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Electromagnetic Scattering From Dielectrics -

a Two-Dimensional Integral Equation Solution

1. INTRODUCTION

There has been considerable interest throughout the 1970s and 1980s in the scattering of

electromagnetic waves from dielectrics, for a wide variety of applications. These include

propagation through rain and snow. detection of airbornie particulates, coupling of missiles

with plasma plumes or dielectric-filled apertures, performance of communications antennas

in the presence of dielectric and mnagnetic inhomnogeneities, scattering from birds and other

interference in radar systems, microwave hazards to biological (eslxcially hunian) tissue.

hypotherina treatment of cancerous tissues, and last but not least. detection of non-iictallic

(that is, electrically penetrable) components of military aircraft, missiles, and radar antennas.

Numerous papers have addressed mostly differential, but also some integral equation

techniques for calculating electromagnetic fields scattered by inhotiogeneous dielectric

objects. The volume integral equation method is a viable alternative to diffierential methods.

bult it has not usually heezi applied to 1minulti-wavelength objects becallse of the largc Imatrix

inversions required. However. with the recent availability of parall'l computers and new

matrix-solving algorithms, this limitation is being rapidly overcome.

A ftirther limitation of integral equations concerns the carefil treatment of the source

region. a controversial issue in the recent past. Originally, this repmlt was intended as a

continuation of the source region problem - an application meant to demonstrate a difference

Received for Pimblicatio(n I May 1991



when one correctly represents the coincidence of the source and observation points in forming an
expression for the scattered electric field. The derivation of the matrix equation presented here
and the computer program used for the calculations thus follow directly from previous work on

the source region problem. I

Upon reviewing the existing literature about scattering from dielectrics, one quickly
discovers that in almost every article the primary reference is to Richmond's work of the early
1960s.2.3 Since Richmond's results match the physical optics approximation results, they have
been used as a baseline for comparison in all subsequent work. Surprisingly enough, the
theoretical development in this report parallels Richmond's. produced long before the source
region controversy emerged. Also, the results of the computer program precisely match
Richmond's results for the two-dimensional problem. Since Richmond omits nearly all of the
details of his calculation, it is difficult to determine whether he actually did consider the source
region, or simply had keen enough physical intuition to choose correct forms of the expressions
based on knowledge of their behavior for limiting cases. In this report, the details of the correct
closed form integral equation solution are presented explicitly, and the code is available (to DoD
workers) as an in-house resource for future modification, if desired.

2. OUTLINE OF THEORY

Figure 1 shows the geometry of a bistatic radar cross section problem. An incident wave
excites polarization currents in the dielectric target which then re-radiates the energy in the form
of a 'scattered' field. Thus. the target is considered the source of the scattered field, and the
standard equation E., .11 =Eq,, - Eir,. is used to calculate this scattered electric field at any point in
space. When E,,,, is then expressed in terms of the unknown induced polarization current, it

quickly yields the scattering cross section, or RCS. used to characterize the target's visibility to
radar.

An exact expression for the scattered electric field due to currents induced in a dielectric target
has been previously derived, taking care to properly account for the singularity occurring in the
electric Green's function when the source and observation points coincide (at

r= r).

Silberstein. Mariaui (199 I1 Application of a generalized Leibniz rule for calculating
electroluagnetic fields within continuous source regions, Radio Science. 26 (No. 11: 183-190
(a more detailed version is contained in Rome Air Development Center Technical Report 88-333.
ADA2 12470.
2 Richmond. J.H. (1975) Scattering by a dielectric cylinder of arbitrary cross-section shape.

IEFE Transactions on Antennas and Propagation. AP-13:334.

3 Richmond. J.H. (1966) TE-wave scattering by a dielectric cylinder of arbitrary cross-section
"shlal)e. IEE'J Transactions on Antennas and Propoaqtion. AP-14:460.
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- Lb - J(r)

Eseat(r) = iuoj. lrm r GE (r.r') J(r') dV + L (r(1
68o -v0 L 6OE 0

This outcome of the controversial "source region problem" contains the important source

dyadic, or L., term, accounting for the field contribution at r = r'. The calculation in this

report starts from this expression, and solves the integral equation resulting upon its

insertion into the simple scattered field equation above. The reader is urged to review

Yaghjian's or Silberstein's development of Eq. (1).1.4

The following derivation is performed for a two-dimensional target, that is. an infinite

cylinder of arbitrary geometrical cross section. Both TE and TM polarizations are addressed,

with plane wave incidence assumed. The three-dimensional problem would proceed in the

same manner, but with a simpler Green's function, and is discussed briefly.

