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I 1 PROBLEM DESCRIPTION AND RESULTS

"1.1 Brief Overview

Under the aegis of the AFOSR grant we have been investigating computational and learning at-
tributes of networks of formal neurons. The formal neurons we consider are linear threshold elements
which produce binary outputs based on the sign of a linear form of a set of inputs. In particular,
each neuron is characterised by a vector of weights w, and given a set of inputs u, produces an
output v = sgn(w, u) = sgn~i wjut. 1 In a given neural network architecture the degrees of free-
dom reside in the specification of the neural weights; in particular, each choice of weights specifies
a particular computation. We have been interested in (1) exploring the theoretical limitations on
what can be computed or learnt in neural network architectures, and (2) developing and analysing
learning algorithms which specify weights as a function of a set of examples of a computation.

Since information about any computation realisable in a neural network resides in the selection
of the weights, a cogent question relevant to the understanding of the efficiency of this computational
structure is: How much information can be stored per bit of weight? A satisfactory resolution of this
question will have a direct import on the dynamic range for the weights that will be demanded of
purveyors of neural network hardware. Classical learning algorithms such as Perceptron Training and
Backpropagation are typically operational in situations where there is no dynamic range limitation
on the weights; if, as we demonstrate, dynamic range requirements are not extreme, then another
question arises- Do there exist efficient algorithms for learning weights in a dynamic range limited
network structure? In the analysis of these issues we present results for two distinct scenarios: in
one we consider networks with weights restricted to being binary-in a network of N neurons this
corresponds to spreading an available dynamic range of N bits uniformly across the neurons-; in the
other we analyse a class of sparsely interconnected neural networks, a situation which corresponds
to packing available dynamic range in a few weights.

On another front, we have also investigated the enhancement in computational capability that
results if the degrees of freedom in specifying the weights are increased. In particular, we have

'This is the basic neural model proposed by McCulloch and Pitts (1943). A real threshold can be incorporated in
the model, but is not essential to our discussion.
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analysed a family of recurrent neural networks with the linear threshold neural model replaced by a
polynomial threshold model where each higher order neuron produces a binary output according to
the sign of a polynomial form of the inputs. The intuition here is that the extra degrees of freedom
in specifying the polynomial coefficients (weights) should result in more powerful computational 3
structures.

We have also been developing a theoretical basis in which the analysis of the above and similar
problems can be carried out. The framework that is evolving rests upon a statistical notion of
the computational capacity of a network architecture and an associated algorithm. The notion of I
capacity is turning out to be a fundament in the analysis of intrinsic computational and learning
attributes of computational structures, and has been brought to prominence in the PAC learning
model of Valiant (1984). I

In the following we briefly summarise the results we have obtained, providing a road map as it
were to the attached papers where we carry out more searching investigations of the subject matter.
We also present prognoses and brief summaries of work in progress. 3
1.2 Binary Weights

Consider a neuron with weights restricted to be binary, wi E {-1, 1}, i = 1, ... , n. If we consider 3
inputs to be binary as well, each assignment of weights to the neuron results in the realisation of
one of 2n distinct Boolean functions of n Boolean variables, and in particular, one of 2" majority
functions of a set of n literals: for every u E {-1, 1}n, f(ul,... ,un) = sgn•-i=. w, u. An immediate
question is what is the computational capacity of such an element (vis i vi.- a neuron where the I
weights are allowed to be real). Consider a randomly chosen m-set of points u1 , ... , um drawn from
{-1, 1}n with components drawn from a sequence of symmetric Bernoulli trials and an associated
set of desired binary ({-1, 1}) classifications v1 , ... , vm. We are interested in whether there exists I
(with high probability) a vector of binary weights w E {-1, 1}n such that each of the points is
classified correctly:

sgn• wiu? = V", a = 1'.... 1M. (1)i----I
It is clear that for each i = 1, ... , n, the binary weight wi E E has to retain information about
the corresponding m input components u!, ... , uT, and the desired classifications v1 ,

difficulty, of course, is that we have to store information about m bits in a single bit, and, especially
if the learning procedure is on-line, it may perhaps appear doubtful if this is possible at all.

Let us consider without loss of generality that the m desired classifications are all +1. The I
assignments in (1) are hence more likely to be realised if, for each fixed i, mina Ewiu? can be made

as large as possible; i.e., the probability that a weight has the same sign as a corresponding pattern
component is made as large as possible. Using randomisation in the algorithm as a tool we show that
for local on-line procedures sup mina, Ewiu'? = 0(1/n) for each i. Here the sup is taken over all local,
on-line procedures. For local off-line procedures the analogous result is sup mina Ewiu• = (1/,/n)
A detailed development of these and related results are contained in [1], and is included as the first
attachment. The basic conclusion that may be drawn from these investigations is that fairly large
capacities are attainable for networks of neurons with binary weights, and that these capacities are

comparable to those when the weights are unrestricted reals.
While large capacities may be attainable in principle, there are practical difficulties in the design I

of binary weight learning algorithms: learning binary weights is equivalent to integer programming
and is NP-complete. We might hence anticipate that for any binary weight learning algorithm there
exists at least one problem instance which is intractable (i.e., take5, exponential time). We have
investigated the use of random algorithms, however, as a technique to partially circumvent the NP-
completeness of the problem by providing good average-case performance. In particular, we have
developed a family of local, on-line randomised algorithms (dubbed Directed Drift) which provide
good average-case performance in certain regimes. Details are provided in (2] which constitutes the I

t
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I next attachment. R. Meir has communicated to us that simulations indicate that for local, on-line
algorithms Directed Drift appears to have an optimal character.

j Prospectus We have been investigating further randomisation ideas in the development of on-line
and off-line learning algorithms and these are to be reported in [3]. Combining these ideas with the
Directed Drift family of algorithms we have developed heuristics for learning binary weights for
arbitrary network configurations. Early simulation results indicate very promising performance of
these randomised algorithms. The implications to hardware development can be profound as these
early results indicate that it suffices to have very small dynamic ranges for weights (one bit suffices
in many applications), and with on-line algorithms such as those described here this can lead to very
low complexity neural network hardware with on-line learning capabilities.

We have begun to study batching in on-line algorithms as a tool in the study of the tradeoffs
in performance and complexity when we move from on-line to off-line procedures. In particular, we
have been examining a randomised batch version of Directed Drift, the on-line algorithm described
in the previous report. (Batch learning is a process intermediate in complexity between on-line
and off-line learning where learning still takes place in a sequence of trials, but a (small) batch of
examples is available to the algorithm at each epoch.) Surprising and unlooked for results have
emerged in this consideration [4]. While Directed Drift converges very rapidly when the number of
examples is small, it slows down substantially when the number of examples becomes large, a regime
where, effectively, the examples are numerous enough to uniquely identify the generating function.
In this latter regime, batch versions of the algorithm, however, show improvements in convergence
time of several orders of magnitude, even for very small batch sizes. Improvements saturate quickly
with increasing batch size leading to the conjecture that a modified on-line learning algorithm with
very small batch sizes can achieve off-line performance. These and other results are to be reported
at the Conference on Neural Networks for Computing, Snowbird, 1992.

1.3 Sparse Networks

Sparsity in networks can arise either as a result of architectural constraints or can arise as a conse-
quence of damage to the network. In either case sparsity can be viewed as a situation where a total
available dynamic range in bits for the weights is distributed among a few weights in the network.

When sparsity occurs as a result of damage to the network, the principal concern is whether
the network continues to function effectively, i.e., whether the network is structurally robust. In
contexts with large interconnectivity, neural folklore tells us that networks will continue to function
efficiently, albeit with some degradation, in the presence of component damage or loss. We have
rigourously examined this premise for a fully-interconnected network of neurons in an associative
memory application by introducing the "devil"' in the network as an agent that produces sparsity by
snipping connections between neurons. A consideration of a malicious (or at best neutral) devil which
removes connections at random yields the following strong validation of the robustness hypothesis:
in a network of n neurons each neuron needs retain only of the order of log n random links (on
average) of a total of n possible links with other neurons for useful computational properties to
emerge. Memory storage capacity degrades very gracefully as the probability of losing links increases.
Details are presented in [5, 6] which constitute the next two attachments.

When network sparsity arises as a consequence of architectural constraints it may be possible to
demarcate classes of problems which are well suited to the sparse structure. We have investigated this
in a recurrent neural network situation where the neurons are partitioned into fully-interconnected
sub-blocks with few or no connections between blocks (nested sparsity and block sparsity, repec-
tively). For an associative memory application we identify memories to be stored as codewords and
the collection of admissible memories as codes-the neural network is a decoder which corrects er-
rors in memories. We show that for networks of n neurons in nested or block architectures, storage

I 2 Well, maybe an imp.
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capacities as large as 21' memories for any c < 1 can be achieved for a family of codes (admissible I
sets of memories) which is exponential in size. More precise statements of the results and details of
constructions and proofs can be found in the attachments [5, 7]. 3
Prospectus Sparse network structures are again practically motivated as hardware would appear
to favour certain regular, sparse interconnectivity patterns. The characterisation of problems best
fitted to these structures is still an open question which the above investigations answer only partially.
In an effort to understand how computation and capacity scale with increasing sparsity we have
done extensive simulations in a feedforward network environment. The results are reported in
attachment [20]. In general, capacity decreases with increasing sparsity roughly in proportion to the
loss in the degrees of freedom. This is reflected by a concurrent improvement in learning times.

1.4 Polynomial Neural Interactions

Higher order neural networks have been proposed in the literature as a means of enhancing the
computational capability of these networks. A higher order neuron is a polynomial threshold element
which computes the sign of a polynomial form of its inputs. In particular, a higher order neuron of
degree d and n inputs is characterised by a set of (") weights wj1,.....•,, 1 <_i < ... < id < n. In I
response to an input u = (u, ... un) it produces an output

v = sgn E W i..dU•U -u,. 3
l<il< ... <i,,<_n

The increased degrees of freedom give rise to a commensurate improvement in computational ca-
pability. We have obtained rigourous results on the computational gains that accrue in recurrent
networks of higher order neurons. The main results can be summarised as follows: the information
storage capacity of a recurrent higher order neural network is of the order of one bit per polynomial
interaction coefficent (weight), this result being independent of the choice of the algorithm. We pro- I
vide exact results on associative storage capability and error correction for a variety of algorithms
in attachments (9, 10].

We have also carried out a complementary analysis of the structure of fixed points in symmetric
recurrent higher order networks when the weights w . .. i, are standard normal AK(0, 1) random
variables. This corresponds to higher order spin glasses in statistical physics. We obtain expressions
for the expected number of fixed points as a function of their margin of stability. In particular, we
show that there exists a critical margin of stability below which the expected number of fixed points U
increases exponentially in n, and above which the expected number of fixed points actually decreases
exponentially with n. A formal statement of these results and proofs is provided in attachment [11].

On another tack, we have developed algorithms for recurrent neural networks for an associative I
memory application. In particular, we have shown that it is possible to store memories with sim-
ulaneous memory-specific as well as feature- (or direction-) specific error correction while retaining
high storage capacity [13, 14]. 3
Prospectus The computational gains that accrue from higher order neural networks agree with
intuition-they correspond with the increase in the degrees of freedom in the network. An attrac-
tive feature of these networks is that each higher order neuron can be replaced by a functionally
equivalent small network of linear threshold elements so that hardware can be standardised with the
formal neuron (linear threshold element) as the basic building block. The low complexity algorithms
described in [9, 10] indicate that the higher capacity latent in higher order networks can actually be I
realised. There are open issues on the nature of problems that efficiently fit networks of polynomial
threshold elements; for instance, it is not known whether the family of poly-sized two layer higher
order networks is functionally strictly subsumed within the class of poly-sized three layer higher
order networks. We are investigating these issues.

I
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1.5 Capacity and Learning Sample Complexity
A common thread running through our analysis of the nature of information storage in the weights
of a neural network has been the notion of the statistical capacity of a network architecture and an
algorithm. This is a distribution dependent notion which captures, loosely speaking, the largest size
of a randomly specified set of input points which can be mapped into a corresponding independently
specified set of output points with high probability by the network specified by the algorithm. This
statistical notion of capacity plays a critical role in determining the minimum size of labeled sample
(the sample complexity) needed to identify a given function realisable in a given network architecture.
The statistical notion of capacity that we espouse is related to a combinatorial parameter known as
the VC-dimension which is a critical parameter in a distribution-free learning model. We develop a
fairly general set of definitions of capacity in the attachment [12] and have presented the material
in [151. Definitions of capacity can also be found in the earlier reported work, and in particular,
in [5, 6, 7, 9, 10].

One particular problem we have considered is the gains that may be realisable in computational
capacity if errors are permitted in the output. Our main results here are that allowing a linear
number of output errors improves the constants, but not the rate of growth of capacity. The exact
constants depend upon what protocol governs the errors. Exact expressions and derivations are
provided in attachment [16, 17].

As aforementioned, capacities govern the sample complexities needed for learning. A related
issue of both practical and theoretical interest is the rate of convergence that can be expected of
a learning algorithm as a function of the sample size. In an effort to shed light on what may be
the worst case behaviour we considered the classical nearest neighbour algorithm which has been
suggested to be representative of the best non-parametric learning algorithms. (The specification
of a host neural network architecture for a learning algorithm in sharp contradistinction imposes a
parametrisation. The learning algorithm seeks to find weights-the parameters-for the architecture
which best fit the data. If the parametrisation, i.e., the choice of architecture, is appropriate this
should result in substantially better behaviour than a non-parametrised approach.) It is known
that in the infinite sample limit the nearest neighbour algorithm has performance no worse than
twice the Bayes risk, and an old result of T. M. Cover shows that for one-dimensional feature spaces
the convergence rate to the infinite sample limit is as rapid as e(m- 2) where m is the sample
size. In attachment [18, 19] we present a precise statement of a generalisation of Cover's result
to n-dimensional feature spaces which has been hitherto lacking. We show that the performance
of the nearest neighbour algorithm converges to its infinite sample limit as rapidly as O(r-2/"),
where n is the dimensionality of the space and m is the sample size. This result holds under mild
conditions on the input distribution. (Alternatively, the sample complexities needed for learning
are exponential in n.) Clearly Bellman's "curse of dimensionality" is made evident in the drastic
reduction in convergence rates as the input dimensionality increases.

On another tack, we have been extending these results to precisely estimate the value of side-
information in learning, with special reference to a problem proposed by T. Cover: How many
unlabelled examples is each labelled example worth in learning? The question has import when
unlabelled examples exist in relative profusion, but there are few labelled examples or where labelling
examples is expensive. The answer in general depends on how much side-information is present. We
have early results and are investigating further [20].

Prospectus We are seeking to combine the various elements described above into a theory of
evolutionary learning in a neural network setting. A result of J. S. Judd indicates that the prob-
lem of deciding whether a given problem instance can be loaded into a given architecture may be
intractable (read NP-complete). It may be possible to circumvent this problem by adopting a suit-
able evolutionary protocol where the network architecture is allowed to grow in time. To keep the
complexity manageable we have been considering binary weight networks, using the randomised al-
gorithms we have been developing for training at every stage of network evolution. Training periods
at each stage of the evolution are governed by the statistical capacity of the network at that stage in
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the evolution. Results are only preliminary at this stage. The convergence rate calculations for the 3
nearest neighbour algorithm indicate the importance of choosing a proper evolutionary protocol. A
very loose evolutionary structure would be essentially unparametrised leading to very large times
for convergence.

1.6 Coin Tossing and Randomised Algorithms

The last attachment [21] is not directly related to issues in neural network compuatation, but indi-
rectly in that it examines limitations of randomised procedures. The basic question analysed is the
expected minimum duration of a coin tossing game which carries the essence of several randomised
search procedures in cryptography. The paper provides precise and rather complete estimates of the I
minimum duration of the game and provides constructions for generating the optimal strategy.

Prospectus We are seeking efficient learning algorithms to learn discrete weights for neural net-
works. In this randomisation is turning out to be a very effective tool to attack some formally I
intractable learning problems. We are investigating among other issues, a characterisation of the
effectiveness of randomisation. 3
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How Much Information Can One Bit
of Memory Retain About

a Bernoulli Sequence?
Santosh S. Venkatesh, Member, IEEE, and Joel Franklin

Abstract- The maximin problem of the maximization of the variables: M,, ÷ I = fn(M,, X.). (The initial memory state,
minimum amount of information that a single bit of memory MI, is arbitrary.) For each n we are required to estimate
retains about the entire past is investigated. Specifically, a
random binary sequence of ± I inputs drawn from a sequence of I, - max min E( M,, ÷ ,X 5 )" (1)
symmetric Bernoulli trials is given. A family of (time dependent, - I k s n

deterministic or probabilistic) memory update rules that at each
epoch produce a new bi. ( - I or 1) of memory depending solely Is ],, boundcd away from zero? Can we identify functions
on the epoch, the current input, and the current state of memory f *," - ",f* that achieve i,,?
is also given. The problem is to estimate the supremum over all Koml6s' problem can be generalized in various ways
possible sequences of update rules of the minimum information
that the bit of memory at epoch (n1 + 1) k tains about the with other measures of information used in.tead of the

previous n inputs. Using only elementary techniques we show covariance. Specificaliy, we can consider the dctermina-

that the maximin covariance between the memory at epoch tion of
(n + 1) and past inputs is 0(1/n), the maximum average covari-
ance is @(0/n), and the ma.rimin mutual information is fl(M/n2). J,, = max min ( M.+,t; Xk), (2)
In a consideration of related issues, we also provide an exact f, Isk <n

count of the number of Boolean functions of n variables that
can be obtained recursively from Boolean functions of two where I(Mn+.,;Xt) denotes the mutual information of

variables, discuss extensions and applications of the original M., ÷ and Xk. Another measure of (average) information

problem, and indicate links with issues in neural computation- about the past that we investigate is

Index Terms-Bernoulli sequence, Boolean functions, mem- I
ory, covariance, mutual information, neuron, capacity. K, max - E E(M..+IXk). (3)

ff....f. n k-1

I. A PROBLEM IN INFORMATION STORAGE The following are the main results':

JANOS KOMLOS posed the following problem: Given
a single bit of memory and a random binary sequence(1\

of inputs, at any epoch in time what is the maximum I' = j ,
amount of information that the memory can retain about
the entire binary sequence? 0= f( 'T

More precisely, let {X,,1. - be a sequence of symmetric (n
Bernoulli trials, with

(-1 with probability 1/2 K,=O(1)"
1 with probability 1/2. The last result is due to Komlds, Rejt6, and Tusnidy [1]

Let M. 1E 1,) denote the state of a one bit memory at who have recently investigated the average covariance,

epoch n. The memory states are updated by a sequence K,, in a control problem. In this paper, we show that the

of (possibly random) Boolean functions, f, of two Boolean result holds as a direct consequence of arguments ad-
duced in the consideration of the maximin problem In.

Manuscript recieved June 8. 1990; revised March 19, 1991. This work We also show that the maximum average covariance is
was supported by the Air Force Office of Scientific Research under @(1I/n') when we allow update rules with unlimited
Grant AFOSR-89-0523. This work was presented in part at the IEEE
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of all update rules mapping (-1, 1) into -1,1). Then = 0, and p,(-1,1) =p,(I, -1), ji 1. The first of the two

I n F2symmetry requirements; in particular, enforces no change I
max - , E(Xkf(XI,. .,X.))~---n (n--oo). in memory state if the current input agrees with the

nk~ Vim current state of memory-an intuitively appealing proce-
In the proof of the results, it also develops that the dure.

maximin and average absolute value of covariances is also We first evaluate the unconditional probabilitiesI
0(1/n), with W1, A P{Mt = 1),

1 2 1 AP
-< max min IE(Mf+IXk)I<-, ok= (Mk=--
fl f.-..f. n n(Clearly, "k = 1 - &)k; we introduce the additional nota- 11

and tion for later convenience.) Let us assume, without loss of
1 a -2 generality, that we generate the initial value of the mem-

- i max - E(M.,LXk) <-. ory, M1, by flipping a fair coin.3 Hence, ta = a; = 1/2.
n 1. ' f. n n For j Ž1, define

If we restrict e.tention to a reasonable family of ,,(,1 4
update rules-monotone symmetric rules-we demon- P(-)+pj(1,1). (4)

strate, in fact, that maxmin E(M,+Xk)= 1/n and For convenience, let us also define
maxmin I(M,, t+; Xk) - 1/2n' In 2.2  P0( - 1, - 1) = P0( - 1, 1) = P0( 1 - 1) 1) = 1/2.

In Section III, we will conclude by looking briefly at
some related issues. In particular, we %ill: provide an Assertion 1: For k =0.1, -,the unconditional proba-
exact count of the number of Boolean functions of n bilities for the state of the memory at epoch k + 1 are
variables that can be obtained by a recursive application given by
of (n - 1) Boolean functions of two variables, with the k k
variables taken in sequence-there are exactly (0.4)6" + &I)k÷= E -+[p(-1, -l)+p,(-1,1)I 171 I---,
1.6 such Boolean functions-examine extensions of the +0
results and raise some open questions when more than (5) 5
one bit of memory is available; and link these results with k I r
issues in information storage in neural networks. k+. I= I E p,(l,1)+p1(,-1, F1 (6)

02-- I
II. INFORMATION BOUNDS Proof- We can obtain the following recursion by not-

A. Probabilistic Rules ing that Wjk = I - Wk.

In the most general setting the update rules, Mk 1 = k [
fk(M,, Xk), arc probabilistic and can be characterized in 2+ k( ' )Pk(1)]
terms of probabilities conditioned upon the epoch, k, the Wk
current state of memory, M., and the current input, Xk, 2-Pk(l, 1)+ Pk( 1, 0),

as follows: if Mk =iE(-1,1) and Xk =jE{- 1, 1), thenset kset~ = Z T -2[ Pk(- 1'- 1) + Pk( )]0I
st Mk with probability pkk(ikj), + Wk([1O-1) + PNO -1g

1Mk with probabilityP(ij) =1- Pk(',j). +2-- Pk(1,1)+ Pk(1,--1)1•

Alternatively, The result can now be established by induction. 0 5
pk(i,j) = P{MA + I= -ilMk = i, = Xk-j), For k > 1, let us now define
fi( ij) = PAg~ - Iln = 'A Xk = j). O, A [ gkPk( - 1, 1) + W~pk(1, -1)])Q

Each update rule, fk, can hence be defined by four -[kpA(-1,-1)+ Wkpk(1,1)1. (7) *
(independently specifiable) probabilities, Pk( - 1, - 1), Assertion 2 For any choices of n and k with k n,
Pk( - 1,1), Pk"(I - 1), and pM(1, 1), each of which repre-
sents the probability, given the epoch, and current values P{MU,+ Xk}=I[1+b 46 ( ]
of memory and input, that the memory update results in a 1 , (8)

change of sign of memory.
We define the family of monotone symmetric update PM+A =I X= = I 1 - 1(1 - (9)

rules to be update rules satisfying: p,(- 1,-1) = p(l, I) 2-k + 2- "

' We conjecture, in fact. that maxmin E(,. ,)= I/n and Remark: We adopt the convention I..,(.)- 1 if r > s.nmaxnrn I'1 .', A: .\ I / 12n: In 2. vitlh the mnasimurm being taken over I
all fuctl' o s f'. I. f,,_ Thi, i', not true for absoluic lti•, s of covari. nThe initial choi'c (if memory bit can hase no information about the I
.,noes I~ o\c\cr. J Konmlls has rccentl.h communicated a conmtruction to t ;ata sequence to come. The ohbrius oftimal priccdiirc %ouhJ t,c to
us that dcrinot,,ratc, n,)i E nl,, l .1 > I/n choose the updat rule Af, = f'(t A '.)X .
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Proof- To prove the assertion we use double induc- An entircly analogous procedure yields
tion on k and n.

Base: For every choice of n 1 1 and k =n, we have P1 Mý =X, = -}1) [p(1,)+ P(,

PxM"I = =x[) 1 P"(- '-1)+p"(-II)j +(1--' 1P(M.=Xk= -]

+ - 1) + 1 - p'(1,1)] Combining the two results gives

P{M , I = Xk)
2 D + 'I. =PM+ = X = 1) + P{Mn. ÷ = Xk-1

Inductive Hypothesis. Assume that for some choice of n + ,, =tt-' I)=--+ )-P1{Mh= Xk)
and k < n, we have 4 -2-

The base of the induction argument establishes the first
P{M = Xk)=- 1+(hk part of the assertion, (8), for k =n, and the inductive

2 -k + 2hypothesis completes the induction for k < n. Equation
Now consider (9) follows trivially from the observation that P{M,., =

PA.+I = Xk =1) - Xk) = 1- P{M-+I = Xk}. 0

= PM. += 1, M -1,X=1 Assertion 3: For n 2! 1 and 1 _I k < n,3+ PA{M+-= 1,M.= -]'X' = 1) P{x÷ = ) =W1

+P{M.÷+--IMfl I,Xk I}P(Mfl" i,Xk. 1} 2 '- '~w~ iF
= -- = = - = j-k+l 2

+ (10) 1
Now, given M., the random variaHe M, + , is condition- + E [(=k p ) P )
ally independent of the random variable Xk. Hence, i-k+1

= VM., = 1IM, = I) PM.+1 XA 1)
I

2 - + - [,WkP,(1,- 1)•P,(- 1, 01 F1) (I

In similar fashion, we obtain 2 2 k 2

P M.÷, ffIMfi - I,14 , 11 ]} --1), 11

2•p(I l+p(ll] (12.) +(Okf)
S- ;p,(-, - 1,1)- wp,(l , 1) ) I

We now claim that

1 P(M., = ,Xk= )
n1k - n k (13) WA IP{ =-X=)=-PM=21 [Z-~1kPk(-1,1)_-kP1(1,I)]I F 1 (-

In fact, we have 2 2 )-=+i 2

P(M 1,Xk=1)=PM lXkI )PXk,1) (-1,+)-1p,(-1))P{Mn---1,X - - (I -- P{Mn=-IXk =I{X =1))+.
1

(10), we obtain _2 j- _, +

PIM+ )i = Xk = 4I' + f'-P,,(-l ,')] A-P,-) (

+ +-- P0-fi•=} +•,(i -l) Ap,( IMl} H -
2'~
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Proof: These results can be verified, as in Assertion
2, by induction. 11

Remark: The previous identities simplify considerably
for the family of monotone symmetric update rules; in X, -1

particular, update rules governed by probabilities of the MI

form p,(-1,-1)=p10,1)=0, and p,(-1,1)=p,(l,-1) -1 -1 1
= p,, j > 1. Substituting in (4)-(7) we have tkk = 2 Pk' 1 - 1

wk = Fk= 1/2, and 0kk = Pk, for k > 1. Substituting these
relations in the above expressions, we have

P{Mn-I= Xk = l = P(M.+= X, = - 1}

n 
Fig. 1. Odd parity update for MZ.

j1+ Pk H - P,), (14)
4-k +

and

P{M"+=IIIXk=-1) =P{Mfl+I=-I'Xk=IX -1 1

i k Fp 1 ( 1-Pj . (15) Mk

4 -- 1 -k +
1 1 -1I

B. Maximin Covariance

A direct application of (8) and (9) yields the following
general result.

Assertion 4: For any choice of positive integers n and k
with I < k , Fig. 2. Odd parity update tar Mn .

E(M.÷Xk) -- - ,j) (16) Evaluating the various parameters we obtain
i-k+Jl ý0 *j -2, 1~,

where k, and 6k are given by (4) and (7), respectively.
Some examples may serve to fix the result. W = 1/2, k > 1,

Example - Follow the Leader: Consider the choice of Wk = 1/ 2 , k > 1,
rule M,+I = Xj, j z? 1, corresponding to the selection

pj(-1,-1)=p,(l,1) -O, O = 0, if k 2.

pj( - 1, I) =p,(1, - 1) ý 1. Substituting these into (16) yields

From the defining equation (4), we clearly have 41, = 2 for E(M,. XkA) = 0, k = 1,-.'., n.
every j 2! 1. Applying (5) and (6), we have the uncondi- For n a 1, this again yields mink ,,E(M+,.Xk) = 0.
tional probabilities of the state of the memory given by These examples illustrate that it suffices, hence, to
w0k -* k = 1/2, so that applying (7) we have 'k = 1. Hence, restrict attention to update rules that yield nonnegative

0, if 1: k < n-1, covariances, E(M, ÷I Xk), for ecery k < n. The following
E(M I)=1, if k = n, example illustrates that a nonzero covariance can, in fact,

in agreement with the intuitive result. Consequently, be obtained between a memory and every past input using

mink _,:,E(M,,+IXk)= 0. a purely deterministic sequence of update rules.

Example-Parity: Consider the sequence of update Example -Unbroken Runs: Consider the sequence of

rules which, at any epoch n, set M,+ = I iff an odd update rules which store a 1 in the memory iff there has

number of the random variables, X ,'", X, have taken been an unbroken run of inputs taking the value I. The

on the value 1. The update rules determining M2 and update rules determining M2 and M÷,, k > 2 are shown

Mk . 1, k a 2 are shown in Figs. I and 2. The probabilities in Figs. 3 and 4. The probabilities corresponding to the

corresponding to the update rules are, hence, update rules are, hence,

p( - 1,1) = p 10, -1) = 1, p(- 1,1) = p 1(0, -1) = 1,

when k = 1, and when k = 1, and

PA( - 1. - !) =pA 1, -1) =0. PA( -1, - ') =1p(- ,) = p(il) =O.

pA( -ll) =p,( ,l) , k 22. p,(I1, - 1) = 1. k -2.
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specifically, we do not change the current state of the
memory if the current input matches the sign of the
memory, and change the state of the memory probabilisti-

X - cally (but with increasing reluctance) in case of a mis-

M, match in signs. Estimating the various parameters gives
-1 -1 1 2

1 -1 1 e0,=-, j1Ž1,

2

1

a41=, k ýtl,

Fig. 3. Unbroken run update for M2. &0 k = k 1,
2
I

Okk= -, kŽ1
k

X1 Substituting in (16) yields E(M.÷iXk)= l/n for k _n.Mk Xk -11It, hence, follows that, in fact, min, .,,E(M, , Xk) I- l/n.

Theorem 1: For every positive integer n,
-- 1 -1 1 2

-< max min E(M.,,.Vk)<-. (17)
n ?I'.,I.k n1

Proof- The lower bound of 1/n follows immediately

__from the construction of the harmonic update rule in the

Fig. 4. Unbroken run update for MA.,. 1. last example. For k > 1 let us define

Evaluating the various parameters we obtain 
(18)

- , if 0~ < k s 2,
2, ifj=1, 2

1, if j2, (19)t2- t--, if 2 :< k <s4.

1/2 if k = 1,
2-k`, if k > 2, Note that 0 s ## < 4, so that the definition above achieves

a sort of "normalization": 0 _< --; < 1. An immediate con-
, if k 1, sequence of the definition is the equality

1- if k > 2, 1 'k I
i1, ifk -- 1 - = - 4  , k1l.
1-2~ if k Ž2. We now claim that ýk -< 24 k for every positive integer k.

Substituting these into (16) yields Indeed, we have from (7) and (19) that
2-"÷, if k =I1 ; [,P ( 11 -P (- , )

E(M .+,Xk) = (2-R+1(2k-I - 1), if k >__2'. +k •a' (pk( 1, _l) Pk( 1,1 ))

Hence, mink ,SE(M,+IXk)= 2-"+' for n a 1.
While the minimum covariance in the above example is

nonzero, it is still exponentially small. To obtain some- 2 ý4k if 0 <k !5 2.
what larger minimum covariances we resort to probabilis- Also, setting f&(" j) 1 - Pk(i A for i E(- 1) and j E
tic update rules. A -so ),s e havn

Example - Harmonic Updates: For each k ; 1 we pre- {-, 1}, we have
scribe the update rule f by setting pk(- 1, - 1) =p(l, 1) ýk - k(- -l-k( 0)
= 0 and Pk( - 1,1) - pk(1, - 1) = 1/k. This is equivalent
to the following prescription: + Wiak(pk(1,1) - , - 1))I

1) if X= Mk, then set Mk. I - Mk; M k(- 1, - 1) + (1,1)+ p(-,)+pk(l,-)

2) if Xk * Mk, then set 4- Ok4(1+ - Mk, with probability I/k 2 bk, if 2< 'Pk -< 4.
Mk Yi = Mk, with probability 1-I/k; This proves the claim. 0
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Now consider (16). From the definitions (18) and (19), this is already impossible as can be verified from (5)-(7),
the "normalization" of ok,, and the claim, and (18). Hence, maxmin E(M,. IXk) < 2/n. C

tk Remarks: In this proof, we used the bound i 'k4s
E(M,,+IXk) 1 I'•I-+11 2 1 valid for every k. This is, however, not the tightest possi-

ble as we saw above; in particular, the bound is not

=Ok H J (1--) 2<2 H (1 - -). (20) achievable when the best results (the bound of 2/n) are

j- k + I - k + obtained for the choice of parameters, ';k = 1/k. A more
careful analysis should see improvement in the upper

To establish the validity of the upper bound in (17) we bound. (In particular, the harmonic update rule is a
begin by showing that persuasive candidate for being, in fact, the optimal up-

n 1 date rule. If true, this would imply, of course, that
max mrin k (1- t,) <•-. maxminE(M,.÷IXk)=I/n.)
.tt..... Isrkfn i-k+l n. jNote also that the proof yields the following stronger

(Here the variables, 0,, take values in the closed interval result: the same maximin bounds hold for the absolute
[0, 1], as previously noted.) For notational simplicity, de- value of the covariances, viz.,
note 1 2

n -s max min IE(M.,÷Xk)I<-.
Fk 4k I- (1- ,, (l-k n). (21) n f.".f. INksn n

i-k+1

Consider first the choice 4'j--I/i for each j. Direct C. Maximin Mutual Information

substitution yields that Fk = 1/n for each k = 1,. -,n. Now consider the problem (2). Here the maximin prob-

Hence, minkfFk = l1/n for this choice of 0,l. We now lem is to maximize the mutual information between past
claim that we can, without loss of generality, consider inputs and the current memory state. In order to evaluate
only choices 1 > ;k > 1/j for each value of j. To see this, the mutual information, I(M,÷t; Xk), for a general family
assume liý < 1/I for some choices of j < n. Let k be the of update rules, in general, we have recourse to Assertion
largest such j. We then have ['I7.-k I(1 - 4',) < k/n as 3. We obtain the lower bound below for J, by maximizing

j /> I/j for j> k, and ##k <I/k. Hence, mink sFk < the minimum mutual information over a restricted set of

1/n if there is any j 5 n for which e,, < 1/j. update rules where the probabilities derived in Assertion
We will now show that, in fact, maxrmin Fk = I/n, with 3 are somewhat more manageable.

the maximum achieved, as just seen, for the choice, 4J = Theorem 2:
l/j, for each j. By the result just shown, without loss of max mi J(M X)fk( 2 )
generality, for each j we need consider only choices for 14i ,." ", t k ,
in the closed interval (I/j, 11. Now consider n--o).

F, =, iH (I - J). More specifically,

max amin I(M.÷I;Xk)> +0
For each j, we have 1/j140, < 1, and in particular, for f 1:. 5 1sksn - 2n 2 1n2 •-'

j - I we have 4' _ 14. Hence, we must necessarily obtain (n -a).
F, < l1/n, and consequently mink,.Fk < I/n, if there
exists any j with %, > 1/j. Proof:. Let us restrict attention to the family of

We have, hence, shown that max min F. = I/n. From monotone symmetric update rules: p,( - 1, - 1) = p,0(, 1) =

(20) and (21) we, then, have 0, and p,(- 1, 1) = pQ(1, - 1) = pJ, j 2_ 1. For simplicity let
us denote

max min E(Ml.+tXk)
,. s '.f ks " n 2 Zk=Pk (l-p,).

•2 max min H (i-4,)=-
I,..... Is k -qn k+I n From (14) and (15) we then have

1

To complete the proof, we need to show that the upper P(M,+- = =1 = P(M+,÷ = Xk = - -(1 + zk),
bound 2/n is strict. To see this, note that max min Fk = 4

I/n is achieved only for the unique choice of 4, = l/j for and
each j n. An examination of the bounding technique P(M'+* = 1, X=-1) P(M{ + = -I Xk = 1)
used in deriving the bound of equation (20) shows that a
necessary condition for the upper bound in (17) to be 1 - k)
realizable is that ý/ = 22i, = 2/j for each j. But for j=I = -(1 - z1)-

4in fact, the variable 6 appears only in the expression for F, whereit Noting that for the class of monotone synmmetric up-

appears as a product term. We can then macirnize the value of FI date rules, the r.v.'s %/,, , arc symmetric. and take on the

without affecting anv of the other F,'s by setting ii, ý 1. values - I and I with equal probability 1/2, we havc (heS1 N I N Illl n lll 1 I l r
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following expression for the conditional uncertainty of Xk expected pa)off of a finite automaton with binary inputs
given M,, 1: [1]. Their results include the estimate 0(1/n) for the

1 1 maximal average covariance, K,,, which they obtain using
H(XkIM,,+e)= - 0 + z0)log2 -( + Zk) conditioning on inputs coupled with an inductive argu-

22 ment. We show this estimate here as an (almost) direct

I z) I Zk) consequence of the proof of Theorem 1.
- _0 ( Z1 0 log - 4)

2 2 Theorem 3: For every positive integer n,

h 2k 1 1n 2(~ I+Z max - EE(M.,,Xk) < -.

where h is the binary entropy function n f,.. n k -I n

h(y) = - y log 2 y -(1- y)log2(l - y), 0< y -5. Proof: The lower bound follows from the lower bound

(Auui = 0for 1,. Now consider (21). Writing Fk = Fk.• explicitly as a
( usual, we define 0log= 0.) Hence, (function of n, we have

I(M . . ; Xk)= H (Xk) - H (Xk IM . +1) = I- h I+ " Zk•k ll 1 4j l _ <_ ~ ~ , , .

By the same inductive argument used in establishing the -k +I

upper bound for Theorem 1 we obtain that mink s,,Zk is Recall from equation (19) that 0 _< : <1 for every j, and
maximized among the class of monotone symmetric up- that ek depends solely on j and not on n. Now form the
date rules for the unique choice of the harmonic update sequence of sums, IS,,}, by setting
rule: p, =I /j for each j. For this choice of update rule

wehaven
w e S= Fk.N (n a 1).

Zk 7 k-ffi (1-T) fil"-n

zk j-k+t . (I ' nNoting that

Using the monotone decreasing property of h(y) for - - if 1< k < n-I,
1/2< y 51 we have that minks , AM,,l( 1 ; Xk) is also F•.n Fk,- 1 (i -1,

maximized among the class of monotone symmetric up- we have
date rules for the harmonic update rule. This estimate
forms a useful lower bound for J,, = maxmin I(M,,+ I; Xk). S= (1- )S + 4',,.
Hence,

As 0:< S, = t#15 <1, an easy inductive argument shows that

max min I( M,,.÷,; Xk) 1-h - + - S,, is an iteration of convex combinations of numbers less
f•,".4 1:ksn ( 2 than one, so that S,, < 1. From (20) and the concluding

The Taylor series expansion for In(1 + y), I y < I yields remarks of the proof of Theorem 1, we have

the required asymptotic form in the statement of the E( M.÷ LXk) < 2Fk,,,
theorem. 0

Remarks: A general examination of J. over all possible so that

update rules using the results of Assertion 3 appears 1 n S, 2
somewhat difficult in view of the lack of symmetry in the max - 1: E(M,,÷ Xk) < 2 max - < -.
various probabilities. A reasonable candidate hypothesis f,.. n k - If,.. n n

may be that it suffices to consider only monotone symmet- This completes the proof. 0
ric rules-Pk(-1,-1)=-pk(1,1)_ 0 and pk(--1,1)

Pk(, --1) -- Pk for each k Ž_ 1. (If true this would, of Remarks: In fact, this convex combination argument

course, yield the estimate J,, - 1/2n2 in 2.) As noted ear- can be used in lieu of the argument presented in the

lier, this enforces symmetry and the intuitively appealing proof of Theorem 1. Note also that the bound of (20) is

procedure of effecting no change in memory state if the easily improved to IE(M,,+.Xk)I <2Fk.,,. The proof of

current input agrees with the current state of memory. Theorem 3 then yields the stronger result

While it is relatively easy to show that we can, without 1 1 M 2
loss of generality, set p,,(-1, -1)= p,,(I,l1)f= 0, the proof -< max - E lE(M,,+,Xk)I<- (n;1).
does not seem to extend simply to all P,,(- 1,- 1) and n fl,- .f. n k-= n

Pk( 1, 1). Substantial improvements in the maximum average co-

D. Maxinum Average Cov'ariance variance may be obtained if memory updates are allowed
access to all past inputs (and not just the last input). Let

1. Koml6s has recently communicated to us results of 5- denote the family of all (probabilistic) functions map-
joint work with L. Rejto and G. Tusnidy on the maximal ping I - 1, 1} into (- 1, 1).
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Theorem 4: For every positive integer n, hence, a Boolean function of n Boolean variables (the
I " inputs, X,," " , X,,) taken in sequence and passed through

max -- F, E(M,, + Xk) a cascade of Boolean functions of two Boolean variables.
ma," ',/ (n k- M X A natural question that arises is how many deterministic

I n Boolean functions of n variables can be constructed in
< max - E E(Xkf(XI, ,XJ)) this fashion out of the total of 22' Boolean functions of nf E.,9" n k - I variables?

SLet gk: -_ 1,•1 -- 1, 1), k > 2 denote a sequence of

"-(n -* ). (deterministic) Boolean functions of two Boolean vari-
ables. We recursively form a sequence of Boolean func-

Proof: The first inequality is immediate. Now, for any tions of k Boolean variables, fk: { -, 1, } (k - 1, 1), for
f E ,F2, we have k a 2, as follows:

n ( nX1,X2)=g2AXtX2),EEXfX, ,X0) Ef(X,,...,IX. E xk)
k -I fk(xi,.. X_,,x,) = g,(fk,_(X 1,, x,_,), X,)

E Xk , (k>3).
,1 kn-I Let 5r, denote the family of all (deterministic) Boolean

(as f(XI,...-, X.)• 1-, 1)), with equality if f is chosen functions of k Boolean variables, fk, constructed recur-
to be the majority function: for any choice of Boolean sively, for every choice of functions 9k.
variables x,.* ,x,, x {- 1,1) let N' denote the number
of variables, x,, that take the value + 1, and let N- = n - Theorem 5:
N÷ denote the number of variables, x,, that take the 2 8
value - 1; we define the majority function, f"(x,, x,), 11-6" +-, n a 2.
by 5 5

1, if N-> N+, Remark: In fact, it is easy to see that 2n 1,I.?1 < 16".
fM(xt,.. - ,x,.) 1, if N- N+. Clearly, this count falls far short of the 22" possible

Let us denote by S,, the random walk Boolean functions of n Boolean variables.

Proof. The demonstration is inductive in nature. For
S, X,. n = 2 we clearly have

k-I

We then have k 1 
1-- 16,

I n as there are 2" Boolean functions of two Boolean vari-
max - E E(Xkf(X 1 , " ,X.)) ables. Now, for n > 3 we claim the following recursion
f =r n k - I holds:

= E(ISjI) 1141(~•
n 4 2 1 =61-9r. - 11- 8.

1 12n] To establish this it is helpful to consider the table of all 16
n -0E [n 2- Boolean functions of two Boolean variables, X and Y,

illustrated in Fig. 5. Note that two of the possible func-
(n- I '~tions (the first row) are the constant functions, which

n I 1j2 -R + 1 depend on neither X nor Y, and that two more functions

2 (the second row) depend only on X and not on Y. All the
remaining 12 functions depend explicitly on Y. Let us call

with the last equality following by the application of a set of Boolean functions independent if no function in
standard binomial identities. An application of Stirling's the set is the complement of another function in the set.
formula now yields the required result. 1 Now, by symmetry, the complement of every function in

The average covariance cannot, hence, exceed the or- Jr. is also in 7_ -. Hence, we can find a maximal set
der of l/vn" even if we allow (binary) update rules with oqlý, -1/2 independent functions in ,9•_,. Clearly, one
unlimited access to past history. of-these functions is the constant function so that there

are 1-49 -,/2-1 functions in a maximal set of indepen-
Ill. RELATED ISSUES dent functions in .9,-, - which depend crplicitly on one or

Thus far, we have been mainly concerned with update more of the variables XA,. - ', X, ,.
rules with two Boolean arguments and producing one Now consider functions. g,,(f,_,(A,....X, ),X,,).
Boolean variable. The state of memory at epoch n + I is. Let us identify with XA the variable X and with
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that w,,e nccd to considcr ontly lllt1IMt l SNllnlt..li c up-

date rules. As noted earlier, if this conjecture holds true.

then 1,, = I/n and J,,- I/2n 2n2 %%ith cquality holding
g(XY) g(x.Y) in both cases for a choice of the harmonic update rule.

I - I Another extension of the problem is to consider input
X A sequences drawn from nonsymmetric Bernoulli trials, and
Y Yin general. i.i.d. inputs X,. k >_ 1 drawn from a distribu-

XAY X Y V tion on the real line (with a suitable second moment
X A P X V Y constraint). The maximin problem with one or more bits
,' A Y X V P of available memory is open for this case.
AX A P X v Y The maximin problem analyzed here has implications

(X A Y)v(X A Y) (X A y)v(Xý A Y) to questions on the information storage capacity of neural

networks. A formal McCulloch - Pills neuron is character-

ized by n real weights. w,,- -,w,,; it accepts n binary

inputs, u.,•. . .u,, E { - 1.1) and produces a binary output

Fig. 5. A tabulation of the 16 possible Boolean functions of two I ' {- 1, 1) according to the threshold rule
Boolean variables, X e --1,1 and Y e{- 1. 1). The first column enu-
merates a set of eight distinct Boolean functions of these two variables, f
none of which is a complement of another function in the column. The - 1, if t wIlII < 0.
second column lists the complements of the functions listed in the first t

column: (each row gives a function and its cotmplement.) We use the =

notation to denote complement (logical NOT), A to denote conjunc-

tion (logical AND), and v to denote disjunction (logical OR). I, if wss]t>_ 0.

f,_I(Xt,..., X,.-) the variable Y in the table of Boolean In a network of formal neurons information can be re-
functions of two Boolean variables. Each of the indepen- garded as being stored in the weights. If the weights are
dent, nonconstant functions, Y, in ,5ý- , yields 12 distinct allowed to range over only a finite set of values, a cogent
functions depending explicitly on Y in 91n, as can be question is how much information is stored per bit of

verified from Fig. 5. (By symmetry, the complement, Y, of weight?
each independent, nonconstant function Y in __ , yields As a specific instance, consider a classification problem
the same set of 12 distinct functions as does Y.) There on vertices of the n cube. Let u -,u' E ( - 1, 1W" be m

are, hence, 12(0.9Y- 1l/2- 1) distinct functions in ._ that randomly chosen patterns (with components drawn from
depend explicitly on one or more of the variables symmetric Bernoulli trials). Let YV'(n,m) denote the at-
X.," • ", X,,_ . Adding in the four functions-the two con- tribute (of the rn-set of patterns) that there is a choice of

stant functions, and the functions returning the values X, weight vector, w, such that (w,uq) > 0, q = 1,'- ,m. (Al-
and X,,-which are independent of the variables ternatively, '(n,m) is the attribute that a formal neuron
X1," • ', X,,_ -I completes the count. 0 classifies each of the patterns properly.) We say that C,, is

A natural extension to the maximin problem is to a capacity function for the attribute .V(n, m) if, for every

consider how much information can be stored about the A > 0, as n -- :

past if now (say) m ; I bits of memory are available. This a) P{.rd'(n, m)) - 1, if m < (1 - A)C,;
issue is still open. The simple strategy of interleaving the b) P{.V(n, m)) - 0, if m > (1 + A)C,,.
input sequence across the memory bits (equivalently, par-
titioning the input sequence into m equal length subse- The capacity function specifies, in a sense, the largest size

quences and apportioning one bit of memory to each of random problem that can be reliably done by a linear

subsequence), for instance, effectively reduces the prob- threshold element or formal neuron. Equivalently, it can

lem to a one bit memory problem with an equivalent be thought of as specifying the maximum amount of
"reduced sequence length" of n/rn. With the mutual information that can be reliably stored in the weights.

information measure, for instance, if m bits are available This interpretation is particularly persuasive when the

for the memory, we have neural weights are constrained to be binary. In this case,

each weight, w. E {- 1, 1), has to store information about
m2  (1) the jth component of each pattern,

supmin I(M,, ,;X1); 2n2 1n1112

Another approach giving the same results is to update
each bit of memory independently. Substantial improve- so that the information stored per bit of weight is directly

ments over these straightforward gains may, however, be related to the capacity. In this form the problem can be

possible if more complex update strategies are used. seen to be strongly related to the maximin problem we

The tightening of the information bounds shown in the have analyzcd here. A rigorous analysis shows that the

previous section is open. Specifically, it appears plausible capacity of a neuron with binary weights is. in fact, linear
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in n.5 In a succeeding paper, we illustrate how the ideas comments. The authors are also much obliged to A.
developed in this paper can be used in the training of Barron who showed them the simple convex combination
formal neurons with binary weights, and provide rigorous argument using which Theorem 3 follows directly from
capacity calculations [4]. the proof of Theorem 1.
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Abstract

Learning real weights for a McCulloch-Pitts neuron is equivalent to linear programming and
can hence be done in polynomial time. Efficient local learning algorithms such as Perceptron
Learning, further, guarantee convergence in finite time. The problem becomes considerably
harder, however, when it is sought to learn binary weights; this is equivalent to integer pro-
gramming which is known to be NP-complete. A family of probabilistic algorithms which learn
binary weights for a McCulloch-Pitts neuron with inputs constrained to be binary is proposed
here, the target functions being majority functions of a set of literals. These algorithms have low
computational demands and are essentially local in character. Rapid (average-case) quadratic
rates of convergence for the algorithm are predicted analytically and confirmed through com-
puter simulations when the number of examples is within capacity. It is also shown that for
the functions under consideration, Perceptron Learning converges rapidly (but to an, in general,
non-binary solution weight vector).

I 1 INTRODUCTION

We consider learning in the context of linearly separable functions. Given an arbitrary linearly

separable dichotomy of a finite set of patterns, the Perceptron Training Algorithm [1] guarantees
convergence in finite time of an iteratively updated sequence of weight vectors to a real solution
vector which separates the dichotomy. The problem becomes considerably harder, however, when

we are required to learn binary weights for a linearly separable problem. The problem of learning

real weights for a McCulloch-Pitts neuron is equivalent to linear programming, for which there

exist polynomial time algorithms. (The Perceptron Learning Rule is an on-line procedure which,
as we will see in the sequel, can converge extremely rapidly under moderate conditions. Similar

*Presented in part at the Workshop on Neural Networks for Computing, Snowbird, Utah, April 1989, and the
IEEE International Symposium on Information Theory, San Diego, California, January 1990.

t This research was supported in part by the National Science Foundation under research grant EET-8709198 and

by the Air Force Office of Scientific Research under research grant AFOSR-89-0523.
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conclusions are also reported by Baum [2] under slightly different hypotheses.) Learning binary I
weights for a McCulloch-Pitts neuron is, however, equivalent to integer programming, which is
known to be NP-complete [3].

Notwithstanding the apparent difficulty of the learning problem in this case, the potentially
lower cost and simplicity of neural networks comprised of binary interconnections as opposed to
real weights makes such circuits rather appealing practically. Recent theoretical results also bolster
the usage of such circuits: the computational capacity of a neuron with binary weights remains
comparable to that of a neuron with real weights [4, 5]. The development of efficient heuristics
for learning binary weights (paralleling the development of such algorithms as backpropagation for
neural circuits with real interconnections) is, hence, critical if the cost advantages promised by 5
binary circuits are to be realised.

We present here a new family of probabilistic algorithms which learn binary weights for a
neuron in an on-line setting. The target functions here are weighted linear threshold functions with 5
weights from {-1, 1} which are defined on a domain of binary n-tuples, {-1, 1}'. In particular, the
target functions are majority functions of a set of literals, that is, majority functions that may have
any of their inputs complemented. Given a partial Boolean function defined on a subset of m points
(patterns) from this class, or alternatively, given a dichotomy of m points in {-1, 1}' which can be
linearly separated with weights from {- 1, 1}, the randomised algorithm described here iteratively
adjusts the weights until a solution (binary) weight vector which separates the dichotomy is found. 3
The principal advantage the proposed algorithm has over Perceptron Learning is that, not only
is the solution vector generated by the procedure binary, but the weights remain confined to the
domain {-1, 1} throughout the entire learning process. The algorithm, as we will see, convergesr5
rapidly to a solution when the number of patterns to be dichotomised is within the computational
capacity of the neuron. An interesting feature of the algorithm is that it is local, which makes it
appealing from an implementation perspective. |

In the next section we set up the learning protocol and describe the algorithm. We derive some

preliminary results on the expected time of first passage of random walks to given boundaries in
Section 3. In Section 4 we analyse the algorithm and show quadratic initial rates of convergence
when the number of training examples is within the computational capacity of the threshold ele-
ment. The analysis here is for the average case." We also compare the results obtained with the
rate of convergence of the Perceptron Training Algorithm: we show that the Perceptron Algorithm
converges in the worst case with a mistake bound 0(n2) to a real solution vector under the con-
straint that there exists a binary solution vector within the solution space. We also present an
average case analysis of a modification of the Perceptron Learning Algorithm, in the spirit of the
proposed Directed Drift Algorithm, wherein a single weight component is updated at a time. In
Section 5 we present simulations and discussions of the algorithm.

On notation: We will use the symbol lB to denote the set {-1,1}. If x = (.T,... ,zn)
and y = (p1, ... ,yn) are points in real Euclidean n-space, we denote by (x,y) the inner-product
•'= zjyj. Following J. Riordan we use the word epoch to denote points on the time axis. A
physical weight update may take some time, but we will assume updates are timeless and occur
at epochs.1 We define the function sgn : R -- B by sgn z = z/1zJ if x $ 0 and sgn 0 = 0. All
logarithms in the exposition are to base e. Finally, if {Xn} and {y,) are positive sequences, we

"Directed Drift is a randomised algorithm, and arbitrarily bad worst-case results are possible. The probability of
such occurences is small, however, and is governed by the extreme tails of the underlying probability distribution.

tIn his text, W. Feller credits J. Riordan with initiating the usage of the word epoch in such situations [7, page 3
73J.

I
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Sdenote: x,, = O(y.) if there is a positive constant K such that xn/ym < K for all n; Xn I Yn if
X,/y --+ 1 as n -+ oo.

I 2 LEARNING

2.1 The Setting

We are given a set of patterns, U C In, and a function f : U -+ IB which is linearly separable:
specifically, there exists a solution weight vector, w" E WR", such that

sgn {(w', u)} = f(u) (1)

for every choice of pattern u E U. We call the function f the target function (also known as the
target concept in the literature on Learning Theory). The target functions are, hence, majority
functions of a set of literals. Clearly, f realises a dichotomy of U. Without loss of generality we
assume that f(u) = 1 for every pattern u E U.-t

An algorithm for learning from examples is a procedure where learning takes place in a sequence
of trials. The protocol is as follows:

P1 At epoch t the system is characterised by a weight vector, w[t], and receives an example pattern,
u[t], drawn from U.

20 The system produces a response, -1 or 1, according to the sign of (w[t], u[t]).

30 A new weight vector, w[t + 1], is generated based on the current response, weight vector, w[t],

and example, u[t].

The procedure is carried out iteratively, and is terminated if a solution weight vector is obtained.
We call the sequence of examples, {u[t]}J 1 , the training sequence, and the sequence of weight
vectors, {w[t]}-,, the learning sequence. If the procedure terminates in a finite time, we say that
the learning algorithm has learnt the function f. We will be interested in the mistake bound-the
number of classification mistakes the learning algorithm makes on the set of examples before it
learns the given function. For our purposes, the mistake bound is equal to the number of updates
of the weight vector before the function is learnt. We denote the mistake bound by T.

In the sequel, we will further restrict the set of patterns, U, to be drawn from the vertices of
the n-cube, 1B1, and require that there is a binary solution weight vector, w1 E IB', for f. A fourth
restriction that we will require of any binary learning algorithm is:

V4 The initial choice of weight vector, w[l], is arbitrary, subject only to its being chosen from IB',
and the learning algorithm generates binary weight vectors, w[t] E IB", at each epoch of the
learning process.

We will, thus, be constrained to looking at algorithms which make only bit changes in the weight
vector at each epoch. Specifically, the weights are confined to the domain {- 1, 1} throughout
the learning process. This situation may be compared to Perceptron Learning, where the weights
typically grow in magnitude during the learning process.

$If f(u) = -1 then f(-u) = I as can be easily seen from (1). Replacing each pattern in U for which f(u) = -1
by -u we obtain a corresponding set of patterns /; if w' is any solution weight vector separating the dichotomy of
U specified by f then all patterns in 12 lie on the same (positive) side of the hyperplane corresponding to w, and
conversely.

I
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2.2 Directed Drift Algorithms I
We present here a family of probabilistic algorithms for binary learning. We call these algorithms
Directed Drift Algorithms because, as we shall see, they share some similarities with asymmetric
random walks with a preferred direction toward a solution.

Let U be any subset of patterns from IBV, and let {u[t]} be any training sequence such that
each of the patterns in U appears infinitely often.5 Let {w[t]} denote a binary learning sequence.
For each epoch, t, we denote by J[tJ the subset of indices for which the corresponding components I
of w[t] and u[t] are opposite in sign:

J[t] = {fj : wj[t] # u,~t] }. I

Single bit updates We begin with the simplest version of the algorithm where no more than a
single component of the weight vector is updated per epoch.

BASE: w[1] E 1B is chosen arbitrarily.

ITERATION: The algorithm's response is predicated upon whether a correct or incorrect
response is obtained at the current epoch, t.

"* If (w[t], u[t]) > 0, then the weight vector is left unchanged: wit + 1] = w[t]. I
"* If (w[t], u[t]) < 0, then an index j[t] is picked at random from the set of indices,

J[t], of mismatched components. The new weight vector is now formed according
to the following rule:

w[t + 1] wi[t] if j At] (2)
-wi[t] if j = j[t].

The intuition behind the algorithm is as follows. If a binary solution vector, wl E IB', exists,
then necessarily we must have (ws, u) = wsui > 0 for each pattern u E U. As there is a
contribution of +1 to the sum if two corresponding components of w' and u have the same sign,
and -1 if the signs are mismatched, it follows that the binary solution vector has more component
sign matches than mismatches with each pattern in U.

Now the algorithm updates the current estimate of the weight vector if and only if the current
pattern from the training sequence is misclassified. A weight vector update results in a randomly
chosen mismatched component of the. weight vector being flipped to the sign of the corresponding U
pattern component. Since there is a probability better than a half that a randomly specified
component of any pattern has the same sign as the corresponding component of the binary solution
vector, it follows that at each epoch the a priori probability that the weight vector update is in I
the direction of the binary solution vector is better than a half. We will explore this more formally
in the sequel. 3
Several bit updates The algorithm can be simply extended to accommodate more than a single
bit update per epoch. Let {Nt} be a sequence of integers with 0 _< Nt :_ n/2.

$Note that U C cW" is a finite set of patterns. If U = u 1,.... ,um) is an in-set of patterns, then we can, for
instance, obtain valid training sequences by cycling through the patterns or choosing a pattern randomly at each

epoch. I
I
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BASE: w[1] E W• is chosen arbitrarily.

ITERATION: As before, updates are made only if the current pattern from the training
sequence is misclassified.

"* If (w[t], u[t]) > 0, then the weight vector is left unchanged: w[t + 1] = w[t].
"* If (w[t], u[t]) • 0, then Nt indices ji[t], ... , jN,[t] are picked at random from the

set of indices, J[t], of mismatched components. The new weight vector is now
formed according to the following rule:

w,[i + 1]- wj[t] if j V {j 1[t],... ,jN,[t]}
-- Wj [t] if j E {ji[t],... ,jN,tt}.

The sequence Nt specifies the number of bits to be changed at each update epoch, and the
proper choice of this sequence is clearly critical to the functioning of the algorithm. This is analogous
to choosing an appropriate cooling schedule for simulated annealing [6].

2.3 Perceptron Training Algorithm

A geometrical appreciation of the Directed Drift Algorithm can be obtained from a consideration
of the classical Perceptron Training Algorithm. Let {u[t]} be a training sequence of patterns, and
let {w[t]} denote a learning sequence of real weight vectors.

Fixed increment Perceptron Training This is the simplest form of Perceptron learning. Let
/0 > 0 be fixed.

BASE: The initial choice of weight vector is arbitrary. For simplicity we take w[1] = 0.
ITERATION: As before, weight vector updates are made only if a pattern is misclassified.

"* If (w[t], u[t]) > 0, then the weight vector is left unchanged: wit + 1] = w(t].
"* If (w[t], u[t]) < 0, then set wjt + 11 = w[t] + flu[t].

The Perceptron Training Algorithm is known to converge to a real solution vector (if it exists)
in finite time [1]. Geometrically speaking, the situation is as depicted in Figure 1(a). When a
pattern from the training sequence is misclassified by the current estimate of the weight vector, the
weight vector update is in the direction of the misclassified pattern. This idea of updating in the
direction of the misclassified pattern is extended in the Directed Drift Algorithms. The situation
is as depicted schematically in Figure l(b). The updates, being constrained to be binary, are not
directly in the direction of the mnisclassified pattern; nevertheless, the update lies in the positive
half space corresponding to the binary pattern vector so that the updated weight vector is more
apt to classify the pattern correctly.

Single component Perceptron Training The basic randomisation idea behind single bit up-
date Directed Drift is easily extended to single component Perceptron Learning, where a single
component of the weight vector is modified at each update epoch (as opposed to traditional Per-
ceptron Learning where all components are modified at each update epoch).

For each epoch, t, let 1[t) denote the subset of indices for which the corresponding components
of w[t] and u[t] are opposite in sign:

I[t] = { i : ui[t] # sgn wi[t]}.
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BASE: For simplicity, take w[l] = 0. 3
ITERATION: The algorithm's response is predicated, as usual, upon whether a correct
or incorrect response is obtained at the current epoch, t.

"* If (w[t], u[tJ) > 0, then the weight vector is left unchanged: w[t + 11 = w[t].

"* If (w[t], u[t]) < 0, then an index i[t] is picked at random from the set of indices,
I[t], of mismatched components. The new weight vector is now formed according I
to the following rule:

wi[t + 11 wlt if i:ýi(t (3)1
1 wi[t] + ui[t] if i = i[tJ.

In this variation, a single bit is added (subtracted) from a randomly chosen component at each
update epoch. The mistake bound hence coincides with the number of component updates, as in U
single bit update Directed Drift. For fixed increment Perceptron Learning, of course, the number
of component updates is n times the mistake bound. 3
3 RANDOM WALKS

An estimate of the rates of convergence of the randomised algorithms described above may be 5
obtained by appealing to notions from random walks and the geometric theory of paths.

Let {Xj} be a sequence of Bernoulli trials with success probability pn = 1/2+O3,n, 0 < 3On , 1/2
depending on a parameter n:

1 with probability pn = 1/2 + On3
Xi = - with probability q,, = 1/2 - On.

Let Sk = Ejý Xj denote a random walk with positive drift, E Sk =2ko. We are interested
in estimating the expected time of first passage of the random walk to some specified boundary, I
E(n, k).

3.1 Fixed Boundary 5
Let us first consider the case of a fixed (one-sided) boundary at n. Define

Ti(n) = inf{k : Sk _ n}. 5
For this case, the theory of generating functions can be readily i~ivoked to estimate the expected

time of first passage to the boundary (cf. Feller [7, Chapter III]). We have the following estimate: 3
Proposition 3.1 ET1 (n) = n/2fl, for every n.

PROOF: Let aI(k) denote the probability that the random walk makes a first passage I units to 3
the right of the starting point in k steps. We then have ETI(n) = Z'0kan(k).

As a first passage through n must necessarily involve a prior first passage through n - 1, we

immediately have the convolutional relation

k-I

S= i a._.(j)aI(k - j). (4)
j=1

U
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3 Let AI(s) denote the generating function for the probability distribution al(k); i.e.,

AI(s) =E= 0 1(k)sk.I k=0
From equation (4) we hence have

3 An,(s) = A,-i(s)Ai(s) = [Al(s)]n, (5)

with the latter equality following by induction.

To evaluate AI(s) we need to evaluate the probabilities, a,(k), of a first transition one unit to
the right in k steps. We note that

I al(O) = 0 (6)

a1 (1) = p,. (7)

Now, a first transition one unit to the right in k > 2 steps must necessarily involve an initial step

to the left, followed by a first transition one unit to the right (back to the origin), and a final first
transition one more unit to the right. Hence

5 k-2
QI(k) = q" E. -I W~al (k - j - 1), k= 2,3,.... .8

j=1

3 Using equations (6), (7), and (8) we now have
00

Ai(s) = a (k)sk
k=O

k=2

= p.s+q. EEZ al(j)aj (k-j- 1)s k
k•-2 j=1

= ps + q9s[Ai(s)]2
.

Solving for AI(s) we finally obtain - - 4pnqns 2 .

Ai(s) =I- 2l--PqnsT2qns

3 Substituting in (5) we obtain

A , d(s) - an(k)s
t = 

1  -
2

1 .- 4p 3qýs
I ~ ~~k=o "q

We can now directly compute the expected time of first passage n units to the right by

3 ETi(n) = An(1) = Pn _n_.

3 The substitution pn - q,, = 2#n completes the proof.

IWe discard the positive root as it grows without bound as s - 0, and we require A,(0) = 0.
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3.2 Receding Boundary 3
We now consider the case of a receding (two-sided) boundary at ±v/k'n. Define

T2 (v/k) = inf{k : ISkI >_ i/-. 1

It is difficult to get explicit closed-form expressions when the boundary is not fixed, and we will
be satisfied with an asymptotic estimate for E T2(vk'•) as n -- oo. Our development follows I
Siegmund t8, Chapter IX] where a general analysis is presented in the context of nonlinear renewal
theory.

Now T2(v/') (if finite) is the first integer k for which the random variable Se/k exceeds n. 3
Now, simple algebraic manipulations yield

S= 4k#2n + 403(Sk - 2k#,,)-+ 1 (Sk - 2ki3))• I
k k

By the strong law of large numbers we have

-+ --- 4/3,2 with probability one

B (9)
-# --+ 0 with probability one.

Further, as an easy consequence of Kolmogorov's inequality, we have 5
kmax B --, 0 in probability. (10)

Proposition 3.2 The following assertions hold:

a) P {T2(vW•) < oo} = 1 for all n;

b) R --- _ 1 in probability as n --+ oo.

PROOF: The observation (9) yields S2/k 2 -. 4f32 with probability one, so that part (a) of the
proposition follows.

Now let K, = n/432n. Fix 0 < c < 1 and set K" = Kn(1 + E). From (9) and (10) we have 3
max .? 4) in probability.

Hence, as n --* co, we have

P{T2 (v/_n)> (1+e) = P n<,a-< nI

P 4•K , max ---. < }---0.

A similar argument shows that P {T2(v'•) < -y(1 - c)} -* 0. . 3
I



U

Venkatesh 9

I Proposition 3.3 ET 2(v/'i) • as n -- oo.

3 PROOF: Let K, = n/4p32, as before. For k > 2K, we have

P{IT2 (Vk-) > k} P{ < n} P{4k< n}

I P (Xj - 2,)< -,n+
k k ~n

_P r (XjX-20n)-< - ---2

The bound above is just the probability of an event in the left tail of the binomial distribution. An
application of Chernoff's bound [9] yields:

P {T2(v n) > k} < e-kc-,

Swhere _ _ ++-

S~ We now claim that
W e n w c a m t a P IT 2( ,/ k-n ) > k } -- ,. 0 (n -- ,. oo ). ( 1

k>2K,

If 0,, is bounded away from zero this is clear: C, > D > 0 for some absolute positive constant D,
and the sum in (11) is just a sum over the exponential tail (note that K, -+ oo as n --. oo). Now
consider the case where &3n -" 0. Using the Taylor series approximation

log(1 + X) = z - z 2 /2 + 0(z 3 ) (lzl - 0)

it is easy to see that

P {T 2(v 1•n)> k} exp [--] + O(#n)}1

5 It is now readily verified that the first term in the series in (11) decreases exponentially fast with
n. This completes the proof of the claim.

The elementary observation E (T2(v/•) I T2(v/'-) > 4K,,) > 4K, together with the claim nowI yields

E(T 2((Vk"n); T2(v-n) > 4K,.) < 2E(T2(vin) - 2K,,; T2(V/'•n-) > 4KK)

S< 2E(T 2(vr-n) - 2K,; T2(v/kTnn) > 2K.)
< 2 E P {T 2 (vrn) > k} - 0 (n -* oo).3 k>2K,

Hence, the random variables (4-)-1T 2(vi•), n >Ž 1 are uniformly integrable. In addition, by

3 Proposition 3.2(b), ( n )-' T2(Vk-) -- 1 in probability. The result follows.

U
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4 ANALYSIS 3
4.1 Directed Drift

We consider single bit updates for simplicity. Assume that we have a finite set of patterns, U = I
{ u l ,... , u'} C M', chosen independently with pattern components drawn from a sequence of
symmetric Bernoulli trials. Let {u[t]} be a training sequence, and {w[t]} the learning sequence
specified by the rule (2). Let {tk} denote the subsequence of epochs at which patterns from the
training sequence are misclassified; i.e.,

(w[tk],u[tk]) • 0, k = 1, 2, ....

We can write the weight vector updates of equation (2) in the form

w[tk+l] = W[tk] + V[tk],

where v[tk] is a vector whose components satisfy 3
f 0 if j# jtk] (12)

vj~tk] = ~-2wi[tk] if j = j[tk]. (

Assume that there is a binary solution vector, wa E IB'. Consider the estimate errors

SIIW[k+ll - W'11'
= IIW[tkI + v[tkl - Wa112

= IIw[tk] - wf112 + IIv[tl]112 + 2(w[tk] - W, V[tk])
= E4 + 4 + 2(w[tk],v[tk]) - 2(w*,v[,k]).

Using (2) and (12) we hence obtain 3
Ck+l = Ck - 4W;[l]U•j[t,][tk].

