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SECTION 1
INTRODUCTION

D=sign, cvaluation, and testing of trans-ionospheric radio frequency (RF)
communication systems require high fidelity channel models and detailed knowledge of
fading channel statistics. Such models can be used to construct realizations of the
received signal for use in digital simnlations or hardware channel simulators. During
the design process, knowledge of channel fading statistics is used to develop power
requircments, size interleavers, and assess performance, for example.

The design goal for a truly robust trans-ionospheric communications system is o
achieve performance that is acceptable over the entire range of possible fading
conditions from fast, frequency selective, Rayleigh fading to slow, flat fading including
the regime between Rayleigh fading and a non-fading channel. While considerable
effort has been expended in the nuclear effects community over the past three decades
to characterize the Rayleigh fading channel and to develop Rayleigh fading mitigation
techniques, somewhat less effort has been directed at robust design and performance in
non-Rayleigh fading. One reason for this is that if 1 system is properly designed to
successfully operate over the full range of Rayleigh fading, then it is generally assumed
that it will also perform well in non-Rayleigh fading.

There are situations, however, where this assumption may not be valid. For
example, the performance of many systems is degraded in slow Rayleigh fading where
long, deep fades can cause tracking loops to loose lock on the received signal. A
ratural question to ask is the following: What happens to receiver performance in
slightly non-Rayleigh fading where the channel coherence time may be longer than
under Rayleigh fadiag? Does performance degrade further tecause the fades may be
longer or does it improve because the fades are generally not as deep?

Effects of non-Rayleigh fading are also important in determining the
performance of syst- .ns that have not been designed to operate under highly disturbed
ionospheric conditions. An obvious questior is: Will these systems perform adequately
under weakly disturbed {either man-made or naturally occurring) ionospheric
conditions? This question should be addresscd before effort is spent 10 needlessly
upgrade communications systems that may already perform adequately in weak
scinti!lation or before fragile communications systems unexpectedly fail.

The purpose of this report and a companion report {Dana, 1992b] is to extend
existing Defense Nuclear Agency (DNA) channel models to include the non-Rayleigh
fading regime. Ideally these models will then cover all possible fading conditions, from
fast, frequency selective fading caused by a highly disturbed ionosphere to naturally
occurring slow, non-Rayleigh fading. Such models are needed for the design, analysis,
and testing of existing and new communications systems.

The problem with a general-purpose channel model is that the statistics of non-
Rayleigh fading are not described by any single mathematical expression, as is the case



for Rayleigh fading. Thus it is the intent of the companion report, Temporal Statistics
of Non-Rayleigh Fading, tc demonstrate that Rician statistics provide a reasonable
worst case channel model in this regime. In this report, temporal statistics (i.c., meun
fadc duration and separation) of Rician fading are derived. These statistics arc then
used to demonstrate that realizations of sampled Rician fading can be gencrated with
the desired statistics. In Dana [1992b] the tempora!l statistics of non-Kayleigh fading are
analyzcd, and it is shown that Riciar. statistics may provide a rcasonable worst case for
the cumulative distribution, mean fade duration, and mean fade separation.

1.1 RICIAN STATISTICS.

Realizations of the channel impulsc response function gcnerated with Rician
amplitude statistics [Rice, 1548] have been used for many years to evaluate system
performance in the regime between full Ravleigh fading and ambient non-fading
conditions. This appioach is often used because it is easy to generate a realization oi
Rician fading from a realization: of Rayieigh fading by simply adding a constant
component to the complex impulse response function, appropriately re-normalized to
maintain constant power.

However researchers in the area of ionosplieric physics (see, for example,
Fremouw, Livingston, and Miller [1980]; Rino and Fremouw [1973}; Rino, Livingston,
and Whitney (1976]1; and Whimey, et al. [1972]) have suggested that Nakagami-m,
generalized Gaussian, or log-normal distributions may more accurately describe the
observed amplitude distribution of RF scintillation caused by the ambient ionosphere.

None of these distribuiions or the Rician distribution adequately describe the
observed phase fluctuations of non-Rayleigh fading. Indeed, the Nakagami-m and log-
normal distributions only describe amplitude fluctuations. Often two-component
models, one for amplitude and another for phase, are used io described the statistics of
observed trans-ionospheric signals (see, for example, Wirtwer [1940]). However, such
two-component models may not accurately reproduce observed amplitude-phase
correlation of non-Rayleigh fading [Fremouw, Livingston, and Miller, 1980].

Two important points should be noted about proper design of robust trans-
ionospheric communications systems. First, performance should be insensitive to the
random phase flr~ruations encountered on a the link. Second, it is important that the
performance is insensitive to the differences between the various fading distributions.
All ar¢ possible, so the system should be designed to perform against the reasonablc
worst case. If phase fluctuations are important, then separate Total Electron Content
(TEC) dynamics models are available to stress the system [Wirtwer, 1980; Frasier,
1988].

Recently De Raad and Grover [1990] undertook a theorctical study of the
amplitude statistics of non-Rayleigh fading for a wide range of ionospheric conditions.
They conclude that (1) none of these models is reliable in general; (2) the actual
amplitude distribution has a strong dependence on the power spectrum of the scattering




ionospheric structure as well as the Fresnel length; and (3) Rician amplitude statistics
provide a useful “worst case” descriptioa of the occurrence of deep fades.

Multiple phase screen (MPS) techniques (e.g., Nnepp [1983]; De Raad and
Grover [1990]) can be used to generate realizations of the channel impulse response
function that represent direct solutions to Maxwell’s equaticns. These higher fidelity
realizations exhibit a large range of amplitude and phase fluctuatiors under non-
Rayleigh fading conditions. However De Raad and Grover [1990] correctly observe
that the uncertainty in the validity of MPS 1ealizatiors has been shifted from the
amplituc: +nd phase distributions to the statistical desc.ipidon of the scattering medium.

Still, the temptation persists 10 use Rician fading realizations for non-Rayleigh
fading. They are easy to generate from Rayleigh fading realizations, and they contain
phase fluctuations (albeit fluctuations that differ significantly £...n observations). By
comparison with MPS realizations of non-Rayleigh fading, De Raad and Grover [199G]
show that Rician amplitude staustics repres.- t a reasonable worst case for the observed
cumulative distribution of fades, and Dana [1992b] shows that Rician temporal statistics
also represent a reasonable worst case for the observed mean fade duration and
separation.

The purpose of his report is to provide further information on the tzmporal
statistics (mean fade duration and separation) of Rician fading and to define sampling
requirements of Rician realizations of the channel impulse response function. These

~ oo A b ame oo 2

analytic results arc compared 1o measuied valuss fTom a representative set of MPS

realizations in Dana [1992b] where utility of Rician temporal statistics in bounding the
observed range of fade durations and separations in MPS realizations is demenstrated.