3. THEORY FOR TM POLARIZATION

We begin by considering the details of Eq. (1), which can be transformed via the Helmholtz

wave equation into the form:

E (r) inn [V'xV'x J(r')]yp(r.r') dV + Lb (2)4 T 'J-'O 6-0 -V,, i°1)fO

Note that the source dyadic term accounts for the contribution to the scattered electric field

from the principal volume. Vb, excluding from the integral the singularity caused at the source

point. Also note the dyadic L• varies with the shape of this volume and the fixed position of

tll siniguilarity wil hiin it. Because we have a three-dimensional vowhtii, iiitrgiil q(ltuatioll buit

wish to investigate a two-diniensional target as the source of the scattered field, we first

eliminate the z-dependence by performing the z-integration of the Green's function, and

expressing the current and its derivative operators as two-dimensional vectors.?

4 Yaglhjian, A.D. (1985) Maxwellian and cavity electromagnetic fields within continuous
sources. Am. J. Phys.. 53:859.

5 Yaghujian. A.D. (1980) Electric dyadic Green's functions in the source region, Proc. IEEE.
68:258.
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ikirr
-J-(rr') dV' F - dz'dx'dy'

= f :6H0)(k I t-t' I) dx'dy'.

The position vector r has been replaced by the two-dimensional position vector t = xx + .Vv.

and the principal volume has been replaced by its two-dimensional analog, the cross-sectional
principal area A,. Substituting this Hankel function expression for 1p in Eq. (2). we have:

E (t) = liif [Vt'xV,'x J(t')I H(l (k t-t' ) dA' + L.J(t)3)
6~W -0 A-A,

It is legitimate to move the double curl outside the z'-integration so it only includes y. because

the current is constant with respect to z'. The principal volume, of course, is also constant in

z'. Thus, the limits are not variable, the z'-integration is continuous. and the derivative

operator can be moved in and out of the z' integral sign. From now on we will denote t - t.

as p. Using a vector identity, we recast curl (curl J) and write

-l 2(1)L<- J(t)

E (t) - lira f J(t'). (VV, - V2) H0 )(kp) dA' + i"t) (4)
ý_.o JA-A6 m~

With some algebra, we arrive at the two-dimensional scattered field expression

-k 2 It• .J(t)
E tim J(t') •g' dA' + (5}EOF (t) i•- - .0 f- As-^ 2i•t"Fo

where

g ( 'tVt I) l1,(' (6)

5



a nd

L 2 =(7)

We have inserted the value of the source dyadic [Eq. (7)1 corresponding to a square principal
area because we wish to divide the target into square patches later in the itmierical

calculation. If a different patch geometry is desired, 1, 6 must be adjusted accordingly.5

We now consider the two possible polarizations of the incident wave. We begin with the

simpler TM polarization, in which E = zE.. For a plane wave, this corresponds to either

E = 'zetk" or E = lelky. We need only solve the z-component of the equation:

El(t = (J(t') g)z dA'. (8)

The equation for this polarization is simplified by the vanishing of the source dyadic term. In
addition, since the two-dimensional derivative operator has no z-componeit and the z-
component of I is I. the Green's function is also simplified:

( = " H11  (9)

The equation solved by the FORTRAN program is then

Es"t(t) hjil HlM (kp)J4(t') dA'. (10)
S-0 LA-AI

To evaluate the electric field numerically, we approximate the integral as a summation
over tile fact, of the target. livided into N square patches. each with a sotrn n point at its center.

To exclude the principal area, we initially allow it to occupy an eiitire sqiihiel, pattch, aidl
simply omiit the contribution from that patch. The limit occurs as the ntimter of patches
increases for a target of fixed size. In Section 5 we improve the accuracy of this treatment to
let the principal area approach zero while the square patch size remains fixed, and we then
calculate tile contribution from the area between these two boundaries. lII tile nicantime.

6



however, we exclude the singular point by omitting the entire self-cell from the suinni•li n as

follows:

N
4 AA t () k t -i )Jz1 t4 ) ; i on

Here. AA is the patch area, constant for all patches, and Jz is considered constant over the

patch, at its center value. Since we want to consider dielectric targets, having only

polarization current, we substitute

J,",, = J,,l = AiP 12,

= -ih,(v - )

= TE1 ot.

