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Electromagnetic Scattering From Dielectrics —
a Two-Dimensional Integral Equation Solution

1. INTRODUCTION

There has been considerable interest throughout the 1970s and 1980s in the scattering of
electromagnetic waves from dielectrics, for a wide variety of applications. These include
propagation through rain and snow. dctection of airborne particulates, coupling of missiles
with plasmna plumes or dielectric-filled apertures, performance of communications antennas
in the presence of dielectric and magnetic inhomogeneities, scattering from birds and other
interference in radar systems, microwave hazards to biological (especially human) tissue,
hypothermia treatment of cancerous tissues, and last but not least. detection of non-metallic
{that is. electrically penetrable) components of military aircraft. missiles, and radar antennas.
Numerous papers have addressed mostly differential, but also some integral equation
techniques for calculating electromagnetic fields scattered by inhomogencous dielectric
objects. The volume integral equation method is a viable alternative to differential methods,
but it has not usually been applied to multi-wavelength objects becanse of the large matrix
inversions required. However. with the recent availability of parallel computers and new
matrix-solving algorithms. this limitation is being rapidly overcome.

A further limitation of integral equations concerns the careful treatinent of the source
region, a controversial issue in the recent past. Originally. this report was intended as a

continuation of the source region problem - an application meant to demonstrate a difference
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when one correctly represents the coincidence of the source and observation points in forming an
expression for the scattered electric field. The derivation of the matrix equation presented here
and the computer program used for the calculations thus follow directly from previous work on
the source region problem.!

Upon reviewing the existing literature about scattering from dielectrics, one quickly
discovers that in almost every article the primary reference is to Richmond's work of the early
1960s.23 Since Richmond's results match the physical optics approximation results, they have
been used as a baseline for comparison in all subsequent work. Surprisingly enough, the
theoretical development in this report parallels Richmond's. produced long before the source
region controversy emerged. Also, the results of the computer program precisely match
Richmond's results for the two-dimensional problem. Since Richmond omits nearly all of the
details of his calculation, it is difficult to determine whether he actually did consider the source
region, or simply had keen enough physical intuition to choose correct forms of the expressions
based on knowledge of their behavior for limiting cases. In this reporl. the details of the correct
closed form integral equation solution are presented explicitly, and the code is available {to DoD
workers) as an in-house resource for future modification. if desired.

2. OUTLINE OF THEORY

Figure | shows the geometry of a bistatic radar cross section problem. An incident wave
excites polarization currents in the dielectric target which then re-radiates the energy in the form
of a 'scattered’ field. Thus, the target is considered the source of the scattered field. and the
standard equation Eg.\, = E,y —~ Ej;, is used to calculate this scattered electric field at any point in
space. When Eg., is then expressed in terms of the unknown induced polarization current, it
quickly vields the scaltering cross section, or RCS, used to characterize the target's visibility to
radar.

An exact expression for the scattered electric field due to currents induced in a dielectric target
has been previously derived. taking care to properly account for the singularity occurring in the
electric Green's function when the source and observation points coincide (at
r=r).

' Silberstein, Marian (1991) Application of a generalized Leibniz rule for calculating
electromagnetic fields within continuous source regions, Radio Science, 26 (No. 1):183-190

(a more detailed version is contained in Rome Air Development Center Technical Report 88-333,
ADA212470.

2 Richmond. J.H. {1975) Scattering by a dielectric cylinder of arbitrary cross-section shape,
IEEE Transactions on Antennas and Propagation, AP-13:334.