1.2 SAMPLING STATISTICS.

The original version of this report [Dana 1988] was intended to address three
questions that arise during simulation or P wdware testing activities of communications
links under Rayleigh fading conditions: (1) How many deccr-¢laiion titnes (1) per
realization of the channel impuise response function are necessary? (2) How many
samples per decorrelation time are necessary? (3) How should interpolation be done
between samples? This report re-addresses these questions for the more general case of
Rician fading, and more completely addres<es an additicnal question: (4) What is the
expected variation in measured parameters | a realization?

The fourth question can arise in at least two situations. The efficacy of a
realization of tlhie channel impulse response function may be in question, or it may be
necessary to validate a realization for use in hardw. ¢ testing. An approach used by the
author to vaiidate realizations is to measure key racmeters, such as mean power,
amplitude moments, decorrelation time, and nuni’ -+ of samples per decorrelation
time. These measured parameters should agrec --:tr ersemble values to within some
tolerance. The question is: What tolerance? Dena [1991] partially addresses this
question. This report incorporates some receat findings on the expected tolerance of
measured realization para.ueters.




The first three questions are answered in part in the DNA signal spccification
for nuclear scintillation [Wirtwer, 1980} which requires a minimum of 100
decorrelation times per realization and 10 samples per decorrelation time. However
considerable statistical variation in receiver performance is seen when the minimum
realization length is used. This is particularly true of links that have large power
margins and are susceptible to only the deepest fades. Of course the best answer to
these questions is to measure link performance with realizations of increasing length
and resolution until the statistical variation in the results from one realization to the
next is acceptable. Unfortunately the luxury of doing this analysis ordinarily does not
erist.

The next higher level of analysis of these questions is to look at the statistics of
the realizations. This is the approach that will be taken in this report. The first order
statistics of realizations are measured by calculating amplitude moments and the
cumulative distribution and comparing these to ensemble values for Rayleigh fading.
The second order statistics of the realizations are measured by calculating the mean
duration and separation of fades.

In general, the received signal may be written as the convolution of the channel
impulse response function h(z,7) witi the transmitted modulation m(s):

u(t) = I h(t,7) m(+-7) d7 . (1.1)
0

In either software link simulations or in hardware channel simulator>, Equation i.1
can be implemented as a tapped delay line:

Ng-:1
u(t) = 25 h(1jAT) m(—jAT) AT (1.2)
J:

where N¢ is number of taps on the delay line; A7 is the delay spacing of the delay line;
and h(r,jAT) is the time varying complex weight of the j* tap. In a software simulation
of link performance time will also be discretely sampled (i.e., f = k4s).

Under Rayleigh fading conditions h(z,7) is a complex, zero mean, normally
distributed random variable and thus has a Rayleigh amplitude distribution. It then
follows from Equation 1.2 that «(#) is also a complex, zero mean, normally distributed
random variable with a Rayleigh amplitude distribution.

A complete analysis of the first three questions would consider the sampling
requirements for each delay of the discrete impuise response function h(kA4r,jAT).
However this is beyond the scope of this report. Therefore sampling requirements on
the flat fading impulse 1esponse function h(kAr), where




will be addressed in this report. The sampling requircments for h(kAr) will give some
indication of the sampling requirements for the frer ncy selective impulse response
function h(kAtrjAT). Perhaps this shouid be state. another way: Sampiing that is
inadequate for h(kAr) will surely * . inadequate for h(kArjAt). Thus it is the intent of
this repert to define adequate sampling for h(k4r) and to infer adequate sampling
requirements for each delay of h(kArjAT).




SECTION 2
TEMPORAL STATISTICS OF RICIAN FADING

This section is a generalization of well-known results from the classical work of
Rice [1948, 1954, 1958] on the first and second order statistics of Rayleigh fading. To
the author’s knowl: dge, the extension of Rice’s results on temporal statistics to non-
Rayleigh fading is naw.

2.1 FIRST ORDER STATISTICS.

Under strong scattering conditions, the electric field incident on the plane of the
receiver is the summation of many v-aves propagating in slightly different directions
about the line-of-sight. Under the ccarral limit theorem of statistics, the two orthogonal
components of the electric fiela must tu=n be zero-mean, normally distributed random
variables. It is assumed that the two or:hogonal components are also independent. The
complex narrow-band envelope of the eleciric field undergoing Rayleigh fading may
be then represented as

E@®) = x+iyl®

where x and y are independent and normally aistributed with zero mean and standard
deviation o. The carrier frequency term, exp (i@r), has been neglected in this
expression. Thus E(¢) may be thought of as the output voltage of a down-converter
where x(z) is the in-phase component and y(¢) is the quadrature-phase component,

Under mild to weak scattering conditions, a model of the electric field is a
specular component plus a normally distributed random component. The clectric field
is then written ar

E(t) = [x() + rcos 8] + i [y(s) + r sin V]

where r is the coastant component and ¢ is a constant phase. Clearly Ravleigh fading
corresponds to the case where ris zero.

Rice [1948] was the first to show that the probability density function of tue
amplitude of E{z),

a(n) = VE(ME*)

has the probability density function:

a a’+r’ } {gr_
fa) = alexP[- 22 || @h
where Iy() is the modificd Bessel function.

For the mean power of of the electric field,

Py = (a® = 2d*+ 1,

]




to be constant, the power of the fluctuating component, 20%, must be reduced as the
power of the specular component, r*, is increased. To keep track of this in a consistent
manner both are written in terms of the scintillation index S,4, where

5 - |:§04>—<0222:‘%
) @ |
The powers of the two components are then:

20° = Py(1-R)
r* = PR

where the “Rician” index R is

R =\/1_s§.

The Rician index is the fraction of the total power that is in the constant component.
Upon writing o and r in terms of R, Equation 2.1 becomes

aZ/P(L+R ]10{2\[;?02/% ll
1" 1-R I

2a
fa) = p(1-g; €xP [' 1-R
The corresponding phase 8 i *he electric field is

0 = -1 ._r_(__t)_+_r_q_g_s_1);
- y({)+rsind | -

The probability density function of the phase is

L
R 1|_R |2
AO) = il-iexp[-l_R J+§[m] cos(6- 1) x

[

r 1
exp {-Rll—iofﬁf- D] }{l + erf [(‘f‘ﬁ)zcos(e- 19)”

where erf (-) is the error function. The probabil‘ty density function of phase is just
1/27t when the scintillation index is unity (R=0), as it should be for Rayleigh fading.

