
headed by John Ockendon.

The major accomplishments resulting from our work on low-temperature superconductivity is
that our work represents the first successful simulation of superconductivity by a standard numerical
technique (a finite element method); our algorithms, compared to previous efforts, are efficient,
robust, and extendible to more complex settings, including some involving high critical temperature

superconductors.

2.1. Summary of theoretical results

We summarize the theoretical aspects of our preliminary work; most details can be found in
the papers on superconductivity listed in §IL

We first focused on Ginzburg-Landau models for bounded two- or three-dimensional regions
representing material samples. We reviewed the mathematical formulations of some important
physical concepts such as the fluxoid c'iantization and several important scales and parameters,
Mathematically, the electromagnetic state of the superconductor corresponds to a minimizer of the
Gibbs free energy which, in non-dimensionalized form, may be formulated as

2
+|h{2 —2h- H) dq, (7

oA = [ (f,. ~tolt s g+ | (24 A) v

where 1, A, and h = curl A denote the non-dimensionalized complex order parameter, magnetic
potential, and magnetic field, respectively; H is the applied field ne constant f, is the free energy
density of the normal state in the absence of a magnetic field, and x, known as the Ginzburg-Landau
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parameter, is a material constant representing the ratio of penetration length to the coherence length.
For type-I superconductors, we have x < 1/v2, while 5 > 1/v/2 for type-Il superconductors. A
formal study on the transition between different states in both the type-I and type-11 superconductors
has also been carried out.

The Ginzburg-Landau functional (7} has a very important property, namely, that of gauge
invariance. That is, if for some ¢ € H*(Q), the standard Sobolev space whose elements and their
derivatives of order up to two are square integrable on Q, we have

(=%e"™® and Q=A+ Vo,

then (¢, Q) and (¥, A) are said to be gauge equivalent; note that §({, Q) = G(v, A}. Based on this,
the existence of minimizers of the Ginzburg-Landau functional in the space H'(Q) x HL({2) was
established via standard variational arguments. {For definitions of the related spaces, we refer to the
papers listed in §II1.) In fact, we showed that any minimizer of the Ginzburg-Landau functional is
gauge equivalent to a solution which has a divergence free magnetic potential with vanishing normal
component on the boundary. This corresponds to the Coulomb gauge. The Ginzburg-Landau
equations and natural boundary conditions in the Coulomb gauge are given by

, 2
(£V+A> w—w+§w§2w=0 in 2, (8)
curlcurlA-*—ﬁ(w‘vw—wvw')—!w!2A+curlH in §2, (9)
divA=0 inQ and A-n=0 onl, (10)
and '
(;’;vw+Aw)~n=o and culAxn=Hxn onl. (11)

Other possible boundary conditions were also considered. Various mathematical properties of the
solutions of the Ginzburg-Landau equations were studied. These included the proof of non-existence
of local maxima for the Ginzburg-Landau functional and the fact that the order parameter is bounded
by its ideal superconducting value, i.e., in non-dimensionalized form, !¥| < 1 almost everywhere.
Simple analytic solutions and trivial solutions were discussed. Many of the properties may be used
to interpret related physical phenomena such as the perfect Meissner effect in the absence of an
applied field and the existence of a mixed state, i.e., the existence of vortices or filaments, in the
presence of an applied field below a critical value.

We also developed and analyzed finite element algorithms for approximating solutions to the
model. Finite element subspaces are constructed, in a standard way, from partitions of {2 into finite
elements; h will denote some measure of the size of the finite elements in the partition. Finite clement
approximations are then defined based on a weak formulation of the Ginzburg-Landau equations
with the gauge divA = 0 in Q and A-n = 0 on I We proved the convergence of the finite
element solutions to a branch of regular solutions of the nonlinear Ginzburg-Landau equations and
the convergence was shown to be uniform for « in a compact interval. Optimal error estimates were
also derived under the usual regularity assumpiions. “owever, we note that the question of the
regularity of the solutions of the Ginzburg-Landau equations in bounded domains has not been fully

resolved.
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While vur analyses and algorithms were vaild for both the type- and type-I] regimes, (0 s of gae
mostly for type-l supercouductors. [t 8 well-knowsn that 8 type-l] superosnductors the suiutions
exhibit much more complicaled structures. The grid size Secessary 10 rescive Ue fne structufes
based on bounded domain models, in any computation of practical stelity, would be profubilavely
smaid. So, we turned our altention 10 a perudic Goubury. landas mesded wineh, frath & practow
viewpoint, is more sustable for the aumercal sunslation of typell superosnductorn