% Richmond. J.H. {1966) TE-wave scaltering by a dielectric cylinder of arbitrary cross-section
shape, IEEE Transactions on Antennas and Propagation, AP-14:460.
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Lb . J(l’)

E (1) = iop, lim J:, G (r,r) - J(r) dV' + — (1)
v, 0

50

This outcome of the controversial "source region problem" contains the important source
dyadic. or fa' term, accounting for the field contribution at r = r'. The calculation in this
report starts from this expression. and solves the integral equation resulting upon its
insertion into the simple scattered field equation above. The reader is urged to review
Yaghjian's or Silberstein's development of Eq. (1).1.4

The following derivation is performed for a two-dimensional target, that is. an infinite
cylinder of arbitrary geometrical cross section. Both TE and TM polarizations are addressed,
with plane wave incidence assumed. The three-dimensional problem would proceed in the
same manner, but with a simpler Green's function, and is discussed briefly.

3. THEORY FOR TM POLARIZATION

We begin by considering the details of Eq. (1), which can be transformed via the Helmholtz

wave equation into the form:

E (r) =

lim J:, [V'xV'x IV hplrr) dV' + (2)
-V

4!!(1)&‘0 85—0 s

Note that the source dyadic term accounts for the contribution to the scattered electric field
from the principal volume, V3, excluding from the integral the singularity caused at the source

point. Also note the dyadic Iﬁ.‘ varies with the shape of this volume and the fixed position of
the singularity within it. Because we have a three-dimensional volume integral cquation but
wish to investigate a two-dimensional target as the source of the scattered field, we first

eliminate the z-dependence by performing the z-integration of the Green's function. and
expressing the current and its derivative operators as two-dimensional vectors.>

4 Yaghjian, A.D. (1985) Maxwellian and cavity electromagnetic fields within continuous
sources, Am. J. Phys.. 53:859.

5 Yaghjian. A.D. (1980) Electric dyadic Green's functions in the source region. Proc. IEEE.
68:258.
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£ yirr') dVv- =f f '
'—Vb A'Aa 2 —r | r-r ,

- f AH K| -t ) axdy.
A-A,

dz'dx'dy’

The position vector r has been replaced by the two-dimensional position vector t = Xx + Vv .
and the principal volume has been replaced by its two-dimensional analog. the cross-scctional
principal area A;. Substituting this Hankel function expression for y in Eq. {2). we have:

1 0 L, J(t)
E (t) = —— lim (VxV/'x JNH  (k|t-t'|) dA" + —mm—. (3)
dwg, oo A-A, ° fwr gy .

It is legitimate to move the double curl outside the z'-integration so it only includes y. because
the current is constant with respect to z'. The principal volume, of course, is also constant in
z'. Thus. the limits are not variable, the z'-integration is continuous. and the derivative
operator can be moved in and out of the 2' integral sign. From now on we will denote |t - t'|

as p. Using a vector identity. we recast curl (curl J) and write

..1 i , 2 ) , Lb * J(t)
E (t) = —— lim f Jt) « (V,\V, - VOH (kp) dA’" + ————. (4)
WE,, =0 A‘Aa g,
With some algebra, we arrive at the two-dimensional scattered field expression
K2 Ny I, - J(t)
E (t) = — lim Jt) - gt dA’ ¢ ——— (5)
e, 5 <0 Ja-a, 2jme
where
AY
o ( e ) (1)
T - — +l ”” (6)
& - 7|z




and

L6=—' (7)

We have inserted the value of the source dyadic {Eq. (7)] corresponding to a square principal
area because we wish to divide the target into square patches later in the numerical
calculation. If a different patch geometry is desired, Eé must be adjusted accordingly.>

We now consider the two possible polarizations of the incident wave. We begin with the
simpler TM polarization, in which E = EEZ. For a plane wave, this corresponds to either

E =2 or E = 2¢'¥. We need only solve the z-component of the equation:

2

- lim (J(t) - g%, dA". (8)

E,(t) = -
I8, 50 JA-A,

z

The equation for this polarization is simplified by the vanishing of the source dyadic term. In
addition, since the two-dimensional derivative operator has no z-component and the z-

component of I is 1, the Green's function is also simplified:

(é(:-)z _ %—H“) (9)

o

The equation solved by the FORTRAN program is then

TR, () N A
E. .., = -4—" lim H, (kp)d, () aA'. (101
30 JA-A,

To evaluate the electric field numerically, we approximate the integral as a suinmation
over the face of the target, divided into N square patches, each with a source point at its center.
To exclude the principal area, we initially allow it to occupy an entire square pateh, and
simply omit the contribution from that patch. The limit occurs as the number of patches
increases for a target of fixed size. In Section 5 we improve the accuracy of this treatment to
let the principal area approach zero while the square patch size remains fixed. and we then

calculate the contribution from the area between these two boundaries. In the meantime.




however. we exclude the singular point by omitting the entire self-cell from the summation as
follows:

N
Ao, "
) Z H K| ¢, ~t,1)I,(t) : i =n . an

Here. AA is the patch area. constant for all patches, and J; is considered constant over the

patch, at its center value. Since we want to consider dielectric targets. having only
polarization current, we substitute

Jml = Jpnl = —imP

il
= —imle — ¢, JE
= TE[O(.
Assuming 1 is constant over all patches, our scattered field expression then reduces to
AAmnu,t ()
— Z HPK b, -8By (t) : i =n (13)
and a summation equation is written as follows for each observation patch, n:
N
AAmp,T n )
E!n(- z (tn )= Ez (tn )+ —a Z Ho (k|‘n —tl‘ )Elnt z(ll' 1=t (14)

From a physical viewpoint, if we were to stand at the center point of patch n and measure the

field contributions from all the other patches except n we would sense the following
contributions:




AAwp T
— HY (k| t) —ty DB ,(t)

n=1: E,.,&)=E,, )+
+ H ey -ty DE,, (¢
ot HPK e, -ty DE,, ,(t)

Aop,T (15)

A
n=2: Ey., ) = Ep, ) + —a [H(on(klt2 -t I)Etot At
+ HPk Ity -t3 DE, ,(ts)

ot HPk 1ty ~ty DE g, ,(ty)) -

Clearly, we may substitute unity for the self-cell position (that is, the diagonal matrix element) in
our system of equations and we can write it® in the form Ax = B. For convenience, we then
multiply Eq. (15) by 4/AAwy,,. and replace E,, by J,/1. The N x N matrix equation appears in the
code in terms of J,, with the constant 4/AAwp,t on the matrix diagonal:

T (16)

AAnp,

4. THEORY FOR TE POLARIZATION

The TE incident wave is polarized in the perpendicular direction. so E= XE + E, and the

source dyadic does not vanish. In addition, the integral involves coupling between the x-and y-

6 Su, C.C. (1987) Calculation of electromagnetic scattering from a dielectric cylinder using
the conjugate gradient method and FFT, IEEE Transactions on Antennas and Propagation,
AP-35:1418.




directions, whereas the TM polarization was completely decoupled. Our scattered fiell
equation is

J (0

2ime

) HK -t ]I () dA +

N

EAAA
E  ar ((t) = iop, limf 1+ —
b—=0JA-A, k

where the dot product in the integrand. upon manipulation, becomes

(1)

(1) 1 J d
H +—-J,——-H0

K2 Y ox ay

1y 9 2y g (1+L _‘L)H(”J
2 y

We refer to the RHS of Eq. (18) as V;. Substituting the scattered field expression into the
standard equation, we have

N
W, WLE, (1)
Eiy () = B (1) - —— lim V (p. By ()] AA, + ———— .
AA—-O 2iweg
=

The last term is the source dyadic corresponding to the square principal area, as before.

