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THERMO-DYNAMIC CHARACTERISTICS OF
NITINOL-REINFORCED COMPOSITE BEAMS
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DC 20064, U.S.A.

(Received 6 March 1992; accepted 20 March 1992)

Abstract—The dynamic characteristics of flexible composite beams are controlled by heating sets
of shape memory alloy (NITINOL) fibers embedded along the neutral axes of these beams. The
activation of the shape memory effect of the fibers increases the elastic energy and enhances the
stiffness of the composite beams. With such capabilities, the vibration modes of the beams can be
tailored and shifted away from the excitation frequency band in order to avoid undesirabie
vibrations.

Emphasis is placed, in the present study, on the effect of intentional electrical heating of a
selected subset of the NITINOL fibers on the overall dynamics of the beams. The effect of the
associated thermal energy propagating through the composite on the unintentional thermal
activation of additional subsets of the NITINOL fibers is accounted for. Such an effect is not only
significant but also essential to the thorough understanding of the operation of NITINOL-
reinforced composites.

Finite element models are developed to describe the interaction between the thermal and
dynamic characteristics of the NITINOL composites as well as the interaction between the
intentional and unintentional activation of the NITINOL fibers. The models are experimentally
validated and close agreement is obtained between the theoretical predictions and the experimental
results. The mathematical models and procedures described in this paper provide an invaluable
means of predicting realistic performance of NITINOL-reinforced composites.

NOMENCLATURE
(A] interpolating function of beam deflection ; 5
[A,] ith element of [A] DTIC QUALITY INSPECTED 3
A cross-sectional area of the beam
[B] matrix of the first derivatives of the nodal interpolating functions
[C], (D] first and second derivatives of the interpolating function of beam deflection
E, Young’s modulus of the bem Accesion For
[F1 vector of external loads acting on the beam
h convective heat transfer coefficient NTIS CRA&I z
1 area moment of inertia of the beam DTIC TAB
k thermal conductivity of the beam Urnannounceg B
{k7 .31  matrices given by eqns (16), (17) and (18), respectively Justification .
(X,] stiffness matrix of the beam element == @ jb———ou AR
b, direction cosines of outward normals to the beam boundaries By
L length of the beam element and NITINOL fiber D T e
M, external moment acting at the ith node ‘ Istbutio
(M,] mass matrix of the beam element AvmiaT':T:v.T; (s B
m,(i,j) the element i, of the mass matrix S e
[N} interpolating function of the beam temperature ) Avan 3.l .
N, interpolating function of the ith node Dist DL lia
p number of vertices of the element |
P mechanical, net and thermal axial loads acting on the beam
(P°] matrix given by eqn (19) ‘/
qn generalized coordinate of the nth vibration mode of the NITINOL fiber
Gn generalized acceleration of the nth vibration mode of the NITINOL fiber
Q heat flux per unit area
Si: boundaries of the NITINOL fibers and the beam, respectively
t time

T initial tension in a NITINOL fiber

T, total tension in a NITINOL fiber

|4 shear force acting at the ith node

w transverse deflection of the beam and NITINOL fibers

X, V.3 Cartesian coordinates along the beam neutral axis and cross-section, respectively
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Greek letters

«a thermal diffusivity of the beam

[0 the deflection vector of the beam element

9, angular deflection of the ith node

© temperature at any location (y, z) of the beam cross-section
o, ambient temperature

()] vector of the nodal temperatures of the element

b, mode shape of the nth mode

w, natural frequency of the nth mode.

1. INTRODUCTION

Considerable attention has been devoted recently to the utilization of the Shape Memory
NIckel-TItanium alloy (NITINOL) in developing SMART composites that are capable of
adapting intelligently to external disturbances (Ikegami et al., 1990; Rogers et al., 1991;
Baz et al., 1990, 1991a,b). Such wide acceptance of NITINOL stems from its unique
behavior when it is subjected to particular heating and cooling strategies. For example,
the alloy becomes soft when it is cooled below its martensite transformation temperature
and becomes about four times stiffer when it is heated above its austenite transformation
temperature (Funakubo, 1987). Furthermore, if the alloy is trained to have a particular
shape while in its austenite phase, it will memorize this shape. If the alloy is then cooled to
its martensite phase and subjected to plastic deformation, it will return to its memorized
shape when it is heated above the austenite transformation temperature. The phase trans-
formation from martensite to austenite produces significant forces as the alloy recovers its
original shape. The alloy acts as an actuator transforming thermal energy into mechanical
energy (Perkins, 1975; Duerig et al., 1990). Accordingly, if the NITINOL fibers are
embedded inside a composite matrix at optimal locations, they can be used to control the
static and dynamic characteristics of the resulting SMART composite. The control action
is generated by the described stiffening of the NITINOL fibers and/or the shape memory
effect. With such built-in control capabilities, the performance of the SMART composites
can be optimized and tailored to match changes in the operating conditions.

It is therefore the purpose of this study to develop a thorough understanding of the
fundamentals governing the operation of NITINOL-reinforced composite beams. The
individual contributions of the composite matrix, the NITINOL fibers and the shape
memory effect to the overall dynamic performance of the composite beams will be
determined. Also, the influence of the temperature distribution inside the composite,
which results from the activation of a small subset of the NITINOL fibers, on the overall
performance of the entire beam will be addressed both theoretically and experimentally.
Such an important interaction between the thermal and dynamic characteristics of the
NITINOL-reinforced composites has not been addressed in the previous analyses of
Rogers et al. (1991) and Jia and Rogers (1989). In these studies, the NITINOL-reinforced
composites have been considered to operate isothermally even though the activation and
deactivation of the NITINOL fibers subject these composites to non-uniform temperature
fields. Furthermore, the effects of intentional elzctrical heating of a selected subset of the
NITINOL fibers and the associated thermal energy propagating through the composite on
the unintentional thermal activation of additional susbsets of the fibers have not been
considered by Rogers et al. (1991) and Jia and Rogers (1989). These effects significantly
alter the dynamics of NITINOL-reinforced composites, particularly those made of
multi-lamina where the intentional electrical activation of a NITINOL lamina, by an
active controller, will generate enough heat to activate thermally and unintentionally the
adjacent NITONOL laminas. The phenomena associated with intentional electrical
activation and the associated unintentional thermal activation will be addressed, in detail,
in the present study.

The present paper is organized in five sections. In Section 1 a brief introduction is
given. In Sections 2 and 3 the dynamic and thermal models of the NITINOL-reinforced
composites are presented, respectively. The experimental behavior of a single and two-
layer NITINOL-reinforced composite is given in Section 4, both in the time and frequency
domains. Section S summarizes the results and the conclusions of the study.




NITINOL.-reinforced composite beams 529
2. THE DYNAMICS OF NITINOL-REINFORCED COMPOSITE BEAMS

In the present study, the NITINOL-reinforced composites are made by embedding
the NITINOL fibers inside vulcanized rubber sleeves placed along the neutral axes of
these composite beams, as shown in Fig. 1. In this arrangement, the NITINOL fibers are
free to move during the phase transformation process in order to avoid degradation
and/or destruction of the shape memory effect which may result when the fibers are
completely bonded inside the composite matrix.

FIBERGLASS COMPOSITE BEAM

XA CIXIOCH KX S X
SRSSRIRS
RN RINLLLN AL

SLEEVE NITINOL FIBER

Fig. 1. A schematic drawing of the cross-section of a NITINOL -reinforced composite beam.

The dynamic characteristics of this class of NITINOL-reinforced beams are obtained
by dividing each beam into finite elements. The forces typically acting on any of these
elements are displayed in Fig. 2 along with the associated nodal displacements. The
stiffness and mass matrices of each beam element are derived in Sections 2.1 and 2.2,
respectively, using the theory of Bernoulli-Euler beams. The overall stiffness and mass
matrices of the entire beam are obtained by assembling the stiffness and mass matrices of
the individual elements (Paz, 1991).

| { |
M g o M;
|

“‘\"'d"}.:"\' 2
.f,l—' XX l.'o.ooﬁ’?‘ S\

V| Vj

(a) (b)

Fig. 2. NITINOL-reinforced beam element with forces and resulting displacements.

2.1. The stiffness matrix

The element stiffness [K,.] is made up of the flexural rigidity of the beam, the
geometric stiffness that accounts for the axial and thermal loading as well as the stiffne s
imparted by the elasticity of the NITINOL fibers. The combined stiffness of the element
is obtained using the principle of conservation of energy and equating the work done by
external loads to the strain energies stored in the element as follows:

Sum of work done by external loads = Sum of stored strain energies

or
L rL

L{81T(F) + Pn/2 S (dw/dx)*dx + P/2 j (dw/dx)* dx
[}

Q

L L
=E,,,I,,,/2j (d*w/dx?)? dx + T,/zj (dw/dx)* dx (1

0 0
where the terms on the left-hand side denote the work done by the transverse loads and
moments, the axial mechanical loads P, and axial thermal loads P,, respectively. The
terms on the right-hand side define the strain energy stored by virtue of the flexural
rigidity E,,I,, of the beam and the energy stored in the NITINOL fibers due to their

transverse deflection w while under tencion T recnectivelv
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In eqn (1), the thermal loads P, is generated by changes in the temperature A® of
the element caused by changes in the ambient temperature or by the activation and
de-activation of the NITINOL fibers. It is given by

P,=aAOE,A,, (2)

where « is the thermal expansion coefficient of the composite, E,, is its modulus of
elasticity, and A,, is the cross-sectional area of the beam. .

Equation (1) reduces to
L

L
[01¥[F] = E. I, j (d®w/dx?)? dx - P, X (dw/dx)? dx, 3)
0 0

where P, is the net axial force given by
Pn=(Pm+Pl—T;)- (4)

Defining a proper displacement function for the composite beam element, one can

write the deflection w as
w = [A][d], (&3]

where the elements of matrix {4] are a function of x (Fenner, 1975).
Accordingly, dw/dx and d*w/dx? can be obtained by differentiating eqn (5) with
respect to x to yield

dw/dx = [C][9] and  d’w/dx? = [D]{d]. (6)
If the stiffness matrix [K,] of the element is defined by the following relationship
[F] = [K.14], (N

then [K,] can be determined by combining eqns (3), (6) and (7) as follows:
L L
K.] = En I, S [D1'[D) dx - P, j [CIT[C] dx. (8
0 0

The element stiffness matrix [X,], given by eqn (8), consists of two components:
the conventional transverse stiffness and the geometric stiffness that combines the effect
of the axial mechanical loads, axial thermal loads and the tension of the NITINOL
reinforcing fibers. Equation (8) also represents the basic equation for understanding the
role that the NITINOL fibers can play in controlling the stiffness of the composite beam.
For example, if the initial fiber tension T,, resulting from the pre-strain alone, is high
enough to counter-balance the mechanical and thermal effects (i.e. B, = 0), then the beam
stiffness can be maintained unchanged. For higher pre-strain levels, the beam stiffness can
be enhanced. Further enhancement can be achieved when the shape memory effect of the
NITINOL fibers is activated by heating the fibers above their phase transformation
temperature. The additional tension, induced into the fibers by the phase recovery forces,
makes the net axial load P, negative and accordingly increases the overall stiffness of the
beam. However, it is essential that the total tension in the NITINOL fibers, i.e. the
sum of the tension due to the pre-strain and the phase recovery force, must exceed the
mechanical and thermal loads and compensate for the softening effect in the matrix
resulting from heating the NITINOL fibers inside the composite matrix.

2.2. The mass matrix

~ The element m,(i, /) of the mass matrix {M,] of the beam element is obtained using
the consistent mass formulation (Zienkiewicz and Taylor, 1989) as follows:
L

my(i,j) = pmAmj Aid;dx 9
0

where A; and A; are the ith and jth elements of the vector A given by eqn (5). Also in
eqn (9), p,, denotes the density of the composite beam.
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The classical finite element approach is used to form the equations of motion of the
assembly of several beam elements along with the appropriate boundary conditions. The
solution of the eigenvalues of the resulting homogeneous equations gives the natural
frequencies of the composite beam as influenced by the properties of the matrix and the
NITINOL fibers. It is important to note that these properties are influenced by the
temperature distribution inside the beam which is developed by virtue of activating and
de-activating the NITINOL fibers. A study of the temperature distribution inside
NITINOL-reinforced beams is presented in Section 3.

The analysis presented here is for an orthotropic laminate that has a single layer of
unidirectional NITINOL fibers. Such an analysis can be used along with the classical
laminate theory to assemble the stiffness matrix for a multi-laminate composite beam.
A similar approach is carried out for modeling the static and dynamic characteristics of
NITINOL-reinforced composite plates (Ro, 1992).

3. THERMAL CHARACTERISTICS OF NITINOL-REINFORCED COMPOSITE BEAMS

The thermal characteristics of NITINOL -reinforced composite beams are influenced
primarily by the temperature distribution inside the composite. A thermal finite element
model is developed to determine steady-state and transient temperature distributions
resulting from different activation strategies of the NITINOL fibers. The theoretical
predictions are compared with experimental measurements in order to validate the
thermal model.

It is important here to note that although the finite element model used in predicting
the beam dynamics is a one-dimensional model, with the single dimension taken along the
beam neutral axis, the thermal model is considered to be two-dimensional model to
predict the temperature distribution over the beam cross-section. Such a distinction is
made because the temperature distribution, along the beam neutral axis, is assumed to be
uniform. This assumption is confirmed experimentally and is attributed to the fact that
the NITINOL fibers are oriented parallel to the neutral axis (Baz et al., 1992). The beam
temperature, however, varies only over the cross-section and its magnitude depends on the
number and location of the activated or de-activated NITINOL fibers. The resulting
temperature distribution can be used to compute an average modulus of elasticity of the
composite. The average temperature rise above ambient can also be used to compute the
axial thermal loading on the beam P, which results from fixing the two ends of the beam.

