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ABSTRACT

A review of the research that has been carried out under the sponsorship of Air Forme Office of

Scientific Research grant number AFOSR-90-0179 is given. Details are given about two research

programs, namely flow control and superconductivity. In both instances we have modeled realistic

physical problems, we have performed rigorous analyses on the mathematical models, we have de-

veloped approximation schemes which we have also analyzed, and we have written computer codes

implementing our computational method. In both instances, we were the first to carry out such a

comprehensive research program, and in so doing, have developed robust and useful algorithms that

may be applied to practical problems. In connection with our research in flow optimization, we have

also embarked on a joint research program with personnel at the AEDC facility in Tu~lahoma, Ten-

nessee. We also briefly discuss other accomplishments related to this grant, including other research

projects, invited talks, journal articles, etc.
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1. REVIEW OF RESEARCH ACCOMPLISHMENTS

UNDER GRANT NUMBER AFOSR-90-0179

We begin by reviewing iome of the research that has been iompleted &Md that haw bo•n supportod

by AFOSR under Grant Number AFOSO-90-0179- For the sake of brevity, we will not go mntA great

detail in the following discussion; further information concerning tht~e topics can t)e gixd from

the appropriate references listed in 111. Also, again for the sake of brevity, we w'1 only disum two

of the areas of research with which we have boen concerned. Other research prolects ate bnedy

discussed in §il.

1. Numerical Solution of Flow Control Problems

Over the past few years we have undertaken a comprehensve resarch program aridrvssng various

issues connected with flow control and optimization problems Our efforts ,n this direction have

focused on

"* building mathematical models of the physical problems, invoking a minimum of &wump.

tions about the physical phenomena.

"* rigorously analyzing the mathematical models, for example, to study the existence and

regularity of solutions, to verify the existence of Lagrange multipliers to enforce constraints,

and to derive necessary conditions that optimal controls must satisfy-,

"* constructing and analyzing discretization methods for determining approximate solutions

of the optimal control and optimization problems, including a rigorous derivation of error

estimates; and

"* developing computer codes implementing our discretization algorithms. first for the purpose

of showing the efficacy of these methods, and ultimately, to solve problems of practical

interest.

Our success in carrying out the program is evidenced in various ways. We have published, or have

had accepted. numerous articles in top-of-the-line journals; we have been asked to write chapters for

books: we have been invited to lecture at many international conferences both of the mathematical

and engineering persuasions; we were asked to organize and give the main talk at a workshop on flow

control held in November, 1992 at the Institute for Mathematics and its Applications in Minnesota:

and, perhaps most important, our ideas and algorithms are been used and implemented by engineers

interested in flow control and optimization problems. Details concerning the papers. invited talks.

and the Minnesota workshop may be found in §III; a discussion of a setting wherein our ideas are

being implemented is discussed in §1.1.

Our work on flow control deals with two different classes of methods of solution. In §1.1 we

discuss our work on methods that use sensitivities within an optimization algorithm, while in §1.2

we deal with the adjoint, or co-state, or Lagrange multiplier approach.

1.1. Design of the AEDC free-jet test facility

An example of our efforts in using sensitivities in connection with flow control problems is the

work we are doing in collaboration with engineers at the AEDC facility in Tullahoma, Tennessee.

Our collaborators in this project include John Burns, Gene Cliff, and Jeff Borggard of Virginia Tech.
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and Karl Kneile and Donald Todd of AEDC-

One of the primary missions of the AEDC facility is to test aircraft engines. lndted, withan

the United States, they have the unique capability of testing ful-si-ze engines within the controiled

environment of a wind tunnel. Ideally, one would like to have the flow entering the engihe in the

test facility to be e-xactly the same as that entering the eng.ne Jf it were attached to an aircrslt in

flight. Thus, referring to the sketch in the figure, we would like the flow at & reference plane aheld

of the engine in the test facility to be the same as that in a simnlarly situatc.d plane aiwad uf the

engine in flight. In order to match the flight conditions at the reference plane the test fac•lity .s

not large enough to accommodate the whole aircraft) one is free to choae the forebody shap and

certain inflow parameters such as the total pressure and Mach number: we the figure.

REFERENCE
P LAN E

ENGINE
CENTERLINE

SI OUTFLOW I

TEST CELL WALL

Thus the optimization problem is easily stated: determine the inflow parameters and the fore-

body shape that minimizes the difference between the flow at the reference plane in the test facility

and that in flight.

In order to explain our ideas in connection with this problem, we introduce some notation. The

mathematical structure of our problem is similar to that of any optimization or control problem.