The periodic modei 18 based on the notwon of duxued quantizalion and . furmuated o Seactibe
two-dirnensional thin fims. The central assumption o the derivalion of the model s (hatl awyy
fram bouuding surfaces, certain physical varisbles, such as the maghetic Seid. the current. and
the denaity of superconducting charge carrers, exhibut peribic ebavior with respect o a twe
dimensional lattice; the accompanying Sgure shows a typwcad oed n the Jatt 2 The non-arthbogonal
lattice i3 aot necessanly aligned with the coordinate axes consull the fSgure’ A function [ s
periodic wath respect to the lattice vectors ty and tyf

RN

k=l 2andryxs R P

.
[
-y

Fix =ty = fix;

The cell (1p determined by the iattice vectors t; and t; and the point P

We were first concerned with the formulation of the model. A very important issue is the
choice of gauge. A gauge choice is constrained by the need to enforce (he periodicity of several
physical variables and by the Suxoid quantization condition; it is made more difficuit by the fact
that these constraints result in nonstandard “quasi”-periodic conditions for the primary variables
in the Ginzburg-Landau model, i.e., the order parameter and magnetic potential. There have been
conflicting discussions related to this issue in the literature. We made a rigorous and detailed study
and were able to define consistent gauge choices. In short, given the lattice cell depicted in the above
figure, we showed that the vector magnetic potential is gauge equivalent to a potential of the form

Q ~ Ag where
A°=§(_§:) (13)

and Q is divergence free, periodic, and is uniquely determined up to an additive constant vector. In
(13), B is the average magnetic field. To maintain the periodicity of the desired physical variables.
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the order parameter should satisfy
Clx + o) = {{xje™ '™ yxel , &=12, (14)

where gi(x) = —B(x x t,}/2, k = 1,2, and where ['_; and ['_; denote the left sand bottom edges
of the lattice cell, respectively. Clearly, {14) implies the periodicity of the magnitude of the order
parameter; however, the phase suffers a jump scross the lattice. The Suxoid quantization condition
holds under this gauge choice.

We discussed the equivalence of the ditferent forms of the Ginzburg-Landau functionai :n the
periodic setting and proved the existence of the minimuzer in the appropriate spaces. Minnuzers
satisfy a system of equations similar 2o i8) and {9), with suitable modifications to the boundary
conditions. Then, we derived various properties of the solutions of the Ginzburg-Landau equations.
Some of the results, such as the boundedness of the order parameters and the discussion on simpie
analytic solutions, are similar to those we obtained for the bounded domain case. Uniike that case
for which the study of the regularity of solutions was limuted, we were able to obtain extensive
regularity results for the periodic problem.

We then considered finite element approximations of solutions of the periodic model. Periodic
models have been used in the past as a setting for analyzing and approximating phenomena :n type
II superconductors using for the most part, some type of series solution or a Monte Carlo/sirulated
annealing approach. As in other settings, finite element methods can be very competitive for nu-
merical simulation purposes.

Basically, we employ the standard Galerkin finite element approximation to solve the 1onlinear
Ginzburg-Landau equations. The pericdicity of the physical variables and boundary conditions such
as {14) w.r the primary variables ace the non-standard features of our scheme. In general, functions
in the finite element space only satisfy {14) at the interpolating nodes on the boundary, i.e..

¢y + te) = (M (x))e ) Yx, e Tl k=1.2, (15)

where x; is any boundary vertex of a triangle for piecewise linear and quadratic elements and it may
also be the midpoint of any triangle edge on the boundary for quadratic elements. The periodicity
of finite element solutions with respect to the lattice is also defined only at interpolating nodes.
Thus, the fnite element spaces are not the subspaces of the exact solution spaces. The study of the
approximations centered around this issue.

