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1 PROBLEM DESCRIPTION AND RESULTS

1.1 Brief Overview

Under the aegis of the AFOSR grant we have been investigating computational and learning at-
tributes of networks of formal neurons. The formal neurons we consider are linear threshold elements
which produce binary outputs based on the sign of a linear form of a set of inputs. In particular,
each neuron is characterised by a vector of weights w, and given a set of inputs u, produces an
output v = sgn{w,u) = sgny_, w;u;.! In a given neural network architecture the degrees of free-
dom reside in the specification of the neural weights; in particular, each choice of weights specifies
a particular computation. We have been interested in (1) exploring the theoretical limitations on
what can be computed or learnt in neural network architectures, and (2) developing and analysing
learning algorithms which specify weights as a function of a set of examples of a computation.

Since information about any computation realisable in a neural network resides in the selection
of the weights, a cogent question relevant to the understanding of the efficiency of this computational
structure is: How much information can be stored per bit of weight? A satisfactory resolution of this
question will have a direct import on the dynamic range for the weights that will be demanded of
purveyors of neural network hardware. Classical learning algorithms such as Perceptron Training and
Backpropagation are typically operational in situations where thete is no dynamic range limitation
on the weights; if, as we demonstrate, dynamic range requirements are not extreme, then another
question arises: Do there exist efficient algorithms for learning weights in a dynamic range limiled
network structure? In the analysis of these issues we present results for two distinct scenarios: in
one we consider networks with weights restricted to being binary—in a network of N neurons this
corresponds to spreading an available dynamic range of N bits uniformly across the neurons—; in the
other we analyse a class of sparsely interconnected neural networks, a situation which corresponds
to packing available dynamic range in a few weights.

On another front, we have also investigated the enhancement in computational capability that
results if the degrees of freedom in specifying the weights are increased. In particular, we have

!"This is the basic neural model proposed by McCulloch and Pitts (1943). A real threshold can be incorporated in
the model, but is not essential to our discussion.
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analysed a family of recurrent neural networks with the linear threshold neural model replaced by a
polynomial threshold model where each higher order neuron produces a binary output according to
the sign of a polynomial form of the inputs. The intuition here is that the extra degrees of freedom
in specifying the polynomial coefficients (weights) should result in more powerful computational
structures.

We have also been developing a theoretical basis in which the analysis of the above and similar
problems can be carried out. The framework that is evolving rests upon a statistical notion of
the computational capacity of a network architecture and an associated algorithm. The notion of
capacity is turning out to be a fundament in the analysis of intrinsic computational and learning
attributes of computational structures, and has been brought to prominence in the PAC learning
model of Valiant (1984).

In the following we briefly summarise the results we have obtained, providing a road map as it
were to the attached papers where we carry out more searching investigations of the subject matter.
We also present prognoses and brief summaries of work in progress.

1.2 Binary Weights

Consider a neuron with weights restricted to be binary, w; € {-1,1},i=1, ..., n. If we consider
inputs to be binary as well, each assignment of weights to the neuron results in the realisation of
one of 2" distinct Boolean functions of n Boolean variables, and in particular, one of 27 majority
functions of a set of n literals: for every u € {-1,1}", f(u;,... ,u,) =sgn)_ ... u,u4;. Animmediate
question is what is the computational capacity of such an element (vis a vi: a neuron where the
weights are allowed to be real). Consider a randomly chosen m-set of points u!, ..., u™ drawn from
{-1,1}" with components drawn from a sequence of symmetric Bernoulli trials and an associated
set of desired binary ({—1,1}) classifications v!, ..., v™. We are interested in whether there exists
(with high probability) a vector of binary weights w € {—1,1}" such that each of the points is
classified correctly:

n
sgnZw;uf”:v", a=1,..., m (1)

i=1
It is clear that for each i = 1, ..., n, the binary weight w; € B has to retain information about
the corresponding m input components u}, ..., u™, and the desired classifications v!, ..., v™. The

difficulty, of course, is that we have to store information about m bits in a single bit, and, especially
if the learning procedure is on-line, it may perhaps appear doubtful if this is possible at all.

Let us consider without loss of generality that the m desired classifications are all +1. The
assignments in (1) are hence more likely to be realised if, for each fixed i, min, Ew;uf can be made
as large as possible; i.e., the probability that a weight has the same sign as a corresponding pattern
component is made as large as possible. Using randomisation in the algorithm as a tool we show that
for local on-line procedures sup min, Ew;u? = ©(1/n) for each i. Here the sup is taken over all local,
on-line procedures. For local off-line procedures the analogous result is sup min, Ew;u? = 9(1/3/n).
A detailed development of these and related results are contained in [1], and is included as the first
attachment. The basic conclusion that may be drawn from these investigations is that fairly large
capacities are attainable for networks of neurons with binary weights, and that these capacities are
comparable to those when the weights are unrestricted reals.

While large capacities may be attainable in principle, there are practical difficulties in the design
of binary weight learning algorithms: learning binary weights is equivalent to integer programming
and is NP-complete. We might hence anticipate that for any binary weight learning algorithm there
exists at least one problem instance which is intractable (i.e., takes exponential time). We have
investigated the use of random algorithms, however, as a technique to partially circumvent the NP-
completeness of the problem by providing good average-case performance. In particular, we have
developed a family of local, on-line randomised algorithms {dubbed Directed Drift) which provide
good average-case performance in certain regimes. Detai's are provided in (2] which constitutes the
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next attachment. R. Meir has communicated to us that simulations indicate that for local, on-line
algorithms Directed Drift appears to have an optimal character.

Prospectus We have been investigating further randomisation ideas in the development of on-line
and off-line learning algorithms and these are to be reported in [3]. Combining these ideas with the
Directed Drift family of algorithms we have developed heuristics for learning binary weights for
arbitrary network configurations. Early simulation results indicate very promising performance of
these randomised algorithms. The implications to hardware development can be profound as these
early results indicate that it suffices to have very small dynamic ranges for weights (one bit suffices
in many applications), and with on-line algorithms such as those described here this can lead to very
low complexity neural network hardware with on-line learning capabilities.

We have begun to study batching in on-line algorithms as a tool in the study of the tradeoffs
in performance and complexity when we move from on-line to off-line procedures. In particular, we
hav: been examining a randomised batch version of Directed Drift, the on-line algorithm described
in the previous report. (Batch learning is a process intermediate in complexity between on-line
and off-line learning where learning still takes place in a sequence of trials, but a (small) batch of
examples is available to the algorithm at each epoch.) Surprising and unlooked for results have
emerged in this consideration [4]. While Directed Drift converges very rapidly when the number of
examples is small, it slows down substantially when the number of examples becomes large, a regime
where, effectively, the examples are numerous enough to uniquely identify the generating function.
In this latter regime, batch versions of the algorithm, however, show improvements in convergence
time of several orders of magnitude, even for very small batch sizes. Improvements saturate quickly
with increasing batch size leading to the conjecture that a modified on-line learning algorithm with
very small batch sizes can achieve off-line performance. These and other results are to be reported
at the Conference on Neural Networks for Computing, Snowbird, 1992.

1.3 Sparse Networks

Sparsity in networks can arise either as a result of architectural constraints or can arise as a conse-
quence of damage to the network. In either case sparsity can be viewed as a situation where a total
available dynamic range in bits for the weights is distributed among a few weights in the network.

When sparsity occurs as a result of damage to the network, the principal concern is whether
the network continues to function effectively, i.e., whether the network is structurally robust. In
contexts with large interconnectivity, neural folklore tells us that networks will continue to function
efficiently, albeit with some degradation, in the presence of component damage or loss. We have
rigourously examined this premise for a fully-interconnected network of neurons in an associative
memory application by introducing the “devil”? in the network as an agent that produces sparsity by
snipping connections between neurons. A consideration of a malicious (or at best neutral) devil which
removes connections at random yields the following strong validation of the robustness hypothesis:
in a network of n neurons each neuron needs retain only of the order of logn random links (on
average) of a total of n possible links with other neurons for useful computational properties to
emerge. Memory storage capacity degrades very gracefully as the probability of losing links increases.
Details are presented in {5, 6] which constitute the next two attachments.

When network sparsity arises as a consequence of architectural constraints it may be possible to
demarcate classes of problems which are well suited to the sparse structure. We have investigated this
in a recurrent neural network situation where the neurons are partitioned into fully-interconnected
sub-blocks with few or no connections between blocks (nested sparsity and block sparsity, repec-
tively). For an associative memory application we identify memories to be stored as codewords and
the collection of admissible memories as codes—the neural network is a decoder which corrects er-
rors in memories. We show that for networks of n neurons in nested or block architectures, storage

2Well, maybe an imp.
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capacities as large as 2°® memories for any ¢ < 1 can be achieved for a family of codes (admissible
sets of memories) which is exponential in size. More precise statements of the results and details of
constructions and proofs can be found in the attachments [5, 7].

Prospectus Sparse network structures are again practically motivated as hardware would appear
to favour certain regular, sparse interconnectivity patterns. The characterisation of problems best
fitted to these structures is still an open question which the above investigations answer only partially.
In an effort to understand how computation and capacity scale with increasing sparsity we have
done extensive simulations in a feedforward network environment. The results are reported in
attachment [20]. In general, capacity decreases with increasing sparsity roughly in proportion to the
loss in the degrees of freedom. This is reflected by a concurrent improvement in learning times.

1.4 Polynomial Neural Interactions

Higher order neural networks have been proposed in the literature as a means of enhancing the
computational capability of these networks. A higher order neuron is a polynomial threshold element
which computes the sign of a polynomial form of its inputs. In particular, a higher order neuron of
degree d and n inputs is characterised by a set of (;) weights w;,  ;,, 1 <1 <:---<ig<n. In
response to an input u = (u; --- u,) it produces an output

v = sgn Z Wiy, gty Ui
1<i, < <iq<n

The increased degrees of freedom give rise to a commensurate improvement in computational ca-
pability. We have obtained rigourous results on the computational gains that accrue in recurrent
networks of higher order neurons. The main results can be summarised as follows: the information
storage capacity of a recurrent higher order neural network is of the order of one bit per polynomial
interaction coefficent (weight), this result being independent of the choice of the algorithm. We pro-
vide exact results on associative storage capability and error correction for a variety of algorithms
in attachments {9, 10].

We have also carried out a complementary analysis of the structure of fixed points in symmetric
recurrent higher order networks when the weights w;,, i, are standard normal A'(0,1) random
variables. This corresponds to higher order spin glasses in statistical physics. We obtain expressions
for the expected number of fixed points as a function of their margin of stability. In particular, we
show that there exists a critical margin of stability below which the expected number of fixed points
increases exponentially in n, and above which the expected number of fixed points actually decreases
exponentially with n. A formal statement of these results and proofs is provided in attachment [11].

On another tack, we have developed algorithms for recurrent neural networks for an associative
memory application. In particular, we have shown that it is possible to store memories with sim-
ulaneous memory-specific as well as feature- (or direction-) specific error correction while retaining
high storage capacity [13, 14].

Prospectus The computational gains that accrue from higher order neural networks agree with
intuition—they correspond with the increase in the degrees of freedom in the network. An attrac-
tive feature of these networks is that each higher order neuron can be replaced by a functionally
equivalent small network of linear threshold elements so that hardware can be standardised with the
formal neuron (linear threshold element) as the basic building block. The low complexity algorithms
described in [9, 10] indicate that the higher capacity latent in higher order networks can actually be
realised. There are open issues on the nature of problems that efficiently fit networks of polynomial
threshold elements; for instance, it is not known whether the family of poly-sized two layer higher
order networks is functionally strictly subsumed within the class of poly-sized three layer higher
order networks. We are investigating these issues.
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1.5 Capacity and Learning Sample Complexity

A common thread running through our analysis of the nature of information storage in the weights
of a neural network has been the notion of the statistical capacity of a network architecture and an
algorithm. This is a distribution dependent notion which captures, loosely speaking, the largest size
of a randomly specified set of input points which can be mapped into a corresponding independently
specified set of output points with high probability by the network specified by the algorithm. This
statistical notion of capacity plays a critical role in determining the minimum size of labeled sample
(the sample complexity) needed to identify a given function realisable in a given network architecture.
The statistical notion of capacity that we espouse is related to a combinatorial parameter known as
the VC-dimension which is a critical parameter in a distribution-free learning model. We develop a
fairly general set of definitions of capacity in the attachment [12] and have presented the material
in [15]. Definitions of capacity can also be found in the earlier reported work, and in particular,
in [5,6,7,9, 10].

One particular problem we have considered is the gains that may be realisable in computational
capacity if errors are permitted in the output. Our main results here are that allowing a linear
number of output errors improves the constants, but not the rate of growth of capacity. The exact
constants depend upon what protocol governs the errors. Exact expressions and derivations are
provided in attachment [16, 17].

As aforementioned, capacities govern the sample complexities needed for learning. A related
issue of both practical and theoretical interest is the rate of convergence that can be expected of
a learning algorithm as a function of the sample size. In an effort to shed light on what may be
the worst case behaviour we considered the classical nearest neighbour algorithm which has been
suggested to be representative of the best non-parametric learning algorithms. (The specification
of a host neural network architecture for a learning algorithm in sharp contradistinction imposes a
parametrisation. The learning algorithm seeks to find weights—the parameters—for the architecture
which best fit the data. If the parametrisation, i.e., the choice of architecture, is appropriate this
should result in substantially better behaviour than a non-parametrised approach.) It is known
that in the infinite sample limit the nearest neighbour algorithm has performance no worse than
twice the Bayes risk, and an old result of T. M. Cover shows that for one-dimensional feature spaces
the convergence rate to the infinite sample limit is as rapid as ©(m~2) where m is the sample
size. In attachment [18, 19] we present a precise statement of a generalisation of Cover’s result
to n-dimensional feature spaces which has been hitherto lacking. We show that the performance
of the nearest neighbour algorithm converges to its infinite sample limit as rapidly as ©(m~2/"),
where n is the dimensionality of the space and m is the sample size. This result holds under mild
conditions on-the input distribution. (Alternatively, the sample complexities needed for learning
are exponential in n.) Clearly Bellman’s “curse of dimensionality” is made evident in the drastic
reduction in convergence rates as the input dimensionality increases.

On another tack, we have been extending these results to precisely estimate the value of side-
information in learning, with special reference to a problem proposed by T. Cover: How many
unlabelled examples is each labelled example worth in learning? The question has import when
unlabelled examples exist in relative profusion, but there are few labelled examples or where labelling
examples is expensive. The answer in general depends on how much side-information is present. We
have early results and are investigating further [20].

Prospectus We are seeking to combine the various elements described above into a theory of
evolutionary learning in a neural network setting. A result of J. S. Judd indicates that the prob-
lem of deciding whether a given problem instance can be loaded into a given architecture may be
intractable (read NP-complete). It may be possible to circumvent this problem by adopting a suit-
able evolutionary protocol where the network architecture is allowed to grow in time. To keep the
complexity manageable we have been considering binary weight networks, using the randomised al-
gorithms we have been developing for training at every stage of network evolution. Training periods
at each stage of the evolution are governed by the statistical capacity of the network at that stage in
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the evolution. Results are only preliminary at this stage. The convergence rate calculations for the
nearest neighbour algorithm indicate the importance of choosing a proper evolutionary protocol. A
very loose evolutionary structure would be essentially unparametrised leading to very large times
for convergence.

1.6 Coin Tossing and Randomised Algorithms

The last attachment [21] is not directly related to issues in neural network compuatation, but indi-
rectly in that it examines limitations of randomised procedures. The basic question analysed is the
expected minimum duration of a coin tossing game which carries the essence of several randomised
search procedures in cryptography. The paper provides precise and rather complete estimates of the
minimum duration of the game and provides constructions for generating the optimal strategy.

Prospectus We are seeking efficient learning algorithms to learn discrete weights for neural net-
works. In this randomisation is turning out to be a very effective tool to attack some formally
intractable learning problems. We are investigating among other issues, a characterisation of the
effectiveness of randomisation.
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How Much Information Can One Bit
of Memory Retain About
a Bernoulli Sequence?

Santosh S. Venkatesh, Member, IEEE, and Joel Franklin

Abstract —The maximin problem of the maximization of the
minimum amount of information that a single bit of memory
retains about the entire past is investigated. Specifically, a
random binary sequence of + 1 inputs drawn from a sequence of
symmetric Bernoulli trials is given. A family of (time dependent,
deterministic or probabilistic) memory update rules that at each
epoch produce a new bi. { — | or 1) of memory depending solely
on the epoch, the current input, and the current state of memory
is also given. The problem is to estimate the supremum over all
possible scquences of update rules of the minimum information
that the bit of memory at epoch (n+1) iztains about the
previous n inputs. Using only elementary techniques we show
that the maximin covariance between the memory at epoch
(n + 1) and past inputs is ©(1/n), the maximum average covari-
ance is ©(1 / n), and the maximin mutual information is Q(1/ n?).
In a consideration of related issues, we also provide an exact
count of the number of Boolean functions of n variables that
can be obtained recursively from Boolean functions of two
variables, discuss extensions and applications of the original
problem, and indicate links with issues in neura) computation.

Index Terms —Bernoulli sequence, Boolean functions, mem-
ory, covariance, mutual information, neuron, capacity.

1. A PROBLEM IN INFORMATION STORAGE

ANOS KOMLOS posed the following problem: Given

a single bit of memory and a random binary sequence
of inputs, at any epoch in time what is the maximum
amount of information that the memory can retain about
the entire binary sequence?

More precisely, let {X, )7, be a sequence of symmetric
Bernoulli trials, with

-1
x={7)
Let M, €(— 1,1} denote the state of a one bit memory at

epoch n. The memory states are updated by a sequence
of (possibly random) Boolean functions, f,, of two Boolean

with probability 1/2
with probability 1/2.
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variables: M, ., = f,(M,, X,). (The initial memory state,
M,, is arbitrary.) For cach n we are required to cstimate

l,= (1)

n

max min E(M, ., X,).
f.."'.f,,lS/&'Sn ( 1+ 1 k)

Is /, boundcd away from zero? Can we identify functions
.- fF that achieve [,?

Komlds' problem can be generalized in various ways
with other measures of information used instead of the
covariance. Specificaliy, we can consider the determina-
tion of

] =

n

(2)

max wmin I(M,,:X.),
fl."'./,.lSkS'l ( n+l k)
where I(M,,,; X,) denotes the mutual information of
M, and X,. Another measure of (average) information
about the past that we investigate is

1 n
K,= max — Y E(M,., X,). (3)
k=1

The following are the main results':

I
n=0)

[ 1

K,,=@(;)

The last result is due to Komids, Rejtd, and Tusnady [1)
who have recently investigated the average covariarnce,
K, in a control problem. In this paper, we show that the
result holds as a direct consequence of arguments ad-
duced in the consideration of the maximin problem /.
We also show that the maximum average covariance is
O(1/Vn) when we allow update rules with unlimited
access to past inputs. Specificaily, let ¥ denote the family

'0n Notation. 1f (x,) and (y,} are positive sequences, we denote:
x, = O(y,) if there is a positive constant K such that x, /y, < X for all
n; x, = )(y,) if there is a positive constant L such that x, /y,> L for
all n; x, =6(y,) if x,=0(y,)} and x,=fl(y,), and x,~y, if x,/

y,—lasn—
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of all update rules mapping {—1,1}" into (- 1,1}. Then

Ly E(X f(X, ., X 2
;“:é.;g;l (X f(Xy o, n))“’m (n—w»).

In the proof of the results, it also develops that the
maximin and average absolute value of covariances is also
O(1/n), with

1 2
- E(M_.. X <——
n <f|'maxf ls"}(m lE(M, X))

and
: 5 E(M,, X,)|< 2
~ < max e <-~.
h /'.‘." / nkzl ok

If we restrict atiention to a reasonable family of
update rules— monotone symmetric rules —we demon-
strate, i fact, that maxmin E(M,,,X,)=1/n and
maxmin (M, , ; X,)~1/2n?In2.2

In Section I1I, we will conclude by looking briefly at
some related issues. In particular, we will: provide an
exact count of the number of Boolean functions of n
variables that can be obtained by a recursive application
of {(n —1) Boolean functions of two variables, with the
variables taken in sequence—there are exactly (0.4)6" +
1.6 such Boolean functions—examine extensions of the
results and raise some open questions when more than
one bit of memory is available; and link these results with
issues in information storage in neural networks.

1. InFOrRMATION BOUNDS
A. Probabilistic Rules

In thc most general setting the update rules, M, ,, =
filM,, X,), arc probabilistic and can be characterized in
terms of probabilities conditioned upon the epoch, k, the
current state of memory, M,, and the current input, X,,
as follows: if M, =ie{-1,1} and X, = je{- 1,1}, then
set

—Mk
Mk*lz Mk

Alternativety,

pe(i.j) = P{Mkn = “ile =i, X, =f}v

ﬁk(i,j) = P{Mk*l = 'le = i, Xk =j].
Each update rule, f,, can hence be defined by four
(independently specifiable) probabilities, p, (-1, —1),
p(=11), p(1,-1), and p,(1,1), each of which repre-
sents the probability, given the epoch, and current values
of memory and input, that the memory update results in a
change of sign of memory.

We define the family of monotone symmetric update

rules to be update rules satisfying: p(-1,~1)=p(1,1)

with probability p, (i, ),
with probability 5, (i,j) =1- p,(i,j).

*We conjecture. in fact, that maxmin E(M, X)) =1/n and
maxmin M X))~ 1,20 1n 2. with the maximum being taken over
all functions f, <. f,. This iy not true for absoluie values of covari.
waces. However. J Komlds has recently communicated a construction to
us that demoastrates moxnn iECA ) XY Oi> 1 /n
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=0,and p(-1,1)=p(l, —1), j 2 1. The first of the two
symmetry requirements; in particular, enforces no change
in memory state if the current input agrees with the
current state of memory—an intuitively appealing proce-
dure.

We first evaluate the unconditional probabilities

w, £ P{M, =1},

@, 2 P(M, =-1).
(Clearly, &5, =1- w,; we introduce the additional nota-
tion for later convenience.) Let us assume, without loss of
generality, that we generate the initial value of the mem-
ory, M,, by flipping a fair coin.® Hence, w,=&,=1/2.
For j > 1, define
¢ 2p(-1,-1)+p(-1,1)+p(l,
For convenience, let us also define
po(—1,=1) = po(=1.1) = po(1, - 1) = py(1,1) = 1/2.

Assertion 1: For k=0.,1,---,the unconditional proba-
bilities for the state of the memory at epoch k +1 are

- D+ p(1,1). (49)

given by
k1 k w}
Wy = "_Eoz[p. -1, -1)+p( 1.1)]jﬂl(1 2),
(5
k k lj
5= £ 300+ 5001 TT (1-2) )
im0 J~i+l

Proof: We can obtain the following recursion by not-
lng that Bk = 1 - wk.

=,,,k+f'2£[uk(—1,—1)+pk(~l-1)l

Wy

- S adLy+ a1, - 1),

‘”k"—[Pk( -1+ pu(~1,1)]

W=

+—2£[Pk(1v1)+l7k(lr—l)]'

The result can now be established by induction. ]
For k > 1, let us now define
¢ 2o p(—1,1) + 0w, p (1, - 1)]
=[@p(-1. -1 +w,p(1,D)]. (7)

Assertion 2: For any choices of n and k with k < n,

(4]

=k +1

1(1—3 ] (9)

lifr>s.

1
PiM,,, = Xk}—‘2‘[1+¢k

n

I

=k +

1
P(M, . =-X,) =3[l—¢k
J
Remark: We adopt the convention [1;_,(-)=

“The imtial choice of memory bit can have no information about the
data sequence © come. The obwrogs optimad procedure would be to
choose the update rule My = fLM X)) X
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Proof: To prove the asscrtion we use double induc-  An entircly analogous procedure yields

tion on k and n. 1
Base: For every choice of n>1 and k = »n, we have PM, =X=-1}= Z[p"(l'l) +p.(1, ~ l)]

=— - —_ w”
P(My, = X, = 2 (1= pu( =1~ 1)+ py(~ L1)] +(1_7)pw"=xk=~,,_
+ "21 [p.(1, 1) +1=p,(1,1)] Combining the two resuits gives
1 P{Mn+l=Xk}
=E[l+q§n]. =P{MHH=X,‘=1}+P{M,,H=X,‘=—l)
¢,

Inductive Hypothesis: Assume that for some choice of n - ( 1- i’_) P{M, = X,).

and k < n, we have 4
’ 1 n-1 v, The base of the induction argument cstablishes the first
P(M,=X,)= 3 1+, Il (1 - 3-)] part of the assertion, (8), for k = n, and the inductive
j=k+1 hypothesis completes the induction for k < n. Equation

Now consider (9) follows trivially from the obscrvation that P(M, | =

P(M,, .= X,=1) —XJ=1-PM, = X,). a
=PM,,,=1,M,=1,X, =1} Assertion 3: For n>1and 1 <k <n,
+PM, =1 M, =~-1X, =1) P{M,,H=X,,=l}
=P(M,,,=1IM,=1,X, =1}P(M,=1,X, =1 9,
{ ! y } { =1 __+ [wkpk(-] 1)—w, pi(1, l)] ” ( )
+P(M,,  =1IM,=-1, X, =1}P{M,=-1,X,=1}. jek+1 2
(10)
Now, given M,, the random variable M, ,, is condition- e L [{@p(-1.1)-wp0,-1)
ally independent of the random variable X,. Hence, kel
z v
P{M,. =11M,=1,X, =1} @2 (-1, -D-wn(.D)] TI (“?’),
JEYED!

= P{Mo = 1M, =1) P(M,, = X, = -1}

1
==[1- ,—D+1-p.01,1]. 11 @, 1 _ - )
P e T L P I e PR I o (1-%)

. . . . 2 j=- k+} 2
In similar fashion, we obtain

l n
PM,, =1IM,=-1,X,=1) -3 ; {@cp(-1.1)=w,p,(1, - 1)}
imk<+1
1
= — -1,-1 (-1L,D]. (12) v;
2[pn( )+p( )] ( +{wkp‘ -1, -1)=w, (1, l)” nl( 2)‘

We now claim that
P{Mn*l’——._l Xk=1}

1
PM,=~-1,X,=1}==~-P(M,=X,=1}. (13)
{ Polimg o ‘ ( - [wm( L) - wpi(1.1)] FI ( wz)

J=k+1

In fact, we have
l n
P(M,=-1,X,=1}=P(M,= - 11X, = 1}P{X, =1} +-= ¥ {@p(~1.1)-wip,(1, - 1))

4 imk+l
1
= 5 (1= P(M, =11, =1)
1, P(M,=1,X,=1)
Wy

w 1
sa that (13) follows. Substituting the results of (11)-(13) in =——=[wp, (1, =) -@, p(~-1,-1)] T1 (1 ~ ﬂ)
: ) 2 2 imk+l 2
(10), we obtain

H{@ep(-1.-D)-wp(1LD)}] T1 ( ‘2)

J=1+1

P{Mn+l=1'xk=—l}

1 : ! & -
P(M,.\= X, =1} = 2 [p (1. =D+ p,(~1D)] ~3,.F [@a-tn-end o)
+(1-%1)P{M,,=X,(=1}. Haep (=1 - -wp(11)] ”..( —!_’,i)
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Proof: These results can be verified, as in Assertion
2, by induction. O

Remark: The previous identities simplify considerably
for the family of monotone symmetric update rules; in
particular, update rules governed by probabilities of the
form p(—1,-1D=p(1,1)=0, and p(-1,1)=p(1,-1)
= p;,» Jj= 1. Substituting in (4)~(7) we have ¢, =2p,,
w, =, =1/2 and ¢, = p,, for k = 1. Substituting these
relations in the above expressions, we have

P{Mnu=xk=‘}=P(Mn+|=xk=‘l}

1 n
-3[ren 11 0-00) (14
j=k +1
and
P{Mn+l=l'xk=—1)=P{Mn+l=—"xk=l}
1 n
=;[1-pk 1 (l—p,)]- (15)
Jmk +1

B. Maximin Cotariance

A direct application of (8) and (9) yields the following
general result.
Assertion 4: For any choice of positive integers n and k
with 1 <k <n,
n ll’
E(M,. %)=, 1 (1-2),

J=k+1

(16)

where ¢, and &, are given by (4) and (7), respectively.
Some examples may serve to fix the result.
Example — Follow the Leader: Consider the choice of
rule M., = X, j 2 1, corresponding to the selection

p(~1,-1)=p(L1) =0,
p(-1,1)=p(1,-1)=1.

From the defining equation (4), we clearly have ¢, = 2 for
every j = 1. Applying (5) and (6), we have the uncondi-
tional probabilities of the state of the memory given by
w, = @&, = 1/2, so that applying (7) we have ¢, = 1. Hence,
0, iflsk<sn-1,

1, ifk=n,

in agreement with the intuitive result. Consequently,
min, . E(M,, X, )=0.

Example — Parity: Consider the sequence of update
rules which, at any epoch n, set M,,, =1 iff an odd
number of the random variables, X, -, X, have taken
on the value 1. The update rules determining M, and
M, ., k 2 2 are shown in Figs. 1 and 2. The probabilities
corresponding to the update rules are, hence,

p(=1,-1)=p(1,1)=0,
p(~11)=p(1,-1) =1,
when k =1, and
p(~L-)y=p(l,-1)=0
p(-1.D=p (1, 1)=1. k22

E(M,... %) = {
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Fig. 1. Odd parity update for M,.

Xk -1 1

M,
-1 -1 1
1 1 -1

Fig. 2. Odd parity update for M, _,.

Evaluating the various parameters we obtain
¥;=2, j21,
w,=1/2, k=21,
@, =172, k21,

1, ifk=1,
i {0, if k22.

Substituting these into (16) yields
E(M,., X,)=0,

For n 2 1, this again yields min, _,E(M, ., X,)=0.

These examples illustrate that it suffices, hence, to
restrict attention to update rules that yield nonnegative
covariances, E(M, ,,X,), for ecery k < n. The following
example illustrates that a nonzero covariance can, in fact,
be obtained between a memory and every past input using
a purely deterministic sequence of update rules.

Example — Unbroken Runs: Consider the sequence of
update rules which store a 1 in the memory iff there has
been an unbroken run of inputs taking the value 1. The
update rules determining M, and M, ,,, k > 2 are shown
in Figs. 3 and 4. The probabilities corresponding to the
update rules are, hence,

p(-1,-1)=p(1.1) =0,
p(-L)=p(1,-1)=1,
when k =1, and
p(—-1L~-1)=p(-1L1=p(i.])=0,
pe(l. -1y =1,

k=1,---,n.

k>2.
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X, -1 1

M,
-1 -1 1
| -1 1

Fig. 3. Unbroken run update for M,.

Mk
-1 -1 -1
1 -1 1

Fig. 4. Unbroken run update for M, _ ,.

Evaluating the various parameters we obtain

2, ifj=1,
“’f‘{l, if j>2,
w={1/2 ifk=1,
2 ifk 22,
_ {1/2, ifk=1,
W, = .
1-27%*1 ifk>2,
s ={1, if k =1
o =275 k2.
Substituting these into (16) yields
27+t ifk=1,
E(M"*‘X")“{2-“'(2*—'—1), if k> 2.

Hence, min, . ,E(M,,, X,)=2""""forn2 1.

While the minimum covariance in the above example is
nonzero, it is still exponentially small. To obtain some-
what larger minimum covariances we resort to probabilis-
tic update rules.

Example — Harmonic Updates: For each k >1 we pre-
scribe the update rule f, by setting p (-1, -1)=p,(1,1)
=0 and p,(-1,1)=p,(1,~1)=1/k. This is equivalent
to the following prescription:

1) if X, =M, thenset M, ,,=M,;
2) if X, # M,, then set

-M,,
M,

with probability 1/ k

M= with probability 1-1/k;
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specifically, we do not change the current state of the
memory if the current input matches the sign of the
memory, and change the state of the memory probabilisti-
cally (but with increasing rcluctance) in case of a mis-
match in signs. Estimating the various parameters gives

2 .
,-=7, iz1,
1
w,,=5, k>1,
_ 1
wk=-2-, k=1,
1

Substituting in (16) yiclds E(M,, , X,)=1/n for k <n.

It, hence, follows that, in fact, min, _  E(M, X, )=1/n.
Theorem 1: For every positive integer #n,

1

2
—< max min E(M, , X, )<~—.
nof.-f 1sksn n

(17)

Proof: The lower bound of 1/n follows immediatcly
from the construction of the harmonic update rule in the
last example. For k = 1 let us define

-

¢k='¢kl’ (lé)

R i2k.' lfoswkszv

dh={ % (19)
2——5’1, if2 <y, <4

Note that 0 < ¢, < 4, so that the definition above achieves
a sort of “normalization™: 0 < ¢, < 1. An immediate con-
sequence of the definition is the equality

Yy

1-—[=1-4,, k=21.

We now claim that d;,‘ < 2:1;,‘ for every positive integer k.
Indeed, we have from (7) and (19) that

b =13 (P(~1,1) = p (-1, - 1))
+w (Pe(1, = 1)~ p(1,1))]
sp(-LD)+p (-1, -1)+p(1, - 1)+ p(1,1)
=2, if0<y¢, <2

Also, setting p,(i,j)=1~-p,(i,j), forie{-1,1}and j €
{-1,1}, we have

b =|@(Pe( =1, = 1) = B(—1.1))
+ w0 (Be(1,1) = B (1, - 1))|
SPh( -1 -1+ B(1, 1)+ B(—1,1) + B (1, -1)
=4"'I’k
=2¢,, if2<y, <4
This proves the claim. o)
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Now consider (16). From the definitions (18) and (19),
the *“normalization” of ;, and the claim,

E(M,.\X,) <|di ﬁ 1"'11"'
j-k+l 2
(1— )<2¢k_ H(1-.&,). (20)

To establish the validity of the upper bound in (17) we
begin by showing that
) 1
-

max min ¥, n (
4;1-"'-& lsk<n  juk+]
(Here the variables, cﬁj. take values in the closed interval
[0,1], as previously noted.) For notational simplicity, de-
note

=y, ) n (1 - d"/)
=k +1
Consider first the choice c/; =1/j for each j. Direct
substitution ylelds that F, = 1 /n for each k =1,
Hence, min, _,F, =1/n for this choice of w We now
claim that we can, without loss of generahty, consider
only cho:ces 12 lll > 1/j for each value of j. To see this,
assume d/ <1/j for some choices of j < n. Let k be the
largest such j- We then have IT7_, . (1- w)sk/n as
nl: 21/j for j>k, and 'h < l/k Hence, mlnksan
l/n if there is any j s n for which d/ < 1/1
We will now show that, in fact, maxmin F, =1/n, with
the maximum achieved, as just seen, for the choice, ¢, =
1/j, for each j. By the result just shown, without loss of
generality, for each j we need consider only choices for ¢;
in the closed interval (1//,1]. Now consider

=4, .ﬁz(‘*'l;i)'

For each j, we have 1/ <w <1, and in particular, for
j=1 we have 'l‘x =14, Hence, we must necessarily obtain
F,<1/n, and consequently min, ., F, <1/n, if there
exists any j with w >1/j.

We have, hcnce, shown that maxmin F, =1/n. From
(20) and (21) we, then, have

max min E(M,, X))
i falsksn

(1sks<n). (21)

2
<2 max min §, H (l— ) -
V. T ksn jek+1
To complete the proof, we need to show that the upper
bound 2/n is strict. To see this, note that maxmin F, =
1/ n is achieved only for the unique choice of w =1/j for
each j <n. An examination of the bounding technique
used in deriving the bound of equation (20) shows that a
necessary condition for the upper bound in (17) to be
realizable is that d> = 21[1 =2/j for each j. But for j=1

*1n fact, the variable u, appears only in the expression for £, where it
appears as a product term. We can then maximize the V&Iuc of F,
without affecting any of the other F,'s by seting ¢, = 1.
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this is already impossible as can be verified from (5)-(7),
and (18). Hence, maxmin E(M,,  X,)<2/n. 0o

Remarks: In this proof, we used the bound &, <24,
valid for every k. This is, however, not the tightest possi-
ble as we saw above; in particular, the bound is not
achievable when the best results (the bound of 2/n) are
obtained for the choice of parameters, ¢, =1/k. A more
careful} analysis should see improvement in the upper
bound. (In particular, the harmonic update rule is a
persuasive candidate for being, in fact, the optimal up-
date rule. If true, this would imply, of course, that
maxmin E(M,,,, X,)=1/n.)

Note also that the proof yields the following stronger
result: the same maximin bounds hold for the absolute
value of the covariances, viz.,

1
— < max
n e

2
min |E(Mn¢lxk)l<—‘
sksn n

C. Maximin Mutual Information

Now consider the problem (2). Here the maximin prob-
lem is to maximize the mutual information between past
inputs and the current memory state. In order to evaluate
the mutual information, I(M, , ; X,), for a general family
of update rules, in general, we have recourse to Assertion
3. We obtain the lower bound below for J, by maximizing
the minimum mutual information over a restricted set of
update rules where the probabilities derived in Assertion
3 are somewhat more manageable.

Theorem 2:

M, ,;X)=0Q
,maxfulﬁlg (M, ;X)) =Q(n"?)

(n—>).
More specifically,

max min (M

1 1
X)) 25— +0| =
fiSfadsksn el Xk)>2n2ln2 O(n‘)

(n—-x).

Proof: Let us restrict attention to the family of

monotone symmetric update rules: p(~1,-1)=p(1,1)=

0, and p(-1,1)=p(1,-1)=p, j> 1. For simplicity let
us denote

2y = Py ﬁ (I—P,)-

Jmk+1

From (14) and (15) we then have

1
P{Mn+l=xk=l}=P{Mn¢l=Xk=”l}zz(l*‘zk),

and

PM,, =1, X, ~-1})=P(M,, =-1,X,=1)

i
=Z(1'2&)‘

Noting that for the class of monatone symmetric up-
date rules, the r.v.’s M, ., are symmetric, and take on the
values —1 and 1 with equal probability 1 /2, we have the l
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following expression for the conditional uncertainty of X,
given M, :

1 1
I'I(Xk'M"+l)= -"2—(1"" Z,()logz -2-(1+Zk)

1 1
"5(1" Zk)IOSzS(l" z,)

_ h( 1+ 2z, ),
2
where h is the binary entropy function

h(y)=—ylog,y ~(1-y)log,(1-y),
(As usual, we define 0log0 = 0.) Hence,

O<y<l.

1+ 2z,
=)

By the same inductive argument used in establishing the
upper bound for Theorem 1 we obtain that min, _,z, is
maximized among the class of monotone symmctric up-
date rules for the unique choice of the harmonic update
rule: p,=1/j for each j. For this choice of update rule
we have

1 -~ 1 1
Z, kj_l-;l.',[(l j) g k=1,--,n.
Using the monotone decreasing property of h(y) for
1/2<sy<1 we have that min, ., (M, ; X,} is also
maximized among the class of monotone symmetric up-
date rules for the harmonic update rule. This estimate
forms a useful lower bound for J, = maxmin I(M, , ;; X,).
Hence,

I(M,,; X,)= H(X,) - H(X,M,,,)= 1-1;{

1 1
max min (M, ;X )z1-h|l-+—].
S oSy 15ksn (M, 115 X) (2 Zn)

The Taylor series expansion for In(1+ y), [yl <1 yields
the required asymptotic form in the statement of the
theorem. )

Remarks: A general examination of J, over all possible
update rules using the results of Assertion 3 appears
somewhat difficult in view of the lack of symmetry in the
various probabilities. A reasonable candidate hypothesis
may be that it suffices to consider only monotone symmet-
ric rules—p,(-1,-1)=p,(1,1)=0 and p,(-1,1)=
pi(1,-1)=p, for each k>1. (If true this would, of
course, yield the estimate J, ~1/2n?in2.) As noted car-
lier, this enforces symmetry and the intuitively appealing
procedure of effecting no change in memory state if the
current input agrees with the current state of memory.
While it is refatively easy to show that we can, without
loss of generality, set p(—1, —1)= p,(1,1) = 0, the proof
does not seem to extend simply to all p,(~1,—1) and
pk(l’ l).

D. Maximum Average Covariance

J. Komlés has recently communicated to us results of
joint work with L. Rejtoé and G. Tusnady on the maximal

expected payoff of a finite automaton with binary inputs
{1). Their results include the estimate ©(1/n) for the
maximal average covariance, K, which they obtain using
conditioning on inputs coupled with an inductive argu-
ment. We show this estimate here as an (almost) dircct
consequence of the proof of Theorem 1.

Theorem 3: For every positive integer n,

! ! z":E M, X 2
— — < —,
- < nw‘?‘u”k-x ( n+l %) n

Proof: The lower bound follows from the lower bound
for 1,. Now consider (21). Writing F, = F, , explicitly as a
function of n, we have

n

Fy =y (1-4)

J=k+1

(lsk<n,n=12,---).

Recall from equation (19) that 0 < ‘1;/ <1 for every j, and
that ¢, depends solely on j and not on n. Now form the
sequence of sums, {S,}, by sctting

SR=ZFkn (”21).
k=1
Noting that
Fen=Fen(1-9,), iflsksn-1,

we have
Spn=(1-0,)Su-, + .

As0< S, = ll;| <1, an easy inductive argument shows that
S, is an iteration of convex combinations of numbers less
than one, so that S, <1. From (20) and the concluding
remarks of the proof of Theorem 1, we have

E(M,. X,) <2F .,

so that
1 & S, 2
max — ) E(M,. X,)<2 max —<-—.
e B k=t fio e B n
This completcs the proof. (@]

Remarks: In fact, this convex combination argument
can be used in Jieu of the argument presented in the
proof of Theorem 1. Note also that the bound of (20) is
easily improved to |E(M,, X, )| <2F, ,. The proof of
Theorem 3 then yields the stronger result

: LS EM,. X)l<>  (nz1)
- < max — . <- nx1).
noof Mo 17k n

Substantial improvements in the maximum average co-
variance may be obtained if memory updates are allowed
access to all past inputs (and not just the last input). Let
F denote the family of all (probabilistic) functions map-
ping {-1,1}" into {~1,1).
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Theorem 4: For every positive integer n,

mak = 3 E(My.X,)

e M oay
1 n
<;’"2§Zk);,5(xkf(x“' -, X))
V2
~m (n—ox).

Proof: The first inequality is immediate. Now, for any
f €%, we have

Z E(ka(xlv "Xn))= E(f(Xl’.”,X")kZIXk)

k=1

<E

L X,
k=1

(as f(X,, -, X,)€(~1,1)), with equality if f is chosen
to be the majority function: for any choice of Boolean
variables x,,---,x, €{~1,1} let N* denote the number
of variables, x,, that take the value +1,and let N =n—
N* denote the number of variables, x;, that take the
value —~ 1; we define the majority function, f*(x,,"--,x,),
by
M _[-1 N >N*,
A CITILD) { 1, ifN-sN*.

Let us denote by S, the random walk
n
Sn - 2 Xk'
k=1
We then have

l n
max kglE(ka(Xp'“:Xn))

1
= ;E(IS,.I)

: I)E:l[n—zn(’})z-“'

i=0

i

with the last equality following by the application of
standard binomial identities. An application of Stirling’s
formula now yields the required result.

The average covariance cannot, hence, exceed the or-
der of 1/vVn even if we allow (binary) update rules with
unlimited access to past history.

n

111. ReLaTED IssUES

Thus far, we have been mainly concerned with update
rules with two Boolcan arguments and producing one
Boolcan variable. The state of memory at cpoch n + 1 15,

hence, a Boolean function of n Boolean variables (the
inputs, X, -+, X,) taken in sequence and passed through
a cascade of Boolean functions of two Boolean variables.
A natural question that arises is how many deterministic
Boolean functions of n variables can be constructed in
this fashion out of the total of 2" Boolean functions of n
variables?

Let g,: {1,112 =>{-1,1}, k > 2 denote a sequence of
(deterministic) Boolean functions of two Boolean vari-
ables. We recursively form a sequence of Boolean func-
tions of k Boolean variables, f,: {~1,1}* »{~-1,1), for
k 2 2, as follows:

f2( X, X3) = g X1, X3),
fk(xlv"'vxk-hxk)=8k(fk-1(xlv'"’Xk-l)'xk)
(k=3).

Let &, denote the family of all (deterministic) Boolean
functions of k Boolean variables, f,, constructed recur-
sively, for every choice of functions g,.

Theorem 5:

2 8
Fi=56"+2,  nz2

5
Remark: In fact, it is easy to see that 2" <|F| < 16".
Clearly, this count falls far short of the 2?" possible
Boolean functions of n Boolean variables.

Proof: The demonstration is inductive in nature. For
n =2 we clearly have

|F;1 = 16,

as there are 2* Boolean functions of two Boolean vari-
ables. Now, for n>3 we claim the following recursion

holds:

& _\
|9;|=4+12( > -1) =6/F _,|-8.

To establish this it is helpful to consider the table of all 16
Boolean functions of two Boolean variables, X and Y,
illustrated in Fig. 5. Note that two of the possible func-
tions (the first row) are the constant functions, which
depend on neither X nor Y, and that two more functions
(the sccond row) depend only on X and not on Y. All the
remaining 12 functions depend explicitly on Y. Let us cail
a set of Boolcan functions independent if no function in
the set is the complement of another function in the set.
Now, by symmetry, the complement of every function in
&,_, isalsoin &, _,. Hence, we can find a2 maximal set
OHZ_,I/2 independent functions in &, _,. Clearly, one
of these functions is the constant function so that there
are |.%,_,l/2—1 functions in a maximal set of indepen-
dent functions in %, _, which depend explicitly on one or
morc of the variables X=X, .

Now consider functions, g, (f (X, X, ) X,)
Let us identify with X, the variable X and with

‘ - - -
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g(X.Y) HXY)
1 -1
X X
Y Y
XAY Xvy
XAY Xvy
XAY xXvy
XAY Xvy
(X AYIVIXATY) (X AYIVIX AY)

Fig. 5. A tabulation of the 16 possible Boolean functions of two
Boolean variables, X €{—-1,1} and Y €{-1,1}. The first column ¢nu-
merates a sct of eight distinct Boolean functions of these two variables,
none of which is a complement of another function in the column. The
second column lists the complements of the functions listed in the first
column; {cuch row gives a function and its complement.) We usc the
notation  to denote complement (logical NOT), A to denote conjunc-
tion (logical AND), and v 1o denote disjunction (Jogical OR).

f._ (X, -, X,_,) the variable Y in the table of Boolcan
functions of two Boolean variables. Each of the indepen-
dent, nonconstant functions, Y, in & _, yields 12 distinct
functions depending explicitly on Y in &, as can be
verified from Fig. S. (By symmetry, the complement, Y, of
each independent, nonconstant function Y in &, _, yields
the same set of 12 distinct functions as does Y.) There
are, hence, 120.%,_,l/2~-1) distinct functions in &, that
depend explicitly on one or more of the variables
X,,' ", X,_,. Adding in the four functions—the two con-
stant functions, and the functions returning the values X,
and X,—which are independent of the variables
X, -, X, -, completes the count. o

A natural extension to the maximin problem is to
consider how much information can be stored about the
past if now (say) m > 1 bits of memory are available. This
issue is still open. The simple strategy of interleaving the
input sequence across the memory bits (equivalently, par-
titioning the input sequence into m equal length subse-
quences and apportioning one bit of memory to each
subsequence), for instance, effectively reduces the prob-
lem to a one bit memory problem with an equivalent
“reduced sequence length” of n/m. With the mutual
information measure, for instance, if m bits are available

for the memory, we have
m? +0 1 )
2n%in2 (n‘ ‘

Another approach giving the same results is to update
each bit of memory independently. Substantial improve-
ments over these straightforward gains may, however, be
possible if more complex update strategies are uscd.

The tightening of the information bounds shown in the
previous section is open. Specifically, it appears plausible

supmin (M, X,) 2 55—

that we need to consider only monotone symmetric up-
date rules. As noted carlier, if this conjecture holds true,
then /,=1/n and J, ~ 1/2n°In2 with cquality holding
in both cases for a choice of the harmonic update rule.

Another extension of the problem is to consider input
sequences drawn from nonsymmetric Bernoulli trials, and
in general. i.i.d. inputs X,. A 21 drawn from a distribu-
tion on the real line (with a suitable second moment
constraint). The maximin problem with one or more bits
of available memory is open for this case.

The maximin problem analyzed hcre has implications
to questions on the information storage capacity of neural
networks. A formal McCulloch - Pitts neuron 1s character-
ized by n real weights, w,,---,w,; 1t accepts n binary
inputs, u,,- -1, € {—1,1} and produces a binary output
r €{—-1,1} according to the threshold rule

-1, if ¥ wte, <0,

=1

1, af ZW/N}ZO.

1=1

In a network of formal ncurons information can be re-
garded as being stored in the weights. If the weights are
allowed to range over only a finite sct of values, a cogent
question is how miwch information is stored per bit of
weight?

As a specific instance, consider a classification problem
on vertices of the n cube. Let u',---,um€{-1,1}" be m
randomly chosen patterns (with components drawn from
symmetric Bernoulli trials). Let &(n,m) denote the at-
tribute (of the m-set of patterns) that there is a choice of
weight vector, w, such that (w,u?)>0,g=1,---,m. (Al-
ternatively, &/(n, m) is the attribute that a formal neuron
classifies each of the patterns properly.) We say that C,, is
a capacity function for the attribute &/(n,m) if, for every
A>0,as n—oc:

a) P(a/(n,m)} -1,
b) Pla/(n,m)} -0,

The capacity function specifies. in a sense, the largest size
of random problem that can be reliably done by a lincar
threshold element or formal neuron. Equivalently, it can
be thought of as specifying the maximum amount of
information that can be reliably stored in the weights.
This interpretation is particularly persuasive when the
neural weights are constrained to bc binary. In this case,
each weight, w, €{— 1,1}, has to store information about
the jth component of each pattern,

if ms(1-2A)C,;
if m2(1+A)C,.

ul, - ule{-1,1},

so that the information stored per bit of weight is directly
related to the capacity. In this form the problem can be
seen to be strongly rclated to the maximin problem we
have analyzed here. A rigorous analysis shows that the
capacity of a ncuron with binary weights is, in fact, lincar
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in n.°> In a succeeding paper, we illustrate how the ideas
developed in this paper can be used in the training of
formal neurons with binary weights, and provide rigorous
capacity calculations [4).
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Abstract

Learning real weights for a McCulloch-Pitts neuron is equivalent to linear programming and
can hence be done in polynomial time. Efficient local learning algorithms such as Perceptron
Learning, further, guarantee convergence in finite time. The problem becomes considerably
harder, however, when it is sought to learn binary weights; this is equivalent to integer pro-
gramming which is known to be NP-complete. A family of probabilistic algorithms which learn
binary weights for a McCulloch-Pitts neuron with inputs constrained to be binary is proposed
here, the target functions being majority functions of a set of literals. These algorithms have low
computational demands and are essentially local in character. Rapid (average-case) quadratic
rates of convergence for the algorithm are predicted analytically and confirmed through com-
puter simulations when the number of examples is within capacity. It is also shown that for
the functions under consideration, Perceptron Learning converges rapidly (but to an, in general,
non-binary solution weight vector).

1 INTRODUCTION

We consider learning in the context of linearly separable functions. Given an arbitrary linearly
separable dichotomy of a finite set of patterns, the Perceptron Training Algorithm [1] guarantees
convergence in finite time of an iteratively updated sequence of weight vectors to a real solution
vector which separates the dichotomy. The problem becomes considerably harder, however, when
we are required to learn binary weights for a linearly separable problem. The problem of learning
real weights for a McCulloch-Pitts neuron is equivalent to linear programming, for which there
exist polynomial time algorithms. (The Perceptron Learning Rule is an on-line procedure which,
as we will see in the sequel, can converge extremely rapidly under moderate conditions. Similar

*Presented in part at the Workshop on Neural Networks for Computing, Snowbird, Utah, April 1989, and the
IEEE International Symposium on Information Theory, San Diego, California, January 1990.

"This research was supported in part by the National Science Foundation under research grant EET-8709198 and
by the Air Force Office of Scientific Research under research grant AFOSR-89-0523.
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conclusions are also reported by Baum [2] under slightly different hypotheses.) Learning binary
weights for a McCulloch-Pitts neuron is, however, equivalent to integer programming, which is
known to be NP-complete [3].

Notwithstanding the apparent difficulty of the learning problem in this case, the potentially
lower cost and simplicity of neural networks comprised of binary interconnections as opposed to
real weights makes such circuits rather appealing practically. Recent theoretical results also bolster
the usage of such circuits: the computational capacity of a neuron with binary weights remains
comparable to that of a neuron with real weights [4, 5]. The development of efficient heuristics
for learning binary weights (paralleling the development of such algorithms as backpropagation for
neural circuits with real interconnections) is, hence, critical if the cost advantages promised by
binary circuits are to be realised.

We present here a new family of probabilistic algorithms which learn binary weights for a
neuron in an on-line setting. The target functions here are weighted linear threshold functions with
weights from {—1,1} which are defined on a domain of binary n-tuples, {—1,1}". In particular, the
target functions are majority functions of a set of literals, that is, majority functions that may have
any of their inputs complemented. Given a partial Boolean function defined on a subset of m points
(patterns) from this class, or alternatively, given a dichotomy of m points in {—1,1}" which can be
linearly separated with weights from {-1,1}, the randomised algorithm described here iteratively
adjusts the weights until a solution (binary) weight vector which separates the dichotomy is found.
The principal advantage the proposed algorithm has over Perceptron Learning is that, not only
is the solution vector generated by the procedure binary, but the weights remain confined to the
domain {—1,1} throughout the entire learning process. The algorithm, as we will see, converges
rapidly to a solution when the number of patterns to be dichotomised is within the computational
capacity of the neuron. An interesting feature of the algorithm is that it is local, which makes it
appealing from an implementation perspective.

In the next section we set up the learning protocol and describe the algorithm. We derive some
preliminary results on the expected time of first passage of random walks to given boundaries in
Section 3. In Section 4 we analyse the algorithm and show quadratic initial rates of convergence
when the number of training examples is within the computational capacity of the threshold ele-
ment. The analysis here is for the average case.* We also compare the results obtained with the
rate of convergence of the Perceptron Training Algorithm: we show that the Perceptron Algorithm
converges in the worst case with a mistake bound O(n?) to a real solution vector under the con-
straint that there exists a binary solution vector within the solution space. We also present an
average case analysis of a modification of the Perceptron Learning Algorithm, in the spirit of the
proposed Directed Drift Algorithm, wherein a single weight component is updated at a time. In
Section 5 we present simulations and discussions of the algorithm.

On notation: We will use the symbol BB to denote the set {-1,1}. If x = (z4,...,2,)
and y = (¥1,..- ,¥n) are points in real Euclidean n-space, we denote by (x,y) the inner-product
Y 7=12Z;y;. Following J. Riordan we use the word epoch to denote points on the time axis. A
physical weight update may take some time, but we will assume updates are timeless and occur
at epochs.! We define the function sgn : IR — IB by sgnz = z/|z| if z # 0 and sgn0 = 0. All
logarithms in the exposition are to base e. Finally, if {z,} and {yn} are positive sequences, we

*Directed Drift is a randomised algorithm, and arbitrarily bad worst-case results are possible. The probability of
such occurences is small, however, and is governed by the extreme tails of the underlying probability distribution.

'In his text, W. Feller credits J. Riordan with initiating the usage of the word epoch in such situations {7, page
73].

_
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denote: z, = O(yn) if there is a positive constant K such that z./yn < K for all n; z, ~ yn if
Zy/yn — 1 as n — oo.

2 LEARNING

2.1 The Setting

We are given a set of patterns, 4 C R”, and a function f : & — IB which is linearly separable:
specifically, there exists a solution weight vector, w® € IR™, such that

sgn {(w*,u)} = f(u) (1)

for every choice of pattern u € . We call the function f the farget function (also known as the
target concept in the literature on Learning Theory). The target functions are, hence, majority
functions of a set of literals. Clearly, f realises a dichotomy of &. Without loss of generality we
assume that f(u) = 1 for every pattern u € &.}

An algorithm for learning from ezamples is a procedure where learning takes place in a sequence
of trials. The protocol is as follows:

1° At epoch t the system is characterised by a weight vector, w(t], and receives an example pattern,
uft}, drawn from U.

2° The system produces a response, -1 or 1, according to the sign of (wft], u[t]).

3° A new weight vector, w(t + 1], is generated based on the current response, weight vector, wit],
and example, u[t].

The procedure is carried out iteratively, and is terminated if a solution weight vector is obtained.
We call the sequence of examples, {uft]}2,, the training sequence, and the sequence of weight
vectors, {w[t]}$2,, the learning sequence. If the procedure terminates in a finite time, we say that
the learning algorithm has learnt the function f. We will be interested in the mistake bound—the
number of classification mistakes the learning algorithm makes on the set of examples before it
learns the given function. For our purposes, the mistake bound is equal to the number of updates
of the weight vector before the function is learnt. We denote the mistake bound by T'.

In the sequel, we will further restrict the set of patterns, I, to be drawn from the vertices of
the n-cube, IB", and require that there is a binary solution weight vector, w* € IB”, for f. A fourth
restriction that we will require of any binary learning algorithm is:

4° The initial choice of weight vector, w[1], is arbitrary, subject only to its being chosen from IB",
and the learning algorithm generates binary weight vectors, wit] € IB®, at each epoch of the
learning process.

We will, thus, be constrained to looking at algorithms which make only bit changes in the weight
vector at each epoch. Specifically, the weights are confined to the domain {-1,1} throughout
the learning process. This situation may be compared to Perceptron Learning, where the weights
typically grow in magnitude during the learning process.

If f(u) = ~1 then f(—u) =1 as can be easily seen from (1). Replacing each pattern in & for which f(u) = -1
by —u we obtain a corresponding set of patterns U; if w* is any solution weight vector separating the dichotomy of
U specified by f then all patterns in & lie on the same (positive) side of the hyperplane corresponding to w*, and
conversely.
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2.2 Directed Drift Algorithms

We present here a family of probabilistic algorithms for binary learning. We call these algorithms
Directed Drift Algorithms because, as we shall see, they share some similarities with asymmetric
random walks with a preferred direction toward a solution.

Let U be any subset of patterns from BB™, and let {u[t]} be any training sequence such that
each of the patterns in U/ appears infinitely often.S Let {w(t]} denote a binary learning sequence.
For each epoch, t, we denote by J[t] the subset of indices for which the corresponding components
of w(t] and u[t] are opposite in sign:

J[t] = {5 : wilt] # u;[4] }.

Single bit updates We begin with the simplest version of the algorithm where no more than a
single component of the weight vector is updated per epoch.

BASE: w{l] € B" is chosen arbitrarily.

ITERATION: The algorithm’s response is predicated upon whether a correct or incorrect
response is obtained at the current epoch, t.

o If (w(t],u[t]) > 0, then the weight vector is left unchanged: wt + 1] = w]t].

o If (wit],u[t]) < 0, then an index j[t] is picked at random from the set of indices,
J[t], of mismatched components. The new weight vector is now formed according
to the following rule:

oo | will ifi# il
w41 = { ~wift] i =3l ®

The intuition behind the algorithm is as follows. If a binary solution vector, w* € IB", exists,
then necessarily we must have (w*,u) = "7, wiu; > 0 for each pattern u € U. As there is a
contribution of 41 to the sum if two corresponding components of w’ and u have the same sign,
and -1 if the signs are mismatched, it follows that the binary solution vector has more component
sign matches than mismatches with each pattern in U.

Now the algorithm updates the current estimate of the weight vector if and only if the current
pattern from the training sequence is misclassified. A weight vector update results in a randomly
chosen mismatched component of the weight vector being flipped to the sign of the corresponding
pattern component. Since there is a probability better than a half that a randomly specified
component of any pattern has the same sign as the corresponding component of the binary solution
vector, it follows that at each epoch the a priori probability that the weight vector update is in
the direction of the binary solution vector is better than a half. We will explore this more formally
in the sequel.

Several bit updates The algorithm can be simply extended to accommodate more than a single
bit update per epoch. Let {N;} be a sequence of integers with 0 < N, < n/2.

SNote that &/ C IB" is a finite set of patterns. If ¥ = {u’,... ,u™} is an m-set of patterns, then we can, for
instance, obtain valid training sequences by cycling through the patterns or choosing a pattern randomly at each
epoch.




Venkatesh S

BASE: w(1] € BB" is chosen arbitrarily.

ITERATION: As before, updates are made only if the current pattern from the training
sequence is misclassified.

o If (w[t],u[t]) > 0, then the weight vector is left unchanged: wi{t + 1] = w{t].

o If (w(t], uft]) < 0, then N, indices ji[t], ..., jn,(t] are picked at random from the
set of indices, J[t], of mismatched components. The new weight vector is now
formed according to the following rule:

"’J[‘“]'{ ~wjlt] i3 € (hlt]... vini (el

The sequence N; specifies the number of bits to be changed at each update epoch, and the
proper choice of this sequence is clearly critical to the functioning of the algorithm. This is analogous
to choosing an appropriate cooling schedule for simulated annealing [6).

2.3 Perceptron Training Algorithm

A geometrical appreciation of the Directed Drift Algorithm can be obtained from a consideration
of the classical Perceptron Training Algorithm. Let {u[t]} be a training sequence of patterns, and
let {w[t]} denote a learning sequence of real weight vectors.

Fixed increment Perceptron Training This is the simplest form of Perceptron learning. Let
B > 0 be fixed.

BASE:  Theinitial choice of weight vector is arbitrary. For simplicity we take w[l] =
ITERATION: As before, weight vector updates are made only if a pattern is misclassified.

o If (w[t],u[t]) > 0, then the weight vector is left unchanged: wit + 1] = w{t].
o If (wit],ult]) <0, then set wit + 1] = w[t] + Bul[t].

The Perceptron Training Algorithm is known to converge to a real solution vector (if it exists)
in finite time [1). Geometrically speaking, the situation is as depicted in Figure 1(a). When a
pattern from the training sequence is misclassified by the current estimate of the weight vector, the
weight vector update is in the direction of the misclassified pattern. This idea of updating in the
direction of the misclassified pattern is extended in the Directed Drift Algorithms. The situation
is as depicted schematically in Figure 1(b). The updates, being constrained to be binary, are not
directly in the direction of the misclassified pattern; nevertheless, the update lies in the positive
half space corresponding to the binary pattern vector so that the updated weight vector is more
apt to classify the pattern correctly.

Single component Perceptron Training The basic randomisation idea behind single bit up-
date Directed Drift is easily extended to single component Perceptron Learning, where a single
component of the weight vector is modified at each update epoch (as opposed to traditional Per-
ceptron Learning where all components are modified at each update epoch).

For each epoch, ¢, let I[t] denote the subset of indices for which the corresponding components
of w(t] and u(t] are opposite in sign:

1) = {3 : wilt] # sgnwift]}.
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BAsE: For simplicity, take w(1] = 0.
ITERATION: The algorithm’s response is predicated, as usual, upon whether a correct
or incorrect response is obtained at the current epoch, t.

o If (w[t},uft]) > 0, then the weight vector is left unchanged: wit + 1] = w{t].

o If (w[t],uft]) < 0, then an index i[t] is picked at random from the set of indices,
I[t), of mismatched components. The new weight vector is now formed according
to the following rule:

Wt if1 £ 1t
wilt+1) = { w;[ttlvi Li[t] if1 i ’H‘ @

In this variation, a single bit is added (subtracted) from a randomly chosen component at each
update epoch. The mistake bound hence coincides with the number of component updates, as in
single bit update Directed Drift. For fixed increment Perceptron Learning, of course, the number
of component updates is n times the mistake bound.

3 RANDOM WALKS

An estimate of the rates of convergence of the randomised algorithms described above may be
obtained by appealing to notions from random walks and the geometric theory of paths.

Let {X;} be a sequeuce of Bernoulli trials with success probability p, = 1/2+84,0 < 8, < 1/2
depending on a parameter n:

X, = 1 with probability pn = 1/2+ fn
771 -1 with probability gn, = 1/2 ~ Bn.

Let S, = Ef,_l X; denote a random walk with positive drift, ES, = 2kf8,. We are interested
in estimating the expected time of first passage of the random walk to some specified boundary,

B(n, k).
3.1 Fixed Boundary
Let us first consider the case of a fixed (one-sided) boundary at n. Define

Ty(n) = inf{k : S; > n}.
For this case, the theory of generating functions can be readily invoked to estimate the expected
time of first passage to the boundary (cf. Feller [7, Chapter III]). We have the following estimate:
Proposition 3.1 ET)(n) = n/2f, for every n.

PRooF: Let oy(k) denote the probability that the random walk makes a first passage [ units to
the right of the starting point in k steps. We then have ET1(n) = 1 i2¢ kan(k).
As a first passage through n must necessarily involve a prior first passage through n — 1, we

immediately have the convolutional relation

k-1
an(k) =Y an_a()ar(k - ). (4)
j=1




1 - & - - -
l P{M....=Xk=1}=;[pn(—l.—1)+pn(—1,1)] 4‘_Zkinl{ WP (-1 -wp(1, - 1))
&, _ . ¥,
Afi-%)rvmxmn - @acb-esen T1[-3)
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Let A;(s) denote the generating function for the probability distribution e(k); i.e.,

00

Ai(s) = Y ay(k)s*.
k=0
From equation (4) we hence have
An(8) = An-1(8)A1(s) = [Ai(s)]", (5)

with the latter equality following by induction.
To evaluate A1(3) we need to evaluate the probabilities, ay(k), of a first transition one unit to

the right in k steps. We note that

0 (6)
Pn- N
Now, a first transition one unit to the right in & > 2 steps must necessarily involve an initial step

to the left, followed by a first transition one unit to the right (back to the origin), and a final first
transition one more unit to the right. Hence

a(0)
al(l)

k-2
oaqk)=gu Y on(flar(k—j~1), k=23,.... (8)

i=1

o0
Ay(s) = Sal(k)sk
k=0

oo
= pps+ E ay(k)s*
k=2

oo k-2
= p.s+4qn Z Zal(j)al(k —j-1)sk
k=2 j=1

= pas+ qus(Ai(s)f.
Solving for A;(s) we finally obtain

1-41-4 8
Ai(s) = —_——2q sp"q" A
n

Substituting in (5) we obtain

1-/1- 4p,.q,,32]"

An(s) = Z%a,,(k)s* = [ Sas

We can now directly compute the expected time of first passage n units to the right by

ETi(n) = A" (1) = ——o.
() = (1) = ——

The substitution p, — ¢, = 26, completes the proof.

YWe discard the positive root as it grows without bound as s — 0, and we require A,(0) =0.

' Using equations (6), (7), and (8) we now have
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3.2 Receding Boundary _
We now consider the case of a receding (two-sided) boundary at £vkn. Define

Ty(VEn) = inf{k : |Sk| > VEn}.

It is difficult to get explicit closed-form expressions when the boundary is not fixed, and we will
be satisfied with an asymptotic estimate for E T(vkn) as n — oo. Our development follows
Siegmund [8, Chapter IX] where a general analysis is presented in the context of nonlinear renewal

theory.
Now T(vEn) (if finite) is the first integer k for which the random variable S?/k exceeds n.

Now, simple algebraic manipulations yield

52 1
b = 4kB7 + 4Pn(Sk = 2kBn) + £(Sk - 2kBn)?.
A — B,

By the strong law of large numbers we have

4k — 442 with probability one

(9)
% — 0 with probability one.
Further, as an easy consequence of Kolmogorov’s inequality, we have
1
ax B; — 0 in probability. (10)

k1< _1<k
Proposition 3.2 The following assertions hold:
a) P{Ty(vFn)< oo} =1 for all n;

b) %}%‘;’9 — 1 in probability as n — oo.

Proor: The observation (9) yields S?/k* — 442 with probability one, so that part (a) of the
proposition follows.
Now let K, = n/4832. Fix 0 < € < 1 and set K}, = Kn(1 + ¢). From (9) and (10) we have

5?
max, _Jz. — 462 in probability.

52
P{ max -.4<n}
1<5€K;, )
1 S? 1
P {wzxa 152K, 7 © 1+c} —0

A similar argument shows that P {Tg(\/’?;) < ;’3\3-(1 - c)} — 0. |

Hence, as n — oo, we have

P {Tz(\/;;) > w,(l +e)}
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Proposition 3.3 ETy(Vkn) ~ 71%?.' as n — oo.

Proor: Let K, = n/4832, as before. For k > 2K,, we have

P {Ty(Vkn) > k} < P{S—’3<n} < P{Ai<n}

k
{Z(X —26n) < —kBn + 4[,“}

j=1
S {Z(X 2ﬂn < _Eg_n} .
i=1

The bound above is just the probability of an event in the left tail of the binomial distribution. An
application of Chernoff’s bound (9] yields:

P {T2(Vkn) > k} < e*Cn,

Co=-(5+ 7)1 (14 5755) - (5- ) s (1- 727

We now claim that

where

Y. P{T(VEn) >k} -0 (7 — o). (11)

k>2Kn

If Bn is bounded away from zero this is clear: C,, > D > 0 for some absolute positive constant D,
and the sum in (11) is just a sum over the exponential tail (note that K, — o0 as n — o0). Now
consider the case where 8, — 0. Using the Taylor series approximation

log(l1+z)=z-2%/2+ 0(z®)  (|z| - 0)

it is easy to see that

P {T3(Vkn) > k} < exp [— "5’2‘{1 + O(ﬂn)}] :

It is now readily verified that the first term in the series in (11) decreases exponentially fast with

n. This completes the proof of the claim.
The elementary observation E (To(Vkn)|Ta(Vkn) > 4K,) > 4K, together with the claim now

yields

< 2E(Ty(Vkn) - 2K,; To(Vkn) > 4K,)
< 2E(Ty(Vkn) - 2Kya; To(Vkn) > 2K,)
< 2 Y P{D(Vkn)>k}—0 (n— o)

k>2K,

E (T2(Vkn); To(Vkn) > 4K,)

Hence, the random variables (;37)_] T2(Vkn), n 2 1 are uniformly integrable. In addition, by
Proposition 3.2(b), (;ﬁz)-l T2(Vkn) — 1 in probability. The result follows. |
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4 ANALYSIS
4.1 Directed Drift

We consider single bit updates for simplicity. Assume that we have a finite set of patterns, & =
{ul,... ,u™} C B", chosen independently with pattern components drawn from a sequence of
symmetric Bernoulli trials. Let {uft]} be a training sequence, and {w[t]} the learning sequence
specified by the rule (2). Let {ti} denote the subsequence of epochs at which patterns from the
training sequence are misclassified; i.e.,

(wite,ulte]) <0,  k=1,2,....
We can write the weight vector updates of equation (2) in the form
Wtes1] = wite] + vita],

where v{ti] is a vector whose components satisfy

~ 0 if 7 # jlta]
vilt] = { —2w;[tx] ifj = ;[t:]- )

Assume that there is a binary solution vector, w? € IB®. Consider the estimate errors
IWitksr] - wi®
liwiti] + vite] — w|?

liwlte] — w11 + Ivitalll® + 2(wlte] — w*, v[t])
= &+4+ 2(w[tk]vv[tk]) - 2(W',V[tk]).

e

Ere1

Using (2) and (12) we hence obtain
Eea1 = &k — 4wy, uji(te]-

Define the +1 random variables
Xi = wjpujpg [l
By induction we obtain

k
£k+1 = Sl - 4ZX,'.

=1

Upper bounding £; by 4n, and setting Sx = ELI X; we finally obtain
0 < Ek41 < 4(n — Si).

The procedure terminates at the value of k¥ for which the random sum Sj first exceeds n. The

mistake bound, T, hence satisfies ST > n,and Sy < n,for k= 1,... ,T — 1. The mistake bound is
infinite if there exists no such value of k, or if there exists no binary solution vector for the choice
of patterns, U.