These two probability density functions are plotted in Figures 1 and 2 for
several values of the scintillation index. Amplitude in Figure 1 is Py, and phase in
Figure 2 is the quantity 8- %. The solid line curves in both figures are the Rayleigh
limits. As expected, both functions approach delta fusciions as the scintillation index
approaches zero.
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The cumulative distribution of the power P (P = a?), which is equal to the
probability that the instantaneous power is less than or equal to P, is given by

P [ R]Y _1 R]"[ P/P]
FP) = ojﬂa)da = eXPL 1-R | = l"z(n+l)[1 R_| v ""'lvl R (2.2)

where y(n,x) is the incomplete gamma function and I'(n+1) = n! is the gamma
function. The summation is obtained by expanding the Bessel function in a power
series and then performing the integration term-by-term. This form ¢f Marcum’s Q
function {Marcum, 1948] is easily evaluated for values of R that are not too close to
unity. In particular Equation 2.2 converges slowly for values of S, less than 0.25,
corresponding to R values greater than 0.96.

For the Rayleigh case the cumulative distribution is exponential:

F(P) = l-exp[—{%] . Sse=1

The Rician cumulative distribution function is plotted in Figure 3 versus the
ratio P/P, for several values of the scintillation index. For values of the scintillation
index between 0.75 and unity the Rician cumulative distribution is close to the Rayleigh
curve. As the scintillation index is reduced from about 0.75 to 0.5, the probability of
deep fades is significantly reduced. 1t is poteworthy that casc where the power of the
specular and fluctuating components are equal corresponds i¢ an S4 value of V374 (S, =
0.866). Thus a Rician cumulative distribution Joes not deviate sigrificantly from a
Rayleigh distribution until more than haif of the power is in the constant component.
Of course the performance a receiver may be quite sensitive to the existence of a
specular component.

2.2 DBPSK EXAMPLE,

Aa easily calculated example of the effects of Rician fading is the differentially
coherent binary phase-shift keying (DBPSK) symbol error rate. The well known
DBPSK symbol error rate for an additive white Gaussian noise (AWGN) charael is

e-YP (AWGN Channel) 2.3)

| —

Psg =

where Yis the symbol energy-to-noise density ratio and P is unity for this cnannel. In a
Rician fading channel this error rate must be averaged over the probability density
function of the fading power P = a%

oo

(Psp) = J%exp [—7a2] f(a)da .
0
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Figure 3. Cumulative distribution of Rician fading.

This equation is easily evaluated using Equation 2.1 with the result:

1 [ -rRy 1 .
(Psg) = 3T+ (1R P|T+(1=R)y | (Rician Channel) .

When R is unity, corresponding to the non-fading case, this expression reduces to
Equation 2.3. When R is zero, corresponding to full Rayleigh fading, ii 1. duces to the
well-known form:

1 )
(Psg) = m (Rayleigh Channel) .

Plots of the Rician channel DBPSK error rates for several values of the
scintillation index are in Figure 4. As one might expect from examining the cumulative
distribution, the DBFSK symbo! crror rate for a Rician fading channel is close to the
full Rayleigh fading channel etror rate when the scintillation index is larger that about
0.75, and is close to the AWGN error rate when the scintillation index is less that about
0.23. Thus for DBPSK the most interesting values of scintillation iadex, excluding 1
and 0, are between 0.75 and 0.25.
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Figure 4. DBPSK symbol error rate for Rician fading.

2.3 SECOND ORDER STATISTICS.

The fading rate is determined by the second order statistics of the fluctuating
p t of the electric field. The autocovarience of the electric field is, in general,

(EW@ -EQl[E*(t+T1)-Eq)y = (x(Dx(1+7)) + (y(Dy(1+ 1) = 20° p(7)
where
Eog = rcos @ +irsin v .

There are two limiting forms for the correlation funciion p{1). Under strongly
disturbed scattering condirions that occur at early times or at the center of the
disturbed region, p(7) has the Gaussian form

1.2
p(7) = exp [- 2 J




where 1, the decorrelation time of the electric field, is defined as the e folding point
of the autocorrelatior. funciion [p(1,) = e™']. The corresponding Doppler spectrum of
the temporal fluctuations is

S(wp) = Jexp (~iwp?) p(7) dT = ‘\[Efo exp {_—‘%‘%}ﬂ]

which also has the Gaussian form. Under less disturbed conditions, the correlation
function is usually assumed to have the form

[ a,ld a,ld
oo

o

where the parameter o (0 = 2.146193) is determired by the condition that p(7)=¢™".
The coivesponding Doppler spectrum has the form commonly referred to as an f~*
spectrum:

_ 4% 1
S(wD) - a4 [1+(1&)w0/a4)2]2 *

A third Doppler spectrum is used for real-time frequency selective channel
models {Dana 1992a). This f~* spectrum has the functional form

161'9 1
305 (1 + (tqmplag)®)’

Slwp) =

where the normalization of S(@p) is chosen so that p(0) is unity. The corresponding
correlation function is

g, e (@) [ aghtl
P(T)-I:I‘F TO+ 31% exp—ro

where @ = 2.904630 results from setting p(Ty)=e"".

A comparison of Rayleigh fading realizations (§,=1) of the impulse respornise
function with £, f-°, and Gaussian Doppler spectra is shown in Figure 5 where
realization power in decibels (dB) is plotted versus time/7,. These realizations were
generated from the same set of random numbers, as described in Appendix A, so there
is correlation in the features seen in the three frames. The £~ realization in the bottom
frame has the most spiky appearance because it has more encrgy at high Doppler
irequencies. The three realizations have similar low frequency behavior, and fades in
the realizations follow each other quite closely. The difference between the realizations
is the high frequency jitter of the f =4 and f~7 realizations about the more smoothly
varying Gaussian one. The significance of this on the temporal statistics of the fades
will become apparent later.
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A comparison of Rician fading realizations of the impulsc response function with
£~ Doppler spectra and scintillation indices of 1.0, 0.75, 0.5 and 0.25 is shown in
Figure 6. Again thesc rcalizations were generated from the same set of random
nuirbers, so there is correlation in the features seen in ali four plots. As expected, the
Rayleigh fading rcalization in the top frame (reproduced from the bottom frame of
Figure 3) has the deepest fades and the largest flares. As the scintillation index is
reduced, the deep fades fill in and the power in flares above 0 dB is reduced. It is
interesting that as the scinti..ation index decreases, fades at a given level appear to get
longer. This phenomenon is shown theoretically for Rician fading in the developments
below.

2.4 TEMPORAL STATISTICS.

The mean duration and separation of fades below an atbitrary power level P and
that of flares above P, are calculated from the mean number (N(P,T)) of crossings of
the level P in the time interval T.

