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STATISTICS OF A WHITENESS MEASURE

INTRODUCTION

When a random number generator is designed to yield zero-mean
independent random variables, one useful test of its validity is
afforded by its sample covariance function. This quantity would
ideally be zero for all delays except the origin value. However,
in practice, due to the finite length of data generated and used
to test the generator, the sample covariance function is not
identically zero but fluctuates about zero. A measure of the
whiteness of the generator is afforded by the sum of squares of
all the off-zero elements of the sample covariance function,
relative to the square of its origin value. This measure was
suggested in [1; appendix C].

In this report, we investigate the statistics of this
whiteness measure, including its cumulative and exceedance
distribution functions and its mean and variance. Since a
sample covariance involves products of data values, the squared
covariance depends on fourth-order products of the data, and the
variance of this sample quantity involves eighth-order products
of the data under various delays. It is this latter high-order
product which greatly complicates the statistical analysis and
which necessitates a roundabout procedure for exact evaluation of
the variance of the whiteness measure. The probability
distributions of this measure are determined by simulation for

two types of random variables, uniform and Gaussian.

1/2
Reverse Blank




TR 10237
MEAN AND VARIANCE OF WHITENESS MEASURE

Consider real data sequence x5, X;, ... ,Xg_; of K data
points which are independent and identically distributed (IID)
with a symmetric probability density function about zero. This
zero-mean sequence will have all odd-order moments equal to zero.
Also, assume that the data are scaled to have unit variance and a

fourth moment of value F; that is
2 _ 4) _
E[xk] =1, E[xk] -F, for 0 <k <K-1, (1)

where E denotes the expectation. This situation includes the
uniform random number generator and the Gaussian random number
generator, for example. For the usual uniform random variable
distributed over (-%,%), we have scaled its output by V12 for
present purposes in order to realize variance 1. Thus, F = 1.8
for the uniform case, while F = 3 for Gaussian numbers.

The sample covariance of the available data is defined as
n % Z Xy Xp_ o for all n . (2)

Ideally, we might like to have sequence (R} equal to zero for
n # 0. However, this is never the case, although the {Rn} for
n # 0 are much smaller than R, when K is large. The mean value
of R0 is easily seen to be 1, by reference to (1). A measure of
the whiteness of data sequence {xk} is afforded by the sum of

squares of all the off-zero elements of sequence (R }:

2 k-1 ,
W, =) R:=2Y) R forKz22. (3)
K n#0 n n=1 n

(%)
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MEAN OF WHITENESS MEASURE WK

The mean value of random variable Ri follows from (2) as

2) _ el y Y =
E[Rn] = E[K2 - : xk xk-n xj xj—n)

1
=2 Z;: zg: E[xk Xi-n *3 xj-n] . (4)

Since we are only interested in values of n > 0 according to (3),
the expectation in (4) is nonzero only when k = j; here, we are
utilizing both the IID and the zero-mean properties of {x, 1.

Then, (4) becomes, upon use of (1),

K-1
E[Ri] = 17 y 1=k '2“ for 1 £ n < K-1 . (5)
K™ k=n K
(For completeness, E[Rg] = (F + K - 1)/K; Variance(Ro) = (F-1)/K.

Thus, Ro clusters around 1 as K » «, while Rn » 0 as K » =« for
fixed n # 0.) Use of result (5) in (3) yields the desired mean

value of whiteness measure wK as

K-1
2 K -1
E(W,) =<5 Y (K -n) = . (6)
K K2 &1 K

Notice that this mean value is independent of fourth-moment F and
that it approaches 1 as K » «=. Recall that E(Rj;) = 1 for

comparison.
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VARIANCE OF WHITENESS MEASURE WK

The direct evaluation of the variance of random variable W,
in (3) would require a very tedious procedure. Whereas the mean
evaluation in (4) only encountered fourth-order products of
delayed versions of |xk], we would now encounter eighth-order
products, requiring a complicated counting procedure to account
for all the various types of terms. Specifically, from (2) and

(3), we have whiteness measure

2 K-1 K-1 K-1
W, = =) ) ) Xy Xy X. X (7)
K K2 n=1 k=n j=n k "k-n 73 73-n ’
leading to mean square value
2 4 K-1 K-1 K-1 K-1 K-1 K-1
e(wh) =113y 12
K" n=1 m=1 k=n j=n g=m p=m
E[xk Xk _n xj xj—n xq xq-m xp xp-m) . (8)

Not only would this eighth-order average have to be evaluated for
all possible values of n,m,k,j,q,p, but the sixth-order summation
would then have to be conducted. The only reasonable case that
can be evaluated from (8) is that for the term proportional to