First we have certain state umaiables, i.e., variables that serve to describe the state of the system. In

our context these are given by the pre-surp p, the internal energy e, the density p. and the momentum

field pu, where u denotes the velocity. We collectively denote the state variables by d. Next, we

have control variables or design parameters which we collectively denote by g. In our context these

include certain inflow conditions such as the total pressure and Mach number, as well as a finite set

of parameters that determine the shape of the forebody. (Typically, the forebody is defined as a

combination of Bezier curves that are determined by a finite set of parameters.) The next ingredient

is an objective or cost functional J' that in general depends on the state and may also depend on



the controls. In our case we can use

J(u)= f U--U1 (1)
_ 1p

where FRP denotes the reference plane and U1 denotes the velocity ield at the reference plane
in flight. (The latter is obtained through experimental measurements.) The final ingredients are

comntrants which in our context we denote by F(P, 9) = 0. These are merely the flow equations, or
in a practical setting, discretized versions )f the dlow equations. Then, the problem in hand is the
following mininmtuation probier find controls g and states o such that J(u) is rminmirzed, sub;.'

to F(•, g) = 0.
The approach used at A.EDC for solving this optimization problem relies on the Gauss-NewtOn

method:
Start with an initial gues go for the design parameters.

For k = 0, 1,2 ,..
1. use the discretized flow equations to find a state o, such that F(&jg&,) = 0:
2. compute the sensitivities (Oo/8g){9 .
3. solve for the increment 3 from

A (' . ý'-1.) 6= B r.00!
0 g 0.9 O9I.) .~~

where A(-.-) and B(-, -) are appropriately defined bilinear forms and r denotes an appro-
priate residual.

4. Set g&+t =gk+ 6

The iteration is terminated whenever 161, or perhaps tJ(uk) - 7(uk-j)j, is smaller than some

prescribed tolerance.
Two key observations concerning the above algorithm are that Step 1, the state calculation, has

been carried out using PARC-codes developed at AEDC and that for Step 2. the calculation of the
sensitivities, finite difference approximations

"01 ':z 00k,) - -00)_ 0(2)
8 (9k) -

ame used, where § is some value close to 9k, and O(j) satisfies the constraint equations F(•,#) 0.

Thus, using (2), Steps I and 2 require multiple state calculations; indeed, one needs N 4- 1 state
calculations, where N denotes the total number of design parameters. The necessity of multiple
state computations make this approach prohibitively expensive, especially in three-dimensions.

Our first task was to make the calculation of Step 2 more efficient. We were constrained,
for practical purposes, to use existing PARC-codes, or small variations of these. In this context,
we suggested that the sensitivities should be computed directly as solutions of the state equations

F(O, g) = 0 differentiated with respect to the design parameter, i.e.,

(8F1(0g O10 = - o-7g (3)

Note that (OF/Ob)I(.bgb) and (OF/Og)l(€,.b) depend only on g9 and 0,, so that they may be
evaluated after Step I. Then, one may solve the linear system (3) for the sensitivities (00/08g)j.
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We have determined how to compute the sensitivities within the PARC environment, and vari-

ants of a 2-D PARC code have been developed both at Virgina Tech and AEDC which in. fact

compute the sensitivities. Currently these codes have been run for the inflow and forebody design

parameters. Results are very encouraging, e.g., savings of factors of 5 to 10 over the use of the

difference approximation (2) have been demonstrated.

1.2. Analyis. and approxImatwn of adjomt methods for flow control

As was mentioned above, the structur, of a flow control or optimization probiem rnvolves

objectives that express why one wanr.s to control the flow. Such gows axe usually expressed .n terms

of the minimization of a cost functional Also, we have construmrts that determine what kind of flow

one is interested in. The nature of the flow is expressed in terms of a specific set of flow equations,

e.g., Euler, Navier-Stokes, stationary, time dependent, incompressible, compressible, etc. Finally.

one has available control mechaniinms or design parameters that are to be used to meet the objective.

Controls are expressed in terms of unknown data in the problem specification.

In our own work on adjoint methods, we have considered a large variety of objectives and

control mechanisms in the context of incompressible viscous flows. We have rigorously analyzed

these methods with regard to the existence and regularity of optimal solutions and the existence

of Lagrange multipliers, we have derived optimality systems that determine optimal controls and

states, we have defined and analyzed finite element algorithms, and we have developed codes that

implement the algorithms.