Rearranging, we have

N
T(tn) mp,AA ' ]
Ej t(tn) =E, l(tn) - Zine, + 4 Z Vi [p. Ef ot )] i i=n

(17)

(18)

(19)

(20)

for each of N patches. Again. the stipulation i = n excludes the self-patch, where n denotes the

patch containing the observation point and i, the patch with the source point. The
components of Eq. (20) are:




1 1 wpoAA L& 1 9 0.
E t.)=4J.(t - ——
xine{tn) = Il ")[ t,) 2i(ueo} ¥ 4 Z Jx(l Y Twﬂ(" ) * JY? ax ay H“’

21

1 1 wp,AA 1 & 1 9 0 un
Ey inelty) = Jy(tn)[T(tn) - zmo] + — Zdy(l + FEFH“’) iz K}T;H‘U :

Note that the argument of the Hankel function is always kp indicating that each component of
the individual electric field induces both components of current, J — the reason why the x-and

y-components remain coupled. Differentiating the Hankel! function, Hi)“. we can express the

summation in the Ey ,,. equation of Egs. (21), as:

N

L

A similar result occurs for the summation in the Ey . equation. If we then write out the
summation for a target whose cross-section is divided into N square patches, we obtain this
time, a 2N x 2N matrix equation, whereas the TM polarization had only an N x N matrix to

H

H, H, (x,, - xl)2 (- x )y, - v
*y (22)

- +
© kltn_tll 'tn—tl'2 Itn-tll2

invert.

10




Exin(:lT T 'Jxl T
Exln<'2 Jx‘.’,
; Hankel \
\ functions ,
i I
I i
4 E S J o
AAwp N —_— AN
Eym( 1 vl
Eyine2 Hankel Jyo
] functions 1
1 1
{ |
| '

E J

xincN vN

B _ J L

(23)
We do not consider oblique incidence, but only the two cases E.lm = ?e"‘" {vertical target) and
E .= Relky (horizontal target). The constant C on the matrix diagonal is
1 1 L S
T 2ive | AAoy, (24)

After inverting the matrix, we then add Jx, and Jy,, to get 3n (p'). To calculate the far-field RCS, we

use the two-dimensional formula,

2

el

0. =2m (u_) (25)
2 b lHiluJ

where the incident H field in free space is Hine = —(€0/1o) /2 Eipe. and

N
_ - e TKPP A A I
H.,! = l K o / i px[gdi (p) e AA} . 26)

11




Thus, our final equation for the scattering cross section is

N
Ko 1 AA\2 | tkcosld - 2
02_0 (¢) = 4_50 (E) I pxz Jl [ COS(° 0|) Py . (27)

5. DERIVATION OF SELF-CELL CORRECTION

Until now, we have excluded the entire self-cell as though it were the liiting principal
area when, in fact. it may be too large to accurately model a tiny area shrinking in toward the
source point at its center. The accuracy improves as the number of cells per wavelength
increases, or the relative cell size shrinks. However, this is more and more computationally
demanding. As an alternative method for improving the accuracy of our calculation, let us
consider first the analogous three-dimensional situation. involving the volumetric self-cell,
Vse. surrounding a principal volume, V; (see Figure 2). Since we wish to use V, instead of Vg,
for the excluded region., we must calculate the contribution to the total field from the region
between V. and V.

TY / - ORIGINAL
SELF-CELL
- /4& 2 \ Vsc
r / \

» X

SHADED REGION
1S Vs -V,

Figure 2. Self-Cell Correction

12




For these calculations, we will use spheres and circles rather than cubes and squares:
conveniently, both shapes have identical principal volume and principal area expressions.”

The equation we have used until now for the scattered E field excluding an entire self-cell in
place of V4 is

- L - J(r)
E ..{r) = ing, lim L G; (r.r) - JI)dV' ¢ ——— 128)
8-0 Jv-v, fwe
We prefer to use
- 5 * J
E(r) = imu“f G-JdV + —— + AE__, (r), 29
VoV iwe ;

where the first term represents the contribution from all the cells, the secand term represents
the principal volume, and the third term represents the "intermediate” contribution we will
proceed to calculate.

Following the ideas outlined by Nachampkin.? we formulate AE(r) as:

AE(r) = lim iu)u“f G.(r.r)-J(r)dv.
-0 V.-V, (30)

Assuming J(r’) is constant over Vg,.