The probability that the amplitude a crosses the level / = VP in the time interval ¢
to r+dt with a positive derivative is equal to the probability that a” > 0 and that [ - a’dr
< a < [. This probability is given by the expression

o0 {

j da,l—a‘[iz dafla,a’) = dt f da’a’ fl.a’)

0

where fla,a’) is the joint probability density function of the amplitude a and its time
derivative a’ = da/ds. The probability that a will cross the level / in the time interval ¢
to t-dt with a derivative of either sign is then

dt f la'l f(l.a") da’ .

For stationary processes, the mean number of ievel crossings of P in the interval 7 to
t+T then becomes

(NP,T)) = T J la’l {(VP.a") da’ .

The joint probability density function of the Rician distributed amplitude a and
its time derivative a’ is derived in Appendix B. This function is:
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a*/Py+R J [Za\/E/—Pz}
b| ™R

N
flad) = paR) ‘”‘"[‘ I-R 1

4\ 2nPo(1-R) J 24°Py(1-R) |
0 < a<oo, —00 < < o0)

It can be seen from the form of this equation that the probability density function of @
is Rician; the probability deasity function of a’ is Gaussian with zero mean and
variance of A2Py(1-R)/%; and a and o’ are independent. Also the functional form of
fla,a’) is independent of the functional form of the Doppler spectrum. Only the
parameter A varies with the Doppler spectrum (4 = 1 fer the Gaussian spectrum, A =
1.1858 for the f spectrum, and 4 = 1.518 for the f~* spectrum).

The mean number of level crossings can now be easily evaluated with the result

A -
T\ 8PP 3 [ PrpR]. | 2NRP/R,
(T = ALro)[n(l—R)] °""[‘ IR ]"’[ IR }

The effect of different Dopnler spectra is to scale the mean number of level crossings
by the quantity 4. This fact was shown qualitatively by comparing the realizations with
difierent specua i Figure 3.

Figure 7 shows plots of the mean number of crossings of P in ore decorrelation
time versus the ratio P/P, for a Gaussian Doppler spectrum and several values of the
scintillation index. For the Rayleigh case the maximum value of (N(P,T)) occurs at
P/Py = 1/2 or -2 dB. As the scintillation index decreases the maximum value of
(N(P,1)) approaches 0 dB.

By noting that two level crossings are required to define the beginning and end
of a fade, the number of fades per unit time below the level P is n = (N(P,1,))/21,.
The mean separation (Ts.,(P)) of fades below P is then obtaired from the mean
number of fades per unit time. For any long time interval T the mean number of fades
is 7, and the mean separation is just 7/7T or 1/7. Thus the mean separation of fades
below P is

271,
T _ o~
(Tsep(PY) = (N(P, %)) -

The mean separation of fades below P is equal to the average time between crossings of
P with eiiher a negative value of a” (which defines the start of the fade) or with positive
value of a’ (which defines the end of the fade). Thus the mean separation of fades
below P is also equal to the mean separation of flares above P.
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indices.

The mean duration (Tp,,(P)) of fades below P is obtained as follows: During a
long time interval T the total time that the power wil! be below P is F(P)T where F(P)
is the cumulative distribution given in Equation 2.2. The mean duration is then the sum
of all durations F(P)T divided by the number of fades n7. The result is

_ 2%FP)
TouwlP)) = NPy -

The mean duration (Tr..(P)) of a flare above P is the mean time that the power
stays above P. Using the arguments given above, the mean separation of a fade or a
flare is equal to the mean time that the signal is above P plus the mean ume that 1t is
below P, (Tpur(P)} + (TF1are(P)) = {Ts.p(P)). The mean duration of a flare is then

. _ 25(1-F(P)]
<rF1are(P» = (N(P,TO)) .




The mean duration and separation of fades are shown in Figures 8 and 9,
respectively, for a Gaussian Doppler spectrum and several values of the scintillation
index. For other Doppler spectra, the curves in Figures 8 and 9 scale by 1/4.

The curves in Figure 8 show, for some power levels, that the duration of fades
increases as the scintillation index is reduced. The mean duration of fades for S, equal
to 0.75 exceeds that of Rayleigh fading at all power levels: the mean fade duration for
S4 equal to 0.5 exceeds tha: of Rayleigh tading except for P/P, values between -4 and
-2 dB; and the mean fade duration for §, equal to 0.25 exceeds that of Rayleigh fading
except for P/P, values between —13 and -1 dB. Note, however, that when S, is equal to
0.25 the probability of a 13 db fade is 3.7x107'°, and the mean separation of 13 dB
fades is 7.4x10%7,. Thus for S, values greater than about 0.25, it is possible to have
fades that are longe: than occur at the same¢ level with full Rayleigh ampiitude
statistics.
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SECTION 3
SAMPLED RICIAN FADING

The requirements on the sampling of fading realizations are given in the DNA
signal specification for nuclear scintillation {Wittwer, 1980] which requires a minimum
of 100 decorrelation times per realization and 10 samples per dccorrelation time. The
questions that arise from this requirement can be summarized as: How close are such
realizations to Rician fading? To address this question, random realizations of Rician
fading are generated; moments of the amplitude, cumulative distribution, and mean
fade duration and separation are measured; and these raeasured values are ¢compared
with their ensemble values.

Dana [1988] showed that 1007, realizations of Rayleigh fading are adequate for
fade depths of 20 dB or less, and that 4001, realizations are necessary to simulate fades
down to 30 dB. It was also shown in Dana [1988] that 10 samples per decorrelation
time are sufficient when linear interpolation of the complex impulse response function
is used to sample h(kAtsam) 40 times per decorrelation time.

Thus results in this section are, for the most part, limited to 4007, realizations
sampled at Atsam=17,/40. Only the f ~ Doppler frequency PSD is considered for non-
Rayleigh fading because this is the PSD recommended by DNA for slow, flat fading
cases where the scintillation index is most likely to be less than unity.

Because of the finite number o1 samples in each realization. each measurement
of realization statistics is a random variable with some mean and standard deviation.
Variations in statistics from realization-to-realization are measured by generating a
large number of realizations (1024 to be exact). Each parameter is measured b
averaging over the entire realizatio... Average and standard deviation values of the
1024 measurements are computed. Thus the standard deviations below represent the
realization-to-realization variation in the measurements of amplitude moments,
cumulative distribution, and temporal s:atistics,

The measurement variation of the mean power of realizations can be calculated
analytically, as discussed in Appendix C. it may be possible to compute measurement
variances for other amplitude moments in the general case of Rician fading. Such a
tedious exercise, however, is left to the determined reader. Power measurement
variances below agree quite well with the analytic results given in Appendix C.

Three cases will be considered. The number of samples per realization N is
1024, 2048, or 4096, and the number of samples per decorreiation time N is 10. Here
Ny is the number of samples per decorrelation time used 10 generate the realizations.
Methods of generating such realizations are outlined in Appendix A. To mecasure the
statistics of the realizations, linear interpolation of the real and imaginary parts of the
impulse response function s used to obtain a sampling period Atsan0f %/40.