Assuming T is constant over all patches, our scattered field expression then reduces to

N
4 H((k tn -tt, )Eo, '(t 1) i-n :131

and a summation equation is written as follows for each observation patch, n:

N

EIJnc z (t") E'ot z 411 )+ 4Aq(, F1 W (k It., -tjI )E'(,( z(tij ; i on. {4

From a physical viewpoint, if we were to stand at the center point of patch n and measure the

field contributions from all the other patches except n we would sense the following

contributions:

7



n=1 Ei,, ý(t 1) = E1ý (t 1) + AA(wpoT [H'ol(kI t -t 2 I )Etot z(t 2 )

0•l .."1(k I t, -t-, I)Eto, z(t:,)

A4 H)(k I t -t, I )Eo, Z(t1) I

n=2 E11X. z (t 2 ) = zot z (t2 ) + AA 4ogiT Ul-,j"k It, -t )E,0 , z(t (15)

+ I(1)(k I t 2 -t 3 )Etot z(t 3 )

.. + k t 2 -tN I)Etot z(tN)]

Clearly, we may substitute unity for the self-cell position (that is. the diagonal matrix element) in

our system of equations and we can write it 6 in the form Ax = B. For convenience, we then

multiply Eq. (15) by 4/AAop1 ,. and replace E1 t0 by J,/T. The N x N matrix equation appears in the

code in terms of J,. with the constant 4/AA(opo on the matrix diagonal:

4 4 (16)

E1i. z 4 \ mJt

\HO\

4. THEORY FOR TE POLARIZATION

The TE incident wave is polarized in the perpendicular direction, so E= £E + E and thex y'

source dyadic does not vanish. In addition, the integral involves coupling between the x-and y-

; Su, C.C. (1987) Calculation of electromagnetic scattering from a dielectric cylinder using
the conjugate gradient method and FFT. IEEE Transactions on Antennas and Propagation.
AP-35:1418.
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directions, whereas the TM polarization was completely decoupled. Our scattered field

equation is

E t(t)= imp' lim - + • )(kIt-t' )Jt(t') dA' + (t)17)

b-O fA-A k 2iw" o

where the dot product in the integrand, upon manipulation, becomes

0 0+ Jx I + ~)( t- ')J (' k-2 - k 2 Y )x ly o

k'}
k_2 x Xy X0 Y k 0• 0

We refer to the RHS of Eq. (18) as Vt. Substituting the scattered field expression into the

standard equation, we have

N

(I' rn )V (t)Et tot(t)

Eto t A(t) = Eili, 1(t) 4- tim Vt [p, E( tot(t')] A"n + "19)

The last term is the source dyadic corresponding to the square principal area. as before.

Rearranging. we have

N

Elm( 1(t11 ) = (tot t[) I . 0 J + 4A Vt [p. Et t1 t(t')] ; ion (20)

for each of N patches. Again, the stipulation I a n excludes the self-patch, where n denotes the

patch containing the observation point and i, the patch with the source point. The

components of Eq. (201 are:

9



N

E ( ) j ____ WV0 AA 1 12~
E~n (t, j ~ (t 11  2ii x I~ + 1,~) + ky I~ y

x in (tnj) 2ij)Oo + 4 7-•x• 7 J~-TX Tyx -•

(21)

N

1] + tj)PAA 'd,(1+i~ 4 ) aý a1 (l)Eyine(ti) = JY(tn T(t 1 ) 2i(o0J 4 Jy I + --7714 +Jxk--;- OxTy

Note that the argument of the Hankel function is always kp indicating that each component of

the individual electric field Induces both components of current. J - the reason why the x-and

y-components remain coupled. Differentiating the Hankel function. H we can express the

summation in the Ex il equation of Eqs. (21), as:

N x [ k tH . _ _ H , H 2  (xn -nXt, 2 +J - H2 (xn- x1)(yn) y,)- yd (22)kx I t.-ti + It" t 1 2 j [i - • (22)

A similar result occurs for the summation in the Ey m,, equation. If we then write out the

summation for a target whose cross-section is divided into N square patches. we obtain this

time, a 2N x 2N matrix equation, whereas the TM polarization had only an N x N matrix to

invert.

