
UNCLMSIFiED Copy 1 of 24 copies

AD-A261 349

IDA DOCUMENT D- 1243

FY92 CONTRIBUTIONS TO THE OPERATING SYSTEMS STANDARDS
WORKING GROUP OF THE NAVY

NEXT GENERATION COMPUTER RESOURCES PROGRAM

Karen D. Gordon
Terry Mayfield, Task Leader

October 1992 1)TI(
'EL-C*TE
MARO09 1993 L

Prepaird for
Space and Naval Warfare Systems Command

Ada Joint Program Office 930500

Approved for public release, unlimited distribution: December 15. 1992.

3 8 121

INSTITUTE FOR DEFENSE ANALYSES
1801 N. Beauregard Street. Alexandria. Virginia 22311-1772

UNCLASSIFIED IDA Log No. HO 92-042852

DEFINITIONS
IDA publishes the lotlowing documents to report the results of Its work.

Reports

Reports are the most authoritative rqd most carelully considered products IDA publishes.
They normally embody results of major projects which (a) have a direct bearing on
decisions allecting major programs. (1b address issues of signilicant concern to the
Executive Branch, the Corgress and/or the public, or (c) address issues that have
significant economic Implications. IDA Reports are reviewed by outside panels of experts
1o ensure their high quality and relevance to the problems studied, and they are released
by the President of IDA.

Group Reports

Group Reports record the findings and results of IDA established working groups and
panels composed of senior individuals addressing major Issues which otherwise would be
the subject of an IDA Report. IDA Group Reports are reviewed by the senior Individuals
responsible for the project and others as selected by IDA to ensure their high quality and
relevance to the problems studied, and are released by the President of IDA.

Papers
Papers, also authoritalive and carefully considered products of IDA. address studies that
are narrower In scope than those covered in Reports. IDA Papers are reviewed to ensure
that they meet the high standards expected of refereed papers In professional Journals or
formal Agency reports.

Documents

IDA Documents are used for the convenience of the sponsors or the analysis (a1 to record
substantive work done In quick reaction studies, (b) to record the proceedings ot
conferences and meetings. (c) to make available preliminary and tentative results of
analyses. (d) to record data developed In the course of an Investigation, or (e) to forward
information that Is essentially unanalyzed and unevaluated. The review of IDA Documents
is suited to their content and intended use.

The work reported In this document was conducted under contract MDA 903 89 C 0003 tor

the Department of Defense. The publication of this IDA document does not indicate
endorsement by ithe Department of Defense, nor should the contents be construed as
reflecting Ihe official position of [hat Agency.

(1992 Institute for Defense Analyses
The Government of the United States Is granted an unlimiled license to reproduce this
document.

* REPORT DOCUMENTATION PAGE 1
PuAbIc~ MPUf tuftmA fi t" QUm~ Q mUfwmw 0) t~f" i) Ed~*"n W - N*ý P ~ t%?w- %±t-4 U* t ~mut .1W.ug *~

Damftw $sr"i. Stlai 1206. AARSMh%, VA2W2-4302, wadado OWN Wo M&WO0 aoaa w b44", FPUWVwt Imdrc~awtP"a -6 1" V*fLWM DC'ar~iX .

1. AGENCY USE ONLY dLa~v bLink) 2. 141"T DAMI 3 *i X i' "-1Y A \D) DAT (VJ3L.l

October 1992 Final

4. TTTLE AND SUBTMTLE m5 UNDING UMiAJ-S
FY92 Contributions to the Operating Systems Standtards VWrkmg Group MDA 903 8s9 C (Xw3
of the Navy Next Generation Computer Resources Program

Task~ T-DS-725

6. A MrtOR(S)

Karen D. Gordon

7. PERFORMiNG ORGANCMATION NAML-S) AND AMDRESI5 8 P-I-)(MiNG OtAY.IL/rIU' .. (*i

Institute for Defense Analyses (IDA) IDA Document D-1243
1801 N. Beaurcgard St.
Alexandria, VA 22311-1772

9. SPONSORLIG/INONtO-RING AGENCY NAW,(S) AND ADdI&13i I3 %S(* M)h$(AG1\C'0

Space and Naval Warfare Systems Command WOW N-,,9t•

SPAWAR 231 -2B3
Washington. D.C. 20363-5100

11. StJPPLEEN`,,rY N OTES

12m. oISTRIBUT,1ON/AVAILABITrY STATEMENT 12b DISMStIMON COt
Approved for public release, unlimited distribution: December 15. A
1992.

13. ABSTRACT (Maxumm 20 woeds)

The Next Generation Computer Resources (NGCR) Program is a Navy standardization effort designed to
fulfill the Navy's needs for standard computer resources while at the same time allowing it to take advantage
of commercial products and investments and to field new technology more quickly and effectively, The
program is centered around the selection and adoption of open system standards in several areas, including
backplanes. local area networks, operating systems, project support environments, graphics, and database
management systems. IDA is providing support to the NGCR through participation in the NGCR Operating
Systems Standards Working Group (OSSWG), a group chartered to identify and help define commercially
based operating system interface standards for use in Navy mission-critical computer systems in the mid- 1990s
and beyond. Because of the results of an extensive and rigorous evaluation process, the NGCR operating
system interface standards will be based on POSIX, a family of standards being defined by IEEE Project 1003.
This document is a compilation of IDA written contributions to the NGCR OSSWG for fiscal year 1992. It
includes copies of IDA contributions to NGCR OSSWG documents and a tabular summary ef POSIX real-
time application environment profiles.

14. SUBJECTTER•'S IS, NUMBER OF PAGES
Open System; POSIX; Real-Time Operating System; Interface Standards; Interop- 50
erability. 16. PRICE CODE

7.sECUrrnYCLASSIFICAMN £S.sECURrrYCAsAFcATioNl 19.SECRtrY CLASS-FCA71ON 20. L~•rMfATON OF ARSTRACT
OF REPOiRT OF "11S PAGE OF ABSTRACr

Unclassified Unclassified Unclassified SAR

NSN 7540-01-20-5500 StwdFod m 29 Re•t,. 2e9) 2-9
Pincribulby ANSI Si Z39-1

* 299-102

UNCLASSIFIED

L)A 1X)()'ML!.NI1 D124,

FY92 CONTRIBL'TIONS TO (THE. ()PFRX'IN(; SNS'1T'lEMS" S'IAN\D RtI)
WORKING GROUP (AO- THE \AVY

NEXT GcENERATION C(MPUTER RESO(+ RCF S PR(K;RAM

• Karen 1)D Gordon
Ternr Mayfield. la•ls Lek'der

4" -iu. -

, 'v , .: , -Or

October 1992 ,+,t,'+!