The above is reminiscent of a random walk with a fixed boundary at n. In fact, if the m-set
of patterns U is chosen independently, then the random variables X; corresponding to different
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patterns must be independent.!l Let us assume that the training sequence is obtained by cycling
through the patterns. For a random initial choice of weight vector a substantial number of patterns
will be misclassified, so that a pattern will recur in the update sequence only after §2(m) epochs.
Through the initial progress of the algorithm, hence, the random sum S; = Tk X; is a sum of
independent, identically distributed, £1 random variables with

X: = 1 with probability p, =1/2 + 8,
*7 ] -1 with probability ¢, =1/2 - 8,

for some B, € (0,1/2). The specific value of the probability p,—the relative frequency of the
number of component matches between a binary solution vector and a pattern—depends on the
size, m, of the set of patterns, . We clearly have
nf241 1 1
> = =4 -
Pn 2 n 2 + n’

so that 8, > 1/n.

The above argument indicates that the expected time of first passage to n of a one-dimensional
random walk, S, with positive drift, 2k3,, may be used as an estimate of the expected mistake
bound for single bit update Directed Drift. Substituting 8, > 1/n in Proposition 3.1 we then

obtain the estimate O(n?) for the expected mistake bound when the number of patterns is within
capacity.

4.2 Perceptron Training

It is instructive to compare the above convergence rates with rates that obtain for Perceptron
Training. The classical proofs of the Perceptron Training procedure only guarantee that the proce-
dure converges in finite time if a solution exists: convergence time, however, is strongly dependent

. on the distribution of (real) patterns, and in the worst case can be exponential in the number

of bits needed to specify the pattern distribution. When constraints are placed on the allowable
choices of patterns, however, convergence can be much more rapid. To compare mistake bounds
with Directed Drift, let us consider Perceptron Training when the patterns are binary, and under
the condition that there exists a binary solution vector. (Note, however, that we only require that
the Perceptron Training Algorithm return a real solution vector.) We show first that the fixed
increment Perceptron Training Algorithm converges in the worst case with a mistake bound which
increases no faster than quadratically in n; alternatively, the total number of component updates
before convergence is O(n3). We follow this with an average case analysis, similar in flavour to the
analysis for Directed Drift, for randomised, single component update Perceptron Training, which
yields similar results.

Let/ = {u!,... ,u™} C BB" be a finite set of patterns, {u[t]} the training sequence, and {w([t]}
the learning sequence. As before, let {tx} denote the subsequence of epochs at which patterns from
the training sequence are misclassified.

¥To facilitate ease of analysis for the nonce we assume that the number of patterns is within the computational
capacity of a linear threshold element with binary weights. (The capacity is quite large—linear in n—and capacities
of the order of n/logn can be easily achieved for rather simple algorithms [4, 5].) For a random choice of patterns
we are then assured with arbitrarily high probability asymptotically that there exists a binary solution vector.
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Fixed increment training The weight vector updates result in
W(tke1] = witk] + Bu(ti], k=1,2,....

Assume that there is a binary solution vector, w* € IB". For a choice of parameter ¢ > 0 to be
specified shortly, consider now the estimate errors

]2

1w [ts1] — cw’|?
liwlts] + Bulte] — cw*|)?
= Fi+ Blultell? + 28(wlte] - ew*, ult]).

Fresr

1l

Since w* is a binary solution vector we must have that (w’,uft]) > 1 for each pattern in the
training sequence. Furthermore, ||u[t]||? = n for each pattern in the training sequence, and as w{tx]
misclassifies pattern u[ti] by definition, we also have (w(t], u[ti]) < 0. Hence

0 < Fi1 £ Fi + B%n — 2ch.

With the assumption that w[l] = 0 we have F; = ||w[1] — cw?||? = ¢?n. By induction on the above

inequality we then obtain
0 < Fiy1 < €%n — B(2¢c — Bn)k.

The procedure terminates with a mistake bound

cn

= BEc—pn)’

Choosing ¢ = fn minimises this upper bound for the mistake bound. With this choice of ¢ we
obtain that the mistake bound for the fixed increment Perceptron Training Rule is T < n? under
the constraints of a binary pattern space, and with the requirement that there exist a binary
solution vector. Note that this bound is independent of the number of binary patterns, and their
distribution. The sole requirement for this estimate of convergence time for the Perceptron Training
Rule to hold is that there exist a vertex of the n-cube (a binary solution vector) within the convex
polyhedral cone defined by the space of real solution vectors. While the mistake bound gives the
number of weight updates before convergence, it must also be noted that in the Perceptron Training
Rule each update is a synchronous update in which each of the n components of the weight vector
are modified (as opposed to the single bit modifications in the simpler version of the Directed Drift
Algorithm) and each component modification requires the addition of a real scalar. Thus, in the
worst case, the procedure terminates after no more than O(n3) component updates.

T

Single component updates The weight vector updates of equation (3) can be written in the

form
Witks1) = wite] + x[ti]

where x(tx] denotes the vector with components

2.’[tk]={ 0 ifi# ity

wilte] if i = i[ta).
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Let w® € IB" be a binary solution vector. We have the following bounds on the length-square of
the weight vector estimates:

liwlte] + x[t]l®
L:lz: + "x[tk]"2 + 2wi[u][‘k]“i[u][‘k]
< L3+,

L3 2 Witk ]l

We hence have Ei +1 < k as a consequence of the choice w; = 0. Also, as a consequence of the
Cauchy-Schwarz inequality, we have

w w? 2
(2o > Lolnb IR Lyt w4 ot xul?

1| i’
=2 _(w",x]ta))

n h=1

2

k
Z w:[tn]u"[th] [ta]
h=1

_ 1
T on

Define the £+1 random variables
Xn = w:[gh]ui[t;.][th]v

and let S, = °F_, X». We then have

S
I—\/%l < Lryr < VE

The algorithm terminates at the first instant k for which |Si| exceeds vkn. Arguing as for Directed
Drift, we use as an estimate for the expected mistake bound the expected time of first passage of a
random walk with positive drift 2k3, > 2k/n to the two-sided boundary at +v/kn : Proposition 3.3
then yields the asymptotic estimate O(n®) for the expected mistake bound as n — oco.

5 SIMULATIONS

Computer simulations indicate that the rapid convergence times predicted by analysis hold when
the number of patterns to be loaded lies within the capacity. Mistake bounds are plotted as a
function of n in Figure 2. In each plot mistake bounds for each choice of m and n were averaged
over 1000 runs of the single bit update Directed Drift Algorithm. In each run of the algorithm an
independent set of patterns was drawn from a standard pseudo-random binomial number generator.
(To ensure the existence of a binary solution weight vector, a binary n-tuple was selected at random
as the solution vector, and those patterns lying in the negative half space of the solution vector
were reflected.) A random initial binary weight vector was selected as the initial estimate of the
weight vector presented to the single bit update Directed Drift Algorithm with the training sequence
obtained by cyclically presenting the patterns. At convergence the number of adaptations of the
weight vector were stored as the estimate of the mistake bound. The expected mistake bound for
the choice of m and n was evaluated by averaging the number of adaptations before convergence
over 1000 independent runs (each on an independently chosen data set).

In Figures 2(a) and 2(b) the number of patterns, m, was fixed within capacity (at m = n/4
and m = n/2, respectively) and very rapid convergence times are seen. Expected mistake bounds
increase significantly around capacity as illustrated in Figure 2(c) with m = n. Mistake bounds
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finally saturate above capacity at around 2n (plotted in Figure 2(d)). When the number of patterns
is well above capacity it is not clear whether the algorithm still converges polynomially fast, and
this is under investigation. Convergence is still, however, several orders of magnitude faster than
an exhaustive search through the vertices of the n-.cube. (For instance, when n = 20 and m = 40,
exhaustive search requires of the order of 10° steps while Directed Drift converges in about 104
steps.) Early results indicate that order of magnitude improvements in mistake bound may be
obtained by updating several bits at a time with an appropriate choice of cooling schedule in
the algorithm. We do not have good heuristics at this time, however, for choice of good cooling
schedules.

Figures 3 and 4 show a plot of the expected mistake bound, T, for single bit update Directed
Drift as the number of patterns, m, increases for a fixed value of n. We observe that the expected
mistake bound saturates to a fixed value depending on n when the number of patterns exceeds
approximately 3n in the range of n we considered in our simulations. Note also the rather abrupt
threshold behaviour when the number of patterns exceeds the capacity (n). We conjecture that
there is a threshold function for the expected mistake bound around the capacity.

The saturation of the mistake bound when the number of patterns exceeds capacity is caused
essentially by the shrinkage in the solution space—when the number of patterns exceeds roughly 3=,
then the binary solution vector, if one exists, is essentially unique. We illustrate this in Figure 4:
for a fixed value of n we plot simultaneously the expected mistake bound and the relative frequency
with which the algorithm terminates in an initially chosen binary solution vector. The saturation
in mistake bound around 3n is again evident, as well as the threshold behaviour around capacity.
Note that the probability that there are multiple solution vectors is the dual of the mistake bound
curve: while for a small number of patterns there exist many binary solution vectors, a precipitous
drop in the probability of multiple solutions is evidenced around the capacity, and finally around
3n there exists only one solution vector with high probability.

This observation has an important consequence from the point of view of generalisation in
learning. If the observed saturation of the expected stopping time around 3n patterns extends
uniformly for all n, then any linearly separable Boolean function for which there ezists a binary
solution vector can be learnt with no more than 3n ezamples (of the total of 2" instances) of the
function drawn at random. In ongoing work we are attempting to make this rigourous.

In Figure 5 we plot the average number of component updates before convergence versus the
number of patterns (with n = 10 fixed) for fixed increment Perceptron Training. [The expected
mistake bound is an order of magnitude smaller: the average number of component updates is
n times the mistake bound for fixed increment Perceptron Training. For single update Directed
Drift, as noted before, the mistake bound coincides with the number of component updates.] The
sharp threshold behaviour seen in Directed Drift is not so much in evidence here. Saturation again
appears to be around twice the capacity (2n for real weights). Note that the average mistake bound
is an order of magnitude lower than the worst-case upper bound O(n?). The derived worst-case
bound may, hence, be too conservative. On the same figure we also plot the normalised length,
L//n, of the solution vector returned by the algorithm. A similar saturation phenomenon is in
evidence, with the length of the solution vector saturating at a value somewhat larger than the
length, +/n, of the binary solution vector.
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6 CONCLUSIONS

While the general problem of learning binary weights is NP-complete, the rapid convergence of the
Directed Drift Algorithms indicates that the typical problem may well be tractable even if there
exist, perhaps pathological, intractable bad instances. The simplicity of these probabilistic (binary)
learning algorithms allows of several possible extensions to networks of neurons—in particular,
feedforward structures. This is clearly of some theoretical and practical import, and is under
investigation.
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Fig.

Fig.

Fig.

Fig.

Figure Captions

1 (a) A schematic depiction of the incremental change in the current weight vector, w(t], made
by the Perceptron Training Rule. The change is in the direction of the misclassified pattern,
u(t], and the resultant weight vector, w[t + 1], is more apt to classify the pattern correctly.
(b) The corresponding scenario for Directed Drift. Here the algorithm is constrained to make
only single bit changes in the current (binary) weight vector. Bit changes in the positive
hemisphere (in the direction of the misclassified pattern) improve the possibility of correct
classification.

2 Plots of the expected mistake bound (averaged over 1000 trials) of the Directed Drift
Algorithm as a function of n for four cases with the number of patterns, m, chosen equal to
n/4, n/2, n, and 2n. The first two cases are within capacity, and the curves reflect best fit
quadratics. For m = n and m = 2n the number of patterns exceed capacity, and. the curves
fitted are polynomials of degree 4 and 5, respectively. The best fit exponential curve, 2",
above capacity has an exponent of roughly 0.75n in the range considered.

. 3 The expected mistake bound (averaged over 1000 independent trials) of Directed Drift is

plotted against the number of patterns for n = 20. A threshold phenomenon is observed
around capacity when the mistake bound rises abruptly. The mistake bound saturates to a
fixed value when the number of patterns exceeds approximately 3n.

4 The expected mistake bound and the probability that Directed Drift terminates in a dif-
ferent solution vector than the one specified (at random) initially are plotted as a function
of the number of patterns for n = 10. (Results are averaged over 100 independent trials.)
Note the same threshold behaviour around capacity and the saturation phenomenon for the
mistake bound as observed in Figure 3. The probability that there is more than one binary
solution is a dual of the curve for the mistake bound: the probability of many binary solution
vectors is high when the number of patterns is small, and plunges abruptly around capacity
to essentially zero around 3n. The saturation of the mistake bound around 3n patterns thus
seems to be a consequence of the reduction in the binary solution space till there is only a
unique binary solution vector around 3n patterns. Specifying more examplar patterns then
does not yield any further information on the solution vector.

5 The expected mistake bound and the length of the solution vector (normalised by /n =
V/10) at convergence is plotted against the number of patterns for n = 10 for fixed in-
crement Perceptron Training. (Results were averaged over a 100 independent trials.) The
averaged mistake bound saturates around 6n patterns, reflecting the larger capacity, while
the normalised length of the solution vector returned by the algorithm saturates at a value
somewhat larger (about a factor of 2.5) than the length of a binary solution vector.
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Abstract

We investigate algorithms for learning binary
weights from examples of majority functions
of a set of literals. In particular, given a
set of (randomly drawn) input-output pairs,
with inputs being binary +1 vectors, and the
outputs likewise being +1 classifications, we
seek to find a vector of binary (1) weights
for a linear threshold element (or formal neu-
ron) which provides a linearly separable hy-
pothesis consistent on the set of examples.
We present three algorithms—Directed Drift,
Harmonic Update, and Majority Rule—for
learning binary weights in this context, and
examine their characteristics. In particular,
we formally define a distribution dependent
notion of algorithmic capacity (which is re-
lated to the distibution free notion of the VC
dimension) and provide estimates of the ca-
pacity of the proposed algorithms.

1 INTRODUCTION

Recent results have indicated that large dynamic
ranges may not be needed for the weights in neural
networks [VF91]. In particular, for many applications,
binary weights may suffice for the weights; alterna-
tively, a network with real interconnection weights can
be replaced by an equivalent network of binary weights
realising the same Boolean function with a slight in-
crease in the size of the network. Concomittant with
the birth of a theory validating the computational ca-
pabilities of networks with binary (or limited dynamic
range) weights, there has been a development of a ca-
pability to produce large hardware implementations of
such networks (GH90].

A question of some practical import is whether there
are algorithms which can succesfully exploit the latent
information storage capabilities of these networks by
learning binary weights for a given architecture from
instances of the function to be represented. Unfortu-
nately, theory may proscribe a general solution: the
problem of learning binary weights is NP-complete.

The issue is, however. open whether there are (ran-
domised) learning algorithms which converge rapidly
on average. As a first step in the consideration of
this problem, we consider learning binary weights in
the context of linearly separable functions; i.e., restrict
consideration to learning binary weights for a single
neuron.!

Given an arbitrary linearly separable dichotomy of a
finite set of patterns, the Perceptron Training Algo-
rithm [Ros62] guarantees convergence in finite time of
an iteratively updated sequence of weight vectors to
a real solution vector which separates the dichotomy.
Perceptron Training is an on-line procedure which has
good average-case convergence times, but which can
occasionally exhibit a worst-case exponential time con-
vergence. Worst-case polynomial running times can,
however, be guaranteed for the problem with off-line
procedures such as Karmarkar’s algorithm for linear
programming. Learning binary weights for a neuron
is, however, equivalent to integer programming, which
is known to be NP-complete [GJ79).2

We present three approaches to the problem of learn-
ing binary weights for linear threshold functions, the
target functions being majority functions of a set of n
literals. In the first approach we present a randomised,
local, and homogeneous on-line procedure—which we
call Harmonic Update [Ven91(a)}—for learning binary
weights from a single pass of a set of examples. The
second algorithm we present is a homogeneous off-
line procedure we call Majority Rule [Ven91(a)]. In
the third approach we develop a family of randomised
algorithms—dubbed Directed Drift [Ven91(b)]—which
are on-line, local, and mistake driven.

A key parameter we estimate is the capactly, an al-
gorithm and distribution dependent parameter linked
to the VC dimension. The main results here are
that Harmonic Update has a capacity of the order of
vn/A\/Togn, Majority Rule has a capacity of the order
of n/log n, and Directed Drift has a capacity of order

11n this discussion, we shall use the term “neuron” syn-
onymously with a linear threshold element.

2Some problems are born to NP-completeness, some
attain NP-completeness, and other have NP.completeness
thrust upon ’em.




between n/logn and n. Furthermore, these capacities
are maximal among algorithms with the respective fea-
tures of these three algorithms.

The Harmonic Update Algorithm, while on-line, is not
mistake driven and terminates after a single pass of the
set of examples. Mistake bounds or convergence times
for the Directed Drift Algorithm are, however, much
harder to obtain. A feeling for the problem can be
obtained, however, by appealing to analogous situa-
tions in the theory of random walks and the geomet-
ric theory of paths. The corresponding problem here
involves the estimation of the expected time of first

passage of a random walk with positive drift to a fixed .

boundary at n. We obtain the estimate O(n?) for the
expected time of first passage to the boundary and ar-
gue heuristically that this may hold as an estimate for
the expected mistake bound for Directed Drift when
the number of examples is within the capacity of the
algorithm. In an appendix we also provide a compar-
ison of the rate of convergence of Directed Drift with
Perceptron Training: we show that the corresponding
worst-case and average-case number of component up-
dates for Perceptron Training is O(n3).

On notation: We will use the symbol IB to denote the
set {~1,1}. f x = (21,...,2,) and y = (%1,... ,Un)
are points in real Euclidean n-space, we denote by
(x,y) the inner-product 37, z;y;. We use the word
epoch to denote points on the time axis. A physical
weight update may take some time, but we will as-
sume updates are timeless and occur at epochs.3 We
define the function sgn : IR — B by sgnz = z/|z| if
z # 0 and sgn0 = 1. All logarithms in the exposition
are to base e. If {z,} and {yn} are positive sequences,
we denote: z,, < yn if 2, < yn for n large enough;
zn 2 Yn if 2, > y, for n large enough.

2 THE SETTING

We are given a set of patterns, ¥ C IB", and a function
f : U — B which is linearly separable: specifically,
there exists a (binary) solution weight vector, w’* €
IB", such that

sgn (w’,u) = f(u) (1)

for every choice of pattern u € &. We call the func-
tion f the targei function; these are, hence, majority
functions of a set of literals. Given &/ and a linearly
separable target function f, the goal is to efficiently
find a (binary) solution weight vector w € IB". Note
that f dichotomises the set of patterns /. Without
loss of generality we assume that f(u) = 1 for every
patternu e U 4

3In his text, W. Feller [Fel68, page 73] credits J. Rior-
dan with initiating the usage of the word epoch in such
situations.

*For the nonce, extend f to the domain IB" using the
relation (1). If f(u) = —1 then f(—u) = 1 as can be eas-

2.1 ALGORITHMS

In an off-line binary learning algorithm, weights w; €
IB,i=1, ..., n are produced directly as a function of
the set of patterns U/: more specifically, w; = g;(/),
where the functions g; : ¥ — IB are specified by the
algorithm. We say that: an off-line algorithm is local if
w; is determined solely from the ith component of the
patterns, w; = gi({u; : u € U}),foreachi =1, ...,
n;% a local off-line algorithm is Aomogeneous if there is
a function g such that w; = g({u; : u € U}), for each
i=1,...,n

In contrast, an on-line algorithm for learning from ez-
amples is a procedure where learning takes place in a
sequence of trials. The protocol is as follows:

1° At epoch t the system is characterised by a weight
vector, w[t] € IB", and receives an example pat-
tern, uft] € IB*, drawn from .

2° The system produces a response vt] € IB according
to the sign of (w[t], uft]).

3° A new weight vector, wit + 1] € BB", is generated
based on the current response v[t] € IB, weight
vector w(t] € B", and example uft] € B".

The procedure is carried out iteratively, and is termi-
nated if a solution weight vector is obtained. Note
that we restrict ourselves to on-line algorithms which
generate binary weight vectors, wit] € B", at each
epoch of the learning process; specifically, the weights
are confined to the domain {—1,1} throughout learn-
ing. This situation may be compared to Perceptron
Learning where the weights typically grow in magini-
tude during the learning process. We call the sequence
of examples, {u[t]}$2,, the training sequence, and the
sequence of weight vectors, {w[t]}$2;, the learning se-
quence. If the procedure terminates in a finite time,
we say that the learning algorithm has learnt the func-
tion f. We will be interested in the mistake bound T—
the number of classification mistakes the learning algo-
rithm makes on the training sequence before it learns
the given function. In particular, the mistake bound
is equal to the number of epochs for which (wit], u[t])
is not positive. For our purposes, the mistake bound
is equal to the actual number of updates of the weight
vector before the function is learnt.

We say that an on-line learning algorithm is local if
each weight, w;[t + 1] € B, is updated solely as a
function of wq[t], u;[t], and v[t}, ie., for each i = 1,

ily seen from (1). Replacing each pattern in & for which
f(u) = —1 by —u we obtain a corresponding set of pat-
terns U; if w* is any solution weight vector separating the
dichotomy of U specified by f then all patterns in & lie on
the same (positive) side of the hyperplane corresponding
to w’, and conversely.

3We abuse notation somewhat here by retaining the
same functional notation g, over different domains.



..., n, there is a sequence of (possibly probabilistic)
functions f;; such that

wilt + 1] = fie (wit], wilt),vlt]), i=1,...,n.

In analogy with the corresponding situation for off-
line algorithms, we say that a local on-line algorithm
is homogeneous if all weights at a given epoch have the
same update rule, i.e., there is a sequence of (possibly
probabilistic) functions f; such that

wilt + 1] = fi (wift], wi[t], v[t]), i=1,...,n.

In addition, we say that an on-line algorithm is single-
pass if each pattern u € U occurs exactly once in the
training sequence.

2.2 CAPACITY

For positive integers m and n, let U™ = {ul,...,u™}
be a random m-set of patterns chosen independently
from IBB"; specifically, for each a = 1, ..., m, the
patterns u® = (uf, ... ,u2) are chosen independently,
with the components u of each pattern drawn from a
sequence of symmetric Bernoulli trials

P{u? = +1} = P{u{ = -1} = 1/2.

Let A be an algorithm for learning binary weights,
and let P4(n,m) be the probability that A produces
a solution weight vector for the m-set of patterns U}*,
i.e., P4(n,m) is the probability that, given the m-set
of patterns U, the algorithm A yields a weight vector
wA(UT) € B such that (wa(UT),u) > 0 for every
ucluy.

Definition 2.1 We say that a sequence C, is a ca-
pacily function (or simply, capacity) for A if, for any
choice of 0 < A < 1, the following two properties
hold:

a) Pu(n,my,) — 1 as n — oo for every sequence
{m,} which is such that m,, < (1 -2A)C,;

b) P4{(n,m,) — 0 as n — oo for every sequence
{m,} which is such that m,, 2 (14 A)C,.

We also say that C, is a lower capacity if property (a)
holds, and that C,, is an upper capacity if property (b)
holds.

This notion of the capacity function has a counter-
part in the theory of random graphs in the notion of
a threshold funclion of an attribute. Loosely speaking,
the capacity function quantifies the capability of the
algorithm under consideration by specifying the size of
the “largest typical set” of patterns for which “most”
dichotomies are separated by the algorithm with high
probability. Note that the capacity function depends
implicitly upon the choice of distribution for the pat-
terns. We could allow other distributions, or more
generally, a family of distributions.

Lower and upper capacities in a natural sense provide
lower and upper bounds on the capability of an algo-
rithm. Note that while lower and upper capacities are
guaranteed to exist, the capacity function itself may
not (though it frequently does). Capacity requires a
sharp threshold characterisitic in the computational
capability of the structure and the algorithm. Capac-
ity functions are not unique, even when they exist.
The following result (an easy consequence of the defi-
nition) shows, however, that if capacity functions ex-
ist, then they are not very different from each other
asymptotically.

Proposition 2.2 If C, is a capacity function then so
is Co(1£0(1)). Conversely, if C, and C., are any two
capacily functions, then C, ~ C}, as n — co.

The capacity definition can be seen to be a sort of
distribution dependent analogue of the VC dimension.
For learning in a distribution free setting, Blumer, et
al [BEHW89] invoke the sufficient conditions for uni-
form convergence of relative frequencies of events to
their probabilities derived in the seminal paper of Vap-
nik and C¥rvonenkis [VCT71] to show that the sample
complexity for learning is proportional to the VC di-
mension of the hypothesis class under consideration. A
similar argument utilising the necessary and sufficient
conditions derived in the Vapnik-Cérvonenkis paper
can be adduced to show that the sample complexity
for learning in a distribution dependent setting should
be proportional to the (probabilistic) capacity.®

A natural question then is how this (distribution de-
pendent) notion of capacity is linked to the VC dimen-
sion. We are dealing here with a sequence of hypothe-
sis classes H,,-—the family of half-spaces corresponding
to binary weight vectors from IB" —with corresponding
VC dimensions d,, < n. Using the fact that the num-
ber of dichotomies of an m-set of patterns induced by
the hypothesis class H,, is majorised by m9~ + 1, it is

~ easy to show the following general resuit.

Theorem 2.3 Any lower capacity function C,, satis-
fies Cp, = O(dy, log™ dy) as n — oo.

The above result holds for all choices of algorithm
and distribution. (In fact, the VC dimension can be
thought of as a special case of the capacity when the
algorithm allows an exhaustive search of the hypoth-
esis class, and all distributions are allowed.) The ca-
pacity can, hence, never exceed the VC dimension by
very much, whatever be the choice of algorithm and
distribution family. It is possible, however, to have
capacities substantially smaller than the VC dimen-
sion [Ven91(c)]. Distribution families for which this is
true will then demand much smaller sample complex-
ities than the distribution free case.

®Some slight additions have to be made to the defini-
tion, but these are not critical in a network setting.




The capacity definition above can be readily extended
to more general situations where we have an arbi-
trary sequence of computational structures (hypoth-
esis classes H,), distribution families, algorithms, and
computational attributes more complex than correct
classification (such as associative memory with error
tolerance) [Ven91(c), Ven91(d)]. (For examples of ca-
pacity calculations within this framework in a neu-
ral network setting see [KP88(a), KP88(b), MPRVS87,
N88, Ven91(e), VB91(a), VBI1(b), VPI1], for in-
stance.) The basic properties derived above (Propo-
sition 2.2 and Theorem 2.3) continue to hold in the
general case.

3 HARMONIC UPDATE

The first algorithm we introduce, dubbed Har-
monic Update, is a single-pass, homogeneous, on-
line randomised algorithm for leamin§ binary weights
[Ven91(a)]. As before, let U = {u’,...,u™} be a
random m-set? of patterns in IB” drawn independently,
and with components drawn from a sequence of sym-
metric Bernoulli trials. The training sequence consists
of the patterns, u!, ..., u™, presented in turn. Let
the initial choices of the weights, w;[1] € B, be arbi-
trary, and let w = w{m + 1] be the final weight vector
returned by the algorithm. Harmonic Update is a ran-
domised algorithm which prescribes weight updates as
follows.

Fori=1,...,n,and epochst=1,..., m:
o If wi[t] = u}, then set wift + 1} = w;ft].
o Ifw;[t] = —u!, then set w;[t+1] = —w;[t]
with probability 1/t, and w;[t+1] = w;|t]
with probability 1 — 1/t.

Clearly, Harmonic Update® is a randomised on-line al-
gorithm, and, as claimed, it is homogeneous and single-
pass. The algorithm is not mistake driven, and as each
example pattern is seen exactly once, the algorithm
terminates after the minimal number of steps, m. The
effect of this randomised procedure is to ensure that
each weight retains an equal amount of information
about the corresponding component of every pattern.
In particular,

Ew;u}':%, a=1,...,m, i=1,...,n, (2)

"For capacity calculations we seek m, the number of
patterns, as an explicit function of n. To keep the notation
simple, however, we write m instead of m,, which would
make the dependence explicit, with the tacit understanding
that the number of patterns is actually a function of n.

*The name arises from the choice of the sequence of
probabilities {1/¢,¢ > 1} in the algorithm: at epoch ¢, 1/t
is the probability that a weight update results in a change
in sign of the weight when the current weight and the cor-
responding component of the pattern from the training se-

quence disagree in sign.

as can be readily seen by induction. The following
estimate now holds:

Theorem 3.1 The sequence \/n/\/Togn is a capacity
function for the Harmonic Update Algorithm. More-
over, no other homogeneous, single-pass algorithm has
a capacity function with a more rapid rate of growth.

REMARKS: An application of the second moment
method shows that \/n/A/Togn is a lower capacity, and
for brevity, we will restrict ourselves to proving this
here. To prove that /n/\/Iogn is also an upper capac-
ity for Harmonic Update calls for some delicate foot-
work with weakly dependent random variables. The
main ideas involved are the observation that the ran-
dom variables Y;* defined below are exchangeable, to-
gether with a large deviation “Poissonisation” argu-
ment which shows that the errors are Poisson dis-
tributed asymptotically. The proof that this capacity
is maximal for homogeneous, single-pass algorithms
utilises some maximin inequalities proved in [VF91].
Details and the complete proof are given in [Ven91(a)].

ProoF: [Sketch.] Define the random variables
Y7 = wivj,
Note that by the locality of the Harmonic Update Al-
gorithm, for each j =1, ..., n, the weight w; depends
solely on the jth components u}, ..., u* of the pat-
terns. By independence of the pattern components,
and by symmetry, it follows that the weights u;, ...,
w, are i.i.d., symmetric Bernoulli random variables
taking values -1 and 1 only, each with probability 1/2.
It hence follows that for every fixed a, the random vari-
ables Y2, ..., Y,* are independent, +1 random vari-
ables, and as Harmonic Update is homogeneous, they
are identically distributed as well. An inductive ar-
gument similar (and only slightly more detailed) than
the one used to establish (2) yields

ji=1l,...,n, a=1,... m

1 1
0___ f—e - — —
P{Yf = -1} 5~ om q
o = 1,12
P{Y?=+1} = 5tom = P

Now form the random sums
n
X°=EY,~°, a=1,..., m
=1

If w is to be a solution vector, we require that each
X© be positive. Let us estimate instead the probabil-

. ity that a particular pattern, say u®, is not correctly

classified by w. The following exponential inequality
due to Hoeflding now proves useful.

Lemma 3.2 [Hoeffding] Let Z,, ..., Z, be indepen-
dent random veriables witk zero means and bounded




ranges: aj < Zj < b;j. Then for everyn > 0,

P{; Z; < -'l} <exp [__——E;-':l(bj —a,-)2] .

As X is the sum of n i.i.d. =1 random variables
with mean p—~¢ = 1/m, Hoefflding’s inequality directly
yields®
n
a — ———
P{X* <0} Sexp( 2m2) .

The probability Pyy(n,m) that Harmonic Update

correctly classifies each of the patterns in U is

bounded below by a simple application of Boole’s in-

equality:

Pay(n,m) > 1-mP{X* <0} > 1-m exp(—L) :
= == 2m?

Now, for any ¢ > 0, the choice

vn 1+loglogn+2logc_ (loglogn)
Viogn 2logn ‘\ (log n)?

yields Pyy(n,m) 2 1 —¢ as n — oo. It follows that
Vn/\/logn is a lower capacity function for Harmonic
Update. |

m=

4 MAJORITY RULE

If off-line procedures are permitted, substantial gains
in capacity can be made. The Majority Rule described
below is a homogeneous, off-line algorithm with near
maximal capacity.

As before, let U™ = {u!,...,u™} be a random m-
set of patterns in B", with components chosen from a
sequence of symmetric Bernoulli trials. The Majority
Rule prescribes weights as follows:

Fori=1,...,n,let
vt = {u'eu:u'.=+1}

U~ = {u'el:u=-1}.

Set .
w o [ 1 U 207
‘T -1 ifur < U

In other words, w; = +1 if patterns whose ith compo-
nent is + 1 are in the majority, and w; = —1 otherwise.
Clearly, Majority Rule is an off-line algorithm which
is local and homogeneous. The following estimate can
be obtained:

9 A slightly more involved argument invoking the large
deviation version of the classical De Moivre-Laplace cen-
tral limit theorem (cf. Feller's text [Fel68), for instance)
yields that if m grows with n such that m = o(+/n) and
m/n'/® — oo, then P{X® < 0} ~ —R= exp (—352y) as
n — o0o. This more precise estimate is needed to show that
vn/\/Togn is also an upper capacity for Harmonic Update.

Theorem 4.1 The sequence n/xlogn is @& capacily
function for the Majority Rule Algorithm. Moreover,
no other homogeneous, off-line algorithm has a capac-
tty function with a more rapid rate of growth.

REMARKS: Again, we will content ourselves here
with providing a sketch of the proof that n/xlogn is
a lower capacity for Majority Rule. Details may be
found in [Ven91(a)).

PrOOF: [Sketch.] We begin by noting that with
probability one we can write

m
w,-:sgn(Zuf), i=1,...,n
p=1

As before, for a =1, ..., m, form the sums
n n
Xe=3 wuf =3 Y7,
i=1 =1

where the +1 random variables Y;* are defined by

ui = sgnfufd of
=1

sgn (1+ Zuj’uf) . 3

b<

2

]

R

[

?

n
s

B#a

Note that, as before, for fixed a, Y, ..., Y,y arei.id,,
41 random variables. Now, the summands in the sum
in (3) are i.i.d., symmetric Bernoulli, +1 random vari-
ables, so that the sum is just a symmetric random
walk over m — 1 steps. Let m grow without bound
as n — o0o. An application of Stirling’s formula then
yields

1 1
v } 2 2xm
PYs=+1} ~ L4
1T 2" Vorm

It follows that

V3
N

An application of Hoeflding’s inequality as in Theo-
rem 3.1 hence yields

P{X® < 0} < exp (-L) .

rm

EY? ~

(n — o0).

Using Boole’s inequality, as before, yields that the
probability Py g(n,m) that Majority Rule correctly
classifies each of the patterns in U is bounded below
by

Pur(n,m)>1-mP{X*<0}>1-m exp(—-’rl:;) .




Now, for any € > 0, the choice

me N l+loglogn+logwc_ot loglogn
wlogn logn (logn)?

yields Pyp(n,m) 2 1 —¢ as n — oo. It follows
that n/nlogn is a lower capacity function for Majority
Rule. ]

5 DIRECTED DRIFT

We conclude with a family of randomised, on-line,
local (but non-homogeneous)!? algorithms for binary
learning [Ven91(b)]. We call these algorithms Directed
Drift because, as we shall see, they share some similar-
ities with asymmetric random walks with a preferred
direction toward a solution.

Let U be any subset of patterns from IB”, and let {u[t]}
be any training sequence such that each of the patterns
in U appears infinitely often.!! Let {w{t]} denote a bi-
nary learning sequence. For each epoch, t, we denote
by J[t] the subset of indices for which the correspond-
ing components of w(t] and wuft] are opposite in sign:

J[t) = {7 : w;lt] # u;[4]}-
5.1 SINGLE BIT UPDATES

In the simplest version of Directed Drift, no more than
a single component of the weight vector is updated per
epoch.

BaSE: w[1] € IB" is chosen arbitrarily.
ITERATION: Weight updates are predicated
upon whether a correct or incorrect response
is obtained at the current epoch, t.

o If (wit],u[t]) > O, then the weight vector
is left unchanged: wit + 1} = w]t].!?

o If (wt],ut]) < 0, then an index j[t] is
picked at random from the set of indices,
J[t], of mismatched components. The
new weight vector is now formed accord-
ing to the following rule:

wift + 1] = { —wt:;;['t[]t] :;.Jr z ;g} @

The intuition behind the algorithm is as follows. If
a binary solution vector, w* € IB", exists, then nec-
essarily we must have (w’,u) = 3°°_, wiu; > 0 for

°The algorithms actually have a slightly non-local
preamble at each epoch. We will ignore this non-locality
and continue to call the algorithms Jocal.

"Note that ¥ C IB" is a finite set of patterns. If
U = {u',... ,u™} is an m-set of patterns, then we can,
for instance, obtain valid training sequences by cycling
through the patterns or by choosing a pattern randomly
at each epoch.

131f it ain’t broke, don’t fix it.

each pattern u € U. As there is a contribution of
+1 to the sum if two corresponding components of w*
and u have the same sign, and -1 if the signs are mis-
matched, it follows that the binary solution vector has
more component sign matches than mismatches with
each pattern in U.

Now the algorithm updates the current estimate of the
weight vector if and only if the current pattern from
the training sequence is misclassified. A weight vector
update results in a randomly chosen mismatched com-
ponent of the weight vector being flipped to the sign of
the corresponding pattern component. Since there is
a probability better than a half that a randomly speci-
fied component of any pattern has the same sign as the
cotresponding component of a binary solution vector,
it follows that at least during the initial progress of
the algorithm, the a priori probability that the weight
vector update is in the direction of the binary solution
vector is better than a half. We will explore this more
formally in the sequel.

5.2 ANALYSIS

Let w’ € IB" denote a solution vector, and let {t;}
denote the subsequence of epochs at which patterns
from the training sequence are misclassified; i.e.,

(w(te],ufte]) <0, E=12,....

Let

Eryr = [Iwlk + 1] = w*i?
denote the estimate error at epoch k for single bit up-
date Directed Drift. A straightforward inductive ar-
gument then gives

k
£g+1 =£1 —4ZX-'.

i=1
where we define the +1 random variables X; by
Xi = ;["] uj[t.][ti]-

Upper bounding £; by 4n and setting S; = }:L, Xi
we then obtain

0 < &y < 4(n = Sy).

The procedure terminates at the value of k for which
the random sum S; first exceeds n. The mistake
bound T hence satisfies St > n, and S; < n for
k = 1,...,T — 1. The mistake bound is infinite if
there exists no such value of &, or if there exists no
binary solution vector for the choice of patterns U.

The above is reminiscent of a random walk with a fixed
boundary at n. Let the m-set of patterns & be cho-
sen independently, with components drawn from a se-
quence of symmetric Bernoulli trials, and assume m is
within the capacity of the algorithm. (With high prob-
ability, then, there exists a solution vector.) Through




the initial progress of the algorithm then, the random
variabies X; will be independent with

X: = —1 with probability ¢n;m = 1/2 = 8,
Ve 1 with probability pp m = 1/2 + Ba m,

for some B, € (0,1/2). The specific value of the
probability p, ,—the relative frequency of the num-
ber of component matches between a binary solution
vector and a pattern—depends explictly both on n and
the number of patterns m. Clearly,

n/2+1 1 1

n 2 n
5o that 8,,, > 1/n. A heuristic estimate of the ex-
pected mistake bound for single bit update Directed
Drift when m is within capacity can hence be ob-
tained from the expected time of first passage to n
of a one-dimensional random walk S;, with positive
drift 2k8, m. The following result is an application of
Wald’s equation:

Prm 2

’

Lemma 5.1 Let {X;} be i.i.d., 2] random variables
with mean EX, = 28,m > 2/n, and let S; =
Z;zl X;j denote a random walk with positive drift
ES, =2kB, m > 2k/n. Let

Ty =inf{k : Sy = n}

denote the time of first passage to the fized boundary
atn. Then n

ET =
' 2% m

for every n.

PROOF: Let F; = o(Xy,... » X&), so that {fg,k >
1} is an increasing sequence of sub-o-algebras. 7} is
clearly a stopping time with respect to {F;}. Now, as
Jj — oo, we have
P{T1 2]} = P{51 <n,... ,Sj_l < n}
< P{Sj.i<n} = O(e9)
for a positive constant c, as, for fixed n, the penulti-

mate expression is the probability in the extreme left
tail of the binomial distribution. Hence,

oo
ETi=) P{Ti2j}<oo

i=1

as the terms of the series decrease exponentially fast.
For any measurable set A, let I, be the indicator ran-
dom variable for A. We now have

o0
EiStl < EY_IXl X135

ji=1

iP(Tx 2j} < oo

j=1

Now, the random variables X, and Ttr,>;y are inde-
pendent for every j > 1, so that by the dominated
convergence theorem and the definition of the stop-
ping time T} we have

oo
n = ESr, = szjl{nzj)

=1

Y E(X;)P{Ti 25} = E(X\)E(T).
i=1

The result follows. |

Using ET) as a rough estimate for the expected mis-
take bound for single bit update Directed Drift results
in the estimate ((n?). Simulations confirm this rapid
convergence of Directed Drift when the number of ex-
amples is within the capacity of the algorithm.

There are a number of open issues about the algorithm
which we are currently in the process of resolving. A
rigourous and general analysis of stopping times for
the algorithm involves careful consideration of the ma-
trix of transition probabilities of a finite Markov chain,
the transition probabilities depending both on n and
m. Capacity estimates for the algorithm are currently
between the orders of n/logn and n. The upper ca-
pacity estimate of n is an immediate consequence of
Boole’s inequality: the probability that there exists a
binary solution vector for m randomly drawn patterns
is less than 2°~™ and if m exceeds n, this probabil-
ity plunges below 1/2. The lower capacity estimate of
the order of n/logn follows from the estimate of the
capacity of the Majority Rule algorithm: by construc-
tion of the Majority Rule, if m is less than the order
of n/logn then there exists a binary solution vector
with high probability. An analysis of the transition
probability matrix for Directed Drift indicates that
the probability that the system stays forever among
the (finite) set of transient states is zero when there
exists at least one solution vector (which constitutes
an absorbing state), so that the lower capacity is at
least of the order of n/logn. We conjecture that, in
fact, the capacity of the algorithm is n.

Simulations indicate that there are two distinct
regimes of behaviour—a regime below capacity where
convergence is very rapid (in quadratic time) in con-
sonance with the rough analysis above, and a regime
above capacity where the analytical picture is much
less clear and where convergence takes substantially
longer. An abrupt transition around the capacity of
the algorithmis is seen between the two regimes of con-
vergence time. R. Meir has recently communicated
to us that in Monte Carlo simulations and compar-
isons with genetic algorithms, Directed Drift appears
to have an optimal character [Mei91]. A slightly more
detailed analysis and specifics of simulation results are
included in [Ven91(b)).




5.3 SEVERAL BIT UPDATES

The algorithm can be simply extended te accommo-
date more than a single bit update per epoch. Let
{N:} be a sequence of integers with 0 < N; < n/2.

BASE: w(l] € IB" is chosen arbitrarily.

ITERATION: As before, updates are made
only if the current pattern from the training
sequence is misclassified.

o If (w(t],uft]) > 0, then the weight vector
is left unchanged: w(t + 1] = wi{t].
o If (wft],uft]) < 0, then N, indices ji[t],
.., JN,[t] are picked at random from the
set of indices, J[t], of mismatched com-
ponents. The new weight vector is now
formed according to the following rule: if
Jj e {al),... ,jN,{t]} then set w;ft+1) =
w;[t); else if j € {j[t],... ,jN,ft]} then
set w;ft + 1) = —wjt].

The sequence N; specifies the number of bits to be
changed at each update epoch, and the proper choice
of this sequence is clearly critical to the function-
ing of the algorithm. This is analogous to choosing
an appropriate cooling schedule for simulated anneal-
ing [KGV83]. Anecdotal evidence from simulations in-
dicates that significant improvements in convergence
can be obtained over single bit updates by appropri-
ate choices of the sequence N;.

6 CONCLUSIONS

The investigations reported here constitute initial for-
ays into two areas: (1) using randomisation as a tool
in the development of efficient learning algorithms for
networks with binary weights (or, more generally, dy-
namic range constrained weights); and (2) develop-
ing notions of probabilistic capacity which, in distri-
bution dependent situations, yield results on sample
complexities for learning analogous to the distribu-
tion free results that derive from the VC dimension.
Notwithstanding the theoretical stumbling blocks in
learning binary weights—intractable worst cases may
exist as a consequence of the NP-completeness of the
problem—there is a strong practical motivation to de-
velop learning algorithms for this case because of the
lower cost and simplicity of circuits comprised of bi-
nary interconnections. The success (albeit limited) of
the randomised algorithms reported here suggest that
these may repay further investigation; in particular,
we might be able to hope for good average case be-
haviour in certain regimes. We are currently inves-
tigating certain extensions of these ideas in networks
with more complex interconnectivity patterns than the
single neuron considered here. The parallel develop-
ment of notions of distribution dependent capacity

presented here in brief is aimed at providing a bet-
ter understanding of (distribution dependent) prob-
lems where practitioners report a wide gulf between
the sample complexities needed in practice and those
predicted in the distribution free model.

A PERCEPTRON TRAINING

It is instructive to compare convergence rates for Di-
rected Drift with those that obtain for Perceptron
Training. Let {uft]} be a training sequence of pat-
terns, and let {wf{t]} denote a learning sequence of
real weight vectors. We will assume that there exists
a binary solution vector w* € B™. (Perceptron Train-
ing will, in general, not converge to a binary solution,
however, even if one exists.)

A.1 FIXED INCREMENT PERCEPTRON
TRAINING

This is the simplest form of Perceptron Training. Let
B8 > 0 be fixed.

Base:  The initial choice of weight vector
is arbitrary. For simplicity we take w[l] = 0.
ITERATION: As before, weight vector updates
are made only if a pattern is misclassified.

o If (w(t],ult]) > 0, then the weight vector
is left unchanged: wit + 1] = w(t].

o If (wt),ut]}) < 0, then set wjt + 1} =
w(t] + Buft].

Note that fixed increment Perceptron Training is ho-
mogeneous and on-line.

We now claim that the procedure will converge to an,
in general, non-binary solution with a worst-case mis-
take bound of n? if there exists a binary solution vec-
tor. Let w* € B” be a binary solution vector, and
as before, let {tx} denote the subsequenc._ of epochs
at which patterns from the training sequence are mis-
classified; i.e.,

(w(te), ufte]) < 0. k=1,2,.... (5)
Set w[l] = 0, and, for a value of parameter ¢ > 0 to
be specified, consider the estimate errors

Fiar 2 [IWltasa] - ew’ |12
Using (5), a standard inductive argument then yields
the bounds
0 € Fiy1 < e*n— B(2c — Pn)k.
We hence have the worst-case mistake bound
T< cn

=~ B(2 - Bn)’
Minimising the bound with respect to ¢ yields the n?
upper bound for the mistake bound. (For better mis-
take bounds see [Lit88].) The fixed increment Perceg-
tron Training Algorithm hence terminates after O(n?)
component updates if a binary solution vector exists.




A.2 SINGLE COMPONENT
PERCEPTRON TRAINING

The basic randomisation idea behind single bit update
Directed Drift is easily extended to single component
Perceptron Training, where a single component of the
weight vector is modified at each update epoch (as
opposed to fixed increment Perceptron Training where
all components are modified at each epoch}.

For each epoch, t, let I[t] denote the subset of indices
for which the corresponding components of wit] and
uft] are opposite in sign:

Ift) = {i: wilt] # sgn wilt] }.

Bask: For simplicity, take w[l] =0

ITERATION: Weight updates are predicated,
as usual, upon whether a correct or incorrect
response is obtained at the current epoch, t.

o If (wt},uft]) > 0, then the weight vector
is left unchanged: wft + 1] = wit].

o If (w[t},ut]) < 0, then an index ift] is
picked at random from the set of indices,
I(t], of mismatched components. The
new weight vector is now formed accord-
ing to the following rule:

w; if § # 4
wift+1) = { wit) -}[-tll.'[t] :'fi _f. t{:{

(6)

Just as for Directed Drift, single component Percep-
tron Training is local, non-homogeneous, randomised,
and on-line.

As before, we can heuristically estimate the average-
case performance of the algorithm by appealing to
ideas from random walks. Let {t;} satisfying (5) de-
note the subsequence of epochs at which patterns from
the training sequence are misclassified. Let L4y =
|lw[tr+1]]] denote the length of the weight vector at
epach tp4+1. By definition of the algorithm we induc-
tively obtain the upper bound

L3 SLI+1LE,

while the Cauchy-Schwarz inequality yields the lower
bound

(wltesi], WP _ 1 :

Lon 2 = =

Z wu[h]“‘['h]{th]

Define the +1 random variables
Xh = w:[“]ui[!‘][thlv
and set S; = YF_, X,. We then have the bounds

S|

\/_<£g+1<\/-

The algorithm terminates at the first instant k£ for
which |Si| exceeds VEn. Within capacity again, the
situation is reminiscent of a random walk S; with pos-
itive drift E S; = 2k8, > 2k/n, and absorbing bound-
aries at +vkn. We refer the reader to [Ven91(b)] for
the proof of the following result:

Lemma A.1 Let {X;} bei.i.d., £1 random variables
with mean EX, = 28, m > 2/n, and let S =
E;=1 X; denote a random walk with positive drift
ES; = 2kfnm > 2k/n. Let

Ty = inf{k : |Si| > Vkn}
denote the time of first passage to the receding (two-
sided) boundary at +vkn. Then

ET; ~ (n — o).

n
487 m
Using ET; as a rough estimate for the expected mis-
take bound (when m is within capacity), we get the
asymptotic estimate (J(n3) for the expectzd mistake
bound of single component Perceptron Training as
n — 00.
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Abstract

Robustness is a commonly bruited property of neural networks; in particu-
lar, a folk theorem in neural computation asserts that neural networks—in
contexts with large interconnectivity—continue to function efficiently. al-
beit with some degradation, in the presence of component damage or loss.
A second folk theorem in such contexts asserts that dense interconnectiv-
ity between neural elements is a sine qua non for the efficient usage of
resources. These premises are formally examined in this communication
in a setting that invokes the notion of the “devil”! in the network as an
agent that produces sparsity by snipping connections.

1 ON REMOVING THE FOLK FROM THE THEOREM

Robustness in the presence of component damage is a property that is commonly
attributed to neural networks. The content of the following statement embodies
this sentiment.

Folk Theorem 1: Computation in neural networks is not substantially
affected by damage to network components.

While such a statement is manifestly not true in general—witness networks with
“grandmother cells” where damage to the critical cells fatally impairs the com-
putational ability of the network—there is anecdotal evidence in support of it in

'Well, maybe an imp.




situations where the network has a more “distributed” flavour with relatively dense
interconnectivity of elements and a distributed format for the storage of information.
Qualitatively, the phenomenon is akin to holographic modes of storing information
where the distributed, non-localised format of information storage carries with it a
measure of security against component damage.

The flip side to the robust folk theorem is the following observation, robustness
notwithstanding:

Folk Theorem 2: Dense interconnectivity Is a sine qua non for efficient
usage of resources; in particular, sparser structures exhibit a degradation
in computational capability.

Again, disclaimers have to be thrown in on the applicability of such a statement.
In recurrent network architectures, however, this might seem to have some merit.
In particular, in associative memory applications, while structural robustness might
guarantee that the loss in memory storage capacity with increased interconnection
sparsity may not be catastrophic, nonetheless intuitively a drop in capacity with
increased sparsity may be expected.

This communication represents an effort to mathematically codify these tenets. In
the setting we examine we formally introduce sparse network interconnectivity by
invoking the notion of a (puckish) devil in the network which severs interconnection
links between neurons. Our results here involve some surprising consequences—
viewed in the light of the two folk theorems—of sparse interconnectivity to robust-
ness and to memory storage capability. Only the main results are stated here; for
extensions and details of proofs we refer the interested reader to Venkatesh (1990)
and Biswas and Venkatesh (1990).

Notation We denote by IB the set {—1,1}. For every integer k we denote the set
of integers {1,2,...,k} by [k]. By ordered multiset we mean an ordered collection
of elements with repetition of elements allowed, and by k-set we mean an ordered
multiset of k& elements. All logarithms in the exposition are to base e.

2 RECURRENT NETWORKS

2.1 INTERCONNECTION GRAPHS

We consider a recurrent network of n formal neurons. The allowed pattern of
neural interconnectivity is specified by the edges of a (bipartite) interconnectivity
graph, Gn, on vertices, [n] x [n]. In particular, the existence of an edge {i,j} in
G, is indicative that the state of neuron j is input to neuron i.2 The network is
characterised by an n x n matrix of weights, W = [w;;], where w;; denotes the
(real) weight modulating the state of neuron j at the input of neuron i. If u € IB”
is the current state of the system, an update, u; — u] of the state of neuron 1 is

2Equivalently, imagine a devil loose with a pair of scissors snipping those interconnec-
tions for which {3,7} € Gn. For a complementary discussion of sparse interconnectivity
see Komlés and Paturi (1988).




specified by the linear threshold rule

I
u; = sgn Z Wi; Uy
j:{i.jreG

The network dynamics describe trajectories in a state space comprised of the vertices
of the n-cube.® We are interested in an associative memory application wh~re we
wish to store a desired set of states—the memories—as fixed points of the network,
and with the property that errors in an input representation of a memory are
corrected and the memory retrieved.

2.2 DOMINATORS

Let u € IB” be amemory and 0 < p < 1 a parameter. Corresponding to the memory
u we generate a probe i € IB” by independently specifying the components, 4;, of
the probe as follows:

0 = u;  with probability 1 —p (1)
77 | —wu; with probability p.

We call G a random probe with parameter p.

Definition 2.1 We say that a memory, u, dominaies over a radius pn if, with
probability approaching one as n — oo, the network corrects all errors in a ran-
dom probe with parameter p in one synchronous step. We call p the (fractional)
dominance radius. We also say that u is stable if it is a 0-dominator.

REMARKS: Note that stable memories are just fixed points of the network. Also,
the expected number of errors in a probe is pn.

2.3 CODES

For given integers m > 1, n > 1, a code, KT, is a collection of ordered multisets of
size m from IB”. We say that an m-set of memories is admissible iff it is in KT .4
Thus, a code just specifies which m-sets are allowable as memories. Examples of
codes include: the set of all multisets of size m from IB"; a single muitiset of size
m from IB"; all collections of m mutually orthogonal vectors in IB"; all m-sets of
vectors in IB” in general position.

Define two ordered multisets of memories to be equivalent if they are permutations
of one another. We define the size of a code, K, to be the number of distinct
equivalence classes of m-sets of memories. We will be interested in codes of rela-
tively large size: log |K'|/n — oo as n — oo. In particular, we require at least
an exponential number of choices of (equivalence classes of) admissible m-sets of
memories.

3As usual, there are Liapunov functions for the system under suitable conditions on
the interconnectivity graph and the corresponding weights.

*We define admissible m-sets of memories in terms of ordered multisets rather than
sets so as to obviate certain technical nuisances.




2.4 CAPACITY

For each fixed n and interconnectivity graph, G,,, an algorithm, X', is a prescription
which, given an m-set of memories, produces a corresponding set of interconnection
weights, w;j, i € [n], {i,j} € Ga. For m > 1 let A(ul,... ,u™) be some attribute
of m-sets of memories. (The following, for instance, are examples of attributes of
admissible sets of memories: all the memories are stable in the network generated
by X; almost all the memories dominate over a radius pn.) For given n and m, we
choose a random m-set of memories, u', ..., u™, from the uniform distribution on

Km.

Definition 2.2 Given interconnectivity graphs G,, codes K', and algorithm X,
a sequence, {C,}32,, is a capacily function for the attribute A (or A-capacity for
short) if for A > 0 arbitrarily small:

a) P{A(u!,...,u™)} — 1 as n — oo whenever m < (1 — A)Cy;
b) P {A(ul,...,u™)} — 0 as n — oo whenever m > (1+ A\)C,.

We also say that C, is a lower A-capacity if property (a) holds, and that C, is an
upper A-capacity if property (b) holds.

Form > 1 let u!, ..., u™ € IB” be an m-set of memories chosen from a code K.
The outer-product algorithm specifies the interconnection weights, w;;, according
to the following rule: for i € [n], {i,j} € G,

wi; = Zu?uf (2)
p=1

In general, if the interconnectivity graph, G,, is symmetric then, under a suitable
mode of operation, there is a Liapunov function for the network specified by the
outer-product algorithm. Given graphs G, codes K7', and the outer-product algo-
rithm, for fized 0 < p < 1/2 we are interested in the atiribute D, that each of the
m memories dominates over a radius pn.

3 RANDOM GRAPHS

We investigate the effect of a random loss of neural interconnections in a recurrent
network of n neurons by considering a random bipartite interconnectivity graph
RG,, on vertices [n] x [n] with

P {{i,j} € RGa}=p

for all i € [n], j € [n], and with these probabilities being mutually independent.
The interconnection probability p is called the sparstty parameter and may depend
on n. The system described above is formally equivalent to beginning with a fully-
interconnected network of neurons with specified interconnection weights w;;, and
then invoking a devil which randomly severs interconnection links, independently
retaining each interconnection weight w;; with probability p, and severing it (re-
placing it with a zero weight) with probability ¢ =1 — p.




Let CK}' denote the complete code of all choices of ordered multisets of size m from
B".

Theorem 3.1 Let 0 < p < 1/2 be a fized dominance radius, and let the sparsily
parameter p satisfy pn> — 0o as n — oco. Then (1 — 2p)*pn/2logpn? is a D,-
capacity for random interconnectivity graphs RG,, complele codes CK)', and the
outer-product algorithm.

REMARKS: The above result graphically validates Folk Theorem 1 on the fault-
tolerant nature of the network; specifically, the network exhibits a graceful degra-
dation in storage capacity as the loss in interconnections increases. Catastrophic
failure occurs only when p is smaller than log n/n: each neuron need retain only of
the order of Q(log n) links of a total of n possible links with other neurons for useful
associalive properties to emerge.

4 BLOCK GRAPHS

One of the simplest (and most regular) forms of sparsity that a favourably disposed
devil might enjoin is block sparsity where the neurons are partitioned into disjoint
subsets of neurons with full-interconnectivity within each subset and no neural
interconnections between subsets. The weight matrix in this case takes on a block
diagonal form, and the interconnectivity graph is composed of a set of disjoint,
complete bipartite sub-graphs.

More formally, let 1 < b < n be a positive integer, and let {I,...,I,;;} partition
[n]) such that each subset of indices, I¢, k = 1, ..., n/b, has size |I;| = b.> We call
each I a block and b the block size. We specify the edges of the (Bipartite] block
interconnectivity graph BG,, by {i,j} € BG,, iff i and j lie in a common block.

Theorem 4.1 Let the block size b be such that b = Q(n) as n — oo, and let
0 < p < 1/2 be a fized dominance radius. Then (1 — 2p)2b/2logbn is a D,-capacity
for block interconnectivily graphs BG,,, complete codes CK, and the ouler-product

algorithm,

Corollary 4.2 Under the conditions of theorem {.1 the fized point memory capacity
is b/2log bn.

Corollary 4.3 For a fully-interconnected graph, complete codes CK', and the

n
outer-product algorithm, the fized point memory capacity is n/4logn.

Corollary 4.3 is the main result shown by McEliece, Posner, Rodemich, and
Venkatesh (1987). Theorem 4.1 extends the result and shows (formally validat-
ing the intuition espoused in Folk Theorem 2) that increased sparsity causes a loss
in capacity if the code is compiete, i.e., all choices of memories are considered ad-
missible. It is possible, however, to design codes to take advantage of the sparse
interconnectivity structure, rather at odds with the Folk Theorem.

®Here, as in the rest of the paper, we ignore details with regard to integer rounding.




Without loss of generality let us assume that block I consists cf the first b indices,
[b], block I the next b indices, [2b]—[b], and so on, with the last block I,,, consisting
of the last b indices, [n] — [n — b]. We can then partition any ve.tor u € IB” as

u)
U
u= . : (3)
Wn/p
where for k = 1, ..., n/b, u; is the vector of components corresponding to block 1.
For M > 1 we form the block code BKM ™" as follows: to each ordered multiset of
M vectors, u!, ..., uM from BB®, we associate a unique ordered multiset in BIC,I:' e
by lexicographically ordering all M™/? vectors of the form
ay
uy :
u,
. s al,ag,...,a,,/,,e[M].
0.-./5
n/bd

Thus, we obtain an admissible set of M™/® memories from any ordered multiset
of M vectors in IB® by “mixing” the blocks of the vectors. We call each M-set of
vectors, ul, ..., uM € B", the gencrating vectors for the corresponding admissible

. Y
set of memories in BKM™"

EXAMPLE: Consider a case with n = 4, block size b = 2, and M = 2 generating
vectors. To any 2-set of generating vectors there corresponds a unique 4(=M"/%)-set
in the block code as follows:

ul u? ul ul u? u?
! : | } 5 5
u:') U2 u2 u2 u2 u2
1 ' 2 1 ! 2 ! 1 ! 2
u:l, ug ug uj ug uj
Uy Uy : uy “3 ug Uy

Theorem 4.4 Let0 < p < 1/2 be a fized dominance radius. Then we have the fol-
lowing capacity estimates for block interconnectivity graphs BG,,, block codes BKT,
and the outer-product algorithm:

a) If the block size b satisfies nloglogbn/blogbn — 0 as n — oo then the
D,-capacity 1s
(1-2p)%]""
2logbn '
b) Define for any v

% [l— log log u+|::.(:(x-2p)") +ﬁ%]
Calv) =2 '




If the block size b satisfies b/logn — oo and blogbn/loglogbn = O(n) as
n — oo, then Cn(v) is a lower D,-capacily for any choice of v < 3/2 and
Ca(v) is an upper D,-capacity for any v > 3/2.

Corollary 4.5 If,'for fized t > 1, we have b = n/t, then, under the conditions of
theorem 4.4, the D,-capacity is

t
24—t =t n
(1-2p)*'t7%4 (logn) .

Corollary 4.6 For any fized dominance radius 0 < p < 1/2, and foranyr < 1, a
constant ¢ > 0 and a code of size Q (2"‘2") can be found such that it is possible

to achieve lower D,-capacities which are Q (2%") in recurrent neural networks with
interconnectivity graphs of degree © (n!~7).

REMARKS: If the number of blocks is kept fixed as n grows (i.e., the block size
grows linearly with n) then capacities polynomial in n are attained. If the num-
ber of blocks increases with n (i.e., the block size grows sub-linearly with n) then
super-polynomial capacities are attained. Furthermore, we have the surprising re-
sult rather at odds with Folk Theorem 2 that very large storage capacities can
be obtained at the expense of code size (while still retaining large code sizes) in
tncreasingly sparse networks.
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Abstract—Robustness is 8 commonly bruited property of neural net-
works; in particular, a folk theorem in neural computation asserts that
fully-interconnected neural networks continue to function efficiently in
the presence of component damage. This communication is an effort to
mathematically codify this belief. Component damage is introduced in a
fully-iaterconnected neural network model of n neurons by randomly
deleting links between neurons. An analysis of the outer-product algo-
rithm for this random graph model of sparse interconnectivity using a
simple generalisation of Chebyshev's inequality yields the following
main result: if the probability of losing any given link between two
neurons is 1 — p, then the outer product algorithm can store of the
order of pn/log pn? stable memories correcting a linear number of
random errors. In particular, the average degree of the interconnectivity
graph dictates the memory storage capability, and functional storage of
memories as stable states is feasible abruptly when the average number
of neural interconnections retained by s neuron, exceeds the order of
log n links (of a total of n possible links) with other neurons. This work
complements the results of Komlés and Paturi on worst case error
correction for fixed underlying interconnectivity graphs.

Index Terms—Neural networks, robustness, random graph, sparsity,
outer-product slgorithm.
!
I. INTRODUCTION

A. The Problem

Robustness in the presence of component damage is a property
that is common attributed to neural networks. The content of the
following statement embodies this sentiment.

Folk Theorem: Computation in neural networks is not substan-
tially affected by damage to network components. -

While such a statement cannot hold true in general—witness net-
works with ‘‘grandmother cells’* where damage to the critical cells
fatally impairs the computational ability of the network—there is
anecdotal evidence in support of it in situations where the network
has a more “‘distributed’’ flavor with a relatively dense interconnec-
tivity of elements. In such situations, experimental evidence indi-
cates that networks of neural elements do indeed possess a measure
of fault-tolerance [1]. Qualitatively, the phenomenon is akin to
holographic modes of storing information where the distributed,
nonlocalized format of information storage carries with it a measure
of security against component damage.

Neural models for associative memory are natural candidates for
investigation of fault-tolerant properties. These models typically
consist of a fully-interconnected network of formal neurons (linear
threshold elements). Information is stored in these models in the
interconnections between neural elements.
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The outer-product algorithm, which we describzd in the sequel,
is a particularly simple algorithmic prescription for storing memo-
ries in a fully-interconnected, recurrent neural network. The algo-
rithm has good associative properties, and consequently, has been
the subject of some searching mathematical investigations: McEliece
et al. [2] showed that the algorithm can store of the order of
n flog n memories with correction of a linear number of random
errors; subsequent investigations by Komlds and Paturi [3) showed
that the storage capacities derived by McEliece ef al. persist even in
the case of worst case errors; complementary results due to New-
man [4] indicate that storage capacities linear in 7 can be achieved
in the outer-product algorithm if errors can be tolerated in the recall
of the memories. Nonrigourous results qualitatively similar to those
above have also been reported by Hopfield [1] and Amit er a!. [5).

We investigate robustness in the model by invoking a devil (well,
maybe an imp) which randomly severs interconnection links in a
fully interconnected network of n neurons, with weights specified
by the outer-product algorithm. The sparse network that results is
essentially specified by an underlying random interconnectivity
graph. The following are our main re_ults, which provide a graphic
validation of the folk theorem in this instance.

If the probability of retaining any given link between two neurons
is p, then the outer-product algorithm can store of the order of
pn flog pn® stable memories with correction of a linear number of
random errors. Functional storage of memories as stable states is
feasible when the average degree of the random interconnectivity
graph exceeds the order of log #; memories will be stable with
respect to a linear number of random errors in components if the
average degree of the random interconnectivity graph exceeds the
order of log? n.

These results are consistent with results of Komlés and Paturi [6]
who have analysed worst case errors in networks with interconnec-
tivities specified by fixed underlying graphs. Using sophisticated
and powerful techniques from large deviation probability theory
they show results on convergence times and the radius of attraction
within which all points are attracted to the memories in terms of the
spectrum of the underlying graph. The random graph model
analysed here provides great attendant simplicity in the analysis of
the correction of random errors. In fact, as we will see in the
sequel, the main results fall out of a rather simple application of
Chebyshev's inequality. ’

Notation: We denote by B the set {—1,1}. For any positive
integer k, we denote by [k] the set {1,---, k}. All logarithms in
the exposition are to the Napier base e. We also use ¢,,¢,,* "+, to
denote absolute positive constants. We invoke standard asymptotic
notation in the sequel; in addition, if {x,} is a positive sequence
and {y,(¢)} is another positive sequence which is a function of a
real parameter ¢, we denote y,(¢) = O,(x,) if, for every fixed
value of ¢, we can find K(e) > O (independent of n) such that
yqe) < K(¢)x, for every n.

B. The Setting

We consider a network of n formal neurons. Each neuron in the
system assumes one of two binary states, —1 or +1, and the
network as a whole evolves in the state space, B", of binary vectors
of length n. Neural interconnectivity is specified by a random

0018-9448/92803.00 © 1992 IEEE
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bipartite interconnectivity graph G, on vertices [n] x [n] with
P{{i,j}eG,} =p

for all ie[n), je[n], and with these probabilities being mutually
independent. The interconnection probability p is called the spar-
Sity parameter and may depend on n. A real interconnection
weight w;; is associated with each edge {i, j} € G,. We adopt the
convention w;; = 0 if {i, j} ¢ G,. The state of each neuron is
updated bascd on the sign of a linear form computed by the
interconnection weights and the current state of the system: if
u€B” is the current state of the system, an update, u; —~ u; of the
state of the ith neuron is specified by the linear threshold rule'

n
u;=sgn( > w,lul)=sgn(2w,,uj).
j=1

J:{i, j}eG,

Neural updates may be either synchronous, with every neuron being
updated in concert, or asynchronous, with at most one neuron being
updated at any instant.

The system previously described is formally equivalent to begin-
ning with a fully-interconnected network of neurons with specified
interconnection weights w;;, and then invoking a devil which ran-
domly severs interconnection links, independently retaining each
interconnection weight w;; with probability p, and severing it
(replacing it with a zero weight) with probability ¢ = 1 — p. Note
that the expected number of weights retained by any neuron in the
network is pn, and the expected number of nonzero weights in the
network is pn®.?

C. The Algorithm

As in any recurrent dynamical system, we are interested in the
fixed points of the system. In particular, we focus on an associative
memory application where we wish to store a desired set of
states—the fundamental memories—as fixed points of the net-
work, and with the property that errors in an input representation of
a memory are corrected and the memory retrieved.

Let u',---,u™eB" be an m-set of fundamental memories
whose components, uf, are drawn independently from a sequence
of symmetric Bernoulli trials; viz., for j=1,--,n, and 8 =

l'-..”n,
-1
s _ s
w-{"7

The outer-product algorithm specifies mterconnecuon weights, W, ;,
according to the following prescription: 3 for ie(n], jeln),

Z,,'

=) A=l
0, if j =i

with probability 1/2,
with probability 1/2.

. ifj#i,
W,

In our sparse interconnectivity model, each weight w,; is indepen-
dently severed with probability ¢ = 1 — p, and retained with prob-
ability p. More formally, let x,;, i€[n], je[n] be a sequence of

' We define the sgn function by sgn x = x/| x| for all x#0 and
sgn0 = 1.

2 We could, if we wished, enforce symmetry in the sparse network by
considering the links between neurons as bidirectional so that severing a link
sutomatically produces symmetric zeroes in the weight matrix. For the
purposes of this correspondence it is immaterial which random graph model
we select.

3 Variations are possible with diagonal terms w;, 2 0, but are all function-
ally equivalent.

i.i.d. random variables with
0, if {i,/}¢G,,
;= e
! 1. if{i,j}eG,.

For ie[n] and je[n] we can now define the interconnection
weights of the sparse, random network by

. Z udu?, ifj#i,
Wij = T Wi = T / (1)

0, ifj=1i.
The variables x,; are simply the indicator random variables for the
edges of the random bipartite interconnectivity graph G,.
II. STABLE MEMORIES

A basic requirement that we would like to impose is that the
memories are stable, i.e., fixed points of the network:

.—sgn(Zwu /) i=1,,n,

We begin by estimating the number of memories that can be made
stable in the outer product algorithm for a random interconnectivity
graph with sparsity parameter p. The following theorem is our main
result.

a=1,,m

Theorem 1: Let the sparsity parameter p satisfy pn® — @ as
n — o, For any fixed ¢ > 0, we then have the following.

a) If, as n — oo, we choose the number of memories, m, such
that

pn loglog pn® + log2e
s
2log pn? log pn?

log log pn?
log pn?

then the probability that all m memories are fixed points is at
least as large as 1 — ¢ — o(1).
b) If, as n — oo, we choose the number of memories, m, such

that
pn log e 1
ms 1+ + 0, 3 , (3)
log n- log n

2log n
then the expected number of memories that are fixed points is
at least as large as [1 — ¢ — o(1)]m.

Remarks: In particular, we can store at least pn/2log pn®
memories if all the memories are required to be stable, and at least
pn/2log n memories if only most of the memories are required to

‘be stable. This result reduces to the capacity result for full intercon-

nectivity of McEliece et al. [2] if we set p = 1, i.e., no intercon-
nections are severed.

This result illustrates graphically the fault-tolerant nature of the
network; specifically, the network exhibits a graceful degradation
in storage capacity as the loss in interconnections increases. Mem-
ory storage is achieved if the sparsity parameter, p, is at least of the
order of log n/n, i.e., each neuron retains essentially of the order
of log n weights out of its original complement of n weights. In
particular, if p = K log n/n then the network can store at least
K /2 memories; if p=n"" for any 0 < r < 1 then the network
can store at least n'~"/2(2 — 7)log n memories; if p is equal to a
constant 0 < ¢ < | then the network can store at least cn/dlog n
memories. As a graphic example, the network can loose half its
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interconnections with essentially no change in the storage character-
istics. If p = o(log n/n), i.c., the average degree of the intercon-
nectivity graph is o(log n), we shouild, ot' course, expect catas-
trophic failure of the memory.