The two-dimensional thermal modeling of the beam is favored over a one-dimen-
sional lumped-parameter approach because it provides a more accurate simulation of the
thermal state of the beam.

THE THERMAL FINITE ELEMENT MODEL

The energy balance equation that governs the heat transfer across the beam can be
written, in a two-dimensional Cartesian coordinate system, as follows
¥ 360 O 140
ACONEAC R (10)
dy- 9= k «a dt

where © is the beam temperature at time t and location (y, 1) as defined in Fig. 3. In
eqn (10), O defines the rate of heat generated per unit area during the activation of
the NITINOL fibers. Also, k denotes the conductivity of the beam and « its thermal
diffusivity.
The above equation is subject to the following boundary and initial conditions
. [ 30 30

— 1, +—=—0L|+0=0 on boundary §,, (1
av - az -

+ h(O® - 0,)=0  on boundary S.. (12)
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Fig. 3. Schematic drawing of the beam cross-section with heat transfer boundaries.

and
O(y,z,t =0) = Oy(y,2)  on the beam cross section. (13)

Equation (11) defines the condition at the NITINOL fiber circular boundary S, on
which the heat flux Q is specified, and eqn (12) specifies the conditions at the beam outer
boundary S, where the interaction with the ambient temperature ©, is through convective
heat transfer with coefficient h. The boundaries S, and S, are defined in Fig. 3. In
eqns (11) and (12), /, and /, denote the direction cosines of the outward normals to the
boundaries. Equation (13) describes the initial temperature distribution over the beam
cross-section at time t = 0.

Assuming a linear interpolating function [N] with triangular elements that have
isotropic thermal properties, then the temperature © at any y, z and t can be expressed in
terms of the nodal temperatures [@°] as follows

® = [N][e°]. (14)

Using the Galerkin method along with the assumed interpolating functions, one can
write the following finite element equation (Rao, 1988)

[k$1[O°] + (&S] + [k5DO°] = [P?], (15)
where
k] aj jk/a[N]T[N]dA, (16)
A‘
(k3] = Lh[M’[N] ds,, (17)
$:
(4351 =§ jk[Bl’[BldA, (18)
AO
and
[P‘1=j EQ{N]’M—S Q[N]Td51+j hO, [N dS, (19)
¢ st s
with 4 f
_[anvsay any/3y ... aN,/dy
8] = [aN,/az N, /07 ... aNp/az} (20)

where subscript p is the number of vertices of the element (p = 3 for a triangular element).

The individual element equations are assembled to form the overall equation of the
NITINOL-composite beam which can be solved for the nodal temperatures. The solution
is based on a Crank-Nicolson trapezoidal scheme (Hughes, 1977).

The thermal finite element model developed in Section 3 is used to generate the
temperature distribution over the beam cross-section which in turn is utilized to compute
the average properties of the beam, as for example its modulus of elasticity, under
different operating conditions. The theoretical predictions of the thermal characteristics
will be compared with experimental measurements, obtained in Section 4, in order to
check the validity of the thermal model.
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4. EXPERIMENTAL CHARACTERISTICS OF A NITINOL-REINFORCED BEAM

4.1. Experimental set-up, materials and methods

The characteristics of NITINOL-reinforced beams are computed using the developed
dynamic and thermal models. The theoretical predictions are experimentally validated
using a composite beam made of randomly oriented glass fibers embedded in a low cure
temperature polyester resin. The beam is 30 cm long, 2.5 cm wide and 0.156 cm thick
mounted in a clamped-clamped arrangement. The temperature dependence of the
modulus of elasticity of the beam, shown in Fig. 4, is obtained experimentally using the
Dynamic, Mechanical, and Thermal Analyzer (DMTA) of Polymer Laboratories Ltd
(1990).

Four NITINOL 55 fibers, that are 0.55 mm in diameter, are embedded inside the
beam through vulcanized rubber sleeves that have an outer diameter of 0.95 mm. The
NITINOL fibers used have an austenite transformation temperature of about 50°C. The
performance of the composite beam is monitored when different subsets of the NITINOL
fibers are intentionally activated by a controlled electrical current. Monitored also is
the unintentional activation of the remaining NITINOL fibers which results from the
thermal energy propagating from the electrically activated fibers. The effect of such an
unintentional activation on the overall performance of the NITINOL-reinforced beam is
determined, in detail, for different intentional activation strategies.

The experimental set-up used in measuring the interaction between the intentional
electrical and unintentional thermal activation of the NITINOL fibers is shown in Fig. 5.
In the figure, the beam is clamped in a fixed-fixed arrangement and the NITINOL fibers
are divided into two sets which are separately clamped. The first set is electrically
activated whereas the second set is activated by the unintentional thermal energy propa-
gating from the first set through the composite beam. In the arrangement shown in
Fig. 5, the first set includes fibers number 1, 2 and 4 while the second set is made only of
fiber number 3. The phase recovery forces developed by each set of fibers are separately
measured using two separate load cells.

The time history of the phase recovery forces developed by each set of fibers is
sampled by a computer when the first set is subject to a step electrical current. The corre-
sponding time histories of the temperatures generated in the NITINOL fibers and the
composite beam are also monitored by the computer. When steady-state conditions are
attained the modes of vibration of the beam are measured using a modally tuned impact
hammer (Ewins, 1984).
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Fig. 2. Effect of operaung temperature on modulus of elasticity of the test fiberglas,

composite beam.
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Fig. 5. Experimental set-up used in monitoring the performance of NITINOL-reinforced beams.

4.2. Experimental results
A. Electrical activation of three fibers
A.l. Phase recovery forces

Figures 6a and 6b show the time response of the phase recovery forces developed by
the intentional electrical activation of fibers 1, 2 and 4, and the unintentional thermal
activation of fiber 3, respectively. In the displayed characteristics, all the NITINOL fibers
are initially pre-tensioned to 26.6 N per fiber and the electrically activated fibers are
subjected to a step electric heating of 5.4 W per fiber. Figure 6a shows that the phase
recovery forces of the electrically activated fibers quickly rise to their peak value of 66 N
per fiber. On the other hand, Fig. 6b indicates that fiber number 3, which is not intention-
ally activated by the electrical current, experiences a delay of about 100 s before its starts
developing its phase recovery forces. This time delay is the time needed for the thermal
energy propagating from the electrically activated fibers to reach and heat fiber 3 above
its phase transformation temperature. Following this time delay, the phase recovery force
builds up relatively slowly to a peak value of 50.4 N which is a very large force that cannot
be neglected. The slow rise to the peak force is attributed primarily to the thermal capaci-
tance of the composite beam and to the heat lost to the surroundings across the beam
surfaces. Hence, the resulting unintentional thermal activation of the NITINOL fiber
number 3 changes the total tensile force T, of the reinforcing fibers and the total elastic
energy of the beam. These changes are rather complex and mainly depend on the tempera-
ture distribution inside the composite beam. In addition, such changes are significant and
must be accounted for as they alter the stiffness and the dynamics of the entire beam, as
will be shown in what follows.

A.2. Modes of vibration

The effect of different activation strategies on the first threee modes of vibration of
the NITINOL-reinforced composite beam is shown in Figs 7a and 7b when the initial
tension is 26.6 N per fiber. These results are obtained after steady-state temperatures
and forces are attained. Comparisons are also given with the modes of the beam with
unactivated fibers. For instance, when fibers 1, 2 and 4 are electrically activated while
fiber 3 is thermally activated, the first three modes of vibration are found to be 94.9, 192.5
and 318.7 Hz, respectively. This is in comparison to 87.9, 184.92 and 315.0 Hz when all
the fibers are unactivated. The increase in the three modes of vibration, of 7.9%, 4.1%
and 1.15%, respectively, is attributed to the increase in the fiber’s tension developed
by both the intentional electrical and the unintentional thermal activation of these fibers.
In order to isolate the two effects, fiber 3 is replaced by another NITINOL fiber which has
a very high phase transformation temperature of 100°C. In this manner the thermal
energy propagating through the beam will not result in a high enough temperature to
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Fig. 6. Time history of the recovery forces with three activated NITINOL fibers.
(a) Electrically activated, (b) thermally activated.

induce the thermal activation of fiber 3. Accordingly, the initial tension applied to
fiber 3 will remain unchanged at 26.6 N even after the electrical activation of fibers 1, 2
and 4. This is not the case with the original low phase transformation temperature fiber
where the tension increased from 26.6 to 50.4 N following the electrical activation of
fibers 1, 2 and 4. In this way the effect of unintentional thermal activation on the beam
dynamics can be isolated and quantified.

The modes of vibration measured with the high phase transformation temperature
fiber are 92.3, 182.5 and 291.3 Hz. This corresponds to an increase of 5.02%, —0.53%
and ~7.5% as compared to the modes of vibration with unactivated fibers. Accordingly,
the thermal activation accounts for about 36.4%, 113% and 752% of the total increase in
the normal modes. Such percentages are very significant and cannot be neglected. For the
sake of completion, the effect of activating all the four fibers electrically on the natural
frequencies of the beam is shown in Fig. 7b along with the frequencies obtained with all
fibers unactivated.

A.3. Temperature distribution

In order to develop a thorough understanding of the effect of unintentional thermal
activation, it is necessary to consider the temperature distribution over the cross-section
of the composite beam shown in Fig. 8a. Figure 8b shows the theoretical temperature
distribution when fibers 1, 2 and 4 are electrically activated, and Fig. 8c shows the
corresponding distribution when all the four fibers are electrically energized. The
distributions displayed represent the steady-state distributions obtained by the thermal
finite element model after 700 s from the initiation of the step heating of the NITINOL
fibers. It is evident from Figs 8b and 8d that the electrical activation of fibers 1, 2 and 4
generates temperatures around fiber 3 in excess of its phase transformation temperature.
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Fig. 7. Natural frequencies of NITINOL-reinforced beam. (a) Three activated fibers,
(b) four activated fibers.

Under such conditions, the phase transformation is induced thermally and fiber 3 starts
developing its phase recovery force. The extent of completion of the phase transforma-
tion process and the magnitude of the force developed depend on how high the beam
temperature becomes in relation to the phase transformation temperature.

Figure 8d shows also that the rise of the beam temperature, near fiber 3, is rather
slow because of the thermal capacitance of the beam and also because of the heat losses
to the environment across its surfaces. Accordingly, there is a time period before the
beam temperature rises to the phase transformation temperature and before fiber 3
starts generating its phase recovery force. During that period of time and until steady-
state conditions are attained, the dynamics of the beam will be continuously varying.
Predictions of such behavior are only possible through the interaction between the thermal
and dynamic finite element models.

Comparison between the theoretical and the experimental temperatures of the
activated NITINOL fiber and the beam surface are shown in Figs 8d and 8e when three
and four fibers are electrically activated, respectively. It is evident that theoretical
predictions are in close agreement with the experimental results.

B. Electrical activation of two fibers

B.1. Phase recovery forces

The effect of electrically activating two NITINQOL fibers (1 and 2, | and 4, or 2
and 4) on the phase recovery forces developed by the thermal activation of the remaining
two fibers is shown in Fig. 9. Figure 9a shows the forces developed by the electrically
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Fig. 9. Time history of the recovery forces with two activated NITINOL fibers.
(a) Electrically activated, (b) thermally activated.

activated fibers and Fig. 9b shows the corresponding forces developed by the remaining
thermally activated fibers. The magnitude of the forces developed by the electrically
activated fibers is exactly the same, irrespective of their location. However, the magnitude
of forces generated by the thermally activated fibers depends on their location, inside
the beam, relative to the location of the electrically activated fibers. The least forces
are developed when the electrically activated fibers are located near the edges of the
beam (fibers 1 and 4) where most of their generated thermal energy will be lost to the
surrounding. The remaining portion of the thermal energy will propagate inside the beam
to thermally activate the remaining two fibers (2 and 4). Higher forces are developed
when the electrically activated fibers (1 and 2, or 2 and 4) are located away from the
beam edges. For instance, when fibers 2 and 4 are electrically activated they produce a
total force of about 132 N while the thermally activated fibers (1 and 3) develop a total
force of about 95 N. Definitely, the magnitude of such unintentionally generated forces
cannot be neglected.

It is again evident that the interaction between the electrical and thermal activations
plays a very important role in determining the total tension developed by the NITINOL
reinforcement which in turn determines the dynamic behavior of the entire composite
beam.

B.2. Modes of vibration

The effect of diferent electrical activation strategies of two fibers on the modes of
vibration of the beam is shown in Fig. 10 and the results are summarized in Table 1.
These results are obtained after steady-state temperatures and forces are attained.