The objectives of this section are to present the means and standard deviations of
amplitude moment, cumulative distribution, and temporal statistics, and to attempt to
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answer the above question based on these results. This section is limited to flat fading
realizadons with varying values of the scintillation index and Doppler frequency power
spectral density.

3.1 MEASURED FIRST ORDER STATISTICS.

One criterion for deciding that a realization has the proper Rician amplitude
statistics is that measured moments of the amplitude should agree with Rician values
within some tolerance. Ensemble values for the moments of the amplitude are obtained
from Equation 2.1:

L )
L. R R
2 [I-R] exP{‘z(l-ze) J {‘0[2(14@] + R, [2(1-10”

@ =
@ =P

1P} |2 R
(a3) = %[TR] exp[ 2(1RR)H(3—R2)10[2(1RR)]+ 2R(2—R)11[2(1R_R)]}
(@) = P§Q2-R?)

where Io(-) and I,(-) are modified Bessel function.

These moments are plotted in Figurc 10 versus the sciniillaiion index for unity
mean power. However, amplitude momen’t'?'2 are easily obtained for other values of tie
mean power by noting that {a”) scales as P'y".

The scintillaticn index Sy is the standard deviatior of the power. It is necessary
but not sufficient that S, equal unity for Rayleigh fading. The scintillation index is a
good measure of the statistics of flares but not of fades.

Statistics that are sensitive to the distribution of fades are moments of the log
amplitude. Using Equation 2.1 and a little algebra, these moments are found to be:

[

@ =na) =3 [p"(l‘R)]*ie"p[‘l—-ﬁ};.z:b[l-R] oD
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0B = (n) = In [Po(1-R)] ) ~ S10? [Py(1-R) ]

1 RIS [ R P yAmr1)+Q2un+1)
*a “P[‘ I—R] % [I—R] T(n+1) -

The v and { functions ave:

1 |

vintl) = —v+g-1; = v+t
S L 1 .
Gansl) = 2 5= L2m -, LD = g

where vy is Euler’s constant (y = 0.5772157--).
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The first two moments of log amplitude are plotted in Figure 11 versus the
scintillation index for unity mean power.

Measured values of the mean and standard deviation of the amplitude moments,
S4. (), and (x?) for Rician fading realizations are in Table 1 for eight cases including
1007,, 2001,, and 4007, long realizations, three different Doppler frequency power
spectral densities (PSDs), and four values of the scinullation index. Measured values
for a single realization should equal the ensemble value plus or minus one or two
standard deviations. It can be seen from the table that the average values are close to
the ensemble values but the standard deviations of the higher amplitude moments ¢an
be as large as 20 percent of the measured values.

It is noteworthy that the measurement variation of () increases drainatically as
the scintillation index is reduced while that of (xz) is relatively insensitive to S4. An
explanation for this curious behavior has not been discovered.
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Table 1.
Statistizs of sampled Rician fading realizations.

Case
1 ] 2 [ 3 4 | s | 6 7 | 8

| Ensemble Values
N 1024 | 2048 | 4096 [ 4096 | 4096 | 4096 | 4096 | 4096
Ny 10 10 i0 10 10 10 10 10
PSD Gauss | Gauss | Gauss | ¢ r - ¥ i
S 1.0 , 10 1.0 1.0 1.0 0.75 0.5 0.25

Measured Values* (Normalized to Ensemble Values

@ {n| 0999 | 0998 | 0999 | 0997 | 0.996 | 0.928 | 0999 | 1.000
oy 0054 | 0.040 ; 0.029 | 0.028 | 0.027 | 0.027 | 0.018 | 0.009
(@) [#]| 0998 | 0996 | 0.998 | 0.994 | 0.99: | 0.996 | 0.998 | 0.999
o| 0.105 | 0.077 | 0.056 [ 0.054 | C053 | 0.049 | 0.034 | 0.017
(@ || 0995 | 0993 | V997 | 0.991 | 0985 | 0.994 | 0.997 | 0.959
o| 0.161 | 00117 | 0.085 | 0.081 | 0.080 | 0.071 | 0.049 ' 0.026
(@) |n| 0991 | C.988 | 0.995 | 0.989 | 0.984 | 0.991 | 0.995 | 0.998
6| 0226 | 0.164 | 0.119 | 0.113 | O.111 | 0.094 | 0.065 | 0.034
Sa (g 0582 | 0.585 | 0.996 | 0.998 | 0.997 | 0.995 | 0994 | 0.99
G| 0084 | 0.061 | 0.046 | 0.044 | 0.042 | 0.043 | 0.040 | 0.038
) |n| 1.000 | 1.005 | 1.004 | 1.013 | 1.017 | 1.004 | 1.003 | 1.009
o) 0213 | 0.155 | 0.114 | 0.109 | G.106 | 0.180 | 0.273 | 0.548
(% (1] 0996 | 1.000 | 1.001 | 1.007 | 1.009 | 0.993 | 0.991 | 0.990
of 0.153 | 0.111 | 0.081 ; 0.075 | 0.072 | 0.121 | 0.124 | 0.085
Ny |nj 1018 | 1.011 | 1.004 | 0.998 | 0.999 | 0.999 | 0.999 | 0.999
o] 0.083 | 0.056 | 0.038 | 0.048 | 0.055 | 0.055 | 0.055 | 0.054

* 1 = Measurcd average value
o6 = Measured standard deviation

Perhaps a better criterion for the validity first order statistics is close agreement
between the Rician and the measured cumulative distributions. Measured cumulative
distributions (dots plus or minus one-sigma error bars) are plotted in Figures 12-16
for cases 5-8 in Table 1, respectively, along with the ensemble curves (Eqn. 2.2). A
level of 0 dB corresponds to the :nean power P, It can be seen from the figures that

4001, realizations do indeed have, on the average, a Rician distribution of fades.




3.2 MEASURED SECOND ORDER STATISTICS.

Table 1 also contains the mean and standard deviation of the measured number
of samples per decorrelation time. The measured value of Ny is obtained by
performing an autocorrelation of the compiex impulse response function and finding
the e™! point. Close agreement of this parameter with its ensemble value ensures that
the realization will indeed have the desired decorrelation time in a simulation or
hardware test.

The fidelity of the realizations in reproducing the second order statistics of
Rician fading will be demonstrated by considering the mean fade duration and
separation. The mean fade duration is a good statistic to examine for communications
applications because errors often occur in bursts during deep fades. If the fades, on the
average, are too long or too short, error bursts will not have the proper durations and
the resulting receiver performance may be misleading.