Among the objectives that we have treated are the following; this list is not exhaustive, but is

merely representative. First, we have flow tracking wherein one wishe- the velocity field to be as

close as possible to a prescribed field. If u and Ud denote the velocity field and a prescribed velocity

field, respectively, then we want to control the flow so that u is "close' to UL. For example. one

can minimize the functional

f 1i(u) = 11u - Ud14 d
4 Jo

where S1 denotes the flow domain. A second objective we have treated is viscous drag minimization.

This can be accomplished by minimizing the integral of the dissipation function, i.e.,

32(u) = ý j (Vu) + (VU)t 2 dQ,

where p denotes the viscosity coefficient. Another important objective is the avoidance of hot spots,

i.e., places where temperature peaks occur, along bounding surfaces since often such phenomena lead

to meltdown or to flexural failures. Such difficulties may be avoided by minimizing the functional

- 3 (T) = fr IT - TIadr,

where T denotes the temperature, F, the portion of the boundary along which one would like to

avoid hot spots, and T, a desired temperature distribution.

One of the control mechanisms that we have considered is the velocity, or mass flux, along

portions of the boundary, i.e., injection or suction of fluid, Thus, if r, denotes the portion of the

boundary covered by orifices, we would seek a control g such that a desired objective functional is

minimized, subject to the appropriate flow equations, and also such that

u=g onJ7c.
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A second control mechairsm that we have considered is heating or cooling aolong 6unuhny surfac.rs.

For example, one could seek a control q such that a desired objective functional s minin •-•d, sube•oet

to the appropriate flow equations, and also such that

S=q on .

where r, denotes the portion of the boundary along which one &tUows the control to act wnd 3 d<n

denotes the norrnmal derivative at the boundary. A third type of control .s a diwnMbuted ;OYntrvL

e.g., one could try to effect control through the body force in the Navier-Stokes equation or a he&t

source in the energy equation. Thus, one would seek a control, defined on the flow domain 1 or

on a portion of St, such that some functional is minimized and subject to the appropriate dow

equations. Physically, one may effect such control through a magnetic field acting on an ionized

fluid or electrically conducting fluid in the first case, or through radiation mechanisms or a targeted

laser beam in the latter case. Recently we have begun studying, in the context of adjoint methods.

shape contro, in this case control is effected by adjusting the shape of the flow domain. The shape

of the flow domain may be changed in many ways. For example, one could use leading arid or

trailing edge flaps, or movable walls, or rudders, or propeller pitch. A related problem is the optirnoi

design problem. Here, we want to choose a flow domain, e.g., the exterior of an airfoil, so that some

objective is achieved.

1.3. Computational results for a cooling control problem

In order to illustrate the type of results that we can obtain using adjoint methods, we consider
the problem of avoiding hot spots along the top wall of a rectangular channel. We assume that

the how is incompressible and convection driven so that buoyancy effects can be neglected. and

thus temperature effects on the mechanical properties of the flow, i.e., the velocity and pressure.

are negligible. We are interested in the design of heating and cooling controls such that hot spots

are avoided along a portion of the boundary, and thus we assume that the flow is stationary. As

a result of our assumptions about the flow, the state variables, i.e., the velocity u. pressure p, and

temperature T, are required to satisfy the continuity equation, the Navier-Stokes equations, and the

energy equation.

In order to avoid hot spots, we minimize the functional

J(T,g) = _ TT1 2 d" + f !g1 aT, (4)

where T is required to satisfy the flow equations along with boundary conditions. In particular,

along r•, the part of the boundary along which controls are allowed to act, we have that cT/'ln = g.

F, denotes the part of the boundary along which we wish to match the temperature T to a desired

temperature distribution T,. The above functional has been penalized by a norm of the control;

this is necessary since we are not placing any a priori constraints on the size of the control. The

pa. ineter 6 is used to adjust the relative sizes of the two terms contributing to the functional.

The flow domain is the rectangular channel depicted in the accompanying figure. All computa-

tions were carried out using piecewise linear finite elements on a triangular mesh.
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rn the next igure we show the uncontrodled temperature :n the interior as weil As .Iong the top

(wail) and right ,)utflow) boundaries. One sees that there wre many peaks along the wop o•oundary,.

and that there are peaks in the .emperature at the .op and botorm of the outflow 'boundary.