10



Exmnc I jx1

ExmJx 2

IHankel

I fu nctions I

4 -4 Exln(N 
'J N'N

AA( ro . . C

• Hankel 'J")

I functions

I

I

Exiln(N jyN
(23)

We do not consider oblique incidence, but only the two cases E = y'e kx (vertical target) and

E, = Zeiky (horizontal target). The constant C on the matrix diagonal is

Lt jAA~oi "1(24)

After inverting the matrix, we then add J,d and J,, to get J (p'). To calculate the far-field RCS. we

use the two-dimensional formula,

(CT,, 2' ir 25)

where the incident H field in free space is Hi, = -(-o/Po/2 Einc, and

N I

-,a kx X J1 ( Ip) e I (26)

P ji (P'



Thus. our final equation for the scattering cross section is

N
kP0  AA\ 2 Ji Pcios( _ )p1  2

(32-1D ký - ~ ( p 1~ (27)&
4E0  F,0 ,

5. DERIVATION OF SELF-CELL CORRECTION

Until now, we have excluded the entire self-cell as though it were the limiting principal

area when, in fact. it may be too large to accurately model a tiny area shrinking in toward the

source point at its center. The accuracy Improves as the number of cells per wavelength

increases, or the relative cell size shrinks. However, this is more and more computationally

demanding. As an alternative method for improving the accuracy of our calculation, let us

consider first the analogous three-dimensional situation, Involving the volumetric self-cell.

V., surrounding a principal volume. V6 (see Figure 2). Since we wish to use Vt, instead of Vs,

for the excluded region, we must calculate the contribution to the total field from the region

between V, and V6 .

Y ORIGINAL

ZI Vsc

SHADED REGION
Is VsC -V6

" V6

Figure 2. Self-Cell Correction
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For these calculations, we will use spheres and circles rather than cubes and squares:

conveniently, both shapes have identical principal volume and principal area expressions.-

The equation we have used until now for the scattered E field excluding an entire self-cell in

place of V6 is

- LZ J(r)
E, (.(r) = ihjqt, lini G,,G (r.r) - J(r') dV' + (28)

We prefer to use

Lb

E(r) = G-JdV' +-- + AE,, (r). 129)

where the first term represents the contribution from all the cells, the second term represents

the principal volume, and the third term represents the "intermediate" contribution we will

proceed to calculate.

Following the ideas outlined by Nachampkin. 7 we formulate AE(r) as:

AE(r) = Hln i,,i,, G, (r. r') J(r) dV'.
6-0 fV-%1' 30)

Assuming Jir') is constant over VSC(.

AE(r) = lir J(, (r. r') dV' (31)

where

7 Nachampkin. J. (1989) Integrating the dyadic Green's function near sources. IEEE
Transactions on Antennas and Propagation. 38:919.

13



Sv x v x (API)G . ....... = (321
4nk2

We may easily express the electric Green's function in terms of the magnetic Green's function:

- VxVi 1oT- = 4 (V'x I). (33)

Using Stokes' theorem, we then convert the volume integrals into surface integrals:

AE(r) = lim I Jý. ifi x dni(r. r')dS' -f 1n x 6,,(r. r') dS'1. (34)
6- 0S 6 j

Eliminating G from the integrand via

1ix~ -(r'x V• x ) (35)
i,•4x GV 

(354)K

with

Vq ik-•- 4R (36)

gives

GM WAR G2(ikl - 1) e (37)
(43KR) 2  t" (;)I

Next. we integrate this quantity over the surfaces S.,. and St. If we choose V, and Vb to be

spheres. where the radius of Vs,( = a, and that of V6 = rt. when we integrate over the surface. S,(..

14



the quantity R = r - r = a, since the observation point is at the center of the sphere. V.•, and

the source points, r' are on its surface (see Figure 3). Likewise. when we integrate over the

surface S8. R r8.

n

y

VSC

6

z

Figure 3. Principal Volume Relative to Volume of Self-Cell

iI. x dm(r. r') dS'= -• (Ika-1) eik 4 - a-i-- dS' + 1 i dS'l. (38)

We recognize the term

f ,,erdS' (391

as the definition of L "•. and since I is constant, the second Integral reduces to I . Thus.

' tx Gm(r. r) dS.' - (Ika-1) elka I-L + 11 (40)
"S4n.15

15



Analogously. with r5 as the radius of V6 .

ni' x G•mr. r') dS' =. (ikr 6 -1) e"kr8 I-L 6 + 11. (41)
S8

So. our equation for the intermediate electric field becomes

AE(r) = lrmn J.C { (ika-) eika [-L + I]
&0 4niwco

(42)

- (ikr6-1) e ir - + 1 ] }.

Taking the limit as &--O. so r6 -*O. and considering the source dyadic for a sphere.