* A.'+Jb itA.y Coces

01,t Special

Awruygd for poblic rlma m. Et slrtmetli.a Di cebmw 75. l2t m

IDA
• INSTITUTE FOR DEFENSE ANALYSES

Contract MDA 903 89 C 0003
Task T-D5-725

UNCLASSIFIED

PREFACE

The Space and Naval Warfare Systems Command (SPAWAR) and the Ada Joint
Program Office (AJPO), Office of the Deputy Director of Defense Research and

Engineering (Science and Technology), tasked the Institute for Defense Analyses (IDA) to
support the Next Generation Computer Resources (NGCR) Operating Systems Standards

* Working Group (OSSWG) in identifying and helping to define operating system interface

standards that can meet Navy mission-critical computing requirements. This document is a

compilation of written contributions made by IDA under the task for fiscal year 1992. It is

submitted in partial fulfillment of the NGCR Operating System Standards task.

* This document was reviewed by the following members of IDA management:

Dr. Richard J. Ivanetich and Mr. Terry Mayfield.

0

Iii

CONTENTS

* Introd uction ... I

Part 1: Contributions to A Next Generation Computer Resources (NGCR) Open

Systems Architecture .. 3

Part 2: Summary of POSIX Real-Tine Application Environment Profles 9

Part 3: Contributions to OSSWG Fault Tolerance Issues Paper 15

Part 4: Review of Selected NGCR Operating System Interface Requirements ... 210

List of Acronyms ... 37

v

= I

0

INTRODUCTION

* The U.S. Navy is conducting a standardization effort known as the Next
Generation Computer Resources (NGCR) Program. The NGCR Program is designed to
fulfill the Navy's needs for standard computer resources while at the same time allowing it
to take advantage of commercial products and investments and to field new technology
more quickly and effectively. The program is centered around the selection and adoption of
open system standards in several areas, including backplanes, local area networks,
operating systems, project support environments, graphics, and database management
systems.

Since January 1989, the Institute for Defense Analyses (IDA) has been providing
support to the NGCR Program in the area of operating systems. At that time, the U.S.
Navy Space and Naval Warfare Systems Command formed the NGCR Operating Systems
Standards Working Group (OSSWG), of which IDA is a member. The OSSWG is
chartered to identify and help define commercially based operating system interface
standards for use in Navy mission-critical computing systems in the mid-1990s and
beyond.

In April 1990, following an extensive and rigorous evaluation process, the NGCR
OSSWG selected POSIC, the Portable Operating System Interface for Computer
Environments--a family of standards being defined by IEEE Project 1003-as the baseline
upon which to establish the NGCR operating system interface standards. Since then, the
NGCR OSSWG has been actively participating in the POSIX standardization process. The
goal of the NGCR OSSWG participation is to ensure that the POSIX standards evolve in
ways that will enable them to better meet Navy mission-critical computing needs. To this
end, the NGCR OSSWG continues to re-examine Navy requirements and to seek ways of
extending the POSIX standards in directions important to mission-critical computing.

This document contains IDA's contributions to NGCR OSSWG documents and a
tabular summary of POSIX real-time application environment profiles.

0

PART 1

Contributions to

A Next Generation Computer Resources (NGCR)

Open Systems Architecture

The draft document referred to above puts forward a vision of an NGCR program-
wide open system architecture. As stated at the beginning of the document, its purpose is
"to provide clarity and understanding of how the Next Generation Computer Resource

(NGCR) interface standards interconnect, interoperate and inter-relate." The 3 December
1991 draft of the document was prepared by a group of NGCR OSSWG members and
presented at the 10-12 December 1991 meeting of the NGCR OSSWG. The draft included
a section entitled "An Open Systems Architecture" that was not yet complete. In this part is
a copy of text provided by IDA to serve as introductory material for that section. The text
provided by IDA defines the concepts of open system environments and architectures and

discusses their potential benefits. It also briefly discusses factors that affect their
"success."

3

Introductory text for Section 4 of the NGCR OSSWG draft document entitled A Next
Generation Computer Resources (NGCR) Open Systems Architecture

Submitted by Karen Gordon (IDA)

4. AN OPEN SYSTEMS ARCHITECTURE

In P1003.0, the Draft Guide to the POSIX Open Systems Environment, several

definitions related to the open system concept are offered. For example, an "open system"

S([PI003.0, Draft 14, p. 9. Sec. 2.2.2.23?] is defined to be

A system that implements sufficient open specifications for interfaces,
services, and supporting formats to enable properly engineered applications
software:

* -- to be ported with minimal changes across a wide range of systems

- to interoperate with other applications on local and remote systems

- to interact with users in a style that facilitates user portability.

"Open specifications" [P1003.0, Draft 14, p. 9, Sec. 2.2.2.21?] are defined to be

Public specifications that are maintained by an open, public consensus
process to accommodate new technologies over time and that are consistent
with international standards.

An "Open System Environment (OSE)" [PI003.0, Draft 14, p. 9, Sec. 2.2.2.24] is

defined to be

The comprehensive set of interfaces, services, and supporting formats, plus
user aspects for interoperability or for portability of applications, data, or
people, as specified by information technology standards and profiles.

Taken together, these definitions define the open system concept in terms of (1) the

potential benefits of open systems, (2) the "openness" of the specifications that define an

open system, (3) the "openness" of the process through which the specifications are

maintained, and (4) the notion of pulling together compatible standards and profiles into a

set that defines a comprehensive computing environment.

NIST report PB91-201004, Application Portability Profile (APP)--The 6.S.

Government's Open System Environment Profile OSFI- Version 1.0 [NIST 92], offers a

* definition of "open system environment" that seems to reiterate the main points of all three

P1003.0 open system definitions. In particular, the NIST report defines an open system

environment as a computing environment having the following three characteristics INIST

92, p.3]:

"* It is "based on an architectural framework that allows an extensible collection
of capabilities to be defined."

"* It is defined "in terms of nonproprietary specifications that are available to any
vendor for use in developing commercial products."

"* It evolves "through an open (public), consensus-based process for defining,
specifying, and coordinating standards related to the computing environment."

The nonproprietary specifications referred to in the second characteristic are known

as "open system standards." An "open system architecture" can be viewed as a computer

system architecture developed in accordance with an open system environment. In other

words, it is a high-level system design based on an architectural framework and defined in

terms of open system standards.

Both the P1003.0 and the NIST definitions focus on the openness of the

specifications as well as on the openness of the process through which the specifications

are developed and evolved. The definitions differ in that the P1003.0 definitions

emphasize potential benefits of open systems, and in that th2 NIST definition emphasizes S

the importance of working from an architectural framework that can help manage the

development and evolution of the open system standards.