:r MM•, :

2 ::

Top: level lines of the uncontrolled temperature;
Bottom-left: uncontrolled temperature along the top wall r,;
Bottom-right: uncontro- I temperature along the

right (outflow) boundary r'vi.
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Next, we have a heat dux control acting along r,, the top boundary, so that

where g denotes the control. We also have that P, = r, the top boundary, with -he targget 'emnper-

ature along r, appearing in the functional (4) taken to be

T, = min{3.5.1J1.35x -} 1) on)

This function ensures a continuous transition with trespect to the *adow temperature which -.3 set to

T =I. 'in the nex< igure we display the optimal temperature Ir And co-state in the :ncerior and the

optimal temperature T' and control I along the top wadl r, = r. We see from the graph of 2' along

r, that we have very effectively matched the given distribution 2', given by 5). The controi in this

case involves both cooling and haig

Control and target temperature on the top wall.
Top: level lines of the optimal temperature;
Left-center: optimal temperature along the top wail r, r,
Right-center: optimal control along the top wall r.;
Bottom: level lines of the optimal co-state.
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Next, we choose r, = r.vi, the right or outflow boundary, 3o that F, # r..; we now have the
target temperature

TS = 3.5 on r, = r~vl. 61

Again, in the next dgwre, we display the optimal temperature T2 and co-state in the internor. :he

optimal temperature T along the outflow boundary F, = '.vN, and control g along the top wail ['.
Once again, an excellent Job is done of matching to the prescribed cemperature distribution ý6).

Note that the optimal control requires cooling %long the top boundary only xn the vc•ic~ty of the
outflow boundary, i.e., near the location ac which we are trying to match che dow temperature to

that given by (6).

Control on the top wall r• and target temperature on the right (outflow)
boundary F, = Fvi.
Top: level lines of the optimal temperature;
Left-center: optimal temperature along the outflow boundary r, = F.vi;
Right-cen,3r: optimal control along the top wall r.;
Bottom: level lines of the optimal co-state.
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2. Analysis and Approximation of Macroscopic Models for Superconductivity

Superconductivity is one of the Grand Challenges identified as being crucial to future economic

prosperity and scientific leadership. Much of the research in superconductivity addresses the mi-

crostructure of superconductors; one goal of that research is to predict new high critical temperature

superconducting materials that may then be used in beneficial technological applications. Parallel

to these efforts, it is important to study the macroscopic behavior of superconductors. Indeed, once

new and usable materials are identified, their incorporation into superconducting devices depends

on being able to model these devices and to numerically simulate their physical behavior. Thus,

scientists, engineers, and mathematicians who wish to design superconducting devices and/or who

wish to study the physics of superconductivity are in need of robust and efficient algorithms and

codes for the numerical simulation of superconducting phenomena. Our goals are:

"* to develop, analyze, and implement algorithms that are applicable to high-temperature

superconductors; and

"* to use these codes to study, in collaboration with physicists and material scientists, super-

conducting phenomena.

We have already passed a necessary stepping stone towards meeting these goals, namely the devel-

opment and implementation of methods for low-temperature superconduztors. In addition, we have

obtained new analytical results in this setting. A summary of the results obtained are reported on

in the papers listed in §111. Our work on superconductivity is receiving widespread recognition. We

have been invited to numerous meetings and workshops on the subject, and physicists at government

labs, universities, and industry have expressed interest in collaborating with us and using our algo-

rithrms. One collaborative program that has been initiated is with the group at Oxford University

headed by John Ockendon.

The major accomplishments resulting from our work on low-temperature superconductivity is

that our work represents the first successful simulation of superconductivity by a standard numerical

technique (a finite element method); our algorithms, compared to previous efforts, are efficient,

robust, and extendible to more complex settings, including some involving high critical temperature

superconductors.

2.1. Summary of theoretical results

We summarize the theoretical aspects of our preliminary work; most details can be found in

the papers on superconductivity listed in §II.

We first focused on Ginzburg-Landau models for bounded two- or three-dimensional regions

representing material samples. We reviewed the mathematical formulations of some important

physical concepts such as the fluxoid c'iantization and several important scales and parameters.

Mathematically, the electromagnetic state of the superconductor corresponds to a minimizer of the

Gibbs free energy which, in non-dimensionalized form, may be formulated as

9(0',A) = jf. _ tiI2 + 1 p4 + (.V +A V)12 + 1h12 -2h -H) df, (7)

where 10, A, and h = curl A denote the non-dimensionalized complex order parameter, magnetic

potential, and magnetic field, respectively; H is the applied field fie constant f,, is the free energy

density of the normal state in the absence of a magnetic field, anct x, known as the Ginzburg-Landau
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parameter, is a material constant representing the ratio of per.etration length to the coherence length.

For type-I superconductors, we have r < I/V/22, while r > 1iV"5. for type-IL superconductors. A

formal study on the transition between different states in both the type-I and type-IT superconductors

has also been carried out.