Fade duration and separation measurements (dots plus or minus one-sigma error
bars) and ensemble curves (solid lines) for the f~* Dopgler PSD are shown in Figures
16-19 for cases 5-8 respectively. Figure 16 shows the these measurements for full
Rayleigh fading. Good agreement between the measure and ensemble values is seen,
except for 30 dB fades. At this level the ensemble fade duration is 0.026 7, which is
quite close to the sample duration of 0.0257,. As the sc:ntillation index is reduced,
measured mean fade durations are generally close to, if not right on, the ensemble
curves. However, large variations are seen in the measured mean fade separations.

Two effects contribute to the low mean fade separation measurements seen for
scintillation indices less than unity. Because separation measurements require two
fades, some realizations do not contribute to the realization-to-realization fade
separation statistics, thereby reducing the measured average. Also, it is not possible in
these realizations i0 measure fade separations larger than about 4007, Thus measured
mean separations are biased to lower values because large random sampies are absent.

In Figure 19, for a scintillation index of 0.25, a large discrepancy in the
measured mean fade duration and separation is seen at fade level of +3 dB. Here the
mean fade duration is about 8007, which clearly cannot be accurately measured in
4007, realizations. Because the measured mean fade separation and measurer °nt
variance at this level arc nor zero, at least two realizations must have had two +3 dB
flares even though the probability of such an event is less than 5x107*. The measured
mean duration of 5§ dB fades (which occur with a probability of approximately 3x107%)
is close to the ensemble value of 0.31 1, but the measured mean fade separation is only
ten percent of the ensemble value of 10421.

Except for low probability events with large durations or separations, these
results demonstrate that 4007, Rician fading realizations sampled at 7y/40 do indeed
have the proper temporal statistics.
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APPENDIX A
REALIZATIONS OF RICIAN FADING

The methods of generating flat fading realizations of the impulse response
function for Rician fading channels are simple extensions of Rayleigh fading methods
discussed in detail elsewhere [e.g.. Knepp, 1982; Knepp and Wirtwer, 1984; Dana,
1991; Dana 1992a). Only a brief review is presented this appendix.

The methods fall into two classes: Fourier transform and real-time digital filter
techniques. The £~ and f 4 Doppler Power Spectral Density (PSD) realizations are
particularly simaple to g ‘erate using digital filters. Realizations with a Gaussian
Doppler PSD are more easily generated using Fourier transforms. These methods will
be reviewed in subsections of this appendix.

A.1 FOURIER TRANSFORM TECHNIQUE FOR GAUSSIAN PSDs.

The starting point of the Fourier transform metaod of generating a realization
of flat Rician fading is the Doppler frequency PSD function, S(wp). The Gaussian
form of this function is:

' 1_20)2 1
S(wp) = \[;CTOPO( 1-R) exp {— 0—4‘2_‘ (Gaussian PSD)

where P, is the mean pcwer of the realization, and 1-R is the fraction of power in the
random component. The “Rician” index R is

R =\/_1-S§

where S, is the scintillation index. The quantity S(wp)dwp/2n is the mean power in the
Doppler radian frequency interval wp/2% to ((p + dwp)/2r.

Discrete realizations of the charnel impulse response function will contain N
time samples and N, samples per decorrelation time. Thus the time spacing of the
discrete samples is

. h
At-NO,

and the total time duration of the realization 1s NAt. In the Doppler radian frequency
domain the spacing of the discrete samples is

Note that the quantity AwpAt, which will appear later in a Fourier transform, is just
2n/N.




The samples in the frequency domain are generated by first calculating the
fraction o signal power in each Doppler frequency bin, Sj = S(jAwp)Awp/2r. For the
Gaussian PSD,

\/TtPQ(l—_Rl[!Qexp[ PN

Sj = 5 v } G = =N/2, - N/2-1) .

Next the random Doppler frequency spectrum H(jAwp) of the impulse response
function is generated:

H(jAwp) = [\/_ & + (VPRei9)5;0 ] .

where R is the fraciion of the total power in the constaat component and ¢ is the
constant phase of the Rician component. The quantity &j x is the Kronecker delta
symbol:

5 {1 j=k
)% =10 otherwise

The leading factor 2r/Awp has been included in H(jAwp) so that the discrete Fourier
transform of H(jAwp) will be dimensionless. Random components of the spectrum, §; .
are complex, normally disturbed random variables with the properties:

(& &) = Sk
(Eiby = 0 .

Thus the mean power of the & samples is unity. Random samples of &; may be easily
generated using

;] = V—lﬂ(ul‘j) €xp (2niuz‘j)

where uyj and u,; are independent random variables uniformly distributed on the
interval [0,1).

Finally the random Doppler spectrum of the channel impulss response function

is Fourier transformed to the time domain. In continuous notation this Fourier
trancform is

dw
h(t) = JH(a)D) exp (iwpt) 773‘3 ,

and in discrete notation,




N1
) a)
h(kar) .Sv/z’“"“""’ exp liGAwp)(kan) S

Ni2-1
i [Vsi ¢ + (VPoRei® )8 ] exp 2miGkm)

where £k = 0,1, --- ,N-1.
A.2 DIGITAL FILTER TECHNIQUE FOR f ~ AND f — PSDs.

An f* or f realization can be generated by passing white Gaussiar noise
through cascaded single-pole filters, as described in Dana [1992a).

An £~ filter can be created by cascading two single-pole filters:
Yk = @yk-j + bk, (A.1)
Xk = axkg-; + bvg-y .

The coefficients a and b are!:

a = exp(~04t/T) = exp(—a,/Ny)
| —
b = Vl-a*

where oy = 2.146193. Discrete samples of the additive white Gaussian noise random
process vk are generated using the equation:

[(1 a )PQ(I-R)] :

1+a?

The vk samples must have mean power given by the quantity in the square brackets so
that the mean power of the filter output samples, y, will have mean power of Py(1-R).
The discrete channel impulse response function in this case is

h(kAt) = yg +\ PoRei® .

To minimize the transient response at start-up it is necessary to initialize the
fiiter. This is done by setting

1 Some authors prefer to include the gain of the ﬁ}tcr in b coefficients. For example, see Bogusch [1989)
Equation 2-40. Wirtwer [1980] wnites the f filter equations as shown here but he combines the
exponential in the a coefficient with the expression for the mean power of the input white Gaussian noise
1o optain a hyperboiic tangent function.

A-3




yo = VPo(1-R) ug

_ [(l-az)Po(l~R)F
X0 = l+a2 by .

where ug and u, are independent samples of the random process & uncorrelated with
the vk sampies. The y, and x, samples are obtained from Equation A.l and the first vf
sample, vo. Even with this initialization there is a transient response because yq and x,
do not have a “history” as they do after steady state is achieved. It is therefore
suggested that the filter be “warmed up” for at least one decorrelation time before
using the output.