It should be noted that there seems to be general agreement on the fact that open

system standards must be open, namely nonproprietary. However, there is some S

controversy over whether open system standards must necessarily be derived through an

open, public, consensus-based process. The issue has to do with the fact that some

company-produced specifications, such as MS-DOS, have become "public" and can and do

offer the benefits claimed by open systems.

The roots of the OSE concept lie in experience gained in the world of data

communication, in which standard protocols and services have for many years been

recognized as a key to communication and interoperability among heterogeneous computer

systems. The OSE concept can be viewed as a generalization of the ISO Open System

Interconnection (OSI) concept-from the domain of communication to the domain of

computing in general.

In the OSI effort, the seven-layer reference model serves as the "architectural

framework." Numerous data communication protocol standards have been developed in

6

the context of the seven-layer reference model, and they serve as the "nonproprietary

specifications." Several organizations, including ISO, ANSI, and the IEEE, serve as

public forums for the "open, consensus-based process" of developing and evolving
standards.

* In ongoing OSE efforts, "architectural frameworks" are being developed in terms of
categories of services. For example, in the POSIX OSE, five service areas (fundamental

system services, communications services, information services, human-computer

interaction services, and domain services) are used as the architectural framework in which
* to pursue standardization. In the NIST APP, seven service areas (operating system

services, user interface services, programming services, data management services, data
interchange services, graphics services, and network services) are being used as the

architectural framework. In the CIM Reference Model for Computing, nine service areas
* (the seven NIST APP service areas plus security services and system management

services) are being used as the architectural framework. Although the service areas do not
provide as structured a framework for computing as the seven OSI layers do for
communication, the service areas nevertheless do provide a useful categorization of work to

* be done.

With respect to "nonproprietary specifications," numerous standards have been
developed, and many more are being developed, in each of the service areas noted above.
With respect to the "open, consensus-based process" of pursuing standardization, the same

* organizations that sponsor OSI work are also sponsoring OSE work.

OSEs have the potential for making great strides toward the attainment of several
important and interrelated goals:

* Application software portability. An OSE lays the foundation for application
software portability by specifying standard application program interfaces to
standard services. Application software that utilizes (only) the standard
interfaces (and not proprietary enhancemenv) is portable across different
implementations of the standard interfaces.

* * Protection of application software investments. An OSE provides some
protection against obsolescence caused by technological advancements in
hardware. The idea is that the application program interfaces are designed to
be independent of hardware technology. As technology evolves, new
hardware platforms can host the same standard interfaces as their predecessors,
and applications can be ported to the new platform The burden of adjusting

7

to the new hardware platforms rests with the vendors of infrastructure software
such as operating systems, and not with application developers.

"System and application interoperability. By defining standards for data
communication and data exchange, an OSE supports the interoperability of
heterogeneous computer systems and subsystems, as well as the
interoperability of application software running on them.

"COTS acquisitions from multiple sources. An OSE enhances the prospects for
being able to acquire COTS products from multiple sources. Since the
standards are for interfaces and not implementations and since they are
nonproprietary, nultiple vendors can implement products that meet the
standards.

The extent to which a specific OSE lives up to its potential depends upon the base

of interest and support it achieves. That is, the success depends upon the number of
customers demanding products conforming to the OSE, the number of vendors marketing
products conforming to the OSE, and the nub, her of organizations and individuals willing
to support the consensus-based process for developing the standards underlying the OSE.

The success of an OSE also depends upon the far-sightedness of the standards
developers. It is not always possible to design standard interfaces that can survive every

revolutionary advance in technology. For example, some current data communication
protocols may not be able to support the very high-speed data rates that are expected to

become available in communication networks in this decade. At the same time, however, it
is incumbent upon standards developers to consider scalability of the standards throughout
the standardization process.

4.1

8

PART 2

Summary of
POSIX Real-Time Application Environment Profils

POSIX Working Group 1003.4 is the real-time working group. It is responsible

for defining real-time extensions to the basic POSIX interfacyes and also for defining real
time application environment profiles. At this time. It is developing specifications for four
real-time profiles: (i) a minimal real-time system profile, (2) a real-time controller system
profile, (3) a dedicated real-time system profile, and (4) a multi-purpose real-timnc system
profile. In this part ic a tabular summary of the four profiles, which wa_5 presented at the
January 1992 NGCR OSSWG meeting. The tabular summary is preceded by background
information, which explains the summary and why it was prepared and premcntcd at the

meeting.

9

I I

Tabular Summary of POSIX Retal -Time Application Environment Profiles

Presented by Karen Gordon (IDA), 14 January 1992

Background:

Before going to the tabular summary, it might be useful to review some background

material:

NGCR OSSWG Representative Application Domains. As a part of its evaluation process.
the NGCR OSSWG identified eight application domains to which the NGCR operating

system interface standards should apply. These domains were called representative
application domains, or RADs, and they were labeled as follows: (1) Ruby. interactive
processing, (2) Opal, special-purpose processing. (3) Amethyst, reliable message
processing, (4) Garnet, embedded processing (5) Topaz. high computation, (6) Emerald,

*b mission-critical systems, (7) Diamond, networked processors, and (8) Sapphire. integrated
subsystems. Brief textual descriptions of the R.ADs were written. In addition, each RAD
was defined in terms of how important (on a scale of 0 to 10) each of fifteen different

classes of requirements was to the RAD.

Application environmt frf, In the meantime, the open system standards community
was formulating the concept of application environment profiles. A profile is a suite of
standards, together with a selection of options within the standards. In the case of the
POSIX standards, it was recognized that not all operating systems would need to
implement all of the POSIX standards and all of their associated options. Instead, an

operating system should implement a suitable profile, i.e., one whose target application
environment matched that of the operating system.

The profiles being developed within the POSIX framework include (1) traditional multi-
user interactive processing, (2) transaction processing, (3) high-performance computing,

(4) multiprocessing, and (5) real-time processing. By specifying POSIX standardized
profiles, the POSIX working groups are attempting to give vendors some targets for their
implementations and to give users some well-known and widely-implemented profiles to
call out in their procurements.

POSIX Real-Time Profiles. POSIX Working Group 1003.4, the group that is defining

real-time extensions to the basic POSIX interfaces, is responsible for defining real-time
profiles. After much deliberation, the group reached a consensus that there should be four

11

I m m

real-time profiles, representing four categories of real-time processing. The profiles are
referred to as (1) minimal real-time system profile, (2) real-time controller system profile,
(3) dedicated real-time system profile, and (4) multi-purpose real-time system profile. At
the grossest level of detail, the first two profiles can be viewed as profiles for very small
systems, with a file system in the second profile but not in the first. The last two profiles
can be viewed as profiles for large systems, with a file system in the fourth profile but not
in the third. The tabular summary describes the profiles in more detail.