The Ginzburg-Landau functional (7) has a very important property, namely, that of gauge

invariance. That is, if for some t E H 2 (f9), the standard Sobolev space whose elements and their

derivatives of order up to two are square integrable on 0, we have

ý ~" and Q=A+V0

then (c;, Q) and (V5, A) are said to be gauge equivalent note that Q(ý, Q) = !(w, A). Based on this,

the existence of minimizers of the Ginzburg-Landau functional in the space HI(Q2) x Hý(fQ) was

established via standard variational arguments. (For definitions of the related spaces, we refer to the

papers listed in §III.) In fact, we showed that any minimizer of the Ginzburg-Landau functional is

gauge equivalent to a solution which has a divergence free magnetic potential with vanishing normal

component on the boundary. This corresponds to the Coulomb gauge. The Ginzburg-Landau

equations and natural boundary conditions in the Coulomb gauge are given by

V+A ) -2 W+1I121p=0 in Q, (8)

curlcurlA _--(Vi- OVVI) -101 2A A+c,:rlH in Q, (9)

divA=O inQ and A.n=G on!', (10)

and

('V7b+A?).n=0 and curlAxn=Hxn onr.

Other possible boundary conditions were also considered. Various mathematical properties of the

solutions of the Ginzburg-Landau equations were studied. These included the proof of non-existence

of local maxima for the Ginzburg-Landau functional and the fact that the order parameter is bounded

by its ideal superconducting value, i.e., in non-dirnensionalized form, !7j1 < 1 almost everywhere.

Simple analytic solutions and trivial solutions were discussed. Many of the properties may be used

to interpret related physical phenomena such as the perfect Meissner effect in the absence of an

applied field and the existence of a mixed state, i.e., the existence of vortices or filaments, in the

presence of an applied field below a critical value.

We also developed and analyzed finite element algorithms for approximating solutions to the

model. Finite element subspaces are constructed, in a standard way, from partitions of Q into finite

elements; h will denote some measure of the size of the finite elements in the partition. Finite dement

approximations are then defined based on a weak formulation of the Ginzburg-Landau equations

with the gauge div A = 0 in S1 and A- n = 0 on r. We proved the convergence of the finite

element solutions to a branch of regular solutions of the nonlinear Ginzburg-Landau equations and

the convergence was shown to be uniform for r. in a compact interval. Optimal error estimates were

also derived under the usual regularity assumpLions. 7Towever, we note that the question of the

regularity of the solutions of the Ginzburg-Landau equations in bounded domains has not been fully

resolved.
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We were first concerned with the formulation of the model. A very important issue is the

choice of gauge. A gauge choice is cor.strained by the neod to enforce ,he periodicity of several

physical variables and by the fluxoid quantizatton condition, it is made more difficult by the fact

that these constraints result in nonstandard 'quasi"-periodic conditions for the primar w-mabies

in the Ginzburg-Landau model. i.e.. the order parameter and magnetic potential. There have been

conflicting discussions related to this issue in the literature. We made a rigorous xnd detaile-4d study

and were able to define consistent gauge choices. In short, gwen the lattice cell depicted n the above

figure, we showed that the vector magnetic potential is gauge equivalent to a potential of the form

Q - Ao where

AO ( ) (13)

and Q is divergence free, periodic, and is uniquely determined up to an additive constant vector, In

(13), P is the average magnetic field. To maintain the periodicity of the desired physical variables.
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the order parameter should satisfy

¢(x I )• V ¢xe• x_ c- V, k = 1, 2, -t
,x 4- ti.) =ýx)et"'tx vEl~k ,

where gk(x) = x t.)/2, k = 1,2, and where F_- and rF2 denote the :eft and bottom odge

of the lattice cell, respectively. Clearly, %'14) Implies the periuxiic-ty of the magnitude of the order

parameter; however, the phase suffers a jump 3crom the lattice. The tiuxoid quantization c•nlition

holds under this gauge choice.

We discussed the equivalence of the different forms of the Ginzburg-Landau funct.on1ai n the

periodic setting and proved the existence of the mirrnuzer in the appropr.ate spaces. Minimizers
satisfy a system of equations 3imilar to N8) and (9), with suitable modifications tW the 5oundar-

conditions. Then, we derived various properties of the solutions of the Ginzburg-Laadau equations.

Some of the results, such as the boundedness of the order parameters and the discusion on .impie
analytic solutions, are similar to those we obtained for the bounded domain cawe. Undike that case
for which the study of the regularity of solutions was limited, we were able to obtain extensive

regularity results for the periodic problem.