2

F°. It is obtained only for the special choices n = m and

k = j = q = p; then the right-hand side of (8) reduces to

K-1 K-1 K-1
2 2(K - 1) .2
3 j}jr2=4—4§:(x-n)r=—1——3——lr. (9)
K° n=1 k=n K® n=1 K

Notice that moments of [xk] above the fourth need not be known.
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The difficulty of attempting to evaluate (8) directly forces
us to attack the problem from a different aspect. Specifically,
we adopt a shortcut to obtain, exactly, the variance of whiteness
measure Wy. First, observe from (8) that the mean square value
of Wy contains a denominator of K4. Secondly, it has been
observed from simulations that the variance of Wy goes to zero
proportional to 1/K for large K. Therefore, the form of the

variance, VK' of random variable wK must be

3 2
_ _AK +BK° +CK+D
VK = Var(wK) = K4 ’ (10)

where A, B, C, D are unknown constants. In order to determine
these four constants, we will evaluate, exactly, the variance VK
of WK for a sufficient number of low-order values of K, and then
solve the four simultaneous linear equations yielded by (10).

For convenience, we define the sums

K-1
o, = ) Xy Xp_p for 1 < n £ K-1. (11)
k=n
Then
R =%¢_ forls<ngEK-1, (12)

as seen from (2). The whiteness measure in (3) then takes the

form
2 X1
W = 2 %;; ¢7 for K 2 2 . (13)

For K = 1, there are no terms in the sum, yielding W, = 0.
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SPECIAL CASE K = 2
We have, from (11) and (13),
= % x] Xp - (14)
Therefore, upon use of the IID property of the {xk] and (1),
E(wg] = % E(x% xg) = % F2 . (15)
The variance of W, then follows as

2

v, = Var(w,) = E(W%] - E[Wz] = %[Fz - 1] , (16)

2

where we used (6).

SPECIAL CASE K = 3

The procedure for the remaining cases is similar to that
detailed above for K = 2; therefore, the following presentation

will be abbreviated, and only the main results will be listed.

We have
$p = X) Xg * Xy Xy 4 4y =Xy X5, (17)
_ 20,2, .2 2. 2 2
Wy = 5le1 + 43 = 9[ T(xg *+ x)° + x5 xg] (18)
2 _ 4q.4 4. 4 .4 2 2 2 .2
w3 = ﬁT[xl(xo + x2) + Xy Xg + 2 xl(xo + x2) X5 xol . (19)

The mean value of (19) is given hy
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2

E{Wg) = 5%[F(F + 6+ F) +F° + 2(F + F)] = §%[3F2 + 10F] . (20)

Finally, the variance of W, is

v =—i

3
[3F2 + 10F - 9] (21)
3 =8 .

SPECIAL CASE K = 4

In this case, we have

(22)
< 2,2 2 2
w4 = 16[*1 + ¢2 + ¢3 ’ (23)
2 4 4 4 2 2 2 .2 2 ,2
64 Wy = ¢1 + ¢2 + ¢3 + 2 ¢1 ¢2 + 2 ¢1 ¢3 + 2 ¢2 ¢3 . (24)
The mean value of (24) will be found in stages. The six
components of (24) have the following average values:
E(¢g] = E[xg xg) = F2 P (25)
2 2 2 2
E(¢§ ¢2] = E[x3 xo(x2 Xg + Xq xl) ] =F+ F = 2F , (26)

2,2 2 2 2
243 o1 - B(x] xhix; xg + xy x4 xy x?) = Beer = 2F 41,
(27)

E{¢g] = E[(x2 X + Xq x1)4) = F2 + 6 + F2 = 2F2 + 6 , (28)
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2 2 =
X3 Xy v 2 x5 x) X9+ 2 X3 X3 X3 X9+ 2 X3 X5 xl]) -
=F+F+F+F+F+F+ 4 =86F + 4, (29)
2 2 2 2 2
$] = xT(xg + X,)° + x3 x5 + 2 X3 X, X1(Xg + X5) (30)
4 _ 4 4 4 4 2 .2 .2 2
¢1 = xl(x0 + xz) + x4 Xy + 6 X3 X, xl(x0 + x2) +
3 3 3.3
+ 4 x5 x, x7(xg + x5)7 + 4 x3 %5 x,(xg + X,) (31)
E 4) _ 2 _ 2
¢1 = F(F+6 +F) + F + 6(1 +F) =3F" + 12F + 6 . (32)

Combining these results into (24), we have mean square value
2) _ 1 2
E[W4) - 37[3F + 16F + 11] (33)
and variance

1(~p2
v, = 35[3F + 16F - 7] . (34)

4

The analytical derivations of VS' Ver Vo, Vg are deferred
to appendix A due to their lengthy calculations and need for a
shorthand notation. It will turn out that we also need all of
these latter results when we find the constants A, B, C, D in

variance expression (10).
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GENERAL DETERMINATION OF VARIANCE OF WK

The general form for the variance V, of whiteness measure Wy

K
is given by (10) for arbitrary K and is repeated below:

3 2
_ _AK +BEK°+CK+0D
Vy = Var(Wp) = 7 . (35)

However, analytic determination of Vk for KX =2, 3, 4, 5, 6, 7, 8
(see appendix A also) have revealed that separate forms like (35)
must be employed for K even versus K odd. That is, two different
sets of constants A, B, C, D apply in the even versus odd cases
of K. The available analytic results for Vi (above and in

appendix A) are summarized below:

V1 = 0 (see the line under (13)) , (36)
1(.2
v, = E[F - 1] , (37)
4,2
v, = §T[3F + 10F - 9] , (38)
_ 1(4p2
v, = 32[3F + 16F - 7) , (39)
8 (ou2
v, = €5§(SF + 38F - 11] , (40)
v, = —1—[15}*2 + 144F - 23] (41)
6 = 324 '
v, = ——i-[zlrz + 246F - 23) (42)
7 = 7401 ’
Vg = gag(1F% + 96F - 3] (43)
8 = 756 .
10
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If we take K equal to the odd valuves 1, 3, 5, 7 in (35) and
use results (36), (38), (40), (42), we obtain four simultaneous

linear equations for the constants A, B, C, D. Their solution

leads to the following expression for the variance Vi of Wy
Vg = Ei%[A K2 + B K + E] for K odd , (44)
where
A=4F+%, §=2F2-4F-3§, C=-4F + 8 . (45)

When (45) is substituted into (44), the variance expression can
be rearranged in terms of powers of F:

Vy = glﬁill[sz + 2[x2-x-1]r + %[2K2—19K+12]] for K odd . (46)
K

The F2

term here confirms (9), as anticipated.

If we take K equal to the even values 2, 4, 6, 8 in (35) and
use results (37), (39), (41), (43), we obtain four different
simultaneous linear equations for the constants A, B, C, D.

Their solution leads to the following expression for the variance
VK of WK:

vV, = l—(A K2 + BK + C) for K even , (47)
K K3

where

B=2F°-8F -1, C (48)

4
(|
>
e
+
(RIES
<

11
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When (48) is substituted into (47), the variance expression can

be rearranged in terms of powers of F according to

Vg = 33[(x-1)r2 + 2K(K-2)F + %[2x2-21x+31]] for K even . (49)
K

Again, the F2

dependence in (9) is confirmed.
The asymptotic behavior of variance Vk for large K is given

by

whe

VK ~ [4F +

] % as K » o (50)

for both K odd and K even. This is due to the fact that constant
A in (35) is identical for the odd and even cases; compare (45)
and (48). Thus, whiteness measure wK tends to cluster around 1
as K » », Recall that R0 - 1, while Rn » 0 for fixed n, as K » o,
The end results for variance V, of whiteness measure W, are

K K
given by (44) and (47), or by (46) and (49). Plots of Vk for the
uniform random variable and the Gaussian random variable {xk] are
displayed in figures 1 and 2, respectively. A short tabulation
of Vk is given in table 1 for the uniform, Gaussian, exponential,
and alternating random variables (x, 1. The probability density

functions of (%} for these four cases are, respectively,

p,(x) = .5/V3 for |x| <Vv3 , F =1.8 ; (51)
pg(x) = (21:)"5 exp(—x2/2) , F=3; (52)
Pe(X) = 75 exp(~V2|x[) , F =6 ; (53)

1 1
Pa(X) = 5 8(x-1) + 5 §(x+1) , F=1. (54)

12
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A short table of the variances for these four examples is

For the alternating example, X, = +*l and F = 1,

whiteness measure w2 for K = 2 is always equal to 1/2, thereby

leading to variance v, = 0.

The smallest possible example of F

is 1, as realized in the alternating random variable case.

Table 1.

Variance V, of Whiteness Measure WK

K
K Uniform Gaussian Exponential Alternating
2 .56 2, 8.75 .0
3 .92444 2.37037 7.85185 .19753
4 .985 2.125 6.15625 .375
5 .94208 1.8944 5.0816 .4096
6 .87901 1.67901 4.26235 .41975
7 .81273 1.50604 3.68013 .40650
8 .75188 1.35938 3.22266 .39063
16 .45117 .75586 1.60986 .25977
32 .24569 .39722 .79987 .14771
64 .12804 .20346 .39808 .07852
128 .06534 .10295 .19850 .04045

If we combine (47) with the multiplied-out version of (44),

the variance V., can indeed be written in the form (35) for all K,

K
where the constants A, B, C are as given in (48), but constant D

must be taken according to the two different values

0 for K even
4(F - 2) for K odd

Notice that, despite (8) involving eighth-order products, nothing

above fourth-order moment F of [xk] is required in these results.