Define the ±1 random variables I
Xi = tiljUti]ll[ti].

By induction we obtain 3
4k+, =.61 - 4 X,.

Upper bounding C, by 4n, and setting Sk = E•=L Xi we finally obtain

0 < Ek+-< 4(n - Sk). 3
The procedure terminates at the value of k for which the random sum Sk first exceeds n. The
mistake bound, T, hence satisfies ST >_ n, and Sk < n, for k = 1,... , T - 1. The mistake bound is
infinite if there exists no such value of k, or if there exists no binary solution vector for the choice
of patterns, U.

The above is reminiscent of a random walk with a fixed boundary at n. In fact, if the m-set
of patterns U is chosen independently, then the random variables Xi corresponding to different

I
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patterns must be independent.11 Let us assume that the training sequence is obtained by cycling
through the patterns. For a random initial choice of weight vector a substantial number of patterns
will be misclassified, so that a pattern will recur in the update sequence only after f1(m) epochs.
Through the initial progress of the algorithm, hence, the random sum Sk - = Xi is a sum of
independent, identically distributed, ±1 random variables with

I 1 withprobabilitypN-=-1/2+,n
-1 with probability q, = 1/2 - f3,n

3 for some A E (0,1/2]. The specific value of the probability ps-the relative frequency of the
number of component matches between a binary solution vector and a pattern-depends on the
size, m, of the set of patterns, U. We clearly have

pn. ýn/2+ 1 1+!,

n 2 n'

5 so that fn >: 1/n.
The above argument indicates that the expected time of first passage to n of a one-dimensional

random walk, Sk, with positive drift, 2k/3n, may be used as an estimate of the expected mistake
bound for single bit update Directed Drift. Substituting #3,, _ 1/n in Proposition 3.1 we then
obtain the estimate O(n 2 ) for the expected mistake bound when the number of patterns is within
capacity.

4.2 Perceptron Training

It is instructive to compare the above convergence rates with rates that obtain for Perceptron
Training. The classical proofs of the Perceptron Training procedure only guarantee that the proce-
dure converges in finite time if a solution exists: convergence time, however, is strongly dependent
on the distribution of (real) patterns, and in the worst case can be exponential in the number
of bits needed to specify the pattern distribution. When constraints axe placed on the allowable
choices of patterns, however, convergence can be much more rapid. To compare mistake bounds
with Directed Drift, let us consider Perceptron Training when the patterns are binary, and under
the condition that there exists a binary solution vector. (Note, however, that we only require that
the Perceptron Training Algorithm return a real solution vector.) We show first that the fixed
increment Perceptron Training Algorithm converges in the worst case with a mistake bound which
increases no faster than quadratically in n; alternatively, the total number of component updates
before convergence is 0(n 3 ). We follow this with an average case analysis, similar in flavour to the
analysis for Directed Drift, for randomised, single component update Perceptron Training, which

"I yields similar results.
Let U = ful,... ,1u1) C ]Bn be a finite set of patterns, fu[t]) the training sequence, and {w[t])

the learning sequence. As before, let {tk} denote the subsequence of epochs at which patterns from
the training sequence are misclassified.

TMTo facilitate ease of analysis for the nonce we assume that the number of patterns is within the computational
capacity of a linear threshold element with binary weights. (The capacity is quite large-linear in n-and capacities
of the order of n/log n can be easily achieved for rather simple algorithms [4, 5].) For a random choice of patterns
we are then assured with arbitrarily high probability asymptotically that there exists a binary solution vector.

Is
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Fixed increment training The weight vector updates result in

w[tk+1] = w[tk] + 13u[tkl, k = 1,2,...

Assume that there is a binary solution vector, w' E IBn. For a choice of parameter c > 0 to be I
specified shortly, consider now the estimate errors

Yk+I = [[w[tk+l] - CW*I 1

= IIWl[tk] + Ou[tkl - cW°112

= .k + #=2Iu[tk]112 + 203(w[tkl - CW, u[tk]). I
Since ws is a binary solution vector we must have that (w, u[t]) >_ 1 for each pattern in the
training sequence. Furthermore, JIu[t]11 2 = n for each pattern in the training sequence, and as w[tk]
misclassifies pattern u[tk] by definition, we also have (w[tk], uNtt]I < 0. Hence

0 < Yk+1 •_ yk + #2n - 2c#3.

With the assumption that w[ll = 0 we have.F 1 = IWi] _- cw112 = c2 n. By induction on the above
inequality we then obtain 3

0 <- Fk+l <_ c2n - P(2c - fn)k.

The procedure terminates with a mistake bound

T< cI2n#i(2c - On)

Choosing c = fn minimises this upper bound for the mistake bound. With this choice of c we
obtain that the mistake bound for the fixed increment Perceptron Training Rule is T < n2 under
the constraints of a binary pattern space, and with the requirement that there exist a binary
solution vector. Note that this bound is independent of the number of binary patterns, and their I
distribution. The sole requirement for this estimate of convergence time for the Perceptron Training
Rule to hold is that there exist a vertex of the n-cube (a binary solution vector) within the convex
polyhedral cone defined by the space of real solution vectors. While the mistake bound gives the U
number of weight updates before convergence, it must also be noted that in the Perceptron Training
Rule each update is a synchronous update in which each of the n components of the weight vector
are modified (as opposed to the single bit modifications in the simpler version of the Directed Drift I
Algorithm) and each component modification requires the addition of a real scalar. Thus, in the
worst case, the procedure terminates after no more than 0(n 3) component updates. 3
Single component updates The weight vector updates of equation (3) can be written in theform 5

w[tk+1] = w~tk1 + X~tk]

where x[tk] denotes the vector with components

.rjtl 0 if i 0i[tkI
[ = ui[tkl if i = i[tk].

I
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3 Let w" E IB' be a binary solution vector. We have the following bounds on the length-square of
the weight vector estimates:

k 1 IIW[tk+l] = IIW[tkl + x[t]l
=- 2 + IIx[tk]II2 + 2tv[:,J[tk]uq[.,[tk]

I _< LI+1.

We hence have £I+1 _< k as a consequence of the choice w, = 0. Also, as a consequence of the3 Cauchy-Schwarz inequality, we have

k+ _ I(wt•1+]'w)12  = il(w[tk],w') + (w',x[t&])12

1~ ~~ ~~L 1 1 1,2 it]12 .
n- h I=whIh=

I Define the ±1 random variables
Xh t=Wi*[t]Ui[t,][th1,

and let Sk = ' Xh. We then have

IS_. < C < vSk.

The algorithm terminates at the first instant k for which ISki exceeds VN'n. Arguing as for Directed
Drift, we use as an estimate for the expected mistake bound the expected time of first passage of a
random walk with positive drift 2k,3n 2 2k/n to the two-sided boundary at ±vlk'n : Proposition 3.3
then yields the asymptotic estimate 0(n 3) for the expected mistake bound as n -- oo.

5 SIMULATIONS

I Computer simulations indicate that the rapid convergence times predicted by analysis hold when
the number of patterns to be loaded lies within the capacity. Mistake bounds are plotted as a
function of n in Figure 2. In each plot mistake bounds for each choice of m and n were averagedI over 1000 runs of the single bit update Directed Drift Algorithm. In each run of the algorithm an
independent set of patterns was drawn from a standard pseudo-random binomial number generator.
(To ensure the existence of a binary solution weight vector, a binary n-tuple was selected at random3 as the solution vector, and those patterns lying in the negative half space of the solution vector
were reflected.) A random initial binary weight vector was selected as the initial estimate of the
weight vector presented to the single bit update Directed Drift Algorithm with the training sequenceI obtained by cyclically presenting the patterns. At convergence the number of adaptations of the
weight vector were stored as the estimate of the mistake bound. The expected mistake bound for
the choice of m and n was evaluated by averaging the number of adaptations before convergence
over 1000 independent runs (each on an independently chosen data set).

In Figures 2(a) and 2(b) the number of patterns, m, was fixed within capacity (at m = n/4
and m = n/2, respectively) and very rapid convergence times are seen. Expected mistake bounds
increase significantly around capacity as illustrated in Figure 2(c) with m = n. Mistake bounds

I
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finally saturate above capacity at around 2n (plotted in Figure 2(d)). When the number of patterns 5
is well above capacity it is not clear whether the algorithm still converges polynomially fast, and
this is under investigation. Convergence is still, however, several orders of magnitude faster than
an exhaustive search through the vertices of the n-cube. (For instance, when n = 20 and m = 40,
exhaustive search requires of the order of 106 steps while Directed Drift converges in about 10"
steps.) Early results indicate that order of magnitude improvements in mistake bound may be
obtained by updating several bits at a time with an appropriate choice of cooling schedule in i
the algorithm. We do not have good heuristics at this time, however, for choice of good cooling
schedules.

Figures 3 and 4 show a plot of the expected mistake bound, T, for single bit update Directed
Drift as the number of patterns, m, increases for a fixed value of n. We observe that the expected
mistake bound saturates to a fixed value depending on n when the number of patterns exceeds
approximately 3n in the range of n we considered in our simulations. Note also the rather abrupt I
threshold behaviour when the number of patterns exceeds the capacity (n). We conjecture that
there is a threshold function for the expected mistake bound around the capacity.

The saturation of the mistake bound when the number of patterns exceeds capacity is caused i
essentially by the shrinkage in the solution space-when the number of patterns exceeds roughly 3n,
then the binary solution vector, if one exists, is essentially unique. We illustrate this in Figure 4:
for a fixed value of n we plot simultaneously the expected mistake bound and the relative frequency3
with which the algorithm terminates in an initially chosen binary solution vector. The saturation
in mistake bound around 3n is again evident, as well as the threshold behaviour around capacity.
Note that the probability that there are multiple solution vectors is the dual of the mistake bound I
curve: while for a small number of patterns there exist many binary solution vectors, a precipitous
drop in the probability of multiple solutions is evidenced around the capacity, and finally around
3n there exists only one solution vector with high probability. 3

This observation has an important consequence from the point of view of generalisation in
learning. If the observed saturation of the expected stopping time around 3n patterns extends
uniformly for all n, then any linearly separable Boolean function for which there exists a binary •
solution vector can be learnt with no more than 3n examples (of the total of 2n' instances) of the
function drawn at random. In ongoing work we are attempting to make this rigourous.

In Figure 5 we plot the average number of component updates before convergence versus the
number of patterns (with n = 10 fixed) for fixed increment Perceptron Training. [The expected
mistake bound is an order of magnitude smaller: the average number of component updates is
n times the mistake bound for fixed increment Perceptron Training. For single update Directed i
Drift, as noted before, the mistake bound coincides with the number of component updates.] The
sharp threshold behaviour seen in Directed Drift is not so much in evidence here. Saturation again
appears to be around twice the capacity (2n for real weights). Note that the average mistake bound
is an order of magnitude lower than the worst-case upper bound 0(n 2). The derived worst-case
bound may, hence, be too conservative. On the same figure we also plot the normalised length,
L/vIn, of the solution vector returned by the algorithm. A similar saturation phenomenon is in !
evidence, with the length of the solution vector saturating at a value somewhat larger than the
length, vfi, of the binary solution vector.

U
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6 CONCLUSIONS

While the general problem of learning binary weights is NP-complete, the rapid convergence of the
Directed Drift Algorithms indicates that the typical problem may well be tractable even if there
exist, perhaps pathological, intractable bad instances. The simplicity of these probabilistic (binary)
learning algorithms allows of several possible extensions to networks of neurons-in particular,
feedforward structures. This is clearly of some theoretical and practical import, and is under
investigation.
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Figure Captions

Fig. 1 (a) A schematic depiction of the incremental change in the current weight vector, w[t], made
by the Perceptron Training Rule. The change is in the direction of the misclassified pattern,
u[t], and the resultant weight vector, w[t + 1], is more apt to classify the pattern correctly.
(b) The corresponding scenario for Directed Drift. Here the algorithm is constrained to make
only single bit changes in the current (binary) weight vector. Bit changes in the positive
hemisphere (in the direction of the misclassified pattern) improve the possibility of correct
classification.

Fig. 2 Plots of the expected mistake bound (averaged over 1000 trials) of the Directed Drift 3
Algorithm as a function of n for four cases with the number of patterns, m, chosen equal to
n/4, n/2, n, and 2n. The first two cases are within capacity, and the curves reflect best fit
quadratics. For m = n and m = 2n the number of patterns exceed capacity, and. the curves I
fitted are polynomials of degree 4 and 5, respectively. The best fit exponential curve, 21n,
above capacity has an exponent of roughly 0.75n in the range considered.

Fig. 3 The expected mistake bound (averaged over 1000 independent trials) of Directed Drift is
plotted against the number of patterns for n = 20. A threshold phenomenon is observed
around capacity when the mistake bound rises abruptly. The mistake bound saturates to a U
fixed value when the number of patterns exceeds approximately 3n.

Fig. 4 The expected mistake bound and the probability that Directed Drift terminates in a dif-
ferent solution vector than the one specified (at random) initially are plotted as a function I
of the number of patterns for n = 10. (Results are averaged over 100 independent trials.)
Note the same threshold behaviour around capacity and the saturation phenomenon for the
mistake bound as observed in Figure 3. The probability that there is more than one binary
solution is a dual of the curve for the mistake bound: the probability of many binary solution
vectors is high when the number of patterns is small, and plunges abruptly around capacity
to essentially zero around 3n. The saturation of the mistake bound around 3n patterns thus
seems to be a consequence of the reduction in the binary solution space till there is only a
unique binary solution vector around 3n patterns. Specifying more examplar patterns then
does not yield any further information on the solution vector.

Fig. 5 The expected mistake bound and the length of the solution vector (normalised by -/i =
,/1) at convergence is plotted against the number of patterns for n = 10 for fixed in- I
crement Perceptron Training. (Results were averaged over a 100 independent trials.) The
averaged mistake bound saturates around 6n patterns, reflecting the larger capacity, while
the normalised length of the solution vector returned by the algorithm saturates at a value 3
somewhat larger (about a factor of 2.5) than the length of a binary solution vector. !
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Abstract The issue is, however, open whether there are (ran-
domised) learning algorithms which converge rapidly

We investigate algorithms for learning binary on average. As a first step in the consideration of
weights from examples of majority functions this problem, we consider learning binary weights in
of a set of literals. In particular, given a the context of linearly separable functions; i.e., restrict
set of (randomly drawn) input-output pairs, consideration to learning binary weights for a single
with inputs being binary ±1 vectors, and the neuron.1

outputs likewise being ±1 classifications, we Given an arbitrary linearly separable dichotomy of a
seek to find a vector of binary (±1) weights finite set of patterns, the Perceptron Training Algo-
for a linear threshold element (or formal neu- rithm [Ros62] guarantees convergence in finite time of
ron) which provides a linearly separable hy- an iteratively updated sequence of weight vectors to
pothesis consistent on the set of examples. a real solution vector which separates the dichotomy.
We present three algorithms-Directed Drift, Perceptron Training is an on-line procedure which has
Harmonic Update, and Majority Rule-for good average-case convergence times, but which can
learning binary weights in this context, and occasionally exhibit a worst-case exponential time con-
examine their characteristics. In particular, vergence. Worst-case polynomial running times can,
we formally define a distribution dependent however, be guaranteed for the problem with off-line
notion of algorithmic capacity (which is re- procedures such as Karmarkar's algorithm for linear
lated to the distibution free notion of the VC programming. Learning binary weights for a neuron
dimension) and provide estimates of the ca- is, however, equivalent to integer programming, which
pacity of the proposed algorithms, is known to be NP-complete [GJ79]. 2

We present three approaches to the problem of learn-

1 INTRODUCTION ing binary weights for linear threshold functions, the
target functions being majority functions of a set of n

Recent results have indicated that large dynamic literals. In the first approach we present a randomised,

ranges may not be needed for the weights in neural local, and homogeneous on-line procedure-which we

networks [VF91]. In particular, for many applications, call Harmonic Update [Ven9l(a)]-for learning binary
binary weights may suffice for the weights; alterna- weights from a single pass of a set of examples. The
tively, a network with real interconnection weights can second algorithm we present is a homogeneous off-

be replaced by an equivalent network of binary weights line procedure we call Majority Rule [Ven9l(a)]. In

realising the same Boolean function with a slight in- the third approach we develop a family of randomised

crease in the size of the network. Concomittant with algorithms--dubbed Directed Drift [Ven9l(b)]-which

the birth of a theory validating the computational ca- are on-line, local, and mistake driven.

pabilities of networks with binary (or limited dynamic A key parameter we estimate is the capacity, an al-
range) weights, there has been a development of a ca- gorithm and distribution dependent parameter linked
pability to produce large hardware implementations of to the VC dimension. The main results here are
such networks [GH90]. that Harmonic Update has a capacity of the order of

A question of some practical import is whether there v'i/vloTh Majority Rule has a capacity of the order

are algorithms which can succesfully exploit the latent of n/logn, and Directed Drift has a capacity of order

information storage capabilities of these networks by 'In this discussion, we shall use the term "neuron" syn-
learning binary weights for a given architecture from onymously with a linear threshold element.
instances of the function to be represented. Unfortu- 'Some problems are born to NP-completeness, some
nately, theory may proscribe a general solution: the attain NP-completeness, and other have NP-completeness
problem of learning binary weights is NP-complete. thrust upon 'em.
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between n/logn and n. Furthermore, these capacities 2.1 ALGORITHMS
are maximal among algorithms with the respective fea-

tures of these three algorithms. In an off-line binary learning algorithm, weights wi E
IB, i = 1, ... , n are produced directly as a function of

The Harmonic Update Algorithm, while on-line, is not the set of patterns U: more specifically, wi = gi(=),
mistake driven and terminates after a single pass of the where the functions gi : 1 - lB are specified by the
set of examples. Mistake ounds or convergence times algorithm. We say that: an off-line algorithm is local if
for the Directed Drift Algorithm are, however, muchhardr t obain A felig fr te prble ca be w, is determined solely from the ith component of the
harder to obtain. A feeling for the problem can be patterns, wi gi({ui : u E UI), for each i = 1, ... ,
obtained, however, by appealing to analogous situa- n;5 a local off-line algorithm is homogeneous if there is Itions in the theory of random walks and the geomet- a function g such that wi = g({ui : u E U}), for each
ric theory of paths. The corresponding problem here n.
involves the estimation of the expected time of first .

passage of a random walk with positive drift to a fixed In contrast, an on-line algorithm for learning from ex-
boundary at n. We obtain the estimate 0(n 2 ) for the amples is a procedure where learning takes place in a
expected time of first passage to the boundary and ar- sequence of trials. The protocol is as follows:
gue heuristically that this may hold as an estimate for
the expected mistake bound for Directed Drift when 1 At epoch t the system is characterised by a weight i
the number of examples is within the capacity of the vector, w[t] E 1Bn, and receives an example pat-
algorithm. In an appendix we also provide a compar- tern, u[t] E 113, drawn from U.
ison of the rate of convergence of Directed Drift with 20 The system produces a response v[t] E lB according I
Perceptron Training: we show that the corresponding to the sign of (w[t], u[t]).
worst-case and average-case number of component up-dates for Perceptron Training is 0(n 3). 3* A new weight vector, wit + 1] E 11n, is generated •

based on the current response v[t] E IB, weight

On notation: We will use the symbol lB to denote the vector w[t] E 1W', and example u[t] E 11".
set {-1,1). If x = (zi,... ,zn) and y = (yl,... ,yn)
are points in real Euclidean n-space, we denote by The procedure is carried out iteratively, and is termi-

(x, y) the inner-product E=, zjyj. We use the word nated if a solution weight vector is obtained. Note I
epoch to denote points on the time axis. A physical that we restrict ourselves to on-line algorithms which
weight update may take some time, but we will as- generate binary weight vectors, wit] E 1B", at each
sume updates are timeless and occur at epochs.3 We epoch of the learning process; specifically, the weights
define the function sgn : IR - 13 by sgnz = z/IzI if are confined to the domain {-1, 1} throughout learn-
z # 0 and sgn 0 = 1. All logarithms in the exposition ing. This situation may be compared to Perceptron
are to base e. If {f n, and {yn} are positive sequences, Learning where the weights typically grow in magini-
we denote: z, C yn if z,, < y,, for n large enough; tude during the learning process. We call the sequence
z, Z> Yn if z, > y,, for n large enough. of examples, {u[t])'l 1 , the training sequence, and the

sequence of weight vectors, {w[t]}J 1 , the learning se-

THE SETTING quence. If the procedure terminates in a finite time, I
2 Twe say that the learning algorithm has learnt the func-

tion f. We will be interested in the mistake bound T-
We are given a set of patterns, U C 11", and a function the number of classification mistakes the learning algo-
f : U --- B which is linearly separable: specifically, rithm makes on the training sequence before it learns
there exists a (binary) solution weight vector, w* E the given function. In particular, the mistake bound
113", such that is equal to the number of epochs for which (w[t], u[t])

sgn (w',u) = f(u) (1) is not positive. For our purposes, the mistake bound
is equal to the actual number of updates of the weight

for every choice of pattern u E U. We call the func- vector before the function is learnt. Ition f the target function; these are, hence, majority

functions of a set of literals. Given U and a linearly We say that an on-line learning algorithm is local if
separable target function f, the goal is to efficiently each weight, wi[t + 1] E 13, is updated solely as a 3
find a (binary) solution weight vector w E 113n. Note function of wi[t], ui[t], and v[t], i.e., for each i = 1, *
that f dichotomises the set of patterns U. Without
loss of generality we assume that f(u) = 1 for every een from (1). Replacing each pattern in Ufor which
pattern U E U.

4  f -1 by -u we obtain a corresponding set of pat-
patteru terns1; if w' is any solution weight vector separating the

3In his text, W. Feller [Fel68, page 73] credits J. Rior- dichotomy of U specified by f then all patterns in 0 lie on
dan with initiating the usage of the word epoch in such the same (positive) side of the hyperplane corresponding
situations, to w', and conversely.

'For the nonce, extend f to the domain 3" using the -We abuse notation somewhat here by retaining the
relation (1). If f(u) = -I then f(-u) = I as can be eas- same functional notation g, over different domains. U
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.n, there is a sequence of (possibly probabilistic) Lower and upper capacities in a natural sense provide
functions fi,t such that lower and upper bounds on the capability of an algo-

rithm. Note that while lower and upper capacities are
w~t + 1] = i,, (wi[t], u], v]), i= 1,... ,. guaranteed to exist, the capacity function itself may

In analogy with the corresponding situation for off- not (though it frequently does). Capacity requires a
line algorithms, we say that a local on-line algorithm sharp threshold characterisitic in the computational
is homogeneous if all weights at a given epoch have the capability of the structure and the algorithm. Capac-
same update rule, i.e., there is a sequence of (possibly ity functions are not unique, even when they exist.
probabilistic) functions ft such that The following result (an easy consequence of the defi-

nition) shows, however, that if capacity functions ex-
wi[t + 1] = ft (wi[t], ui[t], v[t]), i = 1,... ,n. ist, then they are not very different from each other

In addition, we say that an on-line algorithm is single- asymptotically.
pass if each pattern u E U occurs exactly once in the Proposition 2.2 If C. is a capacity funcion then so
training sequence. is Cn(1-±-o(1)). Conversely, if Cn and C, are any two

2.2 CAPACITY capacity functions, then Cn - Cn' as n -. oo.

For positive integers m and n, let Urn = {ul,. , umi The capacity definition can be seen to be a sort of

be a random m-set of patterns chosen independently distribution dependent analogue of the VC dimension.

from 1Bn; specifically, for each a = 1, ... , the For learning in a distribution free setting, Blumer, et

patterns uO= M (u',... , u) are chosen independently, al [BEHW89] invoke the sufficient conditions for uni-
with the components u' ofeach pattern drawn from a form convergence of relative frequencies of events tow seq cmof symmetric Bernoulli trials their probabilities derived in the seminal paper of Vap-sequence nik and C~rvonenkis [VC71] to show that the sample

Pju? = +1} = P{uf -1) = 1/2. complexity for learning is proportional to the VC di-

mension of the hypothesis class under consideration. A
Let A be an algorithm for learning binary weights, similar argument utilising the necessary and sufficient
and let P4 (n, m) be the probability that A produces conditions derived in the Vapnik-CErvonenkis paper
a solution weight vector for the r-set of patterns/U., can be adduced to show that the sample complexity
i~e., PA (n, m) is the probability that, given the m-set for learning in a distribution dependent setting should

Sof patterns Um, the algorithm A yields a weight vector be proportional to the (probabilistic) capacity8

wA(Un) E IBn such that (wA(U'm),u) > 0 for every

u EUn . A natural question then is how this (distribution de-
pendent) notion of capacity is linked to the VC dimen-

Definition 2.1 We say that a sequence Cn is a ca- sion. We are dealing here with a sequence of hypothe-
pacity function (or simply, capacity) for A if, for any sis classes HnI-the family of half-spaces corresponding
choice of 0 < A < 1, the following two properties to binary weight vectors from IB"m-with corresponding
hold: VC dimensions d, _5 n. Using the fact that the num-

ber of dichotomies of an rn-set of patterns induced by
a) P.4(n, n,,) -+ 1 as n -- oo for every sequence the hypothesis class H, is majorised by md- + 1, it is
{fmnI which is such that mn ~< (1 - A)C.; easy to show the following general result.

b) PA(n, mn) - 0 as n - 00 for every sequence Theorem 2.3 Any lower capacity function C,, satis-
{rn,} which is such that mr1 Z (1 + A)C,. fies C,, = O(d, log* d4) as n -- 0 .

We also say that Cn is a lower capacity if property (a) The above result holds for all choices of algorithm
holds, and that C, is an upper capacity if property (b) and distribution. (In fact, the VC dimension can be
holds. thought of as a special case of the capacity when the

This notion of the capacity function has a counter- algorithm allows an exhaustive search of the hypoth-

part in the theory of random graphs in the notion of esis class, and all distributions are allowed.) The ca-

a threshold function of an attribute. Loosely speaking, pacity can, hence, never exceed the VC dimension by

the capacity function quantifies the capability of the very much, whatever be the choice of algorithm and

algorithm under consideration by specifying the size of distribution family. It is possible, however, to have

the "largest typical set" of patterns for which "most" capacities substantially smaller than the VC dimen-

dichotomies are separated by the algorithm with high sion [Ven9l(c)]. Distribution families for which this is

probability. Note that the capacity function depends true will then demand much smaller sample complex-I implicitly upon the choice of distribution for the pat- iet he rb ofea

terns. We could allow other distributions, or more 'Some slight additions have to be made to the defini-
generally, a family of distributions. tion, but these are not critical in a network setting.I
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The capacity definition above can be readily extended as can be readily seen by induction. The following
to more general situations where we have an arbi- estimate now holds:
trary sequence of computational structures (hypoth-
esis classes H.), distribution families, algorithms, and Theorem 3.1 The sequence V•/V/G-'• is a capacity
computational attributes more complex than correct function for the Harmonic Update Algorithm. More-
classification (such as associative memory with error over, no other homogeneous, single-pass algorithm has I
tolerance) [Ven9l(c), Ven9l(d)]. (For examples of ca- a capacity function with a more rapid rate of growth.

pacity calculations within this framework in a neu-
ral network setting see [KP88(a), KP88(b), MPRV87, REMARKS: An application of the second moment
N88, Ven9l(e), VB91(a), VB91(b), VP91], for in- method shows that V•/V/'lgn is a lower capacity, and I
stance.) The basic properties derived above (Propo- for brevity, we will restrict ourselves to proving this
sition 2.2 and Theorem 2.3) continue to hold in the here. To prove that V•//vIog is also an upper capac-
general case. ity for Harmonic Update calls for some delicate foot- I

work with weakly dependent random variables. The
3 HARMONIC UPDATE main ideas involved are the observation that the ran-dom variables Ya defined below are exchangeable, to- 3
The first algorithm we introduce, dubbed Har- gether with a large deviation "Poissonisation" argu-

monic Update, is a single-pass, homogeneous, on- ment which shows that the errors are Poisson dis-
line randomised algorithm for learning binary weights tributed asymptotically. The proof that this capacity

[Ven91(a)]. As before, let U/n = {ul,... ,u
m } be a is maximal for homogeneous, single-pass algorithms

random rn-set7 of patterns in JB" drawn independently, utilises some maximin inequalities proved in [VF9l].

and with components drawn from a sequence of sym- Details and the complete proof are given in [Ven9l(a)].

metric Bernoulli trials. The training sequence consists
of the patterns, u1 , ... , ulm, presented in turn. Let PROOF: [Sketch.] Define the random variables I
the initial choices of the weights, wi[l] E IB, be arbi-
trary, and let w a w[m+ 1] be the final weight vector yj* = wju•*, j = 1,... ,n, c = 1.... m.
returned by the algorithm. Harmonic Update is a ran- Note that by the locality of the Harmonic Update A)- I
domised algorithm which prescribes weight updates as gorithm, for each j = 1, ... , n, the weight wj depends -
follows.

solely on the jth components u., ... , u7n of the pat-
For i = 1,..., n, and epochs t = 1, ... , m: terns. By independence of the pattern components,

wt U!, then set wi It + 1] = witW. and by symmetry, it follows that the weights wl, ... ,
a It] w]n are i.i.d., symmetric Bernoulli random variables

* Iw[t] -- -u, then set wlt+l] = -w1[tI taking values -1 and 1 only, each with probability 1/2.
with probability l/t, and wj[t+1] = wi[t) It hence follows that for every fixed a, the random vari-
with probability 1 - 11t. ables Y*, ... , Y.* are independent, ±1 random vari-

ables, and as Harmonic Update is homogeneous, they
Clearly, Harmonic Update' is a randomised on-line al- are identically distributed as well. An inductive ar-
gorithm, and, as claimed, it is homogeneous and single- gument similar (and only slightly more detailed) than
pass. The algorithm is not mistake driven, and as each the one used to establish (2) yields
example pattern is seen exactly once, the algorithm
terminates after the minimal number of1steps, m. The pj* = -1) = 1
effect of this randomised procedure is to ensure that 2 m
each weight retains an equal amount of information 1 1
about the corresponding component of every pattern. p{y0 = +11 =
In particular, 2 2m

Ew 1u? = i = 1,... ,n, (2) Now form the random sums
m•

7For capacity calculations we seek m, the number of X0 = EYTj ' a = 1,... rM.

patterns, as an explicit function of n. To keep the notation j=1
simple, however, we write m instead of m., which would If w is to be a solution vector, we require that each
make the dependence explicit, with the tacit understanding X* be positive. Let us estimate instead the probabil-
that the number of patterns is actually a function of n. ity that a particular pattern, say u*, is not correctly

'The name arises from the choice of the sequence of ctat a p c T tern, say nnta in ecty
probabilities {1/t,t > 1) in the algorithm: at epoch t, l/t classified by w. The following exponential inequality
is the probability that a weight update results in a change due to Hoeffding now proves useful.
in sign of the weight when the current weight and the cot- U
responding component of the pattern from the training se- Lemma 3.2 [HoefdingJ Let Z1 , ... , Zn be indepei-
quence disagree in sign. dent random variables with zero means and bounded I
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ranges: a3 <. Zj <5bj. Then for every q7 > 0, Theorem 4.1 The sequence n/I log n is a capacityI n__ __ 2function for the Majority Rule Algorithm. Moreover,
[ 2 1 no other homogeneous, off-line algorithm has a capac-

{ -,7}: exp [n2I..=(b'-_a) 2  " ity function with a more rapid rate of growth.

As X0 is the sum of ni i.i.d. -1 random variables REMARKS: Again, we will content ourselves herewith mean p-q = 1/m, Hoeffdni g's inequality directly with providing a sketch of the proof that n/r log n iswyields 9  
a lower capacity for Majority Rule. Details may be5 (_ n )found in [Ven9l(a)].IMP{X2 <01 <exp 2r . PROOF: [Sketch.] We begin by noting that with

The probability PRU (n,m) that Harmonic Update probability one we can write
correctly classifies each of the patterns in Us, is
bounded below by a simple application of Boole's in- (m
equality: wj = sgn , j=1,... n.

PHu(n, m) ? 1-m P{X <_ 01 _ 1-m exp -•-•). As before, for € = 1, ... , m, form the sums

Now, for any c > 0, the choice

m - 2logn \(log n)2 j=1 j=i

yields PHU((n, rn) Z 1 - c as n --. oo. It follows that where the :k1 random variables V are defined by
,i/_V'1&g- is a lower capacity function for Harmonic
Update. IE

YH wi uq = sgn Ui* uý

4 MAJORITY RULE P=)

If off-line procedures are permitted, substantial gains = sgn/1+ i aP. (3)
in capacity can be made. The Majority Rule described
below is a homogeneous, off-line algorithm with near Note that, as before, for fixed a, Yl*, ... , Y a are i.i.d.,
maximal capacity. ±1 random variables. Now, the summands in the sum

As before, let U"n = {u= ... ,um) be a random m- in (3) are i.i.d., symmetric Bernoulli, ±1 random vari-
set of patterns in 3", with components chosen from a ables, so that the sum is just a symmetric random
sequence of symmetric Bernoulli trials. The Majority walk over m - 1 steps. Let m grow without bound
Rule prescribes weights as follows: as n -. oo. An application of Stirling's formula then

yields
For i = 1, ... , n, let = 1U = f-U u=+1} P.17=-11

U• = {utEUA:ui= 1) 1 1

Set 
pT = f+ =21==m 

.

I + 1 if iU I[> _ jU .l It follow s that
I w, =~ -1 iflU,+l < lIU1..folw

In other words, wi = +1 if patterns whose ith compo- EYj~ - -,- (n - oo).
nent is + 1 are in the majority, and wi = -1 otherwise.
Clearly, Majority Rule is an off-line algorithm which An application of Hoeffding's inequality as in Theo-
is local and homogeneous. The following estimate can rem 3.1 hence yields
be obtained: (_

9A slightly more involved argument invoking the large P - 01 _ exp--mIrdeviation version of the classical De Moivre-Laplace cen- Using Boole's inequality, as before, yields that the
yields that if m grows with n such that m = o(V/') and probability PMR((n, m) that Majority Rule correctly
n/n2/6 - oo, then P{X° < 0) , . exp (-T-'.a) as classifies each of the patterns in Un" is bounded below

n - oo. This more precise estimate is needed to show that by
V/Vl/ovgT is also an upper capacity for Harmonic Update. PMjR(n,rn) *_ I-Ž P{X* < 0} -rPX I0-1 m exp1-rnI
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Now, for any c > 0, the choice each pattern u E U. As there is a contribution ofnl,+og log n +logwc"o, Ol(oglognl +1 to the sum if two corresponding components of w'
M - (logn2 and u have the same sign, and -1 if the signs are mis-

7r log n L log n \(logmn)/ atched, it follows that the binary solution vector has

yields PMfR(n, m) 4>' 1 - c as n -- oo. It follows more component sign matches than mismatches with
that n/i log n is a lower capacity function for Majority each pattern in/U. I
Rule. Now the algorithm updates the current estimate of the

weight vector if and only if the current pattern from
5 DIRECTED DRIFT the training sequence is misclassified. A weight vectorupdate results in a randomly chosen mismatched com-

We conclude with a family of randomised, on-line, ponent of the weight vector being flipped to the sign of

local (but non-homogeneous)'° algorithms for binary the corresponding pattern component. Since there is 3
learning [Ven9l(b)]. We call these algorithms Directed a probability better than a half that a randomly speci-

Drift because, as we shall see, they share some similar- fied component of any pattern has the same sign as the
ities with asymmetric random walks with a preferred corresponding component of a binary solution vector,

direction toward a solution. it follows that at least during the initial progress of
the algorithm, the a priori probability that the weight m

Let U be any subset of patterns from M"', and let {u[t]} vector update is in the direction of the binary solution
be any training sequence such that each of the patterns vector is better than a half. We will explore this more
in U appears infinitely often.1I Let {w(t]} denote a bi- formally in the sequel.
nary learning sequence. For each epoch, t, we denote U
by J[t] the subset of indices for which the correspond- 5.2 ANALYSIS
ing components of w[t] and u[t] are opposite in sign:

J~t] = fi : wjt] 6 uj[t]). Let w' E IB" denote a solution vector, and let {t) $
denote the subsequence of epochs at which patterns

5.1 SINGLE BIT UPDATES from the training sequence are misclassified; i.e.,

In the simplest version of Directed Drift, no more than (W[4J, Uftkl) <0, k = 1,2...

; single component of the weight vector is updated per Let
epoch. k+l = Ilw[k + 11 - W,112

BASE: w[l] E VB" is chosen arbitrarily, denote the estimate error at epoch k for single bit up-

ITERATION: Weight updates are predicated date Directed Drift. A straightforward inductive ar-

upon whether a correct or incorrect response gument then gives

is obtained at the current epoch, t. k

S/If(w[t], u[ft]) > 0, then the weight vector 4+1 =&i -4ZX,,
is left unchanged: w[t + 1] = w~t].' 2 1=1

" If (w[t], u[t]) : 0, then an index j[t] is where we define the 1 random variables X, by I
picked at random from the set of indices,
J[t], of mismatched components. The = - w[g,] U3(:.][ti].
new weight vector is now formed accord- Upper bounding by 4n and setting t k3

ing to the following rule: weg t1 obtain Xi

WAt + 1] i ,[t] ifwe then obtain
-w0[t] ifj =- j[t]. (4) 0 £+, _ 4(n - Sk).

The intuition behind the algorithm is as follows. If The procedure terminates at the value of k for which
a binary solution vector, w' E I1", exists, then nec- the random sum Sk first exceeds n. The mistake
essarily we must have (w', u) = . wju > 0 for bound T hence satisfies ST > n, and Sk < n for

,__ _k = 1,... T - 1. The mistake bound is infinite if
`°The algorithms actually have a slightly non-local there exists no such value of k, or if there exists no

preamble at each epoch. We will ignore this non-locality binary solution vector for the choice of patterns U.
and continue to call the algorithms local. mm

"Note that U c I" is a finite set of patterns. If The above is reminiscent of a random walk with a fixed
U = {u',... ,u') is an in-set of patterns, then we can, boundary at n. Let the r-set of patterns U be cho-
for instance, obtain valid training sequences by cycling sen independently, with components drawn from a se-
through the patterns or by choosing a pattern randomly quence of symmetric Bernoulli trials, and assume mn is
at each epoch. within the capacity of the algorithm. (With high prob-

121f it ain't broke, don't fix it. ability, then, there exists a solution vector.) Through I
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the initial progress of the algorithm then, the random Now, the random variables Xj and ICT.>,) are inde-variables Xi will be independent with pendent for every j 2> 1, so that by thi douminated
t convergence theorem and the definition of the stop-

Xi 1 with probability = - 1/2 - P,,m ping time T1 we have{ .1 with probability Pn,,, = 1/2 + /,n,m,
for some Bn~m E (0,1/2]. The specific value of the n= E~ST - E >XjIT_}
probability pN,i -the relative frequency of the num- - =i
ber of component matches between a binary solution 00
vector and a pattern-depends explictly both on n and = E(X,) PT1 2 j) = E(X1 )E(Ti).
the number of patterns m. Clearly, - (j=1{1>j}- (x)ET

n/2 + 1 1 1
- n + n'n The result follows. |

so that 6n,m ? 1/n. A heuristic estimate of the ex- Using E T, as a rough estimate for the expected mis-
pected mistake bound for single bit update Directed take bound for in le bit update Directed Drift resultstained from the expected time of first passage to n convergence of Directed Drift when the number of ex-

Sof a one-dimensional random walk Sk, with positive samples is within the capacity of the algorithm.
drift 2kI•nm. The following result is an application of
Wald's equation: There are a number of open issues about the algorithm

which we are currently in the process of resolving. ALemma 5.1 Let {Xj) be i.i.d., ±1 random variables rigourous and general analysis of stopping times for
with mean E XI = 2 3n,m 2! 2/n, and let Sk = the algorithm involves careful consideration of the ma-

= Xj denote a random walk with positive drift trix of transition probabilities of a finite Markov chain,E S = 2kI m > 2k/n. Let the transition probabilities depending both on n andE S = m. Capacity estimates for the algorithm are currently
T, = inf {k : S = n) between the orders of n/log n and n. The upper ca-pacity estimate of n is an immediate consequence of

denote the time of first passage to the fized boundar-y Boole's inequality: the probability that there exists aat n. Then binary solution vector for m randomly drawn patternsn

E TI is less than 2n-', and if m exceeds n, this probabil-
ity plunges below 1/2. The lower capacity estimate of

for every n. the order of n/log n follows from the estimate of the
capacity of the Majority Rule algorithm: by construc-PROOF: Let 7L = a(X 1 ,... ,X.), so that {hT, k > tion of the Majority Rule, if m is less than the order

1} is an increasing sequence of sub-u-algebras. T1 - of n/jog n then there exists a binary solution vector
clearly a stopping time with respect to {1k). Now, as with high probability. An analysis of the transition

oo, we have probability matrix for Directed Drift indicates that
the probability that the system stays forever among

P{T1 > j) - P{SI < n,... ,Sj..- < n} the (finite) set of transient states is zero when there
< P{Sj-l <n) = O(e-cj) exists at least one solution vector (which constitutesan absorbing state), so that the lower capacity is atfor a positive constant c, as, for fixed n, the penulti- least of the order of n/logn. We conjecture that, in

mate expression is the probability in the extreme left fact, the capacity of the algorithm is n.tail of the binomial distribution. Hence, Simulations indicate that there are two distinct
00 regimes of behaviour-a regime below capacity where

ET1 = EP{TI > jA < 00 convergence is very rapid (in quadratic time) in con-
sonance with the rough analysis above, and a regimeabove capacity where the analytical picture is muchas the terms of the series decrease exponentially fast. less clear and where convergence takes substantially

For any measurable set A, let IA be the indicator ran- longer. An abrupt transition around the capacity of
dom variable for A. We now have the algorithmis is seen between the two regimes of con-

= w vergence time. R. Meir has recently communicatedEISTJ[ 5 E JEIXjlIIT,>_j} to us that in Monte Carlo simulations and compar-

jfl isons with genetic algorithms, Directed Drift appears
Do to have an optimal character [Mei9l]. A slightly more

=Z P{T, > j) < 00. detailed analysis and specifics of simulation results are
included in [Vengl(b)].
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5.3 SEVERAL BIT UPDATES presented here in brief is aimed at providing a bet-
ter understanding of (distribution dependent) prob-

The algorithm can be simply extended to accommo- lems where practitioners report a wide gulf between
date more than a single bit update per epoch. Let the sample complexities needed in practice and those
{Ntl be a sequence of integers with 0 < Nt _< n/2. predicted in the distribution free model.

BASE: W[1] E V is chosen arbitrarily. A PERCEPTRON TRAINING
ITERATION: As before, updates are made
only if the current pattern from the training It is instructive to compare convergence rates for Di- I
sequence is misclassified. rected Drift with those that obtain for Perceptron

"* If(w[t], u[t]) > 0, then the weight vector Training. Let {u[t]} be a training sequence of pat-
is left unchanged: w[t + 1] = w[t]. terns, and let {w[t]) denote a learning sequence of

"If(w[t], ut]) !5 0, then N, indices ji(], real weight vectors. We will assume that there exists

, jN, [t] are picked at random from the a binary solution vector w' E B". (Perceptron Train-

"set of indices, J[t], of mismatched corn- ing will, in general, not converge to a binary solution,

ponents. The new weight vector is now however, even if one exists.)
formed according to the following rule: if
J {jl [t], .... , jNl[t)) then set w [t+ 1] = A.1 FIXED INCREMENT PERCEPTRON
wj[t]; else if j E {j [t], jNf[]} then TRAINING
set wj(t + 1] = -Wj[t]. This is the simplest form of Perceptron Training. Let

The sequence N, specifies the number of bits to be f > 0 be fixed.

changed at each update epoch, and the proper choice BASE: The initial choice of weight vector
of this sequence is clearly critical to the function- is arbitrary. For simplicity we take w[1] = 0.
ing of the algorithm. This is analogous to choosing ITERATION: As before, weight vector updates
an appropriate cooling schedule for simulated anneal- are made only if a pattern is misclassified.
ing (KGV83]. Anecdotal evidence from simulations in- If(w[t], u[t]) > 0, then the weight vector
dicates that significant improvements in convergence i lft unhge > + 1] = we te.
can be obtained over single bit updates by appropri- is left unchanged: wft + 1] =w[t].
ate choices of the sequence Ng. * If (w[t), u[t]) < 0, then set w[i + 11 =

w(t] + flu[].

6 CONCLUSIONS Note that fixed increment Perceptron Training is ho-
mogeneous and on-line.

The investigations reported here constitute initial for- We now claim that the procedure will converge to an,
ays into two areas: (1) using randomisation as a tool in general, non-binary solution with a worst-case mis-
in the development of efficient learning algorithms for take bound of n' if there exists a binary solution vec-
networks with binary weights (or, more generally, dy- tor. Let w' E Bn be a binary solution vector, and I
namic range constrained weights); and (2) develop- as before, let {it) denote the subsequenct of epochs
ing notions of probabilistic capacity which, in distri- at which patterns from the training sequence are mis-
bution dependent situations, yield results on sample classified; i.e.,
complexities for learning analogous to the distribu- (w[tt],ut]) !< 0. k = 1,2,.... (5) I
tion free results that derive from the VC dimension. Set wil =_ 0, and, for a value of parameter c > 0 to
Notwithstanding the theoretical stumbling blocks in be specified, consider the estimate errors
learning binary weights-intractable worst cases may a
exist as a consequence of the NP-completeness of the Yv+l = I1w[4&+1] - cw1I2 . I
problem-there is a strong practical motivation to de- Using (5), a standard inductive argument then yields
velop learning algorithms for this case because of the the bounds
lower cost and simplicity of circuits comprised of bi- 0 < F&+i <_ c2n - #(2c - fln)k. I
nary interconnections. The success (albeit limited) of We hence have the worst-case mistake bound
the randomised algorithms reported here suggest that c 2 n
these may repay further investigation; in particular, T < 0
we might be able to hope for good average case be- f(2c )
haviour in certain regimes. We are currently inves- Minimising the bound with respect to c yields the n 2

tigating certain extensions of these ideas in networks upper bound for the mistake bound. (For better mis-
with more complex interconnectivity patterns than the take bounds see [Lit88].) The fixed increment Percep-
single neuron considered here. The parallel develop- tron Training Algorithm hence terminates after O(nJ)
ment of notions of distribution dependent capacity component updates if a binary solution vector exists. I
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A.2 SINGLE COMPONENT The algorithm terminates at the first instant k for
PERCEPTRON TRAINING which ISkI exceeds vr'n. Within capacity again, the

situation is reminiscent of a random walk Sk with pos-
The basic randomisation idea behind single bit update itive drift E Sk = 2k#. _Ž 2k/n, and absorbing bound-
Directed Drift is easily extended to single component ariesat4v- We refer the reader to for
Perceptron Training, where a single component of the the roof o e forio he result:

weight vector is modified at each update epoch (as the proof of the following result:

opposed to fixed increment Perceptron Training where Lemma A.1 Let {Xj I be i.i.d., -1 random variables
all components are modified at each epoch). with mean E X, = 2 ,6n,m Ž_ 2/n, and let Sk =

For each epoch, t, let I[t] denote the subset of indices '=l Xi denote a random walk with positive drift
for which the corresponding components of w[t] and E Sk = 2k,,nm 2! 2k/n. Let
u[t] are opposite in sign: T 2 =infIk:ISkIvf1

I[t] = { i : uu[t] $ sgn wilt] 1. denote the time of first passage to the receding (two-

BASE: For simplicity, take w[1] = 0. sided) boundary at ±v'-n-. Then
n

ITERATION: Weight updates are predicated, ET2 n (n - oo).
as usual, upon whether a correct or incorrect ET 2  , n
response is obtained at the current epoch, t. Using ET 2 as a rough estimate for the expected mis-

I /f(w[t], u[t]) > 0, then the weight vector take bound (when m is within capacity), we get the
is left unchanged: wit + 1] = w[t]. asymptotic estimate 0(n 3 ) for the expectc-d mistake

* If (wit], u[t]) _< 0, then an index i[t] is bound of single component Perceptron Training as
picked at random from the set of indices, n --# 00.
I[t], of mismatched components. The
new weight vector is now formed accord- Acknowledgements
ing to the following rule: The support of research grant AFOSR-89-0523 from

[w{[t] if i $ i[t] the Air Force Office of Scientific Research is gratefullywlt + 1]= wilt] + ui[t] ifi = i[t]. acknowledged.
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Abstract

Robustness is a commonly bruited property of neural networks; in particu-
lar, a folk theorem in neural computation asserts that neural networks-in
contexts with large interconnectivity--continue to function efficiently, al-
beit with some degradation, in the presence of component damage or loss.
A second folk theorem in such contexts asserts that dense interconnectiv-
ity between neural elements is a sine qua non for the efficient usage of
resources. These premises are formally examined in this communication
in a setting that invokes the notion of the "devil"' in the network as an

agent that produces sparsity by snipping connections.

1 ON REMOVING THE FOLK FROM THE THEOREM

Robustness in the presence of component damage is a property that is commonly
attributed to neural networks. The content of the following statement embodies
this sentiment.

Folk Theorem 1: Computation in neural networks is not substantially
affected by damage to network components.

While such a statement is manifestly not true in general-witness networks with
"grandmother cells" where damage to the critical cells fatally impairs the com-
putational ability of the network-there is anecdotal evidence in support of it in

'Well, maybe an imp.
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situations where the network has a more "distributed" flavour with relatively dense
interconnectivity of elements and a distributed format for the storage of information.
Qualitatively, the phenomenon is akin to holographic modes of storing information
where the distributed, non-localised format of information storage carries with it a
measure of security against component damage. I
The flip side to the robust folk theorem is the following observation, robustness
notwithstanding:

Folk Theorem 2: Dense interconnectivity is a sine qua non for efficient
usage of resources; in particular, sparser structures exhibit a degradation
in computational capability.

Again, disclaimers have to be thrown in on the applicability of such a statement.
In recurrent network architectures, however, this might seem to have some merit.
In particular, in associative memory applications, while structural robustness might
guarantee that the loss in memory storage capacity with increased interconnection I
sparsity may not be catastrophic, nonetheless intuitively a drop in capacity with
increased sparsity may be expected.

This communication represents an effort to mathematically codify these tenets. In
the setting we examine we formally introduce sparse network interconnectivity by
invoking the notion of a (puckish) devil in the network which severs interconnection
links between neurons. Our results here involve some surprising consequences-
viewed in the light of the two folk theorems--of sparse interconnectivity to robust-
ness and to memory storage capability. Only the main results are stated here; for
extensions and details of proofs we refer the interested reader to Venkatesh (1990)
and Biswas and Venkatesh (1990).

Notation We denote by lB the set {-1, 1}. For every integer k we denote the set
of integers {1, 2,... , k} by [k]. By ordered multiset we mean an ordered collection
of elements with repetition of elements allowed, and by k-set we mean an ordered
multiset of k elements. All logarithms in the exposition are to base e.

2 RECURRENT NETWORKS I
2.1 INTERCONNECTION GRAPHS

We consider a recurrent network of n formal neurons. The allowed pattern of
neural interconnectivity is specified by the edges of a (bipartite) interconnectivity
graph, Gn, on vertices, [n] x [nI. In particular, the existence of an edge {i,j} in
Gn is indicative that the state of neuron j is input to neuron i. 2 The network is I
characterised by an n x n matrix of weights, W = [wij], where wij denotes the

(real) weight modulating the state of neuron j at the input of neuron i. If u E MB"
is the current state of the system, an update, ui - u' of the state of neuron i is

2Equivalently, imagine a devil loose with a pair of scissors snipping those interconnec-
tions for which {i,j) V G,.. For a complementary discussion of sparse interconnectivity
see Koml6s and Paturi (1988).

I
I
I
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specified by the linear threshold rule

__uý = sgn wij ui
• j:=iJ}C

The network dynamics describe trajectories in a state space comprised of the vertices
of the n-cube.3 We are interested in an associative memory application wh,ýre we
wish to store a desired set of states-the memories-as fixed points of the network,
and with the property that errors in an input representation of a memory are
corrected and the memory retrieved.

3 2.2 DOMINATORS

Let u E 113" be a memory and 0 < p < 1 a parameter. Corresponding to the memory
u we generate a probe ii E 13' by independently specifying the components, iii, of
the probe as follows:

S uj with probability I -p (p)
-ui with probability p.

We call i a random probe with parameter p.

Definition 2.1 We say that a memory, u, dominates over a radius pn if. with
probability approaching one as n - oo, the network corrects all errors in a ran-
dom probe with parameter p in one synchronous step. We call p the (fractional)
dominance radius. We also say that u is stable if it is a 0-dominator.

I REMARKS: Note that stable memories are just fixed points of the network. Also,
the expected number of errors in a probe is pn.

* 2.3 CODES

For given integers m > 1, n > 1, a code, K10, is a collection of ordered multisets of
size m from 11". We say that an m-set of memories is admissible iff it is in Kn'.4SThus, a code just specifies which rn-sets are allowable as m em ories. Examples of
codes include: the set of all multisets of size m from 11n; a single multiset of size
im from 11'; all collections of m mutually orthogonal vectors in IB"; all rn-sets of
vectors in 13' in general position.

Define two ordered multisets of memories to be equivalent if they are permutations
of one another. We define the size of a code, Jg', to be the number of distinct
equivalence classes of rn-sets of memories. We will be interested in codes of rela-I tively large size: log IK' I/n - oo as n -- or. In particular, we require at least
an exponential number (.f choices of (equivalence classes of) admissible m-sets of
memories.

'As usual, there are Liapunov functions for the system under suitable conditions on
the interconnectivity graph and the corresponding weights.

4 We define admissible m-sets of memories in terms of ordered multisets rather than
sets so as to obviate certain technical nuisances.
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2.4 CAPACITY

For each fixed n and interconnectivity graph, Gn, an algorithm, X, is a prescription
which, given an rn-set of memories, produces a corresponding set of interconnection
weights, wii, i E [n], ji,j} E G,. For m > 1 let A(u',... ,u') be some attribute
of rn-sets of memories. (The following, for instance, are examples of attributes of
admissible sets of memories: all the memories are stable in the network generated
by X; almost all the memories dominate over a radius pn.) For given n and m, we
choose a random rn-set of memories, u 1 , ... , urn, from the uniform distribution on
KtM

Definition 2.2 Given interconnectivity graphs Gn, codes IC:', and algorithm X,
a sequence, {GC}'° 1 , is a capacity function for the attribute A (or A-capacity for I
short) if for A > 0 arbitrarily small:

a) P {A(uI ... ,um)} - 1 as n - oo whenever m < (1 - A)Cn;

b) P {.A(ul, .. . , um)} -- 0 as n --- oo whenever m > (1 +t \)C,.m

We also say that Cn is a lower A-capacity if property (a) holds, and that C, is an
upper A-capacity if property (b) holds.
For m > 1 let u, ..... u m E lBn be an rn-set of memories chosen from a code A-.

The outer-product algorithm specifies the interconnection weights, wij, according
to the following rule: for i E [n], {i,j} E Gn,

wii UýUý(2)

In general, if the interconnectivity graph, G., is symmetric then, under a suitable
mode of operation, there is a Liapunov function for the network specified by the
outer-product algorithm. Given graphs G., codes K.', and the outer-product algo-
rithm, for fixed 0 < p < 1/2 we are interested in the attribute VP that each of the
m memories dominates over a radius pn.

3 RANDOM GRAPHS

We investigate the effect of a random loss of neural interconnections in a recurrent
network of n neurons by considering a random bipartite interconnectivity graph
RG. on vertices [n] x [n] with

P {{i,j} E RG,} = p 1
for all i E [n], j E [n], and with these probabilities being mutually independent.
The interconnection probability p is called the sparsity parameter and may depend
on n. The system described above is formally equivalent to beginning with a fully-
interconnected network of neurons with specified interconnection weights wiy, andI
then invoking a devil which randomly severs interconnection links, independently

retaining each interconnection weight wiy with probability p, and severing it (re-
placing it with a zero weight) with probability q = 1 - p. 3

I
I
I
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Let CK' denote the complete code of all choices of ordered multisets of size m from

Theorem 3.1 Let 0 < p < 1/2 be a fixed dominance radius, and let the sparsity
parameter p satisfy pn 2 - oo as n -- oc. Then (1 - 2p)2pn/2logpn 2 is a D,-
capacity for random interconnectivity graphs RGn, complete codes C00', and the
outer-product algorithm.

I REMARKS: The above result graphically validates Folk Theorem 1 on the fault-
tolerant nature of the network; specifically, the network exhibits a graceful degra-
dation in storage capacity as the loss in interconnections increases. Catastrophic
failure occurs only when p is smaller than log n/n: each neuron need retain only of
the order of Q(log n) links of a total of n possible links with other neurons for useful
associative properties to emerge.

U 4 BLOCK GRAPHS

One of the simplest (and most regular) forms of sparsity that a favourably disposed
devil might enjoin is block sparsity where the neurons are partitioned into disjoint
subsets of neurons with full-interconnectivity within each subset and no neural

interconnections between subsets. The weight matrix in this case takes on a block
diagonal form, and the interconnectivity graph is composed of a set of disjoint,
complete bipartite sub-graphs.

More formally, let 1 < b < n be a positive integer, and let {II,... , In/b} partition
[nj such that each subset of indices, Ik, k = 1, ... , n/b, has size Ihl = b.' We call
each Ik a block and b the block size. We specify the edges of the (bipartite) block
interconnectivity graph BGn by {i,j} E BG, iff i and j lie in a common block.

Theorem 4.1 Let the block size b be such that b = fl(n) as n - oo, and let
0 < p < 1/2 be a fixed dominance radius. Then (1- 2p) 2b/2logbn is a DV-capacity
for block interconnectivity graphs BG,, complete codes CK,, and the outer-product

* algorithm.

Corollary 4.2 Under the conditions of theorem 4.1 the fixed point memory capacity
is b/2 log bn.

Corollary 4.3 For a fully-interconnected graph, complete codes Cf',, and the
outer-product algorithm, the fixed point memory capacity is n/4 log n.

Corollary 4.3 is the main result shown by McEliece, Posner, Rodemich, and

Venkatesh (1987). Theorem 4.1 extends the result and shows (formally validat-
ing the intuition espoused in Folk Theorem 2) that increased sparsity causes a loss
in capacity if the code is complete, i.e., all choices of memories are considered ad-
missible. It is possible, however, to design codes to take advantage of the sparse
interconnectivity structure, rather at odds with the Folk Theorem.

3 'Here, as in the rest of the paper, we ignore details with regard to integer rounding.

I
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Without loss of generality let us assume that block I, consists cf the first b indices,
[b], block 12 the next b indices, [2b]- [b], and so on, with the last block In/b consisting I
of the last b indices, [n] - [n - b]. We can then partition any ve*or 11 E lBn as

where for k = 1,..., n/b, uk is the vector of components corresponding to block Ik.

For M > 1 we form the block code BKXM,* as follows: to each ordered multiset of
M vectors, u .  UM from 1Bn, we associate a unique ordered multiset in BK/Mn
by lexicographically ordering all Mn/b vectors of the form

• , j (kIl,a2,... ,an/b E [M].

UO-/b
n/b

Thus, we obtain an admissible set of Mn/b memories from any ordered multiset I
of M vectors in IBE by "mixing" the blocks of the vectors. We call each M-set of
vectors, u 1 , ... , uM E 13", the generating vectors for the corresponding admissible

set of memories in BICM'I&.

EXAMPLE: Consider a case with n = 4, block size b = 2, and M = 2 generating
vectors. To any 2-set of generating vectors there corresponds a unique 4(=Mn/b)-set
in the block code as follows: I

1U21U1 2 U
2 112 / 2IU2 I II U2.,U1U22

1211u11u 2 U31
4U4 U4 24 u4

Theorem 4.4 Let 0 < p < 1/2 be a fired dominance radius. Then we have the fol-
lowing capacity estimates for block interconnectivity graphs BG,, block codes BK',
and the outer-product algorithm: I

a) If the block size b satisfies nloglogbn/blogbn - 0 as n - oo then the
Va-capacity is E(1 -2 p)2b l/b

2logbn In

b) Define for any v'

C,,(,,) = 2• ''''*'"-"' :""

I

I
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If the block size b satisfies b/logn - oo and blogbn/loglogbn = O(n) as
n -- o, then Ca(v) is a lower Dr-capacity for any choice of v < 3/2 and
Cn(v) is an upper Do-capacity for any v > 3/2.

Corollary 4.5 If, for fixed t > 1, we have b = n/t, then, under the conditions of
theorem 4.4, the D.-capacity is

(1 - 2P) 2 t-*4- l-n)

Corollary 4.6 For any fixed dominance radius 0 < p < 1/2, and for any r < 1, a

constant c > 0 and a code of size Q (2en2-) can be found such that it is possible

to achieve lower VD-capacities which are QŽ (2 n') in recurrent neural networks with
interconnectivity graphs of degree 0 (nlT-).

REMARKS: If the number of blocks is kept fixed as n grows (i.e., the block size
grows linearly with n) then capacities polynomial in n are attained. If the num-
ber of blocks increases with n (i.e., the block size grows sub-linearly with n) then
super-polynomial capacities are attained. Furthermore, we have the surprising re-
sult rather at odds with Folk Theorem 2 that very large storage capacities can
be obtained at the expense of code size (while still retaining large code sizes) in3 increasingly sparse networks.
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1 Correspondence

3 Robustness in Neural Computation: Random The outer-product algorithm, which we descrilbd in the sequel,
Graphs and Sparsity is a particularly simple algorithmic prescription for storing memo-

ries in a fully-interconnected, recurrent neural network. The algo-
Santosh S. Venkatesh, Member, IEEE rithm has good associative properties, and consequently, has been

the subject of some searching mathematical investigations: McEliece
Abstract--Robustness Is a commonly bruited property of neural net- et at. [2] showed that the algorithm can store of the order of

works; in particular, a folk theorem In neural computation asserts that n /log n memories with correction of a linear number of random
fully-interconnected neural networks continue to function efficiently In errors; subsequent investigations by Komlts and Patri [3] showed
the presence of component damage. This communication is an effort to
mathematically codify this belief. Component damage is introduced in a that the storage capacities derived by McEliece et al. persist even in
fully-interconnected neural network model of n neurons by randomly the case of worst case errors; complementary results due to New-
deleting links between neurons. An analysis of the outer-product algo- man [4] indicate that storage capacities linear in n can be achieved
rithm for this random graph model of sparse interconnectivity using a in the outer-product algorithm if errors can be tolerated in the recall
simple generalisation of Chebyshev's inequality yields the following of the memories. Nonrigourous results qualitatively similar to those
main result: if the probability of losing any given link between two
neurons Is I - p, then the outer product algorithm can store of the above have also been reported by Hopfield [11 and Amit et al. [5].
order of pn /log pn2 stable memories correcting a linear number of We investigate robustness in the model by invoking a devil (well,
random errors. In particular, the average degree of the Interconnectivity maybe an imp) which randomly severs interconnection links in a
graph dictates the memory storage capability, and functional storage of fully interconnected network of n neurons, with weights specified
memories as stable states is feasible abruptly when the average number
of neural interconnections retained by a neuron, exceeds the order of by the outer-product algorithm. The sparse network that results is
log n links (of a total of n possible links) with other neurons. This work essentially specified by an underlying random interconnectivity
complements the results of Koml6s and Paturi on worst case error graph. The following are our main re-ults, which provide a graphic
correction for fixed underlying interconnectivity graphs. validation of the folk theorem in this instance.1 Index Terms-Neural networks, robustness, random graph, sparsity, If the probability of retaining any given link between two neurons
outer-product algorithm, is p, then the outer-product algorithm can store of the order of

Spn /log pn 2 stable memories with correction of a linear number of
random errors. Functional storage of memories as stable states is

A. The Problem feasible when the average degree of the random interconnectivity

Robustness in the presence of component damage is a property graph exceeds the order of log n; memories will be stable with

that is common attributed to neural networks. The content of the respect to a linear number of random errors in components if the
m average degree of the random interconnectivity graph exceeds the

following statement embodies this sentiment. order of log 3 n.

Folk Theorem: Computation in neural networks is not substan- These results are consistent with results of Koml6s and Paturi [6]
tially affected by damage to network components. who have analysed worst case errors in networks with interconnec-

While such a statement cannot hold tivities specified by fixed underlying graphs. Using sophisticatedwhitesuh "gandatmet nothe cells true in general--witness net- anpoefltciqsfrmagedvtonrbbltytoy
works with "grandmother cells" where damage to the critical cells and powerful techniques from large deviation probability theory

is they show results on convergence times and the radius of attraction
fatally impairs the computational ability of the network-there within which all points are attracted to the memories in terms of thei anecdotal evidence in support of it in situations where the network spectrum of the underlying graph. The random graph model
has a more "distributed" flavor with a relatively dense interconnec- se her er ying grat T hend an dom graph mna l

tivtyofelmens.Insuh stutins exermeta evdeceini- analysed here provides great attendant simplicity in the analysis oftivity of elements. In such situations, experimental evidence indi- the correction of random errors. In fact, as we will see in the

cates that networks of neural elements do indeed possess a measure the main of a r athe wile in ofI f aul-toerace I). ualtatvel, te phnomnonis lci to sequel, the main results fall out of a rather simple application ofhof fault-tolerance of. Qualitatively. the phenomenon is akin toe Chebyshev's inequality.
holographic modes of storing information where the distributed, Notation: We denote by .5 the set { - 1, 1}. For any positive
nonlocalized format of information storage carries with it a measure integer k, we denote by [kJ the set {l,..., k}. All logarithms in
of security against component damage. the exposition are to the Napier base e. We also use c,, c2 ,. •., to

Neural models for associative memory are natural candidates for denote absolute positive constants. We invoke standard asymptotic
investigation of fault-tolerant properties. These models typically notation in the sequel; in addition, if {x.} is a positive sequence
consist of a fully-interconnected network of formal neurons (linear and {y.(e)} is another positive sequence which is a function of a

I threshold elements). Information is stored in these models in the real parameter e, we denote y.(0) = O,(x,) if, for every fixed
interconnections between neural elements. value of e, we can find K() > 0 (independent of n) such that
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bipartite interconnectivity graph G. on vertices in] x [n] with i.i.d. random variables with

P{{i,j} eG,} = p, rij = 0, if {i,j} G,

for all ie (nJ, je (n], and with these probabilities being mutually

independent. The interconnection probability p is called the spar- For ie[n] and ji-[n] we can now define the interconnection
sity parameter and may depend on n. A real interconnection weights of the sparse, random network by
weight w,, is associated with each edge Ii, j) EG, We adopt the f
convention w,, - 0 if {i, j} 0 G,,. The state of each neuron is - rU E u1, uq, if j * i,
updated based on the sign of a linear form computed by the wi W = ,,rio = =1 (1)
interconnection weights and the current state of the system: if 10, if j i.
u e D" is the current state of the system, an update, u, - u' of the The variables :q are simply the indicator random variables for the
state of the ith neuron is specified by the linear threshold rule' edges of the random bipartite interconnectivity graph G..

u' = sgn ( E wuI)sgn(EwIju , U. STABLE MEMORIES

j:Nr ua.ts m j=n I A basic requirement that we would like to impose is that the

Neural updates may be either synchronous, with every neuron being memories are stable, i.e., fixed points of the network:

updated in concert, or asynchronous, with at most one neuron being )
updated at any instant. u' =sgn w1 uJ). = F,'",n, ij= l,..,m.

The system previously described is formally equivalent to begin- -J= I
ning with a fully-interconnected network of neurons with specified We begin by estimating the number of memories that can be made
interconnection weights w,,, and then invoking a devil which ran- stable in the outer product algorithm for a random interconnectivity
domly severs interconnection links, independently retaining each graph with sparsity parameter p. The following theorem is our main
interconnection weight w1, wikh probability p, and severing it result. I
(replacing it with a zero weight) with probability q = I - p. Note

that the expected number of weights retained by any neuron in the heor 1: Led the sar ete p osating.
network is pn, and the expected number of nonzero weights in the n -- o. For any fixed e > 0, we then have the following.
network is pn 2

.2 a) If, as n - co, we choose the number of memories, m, such U
that

C. The Algorithm
pn f loglog pn 2 + log 2 e

As in any recurrent dynamical system, we are interested in the m S i +
fixed points of the system. In particular, we focus on an associative 2 log pn2  log pn 2

memory application where we wish to store a desired set of ( 2

states-the fundamental memories-as fixed points of the net- - lo log2 pn2  (
work, and with the property that errors in an input representation of0 log2 pn2 (

a memory are corrected and the memory retrieved.
Let u',..., u" e(" be an m-set of fundamental memories then the probablity that all m memories are fixed points is at

whose components, u#, are drawn independently from a sequence least as large as ! - e - o(!). mofsymnuicBenoli til;v.,frj=1",,an = b) If. as n -- oo, we choose the number of memories, m, such
of symmetric Bernoulli trials; viz., for jl =that

pn , , loge f
uj• = 1, with probability 1/2, m5 <IT~ + l--'--. + 09, (, (3)

1, with probability 1/2. L U
then the expected number of memories that are fixed points is

The outer-product algorithm specifies interconnection weights, Q,,, at least as large as [I - e - o(l)]m.
according to the following prescription: 3 for icn[hi, j e[nJ, Remarks: In particular, we can store at least pn /2 log pn2 

2

• umemories if all the memories are required to be stable, and at least
Sifj i, pn/2 log n memories if only most of the memories are required to

w - = =be stable. This result reduces to the capacity result for full intercon-

10, if j =i. nectivity of McEliece et al. 121 if we set p = i, i.e., no intercon-

Ino einterconnectivity model, each weight is indepen- nections are severed.
dentlyr seversed winthrcobability qmodel , eand retined wjith idpen- This result illustrates graphically the fault-tolerant nature of the t
dently severed with probability q = i - p I and retained with prsco network; specifically, the network exhibits a graceful degradation
ability p. More formally, let sj, ie[ n], j[ n] be a sequence of in storage capacity as the loss in interconnections increases. Mem-

We define the sgn function by sn x = lxxI for all x *0 and ory storage is achieved if the sparsity parameter, p, is at least of the
dn e the sorder of log n / n, i.e., each neuron retains essentially of the order 3

2 We could, if we wished, enforce symmetry in the sparse netork by of log n weights out of its original complement of n weights. In
considering the links between neurons as bidirectional so that severing a link particular, if p = K log n/n then the network can store at least
automatically produces symmetric zeroes in the weight matrix. For the K/2 memories; if p = n' for any 0 s r < I then the network
purposes of this correspondence it is immaterial which random graph model can store at least n' - '/2(2 - r) log n memories; if p is equal to a 3
we select.