An £ filter can be creaied by cascading three f~ 2 filters. The filter equations
are therefore given by:

Z = azgg + byy

Yk = @Yy + bxy (A.2)
Xk = axp_;+bve; .

The coefficients a and b are:

a = exp(-0sAr/) = exp(—0/Ng)

b = N 1-d?

where g = 2.904630. Discrete samples of the additive white Gaussian noise random
process vk are generated using the equation:

_ [(1 -az)zpﬂ(l-R)] 3 :
= 1+4a% 44" ;

Again the vx samples must have mean power given by the quantity in the square
brackets so that the mean power of the filter output samples, zx, will have mean power
of Po(1-R). The discrete channel impulse response function is

h(kAf) = zi + N PoRei® .

Again, to minimize the transicnt response at start-up the initial filter values are:
zg = VPy(1-R} u

[(1 --a4)PQ(l—R)} 5
Uy

1 +4a%+a*

Yo




(1-a%P,(1-R) |}
Yo = 1+4a’+a* e

where uy, u;, and u, are independent samples of complex AWGN uncorrelated with the
vk samples. The filter should be “warmed up” for at least one decorrelation time
before the output is used.

A3 WHAT ABOUT f~? PSDs?

An obvious question is: Why not discuss generation of realizations with an f 2
Doppler PSD? Indeed the expressions for xz in Equations A.1 and A.2 are single-pole
filters that produce realizations with f~? Doppler PSDs:

Xk = QXk-1 + bvi-1 .
For this simple case, the coefficients a and b are:
exp (-Av/'ty) = exp(-1/Ng)
b=V .

The problem with this Markov process is that the temporal statistics are, strictly
speaking, undefined. This is because the scale fac’-r A in the expression for the mean
number of level crossings in Section 2.4 is

a

1 d
A = o | (rwp)?S(awp) 52 (A.3)
2 2r

O

For the £~ Doppler PSD,

2

Sop) = 135 tiwp
and the expresscion for A yields tofinity.

Fortuna‘ely, for a discrete realization there is a maximum Doppler frequency
determined by the sample spacing. The highest Doppler frequency component in the
sampled realizations has a period 2At, corresponding to a maximum frequency of:

Wp,max = T,

The value of A for a sampled realization is then:

” tan"! (nN,




For integer values of N this expression reduces to Ng.

Thus the mean number of level crossing is finite and the mean duration and
scparation of fades are non-zero. Unfortunately these quantities depend or. Ny. As the
number of samples per decorrelation time is increased, the mean number of level
crossing increases and the mean fade duration decreases.

The dependence of the temporal statistics of the £~ Doppler PSD rcalization on
Ny is likely to be unaccepiable in most applications. Thus only Doppler PSDs with a
frequency roll-off greater thar £~ (so Eqn. A.3 is finite) should be used to generate
realizations of Rician fading. This will ensure that the realization temporal statistics are
well-behaved.




APPENDIX B
JOINT PROBABILITY DENSITY FUNCTION f(a,a’)

The purpose of this appendix is to derive the joint probability density function of
the Rician amplitude a and its time derivative a’ = da/d:. This function is required to
calculate the temporal statistics of Rician fading. A less general form of this derivation
was first published by Rice [1948].

The starting point for this calculation is the determination of the joint
probability density function of the random in-phase and quadrature components x and
y of the complex envelope of the electric field. It is assumed that x and y are
independent, have zero mean, and that they are normally distributed. Thus the joint
probability density function of v and y is

1 2 2
flxy) = mem[_—xz}v ] . (B.1)

Now the joint probability density function of the time derivatives x” = dx/dr and y” =
dy/d: must be calculated. It will be shown that x and x” are independent, as arc y and
y’. It will be assumed that x, x’, y, and y’ are jointly independent. Thus the joint
probability denzity function of x” and y’ is all that is needed in addition to Equation B.1
to write down the joint probability density function fix,x",y,y’). Once this function has

been obtained, a simple change of variables from x, ¥, 3, and y' t0 a and a’ will yield
the desired function.

In order to determine the distribution of x” (or y), consider the random function
x(1) written as a Fourier stnchastic integral

<o

d
x(t) = jz(a)o) exp (iwpt) —2%2 . (B.2)

-0

The quantity z(«p) is a random function in the Doppler frequency domain. It is useful
to assume that z(wp) is a zero-mean, normally distributed random process, although
this is not necessary because the central limit theorem will make x(f) ncrmally
distributed ror almost any reasonable distribution of z(wp). However, with the normal
assumption for z(wp), x(¢) is the sum of many independent, normally distributed
random variables, and is necessarily a zero-mean, normally distributed random
variable.

Before continuing, it is interesting to show the relationship between the random
spectral components z(wp) and the Doppler spectrum S(wp). The correlation function
of the stationary process x(¢) may be written as




(x(2))x(8))

dwp, [ dwp,; (Z(op)z*(wp,) _ _
- J 21’7-) J 21[: = 0102 2) exXp (ip 1 ~iWpsyty) .

However the correlation function p(7) may also be written in terms of S(@p):

d
p(D) = JS(wo) exp (iwp7) -50;? . (E:.4)

The spectrum S(wp) must be an even function if the correlation function p(7) is to be
real.

To ensure the integral in Equation B.3 is only a function of time difference
7=t;~i,, the integrand must contain a factor 2xé(@wp,—wp,). Using the Dirac delta
function to collapse the double integral in Equation B.3 and comparing the result with
Equation B.4 gives

(Z(p,}z*(Wpy)) = 2x0° &wp,-0p,) S(wp,) . (B.5)

This equation also demonstrates that the random Doppler spectral components of z{wp)
are uncorrelated, which is a consequence of the assumption that the random process
x(z) is stationary.

The time derivative of x(z) is given by differentiating Equation B.2, with a
similar expression holding for y”

00

d
X0 = J(ia)p) 2(wp) exp (iopr) T2 .

-0

Because z(wp) is normally distributed with zero mean, x’(s) will also be normally
distributed with zero mean. The variance of x'(¢) is

oQ o0

d k J
W) = f——lf‘z’,’t’ J‘%”% @12 (2(@,)2 *(®p3)) exp [i(py~wpy)]
2 dwp dzE(‘l')
= o ans(wo) n = -c? 47 |r=p (B.6)

B-2




The variance of x’(f) may be written in the general form:

20%4%
&X' = o:%

where

| Gaussian Doppler PSD
4= 0/N6=1.1858  f~% Doppler PSD
a/N2 = 1.5176  f~* Doppler PSD

and where the parameters o, and o were determined in Section 2.2.

