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SUMMARY

We have begun the calculation of relaxation about the native point defect in HgCdTe.
We have found that approximate self-consistent schemes are inadequate for the large
displacements of the highly strained defects; therefore, these calculations are being done self-
consistently, and thus are computationally time-consuming. The fields produced by long-range
strain fields of dislocations via the piezoelectric effect and charged dislocation cores have been
calculated. We find that the piezoelectric potential is a superposition of cylindrical quadrupole
and hexadecapole terms. The impact of dislocation core charges depends on the location of the
dislocation, and is greater in the depletion region where the screening is reduced, and smaller in
the neutral regions of the device. We also find that the impact decreases as the temperature is
increased. We have completed the calculations of the unrelaxed native point defect energies in
ZnSe within the local density approximation and have begun the calculation of the gradient
correction to these energies. Based on these preliminary numbers, we predict the zinc vacancy
and the zinc antisite, and the zinc interstitial to be the dominant defects in ZnSe. We are
currently calculating the relaxation about the most important defects in ZnSe.
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1. NATIVE POINT DEFECTS IN IRFPA ACTIVE AND SUBSTRATE MATERIALS

1.1 NATIVE POINT DEFECTS

In the first quarter, we reported the results of native defect concentrations in
Hgg0.Cdo 2 Te. During the second quarter, we have focused on refining the defect formation
energies used in those predictions. In particular, we have begun the calculation of the relaxation
energies about the native defects in HgCdTe. We are focusing on the important defects in
Hg0.sCd0 2 Te, and the mercury interstitial, which is important to mercury diffusion and for
which strain energies are expected to be large.

Our original scheme to calculate the relaxations using the Harris approximation, in which
the position of the relaxed atoms is calculated non-self-consistently, has proved to be inadequate
for cases in which the relaxations are large. Thus, the position of the relaxed atoms must be
found self-consistently. We are currently completing these self-consistent calculations for the
mercury vacancy, the tellurium antisite, and the mercury interstitial. We expect these
calculations to be completed in the next quarter and improved predictions of defect
concentrations to be made at that point. The relaxation calculations are also being extended to
larger supercells. These calculations are computationally time-consuming, and availability of
supercomputer time would expedite our work.

1.2 DISLOCATION STRAIN FIELDS AND PIEZOELECTRIC POTENTIALS

We pointed out in Quarterly Technical Report 1 that the MCT crystal structure lacks
inversion symmetry and therefore is piezoelectric, and that the strain-induced bound charge
density and the fields that it generates can affect the transport properties of the semiconductor.
We reported on a first approach to this issue, and we have continued the work in the current
quarter.

The strain field around a dislocation can generate an electric field, and conversely an
electric field applied to a piezoelectric crystal can produce a stress that may deform the crystal.
This self-consistent field problem has been treated rigorously for a straight dislocation in a
homogeneous insulating crystal (intrinsic wide-gap semiconductor) by Saada (1971). The
general analysis was extended by Faivre and Saada (1972) to include the effects of screening by
free carriers. Several qualitatively significant conclusions can be drawn from this work: (1) The
strains are only slightly affected by the electric field; that is to say, the inverse piezoelectric
effect is small, and the electric field can be calculated directly without imposing the requirement
of self-consistency. (2) The electric field in the vicinity of the dislocation core can be quite
large, and the dislocation can interact strongly with charges (point defects or mobile carriers) in
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its vicinity. (3) In a semiconductor the dislocation preferentially traps carriers of a particular
sign. (4) The estimated screening distance is of the order of several Debye lengths.

Booyens and Vermaak (1979) have applied Saada's analysis to (110) dislocations in
zincblende III-V semiconductors, and Booyens and Basson (1984) to CdTe and MCT. They do
not explicitly include the effects of screening as analyzed by Faivre and Saada (1972) in these
calculations. As a result, they find that an uncharged dislocation, in the absence of screening,
generates a net radial field. They suggest that the dislocation core is likely to acquire a charge
that compensates for the radial field and so minimizes the total energy of the dislocation. While
this is a plausible suggestion, it does depend on unknown details of the core electronic states and
needs to be examined more closely. We have similarly extended the analysis to the commonly
observed 600 dislocations in intrinsic MCT and obtained detailed plots of the electric potential
distribution arising from the strain about a straight dislocation. We find that the potential is a
superposition of cylindrical quadrupole and hexadecapole terms. The theory and initial results of
the calculation are given in the Appendix. These results are preliminary, since they do not yet
take into account screening by free carriers, anisotropy, and interactions among a distribution of
dislocations.