14
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PROBABILITY DISTRIBUTIONS OF WHITENESS MEASURE

The direct evaluation of whiteness measure Wy according to
its definition (3) in conjunction with (2), is very time
consuming for large K, due to all the multiplications required.
An attractive alternative, in terms of fast Fourier transforms,
was derived in [1; appendix C] and is employed here; the program
utilized is listed in appendix B. The key relation relative to

(3) is [1; (C-5))

M-1

2
x|
m=0 m

1w 3 1x )4 2]
W, = —=—=|M X - (56)
K 2M2 =0 m '

K
where M is the size of the fast Fourier transform {xm] of data
{x,1- The only restriction on M is that we must use M 2 2K -~ 1;
then, the right-hand side of (56) is independent of M. (For

K=1, X = xq for 0 < m £ M-1, leading to w1 = 0, as noted under

m
(13).) Again, notice that the whiteness measure Wy depends on
fourth-order products of the data or its transform.

The cumulative distribution function (CDF) and exceedance

distribution function (EDF) of whiteness measure Wy

CDF(u) = Prob(WK <u) , EDF(u) = Prob(WK > u) , (57)

for the case where data {xk} is uniformly distributed over -v3,V3
[see (51)], are displayed in figures 3 - 10 for K = 2, 3, 4, 8,
16, 32, 64, 128, respectively. These results were determined by

using at least one million trials for Wy as defined in (56). The

15
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exceedance distribution function for small K has a cusp near zero
argument which disappears for larger K. However, random variable
WK does not approach Gaussian as K increases; rather, as shown in
figure 10 for K = 128, the right-hand tail appears to approach
exponential behavior. For a bounded random variable, ka| < B,
the value of Wy is bounded according to

(K - 1)(2K - 1) -4
Wy < T3 B . (58)

In the case of the uniform random variable Xy where B = V3, (58)
yields 4.5 for K = 2, 10 for K = 3, and 15.75 for K = 4.

Although the mean of Wio8 is 127/128 and its variance is
Vi2g = -06534, the standard deviation of Wio8 is 0.256; this
leads to the possibility of large values of W ,g ON occasion.

For example, figure 10 shows that the whiteness measure can reach
a value of 1.8 or larger about 1% of the time. If a candidate
uniform random number generator has probability distributions for
Wy which differ significantly from figures 3 - 10, it is suspect
and should be more thoroughly investigated before further use.

The corresponding cumulative and exceedance distribution
functions of the whiteness measure Wy for a Gaussian random
number generator {see (52)] are displayed in figures 11 - 18 for
K=2, 3, 4, 8, 16, 32, 64, 128, respectively. The first
observation to make is that the positive tail of Wy can now reach
much larger values when K is small. However, for the larger
values of K, the probability distributions of Wy appear to be
approaching a common behavior, regardless of the distribution of

the underlying data {x, }; compare figures 10 and 18 for K = 128.

16
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SUMMARY

The statistics of a whiteness measure, for testing a random
number generator, have been investigated in terms of the mean,
variance, and probability distributions. The mean and variance
results are exact and have been borne out by numerous simulations
for different noise sources [xk} and data sizes K. These results,

for whiteness measure Wy defined in (3), are summarized below:

3 2
K -1 AK + BK + CK+D
E(WK) = R ’ VK = Var(WK) = K4 ’ (59)
where
A=4F+%, B = 2F2 - 8F - 14 , c=-2r2+6—§ for all K ,
0 for K even
while D = . (60)
4(F - 2) for K odd

The mean of whiteness measure Wy is independent of fourth-order
moment F, while the variance of wK depends on F, but not on sixth
or eighth-order moments of data {xk]. That is, the eighth-order
product encountered in the general mean-square expression (8)
never requires knowledge higher than fourth-order for its
evaluation. This result applies for a symmetric zero-mean
probability density function for unit-variance data {x, 1.

The cumulative and exceedance probability distributions were
determined by simulations involving more than one million trials
each and therefore have good reliability approximately down to

the .0001 probability level.
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APPENDIX A. DERIVATION OF VARIANCE OF WHITENESS MEASURE WK

The variances Vk of whiteness measure Wy for K = 2, 3, 4 were
derived in (14) - (34) in the main text. We now present the
derivations for the remaining cases, K = 5, 6, 7, 8, that are

necessary in order to determine V, for all K.