L6=L =_ . (43)

8C 3

We now have:

AEkr) = -- { (Oka -1)e iea + 1}. (44)

Now, we solve the two-dimensional problem in a completely analogous manner, using a

circular self-cell and circular principal area. For the TM polarization, we had the equation for

the scattered electric field,

Ez(t) = 16 01o ,f [go (t, t) J (t')l dA' + AEz(t). (45)

To develop an expression for the Intermediate field, we once again assume the current is

constant over the area of the self-cell.

16



AEz(t) = lir Jz imo f g•o dA'. (4

and express the Green's function in terms of the Hankel function in tihe integrand:

AEz(t) = 4 dz lim H(l)(kp) dA'. (17)4 0 -A 0

We can solve the Indefinite integral:

f H()')k It t-t) dA' -- !MP (=1)

If we put in the limits 1, and a, we have our result --

AEz (t) = - J• lir [aR(ka) - (49)2k d- 1 (49)

Continuing with the TE polarization, we had the equation for the scattered field:

•-o Jt(t)
E(t) = iLof ge (t. t) J (t) dA' + 2 1WF 0 + AE(t), (50)fA-A, 2imF.o 50

and

--E(t) = iLhl -A =4 (Vt X Vn x )J dA', (51)

8-0)

Just as in the three-dimensional case. Next. we write AE in terms of g. assuming J, is

constant over A,(.

17



AE0iim it~g~ dVt9.lAE(t)= Jt (Vxg) dA' -lim (Vx )dA'

Since we can also show

fA (Vt x A) dA = fc (rt x A) dC. (53)

we apply this two-dimensional version of Stokes' theorem to the two area integrals in Eq. (52).

to get

AE i fi x0 W-li (i x0 dCj.(OE °[c g• _Ofg 9f (54)
0)• [Jfl •~ -40 C8

Substituting Hankel functions for the cross product in this case gives

•, = - • (1i.VHo•) ii. (55)

The gradient of the Hankel function comes out to be

tqHol, (t -t') k ()__ _e (Ii1) 56

so

li x 9 4 jtII-nli (57)

and substituting back Into the contour Integrals,

18



AEt ) F ^I +id - urn + I) dC" (58)4,,,, L ,,,,• -0 IN<

Note that the Hankel function is constant over the perimeter contours. as we evaluate thl
four integrals around the circles C. and C6, with the radius of C,, = a, and that of C, = p,. I is

also constant, and we recognize

, e dC' •.19

For a circle, we use5

- -
(ii's = ,( = , (60)

and our result becomes

AE(t) = 4L J [a H (ka) - lima p H (kp•) p . 61)

This is quite similar to the result for the TM polarization. For the last term. we can use the

small argument approximation for the Neumann function to get

I -I
I i In r(l)

2o (621

The gamma function evaluates to unity, giving us the value

2i
rk (63)
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for the desired limit. Substituting this Into our results for both two-dimensional polarizations

we have:

-(01o 'A H (k) + 2i]

AEZ(t) 2k Jz [a H(ka), + T , (641

and

AE(t)W= J, [aH('•(ka) + (65

In the numerical calculation we simply replace the circular principal area with an equivalent

square principal area by forcing s = n I / 2 a, or in the case of volumes in three dimensions.

s = (4/3 .)1/ 3 a.

6. NUMERICAL CALCULATION OF SCATTERING CROSS SECTION

Once we have arrived at the matrix equation, we simply choose a matrix solution method

to calculate the vector x in Ax = B, corresponding to the current induced in the target. Recall

also that B Is the incident field vector, and the matrix A consists of Hankel ftinctioiis that

depend only on the distances between the source and observation points. We initially chose a
Gauss-Seidel routine to invert the matrix, but recommend the conjugate gradient method be

used in a continuation of this project. 6 The program discussed in this report works only for a

rectangular cylinder divided evenly into square patches, but can be modified for alternative

geometries: the analytical equations hold for an arbitrarily-shaped scatterer. It might be a
ist,'ftil exercise to modify' the code so it will accommodate a circular cylinder, since a closed

form solution exists for comparison with that particular case, although the physical optics

standard is thought to be a sufficiently accurate basis for comparison.