Variations are possible with diagonal terms iv,, * 0, but are all function- constant 0 < c 5 I then the network can store at least cn/4 log n

ally equivalent. memories. As a graphic example, the network can loose half its I
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interconnections with essentially no change in the storage character- Now, for every real r we have cosh r < e"2 /2. Hence,
istics. If p = o(log n/n), i.e., the average degree of the intercon- N
nectivity graph is o(log n), we should, of course, expect catas- P{X_0} < inf [ p-'+Ar 2 /2 + q]- 1 pe- + q] N

trophic failure of the memory. rz0

Proof.- Let us define the doubly indexed random variables, = [I - p(l - e-/2M)]N (4)
Xi, by Recalling that M = m - l it is easy to verify that for m > 1

w , =l,..,n, a =l,...,m. I - e-1 '/ = - + +0 I> -.
J-I 2m 8m m 2m

It is readily seen that X,* > 0 implies that the ith component of the It follows that

dih memory is stable. Thus, we will require that X,' > 0 for each NP
iE[n) and ac e[m] if each of the memories istobe a fixed point of P{x( o} < 0) l- I ] exp Nlog 1- P
the network. I 2m] 2m

Let us first consider the requirements that must be satisfied for a pn
single component of a memory to be fixed. Substituting for the =exp - - + 0 - O 2 (n
weights, wj, from (1) we have 2m m mn j

( + To obtain the last equality we have used the Taylor series approxi-
=~ j~ j i) mation

j* i 0=I ./ i - )

where we define log (I - x) = -x - O(x 2 ) (x- 0)

IZ -o U= u ouiufu• and recalled that N = n - I. The condition on p and m completes
- J I the proof. 0

We hold the indices i and a fixed for the nonce, and for notational
simplicity suppress the i and a dependence of both X* and Z,.O The probability, :, that one or more components of any of the

We will need the following result which estimates the probability memories is not stable can be readily estimated by an application of

that a single component of a memory is not stable. the union bound and (4):

Lemma 1: If, as n -- co, the parameters p and m vary such that 5 nmP{Xs 0) s nm[pe- + q
pV I/m - 0, then

Note that the bound of (4) holds for all choices of p, m, and n, so
P{X < 0) s [I + o(l)] exp - j- (n - cc). that the above estimate for Y, also holds unrestricted. It is clear

that the upper bound for `, increases monotonically as m in-
Proof.- For fixed i and a, the random variables Zo are i.i.d. creases, so it suffices to prove the theorem with inequality replaced

and symmetric, and take on the values -I and 1 with equal by equality in (2) and (3). Now, with m chosen as in (2) the
probability 1/2. (This follows from the fact that the memory condition on p and m in Lenuna I is satisfied. Hence, for this
components are i.i.d., symmetric ± I random variables, and that the choice of m
distinct component us°. appears solely in the expression for Z7.)
Applying the generalized Chebyshev inequality 6f Lemma Al, we :5' [1 + o~) nmep + o(1) (n-.c)
have the following estimate for the probability that there is an error

* in the retrieval of a single component of a memory: This establishes part a) of the theorem.
P{ X 5 0) 5 inf E(e- x) In similar fashion we can establish the second part of the theorem
P{X,0) by noting that the probability that a given memory is not a fixed

= in E xp lr~jI *+ FZJ0point is bounded from above by nP{ X :5 0) by the union bound.
infE rl + For a choice of m according to (3) this probability is bounded above

0jP ,5 by e + O(1). Part b) of the theorem follows as the expected number

j [f E exp+ rZ~j9 1 + ) . of memories that are not fixed points is just m times the probability
= inifE rH -x + v that one memory is not fixed.-- rO [j*J I Sa

S The (1,0) random variables, r,,, j * i are i.i.d., as are the ±t 111. ERROR CoRREc-noN

random variable, ZJ, j * i, 6 * a. It follows that the terms in the Let us now investigate how sparsity in the model affects the
product are also i.i.d. random variables. For notational simplicity, ability of the system to retrieve fundamental memories from probes
we set M = m - I and N = n - 1. We now have which are "noisy" versions of the memories. The particular model

N xof error correction that we will investigate is the ability of the

P1 X:5 0) : inf [E exp r - , (I + F_ Z,0) }(sparse) network to correct random errors in the memories in one
ao synchronous step. As we will see, the moment inequality technique

of the previous section still serves to analyse this situation, albeit at

i= inf pEexp { (-rI + Za) the cost of some additional complexity.

rinf p~x Let 0 _5 p < 1/2 be fixed. Corresponding to each memory. u*,
we generate a random probe, ii" E W.1. by independently specifying

= Pthe components, ýi, of the probe as follows:
inf pe-'(Eeo r)' + q] U

Nu- u= , with probability I - p.
= inf [pe'(cosh r)'" + q .. , with probability p.)I~
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Note that the expected number of errors in the probe (i.e., the Let us form the random sums
expected number of components of the probe, Vi, which are not R
equal to the corresponding components of the memory, u") is pn. X = u* • w ', i i,"• n, a=I.,m. (8) I

I Wi~ = I, n, of=I m 8

Definition 1: We say that a memory, u', dominates over a j-I

radius pn if, with probability approaching one as n -. oo, the If random errors are to be corrected in one synchronous step for 3
network corrects all the errors in a random probe generated accord- each memory we will require that ,•' > 0 for each i E [nj and
ing to prescription (5) in one synchronous step. We call p aC [ml with high probability. Let us first estimate the probability
(fractional) radius of dominance of the memory. that a particular component of a memory is not retrieved in one

Remarks: An application of Lemma A.2 in the appendix yields synchronous step from a random probe. We again hold i and at
that for any 5 > 0 there is a large enough constant C such that with fixed and suppress the dependence of variables on these indices
probability 1 - 6 the number of errors in the probe lies betwen except where required for clarity.
pn - Cv-/ and pn + Cv/-f. Hence, a memory that dominates Substituting for the weights, w., from (1) in (8) we have
over a radius pn corrects random errors in essentially pn compo- b
nents with high probability. f = F -"+ (9)

An alternative-and perhaps more appealing-model for generat- i 3

ing random probes is to choose the probe at random from the
Hamming ball of radius pn surrounding the memory. The notion of where we define

radius of dominance for the memory is intuitively and geometri- - u,,0, = u
cally much clearer for this model. However, by the sphere harden- Z = - U j l ,

ing effect, almost all probes generated in this model are concen- and
trated at the surface of the Hamming ball so that the number of l" = "• a',jZ, ru~ (10) U
errors is again essentially pn. The analytical results that derive for .ii .i

this model are formally indistinguishable from the model we have
adopted in (5). The present format is, however, slightly more We are interested in estimating the probability that X :5 0, i.e., the

convenient mathematically. probability that the ith component of memory u" is not retrieved

We will prove the following theorem which is our main result of from the random probe 0' in one synchronous step. The following

this section. is the central result.
Lemma 2: Let 0 5 p < 1/2 be any desired fractional radius of

Theorem 2: Let 0 s p < 1/2 be any desired radius of domi- dominance, and let r be a fixed parameter with 2/3 < r < i. If, as
nance, and let the sparsity parameter, p, satisfy p = fl(log" n/n) n - a, the sparsity parameter, p. and the number of memories,
for some fixed y > 3. For any e > 0. we then have the following. m, vary such that pn -- o and m = 0l((pn)') then

a) If. as n - o,, we choose the number of memories, m, such (I - 2p)2pn
that P1{X 50) !5[1 +o(l )] exp( (l2m (n 0).

(I - 2p)2 pn[ loglog pn2 + log2e/(l - 2P) 2  (11) 3
2logp- 2  1 + log pn 2  Proof. The demonstration is in three parts. We first show that

log log pn 2 the sum over the index j in (9) can be formally replaced by a sum

- lO log2 2 (6) over essentially pn indices; we next show that the random variable

log P k" can be formally replaced by the fixed value (1 - 2p)pn; we
finally invoke the inequality involving the moment generating func-

then the probability that all m memories dominate over a tion described in the previous section to complete the proof.
radius pn is at least as large as I - - o(1). Let J _C [n]\ {i} be the random subset of indices defined by

b) If, as n -o, we choose the number of memories, m, such

that J {j: a',= I}.

- p 2 1W e th e n h a v e E(Il-2p)Pn p1• n f log___ ( ! (l ~g n)2 )2)

2logn logn (log, n) (7) 0 *z (

then the expected number of memories that dominate over a Let the random variable A = J I denote the cardinality of J. 3
radius pn is at least as large as (I - E - o(l)jm. Clearly, A = Ejjvrj. It follows that

Remarks: We can store at least (I - 2p)2pn/2 log pn 2 memo- E(A) = pN,

ties all of which dominate over a radius pn, and at least (I - where we set N = n - l as before. Let 6 be chosen such that I
2p)2pn/2 log n memories most of which dominate over a radius (I - r)/2 </ < 1/6. An application of Lemma A2 yields U
pn. These lower estimates of capacity are also tight from above.
This can be demonstrated extending the technique used by McEliece, P{ I A - pN I > (pN)" 2 ") = O(e-c,(p)). (13)
et al. 12). The proof, as in the original, is long and replete with N
technical details. We will not go into it here. Now, from (10) we have

Proof. We will first estimate the probability that a single Y. ZU iT'.

component of a memory is retrieved from a random probe. The use Ije
of the union bound, as before, will then complete the proof of the By independence of the components of the memories, the expecta- -
theorem. tion of Y conditioned upon a sample realisation of the random set of I
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indices J depends only on the cardinality, A, of J. Hence, Hence, we have

EY= r_,E(kI A=k)PlA=k k) PP~Z Z _y Y=y,
k-O allowable y. J' jE.r•* a3NN -)(l p)p-= (l_2p)pN. J=J',SY P{ =y, J=J'IY)E •k(l -2p) (k)( ~p I-2~N
k-0O k+00

Using (13) and the large deviation Lemma A2 hence yields + O(ec)( P1)25)

Pf{] I- (I - 2p)pN[F> (pN)1/2 + = O(e-C2(PN) 2
.) (14) allowabley, P Je -YU Let Y be the set of sample points over which the following P = y, J = JX } + O(e-c3(Pf 26

)

inequalities hold jointly: = f(X, y)P{ =y, J = J' I }

SA - PN s (PN) /2+, allowable y. J'

/2+8+ O(e-C3(pn"),S " - (I - 2p)pNI < (pN)' 1 2 . where X = ' I. For allowable X and y, however, we have

From (13) and (14), we then have IX-pNI =O((pN)'12+6 ),

P{.Y) = I - O(ec3(PN)"). (15) Y - (I - 2p)pNI = O((pN)l12+6),
by definition. The bound (17), hence, holds for every term, f(X, y),

We say that an assignment of values to A and Y is allowable if in the sum above. It follows that
they occur in .Y. A subset of indices from [n] \ {i} is allowable if
the number of indices in the set is allowable.

Let us now return to a consideration of (12). Using (15) we have P{ :5 0} _ 1 + 0 mI from elementary considerations that

Si s•*- CIlThe exponent (pn) 26 dominates pn/m as m = f((pn)') and
26 > I - -r. Further, (pn)" 2'7+6m = o(l) as 112 + 6 < r. The

=P{Z - y + O(e-CPN)'). (16) statement of the lemma follows.
I a*a As before, the probability that one or more memory components

t Pis not retrieved increases monotonically as m increases, so itLet .p'ot [n\{i} be any subset of indices, and let X . suffices to show that the theorem holds with m given by equality in
For positive X and y define (6) and (7). Now let y > 3 be as in the statement of the theorem,

and set r = I - I/-y. A choice of a number of memories according
f3(, y) P1 F -F - • to (6) or (7) satisfies the requirements of Lemma 2, so that the

jej•. 0*0asymptotic bound of (11) holds for the probability that a single
Applying Lemma AI as in the last section, we have memory component is not retrieved from a random probe.

The theorem is now proved using the union bound as in the last

f (X,, y) s inf e- e- - g e-y'/2 . section. 0

IV. CONCLUSION
Now consider a choice of X = pN ± O((pN)'I2 +6 ) and y = (I -
2p)pN ± O((pN)"2 +6 ). Recalling that N = n - 1, M = m - 1, The results of this correspondence and those of Koml6s and

and that from the statement of the lemma pn -. o and m = Paturi [6] imply that the folk theorem on robustness is well founded

fl((pn)') - oo for 2/3 < 7 < i, we have in situations where there is a distributed storage of information in
the network. In such instances the neural network would appear to

l -l_2 p)2pN ((pN),2+) }be relatively resilient to the loss or damage of interconnection
AX !weights. For the outer-product algorithm, in particular, each neuron

needs to retain only of the order of fl(log n) interconnection
weights out of a total of n possible links with other neurons for

1+0 ____7 __ .1/ + ______2______ useful associative properties to emerge. These results also appear to
- + (pn)i'•" ep __÷__

S2m generalize to other, more complex situations, and this is under

investigation.
(17) In an evocative alternate line of thought we could consider

Usituations where the devil in the network is not malicious but is
The last equality follows from the choice (I - u)/2 < 6 < 1/6; this actively well disposed towards producing useful sparse structures.I yields 1/2 + 6 < 2/3 < r so that by choice of m = fl((pn)') we The issue here is whether we can exploit carefully designed sparsity
have (pn)' 2 +6 = o(m). to design codes (families of allowed subsets of memories) which

Returning to (16) we note that the random variables 20 are have high storage capacities. Specifically. we would like to store
independent of the random variable k and the random subsets J. large numbers of memories (high capacity) where the allowed sets
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of fundamental memories that can be picked is specified by a (large) Balanced (Codes and Nonequiprobable Signaling
code. The intuition here is that large gains in storage capacity may
be obtained by excluding certain pathological sets of memories from A. R. Calderbank. Member, IEEE, and M. Klimesh i
consideration in the code, and that such resulting codes may be
designed to fit suitable sparse architectures. We provide an illustra- Abstract-The problem of shaping signal constellations that are de-
tion of the gains that are possible in a succeeding paper [7]. signed for the Gaussian channel is considered. The signal constellation I

consists of all points from some translate of a lattice A, that lie within a
APPENDIX A region -4. The signal constellation is partitioned into T annular subcon-

stellations Q.0,". " " , - by scaling the region .-. Signal points in the
LARGE DEVIATIONS same subconstellation are used equiprobabl), and a shaping code selects

region 0, with frequency f,. If the signal constellation is partitioned
We quote the following tchnical lemmnas without proof. L~emma into annular subconstellations of unequal size, then absent some clever-

Al is a generalisation of the classical Chebyshev inequality and ness, the transmission rate will vary with the choice of codeword In the
provides a large deviation estimate in terms of generating functions. shaping code, and it will be necessary to queue the data [a buffers. It is

described how balanced binary codes constructed by Knuth can be used
Lemina A2 is a straightforward gneralisation of a classical large to avoid a data rate that Is probabilistic. The basic idea Is that ifdeviation central limit theorem for sums of binary random variables symbols 0 and I represent constellations of unequal size, and if all

which provides good uniform estimates for the probability that the shaping codewords have equally many 0's and I's, then the data rate
sum has a large deviation from the mean. (The corresponding will be deterministic.

version of the result for indicator random variables (taking values 0 Index Terms-Bandwidth efficient communication, shaping codes, i
and 1 only) can be found, for instance, in Feller's text 181.) nonequiprobable signaling.

Lemma AP: Let X be a random variable and x > 0 any
nonnegative number. Then 1. INTRODUC'nON

We start with a basic region z? in VN, and by scaling we obtain
P{X < -x) :5 infe-rxE(e-rX). a nested sequence . = a, 1, at :I-.. , ort_ - of copies of -4.

rz 0 Let 0 be the signal constellation comprising all points from (some

Lemma A2: Let x, < x 2 be any two real numbers and let {I'r} fixed translate of) a lattice A that lie within the region a T I-
be a sequence of i.i.d. random variables drawn from a sequence of Then go=- AO JR and fl,=An(a p\, i= .

Bernoulli trials with - 1, give a partition of 01 into annular subconstellations with
increasing average power.

x,, with probabity q = -p, The reason we consider signal constellations drawn from lattices
X2p is that signal points are distributed regularly throughout N-dimen-
S= x2 , with proability p, sional space. If signals are equiprobable. then the average signal

X power P0  of the constellation Go is approximately the average
where 0 < p < 1. For each K let S j ,_ = 'j- If as K -"o• the popower P( .z) of a probability distribution that is uniform within
real number v varies such that v/ vK- on and zero elsewhere; thus

_ o(K213), if p *q, N J1  III 11 X11

=o(K3/4), ifp=q= 1/2, Po"P(it) = NV( R) fa du. (1)

t h e n X w h e r e V

J k~2 QCv(s) = fd

P{ISK - X(px2 + qx 1)I > V(x 2 x)v

is the volume of the region 9. We rewrite (1) as
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Abstract

Neural associative memories viewed as a coding system have been subject to the criticism that the
codes have very low rates. In a fully-interconnected network of n neurons, for instance, the outer-product
algorithm has a storage capacity of the order of n/logn memories: specifically, almost all choices of
n/4 log n memories are stored as fixed points by the outer-product algorithm when the interconnectivity
graph has degree n. In this communication it is shown that storage capacities, C-the maximum number
of memories that can be stored-can be improved substantially at the expense of the size of the code-
the family of admissible C-sets of memories. In particular, a relation between code size, capacity, and
degree of the interconnectivity graph is shown: for any r < 1, a constant c > 0 and a code of size

2" can be found such that it is possible to achieve memory storage capacities which are 0 (2"')

in recurrent neural networks with interconnectivity graph of degree 0 (W-1). Thus, near-exponential
capacities can be obtained for codes which are still exponential in size. An interesting and useful side
effect of the constructions employed in this paper is that large capacities can be obtained in very sparsely
interconnected structures for suitably chosen codes.

1 INTRODUCTION

I A folk theorem in neural computation asserts that dense interconnectivity is a sine qua non for efficient usage
of resources, and, in particular, that sparser structures exhibit a degradation in computational capability.
This communication represents an effort to formally examine this tenet in the context of neural associative
memory and a recurrent neural network structure. An appreciation of the results may be best produced in
terms of a coding theoretic analogue. The memories to be stored can be thought of as codewords with the
neural network being the decoder which corrects errors in memories. Any set of memories to be stored is
chosen from a collection of admissible sets of memories which forms the code. In applications hitherto the
code has typically been the set of all subsets of binary vectors-the power set of {-1, 1Q". An algorithm

".The support of research grants from E. I. DuPont de Nemours, Inc. and the Air Force Office of Scientific Research (AFOSR
89-0523) is gratefully acknowledged.

""There have been some explorations, however, of sparse encodisp, which has particular significance when the vector rep-
resentation of the codewords (or memories) is in terms of I's and O's instead of I's and -l's. In such cases the codewords
(or memories) are typically chosen such that the number of components taking value I is small compared to the number of
components taking value 0. In terms of electrical circuit realisations of such networks, each memory can be represented by
relatively few active electrical lines. The code corresponding to such a sparse encoding is dearly much more dilute.
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for neural associative memory is a procedure which, given an admissible set of memories from a given code, I
produces a network which stores the memories (typically as fixed points). For a given code the two main
parameters characterising the efficacy of an algorithm are the capacity-the largest admissible set of memories
that can be stored by the algorithm-and the attraction radius-the number of component errors in any I
memory that can be corrected by the network. With a code consisting of all subsets of binary n-vectors, the
outer-product algorithm, for instance, has a capacity of the order of n/logn memories correcting a linear
number of random component errors [1, 2].

In the general case the network may not be fully-interconnected, but may have connections specified by
an interconnectivity graph which may be rather sparse. If we still insist that almost all choices of memories
within capacity be stored-i.e., the code consists of all subsets of f-1, 1)n-then the capacity of an algorithm
inevitably decreases as the degree of sparsity increases.t In an evocative alternate line of thought, however, a
we might consider designing codes which are proper subsets of {-1, 1)" to take advantage of a given sparse
interconnectivity structure. This is the situation examined in this paper. The main result that emerges from
our investigations is the following: for any r < 1 we can achieve memory storage capacities which are fQ (2n') )
in recurrent neural networks with interconnectivity graph of degree 0 (nl-) for carefully chosen codes of
log-size 8 (n-r). (In other words, we can find an exponential number of choices of 2"' memories that can
be stored as attractors in suitably chosen sparse networks.) The trade-off here is in increased capacity at
the expense of code size. Interestingly, increased sparsity in the interconnectivity graph can increase storage
capacity-for code choices which, as it will turn out, are exponential in size as long as the interconnectivity
graph has degree f)(log n). The design methodology here lies in the choice of the code (subsets of admissible
memories) as a function of the network sparsity, and the selection of an algorithm to specify the strengths of I
the interconnections for the given interconnectivity graph as a function of the memories to be stored. Note

that unlike the situation in the fully-interconnected case (the interconnectivity graph having degree n), all
possible choices of m = fn (2"') memories cannot be stored in the sparse network. Rather, the memories to
be stored must be taken from the set of admissible memories which form the code.

In the next section we briefly review the neural model and formally introduce the notions of codes and
capacity in the context of neural associative memory. In section 3 we introduce a simple model of block
sparsity where the neurons are partitioned into mutually non-communicating sets. For this structure we U
demonstrate a code which is sufficiently rich while yielding large capacities for the classical outer-product
algorithm. In section 4 we show how the results for the simple block sparsity model extend to other sparse
structures, and in particular, the nested model introduced by Baram [5]. We present a generalisation of U
a spectral based algorithm for the block sparsity model in section 5, and show concomitant increases in
capacity. Theorems are stated in the body of the paper while their proofs and relevant technical lemmas are
developed in sequence in the appendices. a
Notation We employ usual asymptotic notation, and introduce two (non-standard) notations: if {z,} and
{y,,} are positive sequences, we say that

*z = 11(y•,) if there exists K such that z,/yn > K for all n;

"• zn = 0(yn) if there exists L such that zn/Y,, <_ L for all n;

"* zn = 0(y) if z, = fl(yn) and z, = O(Yn);I

" Zn .Y if •n/Yn --- 1 as n -- oo; we also say that zn Z Yn if zn >_ y, for n large enough, and

Zn y yn if xn _< y, for n large enough; I
" zn= O(yn) if Zn/Yn - 0 as n -- oo.

We denote by lB the set {-1, 1), and by [n] the set of integers {1,2,... ,n). By ordered multiset we mean
an ordered collection of elements with repetition of elements allowed. We will use the terminology tn-set and

ordered multiset of size m interchangeably. All logarithms in the exposition are to base e.

tThe decrease in capacity with increased sparsity is not catastrophic, however, and network performance as an associative 3
memory degrades gracdully (3, 4].

1
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2.1 Recurrent Neural Networks

A neuron (after McCulloch and Pitts [6]) is formally a linear threshold element characterised by n real
weights, w E laW, which, in response to a vector of n (real or binary) inputs, u, produces a binary output,
v E IB, as the sign of the weighted sum 2";=I wjuJ.I

We consider a network of n formal neurons. The state of the network at any epoch is the n-vector,
U E 1Wn, of neural outputs at that epoch. Neural outputs at each epoch are fed back and constitute the
inputs to each neuron at the next update epoch. The allowed pattern of neural interconnectivity is specified
by the edges of a (bipartite) interconnectivity graph, G,, on vertices, (n] x [n]. In particular, the existence of
an edge {i,j} in Gn is indicb iat the output of the j-th neuron is fed back as input to the i-th neuron.
The network is characterised by an n x n matrix of weights, W = [wtq], where wij denotes the (real) weight
linking the output of neuron j to the input of neuron i. (We adopt the convention that a weight, wij, is
zero if {i, j) V Ge.) If u E 11n is the current state of the system, an update, ui p- u' of the state of the i-th
neuron is specified by the linear threshold rule

U = (j :( G.wi , Uj

The two extreme modes of neural updates are synchronous, with every neuron being updated in concert, and
asynchronous, with at most one neuron being updated at any instant. Mixed modes of operation between the
two extremes are, of course, feasible. For any mode of operation the network dynamics describe trajectories
in a state space comprised of the vertices of the n-cube.

The utility of this network model as an associative memory hinges upon the observation that under
suitable symmetry conditions there are Lyapunov functions for the system [7, 8]. In particular, for each
state u E IBn define the energy function, E(u), as the quadratic form

E(u) -"-E wjuiuj = -(u, Wu).i=1i j=1i

If W is symmetric, non-negative definite, then the function E is non-increasing along any trajectory in any
mode of operation (9].

We can, hence, think in terms of an "energy landscape" with states embedded in it. Trajectories in
this landscape tend to go "downhill." States which form local "energy" minima, hence, determine system
dynamics; each such state possesses a basin of attraction comprised of neighbouring states of higher "energy"
which are mapped into the state at the local minimum. This geometric picture is particularly persuasive
for an associative memory application where we wish to store a desired set of states-the memories-as
fixed points of the network, and with the property that errors in an input representation of a memory are
corrected and the memory retrieved. The challenge here is to choose a matrix of weights such that the
desired memories are located at energy minima.

Let u E IB" be a memory and 0 < p < I a parameter. Corresponding to the memory u we generate a
probe it E 113 by independently specifying the components, fij, of the probe as follows:

= uj with probability 1 - p (1)-uj with probability p.

We call u a random probe with parameter p.

Definition 2.1 We say that a memory, u, is a monotone p-attractor if, with probability approaching one
as n --. 0o, the network corrects all errors in a random probe with parameter p in one synchronous step. We
call p the (fractional) attraction radius. We also say that u is stable if it is a monotone 0-attractor.

$The model allows for a real 1hreshold as well, but this will not be important to our discussion. We will throughout assume
a zero threshold for each neuron. We also adopt the convention sgn 0 = 1.

I
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REMARKS: Note that stable memories are just fixed poilLs of the network. Also, by the Borel strong law, I
the fraction of the number of components in the probe which are in error (i.e., not equal to the corresponding
components of the memory) is concentrated at the expected value p.I

For m > 1 let ul, ... , u" E I? be an m-set of memories to be stored. The outer-product algorithm
specifies the interconnection weights, wii, according to the following rule: for i E [n], {i,j} E G.,

wj = (2)

In the fully-interconnected situation, for instance, W is symmetric, non-negative definite so that suitable
associative properties result. In general, if the interconnectivity graph, Gn, is symmetric then, under a
suitable mode of operation, there is a Lyapunov function for the network specified by the outer-product
algorithm.I

2.2 Codes and Capacity

For given integers m > 1, n > 1, a code, X', is a collection of ordered multisets of size m from l3n. We
say that an rn-set of memories is admissible iff it is in X .1 Thus, a code just specifies which m-sets are
allowable as memories. Henceforth when we refer to a memory we mean a binary n-tuple in some admissible
set from a code Xg. Examples of codes include: the set of all ordered multisets of size m from I1W; a single I
multiset of size m from I1W; all collections of m mutually orthogonal vectors in 1Wn; all rn-sets of vectors in
11n in general position.

Clearly, if all memories in an admissible m-set of memories are stable (or are monotone p-attractors),
then so are the rn! ordered multisets generated by all permutations of the original rn-set. (For m linear in n,
for instance, the number of permutations is of the order of 2 ,nlng" for some constant c.) We hence need to
guard against defining trivial codes generated by permutations of a few basic ordered multisets of memories.
Define two ordered multisets of memories to be equivalent if they are permutations of one another. We define I
the size of a code, JX'I, to be the number of distinct equivalence classes of m-sets of memories. We will be
interested in codes of relatively large size: log IJA'/n --. oo as n -- oo. In particular, we require at least an
exponential number of choices of (equivalence classes of) admissible rn-sets of memories. For a given code, I
X, we confer a probability distribution on memories by choosing an m-set of memories from the uniform
distribution on K.n

For each fixed n and interconnectivity graph, GC, an aloaorithm, X, is a prescription which, given an
rn-set of memories, produces a corresponding set of interconnection weights, wj, i E [n], {i,j) E GC. Let

rm, r > 1, n >_ 1 be a doubly-indexed sequence of codes, and let X be an algorithm (corresponding to
an underlying interconnectivity graph, G,). For m > 1 let .A(ul,... ,u m ) be some attribute of m-sets of
memories. (The following, for instance, are examples of attributes of admissible sets of memories: all the I
memories are stable in the network generated by X; almost all the memories are monotone p-attractors.)

For given n and rn, we choose a random rn-set of memories, u1 , ... , umn, from the uniform distribution on
K%~. I

Definition 2.2 A sequence, {C,,)n-, is a capacity function for the attribute A (or A-capacity for short) if
for A > 0 arbitrarily small: I

iAn alternative-and perhaps more appealing-model for generating random probes is to choose the probe at random from
the Hamming ball of radius pn at U. The notion of a radius of attraction is intuitively and geometrically much dearer for this
model. However, by the sphere hardening effect, almost all probes generated in this model are concentrated at the surface of
the Hamming ball surrounding the memory, so that the number of errors is again essentially pn. The analytical capacity results I
that derive for this model are formally indistinguishable from the model we have adopted in equation (i), though the technical

details are somewhat different. The present format is, however, slightly more convenient mathematically.

VWe define admissible m-sets of memories in terms of ordered multisets rather than sets so as to obviate certain technical

nuisances.

I
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3a) P {A(u
1 ..... urn) - 1 as n - oo whenever m < (1 - A)C.;

b) P fAM(ux ...... u'•)) -. 0 as n -- oo whenever m. > (1 + \)C,.

I We also say that C. is a lower A-capacity if property (a) holds, and that C,. is an upper AM-capacity if
property (b) holds.

REMARK: The capacity function implicitly depends upon the sequence of interconnectivity graphs, G.,

the sequence of codes, Kn', and the algorithm, X, as well as on the desired attribute, A, of the memories.

3 BLOCK SPARSITY

Sparse interconnectivity graphs are of importance in practical realisations, Besides the obvious advantages
in programming when there are relatively few weights, cost considerations strongly favour sparse intercon-
nectivity as interconnections dominate the silicon real estate in hardware realisations of these networks.

One of the simplest forms of sparsity we might enjoin is block sparsity where the neurons are partitioned
into disjoint subsets of neurons with full-interconnectivity within each subset and no neural interconnections
between subsets. The weight matrix in this case takes on a block diagonal form, and the interconnectivity

graph is composed of a set of disjoint complete bipartite sub-graphs.
More formally, let 1 < b < n be a positive integer, and let {Ix,.. 1.} partition In] such that each

subset of indices, I4, k = 1 ... , n/b, has size JIkJ = b.0 We call each I4 a block and b the block size. We
specify the edges of the (bipartite) block interconnectivity graph BGn by {i,j} E BGC iff i and j lie in a
£ common block. For any given in-set of memories, ul. . ,u, we specify the interconnection weights, wij,
i E [n], {i,j} E BG,, by the outer-product algorithm of prescription (2).

Proposition 3.1 With interconnectivities specified by the block interconnectivity graph, BGn, and weights
by the outer-product algorithm, the energy function, E, is non-increasing along any trajectory in any mode
of operation.

3 PROOF: Let Wk be the sub-matrix of weights corresponding to the components of block Ik. Note that
Wk is symmetric, non-negative definite for each k = 1, ... , n/b. Now, for any vector u E IBn, let uk E lB5

denote the binary b-tuple of components of u in block Ik. We can then write the energy function as

n/b n/b

-E(u) = -(u,Wu) = -E uk, Wkuk) = E-E&(u&),
k=1 k=1

where, for each k, Ek denotes the energy function for block l4. As the blocks are disjoint, two distinct vectors
uk and ul do not share any components. Consequently, each Ek is non-increasing along any trajectory in

i IB", and thus, so is E. I

Let CKX' denote the complete code of all choices of ordered multisets of size rn from IB'.

Theorem 3.2 Let the block size b be such that b = f(Iog n) as n - oo, and let 0 < p < 1/2 be a fired
attraction radius. Then, for block interconnectivity graphs BGC, complete codes CK'., and the outer-product
algorithm, the monotone p-attractor capacity is (1 - 2p) 2 b/2 log bn.

5 Corollary 3.3 Under the conditions of theorem 8.2 the fired point memory capacity is b/2 log bn.

NHere, as in the rest of the pape, we ignore details with regard to rounding to the nearest integer in an effort to simplify
notation. The modifications to be made for formal correctness will be obvious, and do not affect the results.

I
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Corollary 3.4 For a fully-interconnected graph, complete codes CKn', and the outer-product algorithm, the 5
fixed point memory capacity is n/4 log n.

Corollary 3.4 is the main result shown by McEliece, et al [1]. Theorem 3.2 is a slight extension of the
result and shows the natural result that increased sparsity causes a loss in capacity if the code is complete, I
i.e., all choices of memories are considered admissible. It is possible, however, to design codes to take
advantage of the sparse interconnectivity structure as the following simple construction indicates.

Without loss of generality let us assume that block I, consists of the first b indices, [b], block 12 the
next b indices, [2b] - [b], and so on, with the last block I,,/, consisting of the last b indices, [n] - [n - b]. We
can then partition any vector u E IB" as

U2
U =(3)

UnlbI

where for k = 1, ... , n/b, uk is the sub-vector of components corresponding to block Ik. For M > I we form
the block code BKM /b as follows: to each ordered multiset of M vectors, u1 , ... , uM from IBn, we associate

a unique ordered multiset in BKX,," by lexicographically ordering all Mn/4 vectors of the form(-,
U1•

n/ J , aP,, 2 ,... ,•,a/& E [M].
Un/b

Thus, we obtain an admissible set of Mn/b memories from any ordered multiset of M vectors in 113 by
"mixing" the blocks of the vectors. We call each M-set of vectors, u1 , ... , uM E IB3, the generating vectors
for the corresponding admissible set of memories in BXM'l .

EXAMPLE: Consider a case with n = 4, block size b = 2, and M = 2 generating vectors. To any 2-set

of generating vectors there corresponds a unique 4(=Mn/b)-set in the block code as follows:

U I u 2 u I u I u 2 U 2

I
The basic idea behind the formation of the block code is that if each sub-vector u' is stable with respect

to the fully-interconnected submatrix of weights Wk (i.e., the energy Ek(u*) is a local minimum) then the
vector u is stable with respect to the matrix of weights W (i.e., the energy E(u) is also a local minimum) for I
the block interconnectivity graph BG,,. Thus, we can mix any combination of stable vectors u* to obtain
a stable vector u. Consequently, if we choose M small enough that for most choices of M vectors, u1 , ...
uM, in 11'3, each of the vectors u*, a = 1, ... , M is stable for each of the blocks k = 1, ... , n/b, then we can
generate a relatively large number of stable vectors (M"/b in number) by mixing the blocks. We will take
care of technical details in the appendix: specifically, we need stability of M vectors for a large number of
n/b blocks simultaneously; further, to estimate capacity when there is error-correction we will have to guard
against the possibility that pn errors in a memory translates into a disproportionate share of errors in one I
or more blocks.

Theorem 3.5 Let 0 < p < 1/2 be a fixed attraction radius. Then we have the following capacity estimates
for block interconriectivity graphs BG,,, block codes BK', and the outer-product algorithm: I

I
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Ba) If the block size b satisfies n log log bn/b logbn -- 0 as n--- oo then the monotone p-attractor capacity

is
[(1 - 2pl2,]l"/"

2logbn

b) Define for any v W( WC b.. 12l -2 0)2 +

C ,,O/) = 2; w a.. •r(- . .

If the block size b satisfies b/logn -- oo and blog bn/loglogbn = O(n) as n -- oo, then C.(V) is a lower
monotone p-attractor capacity for any choice of v < 3/2 and Cn(v) is an upper monotone p.attractor
capacity for any v > 3/2.

Corollary 3.6 If, for fixed t > 1, we have b = n/i, then for any fixed attraction radius 0 < p < 1/2, graphs
BGn, codes BKX', and the outer-product algorithm, the monotone p-attractor capacity is

£ (1- 2 P)29t- 4 ` (-n

Corollary 3.7 For any fixed attraction radius 0 < p < 1/2, and for any r < 1, a constant c > 0 and aI code of size (2en -') can be found such that it is possible to achieve lower monotone p-attractor capacities

which are f0 (2"') in recurrent neural networks with interconnectivity graph of degree e (nl-v).

REMARKS: If the number of blocks is kept fixed as n grows (i.e., the block size grows linearly with n) then
capacities polynomial in n are attained. If the number of blocks increases with n (i.e., the block size grows
sub-linearly with n) then super-polynomial capacities are attained.U
4 NESTED SPARSITY

3 Recently, Baram 15] has proposed the investigation of certain nested codes geared towards exploiting certain
classes of sparsely interconnected neural networks. The basic model can be described in terms of a nesting of
block interconnectivity graphs: a hierarchy of blocks is defined with blocks at any given nesting level derived
recursively from blocks at the previous level. More precisely, let b as before denote the block size, 1 < b < n,
and let the positive integer 1 < h < log n/logb denote the nesting depth. For each nesting level I = 1,
h, we recursively define a disjoint collection of blocks, I', ... , Ib', as follows.

BASE: As in the block interconnectivity graph, at nesting level 1 the blocks I, ... , Il1 partition [n],
with each block having size b.

RECURSION: Let If, ... , IL, be blocks corresponding to nesting level 1. For k = 1, nb-1 let
i E Ik be a specification of indices. The blocks corresponding to nesting level (I + 1) are now chosen so as
to partition the specified set of indices {4i,... il.,), and such that each block has size b.

We specify the edges of the (bipartite) nested interconnectivity graph NG, by {i,j) E NG" iff i and
j lie in a common block at any nesting level. The nested code A1K' we consider is just the block code
defined for the lowest nesting level, I = 1. Again, for any m-set of memories, u1, ... , u', we specify the

interconnection weights, wi., i E [n], {i,j) E NG,, by the outer-product algorithm of prescription (2).
The nested interconnection graph structure is very similar to that of the block interconnection graph

with fully-interconnected disjoint subsets of neurons. For the nested structure, however, a small number of

interconnections are permitted between blocks. At the first nesting level the structure is that of the block
interconnectivity graph with n/b disjoint blocks of fully-interconnected neurons. For the next nesting layer,
one neuron is specified from each of the n/b blocks of the first layer and these are grouped into n/b 2 blocks of
fully-interconnected neurons. Thus, a specified neuron in each block in layer 1 is permitted connections with

neurons in an additional b - 1 blocks. This exercise is repeated recursively for each of the remaining layers.

I
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We hence have essentially a block interconnectivity graph except that certain rare "long range interactions" U
are allowed across blocks of fully-interconnected neurons. The intuitive idea behind this setup is to have a
sparsely interconnected network very reminiscent of a block structure in which a certain limited amount of
communication is allowed between blocks of distinct features. 3

It turns out that the ideas developed in the analysis of block sparsity can be applied to nested structures
as well, and in fact, the relatively small number of inter-block interconnections do not alter capacity.

Theorem 4.1 Consider nested interconnectivity graphs NGn with block size b and nesting depth h, nested I
codes AKKX', and the outer-product algorithm. Then, for any 0 < p < 1/2, the monotone p-attractor capacity
estimates of theorem 3.5 continue to hold under the same conditions on block size b. In particular, the
capacity estimates are independent of the nesting depth. I
5 SPECTRAL ALGORITHM I
The spectral algorithm was proposed (cf. Venkatesh and Psaltis [9] and Personnaz, et al [10]) as an alternative
to the outer-product algorithm in the context of neural associative memory. At the expense of some additional
algorithmic complexity the algorithm circumvents the need for orthogonality of memories in the outer- I
product algorithm and improves the fixed-point storage capacity from the sub-linear capacities that obtain
(for fully-interconnected networks) to capacities linear in n [9]. Concomitant increases in capacity may now
be obtained for block interconnectivity graphs and block codes by extending the spectral algorithm in a I
manner analogous to the treatment earlier.

More specifically, consider a block interconnectivity graph BGn with block size b, and the block code
BK)' .b(As before, assume the indices are assigned sequentially to the blocks 11, ... , I,,/b.) Consider a

choice of an admissible Mn/b-set of memories from BXK•lb corresponding to the M-set of generating vectors,
u1, ... , uM E IV. Now consider the k-th block, k E [n/b]. Define the b x M matrix of column vectors

U&[ 1  U2 .. l.uk= Iu uk k.

(Recall that uf is the vector of components corresponding to block Ik of the generating vector ua.) Let ,
AkM be fixed positive numbers and let Ak = dg(A&I,.... ,Aktm). For each k define the sub-matrix of

weights, WL, corresponding to the components of block Ik by

W -= UkAkUt, I
where Ut denotes the pseudo-inverse of Uk. (If Uk is full-rank then UIt = (TU )-UT, where 4 denotes
the transpose of Uk.) The above prescription generalises the spectral algorithm to block interconnectivity
graphs and block codes. [The case of a single block (b = n) yields the original algorithm.] I
Proposition 5.1 For each k, let Akl = ... = AkM = Ak > 0, and assume thai AM generating vectors are
chosen from a sequence of symmetric Bernoulli trials. Then with interconnectivitics specified by the block
interconnectivity graph, BG, and weights by the spectral algorithm, the energy function, E, is non-increasing
along any trajectory in any mode of operation with probability approaching one asymptotically.

PROOF: As before, E(u) - sn/b En(u'), where Eg is the energy function corresponding to block Ik.
Now each Uk is full-rank with probability approaching one asymptotically as a consequence of a theorem of
Kahn, Komni6s, and Szemer~di (see Appendix E). Thus, with high probability, each sub-matrix of weights,

Wk, is of the form Wk = AkUk (UkUk)- Uk. Thus, W1 is symmetric and its only eigenvalues are 0U
and Ak > 0, so that it is non-negative definite. Consequently, Ek decreases along any trajectory with high
probability, and hence, so does E. | g

I
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ITheorem 5.2 If the block size satisfies b/logn -* oo as n - oo then, for block interconnectivity graphs
BGn, block codes BK', and the spectral algorithm, the fixed point capacity is bn/6.

Corollary 5.3 f, for fixed 1> 1 the block size b = n/i, then under the conditions of theorem 4.1 the fired
point capacity is t-'n'.

3 Corollary 5.4 If, for fixed 0 < r < 1, the block size b = n', then under the conditions of theorem 4.1 the
fixed point capacity is n"nl-'.

In particular, slightly better capacities obtain for the same code sizes than for the outer-product algorithm.
The main technical problem here concerns the stability requirement that all the matrices U5 be full rank.

I 6 CONCLUSIONS

We have demonstrated that code size can be traded off for increased storage capacity, and that very large
capacities obtain for carefully selected codes which are still exponential in size. The analysis carried out here
for block sparsity where we have a uniform block size can be readily extended in obvious fashion for non-
uniform block sizes, where each block I has a distinct block size bk. For instance, if each b5 = e(n) then the
monotone p-attractor capacity for graphs BG. (with these block sizes), codes BAC', and the outer-product
algorithm becomes I'I (1 - 2p) 2bt/21ogbkn. (The block code is again formed in the indicated manner by
mixing blocks.) Nesting blocks does not change the intrinsic capacity significantly; however, nesting may be
used as a vehicle for introducing "long range interactions" between distinct blocks of features.

A feature of the analysis of block sparsity in this paper is that we confer a probability distribution on
admissible memories from the uniform distribution on the code. The probability distribution we consider
is, hence, on ordered multisets of memories and not on individual memories; in particular, the distribution
is not a product distribution (except in simple cases such as the complete code). This may be seen as a
limitation in the technique espoused here. We do not currently know whether it is possible to simultaneously
achieve large capacities and code sizes to take advantage of specific sparse structures with memories drawn
from a suitable product distribution. A general open question along these lines is the design of codes of large
size and achieving large capacity for any given (sparse) interconnectivity graph.

A Preliminary Lemmas
Consider a set of N fully-interconnected neurons. Let u1, ... , uM E IaN be an M-set of memories with

components drawn from a sequence of symmetric Bernoulli trials, i.e., the memory components are i.i.d.
with3 P{u9"=-1}=P{(u?=1)=l/2, i=l,...,N, a=I,. .,M.

Note that we are considering the complete code here and that the product distribution on memories above
induces a uniform distribution on admissible M-sets of memories in the code CKX'. The weights are specified3 by the outer-product algorithm. Specifically,

M

I l

Let 0 < p < 1/2 be the desired attraction radius. Corresponding to each memory, u*, let A* denote a random
probe at mean distance pn from u0 generated according to prescription (1). If each of the m memories is to
be a monotone p-attractor then we will require that each of the NM random suns

N
* = u? i=1,..., N, a=1,... ,M,

I=

I
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be positive with high probability. Form the random variables I
uj u ý , j = -1, N, 6 1,... M, (4)

Substituting for the weights wi, we then have

X* = Y,* + ZT, (5) I
whr E == e + Mc.', (6)

and
(7)Z~i a = Ec

Let us begin by estimating the probability that a particular memory component is not retrieved from a

random probe in one synchronous step. We need the following technical result on large deviations.

Lemma A.1 Let z, < z 2 be any two real numbers and let ((j4 be a sequence of i.i.d. random variables 3
drawn from a sequence of Bernoulli trials with

= z, with probability q = - p
2z with probability p,

K

where 0 < p < 1. For each K let SK = j If as K - oo the real number v varies such that

v/VK- oo and
V o(K2/ ) iffp$ q
te o(K31 4) if p-q= 1/2 I

then

P {SK - K(pX2 + qZl) < -V(Z 2 - Z)} - P {SK - K(pz2 + qzl) > v(z 2 - ZI)} - VP/ e-"'pqK

The result is just a slight extension of the classical large deviation form of the DeMoivre-Laplace limit
theorem for sums of (0, 1) random variables.

For notational simplicity denote N, = (1 - 2p) 2N. For 0 < p < 1/2 define the function

A(p) = ((l - p)e-(-2') + pel-2) . (8)

Lemma A.2 If M satisfies MN- 2 /3 --+ oo and M = o(N) as N --+ oo, then

0)-q p xp 2{(NMP~ ~ {X7i rO} - N, I-~v'

REMARK: The asymptotic form for component error above is somewhat different from the similar expression
derived in McEliece, et a! [1] as a consequence of differing modes adopted for the generation of random I
probes.

PROOF: Fix the component index i and the memory index a. Note that the random variables (*0 defined I
in equation (4) are independent, so that the random variables Yi* and Z' are independent and comprised
of sums of independent, +-1 random variables. I

I
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I Fix 0 < b < 1/6. For j = i or/3 = or the r.v.'s (" are i.i.d. and take on values-1 and 1 with probabilities

p and 1 - p, respectively. Let C+ denote the event that (,!i = Ou? = 1. We then have by an application3 of lemma A.1 that

P { IY 0--(Il- 21 )(N-l1) -MI > N1/2+4I6t+} P { 4 *II-(l-2p)(N-l) >N 1/2+4}

-" 0 eC- ,N 29)(9

Conditioned upon £+ let S+ denote the set of sample points for which the following holds:

- ~~1i* - (I - 2p)(N - 1) - MI < N/+.

I We then have from equation (9) that

p {.s+It+) = 1- o 0 N)

From elementary considerations we then have that

sX! <t0 C+} =P {zi' _ -Y•°I E+} = P izth' i-YnaI$+, +}+O(C-CIN2)

For j i i and/3 i a the random variables (T are i.i.d. and symmetric, and take values in lB. Hence, Z* is
mS just a symmetric random walk over (N - 1)(M - 1) steps. Also, conditioned upon C+ we have that within

S+ the r.v. Yis takes on values whose deviation from (1 - 2p)(N - 1) + M is at most N1/2+ . For each sample
Svalue taken by Y* (conditioned upon E+ and S+) lemma A. 1, hence, applies for M as in the statement of
the lemma. In particular, let us say a deviation, y, is allowable if Jyj :5 Nl/ 2+6, and let us denote by p(y)3 the probability that y is allowable:

p(y) = P {Yi' = (1 - 2p)(N- 1) + M + y I S*,£*}.

5 For each allowable y, and for M as in the statement of the lemma, we then have by lemma A.1 that

P {Z* <•-(1 - 2p)(N - 1) - M - y} ,/, ex p - (-2p

B Hence,

P- P X'-<O 0 +} = E p(y)P{Zi*!--(1-2p)(N-1)-M-y}+O (Ce-ClN2)

I allowable t

. " V- 2/• exp 2M ( 2p)) .gV2- -wN,eX (N
As E+ occurs independently with probability (1 - p) it follows that

Sf X- < 0,C+,(1)0 - ,)V exp L (1 - 2p)(1)

v - " r--N "exp ( -2"--M - "0

In similar spirit let us define the event £- that fi' - f'u9' = -1, and conditioned upon C- the set of
sample points S• for which

1y,* - (1 - 2p)(N - 1) + MI < N 1/ 2+'.

i As before, we obtain
p {S-Ij-} =1-0- (e-i ').

I
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Proceeding in similar vein we can now demonstrate that !+ ) !
P {X19 O,} <0C- . VM exp +1 -2p) (11)

Combining equations (10) and (11) and equation (8) completes the proof of the lemma. |

The next lemma concerns the joint distribution of r sums, X*9, g = 1, ... , r. The result is essentially I
the main lemma demonstrated in McEliece, et al [1], except for certain correction factors corresponding to
the terms f(p) arising from a different generation of random probes. (The result we show below is actually
a slightly stronger version which appears in Venkatesh [12, pages 220-239].)

Lemma A.3 Let r be any fixed, positive integer, and let (i., ,o) E [N] x [M], g = 1, ... , r be distinct pairs
of integers. If M > N' with 3/4 < a < 1, then, under the hypothesis of lemma A.2, I

P {Xa- _< 0, g = 1,... , rJ - q', (N -- oo0).

Essentially the same proof that appears in McEliece, et al [1] or Venkatesh [12] can be modified to show the
following result, care being taken to rigourously account for all correction terms. We will not go into it here.a

B Proof of Theorem 3.2 I
Consider a set of n neurons, interconnected according to a block interconnectivity graph with block size
b. Let u1, ... , u-' E 3IB be an rn-set of memories with components drawn from a sequence of symmetric
Bernoulli trials, and let the weights be specified by the outer-product algorithm. Note that, as before, we are
considering the complete code here and that the product distribution on memories above induces a uniform
distribution on admissible m-sets of memories in the code CK,'. I

For the memories to be monotone p-attractors a necessary and sufficient condition is that the components
of the memories corresponding to each block be retrieved from a random probe. Let us consider block
Ik for definiteness, and, as before, let u.1 ... , u` E Mb be the vectors of components of the memories

corresponding to block Ik. Now, within each block the components of a memory are updated independently
of the components in other blocks as a consequence of block sparsity. As the components of the memories
as well as the random probes are drawn independently, the results of appendix A apply here with M = rn
and N = b. We will need the following version of the inclusion-exclusion principle.

Lemma B.1 Let EI, ... , EN be measurable subsets of a probability space. For 1 < r < N, let o,, be the
sum of probabilities of all sets formed by intersecting r of the events EI, ... , EN: 3

Orr= P E j, .

Then for every K, I < K < N/2,

2K N 2K-1

r=1 j=1 r=1

For fixed r, let Orr denote the sum over the (mb ) distinct choices of r memory components in block 3
4k of the probabilities that a distinct choice of r memory components is not retrieved:

Orr P Xio <0 0

I
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U where

x,= Jat z i~ Uj IO= 04U
j:{igj}EBG, jEI& 0J=1I Lemma A.3 applies to this case, so that as b -- oo we have

(mbqj)"

Here q, is given by lemma A.2 as

q£ = f(P) fm exp{( )}

with f(p) as defined in equation (8) and b, = (1 - 2p) 2b. We can now apply lemma B.1 to estimate the
probability, qb, that one or more memory components is not retrieved inside block 1k. Let us choose a rate of
growth for the number of memories, m, (as a function of the block size, b) rimall enough that the term mbql
is bounded. By choosing larger and larger (but fixed) sizes K in lemma B.1, as b -. 0o we can make both
the upper and lower bound on the probability q6 approach arbitrarily close to 1 - e-mbf 1. Alternatively, the
probability, P& = 1 - qb, that, for each memory, all the components in the block are retrieved from a random
probe with parameter 0 < p < 1/2 is given by p6 ." e`4ti. As there are no interconnections in between
blocks, the retrieval of memory components is independent across blocks. Hence, the probability of retrieval

of all the components of all the memories is p, lb. We have thus established the following

Lemma B.2 With q, as given above, let m increase slowly enough with b so that mbql remains bounded
as b --+ oo. Let p(m, n,p) denote the probability that, for each memory, a random probe with parameter
O < p < 1/2 is mapped into the memory in one synchronous step (i.e., all memory components are retrieved
from the probe in one synchronous step). Then, for any 0 < t < I < s we have

e-amnql -< p(m~np) .< e-'rn' (b--, 00).

3 Now, for any fixed choice of 6 let M be an integer sequence such that as n -- oo

(I - 2p)_ b 3 log log bn + log (S, ) f-•) ogo0bn12
M Ip~ [ + Iob TW-37 (loIg logbn) (12)

2 log bon 1+ log bn lo 2 ]n

It is easy to check that mbql remains bounded as n -. oo if m is chosen equal to M for any fixed choice of
6. Lemma B.2 hence applies.

Now, for any A > 0 (chosen arbitrarily small), consider a number of memories

S(1 + A)(1 - 2p)2b3t 2 log bn

For any choice of t > 0 fix 0 < < 1 and choose b = -t' 1 logc. Choose M according to equation (12) for
such a choice of 6. Using the upper bound for p(m, n, p) in lemma B.2 with m replaced by M yields that for
such a choice of M, p(M,n,p) -< c. Now it is clear that as n -* oo we will have m' Z M whatever be the
choices of A, c, and t. By uniformity, hence, p(m',n,p) -< p(M,n,p) < t. As c can be chosen arbitrarily
small it follows that (1 - 2p) 2b/2 Iogbn is an upper monotone p-attractor capacity.

Now again, for a choice of A > 0 small, consider a number of memories5 ,, (I - A)(1 - 2p)2 b

2 log bn

For any choice of e > 0 chosen arbitrarily small fix s > I and choose 6 = -s-I log(l - f). Choose MI according to equation (12) for such a choice of 6. Now using the lower bound for p(m,n,p) in lemma B.2
with m replaced by M yields that for such a choice of M, p(M, n, p) > 1 - e. Now we have m" < M as
-n -. oo whatever be the choices of A, e, and s. By uniformity, hence, p(m",n,p) Z p(M,n,p) > I - f.U As e can be chosen arbitrarily small it follows that (1 - 2p) 2b/2logbn is also a lower monotone p-attractor
capacity. This concludes the proof of theorem 3.2.

aI
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C Proof of Theorem 3.5 1
Let u1 , ..... uM E 113" be a randomly chosen M-set of generating vectors with components drawn from a
sequence of symmetric Bernoulli trials. Corresponding to the M-set of generating vectors there is a unique I
M"/6-set of memories, j1, ... , fiM'/b E 11", in the block code BKm'*. Note that the product distribution
on generating vectors induces the uniform distribution on the block code.* For {i,j} E BGn the weights
prescribed by the outer-product algorithm are given by l

Mm/b

As 6 runs through the indices 1 through M"/b, for each of the M generating vectors, uO, the corresponding
term ti u1 occurs Mi-` times in the sum above. (This follows from the construction of the block code:
each vector of components up corresponding to block Ik and generating vector up is used in the k-th block
of exactly Mt- 1 vectors in the generated Mn/b-set of memories in the block code.) Thus:

wij = M t-1 E uZtu, {i,j} E BGn. (13)
p=1

Scaling all the weights by the positive scale factor Mt-1 does not affect capacity. The situation is now 3
similar to that analysed earlier: the outer-product weights for the graph BG. are generated from a set of
vectors whose components are drawn from a sequence of symmetric Bernoulli trials.

Now we claim that the M"/b-set of memories are monotone p-attractors iff each vector of components,

uk, corresponding to each block Ik, k = 1, ... , n/b, and each of the generating vectors, uO, f = 1, ... , M,
is a monotone p-attractor.tt This follows because of the disjoint nature of the blocks, and the indpendent
assignment of components to the random probe. But by independence across the blocks this is equivalent to
requiring that each of the M generating vectors are monotone p-attractors for the matrix of weights specified I
by equation (13). Lemma B.2 now applies directly. In particular, let the number of generating vectors, M,

be chosen as in equation (12). With a choice of s > 1, 6 = -s-1 log(1 - e) all the generating vectors are
monotone p-attractors, and hence so are the Mn/b generated memories, with probability at least 1 - c; with
a choice of 0 < t < 1 and 6 = -t-I log c some generating vectors fail to attract montonically over a radius
p, and hence so do some of the Mn/" generated memories, with probability at least 1 - c.

Consider first the case where the block size b satisfies n/b = o(log bn/ log log bn) as n -- oo. Then

Mn/b = [(I -2p)2b] n/b(1+ 06(1)).t 21ogbn In(+ ,0)

The choices s > 1, 6 = -s- log(1 - e), and 0 < t < 1, 6 = -t logc are both absorbed in the o6(1) term, I
so that

[ log bn I
is both a lower and an upper monotone p-attractor capacity.

"*Herein lies the reason we defined codes in terms of ordered multisets of memories instead of sets of memories. We would like 5
to preserve a product distribution on memory components because-a- we saw in the previous sections-this provides certain
amenities in analysis. This, however, corresponds to an urn model with replacement, and there is a non-zero (albeit small)
probability that the same memories are drawn again. If the code is defined in terms of sets of memories instead of ordered
multisets this results in a small, but annoying, non-uniformity in the distribution induced on the code. I

tIThe utility of the random probe with parameter p model is apparent here. The statement would not continue to hold in
foto if the probe were to be selected, for instance, randomly from the Hamming ball of radius pn at the memory. The difficulty
is that pn component errors in a memory need not translate into pb errors in each block, and a disproportionate assignment
of component errors in any one block will cause non-convegence to the memory components in that block. A (provable) large
deviation limit theorem for the hypergeometric distribution is needed here.

I
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Now consider the case where the block size b satisfies n/b = 11(log bn/ log log bn) and b/log n -. oc as
n -- oo. Define for any v

C, v = 2 f1--t,[ I - 1I2+&?Ib

For any fixed choice of 6 it follows that C.(v) < Mn/1 if v < 3/2, while Cn(V) > M"/b if V > 3/2. Thus,
Cn(v) is a lower monotone p-attractor when v < 3/2 and an upper monotone p-attractor when V > 3/2.
This concludes the proof of the theorem. |

D Proof of Theorem 4.1

Let NGn be a nested interconnectivity graph with block size b and nesting depth h. As before, let u1 , ...
uM E 13"" be a random M-set of generating vectors (corresponding to a random Mn/b-set of memories in

the nested code ,KV1M'16). As before, the product distribution on the components of the generating vectors

induces the uniform distribution on A/Xm'l". For nesting level 1 the situation is identical to that of block
sparsity. Specifically, if indices i and j lie in a common block at nesting level 1, i.e., {i,j} C I• for some
k E [n/b], then the corresponding weight wij is as given by equation (13).

Let i4 E II, k = 1, ... , n/b denote the specified indices which comprise nesting level 2. Consider block
Ik. The probability that, for each memory, all b components corresponding to this block are retrieved fromI a random probe with parameter p in one synchronous step is certainly less than the probability that, for
each memory, the b - 1 components corresponding to indices j E Ik\ {fil} are retrieved. (Equality iff the
probability of retrieval of the i4-th component is one.) But these b - 1 indices are only interconnected with
other indices in the block I, so that the retrieval of the memory components corresponding to these b - 1
indices in each block (sans the specified indices i4) is a stochastically independent event across the blocks.
(The fact that there are interconnections across blocks through the specified indices, i4, cannot affect the
other b - 1 indices in each block in the first synchronous step, but only on later steps: in one synchronousI step, only the value of the i4-th component contributes to the updates of the remaining b - 1 components
corresponding to block I'.) Consequently, we can again partition the problem into n/b independent blocks.
It hence suffices to consider just the generating vectors rather than the vastly larger number of generated
memories in the code. Specifically, the requirement that b - 1 components of each memory be retrieved in
each block is equivalent to just requiring that for each block the b- 1 components (disregarding the specified
components i4) of each generating vector are retrieved from a random probe with parameter p. Let P' denote
this probability. (This argument would not be hold if we had to consider retrieval of the i4-th components
as well because of the dependencies caused by the inter-block connections.) An argument similar to that
leading up to lemma B.2 now yields that for any 0 < t < 1, and rate of growth of M with b such that

i M(b - 1)q' is bounded,

p(M,n,p) < P' _< exp t(bM - l)qn = exp (tMnq9  ( -

1 where, with the appropriate substitution of parameters in lemma A.2 we have

q, = 
2p

With M as defined in equation (12) for a choice of < Ot < I and 6 = -t-I loge, it follows that

p(M, n, p) ;_. e 0) -0 £ + 0 (-)

The upper monotone p-attractor capacity estimates of theorem 3.5, hence, continue to hold for the nested
case.
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To obtain lower capacity estimates, note that removing the n/b neurons corresponding to the specified I
indices i4 results in a collapse of the nested structure into a block interconnectivity graph BGn(b-l)/b with
block size b - 1. Now, an examination of the random variables, Xj*, shows that each added interconnection
weight specified by the outer-product algorithm improves the probability of retrieval of the corresponding I
memory component. The connections from the indices i4 within a block, hence, contribute a positive
probability to the probability of retrieval of any memory component within the block. Furthermore, we have
the uniformity property that the probability of retrieval of each component improves monotonically with
n for fixed M. Hence, the probability p(M, n, p) that, for each memory, all the components are retrieved I
from a random probe with parameter p exceeds the probability, P", that the corresponding vectors with
the specified n/b components removed are retrieved in the graph BGn(b-.)/b with block size b - 1. But,
here again we have an independent partition into n/b blocks, and it suffices to estimate the probability that I
the components of the corresponding generating vectors (with the specified n/b components removed) are

retrieved. The argument leading to lemma B.2 again works and we have for any s > 1, and rate of growth
of M with b such that M(b - 1)q" is bounded,

p(M,n,p) >_ P" > exp ( (b - )x ) =Iexp -

where, with the appropriate substitution of parameters in lemma A.2 we have

qo = f (p)• 1 b_ { ((I-2 M -1p) d" 1q. (I p) V2_~ -1 "( ( 2 -)2(

With M as defined in equation (12) for a choice of s > 1 and 6 -s-I log(1 - f), it follows that when b is
such that b/log n -- oo as n --. oo, then

p(M'n'p) Z e-" ( j-()) = 1 -,e+ o i)

The lower monotone p-attractor capacity estimates of theorem 3.5, hence, also continue to hold for the nested
case, and this concludes the proof. I 3

E Proof of Theorem 5.2

Consider the block interconnectivity graph BG, with block size b and the block code 8g,* . Let u', .
uM E ]! 3n be a randomly selected M-set of generating vectors, as before, and let

Uk 4U Uk ... ] 5k
be the corresponding b x M matrix of column vectors corresponding to the block L.. To show that each
of the generated memories is stable it suffices to show that, for each generating vector, uO, each of the n/b

vector of components, uk, is stable. If Uk is full-rank then the sub-matrix of weights corresponding to block
Ik is given by

Wk = UkAk (ti U)' Uj, (14) il
where A is diagonal with positive diagonal terms Akj ... , AkM. If the representation (14) holds (i.e., Uk is I
full-rank) then, for any generating vector, uO, we have

WkUok = AkPUIg Uk

as AkO > 0. The proof of the theorem will be complete if the probability that each of the matrices Uk is
full-rank approaches one for large n. This follows as a consequence of the following new result due to Kahn, I
Koml6s, and Szemer~di [11].

I
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ILemma E.1 Lei Ab be a random b x b binary matriz whose components are drawn from a sequcnce of
symmetric Bernoulli trials. Then there is a constant 1 < d < 2 such that the probability that Ab is singular
is no more than d-b asymptotically as b -- + o.

REMARK: The earlier (1977) estimate of Koml6s of b-1 / 2 for the probability that Ab is singular does noti suffice for our purposes for block sizes b = 0 (n 1 / 2 ).

Using the above lemma, the probability that all the matrices Uk, k = 1, ... , n/b are full-rank is at least
(1 - d-b)n/b which asymptotically tends to one rather quickly. |
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Areas in the brain that are telieved to carry out the functions ofI

pattern separation, categorization, and associative memory, exhibit

variable amounts of sparsed connectivity between neurons. InI

Artificial Neural Networks, one of the parameters that

distinguishes an architecture from another is the connectivity of

the units. In feedforward layered networks, the connections are

asymmetrical, and the information flows from the input layerI

through several hidden layers to a single output layer.

Backpropagation is a learning algorithm for feedforward layeredI

nets which (due mainly to the fact that it- operates on networks that

contains hidden units) can discover useful internal representations

and thus can be a powerful tool for attacking difficult problemsI,

like image and speech recognition. Several papers have reported

the correlation between the number of hidden units and the learning

ability of the BP, but did not report any relationship between the

number of connections between the units to properties such as

learning times, memory capacities. In this paper I report results

of computer simulations of learning with the BP algorithm on layered

networks which differ in their connectivities. The results include

comparison of learning rates between different levels of sparsed

networks and the percentage of examples needed to reach the criticalI

point in which a neural network is said to have learned the

function in a probably approximately correct sense (PAC). TheseI

results can serve as a proposal for a more theoretical research

on the learning capacity of layered networks.I



3 (2) Introduction

Neural nets have various parameters that influence the computational

characteristics, mainly the number of neurons, number of hidden

neurons (in the case of layered nets), activation functions (linear.

3 semi-linear, non-linear threshold), deterministic/probabilistic output

decision rule, and connectivity. In real biological networks,

sparsness of connections is very common (basically due to the physical

space limitation that make fully connected networks with millions of

neurons impractical) and it is clear that sparsed networks do work.

Is it better or worse (and by which factor) to have sparsed networks ?

This is not a trivial question. First we have to identify variables of

3 the neural network in question, and ask how does sparsness relates to

them. In addition we have to divide the variables into two groups: the

3 first includes variables that are independent of the learning

algorithm that is used in teaching the neural-net, and the second

includes the variables that are algorithm-dependent. One important

algorithm-dependent variable is the learning time (or solution-

convergence time). The most important algorithm-independent variable

is the capacity of a neural network. In a fully connected network

(like: Hopefield, 1982) capacity is the number of vectors that can be

3 stored in a network and recalled reliably; in feedforward layered

nets, capacity reflects the number of functions (input-output

mappings) that can be realised by the network. The exact definition of

capacity also depends on how do we want to define "reliably" in the

above. I will follow the definition of learnability-capacity which is

best described by the following: In the formal definition of probably

approximately correct (PAC) learning, we start with some underlying

5 function, and pick examples at random from this very same function.

Specifically, we pick points in the input space randomly according to

3 some probability distribution and generate ordered pairs

(x_1, f(x_l)), ... , (xM, f(xM)) from the function f. The question

is how many examples do we need to train the network on, before we

can say that it has learned the function (L.G. Valiant, Nov 1984).

This answer is tied to the capacity of the network architecture (it

is proportional to, but larger than the capacity). Note, however,

that we have assumed that the function f can be realised within

* the network architecture (by architecture I mean the number of neurons

and the specific link connectivity between them); if it can t.

I



then the number of examples needed to be shown to the network

will never be finite since the network can't learn to begin with. g
The results that I will present will compare the learning times

specifically to the Backpropagation algorithm on different sparsed

networks, and also will compare the number of examples that are needed

to be shown during the learning cycle for different sparsed networks, 3
to achieve learnability. But before I present the results, I will give

an ov-view of experimental and theoretical results that have been

reported in the field.

I

Computational functions of the hipocampus I
This section describes experimental results and system level theory of

the hipocampal functions; I will focus on the variety of sparsed real

neural-nets architectures that this region in the brain has, and

explain how the different levels of sparsness contribute to different

important characteristics. The hipocampus is one of the oldest parts 3
of the brain. It gets inputs from many different areas of the cortex,

including the cerebral cortex, parietal cortex, the temporal lobe

visual and auditory areas, and the frontal cortex. Effects of damage

to the hipocampus show that the very long term memories are not

influenced. Different experiments (Squire, 198b; Squire & Zola-Morgan, I
1988) have repeatedly shown that the the hipocampus plays a vital role

in the storage of declarative memories such as episodic memory and 3
semantic memory (hiearchy of facts). Within the hipocampus, there is a

three stage sequence of processing consisting of granule cells (which 3
receive from the entorhinal cortex), the CA3 pyramidial cells, and the

CAI pyramidial cells. The CA3 area has an extensive recurrent 3
structure with a relatively large contact probability (4.3% in the

rat). It is believed that some sort of an autoassociation memory

matrix (Kohonen, Oja, & Lehtio, 1981) is being represented there.

Kohonen (1972) as shown that the probability of a connection between

neurons must not be very low in order to maintain a large signal to 3
noise ratio in the retrieval of an output vector from an associative

matrix. This would answer very well why in the CA3 region the ratio of 3
the number of neurons to the number of their inter-connections is

I
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relatively low i.e. havinq less neurons allows to have hiah

connectivity which improves the quality of the associations. In the

stage preceding the hipocampus the axons pass via a competitive

network. Its function is to accept non-orthognal input vectors and

orthogonalize them; Kohonen (1972) showed that an associative network

has larger fidelity of recall for stored vectors which are closer to

being fully mutually orthognal. Another preceding stage is the mossy

fibers system connecting dendate gyrus cells to the CA3 cells. This

system is characterized by very low link probability and is used to

decorrelate input patterns; in the rat, the probability of a link in

this region is 0.000078. Pattern separation can be achieved using this

type of a sparsed network since the probability is very high that each

CA3 cell is influenced by a different assembly of dentate granuale

3 cells.

I Effect of Sparsness to Capacity in Hopefield-like Networks

Associative networks based on the architecture of the Hopefield

Network have linear threshold units fully interconnected. Two popular

schemes of storing methods are the outer-product method (J.J.