540 ’ A. Baz and J. Ro

1.0
(a) INTUL TENSION: 26.8 N (PER FIRER)
h —— AL FIBERS UNACTIVATED
0.8 === FTRTRS | & 2 ACTIVATID
@ 4
S 0.5
(=
= 4
S 0.4
<
0.2 J
R e
0 100 200 300 400 500
FREQUENCY (Hz)
1.0
(v) INTTIAL TENSION: 26.8 M (PER FIBER)
b ——— AL 7IDERS UNACTIVATZD
0.8 - ———  PIBERS 1| & 4 ACTIVATID
@ 4
S 0.6
[=4
5 4
% 0.4
<
.
0.0 v 7 b r [ } 1 ] 1
0 100 200 300 400 500
FREQUENCY (Hz)
1.0
{c) INTTIAL TENSION: 26.8 N (PER f18ER)
7 —— AL FIBERS UNACTIVATED
0.8 - —— FIBERS 2 & 4 ACTIVATED
g p
o=} 0.8
[
S 4
€ 04 -
< -
0.2
o-o " T v [ i . 1 I 0
0 100 200 300 400 500

FREQUENCY (Hz)

Fig. 10. Natural frequencies of a NITINOL-reinforced beam with two activated fibers.
(a) Fibers 1 and 2, (b) fibers 1 and 4, and (c) fibers 2 and 4.

Table 1 and Fig. 10 indicate that the dynamic performance of the composite beam,
is significantly influenced by the different electrical activation strategies. This is in spite
of the fact that two fibers are always activated in all these strategies. The studies of Rogers
et al. (1991) and Jia and Rogers (1989) predict that the beam performance remains the
same for all the cases considered.

Table 1. Effect of activation strategy of two fibers on the
modes of vibration of the beam

Number of Modes of vibration (Hz)
fibers
activated First Second Third
None 87.9 184.9 315.0
All 100.1 202.5 323.7
1 and 4 88.4 182.5 305.0
[and 2 88.8 183.8 307.4

2 and 4 93.5 190.1 315.0
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Furthermore, it is interesting to note that when the effect of the unintentional
thermal activation is negligible, as when fibers 1 and 4 are electrically activated, the
beam becomes less stiff than a beam with unactivated fibers. This is clearly manifested
by the drop in the frequencies of the second and third modes of vibration. Such a
drop is attributed to the fact that the phase recovery forces generated by fibers 1 and
4 are not high enough to compensate for the softening effect of the matrix modulus
due to the heating of the fibers. However, when the unintentional thermal activation
effect becomes significant, as when fibers 2 and 4 are electrically activated, the beam
performance is considerably enhanced. This is evident from the significant increase in the
natural frequencies of the beam. The improved performance is due to the additional
recovery forces developed by the unintentional thermal activation of fibers 1 and 3.

B.3. Temperature distribution

The interaction between the thermal and dynamic behavior of the beam can best
be understood by considering the temperature distributions across the cross-section of
the NITINOL-reinforced beam for different activation strategies. Figure 11 displays
such temperature distributions along with comparisons between the theoretical and
experimental temperatures of the activated NITINOL fibers and the beam surface. Close
agreement between the theoretical and experimental results is evident.

4.3. Further comparisons between theory and experiments

Figure 12 shows comparison between the theoretical and the experimental natural
frequencies of the beam for different activation strategies and different initial fiber
tensions. The effect of interaction between the electrical and thermal activation of the
NITINOL fibers is taken into consideration in these results. Close agreement is also
evident between the theoretical predictions and experimental measurements.
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S. CONCLUSIONS

The dynamic and thermal characteristics of NITINOL-reinforced composite beams
have been presented. The fundamental issues governing the behavior of this new class of
SMART composites have been introduced. Particular emphasis has been placed on the
interaction between the intentional electrical activation of subsets of the NITINOL fibers,
by an active controller, and the associated unintentional activation of neighboring
NITINOL fibers. It is shown that such an interaction plays a significant role in deter-
mining the dynamic behavior of the entire composite beam. Furthermore, such interac-
tion cannot be neglected as in the previous studies of Rogers et al. (1991) and Jia and
Rogers (1989).

It is also shown that the dynamic and thermal models developed in this study enable
the accurate prediction of the behavior of NITINOL-reinforced composite beams. With
such models it would be possible to design NITINOL-reinforced composites that have
continuously tunable structural characteristics to adapt to changes in the operating
conditions. These features will be particularly useful in many critical structures that are
intended to operate autonomously for long durations in isolated environments such as
defense vehicles, space structures and satellites.
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ACTIVE CONTROL OF NITINOL-REINFORCED COMPOSITE BEAM

A.BAZ, S.POH, J.RO, M.MUTUA and J.GILHEANY
Department of Mechanical Engineering
The Catholic University of America
Washington, DC 20064

1. INTRODUCTION

Considerable attention has been devoted recently to the utilization
of the Shape Memory NIckel-TItanium alloy (NITINOL) in developing SMART
composites that are capable of adapting intelligently to external
disturbances (Ikegami et al. 1990, Rogers et al.1991, and Baz et al.
1990 and 1991). Such wide acceptance of NITINOL stems from its unique
behavior when it is subjected to particular heating and cooling
strategies. For example, the alloy becomes soft when it is cooled
below its martensite transformation temperature and becomes about four
times stiffer when it is heated above 1its austenite transformation
temperature (Funakubo 1987). Furthermore, if the alloy is trained to
have a particular shape while in its austenite phase, it will memorize
this shape. If the alloy is then cooled to its martensite phase and
subject to plastic deformation, it will return to its memorized shape
when it is heated above the austenite transformation temperature. The
phase transformation from martensite to austenite produces significant
forces as the alloy recovers its original shape. The alloy acts as an
actuator transforming thermal energy into mechanical energy (Perkins
197S and Duerig et al. 1990). Accordingly, if the NITINOL fibers are
embedded inside a composite matrix at optimal locations, they can be
used to control the static and dynamic characteristics of the resulting
SMART composite. The control action is generated by the described
stiffening of the NITINOL fibers and/or the shape memory effect. With
such built-in control capabilities, the performance of the SMART
composites can be optimized and tallored to match changes in operating
condlitions.

Emphasis is placed, in the present work, on using the shape memory
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effect of the NITINOL fibers to control the performance of fiberglass
composite beams. The NITINOL fibers are embedded inside vulcanized
rubber sleeves placed along the neutral axes of these composite beams
as shown in Figure (1). In this arrangement, the fibers are free to
move during the phase transformation process 1in order to avoid
degradation and/or destruction of the shape memory effect which may
result when the flibers are completely bonded inside the composite
matrix.

/—FIBERGLASS COMPOSITE BEAM

SLEEVE —/ \— NITINOL FIBER

Figure (1) - A schematic drawing of the cross section of a
NITINOL-reinforced composite beam

The basic phenomena governing the thermo~dynamic performance of the
NITINOL fibers and NITINOL-reinforced composites will be presented.
The NITINOL fibers will be utilized to control the buckling and the
flow-induced vibrations of NITINOL-reinforced fiberglass composite

beams.

2. CHARACTERISTICS OF THE NITINOL FIBERS

Knowledge of the thermal and dynamic behavior of the shape memory
NITINOL fibers is essential to the understanding of their role in
controlling the performance of NITINOL-reinforced composites. The
thermo-dynamic behavior of the NITINOL fibers has been extensively
studied throughout the last two decades (Funakubo 1987, Perkins 1975,
Jackson et al. 1972). However, we will present a different outlook
which will be crucial in developing the basic principles governing the
performance of NITINOL-reinforced composites.

Emphasis 1is placed on studying the effect of the operating
temperature and the pre-strain level on the recovery forces and, most
importantly, on the natural frequencies of end-restrained NITINOL
fibers. Such end-restrained fibers constitute the basic bullding
block of NITINOL-reinforced composites.

Figure (2) shows a schematic drawing of the experimental set-up
used to determine such thermo-dynamic characteristics. In the set-up,
the NITINOL fiber is clamped in a holder at one end and connected to a
load cell at the other end. The load cell monitors the pre-strain
level of the fiber when it is in its martensitic phase. It also
provides continuous measurements of the recovery force when the fiber




171

undergoes its phase transformation due to external electric heating.
The fiber temperature is monitored by a thermocouple bonded to the
NITINOL fiber. The fiber assembly is mounted on an sliding table which
is connected to a mechanical shaker. Random excitations are used to
drive the shaker and the table, thus applying a transverse displacement
to the fixed ends of the NITINOL fiber. The resulting oscillations of
the fiber are measured by a non-contacting magnetic sensor mounted on
the table. The shape memory effect of the NITINOL fiber is energized
electrically and the resulting fiber temperature, recovery force and
amplitude of oscillation are continuously sampled by a digital
computer.

pe—— Power supply

To Analyzer -

Sensor 1
To Computer @ ‘ Loading Screw
o |mee X ° Jgr
\ \-NITINOL
l—» _Fiber
. Thermocouple

Oscillating Table —
Linear Bearings ‘//)’ )J
-Q’-' To Shaker S

Figure (2) - Experimental set-up for monitoring thermo-dynamic
behavior of NITINOL fibers.

The effect of the pre-strain level on the recovery force, as a
function of time during a heating and cooling cycle, and
force-temperature characteristics are shown in Figures (3-a), and (3-b)
respectively. The recovery force increases almost 1linearly with
increasing pre-strain levels. Such characteristics conform with
published results.

The new outlook on the thermo-dynamic characteristics of the NITINOL
fibers is demonstrated by the effect of the pre-strain on the natural
frequencies of the fiber as shown in Figure (4). The figure displays
the spectrum analysis of the amplitude of oscillation of the fiber, at
different pre-strain levels, with and without the activation of the
shape memory effect.

Figure (4) 1indicates that activating the shape memory effect
results in a significant increase of the natural frequency of the fiber
which becomes more pronounced with increasing pre-strain levels.
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Figure (4) - Effect of pre-strain on the natural frequencies of
unactivated (u) and activated (a) NITINOL fibers.

A better understanding of the underlying phenomena can be obtalned
by treating the NITINOL fiber using the classical theory of vibrating
strings. The wave equation for transverse vibrations of a undamped
freely vibrating string, which is tightly stretched with a tension T,
is given by (James et al. 1989)

- (1)



where w is the transverse deflection of the string at a distance x
along the string at time t. In equation (1), the constant ¢ is the
wave propagation speed given by

c =V T,/p , (2)

where p; is the mass per unit length of the string.

Using conventional separation of variables approach for a string of
length L which is fixed at both ends, the transverse deflection w is

written as

©
w=Y ¢an . (3)

n=1

where ¢, and q, are the mode shape and the generalized coordinate for
the nth mode of vibration respectively. Using equation (3), equation
(1) reduces to

q, + wﬁ q, = 0, for n=1, 2, .. (4)

where w, is the natural frequency of a fixed-fixed string given by

wy,=(nm/L)VT,/p for n=1, 2, .. (5)

Accordingly, the natural frequency of the string is proportional to
the square root of its tension. Using this relationship, the effect of
the pre~strain (or the initial tension) of the NITINOL fibers on the
first natural frequency of the unactivated and activated fiber is shown
in Figure (5). Two distinct linear characteristics are observed with a
significant 1increase in the natural frequency when the fiber |is
activated. A unified characteristic can be obtained when the effect
of total tension T,, which is the sum of the initial tension and the
phase transformation force of the activated fibers, is considered as
shown in Figure (6). The natural frequencies of the unactivated and
activated fiber fall on a single straight line which has a slope
of (n/2L vp_ ). In this analysis the effect of thermal expansion on the
fiber tension is negligible as compared to the phase transformation
force.

Therefore, the classical theory of vibrating strings can be used to
predict the dynamics of wunactivated as well as activated NITINOCL
fibers. Accordingly, the theory of vibrating strings can be utilized
to determine the strain energy stored in NITINOL fibers embedded inside
composite beams as the beams deflect from their equilibrium position
under the action of external loads. Using this approach to determine
the thermo-dynamic behavior of NITINOL fibers, it is possible to
develop a thorough understanding of the static and dynanic performance
of NITINOL-reinforced composites.
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3. CHARACTERISTICS OF NITINOL-REINFORCED COMPOSITE BEAMS

3.1. STATIC CHARACTERISTICS

The static characteristics of NITINOL-reinforced composite beams
are primarily governed by their stiffness. The beam stiffness 1s made
up of different components which include: the flexural rigidity of the
beam, the geometric stiffness that accounts for the axial and thermal
loading as well as the stiffness imparted by the elasticity of the
NITINOL fibers. The individual components of the beam stiffness can be
determined by considering the NITINOL-reinforced beam element shown in
Figure (7) with the forces acting on it and the associated
displacements. The combined stiffness of the element can be obtained
using the principle of conservation of energy and equating the work
done by external loads to the strain energies stored in the element. In
the present analysis, the theory of Bernoulli-Euler beams is used with
the assumption of small deflections.

(a) (b)

Figure (7) -~ NITINOL-reinforced beam element with forces and
resulting displacements

3.1.1. EXTERNAL WORK
The work done by the external loads includes:
a. work done by transverse loads and moments (W,)
This work is given by
W, = 172 (81T [F], - (6)

where (3] and (F] are the displacement and transverse loads vectors,
respectively, given by




(8] = [w; & w, 9,17, (7
and [F1 = {v; M, Vv, M]IT, (8)

with w; and 6, are the linear and angular deflections of node {,
respectively and V, and M, are the shear and moment acting at node i,
respectively.

b. work done by the axial mechanical loads (W,,)

W,, is given by L

Woy =Py 7/ 2 J' (dw/dx)? dx, (9)

0
where P, 1is the external axial compressive load acting along the
neutral axis of the beam element.

c. work done by the axial thermal loads (W)

W,, represents the work done by the thermal loads P, on the beam
element due to changes in the temperature A8 of the element caused by
changes in the ambient temperature or during the activation and
de-activation of the NITINOL fibers. It is given by

L
Woe = Py / 2 I (dw/dx)? dx, (10)
0
where P, is given by
P, = a A8 E; A, (11)

where a is the thermal expansion coefficient of the composite, E; is
its modulus of elasticity and A, is the beam cross sectional area.