Figure 4 shows the model on which the code is based. A plane wave (at left) is incident on
the infinite rectangular cylinder, and the bistatic RCS is calculated as a function of the angle q

as indicated. The cross-sectional area of the cylinder is divided evenly into square patches.

indexed according to Figure 5, to take advantage of the rectangular symmetry. The origin of

the coordinate system is always set up to be at the geometric center of the target. The target

dimenslons are specified on input and the program adjusts the incident field vector

accordingly if the polarization is specified as TE. The program expects either a square or a
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vertical target that is, with the longest side in the y-direction. The z-diiiiension is infinite for

a two-dimensional problem. The incident wave vector points in the +x-direction. The

program checks to make sure the user specified a vertical target. If the user inputs a hori-

zontal target, the program rotates the target and sets the incident wave vector in the +y-

direction, for grazing incidence. Thus, the user defines the two cases of plane-wave incidence

by the order in which the dimensions of the target appear in the input file.

NN

T+ 1 2 3
L+I -LN+1 --

Figure 5. Indexing Scheme for a Rectangular Target Divided Evenly Into Square Patches

Results were obtained for a variety of targets. Initial test runs were made with a square

cylinder. 0.8 x 0.8 wavelength, for z-polarization, for several values of the ratio i/t. When

this ratio was set to 3.0, runs were made for N = 4. 16. 64, and 100. Results for these runs

appear in Figures 6 and 7. The ratio was then set to 1. 1 to simulate a target that was almost

invisible to the wave (free-space target). to make sure the RCS approached ze-ro. Figure 8

verifies this liit. The run time for a target with 100 patches IN = 100) was about 10 minutes.
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The next set of runs, at the top of Figure 9, also had a z-polarized incident wave, but the

parameters were set to correspond to Richmond's example (bottom). Richmond 3 used an

epsilon ratio of 4.0 and a slab measuring 50 patches x 1 and 2.5 x 0.05 wavelengths. We used a
similar slab measuring 100 patches x 2. but the real dimensions are still 2.5 x 0.05
wavelengths. Since we have 4 times as many patches. we expect an improvement in accuracy.
We ran both orientations with respect to the incident wave, as he did. We refer to these as

"horizontal target" (grazing incidence) and "vertical target", (normal incidence) and the' are

depicted in the two columns of Figure 9. (Although we use 0 = 0 as backscatter and 180' as the
forward scatter direction our angles in Figures 9 and 10 have been shifted to conform to

Richmond's definition.) Figure 10 shows the corresponding results for the xy- or TE polarl-

zation. All the results of Figures 9 and 10 include the self-cell correction.
The graphs are identical for z-polarization, with a horizontal target. For both

polarizations, the vertical target graph is closer to the physical optics approximation than is
Richmond's. The horizontal target RCS for the xy-polarization is slightly higher than
Richmond's, but he gives no physical optics result for comparison in this case.

We experimented with leaving out the 1,, J source term for the TE case, and found that as

expected, the L - J term is necessary to achieve a correct result. The self cell correction then

fine-tunes the accuracy of the RCS. We have presented a complete development of the theory
leading to this calculation, where Richmond omits this issue from his discussion, or
incorporates the information contained In these terms by some other means. All the data

were produced using either the VAX 11-750 at RADC/EECT or the VAX 8650 scientific machine

at AFGL.

7. FUTURE EXTENSIONS

The original Intent of this project was to continue, and to solve the problem in three

dimensions as well, and to allow for an Inhomogeneous target (where p and r vary with

position). The three-dimensional problem will involve inverting a matrix with N proportional
to (d/)- 3 rather than (d/X)2 for two dimensions. Although it has been said that the analytical

calculation is less cumbersome than what we have already done for the two-dimensional case.

the computer resources needed are significantly greater.

Following are some suggestions for decreasing the computing time. First, one should use a
more efficient matrix solver, (such as conjugate gradient Iteration combined with the FFM1,

and consider the advantage of using dimensionless variables in the code. which also simplifies
the process of varying parameters. Furthermore. this problem, especially the tnhomogenous
form. is a good candidate for a parallel processor. It might also be Interesting to consider

doing a tlimestepped simulation of wave scattering, as an alternative to using the computer in
its usual number-crunching role.
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Figure 9. Upper Left: RCS of an Infinite Square Cylinder. 0.05 x 2.50 )_ t /F0 4.0, Z Polari-

zation. With Vertical Target. Upper right: with horizontal target: for comparison with tipper
left. Lower left: calculated scattering patterns of a homogeneous plane dielectric slab of the
same thickness and width as above, with a plane wave having normal incidence. and lower
right: with a plane wave at grazing incidence (after Rlchmondl
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