The cross correlation of x°(#) and x(¢) is

o
F@x@) = Jd—-“;’,‘t’ (iwpy) Jv—z‘z",‘t’ (@) @p2) exp [i(Wpi~wpy)r]
dap
= ~id’ Jmos(a)o)—z-;; = (B.7)

Equation B.5 and the fact that S(wp) is an even function have been used in reducing
Equations B.6 and B.7. Because x(r) and x’(r) are uncorrelated ané normally
distributed, they are also independent. Identical results hold for the variance of y” and
the cross correlation of y and y’.

The joint probability density function of x, x”, y, and y’ may now be written

down:
’ ) i 2 2 IJ Tz( :2+ /2)
o = ] 28] (] 5202

This function may be transform to the desired function of a and a” by making the
change of variables

X +rcos¥=acos @

y +rsin¥= asin@

where r is the constant component of Rician fading and ¢ is the constant phase. The
time derivatives of x and y are




’

X

rd

y

a’ cos 6-af sin 6

a’ sin @+ a@ cos @

which gives the polar coordinate equations

2+)’2

2+ y"‘

a? + r* - 2ar cos (6~ 1)

-
=

X
= a:2+ a29’2

The probapility density function coordinate transformation is

s xx,yy') dxdx'dydy’ = fla.a’,6,0) ldet(J)| dada’d6dg

where the determinate of the Jacobian of the transformation is

pase

x W Yy W
da oJa oJa da
* Wy ¥
odd od dod od
det(J) = det i‘. % QX QL'
06 08 96 J6
| 06 06 06 96
[ cos@ -@'sin@ sin@ 6’cos9 i
0 cos6 0 sin@
= det -asin® -a’sin6-af'cos® acosd a’'cosB-absing
L. 0 —asinf 0 acosé .
= 02 .

The joint probability density function fa.a’,6,6) is

( &

Ra,a’,6,d)

\

p

2no?
2

-

a?+r?-2ar cos (6-19)
20°

‘l‘zQ(a'2 +ad?)

k41t2A2 02

e

44%0

|

The joint probability density function of a and a’ is obtained by integrating this
equation over A and 6"




oD

2
flaa’) = [d6 [do fla.a.6.6)
0

-0

with the result

240 r 154"
s« (8)ool -5 3] ool -2

Iy is the modified Bessel function that results from performing the integral:

(B.8)

1 2n
In(z) = ﬁojexp (zcos 6)deé

Thus it is apparent from Equation B.8 that the probability density function of a is
Rician; the probavility density functicn of @’ is normal with zero mean and variance of
24%0%1%; ansi a and o’ are independent because their joint probability density function
is separable into g function of a times a function of a’.




_ APPENDIX C
VARIATION IN THE MEASUREMENT OF MEAN POWER

The nth moment of the amplitude ax of an impulse response function realizaiion
with N samples is measured using the formula

lln:‘%,'gaf .

Because of the finite length of a realization, }i, is 2 random variable. The purpose of
this appendix is to develop general expressions for the mean and variance of Wp, and
then io apply those expressions to compute the expected variation, g2, in the measured
mean power of a realization:

of = (ud)-(W)? .

This variation depends primarily on the number of decorrelation times in the
realization, N/N,, where N, is the number of samples per decorrelation time. It is
weakly dependent on the Doppler frequency power spectral density (FSD) and on the
values of NV and N,.

The mean value of L, is easy io compute:

() = ,%g (&) = (@)

where (a") is the ensemble mean value of the #t% moment of amplitude. The second
moment of W, is a little more of a challenge to compute:

B3 @ 2§
(na) = ﬁiég (@) = T"']‘V‘g (1-k/N)Rp(k)

where Rn(k) is the correlation of the nth moment of araplitude:
Ru(k) = (aa ) .

For the general case of Rician fading and arbitrary n, the joint probability density
function of the -mplitude at two times, f(a;,a;), is needed to compute the correlation
function. However in the special case of mean power where n is two, the corrclation
function is easily computed from the staristics of the underlying complex voltage.

The power in 2 sample of the impulse response function with a Rician amplitude
distribution is

af = [xi +rcos O) + [yk + r sin O] (C.1)

C-1




where xx and yx are uncorcelated, normally-distributed random processes with .ero-
mean and variance 2. The “Rician” components r cos® and r sin® are constant. It is
assumed that the random processes x at two times is jointly normal:

2 2
| x=2pxxy +x)
P {" 26%(1-p?) }

]
flxyxy) = -
2na? ! 1-p?

Values of the two-point correle on p are determined by the functional form of the
Doppler PSD and the time difference between the samples x; and x,. A similar
expression holds for the joint probability density funciion of y, and y,.

To compute the variance of the mean power measurement, the quantity (a%a2) is
required. Using Equation C.1 this quantity involves terms of the form

) =G =0 =022=0
D=@@=0D=0d=0

(xxg) = (yya) = O

(nx3) = (xix) = ) = Oy = 0
43y = b = o'+ 20D .

The cross correlation {(a7as) is then

(@) = 40*(1+p%) + 470U +p) +r* .

The Rician amplitude r and the variance o? are written in terms of the
scintillation index S, so that the mean power {a*} is conistant and equal to Py

rt = PyR
26% = Py(1-R)

where the “Rician” index is

R=1v1-52.

Combining these results gives the following expression for the variance in the
measured mean power:

N-1
2

N ; (1-k/N)[R+(1=-R)p(k))? .

The two-point correlation p(k) is




exp [-(k/Ny)?] Gaussian Doppler PSD

plk) = [1+ aﬁk/N(,+(a6k/No)2/3 Jexp [-ok/N, ] 7% Doppler PSD
[1+ 0k/Ng Jexp [~aak/Ny ] f~ Doppler PSD

where the coefficients o, (04=2.146139) and o (0=2.904630) are determined by the
requirement that p(Ny)=e™'.

Plots of the power measuremnent standard deviation are shown in Figure 20 for
N equal to 1024, 2048, and 4096. The value of Ny is 10 for each case, so the curves
correspond to realizations of length 102.4 7, 204.8 75, and 409.6 1, respectively. Solid
lines in the figure are for a Gaussian Doppler frequency PSD, and solid circles are for
an f~* Doppler PSD.

As expected, the mean power measurement vanation is larger for realizatiors
with fewer decorrelation times. The measurement variation decreases with decreasing
scinillation index because the fluctuating part oi' the impulse response contributes less
and less to the total power. For a given value of N there is little difference between the
results for the two PSDs. This is because the three correlation functions above differ
little for values of k less than N, where p(k) is close to unity, but vary significantly for
larger values of k where p(k) is small. Thus the differences in p(k) for differing

Doppler frequency PSDs occur in Equation C.2 at values of k that contribute little to
the sum.
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Figure 20. Power measurement error.
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