3.1.2. STORED STRAIN ENERGY

The stored strain energy consists of two components:
a. strain energy of beam (W,)

The energy stored in the beam element due to its bending is given
by L
Wy =E I,/ 2 J (d%w/dx?)? dx (12)

0

where E, I, iIs the flexural rigidity of the beam.




b. strain energy of NITINOL fibers (w,)

Considering the NITINOL fiber as a string with a tension T which is
displaced laterally a distance w from the neutral axis of the beamn.
Then its stored strain energy W, 1s given by

L
Wy=T72 I (dw/dx)? dx. (13)

(]

Equating the sum of the work done by the external forces F, P, and
P, to the sum of the strain energies stored in beam and NITINOL fibers

gives
Wy + Wop + Wy = Wy + W, (14)

Substituting equations (6), (9), (10), (12) and (13) into equation
(14) yields

L L
[81T(F] = E, I, J' (d%w/dx?)? dx - P, f (dw/dx)? dx, (15)
0

(¢}

where P, is the net axial force give by
P,= (P, + P, - T). (16)

Defining a cubic displacement function faor the composite beanm
element, of the following form

Ww=a+bx+cx2+dxd (17)

where a, b, ¢ and d are constants that can be calculated in terms of
the deflections of the nodes i and j bounding the beam element. Then
equation (17) can be rewritten as

w = {A] (&], (18)
where the elements of matrix [A] are function of x (Fenner 1975).

Accordingly, dw/dx and d%w/dx?® can be obtained by differentiating
equation (18) with respect to x to yield

dw/dx = [C] [8] and d%w/dx2= [D] (&], (19)

where the matrices {C] and (D] are given by



(cl =% (ran and b] = 45, ([A]) (20)
dx dx? ’

The following relationships can also be obtained from equation (19)
(dw/dx)2 =[8]T[C]T[C] (8] and (d%w/dx?)2 =[8]T[DIT(D](a]. (21)

If the stiffness matrix ([K,] of the element is defined by the
following relationship

(F1 = [Ke] (&1, (22)

then, (K,] can be determined by combining equations (15), (21) and (22)
as follows

L L
(K] = E, I,,I (DIT(T] dx - P, J’ [CITIC] dx (23)
0 o)

It can be seen from equation (23), that the element stiffness
matrix [K,] consists of two components: the conventional transverse
stiffness and the geometric stiffness that combines the effect of the
axial mechanical loads, axial thermal loads and the tension of the
NITINOL reinforcing fibers. Equation (23) also represents the basic
equation for understanding the role that the NITINOL fibers can play in
controlling the static characteristics of the composite beam. For
example, if the beam is not reinforced by NITINOL fibers (i.e. T = 0)
and the mechanical and thermal loads induce compressive stresses in the
beam, then the geometric stiffness will increase and the total element

stiffness will decrease. When the combined effect of the mechanical
and thermal loads reaches a critical magnitude such that the geometric
stiffness becomes equal to the flexural stiffness of the beam, the

beam stiffness vanishes and the beam becomes elastically unstable.
Subjecting the beam to any additional external disturbance will cause
the beam to buckle.

It should be pointed out that the thermal loading, as it increases
the geometric stiffness, also decreases the flexural stiffness of the
beam because it reduces its effective Young's modulus E,. Such a dual
effect makes the beam buckle under smaller thermal loads than under
pure mechanical loading.

However, the critical load of the un-reinforced beam can be
increased by embedding pre-strained NITINOL fibers into the beam. If
the tension T, resulting from the pre-strain alone, is high enough to
counter-balance the mechanical and thermal effects then the beam
stiffness can be maintained unchanged. For higher pre-strain levels,
the beam stiffness can be enhanced. Further enhancement can be
achieved when the shape memory effect of the NITINOL fibers 1is
activated by heating the fibers above their phase transformation
temperature. The additional tension, induced into the fibers by the
phase recovery forces, makes the net axial load P, negative and




increases accordingly the overall stiffness of the beam element.
However, it 1s essential that the total tension in the NITINOL fibers,
i.e., the sum of the tension due to the pre-strain and the phase
recovery force, must exceed the mechanical and thermal loads and
compensate for the softening effect 1In the matrix resulting from
heating the NITINOL fibers inside the composite matrix.

Therefore, effective control of the stiffness of NITINOL-reinforced
composites can be achieved by proper selection of the initial
pre-strain level of the NITINOL fibers. This selection is particularly
crucial, in view of the results of Figure (3), as the pre-strain level
determines the generated levels of recovery forces.

The finite element model of the NITINOL-reinforced beams describes
the interaction between the external loads, operating conditions and
the geometrical and physical parameters of the composite beam and the
NITINOL fibers. It defines how the NITINOL fibers can be utilized to
tailor the stiffness of the composite to compensate for environmental
and operating conditions and disturbances. The stiffness obtained for
the 1individual elements of the beam can be assembled using the
classical finite element approach (Fenner 1975). The assembled model
can then be subjected to the appropriate boundary conditions in order
to compute the deflections corresponding to particular external loading
conditions. The analysis presented is for an orthotropic laminate that
has a single layer of unidirectional NITINOL fibers. Such an analysis
can be used along with the classical laminate theory to assemble the
stiffness matrix for a multi-laminate composite beam. Similar approach
can be carried out for modeling the static and dynamic characteristics
of NITINOL-reinforced cumposite plates.

The finite element model developed will be validated with
experimental results obtained with fiberglass composite beams.

3.2. DYNAMIC CHARACTERISTICS

The dynamic characteristics of NITINOL-reinforced beams are
obtained by combining the stiffness matrix [K,] with the mass matrix
(M,] of the beam to form the following element equation of motion

(M1 (8] + [K.] [8) = [F], (24)

where (3] is the nodal acceleration vector. The elements m,(i, j) of the
element mass matrix ([M.,] are obtained using the consistent mass
formulation (Z2ienkiewicz and Taylor 1989) as follows

L
my(1,3) = pg A,J' (A [A,] dx (25)
0
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where [A;] and [A;] are the ith and jth elements of the vector A given
by equation (18).

The classical finite element approach is used to form the equations
of motion of the assembly of several beam elements and the appropriate
boundary conditions are then applied. The solution of the eigenvalues
of the resulting homogeneous equations give the natural frequencies of
the composite beam as influenced by the properties of the matrix and
the NITINOL fibers. It 1ls important to note that these properties are
influenced by the temperature distribution inside the beam which is
developed by virtue of activating and de-activating the NITINOL fibers.
A study of the temperature distribution inside NITINOL-reinforced beams
will be presented in the following section.

3.3. THERMAL CHARACTERISTICS

The thermal characteristics of NITINOL-reinforced composite beams
are influenced primarily by the temperature distribution inside the
composite. A thermal finite element model is developed to determine
steady-state and transient temperature distribution resulting from
different activation strategies of the NITINOL fibers. The theoretical
predictions are compared with experimental measurements in order to
validate the thermal model.

It is important here to note that although the finite element model
used in predicting the beam dynamics is a one-dimensional model, with
the single dimension taken along the beam neutral axis, the thermal
model 1is considered to be a two-dimensional model to predict the
temperature distribution over the beam c¢ross section. Such a
distinction is made because the temperature distribution, along the
beam neutral axis, is assumed to be uniform. This assumption is
confirmed experimentally and is attributed to the fact that the NITINOL
fibers are oriented parallel to the neutral axis. The beam
temperature, however, varies only over the cross section and its
magnitude depends on the number and 1location of the activated or
de-activated NITINOL fibers. The resulting temperature distribution
can be used to compute an average Young's modulus of the composite.
The average temperature rise above the ambient can also be used to
compute the axial thermal loading on the beam P, which results from
fixing the two ends of the beam.

The two-dimensional thermal modeling of the beam is favored over a
one-dimensional lumped-parameter approach because it provides more
accurate simulation of the thermal state of the beam.

3.3.1 THERMAL FINITE ELEMENT MODEL

The energy balance equation that governs the heat transfer across
the beam can be written, in two-dimensional cartesian coordinate system
, as follows
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8% 3% Q 1 ae
+ + = (26)
a y? a z% k a a3t

where 8 1s the beam temperature at time t and location (y,z) as defined
in Figure (8). In equation (26), Q defines the rate of heat generated
per unit area during the activation of the NITINOL fibers. Also, k
denotes the conductivity of the beam and « its thermal diffusivity.

The above equation is subject to the following boundary and
initial conditlons

ae ae
k [—- g + L ] +Q =0 on boundary S, (27)
ay 4z
a6 a8
k [ _ + ¢ ] +h(68-6,)=0 on boundary S,, (28)
dy az
and 8 (y, z, t=0) =8, (y, 2) on beam cross section (29)

Equation (27) defines the condition at the NITINOL fiber circular
boundary S; on which the heat flux Q is specified, and equation (28)
specifies the conditions at the beam outer boundary S, where the
interaction with the ambient temperature 6, is through convective heat
transfer with coefficient h. The boundaries S; and S, are defined in
Figure (8). In equations (27) and (28), ¢ and {, denote the direction
cosines of the outward normals to the boundaries. Equation (29)
describes the initial temperature distribution over the beam cross
section at time t = 0.

y
A
’//—— Boundary S» ///—- Boundary S;
N
7 -
Z

SLEEVE / COMPOSITE BEAM ‘/ \\NITINOL FIBER

Figure (8) - Schematic drawing of beam cross section with heat transfer
boundaries.




Assuming a linear interpolating function ([N] with triangular
elements that have 1sotropic thermal properties, then the temperature @
at any y, z and t can be expressed, in terms of the nodal temperatures

(8°] as follows
8 = (N] [e°], (30)

Using Galerkin method along with assumed interpolating functions,
one can write the following finite element equation (Rao 1988)

() [8°] + [[kgl . 1K) ] [e°] = [p°l, (31)
where (k] = IIk/a [NIT N] dA , (32)
AO
(k3] = J'h [N)T IN] @S, (33)
e
S2
(k3] = Ijk (B]T (B] dA , (34)
Ae
and (1= [[amTan-[ amTas, + [ ne, 7 as, (35)
e e e
A s s:
with {B] = [aNllay oNy/8y ... @8N /3y ] (36)
dNy/0z  3Ny/8z ... 09N /8z

where subscript p is the number of vertices of the element (p=3 for
triangular element).

The individual element equations are assembled to form the overall

equation of the NITINOL-composite beam equation which can be solved for
the nodal temperatures. The solution is based on a Crank-Nicolson

trapezoidal scheme (Hughes 1977).

3.4. NUMERICAL AND EXPERIMENTAL RESULTS

3.4.1. BASIC CHARACTERISTICS OF BEAM

The characteristics of NITINOL-reinforced beams are computed using
the developed static, dynamic and thermal models. The theoretical
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predictions are compared with experimental results obtained with a
composite beam made of randomly oriented glass fibers embedded in a low
cure temperature polyester resin. The beam is 30 cm long, 2.5 cm wide
and 0.156 cm thick mounted in clamped-clamped arrangement. The
temperature dependence of Young’'s modulus of the beam, shown in Figure
(9), is obtained experimentally using the Dynamic, Mechanical, and
Thermal Analyzer (DMTA) of Polymer Laboratories, Ltd (1990).

4 0E9

3.0E9 4

2.0E9 4

1 0E9 A

YOUNG'S MODULUS ( Pa )

0.0 v v -
0.0 200 400 60.0 80.0 1000

TEMPERATURE ( °C)

Figure (9) - Effect of operating temperature on Young’s modulus of the
test fiberglass composite beam

Four NITINOL 55 fibers, that are 0.55 mm in diameter, are embedded
inside the beam through vulcanized rubber sleeves that have outer
diameter of 0.95 mm. Two sets of NITINOL fibers were used. The first
set consisted of trained fibers that have austenite transformation
temperature of SOOC. The second set however is untrained and
accordingly, the shape memory effect has not been imparted to it. The
two sets are inserted, one at a time, inside the sleeves and the effect
of the shape memory and the associated phase recovery forces on the
performance of the composite beam are monitored when the beam is
exposed to different ambient temperatures. The experimental set-up,
shown in Figure (10), is placed inside a temperature-controlled chamber
to determine the natural frequencies of the fixed-fixed beam as a
function of the ambient temperature. The set-up is very similar to
that used in studying the thermo-dynamic characteristics of the NITINOL
fibers. However, instead of activating the NITINOL fibers
electrically, the fibers are activated thermally by controlling the
temperature of the environmental chamber. The measurements are carried
out after steady-state and thermal equilibrium conditions are attained.
Under these conditions, the composite matrix and the NITINOL fibers are
all at the same equilibrium temperature. At each equilibrium
temperature, the composite beam is subjected to random vibrations and
the resulting response is monitored by an micro-accelerometer bonded to
the beanm. The response is analyzed in the frequency domain to
determine the modes of vibration of the composite beam.
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Figure (10) - Experimental set-up used in monitoring the performance of
NITINOL-reinforced beams

3.4.2. THE STATIC AND DYNAMIC CHARACTERISTICS

Figure (11-a) shows the measured changes in the first natural
frequency of the beam when it is reinforced with untrained fibers which
are pre-strained at different levels. The changes are normalized with
respect to the natural frequency w, of the un-reinforced beam measured
at 25°C. The normalized characteristics of the un-reinforced beam are
also plotted to serve as a datum for defining the effect of reinforcing
the beam with NITINOL fibers and also the effect of the pre-strain
level. It can be seen that the frequency of the un-reinforced beam
drops as ghe ambient temperature increases and when the temperature
exceeds 40 C the beam losses its elastic stability and start to buckle.
The drop in the natural frequency of the un-reinforced beam is
attributed to the softening of the matrix which is clearly demonstrated
by the loss in the Young’'s modulus of the beam as shown in Figure (9).