Hopefield, April 1982), and the spectral method for construction of

the weight matrix (Venkatesh/Psaltis, 1989). The relatively simpleg construction of the linear transformation matrix (whose elements are

the weights of the connections between the neurons) by means of the

outer-products method yields a storage capacity of N/(4 logN) stable

memory states (where N is the number of neurons). The spectral

algorithm yields storage capacity which is linear in N. However in

contrast to the fully connected networks, nested neural networks

(nested means not-fully connected and structured in tree-like3 architecture) who have the same characteristics as the Hopefield

network, have been shown to have vastly greater number of stable

3 memory states than fully connected networks programmed in either of

the above schemes (Yoram Baram, March 1989). These type of networks

resemble the fractal forms studied by Mandelbrot (B. Mandelbrot,

1983), but differ in allowing connections not only between neigboring

layers but between all layers through several neurons shared in3 common. All nested networks require considerably less connections than

fully connected ones. In one particular architecture having 1000

5 neurons divided into subnets each having 8 fully connected neurons, it

was shown that the number of stable memory states is

I
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7 =1.8294x10 4! (given that the states in each subnet is

selected to satisfy certain requirements assuring stability and error

correction). For randomly chosen vectors that are to be stored, it was

shown that the probability of picking a vector orthognal to a vector

which is already stored, is inversely proportional to the square root

of the number of neurons in a subnet ( a subnet being the elementary

fully connected structure in the overall nested network). Since

orthognal vectors satisfy the stability requirement for a memory

vector, in nested networks consisting of relatively small subnetworks

(i.e. subnets having small number of fully connected neurons), the

orthogonality condition allows for the storage of stable vectors with

relatively high probability. The capacity in less than ideal

conditions (i.e. where the vectors stored in the subnets were only

nearly orthognal) was also much higher compared to the fully connected 3
Hopefield network; with a nested network of 81 neurons divided into 10

subnetworks, each having 9 fully interconnected neurons, it was 3
possible to store 2048 stable vectors.

Summary of existing experimental and theoretical results regardinq the I
effects of sparsness on neural networks I

Fully interconnected networks are not realisable when there are vast

numbers of neurons, and it is evident in the brain that sparsed 3
networks do work, and achieve extremely large numbers of memory state

associations. In the above section, results of theoretical analysis 3
have shown that not only can sparsed networks function reliably, but

in certain architectures they improve the capacity over fully

connected networks with the same number of neurons. It would be

interesting to know what is the effect of sparsing feedforward layered

networks; will the number oG realisable input-output mappings 5
increase ? If not, then how is capacity related to sparseness ? I
The following sections will attempt to answer these questions.

I

(3) Experimental results .

I
In all the following experiments, I constructed 3 layer networks where

I
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3 sparsing was done only on the links that connect the input to the

hidden layer. The following setup was used in every trial of the

experiimient:

3 (I) An original sparsed network is built according to a certain

architecture (architecture being the number of neurons and a

3 specific interconnection matrix. The main parameter that selects

a given architecture is the probability (P) for the existence

3 of a link connecting the input layer to the hidden layer); the

weights assigned to the links are picked randomly. Then several

binary vectors are placed individually at the input layer, and

the network generates a real valued response at the output

layer. The input-output pairs are then placed aside for use in

3 the next steps.

5 (2) A sparsed network with same architecture (same P but different

random weights for the links) is built. An Unsparse network is

built (i.e. every neuron in the input layer connects to all

neurons in the hidden layer, and every neuron in the hidden

layer connects to all neurons in the output layer) with random

3m weight assignment.

(3) Teach the unsparsed and sparsed networks on the vectors

3 generated by the original sparsed net. Record the overall error

versus the number of learning cycles (I fixed the maximum number

of cycles). The reason that I generate vectors from an existing

network, and teach them, instead of picking randomly a set of

input-output pairs, is because not every mapping can be realised

by the student networks; thus generating vectors to be taught by

the same architecture-network as the original generating network

guarantees that a solution exists for the mapping, and allows

me to measure other interesting characteristics of the student

network. As far as the unsparsed networks are concerned, I

expect them to be able to learn any mapping that a sparsed, with

the rAne nwmt~er of newrons, Qenerated.

Sparseness versus Learning time

I ran the above procedure on a 20-10-2 layered network (20 inputs

units. 10 hidden and 2 output units) with increasing values for the



probability of a link (with P = 0.2, 0.3, 0.5, 0.7). From the Figure

series (A) the following are evident: I

(1) When the level of sparseness for the generating network is high

(low P) both the unsparsed and sparsed learn very fast (Figure

(A.i) . The explanation for that is as follows: the training I
vectors have very low variance (i.e. the output of each vector

are very similar, within I%); this is due to the very high

sparsness which limits the output values of vectors to a narrow

region in state space, since no matter which input vector we

put, it will have the same effect as some input vector X which 3
has many zeros; therefore many different inputs will be mapped

to a vector X and will result in its output. So sparseness

decreased the range of the input-output transformation, and

there is now much less to learn (since all the vectors can be

considered as a few distinct vectors), and that is why whoever

is learning, will do very well fast.

(2) The variance in the output of the vectors that are to be

taught, increases as sparsness of the generating network

decreases, and therefore it takes the student networks more time

to learn as the generating network becomes less sparse (since

there are more distinct vectors to learn). There are several

runs per figure, and one should look at the average behavior

when judging the results. Note that the Backpropagation

algorithm can get stuck in a local error minimum instead of U
converging to the global error minimum, and that is why some of

the runs don't converge; this is the difficult part of trying to

analyze characteristics of neural networks by studying them

through an unperfect learning algorithm.

(3) On the average, sparsed networks learn faster than the

unsparsed networks. In Figures (A.2),(A.3) the unsparsed is I
slower from the 0.2 sparsed by approximately b%, in Figures

(A.4),(A.5) the unsparsed is slower by 8.3%, in Figures

(A.6),(A.7) the unsparsed is slower by 16%. £

Learninq the 8-5-8 Encoder Problem

Here the taught vectors were not generated by an original network, but I
I
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rather 
Input Output

3 Vector(1): 10000000 10000000

Vector(2): 01000000 01000000

Vector(3): 00100000 00100000

Vector(4): 00010000 00010000
Vector(5): 00001000 00001000

Vector(6): 00000100 00000100
Vector(7): 00000010 00000010

Vector(8): 00000001 00000001

3 Eight different sparsed networks were built (each having 8 input

units, 5 hidden units and B output units). As Figure (B.1) shows, the

£ less sparsness the faster the learning. The explanation is as follows:

Sparsed nets have smaller capacity, because removing weights decreases

the number of possible functions (mappings) that they can realise;

this is simply because there are less variables to permute (i.e taking

3 the view that each function is a permutation of weights); one might

argue that since there are infinitely real numbers that weights may

take, it would imply that removing weights will not reduce the number

of realisable functions (since the remaining weights will still range

* over infinitely many values) but this is clearly wrong since it is

not just the value of the link that characterizes a given function.

but also its position in the overall architecture, and there is a

3 finite number of positions that links can occupy (since there are

finite number of neurons) therefore if enough links are removed to

5 isolate an output neuron then although all other remaining links may

take infinitely many values, they still cannot influence the

isolated output neuron (therefore the number of functions realisable

has been reduced). And for a given set of points (or vectors to be

learned) it is much more probable to find a function that contains

5 these points in its solution, in a network that can realise more

functions to begin with (i.e. the unsparsed NN) whereas in the

3 sparsed, the number of realisable functions is smaller, therefore the

probability of finding a function (i.e. amongst the small number of

3 realisable functions) that has the points in its solution set, is much

smaller. Therefore, the unsparsed network can with a higher

I
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probability than the sparsed network, learn a given set of M vectors.

therefore its capacity is larger than the sparsed. 3
In Figure (B.1), the function that was to be taught was not realisable I
by the very sparsed networks (as opposed to the previous section which

dealt with teaching a realisable function to sparsed networks). That I
is the reason that the very sparsed networks were not able to learn;

their capacity is too small. As we decreased the level of sparsness we

in effect increased the capacities, and thus we see an improvement in 3
the learning. This is because the function that we taught was

realisable with a greater probability in the less sparsed networks. 3
In summary, the above two sections imply the following: a sparsed 3
network will learn faster than an unsparsed when its architecture can

realise the function that it is trying to learn. It learns faster

because its architecture permits it to realise much fewer functions

and when given M distinct points (vectors) it needs to sort out less

possible functions (in contrast to an unsparsed network) that contain 3
these points in their solution, and thus completes the sorting faster

than an unsparsed. However, when given an unrealisable function (or

function that is only nearly realisable) the sparsed network either

cannot learn or learns slower than the unsparsed network (this follows

from the same argument).

I
Experimental results on capacity of feed-forward layered networks 3
In all the following experiments, sparsing was done only on the links

that connect the input to the hidden layer. The following setup was

used in every trial of the experiment:

(1) An original sparsed network is built according to a certain

architecture interconnection matrix. The main parameter that I

selects a given architecture is the probability (P) for the

existence of a link connecting the input layer to the hidden I

layer); the weights assigned to the links are picked randomly.

Then several binary vectors are placed individually at the

input layer, and the network generates a real valued response

I



at the output layer. The input-output pairs are then placed

aside for use in the next steps.

S(2) A sparsed network with same architecture (same P but different

random weights for the links) is built. An Unsparse network is

built.

(3) Teach the unsparsed and sparsed networks on the vectors

generated by the original sparsed net, showing a randomly

selected percentage of the vectors, and repeatedly learning on

the range of (20%,90%). Record the overall error versus the

number of learning cycles (I fixed the maximum number of

cycles). The reason that I teach different percentage of the3 points that define the taught function, is because this will

determine the critical percentage point which is (according to

PAC learning) proportional to the capacity of the system that is

doing the learning (in this case it is a neural network).

U
SI started with a 5-4-2 architecture (Figure Series D) . I built a 0.2

probability original sparsed network with which I generated 32 binary-3 input real- output vectors. I built a 5-4-2 sparsed with the same

connectivity and a 5-4-2 unsparsed and trained them on 20%, 30%, 40%,

50%, 60%, 70%, 807., 90% of the above generated vectors (averaged over

6 runs per trial e.g. in the 50% trial it means that the number of

vectors shown is 16, but the set of vectors shown in each case can be

different 16 vectors). I recorded the resulting Error versus Number of

learning cycles versus Percentage shown. I repeated the above for a3 0.4, 0.5, 0.6, 0.8, 0.9 probability generating sparsed network.

When comparing the critical points for the unsparsed network with that

3 of the corresponding sparsed network that learned the vectors

generated by the same architecture network, we see that always, the

_ unsparsed critical point is higher than the sparsed (as we expect). In

Figures (D.6) and (D.7), I ran 0.5 sparsed networks that learned 45 different sets of 0.5-sparsed-generated vectors; it is evident that in

all 4 cases, the critical point is approximately the same (50% shown).

This result goes nicely with the expectation that the capacity (and

thus the critical point which is proportional to it) is independent of

m
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the problem learned. Figure (E.1) shows the Error vs Percentage-Shown

at the 700th learning cycle. The point where the error starts to 3
follow the asymptote (i.e. where the derivatIve is relatively small),

is the critical point. The relationship of sparseness to critical

point for the 5-4-2 is as follows:

Probability of a link Critical Point: I
0.2 30%

0.4 40% 1
0.5 50%

0.6 50% 3
0.8 60%

0.9 70% 3

I repeated the above with a 6-4-1 architecture (Figure Series F); I
there were 26=64 generated vectors to be learned. I only display

(Figure F) as an example of one sparsed network (0.5 sparsed). In 3
reality, 6 different sparsed networks were built for each percentage

(20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%) of each sparsed case (i.e. 5
for 0.2, 0.4, 0.5, 0.6, 0.8, 0.9). In total, 288 networks were built

in this experiment. The~n I averaged the 6 responses per a specific 3
percentage, and plotted the graphs (Figures F.1 - F.4). As seen in

Figure Series (F), the relationship of sparseness to critical point

for the 6-4-1 is as follows:

Probability of a link Critical Point: I
0,2 40%

0.4 50%

0.5 50%

0.6 35%

0.8 45%

0.9 60% 5

I repeated the above with a 7-7-1 architecture (Figu-e Series G);

there were 26=-4 generated vectors to be learned. In total, 288

networks were built in this experiment. Then I averaged the 6

I
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responses per a specific percentage, and plotted the graphs (Figures

G.1 - G.4). As seen, the relationship of sparseness to critical point

for the 7-7-1 network is as follows:

Probability of a link Critical Point:

m 0.2 40%

0.4 50%

0.5 40%

0.6 50%

3 0.8 70%

0.9 80%1
Figure (K.1) shows the results of the critical point measurements for

the 5-4-2, 6-4-1, 7-7-1 architectures.

3 In the above, each network was learning a problem of different size,

i.e. the 5-4-2 learned a function that had 32 input-output vectors,

3ethe 6-4-1 learned a function that had 64 input-output vectors, the 7-

7-1 learned a function that had 128 input-output vectors. In order to

compare networks of different architectures that learn the same size

problem, I ran the following experiment. I repeated the above 3-step

procedure with an 8-8-1 and a 10-10-1 learning a set of vectors that

was generated by a 6-4-1 network, i.e. the problem had 64 input-output

vectors. In total, 576 networks were built in this experiment. The

3 results are shown in Figure Series (H), and Figure Series (J). The

relationship of sparseness to critical point in the 8--I network is

3 as follows:

1 Probability of a link Critical Point:

5 0.2 30%

0.4 40X

3 0.5 50%

0.6 50%

5 0.8 60%

0.9 70%

I]
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And for the 10-10-1 network:

Probability of a link Critical Point: 3

0.2 40% 3
0.4 50%

0.5 60%

0.6 67% 3
0.B 70%

0.9 85% 3

I
Figure (K.2) shows the results of the critical point measurements for

the 6-4-1, 8-8-1, 10-10-1 architectures. Figure (K.3) shows the

critical points as function of the maximum number of links.

Section Summary

The following are evident from Figure Series (K):

(1) As sparseness decreases (increasing probability of a link

beyond 0.5) the critical-point curves branch out from each

other. This may suggest that the capacity is a linear function 3
of sparsness with a slope determined by the number of units (the

specific architecture) in the network.

(2) The plot (Figure K.2) of the networks that learned the same

size problem was expected since the small'er network (6-4-1)

should have a critical- point curve lower than the 6-8-1 (which

is evident in the plot). But the plots of Figure (K.1) are not

as trivial. I would expect the 5-4-2 network to have a critical-

point curve lower than the 6-4-1 (which is not evident). This 3
suggests that there may be some non-linear ralationship between

a specific-architecture network to its learnability of different

size problems, thus allowing for a 6-4-1 network to learn a set

I



* *

of 64 vectors with less percentage of examples than for a 5-4-2

network to learn a set of 32 vectors, and thus giving the false

impression that the 6-4-1 has less capacity. In other words,

when using an algorithm to measure the critical error, we must

make sure that the initial conditions (in this case the problems

being learned) are as uniform (i.e. of the same size)as possible

across all the student networks.

(4) Conclusions

This work was concerned in getting qualitative insight to

the relationship of learning speed versus sparsness, and

relative capacities versus sparsness. The experiments were

carried out as computer simulations, and the majority of the

results have been expected. The main points that can be suggested

by the work are summarized below:

- A sparsed network will learn faster than an unsparse net (having

the same number of neurons) when its architecture can reaiLse

the function that it is trying to learn. When given an

unrealisable function (or function that is only nearly

realisable) the sparsed network either cannot learn or learns

slower than the unsparsed network.

- The capacity is approximately linear function of sparsness with

a slope determined by the number of units (the specific

architecture) in the network. The less sparsed thp network, the

greater the capacity and thus it is able td lea-n more types 3f

input-output mappings, i.e. realise a bigger set of pcssible

functions.
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The focus of the paper is the estimation of the maximum number of states that
can be made stable in higher-order extensions of neural network models. Each
higher-order neuron in a network of n elements is modeled as a polynomial thresh-

old element of degree d. It is shown that regardless of the manner of operation, or
the algorithm used, the storage capacity of the higher-order network is of the
order of one bit per interaction weight. In particular, the maximal (algorithm
independent) storage capacity realizable in a recurrent network of n higher-order

neurons of degree d is of the order of nr/d!. A generalization of a spectral algo-
rithm for information storage is introduced and arguments adducing near optimal
capacity for the algorithm are presented. C 1991 Academic Press. Inc.

1. INTRODUCTION

A formal neuron (after McCulloch and Pitts, 1943) is defined as a linear
threshold element which accepts n inputs and computes a binary output
based on the sign of a linear form of the inputs. When n such elements are
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interconnected with the output of each neuron serving as input to all the I
neurons in the network, a closed feedback system results with dynamics
described by trajectories on the vertices of the n-cube. Each vertex de-
fines a possible state of the recurrent network, and we identify the vector
of neural outputs as the (instantaneous) state of the system. The fixed
points (or stable states) of such recurrent networks are of importance in
their computational characterization; in particular, we are interested in
the following question: What is the maximum number of arbitrarily speci-
fied vertices that can be made stable in a recurrent neural network by
suitable selection of neural interconnectivity?

In this paper we focus on recurrent networks where the computational
elements are higher-order extensions of the basic linear threshold neural
model. Each higher-order neuron is a polynomial threshold element of a
given degree d. If, in a recurrent network of n higher-order neurons, the 1
current outputs (states) of the neurons are ul, . . . , un E {- 1, 1}, then an

update, ui,, of the state of the i1th neuron is given by the sign of an
algebraic form I

u,' = sgn (l , ... , i ui ,,) . (!)

The number of degrees of freedom in choosing the interaction coefficients I
(or weights) wi,•...I,., is increased to nd' I from the n2 weights for the case of
linear interactions. The added degrees of freedom in the interaction coeffi-
cients can potentially result in enhanced flexibility and programming ca- I
pability over the linear case as has been noted independently by several
authors (Lee et al., 1986; Psaltis and Park, 1986; Baldi and Venkatesh,
1987, 1988). I

We rigorously estimate the storage capacity of recurrent higher-order
neural networks: specifically, we calculate the maximum number of arbi-
trarily specified vectors that can be made stable in a recurrent network of
n polynomial threshold units of degree d.1 All our results point in the
following direction.

Regardless of the manner of operation, or the algorithm utilized, the
storage capacity of a higher-order network of degree d is of the order of I I
memory bit per interaction coefficient. And in particular:

The storage capacity of the outer-product algorithm generalized to I
networks of degree d is of the order of nd/log n memories (with constants
depending on the variant employed);

' Cases where networks have random interaction coefficients (instead of the programmed I
scenario here) lead to entirely different computational issues. We deal with these in a
concurrent paper (Venkatesh and Baldi, 1989).

U
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318 VENKATESH AND BALDI

I •The maximal (algorithm independent) storage capacity realizable
in a higher-order neural network of degree d is of the order of nd/d!;

Near optimal storage capacities of the order of ndld! memories can
be obtained by variants of the spectral algorithm.

In this paper we set up the basic definitions in Section 2, construct a
spectral based algorithm with near optimal capacity in Section 3, and
rigorously estimate the maximal (algorithm independent) capacity of a
network of given degree in Section 4. In a concurrent paper we include
the capacity calculations for the outer-product algorithm generalized to
degree d (Venkatesh and Baldi, 1991).

Notation. Let {xJ} and {yn} be positive sequences. We use the follow-
ing standard asymptotic notation:

al n;1. = O(y) if there is a positive constant L such that x/yn <s L for
all n;

I ~ ~~2. x. -" y. if Xn/y,, --* I as n -,•

3. x. = o(y.) if x. ly. - 0 as n .

By almost all we mean all but an asymptotically negligible subset: specifi-
Scally, if A,, denotes a sequence of finite sets, and 9 is some attribute, we
say tha Almost all elements of A. exhibit 91 if the subsets B. C A. for
which 91 holds are such that IB.I - 1A.1 as n -- o. We denote by B the set
{-1, 1}, and by [in the set of indices {i, 2, ... , n} for any positive
integer n. Finally, by an ordered multiset we mean an ordered collection
of elements where repetition is allowed.

I
2. HIGHER-ORDER NEURAL NETWORKS

2.1. Polynomial Threshold Units

We consider recurrent networks of polynomial threshold units each of
which yields an instantaneous state of -I or +1. More formally, for
positive integers n and d, let .- d be the set of ordered multisets of cardinal-
ity d of the set In]. Clearly d1 =nd. For any subset I of In], and for every
U = (u, U2 '.•.• uJ E Bn, set ui = llic, u,.

DEFINITION 2.1. A fully interconnected higher-order neural network
of degree d is characterized by a set of nd+I real weights w(ij) indexed by
the ordered pair (iI) with i E In] and I E 9•d, and a real margin of
operation R• 0. The network dynamics are described by trajectories in a
state space of binary n-tuples, B": for any state u E B" on a trajectory, a
component update u, "i u! is permissible iff

I a
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-Ii f xlewij~,4  -

u" = ui if -9 <- X1 J, W(iJ)UI !5 9 (2)
1 if 7J, Mw(iJ)U > g.

The evolution may be synchronous with all components of u being up-
dated according to the rule (2) at each epoch, or asynchronous with at I
most one component being updated per epoch according to Eq. (2).

The network is said to be symmetric if w(gj) = wu*j1 whenever the
(d + 0)-tuples of indices (i, 1) and (j, J) are permutations of each other.
The network is said to be zero-diagonal if w(ij) = 0 whenever any index
repeats in (i, /).

Let id denote the set of all subsets of d elements from [n]; i.dI = (d). 3
Combining all redundant terms in Eq. (2), for symmetric, zero-diagonal
networks a component update ui F-+ u,- is permissible iff

*4 I { f IIEJj,4J W(ij)UI[ < -
us! = u if -9 -Xj j,:i w(uJ)uJ ! (3)

11 if ZrZJ,:ieJ w,:l)ul > 9a. II
(If the network is symmetric and zero-diagonal then, for each nonzero
coefficient w(,J)-i.e., coefficients w(j) for which no index repeats in (i,
/)-the term w(iJ)ul occurs d! times in the sum mJ, w(1j)ul. Hence, Ymr. II
w~a)ul = d! Ywjj,:j w(,j)uI. The constant scale factor d! is removed in Eq.
(3) as this is just equivalent to scaling the margin.)

The choice of margin of operation essentially specifies the "strength"
of the desired interaction. A choice of margin M = 0 leads to standard
threshold operation. For a choice of nonzero margin of operation, a bit,
uj, retains its sign if and only if the corresponding weighted sum multi-
plied by ui exceeds '; otherwise its sign is reversed.

These networks are seen to be natural generalizations to higher-order of
the familiar case of linear threshold networks (d = 1). While networks of

polynomial threshold units require more computationally powerful units I
than linear threshold functions, each polynomial threshold element (sub-
scribing to rule (2) or to rule (3)) can be replaced by a small, equivalent
network of linear threshold units. To see this note that it suffices to be
able to realize each individual product of components, u1 = IHf. u•, for I
each choice of I = (it, i2, .... id) E 5,t, as the results of all these
computations can be combined with a single linear threshold gate to real-
ize the desired output. Now, for each I E Od,, realizing the product of I
components ul is equivalent to checking the parity of the d bits u.,

i, ..... ui, in the product. It suffices, hence, to show that parity can be
computed by small circuits of linear threshold units. But this, in fact, is a I

'~I
• U
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I function-i.e., functions which are invariant under any permutation of
the inputs, parity being an example-can be computed by small circuits of
linear threshold elements. For completeness, we sketch a short proof of
this result below.

PROPOSITION 2.2. Any symmetric Boolean function on d variables can
be computed by a linear threshold circuit of depth two and linear size; in
particular, d threshold elements in the first layer and a single output
"threshold element in the second layer are always sufficient.

Proof. The proof is constructive. Array the 2 d possible inputs of '- I d-I tuples in (d + 1) rows with the elements in each row being permutations
(i.e., all d-tuples in a row have the same number of + l's), the lowest row
containing the single d-tuple which has no + l's, and with the number of
+l's increasing monotonically with the rows to the final (d + I)th row
which contains the single d-tuple whose components are all + 1. Any
symmetric Boolean function clearly assumes the same value for all ele-
ments (Boolean d-tuples) in a row. Hence, for any given symmetric func-

-. tion, contiguous rows where the function assumes the value + I form
bands which are separated by contiguous rows where the function as-
sumes the value -I. This is illustrated schematically in Fig. Ia. Now
assume there are b bands where the function assumes the value + 1.
(There are at most d/2 such bands-the worst case occurring for the
parity function.) The function can now be computed by a circuit with 2b
linear threshold elements in the first layer and a single linear threshold
element in the second layer as illustrated in Fig. lb. (Each linear threshold
unit produces a + 1 if the weighted sum of all its inputs exceeds its thresh-3 old, and produces a -1 otherwise.) 0

2.2. Capacity

As in any dynamical system, the fixed points are important in the char-
acterization of the system dynamics.

DEFINITION 2.3. Let a - 0 be fixed. A state u E B" of a fully intercon-
nected network is said to be R-stable iff

ui Z w~jJ)uj > a, i=1. .. n.

Likewise, a state u E B" of a zero-diagonal network is said to be a-stable
iff

Uj > wiJ)ut> , i=!..... n.

I

/
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a ROWd- 11... I
R oa 32 ; f -1 /

a
2 2

a2 1 1
a12

a 1 1

Row 0 I
-.2 -.2 . . .- 2

b THRESHOLDS I
10 =1
tj = -d + 2aOi- !

Xd

FIG. I. (a) A symmetric Boolcan functionfofd inputs. (b) A realization ofthe symmetric 5
Boolean function f with a linear number (in d) of linear thrcshold elements arrayed in a depth
2 circuit.

It is easy to see that g-stable states are fixed points of the higher-order I
network with evolution under a margin 0.

The fixed points of the network take on particular significance when the
network interconnections are symmetric. In this case, under suitable
modes of operation, Liapunov functions can be shown for the system I

I

I
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(Hopfield, 1982; Goles and Vichniac, 1986; Maxwell et al., 1986; Venka-
tesh and Baldi, 1989). In particular, each fixed point exhibits an attrac-
tion basin; trajectories passing through states in the attraction basin of a
fixed point ultimately converge to the fixed point. This geometric picture
is particularly persuasive in associative memory applications; if, by ap-
propriate choice of weights, data is stored as fixed points of the network,
then the network functions as an error-correction mechanism and identi-
fies states sufficiently similar to a stored datum with the datum.

In this paper we do not insist on symmetry in the choice of weights. We
refer to the data to be stored as memories. By an algorithm for storing
memories we mean a prescription for generating the interaction weights of
a higher-order network of degree d as a function of any given set of
memories. We investigate the maximum number of arbitrarily specified
memories that can be made fixed in the network by an algorithm; this is a
measure of the capacity of the algorithm to store data.

Let ul, .. . u- Bm be an m-set of memories to be stored in a higher-
order network of degree d. We assume that the memories are chosen
randomly from the probability space of an unending series of symmetric
Bernoulli trials: specifically, the memory components, u?', i E (n], a E
[m], are i.i.d. random variables with

Kul = -1} I = • +} = .

In the following we assume that the network architecture is specified to be
a higher-order network of degree d operating under a margin a.

DEFINITION 2.4. We say that C. is a lower capacity function (or sim-
ply, lower capacity) for an algorithm if for every 0 < X < 1, and m -5 (I -
,)C., the probability that all the memories are fixed points of the network

generated by the algorithm tends to one as n --* W.
Likewise, C. is a maximal lower capacity if for every 0 < X < 1, and

m -< (1 - ,)C,, the probability that there is some network in which all the
memories are R-stable approaches one as n --. oo.

DEFINITION 2.5. We say that CE is an upper capacity function (or
simply, upper capacity) for an algorithm if for every 0 < X < 1, and m ý-
(I + ,)C•, the probability that at least one of the memories is not a fixed
point of the network gcnerated by the algorithm tends to onas n -0 -.

Likewise, C. is a maximal upper capacity if for every 0 < X < 1, and
m - (I + ,)C,, the probability that there is a network in which all the
memories are R-stable approaches zero as n --o -.

Remarks. The first definition yields an underestimate of algorithm/
network capability, while the second definition gives an overestimate.
Note that the definitions of maximal capacity are algorithm independent,
and bound any algorithmic capacity from above. It is clear that both lower
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and upper capacities always exist, and are not unique. What is more, I
there does not exist a largest lower capacity or a smallest upper capacity
as the following proposition indicates. The proof is an immediate conse-
quence of the definitions.

PROPOSITION 2.6. (a) If C. is a lower capacity, then so is CQ I ± o(l)].

(b) If CE. is an upper capacity, then so is C.-I I t o(l)]. i
We combine the lower and upper estimates of capacity to obtain the

following:

DEFINITION 2.7. C,, is a capacity function (or simply, capacity) for an
algorithm iff it is both a lower and an upper capacity for the algorithm; it is
a maximal capacity iff it is both a maximal lower and a maximal upper
capacity. I

Remarks. Capacity follows a 0-1 law. The probabilistic setup we es-
pouse requires almost all sequences of memories within capacity to be
storable as fixed points within the network. Capacity, hence, reflects !
typical behavior.2 Figures 2a and 2b indicate the threshold behavior of
capacity.

Unlike lower and upper capacity functions, capacity functions are not
guaranteed to exist. If a capacity function exists, however, then it is not
unique.

PROPOSITION 2.8. If C. is a capacity function, then so is C [I ± o(l)];
conversely, if C. and C. are two capacity functions, then C. - CA.

Proof. The first part follows trivially because C. is both a lower and an
upper capacity. To prove the converse, let C. and C' be any two capacity
functions. Without loss of generality, let C. = I[ + ao.]C.. We must prove
that laI = o(l).

Let p denote the probability that all the memories are fixed points of the I
network. Fix A, X' E (0,1). Form s (I .- k')C. = (I - A'XI + a.)C., we

have p - I as n -- -. Further, for m -_ (I + A)CN, we have p --# 0 as n --
o. Hence, for every choice of scalars A, k' E (0,1), we require that 3

I+A
S+a,<I 

I

I
for large enough n. It hence follows that la.1 = o(l). a I

2 The definitions c-r~acity developed in this paper subsume within them most common
notions of capacity. , ,.,J can be easily extended in various ways to reflect properties of

memories other than iiere stability. For other variants, cf. Cover (1965), Vapnik (1982),

Abu-Mostafa and Si. Jacques (1985), Venkatesh (1986), Baldi (1988).

II!
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a b
P large A P" large"n

I I I I I

0 £, 0 1

FIG. 2. (a) Lower and upper capacity functions; P denotes the probability that each of m
randomly chosen memories is a fixed point of the network. (b) The 0- I behavior of capacity.

Thus, if capacity functions do exist, they are not very different from
each other asymptotically. Define the equivalence class % of (lower/up-
per) capacities by C., C, E % < C, - C,. We call any member of % the
(lower/upper) capacity (if % is nonempty).

3. THE SPECTRAL ALGORITHM

3.1. The Linear Case

For the linear case d = 1, Venkatesh and Psaltis (1989a), and Person-
naz, Guyon, and Dreyfus (1985) have shown constructions which effec-
tively shape the spectrum of the matrix of interconnection weights to
ensure that the given set of memories is stable, while obtaining capacities
linear in n. The construction entails a selection of weight matrix, W, such
that the memories uI are eigenvectors of W with positive eigenvalues. The
basic notion used is that if a matrix U is of full rank the orthogonal
projection of a vector x into the space spanned by the columns of U is
given by (UTU)-IU Tx.

Let 9 - 0 be some fixed margin of operation, and consider a fully
interconnected network of degree d = I. Fix m -< n, and let Xl), .....
V'm) > 9 be fixed (but arbitrary) positive real numbers. Let u' ..... u" E
B" be an m-set of memories whose components are drawn from a se-
quence of symmetric Bernoulli trials. To each memory ua we associate
the positive constant 0(a). Let

U=[ul u2 . u. ]
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be the n x m matrix of memories, and let A be the diagonal matrix I
"AM 0 ... 00 AMe ... 0i

A=

0 o o ... () I
The spectral algorithm formally specifies the matrix of interaction
weights, W = [wj], according to the following rule:. l

W = UA(UTU)-1UT. (4)

THEOREM 3.1. For d = I and any choice of margin 9 -0, the spectral

algorithm has capacity C. = n.

In fact, if the prescription (4) yields well-defined weights, then we have i

Woo = \,(*a)U.

Each memory component is multiplied by a positive scalar, V*) > a, so I
that the memories are fixed points under evolution according to the rule
(2). As a linear transformation can have at best n eigenvectors with dis-
tinct eigenvalues, it follows that n is an upper sequence of capacities for 3
the algorithm. The fact that n is, in fact, the capacity of the algorithm will
follow if the prescription (4) is well defined for m - n with arbitrarily high
probability for large n. This is established by a new result of Kahn,
Koml6s, and Szemer(di (1990). (This is a refinement of the basic result
proved by Koml6s in 1%7.)

PROPOSITION 3.2. Almost all n x n matrices with ±-! components 3
have full rank; more precisely, if the components of a random n X n
matrix, A., are chosen independently and with equal probability J from
± 1, then there is a constant I < b < 2 such that the probability that A. is
nonsingular is I - O(b-").

The spectral rule amounts (in synchronous operation) to iteratively
projecting states orthogonally into the linear space generated by u',
.... u, and then taking the closest point on the hypercube to this
projection. While the algorithm appears to be non-Hebbian and nonlocal,
nonetheless, a low complexity, recursive, local construction can be
shown for the algorithm using Greville's theorem; the algorithm is, hence, I
attractive as an associative memory as it combines relatively low com-
plexity with high capacity and efficient error-correction (Venkatesh and

I
I
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Psaltis, 1989a). This approach can be extended to higher-orders as we
now describe.

3.2. Generalization to Higher-Order

Let us consider the degree of interaction d to be odd for definiteness.
By combining terms we can replace the summation, 7IE 4, w(,j)ul, for each
S= 1, .... n in the evolution rule (2) by an equivalent sum of the form

d
2 2 w.,,. .i. ui,. Uj'. (5)

L odd [isL<."<iksn

For u E B" to be a fixed point under evolution according to the rule (2) it,
hence, suffices that

d

uX 2 wj, .u,... u4> , i>l,. .. . n. (6)
kodd t--it< .. <ajas

Now, for any u E B" let us define the kth generation of a to be the
vector olk] E B(%) defined by

U41U2 .. Uk-lUk+l

uk] =, (7)

\tx-k+ IU4n-k+2 •* .. /n_ Wn/

in other words, .[k] is the vector formed by lexicographically ordering the
(;) products of components of u taken k at a time. We now form the vector
6 from the first [d/21 odd generations of u:

10ul1I
u[131

= .(8)

u[d]

Now set

Nd= E (in).
todd

m~~~~~~~n~~N Z UP mmom••nH i lnnm•me
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Clearly, 6 is a binary vector with Nd components. Let * denote the n x
Nd matrix of coefficients, wj ..... ,, in Eq. (5) arranged lexicographically;
i.e., I

W11 Wi. W1123 "'" W1.n_2J x

W21 "'" WzA W2 123 ... W2.n-2.n

Wnl " Wnn 14'ni23 Wn~n-2.n - I.n

W112345 "" WIn-d+ I,n -d+2,....n - I,n
W212345 ' W2"n -d+ l'n-d+ "n-'n I~

WnI2345 "Wn-d+ L. -d+ 'La

Let U be the n x m matrix of memories. Form the extended Nd x m
binary matrix 3

(= [fil a2 ... jam],

where fi" E BN, is as defined above. Let 3
A = dg[ V), . . . ,X()] I

be an m X m diagonal matrix with positive diagonal terms, X(a) > a. We
formally define the generalized spectral matrix of coefficients, W, by

S= UA(UTI.j)-I•JT. (9)

Note that this yields stable memories as long as the matrix U is full rank. 5
Specifically, if the initial state is one of the memories, uo, then we obtain

W'a = X(a)u," 3
It is now easy to verify that Eq. (6) is satisfied for each component ,
memory uW, so that ua is a fixed point under evolution according to the
rule (2). If the degree of interaction, d, is even, the exposition follows as
above with the first sum in Eq. (5) being over even k instead of odd k. The
maximal allowable rate of growth of m with n follows immediately. 3

I
I
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THEOREM 3.3. An upper capacity of the generalized spectral algo-
rithm of degree d is

J=2 (d -2j)

In particular, if d = o(n) then an upper capacity is nrdld!.

Anecdotal evidence in implementations indicates that the above esti-
mate of upper capacity actually holds as an estimate of capacity as was
the case for d = 1. There is some theoretical support for this though no
complete proof. The main difficulty is that we cannot directly apply Prop-
osition 3.2 to the matrix 0 as the distribution induced on vertices of BNd as
we build up generations according to Eqs. (7) and (8) is not uniform-
indeed, we can only access 21 out of the total of 2Nd vertices. Note,
however, that any two distinct vectors, a and v, in 81 when expanded to
vectors 0 and f in B1, according to Eq. (8) become more and more nearly
orthogonal as the number of generations increase. In fact, let D be the
Hamming distance between u and v. Then it is easily verified that the
Hamming distance, 1, between 6 and f is given by3

d D (

joM kodd

(If d is even replace the first sum by a sum over even indices, j = 0, 2,
S. ... d.) As d increases the vectors ,i and f approach orthogonality, and
in fact, any pair of vectors u and v in Bn result in orthogonal vectors ,u and
$ in B2-' when all odd (or even) generations are included-i.e., when d is
equal to n or n - 1. To verify this note, for instance, that for any Ham-
ming distance 0 < D < n between two vectors in B" the corresponding
Hamming distance 15 between the corresponding vectors in B2 -'1 when all
odd generations are included is

6(D( -D)J• d.dk odd~k(k

kdd jad J-

For simplicity we use the convention (b) = 0 if a < b or b < 0.
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kodd

= 2 "-D-1 2 D-i

= 2R-2.

Hence W,) = 0 for any two vectors u • -v in B" when all odd (or even)
generations are included. The preceding analysis does not work when l
D = n; i.e., we start with two opposing vertices of the n-cube. However,
even in this case note that the generated vectors 6 and i become orthogo-
nal if we include all even and odd generations. Thus, though the statistical

dependence across components increases with the number of generations I
included, we may expect a concurrent building up of linear independence
as the randomly chosen memories, no, result in more and more nearly
orthogonal vectors tia. We may, hence, expect the nonsingularity proba-
bility estimate of Proposition 3.2 to improve for the generated matrices
U.4 In particular, let Nd denote the length of the extended vectors u for
any choice of degree d (which may depend on n).

CONJECTURE 3.4. If the number of memories satisfies m s Nd then the
Nd x m extended matrix of memories, U, is full rank with probability
approaching one as n --* -. I

This, in turn, would yield that the upper capacity estimate of Theorem
3.3 would actually be the estimate of the capacity of the higher-order
spectral algorithm of degree d. 3

4. MAXIMAL CAPACITY 3
In this section we derive the maximal storage capacity of a higher-order

neural network of degree d. The results are independent of any particular
choice of algorithm, and depend only on the network architecture-a I
higher-order neural network of degree d. The maximal capacity, hence,
delineates the upper limit on storage that can possibly be achieved by any
particular choice of storage algorithm. We use a fundamental result due to I
SchlAfli (1950) enumerating the number of linearly separable dichotomies
of m points in N-space.

Let V = {v', . . . , v'} C RN be an m-set of points in N-space. 3
'The estimate of Proposition 3.2 may itself be rather weak. As conjectured by Koml6s,

we may expect the majority of singular ± I matrices to be singular for the trivial reason that
two rows or two columns coincide. If verified, this would, of'course, improve the estimate of
the probability of nonsingularity in Proposition 3.2 to I - O(n2-2). I

I
I
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DEFINITION 4.1. A dichotomy V = {V+, V-} of V is homogeneously
linearly separable (his) if there is a vector w E RN such that the inner
product

V) > 0 if v E V(
< 0  if V E V-. (10)

If Eq. (10) holds then w is said to be a separating vector for the dichot-
omy.

The following version of Schldfli's counting lemma estimates the proba-
bility that a randomly chosen dichotomy is homogeneously linearly sepa-
rable. We give the proof for completeness. The presentation follows that
of Wendel (1962) who utilizes the result in this form in a problem in
geometric probability. [See also Cover (1965) for a slightly different ap-
proach.]

LEMMA 4.2. Let V be an arbitrary m-set of points in RN, and let V be
a dichotomy of V chosen independently of V, and with equal probability,
2--,from the set of dichotomies of V. Then the probability, P•, that V is
homogeneously linearly separable is bounded by

j-0 J "(1

Moreover, a sufficient condition enabling us to replace the inequality
above by equality is that the m-set of points V be chosen from a joint
distribution which is such that V is in general position-i.e., all subsets of
size N are linearly independent-with probability one.

Proof. Let DN be the maximum number of dichotomies of an m-set of
points in RN that are his. Then

PN <- 2- mDN.

In order to demonstrate the validity of Eq. (11) it suffices, hence, to show
that

N-1, (MDs =0 2 " (12)

Let V denote an m-set of points for which DE dichotomies are his.
(Such a set exists as Dm s 2" is finite.) Let Va/ be the hyperplane orthogo-
nal to vo. Then DN is the number of path-components in RN\U,=1 yO as
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each path-component is a maximally connected set of vectors all homoge-
neously separating the same dichotomy of V.

Now consider the effect of deleting the hyperplane Vy. The remaining
m - I hyperplanes determine DN,' path-components. These are of two
types: (i) those path-components (say Q, in number) which have a nonnull
intersection with the hyperplane V-, and (ii) those path-components (say
Q2 in number) which do not intersect V-. Clearly then, DN-' = Q, + Q2. I
With V- restored it cuts each path-component of type (i) in two, and
leaves path-components of type (ii) undisturbed. Hence

D = 2Q, + Q2 = D,•- + Q+ .

Now the intersection of the Q, type (i) components with the hyperplane
Vm generates Q, path-components in V'n\U-iI(V- n V-). As the sets V"y
nl V* are just the hyperplanes in the (N - l)-dimensional space
V- orthogonal to the projection of the vectors va into V-, it follows that
Q, = D1N-,. Hence 3

DN = Df-s + DN-I.

HI
This recursion with the obvious boundary conditions

yields the solution (12) which can be readily verified by induction.
To complete the proof we need to show that we can replace the inequal-

ity in Eq. (11) by equality if the m-set of points V is in general position
with probability one. This follows immediately, however, from the simple
observation that the proof above continues to work to estimate the num-
ber of his dichotomies of any m-set of points which has an attribute which
is preserved under projections. a

We require the following technical result due to Chernoff (1952) which
gives bounds for very large deviations in the tails of the binomial distribu- 3
tion. I

LEMMA 4.3. Fix J -< c < I and let H denote the entropy function

H(x) = -x log12 x - (I - x)log2(l - x) (0 < x < I). U
Let p denote the probability that in M trials of a fair coin the number of

successes is greater than or equal to cM. Then I
p = --1 ( _f 2 - .

I

I
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THEOREM 4.4. C- = 2 (C-1) is a maximal upper capacity for zero-
l_ diagonal neural networks of degree d.

Proof. Let U = {ul, ... u- be a randomly specified m-set of mem-
ones whose components are generated from a sequence of symmetric
Bernoulli trials. If each of the memories is to be W-stable we require to
find real coefficients, w,. I E -d, i (t I such that for each i E [n], and a E

u19, 2 wm.mula • (13)

We first argue that without loss of generality we can restrict attention to
a margin a = 0. In fact, if there exist a choice of coefficients, wyj), such
that

wU Z (i.I)U1 > 0, i = 1, .... n, a = 1, . M... ,

then, if T > 0 is the smallest of the sums above, the simple expedient of
scaling all coefficients w(,j) by a positive scalar greater than 9IT will
result in Eq. (13) being automatically satisfied.

Referring to the evolution rule (3) (with margin 3a = 0) we see that each
higher-order neuron in a zero-diagonal network of degree d realizes a
separating plane in (n-')-space. For the memories to be fixed points we
hence are required for each i = 1, .... n to find N = (R') real coeffi-5 cients W(,U), I E &d, i i I such that

u7= sgn(, w(,i.ui). a = i ..... m. (14)

I Now fix i and let • be the event that there is no weight vector w1 =
[w(•,1 ] in N-space which separates the dichotomy of the extended m-set of
memories, [ufi, with components varying over the set of indices I E .d:Ii it 1, and a = 1, . . . , m, induced by Eq. (14)-i.e., the partition of the
memories according to whether u* is - 1 or + i. Note that the term u" does
not appear anywhere in the sum or in the right-hand side of Eq. (14). As
the components u," are drawn from symmetric Bernoulli trials it follows
that the dichotomy indicated in Eq. (14) is chosen independently of the
extended m-set of memories. By Lemma 4.2 we hence have

I N-I

P{J,} = 1 - P - I - 2-("-I • (m - (5

I-0
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Let 91 be the probability that there exists a zero-diagonal network of 3
degree d in which the fundamental memories are stable. Then

Op= 1-P {ý ---9 -P{}. (16) 1
Set M = m - I for notational convenience. Using Eq. (15) with the I

upper bound for 9 in Eq. (16) we have

91_:52-4f .

Fix X > 0 and choose M = f2N(I + X)1. Then N = cjM where 0 < cI <I. U
Using Lemma 4.3 we hence have

91 5 1 ( M) :5 2 -11 - Hfr,)IM -* 0, (n- )
J--0

Hence 2N + I is a maximal upper capacity, and by Proposition 2.6 so is 1
2N = 2 (d-'). M

A maximal lower capacity of N is readily demonstrated if an indepen-
dence conjecture similar to the one earlier holds. Fix any index i in [n],
and consider an extended set of N memories [u 7Ifj,:.J, a E [m), where
each extended memory is a binary (± 1) vector of length N. Denote this
set of (extended) memories by &U.

CONJECTURE 4.5. The set of extended memories U0 is linearly indepen-
dent with probability approaching one as n - -. I

For a choice of m <- (ndI), PN = I for almost all choices of m memories
by Lemma 4.2 if the above holds. This will yield a lower maximal capacity
of N = (ndI). We can, however, hope for more: the following application
of a result of Furedi (1986) provides a lower bound for the probability that
a dichotomy of a randomly chosen m-set from the vertices of an N-cube is
his. I

LEMMA 4.6. Let an m-set of points be chosen independently from the
uniform distribution over the vertices of the binary N-cube, BN. Then, if
m s 2N, the probability that an arbitrary dichotomy of the m-set of points I
is his is bounded below by U

£
I
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N-1 I

j= O J

where b > 1 is a fixed constant.

Remarks. The exponentially small order term quoted above is a re-
finement of Furedi's original estimate of O(N-"2 ) using Proposition 3.2.
The result eschews the general position requirement of Lemma 4.2. Spe-
cifically, the upper bound for PV in Eq. (I1) is sharp if m - 2N and the m-
set of points is chosen independently from the uniform distribution on5 vertices of the N-cube.

Furedi's result makes it appear likely that, in fact, 2N = 2 (nd-) is the
maximal capacity of a zero-diagonal higher-order network of degree d.
We again have a situation as in the previous section where we would like
to apply the result not to the uniform distribution, but to the distribution
corresponding to the dth generation of an m-set generated randomly from
the uniform distribution on BR. If the above lemma continues to hold for
this situation, then for m -s 2N we can replace the estimate (15) in the
proof of the theorem above by

SP{•} = I - 2-M u j + O(b-.V),

where, again, we set M = m - I. Using the union bound we have from
Eq. (16) that

I - nP{ci} _ S .

Fix 0 < k < I and choose M = 12N(I - Q)j. Under the above assumption
we then have for d = o(n) that

>- 1- n [ - 2-M ( ) + O(b-A)

= I - n 2-Mi ( + O(b-A)Ji N
= I-n 2-m Z" Mj + O(b- ,

j c2M
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where J < C2 < 1. As M = f(nd) and N - ndld! we then have by
Chernoff's large deviation bound (Lemma 4.3) that for a choice of con-
stant c3 > 0

stntI - n2-[n-H(c0)m - O(nb-c1,') - 1, (n • )

So 2N + I is a lower sequence of maximal capacities, and hence, so is 2N
by Proposition 2.6 if Fioredi's result holds in this case.

For the case d = I it is clear that Furedi's lemma holds in toto so that
the above analysis works with N = n - 1. For the case of linear interac-
tions, hence, we have shown the following U

THEOREM 4.7. The sequence 2n is the maximal capacity for zero-
diagonal neural networks with linear interactions, d = 1.

Remark. It is known that 2n is the capacity of a single linear threshold
element [cf., for instance, Cover, 1965; Venkatesh and Psaltis, 19911.
The above result asserts that there is no decrease in capacity for the zero-
diagonal network of n neurons even though we now have a situation I
where n neurons operate on the same set of memories.

S. CONCLUDING OBSERVATIONS

1. For the case d = I Abu-Mostafa and St. Jacques (1985) demon-
strate that with the requirement that all choices of m vectors be stored as
fixed points for some choice of zero-diagonal network, m can be no larger
than n. However, small pathological sets of vectors which cannot be
stored can be found (Montgomery and Vijayakumar, 1986), and such
pathologies make it difficult to achieve nontrivial deterministic capacities.
The probabilistic setup adopted here essentially relaxes the requirement
that all choices of m vectors be storable to the requirement that almost all I
choices of m memories be storable; pathological scenarios that cannot be
stored form a set whose size is small compared to (:), and are effectively
ignored in this definition.

2. The maximal capacities for nonzero diagonal networks are of the I
same order as those for the zero-diagonal networks. Note, however, that
we are required to put restrictions on the allowable choices of interac-
tions. Specifically, consider the case d = 1. With a choice of identity
matrix of interactions, wv = 8,, it is clear that all states in Bn are stable
with the same margin of stability. There is clearly no associative storage
possible in this situation. To avoid situations of this type we have to put U
constraints on the allowable interactions so that the number of extraneous
stable states do not become too large: specifically, the diagonal terms I

I
I
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should not dominate the nondiagonal terms. Similar examples hold for the
higher-order cases.

3. The capacity estimates continue to hold if we are required to
store random associations of the form uV 1- v". We then call the vectors YO
the associated memories. The spectral algorithm generalizes in a straight-
forward manner with the interaction matrix of coefficients of Eq. (9)
modified to

S= VA(fUTfY)-1fUT

with V being the n x m matrix of associated memories.
4. The main unresolved issue in this work is the conjecture intro-

duced in this paper that the linear independence property is preserved
(strengthened!) when we consider higher generations of vectors chosen
uniformly from B". This is independent of the Koml6s conjecture.
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Recent results on the memory storage capacity of the outer-product algorithm
indicate that the algorithm stores of the order of n/log n memories in a network of

n fully interconnected linear threshold elements when it is required that each
memory be exactly recovered from a probe which is close enough to it. In this
paper a rigourous analysis is presented of generalizations of the outer-product
algorithm to higher-order networks of densely interconnected polynomial thresh-

old units of degree d. Precise notions of memory storage capacity are formulated,
and it is demonstrated that both static and dynamic storage capacities of all
variants of the outer-product algorithm of degree d are of the order of n'llog n.
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I . INTRODUCTION

1. 1. Overview

Formal neural network models of densely interconnected linear thresh-
old gates have found considerable recent application in a variety of prob-
lems such as associative memory, error correction, and optimization. In
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444 VENKATESH AND BALDI 3
these networks the model neurons are linear threshold elements with n
real inputs and a single binary output. Each neuron is characterized by n
real weights, say wid ......... w1 , and a real threshold (which we assume
to be zero for simplicity). Given inputs ul .... , u., the ith neuron
produces an output vi E {-1, 1} which is simply the sign of the weighted
sum of inputs: 3 ý I0

A fully interconnected network of n formal neurons is then completely
characterized by an n x n matrix of real weights. I

A number of authors have recently begun to investigate more general
networks obtained by incorporating polynomial instead of linear interac-
tions between the threshold processing elements. Specifically, the linear
threshold elements of Eq. (1) are replaced by polynomial threshold ele-
ments of given degree d; the output, v,, of the ilth higher-order neuron in
response to inputs ul, .... u,, is given by the sign of an algebraic form 5

v, = sgn( S wi,,.. .. ,. u,,. , . (2)

The number of interaction coefficients is increased to nd+' from the n2  I
weights for the case of linear interactions. The added degrees of freedom
in the interaction coefficients can potentially result in enhanced flexibility
and programming capability over the linear case: in general, the computa-
tional gains match the added degrees of freedom (Venkatesh and Baldi,
1991).'

In this paper we estimate the maximum number of arbitrarily specified
vectors (memories) that can be reliably stored by the outer-product algo-
rithm in a higher-order network of degree d. We estimate both static
capacities- where we require the memories to be stored as fixed points of
the network-and dynamic capacities--where the specified memories
are required to be attractors as well. Our principal results are as follows:

The static and dynamic storage capacities of all variants of the outcr-

product algorithm generalized to degree d are of the order of nd/log n
memories.

The maximal storage capacities that can be realized in a higher-order
network of degree dare of the order of nd (Venkatesh and Baldi, 199 1), so

Higher-order neural with random interactions lead to rather different computational
issues. We deal with these in a concurrent paper tVenkatesh and Baldi, 1989a).

I
I



MEMORY IN HIGHER-ORDER NEURAL NETWORKS 445

that the outer-product prescription for storing memories loses a logarith-
mic factor in capacity. This, however, is somewhat offset by the ease of
programmability and the simplicity of the algorithm.

Notation. We utilize standard asymptotic notation and introduce two
(nonstandard) notations. Let {x.} and {y.} be positive sequences. We
denote:

1. x. = Wl( y,) if there is a positive constant K such that xIy. -2 K for
all n;

2. x,, = O(yj) if there exists a positive constant L such that x./y. <
L for all n;

3. x. = O(yj) if x. = O(y.) and x, = fl(yj);

4. x. - y, if x./y--+ I as n - -; we also use x. is y, if xnIy.s Iforn
large enough, and x, • y. if x./y. a- I for n large enough;

5. x. = o(yj) if x./y. --* 0 as n -# o.

We also say that a positive sequence, M., is polynomially increasing if
log M. = 0(log n) for any fixed base of logarithm. (All logarithms in the
exposition are to the base e.) We denote by B the set {- 1, 1}, and by mIn
the set {f, 2 ..... n}. Finally, by an ordered multiset we mean an
ordered collection of elements where repetition is allowed.

Organization. The basic definitions were set up in a preceding paper
(Venkatesh and Baldi, 1991), and we briefly summarize them in the rest of
this section. In Section 2 we describe the generalization of the outer-
product algorithm to higher-order networks. In Section 3 we present the
main theorem on the static storage capacity of the outer-product algo-
rithm. In Section 4 we prove the theorem for the simplest case of first-
order interactions where the neurons are linear threshold elements; the
proof techniques used here are somewhat simpler than those for the gen-
eral case. In Section 5 we prove the main theorem on the static capacity of
the higher-order outer-product algorithm. Following the proof of the main
theorem, in Section 6 we then infer similar static capacity results for the
outer-product algorithm when self-interconnections are proscribed-the
zero-diagonal case. In Section 7 we consider the dynamic case. Theorems
are proved in the body of the paper, while technical results needed in the
proofs are confined to the Appendix.

1.2. Higher-Order Neural Networks

We consider recurrent networks of polynomial threshold units each of
which yields an instantaneous state of -I or + 1. More formally, for
positive integers n and d, let J, be the set of ordered multisets of cardinal-



U
U
I

446 VENKATESH AND BALDI

ity d of the set [n]. Clearly I .dl = nd. For any subset I = (i1 , i2, . id)
E Id, and for every u = (u,, u2 , . u.) E BA, set ul =HI,,i u).

DEFINITION 1.1. A higher-order neural network of degree d is charac-
terized by a set of nd- I real weights w(in indexed by the ordered pair (i, i)
with i E [n] and I E Id, and a real margin of operation - :- 0. The
network dynamics are described by trajectories in a state space of binary
n-tuples, B": for any state a E B" on a trajectory, a component update ui I

Su is permissible iff

1 if Ifs w(,JUi1 < -a

u = ui if -a - XSEJ, W(iJ)UI S (3)

11 if 7IE.0, W(PUI> R. 3
The evolution may be synchronous with all components of u being up-
dated according to the rule (3) at each epoch, or asynchronous with at U
most one component being updated per epoch according to Eq. (3). 3

The network is said to be symmetric if W(is) = w(jj) whenever the (d +
l)-tuples of indices (i, 1) and (j, J) are permutations of each other. The j

network is said to be zero-diagonal if w(ij) = 0 whenever any index I
repeats in (i, ).

Let id denote the set of subsets of d elements from [n]; lidI = M).
Combining all redundant terms in Eq. (3), for symmetric, zero-diagonal 3
networks a component update u, i- ui is permissible iff

u I = u W--1•,:U(Iwul < (

if I1E,':i6! w(,J)u, > 9. 5
As in the case of recurrent networks of linear threshold units, the

dynamics of recurrent higher-order networks can be described by
Lyapunov functions (Hopfield, 1982; Goles and Vichniac, 1986; Maxwell I
et al., 1986; Psaltis and Park, 1988; Venkatesh and Baldi, 1989a) under
suitable conditions on the interaction weights. Consider, in particular, a
symmetric, zero-diagonal network of degree d. For u E B" define the
algebraic Hamiltonian of degree d by

,d(U) = - w/u/.

We then have the following assertion which we give without proof.

I
I
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PROPOSITION 1.2. The function HL, is nonincreasing under the evolu-
tion rule (4) in asynchronous operation.

In light of such results we are interested in the number of fixed points of
the network and, in the associative memory application, :n the trajecto-
ries leading into the fixed points.

DEFINITION 1.3. Let a a 0 be fixed. A state u E B" of a higher-order
neural network of degree d is said to be @-stable iff

ui Z Wij)ul > A, i = 1 .... n.
IE~d

Likewise, a state u E B" of a zero-diagonal network is said to be A-stable
iff

ui e w(ijJ)u > n, i = ! .. . n.

It is easy to see that a-stable states are fixed points of the higher-order
network with evolution under a margin A. The notion of a-.table states is
explored further in Koml6s and Paturi (1988) and Venkatesh and Baldi
(1989a).

We refer to the data to be stored as memories. By an algorithm for
storing memories we mean a prescription for generating the interaction
weights of a higher-order network of degree d as a function of any given
set of memories. We will investigate the maximum number of arbitrarily
specified memories that can be made fixed in the network by an algorithm;
this is a measure of the capacity of the algorithm to store data.

1.3. Memory Storage Capacity

Let u' ..... u- E B" be an m-set of memories to be stored in a higher-
order network of degree d. We assume that the memories are chosen
randomly from the probability space of an unending series of symme-
tric Bernoulli trials: specifically, the memory components, u9-, i E [n),
a E [m], are i.i.d. random variables with

P{u '= -1} = P{u1? = +} = I.

In the following we assume that the network architecture is specified to be
a higher-order network of degree d.

DEFINITION 1.4. We say that C. is a capacity function (or simply,
capacity) for an algorithm iff, for every choice of 8 > 0, the following two
conditions hold as n -o o:
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(a) The probability that all the memories are fixed points of the 3
network generated by the algorithm tends to one whenever m s (I -
8)C. ;

(b) The probability that at least one of the memories is not a fixed n
point of the network generated by the algorithm tends to one whenever m
> (0 + 8)C,.

If a sequence satisfies condition (a) we call it a lower capacity function I
and denote it by C,,. Likewise, if a sequence satisfies condition (b) we call
it an upper capa-ity function and denote it by C-,.

Thus, if a capacity function exists for an algorithm, then it is both a
lower and an upper capacity function for the algorithm. Define an equiva-
lence class % of (lower/upper) capacity functions by C,, C.' e % •t* C,, -
C,,. We call any member of IC the (lower/upper) capacity (if 19 is non- I
empty). Note that the definitions ensure that if any capacity function
exists then the equivalence class of capacity functions is uniquely defined
(Venkatesh and Baldi, 1991). (This is not true, however, for lower and
upper capacities which are always guaranteed to exist.)

The above definitions of capacity require that all the memories are fixed
points with probability approaching one. We obtain weaker definitions of
capacity if we require just that most of the memories be fixed points.

DEFINITION 1.5. We say that C.' is a weak capacity function (or sim-
ply, weak capacity) for an algorithm iff, for every choice of 8 > 0, the
following two conditions hold as n -* : I

(a) The expected number of memories that are fixed points is
m(l - o(l)) whenever m -s (I - B)CR;

(b) The expected number of memories that are fixed points is o(m) U
whenever m -a (I + 8)C•.

If a sequence satisfies condition (a) we call it a weak lower capacity .

function and denote it by Cw'. Likewise, if a sequence satisfies condition
(b) we call it a weak upper--apacity function and denote it by C--.

We again define an equivalence class %w of (ower/upper) capacity 5
functions by Cn*, e*' E • € C• - C'. We call any member of Ik the
weak (lower/upper) capacity (if ; %'is nonempty).

For the network to function as an associative memory we require that it 3
corrects for errors in inputs sufficiently close to the stored memories.

DEFINITION 1.6. For a given mode of operation (synchronous or
asynchronous) and a chosen time scale of operation (synchronous one- I
step, synchronous multiple-step, or asynchronous multiple-step) we say
that a memory is a p-attractor for a choice of parameter 0 s p < J iff a I

I
I



MEMORY IN HIGHER-ORDER NEURAL NETWORKS 449

randomly chosen state in the Hamming ball of radius pn at the memory is
mapped into the memory, within the given time scale, and for the given
mode of operation, with probability approaching one as n -. 2

In a manner cor.pletely analogous to the definitions of capacity above,
we can now define p-attractor capacities and weak p-attractor capacities
for the given mode of operation and the given time scale of operation by
replacing the requirement of stable memories by the requirement that the
memories be p-attractors.

2. THE OUTER-PRODUCT ALGORITHM

2. 1. The Classical Hebb Rule

The outer-product algorithm (a special case of what is known as the
Hebb rule) has been proposed by several authors as appropriate in a
model of physical associative memory. While the algorithm is of some
antiquity, formal analyses of the performance of the algorithm have, how-
ever, become available only recently (cf. McEliece el al., 1987; Newman,
1988; and Kon;16s and Paturi, 1988). [For related nonrigourous results
based upon replica calculations and statistical physics see, for instance,
Amit et al., 1985, and Peretto and Niez, 1986.1

Let u', . . . , u" E B" be an m-set of memories. We will assume that
the components, u,?, i = 1,. . . , n, a = I,. . . , m, are drawn from a
sequence of symmetric Bernoulli trials. For the linear case d = I the
outer-product algorithm prescribes the interaction weights, wi, according
to the rule

wj = U tuu - gmS,, ij = 1 ..... n

where g is a parameter with 0 -5 g s I, and 80 is the Kronecker delta.
It can be easily seen that in this algorithm the memories are stable with

high probability provided m is small compared to n; further, the construc-
tion utilizing outer-products of the memories results in a symmetric inter-
action matrix which in turn ensures that stable memories are attractors.
The algorithm hence functions as a viable associative memory. McEliece
et al. (1987) (cf. also Koml6s and Paturi, 1988) carried out precise analyti-
cal calculations of the storage capacity of the outer-product algorithm

I For linear interactions, d = I, Koml6s and Paturi (1988) have investigated the more

stringent case where they require the entire Hamming ball of radius pn around a memory to
be attracted to the memory.
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under a variety of circumstances and showed that the capacity of the
outer-product algorithm is of the order of n/log n. 3

The attractiveness of the outer-product algorithm for associative mem-
ory has led several investigators including Lee et al. (1986), Maxwell et
al. (1986), Psaltis and Park (1986), and Baldi and Venkatesh (1987, 1988) I
to independently propose higher-order extensions of the algorithm.

2.2. Outer-Products of Higher Degree 3
While the results of McEliece et al. (1987) indicate that for the linear

case d = 1, the capacity of the outer-product algorithm does not depend
on whether self-connections are present or absent, the same does not
continue to hold true for higher-order generalizations of the algorithm.

As before, we consider an m-set of memories, u1, . . . , u'" E BR,
whose components are chosen from a sequence of symmetric Bernoulli
trials. Consider first a network of n higher-order neurons with dynamics I
specified by Eq. (3). For every i in [n] and ordered multiset I E ,•a the
outer-product algorithm of degree d specifies the interaction coefficients,
w(jJ), as a sum of generalized outer-products I

=oj Ut U14 (5)

For the zero-diagonal case we use the same prescription to specify each
W(iJ) with i E [n] and I E .4d, and dynamics specified by Eq. (4).

While heuristic arguments suggest that the increase in the available I
degrees of freedom in the specification of the interaction coefficients
would result in a commensurate increase in the fixed point storage capac-
ity (Peretto and Niez, 1986; Baldi and Venkatesh, 1987), hitherto no rigor- U
ous estimates of storage capacity have been demonstrated. 4 We provide a
formal analysis in the subsequent sections. *1I

3. FIXED POINTS AND STATIC CAPACITY

3.1. The Main Result
Consider a network of degree d. By the evolution rule (3), if the ith

component of the ath memory is to be stable, we require that

3 The capacity estimates of McEliece et al. apply to the case where the memories are 3
required to be stable-or, more generally, where they are required to be attractors-which
will be our principal consideration in this paper. A somewhat different computational feature
of the algorithm has been investigated by Newman (1988) and Koml6s and Paturi (1988) who
demonstrated that if errors are permitted in recall of the memories then the capacity of the I
outer-product algorithm can, in fact, increase linearly with n [cf. also the epsilon capacity
results of Venkatesh (1986) and Venkatesh and Psaltis (1991) in this regard).

'See Newman (1988), however, for investigations along a slightly different track.

I
I
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3 Ul I ,MJ)Uj > .

IE$,

I If each of the memories is to be a fixed point of the network we require nm
equations of the above form to be simultaneously satisfied, one per mem-
ory component.

Now select the coefficients w(jj) according to prescription (5) for the
outer-product algorithm of degree d. For each n define the sequence of
doubly indexed random variables X',- with

Ii. =X EZUG1U1 =n qE i.14 = 0u1 EE~ s' *,Ul /E A4 u
IEJA4  IEju Vd a +Elu.

1 (6)

Setting for v * a

I A.V 44 ulul U74 (7)

I we get

d. . (8)
PAO

The evolution rule (3) will fail to retrieve the ith componekit of the ath
memory, u,?, if X','-< a. If we identify the term nd as the "signal" term
and the term 1,,. Y'--P as the "noise" term, a memory is 91-stable if the
signal term less the margin exceeds the noise term for each component.

Let C. denote the event {XUa _ 9}, and let %,, = U", UO' ,= be the
event that one or more memory components is not retrieved (i.e.. is not
ga-stable). We are interested in the probability, P{•gC}, of the event Z,.: we
would like m to be as large as possible while keeping the probability ofZ,
small, i.e., m as large as possible while keeping the probability of exact
retrieval of each of the memories high. For notational simplicity we
henceforth suppress the i, a dependence of the random variables X,` and
iY,"- except where there is possibility of confusion. DenoteI =A

j.t. E{Y111,

5 and for each d let

(d = (2d)! (9)

I
I
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The following theorem is the main result of this section; it provides i
an estimate of the storage capacity of the outer-product algorithm of de-
gree d.

THEOREM 3.1. Consider a higher-order neural network of degree d
with weights chosen according to the outer-product algorithm of Eq. (5)
and with a choice of margin R = mA. in the evolution rule (3). For any
fixed e > 0 and w > 0:

1. If, as n -- •, we choose m such that

0 w)nd + 2 log log n +. 2 log 2(d + I)XdV- I
m = 2(2d+ l)-dlogn + (2d + 1) logn

- 0 (logiogn) (10)(log no2 ,] I

then the probability that each of the memories is mie-stable is - I - e; 3
2. If, as n -- •, we choose m such that

M ( - wr)nd_ [ + log log n + log 2c(d + l)Xd

2(d + 1A) d"1g nL log n

flog log n'f0 1I)
"- O (logn)2 /J

then the expected number of memories that are mu.-stable is Zm(I - v).

Remarks. The size of the margin of operation is dictated by the ex-
pected size of the noise term for a typical state which is not a memory. As I
we will see in the subsequent development, the expected value of the
noise term can be as large as the order of mn(d- 1)2. If this is not compen-
sated for in the margin of operation a large number of extraneous states U
(nonmemories) will also become fixed points of the system. Note also that
relaxing the requirement that all the memories be stable to just requiring
that most of the memories be stable effects (roughly) a twofold increase in
the number of memories that can be stored.

COROLLARY 3.2. For a given degree of interaction d > I and margin 3
mj.i, the sequence

C__,=•(2d + W) log n

is a lower capacity for the outer-product algorithm.

I
U
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COROLLARY 3.3. For a given degree of interaction d >- I and margin
mA,, the sequence

Lw (d)2- n'd

CA.... =(2 + 1)) log n

I is a weak lower capacity for the outer-product algorithm.

Remark. Slightly sharper bounds are derived in Section 4 for the case
3 d =1.

3.2. Outline of the Proof

The main step involved in the proof of the theorem is the estimation of
the probability, P{f, 0 } = P{X, 5 mt.L,}, that one component of a memory
is not retrieved. We will utilize techniques from the theory of large devia-
tions of a sum of random variables from its mean to estimate this probabil-
ity. Over the next two sections we demonstrate that for the range of m we
consider, the following estimate holds: for any m > 0

Ip{giI} :s m exp 2{ d mIn (n -- -). (12)

3 The probability that one or more memory components are not retrieved is
less than nm times the probability that one memory component is not
retrieved; likewise, the expected fraction of memories that is not R-stable
is just the probability that one memory is not a-stable, and this probabil-
ity is bounded by n times the probability that one memory component is
not retrieved. Using the estimate of Eq. (12) together with a choice of m
according to Eq. (10) and (I1), respectively, yields an upper bound of e for
these probabilities, and concludes the proof.

The two corollaries follow as a consequence of uniformity: the proba-
bility that all the memories are R-stable decreases monotonically as the
number of memories increases. If, for instance, for any fixed 8 > 0 the
number of memories is chosen to be equal to (I - 8) times the capacity
estimate of Corollary 3.2, it is easy to see that for large n the number of
memories will be less than that specified by Eq. (10). The resulting proba-
bility that all the memories are @-stable will hence be asymptotically
better than I - E. A similar line of reasoning also establishes Corollary
3.3.