Proof: Let us define the doubly indexed random variables,
X7, by
n
XM =ufY wud, i=1l,,n,  a=l,,m.
Jj=1

It is readily seen that X" > O implies that the ith component of the
ath memory is stable. Thus, we will require that X > 0 for each
i€[n] and o € [m] if each of the memories is to be a fixed point of
the network.

Let us first consider the requirements that must be satisfied for a
single component of a memory to be fixed. Substituting for the
weights, w,;, from (1) we have

ZI,JZqu Buf }:1,,(1+ ZZ,F',B).

J#i Jj#i S+a
where we define
s _ ,a,a,B. B
Z7F = ujuiuiu;.

We hold the indices i and a fixed for the nonce, and for notational
simplicity suppress the i and o dependence of both X and Z?2°
We will need the following result which estimates the probability
that a single component of a memory is not stable.
Lemma 1: If, as n — oo, the parameters p and m vary such that
pvn/m— 0, then
pn

P{Xso}s[l+o(l)]exp(—5;-') (n— o).

Proof: For fixed i and a, the random variables Z? are i.i.d.
and symmetric, and take on the values —1 and 1 with equal
probability 1/2. (This follows from the fact that the memory
components are i.i.d., symmclric + 1 random variables, and that the
distinct component u appears solely in the express:on for Z’)
Applying the gcncrahzed Chebyshev inequality of Lemma Al, we
have the following estimate for the probability that there is an error
in the retrieval of a single component of a memory:

P{X <0} < inf E(e”"%)
rz0

- ,i:t;E[exp { -Jg'n,,(; + Eaz”)”

. me[n cxp{—rr (1+ zf)} .

r20 J#i Bra

The (1,0) random variables, x,,, j # i are i.i.d., as are the 1
random variablcs 2?2, j # i, 8 # a. It follows that the terms in the
product are also i.i.d. random variables. For notational simplicity,
weset M=m— 1and N=n —- 1. We now have

sexp{-n,,(l r Y zj’)}]N

Bra

P{X <0} s inf
rz0

= lnf

pEcxp{—r(l + ¥ z")} q]N

B#a

Y
= inf [ pe"(Ee"Z/’) + q]
rz0

N
= inf [ pe~"(cosh r)* + q]
r20

Now, for every real r we have coshr s e, Hence,
N
P{X <0} s inf[pe"*M /4 q]" <[pe'/2M 4 q]”’
rz0

= [1-p(1 - ey " (4)

Recalling that M = m — 1 it is easy to verify that for m > 1
1 3 | i
1ot s v o) > o
2m = 8m? m’ 2m

It follows that
pv P
P{X <|l-—] = N 1 - —
{ sO}<[l 2m] exp[ log{ 2m}]

—O(-‘:—:)] (n— o).

To obtain the last equality we have used the Taylor series approxi-
mation

pn
=°*P[‘m+°(§

log(1-x)=-x-0(x*) (x—0)

and recalled that N = n — 1. The condition on p and m completes
the proof. O

The probability, 2,, that one or more components of any of the
memories is not stable can be readily estimated by an application of
the union bound and (4):

#, < nmP{ X < 0} < nm| pe~'?""" 4 q]"_'

Note that the bound of (4) holds for all choices of p, m, and n, so
that the above estimate for 2, also holds unrestricted. It is clear
that the upper bound for %, increases monotonically as m in-
creases, so it suffices to prove the theorem with inequality replaced
by equality in (2) and (3). Now, with m chosen as in (2) the
condition on p and m in Lemma 1 is satisfied. Hence, for this
choice of m

9,5[!+o(|)]nmexp(——2’-,£;)Se+o(l) (n - o).

This establishes part a) of the theorem.

In similar fashion we can establish the second part of the theorem
by noting that the probability that a given memory is not a fixed
point is bounded from above by nP{X < 0} by the union bound.
For a choice of m according to (3) this probability is bounded above
by € + o(1). Part b) of the theorem follows as the expected number
of memories that are not fixed points is just m times the probability
that one memory is not fixed.

1. ERROR CORRECTION

Let us now investigate how sparsity in the model affects the
ability of the system to retrieve fundamental memories from probes
which are **noisy'’ versions of the memories. The particular model
of error correction that we will invesugate is the ability of the
(sparse) network to correct random errors in the memorics in one
synchronous step. As we will see, the moment inequality technique
of the previous section still serves to analyse this situation, albeit at
the cost of some additional complexity.

Let 0 < p < 1/2 be fixed. Corresponding to each memory, u°,
we gencrate a random probe, &° € 8", by independently specifying
the componcents, i}, of the probe as follows:

o
.
N

-uy, with probability p.

u with probability | - p,
ar =

(5)
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Note that the expected number of errors in the probe (i.e., the
expected number of components of the probe, &°, which are not
equal to the corresponding components of the memory, u®) is pn.

Definition 1: We say that a memory, u°, dominates over a
radius pn if, with probability approaching one as n — oo, the
network corrects all the errors in a random probe generated accord-
ing to prescription (5) in one synchronous step. We call p the
(fractional) radius of dominance of the memory.

Remarks: An application of Lemma A.2 in the appendix yields
that for any & > O there is a large enough constant C such that with
probability 1 — & the number of errors in the probe lies between
on — CVn and pn + Cvn. Hence, a memory that dominates
over a radius pn corrects random errors in essentially pn compo-
nents with high probability.

An alternative —and perhaps more appealing —model for generat-
ing random probes is to choose the probe at random from the
Hamming ball of radius pn surrounding the memory. The notion of
a radius of dominance for the memory is intuitively and geometri-
cally much clearer for this model. However, by the sphere harden-
ing effect, almost all probes generated in this model are concen-
trated at the surface of the Hamming ball so that the number of
errors is again essentially pn. The analytical results that derive for
this model are formally indistinguishable from the model we have
adopted in (5). The present format is, however, slightly more
convenient mathematically.

We will prove the following theorem which is our main result of
this section.

Theorem 2: Let 0 < p < 1/2 be any desired radius of domi-
nance, and let the sparsity parameter, p, satisfy p = Q(log” n/n)
for some fixed ¥ > 3. For any ¢ > 0. we then have the following.

a) If, as n — o, we choose the number of memories, m, such

that
(1 - 20)’pn , loglog pn? + log2¢ /(1 - 2p)’
s +
2log pn® log pn®
loglog pn?
-o,( iy ||r ©
og? pn

then the probability that all m memories dominate over a
radius pn is at least as large as 1 — € — o(l).

b) If, as n — oo, we choose the number of memories, m, such
that '

1-2p 2 pn log € 1
(1=20)pnj,  log Al @
2log n log n (log n)
then the expected number of memories that dominate over a
radius pn is at least as large as (I — € ~ o(1)]m.

Remarks: We can store at least (1 — 2p)?pn /2log pn* memo-
ries all of which dominate over a radius pn, and at least (I —
20)’pn /2log n memories mos! of which dominate over a radius
pn. These lower estimates of capacity are also tight from above.
This can be demonstrated extending the technique used by McEliece,
et al. [2]. The proof, as in the original, is long and replete with
technical details. We will not go into it here.

Proof: We will first estimate the probability that a single
component of a memory is retrieved from a random probe. The use
of the union bound, as before, will then complete the proof of the
theorem.

Let us form the random sums

n
Zﬂi’

i=1l,..n, a=1,,m (8)

If random errors are 1o be corrected in one synchronous step for
each memory we will require that X > 0 for each ie[n] and
a € [m] with high probability. Let us first estimate the probability
that a particular component of a memory is not retrieved in one
synchronous step from a random probe. We again hold / and
fixed and suppress the dependence of variables on these indices
except where required for clarity.

Substituting for the weights, w,;, from (1) in (8) we have

X= quZu.,,, Y+ X, 320, (9

J®i J#i Bza
where we define

28 = uatubul,

J#i, B=1,.",m,

and

Y= 5,28 = 3w, utas. (10)

J#*i j#i

We are interested in estimating the probability that X <0,ie., the
probability that the ith component of memory u4* is not retrieved
from the random probe & in one synchronous step. The following
is the central result.

Lemma 2: Let 0 < p < 1/2 be any desired fractional radius of
dominance, and let 7 be a fixed parameter with 2/3 < 7 < 1. If, as
n — oo, the sparsity parameter, p, and the number of memories,
m, vary such that pn — o and m = Q(( pn)”) then

(1 - 20)’ pn

P{X"sO}s[l+o(l)]exp(— >

) (n— ).
(11)

Proof: The demonstration is in three parts. We first show that
the sum over the index j in (9) can be formally replaced by a sum
over essentially pn indices; we next show that the random variable
Y can be formally replaced by the fixed value (1 — 2p)pn; we
finally invoke the inequality involving the moment generating func-
tion described in the previous section to complete the proof.

Let J € [n])\ {i} be the random subset of indices defined by

J={jix,= 1}.
We then have

X=v+3 ¥ 7

jeJ Bza

(12)
Let the random variable A = | J| denote the cardinality of J.
Clearly, A = ¥, ;. It follows that

E(A) = pN,

where we set N =n — | as before. Let & be chosen such that
(1 - 1)/2 < & < 1/6. An application of Lemma A2 yields

P{|A - pN| > (pN)'?**} = O(e-<»M™).  (13)

Now, from (10) we have

V - asa
Y=Y ulis.
jeJ

By independence of the components of the memories, the expecta-
tion of ¥ conditioned upon a sample realisation of the random set of

Al TE iy =N I Iy B B s En Ew e
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indices J depends only on the cardinality, A, of J. Hence,

EY = ﬁ E(Y|A = k) P{A = k)
k=0

z k(1 - zp)( )(1 p)EpN-k = (1 = 20) pN.
Using (13) and the large deviation Lemma A2 hence yields

P{|7 - (1-20)pN[> (pN)"7*’)

Let % be the set of sample points over which the following
inequalities hold jointly:

= O(e~"M™), (14)

|A - pN| s (pN)'7*°,
|7 - (1 -2p)pN|s (pN)'?*°.
From (13) and (14), we then have
P{#} =1- O(ePN?), (15)

We say that an assignment of values to A and Y is allowable if
they occur in . A subset of indices from [n] \ {i} is allowable if
the number of indices in the set is allowable.

Let us now return to a consideration of (12). Using (15) we have
from elementary considerations that

P{X’sO}=P{2 Zz‘j’s-i}

JjeJ B%a

Jjel B#a

= P{Z Y s - )"I .7’ +0(e™PN™)  (16)

Let J' € [n]\ {i} be any subset of indices, and let A = | J'{|.
For positive A and y define

s 2P| Y T 2s ).

JjeJ' B#a
Applying Lemma A1 as in the last section, we have

f()\, y) < infe"”E(e"'-ur Lyaa ,) < e-y’/Zw
rz0

Now consider a choice of A = pN + O((pN)"/?*%)and y = (I -
2p)pN t O((pN)'?*%). Recallingthat N=n - 1, M=m - 1,
and that from the statement of the lemma pn~ o and m =
Q((pn)’) = o for 2/3 < r < 1, we have

(1 —Zo) PN ((pN)"’”)l

J(\. y) sexp {

(p")l,’2+6 (] _ 2p)2p"
1+ O(—m'—)lcxp{——'—zm—}.

(17)

The last equality follows from the choice (1 — 7)/2 < 8 < 1/6: this
yields 1/2 + 8 < 2/3 < 1 so that by choice of m = Q((pn)”) we
have (pm)' 2+ = o(m). )
Returning to (16) we note that the random variables Zf are
independent of the random variable Y and the random subscts J.

Hence, we have

P{X <0} Y=y,

Y Y 2s -y

allowable y, J* {jel’ Bta

J=UJ. ¥ }P{)"=y, J=U|¥}
+0(exPm™)

Py ¥ 2= -y

allowable y, J’ {jel' B#a
P{F =y, J=7|9} + O(e-eson™)
Y SONNPY=y, =¥}

allowable y, J*
+ O(eoen™),
where A = | J'|. For allowable X\ and y, however, we have
IN=pN| = O((pN)'""),
|y = (1-20)pN] = O((pN)'7*?),

by definition. The bound (17), hence, holds for every term, f(A, y),
in the sum above. It follows that

P{X<0}<|1+ 0(_(_’11’)’_?:)]

The exponent (pn)*® dominates pn/m as m = Q((pn)’) and

26 > 1 — 7. Further, (pn)'?**/m =o(1) as 1/2 + 6 < r. The
statement of the lemma follows.

As before, the probability that one or more memory components
is not retrieved increases monotonically as m increases, so it
suffices to show that the theorem holds with m given by equality in
(6) and (7). Now let ¥ > 3 be as in the statement of the theorem,
and set r = 1 — 1/+4. A choice of a number of memories according
to (6) or (7) satisfies the requirements of Lemma 2, so that the
asymptotic bound of (11) holds for the probability that a single
memory component is not retrieved from a random probe.
The theorem is now proved using the union bound as in the last
section. ]

IV. Concrusion

The results of this correspondence and those of Komlds and
Paturi [6]) imply that the folk theorem on robustness is well founded
in situations where there is a distributed storage of information in
the network. In such instances the neural network would appear to
be relatively resilient to the loss or damage of interconnection
weights. For the outer-product algorithm, in particular, each neuron
needs to retain only of the order of l(log n) interconnection
weights out of a total of n possible links with other neurons for
useful associative properties to emerge. These results also appear to
generalize to other, more complex situations, and this is under
investigation.

In an evocative alternate line of thought we could consider
situations where the devil in the network is not malicious but is
actively well disposed towards producing useful sparse structures.
The issue here is whether we can exploit carefully designed sparsity
to design codes (families of allowed subscts of memories) which
have high storage capacities. Specifically, we would like to store
large numbers of memories (high capacity) where the allowed scts
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of fundamental memories that can be picked is specified by a (large)
code. The intuition here is that large gains in storage capacity may
be obtained by excluding certain pathological sets of memories from
consideration in the code, and that such resulting codes may be
designed to fit suitable sparse architectures. We provide an illustra-
tion of the gains that are possible in a succeeding paper {7].

APPENDIX A

LARGE DEVIATIONS

We quote the following technical lemmas without proof. Lemma
Al is a generalisation of the classical Chebyshev inequality and
provides a large deviation estimate in terms of generating functions.
Lemma A2 is a straightforward generalisation of a classical large
deviation central limit theorem for sums of binary random variables
which provides good uniform estimates for the probability that the
sum has a large deviation from the mean. (The corresponding
version of the result for indicator random variables (taking values O
and 1 only) can be found, for instance, in Feller's text [8]).)

Lemma Al: Let X be a random variable and x = 0 any
nonnegative number. Then

P{X s -x} = infe ""E(e "¥).
rz0

Lemma A2: Let x, < x, be any two real numbers and let {{;}
be a sequence of i.i.d. random variables drawn from a sequence of
Bernoulli trials with

{x,, with probability ¢ = 1 — p,

1= 1x,,  with proability p,

where 0 < p < 1. Foreach K let S, = Zf,,;‘l. If as K — o the
real number v varies such that v/ \/’l‘? - o and

o(K¥3), ifp#gqg,
v =
o(K**), ifp=q=1/2,
then
V2pgK e=*' 2peK
P{|Sx — K(px, + gx,)| > v(x, - x,)} ~ 7= .
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Balanced Codes and Noncquiprobable Signaling
A. R. Calderbank, Member, IEEE, and M. Klimesh

Abstract—The problem of shaping signal constellations that are de-
signed for the Gaussian channel is considered. The signal consteliation
coasists of all points from some translate of a lattice A, that lie within a
region #. The signal constellation is partitioned into T annular subcon-
stellations Qg, - - -, @, _, by scaling the region 4. Signal points in the
same subconstellation are used equiprobably, and a shaping code selects
region O, with frequency f,. If the signal consteliation is partitioned
into annular subconstellations of unequal size, then absent some clever-
ness, the transmission rate will vary with the choice of codeword in the
shaping code, and it will be necessary to queue the dats im buffers. It is
described how balanced binary codes constructed by Knuth can be used
to avoid a data rate that is probabilistic. The basic idea is that if
symbols 0 and 1 represent constellations of unequal size, and if all
shaping codewords have equally many 0's and 1's, then the data rate
will be deterministic.

Index Terms—Bandwidth efficient communication, shaping codes,
nonequiprobable signaling.

1. INTRODUCTION

We start with a basic region # in 2", and by scaling we obtain
a nested sequence # = a, #, a, #, ", ay_, X of copies of X.
Let © be the signal constellation comprising all points from (some
fixed translate of) a lattice A that lie within the region a,_, &.
ThenQy=ANAad D, =AN(a;, N a,_ R), i=1,--T
- 1, give a partition of @ into annular subconstellations with
increasing average power.

The reason we consider signal constellations drawn from lattices
is that signal points are distributed regularly throughout N-dimen-
sional space. If signals are equiprobable, then the average signal
power P, of the constellation @, is approximately the average
power P(R) of a probability distribution that is uniform within #
and zero elsewhere; thus

Py~ P(®) = W{T)/’uxn’du, (1)
where
V(2) = / dv
2
is the volume of the region #. We rewrite (1) as

Po=G(#)V(2)", (2)
where

[2ll x}? dv
G(R) = — 3% ®)
Nv(®)'*Y
is the normalized or dimensionless second moment. Since G( &) is
dimensionless, it is not changed by scaling the region #. It
measures the effect of the shape of the region # on avcrage signal

power.
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Abstract

Neural associative memories viewed as a coding system have been subject to the criticism that the
codes have very low rates. In a fully-interconnected network of n neurons, for instance, the outer-product
algorithm has a storage capacity of the order of n/logn memories: specifically, almost all choices of
n/4log n memories are stored as fixed points by the outer-product algorithm when the interconnectivity
graph has degree n. In this communication it is shown that storage capacities, C—the maximum number
of memories that can be stored—can be improved substantially at the expense of the size of the code—
the family of admissible C-sets of memories. In particular, a relation between code size, capacity, and
degree of the interconnectivity graph is shown: for any r < 1, a constant ¢ > 0 and a code of size

Q (2‘”’-') can be found such that it is possible to achieve memory storage capacities which are Q2 (2"')

in recurrent neural networks with interconnectivity graph of degree © (n"'). Thus, near-exponential
capacities can be obtained for codes which are still exponential in size. An interesting and useful side
effect of the constructions employed in this paper is that large capacities can be obtained in very sparsely
interconnected structures for suitably chosen codes.

1 INTRODUCTION

A folk theorem in neural computation asserts that dense interconnectivity is a sine qua non for efficient usage
of resources, and, in particular, that sparser structures exhibit a degradation in computational capability.
This communication represents an effort to formally examine this tenet in the context of neural associative
memory and a recurrent neural network structure. An appreciation of the results may be best produced in
terms of a coding theoretic analogue. The memories to be stored can be thought of as codewords with the
neural network being the decoder which corrects errors in memories. Any set of memories to be stored is
chosen from a collection of admissible sets of memories which forms the code. In applications hitherto the
code has typically been the set of all subsets of binary vectors—the power set of {—1,1}".* An algorithm

*The support of research grants from E. I. DuPont de Nemours, Inc. and the Air Force Office of Scientific Research (AFOSR
89-0523) is gratefully acknowledged.

*There have been some explorations, however, of sparse encoding, which has particular significance when the vector rep-
resentation of the codewords (or memories) is in terms of 1's and 0's instead of 1's and -1's. In such cases the codewords
(or memories) are typically chosen such that the number of components taking value 1 is small compared to the number of
components taking value 0. In terms of electrical circuit realisations of such networks, each memory can be represented by
relatively few active electrical lines. The code corresponding to such a sparse encoding is clearly much more dilute.
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for neural associative memory is a procedure which, given an admissible set of memories from a given code,
produces a network which stores the memories (typically as fixed points). For a given code the two main
parameters characterising the efficacy of an algorithm are the capacity—the largest admissible set of memories
that can be stored by the algorithm—and the atfraction radius—the number of component errors in any
memory that can be corrected by the network. With a code consisting of all subsets of binary n-vectors, the
outer-product algorithm, for instance, has a capacity of the order of n/logn memories correcting a linear
number of random component errors (1, 2].

In the general case the network may not be fully-interconnected, but may have connections specified by
an interconnectivity graph which may be rather sparse. If we still insist that almost all choices of memories
within capacity be stored—i.e., the code consists of all subsets of {—1,1}"—then the capacity of an algorithm
inevitably decreases as the degree of sparsity increases.! In an evocative alternate line of thought, however,
we might consider designing codes which are proper subsets of {—1,1}" to take advantage of a given sparse
interconnectivity structure. This is the situation examined in this paper. The main result that emerges from
our investigations is the following: for any 7 < 1 we can achieve memory storage capacities which are Q (2°")
in recurrent neural networks with interconnectivity graph of degree © (n'=") for carefully chosen codes of
log-size © (n?-7). (In other words, we can find an exponential number of choices of 2"" memories that can
be stored as attractors in suitably chosen sparse networks.) The trade-off here is in increased capacity at
the expense of code size. Interestingly, increased sparsity in the interconnectivity graph can increase storage
capacity—for code choices which, as it will turn out, are exponential in size as long as the interconnectivity
graph has degree Q(log n). The design methodology here lies in the choice of the code (subsets of admissible
memories) as a function of the network sparsity, and the selection of an algorithm to specify the strengths of
the interconnections for the given interconnectivity graph as a function of the memories to be stored. Note
that unlike the situation in the fully-interconnected case (the interconnectivity graph having degree n), all
possible choices of m = Q2 (2"') memories cannot be stored in the sparse network. Rather, the memories to
be stored must be taken from the set of admissible memories which form the code.

In the next section we briefly review the neural model and formally introduce the notions of codes and
capacity in the context of neural associative memory. In section 3 we introduce a simple model of block
sparsity where the neurons are partitioned into mutually non-communicating sets. For this structure we
demonstrate a code which is sufficiently rich while yielding large capacities for the classical outer-product
algorithm. In section 4 we show how the results for the simple block sparsity model extend to other sparse
structures, and in particular, the nested model introduced by Baram [5]. We present a generalisation of
a spectral based algorithm for the block sparsity model in section 5, and show concomitant increases in
capacity. Theorems are stated in the body of the paper while their proofs and relevant technical lemmas are
developed in sequence in the appendices.

Notation We employ usual asymptotic notation, and introduce two (non-standard) notations: if {z,} and
{yn} are positive sequences, we say that

e z, = Q(yn) if there exists K such that z,,/y, > K for all n;

oz, = O(y,,) if there exists L such that z,/y, < L for all n;

* 2o = O(yn) if za = Aya) and 20 = O(yn);

¢z, ~y,ifz,/y, — 1 as n — oo; we also say that z, 2 y, if z, > y, for n large enough, and
zn X yn if 2, < yn for n large enough;

oz, =o(yn) i z,/yn — 0 as n — o0.

We denote by IB the set {—1,1}, and by [n] the set of integers {1,2,... ,n}. By ordered multiset we mean
an ordered collection of elements with repetition of elements allowed. We will use the terminology m-set and
ordered multiset of size m interchangeably. All logarithms in the exposition are to base e.

1The decrease in capacity with increased sparsity is not catastrophic, however, and network performance as an associative
memory degrades gracefully (3, 4].
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2 ASSOCIATIVE MEMORY

2.1 Recurrent Neural Networks

A neuron (after McCulloch and Pitts [6]) is formally a linear threshold element characterised by n real
weights, w € IR", which, in response to a vector of n (real or binary) inputs, u, produces a binary output,
v € 1B, as the sign of the weighted sum }_7_, wju;.}

We consider a network of n formal neurons. The state of the network at any epoch is the n-vector,
u € B", of neural outputs at that epoch. Neural outputs at each epoch are fed back and constitute the
inputs to each neuron at the next update epoch. The allowed pattern of neural ixterconnectivity is specified
by the edges of a (bipartite) interconnectivily graph, G,, on vertices, [n] x [n]. In particular, the existence of
an edge {i,j} in G, is indics aat the output of the j-th neuron is fed back as input to the i-th neuron.
The network is characterised by an n x n matrix of weights, W = [w;;], where w;; denotes the (real) weight
linking the output of neuron j to the input of neuron i. (We adopt the convention that a weight, w;;, is
zero if {i,j} € Gs.) If u € IB” is the current state of the system, an update, u; ~— u; of the state of the i-th
neuron is specified by the linear threshold rule

u; = sgn Z Wi u,-
J:{ijl€Ga

The two extreme modes of neural updates are synchronous, with every neuron being updated in concert, and
asynchronous, with at most one neuron being updated at any instant. Mixed modes of operation between the
two extremes are, of course, feasible. For any mode of operation the network dynamics describe trajectories
in a state space comprised of the vertices of the n-cube.

The utility of this network model as an associative memory hinges upon the observation that under
suitable symmetry conditions there are Lyapunov functions for the system [7, 8]. In particular, for each
state u € IB” define the energy function, E(u), as the quadratic form

n n
E(u) = - EZw;,-u,-uj = —(u, Wu).
=1 j=1
If W is symmetric, non-negative definite, then the function E is non-increasing along any trajectory in any
mode of operation [9).

We can, hence, think in terms of an “energy landscape” with states embedded in it. Trajectories in
this landscape tend to go “downhill.” States which form local “energy” minima, hence, determine system
dynamics; each such state possesses a basin of attraction comprised of neighbouring states of higher “energy”
which are mapped into the state at the local minimum. This geometric picture is particularly persuasive
for an associative memory application where we wish to store a desired set of states—the memories—as
fixed points of the network, and with the property that errors in an input representation of a memory are
corrected and the memory retrieved. The challenge here is to choose a matrix of weights such that the
desired memories are located at energy minima.

Let u € B” be a memory and 0 < p < 1 a parameter. Corresponding to the memory u we generate a

probe @ € B” by independently specifying the components, i;, of the probe as follows:
. u;  with probability 1 - p (1)
%= —u; with probability p.

We call & a random probe with parameter p.

Definition 2.1 We say that a memory, u, is 8 monotone p-altractor ;°, with probability approaching one
as n — 00, the network corrects all errors in a random probe with parameter p in one synchronous step. We
call p the (fractional) attraction radius. We also say that u is stable if it is a monotone 0-attractor.

$The model allows for a real tAreshold as well, but this will not be important to our discussion. We will throughout assume
& zero threshold for each neuron. We also adopt the convention sgn0 = 1.




Biswas, Venkatesh 4

REMARKS: Note that stable memories are just fixed poiris of the network. Also, by the Borel strong law,
the fraction of the number of components in the probe which are in error (i.e., not equal to the corresponding
components of the memory) is concentrated at the expected value p.3

Form > 1let u!, ..., u™ € B” be an m-set of memories to be stored. The outer-product algorithm
specifies the interconnection weights, w;;, according to the following rule: for i € [n), {i,j} € Ga,
m
wij = Z ufuf. (2)
p=1

In the fully-interconnected situation, for instance, W is symmetric, non-negative definite so that suitable
associative properties result. In general, if the interconnectivity graph, Gy, is symmetric then, under a
suitable mode of operation, there is a Lyapunov function for the network specified by the outer-product
algorithm.

2.2 Codes and Capacity

For given integers m > 1, n > 1, a code, K, is a collection of ordered multisets of size m from B". We
say that an m-set of memories is admissible iff it is in K™.Y Thus, a code just specifies which m-sets are
allowable as memories. Henceforth when we refer to a memnry we mean a binary n-tuple in some admissible
set from a code K™. Examples of codes include: the set of all ordered multisets of size m from IB"; a single
multiset of size m from IB"; all collections of m mutually orthogonal vectors in IB”; all m-sets of vectors in
IB” in general position.

Clearly, if all memories in an admissible m-set of memories are stable (or are monotone p-attractors),
then so are the m! ordered multisets generated by all permutations of the original m-set. (For m linear in n,
for instance, the number of permutations is of the order of 2°"1°6™ for some constant ¢.) We hence need to
guard against defining trivial codes generated by permutations of a few basic ordered multisets of memories.
Define two ordered multisets of memories to be equivalent if they are permutations of one another. We define
the size of a code, |KT'], to be the number of distinct equivalence classes of m-sets of memories. We will be
interested in codes of relatively large size: log |[KT'|/n — oo a8 n -— oo. In particular, we require at least an
exponential number of choices of (equivalence classes of) admissible m-sets of memories. For a given code,
K™, we confer a probability distribution on memories by choosing an m-set of memories from the uniform
distribution on K.

For each fixed n and interconnectivity graph, G,, an alsorithm, X, is a prescription which, given an
m-set of memories, produces a corresponding set of interconnection weights, w;;, i € [n], {i,j} € G,. Let
K™ m > 1, n > 1 be a doubly-indexed sequence of codes, and let X be an algorithm (corresponding to
an underlying interconnectivity graph, G,). For m > 1 let A(ul,...,u™) be some attribute of m-sets of
memories. (The following, for instance, are examples of attributes of admissible sets of memories: all the
memories are stable in the network generated by A’; almost all the memories are monotone p-attractors.)
For given n and m, we choose a random m-set of memories, u!, ..., u™, from the uniform distribution on

Km.

Definition 2.2 A sequence, {Cn}S%,, is a capacily funclion for the attribute A {(or A-capacity for short) if
for A > 0 arbitrarily small:

§ An alternative—and perhaps more appealing—model for generating random probes is to choose the probe at random from
the Hamming ball of radius pn at 1. The notion of a radius of attraction is intuitively and geomnetrically much clearer for this
model. However, by the sphere hardening effect, almost all probes generated in this model are concentrated at the surface of
the Hamming ball surrounding the memory, so that the number of errors is again essentially pn. The analytical capacity results
that derive for this model are formally indistinguishable from the model we have adopted in equation (1), though the technical
details are somewhat different. The present format is, however, slightly more convenient mathematically.

fWe define admissible m-sets of memories in terms of ordered multisets rather than sets so as to obviate certain technical
nuisances.
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a) P{A(ul,...,u™)} —~ 1as n — oo whenever m < (1 - A\)Cy;
b) P{A(u',...,u™)} — 0 as n — oo whenever m > (1+ A)C,.

We also say that C, is a lower A-capacity if property (a) holds, and that C, is an upper A-capacity if
property (b) holds.

REMARK: The capacity function implicitly depends upon the sequence of interconnectivity graphs, G,,
the sequence of codes, K, and the algorithm, X, as well as on the desired attribute, A, of the memories.

3 BLOCK SPARSITY

Sparse interconnectivity graphs are of importance in practical realisations, Besides the obvious advantages
in programming when there are relatively few weights, cost considerations strongly favour sparse intercon-
nectivity as interconnections dominate the silicon real estate in hardware realisations of these networks.
One of the simplest forms of sparsity we might enjoin is block sparsity where the neurons are partitioned
into disjoint subsets of neurons with full-interconnectivity within each subset and no neural interconnections
between subsets. The weight matrix in this case takes on a block diagonal form, and the interconnectivity
graph is composed of a set of disjoint complete bipartite sub-graphs.

More formally, let 1 < b < n be a positive integer, and let {I\,..., 1, ) partition [n] such that each
subset of indices, Ii, k = 1, ..., n/b, has size |I;| = b.l We call each I; a block and b the block size. We
specify the edges of the (bipartite) block interconnectivity graph BG, by {i,j} € BG, iff i and j liein a
common block. For any given m-set of memories, ul, ..., u™, we specify the interconnection weights, w;j,
i € [n], {i,j} € BG,, by the outer-product algorithm of prescription (2).

Proposition 3.1 Witk interconnectivities specified by the block interconnectivity graph, BG,, and weights
by the outer-product algorithm, the energy function, E, is non-increasing along any trajectory in any mode
of operation.

ProoF: Let W, be the sub-matrix of weights corresponding to the components of block Iy. Note that
W, is symmetric, non-negative definite for each k = 1, ..., n/b. Now, for any vector u € IB", let u; € Bt
denote the binary b-tuple of components of u in block I;. We can then write the energy function as

nf/b n/h
E(u) = —(u,Wu) == (w, Wens) = Y Esfwe),
k=1 k=1

where, for each k, E; denotes the energy function for block I;. As the blocks are disjoint, two distinct vectors
u; and u; do not share any components. Consequently, each E} is non-increasing along any trajectory in
IB”, and thus, so is E.

Let CK! denote the complete code of all choices of ordered multisets of size m from IB”.

Theorem 3.2 Let the block size b be such that b = Q(logn) as n — oo, and let 0 < p < 1/2 be a fized
altraction radius. Then, for block interconnectivily graphs BG,, complete codes CK', and the ouler-product
algorithm, the monotone p-atiractor capacity is (1 — 2p)b/2log bn.

Corollary 3.3 Under the conditions of theorem 3.2 the fixed point memory capacsty is b/2log bn.

YHere, as in the rest of the paper, we ignore details with regard to rounding to the nearest integer in an effort to simplify
notation. The modifications to be made for formal correctness will be obvious, and do not affect the results.
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Corollary 3.4 For a fully-interconnected graph, complete codes CK]', and the outer-product algorithm, the
fized point memory capacity is n/4logn.

Corollary 3.4 is the main result shown by McEliece, et al [1]. Theorem 3.2 is a slight extension of the
result and shows the natural result that increased sparsity causes a loss in capacity if the code is complete,
i.e., all choices of memories are considered admissible. It is possible, however, to design codes to take
advantage of the sparse interconnectivity structure as the following simple construction indicates.

Without loss of generality let us assume that block I, consists of the first b indices, [b], block I2 the
next b indices, [2b] — [b], and so on, with the last block I,/ consisting of the last b indices, [n] — [n — b]. We
can then partition any vector u € B” as

u,
uz
u= . ' (3)
Un/p
where for k = 1, ..., n/b, u; is the sub-vector of components corresponding to block I;. For M > 1 we form
the block code BIC,,M". as follows: to each ordered multiset of M vectors, u!, ..., u™ from IB", we associate

a unique ordered multiset in BKM e by lexicographically ordering all M™/? vectors of the form
uZ'
uy’

. s 01,02,...,0"/5€[M].
au/s

n/bd

Thus, we obtain an admissible set of M™/® memories from any ordered multiset of M vectors in B® by
“mixing” the blocks of the vectors. We call each M-set of vectors, u!, ..., uM € IB", the generating vectors

. - L n/
for the corresponding admissible set of memories in BXM '

ExaMPLE: Consider a case with n = 4, block size b = 2, and M = 2 generating vectors. To any 2-set
of generating vectors there corresponds a unique 4(=M"/*)-set in the block code as follows:

1 2 1 1 2 2
ul ul Uy u, uj uj
u} uj u} u u} u

A s s PR .l. , . , v , . -2-

1
Uy Ug U3 Uz U3 Usz
ug ug u uj ug ui

The basic idea behind the formation of the block code is that if each sub-vector uf is stable with respect
to the fully-interconnected submatrix of weights W, (i.e., the energy Ei(uf) is a local minimum) then the
vector u is stable with respect to the matrix of weights W (i.e., the energy E(u) is also a local minimum) for
the block interconnectivity graph BG,. Thus, we can mix any combination of stable vectors ug to obtain
a stable vector u. Consequently, if we choose M small enough that for most choices of M vectors, u!, ...,
uM | in IB™, each of the vectors uf,a=1,..., Misstable for each of the blocks k = 1, ..., n/b, then we can
generate a relatively large number of stable vectors (M™/® in number) by mixing the blocks. We will take
care of technical details in the appendix: specifically, we need stability of M vectors for a large number of
n/b blocks simultaneously; further, to estimate capacity when there is error-correction we will have to guard
against the possibility that pn errors in a memory translates into a disproportionate share of errors in one

or more blocks.

Theorem 3.5 Let 0 < p < 1/2 be a fized attraction radius. Then we have the following capacity estimates
for block interconnectivity graphs BG,, block codes BKT, and the outer-product algorithm.
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a) If the block size b satisfies nloglogbn/blogbn — 0 as n — oo then the monotone p-atiractor capacity

18 R
(1-2p)%]"
2logbn ’

b) Define for any v
nlogh _lo log dn4log 2(1=3p ~2 wioglog bn
Ca(v) = 215'.‘![‘ ilegtatoppote) +u=7t§m‘.'r=7]_
If the block size b satisfies b/ logn — oo and blogbn/loglogbn = O(n) as n — oo, then Ca(v) is a lower
monotone p-atiractor capacity for any choice of v < 3/2 and C,(v) is an upper monolone p-attractor
capacily for any v > 3/2.

Corollary 3.6 If, for fizedt > 1, we have b = n/t, then for any fized attraction radius 0 < p < 1/2, graphs
BG,,, codes BKT', and the ouler-product algorithm, the monotone p-atlractor capacity is

t
9\ 2y~tg-t [ _B
(1-2p)*t""'4 (logn) .

Corollary 3.7 For any fized aliraction radivs 0 < p < 1/2, and for any 7 < 1, a constant ¢ > 0 and a
code of size §) (2‘"’-') can be found such that it is possible to achieve lower monotone p-atiractor capacities

which are Q(2"") in recurrent neural networks with interconnectivity graph of degree © (n'=7).

REMARKsS: If the number of blocks is kept fixed as n grows (i.e., the block size grows linearly with n) then
capacities polynomial in n are attained. If the number of blocks increases with n (i.e., the block size grows
sub-linearly with n) then super-polynomial capacities are attained.

4 NESTED SPARSITY

Recently, Baram [5] has proposed the investigation of certain nested codes geared towards exploiting certain
classes of sparsely interconnected neural networks. The basic model can be described in terms of a nesting of
block interconnectivity graphs: a hierarchy of blocks is defined with blocks at any given nesting level derived
recursively from blocks at the previous level. More precisely, let b as before denote the block size, 1 < b < n,
and let the positive integer 1 < h < logn/logb denote the nesting depth. For each nesting level I =1, ...,
h, we recursively define a disjoint collection of blocks, I, ..., I"‘b_, , as follows.

BASE: As in the block interconnectivity graph, at nesting level 1 the blocks I{, ..., I}, partition [n],
with each block having size b.

RECURSION: Let I{, ceey I,'lb_, be blocks corresponding to nesting level I. For k =1, ..., nb~! let
i, € I} be a specification of indices. The blocks corresponding to nesting level (I + 1) are now chosen so as
to partition the specified set of indices {i‘l, . ,ilu_,}, and such that each block has size b.

We specify the edges of the (bipartite) nested interconnectivity graph NG by {i,j} € NG, iff i and
j lie in a common block at any nesting level. The nested code NK' we consider is just the block code
defined for the lowest nesting level, I = 1. Again, for any m-set of memories, u!, ..., u™, we specify the
interconnection weights, w;;, i € [n], {i,j} € NG,, by the outer-product algorithm of prescription (2).

The nested interconnection graph structure is very similar to that of the block interconnection graph
with fully-interconnected disjoint subsets of neurons. For the nested structure, however, a small number of
interconnections are permitted between blocks. At the first nesting level the structure is that of the block
interconnectivity graph with n/b disjoint blocks of fully-interconnected neurons. For the next nesting layer,
one neuron is specified from each of the n/b blocks of the first layer and these are grouped into n/b? blocks of
fully-interconnected neurons. Thus, a specified neuron in each block in layer 1 is permitted connections with
neurons in an additional b — 1 blocks. This exercise is repeated recursively for each of the remaining layers.
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We hence have essentially a block interconnectivity graph except that certain rare “long range interactions”
are allowed across blocks of fully-interconnected neurons. The intuitive idea behind this setup is to have a
sparsely interconnected network very reminiscent of a block structure in which a certain limited amount of
communication is allowed between blocks of distinct features.

It turns out that the ideas developed in the analysis of block sparsity can be applied to nested structures
as well, and in fact, the relatively small number of inter-block interconnections do not alter capacity.

Theorem 4.1 Consider nested interconnectivity graphs NG, with block size b and nesting depth h, nested
codes NK7', and the outer-product algorithm. Then, for any 0 < p < 1/2, the monotone p-attractor capacity
estimates of theorem 3.5 continue lo hold under the same conditions on block size b. In particular, the
capacity estimates are independent of the nesting depth.

5 SPECTRAL ALGORITHM

The spectral algorithm was proposed (cf. Venkatesh and Psaltis [9] and Personnaz, et al [10]) as an alternative
to the outer-product algorithm in the context of neural associative memory. At the expense of some additional
algorithmic complexity the algorithm circumvents the need for orthogonality of memories in the outer-
product algorithm and improves the fixed-point storage capacity from the sub-linear capacities that obtain
(for fully-interconnected networks) to capacities linear in n [9). Concomitant increases in capacity may now
be obtained for block interconnectivity graphs and block codes by extending the spectral algorithm in a
manner analogous to the treatment earlier.

More specifically, consider a block interconnectivity graph BG,, with block size b, and the block code

BKI,),"‘". (As before, assume the indices are assigned sequentially to the blocks I, ..., I,;.) Consider a

choice of an admissible M"/*-set of memories from BK™ e corresponding to the M-set of generating vectors,

u!, ..., uM € B". Now consider the k-th block, k € [n/8]. Define the b x M matrix of column vectors
Ug=[u} u} .- u}f].

(Recall that uf is the vector of components corresponding to block I of the generating vector u®.) Let Ay,

..., Aem be fixed positive numbers and let Ay = dg(Ae1,...,Aem). For each k define the sub-matrix of
weights, W, corresponding to the components of block I; by

W, = U4, U},

where U} denotes the pseudo-inverse of U. (If Uy is full-rank then Ul = {UTU,)~*"UT, where UT denotes
the transpose of U,.) The above prescription generalises the spectral algorithm to block interconnectivity
graphs and block codes. [The case of a single block (b = n) yields the original algorithm.]

Proposition 5.1 For each k, let Apy = -+ = My = A > 0, and assume that M generating vectors are
chosen from a sequence of symmelric Bernoulli trials. Then wilh interconnectivities specified by the block
interconneclivity graph, BG,,, and weights by the spectral algorithm, the energy function, E, 1s non-increasing
along any trajectory in any mode of operation with probability approaching one asympiotically.

PROOF: As before, E (u) = Ezg Ey(uy), where E; is the energy function corresponding to block I;.
Now each U, is full-rank with probability approaching one asymptotically as a consequence of a theorem of
Kahn, Komlés, and Szemerédi (see Appendix E). Thus, with high probability, each sub-matrix of weights,
W,, is of the foorm W, = )\, U, (UZ'U.)-1 Ur. Thus, W, is symmetric and its only eigenvalues are 0
and A; > 0, so that it is non-negative definite. Consequently, E} decreases along any trajectory with high
probability, and hence, so does E.
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Theorem 5.2 If the block size satisfies b/logn — oo as n — oo then, for block interconnectivity graphs
BG,, block codes BK™, and the spectral algorithm, the fized point capacity is b™/*.

Corollary 5.3 If, for fired t > 1, the block size b = n/t, then under the conditions of theorem {.1 the fized
point capacily is t~'n'.

Corollary 5.4 If, for ﬁzed 0 < 17 <1, the block size b = n”, then under the conditions of theorem 4.1 the
fized point capacity is n”

In particular, slightly better capacities obtain for the same code sizes than for the outer-product algorithm.
The main technical problem here concerns the stability requirement that all the matrices U, be full rank.

6 CONCLUSIONS

We have demonstrated that code size can be traded off for increased storége capacity, and that very large
capacities obtain for carefully selected codes which are still exponential in size. The analysis carried out here
for block sparsity where we have a uniform block size can be readily extended in obvious fashion for non-
uniform block sizes, where each block I; has a distinct block size b.. For instance, if each b, = ©(n) then the
monotone p-attractor capacity for graphs BG, (with these block sizes), codes BK', and the outer-product
algorithm becomes [], (1 — 2p)2b:/2logbxn. (The block code is again formed in the indicated manner by
mixing blocks.) Nesting blocks does not change the intrinsic capacity significantly; however, nesting may be
used as a vehicle for introducing “long range interactions” between distinct blocks of features.

A feature of the analysis of block sparsity in this paper is that we confer a probability distribution on
admissible memories from the uniform distribution on the code. The probability distribution we consider
is, hence, on ordered multisets of memories and not on individual memories; in particular, the distribution
is not a product distribution (except in simple cases such as the complete code). This may be seen as a
limitation in the technique espoused here. We do not currently know whether it is possible to simultaneously
achieve large capacities and code sizes to take advantage of specific sparse structures with memories drawn
from a suitable product distribution. A general open question along these lines is the design of codes of large
size and achieving large capacity for any given (sparse) interconnectivity graph.

A Preliminary Lemmas

Consider a set of N fully-interconnected neurons. Let ul, ..., u® € IBY be an M-set of memories with
components drawn from a sequence of symmetric Bernoulli trials, i.e., the memory components are i.i.d.
with

P{uf =-1}=P{ul =1} =1/2, i=1...,N, a=1,... M.
Note that we are considering the complete code here and that the product distribution on memories above

induces a uniform distribution on admissible M -sets of memories in the code CKIN The weights are specified
by the outer-product algorithm. Specifically,

w.,_Zu, W, ij=1,...,N

Let 0 < p < 1/2 be the desired attraction radius. Corresponding to each memory, u®, let G denote a random
probe at mean distance pn from u® generated according to prescription (1). If each of the m memories is to
be a monotone p-attractor then we will require that each of the NM random sums

N
Xf:u?z:w.-,-‘;', i=l,...,N, a=l,...,M.
i=1




Biswas, Venkatesh 10

be positive with high probability. Form the random variables

:;pzu?ﬁ?ul'ﬂujpl j=l)-"9Nv ﬂ:l,...,M, (4)

Substituting for the weights w;; we then have

X' =Y+ 27, (5)
where
Yo =) G+ MY, (6)
J#i
and
z2=Y"%"¢7. (M
i#i B#a

Let us begin by estimating the probability that a particular memory component is not retrieved from a
random probe in one synchronous step. We need the following technical result on large deviations.

Lemma A.1 Let z; < z; be any {wo real numbers and let {(;} be a sequence of i.i.d. random variables
drawn from a sequence of Bernoulli trials with

_J ©1 with probabilityq=1-p
G zq with probability p,

where 0 < p < 1. For each K let S = E;‘___,(j. If as K — oo the real number v varies such that
v/VK — oo and
p={ oK) ifp#q
o(K34) ifp=g=1/2
then

VEK =1k
V2zv '

The result is just a slight extension of the classical large deviation form of the DeMoivre-Laplace limit
theorem for sums of (0, 1) random variables.
For notational simplicity denote N, = (1 —2p)2N. For 0 < p < 1/2 define the function

P{Sk — K(pzz + qz1) < —~v(z3 — 21)} ~ P {Sk — K(pz2 + qz1) > v(z2 — 71)} ~

£o) = (1= )02 4 pet=2¢) ®)

Lemma A.2 [f M satisfies MN-%/3 — 00 and M = o(N) as N — oo, then

P{Xf50}~q1=%exp{— (23’;;—)}

REMARK: The asymptotic form for component error above is somewhat different from the similar expression
derived in McEliece, et al [1] as a consequence of differing modes adopted for the generation of random
probes.

ProoF: Fix the component index i and the memory index a. Note that the random variables C,.‘;-" defined
in equation (4) are independent, so that the random variables Y;* and Z are independent and comprised
of sums of independent, 1 random variables.
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Fix0<é6<1/6. Forj=torf=ather.v.’s (gﬂ are i.i.d. and take on values -1 and 1 with probabilities
p and 1 — p, respectively. Let £t denote the event that (,f:" = 4Pu? = 1. We then have by an application
Do -(1-29)(N -1)

of lemma A.l that
S Nx/z-p—a}
J#i

= 0 (c"‘N“) . (9)

P{|y,.°-(1-2p)(1v-1)-M|>N‘/’+‘|s+} = p{

Conditioned upon £+ let S* denote the set of sample points for which the following holds:
[¥;® — (1-2p)(N — 1) - M| < N'/244.
We then have from equation (9) that
P {s*|e¥} =1~ 0 (V™).
From elementary considerations we then have that

P{X,-"_(_OIL"‘"}:P{Zfs_yialg'f}=P{Z?S_Y‘_a!S+’£+}+O(e_c‘~u)'

For j # i and # # a the random variables C;-" are i.i.d. and symmetric, and take values in IB. Hence, Z7 is
just a symmetric random walk over (N — 1)(M — 1) steps. Also, conditioned upon £+ we have that within
S* the r.v. Y,* takes on values whose deviation from (1 ~2p)(N — 1)+ M is at most N'/2+%_ For each sample
value taken by Y;® (conditioned upon £* and S*) lemma A.1, hence, applies for M as in the statement of
the lemma. In particular, let us say a deviation, y, is allowable if |y| < N'/2+¢ and let us denote by p(y)
the probability that y is allowable:

W) =P{Y*=(01-2)(N-1)+M+y| St £}.
For each allowable y, and for M as in the statement of the lemma, we then have by lemma A.1 that

P{Zfs—(1-2p)(~-1)-M—y}~%exp(—5%-a-2p)).
4

Hence,

P {X7<0]&r} Y AP {27 < ~(1-20)(N —1)= M=y} + O (e=™™)

aliowable y

vM N,
~ _—21N, exp (-—m -(1- 2p)) .

As £t occurs independently with probability (1 — p) it follows that

1-p)VM N )

> +l ~ L——-— -—£ _(1-2 . 10

P{X. <0,¢ } \/'2-17,; exp( oM ( p) (10)
In similar spirit let us define the event £~ that {3? = 42uf = —1, and conditioned upon £~ the set of

sample points S~ for which
V2 - (1= 2)(N = 1) + M| S N'/2+4,

As before, we obtain

P{s-|e-} =1-0 (M)
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Proceeding in similar vein we can now demonstrate that

a - P M NP )

* < ~£Y e - ,

P {x?<0,£°} mexp( 2M+(1 2p) (11)

Combining equations (10) and (11) and equation (8) completes the proof of the lemma. |
The next lernma concerns the joint distribution of r sums, X,.a' *,9g=1, ..., r. The result is essentially

the main lemma demonstrated in McEliece, et al [1], except for certain correction factors corresponding to
the terms f(p) arising from a different generation of random probes. (The result we show below is actually
a slightly stronger version which appears in Venkatesh [12, pages 220-239].)

Lemma A.3 Letr be any fized, positive integer, and let (i,,a,) € [N} x [M), g =1, ..., r be distinct pairs
of integers. If M > N° with 3/4 < 0 < 1, then, under the hypothesis of lemma A.2,

P{x,.‘:-go,g=1,...,r}~q;. (N = o).

Essentially the same proof that appears in McEliece, et al [1] or Venkatesh [12] can be modified to show the
following result, care being taken to rigourously account for all correction terms. We will not go into it here.

B Proof of Theorem 3.2

Consider a set of n neurons, interconnected according to a block interconnectivity graph with block size
b. Let u!, ..., u™ € B” be an m-set of memories with components drawn from a sequence of symmetric
Bernoulli trials, and let the weights be specified by the outer-product algorithm. Note that, as before, we are
considering the complete code here and that the product distribution on memories above induces a uniform
distribution on admissible m-sets of memories in the code CK7.

For the memories to be monotone p-attractors a necessary and sufficient condition is that the components
of the memories corresponding to each block be retrieved from a random probe. Let us consider block
I for definiteness, and, as before, let ui, .., up € B® be the vectors of components of the memories
corresponding to block Ix. Now, within each block the components of a memory are updated independently
of the components in other blocks as a consequence of block sparsity. As the components of the memories
as well as the random probes are drawn independently, the results of appendix A apply here with M = m
and N = b. We will need the following version of the inclusion-exclusion principle.

Lemma B.1 Let E,, ..., En be measurable subsets of a probability sﬁace. For1<r 5 N, let o, be the
sum of probabilities of all sets formed by inlersecting r of the events E;, ..., En:

,

o, = > P { E,-,}.
1€51<ja< <5, SN =1

Then for every K, 1 < K < N/2,

2K-1

2K N
Z('—l)'-ldr <P {U Ej} < Z (-—1)'-16,-.
r=1 Jj=1 r=1

For fixed r, let o, denote the sum over the ( "r'b ) distinct choices of r memory components in block
I of the probabilities that a distinct choice of r memory components is not retrieved:

ﬁx.-‘:'SO},

P {
{(h,a,),...,(n’,,a,))cl.x(m) '=l

Oy =
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where ™
320 uP P
Xi =) Z wi, iy =§:Z? i YigYy-
i{igj}€BGa €h p=1
Lemma A.3 applies to this case, so that as b — oo we have

(mbq,)"
o

Op ~

9 (- ()

with f(p) as defined in equation (8) and b, = (1 — 2p)?b. We can now apply lemma B.1 to estimate the
probability, ¢,, that one or more memory components is not retrieved inside block I;. Let us choose a rate of
growth for the number of memories, m, (as a function of the block size, §) small enough that the term mbgq,
is bounded. By choosing larger and larger (but fixed) sizes K in lemma B.1, as § — oo we can make both
the upper and lower bound on the probability g, approach arbitrarily close to 1 — e~™:. Alternatively, the
probability, p = 1 — ¢;, that, for each memory, all the components in the block are retrieved from a random
probe with parameter 0 < p < 1/2 is given by py ~ e~™*1. As there are no interconnections in between
blocks, the retrieval of memory components is independent across blocks. Hence, the probability of retrieval

of all the components of all the memories is p:/ } We have thus established the following

Here ¢, is given by lemma A .2 as

Lemma B.2 With q, as given above, let m increase slowly enowgh with b so that mbq, remains dounded
as b — oo. Let p(m,n,p) denote the probability that, for each memory, a random probe with parameler
0 < p < 1/2 is mapped into the memory in one synchronous step (i.e., all memory components are retrieved
from the probe in one synchronous siep). Then, for any 0 <t < 1 < s we Aave

e™'™ < p(m,n,p) £ e7'™M (b 0).
Now, for any fixed choice of § let M be an integer sequence such that as n — oo

§/%
(1-2p [ $loglogtn +log (i) (loslosbn)}

2logbn log bn log? bn

M= (12)

It is easy to check that mbq, remains bounded as n — oo if m is chosen equal to M for any fixed choice of
6. Lemma B.2 hence applies.
Now, for any A > 0 (chosen arbitrarily small), consider a number of memories

. (14 A)(1 = 2p)%
- 2log bn ’

For any choice of € > 0 fix 0 < t < 1 and choose § = —t~!loge. Choose M according to equation (12) for
such a choice of 6. Using the upper bound for p(m, n, p) in lemma B.2 with m replaced by M yields that for
such a choice of M, p(M,n,p) < ¢. Now it is clear that as n — co we will have m 2 M whatever be the
choices of A, ¢, and ¢. By uniformity, hence, p(m n,p) < p(M,n,p) < €. As e can be chosen arbitrarily
small it follows that (1 — 2p)%b/2logbn is an upper monotone p-attractor capacity.

Now again, for a choice of A > 0 small, consider a number of memories

- (1= -2p)%
2logbdn

For any choice of ¢ > 0 chosen arbitrarily small fix s > 1 and choose § = —s~'log(1 - ¢). Choose M
according to equation (12) for such a choice of §. Now using the lower bound for p(m,n,p) in lemma B.2
with m replaced by M yields that for such a choice of M, p(M,n,p) 2 1 —¢. Now we havem X M as
n — oo whatever be the choices of ), ¢, and s. By uniformity, hence, p(m",n,p) 2 p(M,np) 2 1-c
As ¢ can be chosen arbitrarily small it follows that (1 ~ 2p)2b/2logbn is also a lower monotone p-attractor
capacity. This concludes the proof of theorem 3.2. |
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C Proof of Theorem 3.5

Let u!, ..., u™ € B" be a randomly chosen M-set of generating vectors with components drawn from a
sequence of symmetric Bernoulli trials. Corresponding to the M-set of generating vectors there is a unique
M™% get of memories, @!, ..., aM */* € IB", in the block code BKM *’*. Note that the product distribution
on generating vectors induces the uniform distribution on the block code.*® For {i,j} € BG, the weights
prescribed by the outer-product algorithm are given by

MY
wi =), §i.
=1

As (3 runs through the indices 1 through M"/?, for each of the M generating vectors, u?, the corresponding

term u? uf occurs M3¥-! times in the sum above. (This follows from the construction of the block code:

each vector of components uf corresponding to block I and generating vector u” is used in the k-th block
of exactly M¥-1 vectors in the generated M™/®-set of memories in the block code.) Thus:

M
w =M1y " ofuf,  {i,j} € BG.. (13)
p=1

Scaling all the weights by the positive scale factor M$-! does not affect capacity. The situation is now
similar to that analysed earlier: the outer-product weights for the graph BG, are generated from a set of
vectors whose components are drawn from a sequence of symmetric Bernoulli trials.

Now we claim that the M"/*_set of memories are monotone p-attractors iff each vector of components,
uf, corresponding to each block Iy, k=1, ..., n/b, and each of the generating vectors, w?, =1, ..., M,
is a monotone p-attractor.!t This follows because of the disjoint nature of the blocks, and the indpendent
assignment of components to the random probe. But by independence across the blocks this is equivalent to
requiring that each of the M generating vectors are monotone p-attractors for the matrix of weights specified
by equation (13). Lemma B.2 now applies directly. In particular, let the number of generating vectors, M,
be chosen as in equation (12). With a choice of s > 1, § = —s~!log(1 — ¢) all the generating vectors are
monotone p-attractors, and hence so are the M™/* generated memories, with probability at least 1 — ¢; with
a choice of 0 <t < 1 and § = —t~!log ¢ some generating vectors fail to attract montonically over a radius
p, and hence so do some of the M™/® generated memories, with probability at least 1 —¢.

Consider first the case where the block size b satisfies n/b = o(log bn/loglogbn) as n — co. Then

{1 —20)%1""
Mn/' = [gm);-] (l + 06(1)) .
The choices 8 > 1, 6§ = —s~!log(l —¢),and 0 <t < 1, § = —t~!loge are both absorbed in the o04(1) term,

so that
(1-2p)%]""
2log dn

is both a lower and an upper monotone p-attractor capacity.

**Herein lies the reason we defined codes in terms of ordered multisets of memories instead of sets of memories. We would like
to preserve a product distribution on memory components because—as we saw in the previous sections—this provides certain
amenities in analysis. This, however, comresponds to an urn model with replacement, and there is a non-zero (albeit small)
probability that the same memories are drawn again. If the code is defined in terms of sets of memories instead of ordered
multisets this results in a small, but annoying, non-uniformity in the distribution induced on the code.

1 The utility of the random probe with parameter p model is apparent here. The statement would not continue to hold in
toto if the probe were to be selected, for instance, randomly from the Hamming ball of radius pn st the memory. The difficulty
is that pn component errors in a memory need not translate into pb errors in each block, and a disproportionate assignment
of component errors in any one block will cause non-convergence to the memory components in that block. A (provable) large
deviation limit theorem for the hypergeometric distribution is needed here.
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Now consider the case where the block size b satisfies n/b = Q(log dn/ loglog bn) and b/logn — oo as
n — 00. Define for any v

niogd _loglogbn log 3(1~2p)=3 vioglogbn

Calv) = 211:{1[‘ Bkloptatrerpliztel — +u—.t§n".m]

For any fixed choice of § it follows that C,(v) < M™/* if v < 3/2, while C,(v) 2 M"/* if v > 3/2. Thus,
Ca(v) is a lower monotone p-attractor when ¥ < 3/2 and an upper monotone p-attractor when v > 3/2.
This concludes the proof of the theorem. i

D Proof of Theorem 4.1

Let NG, be a nested interconnectivity graph with block size b and nesting depth h. As before, let u!, ...,
uM € B” be a random M-set of generating vectors (corresponding to a random M"/®-set of memories in

the nested code NKM '/.). As before, the product distribution on the components of the generating vectors

induces the uniform distribution on VKXY **. For nesting level 1 the situation is identical to that of block
sparsity. Specifically, if indices § and j lie in a common block at nesting level 1, i.e., {i,5} C I} for some
k € [n/b), then the corresponding weight w;; is as given by equation (13).

Let i} € I}, k=1, ..., n/b denote the specified indices which comprise nesting level 2. Consider block
I}. The probability that, for each memory, all b components corresponding to this block are retrieved from
a random probe with parameter p in one synchronous step is certainly less than the probability that, for
each memory, the b ~ 1 components corresponding to indices j € I}\ {i}} are retrieved. (Equality iff the
probability of retrieval of the i}-th component is one.) But these b — 1 indices are only interconnected with
other indices in the block I}, so that the retrieval of the memory components corresponding to these b — 1
indices in each block (sans the specified indices i}) is a stochastically independent event across the blocks.
(The fact that there are interconnections across blocks through the specified indices, i}, cannot affect the
other b — 1 indices in each block in the first synchronous step, but only on later steps: in one synchronous
step, only the value of the i}-th component contributes to the updates of the remaining  —~ 1 components
corresponding to block I}.) Consequently, we can again partition the problem into n/b independent blocks.
It hence suffices to consider just the generating vectors rather than the vastly larger number of generated
memories in the code. Specifically, the requirement that b — 1 components of each memory be retrieved in
each block is equivalent to just requiring that for each block the — 1 components (disregarding the specified
components i} ) of each generating vector are retrieved from a random probe with parameter p. Let P’ denote
this probability. (This argument would not be hold if we had to consider retrieval of the i}-th components
as well because of the dependencies caused by the inter-block connections.) An argument similar to that
leading up to lemma B.2 now yields that for any 0 < ¢t < 1, and rate of growth of M with b such that
M (b — 1)q; is bounded,

' tM(b— 1)q, ' 1
p(M,n,p) S P X exp (——(b—)l’-ﬁ> = exp (—tMmh (1 —-3)) ,
where, with the appropriate substitution of parameters in lemma A.2 we have

- {2}

275, 2M
With M as defined in equation (12) for a choice of < 0t < 1 and § = —t~!loge, it follows that

p(M,n,p) < e®0-) =4 O (%)

The upper monotone p-attractor capacity estimates of theorem 3.5, hence, continae to hold for the nested
case.
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To obtain lower capacity estimates, note that removing the n/b neurons corresponding to the specified
indices i} results in a collapse of the nested structure into a block interconnectivity graph BG,»-1);s With
block size b — 1. Now, an examination of the random variables, X2, shows that each added interconnection
weight specified by the outer-product algorithm improves the probability of retrieval of the corresponding
memory component. The connections from the indices i} within a block, hence, contribute a positive
probability to the probability of retrieval of any memory component within the block. Furthermore, we have
the uniformity property that the probability of retrieval of each component improves monotonically with
n for fixed M. Hence, the probability p(M,n, p) that, for each memory, all the components are retrieved
from a random probe with parameter p exceeds the probability, P, that the corresponding vectors with
the specified n/b components removed are retrieved in the graph BG,,(O_I)/I, with block size b — 1. But,
here again we have an independent partition into n/b blocks, and it suffices to estimate the probability that
the components of the corresponding generating vectors (with the specified n/b components removed) are
retrieved. The argument leading | to lemma B.2 again works and we have for any s > 1, and rate of growth
of M with b such that M (b — 1)q, is bounded,

N MG -Dgn(e-1) _ (o« 1
p(M,np)> P 2 exp( 55-1) exp | —sMng, {1-¢ 1],
where, with the appropriate substitution of parameters in lemma A.2 we have

“ = 1 -2'2(),:)/\2/1?({1;- ) exp{— ((_1——2!1#1—))}

With M as defined in equation (12) for a choice of s > 1 and § = —s~!log(1 — ¢), it follows that when b is
such that b/logn — 00 as n — oo, then

p(M,np) 2 e?*0-0@®) 21_c10 (%) .

The lower monotone p-attractor capacity estimates of theorem 3.5, hence, also continue to hold for the nested
case, and this concludes the proof. |

E Proof of Theorem 5.2

Consnder the block interconnectivity graph BG,, with block size b and the block code BICM ** Letu o
uM € IB” be a randomly selected M-set of generating vectors, as before, and let

Us=[u} ul -~ uM]
be the corresponding & x M matrix of column vectors corresponding to the block Iy. To show that cach
of the generated memories is stable it suffices to show that, for each generating vector, u?, each of the n/b
vector of components, uf, is stable. If Uy is full-rank then the sub-matrix of weights corresponding to block
I, is given by .

W, = UpA, (UTUR) UT, (14)

where A is diagonal with positive diagonal terms Ay, ..., Aear. If the representation (14) holds (ie., U is
full-rank) then, for any generating vector, u?, we have

Wguf = z\gpuz LT

as A\yp > 0. The proof of the theorem will be complete if the probability that each of the matrices Uy is
full-rank approaches one for large n. This follows as a consequence of the following new result due to Kahn,
Komlés, and Szemerédi [11].
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Lemma E.1 Let A, be a random b x b binary matriz whose components are drawn from a sequcnce of
symmetric Bernoulli trials. Then there is a constant 1 < d < 2 such that the probebility that A, is singular
is no more than d-* asymptotically as b — co.

REMARK: The earlier (1977) estimate of Komlés of =1/2 for the probability that A, is singular does not
suffice for our purposes for block sizes b = O (n!/2).

Using the above lemma, the probability that all the matrices Uy, k =1, ..., n/b are full-rank is at least
(1 — d—*)"/* which asymptotically tends to one rather quickly. |
References

{1] R. J. McEliece, E. C. Posner, E. R. Rodemich, and S. S. Venkatesh, “On the capacity of the Hopfield
associative memory,” IEEE Trans. Inform. Theory, vol. IT-33, pp. 461-482, 1987.

[2] J. Komlés and R. Paturi, “Convergence results in an associative memory model,” Neural Networks,
vol. 1, pp. 239-250, 1988.

[3] J. Komlés and R. Paturi, “Effect of connectivity in associative memory models,” Tech. Report, CS88-
131, University of California, San Diego, 1988.

[4] S. S. Venkatesh, “Robustness in neural computation: random graphs and sparsity,” submitted for
publication.

[5] Y. Baram, “Nested neural networks and their codes,” talk presented at the JEEE Int’l Symp. Inform.
Theory, San Diego, 1990.

[6] W. W. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity,” Bull.
Math. Biophys., vol. 5, pp. 115-133, 1943.

[7] J.J. Hopfield, “Neural networks and physical systems with emergent collective computational abilities,”
Proc. Natl. Acad. Sci. USA, vol. 79, pp. 2554-2558, 1982.

[8] E. Goles and G. Y. Vichniac, “Lyapunov functions for parallel neural networks,” in Neural Networks
for Computing, (J. Denker, ed.), AIP, 1986.

[9] S.S. Venkatesh and D. Psaltis, “Linear and logarithmic capacities in associative neural networks,” [EEE
Trans. Inform. Théory, vol. vol. TT-35, pp. 558-568, 1989.

(10] L. Personnaz, I. Guyon, and G. Dreyfus, “Information storage and retrieval in spin-glass like neural
networks,” Jnl. Phys. Lett., vol. 46, pp. 1.359-L365, 1955.

(11] J. Kahn, J. Komlés, and E. Szemerédi, “On the determinant of random +1 matrices,” preprint.

[12] S. S. Venkatesh, Linear Maps with Point Rules: Applications to Patlern Classification and Associative
Memory. Ph.D. Thesis, California Institute of Technology, 1987.




Technical Report 1

i EMPIRICAL INVESTIGATIONS INTO THE EFFECTS OF SPARSITY
ON NETWORK CAPACITY

Joel Ratsaby and Santosh S. Venkatesh
Department of Electrical Engineering

University of Pennsylvania
Philadelphia, PA 19104




Emall address: Jjer@pender.ee.upenn.edu
Joel Ratsaby
Electrical Engineering Dept.
University of Pennsylvania
EE999 Project
April 23, 1990

{1) Abstract

Areas 1in the brain that are telieved to carry out the functions of

pattern separétion, categorization, and associative memory, exhibit
variable amounts of sparsed connectivaity between neurons. In
Artificial Neural Networks, one of the parameters that
distinguishes an architecture from another 1s the connectivity of
the units. In feedforward lavered networks, the connections are
asymmetrical, and the information flows from the 1input laver
through several hidden layers to a single output layer.
Backpropagation is a learning algoraithm for feedforward lavyered

nets which (due mainly to the fact that it operates on networks that

contains hidden units) can discover useful internal representations
and thus can be a powerful tool for attacking difficult problems
like image and speech recognition. Several papers have reported

the correlation between the number of hidden wunits and the learning

ability of the BP, but did not report any relationship between the
number of connections between the units to properties such as
learning times, memory capacities. In this paper ! report results

of computer simulations of learning with the BP algorithm on layered
networks which differ in their connectivities. The results include
comparison of learning rates between different levels of sparsed

networks and the percentage of examples needed to reach the critical

point in which a neural network is said to have learned the
function 1i1n a probably approximately correct sense (PAC) . These
results can serve as a proposal for a more theoretical research

on the learning capacity of layered networks.
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(2) Introduction

Neural nets have various parameters that influence the computational
characteristics, mainly the number of neurons, number of hidden
neurons (in the case of layered nets), activation functions (linear.
semi-linear, non-linear threshold), deterministic/probabilistic output
decision rule, and connectivity. In real biological networks,
sparsness of connections is very common (basically due to the physical
space limitation that make fully connected networks with millions of
neurons impractical) and it is clear that sparsed networks do work.
Is it better or worse (and by which factor) to have sparsed networks ?
This 1s nmot a trivial question. First we have to identify variables of
the neural network in question, and ask how does sparsness relates to
them. In addition we have to divide the variables into two groups: the
first includes variables that are independent of the learning
algorithm that is used in teaching the neural-net, and the second
includes the variables that are algorithm-dependent. One important
algorithm-dependent variable is the learning time (or solution-
convergence time). The most important algorithm-independent variable
is the capacity of a neural network. In a fully connected network
(like: Hopefield, 1982) capacity is the number of vectors that can be
stored in a network and recalled reliably; in feedforward layered
nets, capacity reflects the number of functions (input-output
maopings) that can be realised by the network. The exact defimition of
capacity also depends on how do we want to define "reliably” in  the
above. I will follow the definition of learnability-capacity which is
best described by the following: In the formal definition of probably
approximately correct (PAC) learning, we start with some wunderlying
function, and pick examples at random from this very same function.
Soecifically, we pick poiﬁts in the input space randomly according to
some probability distribution and generate ordered pairs
(x_1, f(x_1)), ... , (x_ M, f(x_M)) from the functlon f. The question
is how many examples do we need to train the network on, before we
can say that i1t has learned the function (L.G. Valiant, Nov 1984).
This answer is tied to the capacity of the network architecture (1t
is proportional to, but larger than the capacity). Note, however,
that we have assumed that the function f can be realised within
the network architecture (by architecture I mean the number of neurons

and the specaific link conmectivity between them): 1f a1t can t,




then the number of examples needed to be shown to the network

will never be finite since the network can't learn to begin with.

The results that I will present will compare the learning times
specifically to the Backpropagation algorithm on different sparsed
networks, and also will compare the number of examples that are needed
to be shown during the learning cycle for different sparsed networks,
to achieve learnability. But before 1 present the results, I will give
an ov' -view of experimental and theoretical results that have been

reported in the field.

Computational functions of the hipocampus

This section describes experimental results and system level theory of
the hipocampal functions; I will focus on the variety of sparsed real
neural-nets architectures that this region in the ©brain has, and
explain how the different levels of sparsness contribute to different
important characteristics. The hipocampus is one of the oldest parts
of the brain. It gets inputs from many different areas of the cortex,
including the cerebral cortex, parietal cortex, the temporal lobe
visual and auditory areas, and the frontal cortex. Effects of damage
to the hipocampus show that the very 1long term memories are not
influenced. Different experiments (Squire, 1986; Squire & Zola-Morgan,
1988) have repeatedly shown that the the hipocampus plays a vital role
in the storage of declarative memories such as episodic memory and
semantic memory (hiearchy of facts). Within the hipocampus, there is a
three stage sequence of processing consisting of granule cells (which
receive from the entorhinal cortex), the CA3 pyramidial cells, and the
CAl pyramidial cells. The CA3 area has an extensive recurrent
structure with a relatively large contact probabflity (4.3% in the
rat). It is believed that some sort of an autoassociation memory
matrix (Kohonen, 0Oja, & Lehtio, 1981) is being represented there.
Kohonen (1972) as shown that the probability of a connection between
neurons must not be very low in order to maintain a large signal to
noise ratio in the retrieval of an output vector from an associative

matrix. This would answer very well why in the CA3 region the ratio of

the number of neurons to the number of thear inter-connections 15
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relatively low 1i.e. having less neurons allows to have hiagh
connectivity which improves the quality of the associations. In the
stage preceding the hipocampus the axons pass via a competitive
network. Its function is to accept non-orthognal input vectors and
orthogonalize them; Kohonen (1972) showed that an associative network
has larger fidelity of recall for stored vectors which are closer to
being fully mutually orthognal. Another preceding stage is the mossy
fibers system connecting dendate gyrus cells to the CA3 cells. This
system is characterized by very low link probability and is used to
decorrelate input patterns; in the rat, the probability of a 1link in

this region is 0.000078. Pattern separation can be achieved using this
type of a sparsed network since the probability is very high that each
CA3 cell]l is influenced by a different assembly of dentate granuale

cells.