AE(r) = lim iop, J(r') - G(, (r. r) dVv' (31)
30 vV, -V,

where

7 Nachampkin. J. (1989) Integrating the dyadic Green's function near sources. IEEE

Transactions on Antennas and Propagation, 38:919.

13




- VxVx (\pi)
G, ~ ——— . (32)
4nk

We may easily express the electric Green's function in terms of the magnetic Green's function:

G - wal_ 1 , i) (33)
4n

Using Stokes' theorem. we then convert the volume integrals into surface integrals:

AE(r) = lim
8—0 U)Eo

Jg. [f n' x Gp(r. r) dS’ -f n' x Gu(r. r)ds'. (34)
S S,

Eliminating G from the integrand via

. . 1 . -
n'xG, = Ty (n'x VyxD (35)

with

kR
< (36)

4xR

vy = ik —%) R

gives

. kR
' xG,, = -(IR%L));— MR -("R 1] .
aR

{37}

Next, we integrate this quantity over the surfaces Sy and S,. If we choose V, and V; to be
spheres. where the radius of V. = a, and that of V5 = ry. when we integrate over the surface. Sg,.

14




the quantity R=Ir - r = a, since the observation point is at the center of the sphere. V. and
the source points, r' are on its surface (see Figure 3). Likewlise, when we integrate over the
surface S5 R = 135.

.
=2

-
<

w

@)

» X

z
Figure 3. Principal Volume Relative to Volume of Self-Cell
1 ,klj‘r'\'é,,lji,
' . '=— -1) — - +—| —= .
L_ n' x G (r, ¥} dS ype (tka~1) e "{ an S ~a ds an ks =z ds (38)
We recognize the term
. -—-,-ﬁvé' ds
4an s a (391

as the definition of LN_"’. and since I is constant, the second integral reduces to 1. Thus,

. - 1 i -
j n' x G (r. r) dS = — (tka-1) e“m [-ch +1]. (40)
S 4n ¢

15




Analogously, with r; as the radius of Vg,

-, = 1 -z
L n'x G (r, r) dS' = e (1krg-1) e'’s [-L; + 1l (41)
8

So. our equation for the intermediate electric field becomes

=i «{(ka-1) e* L _+1
AE(r) 5_r“r)l Tmior, Jgo * { Uka-1)e™ [-L  + 1]
L (42)
— (tkrg~1) €™ [-Ly + 11 }.
Taking the limit as 8-0. so rs—0. and considering the source dyadic for a sphere.
L=l =3 (43)
We now have:
AEr) = —>— { (ka -1)e’*® + 1}, (44)
6riwe

o

Now, we solve the two-dimensional problem in a completely analogous manner, using a
circular self-cell and ctrcular principal area. For the TM polarization, we had the equation for
the scattered electric fleld,

E,(t) = loj, f (€2 (L t) - J @), dA + AE). (45)
A-A_

To develop an expression for the intermediate fleld, we once again assume the current is
constant over the area of the self-cell.

16




AE,(t) = lim J,inp,
50

and express the Green's function in terms of the Hankel function in the integrand:

g% dA.

AscAy

—(p
BE,(t) = —= J, lim H (kp) dA".
40 Asr_AA

We can solve the indefinite integral:

2;
I'H‘O”(kit -t da = 2 k).

If we put in the limits ry and a, we have our result --

AE, (t) =

Continuing with the TE polarization, we had the equation for the scattered field:

. J(t)
E(t) = i(.,uuf gt t) - JX)dA + 5
A-A

and

AE(t) = imp, lim

s}
just as in the three-dimensional case. Next. we write AE in terms of 8, assuming Jy is

constant over A,

—WH,T

2k

5—0

J, tim [aH'(ka) - péH(ll)(kpé)].
5—+0

A

i

sr_Ab 4k

1w,

(v, x v, x B 1) g, da

17

+ AE(t),

(16)

(17)

(18)

(49)

(50)

(51)