K

SPECIAL CASE K = 5

91 = X) Xg ¥ Xy X) * X3 X5 + X, Xq, ®g = X4 Xg 4

¢2 = x2 X + x3 x1 + Xq Xo ¢3 = X3 x0 + x4 x1 ’ (A-1)
_ _2],2 2 2 2 _
ws = 25[¢1 + 4’2 + ’3 + ¢4] ’ (A 2)
625 .2 _ .4 4 4 4 2 ,2 2 ,2 2 ,2
g Ws = ¢p + oyt d3 9yt 29765+ 247¢3+24) 4,4
2 ,2 2 ,2 2 ,2
+ 2 45 63+ 2 45 ¢, 243 ¢, - (A-3)

The component averages required are developed in detail as

follows:

E[¢2) = E[xz xg] = p2 , (A-4)
E[¢Z ¢§] = E[xi xg(x3 Xq + X, xl)z) =F + F = 2F , (A-5)

E[¢i ¢§) = E(xg xplxy x; + xy(xg + x,)17) =

2 2
§ % + x2(xo + x4) + 2 Xq X, xl(x0 + xd)]] =

»®
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=1+ (F+F) =2F+1, (A-6)
E[*i ’%] = E[X§ x%[xl(xo X))+ x3(xy + x4’]2] =

2

2 2 2
= E[x4 xolxl(xo+x2)

+ xg(x2+x4)2 + 2 Xq xl(xo+x2)(x2+x4)]] =
= (F+ 1) + (1 +F)=2F+ 2, (A-7)

E[¢§] - E[[x3 xo + X, x1]4) =F2 +6+F =2F2 + 6, (A-8)

2

E[’% ¢§] = E[[x3 xo + x4 xl] [x3 x1 + xz(x4 + xo)]z] =

= 2 .2 2 2 2 2
E[[x3 xo + x4 x1 + 2 x4 x3 x1 xO][x3 x1 +

x2 2 4

2(xg * %)

3 Xy Xq(x, + xo)]] =F + (14F) + F + (F+1) = 4F + 2 , (A-9)

2

E[¢§ ¢%] = E([x3 xo + x4 x1] [xl(x2 + xo) + x3(x4 + x2)]2] =

2 2

2 2 2
4 x1 + x3(x4 + xz) +

- 2 .2
E([x3 x0 + x

+ 2 X, X3 X4 xO][xﬁ(x2 + xo)
+ 2 x3 xl(xz + xo)(x4 + xz)]] =

= (1 +F) +F(1+1) +F(1+1)+(F+1)+4=2¢6F+6, (A-10)
E(¢g] = E[[x3 x1 + xz(x4 + xo)]4] =

= F2 4+ 6(1 + 1) + F(F + 6 + F) = 3F%+ 6F + 12, (A-11)
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E(#% ¢§] = E([x3 Xy + x2(x4 + xo)]2 [xl(x2 + xo) + x3(x4 + x2)]2]

= E[[x2 xi + xg(x4 + xo)2

3 + 2 X3 X, xl(x4 + xo)] X

2

x 2 2

2
xl(x2 + xo) + x3(x4 + x2) + 2 X3 xl(xz + xo)(x4 + x2)]] =

= F(1+1) + F(1 +1) +

3

+ E[[xi + 2 X4 Xq + xg][x; + 2 X5 X, + x% xg]] +

+ E[[xz + 2 X, Xq + xg][xz x% + 2 X, xg + xé]] +

+ 4 E[xz(x4 + xo)(x2 + xo)(x4 + xz)] =

=4F + (F+ 1 +F+F) + (F+F+1+F) + 4(1 +1) = 10F + 10,
(A-12)

B(41) = B(1x,0xy + xg) + x30xy + x01%) -

2 2

4 4 2 2 4 4
= E[xl(x2 + xo) + 6 xl(xz + xo) x3(x4 + x2) + x3(x4 + xz) ] =

=F(F+6+F)+6E[[x§+2x2x0+xg”xi+2x4x2+x§”+

+ F(F+6 +F) = 4F2 + 12F + 6(1 + F + 1 + 1) =

= 4F% + 18F + 18 . (A-13)
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Now, we combine all the component averages, above, to obtain

mean square value
2 8 2
E[W5) = £55(5F° + 38F + 39) (A-14)
and variance

8 2
Ve = z3s(5F° + 38F - 11) . (A-15)

SPECIAL CASE K = 6

Now, we adopt a very useful shorthand notation to handle the

rest of the cases of interest. For example, here, ¢g = Xg X and

Qg = xg xg, which is denoted by 5500; that is, the superfluous x

is ignored when possible. Also, X, x% X, is denoted by 4220.

With this background, we now have

¢2 = 5500 , ¢2 = 4400+5511+2(5410) ,

$2 = 3300+441145522+2(4310+5320+5421) ,
$2 = 2200+3311+4422+45533+2(3210+4220+5320+4321+5331+5432) ,
$2 = 1100+2211+3322+4433+5544+

+2(2110+3210+43104+541043221+4321+5421+4332+5432+5443) . (A-16)

From (13), there follows

5
Z:: 2 1(,2 2 2

&l
[«)} L8]

W6 =

30
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and

320 w2 = pieedealraieed ¢ 2(0202 4+ oo w0282 . a-1e)

We also abbreviate the following ensemble averages as follows

E(¢: ¢i] = Tmn . (A-19)

Then, there follows, in a straightforward but tedious manner,

T55 = F2 , T54 = F+F = 2F , T53 = F+14F = 2F+1

’