We then considered finite element approximations of solutions of the 4rno(dic model. Pernodic

models have been used in the past as a setting for analyzing and approximating phenomena ;n type.

II superconductors using for the most part, some type of series solution or a Monte Carlo/simulated
annealing approach. As in other settings, finite element methods can be very competitive for nu-

merical simulation purposes.

Basically, we employ the standard Galerkin finite element approximation to solve the -ionhnear
Ginzburg-Landau equations. The periodicity of the physical variables and boundary conditions such

as (14) i,.- the primary variables a&e the non-standard features of our scheme. In general, functions

in the finite element space only satisfy (14) at the interpolating nodes on the boundary, i.e..

h(x) + tk) = h(x')e-9h(x,) V'X, E r-_, k = 1.2, (15)

where xj is any boundary vertex of a triangle for piecewise linear and quadratic elements and it may

also be the midpoint of any triangle edge on the boundary for quadratic elements. The periodicity

of finite element solutions with respect to the lattice is also dpfined only at interpolating nodes.

Thus, the finite element spaces are not the subspaces of the exact solution spaces. The study of the

approximations centered around this issue.

The key to the error analysis is an estimate of a boundary integral term which would disappear if

the finite element spaces were subspaces of the underlying solution space for the continuous problem.
We showed that this integral, although not zero in general, gives a higher order error term in the final

estimate and therefore, the optimal convergence rates are retained. The idea may well be generaLz-:d

to higher order element cases with suitable choices of interpolation procedures. Thus, we were able
to obtain optimal error estimates for approximations to the solution of the full nonlinear, periodic,

Ginzburg-Landau equations.

2.2. Summary of computational results
We have developed a finite element code for the periodic Ginzburg-Landau model discussed

above. The code uses piecewise quadratic finite element functions based on a triangulation of a

lattice cell. The periodicity and "quasi"-periodicity conditionr are implemented as described by
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(15), i.e., at the nodes of the finite elements. The most interesting periodicity structure is that of

an equilateral triangular lattice having one fluxoid associated with each lattice cell. Indeed, it in
well-known that such a lattice yields the smallest value for the Gibbs free energy. Having chosen

input data corresponding to an equilateral triangular lattice having one fluxold associated with

each lattice cell, the only remaining inputs to be chosen are the Ginzburg-Landau parameter n. the

average magnetic field 6, and the number and spacing of the grid lines.

The discretized equations are a nonlinear system of algebraic equations. These are solved by

"a continuation method coupled with Newton's method. The code is configured so that one chooses

"a fixed value for K, and then varies R. For each pair (oc. P), Newton's method is used to solve the

nonlinear equations. The initial guess for Newton's method is determined by continuing from the

solution determined for a previous value of D and the same value of K. The particular continuation

method used is a tangent line approximation to the solution at the previous value of Af We start

with a value of D close to the upper limit % for which Newton's method seems to have a large

attraction ball; we then continue by successively reducing the value of 19 towards its lower limit 0.

The graph of the computed approximation of the magnetization -4rrM vs. the applied field H,

and the level curves of the density of superconducting electrons ,. are given in the next two figures,

respectively. These results were obtained on a 'Macintosh II using 3 uniformly spaced intervals in

each of the lattice directions. For comparison purposes, we also provide, in the first figure, the

corresponding graph f. r a Monte Carlo/simulated annealing approximation. For the second figure,

the solution in only a single lattice cell was computed; this solution was extended, using periodicity

or "quasi"-periodicity relations to obtain the solution outside the computational cell.

0.2

0.18-

0.16 Monte Carlo/Simulated annealing [91

0.14

. 0.12

"- 0.1 Finite

elementsS0.08

0.06

0.04

0.02[

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

External field

Comparison of computational results for the magnetization (-47rM) vs. external

field (He) for x = 5.
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Level curves of 4,,, the density of superconducting charge carriers, for n€ 5 and

S=10/3.

II - SUMMARY OF OTHER RESEARCH PROJECTS

Under the sponsorship of AFOSR Grant Number AFOSR-90-0179, we have also engaged in a
number of other research projects. Here we give brief descriptions of some of our accomplishments.
Details may be found in the papers listed in §III.

"* Parallel algorithmsz for flow calculations based on the velocity- vorticity formulation. We
carried out a careful study of the accuracy of the approximations of the Navier-Stokes
through the use of the velocity-vorticity forniulation. We have shonw that most of the
existing boundary treatments lead to bad vorticity approximations, and we have also de-
veloped improved treatments. We have demonstrated how this formulation can be used to
advantage in a parallel computing envirnment. Specifically, for methods of solution of the
Navier-Stokes equations that require the solution of a series of Stokes problems, we have
shown how the latter may be solved as a sequence of uncoupled Poisson problems. Thus
we have coarse-grain parallelism; fine-grain parallelism may also be attained within each
of the Poisson solves.

