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Objectives of the Project

To understand and control the basic energy transport
phenomena in the Vapor Shield at different material
surfaces under high heat flux.

To explore the effect of a strong magnetic field in
decreasing surface erosion and drag coefficients under
high heat flux under EM gun conditions.

To model the Magnetic Vapor Shield mechanism and to
compare with experimental results.

To understand, characterize, and control the plasma-
propellant energy transport process by measuring
propellant burn rates.

To explore and model the plasma-propellant interaction
process and the flame vapor shield mechanism.

To systematically diagnose and explore the reaction of
different propellants under different injected plasma
conditions.




Major Issues to [nvestigate

To systematically explore the resistance
of various materials (insulators,
composites, metals and alloys, non-
metallic conductors, metallic and
diamond coatings, etc.) to high heat
flux erosion, and plasma reactions with
solid and liquid propellants.

To determine the nature of drag forces
and turbulent convective flow in
contributing to surface erosion.

To fully diagnose the vapor shield
plasma, and the plasma and heat flux
distribution onto propellant samples.

To model and predict the vapor shield
effectiveness both with and without a
magnetic field, and model and predict
the flame vapor shield effect and burn
rate of propellants.




Accomplishments

1989/1990

Predicted vapor shield transmission factors that were
verified by experiment. Energy transmission factor
through the vapor shield is on the order of 10%.
Radiation transport is the most important energy transfer
mechanism. Demonstrated that some materials have
better vapor shielding properties than others.

Erosion of different materials was explored, and the
axial erosion dependence was measured for different
materials. SEM, EDXA and Auger analyses
demonstrate the redeposition of electrode materials at
different locations. Conditioning effects of single
material samples exposed to multiple shots were noted,
which will be important in operation of railguns.

The spectra of observed plasma light emission indicated
the presence of electrode and sample materials.

Preliminary results on the effect of the magnetic field.

Magnetic fields decreased surface erosion by 20% for
fields of 5 Tesla.

Developed series of 1-D, time-dependent, MHD codes to
model vapor shield phenomena, ZEUS, a global, time
dependent code for the source plasma, and MAGFIRE, a
1-D, time dependent MHD code with coupled radiation
transport for ablative plasma.




199071991

Generated materials erosion data base for metals, alloys,
insulators, non-metallic conductors and refractory
materials. Demonstrated that metallic surfaces have
mixed melting/erosion with strong axial erosion
dependence, while insulators and graphites ablate
homogeneously along the axis.

Modified the chamber geometry (10 inch cross connected
to the 6 inch cross).

Modified diagnostics arrangements and developed in-
bore heat flux (direct and indirect measurement of heat
flux to the wall) with 1-D and 2-D, time dependent heat
flux codes “SURFHEAT and 2DSURFHEAT” 6 and
plasma conductivity diagnostic technique.

Obtained empirical general scaling law of the energy
transmission factor f through the vapor shield layer (for
different materials) for ideal and non-ideal plasma
models, f = K1+ K7 S-1/4, where Kj and K3 are
constants depending on material properties, S is the
source fluence.

Obtained results on the effect of the magnetic field
(Magnetic Vapor Shield) with fields up to 8.75T.
Magnetic fields decreased surface erosion by up to 35%
for fields of 6.25 Tesla. An empirical general scaling
law of the energy transmission factor for Lexan with the
effect of the magnetic field, f(s ) has been obtained,

f(s,B)= ®1(B) S-1/4+ »3(B), where ®1(B), ®2(B) are
quadratic functions of the magnetic field.




199171992

Identified species that appear in the majority of the
discharges. C2 (Swan bands), CHg4 (absorption line),
neutral copper (from the electrodes), and neutral carbon.

Measured the source average plasma temperature using
optical emission spectroscopy, correlated to conductivity
probes and heat flux measurements, and calculations
based on the source ablation and ZEUS-code predictions.

Continuous materials erosion studies on coated surfaces
with different coating techniques, tungsten, tantalum and
chromium alloys, ceramic insulators and diamond
coatings.

Modified SURFHEAT code to include melting. Plasma
temperature deduced from heat flux measurements
correlates well with values obtained from optical
emission spectroscopy. The updated version of
SURFHEAT yields more accurate results in heat flux
diagnostics.

Detailed analysis of the magnetic vapor shield, including
convection heat flux, velocity slowdown, and photon
attenuation within the boundary layer.

Accelerating projectiles, 0.33 g Lexan projectiles, and
velocity measurements using break wires, photo-
interrupters, laser cut-off, and absolute pressure
transducers “fuse-atmospheric and fuseless-vacuum
operation”.

Drag forces measurements, using absolute pressure
transducers inside a special diagnostics barrel.
Measured 0.8 kbar pressure inside the barrel at 5 kJ
input energy “fuse and fuseless operation”.