T52 = F+1+1+F = 2F+2

T44 = F2+6+F2 = 2F%+6

;, T51 = F+1+1+1+4F = 2F+3

[4

, T43 = (F+F+1)+(1+4F+F) = 4F+2
T42 = (F+1+F+1)+(1+4F+1+F) = 4F+4 ,

’

T4l = (F+1+1+F+F)+(F+F+1+1+F)+4 = 6F+8 ,
T33 = 3F244(1+1+1)+2(1+1+1) = 3F2+18 ,
T32 = (F+F+1+F)+(1+F+F+1)+(F+1+4F+F)+4(1) = 8F+8 ,
T31 = (F+14+F+F+1)+(F+F+1+F+F)+(14F+F+1+F)+4(1+41) = 10F+13 ,

T22 = 4F2+4(1+F+1+1+F+1)+2(1+F+1+1+F+1) = 4F2+12F+24 '

T21 = (F+F+F+1+1)+(F+F+F+F+1)+(1+F+F+F+F)+(1+1+F+F+F)+12

= 14F+18
T1l1l =

5F2+(4+2)(F+1+1+1+F+1+1+F+1+F) = 5F2+24F+36 . (A-20)

The desired average is, from (A-18) - (A-20),

324 E[Wé] = 15F2 + 144F + 202 . (A-21)

The variance of W6 is then

1 2
Vg = 373[15F + 144F - 23] ) (A-22)

31




TR 10237
SPECIAL CASE K = 7
Continuing in the fashion established above, we now have

$2 = 6600 , ¢2 = 5500+6611+2(6510) ,

¢i = 4400+5511+6622+2(5410+6420+6521) ,

¢§ = 3300+4411+5522+6633+2(4310+5320+6330+5421+6431+6532) ,

¢§ = 2200+3311+4422+45533+6644+
+2(3210+4220+5320+6420+4321+5331+6431+5432+6442+6543) ,

¢§ = 1100+2211+3322+4433+5544+6655+2(21104+3210+4310+5410+

+6510+3221+4321+5421+6521+4332+5432+6532+5443+6543+6554) . (A-23)
From (13),

W, = E%[*i + ¢§ + e + ¢g] (A-24)

B W = 4]+ s+ gg 2[*% 4+ 0 9 ¢§] + (A25)

The required averages are as follows:

T66 = F° , T65 = F+F = 2F , T64 = F+14F = 2F+1 ,

T63 = F+1+14F = 2F+2 , T62 = F+1l+1+1+4F = 2F+3 ,
T61 = F+1+1+1+41+F = 2F+4 , T55 = F2+F2+442 = 2F%+6 ,
T54 = (F+F+1)+(14F+F) = 4F+2 , T53 = (F+1+F+1)+(1+F+14F) = 4F+4 ,
T52 = (F+1+1+F+1)+(1+F+1+14F) = 4F+6 ,

T51 = (F+1+1+1+F+F)+(F+F+1+1+1+F)+4 = 6F+10 ,
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T44 = 3F244(1+1+1)+2(1+1+1) = 3F2+18 ,

T43 = (F+F+1+1)+(1+4F+F+1)+(141+F+F) = 6F+6 ,
T42 = (F+1+F+1+F)+(1+F+1+F+1)+(F+1+F+1+F)+4(1) = B8F+11 ,
T41 = (3F+3)+(4F+2)+(3F+3)+4(1+1) = 10F+16 ,
T33 = 4F244(1+1+F+1+1+1)+2(1+1+F+1+1+1) = 4F2+6F+30 ,
T32 = (3F+2)+(3F+2)+(3F+2)+(3F+2)+4(1+1) = 12F+16 ,
T31 = (3F+3)+(4F+2)+(4F+2)+(3F+3)+4(1+1+1) = 14F+22 ,
T22 = SF24(4+2) (1+F+141+1+F+1+14F+1) = SF2+18F+42 ,
T21 = 2(3F+3)+3(4F+2)+4(1+1+1+1) = 18F+28 ,

T1l1 = 6F2+(4+2)(F+1+1+1+1+F+1+1+1+F+1+1+F+1+F) = 6F2+30F+60 .