AE(t) =

Jt.l:J.A (Vtxéf',,) dA' - lim (Vtxgm) dA] (52)

o 50 “A,

Since we can also show

J(VtxA)dA=J(f1,xA)dC. (53)
A C

we apply this two-dimensional version of Stokes' theorem to the two area integrals in Eq. (52).
to get

AE(t) = !

o 850 JC

J, -[J MxgwdC - Im| ('xgm dC']. (54)
c

Substituting Hankel functions for the cross product in this case gives

n'xgd= % (A, HY - A, v D) 11, (55)

The gradient of the Hankel function comes out to be

vHD _'(rtt_—:')rkﬂ(‘ng_e o, (56)
S0
nx gm= e H‘ (I-ne,l, (57)

and substituting back into the contour integrals,

18




(n?u

AE(t) = Ei J,~[H‘,'y‘ (-0,& + D dC' - lim H‘l”f (- & + D) dC'].
L 3—0 (\\\

‘sc

Note that the Hankel function is constant over the perimeter contours. as we evaluate the
four integrals around the circles Cq. and Cg, with the radius of C,. = a, and that of Cy = py. 1is
also constant, and we recognize

n¢& .
[ 7T dC -I.\' (59)

For a circle. we use>

B} 1 .
l«\ = ]s( = '—z" (60)
and our result becomes
WP,
AE(t) = 4—; J, aH(ln(ka) - é:im Ny H(ll) (kpg) ] 61)
—0

This is quite similar to the result for the TM polarization. For the last term. we can use the
small argument approximation for the Neumann function to get

-1
] 1
lim - ip, P F(l)(-,z k".\)

a0 (62)
The gamma function evaluates to unity. giving us the value
-2
Tk (63)
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for the desired limit. Substituting this into our results for both two-dimensional polarizations

we have:

_(Uuon (1) 21 (64)
AE(t) = —5— Jz |2t (ka) + B
and
_ -wpen m 2i (65)
AE(t) = T Ji|a (ka) + il

In the numerical calculation we simply replace the circular principal area with an equivalent
square principal area by forcing s = n!/2a, or in the case of volumes in three dimensions.
s =(4/3 m)1/3a,

6. NUMERICAL CALCULATION OF SCATTERING CROSS SECTION

Once we have arrived at the matrix equation, we simply choose a matrix solution method
to calculate the vector x in Ax = B, corresponding to the current induced in the target. Recall
also that B is the incident field vector, and the matrix A consists of Hankel functions that
depend only on the distances between the source and observation points. We initially chose a
Gauss-Seidel routine to invert the matrix, but recommend the conjugate gradient method be
used in a continuation of this project.5 The program discussed in this report works only for a
rectangular cylinder divided evenly into square patches, but can be modified for alternative
geometries: the analytical equations hold for an arbitrarily-shaped scatterer. It might be a
useful exercise to modity the code so it will accominodate a circular cylinder, since a closed
form solution exists for comparison with that particular case. although the physical optics
standard is thought to be a sufficiently accurate basis for comparison.

Figure 4 shows the model on which the code is based. A plane wave (at left) is incident on
the infinite rectangular cylinder, and the bistatic RCS is calculated as a function of the angle ¢
as indicated. The cross-sectional area of the cylinder is divided evenly into square patches,
indexed according to Figure 5, to take advantage of the rectangular symmetry. The origin of
the coordinate system is always set up to be at the geometric center of the target. The target
dimensions are specified on input and the program adjusts the incident field vector
accordingly if the polarization is specified as TE. The program expects either a square or a
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vertical target that is, with the longest side in the y-direction. The z-dimension is infinite for
a two-dimensional problem. The incident wave vector points in the +x-direction. The
program checks to make sure the user specified a vertical target. If the user inputs a hori-
zontal target, the program rotates the target and sets the incident wave vector in the +y-
direction, for grazing incidence. Thus. the user defines the two cases of plane-wave incidence

by the order in which the dimensions of the target appear in the input file.