The key to the error analysis is an estimate of a boundary integral term which would disappear if
the finite element spaces were subspaces of the underlying solution space for the continuous problem.
‘We showed that this integral, although not zero in general, gives a higher order error term in the final
estimate and therefore, the optimal convergence rates are retained. The idea may well be generalizad
to higher order element cases with suitable choices of interpolation procedures. Thus, we were able
to obtain optimal error estimates for approximations to the solution of the full nonlinear, periodic,
Ginzburg-Landau equations.

2.2. Summary of computational results

We have developed a finite element code for the periodic Ginzburg-Landau model discussed
above. The code uses piecewise quadratic finite element functions based on a triangulation of a
lattice cell. Tle periodicity and “quasi”-periodicity conditions are implemented as described by
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(15), i.e., at the nodes of the finite elements. The most interesting periodicity structure is that of
an equilateral triangular lattice having one fuxoid associated with each lattice cell. Indeed, it is
well-known that such a lattice vields the smallest value for the Gibbs free energy. Having chosen
input data corresponding to an equilateral triangular lattice having one fluxoid associated with
each lattice cell, the only remaining inputs to be chosen are the Ginzburg-Landau parameter . the
average magnetic field B, and the number and spacing of the grid lines.

The discretized equations are a nonlinear system of algebraic equations. These are solved by
a continuation method coupled with Newton's method. The code is configured so that one chooses
a fixed value for x, and then varies B. For each pair (x. B}, Newton's method is used to solve the
nonlinear equations. The initial guess for Newton's method is determined by continuing from the
solution determined for a previous value of B and the same value of x. The particular continuation
method used is a tangent line approximation to the solution at the previous value of B. We start
with a value of B close to the upper limit x for which Newton's method seems to have a large
attraction ball; we then continue by successively reducing the value of B towards its lower limit 0.

The graph of the computed approximation of the magnetization —47.W vs. the applied field H,
and the level curves of the density of superconducting electrons .V, are given in the next two figures,
respectively. These results were obtained on a Macintosh II using 3 uniformly spaced intervals in
each of the lattice directions. For comparison purposes, we also provide, in the first figure, the
corresponding graph fcr a Monte Carlo/simulated annealing approximation. For the second figure,
the solution in only a single lattice cell was computed; this solution was extended, using periodicity
or “quasi”-periodicity relations to obtain the solution outside the computational cell.

0.2 v v

0.18 1
0.16 Monte Carlo/Simulated annealing {9}

¥

0.14 - 1
0.12
0.1

Finite
clements

Magnetization

0.08 F
0.06 -
0.04 1
0.02 +

0 0.5 1 1.5 2 2.5 3 35 4 4.5 s
External field

Comparison of computational results for the magnetization (—47M) vs. external
field (H,) for x = 5.
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Level curves of N,, the density of superconducting charge carriers, for x = 5 and
B= 16/3.

II - SUMMARY OF OTHER RESEARCH PROJECTS

Under the sponsorship of AFOSR Grant Number AFOSR-90-0179, we have also engaged in a
number of other research projects. Here we give brief descriptions of some of our accomplishments.
Details may be found in the papers listed in §III.

o Parallel algorithms for flow calculations based on the velocity-vorticity formulation. We
carried out a careful study of the accuracy of the approximations of the Navier-Stokes
through the use of the velocity-vorticity formulation. We have shonw that most of the
existing boundary treatments lead to bad vorticity approximations, and we have also de-
veloped improved trestments. We have demonstrated how this formulation can be used to
advantage in a parallel computing envirnment. Specifically, for methods of solution of the
Navier-Stokes equations that require the solution of a series of Stokes problems, we have
shown how the latter may be solved as a sequence of uncoupled Poisson problems. Thus
we have coarse-grain parallelism; fine-grain parallelism may also be attained within each
of the Poisson solves.

o Analysis, application, and computation of centroidal Voronoi tesselations. Voronoi tesse-
lations, and their dual Delauny tesselations of great use in a variety of seetings, including
numerical analysis, data compression, etc. We examine the special type of Voronoi tessela-
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tion wherein the points from which the Voronoi regions are defined are also the centroids
of those regions. We have shown that this type of tesselation possess a certain optimality
property that makes them useful in applications. We have also analyzed algorithms for the
determination of such tesselations.