SIRENL OPERATIONAL
CHARACTERISTICS

DISCHARGE VOLTAGE (10 kV max.)
PEAK CURRENT (100 kA max.)

NET INPUT ENERGY (15 kJ max.)
DISCHARGE PERIOD

RADIATED POWER

PEAK PRESSURE

PLASMA DENSITY

PEAK PLASMA TEMPERATURE
AVERAGE PLASMA TEMPERATURE
AVERAGE PLASMA VELOCITY

1 -8kV
20-100kA
1-8KkJ

100 psec
2-70 GW/m?
> 1 kbar
1025-.1026m-3
4 -6c¢eV
1-3eV

~12 km/sec
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Schematic of SIRENS showing the source section
(capillary), barrel section with magnet assembly
(magnetic vapor shield studies).

Diagnostics arrangement showing standard diagnostics
measurements.

(currents, voltage, B-dots), fiber optics for optical
emission spectroscopy, and a thermocouple for heat flux




Pressure Transducers
Thermocouples

.....

Conductivity Probes

I S00pF 1 11 I
SOURCE SECTION BARREL SECTION TARGET
Optointerrupters

be! Ll

BW1,62
| 300ur Il I |
SOURCE SECTION BARREL SECTION TARGET
ASSEMBLY
BARREL DIAGNOSTICS
TOP: conductivity probes (resistivity), thermocouples (heat

flux), and pressure.
BOTTOM: Break wires (velocity), pressure (drags), and
optointerrupters (velocity).




Photographs of SIRENS showing the source input
section and magnet current feedthrough (top photo), and
target and expansion chamber with diagnostics
feedthrough (bottom photo).
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Shot # 362
Net Energy Input: 5.008 kJ
Material: Tantalum on Copper Substrate
(Ta sputtering on Cu substrate, 25 p thick)
“RUN No. 125-4~
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Oscillograms of discharge current and voltage (top), and calculated power and
resistance (bottom).




INCIDENT
PLASMA

Thermocouaple
/ THERMO- LECROY
| COUPLE WAYEFORM
MODULE DIGITIZER
b
COMPUTER
SURFHEAT v1A

CODE '9‘ CATALYST
TARGET PROGRAM

SCHEMATIC OF HEAT FLUX MEASUREMENTS
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MEASURED AND CALCULATED
TEMPERATURE HISTORIES
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COMPARISON BETWEEN TEMPERATURE
HISTORIES OBTAINED BY SLOW AND FAST
RESPONSE THERMOCOUPLES

50 . ! Al Ll M T M T d T
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O Tungsten Target
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Input Energy (kJ)

HEAT FLUX RESULTS FOR A TUNGSTEN ALLOY
TARGET (MELT LAYER REMOVED) COMPARED
TO PYROLYTIC GRAPHITE TARGET (ABLATION
OF TARGET SURFACE), AND SOURCE ABLATION
ALGORITHM.




Source Sectdon Barrel Section
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Data Analysis and Manipulation
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Conductivity probes are connected to a modular potential divider, where the
potential between each two probes is recorded. Probe potentials, discharge
current and voltage data are recorded with a LeCroy 6810 waveform digitizer
interfaced to a PC via GPIB/PC-2. Through data analysis and manipulation,
plasma resistivity (and consequently plasma temperature) can be extracted.
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The resistivity model for weakly nonideal plasmas is
evaluated from:

_ o Im(1+1aAZ )2 g
Toi = Tgio A @7

where, n(1+l4 A;n /2 replaces the Coulomb
logarithm In(A) to account for the nonideal effects, and
Am = (A rs®) where rs*(= rs/AD) is the normalized
non-Debye screening radius; 7ejg is the Spitzer
resistivity model, and Q represents the term for the
localization of electrons due to incomplete screening:

Q=(1+08XLy
w

where w is the energy dispersion due to electric
microfields.
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Plasma Temperature (eY)
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- A Ablation + ZEUS :
3 @ Spectroscopy 4
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Input Energy (kJ)

’I‘empcratufes of the sowrce plasma deduced from ablation
measurements and ZEUS code. Also shown are temperatures as
calculated by Optical Emissiom Spectroscopy
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Average plasma temperatures in the barrel deduced from heat flux
and conductivity measurements. Also shown temperatures as
determined by Optical Emission Spectroscopy.
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LC Chromium |LC Chromium, HC Chromium | HC Chromium
Electroplating | Sputtering || Electroplating Sputtering

Comparison of L.C. and H.C. Chromium coatings on
copper, for tested samples prepared via electroplating
and sputter deposition.
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Erosion Depth (j1m)

[y
o

Molybdenum/Copper Tantalum/Copper

B Calculated (no heat sink)

@ Calculated (with heat sink)
B Measured

Calculated (with and without heat sink) and measured
erosion depths of molybdenum and tantalum on copper
substrates exposed to 33 GW/m2 heat flux. Copper
substrates have 6.35 mm diameter and 3.175 mm
thickness. Molybdenum and tantalum coatings
(prepared by sputtering) are, approximately, of 30 ym
thickness. Calculated values are based on full energy
deposition without vapor or melt shield.
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VAPOR SHIELD EFFECT