Intrepretation of the tabular summary. The tabular summary shows which POSLX
interfaces are included in each profile. POSIX I is the standard that specifies basic system
interfaces, such as those for processes, files, pipes, and signals. POSIX.4 specifies real-
time extensions, such as priority scheduling, memory locking, shared memory, and

semaphores. POSIX.4a specifies threads interfaces, where a thread is a unit of control
within a process. POSIX.2 and .2a specify shell and utilities interfaces. POSIX.8
specifies network-transparent file access interfaces. POSIX.12 specifies protocol-

independent interprocess communication interfaces for networks.

The tabular summary should be interpreted as follows. The first column indicates which
interfaces are included in the minimal real-time system prof'de. The second column, which
describes the real-time controller system profile, indicates which additional features are
included in the controller profile That is, the controller profile is equivalent to the minimal
profile plus the interfaces listed in the second column. Likewise, the third column shows
how to get from the controller profile to the dedicated profile. That is, the dedicated profile

is equivalent to the controller profile plus the interfaces marked by a "+" sign and minus the |
interfaces marked by a "-" sign. (As noted earlier, file interfaces are present in the
controller profile but not in the dedicated profile.) Finally, the multi-purpose profile
includes all of the POSIX.1 interfaces (including the file system interfaces), all of the
POSIX.4 interfaces (including the real-time file and mapped file interfaces), all of the 9
POSIX.2 and .2a interfaces; and it optionally includes still other interfaces, as indicated in

the summary.

Motivation for presenting the tabular summary. The NGCR OSSWG had decided at a
previous meeting that members should prepare mappings of the NGCR OSSWG RADs to

specific requirements (vs. requirements classes, as had been done during the evaluation
process), and ultimately to specific POSIX interfaces. The idea was to begin to define
some NGCR OSSWG profiles.

12

I had volunteered to cover two RADs-the embedded processing (Garnet) RAD and the

p interactive processing (Ruby) RAD. I thought that two POSIX profiles should be used as

the baselines for these two RADs ; in particular, I thought that the POSIX minimal real-time

system profile should serve as the baseline for the NGCR OSSWG embedded processing

RAD and that the POSIX traditional multi-user interactive processing profile should serve

as the baseline for the NGCR OSSWG interactive processing RAD. I believed that it was

important for the NGCR OSSWG to use commercially accepted profiles as the baselines

for NGCR OSSWG profiles, just as it was important to use commercially accepted

standards (such as POSIX) as the baselines for the NGCR OSSWG interface standards. In

the course of presenting the tabular summary, I suggested that the NGCR OSSWG start

with the POSIX profiles, instead of trying to map RADs onto requirements and/or

interfaces.

With respect to POSIX, I am a member of 1003.4, the real-time working group. I had

participated in the development of the real-time profiles. Therefore, I decided to present a

brief tabular summary of all the real-time profiles, so that the NGCR OSSWG members

could get a feeling for where the 1003.4 Working Group was going. I thought that after

reviewing these and other POSDC profiles, the NGCR OSSWG would be in a better

position to determine the feasibility of relying on the POSIX profiles as baselines for the

NGCR OSSWG profiles.

[Note: Over the last several months, RADs have faded into the background, and the

NGCR OSSWG has placed increasing emphasis on the POSIX profiles. Recognition of
the superior commercial viability of the POSIX profiles seems to be the primary reason

behind the shift in emphasis.]

13

Ii i • I I II 13

Summary of POSIX Real-Time Profiles

Minimal Controller Dedicated Multi-purpose

POSIX.I single process + file system + multiple + rest of
basic I/O: open, + signals processes POSIX.1
close, read, write + pipe -file system

semaphores + asynchronous + real-time + rest of 0
memory locking 1/0 signals POSIX.4

shared memory + real-time files + priority
POSIX.4 timers + mapped fides scheduling

+ prioritized I/0
message passing - real-time files
synchronized 1/0 - mapped files

POSIX.4a threads (all) optional threads

+ POSIX.2, .2a
Other optionalPOSIX.8.

POSIX.12,
X Windows

1

14

0

PART 3

Contributions to

0 OSSWG Fault Tolerance Issues Paper

41 The NGCR OSSWG writes and maintains a series of papers on various issues of
concern to the group. One of the papers (referred to above) is on the topic of fault
tolerance. Fault tolerance is one the major requirements of mission-critical computing
systems, but is not adequately addressed in the POSIX family of standards. The OSSWG

0 Fault Tolerance Issues Paper is a collection of write-ups on several issues having to do

with fault tolerance and how it might be addressed in the POSIX context Some of the
issues are technical in nature; others are more management oriented. The issues include the
following: (1) level of interest within the POSIX community, (2) complexity of

0 requirements, (3) conformance testing, (4) relationship to NGCR prototyping efforts, (5)
inconsistent handling of faults/errors in the POSIX standards. (6) portability of services
and interfaces, (7) timing of standardization, (8) relationship to security, (9) system-wide

fault tolerance, (10) application-controlled policies and mechanisms, and (11) data
0 replication, In this part are copies of write-ups provided by IDA on the last two of these

issues.

15

01

"Application-controlled Fault Tolerance Policies and Mechanisms," a write-up of one of the
issues covered in the NGCR OSSWG draft document entitled OSSWG Fault Tolerance
Issues Paper

Submitted by Karen Gordon (IDA)

2.n ISSUE: APPLICATION-CONTROLLED FAULT TOLERANCE
POLICIES AND MECHANISMS

Fault tolerance is defined by Nelson and Carroll as "the use of protective

redundancy to permit continued correct operation of a system after the occurrence of

specified faults" [Nelson and Carroll 87, p. 2). The redundancy can be of various forms.

Nelson and Carroll classify the forms into four categories: hardware (e.g., triple modular

redundancy), information (e.g., error detecting/correcting codes, file replication), software

(e.g., diagnostics software, n-version programming), and temporal (e.g., repeating
operations, resending messages).

The management and implementation of redundancy clearly consumes resources-
* space (hardware) and/or time. Thus, there is an inherent tradeoff between fault tolerance

and performance. In mission-critical systems, this tradeoff should be driven by mission

needs. Mission needs can be conveyed to the operating system (the resource manager) by

application software. In order for the application software (as coded by the developer of
the application •oftware) to be able to wisely make the tradeoff between fault tolerance and

performance and to effectively control the management of resources, the following

conditions should hold:

Monitoring: The operating system should be capable of selectively monitoring
the state of the system, as directed by the application software. This
monitoring should include both (1) the usage of resources and (2) the
occurrence of errors.