Effect of Sparsness to Capacity in Hopefield-like Networks

Associative networks based on the architecture of the Hopefield
Network have linear threshold units fully interconnected. Two popular
schemes of storing methods are the outer-product method (J.Jd.
Hopefield, April 1982), and the spectral method for construction of
the weight matrix (Venkatesh/Psaltis, 1989). The relatively simple
construction of the linear transformation matrix (whose elements are

the weights of the connections between the neurons) by means of the

outer-products method vyields a storage capacity of N/(4 logN) stable

memory states (where N is the number of neurons). The spectral
algorithm yields storage capacity which is linear in N. However 1in
contrast to the fully connected networks, nested neural networks
(nested means not-fully connected and structured in tree-like
architecture) who have the same characteristics as the Hopefield
network, have been shown to have vastly greater number of stable
memory states tham fully connected networks programmed in either of
the above schemes (Yoram Baram, March 1989),. Theée type of networks
resemble the fractal forms studied by Mandelbrot (B. Mandelbrot,
1983), but differ in allowing connections not only between neagboring
layers but between all layers through several neurons shared in
common. All nested networks require considerably less connections than
fully connected ones. In one particular architecture bhaving 1000
neurons divided into subnets each having 8 fully connected neurons, it

was shown that the number of stable memory states is




2¢1P0ers70=1 ,8294%10°7 (given that the states 1n each subnet 1is
selected to satisfy certain requirements assuring stability and error
correction). For randomly chosen vectors that are to be stored, i1t was
shown that the probability of picking a vector orthognal to a vector
which is already stored, is inversely proportional to the square root
of the number of neurons in a subnet ( a subnet being the elementary
fully connected structure in the overall nested network). Since
orthognal vectors satisfy the stability requirement for a memory
vector, in nested networks consisting of relatively small subnetworks
(i.e. subnets having small number of fully connected neurons), the
orthogonality condition allows for the storage of stable vectors with
relatively high probability. The capacity 1in less than ideal
conditions (i.e. where the vectors stored in the subnets were only
nearly orthognal) was also much higher compared to the fully connected
Hopefield network; with a nested network of Bl neurons divided into 10
subnetworks, each bhaving 9 fully interconnected neurons, it was

possible to store 2048 stable vectors.

Summary of existing experimental and theoretical results reqarding the
effects of sparsness on neural networks

Fully interconnected networks are not realisable when there are vast
numbers of neurons, and it is evident in the brain that sparsed
networks do work, and achieve extremely large numbers of memory state
associations. In the above section, results of theoretical analysis
have shown that not only can sparsed networks function reliably, but
in certain architectures they improve the capacity over fully
connected networks with the same number of neurons. It would be
interesting to know what is the effect of sparsing feedforward layered
networks; will the number G- realisable input-output mappings

increase ? If not, then how is capacity related to sparseness ?

The following sections will attempt to answer these guestions.

{(3) Experimental results

In all the following experiments, I constructed 3 layer networks where
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sparsing was done only on the links that connect the input to the

hidden

layer. The following setup was used in every trial of the

experiment:

(1)

An original sparsed network is buillt according to a certain
architecture (architecture being the number of neurons and a
specific interconnection matrix. The main parameter that selects
a given architecture is the probability (P) for the existence
of a link connecting the input layer to the hidden layer); the
weights assigned to the links are picked randomly. Then several
binary vectors are placed individually at the input layer, and
the network generates a real valued response at the output
layer. The input-output pairs are then placed aside for use 1in

the next steps.

(2) A sparsed network with same architecture (same P but different

(3)

random weights for the links) is built. An Unsparse network is
built (i.e. every neuron in the input layer connects to all
neurons in the hidden layer, and every neuron in the hidden
layer connects to all neurons in the output layer) with random
weight assignment.

Teach the unsparsed and sparsed networks on the vectors
generated by the original sparsed net. Record the overall error
versus the number of learning cycles (] fixed the maximum number
of cycles). The reason that I generate vectors from an existing
network, and teach them, instead of picking randomly a set of
input-output pairs, is because not every mapping can be realised
by the student networks; thus generating vectors to be taught by
the same architecture-network as the original generating network
guarantees that a solution exists for the mapping, and allows
me to measure other interesting characteristics of the student
network. As far as the unsparsed networks are concerned, I
expect them to be able to learn any mapping that a sparsed, with

the eame numher af nsurons, generated.

Sparseness_ versus Learning time

1 ran the above procedure on a 20-10-2 layered network (20 inputs

units,

10 hidden and 2 output units) with increasing values for the




probability of a link (with P = 0.2, 0.3, 0.5, 0.7). From the Figure

series (A) the following are evident:

(1) When the level of sparseness for the generating network is high
(low P) both the unsparsed and sparsed learn very fast (Figure
(A.1) . The explanation for that is as follows: the training
vectors have very low variance (i.e. the output of each vector
are very similar, within 1%Z); this is due to the very high
sparsness which limits the output values of vectors to a narrow
region in state space, since no matter which input vector we
ﬁut, it will have the same effect as some input vector X which
has many zeros; therefore many different inputs will be mapped
to a vector X and will result in its output. So sparseness
decreased the range of the input-outpuf transformation, and
there is now much less to learn (since all the vectors can be
considered as a few distinct vectors), and that is why whoever
1s learning, will do very well fast.

(2) The variance 1in the output of the vectors that are to be
taught, increases as sparsness of the generating network
decreases, and therefore it takes the student networks more time
to learn as the generating network becomes less sparse (since
there are more distinct vectors to learn). There are several
runs per figure, and one should look at the average behavior
when Judging the results. Note that the Backpropagation
algorithm can get stuck in a local error minimum instead of
converging to the global error minimum, and that is why some of
the runs don’'t converge; this is the difficult part of trying to
analyze characteristics of neural networks by studying them

through an unperfect learning algorithm,

(3) On the average, sparsed networks learn faster than the
unsparsed networks. In Figures (AR.2),(A.3) the unsparsed 1is
slower from the 0.2 sparsed by approximately 6%, in Figures
(A.4),(A.5) the unsparsed is slower by 8.3%, in Figures

({A.6),(A.7) the unsparsed is slower by 16%.

Learning the 8-5-8 Encoder Problem

Here the taught vectors were not generated by an original network, but
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rather v re:

Input Qutput

Vector(1): 10000000 10000000
Vector(2): 01000000 01000000
Vector(3): 00100000 08100000
Vector(4): 00010000 00010000
Vector(5): 00001000 00001000
Vector(6): 00000100 00000100
Vector(7): 00000010 00000010
Vector(8): 00000001 00000001

Eight different sparsed networks were built (each having 8 input
units, S hidden units and B output units). As Figure (B.1) shows, the

less sparsness the faster the learning. The explanation is as follows:

Sparsed nets have smaller capacity, because removing weights decreases
the number of possible functions (mappings) that they can realise;
this is simply because there are less variables to permute (i.e taking
the view that each function is a permutation of weights); one might
argue that since there are infinitely real numbers that weights may
take, it would imply that removing weights will not reduce the number
of realisable functions (since the remaining weights will still range
over infinitely many values) but this is clearly wrong since it is
not just the value of the link that characterizes a given function,
but also 1its position in the overall architecture, and there is a
finite number of positions that links can occupy (since there are
finite number of neurons) therefore if enough links are removed to
isolate an output neuron then although all other remaining links may
take infinitely many values, they still cannot influence the
isolated output neuron (therefore the number of functions realisable
has been reduced). And for a given set of points (or vectors to be
learned) it is much more probable to find a function that contains
these points 1in its solution, in a network that can realise more
functions to begin with (1.e. the unsparsed NN) whereas 1in the
sparsed, the number of realisable functions is smaller, therefore the
probability of finding a function (i.e. amongst the small number of
realisable functions) that has the points in its solution set, is much

smaller. Therefore, the unsparsed network can with a bhagher




probability than the sparsed network, learn a given set of M vectors.

therefore its capacity is ld*ger than the sparsed.

In Figure (B.l1), the function that was to be taught was not realisable

by the very sparsed networks (as opposed to the previous section which
dealt with teaching a realisable function to sparsed networks). That

is the reason that the very sparsed networks were not able to learn;

their capacity is too small. As we decreased the level of sparsness we
in effect increased the capacities, and thus we see an improvement in
the learning. This 1is because the function that we taught was

realisable with a greater probability in the less sparsed networks.

In summary, the above two sections imply the following: a sparsed
network will learn faster than an unsparsed when its architecture can
realise the function that it is trying to learn. It 1learns faster
because its architecture permits it to realise much fewer functions
and when given M distinct points (vectors) it needs to sort out less
possible functions (in contrast to an unsparsed network) that contain
these points in their solution, and thus completes the sorting faster
than an unsparsed. However, when given an unrealisable function (or
function that 1is only nearly realisable) the sparsed network either
cannot learn or learns slower than the unsparsed network (this follows

from the same argument).

Experimental results on capacity of feed-forward layered networks

in all the following experiments, sparsing was done only on the links
‘that connect the input to the ihidden lavyer. The following setup was

used in every trial of the experiment:

(1) An original sparsed network is built according to a certain
architecture interconnection matrix. The main parameter that
selects a given architecture is the probability (P) for the
existence of a link connecting the input layer to the hidden
layer); the weights assigned to the links are picked randomly.
Then several binary vectors are placed individually at the

input layer, and the network generates a real valued response
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at the output laver. The input-output pairs are then piaced

aside for use in the next steps.

(2) A sparsed network with same architecture (same P but different

random weights for the links) is built. An Unsparse network 1is
built.

(3) Teach the unsparsed and sparsed networks on the vectors
generated by the original sparsed net, showing a randomly

selected percentage of the vectors, and repeatedly learning on
the range of (20%,90%Z). Record the overall error versus the
number of learning cycles (I fixed the maximum number of
cycles). The reason that I teach different percentage of the
points that define the taught funcfion, is because this will
determine the critical percentage poinf which is (accofding to
PAC learning) proportional to the capacity of the system that is

doing the learning (in this case it is a neural network).

I started with a 5-4-2 architecture (Figure Series D) . I built a 0.2
probability original sparsed network with which I generated 32 binary-
input real- output vectors. I built a 5-4-2 sparsed with the same
connectivity and a 5-4-2 wunsparsed and trained them on 207, 30%, 407,
50%, 60%, 70%, 80%, 90% of the above generated vectors (averaged over
6 runs per trial e.qg. in the 507 trial it means that the number of
vectors shown is 16, but the set of vectors shown in each case can be
different 16 vectors). 1 recorded the resulting Error versus Number of
learning cycles versus Percentage shown. 1 repeated the above for a

0.4, 0.5, 0.6, 0.8, 0.9 probability generating sparsed network.

When comparing the critical points for the unsparsed network with that
of the corresponding sparsed network that learned the vectors
generated by the same architecture network, we see that always, the
unsparsed critical point is higher than the sparsed (as we expect). In
Figures (D.6) and (D.7), I ran 0.5 sparsed networks that learned 4
different sets of O0.5-sparsed-generated vectors; it is evident that in
all 4 cases, the critical point is approximately the same (50% shown).
This result goes nicely with the expectation that the capacity (and

thus the craitical point which 1s proportional to 1t) 1s independent of




the problem learned. Figure (E.1) shows the Error vs Percentage-Shown
at the 700th learning cycle. The point where the error starts to
follow the asymptote (i.e. where the derivat:ve is relatively small),
is the critical point. The relationship of sparseness to critical
point for the 5-4-2 is as follows:
Probability of a link Critical Point:

0.2 30%

0.4 40%

0.5 S0%

0.6 S0%

0.8 60%

0.9 70%
I repeated the above with a 6-4-1 architecture (Figure Series F);
there were 2¢=64 generated vectors to be learned. 1 only display
(Figure F) as an example of one sparsed network (0.5 sparsed). In
reality, 6 different sparsed networks were built for each percentage
(20%, 30%, 40%, 504, 60%, 70%, BOZL, 90Z) of each sparsed case (i.e.
for 0.2, 0.4, 0.5, 0.6, 0.8, 0.9). In total, 288 networks were built
in this experiment. Then I averaged the 6 responses per a specific

percentage, and plotted the graphs (Figures F.1 - F.4). As seen in
Figure Series (F), the relationship of sparseness to critical point
for the 6-4-1 is as follows:
Probability of a link Critical Point:

0.2 407

0.4 S07Z

0.5 507

0.6 35%Z

0.8 457

0.9 607
I repeated the above with a 7-7-1 architecture (Figu-e Series G);
there were 2%=64 generated vectors to be learned. In total, 288
networks were buillt 1in this experiment. Then | averaged the 6




responses per a specific percentage, and plotted the graphs (Figures
G.1 - G.4). As seen, the relationship of sparseness to critical point

for the 7-7-1 network is as follows:

Probability of a link Critical Point:
0.2 407
0.4 S50%Z
0.5 407
0.6 S50%
0.8 70%
0.9 80%

Figure (K.l) shows the results of the critical point measurements for

the 5-4-2, 6-4-1, 7-7-1 architectures.

In the above, each network was learning a problem of different size,
i.e. the 5-4-2 learned a function that had 32 input-output vectors,
the 6-4-1 learned a function that had 64 input-output vectors, the 7-
7-1 learned a function that had 128 input-output vectors. In order to
compare networks of different architectures that learn the same size
problem, I ram the following experiment. I repeated the above 3-step
procedure with an 8-8-1 and a 10-10-1 learning a set of vectors that
was generated by a 6-4-1 network, i.e. the problem had 64 input-output
vectors. In total, 576 networks were built in this experiment. The
results are shown in Figure Series (H), and Figure Series (J). The
relationship of sparseness to critical point in the 8-8-1 network is

as follows:

Probability of a_ link Critical Point:
0.2 307.
0.4 407.
0.5 S0%
0.6 S0%
0.8 &0%
0.9 707%




And for the 10-10-1 network:

Probability of a link Critical Point:

0.2 40%

0.4 507

0.5 &0%

0.6 &77

0.8 70%

0.9 85%
Figure (K.2) shows the results of the critical point measurements for
the 6-4-1, 8-8-1,  10-10-1 architectures. Figure (K.3) shows the
critical points as function of the maximum number of links.
Section Summary
The following are evident from Figure Series (K):

(1) As sparseness decreases (increasing probability of a link
beyond 0.95) the <critical-point curves branch out from each
other. This may suggest that the capacity is a linear function
of sparsness with a slope determined by the number of units (the
specific architecture) in the network.

(2) The plot (Figure K.2) of the networks that learned the same
size problem was expected since the smaller network (6-4-1)

should have a critical- point curve lower than the 8-8~1 (which

is evident in the plot). But the plots of Figure (K.l1) are not

as trivial. ]I would expect the 5-4-2 network to have a critical-

point curve lower than the 6-4-1 (which is not evident). This

suggests that there may be some non-linear r2lationship between

a specific-architecture network to its learnability of different

size problems, thus allowing for a 6-4-1 network to learn a set
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o7 64 vectors with less percantage of examples than for a 5-4-2
network to learn a set of 32 vectors, and thus giving the false

impression that the 6-4-1 has less capacity. In other words,
when using an algorithm to measure the critical error, we must
make sure that the initial conditions (in this case the problems
being learned) are as uniform (i.e. of the same size)as possible

across all the student networks.

(4) Conclusions

This work was concerned in getting qualitative insight to
the relationship of learning speed versus sparsness, and
relative capacities versus sparsness. The experiments were
carried out as computer simulations, and the majority of the

results have been expected. The main points that can be suggested

by the work are summarized below:

— A sparsed network will learn faster than an unsparse net (having

the same number of neurons) when its architecture can reai.ise
the function that it is trying to learn. When given an
unrealisable function (or function that is only neariy
realisable) the sparsed network either cannot learn or learns

slower than the unsparsed network.

— The capacity is approximately linear function of sparsness with
a slope determined by the number of wunits (the specafic
architecture) in the network. The less sparsed the network, the
greater the capacity and thus it is able to lea~n more types of
input-output mappings, i.e. realise a bigger set of possible

functions.
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The focus of the paper is the estimation of the maximum number of states that
can be made stable in higher-order extensions of neural network models. Each
higher-order neuron in a network of n elements is modeled as 2 polynomial thresh-
old element of degree d. It is shown that regardless of the manner of operation, or
the algorithm used, the storage capacity of the higher-order network is of the
order of one bit per interaction weight. In particular, the maximal (algorithm
independent) storage capacity realizable in a recurrent network of n higher-order
neurons of degree d is of the order of n’/d!. A generalization of a spectral algo-
rithm for information storage is introduced and arguments adducing near optimal
capacity for the algorithm are presented. © 1991 Academic Press, Inc.

1. INTRODUCTION

A formal neuron (after McCulloch and Pitts, 1943) is defined as a linear
threshold element which accepts n inputs and computes a binary output
based on the sign of a linear form of the inputs. When n such elements are
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interconnected with the output of each neuron serving as input to all the
neurons in the network, a closed feedback system results with dynamics
described by trajectories on the vertices of the n-cube. Each vertex de-
fines a possible state of the recurrent network, and we identify the vector
of neural outputs as the (instantaneous) state of the system. The fixed
points (or stable states) of such recurrent networks are of importance in
their computational characterization; in particular, we are interested in
the following question: What is the maximum number of arbitrarily speci-
fied vertices that can be made stable in a recurrent neural network by
suitable selection of neural interconnectivity?

In this paper we focus on recurrent networks where the computational
elements are higher-order extensions of the basic linear threshold neural
model. Each higher-order neuron is a polynomial threshold element of a
given degree d. If, in a recurrent network of n higher-order neurons, the
current outputs (states) of the neurons are #, . . . , 4, € {—1,1}, then an
update, u;, of the state of the iith neuron is given by the sign of an
algebraic form

W= sgn( S Wity ) (n

1SS Sigs1SA

The number of degrees of freedom in choosing the interaction coefficients
(or weights) w;,...,.., is increased to n¢*! from the n? weights for the case of
linear interactions. The added degrees of freedom in the interaction coeffi-
cients can potentially result in enhanced flexibility and programming ca-
pability over the linear case as has been noted independently by several
authors (Lee er al., 1986; Psaltis and Park, 1986; Baldi and Venkatesh,
1987, 1988).

We rigorously estimate the storage capacity of recurrent higher-order
neural networks: specifically, we calculate the maximum number of arbi-
trarily specified vectors that can be made stable in a recurrent network of
n polynomial threshold units of degree d.! All our results point in the
following direction.

Regardless of the manner of operation, or the algorithm utilized, the
storage capacity of a higher-order network of degree d is of the order of 1
memory bit per interaction coefficient. And in particular:

« The storage capacity of the outer-product algorithm generalized to
networks of degree d is of the order of n/log n memories (with constants
depending on the variant employed);

' Cases where networks have random interaction coefficients (instead of the programmed
scenario here) lead to entirely different computational issues. We deal with these in a
concurrent paper (Venkatesh and Baldi, 1989).
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* The maximal (algorithm independent) storage capacity realizable
in a higher-order neural network of degree d is of the order of né/d!;

* Near optimal storage capacities of the order of n®/d! memories can
be obtained by variants of the spectral algorithm.

In this paper we set up the basic definitions in Section 2, construct a
spectral based algorithm with near optimal capacity in Sectien 3, and
rigorously estimate the maximal (algorithm independent) capacity of a
network of given degree in Section 4. In a concurrent paper we include
the capacity calculations for the outer-product algorithm generalized to
degree d (Venkatesh and Baldi, 1991).

Notation. Let {x,} and {y,} be positive sequences. We use the follow-
ing standard asymptotic notation:

1. x, = O(y,) if there is a positive constant L such that x,/y, < L for
all n;

2. xp~yaif xp/ya—> 1l as n - x;

3. x,=o0(yn) if x,/y,— 0as n— .

By almost all we mean all but an asymptotically negligible subset: specifi-
cally, if A, denotes a sequence of finite sets, and # is some attribute, we
say that almost all elements of A, exhibit P if the subsets B, C A, for
which @ holds are such that |B,} ~ |A,| as n — =. We denote by B the set
{~1, 1}, and by {n] the set of indices {1, 2, . . . , n} for any positive
integer n. Finally, by an ordered multiset we mean an ordered collection
of elements where repetition is allowed.

2. HIGHER-ORDER NEURAL NETWORKS

2.1. Polynomial Threshold Units

We consider recurrent networks of polynomial threshold units each of
which yields an instantaneous state of —1 or +1. More formally, for
positive integers n and d, let $, be the set of ordered multisets of cardinal-
ity d of the set [n]. Clearly [$4] = n?. For any subset I of [n], and for every
vw=(uuy - u,) €0B" setuy = Mig; u;.

DEFINITION 2.1. A fully interconnected higher-order neural network
of degree d is characterized by a set of n?*! real weights w,, indexed by
the ordered pair (i,/) with i € (n] and I/ € $,, and a rcal margin of
operation B = 0. The network dynamics are described by trajectories in a
state space of binary n-tuples, B": for any state u € B” on a trajectory, a
component update u; > u] is permissible iff
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-1 if Zjey, wanity < - B

u ={~u; if =B =<y, wini <R )
1 if 2]6.’4 Winl > @,

The evolution may be synchronous with all components of u being up-
dated according to the rule (2) at each epoch, or asynchronous with at
most one component being updated per epoch according to Eq. (2).

The network is said to be symmetric if wi; = wy, ;, whenever the
(d + 1)-tuples of indices (i, I) and (j, J) are permutations of each other.
The network is said to be zero-diagonal if w;; = 0 whenever any index
repeats in (i, ).

Let $, denote the set of all subsets of d elements from [n]; |§d| = (3).
Combining all redundant terms in Eq. (2), for symmetric, zero-diagonal
networks a component update u; > u/ is permissible iff

-1 lf zlej,:iel winty < —R
u = -u lf -B =< Zlej,:m winky < R (&)
1 if Zlej,:ia wanu; > B.

(If the network is symmetric and zero-diagonal then, for each nonzero
coefficient w—i.e., coefficients wy, for which no index repeats in (i,
D—the term wy;;u; occurs d! times in the sum ¢y, wi ;. Hence, ey,
wanky = d! Zie3 ier wanur. The constant scale factor d! is removed in Eq.
(3) as this is just equivalent to scaling the margin.)

The choice of margin of operation essentially specifies the ‘‘strength’
of the desired interaction. A choice of margin 3 = 0 leads to standard
threshold operation. For a choice of nonzero margin of operation, a bit,
u;, retains its sign if and only if the corresponding weighted sum multi-
plied by u; exceeds B; otherwise its sign is reversed.

These networks are seen to be natural generalizations to higher-order of
the familiar case of linear threshold networks (d = 1). While networks of
polynomial threshold units require more computationally powerful units
than linear threshold functions, each polynomial threshold element (sub-
scribing to rule (2) or to rule (3)) can be replaced by a small, equivalent
network of linear threshold units. To see this note that it suffices to be
able to realize each individual product of components, u; = Hf:. u;, for
each choice of I = (i}, fy, . . . , i) € $,4, as the results of all these
computations can be combined with a single linear threshold gate to real-
ize the desired output. Now, for each I € $,, realizing the product of
components u; is equivalent to checking the parity of the d bits u,,
u,,. . . ,u;,in the product. It suffices, hence, to show that parity can be
computed by small circuits of linear threshold units. But this, in fact, is a
special case of a more general known result that any symmetric Booleanr
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Sfunction—i.e., functions which are invariant under any permutation of
the inputs, parity being an example—can be computed by small circuits of
linear threshold elements. For completeness, we sketch a short proof of
this result below.

PrOPOSITION 2.2.  Any symmetric Boolean function on d variables can
be computed by a linear threshold circuit of depth two and linear size; in
particular, d threshold elements in the first layer and a single output
threshold element in the second layer are always sufficient.

Proof. The proof is constructive. Array the 24 possible inputs of =1 d-
tuples in (d + 1) rows with the elements in each row being permutations
(i.e., all d-tuples in a row have the same number of +1’s), the lowest row
containing the single d-tuple which has no +1's, and with the number of
+1’s increasing monotonically with the rows to the final (d + 1)th row
which contains the single d-tuple whose components are all +1. Any
symmetric Boolean function clearly assumes the same value for all ele-
ments (Boolean d-tuples) in a row. Hence, for any given symmetric func-
tion, contiguous rows where the function assumes the value +1 form
bands which are separated by contiguous rows where the function as-
sumes the value —1. This is illustrated schematically in Fig. 1a. Now
assume there are b bands where the function assumes the value +1.
(There are at most d/2 such bands—the worst case occurring for the
parity function.) The function can now be computed by a circuit with 25
linear threshold elements in the first layer and a single linear threshold
element in the second layer as illustrated in Fig. 1b. (Each linear threshold
unit produces a + 1 if the weighted sum of all its inputs exceeds its thresh-
old, and produces a —1 otherwise.) ®

2.2. Capaciry

As in any dynamical system, the fixed points are important in the char-
acterization of the system dynamics.

DEFINITION 2.3. Let & = 0 be fixed. A state u € B” of a fully intercon-
nected network is said to be B-srable iff

ll,'EW(,‘J)IlI>%, i=l,...,n.
€34

Likewise, a state u € B" of a zero-diagonal network is said to be ®B-stable
iff

u; 2 W(u)ll[>%, i=1...,n
1€8si¢1
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a 11 1
Row d —
azgz ; f£= 1
331 £ =1
£ = -1
az2
£ =1
221
i f = -1
a2 l
£ =1
arr
£ = -1
Row 0 —— .
-1 -1 ... -1
b THRESHOLDS
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tij=d+2a;-1
X P l"2=-d+2d‘~2+l

X4

Fic. 1. (a) A symmetric Boolcan function fof d inputs. (b) A realization of the symmetric
Boolean function f with a linear number (in d) of linear threshold clements arrayed in a depth
2 circuit,

It is easy to see that B-stable states are fixed points of the higher-order
network with evolution under a margin 3.

The fixed points of the network take on particular significance when the
network interconnections are symmetric. In this case, under suitable
modes of operation, Liapunov functions can be shown for the system
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(Hopfield, 1982; Goles and Vichniac, 1986; Maxwell ef al., 1986; Venka-
tesh and Baldi, 1989). In particular, each fixed point exhibits an attrac-
tion basin; trajectories passing through states in the attraction basin of a
fixed point ultimately converge to the fixed point. This geometric picture
is particularly persuasive in associative memory applications; if, by ap-
propriate choice of weights, data is stored as fixed points of the network,
then the network functions as an error-correction mechanism and identi-
fies states sufficiently similar to a stored datum with the datum.

In this paper we do not insist on symmetry in the choice of weights. We
refer to the data to be stored as memories. By an algorithm for storing
memories we mean a prescription for generating the interaction weights of
a higher-order network of degree d as a function of any given set of
memories. We investigate the maximum number of arbitrarily specified
memories that can be made fixed in the network by an algorithm; this is a
measure of the capacity of the algorithm to store data.

Letu!,. . . , u™ € B" be an m-set of memories to be stored in a higher-
order network of degree d. We assume that the memories are chosen
randomly from the probability space of an unending series of symmetric
Bernoulli trials: specifically, the memory components, u?, i € (n], a €
{m], are i.i.d. random variables with

P{u? = ~1} = P{u? = +1} = {.

In the following we assume that the network architecture is specified to be
a higher-order network of degree d operating under a margin ®.

DEFINITION 2.4. We say that C, is a lower capacity function (or sim-
ply, lower capacity) for an algorithm if forevery0 <A < l,andm < (1 -
A)C,, the probability that all the memories are fixed points of the network
generated by the algorithm tends to one as n — «,

Likewise, C, is a maximal lower capacity if for every 0 < A < 1, and
m =< (1 = A)C,, the probability that there is some network in which all the
memories are 3B-stable approaches one as n — «,

DEFINITION 2.5. We say that C, is an upper capacity function (or
simply, upper capacity) for an algorithm if forevery0 < A < 1l,and m =
(1 + MG, the probability that at least one of the memories is not a fixed
point of the network gcnerated by the algorithm tends to one as n — .

Likewise, C, is a maximal upper capacity if for every 0 < A < 1, and
m = (1 + A\)C,, the probability that there is a network in which all the
memories are B-stable approaches zero as n — o,

Remarks. The first definition yiclds an underestimate of algorithm/
network capability, while the second definition gives an overestimate.
Note that the definitions of maximal capacity are algorithm independent,
and bound any algorithmic capacity from above. It is clear that both lower
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and upper capacities always exist, and are not unique. What is more,
there does not exist a largest lower capacity or a smallest upper capacity

as the following proposition indicates. The proof is an immediate conse-
quence of the definitions.

PROPOSITION 2.6. (a) If C, is a lower capacity, then so is C,[1 * o1)].
(b) If C, is an upper capacity, then so is C,[1 = o(1)].

We combine the lower and upper estimates of capacity to obtain the
following:

DErFINITION 2.7.  C,is a capacity function (or simply, capacity) for an
algorithm iff it is both a lower and an upper capacity for the algorithm; it is

a maximal capacity iff it is both a maximal lower and a maximal upper
capacity.

Remarks. Capacity follows a 01 law. The probabilistic setup we es-
pouse requires almost all sequences of memories within capacity to be
storable as fixed points within the network. Capacity, hence, reflects

typical behavior.? Figures 2a and 2b indicate the threshold behavior of
capacity.

Unlike lower and upper capacity functions, capacity functions are not
guaranteed to exist. If a capacity function exists, however, then it is not
unique.

ProprosiTION 2.8. If C, is a capacity function, then so is C,[1 * o(1)};
conversely, if C, and C, are two capacity functions, then C, ~ C,.

Proof. The first part follows trivially because C, is both a lower and an
upper capacity. To prove the converse, let C, and C, be any two capacity
functions. Without loss of generality, let C, = [1 + a,]C,. We must prove
that |a,| = o(1).

Let p denote the probability that all the memories are fixed points of the
network. Fix A, A’ € (0,1). Form = (1= A')C, = — AMX1 + a,)C,, we
have p — 1 as n — x, Further, for m = (1 + A\)C,, we havep —» 0asn—
», Hence, for every choice of scalars A, A’ € (0,1), we require that

1+ A

l+a,<l—_7

for large enough n. It hence follows that |a,| = o(1). @

2 The definitions -*! c2pacity developed in this paper subsume within them most common
notions of capacity, «n.d can be easily extended in various ways to reflect properties of
memories other than mere stability. For other variants, cf. Cover (1965), Vapnik (1982),
Abu-Mostafa and Si. Jacques (1985), Venkatesh (1986), Baldi (1988).
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FiG. 2. (a) Lower and upper capacity functions; P denotes the probability that each of m
randomly chosen memories is a fixed point of the network. (b) The 0-1 behavior of capacity.

Thus, if capacity functions do exist, they are not very different from
each other asymptotically. Define the equivalence class % of (lower/up-
per) capacities by C,, C, € € & C, ~ C,. We call any member of € the
(lower/upper) capacity (if € is nonempty).

3. THE SPECTRAL ALGORITHM

3.1. The Linear Case

For the linear case d = 1, Venkatesh and Psaltis (1989a), and Person-
naz, Guyon, and Dreyfus (1985) have shown constructions which effec-
tively shape the spectrum of the matrix of interconnection weights to
ensure that the given set of memories is stable, while obtaining capacities
linear in n. The construction entails a selection of weight matrix, W, such
that the memories u® are eigenvectors of W with positive eigenvalues. The
basic notion used is that if a matrix U is of full rank the orthogonal
projection of a vector x into the space spanned by the columns of U is
given by (UTU)"'U™x.

Let B = 0 be some fixed margin of operation, and consider a fully
interconnected network of degree d = 1. Fix m < n, and let A", . . , |
A > 3B be fixed (but arbitrary) positive real numbers. Letw',. . . ,u™€
B" be an m-set of memories whose components are drawn from a se-
quence of symmetric Bernoulli trials. To each memory u® we associate
the positive constant A, Let

U= [ul “2 N um]
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be the n X m matrix of memories, and let A be the diagonal matrix

A0 0 . 0]
0 A ... 0
Al .
[0 0 - Am]

The spectral algorithm formally specifies the matrix of interaction
weights, W = [w,], according to the following rule:.

W = UA(UTU) U, 4)

THEOREM 3.1. Ford = 1 and any choice of margin & = 0, the spectral
algorithm has capacity C, = n.

In fact, if the prescription (4) yields well-defined weights, then we have
Wue = \aye,

Each memory component is multiplied by a positive scalar, A@ > @&, so
that the memories are fixed points under evolution according to the rule
(2). As a linear transformation can have at best n eigenvectors with dis-
tinct eigenvalues, it follows that n is an upper sequence of capacities for
the algorithm. The fact that n is, in fact, the capacity of the algorithm will
follow if the prescription (4) is well defined for m < n with arbitrarily high
probability for large n. This is established by a new result of Kahn,
Komlés, and Szemerédi (1990). (This is a refinement of the basic result
proved by Komlés in 1967.)

PrOPOSITION 3.2. Almost all n X n matrices with *1 components
have full rank;, more precisely, if the components of a random n X n
matrix, A,, are chosen independently and with equal probability % from
+1, then there is a constant | < b < 2 such that the probability that A, is
nonsingular is 1 ~ O(b™").

The spectral rule amounts (in synchronous operation) to iteratively
projecting states orthogonally into the linear space generated by u',
. , w™, and then taking the closest point on the hypercube to this
projection. While the algorithm appears to be non-Hebbian and nonlocal,
nonetheless, a low complexity, recursive, local construction can be
shown for the algorithm using Greville’s theorem; the algorithm is, hence,
attractive as an associative memory as it combines relatively low com-
plexity with high capacity and efficient error-correction (Venkatesh and




326 VENKATESH AND BALDI}

Psaltis, 1989a). This approach can be extended to higher-orders as we
now describe.

3.2. Generalization to Higher-Order

Let us consider the degree of interaction d to be odd for definiteness.
By combining terms we can replace the summation, Z,cs, w54, for each
i=1,...,ninthe evolution rule (2) by an equivalent sum of the form

Wi ili,- . - W, (5)
Kodd 1sii<- <igsn

For u € B" to be a fixed point under evolution according to the rule (2) it,
hence, suffices that

d

U; z 2 Wi',"_m_,"u,'... U, > Q, i= l. Y (B (6)

kodd 1<ij<---<iy=a

Now, for any u € B” let us define the kth generation of u to be the
vector ulk] € B(Z) defined by

Uy **° Utk
iy " Ug- Uk

ulk] = j ; ™
Up—k+ | Un—k+2 """ Un-1Up
in other words, u[k] is the vector formed by lexicographically ordering the

(») products of components of u taken k at a time. We now form the vector
@ from the first [d/2] odd generations of u:

u(l]
u[3]
a=] | )
u(d]
Now set
d
Ny=2
K odd
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Clearly, @ is a binary vector with N; components. Let W denote the n x
N, matrix of coefficients, w;;, ...;,, in Eq. (5) arranged lexicographically;
ie.,

Wit 0t Wia Wh23 0t Wia-2a-ia
W2t Wi Wy Ut Woaa-2a-ia
W=
L Wat " War Wy " Waa-2a-1a
Wii2as " Wia-d+la-d+2...n-1.n

W21234s  °°° W2a-d+in-d+l,...n-1n

Wai2sas *°° Wanp-d+ln-d+2..a-1a

Let U be the n X m matrix of memories. Form the extended Ny X m
binary matrix

Iy

U=[|‘,I @ - .“lm]’
where @1 € B" is as defined above. Let
A =dgh®, ..., Am]

be an m X m diagonal matrix with positive diagonal terms, A > &. We
formally define the generalized spectral matrix of coefficients, W, by

W = UAQUTO)- 107, 9

Note that this yiclds stable memories as long as the matrix U is full rank.
Specifically, if the initial state is one of the memories, u®, then we obtain

Wie = A@ye,

It is now easy to verify that Eq. (6) is satisfied for each component .{
memory u®, so that u® is a fixed point under evolution according to the
rule (2). If the degree of interaction, d, is even, the exposition follows as
above with the first sum in Eq. (5) being over even k instead of odd k. The
maximal allowable rate of growth of m with n follows immediately.

4 G TR Ay Sx o8 au Am e
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THEOREM 3.3. An upper capacity of the generalized spectral algo-
rithm of degree d is

In particular, if d = o(n) then an upper capacity is n/d".

Anecdotal evidence in implementations indicates that the above esti-
mate of upper capacity actually holds as an estimate of capacity as was
the case for d = 1. There is some theoretical support for this though no
complete proof. The main difficulty is that we cannot directly apply Prop-
osition 3.2 to the matrix U as the distribution induced on vertices of B as
we build up generations according to Eqgs. (7) and (8) is not uniform—
indeed, we can only access 2" out of the total of 2¥¢ vertices. Note,
however, that any two distinct vectors, u and v, in B” when expanded to
vectors @ and ¥ in B according to Eq. (8) become more and more nearly
orthogonal as the number of generations increase. In fact, let D be the
Hamming distance between u and v. Then it is easily verified that the
Hamming distance, D, between @ and ¥ is given by?

R IR D)(n - D)
b jgd k%d (k J—k/”
(If d is even replace the first sum by a sum over even indices, j = 0, 2,
. . . ,d.) As dincreases the vectors i@ and ¥ approach orthogonality, and
in fact, any pair of vectors u and v in B" result in orthogonal vectors @ and
vin B¥"' when all odd (or even) generations are included—i.e., when d is
equal to n or n — 1. To verify this note, for instance, that for any Ham-
ming distance 0 < D < n between two vectors in B" the corresponding
Hamming distance D between the corresponding vectors in B*'' when all
odd generations are included is

5=3 3 ()29

1]
Mo
NS
™)
N
t™Ma
—~
<
[
=0
 S——

3 For simplicity we use the convention ) = 0ifa < bor b <0.
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e § (9

k odd

= 2n—D—IzD-l

=22,

Hence (@,¥) = 0 for any two vectors u # —v in B* when all odd (or even)
generations are included. The preceding analysis does not work when
D = n; i.e., we start with two opposing vertices of the n-cube. However,
even in this case note that the generated vectors @ and ¥ become orthogo-
nal if we include all even and odd generations. Thus, though the statistical
dependence across components increases with the nuinber of generations
included, we may expect a concurrent building up of linear independence
as the randomly chosen memories, u®, result in more and more nearly
orthogonal vectors 4=, We may, hence, expect the nonsingularity proba-
bility estimate of Proposition 3.2 to improve for the generated matrices
U.* In particular, let N, denote the length of the extended vectors @ for
any choice of degree d (which may depend on n).

CONJECTURE 3.4. If the number of memories satisfies m < Ngthen the
N4 X m extended matrix of memories, U, is full rank with probability
approaching one as n — =,

This, in turn, would yield that the upper capacity estimate of Theorem
3.3 would actually be the estimate of the capacity of the higher-order
spectral algorithm of degree d.

4. MaXIMAL CAPACITY

In this section we derive the maximal storage capacity of a higher-order
neural network of degree d. The results are independent of any particular
choice of algorithm, and depend only on the network architecture—a
higher-order neural network of degree d. The maximal capacity, hence,
delineates the upper limit on storage that can possibly be achieved by any
particular choice of storage algorithm. We use a fundamental result due to
Schlifli (1950) enumerating the number of linearly separable dichotomies
of m points in N-space.

Let V={v,. .., v" C RN be an m-set of points in N-space.

¢ The estimate of Proposition 3.2 may itself be rather weak. As conjectured by Komlé6s,
we may expect the majority of singular * 1 matrices to be singular for the trivial reason that
two rows or two columns coincide. If verified, this would, of course, improve the estimate of
the probability of nonsingularity in Proposition 3.2 to 1 — O(n?27%).
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DEFINITION 4.1. A dichotomy ¥V = {V*, V-} of V is homogeneously
linearly separable (hls) if there is a vector w € RN such that the inner
product

>0 ifve v+

<0 ifvev- (10)

{w, v)

If Eq. (10) holds then w is said to be a separating vector for the dichot-
omy.

The following version of Schlafli's counting lemma estimates the proba-
bility that a randomly chosen dichotomy is homogeneously linearly sepa-
rable. We give the proof for completeness. The presentation follows that
of Wendel (1962) who utilizes the result in this form in a problem in
geometric probability. [See also Cover (1965) for a slightly different ap-
proach.]

LEMMA 4.2. Let 'V be an arbitrary m-set of points in RN, and let V" be
a dichotomy of V chosen independently of V, and with equal probability,
2-m, from the set of dichotomies of V. Then the probability, PR, that ¥V is
homogeneously linearly separable is bounded by

PR < 2-(m-D NE-' (’" N 1)- (1)

o~ J

Moreover, a sufficient condition enabling us to replace the inequality
above by equality is that the m-set of points V be chosen from a joint
distribution which is such that V is in general position—i.e., all subsets of
size N are linearly independent—with probability one.

Proof. Let DY be the maximum number of dichotomies of an m-set of
points in R¥ that are his. Then

In order to demonstrate the validity of Eq. (11) it suffices, hence, to show
that

pE=23 (™1 (12)

Let V denote an m-set of points for which DY dichotomies are hls.
(Such a set exists as DR =< 2™ is finite.) Let V2 be the hyperplane orthogo-
nal to vo. Then D7 is the number of path-components in RN\U_.; V2 as
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each path-component is a maximally connected set of vectors all homoge-
neously separating the same dichotomy of V.

Now consider the effect of deleting the hyperplane V™. The remaining
m - | hyperplanes determine DX~ path-components. These are of two
types: (i) those path-components (say @, in number) which have a nonnull
intersection with the hyperplane V™, and (ii) those path-components (say
Q, in number) which do not intersect V™. Clearly then, DR '= 0+ 0.
With V™ restored it cuts each path-component of type (i) in two, and
leaves path-components of type (ii) undisturbed. Hence

DR =20+ G =DF"'+ Qi -

Now the intersection of the Q, type (i) components with the hyperplane
V™ generates Q, path-components in V"\UZ (V™ N Ve), As the sets V™
N Ve are just the hyperplanes in the (N — 1)-dimensional space
V7 orthogonal to the projection of the vectors v into V™, it follows that
0, = DRz}, Hence

Df = D™ + DXL,
This recursion with the obvious boundary conditions
D\ =D =2

yields the solution (12) which can be readily verified by induction.

To complete the proof we need to show that we can replace the inequal-
ity in Eq. (11) by equality if the m-set of points V is in general position
with probability one. This follows immediately, however, from the simple
observation that the proof above continues to work to estimate the num-
ber of hls dichotomies of any m-set of points which has an attribute which
is preserved under projections. ®

We require the following technical result due to Chernoff (1952) which
gives bounds for very large deviations in the tails of the binomial distribu-
tion.

LEMMA 4.3. Fix4 < c < 1 and let H denote the entropy function
H(x) = —xlog; x — (1 — x)logy(1 — x) O<x<).

Let p denote the probability that in M trials of a fair coin the number of
successes is greater than or equal to cM. Then

p=2M 5: (7) < 2-U-HM

j=leM
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THEOREM 4.4. C, = 2 (*7") is a maximal upper capacity for zero-
diagonal neural networks of degree d.

Proof. LetU = {u',. . . , u"}be arandomly specified m-set of mem-
ories whose components are generated from a sequence of symmetric
Bernoulli trials. If each of the memories is to be 3-stable we require to
find real coefficients, wy.,, I € $4, i & Isuch that for eachi € [n}, and a €

{m],

Wt Y, wenuf > B. (13)

1€ i€l

We first argue that without loss of generality we can restrict attention to
a margin @ = 0. In fact, if there exist a choice of coefficients, w 1y, such
that

ll? 2 W(,‘_[)ll7>0, i=l,....n, a=l,...,m,
1€ i€l

then, if T > 0 is the smallest of the sums above, the simple expedient of
scaling all coefficients w; ;) by a positive scalar greater than B/T will
result in Eq. (13) being automatically satisfied.

Referring to the evolution rule (3) (with margin % = 0) we see that each
higher-order neuron in a zero-diagonal network of degree d realizes a
separating plane in (7')-space. For the memories to be fixed points we

hence are required for eachi =1, . . ., ntofind N = (";') real coeffi-
cients wi ), I € 3,4, i & I such that
up = sgn( Z ”‘(i.ll”f). a=1,....m (14
1€$,i€1

Now fix i and let €% be the event that there is no weight vector w; =
[wq ) in N-space which separates the dichotomy of the extended m-set of
memories, [1]], with components varying over the set of indices / € $q:
i¢l,anda=1,...,m,induced by Eq. (14)—i.e., the partition of the
memories according to whether uf is —1 or +1. Note that the term «f does
not appear anywhere in the sum or in the right-hand side of Eq. (14). As
the components 47 are drawn from symmetric Bernoulli trials it follows
that the dichotomy indicated in Eq. (14) is chosen independently of the
extended m-set of memories. By Lemma 4.2 we hence have

o m -1
P{(g:l} =1- Px' =1- 2_("'_” 2 ( . ). (15)
=0 J
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Let @ be the probability that there exists a zero-diagonal network of
degree d in which the fundamental memories are stable. Then

9‘=1—P{u‘éi.}sl—l’{‘éf.}. (16)

Set M = m — 1 for notational convenience. Using Eq. (15) with the
upper bound for @ in Eq. (16) we have

~ N-1I M
P=2 M;(])

Fix A > 0 and choose M = [2N(1 + A)]. Then N = ¢;M where 0 < ¢, < }.
Using Lemma 4.3 we hence have

P <)M tzu (7) < 2-lI-HedlM , (n = x),

j=0

Hence 2N + 1 is a maximal upper capacity, and by Proposition 2.6 so is
IN=2(3'). =

A maximal lower capacity of N is readily demonstrated if an indepen-
dence conjecture similar to the one earlier holds. Fix any index / in [n],
and consider an extended set of N memories [uf);c;,.ier, @ € [m], where
each extended memory is a binary (=1) vector of length N. Denote this
set of (extended) memories by U.

CONJECTURE4.5. The set of extended memories U is linearly indepen-
dent with probability approaching one as n — ®.

For a choice of m =< ("3'), P% = 1 for almost all choices of m memories
by Lemma 4.2 if the above holds. This will yield a lower maximal capacity
of N = ("7'). We can, however, hope for more: the following application
of a result of Fiiredi (1986) provides a lower tound for the probability that
a dichotomy of a randomly chosen m-set from the vertices of an N-cube is
hls.

LEMMA 4.6. Let an m-set of points be chosen independently from the
uniform distribution over the vertices of the binary N-cube, B¥. Then, if
m < 2N, the probability that an arbitrary dichotomy of the m-set of points
is hls is bounded below by
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pr=20v 3 (M o, (e,
AN

where b > 1 is a fixed constant.

Remarks. The exponentially small order term quoted above is a re-
finement of Fiiredi's original estimate of O(N~'?) using Proposition 3.2.
The result eschews the general position requirement of Lemma 4.2. Spe-
cifically, the upper bound for P% in Eq. (11) is sharp if m < 2N and the m-
set of points is chosen independently from the uniform distribution on
vertices of the N-cube.

Firedi's result makes it appear likely that, in fact, 2N = 2 ("7') is the
maximal capacity of a zero-diagonal higher-order network of degree d.
We again have a situation as in the previous section where we would like
to apply the result not to the uniform distribution, but to the distribution
corresponding to the dth generation of an m-set generated randomly from
the uniform distribution on B". If the above lemma continues to hold for
this situation. then for m = 2N we can replace the estimate (15) in the
proof of the theorem above by

P} =1-243 (%) + 0w,

=0

where, again, we set M = m ~ 1. Using the union bound we have from
Eq. (16) that

1 — nP{g.} =P

Fix 0 < A <4 and choose M = [2N(1 — A)J. Under the above assumption
we then have for d = o(n) that

P=1-n :1 —2-M§ (';’) +0(b‘")]

=1-n :2-M S (’;’) + O(b"")]

=N

it
|
3

20§ (M) + 06

jzaaM
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where § < c; < 1. As M = Un% and N ~ n?/d! we then have by
Chernoff’s large deviation bound (Lemma 4.3) that for a choice of con-
stant c3 > 0

P =t~ g2 U-HM _ Opp-anty 5 1, (n — x).

So 2N + 1is alower sequence of maximal capacities, and hence, so is 2N
by Proposition 2.6 if Fiiredi's result holds in this case.

For the case d = 1 it is clear that Fiiredi’s lemma holds in toto so that
the above analysis works with N = n — 1. For the case of linear interac-
tions, hence, we have shown the following

THEOREM 4.7. The sequence 2n is the maximal capacity for zero-
diagonal neural networks with linear interactions, d = 1.

Remark. 1t is known that 2n is the capacity of a single linear threshold
element [cf., for instance, Cover, 1965; Venkatesh and Psaltis, 1991].
The above result asserts that there is no decrease in capacity for the zero-
diagonal network of n neurons even though we now have a situation
where n neurons operate on the same set of memories.

5. CONCLUDING OBSERVATIONS

1. For the case d = 1 Abu-Mostafa and St. Jacques (1985) demon-
strate that with the requirement that all choices of m vectors be stored as
fixed points for some choice of zero-diagonal network, m can be no larger
than n. However, small pathological sets of vectors which cannot be
stored can be found (Montgomery and Vijayakumar, 1986), and such
pathologies make it difficult to achieve nontrivial deterministic capacities.
The probabilistic setup adopted here essentially relaxes the requirement
that all choices of m vectors be storable to the requirement that almost all
choices of m memories be storable; pathological scenarios that cannot be
stored form a set whose size is small compared to (%), and are effectively
ignored in this definition.

2. The maximal capacities for nonzero diagonal networks are of the
same order as those for the zero-diagonal networks. Note, however, that
we are required to put restrictions on the allowable choices of interac-
tions. Specifically, consider the case d = 1. With a choice of identity
matrix of interactions, wy = &y, it is clear that all states in B” are stable
with the same margin of stability. There is clearly no associative storage
possible in this situation. To avoid situations of this type we have to put
constraints on the allowable interactions so that the number of extraneous
stable states do not become too large: specifically, the diagonal terms
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should not dominate the nondiagonal terms. Similar examples hold for the
higher-order cases.

3. The capacity estimates continue to hold if we are required to
store random associations of the form u® > v=. We then call the vectors v*
the associated memories. The spectral algorithm generalizes in a straight-
forward manner with the interaction matrix of coefficients of Eq. (9)
modified to

W = VAOTO)- 107

with V being the n X m matrix of associated memories.

4. The main unresolved issue in this work is the conjecture intro-
duced in this paper that the linear independence property is preserved
(strengthened!) when we consider higher generations of vectors chosen
uniformly from B”. This is independent of the Komiés conjecture.
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Recent results on the memory storage capacity of the outer-product algorithm
indicate that the algorithm stores of the order of n/log n memories in a network of
n fully interconnected linear threshold elements when it is required that ecach
memory be exactly recovered from a probe which is close enough to it. In this i
paper a rigourous analysis is presented of generalizations of the outer-product )
algorithm to higher-order networks of densely interconnected polynomial thresh-
old units of degree d. Precise notions of memory storage capacity are formulated,
and it is demonstrated that both static and dynamic storage capacities of all
variants of the outer-product algorithm of degree d are of the order of n‘/log n.
© 1991 Academic Press, Inc.

1. INTRODUCTION

1.1. OQverview

Formal neural network models of densely interconnected linear thresh-
old gates have found considerable recent application in a variety of prob-
lems such as associative memory, error correction, and optimization. In
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these networks the model neurons are linear threshold elements with n
real inputs and a single binary output. Each neuron is characterized by n
real weights, say w;, . . . , w;,, and a real threshold (which we assume
to be zero for simplicity). Given inputs u,, . . . , u,, the ith neuron
produces an output v; € {1, 1} which is simply the sign of the weighted
sum of inputs:

”

U; = sgn (Z w,-,-u,). . (N

J=1

A fully interconnected network of n formal neurons is then completely
characterized by an n X n matrix of real weights.

A number of authors have recently begun to investigate more general
networks obtained by incorporating polynomial instead of linear interac-
tions between the threshold processing elements. Specifically, the linear
threshold elements of Eq. (1) are replaced by polynomial threshold ele-
ments of given degree d; the output, v;,, of the i th higher-order neuron in
response to inputs u,, . . . , U,, is given by the sign of an algebraic form

v, = sgn ( > Wiigoigs Wiy * ° “i...)- ?)

1SS %1y, SA

The number of interaction coefficients is increased to n¢*' from the n?
weights for the case of linear interactions. The added degrees of freedom
in the interaction coefficients can potentially result in enhanced flexibility
and programming capability over the linear case: in general, the computa-
tional gains match the added degrees of freedom (Venkatesh and Baldi,
1991).!

In this paper we estimate the maximum number of arbitrarily specified
vectors (memories) that can be reliably stored by the outer-product algo-
rithm in a higher-order network of degree 4. We estimate both staric
capacities—where we require the memories to be stored as fixed points of
the network—and dynamic capacities—where the specified memories
are required to be artractors as well. Our principal results are as follows:

The static and dynamic storage capacities of all variants of the outcr-
product algorithm generalized to degree d are of the order of nillog n
memories.

The maximal storage capacities that can be realized in a higher-order
network of degree d are of the order of n? (Venkatesh and Baldi, 1991), so

' Higher-order neural with random interactions lead to rather different computational
issues. We deal with these in a concurrent paper (Venkatesh and Baldi, 1989a).
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that the outer-product prescription for storing memories loses a logarith-
mic factor in capacity. This, however, is somewhat offset by the ease of
programmability and the simplicity of the algorithm.

Notation. We utilize standard asymptotic notation and introduce two
(nonstandard) notations. Let {x,} and {y,} be positive sequences. We
denote:

1. x,=Q(y,) if there is a positive constant K such that x,/y, = K for
all n;

2. x, = O(y,) if there exists a positive constant L such that x,/y, <
L for all n;

3. x, = 0(y,) if x, = O(y,) and x, = Q(y,);

4. x,~y,ifx,/y,— lasn— x;wealsousex, < y,ifx,/y,< 1forn
large enough, and x, = y, if x,/y, = 1 for n large enough;

S. xp=o0(y,) if x,/ly, > 0as n— x,

We also say that a positive sequence, M,, is polynomially increasing if
log M, = O(log n) for any fixed base of logarithm. (All logarithms in the
exposition are to the base ¢.) We denote by B the set {—1, 1}, and by [n)
the set {l, 2, . . ., n}. Finally, by an ordered multiset we mean an
ordered collection of elements where repetition is allowed.

Organization. The basic definitions were set up in a preceding paper
(Venkatesh and Baldi, 1991), and we briefly summarize them in the rest of
this section. In Section 2 we describe the generalization of the outer-
product algorithm to higher-order networks. In Section 3 we present the
main theorem on the static storage capacity of the outer-product algo-
rithm. In Section 4 we prove the theorem for the simplest case of first-
order interactions where the neurons are linear threshold elements; the
proof techniques used here are somewhat simpler than those for the gen-
eral case. In Section S we prove the main theorem on the static capacity of
the higher-order outer-product algorithm. Following the proof of the main
theorem, in Section 6 we then infer similar static capacity results for the
outer-product algorithm when self-interconnections are proscribed—the
zero-diagonal case. In Section 7 we consider the dynamic case. Theorems
are proved in the body of the paper, while technical results needed in the
proofs are confined to the Appendix.

1.2. Higher-Order Neural Networks

We consider recurrent networks of polynomial threshold units each of
which yields an instantaneous state of —1 or +1. More formally, for
positive integers n and d, let $, be the set of ordered multisets of cardinal-
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ity d of the set [n]. Clearly |$,| = n?. For any subset I = (i, i2,. . . , i)
€ $4, and for every u = (uy, Uz, . . . , un) € B", set u; = I u;.

DEeFINITION 1.1. A higher-order neural network of degree d is charac-
terized by a set of n9*! real weights w; ,, indexed by the ordered pair (i, /)
with i € [n] and I € $,, and a real margin of operation B = 0. The
network dynamics are described by trajectories in a state space of binary
n-tuples, B": for any state m € B” on a trajectory, a component update u;
> u; is permissible iff

-1 ifzfggl Wi .< -3
ui =3 —u; if =B = ey, wisits = B 3)
1 ifE'E,J winidp > R

The evolution may be synchronous with all components of u being up-
dated according to the rule (3) at each epoch, or asynchronous with at
most one component being updated per epoch according to Eq. (3).

The network is said to be symmetric if wisy = w; 5 whenever the (d +
)-tuples of indices (i, I) and (j, J) are permutations of each other. The
network is said to be zero-diagonal if wi; = 0 whenever any index
repeats in (i, I). .

Let 3, denote the set of subsets of d elements from [n]; %4 = &)
Combining all redundant terms in Eq. (3), for symmetric, zero-diagonal
networks a component update u; — «; is permissible iff

-1 if 2 €30 wiatts < ~B
uj =4 —u; if -& =< EIEL:iQI winty = R (4)

1 if 2 /ey ie1 Wants > B.

As in the case of recurrent networks of linear threshold units, the
dynamics of recurrent higher-order networks can be described by
Lyapunov functions (Hopfield, 1982; Goles and Vichniac, 1986; Maxwell
et al., 1986; Psaltis and Park, 1988; Venkatesh and Baldi, 1989a) under
suitable conditions on the interaction weights. Consider, in particular, a
symmetric, zero-diagonal network of degree d. For u € B" define the
algebraic Hamiltonian of degree d by

-
Hd(ll) = = wildy. =
1€94.,

We then have the following assertion which we give without proof.
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ProprosiTION 1.2. The function Hy is nonincreasing under the evolu-
tion rule (4) in asynchronous operation.

In light of such resuits we are interested in the number of fixed points of
the network and, in the associative memory application, in the trajecto-
ries leading into the fixed points. '

DEFINITION 1.3. Let 3 = 0 be fixed. A state u € B of a higher-order
neural network of degree d is said to be &-stable iff

"izw<u)u1>%. i=1,...,n
1€34 .

Likewise, a state u € B” of a zero-diagonal network is said to be ®-stable
iff

u; W(,'J)“[>@, i=1,...,n
1ES, il

It is easy to see that B-stable states are fixed points of the higher-order
network with evolution under a margin 3. The notion of &- ;table states is
explored further in Komlés and Paturi (1988) and Venkatesh and Baldi
(1989a).

We refer to the data to be stored as memories. By an algorithm for
storing memories we mean a prescription for generating the interaction
weights of a higher-order network of degree d as a function of any given
set of memories. We will investigate the maximum number of arbitrarily
specified memories that can be made fixed in the network by an algorithm;
this is a measure of the capacity of the algorithm to store data.

1.3. Memory Storage Capacity

Letu!,. . . , u™ € B"be an m-set of memories to be stored in a higher-
order network of degree d. We assume that the memories are chosen
randomly from the probability space of an unending series of symme-
tric Bernoulli trials: specifically, the memory components, uf, i € [n],
a € [m], are i.i.d. random variables with

Pluf = -1} = Pluf = +1} = .
In the following we assume that the network architecture is specified to be

a higher-order network of degree d.

DerFINITION 1.4. We say that C, is a capacity function (or simply,
capacity) for an algorithm iff, for every choice of 8 > 0, the following two
conditions hold as n — o
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(a) The probability that all the memories are fixed points of the
network generated by the algorithm tends to one whenever m = (1 -
8)Ca;

(b) The probability that at least one of the memories is not a fixed
point of the network generated by the algorithm tends to one whenever m
= (1 + 8)C,.

If a sequence satisfies condition (a) we call it a lower capacity function
and denote it by C,. Likewise, if a sequence satisfies condition (b) we call
it an upper capacity function and denote it by C,.

Thus, if a capacity function exists for an algorithm, then it is both a
lower and an upper capacity function for the algorithm. Define an equiva-
lence class € of (lower/upper) capacity functions by C,, C, € € & C, ~
C.. We call any member of € the (lower/upper) capacity (if € is non-
empty). Note that the definitions ensure that if any capacity function
exists then the equivalence class of capacity functions is uniquely defined
(Venkatesh and Baldi, 1991). (This is not true, however, for lower and
upper capacities which are always guaranteed to exist.)

The above definitions of capacity require that all the memories are fixed
points with probability approaching one. We obtain weaker definitions of
capacity if we require just that most of the memories be fixed points.

DEefFINITION 1.5. We say that C, is a weak capacity function (or sim-
ply, weak capacity) for an algorithm iff, for every choice of 8 > 0, the
following two conditions hold as n — x:

(a) The expected number of memories that are fixed points is
m(1 — o(1)) whenever m = (1 — 8)C;;

(b) The expected number of memories that are fixed points is o(m)
whenever m = (1 + 8)C;.

If a sequence satisfies condition (a) we call it a weak lower capacity
Sfunction and denote it by Cr. Likewise, if a sequence satisfies condition
(b) we call it a weak upper capacity function and denote it by C.

We again define an equivalence class €* of (lower/upper) capacity
functions by C%, €¥ € €~ & C¥ ~ C~. We call any member of €* the
weak (lower/upper) capacity (if €* is nonempty).

For the network to function as an associative memory we require that it
corrects for errors in inputs sufficiently close to the stored memories.

DeriNiTION 1.6. For a given mode of operation (synchronous or
asynchronous) and a chosen time scale of operation (synchronous one-
step, synchronous multiple-step, or asynchronous multiple-step) we say
that a memory is a p-attractor for a choice of parameter 0 = p < {iffa
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randomly chosen state in the Hamming ball of radius pn at the memory is
mapped into the memory, within the given time scale, and for the given
mode of operation, with probability approaching one as n — «_?

In a manner cor .pletely analogous to the definitions of capacity above,
we can now define p-attractor capacities and weak p-attractor capacities
for the given mode of operation and the given time scale of operation by
replacing the requirement of stable memories by the requirement that the
memories be p-attractors.

2. TuHe OUTER-PRODUCT ALGORITHM

2.1. The Classical Hebb Rule

The outer-product algorithm (a special case of what is known as the
Hebb rule) has been proposed by several authors as appropriate in a
model of physical associative memory. While the algorithm is of some
antiquity, formal analyses of the performance of the algorithm have, how-
ever, become available only recently (cf. McEliece et al., 1987; Newman,
1988; and Kon:lés and Paturi, 1988). [For related nonrigourous results
based upon replica calculations and statistical physics see, for instance,
Amit et al., 1985, and Peretto and Niez, 1986.]

Letu!,. . . , u™ € B" be an m-set of memories. We will assume that
the components, «f,i=1,. .. ,n,a=1,. .., m, are drawn from a
sequence of symmetric Bernoulli trials. For the linear case d = | the
outer-product algorithm prescribes the interaction weights, w;, according
to the rule

L
w,j=2u,'-’u}’—gm8y. Lj=1,...,n,
v=]

where g is a parameter with 0 < g < 1, and §; is the Kronecker delta.
It can be easily seen that in this algorithm the memories are stable with
high probability provided m is small compared to n; further, the construc-
tion utilizing outer-products of the memories results in a symmetric inter-
action matrix which in turn ensures that stable memories are attractors.
The algorithm hence functions as a viable associative memory. McEliece
et al. (1987) (cf. also Koml6s and Paturi, 1988) carried out precise analyti-
cal calculations of the storage capacity of the outer-product algorithm

? For linear interactions, d = 1, Komlés and Paturi (1988) have investigated the more
stringent case where they require the enrire Hamming bal! of radius pn around a memory to
be attracted to the memory.
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under a variety of circumstances and showed that the capacity of the
outer-product algorithm is of the order of n/log n.}

The attractiveness of the outer-product algorithm for associative mem-
ory has led several investigators including Lee et al. (1986), Maxwell et
al. (1986), Psaltis and Park (1986), and Baldi and Venkatesh (1987, 1988)
to independently propose higher-order extensions of the algorithm.

2.2. Outer-Products of Higher Degree

While the results of McEliece et al. (1987) indicate that for the linear
case d = 1, the capacity of the outer-product algorithm does not depend
on whether self-connections are present or absent, the same does not
continue to hold true for higher-order generalizations of the algorithm.

As before, we consider an m-set of memories, u', . . . , u™ € B~
whose components are chosen from a sequence of symmetric Bernoulli
trials. Consider first a network of n higher-order neurons with dynamics
specified by Eq. (3). For every i in [n] and ordered multiset / € $, the
outer-product algorithm of degree d specifies the interaction coefficients,
wan, as a sum of generalized outer-products

Wan = }; utuj. (5)

For the zero-diagonal case we use the same prescription to specify each
wan with i € {n} and I € $,, and dynamics specified by Eq. (4).

While heuristic arguments suggest that the increase in the available
degrees of freedom in the specification of the interaction coefficients
would result in a commensurate increase in the fixed point storage capac-
ity (Peretto and Niez, 1986; Baldi and Venkatesh, 1987), hitherto no rigor-
ous estimates of storage capacity have been demonstrated. We provide a
formal analysis in the subsequent sections.

3. FIXeD PoINTS AND STATIC CAPACITY

3.1. The Main Result

Consider a network of degree d. By the evolution rule (3), if the ith
component of the ath memory is to be stable, we require that

3 The capacity estimates of McEliece er al. apply to the case where the memories are
required to be stable—or, more generally, where they are required to be attractors—which
will be our principal consideration in this paper. A somewhat different computational feature
of the algorithm has been investigated by Newman (1988) and Komlés and Paturi (1988) who
demonstrated that if errors are permitted in recall of the memories then the capacity of the
outer-product algorithm can, in fact, increase lincarly with n {cf. also the epsilon capacity
results of Venkatesh (1986) and Venkatesh and Psaltis (1991) in this regard).
¢ See Newman (1988), however, for investigations along a slightly different track.




MEMORY IN HIGHER-ORDER NEURAL NETWORKS 451

U? 2 W(,-_“ll? > @,
ey,

If each of the memories is to be a fixed point of the network we require nm
equations of the above form to be simultaneously satisfied, one per mem-

ory component.
Now select the coefficients w,, according to prescription (5) for the
outer-product algorithm of degree d. For each n define the sequence of

doubly indexed random vanables X% with

m

Xie=u? > wauf = u? Z 2 ulujui = n? + z (uj’u}‘ D u}'u,").

1€3,4 v=l IESy via €3,

(6)

Setting for v # a

. d A
Yit* = wlul Y ufuf = uf’u.'(z u}'uj”) , D
1€3, =1
we get

X=ni+ Y vie" ®

via

The evolution rule (3) will fail to retrieve the ith component of the ath
memory, «f, if Xi® < &. If we identify the term n? as the **sigral”’ term
and the term 2,., Y5 as the “*noise”’ term, a memory is ®-stable if the
signal term less the margin exceeds the noise term for each component.

Let €5 denote the event {X4* < B}, and let €, = UJ-, UT., 8% be the
event that one or more memory components is not retrieved (i.e., is not
@-stable). We are interested in the probability, P{%,}, of the event €,: we
would like m to be as large as possible while keeping the probability of €,
small, i.e., m as large as possible while keeping the probability of exact
retrieval of each of the memories high. For notational simplicity we
henceforth suppress the i, a dependence of the random variables X ;* and
Y,o* except where there is possibility of confusion. Denote

pa = E(Y2),
and for each d let

a Qd)!

4= @i 9)
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The following theorem is the main result of this section; it provides

an estimate of the storage capacity of the outer-product algorithm of de-
gree d.

THEOREM 3.1. Consider a higher-order neural network of degree d
with weights chosen according to the outer-product algorithm of Eq. (5)

and with a choice of margin B = mu, in the evolution rule (3). For any
fixed e > 0 and w > 0:

1. If, as n > =, we choose m such that

(- o [1 2loglogn +.2log 2(d + DA Ve
"= 32d + Drglogn @d + logn
A (log log n)] (10)
(log n)? /1"

then the probability that each of the memories is my ~stable is =2 1 — ¢;
2. If, as n > », we choose m such that

m = (I ~ w)nd [l + loglog n + log 2e(d + DAy
2(d + DAglogn log n
_ O(I(sg log n)] an
(log ny* /1*

then the expectéd number of memories that are my,,-stable is =2m(1 - ).

Remarks. The size of the margin of operation is dictated by the ex-
pected size of the noise term for a typical state which is not a memory. As
we will see in the subsequent development, the expected value of the
noise term can be as large as the order of mn‘-"2_]f this is not compen-
sated for in the margin of operation a large number of extraneous states
(nonmemories) will also become fixed points of the system. Note also that
relaxing the requirement that all the memories be stable to just requiring
that most of the memories be stable effects (roughly) a twofold increase in
the number of memories that can be stored.

COROLLARY 3.2. For a given degree of interaction d = 1 and margin
mpu,, the sequence

_ (d)!zd-l ”d
G = ((24 + 1)!) log n

is a lower capacity for the outer-product algorithm.
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COROLLARY 3.3. For a given degree of interaction d = | and margin
myu, , the sequence

Ccy =

( (d)!24" ) nd
Qd)d + 1) logn

is a weak lower capacity for the outer-product algorithm.

Remark. Slightly sharper bounds are derived in Section 4 for the case
d=1.

3.2. Outline of the Proof

The main step involved in the proof of the theorem-is the estimation of
the probability, P{§:%} = P{X, < mu,}, that one component of a memory
is not retrieved. We will utilize techniques from the theory of large devia-
tions of a sum of random variables from its mean to estimate this probabil-
ity. Over the next two sections we demonstrate that for the range of m we
consider, the following estimate holds: for any w > 0

_a- m)n‘}

P{&i°} < m exp { (n— x). (12)

The probability that one or more memory components are not retrieved is
less than nm times the probability that one memory component is not
retrieved; likewise, the expected fraction of memories that is not 3-stable
is just the probability that one memory is not 3B-stable, and this probabil-
ity is bounded by n times the probability that one memory component is
not retrieved. Using the estimate of Eq. (12) together with a choice of m
according to Eq. (10) and (11), respectively, yields an upper bound of ¢ for
these probabilities, and concludes the proof.

The two corollaries follow as a consequence of uniformity: the proba-
bility that all the memories are %-stable decreases monotonically as the
number of memories increases. If, for instance, for any fixed § > 0 the
number of memories is chosen to be equal to (I — ) times the capacity
estimate of Corollary 3.2, it is easy to see that for large n the number of
memories will be less than that specified by Eq. (10). The resulting proba-
bility that all the memories are @-stable will hence be asymptotically
better than 1 — €. A similar line of reasoning also establishes Corollary
3.3.

The main idea in establishing Eq. (12) is to exploit the fact that the r.v.’s
Y», v # a defined in (7) are i.i.d. Referring to (8), the probability that a
memory component is not retrieved is just the probability that the sum,
2, ealYs = u,), of (m — 1) zero-mean, i.i.d. r.v.'s is less than or equal to
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—n? + u,. As we will see in the next two sections, a careful estimation of
the mean, u,, of the r.v.’s Y7 will yield that u, = o(n9). It suffices, hence,
to estimate the probability that X ,,,(Y% — u,) = —n?; i.e., to estimate the
probability that the sum of r.v.’s Y} deviates from the mean by the large

deviation n9.