The main idea in establishing Eq. (12) is to exploit the fact that the r.v.'s
Y, v #: a defined in (7) are i.i.d. Referring to (8), the probability that a
m;emory component is not retrieved is just the probability that the sum,31, a(Y' - A.). of(m - 1) zero-mean, i.i.d. r.v.'s is less than or equal to

I
I
I
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-nd + /,,. As we will see in the next two sections, a careful estimation of

the mean, tL, of the r.v.'s Y' will yield that ;L. = o(nd). It suffices, hence,
to estimate the probability that Y, 4,,(Y. - IA) :S -nd; i.e., to estimate the
probability that the sum of r.v.'s Y, deviates from the mean by the large
deviation n'd.

For the case of first-order interactions, d = 1, the situation simplifies
somewhat. For this case the r.v.'s (r. - ;.&) themselves turn out to be
the sum of (n - 1) i.i.d., symmetric t-I r.v.'s, and the large deviation i
estimate for the probability that a memory component is not retrieved can
be obtained by an application of the generalized Chebyshev inequality.
We present the derivation of the probability estimate for this case in Sec-
tion 4.

For d > I additional problems arise as the r.v. r, has an infinite mo-
ment generating function. In particular, the Chebyshev estimates of Eqs.
(33) and (34) in the Appendix work only trivially. We tackle this case in
Section 5. The results needed here are two large deviation lemmas (A.6
and A.7) found in the Appendix.

4. FIRST-ORDER INTERACTIONS I
We begin with the following elementary observation.

Fact 4.1. Let b . . . . .. . bN be i.i.d., symmetric, ±1 r.v.'s. Let a,,
. ... aN be any set of ±1 r.v.'s independent of the r.v.'s bk, k = I,
S.... N. Then the r.v.'s Zk = akbk, k = 1 ..... N are i.i.d., symmetric, 3

*- r.v.'s.

Remark. Note that the r.v.'s ak need not be symmetric and may de-
pend on each other. i

Lemma 4.2 below is a particular application of Chebyshev's inequality.
The result is an asymptotic expression for P{iC'}, the probability that
a particular memory component is not retrieved. The result agrees
with what would be obtained by a naive application of the Central Limit
Theorem.

LEMMA 4.2. Let the order of interaction be d = I and let • = m be the
margin of operation. If the number of memories, m, is chosen such that
m = o(n) and ni/Vn -- / , then

P{~} s exp 2m(-} (n- ) (13)1

Proof. From Eq. (6) we can write

X, = n + m - I + x z;,

I
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where, for fixed i and a, we define the random variables Z = uuu.
Note that by Fact 4.1 the r.v.'s Zj,j * i, v * a are i.i.d., symmetric, ± I
r.v.'s.5 By Corollary A.2 we have for a choice of margin O = m that

Ip{zi-0 = P{X,,ý ml = P { z jZ: -n + I
n*a j*1I

r•:0

= inf e-,rn- 'E 1{HH e-Z.
_r•-O l~a ji

The terms in the product, e'z, v *ý a,j # iare independent r.v.'s as the
r.v.'s Z' are independent. The expectation of the product of r.v.'s above
can, hence, be replaced by the product of expectations. Accordingly,
denoting by Z an r.v. which takes on values -1 and I only, each with
probability J, we have

P{OC 0 } :s inf e-r(n-1 IE(e-rz)](--m•- 1) = inf e-'(R-1)(cosh r)(m-IXA-I).

I- Now, for every r E R we have cosh r 5 e'". Hence

p{Ca}_< infexp (r2(m - l)(n -) -1) (n - 1)

?to02 (_ 2(m -l

Equation (13) can now be readily verified recalling the condition
m/v~n --* -. E

We are now equipped to complete the proof of the theorem for the case
d = 1. We will, in fact, prove a slightly stronger version of the theorem
with constants for the lower capacity which are larger than th.•se given in3- Corollaries 3.2 and 3.3.

Proof of Theorem 3.1 (d = I). From Eq. (7) we have that

Su iu i II uI ju'~~~= I + Ju~'uI'

3 Hence pa, = E{Y} = 1, so that the requisite margin of operation in the
theorem is 91 = mp., = m. It is easy to verify that a choice of m as in Eq.
(10) with d = I satisfies the conditions of Lemma 4.2. Hence

5 The critical fact here is that each r.v. Z' has a distinct multiplicative term u, whichSoccurs solely in the expression for Z,.
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P{%.} = P U 0 a} S pnP{c} - nm exp {-(m)}" (14)
i- I -ii a-

For a choice of

M n=1n + log log n + log 4E _ 0.(log -)og n (15)
S logn o2g og5n

in Eq. (14) we have that P{fl} S e as n -- •. As the probability that each
of the memories is m-stable is exactly I - P{-}, this establishes the first I
part of the theorem (with a slightly better constant for the critical number
of memories).

The second part also follows similarly by noting that the probability that
a particular memory is not stable is <ne--'" by the union bound, and for a
choice of m given by

n [ log (V + 0
2 logn logn (log n) (16)

this yieldc - upper bound of c for the probability. The result follows as 3
the exp. number of memories that are not stable is m times the
probal, itat one memory is not stable. (Again, the estimate for m
giver i ...-. (16) is slightly sharper than that quoted in the theorem.) m 3

T!-., '.:riformity of the binomial distribution helps us to establish the
lower - .acit, of the algorithm.

Cok .. , It 4.3. For a degree of interaction d = I and a margin of
operation 31 = m, the sequence

C n
= 4 log n

is a lower capc-ity for the outer-product algorithm.
COROLLARY 4.4. For a degree of interaction d = I and a margin of

operation 9 = m, the sequence

n 3
IZ 2 log n

is a weak lower capacity for the outer-product algorithm. 3
Proof of Corollaries 4.3 and 4.4. We will sketch the proof of Corollary

3.2; the proof of Corollary 3.3 is similar. Let ru explicitly denote the

I
U
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probability P{V*} that one component of a memory is not stable as a
function of the number of memories, M. Fix any choice of 8 > 0, andI- consider a number of memories, M = (0 - 8)n/4 log n. For any e > 0
chosen arbitrarily small in Theorem 3.1 we can choose n large enough so
that M < m with m chosen as in Eq. (15). The result now follows from
Lemma 4.2 since the probability that at least one memory component

-- is not retrievable is bounded from above by nMrp, <. nMe-n' --
nme-w-12 : E. N

Remarks. Corollary 4.3 provides an improvement of a factor of J over
"I" the lower capacity claimed in Corollary 3.2, while Corollary 4.4 provides

an improvement of a factor of 2 over the corresponding weak lower ca-
pacity claimed in Corollary 3.3. McEliece el al. (1987) show that n/4 log nI is also an upper capacity for the outer-product algorithm for the linear
interaction case d = I, so that n14 log n is, in fact, the capacity of the
algorithm. (The constants obtained there for the o(l) terms in Eq. (10)
with d = .1 are slightly sharper-a coefficient of J for the log log n/log n
term instead of the coefficient i that we obtain in Eq. (15)-but these do
not affect the capacity results.) The proof of the main theorem in
McEliece et al. (1987) also yields the estimate n/2 log n for the weak
capacity.

1 5. HIGHER-ORDER INTERACTIONS

The above proof of the theorem for d = I fails, however, when the
interaction order d is larger than one: specifically, for d -> 3 and r > 0, the
r.v. r. has an infinite moment generating function so that E{e-rr.} be-
comes unbounded and the generalized Chebyshev's inequality of Eq. (34)
is too weak. (For r= 0 the Chebyshev bound is trivial.) To see this,
consider d = 3, for instance, and r > 0; from Eq. (7) we obtain

Let U - X(0, 1) be a standard normal r.v. By Fact 4.1 the summandsIuu•"uu, j * i are i.i.d., ±-1, symmetric r.v.'s so that b the Central
Limit Theorem r. converges in distribution to (I + 1 - I U)3, and this
has an infinite moment generating function. For d = 2, Chebyshev's in-I equality is workable, but the bound is terribly weak. We will hence need
the large deviation lemma A.7 to cater to the higher-order cases.

Before proving the theorem for general interaction orders, we first es-
tablish some further properties of the random variables Y:.

I!
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DEFINITION 5. 1. Let Y be a discrete r.v. taking values in {0.}-. We I

say that:

1. Y is skew-symmetric if P{ Y = 0_j} = P{Y = 0j} forj 1,. . K.

2. Y is unimodal if P{Y = 0,} < P{Y = 0-,, } and P{Y = 0j- 1 >
P{Y = 0)} forj = 2..... K.

We note that, in fact, the r.v.'s Y' are skew-symmetric and unimodal. 3
Set f' = uju'. For fixed a * v,, the r.v.'s •, .... , are i.i.d., symmet-
ric, ±-1 r.v.'s.

For d even, Y, =' (•' + X4I,)d. The r.v. Y' takes values in the set 3
{--nd, -(n - 2 )d ..... (n - 2 )d, nd}

and for k = 0,1, . .. ,Ln/2J I

P{YZ = -(n - 2k)d} = P{Yof= (n - 2k)dJ = (n) 2---

Hence the r.v.'s Y. are symmetric (consequently, also skew-symmetric)
and unimodal.

For d odd, Y, = (0 + 7i . The r.v. r. takes values in the set

{-(n - 2 )d, -(n - 4 )d, .... (n - 2 )d, Id3

and for k = 1, .- [(n - 1)/2J

P{Y = -(n - 2k - 2 )d} = P{Y = (n -2k)d}= k)2(n').

Hence the r.v.'s Y, are skew-symmetric and unimodal. 3
LEMMA 5.2. For each n the r.v.'s Y. are id.d. and as n -- x satisfy

= 0 ifd is even (7
E ) d jdyw2n(d-I2 if d is odd, d = o(n);

Var(Y,) Xdnd if d = o(n). (18) 3
Remarks. We actually show a little more than is claimed here. In Eq.

(20) we show an exact expression for pg,. This is needed to set the-margin
of operation accurately. I

Proof. Recall that we had defined IA,, = E{ Y.}, and A, = (2:)!/()!2' for
every nonnegative integer t. As before, denoting f, = uAuA for k = I,

n, and v * a we can write I
¶ 1

U
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( d

The r.v.'s f f, k = 1 .... n,/3 * a are mutually independent by Lemma
4. 1. Furthermore, each r.v. Y.' is determined by the distinct set of r.v.'s...... .... which appear in no other Y1. (3 : v. Consequently, the r.v.'s
Y,'. (v * a), are i.i.d. for each n.

When d is even, following Definition 5.1 we have established that Y, is
symmetric so that E( Y) = 0. Let us now consider d odd. From Eq. (7)
and by reason of the independent choices of the memories ua and u- we
have

E(Yi-) = E(u,?uja, "••u,,)E(u1'uj', "• uj',). (19)

JI.. ..M•'

We now use the elementary fact that if x E B then

xk={ 
ifk is odd

I if k is even,

3 together with the independence of the components us'. Each expectation
in the sum in Eq. (19) is over a product of an even number, d + i, of t1
r.v.'s corresponding to the fixed index i and to each assignment of values
to j, . . .. jd. The expectation will have value I iff an odd number of
indicesjk take the value i, and for every index value h * i an even number
(possibly zero) of indices jk take the value h; otherwise the expectation
has value 0.

Let Nq be the number of waysj ..... jd can be chosen from [n] such
that precisely q of thejk are equal to i with each distinct value assigned to
the remaining d - q indices occurring an even number of times. We hence
have

(d4I 1Y2

E ( Y,&) Nq= N2_1

Now 2r - I indices from ji . Jd can be chosen equal to i in (2,d_ 1)
ways. We must enumerate the number of ways, Ný 1 , that values]j i

can be assigned to the remaining d - 2r + I indicesjk such that each index
occurs an even number of times.

Fork= I,. . . (d- 2r+ 1)/2 lets = (sl, .... sd beavectorsuch
that I :- Sk:<5 S-& 1. . .• • s, -s (d - 2r + 1)/2 and jsý, j = (d - 2 r + 1)/2.
Let S1, .... SR partition {s,, .... , sO} in such a way that each S, is aI
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maximal collection of sj's that are equal, and let yj = 1S4. Define the U
redundancy factor

f(s) = H vi!.
1=1

We claim that U
,d-2.,,/2 ( (d - 2r ) (n - l)(n- 2). .(n - k). .

k•, = 1 .' ((2s,)! . . . (2s,)!f(S)) "("

In fact, the inner sum over s enumerates the number of ways k distinct
values]j * i can be assigned to the n - 2r + I indicesjk with each index
occurring an even number, 2sj, of times. The redundancy factor, f(s), is
required to compensate for overcounting when some of the si's are equal.
(For instance, f(s) = k! if s, .. = sk, while f(s) = I if each s, is
distinct.) Thus (with the convention that I.) i if b < a), we have

id- D)/2

=E(Y )= N2,-

(, 2r d ) Nz•- 1

(d+,1:2 ( (d-2r+l)/2 (d- 2r+ I)! I

'(2s,)! . . . (2sk)!f(S)

(n - 1). ..(n - k) (20)

= d n-d-Id 2 + O(n(d-32), if d = o(n). 6 (21)[(d - i)/2]!2(d-IY2

Now (r) 2 = (17oliujuj)2d. A similar argument to that above gives

E{(') 2} =(d)!2d nd + n (ndtI)) if d = o(n).' (22) 3
Equations (21) and (22) together complete the proof of the lemma. a

'We can verify this by a standard CLT argument. Let U - .X(O, 1) be a standard Gaussian I
r.v. For d odd, as we saw from the earlier representation, r converges to (I + VW/- U),
in distribution by the CLT. Using EU1 = 0 if k is odd and EU1 = k!/(k/2)!2*n if k is even, the
leading term in the binomial expansion of E(l + V%1=1 U)d yields the result.

We do not directly use this argument, however, as the exact representation of the mean is

I
I
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Remarks. The previous result establishes the need for a margin of
S= mg.n in the evolution rule (3). For d even, of course, the margin is
precisely zero as the r.v.'s r. are symmetric and have zero mean. For d
odd, however, the mean of the noise term in Eq. (6) will be of the order of
mn(d- 11. If an-d2 --+ - then this dominates the signal term, nd, in Eq. (6).
Hence, almost all states (not just the memories) are fixed points unde. an
evolution rule with zero margin. Removing the bias due to this mean
results in the evolution rule of Eq. (3) with a choice of margin mgp..
Clearly, we can expect the memories to be mg,,-stable because there is
still a strong bias of the order of nd due to the signal term; most randomly
chosen states, however, will not be mg,,-stable. The usage of a suitable
margin hence ensures performance as a viable associative memory.

Note that for d = 1, however, we can dispense with the margin of m as
for m = o(n) the signal term n dominates the mean noise term m. Hence,
for the linear case we could adopt any choice of margin 0 a :- m, and
obtain adequate performance with the same capacity (McEliece et al.,
1987).

The following main lemma uses the large deviation result of Lemma A.7
to estimate the probability that a single component of any given memory
is not a-stable.

LEMMA 5.3. For any interaction order d a 1, margin a = mA,, and
any choice of parameter D > d if we choose m such that mn-dt)_D _ 10

and m = 0 (nd/log n), then for every w > 0

p{Rgi;a} < m exp f- (1 -d M ). as n --* oo. (23)2Ads m J

Proof. Lemma 4.2 gives the result for d = 1. We hence consider the
case d > i. Define the normalized sequence of r.v.'s 7, by

I7 = X-,"n-dl(rY - A-.). (24)

By Lemma 5.2 E(Tn) = 0 and Var (7)-* 1 as n-•. Set M = m - I for
notational simplicity. Clearly M -. and M = o(nD). Using Lemma 5.2
with Eqs. (8) and (24) we have

i P{%•;= P{X. -m,

=P n_ n' +d ,t

I important in determining the probability that a row-sum violation occurs. If we use only the
highest-order term for the mean, the succeeding terms that were ignored will dominate the
inequality as nd = o(mn'd-3sV).

Again, (M2 converges to (\'•U)'" in distribution, and E(Vn'U)" = (2d)!n1/(d)!2d.

I
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where T, = O(n-11). Now set 3
9n . (25)

By the bounds on m we have y,' = fl(VM log M) and Y,, = o(M). If the
conditions 1-4 of Lemma A.7 are mets we would then have that as n --

p{nG ,, ,p ('; _

M exp (0( - WW)3"

- m ex - " I~

By construction, and by Lemma 5.2, the r.v.'s T. satisfy conditions I and
2 of Lemma A.7. Comparing Eqs. (25) and (38), we hence must show that
conditions 3 and 4 are also met for the choice of parameter D > d a 2 in
order to complete the proof. We show the result when the interaction
order is odd, so that D > d - 3. The proof is similar when d is even.

With a notation similar to that earlier, we have

ITl-I = Xd-11nd +-
J•' (26)

< x;/,2n-dIl + U._1id + kd- 2n-&2(2..

By Lemma 5.2 we have that u. = O(n(d- -). Further, it is easy to see that 3
It + U,,_Il - I + 2dIU._,jd. Using the simple inequality (A + BY <S
2x(A' + Bx) valid for positive A, B, and x, it hence follows from Lemma
A.6 that 3

lim sup Ejexp(xIT•j2JD)}

lim sup E[exp{x22(d+tI) dDX/IUDI-1i 2d1Dnd- &D + O(- 1,)}]

whenever we choose x such that I
I Note that y, = o(MMID- "). Hence, the bound Eq. (38) in Lemma A.7 will hold trivially

for any positive choice of y < x once condition 3 is established.

I

I
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X < 2 -2(d+IyDXI/D (2d)_dD

This establishes Eq. (36). Now, noting that T, is a discrete r.v. which
takes on only a finite set of real values with nonzero probability, we have
for any choice of K, = fl{(Iog n)D12} that

t2 dFZ(1) 5 12 P{fr = 1
1tj>A(Iog nlt

- g2 P{U,-, = (j'Ld1 Tn+ 1Lid-}
Itl>A(log n)tMr

In the above A > 0 is a real constant, and the summation is over the finite
set of real values that Tn can assume in the range Itl > A(log W)D12. Now,
from Eq. (26) we have

17, S-'2nd2 + O(n-"2 ) :S 2Ad /tnnn

as 11 + U.-Sj -s n. Further, U,_1 is a symmetric (binomially distributed),
unimodal r.v. Hence, we can find B = AI'd +. O{n-'-(log n)-'d•} such that

PUn-l = B4'dn"2 (log n)t17d}

;1 max P{U,-1 = (t04 2n'd + An)Id -I }•
Itl>A(Iog n)W

It follows that

12 dFn(t) t 401ld P{U,-.I = BX/dnl'2(log n)DrYd}
II>K.

<V--2 nd- exp ( B 2Xdd(lIog n/D)°) (27)

by an application of Corollary A.5. But by the choice of D we ha,,e that
Did > I, so that the right-hand side of Eq. (27) is o(n-D'2), and this
concludes the proof. 0

Proof of Theorem 3.1 (d > I). An application of Lemma 5.3 together
with the union bound finishes the proof of the theorem. For any fixed
12>0

P{%t.}=P{1 0 %gix}

i, I a=I

_< nmP{%j;}

2 "exp L
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It can now be readily verified by substitution of Eq. (10) that P{%} :S V.
Part 2 can be verified similarly. i

A uniformity argument similar to the one used for Corollary 4.3 com-
pletes the proof of Corollaries 3.2 and 3.3 when d > 1. It appears plausible
that,just as in the linear case d = I, the rates of growth in Corollaries 3.2
and 3.3 also apply to upper capacities for higher interaction orders d > I.
The dependencies in the random variables, however, become rather more
severe when d > 1, and, as yet, there are no rigorous proofs in this regard.
In particular, the proof techniques used by McEliece et al. (1987) in
establishing capacities for d = I cannot be used in 1o0o for the higher-
order case.

6. ZERO-DIAGONAL NETWORKS

As before, let ul, . , n' E B" be an m-set of memories, whose I
components are chosen from a sequence of symmetric Bernoulli trials.
We now consider zero-diagonal networks with interconnection weights
chosen according to prescription (5) for the zero-diagonal outer-product
algorithm of degree d.

Analogously with the notation of the previous section, for each n define
the sequence of doubly indexed random variables X', with 3

IE.i~iE v= IEid:iEI (28)l

Again suppressing the i, a dependence and setting

Y.'= U 11 UZ U , (29)
IEld iqI

we get 3
- n )+.

For a margin of operation zero, the evolution will fail to retricve the ith l

component of ihe ath memory, u*,, if Xi'* - 0. As before, let V.' denote
the event {Xk• < 0}, and let • = U,=1 U•=I . be the event that one or

more memory components is not stable.

I
I
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Clearly E(rY,) = 0 and it is also easy to verify that Var(rY) = (' • •). The
following result then follows analogously to Theorem 3.1 with virtually
the same proof. (The situation is, in fact, simpler in the zero-diagonal case
as the symmetric nature of the r.v.'s r, ensures that Lemma A.7 readily
applies in this instance.)

THEOREM 6.1. Consider a zero-diagonal higher-order neural network
of degree d with weights chosen according to the outer-product algorithm
of Eq. (5) and with a choice of margin 31 = 0 in the evolution rule (4). For
any-fixed E > 0 and w > 0:

1. If, as n -- •, we choose m such that

(i - ur)nd
m = 2(2d + l)(d)! log n

[12log log n + 2 log 2(2d + 1)(d)!Ve' 0 lo log n]
(2d + 1) log n - (log n)2 "J

then the probability that each of the memories is a fixed point is ; I - E;

2. If, as n -+ -, we choose m such that

(I - W)nd I + log log n + log 2e(d + 1)! _0 ( o lg n)_-!_
2(m d+ D!log n [ (d+ l) logn (log f)]

then the expected number of memories that are fixed points is ?ým(I - e).

COROLLARY 6.2 For a given degree of interaction d a I and margin
9a = 0 the sequence

tn d

C_ = 2(2d + 1)(d) log n

is a lower capacity for the zero-diagonal outer-product algorithm.

COROLLARY 6.3 For a given degree of interaction d Ž- I and margin
S= 0 the sequence

- 2(d + i)! log n

3 is a weak lower capacity for the zero-diagonal outer-product algorithm.

Remarks. Again, for d = I we can sharpen the results somewhat using
the same techniques as in Section 4. The result is a capacity and weak
capacity exactly given by Corollaries 4.3 and 4.4, respectively; i.e., for

I
I
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first-order interactions the presence or absence of the diagonal terms 3
makes no difference to the capacity. This, as seen above, is not true for
d > 1. however.

Note the somewhat surprising result that the zero-diagonal capacities
are larger than their nonzero diagonal counterparts even though the signal
term in the zero-diagonal case is somewhat lower than for the nonzero
diagonal case. In fact, the ratio of the zero-diagonal capacity to the capac-
ity when the diagonal terms are not set to zero is the rather substantial
factor of X•d(d)!. For large interaction orders, therefore, the outer-prod-
uct algorithm with diagonal terms set to zero picks up a factor of 2d/V7/-
in capacity. This effect can be traced to the additional noise variance i
caused by the diagonal terms when they are present (Eq. (18)); the growth
in the noise due to the nonzero diagonal terms exceeds the corresponding
growth in the signal term. In particular, adding the diagonal terms causes
an increase in the signal term from (%l I) to nd; however, the corresponding
growth in the noise variance is somewhat larger, from (m - 1) (%') to
(m - i)Adnd.

7. ATTRACTORS AND DYNAMIC CAPACITY

The capacity results derived above are readily extendable when the U
memories are required not just to be stable, but to be attractors. Let u',
S. ... ur E B" be an m-set of randomly chosen memories and consider an
outer-product network of degree d. Fix 0 s p < J, and let ufal be a
randomly chosen state within the Hamming ball of radius pn surrounding
an arbitrarily chosen memory u*. We will require that system dynamics
map u[a] into the memory ua with high probability. i

As before, we define the sequence of doubly indexed random variablesX•° by i

U49 Z W(JilUtte1 = ut. U z itulgal.
Ie.94 v' I I'$d .

Setting

and 3
yE°'" = u*, u( u'[alu),i

I
I
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= Si + Y....

Note that by the sphere hardening effect the random state u[a] will lie
on the surface of the Hamming ball of radius pn surrounding the memoryIu with high probability for large n. We hence have that the estimate
Si- nd (I 2 p)d for the signal term holds with probability approaching
one as n -- '. The signal term is reduced from its maximum value of nd

because of the slight initial mismatch (essentially pn components) be-
tween the probe vector u[a] and the memory ua. Now, for d even the
noise terms Y',"' are symmetric r.v.'s. For d odd we can write

I (u'uil[] + E ui~u'ujuu([a1)

io 

d,•N(A ia + o

where the r.v. Ai.a = u'u•[a] has mean approaching I - 2p for large n,
and is independent of the symmetric, i.i.d., ± I r.v.'s fi." = u'auu'u[a]
forj # i.

The evolution rule (3) will fail to retrieve the ith component of the ath
memory, u,?, if XF'* _- 9. As before, let %'- denote the event {X,' -
and let 'S. = U?=1 U"=1  * be the event that one or more memory
components are not retrieved (i.e., is not R-stable). We are interested in
the probability, I - P{(,.}, that each of the fundamental memories at-
tracts a randomly chosen state in the Hamming ball of radius pn surround-
ing each memory in one synchronous step, as well as in the allied weak
sense result.

Let •d be as defined in Eq. (9), and let IA, = E{ Y"',}. We see that the
arguments used in the proof of Theorem 3.1 continue to work here, albeit
with a slight reduction in the value of the signal term.

THEOREM 7.1. Fix E > 0, w > 0, and choose a margin 3 = jA,, in the
evolution rule (3) for the outer-product algorithm of degree d. For any
fixed radius of attraction, p > 0:

I. If, as n -- •, we choose m such that

(i - w)(- 2p)lnd [ 2 log log n + 2 log 2(d + 1)XdV/'
m= 2(2d+ l)d logn (2d + 1)log n

I •, ~log n)2/'

IO(0

I
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then the probability that for each fundamental memory a randomly cho- I
sen state in the Hamming ball of radius pn surrounding the memory is
mapped into the memory in one synchronous step is Z I - e.

2. If, as n --* oo, we choose m such that I
(I - w)(l - 2pn[nd + log log n + log 2c(d + I)•d

2(2d + IXd log nL log n
0log log nI (31

- (log n)2 )J' 
1)

then the expected number of memories which attract a randomly chosen
state in the Hamming ball of radius pn surrounding the memory in one
synchronous step is ;rm(l - e).

COROLLARY 7.2. For a given degree of interaction d a I and a fixed
choice of 0 :S p < 1 the sequence

C ( ((a)!(_l -- 2p)2d2d•-I nd

= (2d +" 1! ) log n

is a lower p-attractor capacity in one-step synchronous operation for the
outer-product algorithm of degree d.

COROLLARY 7.3. For a given degree of interaction d >- I and a fixed
choice of 0 !5 p < 1 the sequence

Cp) ((d)W(l - 2P)2I 2 d-I-) nd

_ip = (2d)!(d + i) log n

is a weak lower p-attractor capacity in one-step synchronous operation
for the outer-product algorithm of degree d.

The fixed point capacity results of Corollaries 3.2 and 3.3 are hence I
weakened by just the multiplicative factor (I - 2p)2d if we require, in
addition, that there be attraction over a Hamming ball of radius pn in one
synchronous step. Analogous results hold for the zero-diagonal case. Spe-
cifically

THFOREM 7.4. Fix e > 0, w > 0, and choose a margin of zero in the
evolution rule (4)for the zero-diagonal outer-product algorithm of degree I
d.

1. If, as n -- ", we choose m such that

II

I II
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(1 - WXl - 2p)?And [ 2 log log n + 2 log 2(2d + l)(d)!Ve
I m 2(2d+ l)(d)!logn I + (2d+ 1logn

_0 lglog n•,•
(\ (log n)2 )],

then the probability that for each fundamental memory a randomly cho-
sen state in the Hamming ball of radius pn surrounding the memory is
mapped into the memory in one synchronous step is L -I

2. If, as n - •, we choose m such that

M ( -(I WX1 - 2p)ndnd I + log log n + log 2e(d + 1)!
m 2(d + I! log n (d + 1) log n

(log log n
log n)2

then thW expected number of memories which attract a randomly chosen
state in the Hamming ball of radius pn surrounding the memory in one
synchronous step is Zm(l - e).

COROLLARY 7.5. For a given degree of interaction d a I and a fixed
choice of 0 s p < J the sequence

( (I - 2p)2" ) nd
C_.(p) = 2(2d + l)(d)! log n

I is a lower p-attractor capacity in one-step synchronous operation for the
zero-diagonal outer-product algorithm of degree d.

COROLLARY 7.6. For a given degree of interaction d 2 1 and a fixed
choice of 0 :< p < I the sequence

I C'(p) = ((I- 2p)2d nd

2(d + ! log n

is a weak lower p-attractor capacity in one-step synchronous operation
for the zero-diagonal outer-product algorithm of degree d.

The following nonrigorous argument (as in McEliece et al. (1987))
seems to indicate that if we allow nondirect convergence to the memories
then we can, in fact, remove the factors of (I - 2p)2 by which the
capacity is reduced if we insist on direct convergence. Consider the non-
zero diagonal situation again, for instance. Fix a small p* > 0. If the
number of fundamental memories is chosen to be

I
I
I
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(1 - q)(1 - 2p")' n"
(2d + l)kAlog n

then by Theorem 7.1 each fundamental memory directly attracts over a
Hamming sphere of radius p*n. Let p < J be the desired (fractional) radius I
of attraction. Extending Lemma 5.3 for the direct convergence case (i.e.,
replacing n in Eq. (23) by np = (I - 2p)n) we obtain that the asymptotic
probability, r', that a single component of a given memory is incorrectly
labeled is bounded by

(nd-(2d+1-t- 20--/(• 2 •'p.2d) I

It is easily seen that T - 0 as n -- if the desired fractional radius of
attraction, p, satisfies I

P :5d (32

In the multiple step synchronous case the probe vector has essentially pn
components incorrectly specified. The first synchronous state transition
will map the probe vector to a state where essentially f" components are
wrong, with high probability. For any fixed p*, however small, we can
choose n large enough so that the probability of component misclassifica-
tion, r, becomes smaller still. Thus, for large enough n, the probe vector
will be mapped within the confines of a Hamming sphere of (small) radius
p* surrounding the memory. But by Theorem 7.1 the next state transition

will converge directly to the fundamental memory with very high proba- I
bility. This (nonrigorous) argument indicates that for every fixed (small)
p*, and every choice of attraction radius p satisfying Eq. (32), we can find
n large enough that any randomly chosen state in the Hamming ball of
radius pn surrounding the memories will converge to the corresponding
fundamental memories within two synchronous transitions. Now, keep-
ing fixed, if we allow p* to approach zero it appears that the factor (I -

2p)d can be dropped from the capacity expression for large enough n. 9

8. CONCLUSIONS 3
We have established that the outer-product algorithm of degree d (and

its zero-diagonal variant) can store at least of the order of nd/lIog n memo-

1The difficulty in making this rigorous is that we must estimate the probability of the I
conjunction of two successive'events: one mapping a ball of radius pn into a smaller ball of
radius p'n, and the other mapping the ball of radius p'n into the memory. I

I
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ties. Open questions include the determination of tight upper capacities,
rates of convergence, and capacities when more than one synchronous
step is allowed in the dynamics, and extending and tightening Newman's
(1988) description of the energy landscape to obtain estimates of the num-
ber of memories that can be stored when a certain error-tolerance is
permitted in recall. The key issue here is whether, as in the case d = 1, we
can gain a factor of log n in capacity if errors are allowed in the retrieval of
the memories.I

APPENDIX A: LARGE DEVIATIONS

I The technical lemmas of this section principally deal with large devia-
tions of a sum of random variables from its mean. Lemma A. I is a gener-
alization of the Chebyshev inequality. Lemma A.3 is a standard approxi-
mation of the tail of the normal distribution function. Lemma A.4 is the
classical large deviation Central Limit Theorem for sums of (0, 1) random
variables. Lemma A.6 outlines an inequality for generating functions in
the spirit of Khintchine's inequality. Finally, Lemma A.7 is a large devia-
tion result which applies to deviations much larger than those handled by
the Central Limit Theorem. The lemma is motivated by a large deviation
result due to Newman for symmetric random variables. Lemmas A.I to
A.4 are standard results and we quote them without proof (cf. Feller
(1968), for instance).

LEMMA A.I (Generalized Chebyshev Inequality). Let 4.÷ be a mono-
tonically increasing positive function on the real line. Let Y be any ran-
dom variable and suppose that E(44 ( Y)) exists. Then for any u

3 E(J.+ (Y))P~r_>u}0- ÷(u)

Similarly, if •tp is any monotonically decreasing positive function with
E(0-(Y)) < -, then

Ply 5-ul : E(,P_(Y))

COROLLARY A.2. For any random variable Y and any u 0 0

IP{ Y a u) :5 inf e-1u E(ery), (33)
rao

P{ Y:5 -u} :s inf e-- E(e -,r). (34)

I
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As usual, in the following we denote by (p the normal density function

a b(x) = (2in')-2 e-x'12,

and by (D the normal distribution function

4P(x)= p(y) dy. l

LEMMA A.3. 4)(-x) - ((x)/x as x - -.

LEMMA A.4. Let {Q} be a sequence of i.i.d. random variables taking
on values 0 and i, each with probability 4. For each n let S. = , , and
let ak = P{S. = [n/21 + k}, and put

hm

If n -+ o and k is constrained to an interval k < K. where K. = o(n 213) then
there are constants A and B such that

h-k <! + A BK (35)

uniformly in k; and, in fact, hp(hk) is an asymptotic upperbound for ak,
for any k. Further,

P{S.>afn/21+K.1}= ak-- ( - --(I I
k-K.

COROLLARY A.5. Let R. denote the sum of n i.i.d. random variables
taking on values - I and I only, each with probability 4. Let d4 = P{R. =
k}. If, as n -. oo k is constrained to an interval k < K. where K. = o(n2)
then

{ ifn - k is odd
(p if n - k is even.

LEMMA A.6. Let {J} be a sequence of i.i.d. random variables taking l
on values - I and 1, each with probability 4. Let U. = 1'. 1 fj. Then for
any choice of positive parameters wa :- 2 and t < w-12 we have

lim sup E(eU'"-•) < o.

I
/ I
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Remark. Note that the function is of the form exp{aIUj-1 so that
Khintchine's inequality which requires that the test function be real ana-
lytic with all its derivatives being positive at the origin cannot be readily
applied.

Proof. The basic strategy is to show that the sequence of partial sums
corresponding to the Taylor series expansion for the generating function
defined above converges uniformly. Accordingly, we first estimate

E(JUnizn-zn) for z > 0. Set j = (fj + 0)/2 and let S , j. Now U, isa

symmetric random variable and S, = (U(J + n)12. We-have

SE(I U.In-12) = 2n-• 92  ký P{U, = k}

= 2n-1 E k2 P{S. = (k + n)/2}

< 2z+'n-z 3 (1 + lY a,

where a, = P{SR = Fn/21 + 1}. Choosing J < r < I we effect a partition of

the above sum into three partial sums:

i(W ~ -C 1 [-l~g'u/2j I=,2J+

I( tU. J - a) E +- , +.F,'z .'z

Now

X, 2z+ln [lognlz [ Log2atJ2"• 1-0 a

3 _5 2n-0(log 0)Z,

and using the results of Lemmas A.3 and A.4 we have

I1 2z 1 n-v2 (n) 2J at

I - 2,nz (-n(-l12)

- %•/_z2_n2r+lr2 e-Raa,.112
i i•

U- Further, in the range (log n)12 -1 ! n'/2 we have from Lemma A.4 that

I
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71+ 7" )( +0(lgn)

Za"• 21-z n• 2 +2y"r' x (x) dx]I
ZJ24-II2wi

where we have overestimated the (I + o(l)) term by 2. It hence follows
that

Y-2 :! 4 xý ,p(x) dr

- 4 -I) x1 (x) dx

- 4 ffx" p( x) dx

= 2+'I-r1/2 F((z + 1)/2).10

As the upper bounds for both -1 and 13 approach zero with n it follows 3
that

E(IU.Ijn-v2) -5 2L/2+Ir-I.2 r((z + 1)/2).

Using Stirling's formula'I we then obtain for large k and fixed &a > 0 that

E(Q j1"- ): 21r-1/t2 (1, nk "? ) . - 1)k- 112.I

For large k, the kth term of the partial sum 3
,tNk

QN = E i E(IU.I-n-'k)SkA-0

hence decreases exponentially provided w -< 2 and I < ca-". As the
sequence of partial sums QN converges to E(e'lu.f-1`1) uniformly in N, it
follows that E(eWW"') < 0o. U

LEMMA A.7. Let D >- 2 be some fixed parameter, and for each n let
(T}• 1 be a sequence of independent random variables (with distribution
function F.) satisfy'ing:

1. E(T_") = 0;

' The gamma function is defined for any y > 0 by F(y) = fe x'-le - dx.

For fixed ct > 0 and k large, k! - V/2"v e-kh' 2 and r(,k) - \/2 e (wk)" 2-i`.

I
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2. lim,. Var(T.) = 1;
3. There is a number x > 0 such that

iim sup E{exp(xIT', 2ID)} < 3; (36)

I 4. For any K. = fl[(log n))1]

t> t2 dF'(t) = o(n-Di), (n - o). (37)

Let M. be a polynomially increasing sequence of integers satisfying M" =

o(nD), and let y,, be a sequence satisfying y. = 01(/M. log A.,), y, =

o(Mn), and such that for some positive y < x

I Then for any w > 0

M. T s'' n : M .exp (W -j (n-PfE I 
2M, ll• -

Remarks. The above lemma is a generalization of a large deviation
result for symmetric random variables due to Newman (1988). Note that
condition 4 imposes a sort of "asymptotic symmetry" on the random
variables Tn. In the application of the lemma to higher-order networks we
will choose a parameter D slightly larger than the degree of interaction d.

The deviations, y., encountered in the lemma can be chosen to be as
large as M.1I 2112(Do-1 which are much larger than the VM., deviations of
the Central Limit Theorem.

The proof follows a standard truncation argument (cf. Newman, 1988).
We will in fact show results slightly stronger than claimed, viz.,

S5--( (PI T"-y,, = 0 (Mexp (- Y"'/

I for the range of M. we will be interested in. This estimate can be further
tightened by strengthening some of the cruder bounds in the proof.

Proof. Define the truncated random variables

, ' = i f I T .I -< 2 y D / 2

0 otherwise.

I
I
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By a straightforward argument it follows that

Pt . T. - -y, s M .,P{ j r I > (, 2- )D• 2 } + {I M , t - - ,,

PI Pa P2

Choosing r = y in Eq. (33) and invoking condition 3 (recall that y < x) we
get for any choice of w > 0

P, S M. e-*'zI E{exp(yIT.2ID)} 3
2M2M

Y.h,-- ' n •.(39)I

(The choice of constant I is solely for algebraic convenience and does not.

affect the capacity results.) Similarly, choosing r = y./IM. in Eq. (34) we

get 3
P 2 :S e--M'. [E exp (- 2 )]J

e xp{-.,ik' c,_",T,1 ,-""i 3,,I
exl R - MRlog E(e-J*'.t'4))j. 43

Claim. E (e-"-t:/M.) = I + yj/2M.2 + o(yý,,/M2). 3
Proof. Setting K, = (y7/2yM.)12 we have

E =t-.) t dF'.(t)

w ai>K. I dF(

with the latter equality following because T, has zero mean. Using the
lower bound on y. and the fact that M, is polynomially increasing, we
have X., = Of{(log n)"2}, so that by condition 4 and the bounds on y,, we I
have

IE(t) = o,( --) = o( - o() (41)

Further, condition 4 also ensures that

f- t2 dFO).()-* 1, (n-- o). (42) l

I
U
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Define the function g by

g(u) = e- - I + u - u2.

To prove the claim it suffices now to show that

Jra sup E ;t-1 g ( D < •. (43)

In fact, if Eq. (43) holds them for any 8 > 0 we can choose r(8) such that
Dfr(8) < 8/2. With such a choice of r(S) we can now choose n large

- enough that

sup• •

U Hence, if Eq. (43) holds, then for every fixed 8 > 0 we can choose n large
enough so that

IL!-EIg: +!! fW& Ig~ g(I-)l dFY(t)

sup 19 - 1t I

II1•r(a) MY)

+ 2 --~g (n dF' (t)
Sr8.(8"-M-

* * Thus

M2 ex + - .tvy 2.(jTP) 2} (n*
MI f I

whenever Eq. (43) holds, and by Eqs. (41) and (42) this would establish

the claim. As g(u) -s cu2e-u for some finite c and all u, it suffices hence to
show that

3 lim sup a{il .13 exp (-lni} <i (44)
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Now, by the truncation of f. and the bounds on VR it follows that

Y.V IL (2D-2•yM)_)D,2(D- It•I i
= (2(D-2dDYM,-(D-2)ID'iDfrZtD- 1)lt'I(D-2)?DlI f'2/D

< ylrIljD.

It hence follows that

lim sup E 13.I3 exp - --- /jlim.sup E{jr 13elr:iD}.

As y > 0, the exponential dominates the third power when r. assumes
large values. Using the fact that y < x we can now invoke condition 3 to
establish Eq. (44). This establishes the claim.

As y./M. 0. we have from Eq. (40) that

- 1 [- lo - ( I + 3

= exp( +)) e

Teve /' (45)

Equations (39) and (45) complete the proof. U i
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Abstract

We consi ier recurrent neural networks of polynomial threshold units. We study the expected
number of fixed points in the case of random, symmetric interactions, equivalent to higher order
spin glass models of statistical physics. We derive precise asymptotic estimates for the expected
number of fixed points as a function of the margin of stability. In particular, we show that there
is a critical range of margins of stability (depending on the degree of interaction) such that the
expected number of fixed points with margins below the critical range grows exponentially with
the number of nodes in the network, while the expected number of fixed points with margins
above the critical range decreases exponentially with the number of nodes in the network. We
also briefly examine the random energy model.

1 INTRODUCTION

Recurrent networks of formal neurons have been popular in a variety of computational applications.
The model neurons in such structures are typically linear threshold elements which compute the
sign of a linear form of the inputs. A recurrent network results when such elements are fully inter-
connected, and as in any recurrent system, the fixed points are important in the characterisation
of the computations done by the structure. A particular case of interest results when the inter-
connections between neurons are symmetric: in such cases network dynamics are regulated by a
Hamiltonian or energy function (cf. Hopfield [11 for instance). In such an instance, we can imagine
the state space of the network to be embedded in an energy landscape with fixed points residing
at energy minima. A classical application of such networks is in associative memory where neural
interactions are adjusted so that memories are stored as local attractors.

We consider here a natural extension of the model to recurrent networks comprised of higher
order neurons which compute the sign of a polynomial form of the inputs. The added degrees of

"*Presented in part at the Sixth International Conference on Mathematical Modelling, St. Louis, Missouri, 1987,
and the Conference on Neural Information Processing Systems, Denver, Colorado, 1987.
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of Scientific Research.

$Department of Electrical Engineering, University of Pennsylvaina, Philadelphia, PA 19104. Supported in part by
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freedom in specifying the polynomial interaction coefficients can be expected to enrich the compu-
tational dynamics that result. Distinct features emerge, however, in the analysis of these structures
depending on whether the higher order interactions are programmed (or "learnt") or random.

In the programmed scenario, the goal is to tailor the higher order interaction coefficients so as I
to obtain desired dynamical behaviours; this leads naturally to questions of capacity and efficiency
of higher order networks of given degree of polynomial interaction. In two concurrent papers [2, 31
we present rigourous results on algorithmic capacity and efficiency in programmed situations for I
higher order networks (cf. also Newman [4]). The main results can be summarised briefly as follows:
the computational gains in higher order networks parallel the extra degrees of freedom in specifying
the polynomial interaction coefficients; in particular, regardless of the algorithm used to specify the I
interaction coefficients, the information storage capability of a higher order network is of the order
of one bit per interaction coefficient.

Higher order systems where the polynomial interactions are random may be useful as models $
of disordered systems in statistical physics (spin glasses), or of neural networks, before any learning
has occured, or in the limiting case when too much learning has occured (the onset of senility!).
These will be our focus of analysis in this paper: in particular, we consider recurrent, higher order I
neural networks with symmetric, random polynomial interactions. We characterise the fixed points
of these structures according to their margin of stability* which is a measure of how stable a fixed

point is with respect to perturbations. Our main result may be informally stated as follows:

There exists a critical range of margins of stability (depending on the degree of polyno-
mial interaction) such that the expected number of fired points with margins of stability
below the critical range increases exponentially in the size of the network while the ex-
pected number of fixed points with margins of stability above the critical range decays
exponentially as the size of the network is increased.

There is thus a threshold phenomenon in evidence for the expected number of fixed points around
the critical range of the margin of stability. The fact that for a certain range of margins the
expected number of fixed points grows exponentially with the number of nodes in the network is
not unexpected; more counter-intuitive, perhaps, is the existence of a critical margin of stability
above which the expected number of fixed points actually decays as more nodes are added. We also
provide exact asymptotic expressions for the coefficients and exponents in the regime of exponential U
behaviour, and evaluate the critical margins of stability. While considerable attention has been
focused on spin glass models in the statistical physics literature, at the time of writing rigourous
results appear to have been confined to the case of linear interactions and to estimates of the
expectation of the total number of fixed points (cf. Edwards and Tanaka [51, Gross and Mezard [6],
and McEliece and Posner [7]). The estimates derived here provide a finer partition of the expected
number of fixed points grouped according to their margins of stability, and extend the results to
higher order cases with polynomial interactions where the statistical dependences grow more acute.

The basic analytical tool used is Laplace's method for integrals. The assumed random, in-
dependent, and symmetric nature of the interactions makes for some simplicity in analysis. The
results derived here for the disordered case may also give some intuition in programmed situations
where the interaction dependences are weak, though a corresponding analysis of the number of fixed
points for the 'grammed case is typically more complicated. The analysis for the programmed
case depends. ly on the algorithm of choice, and is made harder by the presence of statistical

'In this context a notion is due to Koml6a and Paturi [9].

I
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dependences in the interaction coefficients, especially in higher order cases. Rigourous estimates for
the total number of fixed points are known only for the case of linear interactions programmed with
the outer product algorithm: McEliece, et al [8] conjectured based on the corresponding situation
with random interactions that the number of extraneous fixed points is exponential in the number
of nodes and this was rigourously shown by Koml6s and Paturi [9]. The issue remains open for
other algorithms such as the spectral algorithm (cf. Venkatesh and Psaltis [101) even for the linear
interaction case. For the higher order cases no formal results have been shown for any algorithm.

In Section 2, we formally introduce recurrent higher order networks, and make precise the no.
tion of the margin of stability of a fixed point. We also show that when the polynomial interactions
are symmetric, network dynamics are regulated by an energy function. In Section 3 we consider
random, homogeneous, higher order networks and prove the main Theorem 3.3; Table 1 contains a
listing of critical margins of stability for certain fixed degrees of interaction; Corollaries 3.5 and 3.7
highlight two principal applications of the main theorem in showing an explicit expression for the
expected number of fixed points in the exponential regime for the cases where the degree of interac-
tion is fixed, and increases unboundedly with the number of nodes in the network, respectively; and
Table 2 lists coefficient and exponent values for the exponential regime for certain fixed degrees of
interaction. In Section 4 we deal with non-homogeneous networks, and also briefly examine a dif-
ferent model of randomness known in the literature as the random energy model (cf. Derrida [11]).
The proofs of the main theorems are developed in the body of the paper, while technical lemmas
and calculations are confined to the two appendices.

A brief word on notation: in addition to standard asymptotic conventions, we write z,, <. y,
if z, < y,, for n large enough; all logarithms in the exposition are to base e; we also denote by lB
the set (- 1, 1).

2 POLYNOMIAL THRESHOLD NETWORKS

We consider systems of n densely interacting threshold units each of which yields an instantaneous
state -1 or +1. (This corresponds in the literature to a system of n Ising spins, or alternatively, a
system of n neural states.) The state space is hence the set of vertices of the hypercube. We will
in this discussion also restrict our attention throughout to symmetric interaction systems.

Let Id be the family of all subsets of cardinality d + 1 of the set 11,2,... ,n). Clearly Ildl =
nJd+I ) For any subset I of f1,2,...,n), and for every state u = {ul,u2,...,un)E EI3 , set

UI - liEl Ui"

Definition 2.1 A homogeneous polynomial threshold network of degree d is a network of n thresh-

old elements with interactions specified by a set of ( d+ n real coefficients wl indexed by I in
1 d. The evolution rule is asynchronous, and for i E n},... ,n1 is given by

u+ = sgn lt:• , l,().(1

A (non-homogeneous) polynomial threshold network of degree d is a network of n threshold elements

with interactions specified by a set of _=i ( n ) real coefficients wi indexed by I in [j=l :I,
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and, for i E {1,... ,n}, the asynchronous evolution rule I

ut~ s~ n ( • IE X,: iEI (23

These networks are readily seen to be natural generalisations to higher order of the familiar case
of linear threshold networks (d = 1). These systems can be identified either with higher order spin
glasses at zero temperature, or higher order neural networks. Starting from an arbitrary config-
uration or state, the system evolves asynchronously by a sequence of single "spin" flips involving
spins which are misaligned with the instantaneous "field." The dynamics of these symmetric higher
order systems are regulated by higher order extensions of the classical quadratic Hamiltonian. We
define the homogeneous Hamiltonian of degree d by 3

Hd(u) = - wUIl. (3)
IE~dI

In like fashion we define the (non-homogeneous) Hamiltonian of degree d by
d i

d(U) =- 1 E (4)
j=I IET,

We briefly sketch the proof of the following result. 3
Proposition 2.2 The functions Hd and Aid are non-increasing under the evolution rules (1) and
(2), respectively. !

PROOF: We consider the case of Eid, the non-homogeneous case being similar. Assume u -4 u+ is
a mapping along some arbitrary trajectory in state space for a homogeneous polynomial threshold
network of degree d. The proposition is trivially true if u is a fixed point. Consider the case where
u and u+ are distinct. By the nature of the asynchronous mapping u and u+ differ only in a single
component. Without loss of generality assume the i-th component of u changes sign: ut = -ui
and u+ = ui if j i i. Now consider bHd(u) = Hd(u+) - Hd(u). Factoring out ui in equation (3)
we can write

/E~d: iEI IE/Td: iC~l

Hence
6Hd(u) = 2ui 1 wIul\{}" .

IE/d: iEI

By assumption we have ui = -ut -= (•tE/,l WiSJ\), so that bHd(u)< 0. 0 .

In the terminology of spin glasses, the state trajectories of these higher order networks can be
seen to be following essentially a zero-temperature Monte Carlo (or Glauber) dynamics. Because
of the monotonicity of the Hamiltonians given by equations (3) and (4) under the asynchronous
evolution rule (1) [resp. (2)], the system always reaches a stable state (fixed point) where the
relation (1) [resp. (2)], is satisfied with ut = ni for each of the n spins or neural states.

I
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Definition 2.3 Let B be a non-negative parameter (possibly depending on n). A fixed point,
U E IB", of a homogeneous polynomial threshold network of degree d is B-stable if it satisfies

Ui E WIUI\{i) > B, i= 1,...,n. (5)
IEGd: iE

In like fashion, a B-stable state, u E OB", of a non-homogeneous polynomial threshold network
of degree d satisfies

d

U, E E wJUr\J{, > B, i= 1,... ,n. (6)
j=l IEI:iEI

For B-stable states, B represents the margin of stability for the fixed point; we hence refer to B
as the margin. We would expect B-stable states with large margins to tend to exhibit correspond-
ingly large basins of attraction, i.e., to be stable with respect to relatively large perturbations. Note
that according to this definition, all fixed points are 0-stable states. Koml6s and Paturi [9] utilise
a similar notion in an analysis of the extraneous stable states for the case of a linear interaction
network (d = 1) programmed using the outer product algorithm.

3 HOMOGENEOUS NETWORKS

3.1 Higher Order Spin Glasses

Consider homogeneous polynomial threshold networks whose weights wj, I E Id are i.i.d., .N(0, 1)
random variables. This is a natural generalisation to higher order of Ising spin glasses with Gaussian
interactions. We will derive an asymptotic estimate for the expected number of B-stable states of
the structure. Asymptotic results for the number of 0-stable states (fixed points) for the usual case
d = 1 of linear threshold networks with Gaussian interactions have been reported in the literature
(cf. [5, 6, 7]). We extend the technique used by McEliece and Posner [7] to obtain the general
result.

As a function of n, let d, explicitly represent the degree of the homogeneous threshold network,
with the constraint d, < n - 1. To avoid trivialities we restrict ourselves to n > 3. For any given
n, and margin B > 0, let F(,,d,,,8) denote the expected number of B-stable states of a homogeneous
network of degree dn. In the following we will estimate F(,,d,,,s) under various assumptions on d4
and B.

Let P(n,d,,,B) denote the probability that a given state u is B-stable. Clearly, F(n,d,,B) =

2n P(ndBt). Without loss of generality we assume that u = (1,1,..., 1). For each n and i =
1,..., n, define the sequence of random variables Si by

S., = 1, wt.

IEIc: iEI

For u to be B-stable, we require that S/ > B for i = 1, ... , n.
Now, for each n, the random variables Si, i = 1,... ,n are zero-mean, identically distributed,

and jointly normal. Set

S= (n,2 /2 ' (7)

S= ( )1/2.
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Then we have I
E(Sn'S.) = f = 2

qn dn(f 1 ) ifs7j.

Now, let {c,,} be the sequence

Cn=nqn _ n (8)

and define the sequence of functions fn by

fA(t) = log0 (t) (t + 8/Pn )2 (9)

where, in usual notation, *(t) = f~t. Wp(s)ds is the normal distribution function, and P(s) =

(27)-1/2e-, 2 /2 is the standard normal density function.

Proposition 3.1
2"d/n e nf(t) dt. (10)

F(,,,)= • -o

PROOF: We use the principle of equivalent Gaussians. Let X°,X 1 ,... ,Xn be i.i.d., A'(0,1)
random variables. Construct the random variables Y,, i = 1,... ,n by

Y. = qnX0 + pnXi.

The random variables {Y,'}L1 are jointly normal, and have the same expectations and covariances I
as the random variables {S,}n! 1 . Hence

P(n,d,,,B) = P{Sn>B,i=1,...,n} = P{Y'>B, i= 1,...,n} I
= P{Xi>-_nXo +-, i= ,...n00 Pn Pn

= P )X>- t + , 1,...,n v(t)dt
00 Pn Pn

The result follows from the defining equations (8) and (9). I

We will estimate the expected number of B-stable points given by equation (10) for large n
using variants of Laplace's technique to estimate the integral (cf. de Bruijn [12], for instance).
Rather careful asymptotic estimates are required, however, as the integral depends critically on the
functions f,, and these depend both on n and the interaction orders d4.

It will be convenient to consider margins of the following form: 3
B=3pe # , c, aŽ01 /3>0.

For given degrees of interaction, d., the expected number of B-stable states will depend solely on
the choices of the parameters a > 0 and P3 > 0.

U
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3.2 B-Stability

Define the positive function
= -(t) 2et/2

$(t) - f e-" ds

In Appendix A (lemma A.1) we show that, for every given degree d, and margin B, the function
f,,(t) has a unique maximum at t = t,, where t,, satisfies

t,, B (1
L n Bnc
Cn Pncn

Note that tn depends implicitly on both the margin B and the degree of interaction dn. The
following lemma, which we prove in Appendix B, provides the sought after estimate for F(,d,,).

Lemma 3.2 Let B = O3pnc* with 0 < a < 1 and /3 > 0. If dn = o(n), then

F(n,d,B) ` 2n(+--cnf,'(tn) (n -o). (12)

We are now in position to state the main theorem.

Theorem 3.3 Let d4 = o(n), and consider margins of the form B = Opn V/-, with 13 > 0. Then
there are constants /31 and /32, with 0 < /1 _ /32, such that as n --- oo:

a) F(n,d,,,B) increases exponentially with n whenever 0 < f3 < 01;

b) F(,,d.,B) decreases exponentially with n whenever/3 > /32.

PROOF: We consider the two cases, {d,} bounded, and {dn} unbounded separately.

CASE 1. {4d} is bounded.
From equation (8) it is clear that en ,s d is bounded. Consequently, from equations (11), (25),

and (26) it follows that in equation (12) the term fM(tn) is bounded while the term y/-cnfn(t,,) is
bounded away from zero. It is clear then that, for large n, the behaviour of F(,,d,s) as /3 varies is
determined entirely by the sign of the exponent in equation (12). Now, from equation (25) we have

t2 12) P(t + 2 d )
-. 1 + 2 +log ) +0

wheretn is bounded and satisfies equation (11). It is easy to verify that if/3 = 0 then 1+fn(tn)/log2

is positive and bounded away from zero, i.e., the expected number of fixed points (0-stable states)
increases exponentially with n (see Table 2 for a listing of exponents for some fixed degrees of

interaction). Now, for every n, F(n~d.B) decreases monotonically as P3 increases (the expected

number of B-stable states is a monotonically decreasing function of the margin), and an examination

of the above asymptotic estimate for f,(t,) shows that as /3 increases Af(t,) eventually decreases

sufficiently for 1 + f,(t,)/log2 to become negative. Recalling that 4 takes values only in some

finite set, by assumption, from the above equation we can find 0 < 31 < /32 such that

limsupL- _l ) 1n 1 + v (tnl/3ov ) -1, (13)

liminf 1_L•2-t.1+- -- 2 = -1. (14)
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As y-cf•(t,) is bounded above and away from zero, it follows from equation (12) that for every 3
/3 < 3•3 there is c(P) > 0 such that F(n,.d.,) = Q(2n`(f)); similarly, for every /3 > /32 we can find
6(,3) > 0 such that F(,n,d.,,) = O(2-nl(P)).

CASE 2. dn -* oo such that 4 = o(n). I
For a choice of margin B = •pVi", with P> 0, we have from equation (9) that

f,,(t,,) = log$(t,,) - (t + f�#/-)2 -0 *-()k t (t" +13vrC) (15) 1
2en k1 k 2cnk=1

Further, using equation (24) and the asymptotic form for the error function, we have

t(-tn)= = (1±o(I -0)).

Substituting from equations (15), (24), and (26) in equation (12) we then have

F(n,,_.,) = 2In

Setting/3i =/2 = vf1g2 in the theorem, it is clear that exponentially increasing behaviour attains
when 0 < < /3 < `, while, for P > / , the expected number of B-stable states decreases
exponentially. To complete the proof we need to show that F(.,d.,B) increases exponentially with
n when /3 = 0. But this follows immediately because the expected number of B-stable states is a
monotonically decreasing function of the margin. I I

For d, = d = constant, and margin B = #P,,VZ, the critical quantities /1 = 02 - /3 of
equations (13) and (14) can be precisely calculated. The critical values #3 are listed in Table 1 l
for a range of fixed interaction orders. Note that the critical values /0 appear to increase to a
maximum around d = 25, and then decrease monotonically. I

d /3" d kd Wd

1 0.0690 1 1.0505 0.2874
2 0.1214 2 1.1320 0.4265
3 0.1557 3 1.2178 0.5124
4 0.1792 4 1.3031 0.5721 U
5 0.1960 5 1.3868 0.6165
10 0.2349 10 1.7784 0.7382
25 0.2476 25 2.7867 0.8541 I
50 0.2316 50 4.2207 0.9104
100 0.2023 100 6.7176 0.9466

1000 0.0959 1000 39.3421 0.9917

Table 1: Critical values of margin,/3, for var- Table 2: The behaviour of the expected num-
ious choices of fixed degree, d ber of fixed points, F(n,d.o) ", kd2nwd, for dif- 3

ferent values of fixed degree of interaction, d.

More explicit results can be deduced from Lemma 3.2. In the range where the expected number
of B-stable points increases exponentially, the multiplying coefficients and exponents can themselves

3
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be precisely calculated given the interaction orders d,4. Particular cases of importance result when
f 4} converges to some d > 0, and in particular, the case d,4 = d = constant, and the case d, -. oo
monotonically.

Consider the case where 4 = d = constant. Let a > 0 and 3 > 0 specify the margin B, and
let s be the unique solution of the equation

S+ /3d0

d

The location, t,,, of the maximum of f,, (satisfying equation (11)) can be approximated up to terms
of the -,:der of n- 2 by

t,=8+-+

where x is independent of n and satisfies

d~d + 1)[s +I (1 - a),3d '] ( 6
d + (s +13da)[s(d + 1) +I3d"] (16)

Using the above approximation for t, in Lemma 3.2, and collecting all terms up to the order of
n-2 in the exponent in equation (12) yields the following result.

Corollary 3.4 If d, = d > 0, and B = /3pcn with a > 0 and /3 0, then, as n --+ oo, F(n,.dn,1)
kd2'd, where the multiplying coefficient, kd, and exponent, Wd, are independent of n (and depend
solely on the interaction order, d, and the margin parameters, a and /3); specifically,

Wd d +1 (52 + 2s/3da +OAd' -. l~og v'T~(s + Od
= 2dlog2 1 + d+-1 + 1/ - log-2 d

and kd can be expressed in the form C eD where

c= 82d+d 1/2
-S2(d + 1) + s/3d(d + 2)+2d20 + d]

and with x as in equation (16),

D=•dt- [s2 - 2s{K -#/3d'(1 d 1 - 2a) + 2d]

0_1 a/3d(d + 1) K
s + Nd s +/3da

An important special case results when we choose the margin to be identically zero.

Corollary 3.5 If d4 = d > 0, the expected number of fixed points is asymptotically , kd2'wd where

Wd = 1 121 2d +log s

•/d d ((d +1)s2\

kd = + d + exp (d + ].

d ,92 (d +1) 2d
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Table 2 lists the exponent wd and the multiplying coefficient kd for various choices of fixed interaction I
order d with a choice of zero margin.

The monotonicity of F(n,d,,8) with B yields 3
Corollary 3.6 Let B = fp,,& c be the margin. If d, -- 00 such that d4 = o(n) then:

a) the expected number of B-stable states increases exponentially with n if 0 < a < 1/2 and 3
S1>0;

b) the expected number of B-stable states asymptotically tends to zero as n -- 0o if a > 1/2
and 0 > 0.

Note from Table 2 that as d becomes large F(n,ds,B) approaches 2 n. This is supported by the
following result which gives the number of fixed points (0-stable states) when the interaction orders I
are allowed to grow large.

Corollary 3.7 If as n - oo, for any fixed choice of r with 0 < r < 1, {Id} satisfies dn =
fQ[nlog n)r], and dn = o(n), then the expected number of fixed points (zero margin) is givtn by
F(,,dn,O) " kd.2'wdn, as n -* oo, where

k n = 2 v "2 -lo g d n'
Wdn = 1 -logdn' loglog dn log(v'r/e) e

wdd=1 d log 2 2dn log 2 + d log 2

PROOF: Consider the exponent in the integrand of equation (10). We have

nfn(t.) = nlog4(tn) - = - -kn ,(-tn)k 2 'tn n

k=1

Using the asymptotic formula for the tails of the normal distribution (cf. Feller's text [13], for
instance) together with Lemma A.3 (equation (23)), and equations (8) and (26) in equation (12)
completes the proof. I

Note that for this case, the multiplying coefficient kd, and exponent wd, assume particularly I
simple closed form expressions depending solely on the interaction order dn. Note also that wd. -- 1
as n -- 0o, as is expected. The growth of dn with n is rather rapid in Corollary 3.7. Results akin to

Corollary 3.7 can be computed for slower rates of growth of d4 (for instance, d4 = no, 0 < a < 1). I
We do not yet have rigourous results, however, for the case where dn scales linearly with n.

4 NON-HOMOGENEOUS NETWORKS

4.1 Higher Order Spin Glasses I
The non- mogeneous case has several more degrees of interconnection freedom. The results of the

last section can, however, be simply extended to this case.

I
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Analogously with equations (7) and (8) let

and

FJ4=-I j

and to every choice of margin (fixed j3 _ 0 and a > 0) B = [3pC' in the homogeneous case

associate a margin L = PpnZ in the non-homogeneous case. Define the sequence of functions f,
(corresponding to equation (9)) by

1 f o (t) - (t + A/pn)2 (17)

Let F(n,d., L) denote the expected number of/i-stable states of a non-homogeneous algebraic

threshold network of degree dn with Gaussian interactions.

Proposition 4.1
kiqn5) Vn2 n 00e ni(t) dt. (8

PROOF: Fori=1,...,nset

3 j~l JI,~:iEI

Noting that -i•,d,•d) = 2'P (A' > B, i = 1,...,n}, the proof follows the same outline as that for

Proposition 3.1.

Theorem 4.2 If dn = o(n) then '(n,d,d,) "• F(,,dn,B) as n --+ eo.

PROOF: We use the following inequality due to Blake and Darabian [14). Set r = d/(n - d + 1).
Then

Then(n + 1)r2 ___=o __

T•r (1d(n -"d +l)(1 -r)2 )<- (nd1 < -lr

( d~
For d = o(n) we hence have

n-l ) 2

n-2 n n

1 (d
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The analysis in Theorem 3.3 now continues to hold in toto. I I

So far we have considered relatively small interaction orders, d4 = o(n). A theoretically
important case results when 4 is allowed to grow linearly with n. In fact, as dn approaches n,
almost all dichotomies of 2n points in binary n-space can be separated by a non-homogeneous
network (Venkatesh and Baldi [2]). It is useful, hence, to estimate the number of fixed points,

Pin~d,.0), for the random case when d, grows linearly with n.

Theorem 4.3 If d4 , n/2 then P(-,d,,o) - 2n/(n + 1) as n - oo.

PROOF: If d4~ n/2 then • = n[1 ± O(1/V/'ni)]. Hence from equations (17) and (18),
2= n2 (14 O(_ -- ))1 I (t)ne_, 2/2et 2/vn dt, (19)

where v, = f1(V/'i). Fix 0 < r < 1/4. Then

[§(n')"+l - §(-nr)n++I e-n2
r/t. 1 nr §(t)ne-_12 et2§/r()n+l -<(-n-r)n+1

n + 1 < j - n• .n + 1'

while
0- 1 vV. I. nn1

whl §(t)ne1'/2e-t2 /-n dt < en 2 r'" (1-(nr)n+l + §(..nT)fl+1)

Now t(n)"+'1 --o. 1, §(-nr)n+1 -- 0, and n 2"/v, -. 0 as n -. oo. Hence I
1 _ Iln_ _(t)"et2 /2e-g 2/vu dt 1

1 > ¢(t)ne-t 2/2e t2 /vJ dt = o(-L) (n --+ oo).

The proof is completed by substitution in equation (19). I

4.2 Random Energy Model i
The dynamics of the symmetric interaction systems considered above are characterised by Hamil-
tonians or energies. The determination of the number of fixed points of such a system is hence I
equivalent to counting the number of states which form (local) energy minima. For higher order spin

glasses, the energy of each state given by equation (3) is an A( (, ( n - ) ) random variable.

The energies of different states are dependent, identically distributed normal random variables.
The random energy model (cf. Derrida (11]) is an allied system which assigns energies as i.i.d.,

.A(0, 1) random variables to the vertices of the hypercube. State energies are now independent
normal random variables. Such an assignment of state energies results in random acyclic orien-
tations of the vertices of the hypercube (cf. Baldi (15]) defined by state transitions: u '-- v iff
H(u) > H(v). For any given assignment of energies, the corresponding acyclic orientation can be
realised by a (non-homogeneous) threshold network with degree d4, = n. In particular, we have 2'
interaction coefficients for such a system so that any particular assignment of 2' state energies can
be realised for a particular zhoice of coefficients.

Let G, be the number of local energy minima corresponding to a random acyclic orientation.

I
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I Theorem 4.4
2n

E(G,) n +Ln+l

Var(GO) - (n- 1)2n-I
S~(n + 1)2

PRooF: Let sa, i 1,...,2", enumerate the vertices of the hypercube. For i = 1,...,2", let the
random variable P be the indicator for state 9', i.e.,

SI1 if s' is an energy minimum
-l = 0 otherwise.

We then have G PI. The probability, p = P {/'= 1}, that any particular state is a local
minimum is just the probability that it is assigned a lower energy value than any of its n nearest
neighbours (at Hamming distance one from it). As the assigned energies are i.i.d. random variables,
we have p = 1/(n + 1). Hence the expected number of fixed points is 2n/(n + 1). We now compute
the joint probability that two states si and si are energy minima. Let dij represent the Hamming
distance between si and si. It is easy to see that

1/(n + 1) 2 if di > 2
I PP =/I 1) - /n(n+ 1) if /j = 2

0 if d 1, =1
1/(n + 1) if dq= 0.

Now, we have

Var(G,,)=E(Gn)-(EGn)2 = P{Iij = 1}- EP{l = 1)

+21 + 2 1 (2"
n+ 1dn(n+1) *(<1+ (n+1) 2  n+1)i<j i<J

' dij 2 d.i > 2

Collecting terms and simplifying yields the final result.

Note that the result of Theorem 4.4 provides anecdotal support for the result of Theorem 4.3
as a sort of limiting result. Stronger results can be shown for the random energy model: the number
of fixed points, G., exhibits central tendency. Let Gn denote the normalised r.v.

G =Gn - E GnI: v/V-j "

Theorem 4.5 There is an absolute positive constant C such that for every z

IP (G. < z) - (z)< C2--2S .

We refer the reader to the papers by Baldi, et al [16, 17] for a proof of the theorem. It is an
open question whether the number of fixed points of higher order spin glasses also exhibits central
tendency.
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5 CONCLUSIONS I

We have rigourously estimated the expected number of stable points of higher order spin glasses with
generalised Gaussian interactions. The critical feature observed here is the threshold phenomenon I
that is evidenced in the expected number of fixed points around a range of degree dependent critical
margins. For margins below the critical range we have shown a precise exponentially increasing
form of the solution, while for margins greater than the critical range we have shown that the U
expected number of fixed points decreases exponentially with the number of nodes in the network.
Open questions remain on a more precise determination (than the mean) of the number of fixed
points (as a function of the margin), and in particular, on whether there is central tendency as in $
the random energy model.