Reinforcing the beam with pre-strained untrained NITINOL fibers
considerably increases the natural frequency of the beam. The extent
of the upward shift in natural frequency increases with Iincreased
pre-strain level. An increase of about 40% 1is obtained at room
temperature when the pre-strain level is only 0.26%. However, as the
ambient temperature increases the frequency shift drops in a manner
similar to the characteristics of the plain un-reinforced beam. Such a
drop iIs again attributed to the softening effect of the matrix and the
fact that the untrained NITINOL fibers act as a static pre-tensioning
device that produce constant tension which 1is Iindependent of
temperature. Therefore, the frequency enhancement is only generated by
the reinforcement and the pre-strain effects, and not by the shape
memory effect.
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Figure (11) - Effect of the ambient temperature and pre-strain level on
enhancing the first mode of vibration of clamped-clamped
composite beam reinforced with NITINOL fiber without (a)
and with (b) shape memory.




it 1S 1mportant o note thal conslaeraniy hlgnher 1ncreases 1n
natural frequency can be obtalned by further increases of the
pre-strain level to its maximum permissible level of 6%.

However, a greater frequency shift can be achieved by imparting the
shape memory effect to the NITINOL fibers. The fibers are trained over
250 cycles using the procedure outlined by Johnson (1984). The trained
fibers are inserted intoc the composite beam to replace the untrained
set, the frequency shifts become significant, particularly at high
ambient temperatures. This 1s clearly demonstrated in Figure (11-b).
For temperatures between room temperature and 40°C. the frequency
shifts obtained are similar to those with the untrained fibers within
exgerimental accuracy. But, once the ambient temperature exceeds the
SO0 C temperature, which 1is the austenite phase transformation
temperature, the frequency shift characteristics changes from a
gradually decaying trend and develops a gradually increasing profile.
Such a sudden change is a reflection of the contribution of the phase
recovery forces developed by the shape memory effect which |is
illustrated in Figure (12).
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Figure (12) - Effect of pre-strain level and ambient temperature on the
phase recovery forces of trained NITINOL fibers.

The shape memory effect generates strain energy in the NITINOL
fibers to counterbalance the softening effect of the composite matrix
with increasing temperature. The amount of strain energy developed,
depends on the initial pre-strain level, it can merely compensate for
the softening effect to maintain the beam frequency at nearly a
constant value which is independent of ambient temperature as shown for
pre-strain level of 0.078%. It can also increase the beam frequency
as the ambient temperature increases as indicated for pre-strain levels
of 0.22 and O0.26%. With pre-strain level of 0.26%, the frquency
increase reaches about 70%4 of that at ambient temperature of 90°C as




187

compared to 18% increase when untralned flbers are used. In this way,
the individual contributlions of the pre-strain, matrix softening and
shape memory effect on the frequency shift are 1isolated. This
facilitates checking the validity of the mathematical models against
the experimental results.

Comparisons between the theoretical predictions and the
measurements are shown in Figures (13-a) and (13-b) for NITINOL fibers
without and with shape memory effect, respectively. The figures
include comparisons for the first and second modes of vibrations.
Close agreement between theory and experiments is evident.
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Figure (13) - Comparison between the theoretical and experimental

frequencies of composite beam reinforced with NITINOL
fibers without (a) and with shape memory (b).

3.4.3. THERMAL CHARACTERISTICS OF BEAM

The thermal finite element model developed in section 3.3.1 is used
to generate the temperature distribution over the beam cross sectlon
which in turn is utilized to compute the average Young's modulus of the
beam under different operating conditions. Such thermal
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characteristics will be presented in this section and compared with
experimental results in order to check the validity of the theoretical

predictions.

Figure (14) shows a sample of the finite element mesh used in the
analysis of the t=mperature field in the NITINOL-reinforced beam.

Figure (14) - The finite element mesh of the thermal model of the
NITINOL-reinforced beam.

Figures (15), (16) and (17) show the steady-state temperature and
Young’s modulus distributions over the cross section of the beam when
activating all the four fibers, the two extreme fibers, and the middle
two fibers, respectively. It is evident that the activation strategy,
as well as the number and location of the activated fibers,result in
dramatic variations of the temperature and Young's modulus
distribution. These variations influence the static and dynamic
characteristics of the composite beanm. Hence, integration of the
thermal and mechanical models is essential to the understanding and the
prediction of the behavior of NITINOL-reinforced composites.

Comparisons are shown in Figures (15) through (17) with the
experimental results when the fibers are activated electrically with
8.3 watts/fiber and when steady-state conditions are attained after 720
seconds. The temperature distribution is also monitored during the
720 second period required to reach steady-state at six different
locations. Figure (18) displays the spatial distributiorn of these
measurement stations.
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Figure (18) - Spatial distribution of temperature measurement stations

Figures (19-a) and (19-b) show comparisons between the experimental
and theoretical temperature distributions over the beam cross section
at three stations located on the outer surface of the bean. Close
agreement between theory and experiment is evident.
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Figure (19) - Comparison between theoretical and experimental
surface temperature distributions over beam cross
sections with all four NITINOL fibers activated.

Figure (20) shows the experimental surface temperature of the beam
along 1its longitudinal axis. It is clear that the temperature is
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practically constant along the beam longitudinal axis. Such
measurements validate the assumption used in deriving the thermal model
and justify the use of the two-dimensional simulation of the beam.
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Figure (20) - Experimental surface temperature of the beam along its
longitudinal axis.

4. APPLICATIONS OF NITINOL-REINFORCED COMPOSITE BEAMS

The feasibility of utilizing NITINOL-reinforcing fibers to actively
control the buckling and flow-induced vibrations of composite beams are
demonstrated in this section.

4.1. ACTIVE BUCKLING CONTROL

The new trend of designing light weight and large structures render
these structures to be more susceptible to failure due to buckling.
Baz and Tampe (1989) were successful in to enhancing the buckling
characteristics of long slender beams by using external helical shape
memory actuators. In the present study, actuators in the form of
NITINOL fibers are embedded inside the long slender beams. With such
a configuration, beams can be manufactured from light weight sections
that have built-in capabilities for withstanding failure due structural
instabilities. It was shown theoretically in section 2 that
NITINOL-reinforced composite beams can have enhanced buckling
characteristics depending on the pre-strain level of the NITINOL fibers
in comparison with the external mechanical and thermal loads acting on
these beanms. The validation of such theoretical model is
experimentally demonstrated in this section.
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4.1.1. THE EXPERIMENTAL SET-UP

Figure (21) shows a schematic drawing of the experimental set-up
used in actively controlling the buckling of a NITINOL-reinforced beam.
The beam dimensions are 63.75 cm by 2.5 cm by 0.44 cm. The beam is
reinforced by eight o0.55 mm NITINOL fibers which are embedded
symmetrically along the neutral axis of the beam.

SERVO-CYLINDER CLAMP COMPOSITE BEAM CLAMP CLAMP SERVO-CYLINDER

IAL_;Q?%zm I 1T
POSITION _SENSOR / ]
RON-CONTACTING TO COMPUTER “— BASE PLATE
TROM COIIPRBSOR/ PRESSURE NITINOL WIRES COMPOSITE BEAM FROM COMPUTER PRESSURE FROM COMPRESSOR
CAUCE
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Figure (21) - Schematic drawing of the active buckling control
experiment.

One end of the beam is clamped to a fixed base and the other end is
connected to the piston of a loading cylinder. The cylinder is
pressurized by compressed air from the storage tank of an air
compressor. The 1increasing compressive load applied by the load
cylinder to the beam will eventually cause the beam to buckle. The
resulting deflection of the beam 1s monitored continuously by two
non-contacting sensors which are placed on both sides of the beam. The
sensors also serve as physical stops to prevent excessive deflection
once buckling has occured. The output signals of the sensors are sent
to a micro-computer via a set of analog-to-digital converters. The
processing these signals is shown in the controller block diagram shown
in Figure (22). When the beam deflection exceeds a pre-set value of a
dead-band, the controller is turned on using a proportional controller
with a saturation limit. The control action |is sent via a
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Figure (22) - Block diagram of the active buckling control system

digital-to-analog converter to a power amplifier to activate the
NITINOL fibers embedded inside the compressively loaded composite beam.
The activation of the NITINOL fibers will compensate for the monitored
deflection and the phase recovery forces developed in the fibers will
attempt to bring the beam back to its undeflected position.

It is important here to note that the controller dead-band is
essential to prevent chattering of the controller as observed by Baz,
Iman and McCoy (1990). Also, the saturation limiting of the maximum
voltage applied to the NITINOL fibers is necessary to avoid destruction
of the shape memory effect of the NITINOL fibers due to excessive
heating.

In the active buckling control syvstem described, the NITINOL
reinforcing fibers are clamped at one end to the fixed base and at the
other end to pre-tensioning cylinder via a load cell. The load cell
monitors the initial value of the pre-~tension applied to the NITINOL
fibers by the pre-tensioning cylinder. The load cell also continuously
measures the phase recovery forces developed in the NITINOL fibers as
they undergo their phase transformation.

4.1.2. EXPERIMENTAL RESULTS

Figure (23) shows a comparison of the performance with and without
the active buckling control. The results displayed are for a
NITINOL-reinforced beam with each of the eight fibers has an initial
tension of 33.7 N which corresponds to an initial pre-strain of O0.35%.
For the controlled cases, the controller dead band corresponds to
deflection error of 0.0176 mm and the controller gain is 2727 volt/mm.
The saturation limit is 6 volts/fiber and the maximum current is 1.6A.




196

—— : Uncontrolled ---- : 4 Fibers — : 8 Fibers
0.0 [ T T
., IR ( a )
- \
£ E \
E | '
- H ’
< |
s 1
[ :
g i '
] i
Q i
s y
[-% B
2 ,
=] i
4.3 T : T
o 50 100 150
1200 ( )
— b
=
“nga?
e e00
4
3
.2 //"-
= .
n
@ 400 - —""”—"
= il
Q /
o /
0 4=z —
0 50 100 150
120
— [+
5 (c)
o
® T ™
3 80 4 4 kY
-t .
e \
g /
E 40 -/ . ..
= IR PR
e 4 —— i e
L'
=2
s
° v L
0 50 100 150
1200 Q)
d
-—
-
~ 800 4
o
13]
5
Q
[«
o .
& 400
2
=
0 , v
0 50 . 100 150
Time ( Sec)
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In Figure (23-a), the deflection of the beam resulting from the
application of a gradually increasing compressive load is shown. The
rate of load increase is 500 N/min as shown in Figure (23-b). It can
be observed that the uncontrolled beam buckles when the compressive
axial loads starts exceeding 330 N. However, when all eight NITINOL
fibers are activated, the beam can withstand axial loads up to 950 N
before it starts to buckle. Therefore, with the NITINOL reinforcement,
it is possible to triple the critical buckling load of the beam. With
four activated fibers, the critical buckling load is about 700 N which
corresponds to about double the critical load of the uncontrolled beam.
Figure (23-c) shows the corresponding time history of the temperature
of the NITINOL fibers due to the activation and de-activation of the
controller. In Figure (23-d), the time history of the phase recovery
forces developed in the NITINOL fibers is shown. The tension in the
fibers remains equal to the initial pre-tension, i.e. 33.7N x 8 =
269.6N, for the uncontrolled case. However, the tension increases to
approximately 1000 N when eight NITINOL fibers are activated.

With such capability, it is possible to energize different sets of
the NITINOL fibers to counterbalance the external loading condition and
avoid buckling of the composite beam. Therefore, for small external
loads, it is only necessary to energize a few fibers, but as the load
increases, the controller can energize a larger number of fibers to
maintain the beam in its undefelected form.

The effect of varying the controller parameters on the performance
of the active control system is shown in Figures (24), (25) and (26).
In Figure (24), the effect of varying the control dead-band on the
system performance is shown. In this case, the controller will be off
until the beam deflection exceeds the dead band. Once the deflection
exceeds the dead band , the controller 1is energized. This is
accomplished by the heating of the NITINOL fibers and the development
of the phase recovery forces as shown in Figures (24-c) and (24-d),
respectively. For the range of dead bands considered, between 0.0176
mm and 0.528 mm, the effect on the critical buckling loads 1is
insignificant.

The effect of varying the controller gain from 2727 velt/mm to
136.35 volt/mm on the system performance is shown in Figure (25). This
effect varies the slope of temperature rise of the NITINOL fibers and,
in turn, the rate at which the corresponding phase transformation
forces are recovered. Changing the controller gain is found to
influence to some extent the critical buckling load. For example, when
the controller gain is 2727 volt/mm the critical buckling load is 950
N and when the gain is reduced to 136.35 volt/mm the critical buckling
load become about 850. Therefore, reducing the controller gain by a
factor of 1/20 only results in a 10.5% reduction in the critical
buckling load.