"* Analysis, application, and computation of centroidal Voronoi tesselatiorns. Voronoi tesse-
lations, and their dual Delauny tesselations of great use in a variety of seetings, including
numerical analysis, data compression, etc. We examine the special type of Voronoi tessela-
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tion wherein the points from which the Voronoi regions axe defined are aLso the centroids
of those regions. We have shown that this type of tesselatuon possess & certain optimality
property that makes them useful in applications. We have also analyzed algorithms for the
determination of such tesselations.
The treatment of inhomoeneoua essential boundary ctonditions and the accurntt computa-
tion of stresses along boundaries in the finite element method. The 'basic" finite element
method applies to homogeneous Dirichlet boundary conditions. A variety of treatments
of inhomogeneous boundary conditions has been proposed in the literature. In our work.
we studied the most popular treatment in engineering practice, namely approaximating the
inhomogeous data by a boundary interpolant. We also studied Lagrange multiplier meth-
ods, and, in particular, developed a class of specific methods .hat are optimally accurate
and for which the Lagrange multiplier computation uncouples. We made a comprehensive,
rigorous study of the accuracy of these various treatments. As a side benefit, we devised an
algorithm for the accurate calculation of boundary stresses in fluid flow calculations. We
also analyzed the accuracy of these stress approximations.

III - SUMMARY OF OTHER ACTIVTIES UNDER GRANT AFOSR-90-0179

Book editing project
* Editing a book (with R-A. Nicolaides) to be published by Cambridge University Press on

recent trends and advances in incompressible flow calculations.

Personnel supported by the grunt
"* Max Gunzburger (Principal investigator) - Summer salary.
"* Jerome Eastham (Visiting Assistant Professor) - Partial academic year salary.
"* Mark Mundt (Ph.D. student) - Academic year salary.
"* Pavel Bochev (Ph.D. student) - Summer salary.
"* H. Lee (Ph.D. student) - Summer salary.
"* John Burkhardt (Ph.D. student) - Academic year and summer salary.

Conferences, workshops, and special sessions organized on grant related research
"* Special Session on Control of Partial Differential Equations, World Congress of Nonlinear

Analysts, Tampa, August, 1992, (with J. Burns and T. Herdman).
"* Workshop on Flow Control, IMA, Minneapolis, November, 1992.
"* Special Session on Flow Control, IEEE Conference on Decision and Control, Tuscon, De-

cember, 1992, (with K. Ito).
"* AMS-SIAM-IMS Summer Research Conference on Superconductivity, site to be announced,

July, 1993, (with J. Ockendon).

Invited talks in 1991-1992 on grant related research
"* International Conference on Differential Equation, Edinburg, TX, May, 1991.
"* Seventh International Conference on Numerical Methods in Laminar and Turbulent Flow,

Stanford, July, 1991.
"* Second Soviet-North American Workshop on Computational Fluid Dynamics, Montreal,

September, 1991.
"* Fourth International Symposium on Computational Fluid Dynamics, Davis, CA, Septem-

ber, 1991.
"* Workshop on Superconductivity, Argonne, IL, January, 1992.
"• The Mathematics of Superconductivity, Edinburgh, Scotland, January, 1992.
"* Joint Meeting of the American and London Mathematical Societies, Cambridge, England,

June, 1992.
"* World Congress of Nonlinear Analysts, Tampa, August, 1992.
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"* Computation and Control III, Bozeman, MT, August, 1992.
"* Sixth International Conference on Boundary and Interior Layers, Summit Country, CO,

August, 1992.
"* Conference on Computational Methods for the Material Sciences, Pittsburgh, September,

1992.
"* American Mathematical Society Meeting, Dayton, October, 1992.
"* IEEE Conference on Decision and Control, Tuscon, December, 1992-

Publications prepared reporting on grant related research (1990-1992)
1. Finite element approximations of a Ladyzhenskays model for stationary incompressible

viscous flow; SIAM J. Numer. Anal. 27, 1990, 1-19; with Q. Du.
2. Experiences with computational methods for the velocity-vorticity formulation of incom-

pressible viscous flow; Computational Methods in Vicous Aerodynamics, Elsevier, 1990,
231-271; with M. Mundt and 1. Peterson.