The results of this paper appear to have relevance to the programmed situation where interac-
tion strengths are to be chosen for which specified collections of binary n-tuples are fixed points with I
some desired radius of attraction. In such cases it is important to be cognisant of the number of
extraneous fixed points-and their radii of attraction-that are developed incidentally. Rigourous
results have, however, been shown only for the linear interaction case (d = 1) with interactions I
programmed by the outer product algorithm (Koml6s and Paturi [9]). The analysis appears to be
substantially harder for higher order cases, even for the relatively simple outer product algorithm
(cf. Newman's earlier paper [4] and our two concurrent papers [2, 3] for illustrations of the difficul- I
ties caused by the more severe statistical dependences in higher order cases). The extraneous fixed
point structure of other algorithms, such as the spectral algorithm (Venkatesh and Psaltis [10]), is
even less understood, especially in the higher order versions. It is not readily apparent whether I
the results derived here for the case of random, symmetric interactions (especially Theorem 3.3
and the corollaries) can be utilised in a rigourous analysis in programmed cases; nonetheless, these
results may provide qualitative indications of behaviours that may be expected in programmed I
cases, especially when the dependences are weak.

Acknowledgement I
We would like to thank the referees for their suggestions which served to help focus the main results
of the paper. a
A Properties of fn

Lemma A.1 For each n (and any choice of margin, B > 0, and degree, d.): I
a) fn is a convex n, strictly negative function with a unique maximum at t = tn;

b) for t > 1, fn" increases monotonically to -1/cn as t - 00. 1
PROOF: First we claim that 0 is a positive, monotone decreasing function. Clearly 0(t) > 0 for
all t. Consider Vt(t) = -_t(t) - 0(t) 2. We have t'(t) < 0 for t > 0. Now, for t > 0 consider I

>= > 0.

j~j ~o(-t
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IHence 0b'(f) < 0 for all t so that 0b is monotone decreasing. By repeated differentiation of equa-

tion (9) we have

Af(t) = 10(t)- t + s/, (20)

I f'f'(t) = -_0,(t)2 - to(t) - -. (21)
Now "(t)= X'(t)- 1c• <0 fr al t o tht f• isstrctyonexwhetemotnityf

Now fut(t) = 0.'(t) - 1/c, < 0 for all t so that fn is strictly convex n, while the monotonicity of
tk guarantees a unique solution at t = tn, to fn(t) = 0. As f,,(t) < 0 for all t by inspection of
equation (9), part (a) follows. Now note that

[tV,(t)]' = -O(t)[t2 + tob(t) _ 1] :5_< to(t)2 < 0 (t >_ 1).

Hence both 0b(t) and t05(t) decrease monotonically to zero so that (b) follows.

Lemma A.2 For each n, fn has derivatives of all orders, and in fact, for k > 3, the derivatives
f~k) are independent of n and have the representation

Lk/2J k-21
fN)(t) = E E c It, (t), (22)

1=0 m=1

where the coefficients ,(k) are real constants independent of n, and M'{) (_)k

PROOF: Note that for k > 3 we have f,(k)(t) = . The result follows by induction.

Lemma A.3 Let B = fpnc,', with a > 0 and f' _ 0, and let fn achieve its maximum at t,. Then
as n -- 00:

a) if dn -+ d, then tn - s where a satisfies

b) ifd, -oo, anda=O orfl=0, then

tn = 2logcn - loglog n -log(4 -) + O(0 1..)]- (23)

c) ifdn--oo, 0<a<1, andfl>0, then

tn, = [2(l - ak)log c - 2 log(# V2r) - ( /) (24)
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PROOF: Part (a) follows by continuity of 1 as en --+ d,4 (n - oo) from equation (8). Parts (b) I
and (c) can be verified by direct substitution. I

REMARKS: I

f.(t,) = - -- I + O-) - tc'- - c, 1 - log +f +c•)), (25) 3
fn' (tn) =0, + - + - , (26)0,

f~t) -tnL(1 1 tni-~(1 21 # 2 C2.2  1 (26

f(k)(t") - (-)k-1)I-t.- I(tc +±3cc), k > 3, d, -- . (27) 5
Note that for k > 3, fn(k)(t) does not depend on n any more so that uniform bounds can be
obtained. I

We will seek to approximate the functions, fn(t), by the first few terms of a Taylor series
expansion. Specifically, for particular choices of cn > 0 and 6, > 0 we use

It -tnI <bn =* fnMt) - fn(tn) - fn'(tn) (t_2t"2I ~< fn(t- 2 t. (28)

The next two lemmas outline conditions under which the above holds.

Lemma A.4 If the sequence {fd} is bounded then for any specification of margin, B = op3pn with I
a > 0 and 0 >_ 0, and for any c > 0, we can find 6 > 0 uniform with respect to n such that
equation (28) holds with a choice of C, = c and 6b = 6. 3
PROOF: Set g,(t) = A (t) - A (tn) - f'A(t.)(t - tn)2/2. We have gn(tn) =" g•(tn) = g"(tn) = 0.
Applying the Mean Value Theorem, we can find 0 < a < 1 such that, g,(tn + a() = •g',(tn + 00),
while g~n(t. + a() = o(a() as C --+ 0. Hence g(tin + () = o((2), (C -+ 0). Thus, for each n, and
every c > 0, we can find 6, > 0 such that Ign(t)J < f(t - t,) 2 /2 whenever It - tn < 6g.

Now assume without loss of generality that dn takes values from the finite set {. 1 ,... ,YK}.I
For i = 1,...,K, set

fAit) = log$(t)- (t + 3(•,)a)22 '

g'(t) = fA(t) - f'(t') - fi"(t') (t 
1 

ti)2

where f' has its maximum at t'. Then for every c > 0 there exists 6' > 0 such that WWI(t)I <
,(t- i_)2/4 whenever It - ti1 < 6i. Now c, = d, + 0(1/n) so that from equation (11) it follows
that t,, = t' + 0(1/n) for some i E {1,..., K}. [As 0b is monotone decreasing, we have:

tn - t' < z = i - ti= tio .
A CI-n
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As d4, is bounded we are guaranteed that t' is also bounded, so that the result follows.] From
equations (9), (25), and (26) it hence follows that

(t - t,,2+ ( ) i -I<b)1g,,(t)l--=gWWI + 0 (') <• .. +0f) (t-. 5)

We can hence choose N such that for n > N, we have Ig.(t)I < I(t - t") 2/2 whenever It -
tnI<min{61,...,6K}. We can finally choose a smallest 6 = min{61,...,6N,61 ,.. *,6K} to establish
uniformity. I

Lemma A.5 Let B = /3pncn' be the margin. Iffd4 -- oo as n co, then equation (28) holds for n
large enough for the following choices of En and 6,:

a) fn = Alogc9n/cn and 6, = A/Vf281ogc9n if a = 0 or/3 = 0;

b) En = AV4A c,/c1-* and 6b - A/(8/3(1 - a)V4Z/Y'n) if 0 < a < 1 and/i > 0.

Here A > 0 is a suitably small (but fixed) choice of parameter.

PROOF: We will prove the result for the case {fa = 0 or - 0}; the proof for the case {0 < a < 1
and#3 > 0} is similar.

Consider a choice of margin B = /3p,,cl with a = 0 or/3 = 0. Set cn = Alogc,n/cn and
6,, = A/v/1281ogcn for some A > 0 to be specified suitably small. In the proof of Lemma A.4 set
C = en. Now, it suffices to show that jgn,(tn + 01 < c.1(I/2 whenever l¢1 < 6, -- A/=1281ogcn,
(n -.-* oo). We have

Ig'n(tn + 0I = IN(t,, + ) -f"(t,).
By the Mean Value Theorem, there exists 0 </3 < 1 such that

IfA(tn + ()I = I(1 Ifn(t + O01.
Now consider

!Ifn(t. - b.) + fn"(t.)b.l = bn.1- fn"(t. - NO. + fn"(t.)l :< bn. - fn"(t. - 6n) + fn"(t.)l.

The last inequality follows from Lemma A.1(b) as f,' is negative and increases monotonically to
-1/cn for large t, and by Lemma A.3(b) which ensures that tn ,,- V702 -+ 0o, (n - oo). Using
equation (21) with Lemma A.3(b), as n -- oco we have

Ifn(tn - 6,) + fn,(t,,)6,,I _< ,, nIO(tN, - 6)2 + (t,, - 6,,)O/(t,- - 6)- ,(t,,)2 - tnO(t,,)l
S_,,t,,._ 2 / 2  t_6,,_6_1

We have tn6n = O(A) so that for A sufficiently small
-12 6 n. v n2t2" -n/2] bn

If A(t, - 6n) + fn"(t,,)6,,I ,< 6, [07F e ] fn 2 (n -- oo).

Similarly
Ifn(t.- 6.) - fn"(t.)b.1 P< fn (n-o)

By Lemma A.1, the above inequalities hold in the b,-neighbourhood of t,,, and this completes the
proof. I
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B The Main Lemma £
We prove here Lemma 3.2, restated below for convenience.

Lemma 3.2 Let B = P3p,,C, with 0 < a < 1 and 3>_ 0. If d o(n), then

F('•d,'B) "- 2/-,•(n (n - oo).

PROOF: We will consider separately the cases where {fd} is bounded and {dn} is unbounded.

CASE 1. {dn} is bounded.
The sequence f"(t,) is bounded strictly away from both zero and infinity. Hence set

inf Ifn"(t,)I > 0 and r = sup Ifn"(tn)l < oo. Fix c arbitrarily in the open interval (0, ). Choose 5
6 > 0 uniform with respect to n by Lemma A.4. By Proposition 3.1 we have

V/' F(n'd",B)=•~ e"n1f"( Wdt + t et•ef(O dt.
2 (n,d,~, B) =i-.< f it -tniŽ56

Let 0 be a parameter, 10l < e. Consider 5
tn6nf"t. + ,&(-t)/ -2r 1 /2
_en(f(tn)+ -,(t-)/2 dt = [ 2n(fnt + ) ]0 / - 24 (-6 -n(fn'(tn) + 0)) (29)

= 2v (1f1/2+ , ),_-o (-- ,O-)/

By Lemma A.4 it then follows that =n(fn )+ 0) 6 V wIF

1r.1/2 (e ( )n < _e-n"(t.) + enh .(t) dt

-0f"(n +1 Nn

where q(6) > 0 depends solely on 6. As c was arbitrary we have

tn+6*e nfn(t) dt , enf"(t") 27r 1/ 2  (n -- oo). (30)

Let C = sup If/(t,)l. The sequence {ff(tn)} is bounded so that C < oo. For each n set I
h,(6) = max{f,(ti - 6) - f,(tn), fANt. + 6) - fn(tn)} < 0.

Then

) dt = enfR(') J ) dt

e nn~n)I ~nI~h(6-f~t) (t~_, /- t 31
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Now let h(6) = sup,.h,,(6). As {4} is bounded, Lemma A.1 ensures that h(6) < 0 strictly.
Furthermore, for each n, 0 > h.(6) 2! fA(t) - f.(tn) whenever It - tn. Ž 6, by Lemma A.1. Hence

Hence, there exists 7(6), p(b) > 0 such that
fltt~>_6e""W dtnf dt -/( ) •-r -.n( e-p(l" _ 0 (n -- oo),fit-tnl<6 enf.(O dt

so that equation (12) follows.

CASE 2. d4 -* oo such that d4 = o(n) as n -- oo.
We prove the result for a choice of margin with a = 0 or P. = 0. Fix A > 0 and choose

-. = Alogc,c./, and 6. = A//1r281o-ge. (Note that cn. ~ 4 from equation (8).) Now, from
equations (23) and (26), for 101 < C. and for small A, as n - oo,

-(fU"(t) + ) - 2log en [1 0(A)].

en
As n/ce ~ n/dn --+ oo, (n --o co), the first term on the right hand side of equation (29) dominates
the second, so that for a sufficiently small choice of A, equation (30) continues to hold:

-O. \n n 2 / (n - oo). (32)

Now by Taylor's formula we have

AN(t ± b,) - AN(t) AV f"2)b.2 + 1 11n* (t tn )2 f.. (t) dt.

By Lemma A.2 and equations (23) and (27) we have

SJ")2(t ) dt n_

A3 (1 0+00)).
1024cn

Substituting from equation (25) we then have for a small enough choice of A that

fA.(. ± 6,.) - fA.(t,) = - 128. [1 - 0(A)][1 + o(1)] (n -, oo).
Substituting in equation (31) we have as n -- oo

-t.IŽ>,, e n"(t dt < e•f.(tn) V exp \ [1 + o(n)][1 - 0(A\)] + (33)

Noting that C = sup Ifn(t,.)l is finite, and that n/c, ~ n/d. -* oo as n --+ oo, equation (12) follows
from equations (32) and (33) by choosing A suitably small.

The proof for a choice of margin B = 3p.< with 0 < a < 1 and 0 > 0 is similar (with
equation (24) giving the asymptotic form for t. in this case). 1
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Abstract-An interesting duality between two formally related schemes for neural associative memory is exploited
to shape the attraction basins of stored memories. Considered are a family of spectra! algorithms--based on
specifying the spectrum of the matrix of weights as a function of the memories to be stored-and a class of dual
spectral algorithms--based on manipulations of the orthogonal subspace of the memories, which are expanded
here. These algorithms are shown to attain near maximal memory storage capacity of the order of n, and are
shown to typically require the order of n" elementary operations for their implementation. Signal-to-noise ratio
arguments are presented showing a duality in the error-correction behaviour of the two schemes: the spectral
algorithm demonstrates memory-specific attraction around the memories, while the dual spectral algorithm
demonstrates direction-specific attraction. Composite algorithms capable of joint memory-spectfic and direction-
specific attraction are presented as a means of variably shaping attraction basins around desired memories.
Computer simulations are included in support of the analysis.

Keywords-Associative memory, Network dynamics.

1. INTRODUCTION approach the theoretical maximum. In this paper.

In this paper we develop the duality between two we briefly review these two algorithms, establish the

methods for training a fully connected network of n relationship between them, and define how a proper

McCulloch-Pitts neurons (McCulloch & Pitts, 1943). choice of parameters specifies their error correction

The sum of outer products is perhaps the most often properties.

used training method for such networks (Nakano, In such networks, memories to be stored are typ-

1972; Amari, 1977; Hopfield, 1982). The memory ically programmed as fixed points of the structure.
storag capaci, f97; thismethod, i14.T memory n(M Error correction is obtained by attracting to one ofstorage capacity for this method is n/4 log n (Mc- the stored fixed points, initial states (or probes) of
Eliece, Posner, Rodermich, & Venkatesh, 1987; Psaltis tesoe ie ons nta tts(rpoe)o
& Venkatesh, 1989) whereas the maximal theoretical the system that arc close to the fixed points. We show
&apenktesh, 199 whesrageasgorithe mima th(Coeoretica that in the spectral scheme the radius of attraction
capacity for any storage algorithm is 2ni (Cover, 1965; around each of the stored stable states is controlled
Venkatesh, 1986b). The spectral algorithm (Kohonen, byterlivszeothcinvusofhene-

1977; Personnaz, Guyon, & Dreyfus, 1985; Venka- by the relative size of the eigcnvalues of the inter-
tesh & Psaltis, 1989) and an algorithm we will refer connection matrix. The dual spectral algorithm, on
to as the dual spectral algorithm (Maruani, Chev- the other hand, leads to a method for programming
tas &he dualspectralre algorithms (MoscaruaniiCevs the shape of the attraction basin around each of the
allier, & Sirat, 1987) are algorithms whose capacities elements of the stored vectors. We present a new

method based on linear programming for selecting
the parameters of the dual spectral algorithm which
determine its attraction dynamics around each stored

Acknowledgement: The work of the first two authors was fixed point and we suggest a hybrid algorithm that
supported in part by NSF grant EET-8709198. The work at Cal- can provide more arbitrary control of the shape of
tech is supported by DARPA and AFOSR.

Requests for reprints should be sent to Demetri Psaltis. De- the attraction basin.
partment of Electrical Engineering, Caltech, MS-I16-81, Pasa- We consider a fully interconnected network of n
dena, CA 91125. McCulloch-Pitts neurons with the instantaneous bi-
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614 S. S. Venkatesh, G. Pancha, D. Psalis, and G. Sirat I
nary outputs (- 1 or 1) of each of the neurons being stored memories can be assured with high probability
fed back as inputs to the network: if uift], u2[t], if the number of memories is within the storage ca-

S..., Iu[t] are the outputs of each of the n neurons pacity of the algorithm (McEliece et al., 1987; Psaltis
in the network at epoch t, then the neural update of & Venkatesh, 1989). The existence of Lyapunov
the ith neuron results in a new state at epoch t + 1 functions then guarantees that the memories (being I
according to the familiar threshold rule: fixed points) lie at the minima of the Lyapunov func-

u[t+ 1] ,[] w, , Ytions.

where 2. ALGORITHMS
{~) +1 if x->0 1

A (X) if x <0. 2.1. The Spectral Algorithm

The mode of operation may be synchronous (with In the spectral scheme, the interconnection matrix
all the neurons being updated simultaneously at each W' is defined as follows: i
epoch) or asynchronous (with at most one neuron W L UA(U'U) 'U". (I)
being updated at each epoch). In the application of
these networks to associative memory both modes where A = dg[).... m;."] is the m x m diagonal
of operation lead to very similar associative behav- matrix of positive eigenvalues ,;......1 > 0, I
iour (cf. Psaltis & Venkatesh, 1989, for instance) and and U = [u"Mu€-' "- U1'-] is the n x rn matrix of

we will not make a distinction in this paper as to the memory column vectors.
precise mode of operation. We note that

The nature of flow in state space is completely WU = UA, (2)
determined once the neural interconnection strengths
and the mode of operation is specified. We will be where 01 . u"' are the eigenvectors of WK and
interested in specifying patterns of interconnectivity A is the spectrum of W' (Venkatesh & Psaltis. 1985: I
for which arbitrarily prescribed rn-sets of memories Personnaz, Guyon. & Dreyfus, 1985: Venkatesh &
u01 .... nu"") E B" can be stored in the network. Psaltis, 1989). Therefore, we are guaranteed to have
In order for the network to act as an associative stable memories as long as W' is well defined. 1
memory. we require that the memories themselves For the case of an rn-fold degenerate spectrum
be stable (i.e., all subsequent operations on the "';.....(M)"' = A > 0, we see that the matrix WN
memory uiwl give back u"'). Stable memories are is symmetric with nonnegative eigenvalues (i.e.. it is
hence fixed points of the network. Furthermore, we nonnegative definite). Therefore there exist Lva-
require states close to any of the. memories to be punov functions in this case. and moreover it has
mapped into the memory by the network. This is the been shown that the stored memories form global
associative or error correcting feature requisite in an energy minima (Venkatesh & Psaltis, 1989).
associative memory. We call the average Hamming For the general spectral matrix in eqn (1). exact
distance from a memory over which such error cor- Lyapunov functions are hard to come by. The signal-
rection is exhibited the attraction radius of the mem- to-noise ratio, however, serves as a good ad hoc mea-
ory. sure of attraction capability. Consider synchronous

The quadratic Hamiltonian (energy) and the Man- operations with W' on a state vector u = u10) +
hattan form have been shown to be Lyapunov func- 6u E B". We have
tions for fully connected networks with symmetric Wu = Wl(ulo' + 6U) = W'uo + W6u U
connections (Hopfield. 1982: Goles & Vichniac. 1986:
Peretto & Niez. 1986: Psaltis & Venkatesh. 1989). Once again, there exists a "signal" term, W'uV'". and
hence, guaranteeing that state trajectories of such a "noise" term, W'6u. We anticipate that the greater I
networks will terminate in stable points. If the neural the signal-to-noise ratio, the greater the attraction
interconnection weights are chosen so that the de- around ula'. Let the Hamming distance between u
sired memories are stable. then the existence of a and u"'. d,1(u, u"''), equal d (i.e., 1!6u!! = 2\-d). The
Lyapunov function for the system indicates that the (strong) norm of the matrix W' is defined as I
memories %ill exhibit an attraction radius of error J!"'I
correction. The outer product and the dual spectral iW,; = sup -. xi 0.
algorithms lead to syr :tric weights but this is not I
generally true for the s; .ctral scheme. Nevertheless, It follows (cf. Strang, 1980) that IIW'11 = V'k. where
the spectral scheme also exhibits very similar attrac- k is the largest eigenvalue of the matrix (W')rW'.
tion dynamics (Psaltis & Venkatesh, 1989), even For the case of the degenerate spectrum ;.'" .... I
though there is no known Lyapunov function for the ;.'- = ;. > 10, W' is symmetric, and (W')rW' =

general case. In all these algorithms stability of the (W')2. Therefore, the maximum eigenvalue of I
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(W,)TW, = k = ;2, and the signal-to-noise ratio linearly independent vectors in R' which are indi-
(SNR) is given by vidually orthogonal to each of the memories (i.e.,

1XrU = 0, where we define the n x (n - m) matrix
SNR ,1 X 1[xqx-" x"'). Define a weight matrix W

!IW'6u[ (V-k')(2Vid) -2 N " with weights w,, given by

Thus, we would expect the attraction sphere around f.-I - , if .

u1" . . . u(-' to increase as n increases for the m- H, 0 if i
fold degenerate spectral scheme. For the general
nondegenerate case, we expect that by varying the where Xk# is the kth component of x•',. If we define
size of AW), the SNR, and hence the attraction ca- = x,, i = 1 ..... n, we see that
pability, be proportionately increased or decreased
for the ath memory u(a) (Figure 1). WM-XXT , (3)

Using a result of Koml6s (1967) we can show that
for all randomly chosen n-tuples u)' ..... ul" E

B", and m -< n, the probability that W, is well defined WU = NU - XX TU
approaches one as n -- x. It immediately follows
that the static capacity of the spectral scheme is n, = MU. (4)
as a linear transformation has at most n eigenvalues. Comparing eqns (2) and (4) we see that the spectral

Let N's denote the number of elementary opera- Coprneqs()ad()wseththepcrlLetioNs requredtoc pte the n ber t eemetatrix oe- and dual spectral algorithms exhibit an interesting
tions required to compute the weight matrix W' di- duality. Since the parameters /, are positive for each
rectly from the rn memories to be stored. Then using choice of i, it follows that
the fact that (UTU)-1 is symmetric, we can use the
Cholesky decomposition to compute its inverse. This %(Wu'), = .. (Au,*) = u;.
along with the rest of the matrix multiplications gives
us that N' = inn 2 + m2n + (m')/2 + O(n2) (details for each i 1. n.

can be found in Venkatesh and Psaltis (1989)). So the memories u" ...... u" are fixed points in
the scheme as well.

2.2. Dual Spectral Algorithms W as defined in eqn (3) is a zero-diagonal sym-
metric matrix. Thus, we know that there exists some

2.2.1. Orthogonal Spaces and Duality. The following form of attrac 'on behaviour. However, since the
scheme, formally related to the outer product and orthogonal basis X has been chosen arbitrarily, there
spectral algorithms, was introduced by Maruani et is some lack of control in specifying attraction ca-
al. (1987). pability. Specifically, as we shall argue below, the

Let U = [utt)ut2) ... u(")] be the matrix of memories 4,'s essentially control directional attraction and we
as before. Let x( , = 1. n - m, be a set of have no means of specifying these under the above

FI

FIGURE 1. Schematic representation of the attraction space in the spectral scheme for memories with different elgenvalues.
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approach. Our goal here will be to specify an algo- attraction region of u). In other words,
rithm where such control is possible.

2.2.2. The Effect of the p-values. In the spectral p F (U: > P u, -- u,,
scheme, the eigenvectors of W, are the memories, u; -u, u
so that the column space of W' is given by the span U
of the memories. Therefore, if the memories are far p u,
enough from each other and the initial state vector u: U
u is close enough to a memory, W' combined with p

the thresholding operation projects u onto the mem-
ory. 2.2.3. Specifying Directional Attraction With Linear

On the other hand, in the dual spectral scheme, Progranmirng. The previous section's discussions point

the weight matrix W' is obtained by taking the cor- to a necessity of somehow specifying the /l-values if I
relation of vectors that are orthogonal to the mem- we require direction-specific attraction. Specifically,
ories and then setting the diagonal elements to be 0. for a prescribed set li ..... .p > 0 of directional

In creating the zero diagonal, we essentially add per- attraction strengths, and M = dg[/ .. . . . . . i, we I
turbations to the left nullspace of U in the directions require a weight matrix Wd such that

of the memories. The strength of the perturbations W'u = MU. (5) U
along any component i. is proportional to p2,. Thus, We define WU such that:
each of the A,'s corresponds to a directional distor-
tion, and we expect the SNR of the dual spectral O 1ý7i (xbJ)(X,b4) if i= (

scheme to vary from direction to direction propor- 10 fi = j. (6)

tionately with the value of /,. We therefore expect where x,lk is the ith component of the basis vector x'1 ' U
that the larger the 4,. more information is lost if the as defined earlier, and b# is the flth component of a
ith bit is flipped and, hence, the smaller the attraction vector which we % ill specify shortly. Thus, given
would be in the ith direction. /1.. - ,, we need to find a vector b such that I

As an illustration, let us consider the case where with V = Xb
n = 3. and u, < p_, p. (Figure 2). Each memory u , M - y'yr (7)
would be preferentially attracted in the dx-direction. I
indicated schematically by an attraction cone in Fig- (Note that the columns of Y. in general. are not
ure 2 (i.e., a vector with a different x component will orthogonal.)
probably map back to u but vectors with different y Assuming that 11" has the form given in eqn (6).
and z components will probably not be within the let us now consider the effect of W0 on the ith ele-

I

----------- - - - - -.

FIGURE 2. Schematic representation of the directional attraction space In the dual spectral scheme for a choice of
#A. 4 JA, #,. i

I
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I ment of a memory u"'1 : where c, -> 0, E > 0. and we want to find c which
minimises E.

Wt,,u.,, K"w14 To convert the it - k inequalities to equalities,
, we subtract E from both sides of the equation and

add slack variables z . . . . . . z,-k to give us the fol-
= - bx,. lowing n - k equations

a, c, + + aO.1 , ,C,,,,-- c, E¥ Z1 = 0

= b-x,#x,,u" + Y b'x, u,
a. c, + + Q,.,-,C,,,,-- E + Z.-. = 0.

Y b-! in addition to the first k equations. Now we have n
=• b~x•u . equations with 2n - m - k unknown nonnegative

quantities (c . . . . .  . . . . .. z,_).
We require from eqn (5) that Let us label e as c0 . By inspection, we see that the

[W,•u-,•, = 1,.uO. goal function to be minimised is cq, subject to the

[ ' '4U .constraints Ac' = M, where c' is a (2n - mn -
where p, > 0. By inspection, we obtain the relation- k + 1)-dimensional vector M' is a n-dimensionalilship vector. and A' is an n by 2n - m - k + I matrix;

i, ,that is, we require to solve

01 0 c, U,

Define a,# = x,21 , and ct = b2. Then we require C.

0c( A 7 :cm) (8)A c = W,, 0

where A is a known n x (n - Piz) matrix with non- 0
negative elements a,# = x-`. c is an unknown (n - z ,
m)-dimensional vector with c# = b• constrained to and c,, z, > . This is in the canonical form for the
be nonnegative, and Nf,, is a specified n-dimensional simplex method.
vector with positive components it. .... , i,.

We notice that this is an overspecified system of Specifying p, ..... .In this case, we specify all
n equations with (n - m) unkno'..'ns. where both c the values of M,. We indicate two possible options
and M,, are constrained to have nonnegative ele- when solving for c.
ments. Linear programming techniques can be used
to solve this system of equations. We can choose the 1. Minimise the mean-square error given by
p-values in a variety of ways. Two representative
methods are suggested here. JIAc - MJl1 = jla,c, + - + a .... Y

Specifying p I. . . . . P. u, k :- n - m. The canonical
form of the linear programming problem that the subject to the constraints Mp > 0, p > 0.
simplex method solves is: This is a quadratic programming problem.

Minimize the goalfdnction cry subject to the con- However, this problem can be reformulated as astraints simplex method problem and can be solved using
a variation of the traditional simplex method called

Ay -b. Wolfe's method (Wolfe, 1959).

where the vector y is unknown, and y > 0. 2. Minimise the largest absolute error Co, given by

In this case, we specify k positive values of M, max(Ij...1 )
and minimize the maximum of the (n - k) unspec- where e,, the error in p,. is
ified values of M, subject to the constraints Pk..,

u, > 0, and c, ... c, > 0. In other words, , - (a,,c + -.. + a,_ ic. i)' i = 1. n.
we have the following equations Our problem now is to minimize co subject to co,

a,,c, + + a,. c, c c -. . . . .. c,,, >0 . To solve this problem,' we

Iak~cI + ""+ a•,, .c,_.,• = t

ak,.C1 + + a',. Mc. # e
ak.1c, + + a, _c. p.8).This is known as Chcbyshcv's Approximation (Franklin, 1980.
a.Ic, + + a... - c E, p 8).
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note that we have n pairs of inequality contraints plex method, a good estimate of the average cost
of the form of each iteration in our scheme is 52n - 10m - I

O+ acl + .+ a . ý5 10k + 10, while for the standard simplex method, a
-C agood estimate is (2n 2 - mn - kn + n)/4 (cf. ChvA-

-co - a,,c, ...c a.,..c,_ -- -: , tal, 1983, p. 113). Thus, we estimate that the total 3
cost of specifying k values of M, is 0(n2) (using the U

The addition of slack variables puts the problem revised simplex method). The cost of finding a basis

for the nullspace of U (through Gram-Schmidt or-
thogonalisation) includes finding (U'U)-' and two

2.2.4. Characterisation of the Dual Spectral Scheme. other matrix multiplications and is given by mni2 +
For simplicity, we consider algorithms employing the (mn2n)/2 - m312 + O(n'). Finally, the cost of finding
first linear programming approach outlined above. Wd from c and X is n3 - n2m + O(n2 ). So, we can
We have modified the initial basis for the nullspace say that on the average,
of U using the results of the simplex method such
that Nd = n' + Im~n - rn-2 - m'/2 + O(n7),

W" = M - Vyyr where Nd is the number of elementary operations 3
needed to compute Wd.

where M = dg[p 1 ,/p2 ..... u.] with . . pk > There are a number of open questions involved
0 specified by us, and 0 < uk........ . . c < with the dual spectral scheme arising from the nature 3
min(p . P... uk),and Y = Xb is a set of basis vectors of the construction of the Wd matrix. The number
for the left nullspace of U. Since u,, i = 1 ..... n, of directions k, that can be specified given a set of
are positive, we see that all the memories are strictly m memories and n neurons is of interest. It is obvious U
stable in the dual spectral scheme as long as the from the previous discussion about the dimensions U
memories ul". . . . , u"-) are linearly independent, of A and c. that we can surely specify no more than
and we are able to find the vector c in the system n - m directions. However, there is a possibility
(8) through linear programming. (albeit small) that there exist no feasible solutions 3

As asserted earlier, since Wd is a symmetric, zero- for pathological cases where k < n - m. This is seen
diagonal matrix, there exist Lyapunov functions for particularly when the number n - m is very small.
this scheme in both modes of operation. We have Another quantity we are interested in is the size of 3
also conjectured that the attraction is directional in c, the largest of the unspecified y's, compared to the U
nature. The storage capacity of the dual spectral size of the specified /'s since we have conjectured
scheme of eqn (6) is directly n - 1. Specifically that this will affect directional attraction.
n - 1 is the number of memories for which we can While there exists little theory for the simplex I
still specify a left nullspace X. (By Koml6s' result method which will enable us to gauge these param-
(Koml6s, 1967), we are guaranteed that almost all eters. simulations show that t is typically small com-
choices of n memories or fewer are linearly inde- pared to p, for the specified directions (<0.514,), and 3
pendent, so that for almost all choices of n - I k is typically of the order of n/4 in the ranges sim-
memories there is an orthogonal subspace of dimen- ulated. We conjecture that this behaviour continues
sion 1, while almost all choices of n memories span to hold for large n.
the space RR and therefore the orthogonal subspace
is of dimension 0.) 2.3. Composite Algorithms

To find an n-dimensional vector under constraints,
the simplex method iterates from one feasible solu- In section 2.1 we saw ways of increasing the radii of 5
tion to another until it finds an optimal feasible so- attraction-spheres around memories. In section 2.2
lution. The maximum number of iterations that the we say ways of specifying increased attraction in cer-
simplex method can go through to find an n-dimen- tain directions around each of the memories. A nat- 3
sional vector is 2n - 1.2 However, it has been widely ural extension of these schemes is to create a com- U
reported (Chvital, 1983; Murty, 1983) that, in prac- posite scheme with weight matrix Wr given by
tice, the number of iterations is almost always be- W, = W, + Wd.
tween I to 3 times the number of constraints. Thus, I
for the case of specifying k values of MM, we would Since Wc is a linear combination of W' and Wd.

expect at the most 3n iterations. The computational we would expect memories to be stable in the com-
complexity of each iteration is dependant on how the posite scheme for reasons described in the previous i

simplex method is implemented. For the revised sim- sections. The idea of the composite scheme is to
specify both memory-specific attraction by specifying
; for each memory, and direction-specific attraction

This happens when the ;implex method tests each vertex of by specifying p for the individual directions (Fig- I
the n-sided p. .dton that bounds the feasible region ure 3). I
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FIGURE 3. Schematic representation of the joint memory-specific and direction-specific attraction space for two memories
in the composite scheme.

Here, the spectrum of W, is no longer degenerate, were estimated by averaging the maximum error cor-
and Wc. consequently, is no longer symmetric. As rection radius for each trial over the number of trials.
the composite algorithm combines the memory-spe- The graphs included here were obtained from syn-
cific spectral algorithm, and the direction-specific chronous mode operations. However, we found that
dual spectral algorithm, it works effectively in shap- the schemes essentially behaved the same under an
ing the attraction regions as desired. It should be asynchronous mode of operation. The graphs show

noted that the relative values of the ;.'" .... ,", typical stability and attraction behaviour in each of
compared to the .. . need to be considered the schemes. We can extract information on expected
in order not to lose the effects of one of the two parts worst and best case behaviour for a set of random
of the composite scheme. memories from these curves.I Note that the capacity of the composite scheme is The behaviour of the outer product scheme is
n - 1. The algorithm complexity of the composite highlighted in Figures 4 and 5. As anticipated, the
scheme is the sum of the complexities of the spectral
and dual spectral schemes, except that we need not
find (U'U)-1 twice. Therefore the complexity Nc is n 32
given by 3n' + 0(n2) for m :s n.

3. SIMULATIONS

Computer simulations were carried out to verify the o
behaviour of the various schemes. Systems with state
vectors of 32 bits were considered in the simulations.
The memories were chosen randomly with a binomial *0-
pseudo-random number generator with equiproba-
ble values I and - 1. For each size of memory set m
that was investigated, simulations were carried out
for each of the schemes, and the behaviour of the
schemes was averaged out over between 20 and 100 , "-
trials, where over each trial a different random set
of memories was generated. Error correction data m
were compiled at each trial by testing the conver- FIGURE 4. The percentage of stable memories plotted against

gence of randomly generated probes at increasing the number of memories m In the outer product scheme when
Hamming distance from a memory. Attraction radii n = 32.
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FIGURE 5. The average radius of attraction around a stable FIGURE 6. The attraction radius around a typical memory
memory Is plotted versus the number of memories for n = plotted as a function of the number of memories m, In the I
32 In the outer-product scheme. The attraction radius is es- degenerate spectral scheme where all the elgenvalues are
timated by averaging the maximum Hamming distance of chosen equal to A = n = 32. Estimates of the attraction
error-correction around a stable memory over several In- radius for a given number of memories were again obtained
dependent runs. by averaging the maximum distance of error-correction around U

a memory over several Independent runs.

number of stable memories declines precipitously as the sizes of the attraction basins are memory-specific I
m increases beyond a certain point (the static ca- and increase with increase in the eigenvalue size of
pacity) as seen in Figure 4. While n is quite small in the corresponding memory. These trends are ex-
these examples. the figures nonetheless are a pre- emplified in the typical plot of Figure 7 where half
cursor of the 0-1 behaviour which develops around the eigenvalues are fixed arbitrarily at n. and the
the static capacity of n/(4 log n) for large n (Ven- other half of the eigenvalues are fixed at a fraction
katesh, 1986; McEliece et al., 1987; Koml6s & Pa- of n. The plots show the relative sizes of the Ham-
turi, 1988). Figure 5 shows the graceful degradation ming balls of attraction for memories with large ei- I
of the average Hamming radius of attraction around genvalue as compared to memories with small ei-
the memories as the number of stored memories in- genvalue, as a function of the ratio of the two
creases. (We averaged the maximum attraction ra- eigenvalues. The results are similar for other values I
dius for each of the memories over several indepen- of m in the range of interest (i.e., values of m for
dent trials to obtain estimates of the average radius which there is significant attraction: the attraction
of attraction.) The analysis in McEliece et al. (1987) radii around the memories is proportional to corre-
indicates that the attraction is neither memory- nor sponding eigenvalue size).
direction-specific, and that we obtain uniform Ham- The feasibility of forming the dual spectral matrix
ming balls of attraction around each memory with Wd, using the simplex method whenul ..... •k are
high probability for large n. specified is confirmed in Figures 8 and 9. The success I

Simulations highlighting the behaviour of the rate (the percentage of trials when the simplex method
spectral scheme as a viable algorithm for associative returns a feasible solution with t < min(p1 ...
memory are presented in Figures 6 and 7. The av- yj) is plotted in Figure 8 against the number ofI
erage Hamming radius of attraction again degrades memories m, averaged over various choices of k. In
gracefully as the number of memories increases, as Figure 9, the success rate is plotted as a function of
illustrated in Figure 6, where the degenerate spectral the number of specified directions k, with m as a
algorithm exhibits uniform balls of attraction around parameter. Note that the success rate is almost 100% I
the memories. (The static capacity here is clearly n when k is small, and drops gradually with failures

as outlined before and verified in our simulation.) occurring most often when k approaches n - m (Fig-
As can be seen. the dynamical behaviour of the spec- ure 9). Figure 10 exhibits plots of average r versus
tral scheme is qualitatively similar to the outer prod- k for various m. As can be seen, t increases with
uct scheme. but somewhat better over all ranges. increasing k and increasing in. Exhaustive simula-

Investigations into attraction dynamics in the tions indicate that the values of - obtained by the
spectral scheme when there is a large deviation in simplex algorithm for n = 16 (fixed m, k) are ap-
eigenvalue size confirm theoretical predictions that proximately twice those for n = 32. Since the I
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large mbda n = 32- m =6 n = 32. m =13

small lambda
"i- sal)am~a'••/

! V) 60.

0)10.)

0
0 ¶0 20

k

0, FIGURE 9. The percentage of trials when the simplex method
0.00 02S o.s0 017s returns a feasible solution for the dual spectral scheme (the

success rate) plotted as a function of the number of specified
lambda (small) I lambda (large) directions k, for a choice of n = 32, m x 13. (Here k denotes

the number of directional values, ju, ..... IL, specified In the

FIGURE 7. Demonstration of memory-specific attraction In algorithm.)
the spectral scheme for n = 32 and m = 6. The memories
were divided Into two equal sized groups, one group with
elgenvalue A(large) = n, and the other group with elgenvalue dual spectral scheme verify the analytical predictions
A(small) varying as a fraction of n. The respective attraction of its performance as an associative memory. We will
radii of the A(large) memories and the A(small) memories are use the measure of attraction in a particular direction
plotted as the ratio A,(small)IA(large) Is Increased from zero x for a particular memory to be the average Ham-
to one. ming radius from which state vectors converge to that

memory when bit x is kept flipped. (Specif~ically, ifdynamic attraction behaviour of the dual spectral mu, is large, then inputs with bit x opposite in sign

scheme is dependent on the size of e, these curves to a memory will be unlikely to converge to the mem-
are crude indicators of the limits on m and k in the ory, and conversely if p, is small. Equivalently, if bit
dual spectral scheme.

Investigations into the attraction dynamics of the

0.6 n = 32
100 n =32 - m.5
20 r- m=6

oo7? ,, m=7.I0. _ _ _ _ _

m

kI FIGURE 8. The percentage of trials when the simplex method
returns a feasible solution (the success rate) In forming the FIGURE 10. The ratio of the largest value E, of the unspecified
d:ual spectral matrix WS, averaged over various chOlcea of k, directional parameters, =,. ,,... #, to the smallest of the
the number of specified directional values, p,, ..... p,, plot- specified directional parameters p,. = min{(A,,..... Pu, plot-
ted as a function of th, number of memories m, when n = ted versus k, the number of specified directional parameters
32. with mas a parameter for n = 32.

EI.
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x of the input vector is constrained to be correctly n =32
matched to the corresponding bit of the memory, - large lambda
then the algorithm will tend to correct for rather large 16 -,.- small lambda
distortions in the other components if p. is large, and
conversely if pj is small.) Figure 11 exhibits plots of
average attraction in both the specified (important) ( 12
and the unspecified (uniiportant) directions, where '0
the component of the input in the direction beingSI-
investigated was initially kept flipped. Here, the at- o
traction characteristics have been averaged over all .

the memories for the two cases: (1) the specified
directions (corresponding to large values of p), and <
(2) the unspecified directions (corresponding to small I
valuc- s of p). As can be seen, there exists a consistent
difference in attraction in the large p and small pj
directions when k is small, with a merging of the
attraction capabilities for larger k. 0 o 2 3 , 2

The simulations indicate that we do have the ca-
pability of separately achieving memory-specific and m I
direction-specific attraction. Investigations into the FIGURE 12. Demonstration of memory-specific attraction in
composite scheme indicate that attraction basins can the composite scheme for n = 32. The memories are divided
indeed be shaped over a wide range. Varying the Into two groups, one group corresponding to a "large" &I- B
values of the specified ,,'s, and large eigenvalues (;) genvalue A,, = 3, and the other group corresponding to a

and small eigenvalues (;,) lead to attraction basins "small" elgenvalue A.. = 1. Attraction radii for a memory
are plotted as a function of the number of memories m for

that range from being purely directional to corn- the two cases of the memory corresponding to elgenvalues
A,, = 3 and A.. = 1. I

20' pletely "spherical' around memories. A sample case
n = 32, m = 5 where 4.m = 1. /. = 3. and It,, = 6 (which gives us

"small mu c s 3 for moderate values of k and m) is shown in

Figures 12 and 13. Figure 12 exhibits plots of mem-

- rn ,32, m =6,--large mu

12

S.

I.2

0 6 16 24 32 I
k3

FIGURE 11. Demonstration of direction-specific attraction In
the dual spectral scheme for n = 32 and m = 5. Curves of
attraction radii versus the number of specified directional a 1 24 32

parameters k, are shown for two different directions-a

specified (large p) direction and an unspecified (small pt) k
direction. Attraction data for a given direction were gener-
ated by investigating probe vectors at various Hamming dis- FIGURE 13. Demonstration of direction-specific attraction in
lances from a memory with the component of the probe in the composite scheme for n = 32 and m = 6. Directional
the direction being investigated being chosen to be opposite attraction parameters are specified to be all equal to si =
in sign to the corresponding component of the memory. 6, while the largest of the unspecified directional parameters
(Flipping a bit In an Important (large p) direction would re- is kept below e = 3. Attraction radii are plotted In the large
duce the attraction to the memory compared to an unim- p (specified) and small p (unspecified) directions as a func- I
portant (small p) direction.) tion of k, the number of specified directions. I
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1 INTRODUCTION

In this chapter we describe models of autoassociative memory based upon densely intercon-

nected recurrent networks of McCulloch-Pitts neurons (McCulloch and Pitts, 1943). The

model neurons in these networks are linear threshold elements which compute the sign of

a linear form of their inputs. In a recurrent network, a collection of these neurons com-

municate with each other through linear synaptic weights and each neuron changes state

based on the net synaptic potential from all the neurons in the network. The instantaneous

state of the neural network is described by the collective states of the individual neurons,

and the choice of synaptic weights and the neuron updating rule determines the nature of

flow in the state space of the network. As in any dynamical system, the fixed points of the

network play a critical role in determining its computational properties. In particular, such

networks can be used for encoding a set of prescribed items identified with states u as fixed

points of the network, i.e., states u which are fixed under the dynamics of the network. In

"*This work was supported in part by the Air Force Office of Scientific Reseach under grant AFOSR
89-0523.
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addition, some form of error correction is desired, so that states u + bu in the vicinity of

u are mapped into u. When the item is to be retrieved from the network, the search can 3
then be done on either the whole item or on part of it. Such searches by data association

are especially useful in pattern recognition applications such as speech and vision. We will I
describe methods of specifying in a probabilistic sense the conditions under which such error 3
correction occurs.

We now consider a fully interconnected network of n McCulloch-Pitts neurons. Each

neuron is capable of assuming two values: 1 (firing) and -1 (not firing). The instantaneous 3
binary output of each neuron is fed back as an input to the network. At epoch t, if ul[t], 3
u2[t], ... , u,,[t] are the outputs of each of the n neurons in the network, then at epoch t + 1,

the ith neuron updates itself according to the following threshold rule:

u:it + 11 E wi uj [t]- v),I

where I
A(X) +1 if z >0 (

-1 ifx<O. 3.
Based on the preceding firing rule, each neuron is characterised by a set of n real synaptic g
weights, and a real threshold value, and the network as a whole is characterised by a matrix

of n 2 weights wij and n thresholds wio. Without loss of generality, we can confine our I
analysis to zero thresholds as thresholds are easily subsumed by the simple expedient of 3
adding a constant input of -1 to each neuron.

The instantaneous state of the network is an n-tuple u = (ul,..., u,,) E 113, where B =

{-1, 1}, and u he ith component of u is the output value of the ith neuron. Our goal is to 3
I
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encode items (states in IB') that are to be stored as fixed points of the recurrent network by

an appropriate choice of weight matrix. We label these prescribed items u(1), ... , u(-), and

hereafter refer to them as memories to distinguish them from other states of the network.

1.1 Lyapunov Functions and Error Correction

The network can operate under different modes of updating. If all neurons are simultane-

ously updated, the mode of operation is said to be synchronous. If at most one neuron is

updated at each epoch, the network is said to operate in an asynchronous mode. It has been

shown that both modes of operation lead to very similar associative behaviour in neural

networks. Note that in this synchronous mode case, we have

u[t + 1] = A(Wu[t])

where : JR" -- W' is an n-ary pointwise threshold operator whose ith component Ai(x)

is as in (1).

Given the arbitrarily prescribed set of m memories, we are interested in specifying

patterns of interconnectivity. The nature of flow in state space of the network is completely

determined once the matrix of neural interconnection weights is computed. In order for

our network to act as an associative memory, we require that the memories be stable.

As described earlier, a memory u() is stable if all subsequent mappings return u('), i.e.,

u(a)[t + 1] = A(Wu(")[t]) for all t. Furthermore, we required that the memories exercise

a region of influence around themselves, i.e., states close to or similar to memories should

map to the corresponding memories in the network, and thereby exhibit error correcting
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properties. The Euclidean distance between a state u and a memory u(') is given by

d u , U( ) = [ n (u i( c ) - u i)2 ] 1/2

In IWn, (ui(') - ui) = ±2 if the components are mismatched, and 0 otherwise . Therefore 3
dE = 2VV/dTj where the Hamming distance dH(u, U(a)) is defined to be the number of mis-

matched components between the two states. We shall use the average Hamming distance

from a memory over which error corrections is exhibited as a natural measure of attraction, I
and call it the attraction radius, p, of the memory. 3

From the theory of dynamical systems, we can expect attraction behaviour in neu-

ral networks if we can find functions on the systems that are bounded and monotone

non-increasing along trajectories in the state space. Such functions are called Lyapunov I
functions. If such a function exists, the stable points of the system reside at minimas of 3
the function. If the memories are programmed to be at these minimas, we can achieve the

desired attraction behaviour around the memories. I
Two such Lyapunov functions are the Hamiltonian Energy (E(u)) function and the 3

Manhattan Norm (F(u)) function, where g
E(u)= F= wiui uj

2= j=1I

and

F(u) =-E EjW, Uj
i=1 j=11

I
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Psaltis, 1989).'

Proposition 1 E(u) is non-increasing in asynchronous mode if W is symmetric and has

non-negative diagonal elements; E(u) is non-increasing in any mode if W is symmetric

and non-negative definite.

Proposition 2 F(u) is non-increasing in synchronous mode if W is symmetric.

While the existence of Lyapunov functions indicates attraction behaviour, the lack of

one does not necessarily indicate that the network will not function as desired. In the

following sections, we shall discuss a family of near-optimal algorithms to compute the

weight matrix W. All but one of these algorithms results in a symmetric weight matrix,

and all of them exhibit both desired properties of stability and attraction. In the following

sections, we will establish the relationship between the various algorithms, and evaluate

their performance.

1.2 Capacity and Complexity

Two measures characteristic of any algorithm are the algorithmic capacity and algorithmic

complexity. We will look at these measures for each of the alogrithms in the succeeding

sections.

Capacity is the maximal number of memories that can be stored with high probability.

It is useful to define capacity as a rate of growth rather than an exact number. Sp(cifically,

a sequence of numbers {C(n),n > 1} is a sequence of capacities if and only if for every

'Proofs of propositions in the main text of the chapter are deferred to Appendix A.
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A E (0, 1), as n -* o the probability that each of the memories is stable approaches 1 5
whenever m < (1 - A)C(n), and approaches 0 whenever m > (1 + A)C(n). We note that

a consequence of this is that a sequence of capacities, if it exists, is not unique, but rather

determines an equivalence class of sequences C where, C(n) and C'(n) are sequences in C I
iff C(n) ,.C'(n) as n -* o3.2

We define complexity to be the number of elementary operations required to compute I
the matrix of weights. For the purposes of this discussion, the elementary operations are

multiplication and addition of two real values. We are therefore interested in determining

the complexity of an alogrithm given m memories in n-space. In some cases, an algorithm 5
may have a recursive definition which may result in a reduced algorithmic complexity from

a practical standpoint when memories are added to the network one at a time. I

2 OUTER PRODUCT ALGORITHM I

Let u), ... , u(-) be a selection of m memories. The Outer Product Algorithm prescribes 5
that the weight matrix W0 P be chosen in the following manner (see Chapter 1 for additional 5
details):

Wop - UUT, (2) 1
where U = [u(I) U(2) ... u(m)]. I

This scheme uses the sum of outer-products of the memory vectors as correlation be- 5
tween the memories to form a weight matrix W'P so that an input vector close to a nicmory

2 0n asymptotic notation. If {x(n)} and {y(n)} are any two sequences, we denote: x,ý = O(y,) if there I
exists a constant K such that Iz(n)l < Kly(n)l for every n; z(n) = o(y(n)) if Iz(n)I/ly(n)I - 0 as n -. o;
z(n) - y(n) if z(n)/y(n) - 1 as n - oo; and z(n) = w(y(n)) if Iz(n)I/Iy(n)I -- oo as n -. 3.

I
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vector will pick out that memory vector. The functioning of the algorithm as an efficient as-

sociative memory has been well documented (cf. Hopfield, 1982), and theoretical results on

the capacity have been derived (McEliece, Posner, Rodemich, and Venkatesh, 1987; Koml6s

and Paturi, 1988).3 We will now review some results for the scheme.

2.1 Error Correction

From the definition it follows that W0 P is symmetric, nonnegative definite. Therefore,

the algorithmic flow in state space is towards the minimisation of bounded functionals (the

Manhattan Norm F in synchronous mode and the Energy E in any mode).4 The trajectories

therefore will tend to terminate in stable states which are local minima of the functionals. If

these stable states correspond to the stored memories, the Outer Product Algorithm satisfies

the requirements of a physical associative memory. To examine its efficacy, however, we

need to estimate its storage capacity, and the algorithmic complexity of computing the

weights.

We first consider the effect of W0 P on a memory u('). We have

n

[Wopu~a) o] =u ,

= Z Z u)uj()uj(&)
j;i 13=1

= (n - 1)u,(°) + 0 Z U,()uj(o)

= (n - 1)ui(,) + bui(0) . (3)

We see that, in effect, there is a "signal" term and a "noise" term. Assuming that the

3See also Chapter 9.
4In some variations a zero diagonal is enforced for the matrix WeP in (2). The matrix is then symmetric,

with non-negative diagonal elements so that the energy is non-increasing in asynchronous operation.
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memories are chosen randomly from a sequence of symmetric Bernoulli trials, the noise

term 6ul') has a mean of 0 and a standard deviation of ,'(n - 1)(m - 1). The mean of the

absolute value of the signal term (n - 1)ulo) is (n - 1). Thus, if m = o(n), the signal term

dominates the error term, and we can write I

W°PU = (n - 1)U + VU • (n - 1)U. I

It will follow that A(W 0 PU) = U with high probability if m = o(n). I
2.2 Capacity and Complexity

The memories u('), a = 1, ... , m can be identified as pseudo-eigenvectors of the linear

operator W0 P with pseudo-eigenvalues n - 1. When randomly chosen, they are stable in

a probabilistic sense only if the mean to standard deviation given by vr(n - 1)/(m - 1) is I
large. More precisely, the following assertion holds (cf. McEliece, Posner, Rodemich, and 3
Venkatesh, 1987; Koml6s and Paturi, 1988). Chapter 9 contains more details.

Proposition 3 The (stable state) capacity of the Outer Product Algorithm is n/4logn.

We sketch one side of the proof in Appendix A to illustrate some of the ideas involved. The g
gentle reader is also invited to delve into Chapter 1 for similar derivations.

Somewhat more can be shown than asserted above. In fact, if p E [0, 1/2) is any fixed I
quantity, and random probes are generated at a distance pn from each of the memories, then 3
all the errors in all the probes are corrected in one synchronous step with high probability

if the number of memories m increases no more rapidly with n than (1 - 2p) 2n/4 log n. In

particular, this result implies that within capacity each of the memories has (asymptotically) I
I
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3 an identically sized ball of attraction of radius pn. From a physical viewpoint this implies

that all the memories are treated equivalently by the Outer Product Algorithm as are all

the features (memory components).

i If we label the number of elementary operations required to compute W0 P for rr mem-

3 ories as NIP, then by counting the number of operations needed for matrix multiplication,

by considering that that the weight matrix W0 P is symmetrical, and by noting that the

diagonal elements are trivially specified, we find that NIP = (inn 2 - mn)/2. In addition, by

I inspection of (3), we notice that the outer product matrix can be recursively computed via

Swop[a] = Wop[a - 1] + U(a)(U(a))T a > 1,

Im where WOP[a] denotes the outer-product weight matrix generated by the first a memories,

3 and W°P[O] = 0. This means that the incremental complexity NOP[a] = (n 2 - n), and the

cost of computing the weight matrix incrementally is twice the cost of computing it from

scratch for any given set of m memories.

3 MEMORY SELECTIVE ALGORITHMS

In this section, we will discuss schemes to generate the weight matrix to yield a larger

capacity than the outer product scheme. In addition, these schemes will enable us to

selectively increase attraction radii around specified memories. (Compare with the Outer

Product Algorithm where uniform attraction balls around the memories obtains.) The

constructions are an extension of the outer product scheme to make the memories true

eigenvectors of the linear operator W, and then specifying the eigenvalues of the memories.
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Construction 1 Define the interconnection matrix W' as follows:

Wa = UA(UTu)-IUT, (4) 3
where A= dg[A('),..., A(i)] is the m x m diagonal matrix of positive eigenvalues ) ... ,

A(m) > 0, and U= [u(1) U( 2 ) ... U(m)] is the n x m matrix of memory column vectors. I
Construction 2 Given u), ... , u(m), choose any (n-rm) vectors u('+'), ... , u(n) E 1B-

such that u(I), ... , u(') are linearly independent. Define the interconnection matrix W'as I
follows: 3

Ws = UaAalU' 1 ,a

where the augmented matrices U. and Aa are defined as

Aa = dg[A('), ... , A(m),O,...,O], U,, = [u(1 ) ... uN).

We note that I

W'U = UA, W4U,, = UaAa, (5) 3
so that u(), ... u(, ) are eigenvectors of W- and A is the spectrum of Ws (Personnaz, 3
Guyon, and Dreyfus, 1985; Venkatesh and Psaltis, 1989). Therefore, we are guaranteed to

have stable memories as long as W- is well defined. 3
Hybrids of the two methods described above can also be used where the matrix U is 3

partially augmented and then the pseudo-inverse is computed.

3.1 Error Correction

For the case of an m-fold degenerate spectrum, ) A(m)= A > 0, we see that the U
matrix WU is symmetric with non-negative eigenvalues, i.e., it is non-negative definite. 3

I
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I Therefore there exist Lyapunov functions in this case. In fact, consider the energy function

i E(u) = -½(u,Wu).

For each memory, u("), the energy is hence given by

E(u(I)) = - 1 (u() _ Wu(•)) An

Let u E 11'n be arbitrary. We can write u in the form

I c(")u(.) + Uj = U11 + u±

where Ull is the projection of u into the linear span of the m memories, u(1), U(2), ... , U(m),

and u± is a vector in the orthogonal subspace. Then we have (ull, u1 ) = 0, and by the

Pythagorean theorem,

rn 2

11u112 = Ilui1112 + IluLI 2 = c(')u(-) + 1Iu±l112

The energy is then given by

I E1)= 1 2 m- (u W- -! / -' ~(• + u±, Z-'•Ac(Q)u(a)!

-u)=-cuWu) = 2 /•= =

I AA
> A IIUI12 =

2 2*

It follows that the stored memories form global Energy minima.

For the general Spectral matrix in (4), exact Lyapunov functions are hard to come by.

The signal-to-noise ratio, however, serves as a good ad hoc measure of attraction capability.

Consider synchronous operations with WS on a state vector u= u(')+ bu E 1EV'. We have

W"u = WS(u(a) + 6u) = Wsu(a) + W°bu.
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Once again, there exists a "signal" term, W~u(), and a "noise" term, W8 6u. We anticipate

that the greater the signal-to-noise ratio, the greater the attraction around u(01). Let the

Hamming distance between u and u('), dH(u, u(')), equal d, i.e., 116ull = 2v-/d. The (strong)

norm of the matrix W' is defined as I
11W'll = sup lwaxil l $ 0.

x Ilxll

It follows (cf. Strang, 1980) that jjW8 JJ = v/, where k is the the largest eigenvalue of the I
matrix (WI)TWI. For the case of the degenerate spectrum, A), ... , \(m) = A > 0, W. is

symmetric, and (WS)TW, = (W')2 . Therefore, the maximum eigenvalue of (W*)TWS =

k = A2, and the signal-to-noise ratio (SNR) is given by I
SNR IW,,U(C,)II A (a)v V.Ii 3

W =11W8 ull> 1(k) (2vn) 2Vd

Thus, we would expect the attraction sphere around 0), ... , u(') to increase as n I
increases for the m-fold degenerate Spectral Scheme. For the general non-degenerate case, 3
we expect that by varying the size of AW), the SNR, and hence the attraction capability,

be proportionately increased or decreased for the ath memory u(")(Figure 1). Figure 1 goes herc

3.2 Capacity and Complexity 3
To determine the capacity of these schemes, we use the following proposition (Koml6s, 3
1967).

Proposition 4 Let m increase with n such that m < n. Then the probability that a ran-

domly chosen set of n-tuples 0), ... , u(m) E 1n is linearly independent aproaches one as

nf -- 00. 1
I
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It follows that the probability that Wis well defined approaches one as n -+ oo. Since a

linear transformation has at most n eigenvalues, the static capacity of the spectral scheme

is n. (Dynamic capacities pose greater problems in evaluation here because of the added

dependency structure. For some theoretical results in this regard see Dembo (1989); for

numerical simulations see Venkatesh and Psaltis (1989) and Chapter 1 of this volume.)

Let N8 denote the number of elementary operations required to compute the weight

matrix W" directly from the m memories to be stored. Then using the fact that (UTU)-1

is symmetric, we can use the Cholesky decomposition to compute its inverse. This along

with the rest of the matrix multiplications yields N" = mn 2 + m 2 n + m 3 /2 + 0(n 2 ).

When the eigenvalues A(a) are m-fold degenerate, Greville's algorithm can be used to

recursively compute the pseudo-inverses which in turn results in a recursive construction for

the weight matrices W'[a]. Here W8[a] denotes the spectral weight matrix corresponding

to the first a memories. In fact, let M) A > 0, a > 1. For each a > 1 let e(*) be the

n-vector defined by

S= - W[ - )u(),

where we define W'[0] = 0. Then it is easy to verify by induction that

W 8 [a] = W'[a - 1] + e(u)(e(a))T a> 1. (6)

Now let N8[a] denote the number of elementary operations needed to compute the update

of the weight matrix according to the recursion (6). Again counting the number of multipli-

cations (the number of additions is of the same order), we get the following cost estimate:

N'[a] = 2n 2 + 2n, a > 1. Note that for all choices of m < n, we have mNa[a] > 2N",
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so that, especially for large n, the recursive construction of W, through the updates (6) is 3
computationaly about twice as expensive as the direct estimation of W8 . Note that the

cost is only about four times more than that of the simple Outer Product Algorithm.

4 FEATURE SELECTIVE ALGORITHMS I
4.1 Dual Spectral Alogrithm

The following scheme, formally related to the Outer Product and Spectral Algoritnins, was 3
introduced by Maruani, Chevallier, and Sirat, (1987). Let U = [u (1 ) ... u()] be the

matrix of memories as before. Let x(3), # = 1, ... , n - m, be a set of linearly independent I
vectors in ]R' which are individually orthogonal to each of the memories, i.e., XTU = 0, 3
where we define the n x (n - m) matrix X = [x(1  2) ... x(n-m)]. Define a weight matrix

W with weights wij given by
= I En'm XilOX,'j, ifij

"w"3 = { if i j

where Xk# is the kth component of x(O). If we define/ji = _ xi, i = 1, ... , n, we see

that I

W=M-XXT (7) 3
where M = dg [ 1,, An]. Thus,

WU = MUU- XXTU

= MU. (8) U
I
I
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4.2 Error Correction

Comparing (5) and (8) we see that the Spectral and Dual Spectral Algorithms exhibit an

interesting duality.

In the Spectral Scheme, the eigenvectors of W' are the memories, so that the column

I space of W' is given by the span of the memories. Therefore, if the memories are far enough

from each other and the initial state vector u is close enough to a memory, W, combined

with the thresholding operation projects u onto the memory.

I In the Dual Spectral Scheme, since the parameters Ai are positive for each choice of i,

I it follows that

1A(Wu)i = A(Aiu) = 0, for each i =1,...,n, a=l ... ,m.

So the memories U(1) ... , u() are fixed points in the scheme as well. W as defined in (7)

is a zero-diagonal symmetric matrix. Thus, we know that there exist Lyapunov functions

I in both modes of operation and that the network will exhibit some form of attraction

I behaviour. The weight matrix Wd is obtained by taking the correlation of vectors that are

orthogonal to the memories and then setting the diagonal elements to be 0. In creating the

zero diagonal, we essentially add perturbations to the left nullspace of U in the directions

I of the memories. The strength of the perturbations along any component, i, is proportional

to Ai. Thus, each of the Ai's corresponds to a directional distortion, and we expect the SNR

of the Dual Spectral Scheme to vary from direction to direction proportionately with the

value of Ai. We therefore expect that the larger the Ai, the more the information that is

I lost if the ith bit is flipped and, hence, the smaller the attraction in the ith direction.
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As an illustration, let us consider the case where n = 3, and M. >» AXI, pZ. Each memory 3

u would be preferentially attracted in the x and z direction, indicated schematically by an 3
attraction spheroid in Figure 2; i.e., a vector with a different y component is less likely to Figure 2 goes here

map back to u but vectors with different x and/or z components will probably be within I

the attraction region of u. In other words, 3
Xu

Uz Uz -Uz Uz Uz Uz

4.3 Constructing Feature Selective Weights

In the previous section, the orthogonal basis, X, was chosen arbitrarily and therefore re-

suited in some lack of control in specifying attraction capability. As we argued above, the

Ai's essentially control directional attraction and we have no means of specifying these under

the above approach. We now suggest a few schemes for constructing the weight matrices

that specify the pt-values and thereby achieve direction-specific attraction. Specifically, for a

prescribed set ul ... , u,, > 0 of directional attraction strengths, and M = dg [PI, ... ,

we require a weight matrix Wd such that I

WdU = Mj. (9) U
We define Wd such that: I

i d - ='(xj~b,3)(x.,jbO) J if j (10)-!
wid = {0 if i = ( '

where x,, is the ith component of the basis vector x(O) as defined earlier, and bo is the 1th I
component of a vector which we will specify shortly. Thus, given P1, ... , Pn we need to

I



4 FEATURE SELECTIVE ALGORITHMS 17

find a vector b such that with Y =Xb

Wd=M yyT. (11)

(Note that the columns of Y, in general, are not orthogonal.)

Assuming that Wd has the form given in (10), let us now consider the effect of Wd on

the ith element of a memory u('):

[WdU(o)].= Wjdu (a)

j=1

n-rn

E b 2X,' jO u(C'

n n--mI n--mt
2 X-) b XijO U(- + E b 2X20•'O

jl 0=10

n--rn
= Lb xi3 1 u + X2~x UI

-- Zb ° U°)
0=1

We require from (9) that [Wdu(a)], = pju,") where pi > 0. By inspection, we obtain the

relationship

n--tM

u,,= S,,b
0=1

Define ai, = xi 0, and co = b2. Then we require Ac M., where A is a known n x (n-rn)

matrix with non-negative elements aia = xg, c is an unknown (n - m)-dimensional vector

with c0 - ba constrained to be non-negative, and M. is a specified n-dimensional vector

with positive components p 1 , ... ,/An-

We notice that this is an overspecified system of n equations with (n - m) unknowns,

where both c and Mu are constrained to have non-negative elements. Linear programming
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techniques can be used to solve this system of equations. We can choose the p-values in a 3
variety of ways. A few representative methods are: 3

1. Specify Pl,... ,pk, k < n - m, let Ilk + 1,... ,p, - m < c, and minimise c.

2. Specify pi, ... , p,,, and U
(a) Minimise the mean-square error given by

IlAc - MMII2 = • (ai,,cl +''" + ai,n-rnn-n -- Aii--1 U
subject to the constraints M. > 0, c > 0.

(b) Minimise the largest absolute error, co, given by U
max(I•I,, ***- IEfI) 1

where ci, the error in pi, is

pi - (aijc, + + aim--,nmcn--,), i =1,..., nf. I

For simplicity, we consider algorithms employing the first linear programming approach I
outlined above. We have modified the initial basis for the nullspace of U using the results 3
of the simplex method such that

Wd =M - yyT,

where M = dg[pL, P2, ... , pn] with •p, ... , Pk > 0 specified by us, 0 < Pk+,, 11n 5 f <

min(pi, ... , Pk), and Y = Xb is a set of basis vectors for the left nullspace of U. Since

pi, = 1,...,n, are positive, we see that all the memories are strictly stable in the Dual 3
I
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Spectral Scheme as long as the memories, u(I) ... , u('), are linearly independent, and we

are able to find the vector c in the system (12) through linear programming. In Appendix B

we outline the linear programming approach in some detail.

4.4 Capacity and Complexity

By Koml6s' result (Proposition 4), we are guaranteed that almost all choices of n memories

or fewer are linearly independent, so that for almost all choices of n - 1 memories there

is an orthogonal subspace of dimension 1, while almost all choices of n memories span the

space 1Rn and therefore the orthogonal subspace is of dimension 0. The storage capacity of

the Dual Spectral Scheme of (10) is directly n - 1, since n - 1 is the number of memories

for which we can still specify a left nullspace X.

To find an n-dimensional vector under constraints, the Simplex Method iterates from

one feasible solution to another until it finds an optimal feasible solution. In the worst case,

we need to test each vertex of the feasible region which is an n-sided polyhedron, leading

to 2n - 1 iterations. However, such cases are rare and require careful specification of the

constraints designed solely to approach the worst case behaviour. In practice, it has been

widely reported (Chvktal, 1983; Murty, 1983) that the number of iterations is almost always

between 1 to 3 times the number of constraints. Thus, for the case of specifying k values of

Mp, we would expect at the most 3n iterations. For the (Revised) Simplex Method, a good

estimate of the average cost of each iteration in our scheme is 52n - 10m - 10k + 10, while for

the Standard Simplex Method, a good estimate is 2n 2 - mn - kn + n)/4 (cf. Chvital, 1983,

p. 113). Thus, we estimate that the total cost of specifying k values of M" is 0(n 2 ) (using
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the Revised Simplex Method). The cost of finding a basis for the nullspace of U (through

Gram-Schmidt orthogonalisation) includes finding (UTU)-1 and two matrix multiplications u
and is given by mn2 + (m2n)/2 - m 3 /2 + 0(n2 ). Finally, the cost of finding Wd from c

and X is n 3 
- n 2 m + 0(n 2 ). So, we can say that on the average, I

Nd=n3+lm2n-mn2 - +0(n 2)
2 2

where Nd is the number of elementary operations needed to compute Wd. 3
5 COMPOSITE ALGORITHMS

In Section 3 we saw ways of increasing the radii of attraction-spheres around memories. In

Section 4.3 we saw ways of specifying increased attraction in certain directions around each I
of the memories. A natural extension of these schemes is to create a Composite Scheme

(Venkatesh, Pancha, Psaltis, and Sirat, 1990) with weight matrix WC given by

Wc = Ws + Wd.

Since Wc is a linear combination of W' and Wd, we would expect memories to be sta-

ble in the Composite Scheme for reasons decribed in the previous sections. The idea of

the Composite Scheme is to specify both memory-specific attraction by specifying A for

each memory, and direction-specific attraction by specifying p for the individual directions I
(Figure 3). Figure 3 goes hc 1

Here, the spectrum of W' is no longer degenerate, and Wc, consequently, is no longer

symmetric. As the Composite Algorithm combines the memory-specific Spectral Algorithm,

and the dIrection-specific Dual Spectral Algorithm, it works effectively in shaping the at- 3
I
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traction regions as desired. It should be noted that the relative values of the 0), ... , A(),

compared to the pl, ... , p,, need to be considered in order not to lose the effects of one of

the two parts of the composite scheme.

Note that the capacity of the Composite Scheme is n - 1. The algorithm complexity

of the Composite Scheme is the sum of the complexities of the Spectral and Dual Spectral

Schemes, except that we need not find (UTU)-l twice. Therefore the complexity, NC, is

given by 3n 3 + 0(n 2 ) for m n.

6 SIMULATIONS

There are a number of open questions involved with the schemes outlined above. In this

section, we discuss trends observed in computer simulations that validate some of our conjec-

tures. All memories were chosen randomly using a binomial pseudo-random generator. Test

input vectors at specified Hamming distances from the memories were generated by revers-

ing the signs of randomly chosen components for the Outer-Product and Spectral schemes.