Informing: The operating system should be capable of informing the
application software of the state of the system, as requested by the application
software.

Control: The application software should be able to control the application of
fault tolerance policies and mechanisms.

17

2.n.1 OPTIONS

1. The OSSWG could continue to work in existing POSIX working groups to
ensure that application control of fault tolerance policies and mechanisms is adequately
supported. Examples of ongoing work on the aspect of monitoring, informing, and
enabling application control of resource usage include (1) timeouts on blocking services
(here the "resource" is elapsed time) and (2) CPU time usage (here the resource is the
CPU(s)). This concept of monitoring the usage of resources could be extended to other
resources. For example, the usage of files could be recorded and used to improve the
placement of files in a system (i.e., move files or make copies of files and place them at
sites where they are most often accessed).

An example of application control of the tradeoff between fault tolerance and
performance is the P1003.12 work in which messages with different qualities of service
can be sent.

2. The OSSWG could work in a newly formed POSIX dot group on fault tolerance
to add the necessary interfaces to the POSIX family of standards.

2.n.2 OSSWG POSITION

The OSSWG should pursue both options. Where feasible, the OSSWG should try
to work within existing POSIX working groups. But, it seems that some of the OSSWG
requirements (e.g., monitoring of resource usage, logging of errors, establishment of fault
detection thresholds, creation of shadow files, checkpointing and frequency thereof) may 0

not have a (near-term) home in any existing POSIX working group.

These requirements could perhaps be best addressed in a group focused on fault

tolerance. •

2.n.3 RESOLUTION

TBDfIBA

REFERENCES

[Nelson and Carroll 87] Nelson, Victor P. and Bill D. Carroll, Tutorial: Fault-Tolerant

Computing, IEEE Computer Society Press, 1987.

0

18

I0

"Data Relication," a write-up of one of the issues covered in the NGCR OSSWG draft
document entitled OSSWG Fault Tolerance Issues Paper

Submitted by Karen Gordon (IDA)

2.m ISSUE: DATA REPLICATION

Information redundancy is one of the forms of redundancy that can be used to
achieve fault tolerance. Information redundancy can be implemented at the low level
through error detecting/correcting codes. At higher levels, it can be implemented through
replication of data structures.

There are different replication policies that can be used to achieve different tradeoffs
between fault tolerance and performance. In general, higher degrees of fault tolerance
entail mechanisms such as locking or timestamps that lead to delays and reduce

performance.

Atomic transactions are often used in conjunction with replication to manage the use
of the replicated data structures. Again, there are different policies that can be used in the
implementation of transactions.

OSSWG requirements that point toward the need for flexible data replication
policies and mechanisms include 1/26 (Resilience), 1/27 (Network Partition), 6/15
(Shadow Files), 6/17&18 (Query & Modify File Attributes), 11/14 (Checkpointing), and
13/5 (Transaction Scheduling).

2.m.1 OPTIONS

1. The OSSWG could start participation in P1003.11, the POSIX working group
that is defining a transaction processing AEP. The current draft is only 10 pages, and it
seems to be in need of some support. The draft points to the work of other standards

organizations, in particular, ISO, X/Open, and UNIX International. These organizations
seem to have produced a lot of material on transactions. The OSSWG participant(s) in
P1003.11 would have a lot of reading material, even though the draft itself is very short.

The OSSWG participant(s) would need to ensure that the transaction interfaces being
brought into the POSDC world are flexible enough to accommodate OSSWG requirements

(i.e., to allow application control of the tradeoff between fault tolerance and performance).

19

2. The OSSWG could introduce interfaces for replicated files and checkpointing

into an existing POSIX working group.

3. The OSSWG could introduce interfaces for replicated files and checkpointing

into a new POSIX dot group on fault tolerance.

2.m.2 OSSWG POSITION

The OSSWG should pursue options 1 and 3. There is too much ongoing
transaction work to ignore, so P1003.11 is important. Replicated files and checkpointing

seem to have the most hope of progressing in a working group focused c ýi fault tolerance.

2.m.3 RESOLUTION

TBD1rBA

20

• m |

PART 4

Review of

Selected NGCR Operating System Interface Requirements

* The NGCR OSSWG's Operational Concept Document specifies requirements for
the NGCR operating system interface standard. The NGCR OSSWG's DELTA Document

gives the status of each requirement with respect to the POSIX standards. Both documents

are meant to be reviewed and revised at regular time intervals. To this end, NGCR
0 OSSWG members were asked to review the documents with respect to specific

requirements. In this part is a copy of the review provided by IDA.

0

21

S6m l

S

* Proposed Revisions to Operational Concept Document and DELTA Document

Submitted by Karen Gordon (IDA)

0 Background:

The NGCR OSSWG's Operational Concept Document' contains the specification

of requirements for the NGCR operating system interface standard. During the NGCR

OSSWG's evaluation process, these requirements served as the criteria by which candidate

* operating system interfaces were evaluated. Then, when the evaluation was completed and

POSIX was selected as the baseline upon which to build the NGCR operating system

interface standard, the requirements listed in the Operational Concept Document assumed a
new role. In particular, they now provide guidance to the NGCR OSSWG in its efforts to

0 ensure that the POSIX standards evolve in directions useful to mission-critical computing.

The NGCR OSSWG's DELTA Document2 gives the status of each requirement

with respect to the POSIX standards. Section 3 of the DELTA Document summarizes the
extent to which each requirement is met by the POSIX standards. Section 4 re-examines

* each unmet (or "unfulfilled") requirement, and it rates the feature represented by the
requirement as being "a" (still required), "b" (highly desirable), "c" (deferrable), or "d" (in
need of further evaluation). Section 6 proposes approaches for evolving the POSIX
standards to meet the significant unfulfilled requirements (those that received ratings of "a"

* or "b" in Section 4), and it makes recommendations on which approaches to take.

Both the Operational Concept Document and the DELTA Document are living

documents, meant to be reviewed and revised at regular time intervals. To this end, NGCR

OSSWG members were asked to review the documents with respect to specific
requirements. In this part is a copy of the review provided by IDA. It covers Requirement

1 of Service Class 2 (Architecture Dependent Interfaces), Requirements 2, 5, and 6 of

Service Class 5 (Event and Error Interfaces), Requirement 6 of Service Class 7
(Generalized 1/O Interfaces), and Requirement I of Service Class 9 (Process Management

I Operational Concept Document for the Next-Generation Computer Resources (NGCR) Operating
Systems Interface Standard Baseline, NUSC Technical Docwnent 6998, 1 April 1991.