1.3 DISLOCATION CORE CHARGES

The fields associated with electrically charged dislocation cores can act as scattering and
recombination centers and may attract or repel charged point defects. As pointed out above in
connection with the strain-induced charges and fields, the presence and amount of charge on a
dislocation core depend on the distribution of gap levels in the core and on the Fermi level in the
semiconductor. Here we take a phenomenological view and consider the electric field and
potential generated by a given core charge, determined from the band bending around an inverted
core. The band gap of the material sets the boundary condition for the potential at the core
radius. We assume, conservatively, a core radius of 5 A and a core edge potential of 0.1 eV,
equal to the band gap. The effective radius of the field is taken to be that distance from the
dislocation core within which the field is large enough to move a carrier the distance between
dislocations in a minority carrier lifetime (as measured in dislocation-free material). The
rationale for this assumption is that a field smaller than this is not likely to affect the carrier
lifetime or mobility. If we use a lifetime of 10-6 s and a mobility of 105 cm 2/Vs, this sets the
minimum effective field at approximately lOnD1/ 2 V/cm, with the dislocation density nD in cnm-2.
This is used to determine a numerical threshold field.

The principle of the calculation, both in the depletion approximation and with screening,
was given in Appendix B of Quarterly Report 1. We have now extended the work, using a better
value of the optical range dielectric constant (Brice and Capper 1987), and taking into account
the temperature dependence of the Debye frequency.

The results are summarized in Figure 1. The figure shows two sets of results: the radius
R of the field region surrounding the positively charged core as a function of carrier density
calculated on the basis of the depletion approximation, and the screening radius I of the region
inside which the electric field due to the charged core exceeds 10 mV. This threshold for the

2



1000 1000

100 ."100

R, 4im 77 K 4m

1010

1010 1011 1012 1013 1014 1015

carrier density n, crri 3

Figure 1. Dependence of space charge radius R (depletion approximation)
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electric field is based on the experimental observations of Johnson et al. (1992) and Shin et al.
(1992) that the ROA values and minority carrier lifetimes decrease rapidly with the dislocation
density nD when it exceeds 106 cm-2 . The calculation of the screening radius i' is more reliable
than the depletion approximation, since it takes into account the thermal agitation of the carriers.
With the parameters we use, the calculation of the screening radius over five orders of magnitude
of the carrier density, and over the temperature range of 40 to 300 K, results in values of f that
range from about 5 LD (Debye lengths) at n = 1010 cm- 3 to 10 LD at n = 1015 cm-3, resulting in
an overall decrease of t with carrier density at a rate slightly slower than LD"1/2.

The carrier density in the neutral region of the extrinsic device material generally equals
or exceeds 1014 cm-3. The screening length at this carrier density even at room temperature is
less than 4 gim, and only about 1.5 ain at 40 K. Since the mobile carrier density in the neutral
regions generally exceeds 1014 cm-3, we can conclude that in the presence of mobile carriers,
especially at cryogenic temperatures, the core charge fields have a limited range, in rough
agreement with the observed small variation of the responsivity with dislocation density.
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The situation is less clear in an extended depletion region, such as the vicinity of the
metallurgical junction of the detector. In this region the carrier density is reduced to the intrinsic
value ni under zero bias, and below this with a reverse bias. We estimate a value of ni of about
5 x 1011 cm-3 for Hg0.8Cdo02Te at 40 K, with a decrease of approximately a factor of 2 for every
5 mV of reverse bias caused by the separation of the quasi Fermi levels. This reduction of the
carrier density is confined to a small region, and an assessment of its quantitative effect will
require detailed computation. Nonetheless, it is worth observing that for this carrier density we
estimate a screening radius of 17 lgm, consistent with the experimental finding (Johnson et al.,
1992) that R0A at this temperature is already decreasing with dislocation density in this range.
The literature values of ni = 1.2 x 1014 cm-3 at 77 K and ni = 4.0 x 1016 cm- 3 at 300 K (quoted in
Brice and Capper, 1987) correspond to progressively shorter screening lengths, which is also
consistent with the experimental observation that the decrease in R0 A with dislocation density
has a higher threshold at the higher temperature.