In the case of the Dual Spectral schemes, test input vectors were generated by reversing the

signs of randomly chosen components with the specified or unspecified A values.

Analytical bounds are difficult to arrive at for the attraction radius as a function of

the number of memories and the dimension of the state space. Figure 4 plots the attraction Figure 4 goes h1uc

radius Spectral Scheme. The attraction radius was estimated by averaging the maximum

Hamming distance of error-correction around stable memories over several independent

runs. The memories were divided into two equal sized groups, one group with eigenvalue

A(large) = 3n, and the other group with eigeivalue A(small) = n. The respective attraction
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radii of the A(large) memories and the A(small) memories are plotted against the number

of memories m.

In the Dual Spectral Schemes, there is the question of the number of directions, k,

that can be specified given a set of m memories and n neurons, arising from the nature of I
the construction of the Wd matrix. It is obvious from the previous discussions about the

dimensions of A and c that we can surely specify no more than n - m directions. However,

there is a possibility (albeit small) that there exist no feasible solutions for pathological

cases where k < n - m. Another quantity we are interested in is the size of C, the largest

of the unspecified p's, compared to the size of the specified Y's since we have conjectured

that this will affect directional attraction.

While there exists little theory for the Simplex Method which will enable us to gauge I
these parameters, simulations show that c is typically small (Figure 5) compared to pi Figure 5 goes heI

for the specified directions (< 0 .5 ji), and k is typically of the order of n/4 in the ranges

simulated. We conjecture that this behaviour continues to hold for large n. Figures 6(a)

and 6(b) plot directional attraction for the Dual Spectral Scheme. Attraction data for a Figures 61
and 6(b) go hert.

given direction were generated by investigating probe vectors at various Hamming distances 3
from a memory with the component of the probe in the direction being investigated being I
chosen to be opposite in sign to the corresponding component of the memory. Flipping a

bit in an imporant (large p) direction almost always reduced the attraction to the memory 3
compared to an unimportart (small p) direction. 3

Figures 7(a) and 7(b) plot the results for the composite scheme. The memories were Figures
Ind 7(b) go her(

I
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divided into two groups, one group corresponding to a "large" eigenvalue, A19 = 3, and

the other group corresponding to a "small" eigenvalue, Aam = 1. Directional attraction

parameters for k directions were set equal to pt. = 16. Attraction radii were determined

I for the large p (specified) and small p (unspecified) directions as a function of k, for both

the large eigenvalue memories and the small eigenvalue memories. As can be seen, there

is degradation of the behaviour when compared to the memory-specific and feature-specific

schemes. However, the attraction behaviour is in keeping with our expectations, and we

conjecture that the behaviour of these networks improves as n increases.

I 7 SUMMARY

3 The recurrent neural network paradigm for associative memory is attractive in its simplicity

and computational tractability. The classical Outer Product Algorithm, for instance, has

very low implementation complexity and yet exhibits near-linear memory storage capacities

3 with correction of a linear number of random errors uniformly in balls around the memories.

3 In this chapter we have shown how it is possible to exercise a macroscopic degree of nonuni-

form error correction around the stored memories. In particular, both memory and feature

I selective error correction is feasible using a composite algorithm which exploits the spec-

3 tral characteristics of the interconnectivity weight matrix. These spectral based approaches

are near-optimal in character and, in particular, are characterised by low implementation

complexities and linear storage capacities. Extensions of these approaches are possible to

U higher-order neural networks (where the model neurons compute the sign of polynomial

3 forms of their inputs) with concomitant increases in the storage capacities of the networks

I



I

APPENDIX A: PROPOSITIONS 24 1
(cf. Venkatesh and Baldi, 1991a, 1991b).

APPENDIX A: PROPOSITIONS 3
Proposition 1 E(u) is non-increasing in asynchronous mode if W is symmetric and has

non-negative diagonal elements; E(u) is non-increasing in any mode if W is symmetric

and non-negative definite. UIi
PROOF: (a) Consider either a synchronous or asynchronous mode of operation. For any

state u, the algorithm results in a flow in state space defined by u 1-* u + 6u. We note that

bu is an n-tuple with each component taking on one of the values 0, -2, or 2. The change 3
in E is given by

6E = E(u+6bu)-E(u)

= -2[(bu, Wu) + (u,Wbu) + (6u, Wbu)].

Since W is symmetric, (bu,Wu) = (u,Wbu). Hence, we have U
bE = -(bu,Wu) - 1 (bUWU).

We note that the nature of the algorithm is such that the sign of each component of bu I

is the same as that of the corresponding component of Wu. Thus, the inner product

(bu, Wu) > 0 for every state vector u E IB'. Furthermore, if W is non-negative definite,

the quadratic form (bu,Wbu) _ 0. Thus bE < 0 and E is a monotone non-increasing

functionI
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(b) In the synchronous mode, assume that the kth neuron updates itself at epoch t.

We therefore have
ui[t + 1]- ui[t] = { 0 if i k

The change in energy bE is given by

65E = (±wk kuJ) 1 ~(6Uk)2 Wkk.

Once again, the algorithm ensures that buk is of the same sign as - wkjuj, and since

wkk is non-negative, we see that bE < 0, and E is montone non-increasing.

I
Proposition 2 F(u) is non-increasing in synchronous mode if W is symmetric.

PROOF: In the synchronous mode of operation the change in the Manhattan Norm is given

by

6F = F(u[t + 1]) - F(u[t])
n. n n n ' ptWp~[ ]

E E ui[t + 1]wijuj[t] + - E Up[t]WpqUq[t
2 =1 j= p1 q1

As W is symmetric, we have Wpq = Wqp and P=I up[t]Wqp = Eý'=j wiuj[t]• So

1 nn
6F E (ui[t + 1] - ui[t - 11) F w 3uj,[tl.

= j=1

Let I be the set of indices for which ui[t + 1] = -ui[t - 1] (Note that I can be empty). Then

n

bF = - E ui[t + 1] E wiui[t].
SiEJ =1
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ace again we note that the nature of the algorithm guarantees us that the two sums in

the above equation are of the same sign. Thus,

n

6F= - I w,,uj[t] • 0,
iEI j=1

and F is a monotone non-increasing function along trajectories in state space. I

1
Proposition 3 The (stable state) capacity of the Outer Product Algorithm is n/4 log n. I
PROOF: We will prove only that n/4 log n is a lower bound for the stable state capacity of

the Outer Product Algorithm. Consider the random sums

xn ,w?ýo.o)=n+m-1+ • •-()u~u(°)- • l<i<n, 1<a<m.
j~l joi 00a

Fix i and a, and write simply Xn instead of Xn('a). We can now write 1

Xn=n+m-l+ ZZZ ), I00c, joi

where, for fixed i and a, we define the random variables Z -a) i(a) ) " Note I
that the random variables Z() j 0 i, )3 $ a are i.i.d., symmetric, ±1 random variables. 5

Now recall that a simple application of Chebyshev's inequality yields that for any random

variable Y and any t > 0, I
P{Y < -t} <_ inf e rtE(e -rY).

r>O0

5The critical fact here is that each random variable 0) has a distinct multiplicative term which

occurs solely in the expression for Z).

I
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I Applying this result here we obtain

IP{X" <0} = P{EZZZ(')<-n-m+1}

i = inf e-(n+m-1) Je- -r>0

The terms in the product, e-'o), ,3 # a, j 5 i are independent random variables as the

random variables Z?0) are independent. The expectation of the product of random variables

I above can, hence, be replaced by the product of expectations. Accordingly, denoting by Z

a random variable which takes on values -1 and 1 only, each with probabilty 1/2, we have

P{Xn <_ 0} ,5 inf e -r(n+rn-) [E(e-rZ)] = inf e-&(n+m,-) (cosh r)(m-1)(n-1).

Now, for every r E JR we have cosh r < e, 2 /2. Hence

P I n 5 ):5ie(r2(m- 1)(n- 1) _r(n + m - exp (n +•m -m1)IP{Xn < O} < inf exp (- - =e ( -))r_>o 2 2(n- 1)(m-

We hence obtain that the probability that any given component of a memory is not stable

is bounded by

BP{X•("') <0O}

for large enough n provided m grows so that m = o(n) and m = w(vi-).

Denote the event

IEn = U UX2'Q) < a}

it=I0=
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that one or more of the nm memory components is not stable. A simple application of

Boole's inequality now yields

P{£E} < E E P{X2(''a) < 0} _nm ex (
i=1 Q=1 

I

For a choice of ng[ l logn ogloglog n)] I
___log log n + log 4c _ _____lon)

l-4og n 1+ 2log n (log n)2

we hence obtain that P{EC} < c as n -- oo. As the probability that each of the memo- I
ries is stable is exactly 1- P{£E}, this establishes that the capacity is at least n/4 log n. I

Proposition 4 Let m increase with n such that m < n. Then the probability that a ran-

domly chosen set of n-tuples u0), u(') E B'B is linearly independent aproaches one as

n- -. 00. I

This result follows directly from a result of Koml6s (1967) asserting that the probability 3
that a random n x n ±1 matrix is nonsingular approaches one as n -- oo.

APPENDIX B: LINEAR PROGRAMMING

1. Specify Ps1,,... ,Pk, k < n - m, let Pk + 1,... n - M < c, and minimise c. The

canonical form of the linear programming problem that the Simplex Method solves is:

Minimise the goal function cTy subject to the constraints

Ay =b, I

where the vector y is unknown, and y > 0. I
I
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In this case, we specify k positive values of MM and minimise the maximum of the

(n - k) unspecified values of M. subject to the constraints .k+, .,, > 0, and

cl, ... , cn-m > 0. In other words, we have the following equationsI
al,lcl + + ai,n-mcn-m = Y1I

I ak,lcl + + + ak,n-mCn-m -= k

I ak+1,1C -+ + ak+1,n-mCn-m < f

anJc +1 + an,n--mCn--m < C

II
where ci > 0, e > 0, and we want to find c which minimises c.

U To convert the n - k inequalities to equalities, we subtract c from both sides of the

3 equation and add slack variables z 1 ,..., Z,•-k to give us the following n - k equations

ak+l,lC1 +" ". + ak+1,n-mCn-m - C + Zl - 0

an,I C+• "+ an,n-mCn-m - ( + Zn-k = 0,

in addition to the first k equations. Now we have n equations with 2n - m - k

unknown non-negative quantities (cl,. . .,Cn-m,Z1,..., Zn-k). Let us label c as co.

By inspection, we see that the goal function to be minimised is co, subject to the

constraints AVc' = MA' where c' is a (2n - m - k + 1)-dimensional vector MA' is a
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n-dimensional vector, and A' is an n x (2n - m - k + 1) matrix; i.e., we require to

s o l v e 0

0 0 Co

Z1

-~~Zn- A. 0k(2

"" " I

2. Specify .and

(a) Minimise the mean-square error given by

nn-

(b) Minimise the larestan-solutre error, o given by

IJAc - Miui 2 = - (ajC +' " + ai,--mcn,-,, - njL)2

i=1

subject to the constraints M# > 0, c > 0.

This is a quadratic programming problem. However, this problem can be refor-

mulated as a Simplex Method problem and can be solved using a variation of

the traditional simplex method called Wolfe's method (Wolfe, 1959). 1
(b) Minimise the largest absolute error, co, given by 3

max(!E1I, ... , IE,1) 3
where e,, the error in j•s, is 3

l~ - ( a•,iCi + ... + aa,n~mCn_.m), i= 1, ... , n . 3
I
I
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Our problem now is to minimize co subject to CO, C1,..., Cn-, > 0. To solve this

problem, 6 we note that we have n pairs of inequality contraints of the form

-Co + ai,1c, + " " + ai,n--mCn--m < pi

-Co - ai,icl - -.. ai,n-mCn-m < -Ai

The addition of slack variables puts the problem in canonical form.
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Figure Captions

Fig. 1 Schematic representation of the directional attraction space around two memories

with different eigenvalues with Spectral algorithms.

Fig. 2 Schematic representation of the directional attraction space in the Dual Spectral

Scheme with py >> Lxz.

Fig. 3 Schematic representation of the joint memory-specific and direction-specific attrac-

tion space for two memories in the Composite Scheme.

I Fig. 4 Average attraction radii around stable memories in the Outer-Product Scheme.

Fig. 5 Attraction radii in the Spectral Scheme.

Fig. 6 Variation of c, the largest of the unspecified directional parameters, pk+l, •..,

as a ratio of the specifed directional parameters with k, the number of directions

specified.

Fig. 7 Demonstration of direction-specific attraction in the Dual Spectral Scheme.

Fig. 8 Demonstration of memory-specific and direction-specific attraction in the Compos-

ite Scheme.
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On Reliable Computation with Formal Neurons of distinct sets of decisions that a neuron can make on a given set
of data. The theorem can be used to estimate the maximum number

Santosh S. Venkatesh and Demetri Psaltis of decisions that can be reliably made by a neuron; this number is
linear in n, as we will see in the sequel.

In the considerations above, we have tacitly assumed that functions
Abstract-We investigate the computing capabilities of formal are computed without errors. Although this is the norm in most logical

McCutioch-Pitts neurons when errors are permitted in decisions, functions implemented on digital computers, computations involving
Specifically, given a random rn-set of points ul,. .,u"E RK, a
corresponding m-set of decisions d',... ,d " E {-1, 1), and a fractional cognitive tasks such as pattern recognition, however, are frequently
error-tolerance 0 < e < 1, we are interested in the following question: less exact. It is hence reasonable to wonder whether allowing a formal
How large can we choose m such that a formal neuron can make neuron the latitude to make errors can substantially increase the set
assignments u0 - dO, with no more than cm errors? We obtain formal of problems that it can handle.
results for two protocols for error-tolerance-a random error protocol proble that it ca hade.m
and an exhaustive error protocol. Assume that a set of decisions are to be made on a randomly

In the random error protocol, a random subset of the rn points is specified nr set of points in n space and that we allow an error
randomly and Independently specified and the associated decisions labeled tolerance of em decision errors, with 0 < e < 1/2. We are
"don't care." We prove that if us is chosen less than 2n/(1 - 2e), then interested in how large we can choose m such that the neuron
with high probability, there Is a choice of weights for which the expected makes reliable decisions within the prescribed error tolerance. A
"number of decision errors made by the neuron Is no more than era; if in
is chosen larger than 2n/(1 - 2e), then the probability approaches zero superficial consideration of the problem might indicate that substantial
that there is a choice of synaptic weights for which the expected number gains in computation may be achievable if errors are permitted,
of decision errors made by the neuron is fewer than em. as the following analysis indicates. The number of ways that em

Inh the exhaustive error protocol, the total number of decision errors errors can occur in decisions is (,,) and corresponding to each
has to lie below ema, but we are allowed to choose the set of decisions that
are in error. We show that there is a function I <r, < 505 such that if such specification of the em incorrect decisions, there is a set of

im exceeds 2rKn/(1 - 2e), then there is, with high probability, no choke (1 - t)m decisions that are required to be correct. Hence, the neuron
of synaptic weights for which a neuron makes fewer than em decision is only required to realize any one of (,',) distinct sets of (1 - )m
errors on the m-set of inputs. For small f. the function K, is close to I decisions reliably. For large m, = fl(2c- ) for a positive con-
so that, Informally, we can specify in-sets as large as 2n/(1 - 2e) (but
not larger) and obtain reliable decisions within the prescribed tolerance stant c so that there is an exponential number of distinct choices of
for some suitable choice of weights. which the neuron has to implement only one. It hence appears that

there may potentially be substantive computational gains to be made
Index Terms-Capalcty, computation, fault-tolerance, formal neurons, if we allow some error tolerance in the decisions. Our main result inlarge deviations, reliability. this paper, how ever, indicates that such gains are not actually realized,

and the maximum number of decisions that can be made by a neuron
1. INTRODUCTION under such circumstances remains linear in n; specifically, we prove

The formal modeling of biological neurons as linear threshold gates the following results.

dates to the seminal paper of McCulloch and Pitts [3]. Although the • The sequence 2n/(1 - 2f) is a threshold function2 for the
biological plausibility of these models is open to debate, extensive property that there is a choice of synaptic weights for which
investigations since the work of McCulloch and Pitts have shown that the neuron makes no more than (essentially) em random errors
considerable computational power is latent in networks of formal in decisions. In particular, if m is less than 2n/(1 - 2e). then
neurons. with high probability, there is a choice of weights for the neuron

In its simplest form, a formal neuron is a computational device such that the expected number of errors is fewer than frm; if M
that accepts n real inputs and produces a single bit output depending exceeds 2n/(1 - 2o), then the probability approaches zero that
on whether a weighted sum of the inputs exceeds a fixed threshold. there is a choice of weights for the neuron such that the expected

If the inputs are constrained to be Boolean variables, then the neuron number of errors is fewer than em.

simply realizes a Boolean function of n variables. * There is a function I < P., < 505 such that if m exceeds

A fundamental counting result (cf. Schlafli [4], Wendel [5], and 2,rn/(1 - 2e). then there is (asymptotically) no choice of
Cover [6]) helps quantify the computational capability of a neuron: synaptic weights for which a neuron makes fewer than em
for any rn set in Euclidean n space, the result gives a precise count decision errors on the m set of inputs.
of the number of dichotomies of the set that can be separated by a In the next section, we develop some notation and introduce the
neuron. Each dichotomy is a collection of m decisions made by the notions of f reliability and capacity function. The main theorems
neuron on the m set. Schlifli's theorem, therefore, gives the number

Manuscript received May 18. 1989; revised January 8, 1991. This work Note that we assume that we have complete control over the neuron

was supported by NSF grant EET-8709198 and Air Force grant AFOSR-89- parameters and that errors creep into the neural output because %e are

0523 at the University of Pennsylvania and the Defense Advanced Research overloading the capacit) of the neuron. The notion of reliability of the
Projects Agency at the California Institute of Technology. decisions here is somewhat different from the case where decisions are

S.S. Venkatesh is wi the Moore School of Electrical of Engineeyng, unreliable because of a lack of control in the specification of the neuron

University of Pennsylvania, Philadelphia, PA 19104. (such as noise in the weights)

D. Psaltis is with the Department of Electrical Engineering, California 2The terminology thresholdfunctuon, although standard in the probabilisc
Institute of Technology. Pasadena, CA 91125. method, is a trifle unfortunate in the present context of linear threshold

IEEE Log Number 9101447. elements. We will replace it by the term capactry fuincton in the next section
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are stated and proved in Section II1; two technical results from large If a sample outcome D* = {d'}, then we require that the neuron
deviation probability theory are confined to the Appendix. produces the specified decision d1 as output whenever it receives

Several of the arguments used involve asymptotics, and we briefly ** as input. If, however, the sample outcome D' = B. then we
sketch our use of notation here. If {z,, } and {f, } are any two positive associate a don't-care decision with point u0; the neuron can result
sequences, we say that in either -1 or 1 as output when u° is input. We call D' the

(a) z,, fl(y,,) if z,,//,,, is bounded from below decision set associated with decision d"; we say that D' is normal

(b) z, - O(y,,) if z,/y,, is bounded from above if D' = {d"} (i.e., the decision has to be accurate), and D* is

(c) Zx - yI if Zn/Il,, approaches I for n large enough exceptional if D* = B (i.e., the decision is don't-care). The idea

(d) ZT, = o(3,) if x,/I,, approaches zero as n -- oo. behind defining the decision sets in this fashion is the following. With

If A,, is a sequence of events in a probability space, we say that A, the m decision sets D ,..., D" generated independently according

occurs with probability one if P{A,, } -4 1 as n -. o. By s, we to the above prescription, the expected number of normal decision sets

denote the Gaussian distribution function is (1 - 2e)m, whereas the expected number of exceptional decision
sets is 2em. We now forget about those points corresponding to the

fX /2d.exceptional decision sets and attempt to find neural weights that willI
N/ e / dcorrectly classify the remaining points corresponding to the normal

-• decision sets. If we can successfully do this, then, beside the points
By b(k; N, p), we denote the probability that N Bernoulli trials with corresponding to the rP-mal decision sets, on average, one half of I
probabilities p for success and (1 - p) for failure result in k successes the points corresponding to the exceptional (don't-care) decision
and N - k failures, i.e., sets will serendipitously also turn out to be correctly classified.

b(k;4,p)= ' _ P)N-k (Because the weights were chosen without taking the exceptional
b N k points into consideration, one half of them, on average, will be

We also denote by 8 the set -1, 1). correctly classified as the points are chosen from a distribution that is
invariant to reflections about the origin.) Thus, the expected number
of errors in decision will only be efr. We formalize this notion of a

II. ERROR TOLERANcE random error protocol in the following:
A formal neuron is a linear threshold gate characterized by a vector Definition 2.1: Let tu .-.- u-, E R be the weights corresponding

of n real weights u, = (ut,,. - ... u.,,) and a real threshold uo. The to a neuron. We say that the neuron makes f-reliable decisions on
neuron accepts as inputs points a E R' and produces as output a at ... " if
single bit d E B, according to the following rule:

I ) if 1: u')u) >_ u- sgn (,u )U E) Do. a = 1. "..r.
d =sgn t'U. - 0 = 1- if U , U, < U'o. (

Note that by the Borel strong law, the fraction of don't-care
We will without loss of generality assume that the threshold u o = 0.3 decisions is almost surely 2e. Further, because the vectors at' are

The neuron hence associates a decision or classification invariant to reflections about the origin, the fraction of actual decision
(-1 or + 1) with each point in n space. For any given set of errors that occur for a neuron making f-reliable decisions is almost I
points then, the neuron dichotomizes the set of points into two surely e. The case e = 0 reverts to the case of perfect decisions.

classes-those points mapped to +1 and those mapped to -1. In In the random error protocol, we are interested in the following
the geometric analog the neuron represents a separating hyperplane attribute of the m set of points at,... v-" and the corresponding
in n space. We are interested in characterizing the largest set of points decisions: I
for which there cxist choices of weights such that almost any set of
decisions associated with the specified set of points is realizable. EVENT eu(ro rn): There is a choice of weight such that the

Let 81,.. , -'" E R" be a random mn set of points chosen from ne a ke fireliable decisions
any joint distribution invariant to reflection of components around the The attribute .F,(n. m) deals with the notion of reliable decisions I
origin and such that every subset of n points is linearly independent on a random subset of points of expected size (1 - 2f)m.' The

with probability one. Let d ..--. d" E B be a corresponding rn set average number of errors allowed within this protocol is em. but

of decisions, For a neuron to make reliable decisions, we must find it is conceivable, albeit a rare occurrence, that the actual number

a choice of weights that realize the assignments 8" -' d' for each of errors substantially exceeds fm. In the exhaustive error protocol,

a = 1..... m. Note that we can take all the decisions d' to be +1 however, it is not permitted that the number of errors exceeds ,rm

without any loss of generality because the vectors a" can always be substantially. There is no constraint, however, on the choice of which
reflected about the origin. (I - f)m decisions are to be correctly implemented, and we are S

We incorporate error tolerance in decisions by introducing the 'The method of choosing decision sets advocated in this paper is not

notion of "doni'-care decisions." Let 0 < e < 1/2 be the fraction of sacrosanct, and we could utilize any random strategy for choosing decision
errors that we are willing to allow in the decisions (i.e., we tolerate sets that yields an expected number of (I - 2t)m normal decision sets
emr errors in decisions). Let DW. a = 1. • - .. m be the outcomes of m We could, for instance, choose the random subset of normal decision sets
identical and independent experiments whose outcomes are subsets from the uniform distribution on all subsets of size (I - 2e )m from the set

of -1, 1}). and such that of m decisions; alternatively. we could replace the independent assignment
of don't-cares in this paper by a Markovian strategy. The choice of ther{d*} with probability 1 - 2e binomial distnbution for specifying don't-cares in this paper was motivated
in part because it is. in a sense, natural-the independent assignment of

L1{- ),} with probability 2(. don't-cares from decision to decision asoids any bias due to prior don't-care
assignments-and the fact that the computational complexity of choosing

3 1n fact, it is easy to see that the threshold can be accommodated by decision sets reduces to an exercise in coin flipping. The results of the next
allowing an additional constant input of -1 to a zero threshold neuron Our section hold for most reasonable choices of underlying distribution, resulting
results will then continue to hold for nonzero thresholds by replacing n by in an expected number of (I - 2F)"i normal decision sets, although the

n + 1. technical details in the proofs can alter slightly.
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free to exhaustively check each alternative of making emn errors and whert we have used the dual form of Lemma A.2 (cf. remarks
choose the most favorable one. This protocol leads to a consideration following the lemma). M
of the following attribute of the in set of points u....-. iu' and the
corresponding decisions. B. Epsilon Reliability

EVENT g,(n, ni): There is a choice of weights such that the We now investigate the attribute Y,(n,rn) that there is a choice
neuron makes no more than fm[1 + o(1)] decision errors. of weights for which a neuron makes (-reliable decisions on the m

The attribute 9,(n,m) is somewhat stronger than the attribute set of points u ..... .iu.

.F,(n,m); instead of attempting to realize a random subset of Theorem 3.3: The sequence C,(n) = 2n/(1 - 2e) is a capacity

decisions, we query whether it is possible to find a choice of weights function for the attribute .Y (n, m).

for the neuron such that at least one of the subsets of (1 - t)m Proof: Let 0 < e < 1/2 be the given tolerance. Noting that the

decisions is reliably made. decision sets are generated independently of the m set of points, a

Definition 2.2: Let A(n, in) be an attribute of the m set of points direct application of Lemma 3.1 yields

i...., .A sequence {C(n)}),= is a capacity function for the
attribute A(n, m) if for A > 0 arbitrarily small: 1) P{A(n, m)} - P{Y',(n, m)} = b(k; m, 1 - 2e)P{.Fo(n, k)}. (2)

1 as n -* o whenever m < (1 - A)C(n). and 2) P{A(nm)} -- k=o
0 as n -. •z whenever in _ (1 + A)C(n). We first claim that P{Yo(n,k)} is a monotone nonincreasing

We say that C(n) is a lower capacity function if it satisfies the first function of k for each positive integer n. To show this, consider
condition and that C(n) is an upper capacity function if it satisfies the difference P{.Yo(n, k)} - P{Iro(n, k + 1)1 for any choice of k
the second condition. and n. Using (1) and elementary binomial identities, we have

The term threshold function is more standard in the literature of
the probabilistic method when an attribute exhibits such a threshold P{Yo(n, k)} - P{I-o(n, k + 1)}

behavior. Our definition is slightly stronger than is usual. 2- n-2 ' (k-11 n (k)]
Capacity functions have been found for a variety of neural network 2 -

architectures and algorithms [121, [7]-[131. These investigations I.k,=o:( .7= ]
into network capacity have hitherto concentrated mainly on capacity 2_k[n (k - 1) (k_ ]
functions for perfect decisions with no errors (cf. [9], [10], however,
for results on error tolerance in the outerproduct algorithm). In the j=O

following, we expand on the results in [12] and show capacity =2-k_ k-ll).
functions for the attributes F.(n,mn) and 9E(n,'m).

Ill. CAPACITY FUNCTIONS Hence, P{.Fo(nk)} - P{o (n,k+ 1)) > 0 for any choice
of k and n, and the claim is proved. Fix parameters A > 0 and

A. Error-Free Decisions 1/2 < y < 2/3. Now choose in = 2n(1 - A)/(1 - 2e) and set

We begin by investigating the attribute Fo(n,m) that there is v-,, = m(1 - 2e) + m"•/2e(l- 2f).
a neuron that makes reliable decisions u° "-. d* for each ck =
1.... "M. The following fundamental result is due to Schlifli [41: Using the monotonicity of P{0o(n, k)} and (2), we obtain
(Wendel [5] has a more accessible proof of the result; cf. also Cover V-
[61.) P{0F,(n, n)} _> P{.Fo((n, v.)) E b(k; m, 1 - 2e).

Lemma 3.1: Ile probability that there is a neuron that makes k=o

reliable decisions on a random in set of points in Euclidean n space B

R" is given by As n -. c, we then have from Theorem 3.2 that
n-i

P{Yo(n,m)} = E b(k; rn - 1,0.5). (1) A = e{Yo(n, L2n(1 - A)(1 + o(1))J)} -. 1

k=O while an application of Lemma A.1, and the choice 1/2 < u < 2/3,

An application of Lemma A.2 directly yields the following: yields

Tlheorem 3.2: The sequence Co(n) = 2n is a capacity function B _ ('(M-1/ 2 ) = 1 - O e
for the attribute To((n,in). 5

Proof: Fix 0 < A < 1 and let H(x),0 < x < I denote the for some positive constant cl . Hence, for every A > 0
binary entropy function defined in Lemma A.2. With a choice of P{F,(n, L2n(1 - A)/(1 - 2e)J)} -- 1, as n -. o.
in = L2n(1 - A)J in (1), we can find 1/2 < c < I such that

c(, -i) Now choose m = 2n(1 + A)/(1 - 2e), and set
P{.Fo(n, rn)} _> E b(k; in - 1,0.5) x,, = m(1 - 2) - n/V2Y(l - 2,e).

k=O

> 1 - 2-([ -H(c).(.-1) n -. o Again, using the monotonicity of P{Yo(n, k)} in (2), we have

with the second inequality following from Lemma A.2. Similarly, for P{E. (n, n)) !5 F b(k; m, 1 - 2e)+ P{Yo(n, x,)}.
a choice of in = O2n(1 + A)J, we can find 0 < a < 1/2 such that k=o - 10 "

Pf.FoKn))} !5 E b(k; t- 1,-0.5)

. b=o An application of Lemma A.1 and the choice 1/2 < v < 2/3 yields

< 2-(11- ())('--) ,-- 0, n -, o that as n --.

5cf. also a recent result due to Furedi 1161 on random polytopes in the cube. C _ 4'(_m&'1 2 ) -



90 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL 14, NO. 1, JANUARY 1992 3
for some positive constant C2. In addition, Theorem 3.2 yields Let A > 0 be fixed but arbitrary, and choose m = 2Kn(l + A)/

S(1 - 2f), where ,, is as defined in (3). Applying Lemma A.2 to (4),
Si O. we obtain that

It hence follows that for every choice of A > 0 P(n, m) n[ 2-(+- )[-- o()-2 -/0 w otan )al

P{,.(n, L2n(1 + A)/(1 - 2e))J) - 0, as n --+ oo. while another application of Lemma A.2 gives

Thus, the sequence 2n/(1 - 2e) is both a lower and an upper capacity / t

function (hence, a capacity) for the attribute F.,(n,m). U 5 -<2"(')
Let us now consider attribute 9, (n, m). The Borel strong law of J=0 M

large numbers yields that the fraction of exceptional decision sets for large enough m. Hence, for each choice of 0 < e < 1/2 and I
is no more than 2e1. + o(1)] with probability one. For any choice A > 0, there is a choice of 0 > 0 such that
of weights realizing e-reliable decisions on the m set of points -[I

ut...,*s', it follows that the fraction of decision errors will be P{Q,(n,m)} 3 22- -'t'()

no more than e[i + o(1)] with probability one as the m set of points The binary entropy function H(c) increases monotonically from a II
is chosen from a joint distribution invariant to reflections. The proof value of 0 at c = 0 to a value of 1 at c = 1/2. Hence, with K, as in
of the above theorem then directly yields (3), H{(1 - 2c)/2,,(1 + A)) + H(e) < 1. Hence, for every choice

Theorem 3.4: The sequence C,(n) = 2n/(1 - 2c) is a lower of A > 0 and r = 2K,n(l + A)/(1 - 2e), there is a choice of 6 > 0
capacity function for the attribute 9, (n, in). It that P{ ,(n, m)) < 2-6- - 0 as n --4 o.

Now, consider all possible ways of assigning at most em[1 + o(1) uc
errors in decision to the m set of points. Attribute 9, (n, m) is IV. CONCLUSION

realized if at least one of these possibilities is realizable for some The results proved in this paper demonstrate that a formal neuron I
appropriate choice of weights. (This clearly relaxes the more stringent has a computational capacity that is linear in n and that this rate of
requirements of attribute F, (n, m), where we require that a randomly growth of capacity persists even when errors are tolerated in the deci-
chosen one of these possibilities is realizable for an appropriate choice
of weights.) Because the number of such possibilities is exponential, sions. A question that arises at this juncture is how this result bears on I
we might hope to realize significant gains in capacity for attribute computations involving networks of formal neurons. In particular, for
w(n, m)ght hope following realzesignit shw s t canopaityfor atrinbye an associative memory model composed of n densely interconnected

Sbst, n). The following result shows that we can hope to gain by, formal neurons, the rigorous determination of the maximal storage

at best, a constant scale factor but that the linear rate of .owth of capacity when errors are permitted in recall is an open question. Wethe capacity function is unaffected.
Theorem 3.5: Let x, be a function of the error tolerance e defined analyze this in a subsequent paper [17] (cf. also [2]).

by the unique solution of APPENDIX

H ( ' -- 2e 1 LARGE DEVIATIONS
2, + H() 1 0 < e < 1/2 (3) We quote two technical lemmas from large deviation probability

where H is the binary entropy function. Then, the sequence i'.-(n) = theory that we will need. Both results concern probabilities in the tails

2xn/(1 - 2e) is an upper capacity function for the attribute of the binomial distribution. Lemma A.1 provides a good uniform

,(. K m). estimate for the cumulative distribution of a sum of N independent

Remarks: The function K, is defined as we vary 'e in the interval (0, 1) random variables valid for deviations from the mean as large

0 < e < 1/2 and monotonically increases from a value of +1 at as o(N2/ 3 ) (instead of the Oý'/N)deviations encountered in the 3
f = 0 to a value close to 505 as ( approaches 1/2. For small e, it usual central limit theorem). he approximation is the strong form
remains close to +1 so that the capacity function for the attribute of the large deviation central limit theorem 1141. Lemma A.2 is
(,(n, m) still behaves like 2n/(1 - 2e). due to Chernoff [15] and estimates probabilities in the extreme

Proof: Let us consider a tolerance of *exactly em errors. tails (deviations of the order of N from the mean) of the binomial I
The proof is not materially altered if the allowed tolerance is distribution.
emil + o(1)]. Lemma A.A: Let 0 < p < 1, and let {vN} be a sequence such

Let P(n, m) denote the probability that there is a choice of weights that Ir'N - NpI <5 K(N) = o(.2/I3). Then

for which a given set of j decisions is made incorrectly, whereas the VN "rV-N - Np .
remaining m - j decisions are made correctly. By Lemma 3.1,6 we E b(k; N,P) p -p) - o.
get that for any choice of j ,=o V. -~-P

n-I If, in addition, vA, - Np = fl(N'), for some 1/2 < v < 2/3, then
P(n,m) = E b(k; m - 1,0.5). (4) , =)

,=o E N(k; N,P) =1 _ O0(e-dN2'-'

Now, the number of ways in which er or fewer decision errors can ,=o

be made is () ; therefore, the union bound gives with 6 > 0, which is a constant. 1
Lemma A.2: Let 0 < p < I be fixed, and let T. and H be real-

P{C, (n, m)} < P(n, m)Z ( valued functions on the closed interval [0.1] defined for 0 < c < 1

=o (Mby

TP(c) = -c 1og 2p - (1 - c)og2 (1 - p)

%Fixinga set of j points u0 1 ,.. ,u0 which are incorrectly classified, is H(c) = -C log 2 C - (1 - c)log0 2 (1 - 0).
equivalent to specifying the corresponding decisions to be -d, '.. _Iri;
this, however, just yields a different dichotomy of rn points in n space, and

Schlifi's lemma applies. 7We define H(c) = 0 when c = 0 or c = 1 I
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Abstract

How does an allowed tolerance for error in output affect the computational capability of a neural
network and the ability of the network to learn an underlying problem structure? The subject of this
communication is the development of formal protocols for handling error tolerance which allow of a precise
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1
1 INTRODUCTION

How does an allowed tolerance for error in output affect the computational capability of a neural network

and the ability of the network to learn an underlying problem structure? In this paper we attempt to '

mathematically codify the computational gains that are realised when errors are permitted in the network

output. Such error tolerance may occur naturally in applications such as associative memory or pattern !

classification where we do not insist on accurately classifying every feature; alternatively, error tolerance

may be forced upon us* by the inability of 'he neural architecture under consideration to respond accurately 1
to every instance of a specific problem: as in, for example, attempting to classify two non-linearly separable

classes of points with a single separating plane (or equivalently, a single McCulloch-Pitts neuron).t 5
Anecdotal evidence exists for the premise that an allowed error tolerance can have a significant effect

on computational capability. Consider, for instance, an associative memory application where it is desired 3
to store memories as attractors in recurrent neural networks whereby a linear number of component errors

in any memory are corrected and the memory retrieved. Rigourous investigations by McEliece, et al [2] and

Koml6s and Paturi [3] show that the outer-product algorithm for storing memories in a recurrent network

of n neurons stores exactly of the order of n/log n memories when it is required that each memory be 3
retrieved exactly with no component errors. However, in earlier work, Hopfield [4] reports empirical evidence

indicating that it may be possible to store a number of memories linear in n with the outer-product algorithm

if errors are permitted in the retrieved memories; this was formally verified subsequently by Newman [5] who

demonstrated a lower bound linear in n on the memory storage capacity if errors are permitted in retrieval. 3
Thus, an allowed error tolerance effects a substantial improvement in storage capacity from sub-linear in n

to at least linear in n for the outer-product algorithm. I
Our purpose here is to attempt to quantify the maximal gains in capacity that can accrue for any

algorithm if errors are allowed in the outputs of a given neural network architecture. In particular, for

recurrent neural networks of n neurons (and any choice of algorithm) we settle the issue of whether Newman's

linear lower bounds can be substantially improved upon to allow memory storage capacities which increase

faster than linearly in n if errors are permitted in the retell of the stored memories.

Let us consider the associative memory application in some more detail. Let u1 , ... , ur be a random

*Some men are born into errors, others achieve errors, and sorne have errors thrust upon 'em.

tin the classical modeling of McCulloch and Pitts, a formal neuron is a linear threshold element which produces a binary
output according to the sign of a linear form of the inputs.

I
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3' selection of m memories drawn from the vertices of the cube {-1, 1}'. For associative memory it is desired

that a random probe differing from a memory in no more than pn components (for some choice of 0 < p < 1/2)

3 is mapped into the memory. In other words, we require the memories to be attractors over a Hamming ball

of radius pn.

5 Consider now a recurrent neural network of n neurons where, at any epoch, the binary n-tuple of neural

outputs is fed back to constitute the neural inputs for the next epoch. The degrees of freedom in this

3 dynamical system reside in the specification of the weighting factors linking neural outputs to inputs. Each

specification of interconnection weights results in the specification of a dynamics characterised by a family

5 of trajectories in a state space of the vertices of the cube {-1, 1}In. The storage of memories as attractors

in such a structure is accomplished if, for a choice of interconnection weights, trajectories originating in a

5 Hamming ball of radius pn at the memories ultimately terminate at the memories. As we will see later in

Corollary 4.2, it is not possible to store more than a linear number (in n) of random memories as attractors

S in a recurrent neural network of n neurons.

An allowed error tolerance in this context permits a fraction c, 0 < c < p < 1/2 of errors in the retrieval

of any memory. This situation corresponds to requiring points in the Hamming ball of radius pn at a memory

to be ultimately mapped into a (smaller) ball of radius en at the memory. This is indicated schematically

in Figure 1. The capacity question is now to determine the largest allowable rate of growth of the number

of memories m with the number of neurons n such that it can be guaranteed with high probability that

3 trajectories originating in a Hamming ball of radius pn at any memory are ultimately confined within a

hamming ball of radius cn at the memory. The following plausibility argument indicates that the flexibility3 inherent in allowing error tolerance may result in substantial gains in capacity over the error fret case.

Let us simplify the problem by considering trajectories originating at a memory, say u' E {-1, 1}n. If3 the trajectory is to be confined within an cn ball at the memory, then clearly a necessary condition is that

the first synchronous step in the trajectory not lead to a point outside the ball of radius cn at the memory.

However, any transition u' •- v* where v* differs from the memory u* in no more than en components

is an admissible transition (see Figure 2). Thus, for the m memories, there are a total of [ =0 ( m )

admissible m-sets of first synchronous transitions originating at the memories corresponding to the number

of different ways of specifying "first transition points" in the m Hamming balls of radius en at the memories.

Let us now concentrate on the problem of realising an admissible set of m first transitions (one for each

memory) within a recurrent neural network structure. This is clearly a necessary prelude to the larger

problem of asso,.iative memory with error tolerance in the following sense: if M((, n) is the largest rate of

growth of m with n for which it can be guaranteed with high probability that there exists a set of neural
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interconnection weights for a recurrent neural network which yields an admissible rn-set of first synchronous 3
transitions originating at the memories, then M(c, n) gives an upper bound for the number of memories that

can be stored with an error tolerance of cn components in retrieval. 3
Our basic question now is the following: For a random selection of m memories, u' E {-1, 1}a, c = 1,

rm, and a given (fractional) error tolerance 0 < f < 1/2, is there any choice of neural interconnection 3
weights for a recurrent neural network which will result in an admissible m-set of first synchronous transitions,

u' ý-4 v*, a = 1, ... , m, where each va differs from the corresponding memory u' in no more than en

components? Now it is easy to verify using Stirling's formula that the number of admissible rn-sets of first

synchronous transitions from the memories is Q(2c(*),n), where c(c) is a fixed positive function of c. For 5
a large choice of rn, any given m-set of admissible transitions, u1 

.-- v1, ... , U rM +vm, will have only a

small probability of being realised within a recurrent neural network architecture. However, there are an 3
exponential number of possible sets of admissible transitions so that the probability that one or more of

these sets of transitions is realisable in a recurrent network may be large even if the probability of realising I
any individual set of transitions is small. It hence appears that potentially large gains in capacity may be

possible if errors are allowed in retrieving memories. I
A similar plausibility argument could be made for the improvement in capacity of any neural network

architecture if a fraction c of the network outputs can be in error. For instance, if we are interested in realising 3
a set of desired assignments u* - f(u*), a = 1, ... , rn (where f is some underlying function from which

random examples are drawn) in a feedforward neural architecture, allowing up to ern of these assignments 3
to be in error again gives an exponential (in rn) number of choices for specifying incorrect assignments.

The above specious arguments notwithstanding, the main results of this paper indicate, however, that

error tolerance does not buy order of magnitude improvements in capacity over the error free case in neural

network architectures: in general, error tolerance results in an improvement in the multiplicative constants, 3
but does not change the rate of growth of capacity.

Organisation: In the next section we set up the formal neural model in the framework of a fully- m
interconnected network architecture for definiteness. We also introduce two protocols for error-a random

and an exhaustive error protocol-and define the formal notion of capacity. The definitions here follow

those developed in Venkatesh and Psaltis [6] in the analysis of reliability and error tolerance issues for

computations with a single neuron. In Section 3 we state some preliminary technical lemmas which are

central to the ensuing development. In Section 4 we state and prove the main theorems on the capacity

of fully-interconnected, recurrent nen ; networks when there is a tolerance for output error. Finally, in

Section 5 we briefly indicate the extensions of these results to feedforward neural network architectures.

I
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I On Notation: lB denotes the set {-1, 1); the function sgn : R -- M is defined by sgnz = z/xzI if x $ 0,

with the nonce convention sgn 0 = 1; logarithms are to base e; for any positive integer k, [k] denotes the

set {1, ... ,k}; C1, C2 , C3, ... represent absolute positive constants; for any u E B' and any r > 0, B(u,r)

denotes the Hamming ball of radius r at u, i.e., the set of all points in 113 which differ from u in r or fewer

components; the probability that N Bernoulli trials with probabilities p for success and 1 - p for failure

result in k successes and N - k failures is denoted by b(k; N,p):

b(k;gN,p) N ) gkl _ pk(-)N-k"

5 We will also have recourse to the following asymptotic order notations. If {x,,} and {y,) are positive

sequences, we denote: x. = O(yn,) if there exists K < o0 such that z,/yn <_ K for all n; z. = Q(yn) if there3 exists L > 0 such that Xn/y, >_ L for all n; and X, = o(yn) if zn/yn - 0 as n - oo.

-- 2 ERROR TOLERANCE: PROTOCOLS

2.1 Formal Neurons and Networks

A formal neuron is a linear threshold element accepting n inputs which produces a binary output according

to the sign of a linear form of the inputs. In particular, a neuron is characterised by a vector of n real weights,

w = (w "... wn), and, given as input a vector u = (u, ... un), produces a binary output v = sgn M, wiui.:

The neuron hence associates a decision or classification, -1 or +1, with each point in n-space. For any given

i set of points then, the neuron dichotomises the set of points into two classes-those points mapped to +1 and

those mapped to -1. In the geometric analogue the neuron represents a separating hyperplane in n-space.

Let U = {ul,... ,u'} be an m-set of points in n-space, and, corresponding to each U0 E U, let v* E 1U be

a desired decision. The m-set of decisions naturally dichotomises U into two sets (U+, U-), where uo E U+

ifv' = 1 and U' E U- if vo = -1. We say that the dichotomy (U+,U-) is separable by a neuron iff there

exists a weight vector w E IR" such that

"n • > 0 ifu * = (u -... u')EU+,

<0 if u =(u .. u)EU-,

i.e., sgn •n=I wiu? = v* for a 1,..., m.

We will be concerned here with a fully-interconnected, recurrent netwnrk of -n neurons where the neural

outputs at any epoch are fed back to constitute the neural inputs for the next epoch In particular, for

any i E [n], neuron i is characterised by a set of n - 1 weights {wij : $ 0 i~j E [n]}, and if the vector

IThis is the model of McCulloch and Pitts. A real threshold is allowed within the model but is not critical to the present
discussion.
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u = (ui "" un) E ]13B denotes the neural outputs at any epoch, at the next epoch the ith neuron then 3
produces a binary output ut = sgn• 3j; wjj u j .§ The system hence evolves (synchronously) in a state

space of vertices of the cube IB", and is completely characterised by the zero-diagonal matrix of neural 3
interconnection weights [wji].

Let u1 , ... , ur be a random rn-set of memories chosen independently from the vertices of the cube. In I

particular, the memory components {tu :i E [n], a E [m]j are i.i.d. random variables drawn from a sequence

of symmetric Bernoulli trials: I
P{u? =1}=P{u- =-1}= 1/2, iE[n], aE[m]. I

In an associative memory application, a basic deisderatum would be that all the memories are fixed points-

u* -f u*, a - 1, .... , m-of the network, i.e., that there exists a zero diagonal matrix of weights twi,] such 3
that

n

sgn wiu = u7, i E [n], a E [m].

j=1

If now there is an allowed tolerance for error, the fixed point requirement for the memories cou]d be relaxed I
to allow "admissible" first synchronous transitions of the form u* t-- v*. By "admissible" we mean as before

that the number of components in which the points v* E 1B3 are allowed to differ from the corresponding I

memories u* must be within a given error tolerance. We are interested in estimating the largest allowable

rate of growth of m with n for which there exists a zero-diagonal network which realises m admissible £
synchronous transitions u* ý- v* with high probability as n grows large. In the following we define two

formal error protocols which provide different notions of "admissibility." 3
2.2 Random Error Protocol

We begin by defining a protocol which randomly specifies which components of a memory are allowed to be

in error by randomly labeling a set of memory components as don't-cares. Let 0 < c < 1/2 be the fraction 3
of errors that we are willing to allow in the retrieval of any memory. For each i E [n] let {D* : a E [m]) be

the outcomes of m identical, and independent experiments whose outcomes are subsets of 4-1, 1), and such 3
that

Do {uti with probability 1- 2c,
I f {-1, 1} with probability 2c.

ITo avoid trivial complications, we assume that there is no self feedbac.• from the output of any neuron to its input. This
corresponds to setting the weights tw,, = 0 for i = 1 ... , n.

I
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If a sample outcome D9 = {u?}, then we require that the ith neuron retrieve the ith component of

memory ua; if, however, the sample outcome D9 = I1, then we associate a don't-care decision with point ua:

the neuron can result in either -1 or 1 as output when ua is input. We call Dý' the decision set associated

with memory component uP; we say that D9 is normal if Di = {u9} (i.e., memory component u0 has to

be retrieved by the ith neuron), and Di is exceptional if D9 = lB (i.e., the decision is don't-care). The

idea behind defining the decision sets in this fashion is the following. For each a E [m], the decision sets

S {D : i E [n]} are generated independently according to the above prescription so that the expected number

of normal decision sets is (1 - 2c)n while the expected number of exceptional decision sets is 2en for each

memory. If now, ignoring components corresponding to exceptional decision sets, we design a zero-diagonal

weight matrix to retrieve all components corresponding to the normal decision sets, then on average one-half

of the components corresponding to exceptional decision sets will also be retrieved so that the expected

number of errors in the retrieval of any memory will be only en.

Definition 2.1 For each i E [n], let {wj : j 6 i} be the set of n- 1 weights corresponding to the ith neuron.

We then say that the ith neuron makes c-reliable decisions on the set of memories {u 1 
..... u' ifI n

sgn wu7Dr, a= 1 ...o ,m.

j=lI j#i

If all the neurons make c-reliable decisions, then, by the Borel strong law, the fraction of component

errors in the retrieval of any memory is c almost surely. We are hence interested in the following attribute

of the m-set of memories.

EVENT IZ,(n, m) [Random Error Protocol wioh Parameter c]: For each i E [n], there is a choice of

weights for the ith neuron such that the neuron makes c-reliable decisions on the set of memories

fu 1 , .... U-

The attribute IZ,(n, m) deals with the notion of random synchronous transitions from the memories by

specifying a random choice of (on average cn) component errors for each memory. The computational gains

we may expect from this protocol arise from the large number of "typical" transitions that can be specified.

2.3 Exhaustive Error Protocol

Consider now a protocol where the number of component errors in a memory in a single synchronous

transition is not permitted to exceed tn; however, there is no specification or constraint on which components

in a memory are allowed to be in error, and we are free to examine all alternatives of specifying en or fewer
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component errors in each memory in one synchronous step. This protocol leads to a consideration of the

following attribute of the rn-set of memories.

EVENT C,(n, m) [Exhaustive Error Protocol with Parameter c]: For each a E [m] there exists U
a vertex va E B(uo, en) such that the set of synchronous transitions {ua P-. vo : a E [m]} is

realised for some choice of zero-diagonal weight matrix [wij] for a fully-interconnected network I
of n neurons.

The attribute E,(n, m) is somewhat stronger than the attribute R, (n, in); instead of specifying a random I
set of essentially 2en don't-care components for a memory (resulting in essentially cn component errors), we

are now allowed to examine all transitions resulting in en or fewer component errors for each memory and

choose the most favourable specification of errors. As we saw in the Introduction, this allows us any choice

from among an exponentially large number of admissible m-sets of first synchronous transitions originating

at the memories.

2.4 Capacity Functions

The notion of capacity of a fully-interconnected neural network that we espouse is, loosely speaking, the 3
"largest number" of random memories that can be "stored" in the network. The precise meaning we attach

to "storage" of a memory depends upon the attribute of interest, such as: all memories are fixed points;

almost all memories are attractors over a radius pn; there are no more than en component errors in retrieving

any memory. We will be interested in particular in the attributes R,(n, in), the random error protocol with

parameter c, and C,(n, in), the exhaustive error protocol with parameter c. The following definition captures

the notion of "largest number of memories" as a threshold function of a relevant attribute. The notion is 3
explored in somewhat greater generality in [7].

Definition 2.2 Let A(n, rn) be an attribute of the rn-set of memories u1 , .... , u m . A sequence {C(n))}n =

is a capacity function for the attribute A4(n, m) if for A > 0 arbitrarily small, as n -. 00: o

a) P{A(n,m)) -* 1 whenever m < (I - A)C(n);

b) P{A(n,m)} - 0 whenever m > (1 + A)C(n). g
We say that C(n) is a lower capacity function if it satisfies the first condition, and that C(n) is an upper

capacity function if it satisfies the second condition. 3
Capacity functions have been found for a variety of neural network architectures and algorithms (a

survey can be found in Venkatesh [7]). These investigations into network capacity, however, have hitherto

I
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I concentrated mainly on capacity functions for perfect decisions with no errors (cf. [3, 5], however, for results

on error tolerance in the outer-product algorithm). In the following we expand on our results in [1, 6] and

I show capacity functions for the attributes RZ(n, m) and C,(n, m).

I 3 TECHNICAL PRELIMINARIES

Our basic technique is to replace the geometrical notion of trajectories within Hamming balls in n-space by

calculations involving the tails of binomial distributions. The following is a classical result due to Chernoff [8]

which asserts exponential bounds for the binomial tails for linear deviations from the mean.

Lemma 3.1 Let 0 < p < 1 be fized, and let Tp and H be real-valued functions on the closed interval [0, 1]

defined for O < c < 1 by

Tp(c) = -clogp-(1-c)log(1--p),

IH(c) = -ciogc-(1-c)log(1-c).I

Then for every choice of c E (p, 1] and every integer N we have

LcNJ

Z b(k; N,p) > 1 - -NIT'-H(01.

k=O

REMARKS: H is the binary entropy function which takes values in [0, log 2]. Note that for any choices of c

and p, Jensen's inequality yields

H(c) - T7(c) = c log -p + (1 - c) log - p<og1=0
c c -

with equality holding only when c = p. Hence Tp(c) > H(c) whenever c 0 p. Chernoff's bound hence yields

exponentially small probabilities for the extreme tails of the binomial distribution. This bound can be shown

to be exponentially tight (see Blake and Darabian [9], for instance).

For the special case p = 1/2, Chernoffs bound yields

tcNJS E b(k; N, 0.5) >_ I -- e-N[1og2-R(c)]

& =0

for any choice 1/2 < c < 1.

1 We define H(c) 0 when c = 0 or c1.
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For any rn-set of points U E R/, JUI = m, let D(U) denote the family of dichotomies of U that can

be separated by a neuron: a dichotomy (U+, U-) of U is in V(U) if and only if there exists a weight vector

w = (wI ... WN) E I• such that I

N witti >0 ifu=(ul .-. u N) EU+,
_<0 ifu=(ul ... uN) E U-.

The following estimate for the number of dichotomies separable by a neuron was given by Schlifli [10] using

an elegant combinatorial argument. (For more accessible proofs of the result see Wendel [11] or Cover [12].) 3
Lemma 3.2 Let U E RjN be an rn-set of points. The following estimate holds:

I/(U)1<D(N, rn)= 2 N-I -M )

i=O

Furthermore, the upper bound of D(N, m) is achieved for m-sets of points in general position.'1  I

A fundamental parameter of interest to us is the probability that a neuron can separate a random 3
dichotomy of a random set of vertices of the cube UN. Let u, .... , urn be a randomly drawn set of patterns

from the vertices of the cube B N, and let the pattern components {u? : i E fN], a E [ml) form a sequence 5
of symmetric Bernoulli trials:

P{u =-11=P{u=+1I}--I/2, iE[N], aE[m]. I
To each pattern ua associate a desired classification v* E IB specified independently of u". We are interested 3
in the probability P(N, m) that there exists a choice of weight vector w E FLN such that

sgn ( wiut ) = v, a =1,...m.

The following asymptotic estimate for P(N, m) was shown by Fiiredi [13]. 3
Lemma 3.3 If rn = O(N) as N - oo then

P(N,m)= Eb(j;m- 1,0.5)- 0(ecaN).

j=O

REMARKS: Note that Lemma 3.2 guarantees that 2-"D(N, m) is an upper bound for P(N, in). The asymp-

totic order correction to this estimate in Lemma 3.3 arises because the probability that a random m-set of

vertices from UN is in general position rapidly becomes small when rn exceeds N. The exponentially small l

order term quoted above is a strengthening of Fuiredi's original estimate of 0(N-"/2 ). The refinement was

IAn m-set of points in N-space is in geseral position iff any subset of N or fewer of the points is linearly independent. 1
I
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made possible by a new result due to Kahn, Koml6s, and Szemeridi [14] which asserts that the probability

that a random N x N ±1 matrix is singular decreases exponentially fast with N. Incorporating this result

in Fiiredi's proof (without any other change) gives the quoted improvement. We will need the stronger form

of the result.

A direct application of Chernoff's bound to the above estimate for P(N, m) yields the following

Lemma 3.4 For every fired A > 0 we can find absolute positive constants c2 and c3 such that as N -o:

P(N, 2N(I - A)) = 1- O(e-C2N),

P(N,2N(1 + A)) = O(ec3N)

This is the well known result that a formal neuron can separate a random dichotomy of up to 2N patterns.

Using elementary binomial identitieb it is easy to verify the following "monotone property."

Lemma 3.5 If k = O(n) as N -- oo then

I( "

In particular, P(N, k) is a monotone non-increasing function of k in the vicinity of 2N for large enough

N. Note that when k = (2- 6)N or k = (2+ 6)N then Stirling's formula gives IP(N,k) - P(N, k + 1)1 =

O (ec' 4 N).

4 ERROR TOLERANCE: CAPACITIES

4.1 Random Error Protocol

We first consider the computational ,)ains that are feasible under a random error protocol with parameter

( E [0, 1/2). For any fixed i E [n], let {D9 : cr E [im]) be the sequence of decision sets corresponding to

neuron i. Recall that the decision sets are drawn independently according to a sequence of Bernoulli trials,

and
Do f {u9} with probability 1 - 24,
= {-1,1) with probability 2e.

Theorem 4.1 For any fixed error parameter 0 < c < 1/2, the sequence ,is a capacity functon for

RZ(n, m), the random error protocol with parameter o.
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PROOF: The ith neuron makes c-reliable decisions if thtie is a choice of n - 1 weights {wi, j E [n] \ {i}}

such that

sgn(E wii ur) EDi*, a= 1,...,tm.

Alternatively, let A = {( : Dr is normal} be the (random) set of indices identifying memories whose ith

component must be retrieved. The above is then equivalent to requiring that

Note that as a consequence of the zero-diagonal nature of the network, the term u9 is absent in the sum

above. By the independence of the memory components, if IAI = k then the above is equivalent to finding

a weight vector in (n - 1)-space which separates a randomly and independently specified dichotomy of a

set of k vertices chosen randomly from M"--1 . It is hence clear that P(n - 1, k) is the probability that

the ith neuron makes c-reliable decisions conditioned upon there being k normal decision sets and m - k

exceptional decision sets. As the distribution of normal and exceptional decision sets is governed by the I
binomial distribution it follows that the probability P1(n, m) that the ith neuron makes c-reliable decisions

is given by m

P,(n,m) Zb(k;m, 1 - 2c) P(n - 1,k). (1)
k=O

By Boole's inequality, the probability 1 - P {1lZ(n, m)} that one or more neurons fails to make c-reliable 3
decisions is bounded by

I - P {I,(n,m)} < n [I- P,(n, m)]. 3
Also, the probability P {Z(n, m)) that all the neurons make e-reliable decisions is clearly bounded above

by the probability P((n, m) that a single neuron makes c-reliable decisions. Combining this with the above 3
inequality we have the two-sided bounds:

1 - n[1 - P,(n, m)] < P {71.,(n,m)) < P,(n, m). (2) 1
Now let 0 < A < 2c be fixed but arbitrary. With the choice I

2n (3)

we have 
I

m(1-2t)(1+A/2)

P,(n,m) E Z b(k;m, 1- 2) P(n - 1,k) = 1- O(e,-,m) (n - oo).
k=O

&----I
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The first inequality is obvious as it arises from the deletion of terms in the sum in (1). This lower bound for

P,(n,m) can be seen to approach 1 exponentially fast as asserted above by two appeals to Lemma 3.1: with

m increasing with n as in (3), P(n - 1,k) = 1 - O(e-c',n) for k in the range 0 < k < m(1 - 2c)(1 + A/2);

further, k="7 2E)(1+A/2) b(k;m, 1 - 2c) = 1 - 0(e- E ). It follows from the lower bound of (2) that

P {R,(n,m)) = 1 - O(ne-€') (n .-* oo)

for m growing as in (3). As A is arbitrary, 2n/(1 - 2c) is a lower capacity function for 7I,(n, in).

Now choose m growing with n such that

2n
m=(1+A) . (4)

We then have

m(1-2c)(1-A/2)

P,(n,m) < E b(k;m,1 - 20) + P(n - 1,m(1 - 2c)(1 - A/2)) + O(e,-cn)

= O(e-'6) (n - oo).

The first inequality follows from Lemma 3.5 and elementary considerations; the exponential decrease of the

upper bound to zero is readily ascertained by applying Lemma 3.1 twice, as before. The upper bound of (2)

hence yields

P {JZ,(n,m)) = O(e-'m) (n --+ oo)

for m growing as in (4). As A is arbitrary, 2n/(I - 2c) is also an upper capacity function, hence a capacity

function, for 7'E(n,m). I

The case where each memory is required to be a fixed point of the network corresponds to the choice of error

parameter c = 0. The following conclusion is hence immediate:

Corollary 4.2 The sequence 2n is a capacity function for the attribute 7?O(n, m) that all the memories are

fixed points of the network.

This fixed point capacity of 2n was also demonstrated by Venkatesh and Baldi [151 in the analysis of

fixed points of higher order neural networks. Recall the classical result restated in Lemma 3.4 that 2n is a

capacity function for a single neuron. (The relevant attribute here is the separation of a random dichotomy

of a set of points (memories) in n-space by a neuron.) The corollary above asserts that there is no decrease

in capacity for a zero-diagonal network of n neurons even though we now require n dichotomies of the set

of memories to be simultaneously separated. (As seen in the proof of the theorem, neuron i, for instance, is

required to dichotomise the set of memories according to the set of signs {u? : a E [m]}.)
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Theorem 4.1 hence asserts that if the fixed point requirement on the memories is relaxed and it is only

required that, starting at any memory, a synchronous state transition results in a new state no more than

en bits away from the memory on average, then the capacity increases by a constant multiplicative factor of 3
1/(1 - 2c). Note, however, that the rate of increase of the capacity function remains linear in n and is not

improved in the random error protocol. 9
Theorem 4.1 remains true if we are interested in he tero-associative maps u' I- ia rather than the

auto-associative maps ua .-- u* that we have hitherto considered. In particular, for a = 1, ... , m let the 3
associated memories ii be chosen independently from IBn and with components drawn from a sequence of

symmetric Bernoulli trials (independent of the memories u0 ). The decision sets D9 are now specified in 5
natural fashion by a sequence of Bernoulli trials with

D = f ) with probability 1 - 2c,
= {-1, 1) with probability 2c.I

It is easy to see that the proof of the theorem carries over in toto for this hetero-associative case. A more

direct proof can be crafted, however, with the observation that the independence of the components of the

associated memories &i yields 5
P {(R.,(n, n)} I= P, (n, rn).

Lemma 3.1 now readily yields that 2n/(1-2c) is both a lower and an upper capacity function for 7,(n, m).° 3
4.2 Exhaustive Error Protocol

For c close to 1/2 the multiplicative improvement of 1/(1 - 2c) to the capacity that arises for the random

error protocol can become quite large; the gains may nonetheless be perceived as unsatisfactory as there is 3
no improvement in the rate of increase of capacity with n. The exhaustive error protocol would seem to

confer even greater flexibility in the choice of errors--one is allowed in principle to examane every zdrnissiblc I
configuration of errors before selecting the most favourable configuration-; as argued heuristically in the

Introduction, this might augur well for a large improvement in capacity. We show in this section, however, 3
that while there is a further improvement in the multiplicative constant, the capacity function for the

exhaustive error protocol is still linear in n. I
As a first step let us show that, in accordance with intuition, the exhaustive error protocol attains

capacities at least as large as those of the random error protocol. 3
"-We had presented these results without proof for the hetero-associative case in [1]. There we had assumed in addition that

the memories u* were drawn from an absolutely continuous distribution in Euclidean n-space F11", and not from the vertices
of the cube B" as is more natural in the recurrent network context. The increased dependency structure in the problem makes

the case of auto-association with memories drawn from B" somewhat harder technically; the improvement to Furedi's lemma I
quoted in the text is necessary here.

I
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Theorem 4.3 For ar, fixed error parameter 0 < c < 1/2, the sequence 2n is a lower capacity function

for S,(n, m), the exhaustive error protocol with parameter c.

PROOF: If c = 0 there is nothing to prove. Let us hence assumce > 0. Now for any choice 0 < C' < C,

the sequence 2n/(l - 2e') is a capacity function for the random error protocol with parameter c'. Invoking

Lemma 3.1, within capacity the number of errors in each memory that result in the random error protocol is

no more than (c' + o(1))n with probability approaching one as n -- oo. For any e < c the number of errors

in each memory is hence less than en with probability one. Consequently, 2n/(1 - 2c') is a lower capacity

function for the exhaustive error protocol with parameter c. As c' < e can be chosen arbitrarily close to c, it

follows from the definition of capacity that 2n/(1 - 2c) is a lower capacity for the exhaustive error protocol

with parameter c. I

Theorem 4.4 Let Kc be a function of the error tolerance c defined by the unique solution of

H(1 2 )+H(c)=log2, 0<f(- 2',I+H•=~g' 0_• • (5)

where H is the binary entropy function. Then the sequence 2 is an upper capacity function for 4(n, m),

the exhaustive error protocol with parameter e.

REMARK: The function PC, is defined as we vary c in the interval 0 < e < 1/2, and monotonically increases

from a value of +1 at e = 0 to a value close to 505 as e approaches 1/2. For small f it remains close to +1,

so that the capacity function for the attribute £E(n, m) still behaves like 2n/(1 - 2c).

PROOF: Assume that a particular choice of weights for the zero-diagonal network of neurons results in the

synchronous transitions: u' '-- v*, a = 1, ... , m. Rec&h that the ith neuron makes a decision error on

memory ua if v9 ' u?, i.e., the ith component of memory ua is not retrieved. The key observation here is

the following: if each v* differs from the corresponding memory u* in no more than en components, then

there exists at least one neuron which makes cm or fewer decision errors. In fact, if there is no neuron which

makes em or fewer decision errors, then the total number of component errors after one synchronous step

summed over all the m memories will exceed cmn so that there has to be at least one memory u* which

is mapped to a point v* which is at a Hamming distance larger than en from u'. But this contradicts the

earlier assumption about the points v'.

Now, for any selection of values vy E U, a = 1, ... , m, the probability that the ith neuron can realise

the maps u* o--, v,* is exactly P(n - 1, m). The number of ways in which fm or fewer decision errors (i.e.,
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the set {a : v9 $ u9}) can occur is •'0 ()• Combining Boole's inequality with the observation above, I
we hence have the upper bound

P {4,(n, m)} < n P(n - 1, )) kI"
k=0 /

Let A > 0 be fixed, but arbitrary, and choose m = 2xcn(1 + A)/(1 - 2c), where #c, is as defined in (5). 9
Two applications of Lemma 3.1 yield

P(n - 1, m) < e-(m-1)[3g2-H{(1-2e)/2sc(l+A)],

and <eH()I
e m ei

E )ir=0

for large enough n. Hence, for each choice of 0 < c < 1/2 and A > 0, there is a choice offi > 0 such that 3
P {4,(n, m)} < fln e-'[log 2-H{(1-2,)/2r,(1+A)1-H(c).

The binary entropy function H(c) increases monotonically from a value c. 0 at c = 0 to a value of log 2 at I
c = 1/2. Hence, with #c as in (5), H{(1 - 2c)/2rc(1 + A)} + H(c) < iog2. Hence, for every choice of A > 0

and m = 2Un(1 + A)/(1 - 2c) there is a choice of 6 > 0 such that P {19(n, m)} < e. - 0 as n - co. II

Allowing an error tolerance of up to en bits in the recall of any memory in an associative memory

application corresponds to the requirement that state transitions be confined to the ball of radius en at

a memory once a transition leads within the ball. The exhaustive error protocol allows any synchronous

transition from a memory that does not leave the Hamming ball of radius en at the memory. It is clear that

this is a necessary condition that must be satisfied if we require confienement of trajectories within balls of

radius en at the memories. Consequently, Theorem 4.4 implies the following result: ,3 memory components

are drawn from a sequence of symmetric Bernoulli trials, then no algorithm for storing memories in a

recurrent neural network can achieve a capacity which increases faster than linearly with r,; in particular, I!
if a linear number of errors en is permitted in the recall of any memory, then 1010n/(1 - 2() is an upper

capacity function for any algorithm.

5 EXTENSIONS

The error protocols that we had defined in Section 2 for fully-interconnected networks can be readily extended U
to arbitrary network architectures. We briefly derive here certain bounds on the capacity of feedforward

neural networks when there is an allowed tolerance to output error.

I
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An L-layer feedforward neural network is comprised of L ordered subcollections of neurons called layers

with interconnections specified as follows: for I = 2, ... , L the inputs to the lth layer are obtained from

the outputs of the (1 - 1)th layer. The inputs to the first layer are the network inputs, and the outputs of

the Lth layer are the network outputs. Let n = (no n, ... n'+i) denote a vector of positive integers. We

use the nonce terminology n-network to mean an (1+ 1)-layer feedforward neural network which has no =_ n

inputs and whose ith layer contains ni neurons. For simplicity we will restrict ourselves to the case of a

single output neuron, n1+1 = 1. An n-network then realises a Boolean function of no = n inputs. The error

protocols are readily extended to this case.

Let u1, ... , ur be any set of points from Euclidean n-space. To each point ua we assign a desired

classification v* E lB. We assume that the set of desired classifications {vl,... ,v- } are drawn from a

sequence of symmetric Bernoulli trials.

Analogously with the fully-interconnected case, in the random error protocol we independently assign

decision sets D* to each classification v' with
D - {val with probability 1 - 2c,

1B3 with probability 2c.

For a particular assignment of weights to the n-network we say that the network makes c-reliable decisions

on the set of points {uW : a E [m]} if uO • D" for each a E (im]. The attribute of interest is

EVENT 7R,(n, in): There is a choice of weights such that the n-network makes c-reliable decisions

on the rn-set of points {ua : a E [m]).

A completely analogous development leads to the following attribute for the exhaustive error protocol.

EVENT C4(n, in): There is a choice of weights such that the n-network makes no more than fm

classification errors on the m-set of points {ua : a E (in]).

The notion of capacity is defined as before as a threshold function of an attribute as the input dimension

n becomes large. (Note that we tacitly assume a family of feedforward network architectures with the number

of elements in each layer ni a function of n.)