(A-26)

The average of interest is, from (A-25) and (A-26),

249 E[Wg] = 21F% + 246F + 418 , (A-27)
leading to variance
v, = -—3-[21F2 + 246F - 23] (A-28)
7 = 2301 .
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SPECIAL CASE K = 8
This is the last case that we need to evaluate. We now have

$2 = 7700 , ¢Z = 6600+7711+2(7610) ,

$2 = 5500+6611+7722+2(6510+7520+7621) ,

¢§ = 4400+5511+6622+7733+2(5410+6420+7430+6521+7531+7632) ,

$2 = 3300+4411+5522+6633+7744+

+2(4310+5320+6330+7430+5421+6431+7441+46532+7542+7643) ,

¢§ = 2200+3311+4422+5533+6644+7755+2(3210+42204+5320+6420+
+7520+44321+5331+6431+7531+5432+6442+7542+6543+7553+7654) ,

¢§ = 1100+2211+3322+4433+5544+6655+7766+

+2(211043210+4310+5410+6510+7610+3221+4321+5421+6521+7621+

+4332+5432+6532+7632+5443+6543+7643+6554+7654+7665) . (A-29)

From (13) again,

= 2(¢2 4 42 4+ ... 2 -
Wg = 64[¢1 + 45 + +45] (A-30)
giving
2 4 4 2 2 2 2
1024 Wg = ¢ + o ¢ ¢, + 2[¢1 ¢5 + -0 4 %6 ¢7] . (A-31)

The averages needed are listed below.
777 = F2 , T76 = 2F , T75 = 2F+1 , T74 = 2F+2 ,

T73 = 2F+3 , T72 = 2F+4 , T71 = 2F+5 ,
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2,02

T66 = F +F“+4+2 2

2F“+6 , T65 = (F+F+1)+(1+4F+F) = 4F+2 ,

T64

(F+14F+1)+(1+F+1+4F) = 4F+4 ,

T63 = (F+1+.+F+1)+(1+F+1+14F) = 4F+6 ,
T62 = (F+1+1+1+F+1)+(1+F+1+1+1+F) = 4F+8 ,
T61 = (3F+4)+(3F+4)+4 = 6F+12 ,

T55 = 3F2+4(1+1+1)+2(1+1+1) = 3F%+18 ,
TS4 = (F+F+1+1)+(1+F+F+1)+(1+1+4F+F) = 6F+6 ,

TS53 = 3(2F+3) = 6F+9 ,

TS52 = (3F+3)+(2F+4)+(3F+3)+4(1) = 8F+14 ,
TS51 = (3F+4)+(4F+3)+(3F+4)+4(1+1) = 10F+19 ,
Ta4 = 4F2+4(6)+2(6) = 4F2+36 ,

T43 = (3F+2)+(2F+3)+(2F+3)+(3F+2)+4(1) = 10F+14 ,

T42 = 4(3F+3)+4(1+1) = 12F+20 ,

T4l = 2(3F+4)+2(4F+3)+4(1+1+1) = 14F+26 ,
T33 = S5F2+4 (2F+8)+2(2F+8) = SF2+12F+48 ,
T32 = 4(3F+3)+(4F+2)+4(1+1+1) = 16F+26 ,

T31 = 2(3F+4)+3(4F+3)+4(1+1+1+1) = 18F+33 ,

T22 = 6F2+4 (4F+11)+2(4F+11) = 6F2+24F+66 ,

T21 = 2(3F+4)+4 (4F+3)+4(1+1+1+1+1) = 22F+40 ,

T11 = 7F2+4(6F+15)+2(6F+15) = TF2+36F+90 . (A-32)
The desired average is therefore
1024 E[Wg] = 2872 + 384F + 772 , (A-33)
giving variance
Vg = 5%3[7F2 + 96F - 3] . (A-34)
35/36
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APPENDIX B. PROGRAM FOR ESTIMATION OF DISTRIBUTIONS OF WK

T=1E6 |  NUMBER OF TRIALS  “NUWC TR10237"
K=32 |  NUMBER OF DATA POINTS, AREITRARY
M=64 ! FFT SIZE, M >= 2K-1, FOWER OF 2
L=11008 | NUMBER OF LEVELS FOR DISTRIBUTION
Du=.081 ! INCREMENT IN W
Gr=1000 ! GRID SPRCING
PRINTER IS PRT
PRINT "K =";K;" T =";T;" Dw =";Du;"  UNIFORM"
PRINTER IS CRT
DOUBLE T,K,M,L,M1,Mz,M2,K1,Ts,Ks ! INTEGERS, NOT DP

DIM Cos(S12)>,%X(2048),Y(2048)>,Y(306088)
Mi=M-1
REDIM Cos(B:M/4),%X(B:M1),Y(B:M1),V¥(O:L)
A=2.%#PI/N
FOR Ms=90 TO M-4
Cos(Ms)>=COSC(A*Ms> )
NEXT Ms
M2=M~-2
Kl1=K-1
T1=1.-T7
F=12.7C(K*M> !
F=F%F !
Mu=K1-K [
Mul=Yar=9.