Comparison between SIRENS and Efrimov
results on graphite
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Effective Normalized Ablation
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Individual and combined effects of plasma velocity
slowdown, attenuated photon intensity and suppression
of turbulence on surface ablation as functions of the
externally applied parallel magnetic field, at an input
energy of 3 kJ. The combined effect on ablation is in
good agreement with the experimentally obtained
normalized ablation.
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Shot # 0414, Sample # W220
Incident Heat Flux 33 GW/m2

L s

xue

Exposed sample, magnification 3000x

SEM micrographs of unexposed (top) and exposed
(bottom) diamond coating on a single crystal silicon
wafer (10-13 pm diamond coating thickness on 25.4 mm
diameter x 0.5 mm thick single crystal silicon wafer,
coating processing parameters: 2% CHg4, 55 Torr, 300

scans, 26 hours).




Shot # 0415, Sample # W26
Incident Heat Flux 33 GW/m?2

Exposed sample, magniﬁééitién 2000x

SEM micrographs of unexposed (top) and exposed
(bottom) diamond coating on a single crystal silicon
wafer (10-13 ym diamond coating thickness on 25.4 mm
diameter x 0.5 mm thick single crystal silicon wafer,
coating processing parameters: 2% CH4, 55 Torr, 300
scans, 26 hours).




Shot # 0464, Sample # PY1
Incident Heat Flux 4 GW/m?

.

Exposed sample, center of impact, magnification 5000x

SEM micrographs of unexposed (top) and exposed
(bottom) diamond coating on a single crystal silicon
wafer (15 pym diamond coating thickness on 25.4 mm
diameter x 3.3 mm thick single crystal silicon wafer,
coating processing parameters: 2% CHy4, 55 Torr, 300

scans, 32 hours).




Shot # 0470, Sample # W-11N
Incident Heat Flux 3 GW/m2

e

Exposed sample, magnification 3000x

SEM micrographs of unexposed (top) and exposed
(bottom) diamond coating on a single crystal silicon
wafer (20 uym diamond coating thickness on 25.4 mm
diameter x 3.3 mm thick single crystal silicon wafer,
coating processing parameters: 2% CHg, 55 Torr, 300

scans, 36 hours).




Shot # 0471, Sample # W-12N
Incident Heat Flux 1 GW/m?2

Prges:

Exposed sample, edge of impact, magnification 3000x

SEM micrographs of unexposed (top) and exposed
(bottom) diamond coating on a single crystal silicon
wafer (20 ym diamond coating thickness on 25.4 mm
diameter x 3.3 mm thick single crystal silicon wafer,
coating processing parameters: 2% CHg4, 55 Torr, 300
scans, 36 hours).
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1993 PLANS

Continuous materials erosion studies, potentially on full
section of a railgun barrel.

Acceleration studies using several projectile geometry

and material, on fuseless “vacuum” and fuse
“atmospheric” operation.

Drag forces studies with and without a projectile.

Development of new diagnostics for boundary layer and
armature physics studies.

Studies on plasma-propellant interactions “solid and

liquid propellants” and energy transport process
“propellant burn rates”, and the flame vapor shield
mechanism.

% Modeling and prediction of the flame vapor shield effect

and burn rate of propellants.

% Detailed measurements and analysis of the magnetic

s

vapor shield effect at higher values of magnetic fields,
and higher heat fluxes.

Ablation physics at surface “boundary layer” (1-D),
includes heat transfer.

Turbulent plasma boundary layer analysis (2-D), to
explain magnetic field effects.
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ISOMETRIC AND CUTAWAY VIEWS OF THE MODIFIED
COMBUSTION CHAMBER, SHOWING DIAGNOSTICS ACCESS,
PROPELLANT AND SAMPLE TEST STANDS (PIVOTING), AN
ABSOLUTE PRESSURE TRANSDUCER FOR CHAMBER
PRESSURE, AND THE LOADING AND SERVICES PORT WITH A
PRESSURE RELIEF VALVE.
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CONCEPTUAL DESIGN OF THE MODIFIED COMBUSTION
CHAMBER. THE CHAMBER IS CUBICAL “6 INCH, 6-WAY
STAINLESS STEEL CUBE” AND INCLUDES TWO 3-D
POSITIONING PIVOT TEST STANDS FOR THE PROPELLANT
AND THE MATERIAL SAMPLES.
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G-10
compression
block

Lexan insulator

An isometric cutaway of the SO railgun showing the strain gauges at locations

between the insulator and the G-10 compressing block.

X-ray detector

Photodiode access

Tunable x-ray source
(S - 20 keY)

B-dot access

A schematic diagram showing the x-ray attenuation and scattering arrangement.