For the case of first-order interactions, d = [, the situation simplifies
somewhat. For this case the r.v.'s (Y — u,) themselves turn out to be
the sum of (n — 1) i.i.d., symmetric +1 r.v.’s, and the large deviation
estimate for the probability that a memory component is not retrieved can
be obtained by an application of the generalized Chebyshev inequality.
We present the derivation of the probability estimate for this case in Sec-
tion 4. )

For d > 1 additional problems arise as the r.v. Y, has an infinite mo-
ment generating function. In particular, the Chebyshev estimates of Egs.
(33) and (34) in the Appendix work only trivially. We tackle this case in
Section 5. The results needed here are two large deviation lemmas (A.6
and A.7) found in the Appendix.

4. FirST-ORDER INTERACTIONS

We begin with the following elementary observation.

Fact 4.1. Let by, . . . , by be i.i.d., symmetric, =1 r.v.’s. Let a,

. ., an be any set of =1 r.v.'s independent of the r.v.’s b, k = 1,
...,N.Thenther.v.'sZ, = ab, k= 1,. . . . Narei.i.d., symmetric,
*1r.v.'s.

Remark. Note that the r.v.’s a, need not be symmetric and may de-
pend on each other.

Lemma 4.2 below is a particular application of Chebyshev’s inequality.
The result is an asymptotic expression for P{€;°}, the probability that
a particular memory component is not retrieved. The result agrees
with what would be obtained by a naive application of the Central Limit
Theorem.

LEMMA 4.2. Let the order of interaction be d = 1 and let B = m be the
margin of operation. If the number of memories, m, is chosen such that
m = o(n) and m/Nn — =, then

P(€i%) < exp [— (2—"”—1)} (n — ). (13)

Proof. From Eq. (6) we can write

Xo=n+m-1+>>2,

réa ;%
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where, for fixed i and a, we define the random variables Z] = ufuuju;.
Note that_by Fact4.1ther.v.’s Z!,j # i, v # a are i.i.d., symmetric, =1
r.v.’s.5 By Corollary A.2 we have for a choice of margin 3 = m that

P&} = P = m = P{S T2z = -n+1]

via %1

< inf e " VE{e 2202}

r=0

inf =" VE {n I1 e"zf}.

=0 véa j#i

The terms in the product, e "%, v # a,j # i are independent r.v.’s as the
r.v.’s Z; are independent. The expectation of the product of r.v.’s above
can, hence, be replaced by the product of expectations. Accordingly,
denoting by Z an r.v. which takes on values ~1 and I only, each with
probability 4, we have

P{:&'l.a} < inf e-r(n—I)[E(e—rZ)](m-l)(n—l) = inf e"""”(cosh ’-)(m-l)(n-l).

=0 r20

Now, for every r € R we have cosh r < "2, Hence

(n—1) )

2 - —
P{¢:°} = inf exp (’ (m= D = 1) _ rin ~ l)) = exp (— m

rz0 2

Equation (13) can now be readily verified recalling the condition
miVn— x. 8

We are now equipped to complete the proof of the theorem for the case
d = 1. We will, in fact, prove a slightly stronger version of the theorem
with constants for the lower capacity which are larger than thase given in
Corollaries 3.2 and 3.3.

Proof of Theorem 3.1 (d = 1). From Eq. (7) we have that

n
— a, v, a, ¥V a, v, .a Vv
Yi= ulutulul =1+ > uiutulu.
j=1 FAdl

Hence u, = E{Y}} = 1, so that the requisite margin of operation in the
theorem is B = mu, = m. It is easy to verify that a choice of m as in Eq.
(10) with d = 1 satisfies the conditions of Lemma 4.2. Hence

3 The critical fact here is that each r.v. Z; has a distinct multiplicative term «; which
occurs solely in the expression for Z;.




456 VENKATESH AND BALDI
pee.t = p{UJ 0 8o} < 2. 5:. pigict < nmexp - (=)} (14)

For a choice of

m

n [ + log log n + log 4¢ 0 (log log n)] (15)

~ 3 log n 2logn (log n)?

in Eq. (14) we have that P{$,} < ¢ as n — x. As the probability that each
of the memories is m-stable is exactly 1 — P{%,}, this establishes the first
part of the theorem (with a slightly better constant for the critical number
of memories).

The second part also follows similariy by noting that the probability that
a particular memory is not stable is <ne~"?" by the union bound, and for a
choice of m given by

n log ¢ 1 ]
= + +

m=3 log n [l log n 0 ((Iog n)z.) ’ (16)

this yields - upper bound of ¢ for the probability. The result follows as
the exp number of memories that are not stable is m times the
probat iat one memory is not stable. (Again, the estimate for m
giver « . (16) is slightly sharper than that quoted in the theorem.) ®
Toe wriformity of the binomial distribution helps us to establish the

lower - spacity of the algorithm.
Cor.i1.awy 4.3, For a degree of interaction d = | and a margin of
operancri 3 = m, the sequence :

n
g—"-4logn

is a lower capc ity for the outer-product algorithm.

CoORrROLLARY 4.4. For a degree of interaction d = | and a margin of
operation B = m, the sequence

w

__n
= 2logn

is a weak lower capacity for the outer-product algorithm.

Proof of Corollaries 4.3 and 4.4. We will sketch the proof of Corollary
3.2; the proof of Corollary 3.3 is similar. Let 7, explicitly denote the
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probability P{&.°} that one component of a memory is not stable as a
function of the number of memories, M. Fix any choice of § > 0, and
consider a number of memories, M = (1 — §)n/4 log n. Forany ¢ > 0
chosen arbitrarily small in Theorem 3.1 we can choose n [arge enough so
that M < m with m chosen as in Eq. (15). The result now follows from
Lemma 4.2 since the probability that at least one memory component
is not retrievable is bounded from above by nMry =< nMe "M <
nme"m<g &

Remarks. Corollary 4.3 provides an improvement of a factor of § over
the lower capacity claimed in Corollary 3.2, while Corollary 4.4 provides
an improvement of a factor of 2 over the corresponding weak lower ca-
pacity claimed in Corollary 3.3. McEliece er al. (1987) show that n/4 log n
is also an upper capacity for the outer-product algorithm for the linear
interaction case d = 1, so that n/4 log n is, in fact, the capacity of the
algorithm. (The constants obtained there for the o(1) terms in Eq. (10)
with d = 1 are slightly sharper—a coefficient of 1 for the log log n/log n
term instead of the coefficient § that we obtain in Eq. (15)—but these do
not affect the capacity resuits.) The proof of the main theorem in
McEliece et al. (1987) also yields the estimate n/2 log n for the weak
capacity.

5. HIGHER-ORDER INTERACTIONS

The above proof of the theorem for d = 1 fails, however, when the
interaction order d is larger than one: specifically, ford = 3and r > 0, the
r.v. Y7 has an infinite moment generating function so that E{e "'} be-
comes unbounded and the generalized Chebyshev's inequality of Eq. (34)
is too weak. (For r = 0 the Chebyshev bound is trivial.) To see this,
consider d = 3, for instance, and r > 0; from Eq. (7) we obtain

Y = (l + i u?u,‘-’u;’u}')’.

Yy /

Let U ~ N(0, 1) be a standard normal r.v. By Fact 4.1 the summands
uiuujuj, j + i are i.i.d., =1, symmetric r.v.’s so that by the Central
Limit Theorem Y, converges in distribution to (1 + Vn — 1U)?, and this
has an infinite moment generating function. For d = 2, Chebyshev’s in-
equalijty is workable, but the bound is terribly weak. We will hence need
the large deviation lemma A.7 to cater to the higher-order cases.

Before proving the theorem for general interaction orders, we first es-
tablish some further properties of the random variables Y.
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DEFINITION 5.1.  Let Y be a discrete r.v. taking values in {6;};-_.. We
say that:

1. Yis skew-symmetricif P{Y = 0_;} = P{Y = g}forj=1,. . . ,«.

2. Yis unimodal if P{Y = 6_;} < P{Y = 6_,,,} and P{Y = 6,_,} >
P{Y=¢}forj=2,...,«

We note that, in fact, the r.v.'s Y, are skew-symmetric and unimodal.
Set & = uu;. For fixeda # v, ther.v.’s §1,. . . , £ areiid., symmet-
ric, 1 r.v.’s.

For d even, Y, = ¢! (&) + Eﬂ,{}’)“. The r.v. Y, takes values in the set

{-n? —(n~2)4, ..., (0n—2) nt}

andfork=0,1,. .. ,ln/2]

PYi=-(n- 2k)¥} = P{Yy = (n — 2k)¥} = (:) 2,

Hence the r.v.’s Y are symmetric (consequently, also skew-symmetric)
and unimodal. '
Fordodd, Y, = (1 + 2,,,£7€/)?. The r.v. Y, takes values in the set
{-(n =274, ~(n—-44,...,0n-2)¢ n%

andfork=0,1,. .. ,l(n—- 1)/2]
n—1
P(Y; = ~(n - 2k - 2)9) = P{Y’ = (n — 2)) = ( ) ) —

Hence the r.v.'s Y}, are skew-symmetric and unimodal.

LEMMA 5.2. For each n the rv.’s Y, are i.i.d. and as n — = satisfy

=0 if d is even
E(Y)) (17)
~ dhg-pan' =" ifdis odd, d = o(n),
Var(Y?) ~ xynd if d = o(n). (18)

Remarks. We actually show a little more than is claimed here. In Eq.
(20) we show an exact expression for u,. This is needed to set the margin
of operation accurately.

Proof. Recall that we had defined u, £ E{Y2}, and A, 2 (20)1/(1)!2' for
every nonnegative integer r. As before, denoting £} = ufuj for k = 1,

. . n,and v # a we can write
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» d
ri=e(Xe).
i=1

Ther.v.'séf, k=1,. . . ,n, B # care mutually independent by Lemma
4.1. Furthermore, each r.v. Y’ is determined by the distinct set of r.v.’s
£, . . ., &xwhich appear in no other Y8, B # v. Consequently, the r.v.'s
Y., (v # a), are i.i.d. for each n.

When d is even, following Definition 5.1 we have established that Y, is
symmetric so that E(Y%) = 0. Let us now consider d odd. From Eq. (7)
and by reason of the independent choices of the memories u® and u* we
have

E(Y) = > E@fu® - - uDE@ - - u). (19)

Juena=1
We now use the elementary fact that if x € B then

\ {x if k is odd

1 if & is even,

together with the independence of the components «;. Each expectation
in the sum in Eq. (19) is over a product of an even number, d + 1, of =1
r.v.'s corresponding to the fixed index i and to each assignment of values
10, . . . ,js. The expectation will have value 1 iff an odd number of
indices ji, take the value i, and for every index value h # i an even number
(possibly zero) of indices j; take the value h; otherwise the expectation
has value 0.

Let N, be the number of ways ji, . . . ,Jjscan be chosen from [n] such
that precisely g of the j; are equal to i with each distinct value assigned to
the remaining d — ¢ indices occurring an even number of times. We hence
have

E(Y) =3 Ng= 2 Nooy
q r=]
Now 2r — 1 indices from j;, . . . ,Jjs can be chosen equal to i in (5,4 ;)

ways. We must enumerate the number of ways, Nj,_,, that values j # i
can be assigned to the remaining d — 2r + 1 indices j; such that each index
occurs an even number of times.

Fork=1,...,(d-2r+ 1)/2lets =(s,,. . . ,s:) be a vector such
thatl <=y <s,<...ss;s(d—2r+ 1)/2and I} s;=(d - 2r + 1)/2.
Let Si, . . ., Sgpartition {s,, . . . , s:} in such a way that each §,is a
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maximal collection of s;'s that are equal, and let y, = |S|. Define the
redundancy factor

R
f(s) = ll—l .

We claim that

, (-2 112 d=-2r+ 1)
Ny = ( (

2 IR (2s‘)!f(s)) (n .l)(n 2)...(n- k).
In fact, the inner sum over s enumerates the number of ways k distinct
values j # i can be assigned to the n — 2r + 1 indices j; with each index
occurring an even number, 2s;, of times. The redundancy factor, f(s), is
required to compensate for overcounting when some of the s,’s are equal.
(For instance, f(s) = k! if sy = - - - = s;, while f(s) = 1 if each s, is
distinct.) Thus (with the convention that 22(-) = 1 if b < a), we have

d+172

ma=E(Y) = Y N,

r=]

mn/z( d )
N3
gu 27—

s 12 ( d ) (d-2r+ 112 d-2r+ 1)
=2 oy & 2@mor . @ove
(n=1-- - (n—k) (20)

!
T - 1)75.]'2(44»/: nd-" 4+ O(n-M), ifd = o(n).s 1)

r=]

Now (Y3)? = (2 ufu})®. A similar argument to that above gives

BV = (gga n* + O™, ifd = o(n). 22)

Equations (21) and (22) together complete the proof of the lemma. ®

¢ We can verify this by a standard CLT argument. Let U ~ N(0, 1) be a standard Gaussian
r.v. For d odd, as we saw from the earlier representation, Y} converges to (1 + Va - 1U)¢
in distribution by the CLT. Using EU* = 0if k is odd and EU* = k'/(k/2)'2%? if k is even, the
leading term in the binomial expansion of E(1 + Va — 1U)“ yields the result.

We do not directly use this argument, however, as the exac? representation of the mean is
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Remarks. The previous result establishes the need for a margin of
B = mp, in the evolution rule (3). For d even, of course, the margin is
precisely zero as the r.v.'s Y}, are symmetric and have zero mean. For 4
odd, however, the mean of the noise term in Eq. (6) will be of the order of
mn'4="2_If mn~4? — = then this dominates the signal term, n4, in Eq. (6).
Hence, almost all states (not just the memories) are fixed points unde. an
evolution rule with zero margin. Removing the bias due to this mean
results in the evolution rule of Eq. (3) with a choice of margin mu,.
Clearly, we can expect the memories to be mu,-stable because there is
still a strong bias of the order of n? due to the signal term; most randomly
chosen states, however, will not be mu,-stable. The usage of a suitable
margin hence ensures performance as a viable associative memory.

Note that for d = 1, however, we can dispense with the margin of m as
for m = o(n) the signal term n dominates the mean noise term m. Hence,
for the linear case we could adopt any choice of margin 0 < 3 < m, and
obtain adequate performance with the same capacity (McEliece er al.,
1987).

The following main lemma uses the large deviation result of Lemma A.7
to estimate the probability that a single component of any given memory
is not &B-stable.

LEMMA S.3. For any interaction order d = |, margin 3 = mu,,, and
any choice of parameter D > d if we choose m such that mn=4P-VD
and m = O (n4/log n), then for every w > 0

a- u:r)n"}‘

g m asn-—» o, (23)

P{€i°} < m exp {—

Proof. Lemma 4.2 gives the result for d = 1. We hence consider the
case d > 1. Define the normalized sequence of r.v.’s T}, by

Th=A"n"9Y}, — u,). (24)

By Lemma 5.2 E(T;) = 0and Var(T%)—> lasn— ». Set M =m — | for
notational simplicity. Clearly M — o« and M = o(n?). Using Lemma 5.2
with Eqs. (8) and (24) we have

P{(é:'a} = P{X,, = m“n}

=p{z 1;5—--\"7__41+-r,,},

via Ad

important in determining the probability that a row-sum violation occurs. If we use only the
highest-order term for the mean, the succeeding terms that were ignored will dominate the
inequality as n? = o(mn'4-M?),

? Again, (Y3)2 converges to (VaU)™ in distribution, and E(VaUY# = (2d)!n?/(d)'2".
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where 7, = O(n~1?). Now set

nde
n = T — — Tn. 25
Y Vi (25)

By the bounds on m we have y, = (VM log M) and y, = o(M). If the
conditions 1-4 of Lemma A.7 are met,® we would then have that as n — «

P ~ P {3 T < -
(1- w)yi)

=< M exp (- M

~mexp (- %:A{j—)

By construction, and by Lemma 5.2, the r.v.'s T, satisfy conditions I and

2 of Lemma A.7. Comparing Eqs. (25) and (38), we hence must show that

conditions 3 and 4 are also met for the choice of parameter D > d = 2 in

order to complete the proof. We show the result when the interaction

order is odd, so that D > d = 3. The proof is similar when d is even.
With a notation similar to that earlier, we have

T =2 |(1+ 3 erg) -

J*i

-in (26)
S A72n R + Up|? + A g0~ Pp,.

By Lemma 5.2 we have that u, = O(n“-"?). Further, it is easy to see that
[+ Uy = 1 + 29U,-|9. Using the simple inequality (A + By =
25(A* + B*) valid for positive A, B, and x, it hence follows from Lemma
A.6 that

lim sup E{exp(x|T%|??)}

=< lim sup Elexp{x22d+ "D\ ;VP|U,_||*#Pp-4D + O(n~'D)}]

< x

whenever we choose x such that

§ Note that y, = o(M2¥2-1) Hence, the bound Eq. (38) in Lemma A.7 will hold trivially
for any positive choice of y < x once condition 3 is established.
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x < 2-2d+IVD) YD (g;_)-f“’

This establishes Eq. (36). Now, noting that T}, is a discrete r.v. which
takes on only a finite set of real values with nonzero probability, we have
for any choice of K, = N{(log n)??} that

[ rarw= S rPT=1

It|>A(log n)P?

s X EPUsy = (AP g ) - ),
|1}>Allog nP?

In the above A > 0 is a real constant, and the summation is over the finite
set of real values that T}, can assume in the range |1| > A(log n)?. Now,
from Eq. (26) we have '

[Tl < 27"n% + O(n~'?) < 207"*n*?

as |1 + Uy} = n. Further, U,_, is a symmetric (binomially distributed),
unimodal r.v. Hence, we can find B = A" = O{n""*(log n)-?4} such that

P{U.-, = BA;*n'"(log n)"**}

= max P{Un—l = (rA,'[znd’l + #n)lld - l)
14> Adlog aYP2

It follows that

Ll|>K 2 dF,(1) < 4\g'n? P{U,-, = Bkyz"n"z(log )P}

V3 2y bd d 27

< 32 nd-12 exp (_ B2\ z%(log n)? )’
ks Ad 2

by an application of Corollary A.5. But by the choice of D we have that

D/d > 1, so that the right-hand side of Eq. (27) is o(n~??), and this
concludes the proof. =

Proof of Theorem 3.1 (d > 1). An application of Lemma 5.3 together
with the union bound finishes the proof of the theorem. For any fixed
w>0

pey = p {UJ UJ )

ia] a=1
= nmP{¢:"}
(1 — o)n?
< nm? exp (— dem—).
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It can now be readily verified by substitution of Eq. (10) that P{%,} =< .
Part 2 can be verified similarly. ®

A uniformity argument similar to the one used for Corollary 4.3 com-
pletes the proof of Corollaries 3.2 and 3.3 when d > 1. It appears plausible
that, just as in the linear case d = 1, the rates of growth in Corollaries 3.2
and 3.3 also apply to upper capacities for higher interaction orders d > 1.
The dependencies in the random variables, however, become rather more
severe when d > 1, and, as yet, there are no rigorous proofs in this regard.
In particular, the proof techniques used by McEliece et al. (1987) in
establishing capacitics for d = | cannot be used in toto for the higher-
order case.

6. ZERO-DIAGONAL NETWORKS

As before, let u!, . . . , 8™ € B" be an m-set of memories, whose
components are chosen from a sequence of symmetric Bernoulli trials.
We now consider zero-diagonal networks with interconnection weights
chosen according to prescription (5) for the zero-diagonal outer-product
algorithm of degree d.

Analogously with the notation of the previous section, for each n define
the sequence of doubly indexed random variables X.* with

m
Xie=ul Y wenuf =uf Y > ulujuf

IE3,i€1 v=1 1ed,igl
n-—1 (28)
= ( ) + 2 (uf’u,‘-’ 2 u}'u,’).
d véa 1€$, i€l
Again suppressing the i, a dependence and setting
Yo =ufu! D uful, (29)

1€4 il

we get

x~=("_l)+2y:.

d véa

For a margin of operation zero, the evolution will fail to retricve the ith
component of the ath memory, u?, if X3* < 0. As before, let €5* denote
the event {X5* < 0}, and let €, = U7, UT., €. be the event that one or
more memory components is not stable.
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Clearly E(Y%) = 0 and it is also easy to verify that Var(Y2) = ("2 ). The
following result then follows analogously to Theorem 3.1 with virtually
the same proof. (The situation is, in fact, simpler in the zero-diagonal case
as the symmetric nature of the r.v.’s Y} ensures that Lemma A.7 readily
applies in this instance.)

THEOREM 6.1. Consider a zero-diagonal higher-order neural network
of degree d with weights chosen according to the outer-product algorithm
of Eq. (5) and with a choice of margin B = 0 in the evolution rule (4). For
any fixed € > 0 and w > 0:

1. If, as n — =, we choose m such that
_ - o)nd
22d + 1)(d)! log n

[1 , 2loglogn + 2 log 22d + N(d)!Ve _ (Iog log n)]
(2d + Dlogn (log n)?* /1

m

then the probability that each of the memories is a fixed point is =1 — g;
2. If, as n > <, we choose m such that

m = (I — o)n? [l + log log n + log 2e(d + 1)! (log log n)]
2d+ 1)'logn d+ 1logn (tognp? /1
then the expected number of memories that are fixed points is Z2m(1 ~ ¢).

COROLLARY 6.2 For a given degree of interaction d = 1 and margin
B = 0 the sequence '

nd
G = 2(2d + 1)(d)! log n

is a lower capacity for the zero-diagonal outer-product algorithm.

COROLLARY 6.3 For a given degree of interaction d = | and margin
B = 0 the sequence

w nd
Cr= 2d + 1) log n

is a weak lower capacity for the zero-diagonal outer-product algorithm.

Remarks. Again, for d = 1 we can sharpen the results somewhat using
the same techniques as in Section 4. The result is a capacity and weak
capacity exactly given by Corollaries 4.3 and 4.4, respectively; i.e., for
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first-order interactions the presence or absence of the diagonal terms
makes no difference to the capacity. This, as seen above, is not true for
d > 1, however.

Note the somewhat surprising result that the zero-diagonal capacities
are larger than their nonzero diagonal counterparts even though the signal
term in the zero-diagonal case is somewhat lower than for the nonzero
diagonal case. In fact, the ratio of the zero-diagonal capacity to the capac-
ity when the diagonal terms are not set to zero is the rather substantial
factor of A,/(d)!. For large interaction orders, therefore, the outer-prod-
uct algorithm with diagonal terms set to zero picks up a factor of 2¢4/Vzrd
in capacity. This effect can be traced to the additional noise variance
caused by the diagonal terms when they are present (Eq. (18)); the growth
in the noise due to the nonzero diagonal terms exceeds the corresponding
growth in the signal term. In particular, adding the diagonal terms causes
an increase in the signal term from (*7') to n?; however, the corresponding
growth tn the noise variance is somewhat larger, from (m ~ 1) ("z) to
(m - I)A,,n".

7. ATTRACTORS AND DyNaMiIc CAPAcCITY

The capacity results derived above are readily extendable when the
memories are required not just to be stable, but to be artractors. Let u',
. ,u™ € B" be an m-set of randomly chosen memories and consider an
outer-product network of degree d. Fix 0 = p < {, and let ula] be a
randomly chosen state within the Hamming ball of radius pn surrounding
an arbitrarily chosen memory u®. We will require that system dynamics
map ufa] into the memory u® with high probability.
As before, we define the sequence of doubly indexed random variables
X by

X =u? 2 wantlal = u? E z uiujuylal.

€93, v=1 I€Y,

Setting

L)

Sie = (2 u,[a]u}’)d

=1

and

Yirr = utul (Z u,[a]u,’)‘.

=\
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we get

Xit=Se+ > v

via

Note that by the sphere hardening effect the random state ufa] will lie
on the surface of the Hamming ball of radius pn surrounding the memory
u?® with high probability for large n. We hence have that the estimate
Sia ~ nd (1 = 2p)? for the signal term holds with probability approaching
one as n — =, The signal term is reduced from its maximum value of n?
because of the slight initial mismatch (essentially pn components) be-
tween the probe vector ula] and the memory u®. Now, for d even the
noise terms Y;** are symmetric r.v.'s. For 4 odd we can write

d
y:‘l,a.u = (M:'.Ui[a] + 2 U?Uru;"’ujla])
jRi

= (Ai.a + 2 gj.v)d‘

Jri

where the r.v. A*® = uu;[a] has mean approaching 1 — 2p for large n,
and is independent of the symmetric, i.i.d., 21 r.v.'s #* = ufu}uju;{al
forj # i.

The evolution rule (3) will fail to retrieve the ith component of the ath
memory, u?, if X* < B. As before, let €}° denote the event {X:* =< B},
and let €, = UL, UZ., €;* be the event that one or more memory
components are not retrieved (i.e., is not ®-stable). We are interested in
the probability, 1 — P{%,}, that each of the fundamental memories at-
tracts a randomly chosen state in the Hamming ball of radius pn surround-
ing each memory in one synchronous step, as well as in the allied weak
sense resuit.

Let A, be as defined in Eq. (9), and let u, = E{Y.*"}. We see that the
arguments used in the proof of Theorem 3.1 continue to work here, albeit
with a slight reduction in the value of the signal term.

THEOREM 7.1. Fixe >0, w > 0, and choose a margin B = mu,, in the
evolution rule (3) for the outer-product algorithm of degree d. For any
fixed radius of attraction, p > 0:

1. If, as n = =, we choose m such that

_ (- o)1 — 2p)"n? [1 N 2loglogn + 2 log 2(d + NA,Ve
22d + 1)Aglog n 2d + 1)logn

-o(isa]
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then the probability that for each fundamenial memory a randomly cho-
sen state in the Hamming ball of radius pn surrounding the memory is
mapped into the memory in one synchronous step is =1 — &;

2. If, as n — o, we choose m such that

_ (= o)1 — 2p)¥n? [l + log log n + log 2e(d + 1)A4
T 22d + DAglogn log n

then the expected number of memories which attract a randomly chosen

state in the Hamming ball of radius pn surrounding the memory in one
synchronous step is =Zm(l — ).

COROLLARY 7.2. For a given degree of interaction d = 1 and a fixed
choice of 0 < p < & the sequence

Culp) = ((d)!(l - 2p)2"2“') nd

2d + 1)! log n

is a lower p-attractor capacity in one-step synchronous operation for the
outer-product algorithm of degree d.

COROLLARY 7.3. For a given degree of interaction d = 1 and a fixed
choice of 0 = p < { the sequence

o s _ (@1 = 2p)¥24-"\ nd
Calp) = ( Qhd + 1) )logn

is a weak lower p-attractor capacity in one-step synchronous operation
Jor the outer-product algorithm of degree d.

The fixed point capacity results of Corollaries 3.2 and 3.3 arc hence
weakened by just the multiplicative factor (I — 2p)% if we require, in
addition, that there be attraction over a Hamming ball of radius pn in one

synchronous step. Analogous results hold for the zero-diagonal case. Spe-
cifically

THeOREM 7.4. Fix € > 0, w > 0, and choose a margin of zero in the

evolution rule (4) for the zero-diagonal outer-product algorithm of degree
d.

1. If, as n — =, we choose m such that
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(1 = @)1 - 2p)¥nd [1 2loglog n + 2 log 2(2d + 1)(d)'Ve
T 2(2d + 1)(d)! log n (2d + 1) log n

- ol Geg )]

then the probability that for each fundamental memory a randomly cho-
sen state in the Hamming ball of radius pn surrounding the memory is
mapped into the memory in one synchronous step is =1 — ¢;

2. If, as n — =, we choose m such that

_ (- w1 - 2p)2"n"[ + log log n + log 2e(d + 1)!
T 2d+ 1)logn (d+ 1)logn

-0 (Gegnr )

then th» expected number of memories which attract a randomly chosen
state in the Hamming ball of radius pn surrounding the memory in one
synchronous step is =m(1 — ¢).

COROLLARY 7.5. For a given degree of interaction d = | and a fixed
choice of 0 < p < } the sequence

(1 =2p)4\ n?
Galp) = (2(24 3 1)(4)!) log
is a lower p-attractor capacity in one-step synchronous operation for the
zero-diagonal outer-product algorithm of degree d.

COROLLARY 7.6. For a given degree of interaction d = 1 and a fixed
choice of 0 < p < § the sequence

v +_ {1 =2p) n4
Calp) = (Z(d + 1)/ jogn

is a weak lower p-attractor capacity in one-step synchronous operation
for the zero-diagonal outer-product algorithm of degree d.

The following nonrigorous argument (as in McEliece et al. (1987))
seems to indicate that if we allow nondirect convergence to the memories
then we can, in fact, remove the factors of (1 — 2p)* by which the
capacity is reduced if we insist on direct convergence. Consider the non-
zero diagonal situation again, for instance. Fix a small p* > 0. If the
number of fundamental memories is chosen to be
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_ (1 = o)1 = 2p*)* n?
T (d+ Daglogn

then by Theorem 7.1 each fundamental memory directly attracts over a
Hamming sphere of radius p*n. Let p < 1 be the desired (fractional) radius
of attraction. Extending Lemma 5.3 for the direct convergence case (i.e.,
replacing n in Eq. (23) by n, = (1 — 2p)n) we obtain that the asymptotic
probability, 7, that a single component of a given memory is incorrectly
labeled is bounded by

pd-2d+ m-b)"/(l-b')")

7=0( log n

It is easily seen that 1 — 0 as n — o= if the desired fractional radius of
attraction, p, satisfies

p= % (1 - (ﬁ%—l)m’). 32)

In the multiple step synchronous case the probe vector has essentially pn
components incorrectly specified. The first synchronous state transition
will map the probe vector to a state where essentially n7 components are
wrong, with high probability. For any fixed p*, however small, we can
choose n large enough so that the probability of component misclassifica-
tion, r, becomes smaller still. Thus, for large enough n, the probe vector
will be mapped within the confines of a Hamming sphere of (small) radius
p* surrounding the memory. But by Theorem 7.1 the next state transition
will converge directly to the fundamental memory with very high proba-
bility. This (nonrigorous) argument indicates that for every fixed (small)
p*, and every choice of attraction radius p satisfying Eq. (32), we can find
n large enough that any randomly chosen state in the Hamming ball of
radius pn surrounding the memories will converge to the corresponding
fundamental memories within two synchronous transitions. Now, keep-
ing fixed, if we allow p* to approach zero it appears that the factor (1 —
2p)9 can be dropped from the capacity expression for large enough n.’

8. CONCLUSIONS

We have established that the outer-product algorithm of degree d (and
its zero-diagonal variant) can store at least of the order of n?/log n memo-

* The difficulty in making this rigorous is that we must estimate the probability of the
conjunction of two successive events: one mapping a ball of radius pa into a smaller ball of
radius p*n, and the other mapping the ball of radius p*n into the memory.
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ries. Open questions include the determination of tight upper capacities,
rates of convergence, and capacities when more than one synchronous
step is allowed in the dynamics, and extending and tightening Newman’s
(1988) description of the energy landscape to obtain estimates of the num-
ber of memories that can be stored when a certain error-tolerance is
permitted in recall. The key issue here is whether, as in the case d = 1, we
can gain a factor of log n in capacity if errors are allowed in the retrieval of
the memories.

APPENDIX A: LARGE DEVIATIONS

The technical lemmas of this section principally deal with large devia-
tions of a sum of random variables from its mean. Lemma A.1 is a gener-
alization of the Chebyshev inequality. Lemma A.3 is a standard approxi-
mation of the tail of the normal distribution function. Lemma A 4 is the
classical large deviation Central Limit Theorem for sums of (0,1) random
variables. Lemma A.6 outlines an inequality for generating functions in
the spirit of Khintchine's inequality. Finally, Lemma A.7 is a large devia-
tion result which applies to deviations much larger than those handled by
the Central Limit Theorem. The lemma is motivated by a large deviation
result due to Newman for symmetric random variables. Lemmas A.1 to
A.4 are standard results and we quote them without proof (cf. Feller
(1968), for instance).

LEMMA A.1 (Generalized Chebyshev Inequality). Let ¢, be a mono-
tonically increasing positive function on the real line. Let Y be any ran-
dom variable and suppose that E(y.(Y)) exists. Then for any u

E(y.(Y))

P{Y=u} =< . ()

Similarly, if Y- is any monotonically decreasing positive function with
E(Y_(Y)) < x, then

_ E(y_(Y))
P{Y= —-u}= RN
COROLLARY A.2. For any random variable Y and any u = 0
P{Y = u} < inf e~ E(e""), _ (33)
r=0
P{Y= —u} =< infe " E(e'Y). (34)
2
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As usual, in the following we denote by ¢ the normal density function
e(x) = Qm)~12e~*2,

and by @ the normal distribution function

P(x) = f; e(y) dy.

LEMMA A3, ®(—x) ~ ¢p(x)/x as x — =,

LEMMA A.4. Let {{;} be a sequence of i.i.d. random variables taking
on values 0 and 1, each with probability 3. For eachnlet S, = 2., {,, and
let a;, = P{S, = [n/2]+ Kk}, and put

S

Ifn— x and k is constrained to an interval k < K, where K, = o(n??) then
there are constants A and B such that

a A  BK)
!hgo(hk) ll “x TR 33)

uniformly in k; and, in fact, he(hk) is an asymptotic upperbound for a;
for any k. Further,

lnr2)
2K
a2n/2]1+ K.} = ¢ |- ).
P{S, =[n/2] + K,} ‘§.a.—9 ( 7;)
COROLLARY A.S5. Let R, denote the sum of ni.i.d. random variables
taking on values —1 and 1 only, each with probability 4. Let 4, = P{R, =
k). If, as n — =, k is constrained to an interval k < K, where K, = o(n¥?)
then

=0 ifn— kis odd

k

& ~—&¢(T) ifn — kis even.
n n

LEMMA A.6. Let {¢,} be a sequence of i.i.d. random variables taking
on values —1 and 1, each with probability §. Let U, = 2,';, é;. Then for
any choice of positive parameters w < 2 and t < w~*? we have

lim sup E(e"U+ ") < o,




MEMORY IN HIGHER-ORDER NEURAL NETWORKS 473

Remark. Note that the function is of the form exp{a|U|*} so that
Khintchine's inequality which requires that the test function be real ana-
lytic with all its derivatives being positive at the origin cannot be readily
applied.

Proof. The basic strategy is to show that the sequence of partial sums
corresponding to the Taylor series expansion for the generating function
defined above converges uniformly. Accordingly, we first estimate
E(|U,Jin?) forz > 0. Set {; = (¢ + 1)/2andlet S, = 2., {,. Now U, isa
symmetric random variable and S, = (U, + n)/2. We-have

E(U,)tin"?%) = 202 Y, k P{U, = k}

k=0

=2n" Y k2P{S, = (k + n)/2}

k=0

lan2)
< Btlpg-22 z (+ 12 aq
=0

where a; = P{S, =[n/21+ {}. Choosing } < 7 < § we effect a partition of
the above sum into three partial sums:

| " luosg:n}-l linJ lﬁj
E(U,l:n %) < + + .
‘| i=0 t={Gog w2}  1=la2)ei
e ! ~ N ~
2[ 22 2)

Now
log nl Latog m)2]
5, = geogen [lEA] R
2 1=0
= 2n~¥(log n),
and using the results of Lemmas A.3 and A.4 we have

¢ a2}

-2 (B
23 =2:"n (2) 1={n'2) o
~ znzfl (p(__nr-lfl)
~ \7'/% pR-TeIn g -A iy

Further, in the range (log n)/2 < | = n"/2 we have from Lemma A .4 that
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¢+ Dia~ %é«’ (72',-,)(1 +0 (E;‘Z))

- A(+172VVn
=2"n Lu—mw; x* p(x) dx|,

where we have overestimated the (I + o(1)) term by 2. It hence follows
that

ln'fl.'
22 =<4

fzm 12yVa
1=l(log m2]

Al-120Vva

x* o(x) dx

2 1%Yn" + 1)
~4 fn""(bl -1 xt p(x) dx

~4 [: xto(x) dx
= 2:/2+|,n.-llz r((z + ])/2).10

As the upper bounds for both X, and Z, approach zero with # it follows
that

E(U,l'n-70) = 2227212 T((z + 1)/2).

Using Stirling’s formula'! we then obtain for large & and fixed @ > 0 that

*

F E(I Unlokn-okﬂ) < zﬂ—ln (lw"‘”)" e—(u/z-m sz—nk-m_

For large &, the kth term of the partial sum

N gk
On = 2, 77 E(U,[*n-=2)
& k!

hence decreases exponentially provided w < 2 and 1 < w *?, As the

sequence of partial sums Qy converges to E(e”V""") uniformly in N, it
follows that E(eUs"™) < . =

LEMMA A.7. Let D = 2 be some fixed parameter, and for each n let
{T%},-1 be a sequence of independent random variables (with distribution
Sfunction F?}) satisfying:

1. E(T;) = 0;

© The gamma function is defined for any y > 0 by I'(y) = [§ x*~'e~* dx.
I For fixed w > 0 and & large, k! ~ V27 ¢-tk**'2 and I'(wk) ~ V21 e~ = (wk)~- 12,
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2. limp,. Var(T}) = 1;
3. There is a number x > 0 such that

lim sup E{exp(x|T»[?P)} < =; (36)

4. For any K, = Q{(log n)*?]

oo 7 AF3D = oD, (> ). (37

Let M, be a polynomially increasing sequence of integers satisfying M, =
o(nP), and let y, be a sequence satisfying y, = SHVM, log M,,), y, =
o(M,), and such that for some positive y < x

ya < (21020 yM,OUD-D), (38)

Then for any w > 0

v=|

(n — x).

Remarks. The above lemma is a generalization of a large deviation
result for symmetric random variables due to Newman (1988). Note that
condition 4 imposes a sort of ‘‘asymptotic symmetry’’ on the random
variables T;. In the application of the lemma to higher-order networks we
will choose a parameter D slightly larger than the degree of interaction d.

The deviations, y., encountered in the lemma can be chosen to be as
large as M} V22=1" which are much larger than the \VVM,, deviations of
the Central Limit Theorem.

The proof follows a standard truncation argument (cf. Newman, 1988).
We will in fact show results slightly stronger than claimed, viz.,

P{i=l T, = y,} =0 (M,, exp (— 2-;5"))

for the range of M, we will be interested in. This estimate can be further
tightened by strengthening some of the cruder bounds in the proof.

Proof. Define the truncated random variables

b AT WITHs (2;’;'4")""

0 otherwise.
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By a straightforward argument it follows that

v=]

P{ﬁf T = -—'y,,} < M,.P{\T:] > (2;’;")0&} + r{g = -'y,,}.

— vl “
— v

Py Py

Choosing r = y in Eq. (33) and invoking condition 3 (recall that y < x) we
get for any choice of w > 0

P, = M, e Elexp(y|T%|*P)}

_ 2
< MT exp (— Q—zﬁi) (n - ). (39)

(The choice of constant § is solely for algebraic convenience and does not .

affect the capacity results.) Similarly, choosing r = y,/M, in Eq. (34) we
get

P; < eTvoM {E exp (-— -_y_,.b%,',)}"

2 2 .
—_— -— _‘!."_ — -M—’l- -~ .r. )
= exp| M"(l 7 log E(e) ). (40)
Claim. E (e 1My = | + y22M2 + o(yUM?).
Proof. Setting K, = (y22y M,)P? we have

E(TY)

I

fms::. ! dF:(‘)

= t dF (1),

Id>Kl

i

with the latter equality following because T* has zero mean. Using the
lower bound on v, and the fact that M, is polynomially increasing, we
have &, = Q{(log n)°?}, so that by condition 4 and the bounds on y, we
have

v\ — - - - - _Z"_ .
[E(T2)] = o(n~P?) = oM ;") = 0<M,.)' “n
Further, condition 4 also ensures that
(i) = [, fdFi0 -1 (i), “2)
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Define the function g by
gw)y=e“— 1+ u~ u2
To prove the claim it suffices now to show that
e (BD)
In fact, if Eq. (43) holds them for any 8 > 0 we can choose r(8§) such that

D/r(8) < 8/2. With such a choice of r(8) we can now choose n large
enough that

,

lim sup %’r E[]f:l

}=D<°=. (43)

Mlzl Yal é
su <3
Msrg) —';Z £ (Mu) 2

Hence, if Eq. (43) holds, then for every fixed 8 > 0 we can choose n large
enough so that

. %;E ’ (yﬂt)}l S%i oo |8 ()] a2
1;_4_2 [ e (VF') dF3(1)
= s 5 s ()
< 8.

Thus

M YaTn yaTn 73.(7“:)2}
7:"3{“?(-——)— U+°M, Tz |70 m )

whenever Eq. (43) holds, and by Eqgs. (41) and (42) this would establish
the claim. As g(u) =< cu?e* for some finite ¢ and all u, it suffices hence to
show that

A

lim sup E {lf}l’ exp (— zA"Trﬂ)} < o, (44)
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Now, by the truncation of T}, and the bounds on v» it follows that

7;47"’ X;' (20-2Dy M, yD2D- )| )
= (20~ Dyp (O~ DYDAD-~1)| 3 |(D~2D| 4| 2D
< y|T|*P.

It hence follows that

lim sup E {|T3 exp | ~ rIal < lim sup E{|T 3”73},
s M, w—m

As y > 0, the exponential dominates the third power when T assumes
large values. Using the fact that y < x we can now invoke condition 3 to
establish Eq. (44). This establishes the claim.

As y./M, = 0, we have from Eq. (40) that

stexp[ —3—{“1‘:—2“’3( 217‘;“"(1%41»}]

~ew[- 22 (1 - 2 (2 (2)]

Then, for every w > 0

M, (1 - w)‘)'?.
i ] 45)

exp (— M,

Equations (39) and (45) complete the proof. ®
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Abstract

We consider recurrent neural networks of polynomial threshold units. We study the expected
number of fixed points in the case of random, symmetric interactions, equivalent to higher order
spin glass models of statistical physics. We derive precise asymptotic estimates for the expected
number of fixed points as a function of the margin of stability. In particular, we show that there
is a critical range of margins of stability (depending on the degree of interaction) such that the
expected number of fixed points with margins below the critical range grows exponentially with
the number of nodes in the network, while the expected number of fixed points with margins
above the critical range decreases exponentially with the number of nodes in the network. We
also briefly examine the random energy model.

1 INTRODUCTION

Recurrent networks of formal neurons have been popular in a variety of computational applications.
The model neurons in such structures are typically linear threshold elements which compute the
sign of a linear form of the inputs. A recurrent network results when such elements are fully inter-
connected, and as in any recurrent system, the fixed points are important in the characterisation
of the computations done by the structure. A particular case of interest results when the inter-
connections between neurons are symmetric: in such cases network dynamics are regulated by a
Hamiltonian or energy function (cf. Hopfield {1} for instance). In such an instance, we can imagine
the state space of the network to be embedded in an energy landscape with fixed points residing
at energy minima. A classical application of such networks is in associative memory where neural
interactions are adjusted so that memories are stored as local attractors.

We consider here a natural extension of the model to recurrent networks comprised of higher
order neurons which compute the sign of a polynomial form of the inputs. The added degrees of

*Presented in part at the Sizth International Conference on Mathematical Modelling, St. Louis, Missouri, 1987,
and the Conference on Neural Information Processing Systems, Denver, Colorado, 1987.
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ported by grants DMS-8800322 from the National Science Foundation and AFOSR-89-0523 from the Air Force Office
of Scientific Research.

{Department of Electrical Engineering, University of Pennsylvaina, Philadelphia, PA 19104. Supported in part by
the National Science Foundation under grant EET-8709198.
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freedom in specifying the polynomial interaction coefficients can be expected to enrich the compu-
tational dynamics that result. Distinct features emerge, however, in the analysis of these structures
depending on whether the higher order interactions are programmed (or “learnt”) or random.

In the programmed scenario, the goal is to tailor the higher order interaction coefficients so as
to obtain desired dynamical behaviours; this leads naturally to questions of capacity and efficiency
of higher order networks of given degree of polynomial interaction. In two concurrent papers (2, 3]
we present rigourous results on algorithmic capacity and efficiency in programmed situations for
higher order networks (cf. also Newman [4]). The main results can be summarised briefly as follows:
the computational gains in higher order networks parallel the extra degrees of freedom in specifying
the polynomial interaction coefficients; in particular, regardless of the algorithm used to specify the
interaction coefficients, the information storage capability of a higher order network is of the order
of one bit per interaction coefficient.

Higher order systems where the polynomial interactions are random may be useful as models
of disordered systems in statistical physics (spin glasses), or of neural networks, before any learning
has occured, or in the limiting case when too much learning has occured (the onset of senility!).
These will be our focus of analysis in this paper: in particular, we consider recurrent, higher order
neural networks with symmetric, random polynomial interactions. We characterise the fixed points
of these structures according to their margin of stability® which is a measure of how stable a fixed
point is with respect to perturbations. Qur main result may be informally stated as follows:

There ezists a critical range of margins of stability (depending on the degree of polyno-
mial interaction) such that the ezpected number of fired points with margins of stability
below the critical range increases ezponentially in the size of the network while the ez-
pected number of fired points with margins of stability above the critical range decays
ezponentially as the size of the network is increased.

There is thus a threshold phenomenon in evidence for the expected number of fixed points around
the critical range of the margin of stability. The fact that for a certain range of margins the
expected number of fixed points grows exponentially with the number of nodes in the network is
not unexpected; more counter-intuitive, perhaps, is the existence of a critical margin of stability
above which the expected number of fixed points actually decays as more nodes are added. We also
provide exact asymptotic expressions for the coefficients and exponents in the regime of exponential
behaviour, and evaluate the critical margins of stability. While considerable attention has been
focused on spin glass models in the statistical physics literature, at the time of writing rigourous
results appear to have been confined to the case of linear interactions and to estimates of the
expectation of the total number of fixed points (cf. Edwards and Tanaka [5], Gross and Mezard [6],
and McEliece and Posner [7}). The estimates derived here provide a finer partition of the expected
number of fixed points grouped according to their margins of stability, and extend the results to
higher order cases with polynomial interactions where the statistical dependences grow more acute.

The basic analytical tool used is Laplace’s method for integrals. The assumed random, in-
dependent, and symmetric nature of the interactions makes for some simplicity in analysis. The
results derived here for the disordered case may also give some intuition in programmed situations
where the interaction dependences are weak, though a corresponding analysis of the number of fixed
points for the ‘grammed case is typically more complicated. The analysis for the programmed
case depends . gly on the algorithm of choice, and is made harder by the presence of statistical

*In this context s motion is due to Komlée and Paturi [9].
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dependences in the interaction coefficients, especially in higher order cases. Rigourous estimates for
the total number of fixed points are known only for the case of linear interactions programmed with
the outer product algorithm: McEliece, et al [8] conjectured based on the corresponding situation
with random interactions that the number of extraneous fixed points is exponential in the number
of nodes and this was rigourously shown by Komlés and Paturi [9]. The issue remains open for
other algorithms such as the spectral algorithm (cf. Venkatesh and Psaltis [10]) even for the linear
interaction case. For the higher order cases no formal results have been shown for any algorithm.

In Section 2, we formally introduce recurrent higher order networks, and make precise the no-
tion of the margin of stability of a fixed point. We also show that when the polynomial interactions
are symmetric, network dynamics are regulated by an energy function. In Section 3 we consider
random, homogeneous, higher order networks and prove the main Theorem 3.3; Table 1 contains a
listing of critical margins of stability for certain fixed degrees of interaction; Corollaries 3.5 and 3.7
highlight two principal applications of the main theorem in showing an explicit expression for the
expected number of fixed points in the exponential regime for the cases where the degree of interac-
tion is fixed, and increases unboundedly with the number of nodes in the network, respectively; and
Table 2 lists coefficient and exponent values for the exponential regime for certain fixed degrees of
interaction. In Section 4 we deal with non-homogeneous networks, and also briefly examine a dif-
ferent model of randomness known in the literature as the random energy model (cf. Derrida [11)).
The proofs of the main theorems are developed in the body of the paper, while technical lemmas
and calculations are confined to the two appendices.

A brief word on notation: in addition to standard asymptotic conventions, we write 2, < y»
if 2, < yn for n large enough; all logarithms in the exposition are to base e; we also denote by IB
the set {-1,1}.

2 POLYNOMIAL THRESHOLD NETWORKS

We consider systems of n densely interacting threshold units each of which yields an instantaneous
state -1 or +1. (This corresponds in the literature to a system of n Ising spins, or alternatively, a
system of n neural states.) The state space is hence the set of vertices of the hypercube. We will
in this discussion also restrict our attention throughout to symmetric interaction systems.

Let Z; be the family of all subsets of cardinality d + 1 of the set {1,2,...,n}. Clearly |Z4| =

( d-:l ) . For any subset I of {1,2,...,n}, and for every state u = {uj,uz,...,un}€ B", set
ur = [lier ui.

Definition 2.1 A homogeneous polynomial threshold network of degree d is a network of n thresh-
old elements with interactions specified by a set of ( d:l ) real coeflicients wy indexed by I in

Z4. The evolution rule is asynchronous, and for i € {1,... ,n} is given by
u;” = sgn ( Z w,ul\(;}) . (1)
IeIq:iel

A (non-homogeneous) polynomial threshold network of degree d is a network of n threshold elements
with interactions specified by a set of Ej’:, ( i "H ) real coefficients w; indexed by I in UJ‘-=1 I,
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and, for ¢ € {1,...,n}, the asynchronous evolution rule
d
u} =sgn Z E wrungy | - (2)
j=11€T1,:i€l

These networks are readily seen to be natural generalisations to higher order of the familiar case
of linear threshold networks (d = 1). These systems can be identified either with higher order spin
glasses at zero temperature, or higher order neural networks. Starting from an arbitrary config-
uration or state, the system evolves asynchronously by a sequence of single “spin” flips involving
spins which are misaligned with the instantaneous “field.” The dynamics of these symmetric higher
order systems are regulated by higher order extensions of the classical quadratic Hamiltonian. We
define the homogeneous Hamiltonian of degree d by

Hy(u) = - Z wruy. (3)

IeI,

In like fashion we define the (non-homogeneous) Hamiltonian of degree d by

d
fld(u) = - Z Z wruy. 4)

j=11€l,
We briefly sketch the proof of the following result.

Proposition 2.2 The functions Hy and Hy are non-increasing under the evolution rules (1) and
(2), respectively.

Proor: We consider the case of Hy, the non-homogeneous case being similar. Assume u — u* is
a mapping along some arbitrary trajectory in state space for a homogeneous polynomial threshold
network of degree d. The proposition is trivially true if u is a fixed point. Consider the case where
u and ut are distinct. By the nature of the asynchronous mapping u and ut differ only in a single
component. Without loss of generality assume the i-th component of u changes sign: u} = —u;
and u}' = u; if j # i. Now consider § H4(u) = Hy(u*) — Ha(u). Factoring out u; in equation (3)
we can write

Hy(u)= -y Z WIUN (i) — E wyuy.

T1€T4:4€1 IeTy4:i¢1
Hence
§Hgy(u) = 2u; }: WU (i)
’GIdziGI
By assumption we have u; = —u} = —sgn (Elen:-’el w,u,\{,-)), so that § Hy(u) < 0. 1

In the terminology of spin glasses, the state trajectories of these higher order networks can be
seen to be following essentially a zero-temperature Monte Carlo (or Glauber) dynamics. Because
of the monotonicity of the Hamiltonians given by equations (3) and (4) under the asynchronous
evolution rule (1) [resp. (2)], the system always reaches a stable state (fixed point) where the
relation (1) [resp. (2)], is satisfied with u} = u; for each of the n spins or neural states.
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Definition 2.3 Let B be a non-negative parameter (possibly depending on n). A fixed point,
u € IB", of a homogeneous polynomial threshold network of degree d is B-stable if it satisfies

u; E wrupn iy > B, i1=1,...,n (5)
I€Ty: i€l
In like fashion, a B-stable state, u € IB®, of a non-homogeneous polynomial threshold network
of degree d satisfies

d
“‘Z Z wrun )y > B, i=1,...,n. (6)
j=11€T,:4€l

For B-stable states, B represents the marygin of stability for the fixed point; we hence refer to B
as the margin. We would expect B-stable states with large margins to tend to exhibit correspond-
ingly large basins of attraction, i.e., to be stable with respect to relatively large perturbations. Note
that according to this definition, all fixed points are 0-stable states. Komlés and Paturi [9] utilise
a similar notion in an analysis of the extraneous stable states for the case of a linear interaction

network (d = 1) programmed using the outer product algorithm.

3 HOMOGENEOUS NETWORKS
3.1 Higher Order Spin Glasses

Consider homogeneous polynomial threshold networks whose weights wy, I € I, are i.i.d., N(0,1)
random variables. This is a natural generalisation to higher order of Ising spin glasses with Gaussian
interactions. We will derive an asymptotic estimate for the expected number of B-stable states of
the structure. Asymptotic results for the number of 0-stable states (fixed points) for the usual case
d = 1 of linear threshold networks with Gaussian interactions have been reported in the literature
(cf. [5, 6, 7]). We extend the technique used by McEliece and Posner [7] to obtain the general
result.

As a function of n, let d, explicitly represent the degree of the homogeneous threshold network,
with the constraint d, < n ~ 1. To avoid trivialities we restrict ourselves to n > 3. For any given
n, and margin B > 0, let F{, 4, g) denote the expected number of B-stable states of a homogeneous
network of degree d,. In the following we will estimate F{, 4, 8) under various assumptions on d,
and B.

Let P, 4,5 denote the probability that a given state u is B-stable. Clearly, F(, 4,8 =
2"P(nd,,8)- Without loss of generality we assume that u = (1,1,...,1). For each n and i =
1,...,n, define the sequence of random variables S,'; by

S:, = Z wr.
I€1,, i€l
For u to be B-stable, we require that S% > Bfori=1,...,n.
Now, for each n, the random variables S}, ¢ = 1,... ,n are zero-mean, identically distributed,

and jointly normal. Set
1/2
n-2
pﬂ - ( d" ) ’ (7)

_ n-2 ik
n = \d,-1 ‘
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Then we have
2., .2 _ n-1 oo
o pL+ae: = , ifi=j
E(S,5%) = i
(552) 4 n—2 s g
% = \dg-1) ifi#j.
Now, let {c,} be the sequence
2
ngz dn
Cn = = , 8
and define the sequence of functions f, by
_ (t+ B/pn)?
fat) = 1og 8(t) - =52, ©
where, in usual notation, ®(t) = [*_ ¢(s)ds is the normal distribution function, and y(s) =
(2x)~1/2¢=#*/2 i the standard normal density function.
Proposition 3.1 .
n [}
Find,.8) = 2vn eV gt (10)

XCp J-—

Proor: We use the principle of equivalent Gaussians. Let X% X',...,X" be iid., N(0,1)
random variables. Construct the random variables Y, i=1,... ,n by

er = anO + an"-

The random variables {Y,:}"_, are jointly normal, and have the same expectations and covariances

as the random variables {S.}"_,. Hence

P,y = P{S,>B,i=1,..,n} = P{Yi>B,i=1,...,n}

= P {X‘ > -q—“X°+£, i=1,... ,n}
Pn n
00 .
= / P{x'>-"—"t+£,i=1,...,n} o(t) dt
- Pn Pn
° n B)
= o" (—t - — t)dt.
-/—oo Pn Pn (1)
The result follows from the defining equations (8) and (9). |

We will estimate the expected number of B-stable points given by equation (10) for large n
using variants of Laplace’s technique to estimate the integral (cf. de Bruijn [12], for instance).
Rather careful asymptotic estimates are required, however, as the integral depends critically on the
functions f,, and these depend both on n and the interaction orders d,.

It will be convenient to consider margins of the following form:

B=fpncy, a20, B20.

For given degrees of interaction, d,, the expected number of B-stable states will depend solely on
the choices of the parameters a > 0 and § > 0.
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3.2 B-Stability

Define the positive function
t e~t'/2
'ﬁ(t) = w( ) =7 —82/2 *
®(t) [l e */%ds
In Appendix A (lemma A.1) we show that, for every given degree d, and margin B, the function
fa(t) has a unique maximum at ¢t = t,, where ¢, satisfies

B
W)= 2= )

Note that ¢, depends implicitly on both the margin B and the degree of interaction dn,. The
following lemma, which we prove in Appendix B, provides the sought after estimate for F{, 4, 5)-

Lemma 3.2 Let B = Bp,c@ with0<a<1land §20. Ifd, = o(n), then
P 2"(”’[!"6‘:":"1)
R Y arey i O

We are now in position to state the main theorem.

Theorem 3.3 Let d, = o(n), and consider margins of the form B = fp,\/c,, with § > 0. Then
there are constants 1 and B2, with 0 < 8, < 3,, such that as n — oo:

(n — o). (12)

a) F(nd,.8) increases ezponentially with n whenever 0< 8 < By
b) F(n4,.8) decreases ezponentially with n whenever 8 > ;.

Proor: We consider the two cases, {dn} bounded, and {d»} unbounded separately.
Cast 1. {dn} is bounded.

From equation (8) it is clear that ¢, ~ dy, is bounded. Consequently, from equations (11), (25),
and (26) it follows that in equation (12) the term f,(2.) is bounded while the term V=Cnf(tn) is
bounded away from zero. It is clear then that, for large n, the behaviour of F{, 4, ) as B varies is
determined entirely by the sign of the exponent in equation (12). Now, from equation (25) we have

fn(tn)—— (1+;)—5§": ﬂ2+lg(m(tnd+ﬂﬂ_)) O(l),

where t,, is bounded and satisfies equation (11). It is easy to verify that if 8 = 0 then 14 fu(t»)/log2
is positive and bounded away from zero, i.e., the expected number of fixed points (0-stable states)
increases exponentially with n (see Table 2 for a listing of exponents for some fixed degrees of
interaction). Now, for every n, F{, 4, 5) decreases monotonically as # increases (the expected
number of B-stable states is a monotonically decreasing function of the margin), and an examination
of the above asymptotic estimate for f,(t,) shows that as § increases f,(t,) eventually decreases
sufficiently for 1 4+ f.(2,)/log2 to become negative. Recalling that d, takes values only in some
finite set, by assumption, from the above equation we can find 0 < 8; < Bz such that

. 1 [ 2/ . 1\ Bitn B dn ] _
tim sup logz[ (”d") & 2 a0 W
oo _1_ __v_-. _1. _'B’t" ﬂ2 —_ | = _
lim inf log2[ 2 l+d,.) v + log ot +ﬂ2\/¢1—)] 1. (14)
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As \/=¢af2(ta) is bounded above and away from zero, it follows from equation (12) that for every
B < By there is ¢(B) > 0 such that F, 4,8 = Q(278)); similarly, for every 8 > B, we can find

6(B) > 0 such that F, 4, 8) = 0(2-"4).

Case 2. d, — oo such that d, = o(n).
For a choice of margin B = fp,/c, with 8 > 0, we have from equation (9) that

(tn +ﬁ\’E;)2 - _ i Q(“tn)b _ (tn +ﬁ Cn 2

2¢n et k 2¢n (15)

Ja(tn) = log ®(ts) -

Further, using equation (24) and the asymptotic form for the error function, we have

o= 2210 () » ez (+0()):

Substituting from equations (15), (24), and (26) in equation (12) wé then have
of Cn log e
o 0T 00

Setting 81 = B2 = v/2log2 in the theorem, it is clear that exponentially increasing behaviour attains
when 0 < 8 < /2Tog 2, while, for 8 > \/2Tog 2, the expected number of B-stable states decreases
exponentially. To complete the proof we need to show that F{, 4, 5) increases exponentially with
n when 8 = 0. But this follows immediately because the expected number of B-stable states is a
monotonically decreasing function of the margin. 1

For d, = d = constant, and margin B = 8p,,/c,, the critical quantities 8, = f; = B* of
equations (13) and (14) can be precisely calculated. The critical values 8* are listed in Table 1
for a range of fixed interaction orders. Note that the critical values #* appear to increase to a
maximum around d = 25, and then decrease monotonically.

d ﬂ' d kd Wy
1 |0.0690 1 1.0505 | 0.2874
2 |0.1214 2 1.1320 | 0.4265
3 | 0.1557 3 1.2178 | 0.5124
4 | 0.1792 4 1.3031 | 0.5721
5 |0.1960 5 1.3868 | 0.6165
10 ] 0.2349 10 1.7784 | 0.7382
25 | 0.2476 25 | 2.7867 | 0.8541
50 | 0.2316 50 | 4.2207 | 0.9104
100 | 0.2023 100 | 6.7176 | 0.9466
1000 | 0.0959 1000 | 39.3421 | 0.9917

Table 1: Critical values of margin, 8°, for var- Table 2: The behaviour of the expected num-
ious choices of fixed degree, d ber of fixed points, Fin 4,0y ~ k42™¢, for dif-
ferent values of fixed degree of interaction, d.

More explicit results can be deduced from Lemma 3.2. In the range where the expected number
of B-stable points increases exponentially, the multiplying coefficients and exponents can themselves
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be precisely calculated given the interaction orders d,. Particular cases of importance result when
{d,} converges to some d > 0, and in particular, the case d,, = d = constant, and the case d, — oo

monotonically.
Consider the case where d, = d = constant. Let a > 0 and S > 0 specify the margin B, and

let s be the unique solution of the equation

Ws) = 8 +dﬂd".

The location, t,,, of the maximum of f, (satisfying equation (11)) can be approximated up to terms
of the ~.:der of n~2 by

t,,=.s+f+0(-£2-),
n n
where x is independent of n and satisfies

_d(d+1)[s+ (1 - a)bd®)

T d+ (s+ Bdo)[s(d + 1) + Bde)’
Using the above approximation for ¢, in Lemma 3.2, and collecting all terms up to the order of
n~2 in the exponent in equation (12) yields the following result.

(16)

Corollary 3.4 Ifd, =d >0, and B = Bp,c; witha > 0 and § > 0, then, as n — 00, F, 4, 8) ~
k42™v4, where the multiplying coefficient, kq, and ezponent, wq, are independent of n (and depend
solely on the interaction order, d, and the margin parameters, a and §); specifically,

d+1 (32 + 2s83d* ﬂ%{la) 1 log (\/2_1'(3 + ﬂd")) ’

2dlog2 d+1 Td+1) g2 d

wg=1-

and k4 can be ezpressed in the form C eP where

d 1/2
¢= [s’(d+ 1) + sfdo(d + 2) + f*d* + d] ’
and with x as in equation (16),

d+1
2d

~nfd* 1t -

D =

s* - 2s{x - Bd°(1 - @)} + 2d**(1 - 20) + 2d|

afd*(d+1) K
s+ pde T s+ pd>

An important special case results when we choose the margin to be identically zero.

Corollary 3.5 Ifd, = d > 0, the ezxpected number of fized points is asymptotically ~ kq2™“4 where

_ 1 [(d+1)s? sV2rx
wa = 1-93 12 +l°g( d )]

_ / d (d+1)s?
kd = m exp (——-2—d—) .
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Table 2 lists the exponent wy and the multiplying coefficient k4 for various choices of fixed interaction
order d with a choice of zero margin.
The monotonicity of Fi, 4, g) with B yields

Corollary 3.8 Let B = Bp,.c2 be the margin. If d, — 0o such that d, = o(n) then:

a) the expected number of B-stable states increases ezponentially with n if 0 < a < 1/2 and
B0

b) the ezpected number of B-stable states asymptotically tends to zero as n — o0 if a > 1/2
and 8 > 0.

Note from Table 2 that as d becomes large F{, 4,,8) approaches 2". This is supported by the
following result which gives the number of fixed points (0-stable states) when the interaction orders
are allowed to grow large.

Corollary 3.7 If as n — oo, for any fixed choice of 7 with 0 < 7 < 1, {d,} satisfies d, =
QnAlogn)T], and d, = o(n), then the ezpected number of fized points (zero margin) is given by
Findn0) ~ ki,2™%, as n — 0o, where

= . S
" 2v2x logd,’

vy = 1-Jogdn  loglogd, log(v/47 /e)
dn dolog2 ' 2d,log2 | d.log2

k4

Proor: Consider the exponent in the integrand of equation (10). We have
nt2 nt2
nfn(tn) = nlog@(tn) -2 =- E Q( tn)k -

Using the asymptotic formula for the tails of the normal distribution (cf. Feller’s text [13], for
instance) together with Lemma A.3 (equation (23)), and equations (8) and (26) in equation (12)
completes the proof. 1

Note that for this case, the multiplying coefficient k4, and exponent wy, assume particularly
simple closed form expressions depending solely on the interaction order d,. Note also that wy, — 1
as n — 00, as is expected. The growth of d,, with n is rather rapid in Corollary 3.7. Results akin to
Corollary 3.7 can be computed for slower rates of growth of d,, (for instance, d, = n%, 0 < a < 1).
We do not yet have rigourous results, however, for the case where d, scales linearly with n.

4 NON-HOMOGENEOUS NETWORKS
4.1 Higher Order Spin Glasses

The non-: mogeneous case has several more degrees of interconnection freedom. The results of the
last section can, however, be simply extended to this case.

S S G TN Wy A B T B @
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Analogously with equations (7) and (8) let

and

and to every choice of margin (fixed 8 > 0 and @ > 0) B = fp,c in the homogeneous case
associate a margin B= BPnéS in the non- homogeneous case. Define the sequence of functions f,
(corresponding to equation (9)) by

R 3 /5 )2
ult) = 1oga(n) - LB (7)

Let F" 4,.8) denote the expected number of B-stable states of a non-homogeneous algebraic
threshold network of degree d, with Gaussian interactions.

Proposition 4.1

- Jr2t (e s
Findnt) = J5ee | e/ di. (18)
Proor: Fori=1,...,n set
dn
S, = Z E wy.
j=11€I,:1€l

Noting that P(n,d..,B) =2"P {55 > B,i=1,...,n}, the proof follows the same outline as that for

Proposition 3.1. |

Theorem 4.2 Ifd, = o(n) then P(n,d,‘,B) ~ F(n d,,B) 857 — 0.

Proor: We use the following inequality due to Blake and Darabian [14]. Set r = d/(n ~d + 1).
Then

;)
1 (1 (n+ 1)r? ) < J 1

T-r \' “dm—d+ (1 -r) <

&)
ny i (,-f):(;:i)(l_%_o(%)) (1_-_0( =)

For d, = o(n) we hence have
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The analysis in Theorem 3.3 now continues to hold in toto. |

So far we have considered relatively small interaction orders, d, = o(n). A theoretically
important case results when d, is allowed to grow linearly with n. In fact, as d, approaches n,
almost all dichotomies of 2" points in binary n-space can be separated by a non-homogeneous
network (Venkatesh and Baldi (2]). It is useful, hence, to estimate the number of fixed points,
F(n.d...o)' for the random case when d,, grows linearly with n.

Theorem 4.3 Ifd, ~ n/2 then F(n,d,.,o) ~2"/(n+1) asn — oo.
Proor: If d, ~ n/2 then &, = n[l £ O(1/+/n)]. Hence from equations (17) and (18),

: _ TN [ arna—t2/2 8 /vn
where v, = (y/n). Fix 0 < 7 < 1/4. Then

[B(n7)+! — $(—nT)™H)] e~ /vn 1 /n' 22—t v $(n7)+1 ~ $(—nT)+!
e <\/§; _n'Q(t)e e ’dt< —— ,

while

1 —2/2 2 2r 1 - @(n")"+! 4 $(—n")"H!
0L [ apetetin i g o |
= V2x Jigonr (8)7 € =€ n+1

Now &(n")**! = 1, &(~n")"*! = 0, and n?" /v, — 0 as n — co. Hence

1 n’ 2 2 1
)" -t2/2 —t¢fvn ~
Ver /.,,, (8)"e™ e dt n+l (» = o),

1 2 2 1
—_— Q t n_-t /2 -t /‘Un dt = —_ .
57 e 8O )
The proof is completed by substitution in equation (19). |

4.2 Random Energy Model

The dynamics of the symmetric interaction systems considered above are characterised by Hamil-
tonians or energies. The determination of the number of fixed points of such a system is hence
equivalent to counting the number of states which form (local) energy minima. For higher order spin

glasses, the energy of each state given by equation (3) is an A {0, ( :-;11 ) ] random variable.

The energies of different states are dependent, identically distributed normal random variables.

The random energy model (cf. Derrida [11)) is an allied system which assigns energies as i.i.d.,
N(0,1) random variables to the vertices of the hypercube. State energies are now independent
normal random variables. Such an assignment of state energies results in random acyclic orien-
tations of the vertices of the hypercube (cf. Baldi {15]) defined by state transitions: u + v iff
H(u) > H(v). For any given assignment of energies, the corresponding acyclic orientation can be
realised by a (non-homogeneous) threshold network with degree d, = n. In particular, we have 2"
interaction coefficients for such a system so that any particular assignment of 2" state energies can
be realised for a particular choice of coefficients.

Let G, be the number of local energy minima corresponding to a random acyclic orientation.
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Theorem 4.4
278
E(G,) = m——
(n—1)2~!
V; —
ar(Ga) (n+1)?
Proor: Let s',i=1,...,2", enumerate the vertices of the hypercube. For i = 1,...,2", let the

random variable I' be the indicator for state s', i.e.,

; { 1 if ' is an energy minimum
r= .
0 otherwise.

We then have G, = ,2:1 I'. The probability, p = P {I' = 1}, that-any particular state is a local
minimum is just the probability that it is assigned a lower energy value than any of its n nearest
neighbours (at Hamming distance one from it). As the assigned energies are i.i.d. random variables,
we have p = 1/(n + 1). Hence the expected number of fixed points is 2" /(n + 1). We now compute
the joint probability that two states s' and s’ are energy minima. Let d;; represent the Hamming
distance between s' and 8’. It is easy to see that

1/(n+1)? if dj; > 2
1/n(n+1) ifd;=2
0 ifd;; =1
1/(n+1) ifd;=0.

P{I‘Ij=1}=

Now, we have

n gn n 2
Var (G,) = E(G?) - (EG,)? = %:ZZP{I"I" =1} - (ip{ﬁ = 1})

i=1y=1 =1

——2"—+2E 1 +2 > - -(2")2
T on+1 &~ n(n+1) —~  (n+1)2 n+1)
1< 1<)
di; =2 dij > 2
Collecting terms and simplifying yields the final result. |
Note that the result of Theorem 4.4 provides anecdotal support for the result of Theorem 4.3

as a sort of limiting result. Stronger results can be shown for the random energy model: the number
of fixed points, G, exhibits central tendency. Let G}, denote the normalised r.v.

_G.-EG,
= Lo

Theorem 4.5 There is an absolute positive constant C such that for every z

P (G5 < z) - &(z)| < C270%n,

Ga

We refer the reader to the papers by Baldi, et al [16, 17] for a proof of the theorem. It is an
open question whether the number of fixed points of higher order spin glasses also exhibits central
tendency.
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5 CONCLUSIONS

We have rigourously estimated the expected number of stable points of higher order spin glasses with
generalised Gaussian interactions. The critical feature observed here is the threshold phenomenon
that is evidenced in the expected number of fixed points around a range of degree dependent critical
margins. For margins below the critical range we have shown a precise exponentially increasing
form of the solution, while for margins greater than the critical range we have shown that the
expected number of fixed points decreases exponentially with the number of nodes in the network.
Open questions remain on a more precise determination (than the mean) of the number of fixed
points (as a function of the margin), and in particular, on whether there is central tendency as in
the random energy model.

The results of this paper appear to have relevance to the programmed situation where interac-
tion strengths are to be chosen for which specified collections of binary n-tuples are fixed points with
some desired radius of attraction. In such cases it is important to be cognisant of the number of
extraneous fixed points—and their radii of attraction—that are developed incidentally. Rigourous
results have, however, been shown only for the linear interaction case (d = 1) with interactions
programmed by the outer product algorithm (Komlés and Paturi [9]). The analysis appears to be
substantially harder for higher order cases, even for the relatively simple outer product algorithm
(cf. Newman’s earlier paper [4] and our two concurrent papers (2, 3] for illustrations of the difficul-
ties caused by the more severe statistical dependences in higher order cases). The extraneous fixed
point structure of other algorithms, such as the spectral algorithm (Venkatesh and Psaltis [10]), is
even less understood, especially in the higher order versions. It is not readily apparent whether
the results derived here for the case of random, symmetric interactions (especially Theorem 3.3
and the corollaries) can be utilised in a rigourous analysis in programmed cases; nonetheless, these
results may provide qualitative indications of behaviours that may be expected in programmed
cases, especially when the dependences are weak.