2 DELTA Document for the Next Gene.-ation Computer Resources (NGCR) Operating Systems Interface
StandardBaseline, Verson 2, 31 December 1991.

23

Interfaces). The review contains "marked-up" excerpt- of the I April 1991 Operational
0

Concept Document and the 31 December 1991 DELTA Document. It should be read as
follows:

" Plain text is used for origiaid text (i.e., text from the 1991 versions of the
documents under review) that should remain unchamged.

0
" Bold text is used for new text that should be inserted.

"* [Italicized text in brackes] is used for original text that should be deleted.

"* [Bold text in brackets] is used for notes to the reader (e.g., to point out
issues that need further discussion or decisions that were made at the
September NGCR OSSWG meeting).

0

0

0

0

24

0

Service Class 2 (Architecture Dependent Interfaces), Requirement 1

Proposed Revisions to Operational Concept Document [None]

20.2.1 Non-NGCR System Interfaces

20.2.1.1 Definition
The OSIF shall support non-NGCR-based systems by providing a subset of its services to
those systems. As a minimum this subset shall include:

- Download, initialize, start, and stop
- Ability to share resources, particularly peripheral devices
- Process-to-process message communication
- Ability to pass operational status information

20.2.1.2 Metric
20.2.1.3 Rationale
The Navy has a large investment in existing non-NGCR-based systems. These systems
will continue to be in use for years to come and will need to interface to some degree with
NGCR-based systems. Additionally, non-NGCR-based systems may need a method to
gracefully transition to NGCR-based systems. The NGCR-systems will be required to
accommodate interfacing to and evolution of the non-NGCR-based systems.

Proposed Revisions to DELTA Document

3.2 Architecture DePxendent Interfaces

Architecture Dependent Interface (20.2.1) is met by:

P1003.1, paragraph 3.1 - 3.4
P1003.1, paragraph 6.1 - 6.5
P1003.4/DI2, paragraph [9.1 - 9.4] 23.1 - 23.4
P1003.4/D12, paragraph [10.1 - 10.4] 6.4 - 6.6;

The OSIF shall support non-NGCR based systems by providing a subset of its services to
those systems. The subset of service requests from non-NGCR based systems include
download, initialize, start, resource sharing, procesm; to process message communication,
and ability to pass operational status information.

The non-NGCR system may issue service requests over non-NGCR or NGCR network
interfaces. The NGCR network interfaces include FUTUREBUS+, SAFENET, and
1553B (See the OCD, Paragraph 20.8.1.1). The non-NGCR network interfaces include
(but are not limited to) VME, MULTIBUS, TCP/IP, RS232, RS422 (See OCD, Paragraph
20.8.2.3).

POSIX does not provide explicit interfacing to non-NGCR networks. However, POSIX
can support interfacing to non-NGCR networks given that the term "support" allows for
hardware to be added to the non-NGCR network interface, and software to be added to
both NGCR and non-NGCR systems. The application implementation of the additional
hardware and software will allow the ability to service non-NGCR system service requests.

25

Raouiremr~nts Coveraipg Sum m~ir'

2.1 Yes Nn

*4-2 Architecturt: Dependept Intrfcescv

There are no unmet reAquirelnenvi for scrvice cl~s 2

Unfulfilled Re(Juip~mcris Rating

*6-2 Architecture DeDendent !ntiufagt5

Theme ame no unmet rvquireneriLs for service class 2.

260

Service Class 5 (Event and Error Interfaces), Requirements 2, 5, and 6

Proposed Revisions to Operational Concept Document

* 20.5-2 Event and Error Disii' ution

20.5.2.1 Definition
The OSIF shall provide for specifying the distribution of event and error information.
20.5.2.2 Metric
20.5.2.3 Rationale
This requirement is a necessary corollary to the Event and Error Receipt requirement (Refer
to Section 20.5. 1). The Fault Information Request requirement (Refer to Section 20.11.2)
also applies to the error information distribution part of this requiremeat.

• 20.5.5 Enable/Disable Interrupts

20.5.5.1 Definition
The OSIF shall provide the ability to enable and disable interrupts.
20.5.5.2 Metric
20.5.5.3 Rationale
This requirement provides for interrupts as a whole to be turned on and off. The
mask/hnmask interrupts requirement, on the other hand, provides for individual interrupts
to be made known/unknown.

* 20.5.6 MaskMUnmask Interrupts

20.5.6.1 Definition
The OSIF shall provide the ability to mask and unmask [events] interrupts.
20.5.6.2 Metric
20.5.6.3 Rationale
A system requires this capability during such activities as interrupt processing to lock out
interrupts of a lower class from occurring or to mask out the interrupts from particular
sources.

Proposed Revisions to DELTA Document

* 3.5 Event and Error Interfaces

OSSWG requirements 5.1 and 5.2 are partially covered by POSIX. While the event
interfaces exist, and error interfaces are provided for individual processes, there are no
error coordination or distribution interfaces.

[Note that this paragraph and the following one have been revised in
accordance with the outcome of the September NGCR OSSWG meeting.]
It is anticipated that 1003.4b will provide the capability for an application
to specify that, upon occurrence of a designated interrupt, a signal is to be
sent to a designated process, or a designated user-written ISR is to be
executed (or both). This interrupt control capability, in conjunction with
1003.1/1003.4/1003.4a signals, would provide some coverage of

27

requirement 5.2 (distribution of event and error information). In
particular, the interrupt control mechanism could be used for the
distribution of information on events and errors resulting in hardware
interrupts (such as hardware device errors). However, this distribution
mechanism would not be applicable to certain operating system errors (such
as those in which kernel data structures become faulty).

Another possible deficiency in the coverage of requirement 5.2 is the fact
that functions return indication of only a single error, instead of all errors
that occur during function processing.

For requirements 5.5 (enable/disable all interrupts) and 5.6 (mask/unmask
selected interrupts), POSIX has considered direct control of interrupts to be "out of
scope" and hence not provided. However, 1003.4b is now broaching the subject and
suggesting that interrupts be handled in a way similar to signals.

It is anticipated that 1003.4b, in its interrupt control chapter, will provide
functions for enabling and disabling interrupts. However, the 1003.4
Working Group still considers masking/unmasking of interrupts to be too
hardware dependent to be standardized. (Note that the proposed 1003.4b
approach enables interrupts to be connected to signals and signals to be
masked/unmasked.)

RCuirements Coverage Summa

Rcurmn Covere POd et

5.1 Partially Insertion
5.2 Partially Insertion [still only partially covered,

5.3 Partially Iaccording to September meeting]
5.4 No Insertion
5.5 Yes None [with 1003.4b's interrupt control]
5 Partially Insertion

s• . vent and Error Interfaces

However, some philosophical views and assumptions of the POSIX community, differ
considerably from that demonstrated by the OSSWG conceptual model.