N/2 N/4
‘_"'T+l 1121 3)|---—
- - %-0-1 3%1;0-1 e

Figure 5. Indexing Scheme for a Rectangular Target Divided Evenly Into Square Patches

Results were obtained for a variety of targets. Initial test runs were made with a square
cylinder. 0.8 x 0.8 wavelength, for z-polarization, for several values of the ratio ¢/+,. When
this ratio was set to 3.0, runs were made for N = 4. 16, 64, and 100. Results for these runs
appear in Figures 6 and 7. The ratio was then set to 1.1 to simulate a target that was almost
invisible to the wave (free-space target). to make sure the RCS approached zero. Figure 8

verifies this limit. The run time for a target with 100 patches (N = 100) was about 10 minutes.
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The next set of runs, at the top of Figure 9, also had a z-polarized incident wave, but the
parameters were set to correspond to Richmond's example (bottom). Richmond? used an
epsilon ratio of 4.0 and a slab measuring 50 patches x 1 and 2.5 x 0.05 wavelengths. We used a
similar slab measuring 100 patches x 2, but the real dimensions are still 2.5 x 0.05
wavelengths. Since we have 4 times as many patches, we expect an improvement tn accuracy.
We ran both orlentations with respect to the incident wave, as he did. We refer to these as
“horizontal target” (grazing incidence) and "vertical target”, (normal incidence) and thev are
depicted in the two columns of Figure 9. {Although we use ¢ = 0 as backscatter and 180° as the
forward scatter direction our angles in Figures 9 and 10 have been shifted to conform to
Richmond's definition.) Figure 10 shows the corresponding results for the xy- or TE polari-
zation. All the results of Figures 9 and 10 include the self-cell correction.

The graphs are identical for z-polarization, with a horizontal target. For both
polarizations, the vertical target graph is closer to the physical optics approxtimation than is
Richmond's. The horizontal target RCS for the xy-polarization is slightly higher than
Richmond's, but he gives no physical optics result for comparison in this case.

We experimented with leaving out the L+ J source term for the TE case, and found that as
expected, the L + J term is necessary to achieve a correct result. The self cell correction then
fine-tunes the accuracy of the RCS. We have presented a complete development of the theory
leading to this calculation, where Richmond omnits this issue from his discussion. or
incorporates the information contained in these terms by some other means. All the data
were produced using either the VAX 11-750 at RADC/EECT or the VAX 8650 scientific machine
at AFGL.

7. FUTURE EXTENSIONS

The original intent of this project was to continue, and to solve the problem in three
dimensions as well, and to allow for an inhomogeneous target (where p and ¢ vary with
position). The three-dimensional problem will involve inverting a matrix with N proportional
to (d/A)? rather than (d/A)2 for two dimensions. Although it has been sald that the analytical
calculation is less cumbersome than what we have already done for the two-dimensional case.
the computer resources needed are significantly greater.

Following are some suggestions for decreasing the computing time. First, one should use a
more efficient matrix solver, (such as conjugate gradient iteration combined with the FFT),
and consider the advantage of using dimensionless variables in the code. which also simplifies
the process of varying parameters. Furthermore, this problem. especially the inhomogenous
form. is a good candidate for a parallel processor. It might also be interesting to consider
doing a timestepped simulation of wave scattering, as an alternative to using the computer in
its usual number-crunching role.
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Figure 9. Upper iLeft: RCS of an Infinite Square Cylinder. 0.05 x 2.50 i, ¥ /¢4 = 4.0, Z Polari-
zation, With Vertical Target. Upper right: with horizontal target: for comparison with upper
left. Lower left: calculated scattering patterns of a homogeneous plane dielectric slab of the
same thickness and width as above, with a plane wave having normal incidence. and lower
right: with a plane wave at grazing incidence [after Richmond}
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Figure 10. Same as Figure 9. but for xy. or TE Polarization
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