Acknowledgement

We would like to thank the referees for their suggestions which served to help focus the main results
of the paper.

A Properties of f,
Lemma A.1 For each n (and any choice of margin, B > 0, and degree, dy, ):
a) fa 18 @ convez N, strictly negative function with a uniqgue mazimum att = t,;

b) fort> 1, f! increases monotonically to —1/c, ast — oo.

Proor: First we claim that ¢ is a positive, monotone decreasing function. Clearly ¥(t) > 0 for
all t. Consider ¥/(t) = —ty(t) — ¥(t)®. We have ¢/(t) < 0 for t > 0. Now, for t > 0 consider

_p(=t) (-t _
Y- =3)> i t>0.
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Hence y'(t) < 0 for all t so that ¥ is monotone decreasing. By repeated differentiation of equa-
tion (9) we have

) = w- 20, (20)
) = —¢(t>’—w<t)—§;. 1)

Now f/'(t) = ¢/(t) ~ 1/cn < 0 for all t so that f;, is strictly convex N, while the monotonicity of
¥ guarantees a unique solution at ¢ = t,, to f.(t) = 0. As fn(t) < O for all ¢t by inspection of
equation (9), part (a) follows. Now note that

[tp(t)] = 9@ + th(t) - 1] < —ty(1)* <0 (t21).
Hence both ¢(t) and ty(t) decrease monotonically to zero so that (b) follows. |

Lemma A.2 For each n, f, has derivatives of all orders, and in fact, for k > 3, the derivatives

,(.k) are independent of n and have the representation

1k/2) k-2
W) = 3 b k-2mm g ym, (22)

{=0 m=1

where the coefficients c( ) are real constants independent of n, and ¢ (k) = (-1)k-1,

Proor: Note that for k > 3 we have f,(.k)(t) = ‘-E,’%}il. The result follows by induction. 1

Lemma A.3 Let B = fpncd witha > 0 and 3 > 0, and let f, achieve sts mazimum at t,,. Then
as n — 0o:

a) ifd, — d, then t, — s where s satisfies
p— i = 0—1.
'b('s) d ﬂd ]

b) ifd, = o0, anda =0 or =0, then

1/2
th = [2!ogc.,l - loglog ¢, — log(4x) + 0( 1 )] ; (23)

1/2
)] . 24)

y

¢) ifd, 2 00,0<a<1,andf >0, then

7

th = [2(1 — a)logen — 2log(AV2r) - O (

ab
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Proor: Part (a) follows by continuity of ¢ as ¢, — dn (n — o0) from equation (8). Parts (b)
and (c) can be verified by direct substitution. 1

REMARKS:

futy) = -5 (1 + é) _ Btacat - %zc,’,"“ _log (m(t,. + ﬂc:)) , (25)

2 P
fr';(tﬂ) = 0,
2
fi(ta) = _‘:" (1 + é) — 1B (1 + }) _prct é (26)
k-1
() ~ (TRt 4 4e3), k23, da oo (27)

Note that for k > 3, f,(.k)(t) does not depend on n any more so that uniform bounds can be
obtained.

We will seek to approximate the functions, fa(t), by the first few terms of a Taylor series
expansion. Specifically, for particular choices of ¢, > 0 and é, > 0 we use

PIRY) VRY
=t < 80 = [ 1a(0) = futn) = f20ta) 52| < 0 i) (28)

The next two lemmas outline conditions under which the above holds.

Lemma A.4 If the sequence {d,} is bounded then for any specification of margin, B = fp,cq with
a>0and B8 > 0, and for any € > 0, we can find § > 0 uniform with respect to n such that
equation (28) holds with a choice of €, = € and §,, = 6.

PROOF: Set go(t) = fu(t) — fa(tn) — fi(ta) (t — ta)?/2. We have ga(ta) = g5(tn) = gn(ta) = 0.
Applying the Mean Value Theorem, we can find 0 < a < 1 such that, gn(t, + a) = (g, (tn + a(),
while ¢, (tn + a() = o(a() as { = 0. Hence g,(tn + ¢) = 0(¢?), (( — 0). Thus, for each n, and
every € > 0, we can find 8, > 0 such that |g,(2)] < €(t — t,)?/2 whenever |t — t,| < 6,.

Now assume without loss of generality that d,, takes values from the finite set {u!,...,uX}.
Fori=1,...,K, set

1\a)2
£ A

log $(1) —

. . . N (2 t')2
¢ = 5o- i) - 1w LS
where f' has its maximum at #'. Then for every ¢ > 0 there exists §' > 0 such that lg'(?)] <

€(t — 1)2/4 whenever |t — tf| < §'. Now ¢, = d,, + O(1/n) so that from equation (11) it follows
that t, = t' + O(1/n) for some i € {1,...,K}. [As ¢ is monotone decreasing, we have:

wmtx=(£-5) /() -0 (3)
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As d, is bounded we are guaranteed that t' is also bounded, so that the result follows.] From
equations (9), (25), and (26) it hence follows that

. -t ) )
=101+ 0(3) <=2l 0(L)  g-ni<,

We can hence choose N such that for n > N, we have |ga(t)] < €(t — t,)?/2 whenever |t —-
to|<min{4',...,6K}. We can finally choose a smallest § = min{éy,...,6n,8",...,6%} to establish
uniformity. |

Lemma A.5 Let B = OpncS be the margin. If dn — 00 as n — oo, then equation (28) holds for n
large enough for the following choices of €, and 6,:

a) €, = Aloge,/cq and 6, = A/\/128Toge, ifa=0o0r B =0; .

b) € = Alogc,/cl™® and 6, = A/(88(1 — a)\/Togen) if 0 < a <1 and 8 > 0.
Here A > 0 is a suitably small (but fized) choice of parameter.
ProorF: We will prove the result for the case {a = 0 or 8 = 0}; the proof for the case {0 < a < 1
and B > 0} is similar.

Consider a choice of margin B = fpncd with a = 0 or # = 0. Set ¢, = Alogen/cn and
6n = A/V/128logc, for some A > 0 to be specified suitably small. In the proof of Lemma A.4 set
€ = €,. Now, it suffices to show that |g.(tn + ¢)| < €.](|/2 whenever || < 6, = A/\/128Togc,,
(n = 00). We have

|gn(tn + Ol = 1falta + ) = fa(ta ).
By the Mean Value Theorem, there exists 0 < 8 < 1 such that

[fa(ta + Ol = K] 12 (ta + BE)I.
Now consider
|fn(tn = 6n) + fn(ta)8n] = bn] = fi(tn — BEn) + fr(ta)l € bal = fr(ta — 6n) + fr(ta)l-

The last inequality follows from Lemma A.1(b) as f is negative and increases monotonically to
—1/¢, for large t, and by Lemma A.3(b) which ensures that t, ~ /2Jogd, — o0, (n — ). Using
equation (21) with Lemma A.3(b), as n — oo we have

1fa(tn = 8a) + fa(ta)bal < balth(tn = 8n)* + (tn — 6n)Y(tn — 62) — ¥(tn)? — tatp(ts)]

e
2x CnvI0g Cy ’

We have t,8, = O()) so that for A sufficiently small

< elnSn -5?‘ -1

26,13 _ 5,
£ (tn = 8n) + f2(ta)bnl S Bn [—‘-’7;— '%/*] ~engt  (n—o0o).

Similarly 5
|fa(tn = 8n) = fi(tn)on] £ en - (n— 00).

2
By Lemma A.1, the above inequalities hold in the §,-neighbourhood of t,, and this completes the

proof. |
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B The Main Lemma
We prove here Lemma 3.2, restated below for convenience.

Lemma 3.2 Let B = fpncS with0 < a<1and §20. Ifd, = o(n), then

2"(1‘."&%9‘1)
Flndn,B) ~ T
nJal*n

ProoF: We will consider separately the cases where {d,} is bounded and {d,} is unbounded.

Cask 1. {d,} is bounded.

The sequence f}/(t,) is bounded strictly away from both zero and infinity. Hence set § =
inf | f(t,)] > 0 and x = sup|f}(t,)| < oo. Fix € arbitrarily in the open interval (0,£). Choose
6 > 0 uniform with respect to n by Lemma A.4. By Proposition 3.1 we have

Ve / nfa(t)
e/ dt + e 4t
2"\/_ Fondus = Jt—ta]<é lt=tnl>6

Let Y be a parameter, |9] < €. Consider

(n — o0).

1/2

/t..+5 eMfa(ta)+0)(t~ta)?/2 4y _ [ ]
th—~§ ( (tn) + t’)

20 (~8y/=n(i) +9))  (29)
1/2 —8%n(¢-9)/2
- el - (fme=)
By Lemma A .4 it then follows that

—2r ] 1/2 e=(é)n tat+b
— -0 < e~"inlta) e"In(0 4y
[ ( (t'l) - () ﬁ th—6

sl -0 (S7)

where q(6) > 0 depends solely on §. As ¢ was arbitrary we have

tn+6 —2x \?
nfa(t) gy nf..(tn)( ) —~ o0 30
e t n .
/t,.-6 ¢ nfil(tn) ( ) (0

Let { = sup|fn(tn)|. The sequence {fa(ts)} is bounded so that { < oo. For each n set
ha(8) = max{fu(tn — 6) ~ fa(ta), fu(tn +8) — fu(tn)} < 0.
Then

/ e"fn(‘) dt = eﬂln(‘n) e"(ln(‘)‘!n(‘n)) dt
lt—tn]>6 [t—tal28

IA

c"/n('n) {e("‘l)"n(s)‘fn(‘n) Q(t)e"’/k" dt} . (31)

Jt=tn|>6

[
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Now let h(6) = sup, hn(6). As {dn} is bounded, Lemma A.l ensures that h(6) < O strictly.
Furthermore, for each n, 0 > h,(8) > fa(t) — fu(tn) Whenever |t — t,| > §, by Lemma A.l. Hence

/ efn(t) gt < eninltn) {\/éxc,‘ e("-l)"(5)+(} )
Jt=tn|26 -

Hence, there exists (§), p(6) > 0 such that

f —tn 58"1"“) dt _ n
f:‘ ‘ :2 enInl(t) dt < v(6)vrncqe P — 0 (n — 00),
t—tn|<s

so that equation (12) follows.

Case 2. d, — oo such that d, = o(n) as n — oo.

We prove the result for a choice of margin with @ = 0 or . = 0. Fix A > 0 and choose
tn = Alogcn/cn, and §, = A/{/T128logec,. (Note that ¢, ~ d, from equation (8).) Now, from
equations (23) and (26), for |J| < €, and for small A, as n — oo,

~(f2(tn) +9) = 2“"5"" [1 O().

As nfcp ~ n/d, — 00, (n — 00), the first term on the right hand side of equation (29) dominates
the second, so that for a sufficiently small choice of A, equation (30) continues to hold:

th+én -2 1/2
nfn(t) 4t A enInltn) (___._) — . 32
/‘n—sn ¢ € nf!{l’(t") (n W) ( )

Now by Taylor’s formula we have
(tn)83 1 [inkin "
faltn £80) = falta) = D 4 1 [ a2y

By Lemma A.2 and equations (23) and (27) we have

1 [tntba 2 ¢ 8 " 832 e—tal?
3 C-wROa) < T e 1RO = o (14 o)
A3
= To24c. (14 o(1)).
Substituting from equation (25) we then have for a small enough choice of A that

2
ltn £80) = fult) = == (1= O1 +o()] (1~ ).

Substituting in equation (31) we have as n — oo

An

/n nls6e e dp < enfnlin) {\/—zxc,. exp (— 128c. [1+ o(n)][1 - O(N)] + c)} . (33)

Noting that { = sup |fa(tn)| is finite, and that n/e, ~ n/d, — 00 as n — 00, equation (12) follows
from equations (32) and (33) by choosing A suitably small.

The proof for a choice of margin B = Bpnc2 with 0 < a < 1 and B > 0 is similar (with
equation (24) giving the asymptotic form for ¢, in this case). |
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Abstract— An interesting duality between two formally related schemes for neural associative memory is exploited
to shape the atiraction basins of stored memories. Considered are a familv of spectral algorithms—based on
specifying the spectrum of the matrix of weights as a function of the memories to be stored—and a class of dual
spectral algorithms—based on manipulations of the orthogonal subspace of the memories. which are expanded
here. These algorithms are shown to attain near maximal memory storage capacity of the order of n, and are
shown to typically require the order of n* elementary operations for their implementation. Signal-to-noise ratio
arguments are presented showing a duality in the error-correction behaviour of the two schemes: the spectral
algorithm demonstrates memory-specific attraction around the memories. while the dual speciral algorithm
demonstrates direction-specific attraction. Composite algorithms capable of joint memory-specific and direction-
specific attraction are presented as a means of variably shaping attraction basins around desired memories.
Computer simulations are included in support of the analysis.

Keywords—Associative memory, Network dynamics.

1. INTRODUCTION

In this paper we develop the duality between two
methods for training a fully connected network of n
McCulloch-Pitts neurons (McCulloch & Pitts, 1943).
The sum of outer products is perhaps the most often
used training method for such networks (Nakano,
1972; Amari, 1977; Hopfield, 1982). The memory
storage capacity for this method is n/4 log n (Mc-
Eliece, Posner, Rodermich, & Venkatesh, 1987, Psaltis
& Venkatesh, 1989) whereas the maximal theoretical
capacity for any storage algorithm is 2n (Cover, 1965;
Venkatesh, 1986b). The spectralalgorithm (Kohonen,
1977, Personnaz, Guyon, & Dreyfus, 1985; Venka-
tesh & Psaltis, 1989) and an algorithm we will refer
to as the dual spectral algorithm (Maruani, Chev-
allier, & Sirat, 1987) are algorithms whose capacities
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tech is supported by DARPA and AFOSR.

Requests for reprints should be sent to Demetri Psaltis, De-
partment of Electrical Engineering, Caltech, MS-116-81, Pasa-
dena, CA 91125.
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approach the theoretical maximum. In this paper,
we briefly review these two algorithms, establish the
relationship between them, and define how a proper
choice of parameters specifies their error correction
properties.

In such networks, memories to be stored are typ-
ically programmed as fixed points of the structure.
Error correction is obtained by attracting to one of
the stored fixed points, initial states (or probes) of
the system that are close to the fixed points. We show
that in the spectral scheme the radius of attraction
around each of the stored stable states is controlled
by the relative size of the cigenvalues of the inter-
connection matrix. The dual spectral algorithm, on
the other hand, leads to a method for programming
the shape of the attraction basin around each of the
elements of the stored vectors. We present a new -
method based on linear programming for selecting
the parameters of the dual spectral algorithm which
determine its attraction dynamics around cach stored
fixed point and we suggest a hybrid algorithm that
can provide more arbitrary control of the shape of
the attraction basin.

We consider a fully interconnected network of n
McCulloch-Pitts neurons with the instantaneous bi-




614

nary outputs (— 1 or 1) of each of the neurons being
fed back as inputs to the network: if u)[t], u,[t],
.« ., u,ft] are the outputs of each of the n neurons
in the network at epoch ¢, then the neural update of
the ith neuron results in a new state at epoch ¢ + 1
according to the familiar threshoid rule:

wit + 1] = A (ﬁ: w,ult] - w,o).
where

+1 ifx=0
Alx) = {—1 if x < 0.
The mode of operation may be synchronous (with
all the neurons being updated simultaneously at each
epoch) or asynchronous (with at most onc neuron
being updated at each epoch). In the application of
these networks to associative memory both modes
of operation lead to very similar associative behav-
iour (cf. Psaltis & Venkatesh, 1989, for instance) and
we will not make a distinction in this paper as to the
precise mode of operation.

The nature of flow in state space is completely
determined once the neural interconnection strengths
and the mode of operation is specified. We will be
interested in specifying patterns of interconnectivity
for which arbitrarily prescribed m-sets of memories
u'", ... . u'™ € B" can be stored in the network.
In order for the network to act as an associative
memory. we require that the memories themselves
be stable (i.e.. all subsequent operations on the
memory u'® give back u'®'). Stable memories are
hence fixed points of the network. Furthermore, we
require states close to any of the. memories to be
mapped into the memory by the network. This is the
associative or error correcting feature requisite in an
associative memory. We call the average Hamming
distance from a memory over which such error cor-
rection is exhibited the attraction radius of the mem-
ory.

The quadratic Hamiltonian (energy) and the Man-
hattan form have been shown to be Lyapunov func-
tions for fully connected networks with symmetric
connections (Hopfield. 1982: Goles & Vichniac, 1986
Peretto & Niez. 1986: Psaltis & Venkatesh. 1989).
hence, guaranteeing that state trajectories of such
networks will terminate in stable points. If the neural
interconnection weights are chosen so that the de-
sired memories are stable. then the existence of a
Lyapunov function for the system indicates that the
memories will exhibit an attraction radius of error
correction. The outer product and the dual spectral
algorithms lead to syr-  :tric weights but this is not
generally true for the s; .ctral scheme. Nevertheless.
the spectral scheme also exhibits very similar attrac-
tion dynamics (Psaltis & Venkatesh, 1989). even
though there is no known Lyapunov function for the
general case. In all these algorithms stability of the
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stored memories can be assured with high probability
if the number of memories is within the storage ca-
pacity of the algorithm (McEliece et al., 1987; Psaltis
& Venkatesh, 1989). The existence of Lyapunov
functions then guarantees that the memories (being
fixed points) lie at the minima of the Lyapunov func-
tions.

2. ALGORITHMS

2.1. The Spectral Algorithm

In the spectral scheme, the interconnection matrix
W' is defined as follows:

W' = UA(U'U) 'UT, (H

where A = dg[}'", . . .. i"]is the m x m diagonal
matrix of positive eigenvalues AV, . . . . Am >0,
and U = [u"u™? - u] is the n x m matrix of
memory column vectors.

We note that

WU = UA, )

where u'"', . . ., u'™ are the eigenvectors of W' and
A is the spectrum of W* (Venkatesh & Psaltis. 1985,
Personnaz. Guyon. & Dreyfus, 1985: Venkatesh &
Psaltis, 1989). Therefore, we are guaranteed to have
stable memories as long as W* is well defined.

For the case of an m-fold degenerate spectrum
L Am = j >0, we see that the matrix W'
is symmetric with nonnegative eigenvalues (i.e.. it is
nonnegative definite). Therefore there exist Lya-
punov functions in this case. and moreover it has
been shown that the stored memories form global
energy minima (Venkatesh & Psaltis, 1989).

For the general spectral matrix in eqn (1). exact
Lyapunov functions are hard to come by. The signal-
to-noise ratio, however, serves as a good ad hoc mea-
sure of attraction capability. Consider synchronous
operations with W’ on a state vector u = u'® +
ou € B". We have

W = Wi(u* + du) = W + Wiou.

Once again, there exists a “'signal” term, W'u'®'. and
a “‘noise” term, W'du. We anticipate that the greater
the signal-to-noise ratio, the greater the attraction
around u'®. Let the Hamming distance between v
andu'?. dy,(u, u'?). equald (i.e.. |dul = 2\/d). The
(strong) norm of the matrix W" is defined as

W x!
ix
It follows (cf. Strang, 1980) that ||W*|| = Vk. where
k is the largest eigenvalue of the matrix (W')"W",
For the casc of the degenerate spectrum 2'", . . .,
Amo= j > 10, W' is symmetric, and (W')'W* =
(W')". Therefore, the maximum eigenvalue of

W', = sup x| # 0.
1
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(W)W = k = ;2 and the signal-to-noise ratio
(SNR) is given by

SNR = Wl /.‘°'\/I_Il— _1n
Wl = (VE)2vd) 2 Vd

Thus, we would expect the attraction sphere around
u, ..., u™ to increase as n increases for the m-
fold degenerate spectral scheme. For the general
nondegenerate case, we expect that by varying the
size of A®), the SNR, and hence the attraction ca-
pability, be proportionately increased or decreased
for the ath memory u® (Figure 1).

Using a result of Koml6s (1967) we can show that
for all randomly chosen n-tuples u'", ... [ u'™ €
B", and m < n, the probability that W* is well defined
approaches one as n — x. It immediately follows
that the static capacity of the spectral scheme is n,
as a linear transformation has at most n eigenvalues.

Let N* denote the number of elementary opera-
tions required to compute the weight matrix W* di-
rectly from the m memories to be stored. Then using
the fact that (UTU)"! is symmetric, we can use the
Cholesky decomposition to compute its inverse. This
along with the rest of the matrix multiplications gives
us that N* = mn? + m*n + (m*)/2 + O(n*) (details
can be found in Venkatesh and Psaltis (1989)).

2.2. Dual Spectral Algorithms

2.2.1. Orthogonal Spaces and Duality. The following
scheme, formally related to the outer product and
spectral algorithms, was introduced by Maruani et
al. (1987).

Let U = [u®u?--- u™] be the matrix of memories
— m, be a set of

as before. Letx®, f=1,...,n

FIGURE 1.
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linearly independent vectors in R” which are indi-
vidually orthogonal to each of the memories (i.e.,
X7U = 0, where we define the n x (n — m) matrix
X = [x'"x'? - x""™]). Define a weight matrix W
with weights w, given by

. ifi #j
U -Sirax, iR
o {0 ifi = .

where x4 is the kth component of x'®. If we define
B = Zprxh, i =1,...,n, we see that

W =M - XX", (3)
where M = dg[j,. . . . . i,). Thus,
WU = MU - XX'U

= MU. (4)

Comparing eqns (2) and (4) we see that the spectral
and dual spectral algorithms exhibit an interesting
duality. Since the parameters 4, are positive for each
choice of i, it follows that

A(Wue), = A(pur) = u?,
foreachi=1.....n, x=1..... . m

So the memories u'"', . . .,
the scheme as well.

W as defined in eqn (3) is a zero-diagonal sym-
metric matrix. Thus, we know that there exists some
form of attrac ‘on behaviour. However, since the
orthogonal basis X has been chosen arbitrarily, there
is some lack of control in specifying attraction ca-
pability. Specifically, as we shall argue below, the
4,'s essentially control directional attraction and we
have no means of specifying these under the above

u™ are fixed points in
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approach. Our goal here will be to specify an algo-
rithm where such control is possible.

2.2.2. The Effect of the u-values. In the spectral
scheme, the eigenvectors of W* are the memories,
so that the column space of W* is given by the span
of the memories. Therefore, if the memories are far
enough from cach other and the initial state vector
u is close enough to a memory, W* combined with
the thresholding operation projects u onto the mem-
ory.

On the other hand, in the dual spectral scheme,
the weight matrix W< is obtained by taking the cor-
relation of vectors that are orthogonal to the mem-
ories and then setting the diagonal elements to be 0.
In creating the zero diagonal, we essentially add per-
turbations to the left nullspace of U in the directions
of the memories. The strength of the perturbations
along any component i. is proportional to 4,. Thus,
each of the 4,’s corresponds to a directional distor-
tion, and we expect the SNR of the dual spectral
scheme to vary from direction to direction propor-
tionately with the value of /.. We therefore expect
that the larger the z,. more information is lost if the
ith bitis flipped and. hence. the smaller the attraction
would be in the rth direction.

As an illustration, let us consider the case where
n = 3.and yu, < g, u. (Figure 2). Each memory u
would be preferentially attracted in the dr-direction.
indicated schematically by an attraction cone in Fig-
ure 2 (i.e.. a vector with a different x component will
probably map back to u but vectors with different y
and z components will probably not be within the
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attraction region of u). In other words,

U, u, u, U,
| u, | —|u, >P u |— fu, |,
u, u, ~u, u,
u, u,
P —u, | — | u,
u u,

2.2.3. Specifying Directional Auraction With Linear
Programming. The previous section’s discussions point
to a necessity of somehow specifying the g-values if
we require direction-specific attraction. Specifically,
for a prescribed set u,. . . . . u, > 0 of directional
attraction strengths, and M = dg{s,. . . . . 1), we
require a weight matrix W9 such that

WU = MU. (5)
We define W such that:
— S5 (b by i #
o= # wp X p Oy
W {0 ifi=j (©
where x4 is the ith component of the basis vector x'/!
as defined earlier. and by is the fith component of a
vector which we will specify shortly. Thus, given
e oo u#, we need to find a vector b such that
with Y = Xb
We=M- YY" (7)

(Note that the columns of Y. in general. are not
orthogonal.)

Assuming that W has the form given in eqn (6).
let us now consider the effect of WY on the ith ele-

P

FIGURE 2. Schematic representation of the directional attraction space In the dual spectral scheme for a choice of

M, py, o,
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ment of a memory u'’:

n
N pard gt
24 M"'ul

r=1

il

{‘vduta)]‘

.
-3 S B

= p=l

a n-m n-m

2 Z bixsx ' + Z byxu™
=)

=1 =0

n-m
2 bixiu,™.
gt

We require from eqn (5) that
(W], = pu'e.

where g, > 0. By inspection, we obtain the relation-
ship

PRNC]

i, = 2 xbj.

I
Define a; = x7,, and ¢, = b;. Then we require
Ac =M,

where A i1s a known n x (n — m) matrix with non-
negative elements a4 = xj. ¢ is an unknown (n —
m)-dimensional vector with ¢; = b; constrained to
be nonnegative. and M, is a specified n-dimensional
vector with positive components . . . . . iy

We notice that this is an overspecified system of
n equations with (n — m) unkno'-ns. where both ¢
and M, are constrained to have nonnegative ele-
ments. Linear programming techniques can be used
to solve this system of equations. We can choose the
u-values in a variety of ways. Two representative
methods are suggested here.

Specifying p,, . . . . iy, k = n — m. The canonical
form of the linear programming problem that the
simplex method solves is:

Minimize the goal function ¢y subject to the con-
straints

Ay = b,

where the vector y is unknown, and y > 0.

In this case, we specify k positive valucs of M,
and minimize the maximum of the (n - k) unspec-
ified values of M, subject to the constraints .,

. M.>0,andcy, ..., c,.n > 0. Inother words,
we have the following equations

a6, + -+ a, .0, = H
a,,¢; + "t 84 mCam =
GoaC A S E
an.lcl + e 4+ an,n-m(n - = €,
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where ¢, = 0, ¢ > 0, and we want to find ¢ which
minimises &.

To convert the n — k inequalities to equalities,
we subtract ¢ from both sides of the equation and
add slack variables z,. . . . . 2.-x to give us the fol-
lowing n — k equations

Ay (6, + o F Ay G — eI = 0

au 1€ + -t Qupn-mCom — E + hok T 0~

in addition to the first k equations. Now we have n
equations with 2n — m — k unknown nonnegative
quantities (¢;. . . . . Crome Zpe o o o s Znk)-

Let us label ¢ as ¢y. By inspection. we see that the
goal function to be minimised is ¢,. subject to the
constraints A'¢’ = M) wherec' isa(2n — m -
k + 1)-dimensional vector M is a n-dimensional
vector. and A’ isann by 2n — m — k + 1 matrix;
that is, we require to solve

(:) 0 . [ l.‘l

o A ol )= 8
-1 1 oo 0 ®
T . o :
-1 AN 0

and ¢,, z, = 0. This is in the canonical form for the
simplex method.

Specifying u,. . . ., u,. In this case, we specify all
the values of M,. We indicate two possible options
when solving for c.

1. Minimise the mean-square error given by
lAC ~ MF = 3 (.6 + - + @nomCaem — 1)
=1

subject to the constraints M, > 0, ¢ > 0.

This is a quadratic programming problem.
However, this problem can be reformulated as a
simplex method problem and can be solved using
a variation of the traditional simplex method called
Wolfe's method (Wolfe, 1959).

2. Minimise the largest absolute error ¢, given by

max(le,), ... . le)
where ¢,, the error in g, is
t 4, .G m)v i=],..A,n.

u, ~ (a,c + -

Our problem now is to minimize ¢, subject to ¢,
Civ «+ « + Com = 0. To solve this problem,' we

' This is known as Chebyshev's Approximation (Franklin, 1980,
p- 8).
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note that we have n pairs of inequality contraints
of the form

—Co + a.C + o+ a:,n»mcnﬂn = His

—C — 4, — C T Qn-mCa-m = —H.

The addition of slack variables puts the problem
in canonical form.

2.2.4. Characterisation of the Dual Spectral Scheme.
For simplicity, we consider algorithms employing the
first linear programming approach outlined above.
We have modified the initial basis for the nullspace
of U using the results of the simplex method such
that

W =M - YY',
where M = dg[u,, 2, - - ., a) With g, o0y >
0 specified by us, and 0 < ey, - - o 4 s S € <

min{y,, . . ., 4),and Y = Xbis a set of basis vectors
for the left nullspace of U. Since u,, i = 1, ..., n,
are positive, we see that all the memories are strictly
stable in the dual spectral scheme as long as the
memories u', . . ., u™ are linearly independent,
and we are able to find the vector ¢ in the system
(8) through linear programming.

As asserted earlier, since W¥ is a symmetric, zero-
diagonal matrix. there exist Lvapunov functions for
this scheme in both modes of operation. We have
also conjectured that the attraction is directional in
nature. The storage capacity of the dual spectral
scheme of eqn (6) is directly n — 1. Specifically
n — 1is the number of memories for which we can
still specify a left nullspace X. (By Komlos® result
(Komlés, 1967), we are guaranteed that almost all
choices of n memories or fewer are linearly inde-
pendent, so that for almost all choices of n - 1
memories there is an orthogonal subspace of dimen-
sion 1. while almost all choices of n memories span
the space R"” and therefore the orthogonal subspace
is of dimension 0.)

To find an n-dimensional vector under constraints,
the simplex method iterates from one feasible solu-
tion to another until it finds an optimal feasible so-
lution. The maximum number of iterations that the
simplex method can go through to find an n-dimen-
sional vector is 2" — 1.2 However, it has been widely
reported (Chvatal, 1983; Murty, 1983) that, in prac-
tice, the number of iterations is almost always be-
tween 1 to 3 times the number of constraints. Thus,
for the case of specifying k values of M, we would
expect at the most 3n iterations. The computational
complexity of each iteration is dependant on how the
simplex method is implemented. For the revised sim-

* This happens when the simplex method tests each vertex of
the n-sided p..  dron that bounds the feasible region.

S. S. Venkatesh, G. Pancha, D. Psoliis, and G. Sirat

plex method, a good estimate of the average cost
of each iteration in our scheme is 52n ~ 10m -
10k + 10, while for the standard simplex method. a
good estimate is (2n* — mn — kn + n)/4 (cf. Chva-
tal, 1983, p. 113). Thus, we estimate that the total
cost of specifying k values of M, is O(n?) (using the
revised simplex method). The cost of finding a basis
for the nullspace of U (through Gram-Schmidt or-
thogonalisation) includes finding (U7U)"! and two
other matrix multiplications and is given by mn®> +
(m*n)/2 —-m?/2 + O(n’). Finally, the cost of finding
W< from ¢ and X is n* — n’m + O(n%). So, we can
say that on the average,

N =n' + im’n — mn® — m* /2 + O(n°),

where N7 is the number of elementary operations
needed to compute W*.

There are a number of open questions involved
with the dual spectral scheme arising from the nature
of the construction of the W¢ matrix. The number
of directions k, that can be specified given a set of
m memories and n neurons is of interest. It is obvious
from the previous discussion about the dimensions
of A and c. that we can surely specify no more than
n — m directions. However, there is a possibility
(albeit small) that there exist no feasible solutions
for pathological cases where k < n — m. This 1s seen
particularly when the number n — m is very small.
Another quantity we are interested in is the size of
¢, the largest of the unspecified u's. compared to the
size of the specified u's since we have conjectured
that this will affect directional attraction.

While there exists little theory for the simplex
method which will enable us to gauge these param-
eters. simulations show that ¢ is typically small com-
pared 1o y, for the specified directions (<0.54,). and
k is typically of the order of n/4 in the ranges sim-
ulated. We conjecture that this behaviour continues
to hold for large n.

2.3. Composite Algorithms

In section 2.1 we saw ways of increasing the radii of
attraction-spheres around memories. In section 2.2
we say ways of specifying increased attraction in cer-
tain directions around each of the memories. A nat-
ural extension of these schemes is to create a com-
posite scheme with weight matrix W* given by

W= W+ WY

Since W< is a linear combination of W* and W*.
we would expect memories to be stable in the com-
posite scheme for reasons described in the previous
sections. The idea of the composite scheme is to
specify both memory-specific attraction by specifying
/. for each memory, and direction-specific attraction
by specifying u for the individual directions (Fig-
ure 3).
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FIGURE 3. Schematic representation of the joint memory-specific and direction-specific atiraction space for two memories

in the composite scheme.

Here. the spectrum of W* is no longer degenerate,
and W<, consequently, is no longer symmetric. As
the composite algorithm combines the memory-spe-
cific spectral algorithm, and the direction-specific
dual spectral algorithm, it works effectively in shap-
ing the attraction regions as desired. It should be
noted that the relative values of the 2", . . ., im™,
compared to the u,. . . . . u,. need to be considered
in order not to lose the effects of one of the two parts
of the composite scheme.

Note that the capacity of the composite scheme is
n — 1. The algorithm complexity of the composite
scheme is the sum of the complexities of the spectral
and dual spectral schemes, except that we need not
find (UTU) ! twice. Therefore the complexity N is
given by 3n* + O(n®) for m < n.

3. SIMULATIONS

Computer simulations were carried out to verify the
behaviour of the various schemes. Systems with state
vectors of 32 bits were considered in the simulations.
The memories were chosen randomly with a binomial
pseudo-random number generator with equiproba-
ble values 1 and — 1. For each size of memory set m
that was investigated, simulations were carried out
for each of the schemes, and the behaviour of the
schemes was averaged out over between 20 and 100
trials, where over each trial a different random set
of memories was generated. Error correction data
were compiled at each trial by testing the conver-
gence of randomly generated probes at increasing
Hamming distance from a memory. Attraction radii

were estimated by averaging the maximum error cor-
rection radius for each trial over the number of trials.
The graphs included here were obtained from syn-
chronous mode operations. However, we found that
the schemes essentially behaved the same under an
asynchronous mode of operation. The graphs show
typical stability and attraction behaviour in each of
the schemes. We can extract information on expected
worst and best case behaviour for a set of random
memories from these curves.

The behaviour of the outer product scheme is
highlighted in Figures 4 and 5. As anticipated, the

100 n=232
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FIGURE 4. The percentage of stable memories plotted against
the number of memories m in the outer product scheme when
n = 32
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n=32

Attraction Radius

4

m

FIGURE 5. The average radius of attraction around a stable
memory is plotted versus the number of memories for n =
32 In the outer-product scheme. The attraction radius is es-
timated by averaging the maximum Hamming distance of
error-correction around a stable memory over several in-
dependent runs.

number of stable memories declines precipitously as
m increases beyond a certain point (the static ca-
pacity) as seen in Figure 4. While n is quite small in
these examples. the figures nonetheless are a pre-
cursor of the 0-1 behaviour which develops around
the static capacity of n/(4 log n) for large n (Ven-
katesh, 1986; McEliece et al.. 1987; Komlés & Pa-
turi, 1988). Figure 5 shows the graceful degradation
of the average Hamming radius of attraction around
the memories as the number of stored memories in-
creases. (We averaged the maximum attraction ra-
dius for each of the memories over several indepen-
dent trials to obtain estimates of the average radius
of attraction.) The analysis in McEliece et al. (1987)
indicates that the attraction is neither memory- nor
direction-specific. and that we obtain uniform Ham-
ming balls of attraction around each memory with
high probability for large n.

Simulations highlighting the behaviour of the
spectral scheme as a viable algorithm for associative
memory are presented in Figures 6 and 7. The av-
erage Hamming radius of attraction again degrades
gracefully as the number of memories increases, as
illustrated in Figure 6, where the degenerate spectral
algorithm exhibits uniform balls of attraction around
the memories. (The static capacity here is clearly n
as outlined before and verified in our simulation.)
As can be seen. the dynamical behaviour of the spec-
tral scheme is qualitatively similar to the outer prod-
uct scheme. but somewhat better over all ranges.

Investigations into attraction dynamics in the
spectral scheme when there is a large deviation in
eigenvalue size confirm theoretical predictions that

S. S. Venkatesh, G. Pancha. D. Psalii<. and G. Sirat

16
n=32

Attraction radius

FIGURE 6. The attraction radius around a typical memory
plotted as a function of the number of memories m, in the
degenerate spectral scheme where all the eigenvalues are
chosen equal to A = n = 32. Estimates of the attraction
radius for a given number of memories were again obtained
by averaging the maximum distance of error-correction around
a memory over several independent runs.

the sizes of the attraction basins are memory-specific
and increase with increase in the eigenvalue size of
the corresponding memory. These trends are ex-
emplified in the typical plot of Figure 7 where half
the eigenvalues are fixed arbitrarily at n. and the
other half of the eigenvalues are fixed at a fraction
of n. The plots show the relative sizes of the Ham-
ming balis of attraction for memories with large ei-
genvalue as compared to memories with small ei-
genvalue, as a function of the ratio of the two
eigenvalues. The results are similar for other values
of m in the range of interest (i.e., values of m for
which therc is significant attraction: the attraction
radii around the memories is proportional to corre-
sponding eigenvalue size).

The feasibility of forming the dual spectral matrix
W< using the simplex method when y;. . . . . u, are
specified is confirmed in Figures 8 and 9. The success
rate (the percentage of trials when the simplex method
returns a feasible solution with ¢ < min{y,, . ..
u,)) is plotted in Figure 8 against the number of
memories m, averaged over various choices of k. In
Figure 9, the success rate is plotted as a function of
the number of specified directions k, with m as a
parameter. Note that the success rate is almost 100%
when k is small. and drops gradually with failures
occurring most often when k approaches n ~ m (Fig-
ure 9). Figure 10 exhibits plots of average ¢ versus
k for various m. As can be scen, ¢ increases with
increasing k and increasing m. Exhaustive simula-
tions indicate that the values of ¢ obtained by the
simplex algorithm for n = 16 (fixed m, k) are ap-
proximately twice those for n = 32. Since the
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FIGURE 7. Demonstration of memory-specific attraction in
the spectral scheme for n = 32 and m = 6. The memories
were divided into two equal sized groups, one group with
eigenvalue A(large) = n, and the other group with eigenvalue
A(small) varying as a fraction of n. The respective attraction
radil of the A(large) memories and the A(small) memories are
plotted as the ratio A(small)’ A(large) Is increased trom zero
to one.

dynamic attraction behaviour of the dual spectral
scheme is dependent on the size of ¢, these curves
are crude indicators of the limits on m and & in the
dual spectral scheme.

Investigations into the attraction dynamics of the
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FIGURE 8. The percentage of trials when the simplex method
returns a feasible solution (the success rate) in forming the
dual spectral matrix W*, averaged over various choices of X,
the number of specified directional vaiues, u,, ..., u,, plot-
ted as a function of the number of memories m, when n =
32
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FIGURE 9. The percentage of trials when the simplex method
returns a feasible solution for the dual spectral scheme (the
success rate) plotted as a function of the number of specitied
directions k, for a choice of n = 32, m = 13. (Here k denotes
the number of directional values, p,, . .., u,, specified in the
algorithm.)

dual spectral scheme verify the analytical predictions
of its performance as an associative memory. We will
use the measure of attraction in a particular direction
x for a particular memory to be the average Ham-
ming radius from which state vectors converge to that
memory when bit x is kept flipped. (Specifically. if
mu, is large. then inputs with bit x opposite in sign
to a memory will be unlikely to converge to the mem-
ory, and conversely if g, is small. Equivalently, if bit

n=232

epsilon / minimum mu specified
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k

FIGURE 10. The ratio of the largest value ¢, of the unspecified
directional parameters, u,,,, . .., u,, to the smallest of the
specified directional parameters p.,, = min{u,,.. ., u}, plot-
ted versus k, the number of specified directional parameters
with m as a parameter for n = 32.
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x of the input vector is constrained to be correctly
matched to the corresponding bit of the memory,
then the algorithm will tend to correct for rather large
distortions in the other components if x, is large, and
conversely if y, is small.) Figure 11 exhibits plots of
average attraction in both the specified (important)
and the unspecified (uninportant) directions, where
the component of the input in the direction being
investigated was initially kept flipped. Here, the at-
traction characteristics have been averaged over all
the memories for the two cases: (1) the specified
directions (corresponding to large values of u), and
(2) the unspecified directions (corresponding to small
values of u). As can be seen, there exists a consistent
difference in attraction in the large g and small y
directions when k is small, with a merging of the
attraction capabilities for larger k.

The simulations indicate that we do have the ca-
pability of separately achieving memory-specific and
direction-specific attraction. Investigations into the
composite scheme indicate that attraction basins can
indeed be shaped over a wide range. Varying the
values of the specified 4,’s. and large eigenvalues (4,,)
and small eigenvalues (/) lead to attraction basins
that range from being purely directional to com-

-+ large mu n=32,m=5

-+ small mu

10

Attraction radius

S 4

24 32

FIGURE 11. Demonstration of direction-specific attraction in
the dua! spectral scheme for n = 32 and m = §. Curves of
attraction radil versus the number of specified directions!
parameters Ak, are shown for two different directions—a
specitied (large u) direction and an unspecified (small u)
direction. Attraction data for a given direction were gener-
ated by investigating probe vectors at various Hamming dis-
tances from a memory with the component of the probe in
the direction being Iinvestigated being chosen to be opposite
in sign to the corresponding component of the memory.
(Fiipping a bit in an important (large u) direction would re-
duce the attraction to the memory compared to an unim-
portant (smali ) direction.) .
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FIGURE 12. Demonstration of memory-specific attraction in
the composite scheme for n = 32. The memories are divided
into two groups, one group corresponding to a “large” ei-
genvalue A, = 3, and the other group corresponding to a
“gmall” eigenvalue A,. = 1. Attraction radli for a memory
are plotted as a function of the number of memories m for
the two cases of the memory corresponding to eigenvalues
Ay =3and A, = 1.

pletely “spherical”™ around memories. A sample case
where /. = 1. 7, = 3. and u, = 6 (which gives us
¢ = 3 for moderate values of k and m) is shown in
Figures 12 and 13. Figure 12 exhibits plots of mem-
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FIGURE 13. Demonstration of direction-specific attraction in
the composite scheme for n = 32 and m = 6. Directional
sttraction parameters are specified to be ali equal to uy =
6, while the largest of the ungpecified directional parameters
is kept below € = 3. Attraction radli are plotted In the large
u (specified) and small u (unspecified) directions as a tunc-
tion of k, the number of specitied directions.
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FIGURE 14. An overview of the features of the family of spec-
tral algorithms—the outer product (pseudo-spectral) algo-
rithm, the spectral algorithm, the dual spectral algorithm, and
the composite algorithm.

ory-specific attraction against the number of mem-
ories. As can be seen. there is a superiority of be-
tween 6 to 8 Hamming bits of attraction for memories
with large eigenvalues as opposed to memories with
small eigenvalues. (For n = 16 we obtain a superi-
ority of between 2 to 3 Hamming bits of attraction
for the same choice of maximum and minimum ei-
genvalues.) Direction-specific attraction is mapped
in Figure 13. As seen. we obtain a direction-speci-
ficity of about 4 bits in attraction capability when
comparing the strong and weak directions. (Forn =
16 we perceive a 2 to 3 bit difference in attraction
capability between specified and unspecified direc-
tions for small values of k. When the number of
memories m is very small, however, only marginal
direction-specificity is displayed.) We stress once
again that by increasing the value of the specified
u's. we increase direction-specific attraction at the
expense of memory-specific attraction.

Figure 14 summarises the main features of the
three algorithms, and highlights their relationship
with the spectral algorithm: in particular, the pseudo-
spectral nature of the outer-product algorithm, and
the dual spectral nature of the dual spectral algorithm
is emphasised.
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1 INTRODUCTION

In this chapter we describe models of autoassociative memory based upon densely intercon-
nected recurrent networks of McCulloch-Pitts neurons (McCulloch and Pitts, 1943). The
model neurons in these networks are linear threshold elements which compute the sign of
a linear form of their inputs. In a recurrent network, a collection of these neurons com-
municate with each other through linear synaptic weights and each neuron changes state
based on the net synaptic potential from all the neurons in the network. The instantaneous
state of the neural network is described by the collective states of the individual neurons,
and the choice of synaptic weights and the neuron updating rule determines the nature of
flow in the state space of the network. As in any dynamical system, the fixed points of the
network play a critical role in determining its computational properties. In particular, such
networks can be used for encoding a set of prescribed items identified with states u as fixed

points of the network, i.e., states u which are fixed under the dynamics of the network. In

*This work was supported in part by the Air Force Office of Scientific Reseach under grant AFOSR
89-~0523.
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addition, some form of error correction is desired, so that states u + éu in the vicinity of
u are mapped into u. When the item is to be retrieved from the network, the search can
then be done on either the whole item or on part of it. Such searches by data association
are especially useful in pattern recognition applications such as speech and vision. We will
describe methods of specifying in a probabilistic sense the conditions under which such error
correction occurs.

We now consider a fully interconnected network of n McCulloch-Pitts neurons. Each
neuron is capable of assuming two values: 1 (firing) and -1 (not firing). The instantaneous
binary output of each neuron is fed back as an input to the network. At epoch ¢, if u,[t],
uz(t], ..., un[t] are the outputs of each of the n neurons in the network, then at epoch t+1,

the ith neuron updates itself according to the following threshold rule:

u,-[t + 1] = A(z nguj[t] - ‘w,‘o) ,
i=1
where

_ ) +1 ifz>0
A(x)_{—l ifz<0. @

Based on the preceding firing rule, each neuron is characterised by a set of n real synaptic
weights, and a real threshold value, and the network as a whole is characterised by a matrix
of n? weights w;; and n thresholds w;o. Without loss of generality, we can confine our
analysis to zero thresholds as thresholds are easily subsumed by the simple expedient of
adding a constant input of -1 to each neuron.

The instantaneous state of the network is an n-tuple u = (u;,...,u,) € B", where B =

{-1,1},and u. he ith component of u is the output value of the ith neuron. Qur goal is to
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encode items (states in IB™) that are to be stored as fixed points of the recurrent network by
an appropriate choice of weight matrix. We label these prescribed items ufV, ..., u{™), and
hereafter refer to them as memories to distinguish them from other states of the network.

1.1 Lyapunov Functions and Error Correction

The network can operate under different modes of updating. If all neurons are simultane-
ously updated, the mode of operation is said to be synchronous. If at most one neuron is
updated at each epoch, the network is said to operate in an asynchronous mode. It has been
shown that both modes of operation lead to very similar associative behaviour in neural

networks. Note that in this synchronous mode case, we have
uft + 1) = A(Wult])

where A : R" — B" is an n-ary pointwise threshold operator whose ith component A;(z)
is as in (1).

Given the arbitrarily prescribed set of m memories, we are interested in specifying
patterns of interconnectivity. The nature of flow in state space of the network is completely
determined once the matrix of neural interconnection weights is computed. In order for
our network to act as an associative memory, we require that the memories be stable.
As described earlier, a2 memory u(®) is stable if all subsequent mappings return u(®), i.e.,
u(@(t + 1) = A(Wul?)[t]) for all t. Furthermore, we required that the memories exercise
a region of influence around themselves, i.e., states close to or similar to memories should

map to the corresponding memories in the network, and thereby exhibit error correcting
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properties. The Euclidean distance between a state u and a memory ul®) is given by

n 1/2
dp(u,u(®)) = E(ug(a) - u;)z] .
=1

In B®, (u.-("’) — u;) = 2 if the components are mismatched, and 0 otherwise . Therefore
dg = 2/dy where the Hamming distance dg(u, u("’)) is defined to be the number of mis-
matched components between the two states. We shall use the average Hamming distance
from a memory over which error corrections is exhibited as a natural measure of attraction,
and call it the attraction radius, p, of the memory.

From the theory of dynamical systems, we can expect attraction behaviour in neu-
ral networks if we can find functions on the systems that are bounded and monotone
non-increasing along trajectories in the state space. Such functions are called Lyapunov
functions. If such a function exists, the stable points of the system reside at minimas of
the function. If the memories are programmed to be at these minimas, we can achieve the
desired attraction behaviour around the memories.

Two such Lyapunov functions are the Hamiltonian Energy (E(u)) function and the

Manhattan Norm (F(u)) function, where
l n n
E(U) = _E Z Z Wi UiU;
i=1 j=1

and

F(u): —i iw.-juj .

=1 [3=1

These functions act as Lyapunov functions for certain classes of weight matrices under

particular modes of operation (cf. Hopfield, 1982; Goles and Vichniac, 1986; Venkatesh and
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Psaltis, 1989).1

Proposition 1 E(u) is non-increasing in asynchronous mode if W is symmetric and has
non-negative diagonal elements; E(u) is non-increasing in any mode if W is symmetric

and non-negative definite.

Proposition 2 F(u) is non-increasing in synchronous mode if W is symmetric.

While the existence of Lyapunov functions indicates attraction behaviour, the lack of
one does not necessarily indicate that the network will not function as desired. In the
following sections, we shall discuss a family of near-optimal algorithms to compute the
weight matriz W. All but one of these algorithms results in a symmetric weight matrix,
and all of them exhibit both desired properties of stability and attraction. In the following
sections, we will establish the relationship between the various algorithms, and evaluate
their performance.

1.2 Capacity and Complexity

Two measures characteristic of any algorithm are the algorithmic capacity and algorithmic
complezity. We will look at these measures for each of the alogrithms in the succeeding
sections.

Capacity is the maximal number of memories that can be stored with high probability.
It is useful to define capacity as a rate of growth rather than an exact number. Specifically,

a sequence of numbers {C(n),n > 1} is a sequence of capacities if and only if for every

'Proofs of propositions in the main text of the chapter are deferred to Appendix A.
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A € (0,1), as n — oo the probability that each of the memories is stable approaches 1
whenever m < (1 — A)C(n), and approaches 0 whenever m > (1 + A)C(n). We note that
a consequence of this is that a sequence of capacities, if it exists, is not unique, but rather
determines an equivalence class of sequences C where, C(n) and C’(n) are sequences in C
iff C(n) ~ C'(n) as n — 0.2

We define complexity to be the number of elementary operations required to compute
the matrix of weights. For the purposes of this discussion, the elementary operations are
multiplication and addition of two real values. We are therefore interested in determining
the complexity of an alogrithm given m memories in n-space. In some cases, an algorithm
may have a recursive definition whkich may result in a reduced algorithmic complexity from

a practical staadpoint when memories are added to the network one at a time.

2 OUTER PRODUCT ALGORITHM

Let u(®, ... uf™ be a selection of m memories. The Outer Product Algorithm prescribes
that the weight matrix W°? be chosen in the following manner (see Chapter 1 for additional
details):

wWer = UUT | (2)

where U = [u() u® ... ul™)],
This scheme uses the sum of outer-products of the memory vectors as correlation be-

tween the memories to form a weight matrix W* so that an input vector close to a memory

20n asymptotic notation. If {z(n)} and {y(n)} are any two sequences, we denote: z, = ((yn) if there
exists a constant K such that jz(r)| < Kly(n)| for every n; z(n) = o(y(n)) if |z(n)|/]y(n)] — 0 as n — oo;
z(n) ~ y(n) if z(n)/y(n) — 1 as n — oo; and z(n) = w(y(n)) if |z(n)|/|y(n)] — 00 as n — oo.
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vector will pick out that memory vector. The functioning of the algorithm as an efficient as-
sociative memory has been well documented (cf. Hopfield, 1982), and theoretical results on
the capacity have been derived (McEliece, Posner, Rodemich, and Venkatesh, 1987; Komlés
and Paturi, 1988).% We will now review some results for the scheme.

2.1 Error Correction

From the definition it follows that W°? is symmetric, nonnegative definite. Therefore,
the algorithmic flow in state space is towards the minimisation of bounded functionals (the
Manhattan Norm F in synchronous mode and the Energy E in any mode).* The trajectories
therefore will tend to terminate in stable states which are local minima of the functionals. If
these stable states correspond to the stored memories, the Outer Product Algorithm satisfies
the requirements of a physical associative memory. To examine its efficacy, however, we
need to estimate its storage capacity, and the algorithmic complexity of computing the
weights.

We first consider the effect of W7 on a memory u(®). We have
n
[Wera@] = Y wifu;)
=1

-3 i w0y (@)

J#i B=1
= (n-1uw®+ Z Z ;P (Pl (o)
i#i Bra
= (n—1)u(® + §u;(@) . (3)

We see that, in effect, there is a “signal” term and a “noise” term. Assuming that the

3See also Chapter 9.

*In some variations a zero diagonal is enforced for the matrix W in (2). The matrix is then symmetric,
with non-negative diagonal elements so that the energy is non-increasing in asynchronous operation.
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memories are chosen randomly from a sequence of symmetric Bernoulli trials, the noise
term 6u{® has a mean of 0 and a standard deviation of \/{n — 1)(m — I). The mean of the
absolute value of the signal term (n — l)ufa) is (n — 1). Thus, if m = o(n), the signal term

dominates the error term, and we can write
W?PU =(n-1)U+6U=(n~-1)U.

It will follow that A(W°U) = U with high probability if m = o(n).

2.2 Capacity and Complexity

The memories u(®), a =1, ...,m can be identified as pseudo-eigenvectors of the linear

operator W with pseudo-eigenvalues n — 1. When randomly chosen, they are stable in

a probabilistic sense only if the mean to standard deviation given by \/(n - 1)/(m - 1) is
large. More precisely, the following assertion holds (cf. McEliece, Posner, Rodemich, and

Venkatesh, 1987; Komlés and Paturi, 1988). Chapter 9 contains more details.

Proposition 3 The (stable state) capacity of the Outer Product Algorithm is n/4logn.

We sketch one side of the proof in Appendix A to illustrate some of the ideas involved. The
gentle reader is also invited to delve into Chapter 1 for similar derivations.

Somewhat more can be shown than asserted above. In fact, if p € [0,1/2) is any fixed
quantity, and random probes are generated at a distance pn from each of the memories, then
all the errors in all the probes are corrected in one synchronous step with high probability
if the number of memories m increases no more rapidly with » than (1 — 2p)?n/4logn. In

particular, this result implies that within capacity each of the memories has (asymptotically)
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an identically sized ball of attraction of radius pn. From a physical viewpoint this implies
that all the memories are treated equivalently by the Outer Product Algorithm as are all

the features (memory components).

If we label the number of elementary operations required to compute W¢ for n» mem-
ories as N°, then by counting the number of operations needed for matrix multiplication,
by considering that that the weight matrix W is symmetrical, and by noting that the
diagonal elements are trivially specified, we find that N°? = (mn? — mn)/2. In addition, by

inspection of (3), we notice that the outer product matrix can be recursively computed via
W[a] = WP[a — 1]+ u(®)(ul®)T, a>1,

where W°P[a] denotes the outer-product weight matrix generated by the first @ memories,
and W°P[0] = 0. This means that the incremental complexity N°?[a] = (n? — n), and the
cost of computing the weight matrix incrementally is twice the cost of computing it from

scratch for any given set of m memories.

3 MEMORY SELECTIVE ALGORITHMS |

In this section, we will discuss schemes to generate the weight matrix to yield a larger
capacity than the outer product scheme. In addition, these schemes will enable us to
selectively increase attraction radii around specified memories. (Compare with the Outer
Product Algorithm where uniform attraction balls around the memories obtains.) The
constructions are an extension of the outer product scheme to make the memories true

eigenvectors of the linear operator W, and then specifying the eigenvalues of the memories.
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Construction 1 Define the interconnection matrix W? as follows:

wW* = UA(UTU) U7, (4)
where A= dg [/\(1), cees A(’")] is the m x m diagonal matrix of positive eigenvalues A
Am) 5 0, and U= [u(l) u? ... u("‘)] is the » X m matrix of memory column vectors.
Construction 2 Given u(V), ..., ul™, choose any (n — m) vectors ul™*+1, ... ul® ¢ B"
such that u(®), ..., u{®) are linearly independent. Define the interconnection matrix W2as

follows:

W? = U,A, UL,
where the augmented matrices U, and A, are defined as
A, =dg[AM, ... a0 g,. .. 0], U, = [u® ... u),

We note that
W?U = UA, WU, = U,A,, (5)
so that u(®), ... ul™ are eigenvectors of W* and A is the spectrum of W* (Personnaz,
Guyon, and Dreyfus, 1985; Venkatesh and Psaltis, 1989). Therefore, we are guaranteed to
have stable memories as long as W? is well defined.
Hybrids of the two methods described above can also be used where the matrix U is

partially augmented and then the pseudo-inverse is computed.

3.1 Error Correction

For the case of an m-fold degenerate spectrum, A1), ... A(Mm)= X\ > 0, we see that the

matrix W? is symmetric with non-negative eigenvalues, i.e., it is non-negative definite.
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Therefore there exist Lyapunov functions in this case. In fact, consider the energy function
E(u) = —1(u,Wu).

For each memory, u{®), the energy is hence given by

An
5 -

p—

E(u®) =~ Z(ul®), Wul®)y =

[\

Let u € B™ be arbitrary. We can write u in the form

u= ZC(")u(°)+u_L=u|l+u_L ,

a=1

where uj is the projection of u into the linear span of the m memories, u®, u®@, L um),
and u_ is a vector in the orthogonal subspace. Then we have (uj,ur) = 0, and by the

Pythagorean theorem,

2

Null? = [yl + fucl? = [ @ul@l + fjuy)?.
a=1
The energy is then given by
1 1 /5~ o) y(e) T 1)y ()
Euv)=~-=(u,Wu) = -= Ec"‘u°+ul,2/\c°’u°’
2 2 a=1 a=1
Az 2
- _ 2 Z RCIMCY
a=1
A an
> - = 2=,
> - Zlulr=-3

It follows that the stored memories form global Energy minima.
For the general Spectral matrix in (4), exact Lyapunov functions are hard to come by.
The signal-to-noise ratio, however, serves as a good ad hoc measure of attraction capability.

Consider synchronous operations with W* on a state vector u= u{®)+ du € B". We have

Weu = W?(ul® 4+ §u) = W?ul®) 4 W2gu.
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Once again, there exists a “signal” term, W*u(®), and a “noise” term, W*§u. We anticipate
that the greater the signal-to-noise ratio, the greater the attraction around u(®). Let the
Hamming distance between u and u(®), dgy(u, u(®), equal d, i.e., ||ful| = 2v/d. The (strong)
norm of the matrix W* is defined as

[W*x||
Al
1]

[fW?|| = sup lIx|| # o.

It follows (cf. Strang, 1980) that ||W?*|| = vk, where k is the the largest eigenvalue of the
matrix (W?)TW?, For the case of the degenerate spectrum, X(1), ..., Am) = X >0, W*is
symmetric, and (W?*)TW?* = (W?*)2. Therefore, the maximum eigenvalue of (W*)TW?* =

k = A2, and the signal-to-noise ratio (SNR) is given by

[Wea o x&m 1 \/i
SNR = > ==./=.
(W*u|| = (vVk)(2vd) 2Vd

Thus, we would expect the attraction sphere around u¥), ..., u(™) to increase as n
increases for the m-fold degenerate Spectral Scheme. For the general non-degenerate case,
we expect that by varying the size of A(®), the SNR, and hence the attraction capability,
be proportionately increased or decreased for the ath memory u(®)(Figure 1).

3.2 Capacity and Complexity

To determine the capacity of these schemes, we use the following proposition (Komlds,

1967).

Proposition 4 Let m increase with n such that m < n. Then the probability that a ran-
domly chosen set of n-tuples u(?), ..., ul™ ¢ B™ is linearly independent aproaches one as

n — oo.

Figure 1 goes he

rc
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It follows that the probability that W®is well defined approaches one as n — co. Since a
linear transformation has at most n eigenvalues, the static capacity of the spectral scheme
is n. (Dynamic capacities pose greater problems in evaluation here because of the added
dependency structure. For some theoretical results in this regard see Dembo (1989); for
numerical simulations see Venkatesh and Psaltis (1989) and Chapter 1 of this volume.)

Let N°*® denote the number of elementary operations required to compute the weight
matrix W?* directly from the m memories to be stored. Then using the fact that (UTu)?
is symmetric, we can use the Cholesky decomposition to compute its inverse. This along
with the rest of the matrix multiplications yields N* = mn? + m?n + m3/2 4+ O(n?).

When the eigenvalues A(®) are m-fold degenerate, Greville’s algorithm can be used to
recursively compute the pseudo-inverses which in turn results in a recursive construction for
the weight matrices W*[a]. Here W*[a] denotes the spectral weight matrix corresponding
to the first & memories. In fact, let A(®) = XA > 0, a > 1. For each a > 1 let e(® be the
n-vector defined by

e® = (A\I - W*[a - 1])ul®,

where we define W*[0] = 0. Then it is easy to verify by induction that

e(a)(e(a) )T

s — (. _
Welel = Wia - 11+ Gehreter

a>1. (6)

Now let N*[a] denote the number of elementary operations needed to compute the update
of the weight matrix according to the recursion (6). Again counting the number of multipli-
cations (the number of additions is of the same order), we get the following cost estimate:

N?[a] = 2n? 4+ 2n, a > 1. Note that for all choices of m < n, we have mN*[a] 2 2N°*,
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so that, especially for large n, the recursive construction of W* through the updates (6) is
computationally about twice as expensive as the direct estimation of W*. Note that the
cost is only about four times more than that of the simple Outer Product Algorithm.

4 FEATURE SELECTIVE ALGORITHMS
4.1 Dual Spectral Alogrithm

The following scheme, formally related to the Outer Product and Spectral Algorithms, was
introduced by Maruani, Chevallier, and Sirat, (1987). Let U = [u(!) u(® ... u(™)] be the
matrix of memories as before. Let x\8), =1, ... , n —m, be a set of linearly independent
vectors in R™ which are individually orthogonal to each of the memories, i.e., XTU = 0,
where we define the n x (n — m) matrix X = [x(!) x(® ... x("=™)], Define a weight matrix

W with weights w;; given by

wei = { - 250y Tipzip fi# ]
ij =

0 ifizj’
where zg is the kth component of x8) . If we define ji; = 261 z?ﬁ, i=1,..., n, we see
that

W =M - XXT (M)

where M = dg (41, - .., fin]). Thus,

WU MU - XxTu

= MU. (8)
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4.2 Error Correction

Comparing (5) and (8) we see that the Spectral and Dual Spectral Algorithms exhibit an
interesting duality.

In the Spectral Scheme, the eigenvectors of W* are the memories, so that the column
space of W is given by the span of the memories. Therefore, if the memories are far enough
from each other and the initial state vector u is close enough to a memory, W?* combined
with the thresholding operation projects u onto the memory.

In the Dual Spectral Scheme, since the parameters /i, are positive for each choice of i,

it follows that
A(Wu?%); = A(pul) = uf, foreachi=1,...,n, a=1,...,m.

So the memories u{!), ..., u{™) are fixed points in the scheme as well. W as defined in (7)
is a zero-diagonal symmetric matrix. Thus, we know that there exist Lyapunov functions
in both modes of operation and that the network will exhibit some form of attraction
behaviour. The weight matrix W? is obtained by taking the correlation of vectors that are
orthogonal to the memories and then setting the diagonal elements to be 0. In creating the
zero diagonal, we essentially add perturbations to the left nullspace of U in the directions
of the memories. The strength of the perturbations along any component, i, is proportional
to f1;. Thus, each of the ;s corresponds to a directional distortion, and we expect the SNR
of the Dual Spectral Scheme to vary from direction to direction proportionately with the
value of ji;. We therefore expect that the larger the f;, the more the information that is

lost if the ith bit is flipped and, hence, the smaller the attraction in the ith direction.
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As an illustration, let us consider the case where n = 3, and p, > p;, p.. Each memory
u would be preferentially attracted in the z and 2 direction, indicated schematically by an
attraction spheroid in Figure 2; i.e., a vector with a different y component is less likely to
map back to u but vectors with different z and/or 2z components will probably be within

the attraction region of u. In other words,

Ur Uz Uy Uz —Ur Uz
P —uy | = | uy <P u, | =1 u P Uy, | = | uy
U, U, ~U, u, U, u,

4.3 Constructing Feature Selective Weights

In the previous section, the orthogonal basis, X, was chosen arbitrarily and therefore re-
sulted in some lack of control in specifying attraction capability. As we argued above, the
fi;’s essentially control directional attraction and we have no means of specifying these under
the above approach. We now suggest a few schemes for constructing the weight matrices
that specify the u-values and thereby achieve direction-specific attraction. Specifically, for a
prescribed set p,, ..., u, > 0 of directional attraction strengths, and M = dg{ui, ..., pn],

we require a weight matrix W¢ such that
wWiU = MU . (9

We define W¥ such that:

4 _ ) =X (zigbs)(zigbs) Hi#
Wi; —{0 fiz=j ° (10)

where z;5 is the ith component of the basis vector x(#) as defined earlier, and bg is the Sth

component of a vector which we will specify shortly. Thus, given pu, ..., un We need to

Figure 2 goes here
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find a vector b such that with Y =Xb
wWi=M-YYT. (11)

(Note that the columns of Y, in general, are not orthogonal.)
Assuming that W¢ has the form given in (10), let us now consider the effect of W¢ on

the ith element of a memory u(®):
n
[Wdu(“)],- = Z w,-jdug-a)
J=1

= —Z Z bzigzip ug-a)

J#Fi B=1
2 o 2.2 o
= =33 bzipzipu™ + ) bhrlsu,
i=1 =1 =1
n-m

= z b% I?ﬁ ’U.Sa) .
g=1

We require from (9) that [Wdu("’)]; = u,-usa) where y; > 0. By inspection, we obtain the

relationship

n—-m

i = Z z?g bf, .
g=1
Define a;p = 225, and cg = b3. Then we require Ac = M,,, where A is a known n x (n —m)
matrix with non-negative elements a,5 = z?[,, c is an unknown (n — m)-dimensional vector
with ¢g = bf, constrained to be non-negative, and M, is a specified n-dimensional vector
with positive components g, ..., .
We notice that this is an overspecified system of n equations with (n — m) unknowns,

where both ¢ and M,, are constrained to have non-negative elements. Linear programming
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techniques can be used to solve this system of equations. We can choose the p-values in a

variety of ways. A few representative methods are:
1. Specify p1,... pk, k<n—m,let px +1,...,un — m < ¢, and minimise e.
2. Specify uy, ..., fin, and

(a) Minimise the mean-square error given by

”Ac - Mullz = Z (ai.lcl + -+ 8n-mCn-m — #'_)2

=1

subject to the constraints M, > 0, ¢ > 0.

(b) Minimise the largest absolute error, ¢g, given by
max(|e], ..., |en])
where ¢;, the error in y;, is
i —(@i1c1 + + Gin—mCn-m), i=1,...,n.

For simplicity, we consider algorithms employing the first linear programming approach
outlined above. We have modified the initial basis for the nullspace of U using the results

of the simplex method such that
wWi=M-YYT,

where M = dg[u1, 42, -.., a] With gq, ..., i > 0 specified by us, 0 < pry1, ..., pin L €<
min(gy, ..., pk), and Y = Xb is a set of basis vectors for the left nullspace of U. Since

Wi, i = 1,...,n, are positive, we see that all the memories are strictly stable in the Dual
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Spectral Scheme as long as the memories, uM, ..., ul™), are linearly indépendent, and we
are able to find the vector ¢ in the system (12) through linear programming. In Appendix B
we outline the linear programming approach in some detail.

4.4 Capacity and Complexity

By Komlés’ result (Proposition 4), we are guaranteed that almost all choices of n memories
or fewer are linearly independent, so that for almost all choices of n — 1 memories there
is an orthogonal subspace of dimension 1, while almost all choices of n memories span the
space IR™ and therefore the orthogonal subspace is of dimension 0. The storage capacity of
the Dual Spectral Scheme of (10) is directly n — 1, since n — 1 is the number of memories
for which we can still specify a left nullspace X.

To find an n-dimensional vector under constraints, the Simplex Method iterates from
one feasible solution to another until it finds an optimal feasible solution. In the worst case,
~ we need to test each vertex of the feasible region which is an n-sided polyhedron, leading
to 2" — 1 iterations. However, such cases are rare and require careful specification of the
constraints designed solely to approach the worst case behaviour. In practice, it has been
widely reported (Chvdétal, 1983; Murty, 1983) that the number of iterations is almost always
between 1 to 3 times the number of constraints. Thus, for the case of specifying &k values of
M,,, we would expect at the most 3n iterations. For the (Revised) Simplex Method, a good
estimate of the average cost of each iteration in our scheme is 52n — 10m — 10k + 10, while for
the Standard Simplex Method, a good estimate is 2n% — mn — kn + n)/4 (cf. Chvital, 1983,

p. 113). Thus, we estimate that the total cost of specifying k values of M,, is O(n?) (using
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the Revised Simplex Method). The cost of finding a basis for the nullspace of U (through
Gram-Schmidt orthogonalisation) includes finding (UTU)~? and two matrix multiplications
and is given by mn? + (m2n)/2 — m®/2 + O(n?). Finally, the cost of finding W*¢ from ¢
and X is n3 — n?m 4+ O(n?). So, we can say that on the average,

3
Nd=n3+%m2n—mn2—m?+0(n2),

where N9 is the number of elementary operations needed to compute we,

5 COMPOSITE ALGORITHMS

In Section 3 we saw ways of increasing the radii of attraction-spheres around memories. In
Section 4.3 we saw ways of specifying increased attraction in certain directions around each
of the memories. A natural extension of these schemes is to create a Composite Scheme

(Venkatesh, Pancha, Psaltis, and Sirat, 1990) with weight matrix W¢ given by
W = W* + W4,

Since W€ is a linear combination of W* and W¢, we would expect memories to be sta-
ble in the Composite Scheme for reasons decribed in the previous sections. The idea of
the Composite Scheme is to specify both memory-specific attraction by specifying A for
each memory, and direction-specific attraction by specifying u for the individual directions
(Figure 3).

Here, the spectrum of W* is no longer degenerate, and W¢, consequently, is no longer
symmetric. As the Composite Algorithm combines the memory-specific Spectral Algorithm,

and the direction-specific Dual Spectral Algorithm, it works effectively in shaping the at-

Figure 3 goes he
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traction regions as desired. It should be noted that the relative values of the A Alm)
compared to the yuy, ..., iy, need to be considered in order not to lose the effects of one of
the two parts of the composite scheme.

Note that the capacity of the Composite Scheme is n — 1. The algorithm complexity
of the Composite Scheme is the sum of the complexities of the Spectral and Dual Spectral
Schemes, except that we need not find (UTU)_1 twice. Therefore the complexity, N¢, is
given by 3n® + O(n?) for m £ n.

6 SIMULATIONS

There are a number of open questions involved with the schemes outlined above. In this
section, we discuss trends observed in computer simulations that validate some of our conjec-
tures. All memories were chosen randomly using a binomial pseudo-random generator. Test
input vectors at specified Hamming distances from the memories were generated by revers-
ing the signs of randomly chosen components for the Quter-Product and Spectral schemes.
In the case of the Dual Spectral schemes, test input vectors were generated by reversing the
signs of randomly chosen components with the specified or unspecified u values.
Analytical bounds are difficult to arrive at for the attraction radius as a function of
the number of memories and the dimension of the state space. Figure 4 plots the attraction
radius Spectral Scheme. The attraction radius was estimated by averaging the maximum
Hamming distance of error-correction around stable memories over several independent
runs. The memories were divided into two equal sized groups, one group with eigenvalue

A(large) = 3n, and the other group with eigenvalue A(small) = n. The respective attraction

Figure { goes heic
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radii of the A(large) memories and the A(small) memories are plotted against the number
of memories m.