The effect that the pre-tension has on the system performance is
shown in Figure (26) for dead band of 0.0176 mm and controller gain of
2727 volts/mm. It is clear from the results obtained that , the
pre-tension plays the most crucial role in controlling the buckling of
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Figure (25) - Effect of controller gain on the performance of the

active control system when the dead band is 0.0176 mm,
33.7N and 8 flibers are

the initial pre-tension/fiber
activated.
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the beam. Increasing the tension from 0.0 N/fiber to 33.7 N/fiber
increases the critical buckling load from about 100 N toc 950 N,
respectively.

4.1.3. COMPARISON BETWEEN THEORY AND EXPERIMENTS

The mechanism of actively concrolling the buckling of the
NITINOL-reinforced beam can best be understood by considering Figure
(27-a). The figure represents the theoretical prediction of the
buckling characteristics of actively controlled NITINOL-reinforced
beams. In the figure, the applied axial load is increased gradually at
a linear rate of S00 N/min. For the uncontrolled beam, the critical
buckling load is fixed at 320 N and remain unchanged with time. This
load corresponds to a pre-tension of 33.5 N/fiber. When the applied
load becomes equal to the critical buckling load, the beam is on the
verge of elastic instability. The beam will buckle once the applied

load exceeds the fixed critical buckling load. For the case of
controlled beam, the beam starts at time t = O with the same buckling
load as the uncontrolled beam. When the controller senses any

deflection greater than the dead band due to the application of the
external load, the buckling characteristics of the beam is enhanced as
represented by the dashed characteristics. The activation of the
NITINOL fibers makes the beam less susceptible to buckling as the
critical buckling load is increased to become 850 N instead of the
original uncontrolled load of 320 N. Accordingly, the controlled beam
will not buckle until the applied load exceeds the theoretically
predicted limit of 850 N.

The effect of varying the pre-tension levels on the theoretical
prediction of the critical buckling load is shown in Figure (27-b)
along with the corresponding experimental results. It is evident that
there is a close agreement between theory and experiment.

4.2. ACTIVE CONTROL OF FLOW-INDUCED VIBRATIONS

The phenomenon of vibrations induced by the flow of fluids past
flexible structures has been of concern for many years. This concern
is attributed to the detrimental effects that such vibrations can have
on the integrity of these structures. Several attempts have been made
to passively and actively control the flow-induced vibrations of
various structural members. For example, Baz and Ro (1991) utilized a
direct velocity feedback controller to control the vortex-induced
vibrations of a flexible cylinder. The control system relied in its
operation on an electromagnetic actuator to provide the control action
necessary to resist the flow-induced vibration. Baz and Kim (1992)
developed a modal space control method to control the vortex-induced
vibrations of a flexible cylinder using piezo-electric actuators.
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In this study, NITINOL fibers are used as embecded actuators to
control the flow-induced vibrations of NITINOL-reinforced composite
beams. The control action used is of the ON-OFF type. When
undesirable vibrations are detected, the NITINOL fibers are activated.
The strain energy generated in the fibers by the phase transformation
makes the beam stiffer and shifts its natural frequencies away from the
excitation frequency. This modal tuning of the beam dynamics in
response to the external disturbances can result in reducing the
amplitude of vibration of the beam to acceptable limits. This will
only be true if the flow-induced vibrations have a narrow frequency
band. For broad band excitations, the modal tuning mechanism will not
be effective in attenuating the induced vibrations as it merely shifts

the vibration energy to higher frequency bands. nowever, in
NITINOL-reinforced composites an additional mechanism can play a
dominant role in the suppression of broad band vibrations. This

mechanism is generated by the temperature-dependent damping
characteristics of the composite matrix as shown in Figure (28). These
characteristics are obtained experimentally using the Dynamic,
Mechanical , and Thermal Analyzer (DMTA).
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Figure (28) - Loss coefficlent of fiberglass composite beam

When the NITINOL fibers are activated, the temperature of the
matrix increases as indicated in section 3.4.3. Such a temperature
increase is accompanied with an increase in the loss coefficient of the
matrix as displayed in Figure (28). Operation at a temperature
corresponding to the maximum loss coefficient is essential to achieve
maximum structural damping. At that temperature, the dissipation of
the vibration energy will be maximum and the attenuation of broad band
vibrations will also be maximum.

—i
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Therefore. in NITINOL-reinforced composites, the interaction
between the modal tuning and the enhanced damping characteristics is
crucial in controlling both narrow and broad band vibrations.

4.2.1. TEST BEAM AND FACILITY

Figure (29) shows a schematic drawing of the test beam mounted in a
clamped-clamped configuration inside a low speed wind tunnel. The beam
is 30 cm long, 2.5 cm wide and 0.156 cm thick. It 1s made of
fiberglass/polyester resin composite with four embedded NITINOL fibers.
The fibers are 0.55 mm in diameters and are inserted inside 0.95 mm
vulcanized rubber sleeves. The elastic and damping characteristics of
the beam are shown in Figures (9) and (28) respectively.

The beam is mounted inside a 30 cm x 30 cm test section of a low
speed wind tunnel and is subjected to flow speeds between 4.8 and 8.3

mn/s.

WIND TUNNEL
4
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TEMPERATURE \ ACCTLEROMETER TEMPDRATURE
S/ \r .'. s 27
TO SPECTRUM - > To rowER
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fov SENSOR BEAM Ve

Figure (29) - A schematic drawing of a NITINOL-reinforced beam mounted
inside a low-speed wind tunnel.

The NITINOL fibers have an initial pre-tension of 17.6 N each and
are electrically activated by applying a voltage of 4.5 V across each
fiber. This generates a current of 1.85 A and a total of 8.325 watts
are dissipated in the composite beam. The resulting shift of the first
three natural frequencies of the beam are shown in Figure (30). The
figure shows the time history of the frequency shift when all the four
fibers are activated for two minutes and then de-activated for the
remaining six minutes.

The effect of varying the number of activated fibers on the
frequency shift of the first three modes is shown in Figure (31-a)
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after steady-state conditions are attained. The results displayed in
the figure arg normalized with respect to the natural frequencies
measured at 25 C. The corresponding variation of the modal damping is
shown in Figure (31-b). The figure clearly indicates that increasing
the number of activated filbers results 1in enhancing the damping
characteristics of the beam. This is attributed to the increase in the
beam temperature when the number of activated fibers 1s increased.
This in turn makes the composite matrix of the beam operate near the
point of maximum loss coefficient shown in Figure (28).

4.2.2. EXPERIMENTAL RESULTS

The performance of the NITINOL-reinforced composite beam subjected
to flow-induced vibrations is monitored at different flow speeds with
and without the activation of the NITINOL fibers. The experiments aim
at demonstrating the feasibility of NITINOL fibers in attenuating the

flow-induced vibrations.

Figure (32) shows the spectra of the amplitude of vibration of the

beam as measured at different flow speeds ranging between 4.8 m/s and
8.32 m/s. The figure also shows a comparison between the amplitudes of
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Figure (32) - Spectra of the amplitudes of wvibration of the

NITINOL-reinforced beam at different flow speeds with
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Emphasis has been placed in the presentation on the actuation
capabilities of the NITINOL fibers. Extensive efforts are, however, in
progress to use the NITINOL fibers to extract modal and physical
displacements of structures with multi-modes of vibration (Baz, Poh and
Gilheany 1991).

With such  built-in sensing and controlling capabilities,
NITINOL-reinforced composites can provide a means for continuously
tuning the structural characteristics to adapt to changes in the
operating conditions. These features will be particularly useful in
many critical structures that are intended to operate autonomously for
long durations in isolated environment such as defense vehicles, space

structures and satellites.
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NOMENCLATURE

[A]) interpolating function of beam deflection

(A} ith element of [A]

A, cross sectional area of beam .

(B] matrix of first derivatives of the nodal interpolating
functions

c wave propagation speed
[C], [D] first and second derivatives of interpolating function
of beam deflection

E, Young’s modulus of beam

(F] vector of external loads acting on beam

h convective heat transfer coefficient

I, area moment of inertia of beam

k thermal conductivity of beam

(k] ,2,3] matrices given by equations (32), (33) and (34)
respectively

(K, ] stiffness matrix of beam element

4. & direction cosines of outward normals to beam boundaries

L length of beam element and NITINOL fiber

M, external moment acting at ith node

M,] mass matrix of beam element

m.(i,j) the element i, j of the mass matrix

{N] interpolating function of beam temperature

N, interpolating function of ith node

p number of vertices of element

Pa.n,t mechanical, net and thermal axial loads acting on beam

(P°] matrix given by equation (35)

dn generalized coordinate of the nth vibration mode of
NITINOL fiber

dn generalized acceleration of the nth vibration mode of
NITINOL fiber

Q heat flux per unit area

S1,2 boundaries of the NITINOL fibers and beam respectively

t time

T, initial tension in a NITINOL fiber

T, total tension in a NITINOL fiber

v, shear force acting at the ith node

w transverse deflection of beam and NITINOL fibers

W, work done by transverse loads

Won work done by mechanical axial loads

Waoe work done by thermal axial loads

W, strain energy of beam

W, strain energy of NITINOL fiber

X, ¥, z cartesian coordinates along beam neutral axis and cross
section respectively
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thermal diffusivity of beam

the deflection vector of beam element

angular deflectlion of ith node

temperature at any location (y,z) of beam cross section
ambient temperature

vector of nodal temperatures of element

mode shape of the nth mode

natural frequency of the nth mode
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NOMENCLATURE

interpolating function of beam deflection

ith element of [A]

cross sectional area of beam .

matrix of first derivatives of the nodal interpolating
functions

wave propagation speed
first and second derivatives of interpolating function
of beam deflection

Young’s modulus of beam

vector of external loads acting on beam

convective heat transfer coefficient

area moment of inertia of beam

thermal conductivity of beam

matrices given by equations (32), (33) and (34)
respectively

stiffness matrix of beam element

direction cosines of outward normals to beam boundaries
length of beam element and NITINOL fiber

external moment acting at ith node

mass matrix of beam element

the element i, j of the mass matrix

interpolating function of beam temperature
interpolating function of ith node

number of vertices of element

mechanical, net and thermal axial loads acting on beam
matrix given by equation (35)

generalized coordinate of the nth vibration mode of
NITINOL fiber

generalized acceleration of the nth vibration mode of
NITINOL fiber

heat flux per unit area

boundaries of the NITINOL fibers and beam respectively
time

initial tension in a NITINOL fiber

total tension in a NITINOL fiber

shear force acting at the ith node

transverse deflection of beam and NITINOL fibers

work done by transverse loads

work done by mechanical axial loads

work done by thermal axial loads

strain energy of beam

strain energy of NITINOL fiber

cartesian coordinates along beam neutral axis and cross
section respectively
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ABSTRACT

The buckling characteristics of flexible fiberglass composite beanms
are actively controlled by activating optimal sets of a shape memory alloy
(NITINOL) wires which are embedded along the neutral axes of the beams.
With such active control capabilities, the beams can be manufactured from
light weight sections without compromising their elastic stability. This
feature will be invaluable in building light weight structures that have
high resistance to failure due to buckling.

A finite element model is developed to analyze the 1individual
contributions of the flberglass-resin laminate, the NITINOL wires, and the
shape memory effect to the overall performance of the composite beams. A
closed-loop computer-controlled system is built to validate the finlte
element model. The system is used to control the buckling of a fiberglass
polyester resin beam which is 63.75 cm long, 0.45 cm thick and 2.54 cm wide
reinforced with 8 NITINOL - S5 wires that are 0.55 mm in diameter. The
results obtained confirm the developed theoretical model and indicate that
the critical buckling load can be increased three times when compared to

the uncontrolled bean.

1. INTRODUCTION

Considerable attention has been devoted recently to the utilization of
the Shape Memory NIckel-TItanium alloy (NITINOL) in developing SMART
composites that are capable of adapting intelligently to external
disturbances (Ikegami et al. 1990, Rogers et al.1991, and Baz et al. 1990
and 1991). Such wide acceptance stems from the fact that NITINOL acts as an
actuator converting thermal energy into mechanlical energy (Perkins 1975 and
Duerig et al. 1990) as it undergoes its unique phase transformation from
low temperature martensite to high temperature austenite. During this
phase transformation process large phase recovery forces are generated and
thereby alter the strain energy of the composite inside which the NITINOL
fibers are embedded. With such capabilities, the static and dynamic
performance of the SMART composites can be optimized and tailored to match
changes in the operating conditions.

Emphasis is placed, 1in the present work, on using the shape memory
effect of the NITINOL fibers in controlling the buckling of fiberglass
composite beams. The NITINOL fibers are embedded inside vulcanized rubber
sleeves placed along the neutral axes of these composite beams as shown in

© 1992 IOP Publishing Ltd
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Figure (1). In this arrangement, the fibers are free to move durling the
phase transformation process 1in order to avold degradation and/or
destruction of the shape memory effect which may result when the fibers are
completely bonded inside the composite matrix. The NITINOL fibers are
trained to memorize the shape of the unbuckled beam and when the beam is
deflected under the action of external compressive loads, the controller
activates the NITINOL flbers by heating them above their transformation
temperature. The generated phase recovery forces bring the beam back to
its memorized undeflected position. The present study is motivated by the
work of Baz and Tampe (1989) where external helical shape memory actuators
are used to enhance the buckling characteristics of long slender beams.

wnwoy, L % E2/73
ire
LoAD Loan
n) AP, Fp)
areve CONTROL
SYSTRM
TENSION TENSION TENSION
} {Te) ! (1o {(T>1y)
W/’I. V22 7//71,
UNDEFLICTID oLriLCYTY
\e— UNCONTROLLED — CONTROLLED

Figure (1) - Principle of buckling control of NITINOL-reinforced composites

2. STATIC CHARACTERISTICS OF NITINOL-REINFORCED BEAMS

The statlc characteristics of NITINOL-reinforced composite beams are
primarily governed by their stiffness. The overall beam stiffness 1s made
up of the following components: the flexural rigidity of the beam, the
geometric stiffness that accounts for the axlal and thermal loading as well
as the stilffness imparted by the elasticity of the NITINOL fibers. These
individual components of the beam stiffness can be determined by
considering the NITINOL-reinforced beam element shown in Figure (2) with
the forces acting on it and the assoclated displacements. The combined
stiffness of the element can be obtalned using the principle of
conservation of energy and equating the work done by external loads to the
straln energles stored in the element. In the present analysis, the theory
of Bernoulli-Euler beams ls used with the assumption of small deflections.