o The treatment of inhomogeneous essential boundary conditions and the accurats computa-
tion of stresses along boundaries in the finite element method. The “basic” finite element
method applies to homogeneous Dirichlet boundary conditions. A variety of treatments
of inhomogeneous boundary conditions has been proposed in the literature. In our work.
we studied the most popular treatment in engineering practice, namely approximating the
inhomogeous data by a boundary interpolant. We also studied Lagrange multiplier meth-
ods, and, in particular, developed a class of specific methods chat are optimally accurate
and for which the Lagrange multiplier computation uncouples. We made a comprehensive,
rigorous study of the accuracy of these various treatments. A3 a side benefit, we devised an
algorithm for the accurate calculation of boundary stresses in fluid flow calculazions. We
also analyzed the accuracy of these stress approximations.

III - SUMMARY OF OTHER ACTIVITIES UNDER GRANT AFOSR-90-0179

Book editing project
+ Editing a book (with R.A. Nicolaides) to be published by Cambridge University Press on
recent trends and advances in incompressible flow calculations.

Personnel supported by the grant
e Max Gunzburger (Principal investigator) - Summer salary.
o Jerome Eastham (Visiting Assistant Professor) - Partial academic yesr salary.
* Mark Mundt {(Ph.D. student) - Academic year salary.
¢ Pavel Bochev (Ph.D. student) - Summer salary.
o H. Lee (Ph.D. student) - Summer salary.
¢ John Burkhardt (Ph.D. student) - Academic year and summer salary.

Conferences, workshops, and special sessions organized on grant related research

e Special Session on Control of Partial Differential Equations, World Congress of Nonlinear
Analysts, Tampa, August, 1992, (with J. Burns and T. Herdman).

o Workshop on Flow Control, IMA, Minneapolis, November, 1992.

e Special Session on Flow Control, [IEEE Conference on Decision and Control, Tuscon, De-
cember, 1992, (with K. Ito).

o AMS-SIAM-IMS Summer Research Conference on Superconductivity, site to be announced,
July, 1993, (with J. Ockendon).

Invited talks in 1991-1992 on grant related research

o International Conference on Differential Equation, Edinburg, TX, May, 1991.

e Seventh International Conference on Numerical Methods in Laminar and Turbulent Flow,
Stanford, July, 1991.

o Second Soviet-North American Workshop on Computational Fluid Dynamics, Montreal,
September, 1991,

o Fourth International Symposium on Computational Fluid Dynamics, Davis, CA, Septem-
ber, 1991.

e Workshop on Superconductivity, Argonne, IL, January, 1992.

e The Mathematics of Superconductivity, Edinburgh, Scotland, January, 1992.

¢ Joint Meeting of the American and London Mathematical Societies, Cambridge, England,
June, 1992.

o World Congress of Nonlinear Apalysts, Tampa, August, 1992.
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¢ Computation and Control III, Bozeman, MT, August, 1992,
e Sixth International Conference on Boundary and Interior Layers, Summit Country, CC,

August, 1992.

e Conference on Computational Methods for the Material Sciences, Pittsburgh, September,

1992.

e American Mathematical Society Meeting, Dayton, October, 1992.
o [EEE Conference on Decision and Control, Tuscon, December, 1992

Publications prepared reporting on grant related research (1990-1992)

1

2.

10.

11.

12.

13.

14.

15.

16.

17.

Finite element approximations of a Ladyzhenskaya model for stationary incompressible
viscous fow; SIAM J. Numer. Anal 27, 1990, 1-19; with Q. Du.

Experiences with computational methods for the velocity-vorticity formulation of incom-
pressible viscous flow; Computational Methods in Viscous Aderodynamics, Elsevier, 1990,
231-271; with M. Mundt and J. Peterson.

A subdomain Galerkin/least squares method for first order elliptic systems in the piane;
SIAM J. Numer. Anal. 27, 1990, 1197-1211; with C. Chang.

. A numerical method for drag minimization via the suction and injection of mass through

the boundary; Stabilization of Flexible Structures, Springer, 1990, 312-321; with L. Hou
and T. Svobodny.