In the Dual Spectral Schemes, there is the question of the number of directions, k,
that can be specified given a set of m memories and n neurons, arising from the nature of
the construction of the W¢ matrix. It is obvious from the previous discussions about the
dimensions of A and c that we can surely specify no more than n — m directions. However,
there is a possibility (albeit small) that there exist no feasible solutions for pathological
cases where k < n — m. Another quantity we are interested in is the size of €, the largest
of the unspecified u’s, compared to the size of the specified u’s since we have conjectured
that this will affect directional attraction.

While there exists little theory for the Simplex Method which will enable us to gauge
these parameters, simulations show that € is typically small (Figure 5) compared to u;
for the specified directions (< 0.5 y;), and k is typically of the order of n/4 in the ranges
simulated. We conjecture that this behaviour continues to hold for 1afge n. Figures 6(a)
and 6(b) plot directional attraction for the Dual Spectral Scheme. Attraction data for a
given direction were generated by investigating probe vectors at various Hamming distances
from a memory with the component of the probe in the direction being investigated being
chosen to be opposite in sign to the corresponding component of the memory. Flipping a
bit in an imporant (large u) direction almost always reduced the attraction to the memory
compared to an unimportart (small u) direction.

Figures 7(a) and 7(b) plot the results for the composite scheme. The memories were

Figure 5 goes he

[0

Figures
and 6(b) go herc.

Figures T(u

and 7(b) go hcrtl
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divided into two groups, one group corresponding to a “large” eigenvalue, A;; = 3, and
the other group corresponding to a “small” eigenvalue, A,,, = 1. Directional attraction
parameters for k directions were set equal to pj; = 16. Attraction radii were determined
for the large u (specified) and small p (unspecified) directions as a function of k, for both
the large eigenvalue memories and the small eigenvalue memories. As can be seen, there
is degradation of the behaviour when compared to the memory-specific and feature-specific
schemes. However, the attraction behaviour is in keeping with our expectations, and we

conjecture that the behaviour of these networks improves as n increases.

7 SUMMARY

The recurrent neural network paradigm for associative memory is attractive in its simplicity
and computational tractability. The classical Outer Product Algorithm, for instance, has
very low implementation complexity and yet exhibits near-linear memory storage capacities
with correction of a linear number of random errors uniformly in balls around the memories.
In this chapter we have shown how it is possible to exercise a macroscopic degree of nonuni-
form error correction around the stored memories. In particular, both memorv and feature
selective error correction is feasible using a composite algorithm which exploits the spec-
tral characteristics of the interconnectivity weight matrix. These spectral based approaches
are near-optimal in character and, in particular, are characterised by low implementation
complexities and linear storage capacities. Extensions of these approaches are possible to
higher-order neural networks (where the model neurons compute the sign of polynomial

forms of their inputs) with concomitant increases in the storage capacities of the networks
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(cf. Venkatesh and Baldi, 1991a, 1991b).

APPENDIX A: PROPOSITIONS

Proposition 1 E(u) is non-increasing in asynchronous mode if W is symmetric and has
non-negative diagonal elements; E(u) is non-increasing in any mode if W is symmetric

and non-negative definite.

ProOF: (a) Consider either a synchronous or asynchronous mode of operation. For any
state u, the algorithm results in a flow in state space defined by u — u + éu. We note that
§u is an n-tuple with each component taking on one of the values 0, -2, or 2. The change

in E is given by

6E = E(u+ éu)— E(u)

—%[(Ju,Wu) + (u, Wéu) + (6u, Wéu)).
Since W is symmetric, (6u, Wu) = (u, Wéu). Hence, we have
§E = —(fu, W) - %(&:,Wéu).

We note that the nature of the algorithm is such that the sign of each component of éu
is the same as that of the corresponding component of Wu. Thus, the inner product
(6u, Wu) > 0 for every state vector u € IB™. Furthermore, if W is non-negative definite,
the quadratic form (éu, Wéu) > 0. Thus 6E£ < 0 and E is a monotone non-increasing

function
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(b) In the synchronous mode, assume that the kth neuron updates itself at epoch t.
We therefore have

wift + 1] — wift] = { gmm g: i Il: )

The change in energy 6 F is given by

z 1
0E = —bu; (Z wk,-uj) - —2-(6uk)2wkk .

i=1
Once again, the algorithm ensures that §ui is of the same sign as 3_7_, wk;u;, and since

wkk is non-negative, we see that § £ < 0, and E is montone non-increasing. 1

Proposition 2 F(u) is non-increasing in synchronous mode if W is symmelric. i

ProoF: In the synchronous mode of operation the change in the Manhattan Norm is given

by

oF

F(ult+1]) - F(u[t])

n

D uilt + wiju;[t] + % i z": up[tjwpgugft — 1.

n
i=1 j=1 p=1g=1

=

As W is symmetric, we have wyy = wgp and 370 up[tjwg, = 7, wiju;(t]. So
1 n n
§F = ~3 Z(u,-[t +1] - ‘U.,'[t -1)) Z w;juj[t].
1=1 =1
Let I be the set of indices for which u;[t + 1] = —u;[t — 1] (Note that I can be empty). Then

6F = - S uilt + 113 wiyul

i€l
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nce again we note that the nature of the algorithm guarantees us that the two sums in

the above equation are of the same sign. Thus,

6F = —len:w;,-uj[t] <0,

1€l j=1

and F is a monotone non-increasing function along trajectories in state space. 1

Proposition 3 The (stable state) capacity of the Outer Product Algorithm is n/4logn.

Proor: We will prove only that n/4logn is a lower bound for the stable state capacity of

the Outer Product Algorithm. Consider the random sums

n
X o) = uS°‘)Zw:-’JPu§°') = n+m—1+z Z usa)u?uga)ugﬁ), 1<i<n, 1<a<m.

=1 J#i f#a

Fix i and o, and write simply X, instead of X,(,i'a). We can now write

Xn=n+m—1+§:ZZJ(-ﬂ),
B#a j#i

where, for fixed ¢ and a, we define the random variables ZJ(‘G ) = ufa) ifﬁ )u§~°’)u§-m . Note
that the random variables ZJ(-B), j #1i, 0 # aarei.i.d., symmetric, £1 random variables.’

Now recall that a simple application of Chebyshev’s inequality yields that for any random

variable Y and any ¢ > 0,

P{Y < —t} < inf e " E(e™™T).

*The critical fact here is that each random variable Z;B) has a distinct multiplicative term u(JB) which

occurs solely in the expression for Z_fﬁ).
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Applying this result here we obtain

P{X. <0}

P{ZZz}ﬁ)s—n—mH}

B#a j#i
inf e~ T(n+m-1) E{e'r s 2oyt ng)}

r>0

= inf e~ "(ntm-1) H H e"ng)} .

r20 B#a j#i

IA

8) . . .
The terms in the product, e"zﬁ , B # a, j # i are independent random variables as the
random variables Zy’ ) are independent. The expectation of the product of random variables
above can, hence, be replaced by the product of expectations. Accordingly, denoting by Z

a random variable which takes on values -1 and 1 only, each with probabilty 1/2, we have
P{Xn < 0} < inf e~ w+m=1) [E(e=2)] ™7V < ing emrmtmo1) (cosh p)m-in-),
r>0 r20

Now, for every r € R we have coshr < e”’/2. Hence

r?(m - 1)(n - 1) (n+m—1)? )

P{X, <0} < jlzlgexp( 2 —r(ntm- 1)) = e"p(' 2(n—1)(m—-1)

We hence obtain that the probability that any given component of a memory is not stable
is bounded by

P{X.,(‘l‘a) < 0} < e—n/2m
for large enough n provided m grows so that m = o(n) and m = w(y/n).

Denote the event

En = {U O {x{e) < 0}}

i=la=1
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that one or more of the nm memory components is not stable. A simple application of

Boole’s inequality now yields

P{&.} < 2": i P{X{"®) <0} < nm exp{— (5%) } .

=1 a=1

For a choice of

_n [ loglog n + log 4¢ _ (loglogn)]
™= Tlogn 2logn (log n)?

we hence obtain that P{£,} < € as n — oo. As the probability that each of the memo-

ries is stable is exactly 1—P{&,}, this establishes that the capacity is at least n/4logn. |

Proposition 4 Let m increase with n such that m < n. Then the probability that a ran-

domly chosen set of n-tuples u)), ..., u!™ € B" is linearly independent aproaches one as

This result follows directly from a result of Komlés (1967) asserting that the probability

that a random n x n £1 matrix is nonsingular approaches one as n — oo.

APPENDIX B: LINEAR PROGRAMMING

1. Specify py,... ,pk, Kk < mn—m,let yp +1,...,un — m < ¢, and minimise €. The
canonical form of the linear programming problem that the Simplex Method solves is:

Minimise the goal function cTy subject to the constraints

where the vector y is unknown, and y > 0.
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In this case, we specify k positive values of M, and minimise the maximum of the

(n = k) unspecified values of M, subject to the constraints px41, ..., in > 0, and

Cly « vy Cn—m > 0. In other words, we have the following equations
a1, +- -+ a1 n-mCn-m =M
Q1€ 4+ 4 @G n-mCn-m = Kk

Qr41,1€1 +- -+ @kp1n-mCn-m <€

an,1C1 +: -+ apn-mCn-m <e

where ¢; > 0, € > 0, and we want to find ¢ which minimises ¢.

To convert the n — k inequalities to equalities, we subtract ¢ from both sides of the

equation and add slack variables z,...,z,_k to give us the following n — k equations

k4110 + '+ Gkl n-mCn-m —€+21 =0

an1¢1+ -+ GrunemCn-m — €+ 2n_k = 0,

in addition to the first £ equations. Now we have n equations with 2n — m — k
unknown non-negative quantities (¢1,...,Cn—ms21,...2n-k). Let us label € as cp.
By inspection, we see that the goal function to be minimised is cp, subject to the

constraints A'c’ = M’ where ¢’ is a (2n — m — k + 1)-dimensional vector M,,’ is a
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n-dimensional vector, and A’ is an n X (2n — m — k + 1) matrix; i.e., we require to

solve

9]

0 0 : _ |
-1 A 1 Cn-m | = 0 (12)

2

[ o[ E) ()

\—1: ‘..lj\zng_k/ \0)

and ¢;, z; 2 0. This is in the canonical form for the Simplex Method.
2. Specify p1, ..., pin, and

(a) Minimise the mean-square error given by

n
”AC - Mu"2 = Z (ai,lcl +-+aqn-mCn—m — ui)2

i=1
subject to the constraints M, > 0,c > 0.
This is a quadratic programming problem. However, this problem can be refor-
mulated as a Simplex Method problem and can be solved using a variation of

the traditional simplex method called Wolfe’s method (Wolfe, 1959).

(b) Minimise the largest absolute error, cg, given by
ma‘x(lfl |a vy Icnl)
where ¢;, the error in y;, is

I‘i—(ai.lcl+"'+ai.n—mcn—m)v t=1,...,n.
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Our problem now is to minimize ¢g subject to cg,¢1,...,cp-m > 0. To solve this

problem,® we note that we have n pairs of inequality contraints of the form

—Cco+ aiic1 + -+ Gin—mCn-m < Wi

—Cp— @;,1C1 — *** — Qin—mCn-m < =

The addition of slack variables puts the problem in canonical form.

References

Chvatal, V. (1983). Linear Programming. W. H. Freeman, New York.

Dembo, A. (1989). On the capacity of associative memories with linear threshold functions.
IEEE Trans. Inform. Theory, 35, 709-720.

Franklin, J. (1980). Methods of Mathematical Economics. Springer-Verlag, New York.
Goles, E., and Vichniac, G. Y. (1986). Lyapunov functions for parallel neural networks.
" Neural Networks for Computing, (ed. J. Denker). AIP, New York, 151, 165-181.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective com-
putational abilities. Proc. Nat. Acad. Sciences USA, 79, 2554-2558.

Komlés, J. (1967). On the determinant of (0,1) matrices. Studia Scientarurn Mathemati-
carum Hungarica, 2, 7-21.

Komlés, J., and Paturi, R. (1988). Convergence results in an associative memory model.
Neural Networks, 1, 239-250.

Maruani, A. D., Chevalier, R. C., and Sirat, G. (1987). Information retrieval in neural

®This is known as Chebyshev’s Approximation (Franklin, 1980, p. 8).




APPENDIX B: LINEAR PROGRAMMING 32
networks. I. Eigenproblems in neural networks. Rev. Phys. Appl., 22, 1321-1325.
McCulloch, W. W., and Pitts, W. (1943). A logical calculus of the ideas immanent in neural
activity. Bull. Math. Biophys., 5, 115-133.

McEliece, R. J., Posner, E. C., Rodemich, E. R., and Venkatesh, S. S. (1987). The capacity
of the Hopfield associative memory. IEEE Trans. Inform. Theory, 33, 461-482.

Murty, K. G. (1983). Linear Programming. Wiley, New York.

Personnaz, L., Guyon, 1., and Dreyfus, G. (1985). Information storage and retrieval in
spin-glass like neural networks. J. Physique Lett., 46, L359-L365.

Strang, G. (1980). Linear Algebra and Its Applications. Academic Press, New York.
Venkatesh, S. S., and Baldi, P. (1991a). Programmed interactions in higher-order neural
networks: Maximal capacity. J. Complezity, 7, 316-337.

Venkatesh, S. S., and Baldi, P. (1991b). Programmed interactions in higher-order neural
networks: The outer product algorithm. J. Complezrity, 7, 443-479.

Venkatesh, S. S., Pancha, G., Psaltis, D., and Sirat, G. (1990). Shaping attraction basins
in neural networks. Neural Networks, 3, 613-623.

Venkatesh, S. S., and Psaltis, D. (1989). Linear and logarithmic capacities in associative
neural networks. IEEFE Trans. Inform. Theory, 35, 558-568.

Wolfe, P. (1959). The simplex method for quadratic progrémming. Econometrica, 27,

282-298.




APPENDIX B: LINEAR PROGRAMMING 33

Figure Captions

Fig. 1 Schematic representation of the directional attraction space around two memories

with different eigenvalues with Spectral algorithms.

Fig. 2 Schematic representation of the directional attraction space in the Dual Spectral

Scheme with gy >> pg, ;.

Fig. 3 Schematic representation of the joint memory-specific and direction-specific attrac-

tion space for two memories in the Composite Scheme.

Fig. 4 Average attraction radii around stable memories in the Outer-Product Scheme.

Fig. 5 Attraction radii in the Spectral Scheme.

Fig. 6 Variation of ¢, the largest of the unspecified directional parameters, pi41, ..., in,
as a ratio of the specifed directional parameters with &, the number of directions

specified.

Fig. 7 Demonstration of direction-specific attraction in the Dual Spectral Scheme.

Fig. 8 Demonstration of memory-specific and direction-specific attraction in the Compos-

ite Scheme.
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On Reliable Computation with Formal Neurons

Santosh S. Venkatesh and Demetri Psaltis

Abstract—We Investigate the computing capabilities of formal
McCulloch-Pitts peurons when errors sre permitted in decisions.
Specifically, given a random m-set of points ul,...,u™€ R%, a
corresponding m-set of decisions d', - - - ,d™ € {—1,1}, and a fractional
error-tolerance 0 < ¢ < 1, we are interested in the following question:
How large can we choose m such that a formal peuron can make
assignments u* — d”, with no more than em errors? We obtain formal
results for two protocols for error-tolerance—a random error protocol
and an exhaustive error protocol.

In the random error protocel, a random subset of the m points is
randomly and independently specified and the associated decisions labeled
“don’t care.” We prove that if m is chosen less than 2n/(1 — 2¢), then
with high probability, there is a choice of weights for which the expected
oumber of decision errors made by the neuron Is no more than em; if m
is chosen larger than 2n/(1 — 2¢), then the probability approaches zero
that there is a choice of synaptic weights for which the expected number
of decision errors made by the neuron is fewer than em.

In the exhaustive error protocol, the total number of decision errors
bas to lie below em, but we are allowed to choose the set of decisions that
are in error. We show that there is a function 1 <x.< 505 such that if
m exceeds 2x,n/(1 — 3¢), then there is, with high probability, no choice
of synaptic weights for which a neuron makes fewer than em decision
errors on the m-set of inputs. For small ¢, the function x. is close to 1
so that, informally, we can specify m-sets as large as 2n/(1 — 2¢) (but
not larger) and obtain reliable decisions within the prescribed tolerance
for some suitable choice of weights.

Index Terms—Capacity, computation, fault-tolerance, formal neuroas,
large deviations, reliability.

1. INTRODUCTION

The formal modeling of biological neurons as linear threshold gates
dates to the seminal paper of McCulloch and Pitts [3]. Although the
biological plausibility of these models is open to debate, extensive
investigations since the work of McCulloch and Pitts have shown that
considerable computational power is latent in networks of formal
neurons.

In its simplest form, a formal neuron is a computational device
that accepts n real inputs and produces a single bit output depending
on whether a weighted sum of the inputs exceeds a fixed threshold.
If the inputs are constrained to be Boolean variables, then the neuron
simply realizes a Boolean function of n variables.

A fundamental counting result (cf. Schlifli (4], Wendel [S], and
Cover [6]) helps quantify the computationa! capability of a neuron:
for any m set in Euclidean n space, the resuit gives a precise count
of the number of dichotomies of the set that can be separated by a
neuron. Each dichotomy is a collection of m decisions made by the
neuron on the m set. Schlifli's theorem, therefore, gives the number

Manuscript received May 18, 1989; revised January 8, 1991. This work
was supported by NSF grant EET-8709198 and Air Force grant AFOSR-89-
0523 at the University of Pennsylvania and the Defense Advanced Research
Projects Agency at the California Institute of Technology.
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of distinct sets of decisions that a neuron can make on a given set
of data. The theorem can be used to estimate the maximum number
of decisions that can be reliably made by a neuron; this number is
linear in n, as we will sec in the sequel.

In the considerations above, we have tacitly assumed that functions
are computed without errors. Although this is the norm in most logical
functions implemented on digital computers, computations involving
cognitive tasks such as pattern recognition, however, are frequently
less exact. It is hence reasonable to wonder whether allowing a formal
neuron the latitude to make errors can substantially increase the set
of problems that it can handle.'

Assume that a set of m decisions are to be made on a randomly
specified m set of points in n space and that we allow an error
tolerance of em decision errors, with 0 < ¢ < 1/2. We are
interested in how large we can choose m such that the neuron
makes reliable decisions within the prescribed error tolerance. A
superficial consideration of the problem might indicate that substantial
gains in computation may be achievable if errors are permitted,
as the following analysis indicates. The number of ways that em
errors can occur in decisions is (7 ) and corresponding to each
such specification of the em incorrect decisions, there is a set of
(1 — ¢)m decisions that are required to be correct. Hence, the neuron
is only required to realize any one of { 7 ) distinct sets of (1 — ¢)m
decisions reliably. For large m, (7 ) = (2°™) for a positive con-
stant ¢ so that there is an exponential number of distinct choices of
which the neuron has to implement only one. It hence appears that
there may potentially be substantive computational gains to be made
if we allow some error tolerance in the decisions. Our main result in
this paper, how ever, indicates that such gains are not actually realized,
and the maximum number of decisions that can be made by a neuron
under such circumstances remains linear in n; specifically, we prove
the following results.

* The sequence 2n/(1 — 2¢) is a threshold function’ for the
property that there is a choice of synaptic weights for which
the neuron makes no more than (essentially) em random errors
in decisions. In particular, if m is less than 2n/(1 — 2¢). then
with high probability, there is a choice of weights for the neuron
such that the expected number of errors is fewer than em; if m
exceeds 2n /(1 — 2¢), then the probability approaches zero that
there is a choice of weights for the neuron such that the expected
number of errors is fewer than em.

* There is a function 1 < x, < 505 such that if m exceeds
2x,n/(1 = 2¢), then there is (asymptotically) no choice of
synaptic weights for which a neuron makes fewer than em
decision errors on the m set of inputs.

In the next section, we develop some notation and introduce the
notions of ¢ reliability and capacity function. The main theorems

'Note that we assume that we have compiete control over the neuron
parameters and that errors creep into the neural outpul because we are
overloading the capacity of the neuron. The notion of reliability of the
decisions here is somewhat different from the case where deciwsions are
unreliable because of a lack of control in the specification of the neuron
(such as noise in the weights)

2The terminology threshold function, although siandard in the probabilistic

method, is a trifle unfortunate in the present context of linear threshold
elements. We will replace it by the term capacry function in the nexi section

0162-8828/92803.00 © 1992 IEEE
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are stated and proved in Section III; two technical results from large
deviation probability theory arc confined to the Appendix.

Several of the arguments used involve asymptotics, and we briefly
sketch our use of notation here. If {z. } and {y, } are any two positive
sequences, we say that

(@) 2n = Q(yn) if zn/y« is bounded from below

() 7. = O(yn) if zn/yn is bounded from above

(¢) Ta ~ yn if za/yn approaches 1 for n large enough

(d) zn = o(ya) if za/yn~ approaches zero as n — oo.

If A, is a sequence of events in a probability space, we say that A,
occurs with probability one if P{A,} — 1 as n — . By §, we
denote the Gaussian distribution function

1 f —y?
Q(I)-E /e v /Qdy.

By b(k; N, p), we denote the probability that V' Bernoulli trials with
probabilities p for success and (1 — p) for failure result in k successes
and N — k failures, ie.,

A .
b(k; N.p) = ( N )p"u -p)¥ k.

We also denote by B the set {—1,1}.

Il. ERROR TOLERANCE

A formal neuron is a linear threshold gate characterized by a vector
of n real weights w = (w;.---.w,) and a real threshold wo. The
neuron accepts as inputs points w € R™ and produces as output a
single bit d € B, according to the following rule:

if Yw,u, >uwo

- 1
d= . -u =
sgn ;u,u, uo) {_1 it Sun, < vo.

We will without loss of generality assume that the threshold wo = 0.
The neuron hence associates a decision or classification
(=1 or + 1) with each point in n space. For any given set of
points then, the neuron dichotomizes the set of points into two
classes—those points mapped to +1 and those mapped to —1. In
the geometric analog the neuron represents a separating hyperplane
in n space. We are interested in characterizing the largest set of points
for which there ¢xist choices of weights such that almost any set of
decisions associated with the specified set of poinls is realizable.

Let w',.--,#™ € R be a random m set of points chosen from
any joint distribution invariant to reflection of components around the
origin and such that every subset of n points is linearly independent
with probability one. Letd'.---.d™ € B be a corresponding m sct
of decisions. For a neuron to make reliable decisions, we must find
a choice of weights that realize the assignments «® — d° for each
a = 1,---,m. Note that we can take all the decisions d° to be +1
without any loss of generality because the vectors u® can always be
refiected about the origin.

We incorporate error tolerance in decisions by introducing the
notion of “don’t-care decisions.” Let 0 < ¢ < 1/2 be the fraction of
errors that we are willing to allow in the decisions (i.e., we tolerate
em errors in decisions). Let D®.a = 1.---. m be the outcomes of m
identical and independent experiments whose outcomes are subsets
of {—1,1}. and such that

. { (@)
(-1.1}

}n fact, it is easy to see that the threshold can be accommodated by
allowing an additional constant input of —1 to a zero threshuld neuron. Our
results will then continue to hold for nonzero thresholds by replacing n by
n+l

with probability 1 — 2¢
with probability 2e.

If a sample outcome D = {d”}, then we require that the neuron
produces the specified decision 4° as output whenever it receives
%7 as input. If, however, the sample outcome D = B, then we
associate a don’t-care decision with point «®; the neuron can result
in either —1 or 1 as output when «° is input. We call D the
decision set associated with decision d”; we say that D° is normal
if D* = {d“} (i.e., the decision has to be accurate), and D° is
exceptional if D® = B (i.c,, the decision is don’t-care). The idea
behind defining the decision sets in this fashion is the following. With
the m decision sets D*,---, D™ generated independently according
to the above prescription, the expected number of normat decision sets
is (1 — 2¢)m, whereas the expected number of exceptional decision
sets is 2em. We now forget about those points corresponding to the
exceptional decision sets and attempt to find neural weights that will
correctly classify the remaining points corresponding to the normal
decision sets. If we can successfully do this, then, beside the points
corresponding to the rormal decision sets, on average, one half of
the points corresponding to the exceptional (don’t-care) decision
sets will serendipitously also turm out to be correctly classified.
(Because the weights were chosen without taking the exceptional
points into consideration, one half of them, on average, will be
correctly classified as the points are chosen from a distribution that is
invariant to reflections about the origin.) Thus, the expected number
of errors in decision will only be em. We formalize this notion of a
random error protocol in the following:

Definition 2.1: Let u,.--- . u» € R be the weights corresponding
tol a neuron. We say that the neuron makes ¢-reliable decisions on
« .. if

sgn(Zu,u;’)eD°. a=1.-.m.

=1

Note that by the Borel strong law, the fraction of don’t-care
decisions is almost surely 2e¢. Further, because the vectors w° are
invariant to reflections about the origin, the fraction of actual decision
errors that occur for a neuron making e-reliable decisions is almost
surely e. The case ¢ = 0 reverts to the case of perfect decisions.

In the random error protocol, we are interested in the following
attribute of the m set of points «'.---.4™ and the corresponding
decisions:

EVENT F.(n.m): There is a choice of weightc such that the
neuron makes e-reliable decisions.

The attribute F, (n. m) deals with the notion of reliable decisions
on a random subset of points of expected size (1 — 26)m.* The
average number of errors allowed within this protocol is em. but
it is conceivable, albeit a rare occurrence, that the actual number
of errors substantially exceeds e¢m. In the exhaustive error protocol,
however, it is not permitted that the number of errors exceeds ¢m
substantially. There is no constraint. however, on the choice of which
(1 — ¢)m decisions are to be correctly implemented, and we are

“The method of choosing decision sets advocated in this paper is not
sacrosanct, and we could utilize any random strategy for choosing decision
sets that yields an expected number of (1 — 2¢)m normal decision sets
We could, for instance. choose the random subset of normal decision sets
from the uniform distribution on all subsets of size (1 — 2¢)m from the set
of m decisions; alternatively, we could replace the independent assignment
of don’t-cares in this paper by a Markovian strategy. The choice of the
binomial distnbution for specifying don’t-cares in this paper was motivated
in pant because it is, in 2 sense, natural—the independent assignment of
don't-cares from decision to decision avoids any bias due to prior don’t-care
assignments — and the fact that the computational complexity of choosing
decision sets reduces to an exercise in coin flipping. The results of the next
section hold for most reasonable choices of underlying distribution, resulting
in an expected number of (1 — 2¢)m nommal decision sets. although the
technical details in the proofs can alter shghtly.
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free 1o exhaustively check each alternative of making em: etrors and
choose the most favorable one. This protocol leads to a consideration
of the following attribute of the m set of points '.---,u™ and the
corresponding decisions.
EVENT G,.(n,m): There is a choice of weights such that the
neuron makes no more than em{1 + o(1)} decision errors.

The attribute G.(n,m) is somewhat stronger than the attribute
F.(n,m); instead of attempting to realize a random subset of
decisions, we query whether it is possible to find a choice of weights
for the neuron such that at least one of the (7. ) subscts of (1 — e)m
decisions is reliably made.

Definition 2.2;: Let A(n, m) be an attribute of the m set of points
w'..--,w™. A sequence {C(n)}3%, is a capacity function for the
attribute A(n,m) if for A > 0 arbitrarily small: 1) P{A(n,m)} —
1 as n — 20 whenever m < (1 — A)C(n). and 2) P{A(n,m)} —
0 asn — o> whenever m > (14 A)C(n).

We say that C(n) is a lower capacity function if it satisfies the first
condition and that C(n) is an upper capacity function if it satisfies
the second condition.

The term threshold function is more standard in the literature of
the probabilistic method when an attribute exhibits such a threshold
behavior. Our definition is slightly stronger than is usual.

Capacity functions have been found for a variety of neural network
architectures and algorithms [12], [7]-[13]). These investigations
into network capacity have hitherto concentrated mainly on capacity
functions for perfect decisions with no errors (cf. [9], [10], however,
for results on error tolerance in the outerproduct algorithm). In the
following, we expand on the results in [12} and show capacity
functions for the attributes F,(r,m) and G.(n,m).

III. CapaciTY FUNCTIONS

A. Error-Free Decisions

We begin by investigating the attribute Fo(n,m) that there is
a neuron that makes reliable decisions w® ~— d® for each a =
1.:--.m. The following fundamental result is due to Schlifli [4]:
(Wendel [5] has a more accessible proof of the result; cf. also Cover
{61)

Lemma 3.1: The probability that there is a neuron that makes
reliable decisions on a random m set of points in Euclidean n space
R™ is given by

n—1
P{Fo(n,m)} = Y b(k: m — 1,0.3). )

k=0

An application of Lemma A.2 directly yields the following:
Theorem 3.2: The sequence Co(n) = 2n is a capacity function
for the attribute Fo(n,m).}

Proof: Fix 0 < A < 1 and let H(z),0 < x < 1 denote the
binary entropy function defined in Lemma A.2. With a choice of
m = |2n(1 — X)) in (1), we can find 1/2 < ¢ < 1 such that

c(m=1)

P{Fo(n,m)} > Y blki m - 1,0.5)

k=0

>1-— 2—“—”(5)]("'-” —1, n — 0o

with the second inequality following from Lemma A.2. Similarly, for
a choice of m = |2n(1 + X)], we can find 0 < @ < 1/2 such that

a(m—1)
P{Fo(n,m)} < Y biki m-1,0.5)
© k=0

< 27(-HENm=D g, n— %

3¢f. also & recent result due to Firedi [16] oo random polytopes in the cube.

where we have used the dual form of Lemma A.2 (cf. remarks
following the lemma). |

B. Epsilon Reliability

We now investigate the attribute F,(n, m) that there is a choice
of weights for which a neuron makes e-reliable decisions on the m
set of points w',--- u™.

Theorem 3.3: The sequence C.(n) = 2n/(1 — 2¢) is a capacity
function for the attribute F,(n,m).

Proof: Let 0 < € < 1/2 be the given tolerance. Noting that the
decision sets are generated independently of the m set of points, a

direct application of Lemma 3.1 yiclds

P{F.(n,m)} =) b(ki m,1-2e)P{Fo(n,k)}. (2

k=0

We first claim that P{Fo(n,k)} is a monotone nonincreasing
function of k for each positive integer n. To show this, consider
the difference P{Fo(n.k)} — P{Fo(n,k + 1)} for any choice of k
and n. Using (1) and elementary binomial identitics, we have

P{Fo(n,k)} = P{Fo(n,k+1)}

=B (-5 ()
-~[E()-E00)

J=0 =1

k-1
=2 (n—l)'

Hence, P{Fo(n.k)} — P{Fo(n,k+ 1)} > 0 for any choice
of k and n, and the claim is proved. Fix parameters A > 0 and
1/2 < v < 2/3. Now choose m = 2n(1 — A)/(1 — 2¢) and set

tm = m(1 - 2¢) + m*/2¢(1 - 2¢).
Using the monotonicity of P{Fo(n,k)} and (2), we obtain
P{Fnm)} 2 P{Fo(n,vm)} 3 b(k; m,1 = 26).
A

k=0

s

B
As n — ¢, we then have from Theorem 3.2 that
A= P{Fo(n,|2n(1 = X)(1+0(1))N} — 1

while an application of Lemma A.1, and the choice 1/2 < v < 2/3,
yields

B~&(m* /) =1-0(e ")

for some positive constant ¢;. Hence, for every A > 0
P{Fc(n,[2n(1 - 2)/(1 - 26)])} — 1,

Now choose m = 2n(1 + A)/(1 — 2¢), and set

Tm = m(l ~ 2¢) - m"m

Again, using the monotonicity of P{F,(n,k)}} in (2), we have

as n — oo.

P{F.(n.m)} < ib(k; m,1 =26+ P{Fo(n.2m)} .
[ S

k=0
- v D

v

c
An application of Lemma A.1 and the choice 1/2 < v < 2/3 yields
that as n — oo

C~d-m" )= O(c_,,,,,z._.)
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for some positive constant cz. In addition, Theorem 3.2 yields
D = P{Fo(n, [2n(1 + A)(1 - o(1))])} = .
It hence follows that for every choice of A > 0
P{F(n,[2n(1+ A)/(1 - 26))]} — 0,

Thus, the sequence 2n/(1 — 2¢) is both a lower and an upper capacity
function (hence, a capacity) for the atiribute F.(n, m). n

Let us now consider attribute G.(n, m). The Borel strong law of
large numbers yields that the fraction of exceptional decision sets
is no more than 2¢[1 + o(1)] with probability one. For any choice
of weights realizing e-reliable decisions on the m set of points
ul,... ™, it follows that the fraction of decision errors will be
no more than €[l + o(1)] with probability one as the m set of points
is chosen from a joint distribution invariant to reflections. The proof
of the above theorem then directly yields

Theorem 3.4: The sequence Cc(r) = 2n/(1 - 2¢) is a lower
capacity function for the attribute G (n, m).

Now, consider all possible ways of assigning at most em[1 + o(1)}]
errors in decision to the m set of points. Attribute G.(n,m) is
realized if ar least one of these possibilities is realizable for some
appropriate choice of weights. (This clearly relaxes the more stringent
requirements of attribute ¥, (n, m), where we require that a randomly
chosen one of these possibilities is realizable for an appropriate choice
of weights.) Because the number of such possibilities is exponential,
we might hope to realize significant gains in capacity for attribute
G.(n,m). The following result shows that we can hope to gain by,
at best, a constant scale factor but that the linear rate of growth of
the capacity function is unaffected.

Theorem 3.5: Let x, be a function of the crror tolerance ¢ defined
by the unique solution of

as n— 00.

3(1;2‘)+H(c)=1. 0<e<1)2 3)
where H is the binary entropy function. Then, the sequence C,(n) =
2kn/(1 - 2¢) is an upper capacity function for the attribute
Gt (71. m)
Remarks: The function x, is defined as we vary ‘e in the interval
0 < € < 1/2 and monotonically increases from a value of +1 at
¢ = 0 to a value close to 505 as ¢ approaches 1/2. For small ¢, it
remains close to +1 so that the capacity function for the attribute
G.(n, m) still behaves like 2n/(1 — 2¢).

Proof: Let us consider a tolerance of "exactly em errors.
The proof is not materially altered if the allowed tolerance is
em|1 + o(1)).

Let P(n, m) denote the probability that there is a choice of weights
for which a given set of j decisions is made incorrectly, whereas the
remaining m — j decisions are made correctly. By Lemma 3.1,% we
get that for any choice of j

n—1
P(n,m) =Y b(k; m - 1,0.5). “4)
k=0
Now, the number of ways in which em or fewer decision errors can
be made is 307, (';‘), therefore, the union bound gives

P{G.(n,m)} < P(n,m)i (m)
)=0 J

Fixing a set of ; points u°!, ..., % which are incorrectly classified, is
equivalent to specifying the corresponding decisions to be —d°!, .-, —d?s;
this, however, just yields a different dichotomy of m points in n space, and
Schiifli's lemma applies.

Let A > 0 be fixed but arbitrary, and choose m = 2x.n(1 + A)/
(1 — 2¢), where &, is as defined in (3). Applying Lemma A.2 to (4),
we obtain that

P(n,m) < 2-("'—1)[‘—"((1-2‘)/2~-(l+1))]

_ while another application of Lemma A.2 gives

€m
3 (’") < mHE©
3=0 J

for large enough m. Hence, for cach choice of 0 < € < 1/2 and
A > 0, there is a choice of 3 > 0 such that

P{G.(n,m)} < 52-"'[1—H((l—2!)/25.(1+A\))—H(()].

The binary entropy function H(c) increases monotonically from a
value of 0 at c = 0 to a value of 1 at ¢ = 1/2. Hence, with x, as in
(3), H{(1 - 2¢)/2x.(1 4+ A)} + H(e) < 1. Hence, for every choice
of A > 0and m = 2x.n(1 + A)/(1 - 2¢), there is a choice of § > 0
such that P{G.(n,m)} < 27°™ =0 asn — co. [ |

IV. CoONCLUSION

The results proved in this paper demonstrate that a formal neuron
has a computational capacity that is linear in n and that this rate of
growth of capacity persists even when errors are tolerated in the deci-
sions. A question that arises at this juncture is how this result bears on
computations involving networks of formal neurons. In particular, for
an associative memory model composed of n densely interconnected
formal neurons, the rigorous determination of the maximal storage
capacity when errors are permitted in recall is an open question. We
analyze this in a subsequent paper {17] (cf. also [2]).

APPENDIX
LARGE DEVIATIONS

We quote two technical lemmas from large deviation probability
theory that we will need. Both results concern probabilities in the tails
of the binomial distribution. Lemma A.1 provides a good uniform
estimate for the cumulative distribution of a sum of /V independent
(0, 1) random variables valid for deviations from the mean as large
as o( N?/?) (instead of the O( VN ) deviations encountered in the
usual central limit theorem). The approximation is the strong form
of the large deviation central limit theorem [14]. Lemma A.2 is
due to Chemnoff [15] and estimates probabilities in the extreme
tails (deviations of the order of N from the mean) of the binomial
distribution.

Lemma A.1: Let 0 < p < 1, and Jet {vn} be a sequence such
that |vx = Np| € K(N) = o(N?/?). Then

L. v~y —Np
b(k, "\'.p) ~¢ —'——— N N — .
g—o vV ¥p(1-p)

If, in addition, vx — Np = Q(N"), for some 1/2 < v < 2/3, then
vN
bk Np) =1-0("N")
k=0

with 6 > 0, which is a constant.

Lemma A.2: Let 0 < p < 1 be fixed, and let 7, and H be real-
valued functions on the closed interval [0, 1] defined for 0 < ¢ <1
by

Tp(c) = —clog,p— (1 —c)log, (1 - p)

7

H(c)= -clog,c— (1 ~c)log, (1 ~¢)

TWe define H(c) =0whenc=0orc=1
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Then, for every choice of ¢ € (p,1) we have
LeN) ,
3 b(ki Np) 2 1 - 27 N[TrO=HO,
k=0
Remarks: The quantity H is the binary entropy function. Note
that Tp(c) > H(c) for all ¢ (with equality only for ¢ = p) so that
Chemoff’s bound yields an exponentially small probability for the
extreme tails. The bound is, in fact, exponentially tight.
For the special case p = 1/2, Chernoff’s bound yields
LeN)
3 bik; §,0.5) > 1 - 27N Hl
k=0
for any choice of 1/2 < ¢ < 1. Note also that by the symmetry of
the binomial distribution, we have
faN]
3 b(k; §,05) < 27 Ni- e
k=0

for any choice of 0 < a < 1/2.
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Abstract

How does an allowed tolerance for error in output affect the computational capability of a neural
network and the ability of the network to learn an underlying problem structure? The subject of this
communication is the development of formal protocols for handling error tolerance which allow of a precise
determination of the computational gains that may be expected. The error protocols are illustrated in the
framework of a densely interconnected neural network architecture (with associative memory the putative
application), and rigourous calculations of capacity are shown. Explicit capacities are also derived for
the case of feedforward neural network configurations.

tPresented in part at the Workshop on Neural Networks for Computing, Snowbird, Utah, 1986 [1).
1The research reported here was supported by the Air Force Office of Scientific Research under grant AFOSR 89-0523.
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1 INTRODUCTION

How does an allowed tolerance for error in output aifect the computational capability of a neural network
and the ability of the network to learn an underlying problem structure? In this paper we attempt to
mathematically codify the computational gains that are realised when errors are permitted in the network
output. Such error tolerance may occur naturally in applications such as associative memory or pattern
classification where we do not insist on accurately classifying every feature; alternatively, error tolerance
may be forced upon us* by the inability of ‘he neural architecture under consideration to respond accurately
to every instance of a specific problem: as in, for example, attempting to classify two non-linearly separable
classes of points with a single separating plane (or equivalently, a single McCulloch-Pitts neuron).t

Anecdotal evidence exists for the premise that an allowed error tolerance can have a significant effect
on computational capability. Consider, for instance, an associative memory application where it is desired
to store memories as attractors in recurrent neural networks whereby a linear number of component errors
in any memory are corrected and the memory retrieved. Rigourous investigations by McEliece, et al {2] and
Koml6s and Paturi [3] show that the outer-product algorithm for storing memories in a recurrent network
of n neurons stores exactly of the order of n/logn memories when it is required that each memory be
retrieved ezactly with no component errors. However, in earlier work, Hopfield [4] reports empirical evidence
indicating that 1t may be possible to store a number of memories linear in n with the outer-product algorithm
if errors are permitted in the retrieved memories; this was formally verified subsequently by Newman [5] who
demonstrated a lower bound linear in n on the memory storage capacity if errors are permitted in retrieval.
Thus, an allowed error tolerance effects a substantial improvement in storage capacity from sub-linear in n
to at least linear in n for the outer-product algorithm.

Our purpose here is to attempt to quantify the maximal gains in capacity that can accrue for any
algorithm if errors are allowed in the outputs of a given neural network architecture. In particular, for
recurrent neural networks of n neurons (and any choice of algorithm) we settle the issue of whether Newman'’s
linear lower bounds can be substantially improved upon to allow memory storage capacities which increase
faster than linearly in n if errors are permitted in the recoll of the stored memories.

Let us consider the associative memory application in some more detail. Let u!, ..., u™ be a random

*Some men are born into errors, others achieve errors, and some have errors thrust upon 'em.

In the classical modeling of McCulloch and Pitts, a formal neuron is a linear threshold element which produces a binary
output according to the sign of a linear form of the inputs.

— -’
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selection of m memories drawn from the vertices of the cube {—1,1}". For associative memory it is desired
that a random probe differing from a memory in no more than pn components (for some choice of 0 < p < 1/2)
is mapped into the memory. In other words, we require the memories to be attractors over a Hamming ball
of radius pn.

Consider now a recurrent neural network of n neurons where, at any epoch, the binary n-tuple of neural
outputs is fed back to constitute the neural inputs for the next epoch. The degrees of freedom in this
dynamical system reside in the specification of the weighting factors linking neural outputs to inputs. Each
specification of interconnection weights results in the specification of a dynamics characterised by a family
of trajectories in a state space of the vertices of the cube {—1,1}". The storage of memories as attractors
in such a structure is accomplished if, for a choice of interconnection weights, trajectories originating in a
Hamming ball of radius pn at the memories ultimately terminate at the memories. As we will see later in
Corollary 4.2, it is not possible to store more than a linear number (in n) of random memories as attractors
in a recurrent neural network of n neurons.

An allowed error tolerance in this context permits a fraction ¢, 0 < € < p < 1/2 of errors in the retrieval
of any memory. This situation corresponds to requiring points in the Hamming ball of radius pn at a memory
to be ultimately mapped into a (smaller) ball of radius en at the memory. This is indicated schematically
in Figure 1. The capacity question is now to determine the largest allowable rate of growth of the number
of memories m with the number of neurons n such that it can be guaranteed with high probability that
trajectories originating in a Hamnmnng ball of radius pn at any memory are ultimately confined within a
Hamming ball of radius en at the memory. The following plausibility argument indicates that the flexibility
inherent in allowing error tolerance may resuit in substantial gains in capacity over the error frec case.

Let us simplify the problem by considering trajectories originating at a memory, say u® € {—1,1}". If
the trajectory is to be confined within an en ball at the memory, then clearly a necessary condition is that
the first synchronous step in the trajectory not lead to a point outside the ball of radius en at the memory.
However, any transition u® +— v® where v differs from the memory u® in no more than en components
is an admissible transition (see Figure 2). Thus, for the m memories, there are a total of [Z;'_‘__o (") ]m
admissible m-sets of first synchronous transitions originating at the memories corresponding to the number
of different ways of specifying “first transition points” in the m Hamming balls of radius en at the memories.
Let us now concentrate on the problem of realising an admissible set of m first transitions (one for each
memory) within a recurrent neural network structure. This is clearly a necessary prelude to the larger
problem of asso-.iative memory with error tolerance in the following sense: if M(c,n) is the largest rate of

growth of m with n for which it can be guaranteed with high probability that there exists a set of neural
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interconnection weights for a recurrent neural network which yields an admissible m-set of first synchronous
transitions originating at the memories, then M (¢, n) gives an upper bound for the number of memories that
can be stored with an error tolerance of en components in retrieval.
Our basic question now is the following: For a random selection of m memories, u® € {~1,1}*, a =1,
., m, and a given (fractional) error tolerance 0 < ¢ < 1/2, is there any choice of neural interconnection
weights for a recurrent neural network which will result in an admissible m-set of first synchronous transitions,
u® — v® a =1, ..., m, where each v* differs from the corresponding memory u® in no more than en
components? Now it is easy to verify using Stirling’s formula that the number of admissible m-sets of first
synchronous transitions from the memories is Q(29(9)™"), where c(¢) is a fixed positive function of €. For

1 1

—v,..,um v

a large choice of m, any given m-set of admissible transitions, u , will have only a
small probability of being realised within a recurrent neural network architecture. However, there are an
exponential number of possible sets of admissible transitions so that the probability that one or more of
these sets of transitions is realisable in a recurrent network may be large even if the probability of realising
any individual set of transitions is small. It hence appears that potentially large gains in capacity may be
possible if errors are allowed in retrieving memories.

A similar plausibility argument could be made for the improvement in capacity of any neural network
architecture if a fraction ¢ of tiie network outputs can be in error. For instance, if we are interested in realising
a set of desired assignments u®* — f(u®), a =1, ..., m (where f is some underlying function from which
random examples are drawn) in a feedforward neural architecture, allowing up to em of these assignments
to be in error again gives an exponential (in m) number of choices for specifying incorrect assignments.

The above specious arguments notwithstanding, the main results of this paper indicate, however, that
error tolerance does not buy order of magnitude improvements in capacity over the error free case in neural
network architectures: in general, error tolerance results in an improvement in the multiplicative constants,
but does not change the rate of growth of capacity.

Organisation: In the next section we set up the formal neural model in the framework of a fully-
interconnected network architecture for definiteness. We also introduce two protocols for error—a random
and an exhaustive error protocol—and define the formal notion of capacity. The definitions here follow
those developed in Venkatesh and Psaltis {6] in the analysis of reliability and error tolerance issues for
computations with a single neuron. In Section 3 we state some preliminary technical lemmas which are
central to the ensuing development. In Section 4 we state and prove the main theorems on the capacity
of fully-interconnected, recurrent neu- i networks when there is a tolerance for output error. Finally, in

Section 5 we briefly indicate the extensions of these results to feedforward neural network architectures.
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On Notation: IB denotes the set {—1,1}; the function sgn : R — IB is defined by sgnz = z/|z| if z # 0,
with the nonce convention sgn0 = 1; logarithms are to base e; for any positive integer k, [k] denotes the
set {1,...,k}; c1, 2, c3, ... represent absolute positive constants; for any u € B" and any r > 0, B(u,r)
denotes the Hamming ball of radius r at u, i.e., the set of all points in IB" which differ from u in r or fewer
components; the probability that N Bernoulli trials with probabilities p for success and 1 — p for failure

result in k successes and N — k failures is denoted by d(k; N, p):
N -
b(k;N,p) = ( k )p"(l -pV k.

We will also have recourse to the following asymptotic order notations. If {z,} and {y,} are positive
sequences, we denote: z,, = O(y,) if there exists K < oo such that z,/y, < K for all n; z, = Q(y,) if there

exists L > 0 such that z,/y, > L for all n; and z,, = o(y,) if zn/yn — 0 as n — oo.

2 ERROR TOLERANCE: PROTOCOLS

2.1 Formal Neurons and Networks

A formal neuron is a linear threshold element accepting n inputs which produces a binary output according
to the sign of a L:near form of the inputs. In particular, a neuron is characterised by a vector of n real weights,
w = (w; --- wy), and, given as input a vector u = (u; - - u,), produces a binary output v = sgn Z:?:x w;u; .}
The neuron hence associates a decision or classification, -1 or +1, with each point in n-space. For any given
set of points then, the neuron dichotomises the set of points into two classes—those points mapped to +1 and
those mapped to -1. In the geometric analogue the neuron represents a sepafating hyperplane in n-space.
Let U = {u’,... ,u™} be an m-set of points in n-space, and, corresponding to each u® € U, let v* € B be
a desired decision. The m-set of decisions naturally dichotomises U into two sets (U*, U~), where u® € U*
if v* =1 and u® € U~ if v* = ~1. We say that the dichotomy (U*,U~) is separable by a neuron iff there

exists a weight vector w € IR"” such that

n N
Sowp { 20 00 = (uf - up UL,
- L <0 ifur=(uf - u3)eU-,
"=
ie,sgnd i, wivd =vefora=1,...,m.
We will be concerned here with a fully-interconnected, recurrent network of n neurons where the neural

outputs at any epoch are fed back to constitute the neural inputs for the next epoch. In particular, for

any i € [n], neuron i is characterised by a set of n ~ 1 weights {w;; : j # 1,7 € [n]}, and if the vector

$This is the model of McCulloch and Pitts. A real threshold is allowed within the model but is not critical to the present
discussion.
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u = (u; - u,) € B" denotes the neural outputs at any epoch, at the next epoch the ith neuron then
produces a binary output u{ = sgn)_; ; wiju; 3 The system hence evolves (synchronously) in a state
space of vertices of the cube IB", and is completely characterised by the zero-diagonal matrix of neural
interconnection weights [w;;].

Let ul, ..., u™ be a random m-set of memories chosen independently from the vertices of the cube. In
particular, the memory components {uf : i € [n),a € [m]} are i.i.d. random variables drawn from a sequence

of symmetric Bernoulli trials:
P{uf =1} = P{uf = -1} = 1/2, i€[n), ae€[m]

In an associative memory application, a basic deisderatum would be that all the memories are fixed points—
u® —u% a=1, ..., m—of the network, i.e., that there exists a zero diagonal matrix of weights [w;;] such
that
n
sgn Z wi;uf = uf, i€[n], a€lm).

i=1

j#i
If now there is an allowed tolerance for error, the fixed point requirement for the memories could be relaxed
to allow “admissible” first synchronous transitions of the form u® — v®. By “admissible” we mean as before
that the number of components in which the points v® € IB" are allowed to differ from the corresponding
memories u” must be within a given error tolerance. We are interested in estimating the largest aliowable
rate of growth of m with n for which there exists a zero-diagonal network which realises m admissible

synchronous transitions u® +— v with high probability as n grows large. In the following we define two

formal error protocols which provide different notions of “admissibility.”

2.2 Random Error Protocol

We begin by defining a protocol which randomly specifies which components of a memory are allowed to be
in error by randomly labeling a set of memory components as don’'t-cares. Let 0 < ¢ < 1/2 be the fraction
of errors that we are willing to allow in the retrieval of any memory. For each i € [n] let {D? : a € [m]} be
the outcomes of m identical, and independent experiments whose outcomes are subsets of {—1,1}, and such
that

D? =

{uf}  with probability 1 — 2¢,
{-1,1} with probability 2¢.

§To avoid trivial complications, we assume that there is no self feedback from the output of any neuron to its input. This
corresponds to getting the weights w,, = 0fori=1, ..., n.
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If a sample outcome Df = {uf}, then we require that the ith neuron retrieve the ith component of
memory u®; if, however, the sample outcome D¢ = IB, then we associate a don’t-care decision with point u®:
the neuron can result in either -1 or 1 as output when u® is input. We call D@ the decision set associated
with memory component uf; we say that D is normal if D = {uf} (i.e., memory component uf has to
be retrieved by the ith neuron), and Df is ezceptional if DF = IB (i.e., the decision is don’t-care). The
idea behind defining the decision sets in this fashion is the following. For each a € [m], the decision sets
{D¢ : i € [n]} are generated independently according to the above prescription so that the expected number
of normal decision sets is (1 — 2¢)n while the expected number of exceptional decision sets is 2¢n for each
memory. If now, ignoring components corresponding to exceptional decision sets, we design a zero-diagonal
weight matrix to retrieve all components corresponding to the normal decision sets, then on average one-half
of the components corresponding to exceptional decision sets will also be retrieved so that the expected

number of errors in the retrieval of any memory will be only en.

Definition 2.1 For each ¢ € [n], let {w;; : j # i} be the set of n— 1 weights corresponding to the ith neuron.

We then say that the ith neuron makes e-reliable decisions on the set of memories {u!, ..., u™} if

n
sgn Z wijufED?, a=1,...,m
i=1
FE
If all the neurons make e-reliable decisions, then, by the Borel strong law, the fraction of component

errors in the retrieval of any memory is ¢ almost surely. We are hence interested in the following attribute

of the m-set of memories.

EVENT R.(n, m) [Random Error Protocol wi:h Parameter ¢]: For each i € [n], there is a choice of
weights for the ith neuron such that the neuron makes e-reliable decisions on the set of memories

{v!,... ,u™}.

The attribute R.(n, m) deals with the notion of random synchronous transitions from the memories by
specifying a random choice of (on average en) component errors for each memory. The computational gains

we may expect from this protocol arise from the large number of “typical” transitions that can be specified.

2.3 Exhaustive Error Protocol

Consider now a protocol where the number of component errors in a memory in a single synchronous
transition is not permitted to exceed ¢n; however, there is no specification or constraint on which components

in a memory are allowed to be in error, and we are free to examine all alternatives of specifying ¢n or fewer
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component errors in each memory in one synchronous step. This protocol leads to a consideration of the

following attribute of the m-set of memories.

EVENT £,(n,m) [Exhaustive Error Protocol with Parameter ¢]; For each a € [m] there exists
a vertex v® € B(u®,en) such that the set of synchronous transitions {u® — v® : a € [m]} is
realised for some choice of zero-diagonal weight matrix [w;;] for a fully-interconnected network

of n neurons.

The attribute £(n,m) is somewhat stronger than the attribute R.(n, m); instead of specifying a random
set of essentially 2¢n don’t-care components for a memory (resulting in essentially en component errors), we
are now allowed to examine all transitions resulting in en or fewer component errors for each memory and
choose the most favourable specification of errors. As we saw in the Introduction, this allows us any choice
from among an exponentially large number of admissible m-sets of first synchronous transitions originating

at the memories.

2.4 Capacity Functions

The notion of capacity of a fully-interconnected neural network that we espouse is, loosely speaking, the
“largest number” of random memories that can be “stored” in the network. The precise meaning we attach
to “storage” of a memory depends upon the attribute of interest, such as: all memories are fixed points;
almost all memories are attractors over a radius pn; there are no more than en component errors in retrieving
any memory. We will be interested in particular in the attributes R (n, m), the random error protocol with
parameter ¢, and £,(n, m), the exhaustive error protocol with parameter ¢. The following definition captures
the notion of “largest number of memories” as a threshold function of a relevant attribute. The notion is

explored in somewhat greater generality in [7].

Definition 2.2 Let A(n,m) be an attribute of the m-set of memories u!, ..., u™. A sequence {C(n)}3%,

is a capacily function for the attribute A(n,m) if for A > 0 arbitrarily small, as n — oo:
a) P{A(n,m)} — 1 whenever m < (1 — A)C(n);
b) P{A(n,m)} — 0 whenever m > (1 + A)C(n).

We say that C(n) is a lower capacity function if it satisfies the first condition, and that C(n) is an upper

capacity function if it satisfies the second condition.

Capacity functions have been found for a variety of neural network architectures and algorithms (a

survey can be found in Venkatesh [7]). These investigations into network capacity, however, have hitherto

D G Gy SN I S A O G A T Iy s T e
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concentrated mainly on capacity functions for perfect decisions with no errors (cf. [3, 5], however, for results
on error tolerance in the outer-product algorithm). In the following we expand on our results in [1, 6] and

show capacity functions for the attributes R (n,m) and £.(n, m).

3 TECHNICAL PRELIMINARIES

Our basic technique is to replace the geometrical notion of trajectories within Hamming balls in n-space by
calculations involving the tails of binomial distributions. The following is a classical result due to Chernoff [8]

which asserts exponential bounds for the binomial tails for linear deviations from the mean.

Lemma 3.1 Let 0 < p < 1 be fized, and let T, and H be real-valued functions on the closed interval [0, 1)
defined for 0 < c <1 by

Tp(c) = =—clogp—(1~-c)log(l-p),

H(c) = —cloge—(1~c¢)log(l~-c¢)Y

Then for every choice of c € (p,1) and every integer N we have

LeN]
Z b(k; N,p) > 1 — e~ NTo(c)=H(<))
k=0

REMARKS: H is the binary entropy function which takes values in [0,log2]. Note that for any choices of ¢

and p, Jensen’s inequality yields

H(c)—T,(c)zclog§+(l—c) log i:i <logl=0
with equality holding only when ¢ = p. Hence T,(c) > H(c) whenever ¢ # p. Chernoff’s bound hence yields
exponentially small probabilities for the extreme tails of the binomial distribution. This bound can be shown
to be exponentially tight (see Blake and Darabian {9}, for instance).

For the special case p = 1/2, Chernoff’s bound yields

LeN]
2 b(k; N,0.5) > 1 ~ ¢~ Nliog2-H(c)]
k=0

for any choice 1/2 < c < 1.

YWe define H(c) = O whenc=0orc=1.
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For any m-set of points U € RY, |U| = m, let D(U) denote the family of dichotomies of U that can
be separated by a neuron: a dichotomy (U%,U~) of U is in D(U) if and only if there exists a weight vector

w=(w ---wN) € RY such that

iw'. >0 ifu=(u --- uy) € U*,
%) <0 ifu=(u - uy) €U,

i=1
The following estimate for the number of dichotomies separable by a neuron was given by Schléfli [10] using

an elegant combinatorial argument. (For more accessible proofs of the result see Wendel {11] or Cover [12].)

Lemma 3.2 Let U € RY be an m-set of points. The following estimate holds:
= m-—1
ID(U)| < D(N,m) =2 ( ; ) .
=0

Furthermore, the upper bound of D(N,m) is achieved for m-sets of points in general position.l

A fundamental parameter of interest to us is the probability that a neuron can separate a random
dichotomy of a random set of vertices of the cube BYM. Let u!, ..., u™ be a randomly drawn set of patterns
from the vertices of the cube B, and let the pattern components {uf : i € [N],a € [m]} form a sequence

of symmetric Bernoulh trials:
P{uf = -1} =P{y] =+1}=1/2, i€[N], a€[m]

To each pattern u® associate a desired classification v® € B specified independently of u®. We are interested
in the probability P(N, m) that there exists a choice of weight vector w € RY such that
N
sgn (Ew;u}’) =v%, a=1,...m.
s=1

The following asymptotic estimate for P(N, m) was shown by Firedi [13].

Lemma 3.3 Ifm = O(N) as N — oo then

N-1
P(N,m) =Y b(j;m~1,05) - O(e").

j=0
REMARKS: Note that Lemma 3.2 guarantees that 2~™ D(N, m) is an upper bound for P(N,m). The asymp-
totic order correction to this estimate in Lemma 3.3 arises because the probability that a random m-set of
vertices from B” is in general position rapidly becomes small when m exceeds N. The exponentially small

order term quoted above is a strengthening of Firedi’s original estimate of O(N-12). The refinement was

TAn m-set of points in N-space is in general position iff any subset of N or fewer of the points is Linearly independent.
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made possible by a new result due to Kahn, Komlés, and Szemerédi [14] which asserts that the probability
that a random N x N *1 matrix is singular decreases exponentially fast with N. Incorporating this result
in Firedi’s proof (without any other change) gives the quoted improvement. We will need the stronger form

of the result.

A direct application of Chernoff’s bound to the above estimate for P(N,m) yields the following

Lemma 3.4 For every fired A > 0 we can find absolule positive constanis ca and c3 such that as N — oo

1- O(e~M),
O(e~*V).

P(N,2N(1 - X))

P(N,2N(1 + X))

This is the well known result that a formal neuron can separate a random dichotomy of up to 2N patterns.

Using elementary binomial identities it is easy to verify the following “monotone property.”
Lemma 3.5 If k= O(n) as N — co then

‘P(N,k)—P(N,k+l)—2"‘ ( v A )‘: O(e~cN).

In particular, P(N,k) is a monotone non-increasing function of k in the vicinity of 2N for large enough
N. Note that when £ = (2 — §)N or k = (24 )N then Stirling’s formula gives |P(N,k) — P(N,k +1)| =
0 (e“'-N).

4 ERROR TOLERANCE: CAPACITIES
4.1 Randoﬁ Error Protocol

We first consider the computational zains that are feasible under a random error protocol with parameter
€ € [0,1/2). For any fixed i € [n], let {D¥ : a € [m]} be the sequence of decision sets corresponding to

neuron 1. Recall that the decision sets are drawn independently according to a sequence of Bernoulli trials,

and
pe = {uf}  with probability 1 — 2¢,
* T 1 {-1,1} with probability 2¢.

Theorem 4.1 For any fized error parameter 0 < ¢ < 1/2, the sequence 1—_2-_227 1s a capacity function for

R(n,m), the random error protocol with parameter c.
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PROOF: The ith neuron makes e-reliable decisions if there is a choice of n — 1 weights {w;j : j € [n] \ {i}}

such that

sgn (Zw,-ju;’) € Df, a=1,...,m.

j#i
Alternatively, let A = {a : D? is normal} be the (random) set of indices identifying memories whose ith

component must be retrieved. The above is then equivalent to requiring that

sgn (Z w.-,-u;-’) = uf, a € A.

J#s

Note that as a consequence of the zero-diagonal nature of the network, the term u{ is absent in the sum
above. By the independence of the memory components, if |A] = k then the above is equivalent to finding
a weight vector in (n — 1)-space which separates a randomly and independently specified dichotomy of a
set of k vertices chosen randomly from B!, It is hence clear that P(n — 1,k) is the probability that
the ith neuron makes e-reliable decisions conditioned upon there being k& normal decision sets and m — k
exceptional decision sets. As the distribution of normal and exceptional decision sets is governed by the
binomial distribution it follows that the probability P,(n,m) that the ith neuron makes e-reliable decisions
is given by

P(n,m) = ib(k;m,l-%)P(n— 1,k). (1)
k=0

By Boole’s inequality, the probability 1 — P {R.(n,m)} that one or more neurons fails to make e-reliable
decisions is bounded by

1-P{R.(n,m)} <n[l - P(n,m).
Also, the probability P {R.(n,m)} that all the neurons make e-reliable decisions is clearly bounded above
by the probability P,(n,m) that a single neuron makes e-reliable decisions. Combining this with the above

inequality we have the two-sided bounds:
1-n{l- P(n,m)] <P {R(n,m)} < P(n,m). (2)

Now let 0 < A < 2¢ be fixed but arbitrary. With the choice

2n

1-—2¢ 3)

m=(1-12)

we have
m(1-2¢)(14A/2)
P(n,m) > 3 b(k;m,1 -2 ) P(n—1,k)=1-0(e”")  (n— o).
£=0
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The first inequality is obvious as it arises from the deletion of terms in the sum in (1). This lower bound for
P,(n,m) can be seen to approach 1 exponentially fast as asserted above by two appeals to Lemma 3.1: with
m increasing with n as in (3), P(n—1,k) =1— O(e"’s") for k in the range 0 < k < m(1 — 2¢)(1+ A/2);
further, 2',:;(;—2‘)(1“/ D b(k;m,1- 2)=1- O(e"g"). It follows from the lower bound of (2) that

P {R(n,m)} =1- O(ne~") (n — )

for m growing as in (3). As A is arbitrary, 2n/(1 — 2¢) is a lower capacity function for R.(n, m).
Now choose m growing with n such that

2n
1-2¢

m=(1+2A) (4)
We then have
m(1-2¢)(1=2/2)
P(n,m) < Y bkm1-2) + P(n—1,m(1-2)(1~)/2)) + O(e-c'e")
k=0

O(e*")  (n— o).

The first inequality follows from Lemma 3.5 and elementary considerations; the exponential decrease of the
upper bound to zero is readily ascertained by applying Lemma 3.1 twice, as before. The upper bound of (2)
hence yields

P{R(n,m)}=0(e"*") (n—o0)
for m growing as in (4). As A is arbitrary, 2n/(1 — 2¢) is also an upper capacity function, hence a capacity
function, for R(n,m). ]
The case where each memory is required to be a fixed point of the network corresponds to the choice of error

parameter ¢ = 0. The following conclusion is hence immediate:

Corollary 4.2 The sequence 2n is a capacily function for the attribute Ro(n, m) that all the memories are

fized points of the network.

This fixed point capacity of 2n was also demonstrated by Venkatesh and Baldi [15] in the analysis of
fixed points of higher order neural networks. Recall the classical result restated in Lemma 3.4 that 2n is a
capacity function for a single neuron. (The relevant attribute here is the separation of a random dichotomy
of a set of points (memories) in n-space by a neuron.) The corollary above asserts that there is no decrease
in capacity for a zero-diagonal network of n neurons even though we now require n dichotomies of the set
of memories to be simulianeously separated. (As seen in the proof of the theorem, neuron i, for instance, is

required to dichotomise the set of memories according to the set of signs {u{ : a € [m]}.)
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Theorem 4.1 hence asserts that if the fixed point requirement on the memories is relaxed and it is only
required that, starting at any memory, a synchronous state transition results in a new state no more than
en bits away from the memory on average, then the capacity increases by a constant multiplicative factor of
1/(1 — 2¢). Note, however, that the rate of increase of the capacity function remains linear in n and is not
improved in the random error protocol.

Theorem 4.1 remains true if we are interested in hetero-associative maps u® — G rather than the
auto-associalive maps u® — u® that we have hitherto considered. In particular, for a = 1, ..., m let the
associated memories U® be chosen independently from BB” and with components drawn from a sequence of
symmetric Bernoulli trials (independent of the memories u®). The decision sets D are now specified in

natural fashion by a sequence of Bernoulli trials with

De = {aZ}  with probability 1 — 2¢,
i 71 {-~1,1} with probability 2e¢.

It is easy to see that the proof of the theorem carries over in toto for this hetero-associative case. A more
direct proof can be crafted, however, with the observation that the independence of the components of the

associated memories 1% yields

P {R¢(n,m)} = P,(n,m)".
Lemma 3.1 now readily yields that 2n/(1—2¢) is both a lower and an upper capacity function for R(n,m).”*

4.2 Exhaustive Error Protocol

For ¢ close to 1/2 the multiplicative improvement of 1/(1 — 2¢) to the capacity that arises for the random
error protocol can become quite large; the gains may nonetheless be perceived as unsatisfactory as there is
no improvement in the rate of increase of capacity with n. The exhaustive error protocol would seem to
confer even greater flexibility in the choice of errors—one is allowed in principle to exam’ne every >dmissible
configuration of errors before selecting the most favourable configuration—; as argued heuristically in the
Introduction, this might augur well for a large improvement in capacity. We show in this section, however,
that while there is a further improvement in the multiplicative constant, the capacity function for the
exhaustive error protocol is still linear in n.

As a first step let us show that, in accordance with intuition, the exhaustive error protocol attains

capacities at least as large as those of the random error protocol.

**We had presented these results without proof for the hetero-associative case in [1]. There we had assumed in addition that
the memories U® were drawn from an absolutely continuous distribution in Euclidean n-space R™, and not from the vertices
of the cube B™ as is more natural in the recurrent network context. The increased dependency structure in the problem makes
the case of auto-association with memories drawn from B™ somewhat harder technically; the improvement to Firedi's lemma
quoted in the text is necessary here.
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Theorem 4.3 For any fired error parameler 0 < € < 1/2, the sequence T% is a lower capacity function

for E(n, m), the ezhaustive error protocol with parameter €.

PROOF: If ¢ = 0 there is nothing to prove. Let us hence assume ¢ > 0. Now for any choice 0 < € < ¢,
the sequence 2n/(1 — 2¢') is a capacity function for the random error protocol with parameter ¢’. Invoking
Lemma 3.1, within capacity the number of errors in each memory that result in the random error protocol is
no more than (¢ + o(1))n with probability approaching one as n — co. For any € < ¢ the number of errors
in each memory is hence less than en with probability one. Consequently, 2n/(1 — 2¢’) is a lower capacity
function for the exhaustive error protocol with parameter €. As €’ < ¢ can be chosen arbitrarily close to ¢, it
follows from the definition of capacity that 2n/(1 — 2¢) is a lower capacity for the exhaustive error protocol

with parameter e. !

Theorem 4.4 Let k., be a function of the error tolerance ¢ defined by the unique solution of

1-—2¢ 1
H( o )+H(c)—log2, 056<§, (5)

where H is the binary entropy function. Then the sequence %_'2% is an upper capacily functlion for £ (n,m),

the exhaustive error protocol with parameter .

REMARK: The function k. is defined as we vary ¢ in the interval 0 < ¢ < 1/2, and monotonically increases
from a value of +1 at € = 0 to a value close to 505 as ¢ approaches 1/2. For small ¢ it remains close to +1,

so that the capacity function for the attribute £(n, m) still behaves like 2n/(1 — 2¢).

PROOF: Assume that a particular choice of weights for the zero-diagonal network of neurons results in the
synchronous transitions: u® — v a = 1, ..., m. Recal that the ith neuron makes a decision error on
memory u® if v¥ # uf, i.e., the ith component of memory u® is not retrieved. The key observation here is
the following: if each v differs from the corresponding memory u® in no more than en components, then
there exists at least one neuron which makes em or fewer decision errors. In fact, if there is no neuron which
makes em or fewer decision errors, then the total number of component errors after one synchronous step
summed over all the m memories will exceed ¢emn so that there has to be at least one memory u® which
is mapped to a point v® which is at a Hamming distance larger than en from u®. But this contradicts the
earlier assumption about the points v°.

Now, for any selection of values v € B, a = 1, ..., m, the probability that the ith neuron can realise

the maps u® — v? is exactly P(n — 1,m). The number of ways in which em or fewer decision errors (i.e.,
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the set {a : v¥ # uf}) can occuris Y, (7). Combining Boole’s inequality with the observation above,
we hence have the upper bound
[2:4) m
P{f(n,m)} <nP(n-1,m)>_ ( L ) .
k=G 4
Let A > 0 be fixed, but arbitrary, and choose m = 2k,n(1 4+ A)/(1 — 2¢), where &, is as defined in (5).

Two applications of Lemma 3.1 yield

P(n-1,m) < e—(m—l)[ldg2—H{(l—2c)/2u,(l+A)}]’

and

em m
H(e)
Z(k)scm €

k=0

for large enough n. Hence, for each choice of 0 < € < 1/2 and A > 0, there is a choice of # > 0 such that

P {S((n,m)} < ﬂne-m[log2—H{(1—2t)/2s.(1+)\)}—}l(¢)].

The binary entropy function H(c) increases monotonically from a value ¢. 0 at ¢ = 0 to a value of log2 at
¢ = 1/2. Hence, with k. as in (5), H{(1 — 2¢)/2x(1+ A)} + H(¢) < log 2. Hence, for every choice of A > 0

and m = 2k,n(1+ A)/(1 — 2¢) there is a choice of § > 0 such that P {£,(n,m)} <e~*™ —0asn—co. |

Allowing an error tolerance of up to en bits in the recall of any memory in an associative memory
application corresponds to the requirement that state transitions be confined to the ball of radius en at
a memory once a transition leads within the ball. The exhaustive error protocol allows any synchronous
transition from a memory that does not leave the Hamming ball of radius en at the memory. It is clear that
this is a necessary condition that must be satisfied if we require confienement of trajectories within balis of
radius en at the memories. Consequently, Theorem 4.4 implies the following result: ., memory components
are drawn from a scquence of symmelric Bernoulli trials, then no algorithm for storing memories m a
recurrent neural network can achieve a capacity which increases faster than linearly with n; in particular,
if a linear number of errors en is permitied in the recall of any memory, then 1010n/(1 — 2¢) is an upper

capacity function for any algorithm.

5 EXTENSIONS

The error protocols that we had defined in Section 2 for fully-interconnected networks can be readily extended
to arbitrary network architectures. We briefly derive here certain bounds on the capacity of feedforward

neural networks when there is an allowed tolerance to output ervor.
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An L-layer feedforward neural nelwork is comprised of L ordered subcollections of neurons called layers
with interconnections specified as follows: for / = 2, ..., L the inputs to the lth layer are obtained from
the outputs of the ({ — 1)th layer. The inputs to the first layer are the network inputs, and the outputs of
the Lth layer are the network outputs. Let n = (non, --- ni41) denote a vector of positive integers. We
use the nonce terminology n-neiwork to mean an (I + 1)-layer feedforward neural network which has no = n
inputs and whose ith layer contains n; neurons. For simplicity we will restrict ourselves to the case of a
single output neuron, n;;1 = 1. An n-network then realises a Boolean function of ng = n inputs. The error
protocols are readily extended to this case.