Thus, to summarize we find that dislocations impact device performance through two
possible mechanisms: core line charge accompanied by a depletion layer with radial field
surrounding it, and an angular potential variation arising from the long-range strain and the
piezoelectric effect. In a neutral region of the semiconductor-that is, the n-region below the
depletion layer in a p-on-n heterojunction diode-screening prevents the dislocations from
greatly influencing device characteristics. As a consequence, the responsivity of such devices,
which is dominated by the minority carrier recombination lifetime, varies slowly with dislocation
density. However, in the depletion region screening is greatly reduced, and the long-range
angular potential produced by a dislocation that threads through the depletion region is capable,
in principle, of increasing the tunneling currents at low temperature as observed. We need an
accurate value for the HgCdTe piezoelectric coefficient and a determination of the core charge
states of the various dislocation types before we can, with more assurance, specify the
mechanism through which dislocations affect the responsivity and noise of devices. Some
dislocation types are certain to be more troublesome than others in a given device structure.
Once the worst offenders are identified we can begin to design ways to eliminate or passivate
them.
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2. PHOTONIC MATERIALS

2.1 WIDE-GAP II-VI COMPOUNDS (ZnSe AS PROTOTYPE)

We have completed the local density calculation of the formation energies for the neutral
unrelaxed native defects in ZnSe. The defects we have considered are the cation and anion
vacancies VZn and VSe, the cation and anion antisite Sezn and ZnSe and the cation and anion
interstitial SeI and Zni. The interstitial site considered is tetrahedral, where the four first
neighbors are cations; we will later return to calculation for the tetrahedral site where the four
first neighbors are anions. The defect reactions considered are

ZnSe -4 VznSe + Zng (1)

Zng -- Zn VSe (2)

2Zng - Zn Znse (3)

2ZnSe -- SeznSe + 2Zng (4)

Zng - Zni (5)

ZnSe -4 SeI + Zng (6)

where Zng is the zinc in the free atom state.

The calculation of the defect formation energies consists of several steps. First, the
formation energy from the unrelaxed lattice is calculated. These energies for the 16-atom
supercell are given in Table 1. To these energies the gradient correction to the local density
formation energies must be added. This correction is important when the free atom is used as a
reference state, as is the case when we wish to consider the vapor pressure as an external free
variable. The gradient corrections for the defects have been completed using a coarse mesh for
the k-space Brillouin zone integration. Based on these calculations, the gradient corrections for
defect reactions 1 through 6 are sizable, ranging from 0.2 to 0.8 eV, and thus merit a more
precise calculation. The self-consistent charge densities from the coarse mesh calculation are
being used to calculate the gradient correction self-consistently on a finer mesh. I hese
calculations are nearly done and will be reported in the next quarter.

The relaxation energy must be calculated by allowing the overall lattice constant to obtain
a minimum, and searching for the minimum energy position of the near-neighbor atoms. The
former relaxation has been completed, and this relaxation energy is included in the energies
given in Table 1.
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Table 1

DEFECT FORMATION ENERGIES AND ENTROPIES FOR THE NEUTRAL, UNRELAXED DEFECTS.

Energies do not Include the gradient correction

Defect Energy (eV) Entropy (kB)

VZn 5.00 -7.58

VSe 0.76 8.34

ZnSe -1.23 15.9

Sezn 9.40 -16.0

Zn1  1.08 7.91

Sel 7.37 -7.91

We are currently calculating the second contribution to the relaxation energy. We have
been experimenting with non-self-consistent schemes whereby the charge densities about each
atom, for example in the unrelaxed configuration, are used to calculate the energy for the lattice
in a relaxed configuration using a Harris approach. While this method appears to be reliable for
small distortions, it appears to be unreliable for the large distortions we are finding about the
interstitial and antisite defects. Thus, we are forced to complete self-consistent calculations of
the relaxation, which entail a large amount of computer time. Because our rate of progress is
limited by the speed of our in-house computer, which is timeshared among several projects,
availability of supercomputer resources from DARPA would expedite these calculations. Our
codes have previously been optimized for operation on many machines, including the CRAY
series.

Temperature-dependent defect formation entropies have been calculated. These entropies
are a necessary ingredient in the calculation of the native defect densities. When a defect is
created in the ZnSe lattice, the phonon modes of the crystal are modified, and these
modifications contribute to the defect formation entropy. To calculate this contribution to the
defect formation entropy, we have used a valence force-field model for the lattice phonons. A
Green's function method is then used to introduce a localized perturbation, for example a
vacancy or an antisite, into the lattice. From the change in the density of (vibrational) states, the
defect formation entropy can be calculated. The formation entropies in units of Boltzmann's
constant for 800 'C are given in Table 1. These entropies correspond to the reactions in Eqs. 1
through 6 above.

2.2 NONLINEAR OPTICAL MATERIALS (LiNbO 3 AS PROTOTYPE)

The work on LiNbO3 is scheduled to start in the next quarter.
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3. WORK PLANNED

During the next quarter, we expect to complete the calculation of the relaxation of the
near neighbors about the most important native defects in both HgCdTe and ZnSe, and to
complete the gradient correction to the defect energies in ZnSe. We expect to make preliminary
estimates of native defect densities in ZnSe, and to refine those in HgCdTe. Work will
commence on the properties of LiNbO3.
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Appendix

PIEZOELECTRIC POTENTIAL AT A 60' DISLOCATION IN SPHALERITE

The dislocation lies along [101] and has a Burgers vector b at 600 to the dislocation line
•. The edge component of the Burgers vector be is chosen as xi. x2 is the normal to the slip
plane, and x3 is , (Figure A-1). The transformation matrix from principal axis coordinates is

(1-21 "1

The transformation of the piezoelectric tensor is

d'ijk = TipTjqTkjdpqr.

In cubic symmetry and principal axis coordinates all the nonzero components of the
piezoelectric tensor are equal d1 23=d 132=d 23 1=d213=d3 l2-d321=d.

The nonzero components of the transformed tensor (d') are

d'133 = d'313 = d'331 = -d =2d

d112= d12 = d'21,= d'233 d323 = d332 : -Td

2

in two-index (Voigt) notation

2 2 1
-Td 0 d 0 0--d

_ 1.. d 2. d _ 1.. _
(d')= --•d - -- d 0 0 0

0 0 0--d-d 0

The piezoelectrically induced bound charge density is

p(r)= dijkejki with a k -jk (2)
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(a) Definition of coordinate system
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(b) Orientation of line vector ý and Burgers vector b of a 600 dislocation

Figure A-1. Geometry used in calculating properties of dislocations
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where c is the isotropic dielectric constant, ejk is the jk component of the strain tensor, and

summation over repeated indexes is implied.

For a screw dislocation in linear anisotropic theory the displacements are

U=-b3 tan-1 A(12) x._ U2
u3 =-a2n AXi-,u1  u 2 -0,

where

C44c5 3 6

Here, cij and c'ij are the components of the elastic tensor in the principal axis and
transformed coordinate systems, respectively. The nonzero components of the strain tensor are,
using

1
eij f (uid + uji): e 13 = e31 and e23 = e32; all others zero.

Using (1) and (2) shows immediately that for this case p = 0.

For an edge dislocation, with v Poisson's ratio

ul = b[.tan-l(X2 ) + xx.2  1
2n XI tanOx 2+X2)'

F 22 2
l2)1-2v ln(x2+x2)+ x l-X 2

U2 n2r 401-v) 401-0)x 2 +x) 2

U3 =0.

The nonzero strain components are

b (1-2v)x3+(3-2v)xlx 2ell = 27E 2(_ )(x2+x2)2

3 2
b (1-2v)x2-(l+2v)x x2e22= 2n 2(v-l)(x 2+x 2)2

2 3
b XlX 2-Xl

e12 2 2 22(v-1)(x21+x2 )

10



From (2) and (1)

p(r) (dI el .I + 2dII 2ee2,1 + d'211 eI.2 + d222e22.2)

so we need the derivatives
(vl 3 3

b (2v+1)xlx2+(2v-3)xlx 2
ellj = 2n (v-l)(x 2+x 2)

4 224 2 2 4

b (2v-1 )x2-6x1 x2+(3-2v)xlell,2 = In 2(~)(x2+x2)3

2(v-1)( 1 x 2 )
4 2 2 4

b (2v-1)x1+6X1X2-(2v+ 1)x'
e22,2 = 2t )(x2+x2)3

4 )22 4
b x2-6xxl2 "txlelzA = 2nt 2( )(xl+x2)3

2(v-1)x+)

giving

P(x1 ,X2) -(- • eii.,- 2eI2.,- eI,.2+ 2e2.2)
)X4 I)X 3 2 2 X3

bd (2v - 3)x -21/2(2v + 1)x2x2+30x , x2+2s2T(3 - 2v)x x2-(2v + 7)xl
2 n,[3-c 2(v - IXX 2+X 2)3

When this expression is converted to polar coordinates in the xlx2 plane (xyplane) this
becomes a somewhat simpler expression that has a radial r-2 dependence with angular terms
having quadrupole and hexadecapole form:

bd
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with

(2v-3) y4  (2v-3) cos40-4cos2O+3
P1 ='2(v-1) r6 = 2(v-1) 8r2

-2I2"(2v+l) xy 3  -2,'r(2v+1) 2sin2O -sin40
P2= 2(v-1) r6  2(v-l) 8r 2

30 x2 y2  30 1-cos40
P3 2(v-l) r6  =2(v-) 8r2

2"'F(3-2v) x3y 2'2"(3-2v) sin49+2sin2O
P4= 2(l-v) r6  2(v-1) 8r 2

-(2v+7) x4  -(2v+7) cos40+4cos2O+3
P= 2(v-1) r6  2(v-l) 8r2

so

_= bd 1 [5cos40--<2" sin40+2(l+v)cos2O-<r2"(l-v)sin20I
4PI=4t'"E(1-v) r2

C 1: [ancos(nO) +bnsin(nO)
r n=2,4

To obtain the piezoelectric potential we need to solve the Poisson equation

V24) 47Ep
E

with this charge distribution as the source. In two dimensions the formal solution of the Poisson
equation is

c1(r,r) r'dr dO ln± + I cosm(0.')1 p(r')It 10,m•=1 m( r>

_ C I-Jf dO'[ sin(mO)sin(mO')+cos(mO)cos(mO')I x

m= 1

x1 [ancos(n bnsin(n) r'dr' r<

Tr--2.4 JO r (r

where r> and r< are the greater and lesser, respectively, of r and r'.
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The integral diverges at the origin because of the r-2 dependence of p. To deal with this
difficulty we adopt the same procedure that is used to avoid the divergence of the elastic energy
of a dislocation at the origin in continuum theory. We set cutoffs at an inner radius RI and an
outer radius R2. The cutoff at R1 removes the core singularity, and the cutoff at R2 allows p to
be expanded in multipoles. Later we will identify RI as the core radius and we will let R2 -o

We now have

4D(r,0) = 7- ancos(n0)+bnsin(n0)(If (rn)n-dr'+ rn (r,'-dr'
n=2,4 n rn~ RI

= C{ 1 [a4 cOs(40)+b4sin(40)I[2 - l( 4_ r•(.2) 4 ]

+.l. [a 2cos(20)+b2sin(20),[ 1 - -\R)2-{ 4'r ) 21}

for r < R2 . For r > R2

(D(r,0) = C{ -L [a4cos(40)+b 4sin(40)I I[_r )4_( )4]
+f [a2cos(20'+b2sin(20)]2[(L- ) 2- ( R- )211}

which is a multipole potential. The two solutions are matched at R2. We can now let R2 -2

and neglect the terms in R 1 , which amount to a small correction near the core, to get a potential
valid for r >> R I

4(r,O) = C{ I- [a4cos(40)+b 4sin(40)I + I" [a2cos(20)+b 2sin(20)1

which is independent of r.

For numerical calculation we would need the piezoelectric constant of the alloy, which
has not been determined. To get an order of magnitude estimate, we can use the piezoelectric
constant of CdTe, 3 x 10-6 C cm"2. The Burgers vector is 4 x 10-8 cm, and Poisson's ratio can be
taken as 0.3. Using these values we have computed the charge, potential, and field plots of
Figure A-2.

13



10V~

(a) Piezoelectric charge normal to the dislocation line. Solid contours are 1, 0.5
0. 1, and 0.05 1012 e/cm3 going out radially; dotted contours are the negative
of these.

(b) Quadrupole component of the piezoelectric potential.

Figure D-2. Piezoelectric properties of a 600 dislocation in Hg 08sCd0.2Te
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(c) Hexadecapole component of the piezoelectric potential
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(d) Angular variation of the piezoelectric charge and potential normal to
the dislocation line

Figure D-2. Continued