3. A subdomain Galerkin/least squares method for first order elliptic systems in the plane:
SIAM J. Numer. Anal. 27, 1990, 1197-1211; with C. Chang.

4. A numerical method for drag minimization via the suction and injection of mass through
the boundary; Stabilization of Flexible Structures, Springer. 1990, 312-321: with L. Hou
and T. Svobodny.

5. Finite element approximations of an optimal control problem associated with the scalar
Ginzburg-Landau equation; Comput. Math. AppL. 21, 1991, 123-131; with L. Hou and T.
Svobodny.

6. Analysis of a Ladyzhenskaya model for incompressible viscous flow; J. Math. Anal Appl.
155, 1991, 21-45; with Q. Du.

7. Analysis, approximation, and computation of control problems for incompressibe flows.
Turbulence Structure and Control, Ohio State, 1991, 85-88.

8. Existence, uniqueness, and finite element approximation of solutions of the equations of
stationary, incompressible magnetohydrodynamics; Math. Comp. 56, 1991, 523-563; with
A. Meir and J. Peterson.

9. Control of temperature distributions along boundaries of engine components; Numerical
Methods in Laminar and Turbulent Flow VII, Pineridge, 1991, 765-773; with L. Hou and
T. Svobodny.

10. Vorticity constraints in velocity-vorticity formulations of steady, viscous, incompressible
flow; Numerical Methods in Laminar and Turbulent Flow VII, Pineridge, 1991, 774-781;
with Q. Du and A. Meir.

11. Approximation of boundary control and optimization problems for fluid flows: 4th Interna-
tional S•,mposium on Computational Fluid Dynamics, U. California, Davis, 1991, 455-460;
with L. Hou and T. Svobodny.

12. Analysis and finite element approximations of optimal control problems for the stationary
Navier-Stokes equations with distributed and Neumann controls; Math. Comp. 57 1991,
123-151; with L. Hou and T. Svobodny.

13. Predictor and steplength selection in continuation methods for the Navier-Stokes equations;
Comput. Math. Appl. 22, 1991, 73-81; with J. Peterson.

14. Analysis and finite element approximations of optimal control problems for the stationary
Navier-Stokes equations with Dirichlet controls; Math. Model. Numer. Anal. mbf 25,
1991, 711-748; with L. Hou and T. Svobodny.

15. Boundary velocity control of incompressible flow with an application to viscous drag re-
duction; SIAM J. Control Optim. 30 1992, 167-181; with L. Hou and T. Svobodny.

16. Analysis and approximation of the Ginzburg-Landau model of superconductivity; SIAM
Review 34 1992, 54-81; with Q. Du and J. Peterson.

17. Numerical solution of the compressible boundary layer equations using the finite element
method; AIAA Paper AIAA-92-0666, AIAA, Washington, 1992; with E. Hytopoulos and
J. Schetz.
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18. Treating inhomogeneous essential boundary conditions in finite element methods and the
calculation of boundary stresses; SIAM J. Numer. AnaL 29 1992, 390-424; with L. Hou.

19. Solving the Ginzburg-Landau equations by finite element methods; Phys. Rev. A; 46 1992,
9027-9034; with Q. Du and J. Peterson.

20. On the Ginzburg-Landau equations of superconductivity; Partal Differential EquatonJs,
Longman, 1992, 58-62; with Q. Du and J. Peterson.

21. Heating and cooling control of temperature distributions along boundaries of dow domains;
to appear in J. Math. Systems Estzm. Confro4, with L. Hou and T. Svobodny.

22. Optimal control and optimization of viscous, incompressible flows; to appear in Incompress-
ible Computational Fluid Dynamics: Tm-nds and Advances with L. Hou and T. Svobodny.

23. Boundary control of incompressible flows; to appear in Advances in Computa•tonal Fluid
Dynamics, with L. Hou and T. Svobodny.

24. Modeling and analysis of a periodic Ginzburg-Landau model for type-II superconductors:
to appear; with Q. Du and J. Peterson.

25. Optimal control problems for a class of nonlinear equations with an application to the
control of fluids; to appear; with L. Hou and T. Svobodny.

26. Finite element approximation of a periodic Ginzburg-Landau model for type-II supercon-
ductors; to appear; with Q. Du and I. Peterson.

27. The approximation of boundary control problems for fluid flows with an application to
control by heating and cooling; to appear; with L. Hou and T. Svobodny.

28. Analysis, applications, and computation of centroidal Voronoi tesselations; in prepaxation;
with Q. Du, V. Faber, and C. Scovill.