Let u!, ..., u™ be any set of points from Euclidean n-space. To each point u® we assign a desired
classification v € IB. We assume that the set of desired classifications {v!,...,v™} are drawn from a
sequence of symmetric Bernoulli trials.

Analogously with the fully-interconnected case, in the random error protocol we independently assign

decision sets D to each classification v® with

D = {v®} with probability 1 — 2¢,
- B with probability 2.

For a particular assignment of Weights to the n-network we say that the network makes e-reliable decisions

on the set of points {u® : a € [m]} if u® — D for each a € [m]. The attribute of interest is

EVENT R¢(n,m): There is a choice of weights such that the n-network makes ¢-reliable decisions

on the m-set of points {u® : o € [m]}.
A completely analogous development leads to the following attribute for the exhaustive error protocol.

EVENT &(n, m): There is a choice of weights such that the n-network makes no more than em

classification errors on the m-set of points {u® : a € [m]}.

The notion of capacity is defined as before as a threshold function of an attribute as the input dimension
n becomes large. (Note that we tacitly assume a family of feedforward network architectures with the number
of elements in each layer n; a function of n.)

Now let D(n,m) denote the number of dichotomies of {u® : a € [m]} that can be separated by an
n-network. The following simple overestimate for D(n,m) is obtained by applying Lemma 3.2:

i
D(n,m) < HD(ng,m)"‘“.
i=0

As the classifications are symmetric Bernoulli it follows that the probability P(n, m) that a random dichotomy
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can be separated by the network can be bounded by

! {
Pn,m)=2""D(n,m)< 2" ™ HD(n,-,m)""“ = exp [—m log2+ Zn,-,“ log D(n,-,m)] .

i=0 =0

Using the easy bound D(n;,m) < m™ we get

!
P(n,m) < exp [—mlog2+ (Z n;n;+1) log m] .

=0
Define the function Ci(n) by
I
Ci(n) log2 = (Z n,-n,-+1) log Cy(n).

i=0

Note that

Ci(n) = 1 ’ in; l n. 0O [ loglos Tizg Pinis1
1 n) = log2 Zn.n.ﬂ log Z"‘""“ 14 (n— ).
=0

T
i=0 log E.':o Rifiq)

It is clear that for any A > 0, if m > (14 A)Ci(n) then P(n,m) — 0 as n — 00. As before, we have

P{R.(n,m)} = f: b(k;m,1 — 2¢) P(n, k).
k=0

The same argument in the proof of Theorem 4.3 continues to work, so that we have proved the following
Theorem 5.1 The sequence -Cl;‘;(z%l is an upper capacily function for the attribute Re(n,m).

For the exhaustive error protocol, we have likewise
em m 1
P{£(n,m)} < P(n, m)g ( k ) < exp [—mlog2+ (Z;n;n.'.n) logm + mH(e)J .

For a small enough choice of error parameter ¢ let Ca{¢; n) satisfy

=0

[
Ca(e;mn)log2 ~ H(e)] = (2 n;n;.,,l) log Co(¢; n).
Again we have

Cole:n) = 1 ' . 1 ' . 1+ 0 1081082,’~=g":’"-'+1 )
g(c,n)_m v=0n.n.+1 og Zn.n.“ + (n — oo).

{
i i=0 lOg 2i=0 N4y

For any fixed A > 0 if m > (14 A)Ca(¢;n) then P{£(n,m)} — 0 as n — oco. Hence we have the following
Theorem 5.2 The sequence Cy(¢;n) is an upper capacity function Jor the attribute £,(n,m).

The results can be sharpened, for instance, by using the tighter bound D(n;, m) < 2m™ -1 /(n; — 1)!
which is valid if m > 3n; and n; > 3 instead of the simpler estimate D(n,, m) < m™ used here. Unfortunately,

good lower bounds are currently unavailable except for the case of one and two layer networks (¢f. Venkatesh

and Psaltis [6); Baum [16]).

i
!
!
|
|
|
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!
:
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i
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6 CONCLUSIONS

The main contributions of this paper are the development of formal protocols for error tolerance, and the
explicit computation of the gains that accrue for neural network capacity under these protocols when errors
are permitted in the output. The principal result here is that error tolerance in a network situation results
in gains in the multiplicative constants for the capacity, but leaves the rate of growth of capacity as input
dimensionality increases unchanged. In particular, if a tolerance of ¢ € [0,1/2) is specified for a fully-
interconnected network, then under the random error protocol there is a gain in capacity by a multiplicative
factor of 1/(1 — 2¢) over the error free case, while for the exhaustive error protocol the gain is no more than
a multiplicative factor of 505/(1 ~ 2¢). Similar gains accrue for feedforward network configurations. The
absence of more startling gains in capacity can be traced to the exponential decay of the relevant probabilities.
These protocols are readily applicable in other computational paradigms. Following the analysis here, in a
general computational scenario we would expect error tolerance to buy us order of magnitude improvements

in computational capability only if the relevant probabilities decay sufficiently slowly.
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Figure Captions

Fig. 1 A schematic demonstrating error correction (attraction) and error tolerance for a memory. Points in
the Hamming ball of radius pn at the memory lie on trajectories which ultimately are confined in the

(smaller) Hamming ball of radius eén at the memory.

Fig. 2 A schematic showing a set of “admissible” transitions starting from a memory. Each such transition
from a memory must result in a new vertex of the cube {—1,1}” which differs from the memory in no

more than en components.
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Abstract

If patterns are drawn from an n-dimensional feature space according to a
probability distribution that obeys a weak smoothness criterion, we show
that the probability that a random input pattern is misclassified by a
nearest-neighbor classifier using M random reference patterns asymptoti-
cally satisfies

a
Py (error) ~ Po(error) + e

for sufficiently large values of M. Here, Py (error) denotes the probability
of error in the infinite sample limit, and is at most twice the error of a
Bayes classifier. Although the value of the coefficient a depends upon the
underlying probability distributions, the exponent of M is largely distri-
bution free. We thus obtain a concise relation between a classifier’s ability
to generalize from a finite reference sample and the dimensionality of the
feature space, as well as an analytic validation of Bellman’s well known
“curse of dimensionality.”

1 INTRODUCTION

One of the primary tasks assigned to neural networks is pattern classification. Com-
mon applications include recognition problems dealing with speech, handwritten
characters, DNA sequences, military targets, and (in this conference) sexual iden-
tity. Two fundamental concepts associated with pattern classification are general-
szation (how well does a classifier respond to input data it has never encountered
before?) and scalability (how are a classifier’s processing and training requirements
affected by increasing the number of features that describe the input patterans?).




Despite recent progress, our present understanding of these concepts in the con-
text of neural networks is obstructed by complexities in the functional form of the
network and in the classification problems themselves.

In this correspondence we will present analytic results on these issues for the nearest-
neighbor classifier. Noted for its algorithmic simplicity and nearly optimal perfor-
mance in the infinite sample limit, this pattern classifier plays a central role in the
field of pattern recognition. Furthermore, because it uses proximity in feature space
as a measure of class similarity, its performance on a given classification problem
should yield qualitative cues to the performance of a neural network. Indeed, a
nearest-neighbor classifier can be readily implemented as a “winner-take-all” neural
network.

2 THE TASK OF PATTERN CLASSIFICATION

We begin with a formulation of the two-class problem (Duda and Hart, 1973):

Let the labels w; and w, denote two states of nature, or pattern classes.
A pattern belonging to one of these two classes is selected, and a vector of
n features, x, that describe the selected pattern is presented to a pattern
classifier. The classifier then attempts to guess the selected pattern’s class
by assigning x to either w; or w,.

As an example, the two class labels might represent the states benign and malignant
as they pertain to the diagnosis of cancer tumors; the feature vector could then be
a 1024 x 1024 pixel, real-valued representation of an electron-microscope image. A
pattern classifier can thus be viewed as a mapping from an n-dimensional feature
space to the discrete set {w,,w2}, and can be specified by demarcating the regions
in the n-dimensional feature space that correspond to w; and w;. We define the
decision region R as the set of feature vectors that the pattern classifier assigns to
wi, with an analogous definition for R,. A useful figure of merit is the probability
that the feature vector of a randomly selected pattern is assigned to the correct
class.

2.1 THE BAYES CLASSIFIER

If sufficient information is available, it is possible to construct an optimal pattern
classifier. Let P(w;) and P(w3) denote the prior probebilities of the two states of
nature. (For our cancer diagnosis problem, the prior probabilities can be estimated
by the relative frequency of each type of tumor in a large statistical sample.) Fur-
ther, let p(x | w1) and p(x | wz) denote the class-conditional probability densities of
the feature vector for the two class problem. The total probability density is now
defined by p(x) = p(x | w1)P(w;) + p(x | we)P(w2), and gives the unconditional
distribution of the feature vector. Where p(x) # 0 we can now use Bayes’ rule to
compute the posterior probabilities:
_ P(x|wi)P(w1) _ P(x | w2)P(w2)

P(w; | x) %) and P(w, | x) ——-————p(x)

The Bayes classifier assigns an unclassified feature vector x to the class label having




the greatest posterior probability. (If the posterior probabilities happen to be equal,
then the class assignment is arbitrary.) With R; and R, denoting the two decision
regions induced by this strategy, the probability of error of the Bayes classifier, Pp,
is just the probability that x is drawn from class w; but lies in the Bayes decision
region R, or conversely, that x is drawn from class w2 but lies in the Bayes decision
region Ry:

Po= [ P 10pe) s+ [ Pln 00 dz.

The reader may verify that the Bayes classifier minimizes the probability of error.

Unfortunately, it is usually impossible to obtain expressions for the class-conditional
densities and prior probabilities in practice. Typically, the available information
resides in a set of correctly labeled patterns, which we collectively term a training
or reference sample. Over the last few decades, numerous pattern classification
strategies have been developed that attempt to learn the structure of a classification
problem from a finite training sample. (The backpropagation algorithm is a recent
example.) The underlying hope is that the classifier’s performance can be made
acceptable with a sufficiently large reference sample. In order to understand how
large a sample may be needed, we turn to what is perhaps the simplest learning
algorithm of this class.

3 THE NEAREST-NEIGHBOR CLASSIFIER

Let Xpr = {(x(V,800), (x(2,62), ... (x(M) (M)} denote a finite reference sam-
ple of M feature vectors, x(¥) € R", with corresponding known class assignments,
#¢) € {wy,wz}. The nearest-neighbor
rule assigns each feature vector x to
class wy or wy as a function of the ref- R
erence M-sample as follows: 1

o Identify (x',0') € Xar such that
fjx~x'|| < |Jx—x)|| for i ranging
from 1 through M;

e Assign x to class #'.

Here, llx~y|| = /301 (2; — y;)? de- o

notes the Euclidean metric in R".! The

nearest-neighbor rule hence classifies %
each feature vector x according to the X -
label, 8’, of the closest point, x', in

1
]
1
1
]
4]
1
L)
1
U

the reference sample. As an example,
we sketch the nearest-neighbor deci-
sion regions for a two-dimensional clas-
sification problem in Fig. 1.

Figure 1: The decision regions induced
by a nearest-neighbor classifier with a
seven-element reference set in the plane.

1Other metrics, such as the more general Minkowski-r metric, are also possible.




It is interesting to consider how the performance of this classifier compares with that
of a Bayes classifier. To facilitate this analysis, we assume that the reference patterns
are selected from the total probability density p(x) in a statistically independent
manner (i.e., the choice of X; does not in any way bias the selection of xU+%) and
#U+1)). Furthermore, let Pys(error) denote the probability of error of a nearest-
neighbor classifier working with the reference sample Xps, and let Py (error) denote
this probability in the infinite sample limit (M — oco0). ‘We will also let S denote
the volume in feature space over which p(x) is nonzero. The following well known
theorem shows that the nearest-neighbor classifier, with an infinite reference sample,
is nearly optimal (Cover and Hart, 1967).°

Theorem 1 For the two-class problem in the infinite sample limit, the probability
of error of a nearest-neighbor classtfier tends toward the value,

P (error) = Q/SP(ul | x)P(w2 | x)p(x) d"z,

which is furthermore bounded by the two inequalities,
Pp < Py (error) < 2Pg(1 — Pg),

where Pg is the probability of error of a Bayes classifier.

This encouraging result is not so surprising if one considers that, with probability
one, about every feature vector x is centered a ball of radius ¢ that contains an
infinite number of reference feature vectors for every ¢ > 0. The annoying factor of
two accounts for the event that the nearest neighbor to x belongs to the class with
smaller posterior probability.

3.1 THE ASYMPTOTIC CONVERGENCE RATE

In order to satisfactorily address the issues of generalization and scalability for the
nearest-neighbor classifier, we need to consider the rate at which the performance of
the classifier approaches its infinite sample limit. The following theorem applicable
to nearest-neighbor classification in one-dimensional feature spaces was shown by
Cover (1968).

Theorem 2 Let p(z | wy) and p(z | we) have uniformly bounded third derivatives
and let p(x) be bounded away from zero on S. Then for sufficiently large M,

Py (error) = Py (error) + O (A_/}?) .

Note that this result is also very encouraging in that an order of magnitude increase
in the sample size, decreases the error rate by two orders of magnitude.

The fo'iowing theorem is our main result which extends Cover’s theorem to n-
dimensional feature spaces:

2Qriginally, this theorem was stated for multiclass decision problems; it is here presented
for the two class problem only for simplicity.




Theorem 3 Let p(x | wy), p(x | wa), and p(x) satisfy the same conditions as in
Theorem 2. Then, there ezists a scalar a (depending on n) such that

a
Py (error) ~ P (error) + PR

where the right-hand side describes the first two terms of an asymptotic expansion
in reciprocal powers of M?/™. Ezplicitly,

2)(r(2 Un m B ()
ax LULDCELD) 5o [ (BI04 L) )= e

i=1 p(x)
where,
pi(x) = *a-g-ii)
5ix) = Pl |92zl PPl b, 1y
2P(wn 2
7ii(x) - P(Wl lx)a F,‘(a:l:.2 l x) + 6 Pé:; | x) P(U'_) l x)'

For n = 1 this result agrees with Cover’s theorem. With increasing n, however,
the convergence rate significantly slows down. Note that the constant a depends on
the way in which the class-conditional densities overlap. If a is bounded away from
zero, then for sufficiently small § > 0, Pys(error) — P (error) < 6 is satisfied only
if M > (a/6)™? so that the sample size required to achieve a given performance
criterion is exponential in the dimensionality of the feature space. The above pro-
vides a sufficient condition for Bellman’s well known “curse of dimensionality” in
this context.

It is also interesting to note that one can easily construct classification problems for
which a vanishes. (Consider, for example, p(x | w;) = p(x | wa) for all x.) In these
cases the higher-order terms in the asymptotic expansion are important.

4 A NUMERICAL EXPERIMENT

A conspicuous weakness in the ahove theorem is the requirement thac p(x) be
bounded away from zero over S. In exchange for a uniformly convergent asymptotic
expansion, we have omitted many important probability distributions, including
normal distributions. Therefore we numerically estimate the asymptotic behavior
of Pp(error) for a problem consisting of two normally distributed classes in R™:

) = g enp [ (o= 7+ D)
Pxw) = cmexp [~y (214 07 + Tfea ) |

Assuming that P(w;) = P(w2) = 1/2, we find

o0
e"“z/""’:/ e=7/27" sech (ﬁ) dz.
0

Px(error) =

27 o-
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Figure 2: Numerical validation of the nearest-nrighbor scaling hypothesis for two
normally distributed classes in R™.

For p = ¢ = 1, Py(error) is numerically found to be 0.22480, which is consistent
with the Bayes probability of error, Pg = (1/2)erfc(1///2) = 0.15865. (Note that
the expression for a given in Theorem 3 is undefined for these distributions.) For
n ranging from 1 to 5, and M ranging from 1 to 200, three estimates of Pps{error)
were obtained, each as the fraction of “failures” in 160,000 or more Bernoulli trials.
Each trial consists of constructing a pseudo-random sample of M reference patterns.
followed by a single attempt to correctly classify a random input pattern. These
estimates of Pps are represented in Figure 2 by circular markers for n = 1, crosses
for n = 2, etc. The lines in Figure 2 depict the power law

Pys(errot) = Py (error) + bM~2/",

where, for each n, b is chosen to obtain an appealing fit. The agreement between
these lines and data points suggests that the asymptotic scaling hypothesis of The-
orem 3 can be extended to a wider class of distributions.




5 DISCUSSION

The preceding analysis indicates that the convergence rate of the nearest-neighbor
classifier slows down dramatically as the dimensionality of the feature space in-
creases. This rate reduction suggests that proximity in feature space is a less effec-
tive measure of class identity in higher dimensional feature spaces. It is also clear
that some degree of smoothness in the class-conditional densities is necessary, as
well as sufficient, for the asymptotic behavior described by our analysis to occur:
in the absence of smoothness conditions, one can construct classification problems
for which the nearest-neighbor convergence rate is arbitrarily slow, even in one di-
mension (Cover, 1968). Fortunately, the most pressing classification problems are
typically smooth in that they are constrained by regularities implicit in the laws of
nature (Marr, 1982). With additional prior information, the convergence rate may
be enhanced by selecting a fewer number of descriptive features.

Because of their smooth input-output response, neural networks appear to use prox-
imity in feature space as a basis for classification. One might, therefore, expect the
required sample size to scale exponentially with the dimensionality of the feature
space. Recent results from computational learning theory, however, imply that with
a sample size proportional to the capacity—a combinatorial quantity which is char-
acteristic of the network architecture and which typically grows polynomially in the
dimensionality of the feature space—one can in principle identify network param-
eters (weights) which give (close to) the smallest classification error for the given
architecture (Baum and Haussler, 1989). There are two caveats, however. First,
the information-theoretic sample complexities predicted by learning theory give no
clue as to whether, given a sample of the requisite size, there exist any algorithms
that can specify the appropriate parameters in a reasonable time frame. Second,
and more fundamental, one cannot in general determine whether a particular ar-
chitecture is intrinsically well suited to a given classification problem. The best
performance achievable may be substantially poorer than that of a Bayes classifier.
Thus, without sufficient prior information, one must search through the space of
all possible network architectures for one that does fit the problem well. This situ-
ation now effectively resembles a non-parametric classifier and the analytic results
for the sample complexities of the nearest-neighbor classifier should provide at least
qualitative indications of the corresponding case for neural networks.
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Abstract

The following coin tossing game is analysed: A store of N fair coins is given and it is desired
to achieve M heads in a round of tosses of the coins. To allow for unfavourable sequences of tails,
restarts are permitted at any epoch in the game where, in any restart, all coins are returned
to store and tosses are begun anew from tabula rasa. A restart strategy is a prescription
which specifies when a restart should be made. It is desired to estimate the minimum expected
duration of the game over all restart strategies, and to find an optimal strategy which minimises
the expected duration of the game. This simple coin tossing game. proposed by R. L. Rivest,
has cryptographic roots and is linked to issues in the factoring of integers.

INDEX TERMS: Backward Induction, Coin Tossing Game, Cryptography, Integer Factoring,
Markov Decision Problem. Optimal Stopping

1 TWENTY QUESTIONS

R. L. Rivest proposed the following problem. An individual has 20 fair coins in his pocket. He takes
coins out of his pocket one at a time and tosses them, his objective being to obtain 15 heads. If
fewer than 15 heads transpire in any round of 20 tosses, he must return all 20 coins to his pocket
and restart the game. He also has the option of restarting the game at any point by ending a round
of tosses and returning all 20 coins to his pocket before starting anew. The problem facing our
protagonist is to choose an optimal restart strategy which would minimise the expected number of
tosses he has to make before achieving his goal of 15 heads.

The general problem where Af heads are desired in tosses out of a store of N fair coins. with
restarts allowed, has cryptographic roots and, in particular, is related to the problem of choosing an
optimal early abort strategy in randomised algorithms for factoring integers.

Consider for instance the problem of factoring an integer n. A basic approach to finding a factor
of n is to first find integers k and [ such that

k=1 (modn). 0<kl<n, k£l k+l#n (1)

In fact. this congruence implies that n is a divisor of (k? — {?) yet n divides neither (k — ) nor
(k +1). 1t follows that ged(n, k ~ 1) and ged(n, k + ) are proper factors of n, and these can be found
efficiently, for instance. by Euclid’s algorithm (Euclid {1, Book VII, Propositions 1. 2}').
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Now let a number m < n be fixed and let 7(m) = N denote the number of primes less than
m. Denote these primes by p;, ..., py. Now note that it suffices to derive ¥ + 1 distinct solutions
(ki hiy, ... Jhin), 1 i < N +1 to the congruence

k2 = piipht - pAY  (mod n), ()

for then the vectors (hiy,...,hin), 1 < i < N +1 are linearly dependent modulo 2, i.e., there exists
(hy.... h') such that

(hir, .- Bn)+ o+ (ANsn - Angan) = (2R, 2hY).

The integers ’ ,
k= (ky---knyygy) modn, l:(p?'...p';,")modn
would hence be a solution to the congruence (1).!

Dixon's algorithm is a randomised approach to finding solutions to the congruence (2). The
algorithm proceeds in a series of rounds prior to each of which a random integer k is generated as
a putative solution to (2). During a round each of the N primes p; is successively tested to see
whether (k2 mod n) has all its prime factors less than m. If all the N primes have been tested and
a solution to (2) has not been obtained then a new round is initiated with the generation of a new
random integer k. Provision is also made for an early abort strategy where a round is ended and a
new random integer & generated before all the N primes have been tested. (See Pomerance [2} for
more details.)

Checking to see whether a given prime p less than m divides the random integer k during a
round corresponds to a coin toss in our problem, with the result a “head” if p divides (£2 mod n});
the total number of available primes N determines the number of coins available. Success in the
coin tossing game corresponds to obtaining a solution to the congruence (2); the number of “heads”
needed in a round of “tosses” is the number M(k) < N of primes p; for which h; # 0 in (2) if
in fact the congruence can be satisfied for the given value of k. Points of departure from the coin
tossing problem are that the probability that any given prime p in out store divides (k2 mod n) is
1/p (neglecting boundary effects), and this varies from prime to prime. Furthermore, the number
M (k) of “heads” needed in a rotind varies from round to round as the values of k£ are randomly
zenerated. Roughly speaking, however, most of the primes p are of the order of m and most values
of (k? mod n) are of the order of n so that an approximation to the problem in terms of the coin
tossing game is to consider a store of N = x(m) unfair coins with identical probabilities 1/m of a
toss resulting in a head and require to find an optimal strategy which minimises the total number
of tosses before achieving M = log,, n heads (see Section 6).

In recent unpublished work, G. F. Bachelis and F. J. Massey {3] have attempted to characterise
optimal strategies for the coin tossing problem using elegant techniques from Markov decision theory.
Formulating the game as a Markov decision problem, they are led to a consideration of a related
optimal stopping problem for a random walk to obtain some general properties of an optimal strategy.
They also link the coin tossing problem to a continuous analogue involving an optimal stopping
problem for a particle moving under Brownian motion. While explicit closed form solutions for
an optimal strategy and the expected minimum duration of the game remain elusive, they obtain
asymptotic results on the expected duration of the game for a choice M = N/2+ O(VN) (N — x)
for two suboptimal strategies: restarting only when the number of tails in a round reaches N — A +1,
and restarting when the number of tails in a round exceeds the number of heads by a fixed amount.

Our approach to the problem here, in sharp contrast, uses purely elementary techniques. Our
main results, contained largely in the next three sections, involve sharp estimates of the minimum
expected duration of the game, and a specification of an efficient procedure for finding optimal

strategies.

'Caveat: unless k = %1,
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In brief, Section 2 1s devoted to a formalisation of the problem, and a characterisation of some
principal features of an optimal restart strategy. The main result shown here is that the search for
an optimal strategy can be confined to a relatively small family of restart strategies that we call
parsimonious.

Section 3 contains explicit estimates of the expected duration of the game. In particular, using
elementary arguments we obtain an explicit general form for the expected duration of the game
under any consistent strategy. We also illustrate the utility of the general solution with caiculations
for divers strategies. With direct estimates of the minimum expected duration of the game we t.ucn
show that when M < N/2 an optimal strategy (and essentially any sensible strategy) has expected
duration 2M[1 + o(1)], when M = N/2 an optimal strategy has expected duration between 2Af and
4M, while for M > N/2 an optimal strategy has expected duration increasing exponentially in M.

In Section 4 we explicitly prescribe a backward induction algorithm which efficiently generates
optimal strategies for the coin tossing problem, and provide a proof of its convergence to an optimal
solution. The algorithm exploits the equivalence between the coin tossing game and a related optimal
stopping problem using the prior characterisation of the features of an optimal strategy (derived in
Section 2) and the general solutions for the expected duration of the game (obtained in Section 3).

In Section 5 we include some numerical computations comparing the expected duration of the
game under various strategies with the expected duration of the game under an optimal strategy
obtained using the backward induction algorithm. The simulations indicate that a restart strategy
introduced here—the Ballot Strategy—has a near-optimal character.

We conclude in Section 6 with extensions of our results to coin tossing games where the coin 1s
unfair.

2 THE COIN TOSSING GAME

2.1 Restart Strategies

Let us begin by formalising the setup of the game. The following thtee items constitute the game's
critical parameters:

o A sequence of symmetric Bernoulli trials {X;} taking values in {0,1)} and denoting the results
of a sequence of fair coin tosses. A coin toss resulting in a “head” corresponds to X; = | and
is called a “success™.

o A running total of successes S initialised with S «— 0, and the number n of coin tosses in the
current round also initialised with the assignment n — 0.

e A sequence (fj, j > 1) = (f1, f2,...) called the restart strategy where each f;—a restart func-
tion—is a randomised Boolean function from {0,1,... , N} x {0,1,... .M — 1} into {0,1} with

_ [ 1 with probability ¢;(n,m),
fy{n.m) = { 0 with probability 1 — o;(n.m).

Here ¢;(n, m) denotes the probability of deciding to restart (in round j) when m successes
have been obtained in n < NV tosses; we also impose the constraint ¢;(N.m} =1 for m = 0.
... M -1, ie., a restart is mandated if all N coins are tossed and fewer than A successes
obtained.’

The game proceeds iteratively as follows, starting at epoch T = 1 and initialised with the number of
successes in a round S = (., the number of coin tosses in a round n = 0, and the number of restarts
N =0:

2An intuitive approach would be to just consider stationary. nonrandom restart strategies speafied by f, = f.
; 2 1. where [ denotes any fixed. deterministic function. It is nontrivial to determine whether or not the imcreased
generality espoused in the setup here buvs improvements. See Lemma 2.1 for a resolution.
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1. [Accumulation.] Update the running total of successes and the number of coin tosses in the
current round of tosses: S — S+ Xr, ne—n+1.

2. [Stop?] Check to see if the number of successes is equal to the desired value: If § = Af output
the duration of the game T and stop.

3. [Restart?] Check the restart strategy to see if the game should be restarted: If fx41(n,S) =1
then reset S — 0 and n — 0, and increment A — K + 1.

4. [Next epoch.] Increment the epoch by one: T — T + 1. Go back to step 1.

Let S denote the family of all (random) restart strategies. For a given strategy (f;, j 2 1), let
Tiy,.j>1) denote the duration of the game. We say that a strategy (f7,j > 1) € S is optimal if
ETy: j>1 = wlsETy, j>1). Our goal is to find an optimal strategy and to estimate the minimum
expected duration of the game

The model described here does not include a cost for restarting the game. Restarting costs can,
however, be incorporated very simply; see the remark following the proof of Theorem 3.3.

2.2 Optimal Strategies

Consider a single round of coin tosses governed by a restart function f, i.e., the round of tosses
ends either when A successes are obtained or when a restart condition f(n,m) = | is encountered.
Denote by a; the probability that M heads obtains, 3; = 1 — a; the probability that a restart
condition is encountered, and 7y the number of coins tossed before the round ends. Now consider
a strategy (f;, j > 1). Let the random variable K" denote the number of restarts before the game
finally terminates with Af heads. It is clear that K has the distribution

£
P{I\'-‘:k}zah“r‘[ﬂ_{,, k=0.1,.... (4)
j=1
Now conditioned on the event {i' > 1} we have Tiy, ;>1) = 77, + Tiy,,;>2). Further, the events

{K = 0} and {K > 1} depend solely on f,, with ay, = P{K =0} and 3;, = P{K > 1}. By a
simple conditioning argument we then have

ETy, ;20 = Ely, >0k =0P{K =0} +E[Ty, j>ylK 2 1)P{K 2 1}
E(ry i K = 0)+ [E(7, K 2 1) + E(Tyy,, j>2)) P{K 2 1}

= E(r,) +E(Ty,.j>2) 81, (5)
It follows by induction that
k =1 k
ETy, >0 = 9 E(r,) [] 85 + E(Ty, s 5e4m) [1s8. =0 (6)
ji=1 i=1 i=1

We can now characterise some features of an optimal strategy.

STATIONARITY AND NONRANDOMNESS We say that a strategy (f;, j > 1) € S is stationary if there
exists a (randomised) Boolean function f:{0,1,...,N} x {0,1,... .M — 1} — {0,1} with

f _ f 1 with probability ¢(n.m),
(M) =3 0 with probability 1 — 6(n.m),

and such that f; = f for each j > 1: we then denote the strategy (f,, j > 1) by (f) and denote
the duration of the game T, >, under strategy (f,.J 2 1) simply by T;. Now consider any

R
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stationary strategy (f) € §. A direct application of (5) now yields the following fundamental
result:
E Ty

ET) = (/)€S. as #0. (7)

We say that a strategy (f;, j > 1) € & (governed by restart probabilities ¢;(n,m)) is nonran-
dom if ¢;(n,m) € {0,1} for every choiceof 0 < n< N, 0<m<M-1andj>1.

Lemma 2.1 There ezists a stalionary, nonrandom optimal stralegy.

REMARK: Equation (7) and Lemma 2.1 can also be demonstrated by setting up the coin
tossing problem as a pair of nested Markov decision problems and appealing to results from
Markov decision theory (cf. Ross [4], for instance). The prooi given below is elementary.

PROOF: Begin by defining a linear order <on S by (f;, 72 1)< (g;, 7 2 DU ETy, ;51 <
ET,.;>1). Say that astrategy (f;, j > 1) is decreasing if

VE>1: (fevsoJ 21D < (femr14y. 02 1)
The proof of the lemma now proceeds in several steps.
Claim 1. I0(f;,j 2 1) < (figjo5 2 Dthen (fi) <(f;,721).
From (5) and the hypothesis of the claim, it follows that
ETy,.520 = Elr, ]+ E[Tyy,,, ;20 By, 2 Elry ] + E(Ty, ;0] 6y,

We can assume a;, > 0 as otherwise ET;, = ET; ;>)) = co. Using (7) it follows that
ET,.i>1 2 E(7y,)/ay, = ETy,. The claim follows.

Claim 2: If(f;, j > 1) is not decreasing, then there exists k > 1 such that (fi) < (f;.7 2> 1).
In fact, let k be the unique integer for which
(ji+]\j21) S (fl—l+j|j21)v 1515/6—1,
(Jecr45002 1) < (Sewyn J 2 1) (8)

{Clearly, k is the smallest integer for which (8) holds.) By transitivity of the linear order
it follows that (fi_14j,J = 1) < (fj, J > 1), whereas by (8) and Claim | we have (f;)
(fe-14, 7 > 1). This proves the claim.

<
<

Claim 3: i"f(l,.)zl)ET(!,.le) = infu)ET].

By Claim 2, it suffices to show that ET(y ;>1) 2 inf(;)es ETy for any decreasing strat-
egy (fj.j21). Now, if ET,, ,5;) = oc. then (f) < (f;.j21) for any choice of f. So
now suppose that ET(; ;>i) < oc. As (f;,j 2 1) is decreasing it follows that the sequence
{ETiy,_.,,.i>1) k > 1} decreases monotonically to a finite limit T* as k — oc. Note that
by (5) we have

ET s rsr020) = Blrn) + B[Tyy, ., 50)] 81

We now assert that the probabilities 3, are bounded away from 1 for large k. Indeed. suppose
the assertion does not hold. Then, for any § > 0, we can find arbitrarily large values of & for
which 8y, > (1 - --.- . Noting that Er,, > 1 for all k. we have the inequality

¢

é
ET s, 0> 14 (1 - T‘) E{Ti,, o0l 21+ (l - 7-) Tm=T"+(1=-M
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holding on an unbounded set of values for k for every choice of § > 0. On the other hand,
ET .., 21 | T* as k — oo, so that for any ¢ > 0, for large enough values of k& we have
T* <ETy,_,,, j>1) < T" + ¢ Contradiction.

Now fix € > 0 arbitrarily small and (for a suitable choice of b > 0) select k(¢) so large that for
all £ > &(¢) the following relations hold simultaneously:

‘Blt <1-4,
T <ETuy, 20 SET 20 <T +e

By (5} we hence obtain
(T. +() - d!.T. 2 ET}IA—I«H-JZ” - 1}!. ET'(I‘“*,'JE‘) = E(T].), k 2 k(()

It follows from {(7) that for k > k(e),

ralsr e >Em) _pr S inET,.
b~ ar, af, k

As this holds for every ¢ > 0 it follows that

T Z infETh 2 inf ET]
k )res

This concludes the proof of the claim.
Claim 4: There exists a stationary, nonrandom strategy (f*) such that ETy. = inf(;,es ET}.

Let f' ¢=1..... 2%M cnumerate all deterministic functions
f9:40.1,.. . .N}y x {0,1,....M -1} — {0,1}

with f'Y(N m) = | for each m and i. Now consider a randomised stationary strategy (f) € S
(with a corresponding specification of probabilities ¢(n,m)). In any round f will then have a
sample realisation f'*) with probability P{f = )} =[], .. ¢*)(n,m) = p'), where®

oNn.m) = fO(n.m)s(n.m)+ (1= fn m))(l~e(n m))

#(n,m) if f(n,m)=1
t—d(n,m) if fin,m)=0.

Starting with (7), some reflection now shows that

NM . .
ET, = BN _ S Elnlf = fYIP{f = 1)
- - NM
e Yol ago P{f = f}
2NM
E[r; ] p™" E[r/.
- 2::2}\1” [rralp > mm._[_f(..ﬂ = min ETIM_
Zl:l a/"’p(l) ! Gy !
As the number of deterministic functions f*! is finite. there exists f* € {f(). ..., 12" for
which ETy. = min; ETy.,. Hence (f*) < (f) for every (f) € S. This completes the proof of
the claim.
Claims 3 and 4 complete the proof of the lemma. 1

3This tacitly assumes that for any choices an m € {0.1). the events {f(n.m) = o, m} are independent over all
choices of {n.m). As can be readily seen. the prool works without change even 1if the independence assumption s
rclaxed. i.e.. the joint distribution of the random variables f(n,m) is not a product distnibution.
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CONSISTENCY We say that a stationary, nonrandom strategy (f) is consistent (or simply, f is
consistent) if f(n,m) is increasing in n and decreasing in m, i.e.,

flnm)=1=> f(k,H=1 (k>n, [<m).
Lemma 2.2 There exists a consisient optimal sirategy.

This is in keeping with intuition; if, for instance, f(n,m) =1 but f(k,m) =0 for some k > n
then we would expect the strategy to be suboptimal as increasing the number of tosses in
a round while keeping the number of successes fixed at m would not seem to improve the
situation. We defer a proof of this assertion till Section 4 where we provide a simple direct
proof by considering a related optimal stopping problem.

If f is consistent, we define the restart boundary F(n) of f by F(n) = max{m : f(n,m) = 1}
if there is any m for which f(n, m) = 1. else we set F(n) = —1. We will also occasionally refer
to F(n) as the restart boundary of the consistent strategy (f). Consistent strategies can be
conveniently represented by means of the restart boundary in the (n,m) plane. Some examples
are illustrated in Fig. 1. Note that the boundary of consistent strategies is monotone.

m m
M M

(a) (b)

-1

(c)

Figure 1: (a) A consistent, parsimonious strategy; (b) a consistent strategy; (c) an inconsistent
strategy. The parameter n represents the number of coin tosses in a round., and m denotes the
number of heads obtained. The dotted lines show some paossible sample paths. The dashed lines
indicate the termination boundary (Af heads achieved), and the solid lines enclosing the shaded
areas denote the restart boundaries. The shaded areas correspond to the restart region.

PARSIMONY We say that a consistent strategy (f) is parsimontous® (or simply, f is parsimonious)
if there are M distinct points of increase on the boundary, i.e., F(n) < F(n+1) < F(n)+ 1.
0 < n < N. In particular, define the sequence of points n,, by

nm = min{n: f(n,m) = 1}, m=20,1,....M~1.

The points n,, define the points of increase of the boundary F(n). For a parsimonious strategy
(f) then, we require that np. > nm, 0 < m < M — 2; in particular, F(np}) =m, 0 < m <
M-1.

' The terminology relates to the size of pernutted jumrps.
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Lemma 2.3 There exists a parsimonious optimal stralegy, t.e., a consitsienl oplrtmal strategy
(f°) with boundary F* satisfying F*(n) < F*(n+ 1)< F*(n)+1,0<n< N -1

ProoF: Consider a consistent optimal strategy with boundary F*. Let S, (n > 1) dennte
the number of successes in n tosses in any round following a restart. Assume that S; > F*(i},
i <nand S, = F*(n) + 1. Thus, the game proceeds without restarting after the nth toss in
the round. If F*(n + 1) > F*(n) + 2 then a restart is forced regardless of the result of ihe
(n + 1)th toss. But this implies that replacing the boundary point F*(n) by F*(n) + 1 yields
a superior strategy, this contradicting the supposed optimality of F*. 1

RESTART ON FAILURE What if in any restart the first toss results in a tail? The following assertion
maintains that an optimal strategy would restart if a round begins with a failure.

Lemma 2.4 There erists a parsimonious oplimal stralegy whose boundary F* has ils first
poinl of tncrease at ng = 1: F*(0) = —1, F*(ng) = F*(1) = 0.

Proor: If around begins with a failure there are two options: continue the round or restart.
Consider sample paths in the (n,m) plane where n denotes the number of tosses in a round
and m denotes the number of successes. Restarting implies starting a sample path anew from
{0,0), while continuing the round implies initiating sample paths from (1,0). Now consider
the boundary F of any consistent strategy and assume F(0) = F(1) = —1. Given that a
round begins with a failure, it is clear that the number of sample paths lying strictly above the
boundary F is larger if the game is restarted so that replacing the boundary point F(1) = ~1
by F(1) = 0 yields a superior (or at any rate, not inferior) strategy.

We encapsulate our findings in the following statement.

Theorem 2.5 Let P C S denote the family of parstmonious stralegies whose boundaries have their
first point of increase at no = 1. Then

REMARKS: Note that we are ensured that the probability of obtaining M heads in any round of
tosses is non-zero for any parsimonious strategy which has a first point of increase at ng > 1. These
two conditions hence eliminate strategies for which success is impossible [see the consistent strategy
shown in Fig. 1(b)]. Note also that the restriction to stationary, nonrandom strategies reduces the
search problem from an infinity of possible stationary, random strategies to a set of 2NM stationary,
nonrandom strategies. Restricting attention to consistent strategies further reduces the search space,
and the constraints of parsimony with a first point of increase ng = 1 results in the reduced search
space P of (J-!) strategies. We outline a method for efficiently searching the space P for an
optimal strategy in Section 4.

3 EXPECTED DURATION

\We consider now the problem of estimating the minimum expected duration of the game D(N. M).
We begin by showing a strict lower bound for D(N, M), valid for every fixed M. Recall that we can
restrict ourselves to considering the subfamily of stationary strategies.

Theorem 3.1 For every M. {D(.N.\M)} 1s a monotone scquence tn N decreasing to the liml
Dix. MYy=2M as N — x.
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ProoF: Fix M. Let S(N) denote the family of stationary strategies when the number of available
coins is N. If N < N’ it is clear that S(N) is contained in S(N’) in the following sense: for
any strategy (f) in S(N) there exist strategies (f’) in S(N’) such that the restriction of f’ to
{0...., N} x{0,.... M —1} is equal to f; in addition, it is easy to see that these strategies will result
in the same expected duration as (f) because of the restriction f(N,m) = 1. Hence D(N', M) <
D(N, M).

Now assume that there is an infinite store of coins. It is clear that an optimal strategy is one
that never restarts the game. Let D(oo, M) denote the expected duration of the game under this
optimal strategy. Let a(k) denote the probability that the Afth success occurs at the kth trial.
As a first passage to M involves a prior first passage through M — 1 we have the convolutional
relationship

k-1
an(k) =Y an-a(iealk - j).
=1

Consider the generating function Apr(s) = Y oop am(k)s® = [A1(s)]M. As a1(0) = 0 and ay(k) =
2-% we have 4,(s) = 5/(2 — 5). It follows that D(oo, M) = A} (1) = 2M.

Consider any consistent strategy (f). As before, define the sequence of points n,, 0 < m <
M~ 1 by
nm = min{n : f(n,m) = 1}.
(If ( f) is parsimonious, these are just the M point of increase of the boundary.) Now define the sets
of pairs

Q {(n,M):0<n< N},
R = {(nm,m):0<m<M-1).

The set Q can be identified as the success termination state (i.e., M heads are achieved in the round),
and the set R as the restart state (i.e., the restart boundary is encountered during the round). Let
Sn denote the number of heads obtained in a sequence of n < N tosses. We momentarily suppress
the dependence on f and write

r = min{n : (n.S,) € QU R}

for the number of tosses in a round before either the game ends with M successes, or the round of
tosses is terminated and the game restarted. Also let

pm = P{r=n,,,S; = m} (9)

denote the probability that, in any round of tosses, a restart occurs following the n,th toss. (On
the (n.m) plane then. this corresponds to a sample path which lies above the boundary for n < nn,

and intersects the boundary at the point (nn,,, m).) It follows that g = Z::';ol Pm is the probability
that a restart occurs during any round of tosses. and a = 1 - x;ol pm is the probability that the

game terminates with M successes in a given round of tosses.
The following recursive form for the probabilities p,, admits of efficient evaluation.

Lemma 3.2 The probabilities p,, 0 < m < M — 1 satisfy the following recursion:
BASE: po = 2770,

RECURSION: pm = (7] 277m = 577! Mm =) g=(nm=ni) p, m>1
m =0\ m—1

(10)
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PROOF: It is clear that pp = P{S,, =0} = 27"°. Now consider 1 < m < M — 1. Rewriting pm in
an alternative form, we have

pm = P{S,.=m, 1'>nm 1} = P{Sa.z=m}-P{S,,=m71<nm1}

( )?mm E:Pﬁ;._mjznd. (11)

For i < m. the event {S,,, = m, T = n;} is contained in the set of sample points {Sn. = i}; it hence
follows that

P{Snm =m, r=n;} = P{Sﬂ = m|(T Sy) = (ny,1 )} P{(T,S,) = (n,,1)}
= P{Sn,. —Sp,=m-i}p;

—_  [Bm TR po(nm-ny)
- (m—1)2 Pv

the last but one equation following from the independence of the trials. Substituting in (11) com-
pletes the pro .

The probabilities pm (corresponding to any given consistent strategy (f)) turn out to be ex-
traordinarily useful as they allow us to write down an explicit expression for the expected duration

of the game under strategy (f).
Theorem 3.3 For any consistent strategy (f),
2 =
ET) =M+ Zm°mW. (12)
- Zm-o Pm

REMARKS: Note that to compute ETy it suffices to specify the points of increase n,, 0 < m <
M ~ 1. Note also that ETy > 2M in accordance with Theorem 3.1.
PROOF: An appeal to (7) yields ET; = E(7)/a. Now 5, = E.-—x X;. so that Wald’s equation
gives us ES, = (E7)(E X;) = E(7)/2. We hence have

ET, = 2ES, = =(E[S:(r.5)€Q)+E[S:i(r.S:) € )

%(MG+E[Sf:(T,3,)€R]) - 2M+§E[s,;(r.s,)em.

With pn defined as in (9), we now have

M- M-1
E[S,i(r.5:) € Rl = 3 mP{(r,5)) = (nm,m)} = D _ mpm.
m=0 m=0
Recalling that a = 1 ~ z,’;’;ol pm completes the proof. |

REMARK: The model we are concerned with in this paper does not impose a “cost” for restarting.
A more general situation where there i1s a cost ci associated with k restarts is, however, easily
incorporated into the analysis. For instance. if K' denotes the number of restarts, let us define the

cost 'y of the consistent strategy (f) by

Yk>0: () =c E[T|N = k] with probability aJ*.
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Note that A" has the geometric distribution (see (4)) so that a3* is just the probability of the event
{K = k}. The expected cost of strategy (f) is hence

oo

o0
EC, = ch E[T;. K =k]= achﬁk E[T;|K = k).

k=0 k=0

Let us formally define
[>.2] oo
&) =(1ch/.5", ngach,,/]k.
k=0 k=0
Following the previous analysis we can now readily show
2C: T 2o MPm

M-
m=9 Pm

EC, = 2C,M +

For the rest of the paper we adopt the constant cost model, ¢ = 1 (k > 0). It is easy to verify that for
this model C, = | and C; = 3/a sothat ECy = E T} agrees with Theorem 3.3. As instances of other
cost models, a linear cost model ¢, = vk results in C), = y4/a and Cy = v3(1 + B)/a®, and an ez-
ponential cost model ¢ = A6* (with 8 < 1/3) results in C, = Aa/(1-08) and C2 = Aa3/(1-03)3.

The following examples illustrate the utility of Lemma 3.2 and Theorem 3.3 with explicit calculations
of the expected duration of the game for diverse strategies.

EXAMPLE: [Indolent Strategy
The strategy of indolence ( f;) prescribes that we wait till all N coins are tossed before restarting
the game. In particular, the strategy is specified by

0 f0SnEN-1,
f’("'"‘)‘{ 1 ifn= N

The strategy is clearly consistent (but not parsimonious) and we have n, = N, 0 < m < M — | (see
Fig. 2). Direct calculation then yields

-1

Figure 2: The boundary for the Indolent Strategy.

p,,:p{s,v:m}:("fl)z-”, m=0,1,... M1 (13)

Equation (12) now readily yields

Al

ET, =21 + -
m=AM ("')
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for the expected duration E T} of the game.

ExaMPLE: Hope Springs Eternal
This strategy restarts the game only when the number of tails in a round of tosses reaches
N — M + 1, Le.. it 1s futile to proceed with the round any further. The strategy is parsimonious and

its boundary Fyy is given by

Famy < { 71 if0<n< N —M,
A =0 N+ M -1 IN-M+l<n<N.

The points of increase of the boundary are n,, = m+ N — M 4+ 1, 0< m < M — 1 (see Fig. 3). We

M

-1

Figure 3: The boundary for Hope Springs Eternal.

will find it convenient to use the representation n,, = m + ng with ng = N — M + 1. We now claim

that
pmz("°+"“1)2-<"°+"”. m=0,.. . M-L (14)

m
We prove the result by induction on m. It is clear that po = P{S,, = 0} = 27"9, so that (14) holds
for m = 0. Let us now assume that (14) holds for i1 < m—1. As nm —n; = m—1, it follows from (10)
and the inductive hypothesis that

m—]
ng+my\ . _ —(m—
Pm (°m )2 (no+m) _ 202 fm=4p,

g—inatm) [(n(); m) ~ '“z‘:‘ <n0 +ii - 1)]

1=0

g=ino+m) (M0 + 1M = 1
m ,

the last step following by repeated application of the binomial identity

(2)+0)-C7)
-1 r r
This concludes the proof of the claim (14). Equation (12) now yields

2 M=) m2m(notm) (mot 1)

1 - M_ol 9-(no+m) (mo 4 m =iy
m= m

ETy =2M +

for the expected duration E Ty of the game.
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EXAMPLE: Step in Time
This strategy decrees a restart when the number of tails leads the number of heads by a fixed

amount, say L. This is again a parsimonious strategy with boundary Fs given by
-1 f0<n<L-1,
Fs(nNy=¢ n—-1L HL<n<L+M-1,
M-1 fL+M<n<N.

Hope Springs Eternal is hence a specific case of this strategy with the choice L = N — M + 1. The
points of increase of the boundary are n,, = m+ L, 0 < m < M — | (see Fig. 4). It is readily seen

M

Figure 4: The boundary for Step in Time.
that this is equivalent to Hope Springs Eternal with a reduced store of N' = L + M — 1 coins. The

probabilities p,, for Step in Time can hence be directly inferred from (14}):

p,,,=2"L+'"’(L+:"). m=0,..., M—1. (15)
An appeal to (12) again yields
2 S oy m2T k) (t+ 2 )

L~ o 27(E+m (2 270)

ETs =2M +

for the expected duration E Ts of the game.
ExaMmpLE: Ballot Strategy

Consider the parsimonious strategy indicated schematically in Fig. 5. The points of increase
of the boundary of the strategy are specified by n, = 1 + [mK], 0 < m < M — 1, where k' =
(N = 1)/(M = 1). (Note that ng = 1 and nar_y = N.) It is easy to venfy that the following
inequalities hold:

M-m M
-7, =0...., M- 1
Nemm SN M0 M

Thus, we can interpret the Ballot Strategy as follows: the strategy decrees that a round be restarted
iff the ratio of the number of additional heads needed to the number of remaining coins is larger
than it was at the start of the game.®

For general values of /. a closed form for the probabilities pm is hard to secure, and the general
recursion (10) must be appealed to. When K is an integer, hcwever, the following explicit form can

be obtained:

1 ml\+1 - N
P L — g-tmh+l) =0,...,M-1. 16
Pm ml\'+l( m ) m (10)

%As in the classical ballot theorem (f. Feller [5]. for instance). for a round to continue. we require the putial ratio
M/N of heads to coins to lead throughout the round.
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Figure 5: The boundary for the Ballot Strategy.

The proof is again by induction on m. As ng = 1, it is clear that po = P{S; = 0} = 1/2, so that (16)
holds for m = 0. Now assume that (16) holds for i < m — 1. Note the equivalent representation

p,-:l_(i"l"l)r(”‘“), i=1,...,m-1
T li-

As np —n; = (m —i)K, it follows from (10) and the inductive hypothesis that

e [ () - 232 (5]
e[ (1) -84 (29 ()]

An appeal to the general combinatorial identity [6]

i% (iifl> ((mm-i )ih = (n:n fl)

=1

Pm

completes the proof of (16) for integer K. Equation (12) now yields

M-1 =Ky g=(mK+1)

ETg = 2M + 4 2m=1 (-
B 1_22'" ‘.L(:'\)Q (mK+1)

m=1l m -

for the expected duration E T of the game when K is an integer.
The general system of probabilities {pm} (for arbitrary K) corresponding to the Ballot Strategy
can also be determined from the generating function for which an explicit form can be shown. Define
™ =P{r=nS5, =(n-1)/K}, n=12,....

Note that r,, = p,,. forG<m < M — 1. (In general, r, = 0 if n # 1 + mK for some positive integer
m.) Thus, g = Zm—o Pm = Y_i, Tn is the probability of a restart in a round, and a = 1 — 3 is the
probability of attaining M successes in a given round. Let
Ff=inf{n:5, - (n-1)/K <0}.
o

Clearly, 7 has distribution {r,}. Consider the generating function G;(s) = 3 ", 7,s". We can now
directly apply a result from Feller [5, page 413] to obtain the expression

I

G+(s) 1 —exp —Z%:—‘P{S,,z(n—l)/lx'}]

n=1l J
2 (s/2)" n

N
n=} 12(n=-1)/K
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The distribution {7} is thus completely determined, and hence so are the probabilities {pm}. |

While explicit estimates of the duration of the game under any strategy are thus readily gen-
erated from the recursion (10), a careful analysis of the (asymptotic) behaviour of the expected
duration of the game under a given strategy requires substantial algebraic effort, even for the simple
strategies described here. Nonetheless, sharp results (Theorem 3.6; see also the remarks following
the theorem) can be inferred about the minimum ezpected duration D(N,M) of the game by a
consideration of the simplest of strategies—the Indolent Strategy.

We begin with a preliminary result due to W. Hoeffding {7].

Lemma 3.4 Let N be any positive integer, n € (0,1) and c € (0,1) any fized parameters. Then:

max { Z (::) f)m(l _ n)N-—m‘ E (::) r}m(l _ r’)N-m} < 6-2c2"2N;

m<(1-eN m2(1+cnN

This exponential bound for the tail of the binomial is not the sharpest possible, but suffices for our
purposes.

Theorem 3.5 Let T; denotc the duration of the game under the Indolent Strategy. Then
%ET, < DN, MYLET,.

Proofr: The upper bound for D(N. M) is obvious. Now recall that for any consistent strategy
(f), we have from (7) that ET;(N, M) = E(7;)/ay. Let 7; and a; denote the corresponding values
of 7y and ay for the Indolent Strategy. It is clear that a; = sup; ay. Also, for any parsimonious
strategy (f) € P, we have | < E7ry < N. Thus, D(N,M) > inf(yyep E7y/supyyepay 2 1/ar 2
Er/Nay=ET;/N. 1

We can now directly apply Theorem 3.5 to obtain the following result which shows two distinct
domains of behaviour for the minimum expected duration of the game.

Theorem 3.6 Let ¢ > 0 be any fized parameter and N any positive integer. Then:

(a) IfM <4(1=c)N, then 2M < D(N,M) < 2M [1+ 550 ]

(b) IfM = N/2, then N < D(N,N/2) < 2N
(c) IfM 2 %(1+c)N, then D(N M) > <22

REMARKS: Slightly tighter (if messier) exponents can be obtained using Chernoff's bound for the
tail of the binomial instead of the Hoeflding bounds of Lemma 3.4. In particular, we can replace
the exponents c?/2 by In2 — H[(1 — ¢)/2] throughout in the above bounds for D(N,Af). llere In
denotes a logarithm to base e and H(z) = —xzinz ~ (1 — z) In(1 — z) is the binary entropy function
in nats. As Chernoff’s bound is known to be exponentially tight. this in particular implies the
following stronger asymptotic result: If M = %(l + ¢c)N + o(N) for any positwve constant c, then
inD(N,M)~(In2—- H{(1-¢)/2}}N as N - o0 .

Note the abrupt, threshold change in behaviour of the optimal strategy around M = N/2
where the minimum expected duration of the game goes from linear to exponential in M. The
moral of the story is that for Af < N/2, essentially any strategy (including the Indolent Strategy!)
yields performance comparable to the optimal strategy: all strategies in this regime have expected
durations 2 + OQ(e=“'V) for a positive constant ¢,. For Af > N/2 on the other hand. all strategies
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have expected duration Q(e?™) for a positive constant c,.

Proor: Consider the Indolent Strategy. When M = %(1 — ¢)N for some fixed choice of ¢ > 0,
Lemma 3.4 and (13) yield the bound®

M-1 M- )
—_1_ — 1 _9o=N _ ,=¢'NJ2
a=1 z:opm—l 2 Z(":)zl e~ N2,
m=

m=0

A similar application of Lemma 3.4 yields

M-1 M- M-1 3
S mon <MY pn = MY Y (1) < Mo
m=0 m=0 m=0

From (12), we then have

2Me=<"N/? 1
ET152M+m, MSE(I—C)N, 17

the result holding for M < 3(1 — c)N because ET; decreases monotonically as M decreases for

every fixed V.
Now consider the case M = N/2. From (13) we again have

a:l—bilpm=l—2"N > (n"i)=%+0(—lN-)

m=0 m<N/[2-1

and

M-1
D> mpm <MY} (QS—A;=%~

m=0 m<N/2-1

Substituting in (12) we have
ET/<N+N [1-0(1\/-1/2)] <2N, M=NJ2. (18)

Finally, when M = {;(1 + c)N for any fixed choice of ¢ > 0, Lemma 3.4 and (13) again yield the

bound
a= Z (D 2—N S e—czN/Z‘

m2(1/24c)N

Also, EtT > 1. We then have from (7) that
ET; = Pa—’ >N > %(1 +¢)N, (19)

the bound holding for M > %(1 + ¢c)N again by the monotonicity of E T7}.

The lower bound on D(N, M} in part (a) of the theorem follows from Theorem 3.1, while the
upper bound follows from (17) and the upper bound of Theorem 3.5. The lower bound for D(N, M)
in part (b) of the theorem again follows from Theorem 3.1, while the upper bound follows from (18)
and the upper bound of Theoremn 3.5. Part (¢) of the theorem follows from (19) and the lower bound

of Theorem 3.5. |

6We ignore. for the sake of notational economy, the fairly transparent details with regard to rounding to the nearest
integer.
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When M < N/2, the expected duration for the Indolent Strategy is (from (17) and (18))
within an additive factor of N of the minimum expected duration of the game. When M > %(1 +
c)N, the probability of achieving M successes in a round is exponentially small: a = O(e~<"N/?).
The expected duration of a round, on the other hand, increases linearly at best: 1 < ET < V.
From (7) and the above proof, it hence follows that the expected duration of the game is dictated
predominantly by the factor 1/« in this regime. Note that the largest value for a obtains for the
Indolent Strategy, so that we obtain the sharpest exponent with E Ty > %e""’ 2 for this strategy.
An optimal strategy can save at best in the E r term (bounded between 1 and N), but cannot obtain
better exponents.

Explicit coefficients can also be obtained for the other strategies we have considered by using (10)
and (12). For instance, consider the strategy Hope Springs Eternal. From (14) we can write

— )—No n0+m—l no+m—2 2(1
Pm =2 ( 2m )(2(m-—-l) (2)

Each product term is of the form

no+m-—k—1_(np—1)+(m—k)
2Am—k) ~ (m-k)+(m—k)’

If A <4(1-c)N,then N =M >m,0<m< M —1,so0 that each of the product terms is larger
than 1. (Recall ng = N — M + 1.) Hence py, is monotone increasing. Hence

Mo-(no+M~1) (ﬂo + M- 2)

no'—l

E[Sf; (Tv Sr) € R]

IA

M2-N (Nf;!:-?) = Oe=='N)

where ¢, is a positive constant which can be expressed in terms of the binary entropy function.
Further, a = 1— O(e~**M) for a positive constant ¢;. Thus, ETy = 2M[l1+ O(e~*N)), as expected.
Similarly, using (15) for Step in Time, we can readily obtain ETs = 2M{1+ O(e~*")] for a positive

constant c3 when M < %:%(L—- 1). Bachelis and Massey (3] have done a careful asymptotic analysis

of the strategies Hope Springs Eternal and Step in Time for a choice of M = N/2 + O(VN).
Similar estimates can also be readily derived for the Ballot Strategy using (16). In particular, the

summands in the sum Y-M -\ mp,, are of the form (*~,) 2=™ which are ©(m=1/2)_If, for instance,

M = N/2, then Z::f;o‘ mpm evaluates to ©(v'N). Similarly, the summands in 3 = }:’:“;01 pm are
of the form pm = 57k (*=3 ") 270™+1) = O(m~%2). For M = N/2 then, f = 1 ~ ©(N~1/?), s0
that a = ©(N~!/2) in this regime. It follows that ETs = ©(N) when M < N/2. Of course, a more

careful analysis of these expressions is needed if exact coefficients are required.

4 OPTIMAL STOPPING

The renewal property of our coin tossing game allows us to consider a somewhat simpler optimal
stopping problem in order to determine the boundary of an optimal strategy. Recall that our basic
problem is to determine a nonrandom Boolean function f° such that (f*) is an optimal restart
strategy. A heuristic approach towards specifying f° is as follows: assign a current cost of n if the
round is continued after n tosses, and assign a higher restart cost of d + n if there is a restart. The
idea then is to choose f* to minimise the expected cost. (Note that a restart is mandated if N tosses
result in fewer than M heads; thus f° will favour continuing the round for small values of n, but
will favour restarts when n becomes large and the number of heads is less than M.) This related
problem is an optimal stopping problem, and as we will see shortly, this will be equivalent to our
original coin tossing problem for an appropriate choice of parameter d. Bachelis and Massey {3] also
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consider a similar approach, though the algorithm given nere is somewhat more direct, iteratively
using the estimates (12) obtained in Theorem 3.3.

Consider a sequence of n tosses of a fair coin stopping on or before the Nth toss. Let d > 0
be some fixed positive real number. Stopping the sequence of tosses at trial n € {0,..., N} resuits
in an allocation of a cost as follows: if the number of heads is less than M the cost is (d + n); f
the number of heads is greater than or equal to M the cost is n. The optimal stopping problem
is to decide on a (randomised) stopping rule f : {0,...,N} x {0,...,M ~ 1} — {0,1} which will
minimise the cost. More formally, let f denote a stopping rule for the optimal stopping problem,
and the random variable R; denote the cost assigned under f. The optimal stopping problem is
now to find an optimal stopping rule f* such that

ERj- =infER;. (20)

The technique of backward induction (see, for instance, Chow, Robbins, and Siegmund (8])
can be applied to this optimal stopping problem to generate a nonrandom optimal stopping rule
(recall Lemma 2.1). Informally, the procedure asserts that, after the nth toss, it is worth continuing
the sequence of coin tosses if the conditional expected cost given the results of the first n tosses is
smaller than the cost of stopping at the nth toss. More precisely, for the optimal stopping rule, we
recursively obtain the conditional expected cost y(n,m) corresponding to n tosses with m successes
as follows:

BASE: v(n, M) =n, 0<n<N,
Y N,m)=(d+N), 0Sm<M-1, (21)
RECURSION: y(n,m) =min{(d+n), 3[v(n+ 1,m)+y(n+1,m+1)]}.

The nonrandom optimal stopping rule f] is now determined as follows:

. _f 1 ify(n,m)=d+n,
fa(n,m) = { 0 otherwise. (22)

We define the optimal stopping boundary by
Fj(n) = max{m : y(n,m) =d + n}. (23)
Lemma 4.1 The optimal stopping rule f] is consistent for any choice of d > 0.

Proo¥: The proof is by backward induction on n. The base of the recursion for the expected cost
gives

filn,M) = 0, 0<n<M,
filN.om) = 1, 0<m<M-1

Now by definition, fj(n, F;(n)) = 1. We take as inductive hypothesis that f;(k,I) = 1 for all
k>nandl < Fi(n). It is now easy to see from (21) that fj(n —1,m)=0if m > Fj(n)+ 1 and
Jiin—=1,m)=1if m < Fj(n) - 1. Thus Fj(n — 1) is either Fj(n) or F3(n)~ 1. In either case it
follows that f3(k,I)=1forallk >n~1and!< Fj(n-1). i

The optimal stopping problem described above and the coin tossing game of Section 2 are closely
related as shown by the following result.

Lemma 4.2 Ifd = D(N,M) = inf(y)es ET;, then an optimal restart strategy (f°) for the comn
tossing problem (3) determines an optimal stopping rule f* for the optimal stopping probdlem (20),
and conversely.
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REMARKS: Lemmas 4.1 and 4.2 together complete the proof of Lemma 2.2 so that by Theorem 2.5
it follows that there exists a parsimonious optimal restart strategy. Lemma 4.2 and the proof of
Lemma 4.1 hence guarantee that with d = D(N, M), the optimal stopping rule f; determined
by (22) is parsimonious.

ProoF: The optimal stopping problem (20) minimises
E Ry = ¢ld + E(74|Sr, < M)] + o/E(74{S;, = M) = 3yd + E7;.

Now select d = D(N, M) and let (f*) be a stationary, nonrandom optimal strategy for the coin
tossing problem (3). It follows from (7) that D(N, M) = ETy. = E(7y)/ay-. Let R* = inf; ER;.
We claimi that R* = E Ry. = ETy.. Clearly, R* < E R;.. Observe now that with the stopping rule
f*, we have

Thus, for any f,

) [E(l) _ E(rJ.)] S

E(7y.
ER;~ERy. = %E(T;-)-{*E(T])— %p ) = o oy

It follows that R* > E Ry., and hence R* = E Rj. = ETy.. Thus, if (f") is an optimal restart
strategy for (3) then f° is an optimal stopping rule for (20).

To complete the proof, suppose that with d = D(N, M) = ETy., f is an optimal stopping rule
for (20): R® = E R;. We need to show that (f) is also an optimal restart strategy for (3). By (7)
it suffices to show that E(r,—)/a i = E(rs+)/ay.. Now by assumption of optimality of the stopping

rule f it follows that
- ﬁ.
R =ERj= ;!L.E(r,-) + E(r}).

But R* = ETy. = E(7y-)/ay-. It follows that E(7;) = fﬁ E(ry.). ]

The backward induction (21)-(23) can now be used to iteratively compute the boundary of a par-
simonious optimal restart strategy (f°). The approach followed here can also be derived from a
nested Markov decision problem approach (cf. Ross (4)).

Algorithm 1 (Backward Induction) Given a number of coins N, and the desired number of suc-
cesses M, this algorithm obtains the boundary of an optimal restart strategy.
I1. [Initial approximation.] Let (fo) be any initial strategy, and set dy = ETy,. Set j — 0.

12. [Optimal stopping.] Set d — d; and solve the associated optimal stopping problem using the
backward induction (21)-(23) to obtain the optimal stopping boundary F; (corresponding to
the stopping rule f7).

I3. [Check for convergence.] If ng = min{n : f3(n,0) = 1} = 0, then output the (optimal) boundary
F3,_, and stop.

I4. [Estimate expected duration.] Set j — j + 1. Using (9)-(12) set d; — ETy;(N,M).

I5. [Iteration.] If d; # d;j_,, go back to step I2; otherwise, if d; = d;_;, output the (optimal‘
boundary Fj and terminate the algorithm.
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REMARKS: At epoch j, the cost d; for the optimal stopping problem is exactly the expected
duration corresponding to the optimal boundary F, d.,--. obtained for the cost d;_,. If now we obtain
ng = 0 for the new optimal boundary F;},, then this implies the game cannot be started, whichi in
turn implies a cost of d; for the optimal stopping problem. This, however, is the cost associated
with the previous optimal boundary Fj. . Thus, encountering no = 0 at epoch j in the progress of
the algorithm implies that the expected risk d; is a fixed point of the algorithm, and this expected
risk is exactly the expected duration of the coin tossing game for a choice of boundary F, ey

Any convenient value for dy can be chosen, though the Ballot Strategy yields a particularly
good starting point as we will see in the numerical simulations of Section 5.

Theorem 4.3 Algorithm I converges lo a parsimonious optimal restart strategy (f*) for the coin
tossing problem (3).

PROOF: We first show that the algorithm converges. By step I3 of the algorithm, this clearly
happens if np = 0 at any point. Assume now that ng # 0 at any point in the progress cf the
algorithm. Let d; denote the value of d at the jth iteration (see step 12 of Algorithm I), and let
fi, be the solution of the optimal stopping problem with d = d;. Then d; = E(r/:,»_, ) a 7 We

hence have
4 = By;,_,di + Elryy,_ ) 2 inf[8yd; + E(ry)] = By; d; +E(7y;)).

It follows that d; > dj41 = E(7y; )/ay; . Thus, the sequence {d;} is decreasing, and as there are
2

only finitely many possible values Tor d, the algorithm converges.

Now let f* be any fixed point of the algorithm. Applying (6) inductively we obtain that for
any r, and any choices of restart functions f;, 1 <i<r, (f) < (fi,.-..fr. f*. f*,...). Allowing
r — oo we see that (f*) is an optimal strategy for the game (3). ]

5 NUMERICAL SIMULATIONS

The Ballot Strategy was observed to have performances comparable to the optimal strategy on
simulations over several values of n. In Fig. 6 we contrast the expected duration of the game for
the Indolent, Hope Springs Eternal, and Ballot Strategies with the minimum expected duration of
the game for an optimal strategy generated by Algorithm I using the Indolent Strategy as an initial
strategy. (Note that rather large absolute differences in expected duration across the strategies
are hidden because of the logarithmic scale of the plots.) Note, that as per parts (a) and (b) of
Theorem 3.3, all the strategies are essentially equivalent when M < N/2, and that it is only in the
regime M > N/2 of expected exponential duration that it pays to look for an optimal strategy.

Numerically, the strategy Step in Time was found to give results comparable to Hope Springs
Eternal for large values of L, and substantially poorer results for small values of L. We did not
attempt to optimise the value of L in light of the performance of the Ballot Strategy. As an aside,
the probabilities p, given by recursion (10) need to be evaluated with some care (especially for large
values of M) as the backward induction can be numerically sensitive.

In Fig. 7 we have shown plotted the restart boundary of the Ballot Strategy compared with that
of an optimal strategy. Note the close correspondence of the boundaries of the two strategies. It
would appear that the Ballot Strategy is slightly more conservative in setting the restart boundary
than an optimal strategy.

6 EXTENSIONS

The resuits of this paper can be easily generalised to the case where biased coins are tossed. Let
P{\, =1} = n. P{Xi = 0} = 1 — n = v. The following generalisation of Lemma 3.2 follows easily:
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Indolent ——
Hope Springs Eternal —-:
Ballot --- p:

Optimal ----- »

le+l0

Expected Duration

S0

Figure 6: The expected duration of the coin tossing game is plotted (on a logarithmic scale) versus
the desired number of successes M for N = 50 for the Indolent, Hope Springs Eternal, Ballot, and
Optimal Strategies.

Lemma 6.1 The probabilities p,, 0 < m < M — 1 satisfy the following recursion.
BASE: po = V"0,
. — [Pm) _m. oa.-m m=1 (Bm = ) mei npen,=m+i,.
RECURSION: pm = { 7| n™v -Yise mei 7Y i m> 1

A straightforward generalisation of Theorem 3.3 now yields:

Theorem 6.2 Assume n > 0. Then, for any consistent strategy f,

M-1
ET,(N,M) = Y 4 —Zem=p "Pm__ e
n (1 - =0 Fkn)
It is also easily verified that Theorem 3.5 holds unchanged. A more general form of Theorem 3.6 is

now readily obtained.

Theorem 6.3 Let ¢ > 0 be any fized parameter and N any positive integer. Then:

(8) M < (1=cN, then & < DN, M) < & [1 4 £2555]

l-e~
(b)) IfM > (1+c)N, then D(N, M) > 4 e3’7°N,

Note that we can again use Chernoff’s bounds to obtain tighter results.
Corresponding to the change in the recursion for p,,, the backward induction (21) has a corre-
sponding change with the recursion replaced by

y(n,m) = min{(d +n), ny(n+ I, m+ 1)+ vy(n+ 1, m)}.
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Figure 7: The boundaries of the Ballot Strategy and an optimal strategy for N = 50 and choices of
M =10, 25, and 40.

Algorithm I continues to work as before.

The problem in this general form with biased coins would seem to have more direct relevance
to early abort strategies in randomised algorithms for factoring integers. For instance, going back
to the discussion in the Introduction, consider the problem of finding a factor of a (large) integer n.
Assume that we have selected an integer m of the order of Inn for Dixon’s algorithm. As we saw,
a rough approximation to the problem in terms of the coin tossing game is to consider a store of
N = =(m) unfair coins with identical probabilities 1/m of a toss resulting in a head and require to
find an optimal strategy which minimises the total number of tosses before achieving M = Inn/inm
heads. The classical estimate for the number of primes less than m,

m m
n(m) = —+ O('(Em_)?) (m — o),
shows that we are in the exponential domain for D(N, M), and a ready calculation using Theo-
rem 6.3(b) yields

D(N,M) = Q(.l_n.l_n.n. eﬂlnn/lnlnn)
’ lnn

for a positive constant x. (Or make the bound exponentially tight by using the sharper binomial tail
bounds.) This would suggest the rough estimate n@(1/1nInn) for the minimum (over all early abort
strategies) expected number of steps in Dixon’s algorithm before one solution to (2) is obtained.
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