Examples are access to interrupts and error logging. Both were cited as "out of scope" by
the POSIX community.

1003.4b is currently developing interrupt control interfaces which will
presumably fulfill Requirement 5.5 and contribute to the fulfillment of
Requirement 5.2. Due to hardware dependencies, it may not be appropriate
to attempt to standardize interfaces for masking/unmasking interrupts.

28

0

II

Unfulfilled Requirements Rating

Eqimn Rhating

5.1 4c
5.2 a [still "a", according to September meeting]
5.3 a
5.4 a
5.5 [al

- [assuming 1003.4b interrupt control covers the
requirement]

5.6 [a]
c [not ready for standardization???]

-6.5 Event and Error Interfaces

We recommend satisfying 6.5.5, Enable/Disable Interrupts, and 6.5.6, Mask/Unmask
Interrupts in 1003.4b where this work has already been undertaken. Mask/Unmask
Interrupts may not be provided by 1003.4b, because of hardware
dependencies. (Classification as a significant unfilled requirement should
be reconsidered, as indicated in Section 4.5 of this Delta Document.)
Requirement 6.5.1, Event and Error Receipt, is deferred as far as errors are concerned
because this is not an API requirement.

6.5.2 Event and Error Distribution

Requirement: The OSIF shall provide for specifying the distribution of event and error
information. This is a necessary OSIF requirement.

Description of Deltas: POSIX provides for the distribution of events through Signals
(paragraph 3.3, IEEE Std 1003.1-1990). Table 3-1 (IEEE Std 1003.1-1990) lists the
signals that all POSIX implementations must support and Table 3-2 (IEEE Std 1003.1-
1990) lists those signals that a system implementing job control must support. However,
"an implementation may define additional signals that may occur in the system" (paragraph
3.3.1.1, IEEE Std 1003.1-1990). The Signals interface is enhanced in
1003.4/D12, Section 3.3, and it is extended to threads in 1003.4a/D6,
Section 8.

POSIX provides for the distribution of errors to the requesters of individual functions.
Each function specifies which errors all POSIX implementations must detect and which are
optional. Paragraph 2.4 (IEEE Std 1003.1-1990) lists the possible errors. However,
"implementations may support additional errors not included in this clause, may generate
errors included in this clause under circumstances other than those described in this clause,
or may contain extensions or limitations that prevent some errors from occurring"
(paragraph 2.4, IEEE Std 1003.1-1990). "If more than one error occurs in processing a
function call, this part of ISO/IEC 9945 does not define in what order the errors are
detected; therefore, any one of the possible errors may be returned" (paragraph 2.4, IEEE
Std 1003.1-1990). [Can this approach be tolerated?] In addition, realtime
extensions to POSIX in 1003.4b is pursuing handling of interrupts. In 1003.4b

29

(expected in draft 4 or 5), the occurrence of an interrupt can be made to
trigger the sending of a signal to a designated process, or the execution of
a user-written ISR (or both).

The OSIF requires that all possible errors be available, not just one of those possible.
[Again, can this be tolerated?] It also requires thai there be a means for coordinating
the distribution of errors, as for example to a single process responsible for error analysis.
The 1003.4b interrupt control interface enables distribution of certain
errors, namely those resulting in hardware interrupts. [Note that the
preceding line was revised as a result of the September meeting.]

Recommendation: We recommend that the OSSWG change the wording of this
requirement to be more consistent with similar requirement 6.11.1. Possible new wording
is: The OSIF shall provide for specifying the distribution of event and error information.

We recommend that OSSWG continue to support the work to make interrupts available
through 1003.4b interfaces. Interrupt control is expected to become available in
Draft 4 or 5 of 1003.4b.

[And, to completely satisfy this requirement, we recommend that OSSWG pursue a POSIX
PAR to add system fault and error management to the work of 1003. 7 or to begin a new
system fault and error management group.] [Align with other Service Class 5 and
Service Class 11 recommendations.]

6.5.5 Enable/Disable Interrupts 0

Requirement The OSIF shall provide the ability to enable and disable interrupts. This is a
necessary OSF requirement.

Description of Deltas: POSIX does not currently provide the capability to handle
interrupts. However, realtime extensions to POSIX in 1003.4b is currently pursuing
handling of interrupts. Interrupt control is expected to be included in draft 4 or
5 of 1003.4b.

Recommendation: We recommend that the OSSWG continue to support the work in
1003.4b to resolve the delta for this requirement.

6.5.6 Mask/Unmask Interrupts [Remove from Chapter 6???]

Requirement: The OSIF shall provide the ability to mask and unmask events. This is a
necessary OSIF requirement

Description of Deltas: Within the limits discussed under requirement 6.5.2-i.e., POSIX
does not provide for the collection and coordination of all events and errors-POSIX
provides the ability to mask and unmask events through its signal processing (paragraph
3.3.1.2, IEEE Std 1003.1-1990). Therefore, complete resolution of the deltas for this
requirement depend upon the resolution of requirement 6.5.2.

POSIX does not currently provide the capability to handle interrupts. However, realtime
extensions to POSIX in 1003.4b is currently pursuing handling of interrupts. Assuming
that the requirement is to mask/uivaask interrupts, the issue becomes

30

whether it is possible to standardize this functionality. Hardware
dependencies may make it inappropriate to try to standardize.

Recommendation: We recommend that the OSSWG change the wording of this
requirement to be consistent with its title and with requirement 6.5.5: The OSIF shall
provide the ability to mask and unmask interrupts. In this regard, the second paragraph of
the description applies and we recommend that the OSSWG [continue to support the work
in 1003.4b to resolve the delta for this requirement] view this requirement as
inappropriate for standardization.

31

Service Class 7 (Generalized 1/0 Interfaces), Requirement 6

Proposed Revisions to Operational Concept Document [None]

20.7.6 Device Event Notification

Refer to requirements within Section 20.5, Event and Error Interfaces. 0

Proposed Revisions to DELTA Document [None]

•3.7 Generalized 1/0 Interfaces

Refer to Section 3.5, Event and Error Interfaces, Device Event Notification (7.6).
Reouirements Coverage Sunmmay

7.1 No Insertion
7.2 Yes None
7.3 Yes None
7.4 Yes None
7.5 Yes None
7.6 Partially Insertion
7.7 Paialy Modification
7.8 Yes None
7.9 Yes None 0
7.10 No Insertion
7.11 No Insertion

4-7 Generalized 1/0 Interfaces

3

32

aUnfulflled Requirements Rating

7.1 a
7.2
7.3
7.4
7.5
7.6
7.7 a
7.8
7.9
7.10 a
7.11 d

6-.7 Generalized 1/0 Interfaces

6.7.6 Device Event Notification

Refer to Section 3.5, Event and Error Interfaces

33

Service Class 9 (Process Management Interfaces), Requirement I

Proposed Revisions to Operational Concept Document

20.9.1 Create Process

20.9.1.1 Definition
The OSIF shall [provide] support the ability to create processes with specified attributes.
20.9.1.2 Metric
20.9.1.3 Rationale
Processes land their environments] need to be created, and appropriate values need
to be assigned to their attributes, prior to their execution. Attributes may include
such things as process name, process priority, stack size, scheduling attributes, memory
allocation, etc.