Ta=TIMEDRTE
FOR Ts=1 TO T
FOR Ks=0 TO Ki
X(Ks)>)=RND~-.5 !
Y(Ks)>=0. !
NEXT Ks
FOR Ks=K TO Mi
X(Ks)=Y(Ks»=0,
NEXT Ks
CALL Fft14(M,Cos(#),X{(%),Y(*$))
$2=84=0,
FOR Ms=1 TO M2-1 !
K=K (Ms)
Y=Y (Ms)
A=XeX+Y %Y
S$2=52+A
S4=S4+A*R
NEXT Ms
K=X(0)>
A=X(M2)>
R=XKeX
A=A*A
S2=X+R+2,.%S2
Sd=X*#X+A#A+2, %S4
W=F#£(M%£54-52+%S2) !

QUARTER-COSINE TABLE IN Co=z{#%)

UNIT-VARIANCE UNIFORM
RANDOM VARIABLES {x{subk>:
EXACT MEAN OF WK

ZERDO MERN
REAL INPUT

ZERO TO NYQUIST

WHITENESS MEASURE MWK
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500
Sie
520
530
548
550
S60
S7vo
S8e
590
600
610
620
€30
640
650
€60
676
680
€950
Iq-1")
710
720
730
740
7?50
760
7’708
780
790
goo
810
820
830
840
8Se
8¢0
870
88e0
890
Se0
S10
920
9308
940
950
960
97e
980
99@
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Mul=Mui+W
Var=VYar+(N-Mu>*(W-Mud! USE KNOWN MERN Mu
Ms=INT(W/Duw>
Ms=MIN(Ms,L)>
V(Ms )=V (M3 )X+T1 !  INCREMENTAL FROBABILITIES
NEXT Ts

Tb=TIMEDRTE

PRINTER IS PRT

PRINT (Tb-Ta>-3600;" HOURS"

PRINT
Mul=Mul-T ! ESTIMATED MEAN OF WK
Var=Var-/T ! ESTIMATED VARIANCE OF WK
PRINT "Mul ="j;Mul;" Mu ="3Mu
PRINT "Var =";Var
PRINT

PLOTTER IS "GRAPHICS"
GRAPHICS ON
WINDOW @,L,-6,0
LINE TYPE 3
GRID Gr,1
LINE TYPE 1
C=8.
FOR Ms=0 TO L-1
C=C+V(Ms> I CDF OF WHITENEZSS MEASURE MWK
IF C>8., THEN 7¢0
GOTO ?77@
PLOT Ms+1,LGTCC)
NEXT Ms
PENUP
E=S1=S2=0,
FOR Ms=L 70 { STEP -1
E=E+V (M=) ! EDF OF WHITENESS MEASURE WK
S1=Sti+E
S2=82+S1
IF E>08. THEN 860
GOTO 8709
PLOT Ms,LGTCED
NEXT Ms
PLOT 0,0
PENUP
Mul=Dw*(,.5+S1) ! ESTIMATED MEARAN OF WK
Mu2=2, *Du*Du*S2 ! SEE APPENDIX C
PRINT "Mul ="3Mul;" Mu ="3;Mu
PRINT “"Var =";Mu2-Mu*Mu ! ESTIMATED YARIANCE OF MK
PRINT
PRINTER IS CRT
PRUSE
END
i

SUB Fft14(DOUBLE M,REAL Cos<#),H #3,V<%2 | N{=2~14=

38
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APPENDIX C. EVALUATION OF MOMENTS DIRECTLY

FROM MEASURED EXCEEDANCE DISTRIBUTION

Let x be a positive random variable with probability density

function p, cumulative distribution function (CDF) C, and

exceedance distribution function (EDF) E. Let the measurements

of these distributions be the interval probabilities

Vn = Prob{nd £ x < (n+l1)4A) for 0 < n .
Then

{n+l)aA

1= dx p(x) = E dx p(x) = Z V. .
n
0 n=0 nA n=0

At the same time, we can express

V. = C((n+1)8) - C(nd) = E(nd) - E((n+1)8) ,

which can be inverted, leading respectively to EDF and CDF

o
Prob(x 2 na) = E Vm for n 2 0 ,

E(nld) =
=n
n-1
C(nA) = Prob(x < nd) = E Vrn forn 2 1.
m=0

There also follows

E(0) = 1, E((n+l)a) = E(nd) -V forn 20,

or, as an alternative form to (C-4) if desired,

E(8) = 1-V, , E(28) = 1-Vy-V, , E(38) = 1-Vy-V;-V, , ...

39
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The first two moments of random variable x can be developed

as
py= J dx x p(x) = I dx E(x) = A[% E(0) + %;; E(nA)] . (C-8)
0 0
and
Hy = I dx x2 p(x) = 2 I dx x E(x) & 2 A2 Y n E(na) . (C-9)
0 0 n=1

These results can be rapidly evaluated by recursion. For

E((N+1)A) = 0, use

E=S1=S2=0.

FOR Ns=N TO 1 STEP -1

E=E+V(Ns)

S1=S1+E

$2=82+S1

NEXT Ns

Mul=Deltax*(.5+S1)

Mu2=2.*Delta*Delta*S2 (C-10)
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