M; f 3
4 ! ] 3 “,
T P e ST TR R, w— Poo T
Py il =
V<L
b e |
v X

(a) (b)
Figure (2) - NITINOL-reinforced beam element with forces and displacements
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2.1 External Work
The work done by the external loads includes:
a. work done by transverse loads and moments (W;): This work is given by
W, = 172 [8])T [F), (1)
where [3) is deflection vector and [F] is transverse load vector.

b. work done by the axial mechanical loads (W,,): W,, is given by
L
Wy, =P, /2 j (aw/dx)? dx, (2)

]
where P, is the external axial compressive load acting on the beam.

c. work done by the axial thermal loads (W, ): W,, represents the work
done by the thermal loads P, on the beam element due to changes in the
temperature A8 of the element caused by changes in the amblent temperature
or during the activation and de-activation of the NITINOL fibers. It is

given by

L
Wpy = P, / 2 j (dw/dx)? dx, (3)
o
where P, is
P, = a 88 E, A, (2)

where a is the thermal expansion coefficient of the composite, E, 1s its
modulus of elasticity and A, is the beam cross sectional area.

2.2 Stored strain energy
The stored straln energy consists of two components:

a. strain energy of beam (W;): The energy stored in the beam element due

to its bending is given by L

Wy =E, Ip 7/ 2 J‘ (d%w/dx?)? dx, (s)

o
where E, I, is the flexural rigidity of the beam.

b. strain energy of NITINOL fibers (W,): Considering the NITINOL fiber as

a string with a tension T which is displaced laterally a distance w from

the neutral axis of the beam. Then its stored strain energy W, is given by
L

We=T/2 I (dw/dx)? dx. (6)

0

Equating the sum of the work done by the external forces F, P, and P,

to the sum of the strain energies stored in the beam and the NITINOL fibers
glves

Wy o+ Way + Wop = Wy + W, (7)
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Substituting equations (1), (2), (3), (5) and (6) into equation (7)
yields

L L
(81T[F] = E, I,J (d%w/dx?)? dx - P, f (dw/dx)? dx, (8)
o] o]

where P, is the net axial force give by
P,= (P, + P, -T). (9)

Defining a proper displacement function for the composite beam element,
one can write the beam deflection w as

w = [A] (8], (10)
where the elements of matrix [A] are function of x (Fenner 1975).

Accordingly, dw/dx and d%/dx® can be obtained by differentiating
equation (10) with respect to x to yield

dw/dx = [C] [8] and d3w/dx%= [D] [(&]. (11)

If the stiffness matrix [K,] of the element is defined by the following
relationship

(F) = (k] (&], (12)

then, [K.] can be determined by combining equations (8), (11) and (12) as
follows

L L
(K] = E, I,,I (DIT(D] dx - P,,J' [CIT(C] dx. (13)
o} [o)

The element stiffness matrix [K,] of equation (13) consists of two
components: the conventional transverse stiffness and the geometric
stiffness that combines the effect of the axial mechanical loads, axial
thermal loads and the tension of the NITINOL reinforcing fibers. Equation
(13) also represents the basic equation for understanding the role that the
NITINOL fibers can play in controlling the static characteristics of the
composite beam. For example, if the beam is not reinforced by NITINOL
fibers (i.e. T = 0) and the mechanical and thermal loads induce compressive
stresses in the beam, then the geometric stiffness will increase and the
total element stiffness will decrease. When the combined effect of the
mechanical and thermal loads reaches a critical magnitude such that the
geometric stiffness becomes equal to the flexural stiffness of the beam,
the beam stiffness vanishes and the beam becomes elastically unstable.
Subjecting the beam to any additional external disturbance will cause the
beam to buckle.

It should be pointed out that the thermal loading, as it Increases the
geometric stiffness, also decreases the flexural stiffness of the beam
because it reduces its effective modulus of elasticity E,. Such a dual
effect makes the beam buckle under smaller thermal loads than under pure
mechanical loading.
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However, the critical load of the un-reinforced beam can be increased
by embedding pre-strained NITINOL fibers into the beam. If the tenslon T,
resulting from the pre-strain alone, is high enough to counter-balance the
mechanical and thermal effects then the beam stiffness can be maintained
unchanged. For higher pre-strain levels, the beam stiffness can be
enhanced. Further enhancement can be achieved when the shape memory effect
of the NITINOL fibers is activated by heating the fibers above their phase
transformation temperature. The adaitional tension, induced into the
fibers by the phase recovery forces, makes the net axial load P, negative
and accordingly increases the overall stiffness of the beam element.
However, it is essential that the total tension in the NITINOL fibers,
i.e., the sum of the tension due to the pre-strain and the phase recovery
force, must exceed the mechanical and thermal loads and compensate for the
softening effect in the matrix resulting from heating the NITINOL fibers
inside the composite matrix.

Therefore, effective control of the stiffness of NITINOL-reinforced
composites can be achieved by proper selection of the initial pre-strain
level of the NITINOL fibers. This selection is particularly cruclial as the
pre-strain level determines the generated levels of recovery forces.

3. THE EXPERIMENTAL SET-UP AND RESULTS

3.1. Experimental set-up

Figure (3) shows a schematic drawing of the experimental set-up used in
actively controlling the buckling of a NITINOL-reinforced beam. The beam
dimensions are 63.75 cm by 2.5 cm by 0.44 cm. The beam is reinforced by
eight 0.55 mm NITINOL fibers which are embedded symmetrically along the

neutral axis of the beam.

CONPOSITE BEAM CLAMP CLAMP SERVO-CYLINDER

e [T =z 11 1 ! ]
L !
POSITION SENSOR
RON=CONTACTING [— TO COMPUTER L past PlaTe
FROM COMFRLSSOR PRESSURL NITING(, WIRES COMPOSITE BEAM FRON COMPUTER = PRESSURE FROM COMPRESSOR
|

cauGE

T
WAD CELL

Figure (3) - Schematic drawing of the active buckling control experiment.

The right end of the beam is clamped to a fixed base and the left end
is connected to the piston of a loading cylinder. The cylinder |is
pressurized by compressed air from the storage tank of an air compressor.
The increasing compressive load applied by the load cylinder to the beam
will eventually cause the beam to buckle. The resulting deflection of the
beam is monitored continuously by a non-contacting sensor which is placed
at the mid-span of the beam. The sensor also serves as physlcal stop to
prevent excessive deflection once buckling has occured. The output signals
of the sensor is sent to a micro-computer via a set of analog-to-digital
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converters. The processing of the sensor’'s signal 1s shown 1in the
controller block dlagram shown in Figure (4). When the beam deflection
exceeds a pre-set value of a dead-band, the controller is turned on using a
v
X
b8 Y Y

Y-Y v F Y
Yo Y | conrrousen NrTINOL FLExIBLE

POSITION
SENSOR

Figure (4) - Block diagram of the active buckling control system

proportional controller with a saturation limit. The control action is
sent via a digital-to-analog converter to a power amplifier to activate the
NITINOL fibers embedded inside the compressively lcaded composite beam.
The activation of the NITINOL fibers will compensate for the monlitored
deflection and the phase recovery forces developed in the filbers will
attempt to bring the beam back to its undeflected position.

In the active buckling control system described, the NITINOL
reinforcing flbers are clamped at one end to the fixed base and at the
other end to pre-tensioning cylinder via a load cell. The -“load cell
monitors the initial value of the pre-tension applied to the NITINOL fibvers
by the pre-tensioning cylinder. The load cell also continuously measures
the phase recovery forces developed in the NITINOL fibers as they undergo
their phase transformation.

3.2. Experimental Results

Figure (5) shows a comparison of the performance with and without the
active buckling control. The results displayed are for a
NITINOL-reinforced beam with each of the eight fibers has an initial
tension of 33.7 N which corresponds to an inltial pre-straln of 0.35%. For
the controlled cases, the controller dead band corresponds to deflection
error of 0.0176 mm and the controller gain is 2727 volt/mm. The saturation
limit 1s 6 volts/fiber and the maximum current is 1.6A.
cUnsontrslied --.

(=)

Ousplacsment ( mm )

|3

§

Coamprossive Load (N }

- .
% Time ! See) 19 1o . ® time (Se0) 1M 1

Figure (5) - Performance of buckling controller with 0, 4 and 8 NITINOL
fibers uctivated (dead band = 0.0176 mm, galn = 2727 volts/mm).
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Figure (7) - Effect of controller gain (dead band = 0.0176 mm, initial

pre~tension/fiber = 33.7N and 8 fibers are activated).
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In Figure (5-a), the deflection of the beam resulting from the
application of a gradually increasing compressive load is shown. The rate
of load increase is 500 N/min as shown in Figure (5-b). It can be observed
that the uncontrolled beam buckles when the increasing compressive axlal
load exceeds 330 N. However, when all eight NITINOL fibers are activated,
the beam can withstand axial loads up to 950 N before it begins to buckle.
Therefore, with the NITINOL reinforcement it is possible to almost triple
the critical buckling load of the beam. With four activated fibers, the
critical buckling load Is about 700 N which corresponds to about double the
critical load of the uncontrolled beanm. Figure (5-¢) shows the
corresponding time history of the temperature of the NITINOL fibers due to
the activation and de-activatlion of the controller. In Figure (5-d), the
time history of the phase recovery forces developed in the NITINOL fibers
is shown. The tension in the fibers remains equal to the initial
pre-tension, i.e. 33.7N x 8 = 269.6N, for the uncontrolled case. However,
the tensjion increases to approximately 1000 N when eight NITINOL fibers
are activated.

It is also possible to energize different sets of the NITINOL fibers to
counterbalance the external loading condition in order to prevent buckling
of the composite beam. For small external loads it is only necessary to
energize a few fibers, but if the load increases the controller can
energize a larger number of fibers to maintain the beam in its undefelected
form.

The effect of varying the controller parameters on the performance of
the active control system is shown in Figures (6), (7) and (8). In Figure
(6), the effect of varying the control dead-band on the system performance
is shown. In this case, the control action is only generated when the beam
deflection exceeds the dead band. This is accomplished by the heating of
the NITINOL fibers and the development of the phase recovery forces as
shown in Figures (6-c) and (6-d), respectively. For the range of dead
bands considered, between 0.0176 mm and 0.528 mm, the effect on the
critical buckling loads is insignificant.

The effect of decreasing the controller gain from 2727 volt/mm to
136.35 volt/mm on the system performance is shown in Figure (7). This
effect decreases the slope of temperature rise of the NITINOL fibers and,
in turn, the rate at which the corresponding phase transformation forces
are recovered. Changing the controller gain is found to influence to some
extent the critical buckling load. For example, when the controller gain
is 2727 volt/mm the «critical buckling load is 950 N and when the gain is
reduced to 136.35 volt/mm the critical buckling load vecome about S8SON.
Therefore, reducing the controller gain by a factor of !/20 only results in
a 10.5% reduction in the critical buckling load.

The effect that the pre-tension has on the system performance is shown
in Figure (8) for a dead band of 0.0176 mm and controller gain of 2727
volts/mm. It is clear from the results obtained that , the pre-tension
plays the most crucial role in controlling the buckling of the beam.
Increasing the tension from 0.0 N/fiber to 33.7 N/fiber increases the
critical buckling load from about 100 N to 950 N, respectively.

4. COMPARISON BETWEEN THEORY AND EXPERIMENTS

The mechanism of actively «controlling the buckling of the
NITINOL-reinforced beam can best be understood by considering Figure
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(9-a). The figure regresents the theoretical prediction of the buckling
characteristics of actively controlled NITINOL-reinforced beams. In the
figure, the applied axial load is increased gradually at a linear rate of
500 N/min. For the uncontrolled beam, the eritical buckling load 1s fixed
at 320 N and remains unchanged with time. This load corresponds to a
pre-tension of 33.5 N/fiber. When the applied load becomes equal to the
critical buckling load, the beam is on the verge of elastic instability.
The beam will buckle once the applied load exceeds the fixed critical
buckling load. At time t = 0, the controlled beam has the same bucklling
load as the uncontrolled beam. But, when the controller senses any
deflection greater than the dead band due to the application of the
external load, the buckling characteristics of the beam 1s enhanced as
represented by the dashed characteristics. The activation of the NITINOL
fibers makes the beam less susceptible to buckling as the critical buckling
load is increased to become 850 N instead of the original uncontrolled load
of 320 N. Accordingly, the controlled beam will not buckle until the
applied load exceeds the theoretically predicted limit of 830 N. The
effect of varying the pre-tension levels on the theoretical prediction of
the critical buckling load is shown in Figure (9-b} along with the
corresponding experimental results. It is evident that there 1s a close
agreement betwgsgx theory and experiment.
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Figure (9-a) - Theoretical prediction of c¢ritical buckling load of
controlled and uncontrolled beams.
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S. CONCLUSIONS

The buckling characteristics of NITINOL-reinforced composite beams have
been presented. The fundamental issues governing the behavior of this new
class of SMART composites have been introduced. Applications of NITINOQU
reinforcing fibers in the control of buckling have been successfully
demonstrated.