Now let D(n, m) denote the number of dichotomies of {ua : a E [m)) that can be separated by an

n-network. The following simple overestimate for D(n, in) is obtained by applying Lemma 3.2:

1

D(n, rn) < lD(n,, m)"''.
i=O

As the classifications are symmetric Bernoulli it follows that the probability P(n, m) that a random dichotomy
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can be separated by the network can be bounded by I
P(n, m) = 2-mD(n, m) < 2 -- flD(n,, m)-+4 = exp -m log 2 + n,+I log D(n,, ml

i=0 i=O

Using the easy bound D(ni, m) < mn. we get

P(n,m) <exp [-mlog2+ nin lom] .
ki=O MI

Define the function Ci(n) by

C1 (n) log2 - nin=+l logC1 (n).ki=O

Note that I
s c(n) =ea -f+1 log n [1+ o log -onins+I (n- oo).log_ 2 E 1 log _7i'=0 ,n,+• I

It is clear that for any A > 0, ifm > (1 + A)C1 (n) then P(n, m) -- 0 as n -, oo. As before, we have

P{IZ,(n, m)} = E b(k; m, 1 - 2c) P(n, k).
k=0

The same argument in the proof of Theorem 4.3 continues to work, so that we have proved the following 3
Theorem 5.1 The sequence " :) is an upper capacity function for the attribute I,(n, m).

For the exhaustive error protocol, we have likewise I
P{4,(n, in)) <P(n, m) ( <exp -mlog2+ ( njnj+ 1 ) logm+ mH( .

k=0 \i=OI I.

For a small enough choice of error parameter c let C2(c; n) satisfy

C2 (c;n)(iog2 - H(c)] = (Znjnj+i) logC 2 (c;n).
\i=O

Again we have 3
C 2 (c;n) = g I nini+1 log = ninj+ 1+ i+O g logI=0njnj+( -(n oo).log 2- H () log= j lg 0onini+1

For any fixed \ > 0 if m > (1 + A)C 2 (c;n) then P{f((n,m)} - 0 as n - oo. Hence we have the following i
Theorem 5.2 The sequence C2(c; n) is an upper capacity function for the attribute C,(n, m). 3

The results can be sharpened, for instance, by using the tighter bound D(ni, m) < 2rn--/(n, - 1)'

which is valid if m > 3n, and ni > 3 instead of the simpler estimate D(ni, m) < m"'- used here. Unfortunately, I
good lower bounds are currently unavailable except for the case of one and two layer networks (cf. Venkatesh

and Psaltis [6]; Baum [16]). I

I
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6 CONCLUSIONS

The main contributions of this paper are the development of formal protocols for error tolerance, and the

explicit computation of the gains that accrue for neural network capacity under these protocols when errors

are permitted in the output. The principal result here is that error tolerance in a network situation results

in gains in the multiplicative constants for the capacity, but leaves the rate of growth of capacity as input

dimensionality increases unchanged. In particular, if a tolerance of c E [0, 1/2) is specified for a fully-

interconnected network, then under the random error protocol there is a gain in capacity by a multiplicative

factor of 1/(1 - 2c) over the error free case, while for the exhaustive error protocol the gain is no more than

a multiplicative factor of 505/(1 - 2c). Similar gains accrue for feedforward network configurations. The

absence of more startling gains in capacity can be traced to the exponential decay of the relevant probabilities.

These protocols are readily applicable in other computational paradigms. Following the analysis here, in a

general computational scenario we would expect error tolerance to buy us order of magnitude improvements

in computational capability only if the relevant probabilities decay sufficiently slowly.
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Figure Captions

Fig. 1 A schematic demonstrating error correction (attraction) and error tolerance for a memory. Points in

the Hamming ball of radius pn at the memory lie on trajectories which ultimately are confined in the

(smaller) Hamming ball of radius cn at the memory.

Fig. 2 A schematic showing a set of "admissible" transitions starting from a memory. Each such transition

from a memory must result in a new vertex of the cube {-1, l}" which differs from the memory in no

more than en components.
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Abstract

If patterns are drawn from an n-dimensional feature space according to a
probability distribution that obeys a weak smoothness criterion, we show
that the probability that a random input pattern is misclassified by a
nearest-neighbor classifier using M random reference patterns asymptoti-
cally satisfies

PM (error) - P, .(error) + M./- -

for sufficiently large values of M. Here, Po,(error) denotes the probability
of error in the infinite sample limit, and is at most twice the error of a
Bayes classifier. Although the value of the coefficient a depends upon the
underlying probability distributions, the exponent of M is largely distri-
bution free. We thus obtain a concise relation between a classifier's ability
to generalize from a finite reference sample and the dimensionality of the
feature space, as well as an analytic validation of Bellman's well known
"curse of dimensionality."

1 INTRODUCTION

One of the primary tasks assigned to neural networks is pattern classification. Com-
mon applications include recognition problems dealing with speech, handwritten
characters, DNA sequences, military targets, and (in this conference) sexual iden-
tity. Two fundamental concepts associated with pattern classification are general-
ization (how well does a classifier respond to input data it has never encountered
before?) and scalability (how are a classifier's processing and training requirements
affected by increasing the number of features that describe the input patterns?).
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Despite recent progress, our present understanding of these concepts in the con-
text of neural networks is obstructed by complexities in the functional form of the
network and in the classification problems themselves.

In this correspondence we will present analytic results on these issues for the nearest-
neighbor classifier. Noted for its algorithmic simplicity and nearly optimal perfor-
mance in the infinite sample limit, this pattern classifier plays a central role in the I
field of pattern recognition. Furthermore, because it uses proximity in feature space
as a measure of class similarity, its performance on a given classification problem
should yield qualitative cues to the performance of a neural network. Indeed, a I
nearest-neighbor classifier can be readily implemented as a "winner-take-all" neural
network.

2 THE TASK OF PATTERN CLASSIFICATION i
We begin with a formulation of the two-class problem (Duda and Hart, 1973):

Let the labels w, and w2 denote two states of nature, or pattern classes.
A pattern belonging to one of these two classes is selected, and a vector of
n features, x, that describe the selected pattern is presented to a pattern
classifier. The classifier then attempts to guess the selected pattern's class 1
by assigning x to either w, or w-2 .

As an example, the two class labels might represent the states benign and malignant
as they pertain to the diagnosis of cancer tumors; the feature vector could then be
a 1024 x 1024 pixel, real-valued representation of an electron-microscope image. A
pattern classifier can thus be viewed as a mapping from an n-dimensional feature
space to the discrete set {w1 ,w 2 }, and can be specified by demarcating the regions
in the n-dimensional feature space that correspond to w, and W2. We define the
decision region IZ, as the set of feature vectors that the pattern classifier assigns to
wl, with an analogous definition for R 2 . A useful figure of merit is the probability
that the feature vector of a randomly selected pattern is assigned to the correct I
class.

2.1 THE BAYES CLASSIFIER 3
If sufficient information is available, it is possible to construct an optimal pattern
classifier. Let P(w1 ) and P(w2) denote the prior probabilities of the two states of
nature. (For our cancer diagnosis problem, the prior probabilities can be estimated
by the relative frequency of each type of tumor in a large statistical sample.) Fur-
ther, let p(x I wi) and p(x I w2) denote the class-conditional probability densities of
the feature vector for the two class problem. The total probability density is now
defined by p(x) = p(x I WI)P(w1 ) + p(x I w2)P(w 2), and gives the unconditional U
distribution of the feature vector. Where p(x) 5 0 we can now use Bayes' rule to
compute the posterior probabilities:

x) = p(x)P p(x I W2)P(w 2 ) 1
p(xPIX= P(w) and P(W2 IX)= p(x)

The Bayes classifier assigns an unclassified feature vector x to the class label having

I
I
U



the greatest posterior probability. (If the posterior probabilities happen to be equal,
then the class assignment is arbitrary.) With IZI and 1Z2 denoting the two decision
regions induced by this strategy, the probability of error of the Bayes classifier, PB,
is just the probability that x is drawn from class w, but lies in the Bayes decision
region RZ2 , or conversely, that x is drawn from class w2 but lies in the Bayes decision
region 1Zi:

PB = P(W1I X)P(X) d- X+ JP(w 2 I X)P(X) d- X

The reader may verify that the Bayes classifier minimizes the probability of error.

Unfortunately, it is usually impossible to obtain expressions for the class-conditional
densities and prior probabilities in practice. Typically, the available information
resides in a set of correctly labeled patterns, which we collectively term a training
or reference sample. Over the last few decades, numerous pattern classification
strategies have been developed that attempt to learn the structure of a classification
problem from a finite training sample. (The backpropagation algorithm is a recent
example.) The underlying hope is that the classifier's performance can be made
acceptable with a sufficiently large reference sample. In order to understand how
large a sample may be needed, we turn to what is perhaps the simplest learning
algorithm of this class.

3 THE NEAREST-NEIGHBOR CLASSIFIER

Let XM = {(x(1), 6(1)), (X( 2 ), 6(2)), ... , (X(M), O(M))} denote a finite reference sam-
ple of M feature vectors, x(') E R", with corresponding known class assignments,
0(') E {wI,W 2}. The nearest-neighbor
rule assigns each feature vector x to 0 , **
class w, or W2 as a function of the ref-
erence M-sample as follows: R1 ,

"* Identify (x',0') E XM such that ,, *i :

lix- x'I1 < fIx- x(-)[I for i ranging
from 1 through M; .* 0

" Assign x to class 0'. %,

Here, Jlx-yjj = -- =.(Z- y,) 2 de- O I

notes the Euclidean metric in R".'The
nearest-neighbor rule hence classifies
each feature vector x according to the
label, 9', of the closest point, x', in
the reference sample. As an example, Figure 1: The decision regions induced
we sketch the nearest-neighbor deci- by a nearest-neighbor classifier with a
sion regions for a two-dimensional clas- seven-element reference set in the plane.
sification problem in Fig. 1.

'Other metrics, such as the more general Minkowski-r metric, are also possible.
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It is interesting to consider how the performance of this classifier compares with that
of a Bayes classifier. To facilitate this analysis, we assume that the reference patterns
are selected from the total probability density p(x) in a statistically independent
manner (i.e., the choice of Xj does not in any way bias the selection of x(i+I) and
0(2+1)). Furthermore, let PM(error) denote the probability of error of a nearest- I
neighbor classifier working with the reference sample XM, and let P,(error) denote
this probability in the infinite sample limit (M -- oo). -We will also let S denote
the volume in feature space over which p(x) is nonzero. The following well known
theorem shows that the nearest-neighbor classifier, with an infinite reference sample, I
is nearly optimal (Cover and Hart, 1967).2

Theorem 1 For the two-class problem in the infinite sample limit, the probability
of error of a nearest-neighbor classifier tends toward the value,

P,.(error) = 2 isP(wI I x)P(W2 I x)p(x)d ' l

which is furthermore bounded by the two inequalities,

PB < P. (error) < 2P,&(1 - PB),

where PB is the probability of error of a Bayes classifier.

This encouraging result is not so surprising if one considers that, with probability
one, about every feature vector x is centered a ball of radius e that contains an I
infinite number of reference feature vectors for every e > 0. The annoying factor of
two accounts for the event that the nearest neighbor to x belongs to the class with
smaller posterior probability. 5
3.1 THE ASYMPTOTIC CONVERGENCE RATE

In order to satisfactorily address the issues of generalization and scalability for the
nearest-neighbor classifier, we need to consider the rate at which the performance of I
the classifier approaches its infinite sample limit. The following theorem applicable
to nearest-neighbor classification in one-dimensional feature spaces was shown by
Cover (1968).

Theorem 2 Let p(z I wi) and p(x I w2) have uniformly bounded third derivatives
and let p(x) be bounded away from zero on S. Then for sufficiently large M, 3

PM (error) = P,, (error) + 0 (M)
Note that this result is also very encouraging in that an order of magnitude increase I
in the sample size, decreases the error rate by two orders of magnitude.

The fo",owing theorem is our main result which extends Cover's theorem to n-
dimensional feature spaces:

2Originally, this theorem was stated for multiclass decision problems; it is here presented
for the two class problem only for simplicity. 5

U
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Theorem 3 Let p(x I wl), p(x I w2 ), and p(x) satisfy the same conditions as in

Theorem 2. Then, there exists a scalar a (depending on n) such that

P M (error) - P,, (error) + ---

where the right-hand side describes the first two terms of an asymptotic expansion
in reciprocal powers of M 2In. Explicitly,

r (I + .1) (r (a + 1))2/n •=( ) 3i (x)pi;(x) 1 )a, 21 nr 2 E+ f(x)) (p(X))1-2/n dn.

where,

= Op(x)
Pi (x) I) 

wj

Oxi

ý3j(x) =P(w, Ix)OaP( I x) + Oz~, IX (,IX
x) P(______

y;,(x) = P(,lX) a X) + p

For n = 1 this result agrees with Cover's theorem. With increasing n, however,
the convergence rate significantly slows down. Note that the constant a depends on
the way in which the class-conditional densities overlap. If a is bounded away from
zero, then for sufficiently small 6 > 0, PM(error) - P,(error) < 6 is satisfied only
if M > (a/6)'/2 so that the sample size required to achieve a given performance
criterion is exponential in the dimensionality of the feature space. The above pro-
vides a sufficient condition for Bellman's well known "curse of dimensionality" in
this context.

It is also interesting to note that one can easily construct classification problems for
which a vanishes. (Consider, for example, p(x I wO) = p(x I w2 ) for all x.) In these
cases the higher-order terms in the asymptotic expansion are important.

4 A NUMERICAL EXPERIMENT

A conspicuous weakness in the above theorem is the requirement that p(x) be
bounded away from zero over S. In exchange for a uniformly convergent asymptotic
expansion, we have omitted many important probability distributions, including
normal distributions. Therefore we numerically estimate the asymptotic behavior
of PM(error) for a problem consisting of two normally distributed classes in R':

p(x i) - (2IrWO)I/ 2 exp [ ((X-I _ )2 + X= )

pexx.p =21 . o-
A~x 1 2 ) = (27ro'2 )n/2 exJ- ( 1 ±p 2 +~=2x)]

Assuming that P(w 1 ) = P(w 2 ) = 1/2, we find
1 •2/.,o, (px /0\ /

Po,,o(error) = -- e-- "/o2 e` 212a2 sech I-A. dx.
a V2 7r 100JoT
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Figure 2: Numerical validation of the nearest-n-:ghbor scaling hypothesis for two

normally distributed classes in R'.

For j = a = 1, P•(error) is numerically found to be 0.22480, which is consistent3

with the Bayes probability of error, PB = (1/2)erfc(1/vr2) = 0.15865. (Note that
the expression for a given in Theorem 3 is undefined for these distributions.) For
n ranging from 1 to 5, and M ranging from 1 to 200, three estimates of PM(error)

were obtained, each as the fraction of "failures" in 160,000 or more Bernoulli trials.
Each trial consists of constructing a pseudo-random sample of M reference patterns,
followed by a single attempt to correctly classify a random input pattern. These
estimates of PM are represented in Figure 2 by circular markers for n = ,crosses
for n = 2, etc. The lines in Figure 2 depict the power law

P,%f(error) = P,,.(error) + bM-2/n•,

where, for each n, b is chosen to obtain an appealing fit. The agreement between
these lines and data points suggests that the asymptotic scaling hypothesis of The-
orem 3 can be extended to a wider class of distributions.I

0!
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* 5 DISCUSSION

The preceding analysis indicates that the convergence rate of the nearest-neighbor
classifier slows down dramatically as the dimensionality of the feature space in-
creases. This rate reduction suggests that proximity in feature space is a less effec-
tive measure of class identity in higher dimensional feature spaces. It is also clear
that some degree of smoothness in the class-conditional densities is necessary, as
well as sufficient, for the asymptotic behavior described by our analysis to occur:
in the absence of smoothness conditions, one can construct classification problems
for which the nearest-neighbor convergence rate is arbitrarily slow, even in one di-
mension (Cover, 1968). Fortunately, the most pressing classification problems are
typically smooth in that they are constrained by regularities implicit in the laws of
nature (Marr, 1982). With additional prior information, the convergence rate may
be enhanced by selecting a fewer number of descriptive features.

Because of their smooth input-output response, neural networks appear to use prox-
imity in feature space as a basis for classification. One might, therefore, expect the
required sample size to scale exponentially with the dimensionality of the feature
space. Recent results from computational learning theory, however, imply that with
a sample size proportional to the capacity-a combinatorial quantity which is char-
acteristic of the network architecture and which typically grows polynomially in the
dimensionality of the feature space-one can in principle identify network param-

eters (weights) which give (close to) the smallest classification error for the given
architecture (Baum and Haussler, 1989). There are two caveats, however. First,
the information-theoretic sample complexities predicted by learning theory give no
clue as to whether, given a sample of the requisite size, there exist any algorithms
that can specify the appropriate parameters in a reasonable time frame. Second,
and more fundamental, one cannot in general determine whether a particular ar-
chitecture is intrinsically well suited to a given classification problem. The best
performance achievable may be substantially poorer than that of a Bayes classifier.
Thus, without sufficient prior information, one must search through the space of
all possible network architectures for one that does fit the problem well. This situ-
ation now effectively resembles a non-parametric classifier and the analytic results

for the sample complexities of the nearest-neighbor classifier should provide at least
qualitative indications of the corresponding case for neural networks.
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Abstract

The following coin tossing game is analysed: A store of N fair coins is given and it is desired
to achieve M heads in a round of tosses of the coins. To allow for unfavourable sequences of tails,
restarts are permitted at any epoch in the game where, in any restart, all coins are returned
to store and tosses are begun anew from tabula rasa. A restart strategy is a prescription
which specifies when a restart should be made. It is desired to estimate the minimum expected
duration of the game over all restart strategies, and to find an optimal strategy which minimises
the expected duration of the game. This simple coin tossing game. proposed by R. L. Rivest.
has cryptographic roots and is linked to issues in the factoring of integers.

INDEX TERMS: Backward Induction. Coin Tossing Game, Cryptography, Integer Factoring,
Markov Decision Problem. Optimal Stopping

1 TWENTY QUESTIONS

R. L. Rivest proposed the following problem. An individual has 20 fair coins in his pocket. lie takes

coins out of his pocket one at a time and tosses them, his objective being to obtain 15 heads. If
fewer than 15 heads transpire in any round of 20 tosses, he must return all 20 coins to his pocket

and restart the game. lie also has the option of restarting the game at any point by ending a round
of tosses and returning all 20 coins to his pocket before starting anew. The problem facing our
protagonist is to choose an optimal restart strategy which would minimise the expected number of

tosses he has to make before achieving his goal of 15 heads.
The general problem where Al heads are desired in tosses out of a store of N fair coins, with

restarts allowed, has cryptographic roots and, in particular, is related to the problem of choosing an
optimal early abort strategy in randomised algorithms for factoring integers.

Consider for instance the problem of factoring an integer n. A basic approach to finding a factor

of n is to first find integers k and I such that

k2=-lI (mod n). 0 < k, I< n, k#l, k+l#n. (1)

In fact. this congruence implies that n is a divisor of (k 2 - 12) yet n divides neither (k - I) nor

(k + 1). It' follows that gcd(n, k - 1) and gcd(n, k + 1) are proper factors of n. and these can be found

efficiently, for instance, by Euclid's algorithm (Euclid [1, Book VII, Propositions 1, 2]!).

'Submitted for publication to the IEEE Transactions on Informaiton Theory.
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Now let a number in < n be fixed and let ir(m) = N denote the number of primes less than
in. Denote these primes by Pl, .. . , PN. Now note that it suffices to derive N + 1 distinct solutions I
(Ih . hi.N), 1 < i < N + I to the congruencek , h, A. N

Pk'- P .P2 "N (mod n), 5
for then the vectors (hil,..., hiN), 1 < i < N + 1 are linearly dependent modulo 2, i.e., there exists
(h' 1 _... h',V) such that I

(hlN,....hN)+ + (htv+,l ,... hN+iN) = (2h'4....2hN).

The integers d
(k, ... "kN+I) rood n, I = (p" ... ,•) mod n

would hence be a solution to the congruence (1).1
Dixon's algorithm is a randomised approach to finding solutions to the congruence (2). The I

algorithm proceeds in a series of rounds prior to each of which a random integer k is generated as
a putative solution to (2). During a round each of the N primes pi is successively tested to see
whether (k 2 mod n) has all its prime factors less than m. If all the N primes have been tested and
a solution to (2) has not been obtained then a new round is initiated with the generation of a new
random integer k. Provision is also made for an early abort strategy where a round is ended and a
new random integer k generated before all the N primes have been tested. (See Pomerance [21 for
more details.) I

Checking to see whether a given prime p less than m divides the random integer k during a
round corresponds to a coin toss in our problem, with the result a "head" if p divides (k 2 mod n);
the total number of available primes N determines the number of coins available. Success in the i
coin tossing game corresponds to obtaining a solution to the congruence (2); the number of "heads"
needed in a round of "tosses" is the number M(k) < N of primes pi for which hi i 0 in (2) if
in fact the congruence can be satisfied for the given value of k. Points of departure from the coin
tossing problem are that the probability that any given prime p in our store divides (k2 mod n) is I
l/p (neglecting boundary effects), and this varies from prime to prime. Furthermore, the number
HM(k) of "heads" needed in a rou'nd varies from round to round as the values of k are randomly

generated. Roughly speaking, however, most of the primes p are of the order of m and most values I
of (k2 mod n) are of the order of n so that an approximation to the problem in terms of the coin
tossing game is to consider a store of N = 7r(m) unfair coins with identical probabilities l/m of a
toss resulting in a head and require to find an optimal strategy which minimises the total number I
of tosses before achieving M = logm n heads (see Section 6).

In recent unpublished work, G. F. Bachelis and F. 3. Massey (31 have attempted to characterise
optimal strategies for the coin tossing problem using elegant techniques from Markov decision theory.
Formulating the game as a Markov decision problem, they are led to a consideration of a related
optimal stopping problem for a random walk to obtain some general properties of an optimal strategy.
They also link the coin tossing problem to a continuous analogue involving an optimal stopping
problem for a particle moving under Brownian motion. While explicit closed form solutions for U
an optimal strategy and the expected minimum duration of the game remain elusive, they obtain
asymptotic results on the expected duration of the game for a choice Ml = N/2+ O(v,/.v) (N - x)
for two suboptimal strategies: restarting only when the number of tails in a round reaches N - A\ + 1,
and restarting when the number of tails in a round exceeds the number of heads by a fixed amount.

Our approach to the problem here, in sharp contrast, uses purely elementary techniques. Our
main results, contained largely in the next three sections, involve sharp estimates of the minimum
expected duration of the game, and a specification of an efficient procedure for finding optimal I
st rategies.

C'aveat: udess k =- ±L. 3
I
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In brief, Section 2 is devoted to a formalisation of the problem, and a characterisation of some
principal features of an optimal restart strategy. The main result shown here is that the search for
an optimal strategy can be confined to a relatively small family of restart strategies that we call
parsimonious.

Section 3 contains explicit estimates of the expected duration of the game. In particular, using
elementary arguments we obtain an explicit general form for the expected duration of the game
under any consistent strategy. We also illustrate the utility of the general solution with calculationsi for divers strategies. With direct estimates of the minimum expected duration of the game we tacn
show that when M < N/2 an optimal strategy (and essentially any sensible strategy) has expected
duration 2M[1 + o(1)], when M = N/2 an optimal strategy has expected duration between 2M and
4M, while for M > N/2 an optimal strategy has expected duration increasing exponentially in At.

In Section 4 we explicitly prescribe a backward induction algorithm which efficiently generates
optimal strategies for the coin tossing problem, and provide a proof of its convergence to an optimal
solution. The algorithm exploits the equivalence between the coin tossing game and a related optimal
stopping problem using the prior characterisation of the features of an optimal strategy (derived in
Section 2) and the general solutions for the expected duration of the game (obtained in Section 3).

In Section 5 we include some numerical computations comparing the expected duration of the
game under various strategies with the expected duration of the game under an optimal strategy
obtained using the backward induction algorithm. The simulations indicate that a restart strategy

introduced here-the Ballot Strategy-has a near-optimal character.
We conclude in Section 6 with extensions of our results to coin tossing games where the coin is

unfair.

2 THE COIN TOSSING GAME

2.1 Restart Strategies

Let us begin by formalising the setup of the game. The following three items constitute the game's
critical parameters:

"* A sequence of symmetric Bernoulli trials {X,} taking values in {O, 1) and denoting the results
of a sequence of fair coin tosses. A coin toss resulting in a "head" corresponds to X, = 1 and
is called a "'success".

e A running total of successes S initialised with S .- 0, and the number n of coin tosses in the
current round also initialised with the assignment n - 0.

"* A sequence (fI, j ? 1) = (fif2....) called the restart strategy where each fj-a restart func-
lion-is a randomised Boolean function from {0, 1. N) x {0, 1 ...... - 1) into {0, 1} with

f 1 with probability oj(n,m),
f1 (n,m) = 0 with probability I - 0j (n,m).

Here Ol(n, m) denotes the probability of deciding to restart (in round j) when m successes
have been obtained in n _< N tossesm we also impose the constraint o,(N, n) I= for m = 0.I.... M - 1, i.e., a restart is mandated if all N coins are tossed and fewer than A! successes
obtained.2

The game proceeds iteratively as follows, starting at epoch T = 1 and initialised with the number of
successes in a round S = 0, the number of coin tosses in a round n = 0. and the number of restarts
K = 0:

2
An intuitive approach would be to just consider stationary. nonrandom restart straiegies -pecified by I• -.I > 1. where f denotes any fixed, deterministic function. It is nontrivial to determine wlhther or tot the in-re.ased

generality espoused in the setup here livs improvements. See Lemma 2.1 for a resolution.
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1. [Accumulation.] Update the running total of successes and the number of coin tosses in the
current round of tosses: S - S + XT, n - n + 1. 1

2. [Stop?] Check to see if the number of successes is equal to the desired value: If S = 1' ou'put
the duration of the game T and stop. 3

3. [Restart?] Check the restart strategy to see if the game should be restarted: If fK+1(n, S) = 1

then reset S - 0 and n - 0, and increment K - K + 1. I
4. [Next epoch.] Increment the epoch by one: T - T + 1. Go back to step 1.

Let S denote the family of all (random) restart strategies. For a given strategy (fi, j > 1), let
Tf'.j>1) denote the duration of the game. We say that a strategy (f;, j > 1) E S is optimal if I
E T•/, j 1) = infs E T(f,.j> 1). Our goal is to find an optimal strategy and to estimate the minimum

expected duration of the game
D(N, M) = inf ET(f,, j>1). (3) 1

The model described here does not include a cost for restarting the game. Restarting costs can,
however, be incorporated very simply; see the remark following the proof of Theorem 3.3. 3
2.2 Optimal Strategies

Consider a single round of coin tosses governed by a restart function f, i.e., the round of tosses
ends either when M successes are obtained or when a restart condition f(n, m) = 1 is encountered.
Denote by af the probability that M heads obtains, O3f = 1 - a1 the probability that a restart
condition is encountered, and r! the number of coins tossed before the round ends. Now consider
a strategy (fj, j > 1). Let the random variable K denote the number of restarts before the game I
finally terminates with M heads. It is clear that K has the distribution

P{I k} =-,)+, •f,, k-0,.1.... (4)

Now conditioned on the event {K > 1) we have T(f,,.j>I) = Trf + T(f,,j? 2J. Further, the events
{K = 0} and {K > 1} depend solely on fl, with al, = PIK = 0} and Of, = PIK > 1}. By a
simple conditioning argument we then have

ETcf,,j>!) = E[T•f,,,>?)IK =0]P{K = 0} +E[TUf,,>,i)IK > I]PIK > } 3
= E(rh; K = 0) + [E(r, 1 K > 1) + E(T(f,,>j2 )]P{K _> 1}

= E(rf.)+E(TUf,,jŽ2)/3f,. (5)

It follows by induction that

k -k

ST(Z,,,>,=EE(,rf,) 11JOf. + E(T(f,,,>,+l)) r/3,. (k > 1). (6) I
j;=1 i=l i=l

WVe can now characterise some features of an optimal strategy.

STATIONARITY AND NONRANDOMNESS We say that a strategy (fj, , > 1) E S is stationary if there

exists a (randomised) Boolean function f: 40, 1.. N} x 40, 1._ M - 1) - {0, 1} with

I with probability 0(n, m), I
f(n, m) = . 0 with probability 1 - 6(n, m),

and such that f, = f for each j 1 ; we then denote the strategy (fj, j b> ) by (f) and denote

the duration of the game T(A,,J>_I under strategy (fj, j > 1) simply hby 7". Now consider any I
I
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stationary strategy (f) E S. A direct application of (5) now yields the following fundamental
result:

ET1 - Er! (f) ES, f i4O. (7)
a~f

We say that a strategy (f,, j Ž> 1) E S (governed by restart probabilities o0(n,m)) is nonran-
dom if O(n,m) E {0, 1} for every choice of 0 < n < N, 0 < m <_ M - l, and j >_ 1.

Lemma 2.1 There exists a stationary, nonrandom optimal strategy.

REMARK: Equation (7) and Lemma 2.1 can also be demonstrated by setting up the coin
tossing problem as a pair of nested Markov decision problems and appealing to results from
Markov decision theory (cf. Ross (4], for instance). The prooi ,iven below is elementary.

PROOF: Begin by dcfining a linear order < on S by (fi, j _> 1) <_ (g,, j !> 1) if ET(f',,>) <_
ET(g,,j :). Say that a strategy (fl, j > 1) is decreasmng if

Vk > I : (fk+j, j >_ I) <_ (fi--i;+, j >_ 1).

The proof of the lemma now proceeds in several steps.

Claim 1: lf(fj, 3Ž 1) _ (fl+j, _> 1) then (fl) <_(fl, (h > l).

From (5) and the hypothesis of the claim, it follows that

ET(f,j>1 ) = E[Tf,] + E[T(f,+,,j I? 1,f, 2! E[rf,] + E[T(f,,I>1 )])31O.

We can assume ah > 0 as otherwise ET1 , = ET(f,,jj) = oo. Using (7) it follows that
ET(f,, , 1 ) _> E(r- )//af = E Th. The claim follows.

Claim 2: If (f,, j > 1) is not decreasing, then there exists k > I such that (fI,) !S (fj, j _> 1).

In fact, let k be the unique integer for which

(fi+j, >_l) <_ (f-_+j,,j _ 1). l<i<k-l,
(fk-_+,, 3 Ž 1) < (A+j, i > 1). (8)

(Clearly, k is the smallest integer for which (8) holds.) By transitivity of the linear order <
it follows that (fk- I+j, j > 1) _S (f,, j :> 1), whereas by (8) and Claim I we have (fk) _
(fk-i+j, j _> 1). This proves the claim.

Claim 3: inf(,, 2 >1 ) ET(f,,j>i) = inf(f) ETf.

By Claim 2, it suffices to show that ET(f,,2 >i) >_ infu)Es ETf for any decreasing strat-
egy (f,, j > 1). Now, if ET(f,j>i) = oc. then (f) _S (f. j > I) for any choice of f. So
now suppose that ET{f,.j>,) < oo. As (f1, j 3_ 1) is decreasing it follows that the sequence
{ETtf,.•+,j>j), k > 1) decreases monotonically to a finite limit T" as k - 0C. Note that
by (5) we have

ETct,_,+,.?,_>) = E[,ri,] + E[TcI/+,,.,__)] Of,,

We now assert that the probabilities d3f are bounded away from I for large k. Indeed, suppose
the assertion does not hold. Then, for any 6 > 0, we can find arbitrarily large values of k for
which Of. > (I - .). Noting that ErA, > I for all k. we have the inequality

> I + (I - I..) E[TI/,,J>_,] _ I + (I - -p.) T ' T 4( -
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holding on an unbounded set of values for k for every choice of 6 > 0. On the other hand,
ET(-,._,,.j>i) I T" as k - ox, so that for any t > 0, for large enough values of k we have
T _ ET(_ j> 1 < T* + (. Contradiction.

Now fix c > 0 arbitrarily small and (for a suitable choice of b > 0) select k(f) so large that for
all k > k(() the following relations hold simultaneously:

•3f <1 -b,

T' < ETT(f.+,,>i1) <_ ET(fkI_+,,j)>) < T" + 5
By (5) we hence obtain

(T + ) - dJT, ET> _,,(f .k1 , 1) - I,. ET( 1.,, ) >)= E(l,), k > k()

It follows from (7) that for k > k((),

T'+• >T' + E > E =ET 5, >infET5 .TI

b- A ao, -- k

As this holds for every c > 0 it follows that 3
T' >infET], > inf ET 1 .-- k M/E$

This concludes the proof of the claim. !

Claim 4: There exists astationary, nonrandom strategy (f") such that ET1 . = inf(f)Es ET.

Let f"), i = 1, 2NM enumerate all determtnistic functions 3
f") : 10, I N} x {0, 1. M- 1) -{0,1)

with f ")(N, m) E I for each m and i. Now consider a randomised stationary strategy (f) E S 5
(with a corresponding specification of probabilities 0(n,m)). In any round f will then have a
sample realisation f(') with probability P{f = f()) fl'.. O(')(n, m) = p"), where 3

o(1)(n, n) f(')(n, m)o(n, m) + (- fs)(n, m))(1 - 0(n, nn))

= o(n, rn) if f'i)(n,m)= I
= l-6(n,m) if f')(n,m)= 0.

Starting with (7), some reflection now shows that

E _T Er! _= 1=1 E[rflf = Pi) P{j Pi)3

2
NM 

I

- , = > min = minE T w
z , ----1 Of!(.) p(4) -- t O t,

As the number of deterministic functions fP11 is finite, there exists f E {f(l) .f2NA4} for
which ET!. = mini ET14 .). Hence (f) < (f) for every (f) E S. This completes the proof of
the claim.

Claims 3 and 4 complete the proof of the lemma. | 3
3 This tacitly assumes that for any choices cnk ,, E {0. 1). the events {f(n.m) = em _} are independent over all

choices of (n.m). As can be readily seen. the proof works without -hiange even if thr iiilependen(ce a.'sumptilon iI

iclaxed, i.e.. the joint distribution of the random variables fPn, m) is not a product distribution.

I
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CONSISTENCY We say that a stationary, nonrandom strategy (f) is consistent (or simply, f is
consistent) if f(n, m) is increasing in n and decreasing in m, i.e.,

f f(n, m)- =l >f (k,1) = I (k >n, 1t<m).

Lemma 2.2 There ezists a consistent optimal strategy.
This is in keeping with intuition; if, for instance, f(n,m) = 1 but f(k,m) = 0 for some 4 > n
then we would expect the strategy to be suboptimal as increasing the number of tosses in
a round while keeping the number of successes fixed at m would not seem to improve tie
situationd We defer a proof of this assertion till Section 4 where we provide a simple direct

proof by considering a related optimal stopping problem.

If f is consistent, we define the restart boundary F(n) of f by F(n) = max{m :f(n,m) = I}
if there is any m for which f(n, m) = 1; else we set F(n) = -1. We will also occasionally refer
to F(n) as the restart boundary of the consistent strategy (f). Consistent strategies can be
conveniently represented by means of the restart boundary in the (n, m) plane. Some examples
are illustrated in Fig. 1. Note that the boundary of consistent strategies is monotone.

M ............. V ...... 1 M ......................

fO f-0

f N N
S.I-!N n 1 ---- Jn

(a) (b)

?n

M .......... ..........

-JN

(C)

Figure 1: (a) A consistent, parsimonious strategy; (b) a consistent strategy; (c) an inconsistent
strategy. The parameter n represents the number of coin tosses in a round, and m denotes the
number of heads obtained. The dotted lines show some possible sample paths. The dashed lines
indicate the termination boundary (A! heads achieved), and the solid lines enclosing the shaded
areas denote the restart boundaries. The shaded areas correspond to the restart region.

PARSIMONY We say that a consistent strategy (f) is parsimonious4 (or simply, f is parsimonious)
if there are AM distinct points of increase on the boundary, i.e., F(n) < F(n + I) < F(n) + 1.
0 < n < N. In particular, define the sequence of points n.. by

n..=min{n:f((n,m)=I}, m=0,1,..,,M- 1.

The points n, define the points of increase of the boundary F(n). For a parsimonious strategp
(f) then, we require that n,,n+ > n, 0 < m < Al - 2; in particular. F(n,r) = m, 0 < ?n <

StI s - I.

'rule ternliinoIo!•," relates to the size or perimtied jum'ps.

I
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Lemma 2.3 There exists a parsimonious optimal strategy, i.e., a consistent optimal strategy
(f") with boundary F" satisfying F*(n) <_ F*(n + 1) _< F*(n) + 1, 0 < n < N - 1.

PROOF: Consider a consistent optimal strategy with boundary F*. Let S, (n > 1) denote
the number of successes in n tosses in any round following a restart. Assume that Si > F°(i),
i < n and S,, = F°(n) + 1. Thus, the game proceeds without restarting after the nth toss in
the round. If F*(n + 1) > F*(n) + 2 then a restart is forced regardless of the result of ;he
(n + l)th toss. But this implies that replacing the boundary point F*(n) by F(n) + 1 yields I
a superior strategy, this contradicting the supposed optimality of F. I

RESTART ON FAILURE What if in any restart the first toss results in a tail? The following assertion
maintains that an optimal strategy would restart if a round begins with a failure.

Lemma 2.4 There ezists a parsimonious optimal strategy whose boundary F" has its first
point of increase at no = 1: F*(0) = -1. F'(no) = F°(1) = 0. I
PROOF: If a round begins with a failure there are two options: continue the round or restart.
Consider sample paths in the (n, m) plane where n denotes the number of tosses in a round
and m denotes the number of successes. Restarting implies starting a sample path anew from
(0,0), while continuing the round implies initiating sample paths from (1,0). Now consider
the boundary F of any consistent strategy and assume F(0) = F(1) = -1. Given that a $
round begins with a failure, it is clear that the number of sample paths lying strictly above the
boundary F is larger if the game is restarted so that replacing the boundary point F(1) = -1
by F(1) = 0 yields a superior (or at any rate, not inferior) strategy. I

We encapsulate our findings in the following statement. 3
Theorem 2.5 Let P C S denote the family of parsimonious strategies whose boundaries have their
first point of increase at no = 1. Then

D(N, M) = infET(f,,j>I) = infETf. IS ra

REMARKS: Note that we are ensured that the probability of obtaining M heads in any round of
tosses is non-zero for any parsimonious strategy which has a first point of increase at no ? 1. These
two conditions hence eliminate strategies for which success is impossible [see the consistent strategy
shown in Fig. l(b)]. Note also that the restriction to stationary, nonrandom strategies reduces the
search problem from an infinity of possible stationary, random strategies to a set of 2 1" stationary,
nonrandom strategies. Restricting attention to consistent strategies further reduces the search space,
and the constraints of parsimony with a first point of increase no = I results in the reduced search
space P of (: ',) strategies. We outline a method for efficiently searching the space P for an
optimal strategy in Section 4.

3 EXPECTED DURATION U
\Ve consider now the problem of estimating the minimum expected duration of the game D(N, Mf).
We begin by showing a strict lower bound for D(N, M), valid for every fixed M. Recall that we can I
restrict ourselves to considering the subfamily of stationary strategies.

Theorem 3.1 For every 11. ID(\'.V.)) is a monotone scquence in N decreasinq to the imit
D(x. Al) = 2.1 as N - .

I
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PROOF: Fix M. Let S(N) denote the family of stationary strategies when the number of available
coins is N. If N < N' it is clear that S(N) is contained in S(N') in the following sense: for
any strategy (f) in S(N) there exist strategies (f') in S(N') such that the restriction of f' to
{0.- N) x {0 ..... M - 1) is equal to f; in addition, it is easy to see that these strategies will result
in the same expected duration as (f) because of the restriction f(N,m) = 1. Hence D(N', M) <
D(N, M).

Now assume that there is an infinite store of coins. It is clear that an optimal strategy is one
that never restarts the game. Let D(oo, M) denote the expected duration of the game under this
optimal strategy. Let aM(k) denote the probability that the Mth success occurs at the kth trial.
As a first passage to M involves a prior first passage through M - 1 we have the convolutional
relationship

k-1

auf(k) = EZa 1-,(j)ai(k-- j).
1=1

Consider the generating function AMg(s) = k=LacM(k)sk = [A1(s)]A. As at(0) = 0 and ai(k) =
2-, we have A I(s) = s/(2 - s). It follows that D(o, Al) = A' 1 (1) = 2M. |

Consider any consistent strategy (f). As before, define the sequence of points nn, 0 < In <
.1 - I by

n, = min{in : f(n,t) i 1.

(if (f) is parsimonious, these are just the M point of increase of the boundary.) Now define the sets
of pairs

Q = {(n,M):0<n< N),

R {(nm,m):0<m<M- 1).

The set Q can be identified as the success termination state (i.e., M heads are achieved in the round),
and the set R as the restart state (i.e., the restart boundary is encountered during the round). Let
S, denote the number of heads obtained in a sequence of n < N tosses. We momentarily suppress
the dependence on f and write

r = min{n : (n,SJ) E QUR}

for the number of tosses in a round before either the game ends with M successes, or the round of
tosses is terminated and the game restarted. Also let

Pm. = P{r = n,,m, S, = m (9)

denote the probability that, in any round of tosses, a restart occurs following the n,,th toss. (On
the (n.m) plane then, this corresponds to a sample path which lies above the boundary for n < n,

and intersects the boundary at the point (n,,, in).) It follows that 3 = pm is the probability

that a restart occurs during any round of tosses, and a = 1 - = Pm is the probability that the
game terminates with M successes in a given round of tosses.

The following recursive form for the probabilities pm admits of efficient evaluation.

Lemma 3.2 The probabilities pm, 0 < m < Al - I satisfy the following recursion:

BASE: Po-2-n°,

RECURSION: Pm n () 2-n- - M-,] (. n') 2 n in > 1. (10)
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PROOF: It is clear that P0 =PS,, = 0} = 2-no. Now consider 1 < m < M - 1. Rewriting p,, in I
an alternative form, we have

Pm = P{Sn-. =m,r> nm_,=} PIS,_ =-m}-P{S._ =m,r<nn-,} 3
mr--1

i=O

For i < m, the event {S, = rn,r = ni) is contained in the set of sample points {S,, = i}; it hence
follows that

P{Stt I = mr = n,} = P{S,,_ =ml(r,S.) = (n,,i)}P{(r,S,) = (n,,i)} I
= PIS,. S", = rn - i} pi

,n ( z)2-- (n n) i

the last but one equation following from the independence of the trials. Substituting in (11) corn-
pletes the pro If. I I

The probabilities pn (corresponding to any given consistent strategy (f)) turn out to be ex-

t raordinarily useful as they allow us to write down an explicit expression for the expected duration

of the game under strategy (f).

Theorem 3.3 For any consistent strategy (f), I
ETf = 2M + 2 Fý=° mp,, (12)

1- n=oPm 
3

REMARKS: Note that to compute ET! it suffices to specify the points of increase nm, 0 < m <
,1 - 1. Note also that ETf > 2M in accordance with Theorem 3.1.

PROOF: An appeal to (7) yields ET! = E(r)/a. Now S,. = •=XN, so that Wald's equation I
gives us ES, = (Er)(E XN) = E(r)/2. We hence have

ETf = 2ES, = 2 (E[SI(r,S,)EQ]+E[S,;(rS,)E R])
2-ES,. = E[S,.;(r,S,.)E Q])+-"S2M+2rS,;(b.)EI]. I
ot I

= (Af a + E[S,.;(r, S,.) ER) =2M +-E[S,.;(r,S,.) ERI
With pm. defined as in (9), we now have

[s,;(r,.S,) E R]= R mP{(r,S,) = (n., m)} = E mpm.
m=0 m=0A ' I

Recalling that a = I -2-.=0 pm completes the proof.

REMARK: The model we are concerned with in this paper does not impose a "cost" for restarting.

A more general situation where there is a cost ck associated with k restarts is, however, easily

incorporated into the analysis. For instance, if K denotes the number of restarts, let us define the
cost C! of the consistent strategy (f) by

Vk > 0 : Cf = Cs. E[TiIlh = k] with probability (oJ, 3
I
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Note that K has the geometric distribution (see (4)) so that a3k is just the probability of the event
{K = k}. The expected cost of strategy (f) is hence

00 00

E Cf = 1:C E[Tf 1;K = k] = a C Ik E[T " = k].
k=O k=O

Let us formally define
00 00

C1  Ejcký3", C 2 = a EkCka k
k=0 k=0

Following the previous analysis we can now readily show

2C- 2A'--- mE C! = 2C1  + n
M-1

rno=0 PM

For the rest of the paper we adopt the constant cost model, ck - 1 (k > 0). It is easy to verify that for
this model C, = I and C 2 = 3/a so that E Cf = E Tf agrees with Theorem 3.3. As instances of other
cost models, a linear cost model ck = yk results in C1 = aO3 /a and C2 = "y,3 (1 + 03)/a2, and an ez-
ponential cost model ck = A\O (with 0 < 1//3) results in C, = Aor/(1-03) and C2 = AOai/(1-03) 2 .

The following examples illustrate the utility of Lemma 3.2 and Theorem 3.3 with explicit calculations
of the expected duration of the game for diverse strategies.

EXAMPLE: Indolent Strategy
The strategy of indolence (fj) prescribes that we wait till all N coins are tossed before restarting

the game. In particular, the strategy is specified by

f(n, m) { O ifO<n< N -i1,

The strategy is clearly consistent (but not parsimonious) and we have n,m = N, 0 < m < Af - I (see
Fig. 2). Direct calculation then yields

m
M--------------------------

(IM)

Equation (12) now readily yields

Em n

pm=P{ E TI=} () 2 -1 +=, .... '-.(3

Equation~~~r' A1)nt edlyyed
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for the expected duration ET, of the game. |

EXAMPLE: Hope Springs Eternal
This strategy restarts the game only when the number of tails in a round of tosses reaches

N - M! + 1, i.e., it is futile to proceed with the round any further. The strategy is parsimonious and

its boundary F,, is given by

-I if 0< n <N- -,
n -{n-N+A -- I ifN-Af+I<n<N.

The points of increase of the boundary are n- = rn + N - M! + 1, 0 < m < MI - I (see Fig. 3). We

M ---------------------------

0 11
. 11 =

N n~

Figure 3: The boundary for Rope Springs Eternal.

will find it convenient to use the representation n_ = m + n0o with no = N - M + 1. We now claim
that

P - 2 -'ýO+-, m = 0 ...... - 1. (14)

We prove the result by induction on m. It is clear that P0 = Po = 0) = 2-•n. so that (14) holds

for in = 0. Let us now assume that (14) holds for i < rn- 1. As n_ - ni = rn -i, it follows from (10)
and the inductive hypothesis that

(noA+-m) 2 -(n+-) - i2""'p,

(n no.+ m) - -

2-(" ~ (no0+ n + i- )

-= 2-(n (no+m) A-+rn - )

the last step following by repeated application of the binomial identity

(r + (r + 1)

This concludes the proof of the claim (14). Equation (12) now yields 3
ETH = 2M m2,-, (o+-) -

m-

-=0

for the expected duration E T1 of the game. !
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EXAMPLE: Step in Time
This strategy decrees a restart when the number of tails leads the number of heads by a fixed3 amounL, say L. This is again a parsimonious strategy with boundary Fs given by

Fs(n)= n -L ifL<n<L+M- 1,

M -I ifL+M<n<N.

Hope Springs Eternal is hence a specific case of this strategy with the choice L = N - Al + 1. The3 points of increase of the boundary are n, = m + L, 0 < m < Al - I (see Fig. 4). It is readily seen

IM M ............................

-I --

I Figure .4: 1The boundary for Step in Time.

I that this is equivalent to Hope Springs Eternal with a reduced store of N' = L + A! - I coins. TheI probabilities pm for Step in Time can hence be directly inferred from (14);

3 Pm=2 -L+m)(L+r--l)' m=0,...,M-l. (15)

An appeal to (12) again yields

E~h=2A+ M-2 m2-(L+m) ('+ -)

3 for the expected duration E Ts of the gae|

EXAMPLE; Ballot Strategy

Consider the parsimonious strategy indicated schematically in Fig. 5. Thle points of increase
I ~of the boundary of the strategy are specified by nm = 1 + [inK], 0 < m _< At - 1. where Kx =

S~(N - I)f(M - 1). (Note that no = 1 and nM-i = N.) It is easy to verify that the following
inequalities hold:

" M - rm M

Thus, we can interpret the Ballot Strategy as follows: the strategy decrees that a round be restarted

-- iff the ratio of the number of additional heads needed to the number of remaining coins is largerI than it was at the start of the game.5

S~For ge'neral values of K. a closed form for the probabilities Pm, is hard to secure, and the general

-- recursion (10) must be appealed to. When K is an integer, however, the following explicit form can
* be obtained:_

P1=rnQ (../n.~ l) 2_,m•,+1). '÷\rne 0., M-1. (16)

3 ;As in the classical ballot theorem (ef. Feller [5]. for instance), for a round to continue, we require the~ iutaa ratuo

.\I/N of Jheads to coins to lead througthout the round.

I
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m
M .. . . . . .. . . . . .. .

f8 0
N N

Figure 5: The boundary for the Ballot Strategy.

I
The proof is again by induction on m. As no = 1, it is clear that p0 = P{S1 = 0} = 1/2, so that (16)
holds for m = 0. Now assume that (16) holds for i < m - 1. Note the equivalent representation

P (i f 2 -(iK+1), i-I rnM

As nm - n, = (m - i)K, it follows from (10) and the inductive hypothesis that 3
p.. 2- , (i.)

Pm ,-,inmK+i) I(,+ - ( W) (- r I ,)
=~ rn -[I, -\ ]

=2-(mK+,, [(nK •- 1 (,i-K ~(rn-i)K)

An appeal to the general combinatorial identity [6]

7 -(iK-) (mn-i)A = ) ), -

completes the proof of (16) for integer K. Equation (12) now yields

4 J:M- 1 2I 3
ETB = 2M + - -=

1 - 2 FM-= - (- ) 2-(mK+i)

for the expected duration ETB of the game when K is an integer.The general system of probabilities {Pm} (for arbitrary K) corresponding to the Ballot Strategy I
can also be determined from the generating function for which an explicit form can be shown. Define

fr ,=-.-, ,s =(n- - n=/ K), I n , 2 ..... I
Note that rn._ = pPm for 0 < m < Af - 1. (In general, r, = 0 if n i 1 + mk for some positive integer
m.) Thus, 31 = P• m= J' I r, is the probability of a restart in a round, and a = 1 - 3 is the
probability of attaining Af successes in a given round. Let I

i" = inf{fn : Sn - (n - 1)/K < 0).

Clearly, r has distribution {n.}, Consider the generating function G÷(s) = -' ,7s". We can now
directly apply a result from Feller [5, page 413] to obtain the expression I

G+(s) 1-exp [- -P{Sn _ (n- 1)/1Ku
n=1

= (;0] I
= -exp -

nl s~n-1)/ n=1 >1 |
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The distribution {r,,} is thus completely determined, and hence so are the probabilities {pm}. I

""While explicit estimates of the duration of the game under any strategy are thus readily gen-
erated from the recursion (10), a careful analysis of the (asymptotic) behaviour of the expected
duration of the game under a given strategy requires substantial algebraic effort, even for the simpleI strategies described here. Nonetheless, sharp results (Theorem 3.6; see also the remarks following
the theorem) can be inferred about the minimum expected duration D(N, M) of the game by a
consideration of the simplest of strategies-the Indolent Strategy.

We begin with a preliminary result due to W. Hoeffding [7].

Lemma 3.4 Let N be any positive integer, 17 E (0, 1) and c E (0, 1) any fired parameters. Then:

ma z (n) ,.(I -,)N-VTI z (N) Y, (I_ ) - < C)N2,7mI
__ mn>l-c)N r ) ( I+c)nN W

This exponential bound for the tail of the binomial is not the sharpest possible, but suffices for our
purposes.

U_ Theorem 3.5 Let T, denote the duration of the game under the Indolent Strategy. Then

- ET1 g D(N,M) <_ ET1 .
iN

PROOF: The upper bound for D(N, At) is obvious. Now recall that for any consistent strategy
(f), we have from (7) that ETf(N, Ai) = E(rf)/af. Let rl and oa denote the corresponding values
of rf and ao for the Indolent Strategy. It is clear that al = sup1 a1 . Also, for any parsimonious
strategy (f) E P, we have I <_ Er! :_ N. Thus, D(N,M) >_infif)EPErf/sup(EP)f,2! > /al >

Er 1 /Nal = ET1/N. I

We can now directly apply Theorem 3.5 to obtain the following result which shows two distinct
domains of behaviour for the minimum expected duration of the game.

Theorem 3.6 Let c > 0 be any fired parameter and N any positive integer. Then:

(a) If M < -(1 - c)N, then 2M < D(N,M) < 2M I +_ 2 ,"

(b) If M = N/2, then N < D(N,N/2) < 2N;

(c) If M >_ (1 + c)N, then D(N,M) >

REMARKS: Slightly tighter (if messier) exponents can be obtained using Chernoff's bound for the
tail of the binomial instead of the Iloeffding bounds of Lemma 3.4. In particular, we can replace
the exponents c2 /2 by In 2 - H[(1 - c)/2] throughout in the above bounds for D(N, M). Here In
denotes a logarithm to base e and H(x) = -xInx - (I - x) In(1 - x) is the binary entropy function
in nats. As Chernoff's bound is known to be exponentially tight, this in particular implies the
following stronger asymptotic result: If M = -(1 + c)N + o(N) for any positive constant c, then
InD(N,M) - [In2 - H{(1 - c)/2}]N as N -oo

Note the abrupt, threshold change in behaviour of the optimal strategy around M = N/2
where the minimum expected duration of the game goes from linear to exponential in M. The
moral of the story is that for At < N/2, essentially any strategy (including the Indolent Strategy')
yields performance comparable to the optimal strategy: all strategies in this regime have expected
durations 2Af + O(e-•'N) for a positive constant cl. For At > N/2 on the other hand, all strategies
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have expected duration £2(ec2N) for a positive constant c2. 3
PROOF: Consider the Indolent Strategy. When M =-1(1 - c)N for some fixed choice of c > 0,
Lemma 3.4 and (13) yield the bound6'

a= I -E .m = I1- 2 -N 1: (N) > Iec- 2 N/2.
M0 M=O

A similar application of Lemma 3.4 yields
M-1 M-1 M-1

MPm <_ ME pm = M2- N~ (A) < Mec 2 N/2.3
rn=O m=O m=0

From (12), we then have I

1 2Me-0N/2

the result holding for M < ½(1 - c)N because ET, decreases monotonically as M decreases for I
every fixed N.

Now consider the case M = N/2. From (13) we again have

M-la--1--Z pm--1--2-N • •

am=G m<N/2-1

andI
M-1 M N

Zmpm.<M2N 4m=0 ,-1 - 2 4 N

Substituting in (12) we have

ET,< N + N I1- O(N-/12)] <2N, M = N/2. (18)

Finally, when M = -1(1 + c)N for any fixed choice of c > 0, Lemma 3.4 and (13) again yield the
bound

a = (41k 2 -N < C.e 2N12.
m>_(1/2+e)N

Also, E r > 1. We then have from (7) that

ETI= > e3oe V 2, M > !(1 + , (19)
a ~2I

the bound holding for M > 1(1 + c)N again by the monotonicity of ETi.
The lower bound on D(N, M) in part (a) of the theorem follows from Theorem 3.1, while the

upper bound follows from (17) and the upper bound of Theorem 3.5. The lower bound for D(N, M)
in part (b) of the theorem again follows from Theorem 3.1, while the upper bound follows from (18)
and the upper bound of Theorem 3.5. Part (c) of the theorem follows from (19) and the lower bound
of Theorem 3.5. I 1

r'\We ignore, for the sake of notational economy, the fairly transparent details with regard to rounding to the nearest
integer.

U
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When M < N/2, the expected duration for the Indolent Strategy is (from (17) and (18))

within an additive factor of N of the minimum expected duration of the game. When M > 2(1 +

c)N, the probability of achieving M successes in a round is exponentially small: a = O(e-c 2N/2).
The expected duration of a round, on the other hand, increases linearly at best: 1 < E r < N.I <_
From (7) and the above proof, it hence follows that the expected duration of the game is dictated
predominantly by the factor l/a in this regime. Note that the largest value for a obtains for the
Indolent Strategy, so that we obtain the sharpest exponent with E T, > Zee 2N/2 for this strategy.

An optimal strategy can save at best in the E r term (bounded between 1 and N), but cannot obtain
better exponents.

Explicit coefficients can also be obtained for the other strategies we have considered by using (10)
and (12). For instance, consider the strategy Hope Springs Eternal. From (14) we can write

P"r - 2-`(- (n + M- o)
Each product term is of the form1) (

no+rm-k- 1 (no- 1) + (m- k)
2(m - k) (m-k)+(m-k)

If Af < -1(1 - c)N, then N - M > m, 0 < m < M - 1, so that each of the product terms is larger
than 1. (Recall no = N - M + 1.) Hence p, is monotone increasing. Hence

E[S,;(r,S,)ER] < M2-(no+M~1) (n + M -2)
I- N- no - 01 C

= M2-N(NN-M 2) = O(e-eIN)

where cl is a positive constant which can be expressed in terms of the binary entropy function.

Further, a = 1 - O(e-c2N) for a positive constant c2 . Thus, ETH = 2M[1+ O(e-ejN)], as expected.
Similarly, using (15) for Step in Time, we can readily obtain ETs = 2M[1+ O(eC-SN)] for a positive
constant c3 when M < (1ýe)L- 1). Bachelis and Massey (3] have done a careful asymptotic analysis
of the strategies Hope Springs Eternal and Step in Time for a choice of Al =N/2 + O(v'N).

Similar estimates can also be readily derived for the Ballot Strategy using (16). In particular, the
summands in the sum Z"•=0 mpm are of the form (,L ,) 2-"m which are e(m- 1/2). If. for instance,I- _,_= m r

M = N/2, then mpm evaluates to E)(vr). Similarly, the summands in "- = m a
-- 2of the form P+1n4= (. ,) 2-(2m+1) = e(m- ,2). For M = N/2 then, 0 = 1 - E(N-/ 2 ), so

that a = O(N- 112 ) in this regime. It follows that ETB = O(N) when M < N/2. Of course, a moreI- careful analysis of these expressions is needed if exact coefficients are required.

I 4 OPTIMAL STOPPING

The renewal property of our coin tossing game allows us to consider a somewhat simpler optimal
stopping problem in order to determine the boundary of an optimal strategy. Recall that our basicI problem is to determine a nonrandom Boolean function f" such that (f*) is an optimal restart
strategy. A heuristic approach towards specifying f" is as follows: assign a current cost of n if the
round is continued after n tosses, and assign a higher restart cost of d+ n if there is a restart. The
idea then is to choose f to minimise the expected cost. (Note that a restart is mandated if N tosses
result in fewer than M heads; thus f" will favour continuing the round for small values of n, but
will favour restarts when n becomes large and the number of heads is less than M.) This related
problem is an optimal stopping problem, and as we will see shortly, this will be equivalent to our
original coin tossing problem for an appropriate choice of parameter d. Bachelis and Massey [3) also

I m
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consider a similar approach, though the algorithm given nere is somewhat more direct, iteratively
using the estimates (12) obtained in Theorem 3.3.

Consider a sequence of n tosses of a fair coin stopping on or before the Nth toss. Let d > 0
be some fixed positive real number. Stopping the sequence of tosses at trial n E {0, ..... N} results

in an allocation of a cost as follows: if the number of heads is less than M the cost is (d + n); if I
the number of heads is greater than or equal to M the cost is n. The optimal stopping problem
is to decide on a (randomised) stopping rule f : {0,...,N) x {0,..., M - 1) - {0,1) which will
minimise the cost. More formally, let f denote a stopping rule for the optimal stopping problem,
and the random variable Rf denote the cost assigned under f. The optimal stopping problem is
now to find an optimal stopping rule f such that

ERf. =infERf. (20) 3
f

The technique of backward induction (see, for instance, Chow, Robbins, and Siegmund [8])
can be applied to this optimal stopping problem to generate a nonrandom optimal stopping rule I
(recall Lemma 2.1). Informally, the procedure asserts that, after the nth toss, it is worth continuing
the sequence of coin tosses if the conditional expected cost given the results of the first n tosses is
smaller than the cost of stopping at the nth toss. More precisely, for the optimal stopping rule, we
recursively obtain the conditional expected cost y(n, m) corresponding to n tosses with m successes
,as follows:

BASE: y(n,AM) = n, 0 < n < N,
y(N,m)=(d+ N), 0<re<M-1, (21)

RECURSION: -y(n, m) = min{(d + n), 1[y(n+ 1, m) + y(n + 1,m + 1),}.

The nonrandom optimal stopping rule f; is now determined as follows: m

f 1 if (n,m)=d+n, (22)f•(nm) = 0 otherwise.

We define the optimal stopping boundary by

F;(n) = max{m : y(n, m) = d + n}. (23) I
Lemma 4.1 The optimal stopping rule f; is consistent for any choice old > 0.

PROOF: The proof is by backward induction on n. The base of the recursion for the expected cost I
gives

f;(n,M) = 0, 0<n<M, 3
f,(N,m) = 1, 0<m<M-1.

Now by definition, f; (n,F;(n)) = 1. We take as inductive hypothesis that f;(k,I) = I for all
k > n and I < F,*(n). It is now easy to see from (21) that f(n - 1,m) = 0 if m > F;(n) + 1 and
f; (n - 1, m) = I if m < F;(n) - 1. Thus F,(n - 1) is either F;(n) or Fd(n) - 1. In either case it
follows that f,(k,l) = I for all k > n - I and 1 < F;(n - 1). 1 1

The optimal stopping problem described above and the coin tossing game of Section 2 are closely
related as shown by the following result. 3
Lemma 4.2 If d = D(N, M) = inf(/)Es ET,, then an optimal restart strategy (f') for the coin
tossing problem (3) determines an optimal stopping rule f' for the optimal stopping problem (20),
and conversely. 3

I
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I REMARKS: Lemmas 4.1 and 4.2 together complete the proof of Lemma 2.2 so that by Theorem 2.5
it follows that there exists a parsimonious optimal restart strategy. Lemma 4.2 and the proof of
Lemma 4.1 hence guarantee that with d = D(N, M), the optimal stopping rule f; determined
by (22) is parsimonious.

3 PROOF: The optimal stopping problem (20) minimises

E R = O3f[d+ E(rlS,, < M)] + afE(rfjS,, = M) = Ofd + E ry.

Now select d = D(N, M) and let (f ) be a stationary, nonrandom optimal strategy for the coin
tossing problem (3). It follows from (7) that D(N, M) = ET. -= E(rT,)/af.. Let R* = inf! E R1 .
We claim that R" = E R!. = E T!.. Clearly, R* <E R1 .. Observe now that with the stopping rulef ,we have E RI - 2 L E(rf -) + E(rf. E ýr . = E T f "

wehave

/3,. E( __

Thus, for any f,

E R - E R.= - E(r!. ) + E(r)- f [(r - >.Of. Of. Of Of

It follows that R" > ER!., and hence R' = ER,. = ET].. Thus, if (f') is an optimal restart
strategy for (3) then f is an optimal stopping rule for (20).

To complete the proof, suppose that with d = D(N, M) = ET!., I is an optimal stopping rule
for (20): R* = E Ri. We need to show that (j) is also an optimal restart strategy for (3). By (7)
it suffices to show that E(ry)/ori = E(rf.)/ar.. Now by assumption of optimality of the stopping3 rule j it follows that

R°= ER/= - ~] +Er)

3 But R" = ETf. = E(rf.)/a!.. It follows that E(ri) -- E(r!.).

The backward induction (21)-(23) can now be used to iteratively compute the boundary of a par-
simonious optimal restart strategy (f*). The approach followed here can also be derived from a
nested Markov decision problem approach (cf. Ross (4]).

Algorithm I (Backward Induchon) Given a number of coins N, and the desired number of suc-
cesses M, this algorithm obtains the boundary of an optimal restart strategy.

I1. [Initial approximation.] Let (fo) be any initial strategy, and set do = ET10 .Set j - 0.

12. [Optimal stopping.] Set d - dj and solve the associated optimal stopping problem using the
backward induction (21)-(23) to obtain the optimal stopping boundary F7 (corresponding to
the stopping rule f;).

1 13. [Check for convergence.] If n0 = min{n : f(n, 0) 1 } = 0, then output the (optimal) boundary
F;,_ iand stop.

14. [Estimate expected duration.] Set j - j + 1. Using (9)-(12) set di -- E TI.(N, M).

15. (Iteration.] If di $ d,-., go back to step 12; otherwise, if di = dj-,, output the (optimal•
boundary F;, and terminate the algorithm. U
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REMARKS: At epoch j, the cost dj for the optimal stopping problem is exactly the expected 3
duration corresponding to the optimal boundary Fd*. obtained for the cost di..-I. If now we obtain
no = 0 for the new optimal boundary Fd, then this implies the game cannot be started, whihi in
turn implies a cost of di for the optimal stopping problem. This, however, is the cost associated
with the previous optimal boundary F* . Thus, encountering no = 0 at epoch j in the progress of
the algorithm implies that the expecte risk dj is a fixed point of the algorithm, and this expected
risk is exactly the expected duration of the coin tossing game for a choice of boundary F,..

Any convenient value for do can be chosen, though the Ballot Strategy yields a particularly
good starting point as we will see in the numerical simulations of Section 5.

Theorem 4.3 Algorithm I converges to a parsimonious optimal restarl strategy (f*) for the coin 3
tossing problem (3).

PROOF: We first show that the algorithm converges. By step 13 of the algorithm, this clearly
happens if no = 0 at any point. Assume now that no 6 0 at any point in the progress cf the
algorithm. Let di denote the value of d at the jth iteration (see step 12 of Algorithm 1), and let
f, be the solution of the optimal stopping problem with d = di. Then dj = E(r" - _' )a, . We
hence have dj= =f; dj + E(rj,_ ) > inf [OIfdj + E(rf)] = a,:dj + E(7" ).

It follows that dj > dj+j = E(rf. )/a;, . Thus, the sequence {dj) is decreasing, and as there are
only finitely many possible values for d, the algorithm converges.

Now let f" be any fixed point of the algorithm. Applying (6) inductively we obtain that for
any r, and any choices of restart functions fi, 1 < i < r, (f*) 5 (fj,.... ,*,*,...). Allowing
r - oc we see that (f*) is an optimal strategy for the game (3). U

5 NUMERICAL SIMULATIONS I
The Ballot Strategy was observed to have performances comparable to the optimal strategy on
simulations over several values of n. In Fig. 6 we contrast the expected duration of the game for I
the Indolent, Hope Springs Eternal, and Ballot Strategies with the minimum expected duration of
the game for an optimal strategy generated by Algorithm I using the Indolent Strategy as an initial
strategy. (Note that rather large absolute differences in expected duration across the strategies
are hidden because of the logarithmic scale of the plots.) Note, that as per parts (a) and (b) of U
Theorem 3.3, all the strategies are essentially equivalent when M < N/2, and that it is only in the
regime M > N/2 of expected exponential duration that it pays to look for an optimal strategy.

Numerically, the strategy Step in Time was found to give results comparable to Hope Springs
Eternal for large values of L, and substantially poorer results for small values of L. We did not
attempt to optimise the value of L in light of the performance of the Ballot Strategy. As an aside,
the probabilities p,m given by recursion (10) need to be evaluated with some care (especially for large
values of M) as the backward induction can be numerically sensitive.

In Fig. 7 we have shown plotted the restart boundary of the Ballot Strategy compared with that
of an optimal strategy. Note the close correspondence of the boundaries of the two strategies. It
would appear that the Ballot Strategy is slightly more conservative in setting the restart boundary
than an optimal strategy.

6 EXTENSIONS I
The results of this paper can be easily generalised to the case where biased coins are tossed. Let
P{X, = I} = tl, P{X, = 0) = I - r = v. The following generalisation of Lemma 3.2 follows easily: I

I
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Figure 6: The expected duration of the coin tossing game is plotted (on a logarithmic scale) versus
the desired number of successes M for N = 50 for the Indolent, Hope Springs Eternal, Ballot, and
Optimal Strategies.

Lemma 6.1 The pro babilities pm, 0 < mn < M - I satisfy the folloteing recursion:

BASE: PO=Lo

RECURSION: p = (rim) 17 i=O - i n ni) Pi M m>

A straightforward generalisation of Theorem 3.3 now yields:

Theorem 6.2 Assume 17> 0. Then, for any consistent strategy f,

ETf(N,M) = M +m=0

It is also easily verified that Theorem 3.5 holds unchanged. A more general form of Theorem 3.6 is
now readily obtained.

Theorem 6.3 Lei c > 0 6e any fized parameter and N any positive integer. Then:

(a) If M < (1- c)i7N, then AL < D(N, M) < Af I1+i4N

(b) JIfM > (I + c)qN, then D(N, M) > *~~~

Note that we can again use Chernoff's bounds to obtain tighter results.
Corresponding to the change in the recursion for pm, the backward induction (21) has a corre-

sponding change with the recursion replaced by

7t(n,mr) = min{f(d +n), qy(n + 1,mrn+ 1) + vy(n + 1,m)).
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Figure 7: The boundaries of the Ballot Strategy and an optimal strategy for N = 50 and choices of

M =10, 25, and 40.I

Algorithm I continues to work as before.
The problem in this general form with biased coins would seem to have more direct relevance

to early abort strategies in randomised algorithms for factoring integers. For instance, going back
to the discussion in the Introduction, consider the problem of finding a factor of a (large) integer n.
Assume that we have selected an integer m of the order of Inn for Dixon's algorithm. As we saw,
a rough approximation to the problem in terms of the coin tossing game is to consider a store of
N = r(m) unfair coins with identical probabilities l/m of a toss resulting in a head and require to
find an optimal strategy which minimises the total number of tosses before achieving M = In n/In m
heads. The classical estimate for the number of primes leas than m, 3

T ) = -- + 0 (in M) (. -. 00),

shows that we are in the exponential domain for D(N, M), and a ready calculation using Theo- I
rem 6.3(b) yields

D(N,M) = Ql(" Inn e x In flInIn n
for a positive constant c. (Or make the bound exponentially tight by using the sharper binomial tail
bounds.) This would suggest the rough estimate nO(ln/ In ) for the minimum (over all early abort
strategies) expected number of steps in Dixon's algorithm before one solution to (2) is obtained.
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