Proposed Revisions to DELTA Document

3.9 Process Management Interfaces

The requirements for Create Process (9.1), Interprocess Communication (9.8), Examine
Process Attributes (9.9), Modify Process Attributes (9.10), Process Identification (9.12),
and Program Management (9.14) are directly met for Pthreads by P1003.4a plus the
interprocess communication facilities of P1003.4. The requirements for Interprocess
Communication (9.8), Examine Process Attributes (9.9), Modify Process Attributes(9.10),
Process Identification (9.12), and Program Management (9.14) are directly met for POSIX
processes by P1003.1 process interfaces plus P1003.4 process attributes and interprocess
communication facilities.

The Create Process (9.1) requirement is met for processes by the fork and
exec functions of P1003.1, the spawn interface of P1003.4b, the
scheduling interface of P1003.4, plus the communication and
synchronization interfaces of P1003.4.

The requirement for Create Process (9.1) is not adequately covered for POSIX processes
because no attributes may be specified at creation time. P1003.4 associates certain
attributes (priority, scheduler, etc.) with POSIX processes, but does not provide an
interface allowing these attributes to be assigned at process creation time. With "shall
provide" changed to "shall support", the fact that process creation entails
multiple steps (i.e., fork/exec or spawn, setting of attributes, and
synchronization to hold back starting) is acceptable.

Also, the POSIX process creation mechanism requires use of several P1003.1 interfaces
used in combination; i.e. forko, execo, and the file system namespace. This is a rather
awkward and expensive mechanism, and does not adequately address the creation of
processes from memory resident code and data segments. The spawn interface of •
P1003.4b alleviates the fork/exec problems.

34

I• l I I I r0

ReQuirements Coverage Summary

9.1(Pthreads) Yes None
9.1 (Process) [Partially] fModification]

Yes??? None??? [with "shall support" and Spawn]
9.2 Partially Modification
9.3 No Insertion
9.4 No Insertion
9.5 Partially Insertion
9.6 Partially Insertion
9.7 Partially Insertion
9.8 Yes None
9.9 Yes None
9.10 Yes None
9.11 No Insertion
9.12 Partially Modification
9.13 No Insertion
9.14 Yes None

4-9 Process Management Interfaces

Unfulfilled requirement: Create Process (91)

This requirement would be classified as [(b) Highly Desirable] (a) Required. P1003.4
currently does not allow the attributes of a POSIX process (as defined in P1003.4, e.g.
priority, scheduler) to be set concurrently with process creation (via "fork" and/or "exec").
These must be set via separate interfaces, which creates a window in time during which a
process may execute with anonymous or undefined attributes. Attributes are inherited
and then can be changed. (This is acceptable when "shall provide" is
changed to "shall support".) P1003.4a provides such a mechanism for Pthreads,
namely the thread creation attribute object. This creates an inconsistency in model between
the Pthread and POSIX process creation. Since real time systems seldom (or never) do
extensive process creation operations during time-critical operational scenarios, the window
effects are not likely to severely perturb system operations; but the inconsistency should be
eliminated by adapting the concept of creation attributes to P1003.1 processes, perhaps as
an optional alternative form of "fork."

Additionally, the P1003.1 semantics of process creation must be modified or clarified to
ensure that: a) a combined forkO/execO operation need not incur the overhead of
duplicating the running process; and b) the pathname passed to execO need not necessarily
imply loading of memory from a file (but may, for example, specify process code already
memory resident). The P1003.4b Spawn interface is an acceptable resolution
of these concerns.

35

Unfulffiled Requirements Rating

"Buirementn Eang
9.1 b

[because of "shall provide" being changed to "shall
support", and because of P1003.4b's Spawn]???

9.2 a
9.3 d
9.4 d
9.5 d
9.6 d
9.7 d
9.8
9.9
9.10 -

9.11 a
9.12 a
9.13 a
9.14

- 69 Process Management Interfaces

6.9.1 Create Process

Requirement 9.1: Create Process

Description of Delta: POSIX combines the create process/thread and start process/thread 0
into one operation. (This is acceptable when "shall provide" is changed to
"shall support".) OSSWG requires the process to be created so that it can be readied
for the scheduler queue this is a two step operation. This more closely matches the Ada
definition which separates the creation and start operations.

POSIX process attributes cannot be defined at process creation when using the FORK
EXEC. Some attributes (e.g., scheduling attributes) cannot be defined when
using Spawn. (This is also acceptable when the requirement is "shall
support".)

Resolution: The delta can be minimized to more closely resemble the OSSWG definition if
POSIX create thread would also use a conditional wait immediately following the create 0
operation.

POSIX P1003.4b is exploring the possibility of introducing a process creation without
FORK which allows (some) process attributes to be defined at Process Creation.
P1003.4b now includes a Spawn interface, which serves as an alternative
to fork/exec.

Recommendation: Modify the OSSWG requirement by changing shall provide to shall
support and track P1003.4b to see if a Process Creation without Fork gets defined.
(Assuming that the recommendation to change "shall provide" to "shall
support" is accepted, and that Spawn survives in P1003.4b, Requirement
9.1 is met.)

36

LIST OF ACRONYMS

ANSI American National Standards Institute

API Application Program Interface

APP Application Portability Profile

CIM Corporate Information Management

COTS Commercial off the Shelf

CPU Central Processing Unit

I/O Input/Output

IDA Institute for Defense Analyses

IEEE Institute for Electronics and Electrical Engineers, Inc.

ISO International Organization for Standardization

ISR Interrupt Service Routine

NGCR Next Generation Computer Resources

NIST National Institute for Standards and Technology

NUSC Naval Underwater Systems Center

OSE Open System Environment

OSI Open System Interconnection

OSIF Operating System Interface

OSSWG Operating Systems Standards Working Group

POSIX Portable Operating System Interface for Computer Environments

RAD Representative Application Domain

TBA To Be Announced

TBD To Be Determined

TCP/IP Transmission Control Protocol/Internet Protocol

37