Emphasis has been placed in the presentation on the actuation
capabilities of the NITINOL fibers. Extensive efforts are, however, in
progress to use the NITINOL fibers to extract modal and physical
displacements of structures with multi-modes of vibration (Baz, Poh and
Gilheany 1991}.

With such built-in sensing and controlling capabilities,
NITINOL~reinforced composites can provide a means for continuously tuning
their structural characteristics to adapt to changes in the operating
conditlions. These features will be particularly useful in many critical
structures that are intended to operate autonomously for long durations in
isolated environment such as defense vehicles, space structures and
satellites. :
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ABSTRACT

A new class of distributed sensors is presented which can measure
both the modal and physical displacements of vibrating composite beams.
The sensor relies in its operation on a set of super-elastic Shape Memory
Alloy (SMA) wires which are embedded off the neutral axes of the vibrating
beams. The wires are arranged in a special manner which allows continuous
monitoring of the deflection curve of the beam. The output signals of the
SMA wires are processed to determine the modal displacements of the beam
and the physical displacements at critical discrete points along the beam
axis.

The theoretical and experimental performance of the sensor are
presented in both the time and frequency domains. Comparisons are given
between the experimental performance of the SMA distributed sensor and
that of conventional laser sensors in order to demonstrate the accuracy
and merits of the distributed SMA sensor. The results obtained suggest
the potential of this new class of sensors as a viable means for
controlling the vibrations of flexible composite beams and plates
particularly with modal control algorithms. [ Work supported by grant from

ARC].




1. INTRODUCTION

Considerable interest has been directed recently towards the
development of a wide variety of distributed sensors for monitoring the
vibration of composite flexible structures. Distinct among these sensors
are those relying in their operation on optical fibers [1-2],
piezo-electric films ([3-4] and Shape Memory Alloy (SMA) wires [5-6] which
are embedded in the composite matrix of the flexible structures. By far
the most commonly used and researched class of embedded sensors is the
‘optical fibers sensors. These sensors have been developed to monitor not
only structural vibrations [1] but also temperature distribution [7],
cracks and defects [8] as well as curing of composite matrices [9]. In
spite of such wide acceptance, the complexity of the instrumentation and
the signal processing algorithms associated with optical fibers sensors
still poses many serious challenges that remain to be addressed [10].

Such problems are avoided with the embedded piezo-electric film
sensors developed by Lee [3]. These sensors utilize specially shaped
piezo-electric films to monitor the modal coordinates of vibrating beams
and plates. The shaping of the films aims at isolating the individual
modal signals in a manner similar to the modal filtering technique of
Meirovitch [11]. Such specially configured piezo-electric films have also
been used by Lee et al [4] to monitor uniaxial and pure shear strain rates
in vibrating beams. In spite of their on-line and real time measurement
capability without the need for any signal processing, the configured
piezo-electric films are restricted to the singular structural
configuration that they are designed for and are limited to simple and
time invarying structures.

The use of shape memory wires as embedded distributed sensors provides
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a viable alternative to optical fibers and piezo-electric film sensors.
The SMA sensors require very simple instrumentation and when properly
designed, they require very simple signal processing algorithms to extract
modal and physical coordinates of the vibrating structures. The sensors
rely in their operation on the changes in the electrical resistance of the
SMA wires when subjected to arial 1loading in a manner similar to
conventional discrete strain gage sensors. This physical property has
been successfully utilized in monitoring the position of robotic joints
[12]. The SMA sensor have also been used at Virginia Polytechnic
" Institute [S] and Boeing Aerospace [6] to measure a single mode of
vibration of composite flexible beams [5-6]. No attempt has been made
however to use the SMA sensor to monitor several modes of vibration or to
extract the modal and physical parameters of vibrating structures.

It is therefore the purpose of this study to develop such a SMA sensor
which 1is capable of monitoring multi-modes of vibration of flexible
composite beams in order to extract individual modal and physical
parameters of these beams. Furthermore, this study documents the
performance of such SMA sensors, both in the time and frequency domains,
and validates their performance by comparison with conventional sensors.
It is important to note that the SMA sensor relies in its operation on the
use of the classical modal decomposition approach [13]. This approach has
been recently utilized, by many investigators, to extract the modal
displacements of vibrating beams [14-16] and plates [17] from the
measurements of a set of discrete sensors. The placement strategy of these
discrete sensors is, however, very critical in order to avoid nodes of
vibration. This is in contrast to the distributed SMA sensor which can be
placed at any place along the beam without any concern about the location

of the nodes of vibration. Such versatility makes the SMA sensor suitable
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for monitoring the vibration of more complex structures where the location
of the nodes of vibration can not be accurately determined particularly

for higher order modes.

Accordingly, this paper is organized in four sections and an appendix.
In section 1, a brief introduction is given and section 2 presents the
theoretical principles of the sensor. The experimental performance of the
sensor is given in section 3 and the conclusions are summarized in

section 4. The calibration of the sensor is described in the appendix.

2. THEORETICAL MODELING OF THE SENSOR

2.1. Monitoring the modal coordinates

The multi-mode distributed SMA sensor relies in its operation on a SMA
wire embedded inside a composite beam as shown in Figure (1). The wire is
placed, at a distance a, off the neutral axis of the beam. The wire is
tapped along its length at different locations 1, 2, .. , N where N is
equal to both the number of modal coordinates to be extracted and the
number of physical coordinates to be estimated. The changes AL,, AL,,
..and ALy in the lengths L;, L,, .. and Ly of the different segments of
the wire, due to the vibration of the beam, are monitored continuously by
measuring the changes AR;, AR,, .. and ARy in the electrical resistances

of these segments such that
AL, = (AR, A) / p, for i=1,.., N (1)

where A 1is the wire cross sectional area and p, is 1its electrical
resistivity.
The changes in the lengths AL; are related to the curvature of the

deflection curve of the beam as it vibrates under the action of the
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external loads. Assuming small deflections and that the SMA wire
experiences the same linear strains as the host beam in which the wire is

embedded, then the changes AL; can be calculated from

L. L. 2
i i 3y
ALi=J-edx =Ja—2dx (2)
d x
o] [o]

where € is the axial strain in the wire and y is the beam deflection
in the transverse direction which obeys the following partial differential
equation describing the dynamics of a Bernoulli-Euler beam [13], is
3y 62y

T v PA— = Z F;, 8(x-x;) + z M, & (x-x;) (3)
ad x at

where EI is the flexural rigidity of the beam, p is the mass density,
A, is the beam cross sectional area, t is the time, F; is a point load
acting on the beam at location x;, M, is a moment acting on the beam at
location x;, & is the kronecker delta function and &' is the unit doublet
function. Applying the separation principle [13] to equation (3), the
transverse deflection y(x,t), at any location x and time t, can be written

as a linear combination of the mode shapes ¢,(x) of the beam as follows
N
y(x,t) =) ¢y(x) uy(t) (4)
i=1

where u;(t) and ¢,(x) are the generalized modal coordinate and the
corresponding mode shape respectively for the ith mode. The mode shape

¢,(x) for a cantilevered beam is given by
¢, (x) = [cosh(k;x) - cos(k;x)I-ai [sinh(k;x)-sin(k;x)] (5)

with o«; given by




o, = [cosh(k;L,) + cos(k;L,)] / [sinh(k;L;)+sin(k,L,)] (6)

and k; is defined as the wave number of the ith mode which satisfies the

following characteristic equation
cos (k;L;) cosh (k;L;) +1 =0 (7)

Substituting equations (5), (6) and (7) into equation (4) the
transverse deflection y at any x and t can be determined. The resulting
equation can be used to calculate the beam curvature azy/ax2 which is in
turn can be substituted into equation (2) to calculate the change in
-lengths AL;.

After some manipulations, the vector of length changes AL; can be

calculated from

N
AL; = a E: kj[(sinh(kjLi)+sin(kjL1)] - aj[cosh(kjLi)-cos(kjLi)]]uj (8)

j=1

Letting AL be the vector of length changes given by
AL = [AL, AL, .. ALylT, (9)

C be a (NxN) matrix whose constant and known entries c;; are

given by
A
Cyy =a kj[[sinh(kjL1)+sin(kjLi)] - aj[cosh(kJLi)-cos(kJLi)J], (10)
and U be the vector of the beam modal coordinates given by
U= [u u .. uylt (11)

Then substituting equations (8), (10) and (11) into equation (9), it

yields the following matrix equation for the vector of length changes

AL =C U (12)




indicating that the changes in the lengths AL of the different segments of
the SMA wire are linearly related to the modal coordinates U of the
composite beam.
Defining AR as the vector of resistance changes of the different
wire segments , i.e.
AR = [AR, AR, ... ARylT (13)

and substituting for AR; from equation (1), the above equation reduces to

AR = A/p, AL (14)

Combining equations (12) and (14), gives the modal coordinate vector U

in terms of the resistance changes vector AR as follows
U=p/A C' AR (15)

i.e. measuring the changes AR of the N segments of the SMA wire can be
used to directly calculate the N modal coordinates of the vibrating
composite beam as the matrix equation (15) represents a set of N linear
equations in the N unknowns u;, u,, .. and uy.

It should be noted that the matrix C is always non-singular 1i.e. a
solution for equation (15) always exists, unless two tapping points of the
SMA wire coincide. This means that the length of the corresponding two
wire segments is equal resulting in a matrix C with two equal rows.
Accordingly, the rank of matrix C is reduced to N-1. Of course such
condition will not occur on purpose. However, if it does occur the sensor
can still extract (N-1) modal and (N-1) physical displacements. In other
words, the tapping points of this distributed sensor can be placed any
where along the beam even coinciding with any node of vibration. This is
not the case with discrete sensors such as conventional strain gages and
accelerometers where these sensors should not bte placed at nodes of

vibration. Such critical placement requirement of the discrete sensors
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limits their wuse to simple structures and favors the use of the

distributed sensor described in this study.

2.2. Monitoring the physical coordinates

In a similar fashion, the measurements of AR can also be used to
compute the N physical coordinates of the vibrating beam. This can be

achieved by defining Y as a vector of physical coordinates given by

Y= yL,) yLp) ....yL)lT (16)

Therefore, from equation (4) the following matrix equation can be

written
Y = o U (17)
where $ = ¢ (Ly) .. y(ly) - (18)
0, (L) .. ¢y(Ly)
- ¢1(LN) .. ¢N(LN) -

From equations (15) and (17), the physical transverse displacement
vector Y of the N taping points can be calculated from the measurements of

the resistance changes AR of the N segments of the SMA wire as follows
Y =p. /A & C! AR (19)

Equations (15) and (19) constitute the basic equations that govern
describing the capability of the distributed SMA sensor in extracting the
modal and physical coordinates of a vibrating composite beam from the
measurements of resistance changes of N segments of the wire. In these
equations, the calculation of both the modal and physical coordinates of a

beam is shown to be very simple as it is reduced to merely the solution of
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two sets of simultaneous linear equations.

Equations (15) and (19) will be utilized in the following section to
extract the coordinates of an experimental beam and the results obtained
will be compared to the results measured by conventional laser sensors.

The above analysis of the SMA sensor indicates that the sensor is in
effect a multi-mode distributed strain gage. Such distributed nature of
the sensor has many inherent advantages. First, it makes the placement of
the sensor and its tapping points insensitive to the location of the nodes
of vibration. This of course is not the case for conventiocnal discrete
‘strain gages where the sensors can not be placed at these nodes. Second,
because the SMA sensor relies on integrating the strain along the wire
segments, as described by equation (2), its output signal will be less
noisy than that of conventional strain gages and high signal-to-noise
ratios can be obtained. Third and because of its embedded nature the SMA
sensor can also detect structural failures by monitoring the failure of
any wire segment. These advantages make the SMA sensor suitable for
accurately monitoring the vibration and integrity of complex SMART
composites.

Worth noting also is that the theory developed for the SMA sensor
is based on the knowledge of the mode shapes of the beam or the structure
inside which it is embedded. However, the cantilevered beam example given
in this study can be easily extended to beams with other boundary

conditions.

3. EXPERIMENTAL PERFORMANCE OF THE DISTRIBUTED SENSOR
3.1. Experimental set-up

Figure (2) shcws a schematic layout of the experimental set up used

- 10 -
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in evaluating the performance of the SMA distributed sensor in both the
time and frequency domain. The sensor is made of a 0.125 mm diameter SMA
wire embedded inside a composite beam whose physical, geometrical and
dynamical properties are given in Table 1. The SMA wire itself is
manufactured from a super-elastic Nickel-Titanium alloy called NITINOL
which has a resistivity of 0.644x107% ohm/m. Such an alloy is selected
because its super-elasticity allows the wire to experience large
deformations, about ten times more than conventional materials, and still

completely spring back to its original undeformed shape [18]. This

.feature makes the sensor suitable for monitoring the vibration of very

flexible structures without exhibiting any plastic deformations.

Table 1 - