
ii II

NUWC-NL Technical Report 10,237 /2
9 December 1992

AD-A261 084l1HII 11 il~lll litH lillll lilt ili
DTIC

S ELECTE

FEBZ 2 1 9 3D

C

Statistics of a Whiteness Measure

Albert H. Nuttall
Surface ASW Directorate

Naval Undersea Warfare Center Detachment
New London, Connecticut

93-03628

Approved for public release; distribution Is unlimited.

S... •, H I~l IiaI llIIII I!I8 I



PREFACE

This research was conducted under NUWC Project Number A70272,
Subproject Number RROONOO, Selected Statistical Problems in
Acoustic Signal Processing, Principal Investigator Dr. Albert H.
Nuttall (Code 302). This technical report was prepared with
funds provided by the NUWC In-House Independent Research Program,
sponsored by the Office of Naval Research. This work was also
sponsored by NUWC Project Number A17653, AN/BQR-22A EC 15, Task
Assignment Number 06U-93-7A432, Sponsor NAVSEA 06U23, Project
Manager Evelyn Hale.

The technical reviewer for this report was Alfredo Edmonds
(Code 2153).

REVIEWED AND APPROVED: 9 DECEMBER 1992

-- Donal W. Cuslor
Director, Surface Antisubmarine Warfare



Form Appoved

REPORT DOCUMENTATION PAGE OMB No o704018
Public reporting burden for this collection of iniformatiOii is estimated to average I hour pet response. including the time for reviewing instructions. searching existing data sources.

gahr ng d mauntaining the data needed. and completing anid reviewing the collection of information. Send comments regrding this burden estimate or any other aspect of this
c•1[1Ol of in•formation, including suggetions for reducing this burden, to Washington ieadguasne Services. OtreCtorate for information O(eratioris and Reports. 1215 Jefferson
Oasis Highway. Suite 1204. ArlingtOni.VA 222024302, and to the Office of Management and Budget, Paperwork Reduction Project (07040186), Washington, OC 20S03.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

9 December 1992 Progress
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Statistics of a Whiteness Measure PE 61152N

6. AUTHOR(S)

Albert H. Nuttall

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) B. PERFORMING ORGANIZATION
REPORT NUMBER

Naval Undersea Warfare Center Detachment

New London, Connecticut 06320
NUWC-NL TR 10,237

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING /MONITORING

AGENCY REPORT NUMBER

Chief of Naval Research
Office of Naval Research
Arlington, VA 22217-5000

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release;
distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

A whiteness measure of a random number generator is defined
as the sum of squares of all the off-zero elements of the sample
covariance function of a finite segment of data of length K.
The mean and variance of this whiteness measure are evaluated
exactly, while its cumulative and exceedance distribution
functions are determined by simulations. It is found that the
variance of the whiteness measure must be broken into the two
separate cases where K is even versus K is odd. This
necessitates the analytic evaluation of some high-order moments
in order to determine the variance exactly.

14. SUBJECT TERMS IS. NUMBER OF PAGES
statistics whiteness 46
random numbers sample covariance 16. PRICE CODE
mean variance

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR
NSN 7540-01-280-5500 Star, ard Form 298 (Rev 2-89)

"PMc1,,bed by ANSI Std 139-9S
298-'02



UNCLASSIFIED
SECURITY CLASSIFICATION
OF THIS PAGE

14. SUBJECT TERMS (continued)

exceedance distribution cumulative distribution

UNCLASSIFIED
SECURITY CLASSIFICATION
OF THIS PAGE



TR 10237

TABLE OF CONTENTS

Page

LIST OF ILLUSTRATIONS ii

LIST OF SYMBOLS iii

INTRODUCTION 1

MEAN AND VARIANCE OF WHITENESS MEASURE 3

Mean of Whiteness Measure WK 4

Variance of Whiteness Measure WK 5

Special Case K = 2 7

Special Case K = 3 7

Special Case K = 4 8

General Determination of Variance of WK 10

PROBABILITY DISTRIBUTIONS OF WHITENESS MEASURE 15

SUMMARY 25

APPENDIX A. DERIVATION OF VARIANCE OF WHITENESS MEASURE WK 27

APPENDIX B. PROGRAM FOR ESTIMATION OF DISTRIBUTIONS OF WK 37

APPENDIX C. EVALUATION OF MOMENTS DIRECTLY FROM MEASURED 39
EXCEEDANCE DISTRIBUTION

REFERENCES 40

DTIC QUALITY flSPF'TED 3

NTIS C ýRA&I

DTIC TAB
Unannounced 0
J u s t ific a t io n . _

By .
Distribuflon I

Availability Codes

Avail andlor
OKI Speia



TR 10237

LIST OF ILLUSTRATIONS

Figure Page

1. Variance VK for Uniform Random Variables fXkJ 13

2. Variance VK for Gaussian Random Variables Ixk1 13

3. Distributions of W2 for Uniform Random Variables 17

4. Distributions of W3 for Uniform Random Variables 17

5. Distributions of W4 for Uniform Random Variables 18

6. Distributions of W8 for Uniform Random Variables 18

7. Distributions of W16 for Uniform Random Variables 19

8. Distributions of W3 2 for Uniform Random Variables 19

9. Distributions of W64 for Uniform Random Variables 20

10. Distributions of W128 for Uniform Random Variables 20

11. Distributions of W2 for Gaussian Random Variables 21

12. Distributions of W3 for Gaussian Random Variables 21

13. Distributions of W4 for Gaussian Random Variables 22

14. Distributions of W8 for Gaussian Random Variables 22

15. Distributions of W1 6 for Gaussian Random Variables 23

16. Distributions of W32 for Gaussian Random Variables 23

17. Distributions of W64 for Gaussian Random Variables 24

18. Distributions of W1 2 8 for Gaussian Random Variables 24

Table

1. Variance VK of Whiteness Measure WK 14

ii



TR 10237

LIST OF SYMBOLS

K number of data points, (1)

xk k-th data value, (1)

lID independent identically distributed

E( ) expectation of random variable, (1)

F fourth moment of random variable xk, (1)

n n-th delay, (2)

Rn sample covariance at delay n, (2)

WK whiteness measure, (3)

Var variance, (10)

VK variance of K-th whiteness measure WK, (10)

A,B,C,D unknown constants in (10) and (35)

+n sum of delayed products of data, (11)

A,B,C constants for K odd, (45)

A,B,C constants for K even, (48)

p(x) probability density function of random variable x, (51)

D constant for K even or odd, (55)

M size of fast Fourier transform, (56)

IX m} fast Fourier transform of data IXki, (56)

u threshold value, (56)

CDF(u) cumulative distribution function, (57)

EDF(u) exceedance distribution function, (57)

Vn interval probabilities, (B-i)

C cumulative distribution function, (B-3)

E exceedance distribution function, (B-3)

Pn n-th moment, (B-8)

iii/iv
Reverse Blank



TR 10237

STATISTICS OF A WHITENESS MEASURE

INTRODUCTION

When a random number generator is designed to yield zero-mean

independent random variables, one useful test of its validity is

afforded by its sample covariance function. This quantity would

ideally be zero for all delays except the origin value. However,

in practice, due to the finite length of data generated and used

to test the generator, the sample covariance function is not

identically zero but fluctuates about zero. A measure of the

whiteness of the generator is afforded by the sum of squares of

all the off-zero elements of the sample covariance function,

relative to the square of its origin value. This measure was

suggested in [l; appendix C].

In this report, we investigate the statistics of this

whiteness measure, including its cumulative and exceedance

distribution functions and its mean and variance. Since a

sample covariance involves products of data values, the squared

covariance depends on fourth-order products of the data, and the

variance of this sample quantity involves eighth-order products

of the data under various delays. It is this latter high-order

product which greatly complicates the statistical analysis and

which necessitates a roundabout procedure for exact evaluation of

the variance of the whiteness measure. The probability

distributions of this measure are determined by simulation for

two types of random variables, uniform and Gaussian.

1/2
Reverse Blank
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MEAN AND VARIANCE OF WHITENESS MEASURE

Consider real data sequence x0 , x1, ... ,xK-1 of K data

points which are independent and identically distributed (IID)

with a symmetric probability density function about zero. This

zero-mean sequence will have all odd-order moments equal to zero.

Also, assume that the data are scaled to have unit variance and a

fourth moment of value F; that is

E(x2) = 1 , E(x4) = F , for 0 S k S K-1 , (1)

where E denotes the expectation. This situation includes the

uniform random number generator and the Gaussian random number

generator, for example. For the usual uniform random variable

distributed over (-½,½), we have scaled its output by V'12 for

present purposes in order to realize variance 1. Thus, F = 1.8

for the uniform case, while F = 3 for Gaussian numbers.

The sample covariance of the available data is defined as

R = - Xk Xkx n for all n. (2)

Ideally, we might like to have sequence |RnI equal to zero for

n P 0. However, this is never the case, although the JRn} for

n # 0 are much smaller than R0 when K is large. The mean value

of R0 is easily seen to be 1, by reference to (1). A measure of

the whiteness of data sequence IxkI is afforded by the sum of

squares of all the off-zero elements of sequence IRnI:

W R 2 2 R for K Z 2 . (3)
K n n=1n

S• m m |3
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MEAN OF WHITENESS MEASURE WK

The mean value of random variable R2 follows from (2) as

E(R 2) =E(A! x, :izXk Xn Xj xj-nJ

S= = x x x _ (4)

K 2k j k

Since we are only interested in values of n > 0 according to (3),

the expectation in (4) is nonzero only when k = j; here, we are

utilizing both the IID and the zero-mean properties of IXk1.

Then, (4) becomes, upon use of (1),

ER 2n = 1 = K - n2 for 1 S n I K-I1. (5)
Kk=n K2

(For completeness, E(R2) = (F + K - 1)/K; Variance(R0 ) = (F-I)/K.

Thus, R0 clusters around 1 as K 4 =, while Rn 4 0 as K 4 = for

fixed n # 0.) Use of result (5) in (3) yields the desired mean

value of whiteness measure WK as

2 (K1 K -1
E(WK) = T (Knn = K " (6)

Notice that this mean value is independent of fourth-moment F and

that it approaches. 1 as K 4 =. Recall that E(R 0 ) = 1 for

comparison.

4
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VARIANCE OF WHITENESS MEASURE WK

The direct evaluation of the variance of random variable WK

in (3) would require a very tedious procedure. Whereas the mean

evaluation in (4) only encountered fourth-order products of

delayed versions of IXk}, we would now encounter eighth-order

products, requiring a complicated counting procedure to account

for all the various types of terms. Specifically, from (2) and

(3), we have whiteness measure

2 K-i K-i K-iW lx. x , (7)
K K2 -= =- = xk Xk-n xj j-n

-n=1k=n j=n

leading to mean square value

E(W2) LK-i K-i K-i K-i K-i K-i
K n=1 m=1 k=n j=n q=m p=m

E(xk Xk-n x) xj-n Xq Xq-m Xp xp-m) . (8)

Not only would this eighth-order average have to be evaluated for

all possible values of n,m,k,j,q,p, but the sixth-order summation

would then have to be conducted. The only reasonable case that

can be evaluated from (8) is that for the term proportional to

F2 . It is obtained only for the special choices n = m and

k = j = q = p; then the right-hand side of (8) reduces to

4-1 K-1 2 = (K4n) F2 = 2(K - 1) F2

K n=1 k=n K n= K

Notice that moments of jXkI above the fourth need not be known.

5
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The difficulty of attempting to evaluate (8) directly forces

us to attack the problem from a different aspect. Specifically,

we adopt a shortcut to obtain, exactly, the variance of whiteness

measure WK. First, observe from (8) that the mean square value

of WK contains a denominator of K4 . Secondly, it has been

observed from simulations that the variance of WK goes to zero

proportional to 1/K for large K. Therefore, the form of the

variance, VK, of random variable WK must be

VKA K3 + B K +CK+D (10)K Var(WK) K4

where A, B, C, D are unknown constants. In order to determine

these four constants, we will evaluate, exactly, the variance VK

of WK for a sufficient number of low-order values of K, and then

solve the four simultaneous linear equations yielded by (10).

For convenience, we define the sums

K-i
+n = Z- Xk Xk-n for 1I n • K-i. (11)

k=n

Then

Rn = K for I : n S K-1 , (12)

as seen from (2). The whiteness measure in (3) then takes the

form

2..K-i
WK 2 K2 + 2 for K k 2 . (13)

For K = 1, there are no terms in the sum, yielding W1 = 0.

6
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SPECIAL CASE K = 2

We have, from (11) and (13),

x XO =22 = 1 2 (14)1 = lx 2 = 4 1I 1 Xl

Therefore, upon use of the lID property of the IXkI and (1),

E (W2)= E(x4 x1) =. F2 2 (15)

The variance of W2 then follows as

V2  Var(W2 )= E(W2) - E(W 2 2 - 1) , (16)

where we used (6).

SPECIAL CASE K = 3

The procedure for the remaining cases is similar to that

detailed above for K = 2; therefore, the following presentation

will be abbreviated, and only the main results will be listed.

We have

1 Xl x 0 +x 2 x1 ' 2 2 = x 2 x 0 ' (17)

w 212 + +21 = x 2f(X + x 2 + x2 (18)

w 2 [ lx4 (x+ x + x4 x 4 2 x2 0+ x 2 x2 x] 2 (19)

The mean value of (19) is given by

7
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EW23 841(F(F + 6 + F) + F2 + 2(F + F)) = 4(3F2 + 10F) . (20)

Finally, the variance of W3 is

V= •(3F 2 + 1OF - 9) (21)

SPECIAL CASE K = 4

In this case, we have

1 -- X1 xl0 + x 2 Xl +x 3 X 2  * 2 =x 2 x 0 + x 3 x1 43 x 3 x 0 '

(22)

W= __+ *+ +2+ +2] (23)

64W2= 4 + 4 + 4+2+24 2 + 2 +2 2 + 2 2 +2(4
64 W *1 '2 + 3 1 2 1 2* *3+2 2 *3 (4

The mean value of (24) will be found in stages. The six

components of (24) have the following average values:

E+)= E (x 4x 4) =F 2 (25)

E (+2 +2) = E (x2 x~ 2  x0 + x3 x 1)2) F + F = 2F ,(26)

E (+2 +2) = E (x2 x2(x1 x0 + x2 x1 + x3 x2 2) =F+1+F =2F + 1

(27)

E (+4) = E((x 2 x0 + x3 X1 ) 4 ) = F 2 + 6 + F2 = 2F 2 + 6, (28)

8
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E,+2 +2) = E((x 2 x0 + x3 xI) 2 (x1 x0 + x2 x + x3 x2 )2 ) =

( ( ( XO + X31 2 x1 3 2)x

E ([X 2 x2 + x2 x2 + 2 x x2 xI 01 xI 2 + x2
(12 0 3 1jt 3 11O 2 1

+ x 2x2 +2 2 + 2 x3 X2 x 1 x0 + 2 x3 X2 Xl]) =

= F + F + F + F + F + F + 4 = 6F + 4 , (29)

2 = 2 (x+ x2 + x2 x2 +2 x3 x2 x(x+ (30)
x1 (10  x2 ) x3 2x 2  1 xO 2 )

4 +4 x4 4  4 6 2 2 2 2
I+ 123 X2 + 6 x 2  1 (X 0 + x 2 ) +

+ 4 x3 x2 x3(x 0 + x2 )3 + 4 x3 x3 X(X 0 + x2 ) (31)

E+4) = F(F + 6 + F) + F2 + 6(1 + F) = 3F 2 + 12F + 6. (32)

Combining these results into (24), we have mean square value

E (W2) = 1(3F 2 + 16F + 11) (33)

and variance

V4 = 1(3F2 + 16F - 7) (34)

The analytical derivations of V5 , V61 V71 V8 are deferred

to appendix A due to their lengthy calculations and need for a

shorthand notation. It will turn out that we also need all of

these latter results when we find the constants A, B, C, D in

variance expression (10).

9
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GENERAL DETERMINATION OF VARIANCE OF WK

The general form for the variance VK of whiteness measure WK

is given by (10) for arbitrary K and is repeated below:

VA K + B K + C K + D2
K+KK +C +

VK = Var(WK) = K4 .(35)

However, analytic determination of VK for K = 2, 3, 4, 5, 6, 7, 8

(see appendix A also) have revealed that separate forms like (35)

must be employed for K even versus K odd. That is, two different

sets of constants A, B, C, D apply in the even versus odd cases

of K. The available analytic results for VK (above and in

appendix A) are summarized below:

V1 = 0 (see the line under (13)) , (36)

V = I (F2 - 1, (37)

V= 4.j3F2 + 10F-9) , (38)

V = -(3F 2 + 16F - 7) (39)

V = 6- 55F 2 + 38F - 11) , (40)

V= 1 ~(15F 2 + 144F - 23) ,(41)

V7 = T 4 21F 2+ 246F - 23) ,(42)

V= 1 (7F 2 + 96F - 3) . (43)

10
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If we take K equal to the odd values 1, 3, 5, 7 in (35) and

use results (36), (38), (40), (42), we obtain four simultaneous

linear equations for the constants A, B, C, D. Their solution

leads to the following expression for the variance VK of WK:

VK = K A2 +B K +C for K odd, (44)
K K4

where

4 = F 2 38 -

A = 4F + , B = 2F - 4F - 3 C = - 4F + 8 . (45)

When (45) is substituted into (44), the variance expression can

be rearranged in terms of powers of F:

VK 2(-1 K F + 2(K 2 _K-1)F + .1(2K 2_19K+12)] for K odd .(46)

The F2 term here confirms (9), as anticipated.

If we take K equal to the even values 2, 4, 6, 8 in (35) and

use results (37), (39), (41), (43), we obtain four different

simultaneous linear equations for the constants A, B, C, D.

Their solution leads to the following expression for the variance

VK of WK:

VK 3 (A K2 + B K + C) for K even, (47)

K

where

A 4F+ B=2F 2 8F -14 , C =-2F2 +E . (48)

11
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When (48) is substituted into (47), the variance expression can

be rearranged in terms of powers of F according to

VK = [(K-1)F 2 + 2K(K-2)F + -1(2K2 -21K+31)] for K even . (49)

Again, the F2 dependence in (9) is confirmed.

The asymptotic behavior of variance VK for large K is given

by

VK - (4F + ) as K (50)

for both K odd and K even. This is due to the fact that constant

A in (35) is identical for the odd and even cases; compare (45)

and (48). Thus, whiteness measure WK tends to cluster around 1

as K 4 -. Recall that R0 4 1, while Rn 0 for fixed n, as K 4 -.

The end results for variance VK of whiteness measure WK are

given by (44) and (47), or by (46) and (49). Plots of VK for the

uniform random variable and the Gaussian random variable I kx) are

displayed in figures 1 and 2, respectively. A short tabulation

of VK is given in table 1 for the uniform, Gaussian, exponential,

and alternating random variables (Xk). The probability density

functions of Ixk) for these four cases are, respectively,

Pu (x) = .5/(3 for IxI < (3 , F - 1.8 ; (51)

pg(x) = (2n)-h exp(-x2 /2) , F = 3 ; (52)

1

pe(X) = I exp(-(21xl) , F = 6 ; (53)

Pa(X) - ½ 6(x-1) + ½ 6(x+l) , F = 1 . (54)

12
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A short table of the variances for these four examples is

given below. For the alternating example, xk = ±1 and F = 1,

whiteness measure W2 for K = 2 is always equal to 1/2, thereby

leading to variance V2 = 0. The smallest possible example of F

is 1, as realized in the alternating random variable case.

Table 1. Variance VK of Whiteness Measure WK

K Uniform Gaussian Exponential Alternating

2 .56 2. 8.75 .0
3 .92444 2.37037 7.85185 .19753
4 .985 2.125 6.15625 .375
5 .94208 1.8944 5.0816 .4096
6 .87901 1.67901 4.26235 .41975
7 .81273 1.50604 3.68013 .40650
8 .75188 1.35938 3.22266 .39063
16 .45117 .75586 1.60986 .25977
32 .24569 .39722 .79987 .14771
64 .12804 .20346 .39808 .07852
128 .06534 .10295 .19850 .04045

If we combine (47) with the multiplied-out version of (44),

the variance VK can indeed be written in the form (35) for all K,

where the constants A, B, C are as given in (48), but constant D

must be taken according to the two different values

D 0 for K even(D = . (55)
4(F - 2) for K odd

Notice that, despite (8) involving eighth-order products, nothing

above fourth-order moment F of Ixk) is required in these results.

14
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PROBABILITY DISTRIBUTIONS OF WHITENESS MEASURE

The direct evaluation of whiteness measure WK, according to

its definition (3) in conjunction with (2), is very time

consuming for large K, due to all the multiplications required.

An attractive alternative, in terms of fast Fourier transforms,

was derived in [1; appendix C] and is employed here; the program

utilized is listed in appendix B. The key relation relative to

(3) is [1; (C-5)]

K -.'1M M-1 14 4-1 m 12J1 (6
m- - IXmlI4  

-Ixml

=x = , (56)
K = K2M2M m=0 m m=0 m

where M is the size of the fast Fourier transform {Xm I of data

Ixki. The only restriction on M is that we must use M 2 2K - 1;

then, the right-hand side of (56) is independent of M. (For

K - 1, Xm = x 0 for 0 1 m S M-1, leading to W1 = 0, as noted under

(13).) Again, notice that the whiteness measure WK depends on

fourth-order products of the data or its transform.

The cumulative distribution function (CDF) and exceedance

distribution function (EDF) of whiteness measure WK,

CDF(u) - Prob(WK < u) , EDF(u) = Prob(WK > u) , (57)

for the case where data IXkI is uniformly distributed over -iv3,t3

[see (51)], are displayed in figures 3 - 10 for K = 2, 3, 4, 8,

16, 32, 64, 128, respectively. These results were determined by

using at least one million trials for WK as defined in (56). The

15
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exceedance distribution function for small K has a cusp near zero

argument which disappears for larger K. However, random variable

WK does not approach Gaussian as K increases; rather, as shown in

figure 10 for K = 128, the right-hand tail appears to approach

exponential behavior. For a bounded random variable, IXki < B,

the value of W K is bounded according to

WE < (K - 1)(2K - 1) B4
K 3K B (58)

In the case of the uniform random variable xk, where B = 13, (58)

yields 4.5 for K = 2, 10 for K = 3, and 15.75 for K = 4.

Although the mean of W128 is 127/128 and its variance is

V1 2 8 = .06534, the standard deviation of W128 is 0.256; this

leads to the possibility of large values of W128 on occasion.

For example, figure 10 shows that the whiteness measure can reach

a value of 1.8 or larger about 1% of the time. If a candidate

uniform random number generator has probability distributions for

WK which differ significantly from figures 3 - 10, it is suspect

and should be more thoroughly investigated before further use.

The corresponding cumulative and exceedance distribution

functions of the whiteness measure WK for a Gaussian random

number generator (see (52)] are displayed in figures 11 - 18 for

K = 2, 3, 4, 8, 16, 32, 64, 128, respectively. The first

observation to make is that the positive tail of WK can now reach

much larger values when K is small. However, for the larger

values of K, the probability distributions of WK appear to be

approaching a common behavior, regardless of the distribution of

the underlying data fxkl; compare figures 10 and 18 for K = 128.

16
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SUMMARY

The statistics of a whiteness measure, for testing a random

number generator, have been investigated in terms of the mean,

variance, and probability distributions. The mean and variance

results are exact and have been borne out by numerous simulations

for different noise sources Ixkl and data sizes K. These results,

for whiteness measure WK defined in (3), are summarized below:

K - I A K3 + B K + C K + D2E(WK) K VK =Var (WK) = 4K , (59)

where

A =4F + B =2F2 -8F - 14 , C =-2F2 forallK
3 3

w 0 for K even(while D = - )frKod(60)
4(F - 2) for K odd

The mean of whiteness measure WK is independent of fourth-order

moment F, while the variance of WK depends on F, but not on sixth

or eighth-order moments of data Ixk). That is, the eighth-order

product encountered in the general mean-square expression (8)

never requires knowledge higher than fourth-order for its

evaluation. This result applies for a symmetric zero-mean

probability density function for unit-variance data txk0.

The cumulative and exceedance probability distributions were

determined by simulations involving more than one million trials

each and therefore have good reliability approximately down to

the .0001 probability level.
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APPENDIX A. DERIVATION OF VARIANCE OF WHITENESS MEASURE WK

The variances VK of whiteness measure WK for K = 2, 3, 4 were

derived in (14) - (34) in the main text. We now present the

derivations for the remaining cases, K = 5, 6, 7, 8, that are

necessary in order to determine VK for all K.

SPECIAL CASE K = 5

I = X 1 x0 + x2 Xl + x3 x2 + x4 X3 ' 4 = X4 X0 '

2 = x 2 x0 + x 3 Xi + X4 X 2  +3 = x3 x0 + x 4 Xl (A-i)

W 2 2 2 (A-2)

625 W2 4 + 4 +4 +44 2 +2+2+ 2 2+ 2+ 2 +2+2+
4 5 1+2+ 3+ 4+ *1 *22 *1 *3+ 1 4~

+2 2 2 + 2 2 + 2 2+2(A3
2 3 + 2 *4 + 3 *4 (-)

The component averages required are developed in detail as

follows:

E+)= +4 x4) =F 2 
,(A-4)

E(+2 +2) - +2~ ( x2 0  x4  ) x 2) = F + F = 2F , (A-5)

E(+2 +2) = +2x x2x x1 + x(x + x4) 2)=

. E(x[ x•Ix2 X2 + x2(x 0 + x4 ,2 + 2 x3 x2 x1(x0 + x4 ,J) -
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= 1 + (F + F) = 2F + 1 , (A-6)

E(+2 +2) = E x2 x2[xl(x 0 + x 2 )+ x 3 (x 2 + x4 )] 2) =

E x2 x2[x2(x0+x2 ) 2 + x2(x 2 +x4 ) 2 + 2 x3 xi(X0+X2 )(x 2 +x4 )]) =

= (F + 1) + (I + F) = 2F + 2 , (A-7)

E = E([x 3 x 0 + x4  )= F2 + 6 + F2  2F 2 + 6 , (A-8)

E 2) = E[x x + x Xl]2 [x 3 x + x2 (x 4 + x0 )] 2 )=

-E [x 2 x2 + x 2 x2 + 2 x4 x x x01[x2 X + x2 (x 4 + x 0 )2 +

22+ 02 431 2 4

+ 2 x 3 x 2 xl(x 4 + xO)I) = F + (1+F) + F + (F+l) = 4F + 2 , (A-9)

E(2 2 =(x3 x + x4 12 [X(X 2 + x0 ) + x3(x4 + x2 )] 2) -

E E(x2 x 2 + x 2 x 2 + 2 x4 x3 xI x 0[ x2(x2+ x0) 2 + x2 (x4+ x2)2 +(130 4 4 3 1) , 3( 4  x2)

+ 2 x 3 x 1(x2 + XO)(x4 + x2)1) =

- (1 + F) + F(1 + 1) + F(1 + 1) + (F + 1) + 4 = 6F + 6 , (A-10)

2 E([x 3 X1 + x 2 (x 4 ++ xE0)]4)=

- 2 + 6(1 + 1) + F(F + 6 + F) = 3F 2 + 6F + 12, (A-11)
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2 ([x3 X+ x2(x4 +[xl(x 2 + x 0 ) + x 3 (x 4 + x 2 )] 2)

= E[x2 x2 + x2(x 4 + x0 ) 2 + 2 x3 x2 xl(X4 + x0)] x

x [x2(x 2 + x0)2 + x 2 (x + x2)2 x 3 Xl(X 2 + x0 )(x 4 + x 2 )J)

= F(I + 1) + F(1 + 1) +

+ E[x2 + 2 x4 xo + x2j[x4 + 2 x3 x + x2 x21) +

+ E[x42 + 2 x 4 x 0 + x20][x2 x2 + 2 x 4 x3 + x4]) +

+ 4 E(x 2 (x 4 + X0 )(x 2 + x0 )(x 4 + x 2 )) =

= 4F + (F + 1 + F + F) + (F + F + 1 + F) + 4(1 + 1) = 1OF + 10,

(A-12)

(X2 E[X1 (X 2 + x0 ) + x 3 (x 4 + x2 )]4) =

E x4(x 2 + x 0 ) 4 + 6 x22 + x0)2 x2 (x+ x2)2 + x4(x4+ x2)4

= F(F + 6 + F) + 6 E([x2 + 2 x 2 x 0 + x 0[x2 + 2 x 4 x 2 + x2]} +

+ F(F + 6 + F) = 4F 2 + 12F + 6(1 + F + 1 + 1) -

= 4F 2 + 18F + 18 . (A-13)
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Now, we combine all the component averages, above, to obtain

mean square value

E(W2) = 6•5(5F2 + 38F + 39) (A-14)

and variance

V5 = -(5F2 + 38F - 11) . (A-15)

SPECIAL CASE K - 6

Now, we adopt a very useful shorthand notation to handle the

rest of the cases of interest. For example, here, #5 = x 5 x 0 and

25 x5X2 , which is denoted by 5500; that is, the superfluous x

is ignored when possible. Also, x4  
2 x is denoted by 4220.42 0

With this background, we now have

2= 5500 2 - 4400+5511+2(5410) ,

+5 +4

3 = 3300+4411+5522+2(4310+5320+5421)

2
+2 = 2200+3311+4422+5533+2(3210+4220+5320+4321+5331+5432)

2 = 1100+2211+3322+4433+5544+

+2(2110+3210+4310+5410+3221+4321+5421+4332+5432+5443) • (A-16)

From (13), there follows

W 5 3I2 1 2 2 + ...-+1+2Wfn= = 8(+ + + (A-17)

n6-n-1
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and

324 W = 1+243+4+4 5 + 2 212 + -.- + 42 2 (A-18)

We also abbreviate the following ensemble averages as follows

E (2 +2) = Tmn ( 1A-19)

Then, there follows, in a straightforward but tedious manner,

T55 =F 2 , T54 =F+F =2F , T53 - F+1+F 2F+1

T52 F+1+1+F = 2F+2 , T51 = F+1+1+1+F = 2F+3

T44 = F2+6+F 2 = 2F 2 +6 , T43 = (F+F+1)+(1+F+F) = 4F+2

T42 = (F+1+F+1)+(1+F+l+F) = 4F+4 ,

T41 = (F+1+1+F+F)+(F+F+1+1+F)+4 = 6F+8

T33 3F2+4(1+1+1)+2(1+1+1) = 3F 2+18

T32 - (F+F+1+F)+(1+F+F+1)+(F+1+F+F)+4(1) = 8F+8

T31 = (F+1+F+F+1)+(F+F+1+F+F)+(1+F+F+1+F)+4(1+1) = 10F+13

T22 - 4F 2 +4(1+F+1+1+F+1)+2(1+F+1+1+F+1) = 4F 2 +12F+24 ,

T21 = (F+F+F+1+1)+(F+F+F+F+1)+(l+F+F+F+F)+(1+1+F+F+F)+12 = 14F+18

T11 = 5F2+(4+2)(F+1+1+1+F+1+1+F+1+F) = 5F2+24F+36 • (A-20)

The desired average is, from (A-18) - (A-20),

324 E(W2) = 15F 2 + 144F + 202 . (A-21)

The variance of W6 is then

V6 -3 415F2 + 144F - 23) . (A-22)
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SPECIAL CASE K = 7

Continuing in the fashion established above, we now have

= 6600 , = 5500+6611+2(6510) ,

2 f 4400+5511+6622+2(5410+6420+6521)

=3 3300+4411+5522+6633+2(4310+5320+6330+5421+6431+6532)

*2 = 2200+3311+4422+5533+6644+

+2(3210+4220+5320+6420+4321+5331+6431+5432+6442+6543)

+1 = 1100+2211+3322+4433+5544+6655+2(2110+3210+4310+5410+

+6510+3221+4321+5421+6521+4332+5432+6532+5443+6543+6554) . (A-23)

From (13),

W7 + ""+ . + 2 (A-24)

and therefore

2401 W = + -.. + + (2 2 + ."2 2) (A-25)

4 W 7  1~ 6~ (1 *2 +5 46

The required averages are as follows:

T66 F2 , T65 = F+F 2F, T64 = F+1+F = 2F+1

T63 = F+1+1+F = 2F+2 , T62 = F+1+1+1+F = 2F+3

T61 = F+1+1+1+1+F = 2F+4 , T55 = F2+F 2+4+2 = 2F 2+6 ,

T54 - (F+F+I)+(1+F+F) = 4F+2 , T53 - (F+1+F+1)+(I+F+1+F) = 4F+4

T52 = (F+1+1+F+I)+(I+F+1+1+F) = 4F+6 ,

T51 = (F+1+1+1+F+F)+(F+F+1+1+1+F)+4 = 6F+10
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T44 = 3F2+4(1+1+1)+2(1+1+1) =3F 2+18

T43 = (F+F+1+1)+(l+F+F+1)+(1+1+F+F) = 6F+6,

T42 - (F+1+F+1+F)+(l+F+1+F+1)+(F+1+F+1+F)+4(l) = BF+11

T41 - (3F+3)+(4F+2)+(3F+3)+4(1+1) = 10F+16,

T33 = F2+4(1+1+F+1+1+1)+2(1+1+F+1+1+l) =4F 2+6F+30,

T32 = (3F+2)+(3F+2)+(3F+2)+(3F+2)+4(1+1) =12F+16

T31 - (3F+3)+(4F+2)+(4F+2)+(3F+3)+4(1+1+1) - 14F+22,

T22 - F2+(4+2)(1+F+1+1+1+F+1+1+F+1) = SF 2+18F+42

T21 - 2(3F+3)+3(4F+2)+4(1+1+1+1) = 18F+28,

Till-62 +(4+2)(F+1+1+1+1+F+1+1+1+F+1+1+F+1+F) = 6F 2+30F+60

(A-26)

The average of interest is, from (A-25) and (A-26),

2401 E -W2 21F 2+ 246F + 418 ,(A-27)
4- 2

leading to variance

= 4 -1 21F 2 + 246F - 23) (A-28)
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SPECIAL CASE K = 8

This is the last case that we need to evaluate. We now have

2 = 7700 , 2 = 6600+7711+2(7610) ,
+7 +6

2+5 = 5500+6611+7722+2(6510+7520+7621)

+4 = 4400+5511+6622+7733+2(5410+6420+7430+6521+7531+7632)

-3 = 3300+4411+5522+6633+7744+

+2(4310+5320+6330+7430+5421+6431+7441+6532+7542+7643)

2
+2 = 2200+3311+4422+5533+6644+7755+2(3210+4220+5320+6420+

+7520+4321+5331+6431+7531+5432+6442+7542+6543+7553+7654)

21 = 1100+2211+3322+4433+5544+6655+7766+

+2(2110+3210+4310+5410+6510+7610+3221+4321+5421+6521+7621+

+4332+5432+6532+7632+5443+6543+7643+6554+7654+7665) • (A-29)

From (13) again,

4= + 2 + + 2 +++7 (A-30)

giving

1024 W 4 + ... + 4 + 2 2 2+. + 2 . (A-31)
102 W- 1 + '7  M l 26 +7

The averages needed are listed below.

T77 = F , T76 =2F, T75 =2F+1 T74 =2F+2,

T73 = 2F+3 , T72 = 2F+4 , T71 = 2F+5
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T66 F2+F 2+4+2 = 2F 2+6 ,T65 = (F+F+1)+(1+F+F) =4F+2,

T64 = (F+1+F+1)+(l+F+1+F) = 4F+4,

T63 = (F+1+!*F+1)+(l+F+1+1+F) = 4F+6

T62 = (F+1+1+1+F+1)+(l+F+1+1+1+F) =4F+8

T61 = (3F+4)+(3F+4)+4 = 6F+12

T55 = 3F 2 +4(1+1+1)+2(1+1+1) = 3F2 +18,

T54 =(F+F+1+1)+(1+F+F+1)+(1+1+F+F) = 6F+6,

T53 = 3(2F+3) = 6F+9,

T52 = (3F+3)+(2F+4)+(3F+3)+4(1) =BF+14

T51 =(3F+4)+(4F+3)+(3F+4)+4(1+1) =10F+19,

T44 = 4F2+4(6)+2(6) = 4F 2 +36,

T43 = (3F+2)+(2F+3)+(2F+3)+(3F+2)+4(l) = 10F+14

T42 = 4(3F+3)+4(1+1) = 12F+20,

T41 = 2(3F+4)+2(4F+3)+4(1+1+1) = 14F+26

T33 = 5F2+4(2F+8)+2(2F+B) = 5F 2+12F+48

T32 = 4(3F+3)+(4F+2)+4(1+1+1) =16F+26

T31 = 2(3F+4)+3(4F+3)+4(1+1+1+1) =18F+33

T22 = 6F2+4(4F+11)+2(4F+11) = 6F 2 +24F+66

T21 =2(3F+4)+4(4F+3)+4(1+1+1+1+1) = 22F+40

Til = 7F+4(6F+15)+2(6F+15) = 7F +36F+90 (A-32)

The desired average is therefore

1024 E (W2) = 28F 2 + 384F + 772 ,(A-33)

giving variance

= T(7F 2 + 96F - 3) .(A-34)
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APPENDIX B. PROGRAM FOR ESTIMATION OF DISTRIBUTIONS OF WK

10 T=IE6 NUMBER OF TRIALS "NUWC TR10237"
20 K=32 NUMBER OF DATA POINTS, ARBITRARY
30 M=64 ! FFT SIZE, M >= 2K-I, POWER OF 2
40 L=11000 NUMBER OF LEVELS FOR DISTRIBUTION
50 Dw=.001 ! INCREMENT IN W
60 Gr=10d0 GRID SPACING
70 PRINTER IS PRT
88 PRINT "K =";K;" T =";T;" DUw =";Dw;" UNIFORM"
90 PRINTER IS CRT

100 DOUBLE T,K,M,L,M1,Ms,M2,K1,Ts,Ks I INTEGERS, NOT DP
110 DIM Cos(512>,X(2048),Y(2048),V(30000)
120 MI=M-1
130 REDIM Cos(O:M/4),X(0:Ml),Y(0:Ml),V(0:L)
140 A=2.*PI/M
150 FOR Ms=8 TO M/4
168 Cos(Ms)=COS(R*Ms) i QUARTER-COSINE TABLE IN Cos(*)
170 NEXT Ms
180 M2=M/2
190 KI=K-1
208 TZ=1./T
210 F=12./(K*M) i UNIT-VARIANCE UNIFORM
220 F=F*F RANDOM VARIABLES (x(subk)}
230 Mu=KI/K I EXACT MEAN OF WK
240 Mul=Var=8.
250 Ta=TIMEDATE
260 FOR Ts=1 TO T
270 FOR Ks=0 TO Ki
288 X(Ks)=RND-.5 I ZERO MEAN
290 Y(Ks)=0. REAL INPUT
300 NEXT Ks
310 FOR Ks=K TO Ml
320 X(Ks)=Y(Ks)=8.
330 NEXT Ks
340 CALL Fft14(M,Cos(*),X(*),Y(*))
350 S2=S4=0.
360 FOR Ms=l TO M2-1 I ZERO TO NYQUIST
370 X=X(Ms)
380 Y=Y(Ms)
398 R=X*X+Y*Y
400 S2=S2+R
410 S4=S4+A*A
420 NEXT Ms
430 X=X(O)
440 AsX(M2)
450 X=X*X
460 A=A*A
470 S2=X+A+2.*S2
488 S4=X*X+A*R+2.*S4
490 W=F*(M*S4-S2*S2) WHITENESS MEASURE WK
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500 Mul=Mul+W
510 Var=Var+(W-Mu)*(W-Mu)! USE KNOWN MEAN Mu
520 Ms=INT(W/Dw)
530 Ms=MIN(Ms,L)
540 V )Ms)VCMs)+Tl 1 INCREMENTAL PROBABILITIES
550 NEXT Ts
560 Tb=TIMEDATE
570 PRINTER IS PRT
580 PRINT (Tb-Ta)/3600;" IOURS"
590 PRINT
600 Mul=Mul/T ESTIMATED MEAN OF WK
610 Var=Var/T ESTIMATED VARIANCE OF WK
620 PRINT "Mul =";Mul;" Mu =";Mu
630 PRINT "Var =";Var
640 PRINT
650 PLOTTER IS "GRAPHICS"
660 GRAPHICS ON
670 WINDOW 0,L,-6,0
680 LINE TYPE 3
690 GRID Gr,1
700 LINE TYPE 1
710 C=0.
720 FOR Ms=O TO L-1
730 C=C+V(Ms) CDF OF WHITENESS MEASURE WK
740 IF C>0. THEN 760
750 GOTO 770
760 PLOT Ms+I,LGT(C)
770 NEXT Ms
780 PENUP
790 EuSI=S2=0.
800 FOR Ms=L TO 1 STEP -1
810 E=E+V<Ms) I EDF OF WHITENESS MEASURE WK
820 Sl=Sl+E
830 S2=S2+Sl
840 IF E>O. THEN 860
850 GOTO 870
860 PLOT Ms,LGT(E)
870 NEXT Ms
880 PLOT 0,0
890 PENUP
900 Mul=Dw*(.5+S1) I ESTIMATED MEAN OF WK
910 Mu2=2.*Dw*Dw*S2 I SEE APPENDIX C
920 PRINT "Mul =";Mul;" Mu =";Mu
930 PRINT "Var =";Mu2-Mu*Mu ! ESTIMATED VARIANCE OF WK
940 PRINT
950 PRINTER IS CRT
960 PAUSE
970 END
980
990 SUB Fftl4(DOUBLE N,REAL Cos(*>,X<(*,(*))> ! N<=2"14=16384; 0 SUBS
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APPENDIX C. EVALUATION OF MOMENTS DIRECTLY

FROM MEASURED EXCEEDANCE DISTRIBUTION

Let x be a positive random variable with probability density

function p, cumulative distribution function (CDF) C, and

exceedance distribution function (EDF) E. Let the measurements

of these distributions be the interval probabilities

Vn = Prob(nA S x < (n+l)A) for 0 1 n . (C-i)

Then

So(n+l)A

1 = f dx p(x) = f dx p(x) = Vn (C-2)

0 n=0 nA n=0

At the same time, we can express

Vn = C((n+l)A) - C(nA) = E(nA) - E((n+1)6) , (C-3)

which can be inverted, leading respectively to EDF and CDF

E(nA) = Prob(x k nA) = = Vm for n k 0 , (C-4)
m=n

n-i
C(nA) = Prob(x < nA) = -Vm for n 1 1 . (C-5)

m=0

There also follows

E(0) = 1 , E((n+l)A) = E(nA) - Vn for n 2 0 , (C-6)

or, as an alternative form to (C-4) if desired,

E(A) = 1-V0 , E(2A) = 1-V 0 -V1 , E(3A) = 1-V 0 -V1 -V 2 , ... (C-7)
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The first two moments of random variable x can be developed

as

Pl= f dx x p(x) = f dx E(x) •A[ E(0) + • E(nA)j , (C-8)
0 n=l

and

= f dx x2 p(x) = 2 f dx x E(x) 2 42 - n E(nA) . (C-9)P2 0 n=l

These results can be rapidly evaluated by recursion. For

E((N+1)A) = 0, use

E=Sl=S2=0.
FOR Ns=N TO 1 STEP -1
E=E+V(Ns)
SI=SI+E
S2=S2+S1
NEXT Ns
Mul=Delta*(.5+Sl)
Mu2=2.*Delta*Delta*S2 (C-10)
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