. Finite element approximations of an optimal control problem associated with the scalar

Ginzburg-Landau equation; Comput. Math. Appl 21, 1991, 123-131; with L. Hou and T.
Svobodny.

Analysis of a Ladyzhenskaya model for incompressible viscous flow; J. Math. Anal Appl
155, 1991, 21-45; with Q. Du.

Analysis, approximation, and computation of control problems for incompressibe flows;
Turbulence Structure and Control, Ohio State, 1991, 85-88.

. Existence, uniqueness, and finite element approximation of solutions of the equations of

stationary, incompressible magnetohydrodynamics; Math. Comp. 58, 1991, 523-563; with
A. Meir and J. Peterson.

. Control of temperature distributions along boundaries of engine components; Numerical

Methods in Laminar and Turbulent Flow VII, Pineridge, 1991, 765-773; with L. Hou and
T. Svobodny.

Vorticity constraints in velocity-vorticity formulations of steady, viscous, incompressible
flow; Numerical Methods in Laminar and Turbulent Flow VI1I, Pineridge, 1991, 774-781;
with Q. Du and A. Meir.

Approximation of boundary control and optimization problems for fluid flows; {th Interna-
tional Symposium on Computational Fluid Dynamics, U. California, Davis, 1991, 455-460;
with L. Hou and T. Svobodny.

Analysis and finite element approximations of optimal control problems for the stationary
Navier-Stokes equations with distributed and Neumann controls; Math. Comp. 57 1991,
123-151; with L. Hou and T. Svobodny.

Predictor and steplength selection in continuation methods for the Navier-Stokes equations;
Comput. Math. Appl. 22, 1991, 73-81; with J. Peterson.

Analysis and finite element approximations of optimal control problems for the stationary
Navier-Stokes equations with Dirichlet controls; Math. Model. Numer. Anal mbf 25,
1991, 711-748; with L. Hou and T. Svobodny.

Boundary velocity control of incompressible flow with an application to viscous drag re-
duction; SIAM J. Control Optim. 30 1992, 167-181; with L. Hou and T. Svobodny.
Analysis and approximation of the Ginzburg-Landau model of superconductivity; SIAM
Review 34 1992, 54-81; with Q. Du and J. Peterson.

Numerical solution of the compressible boundary layer equations using the finite element
method; AIAA Paper AIAA-92-0666, AIAA, Washington, 1992; with E. Hytopoulos and
J. Schetz.
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18.
19.
20.
2l
22,
23.
24.
25.
26.
27.

28.

Other past actiatres

Treating inhomogeneous essential boundary conditions in finite element methods and the
calculation of boundary stresses; STAM J. Numer. Anal 29 1092, 390-424: with L. Hou.
Solving the Ginzburg-Landau equations by finite element methods; Phys. Rev. B, 46 1992,
9027-9034; with Q. Du and J. Peterson.

On the Ginzburg-Landau equations of superconductivity; Partial Differential Equations,
Longman, 1992, 58-62; with Q. Du and J. Peterson.

Heating and cooling control of temperature distributions along boundaries of ow domains;
to appear in J. Math. Systems Estim. Controf, with L. Hou and T. Svobodny.

Optimal control and optimization of viscous, incompressible flows; to appear in Incompress-
ible Computational Fluid Dynamics: Trends and Advances; with L. Hou and T. Svobodny.
Boundary control of incompressible flows; to appear in Advances in Computational Fluid
Dynamics; with L. Hou and T. Svobodny.

Modeling and analysis of a periodic Ginzburg-Landau model for type-II superconductors;
to appear; with Q. Du and J. Peterson.

Optimal control problems for a class of nonlinear equations with an application to the
control of fluids; to appear; with L. Hou and T. Svobodny.

Finite element approximation of a periodic Ginzburg-Landau model for type-I1 supercon-
ductors; to appear; with Q. Du and J. Peterson.

The approximation of boundary control problems for fluid flows with an application to
control by heating and cooling; to appear; with L. Hou and T. Svobodny.

Analysis, applications, and computation of centroidal Voronoi tesselations; in preparation;
with Q. Du, V. Faber, and C. Scovill.




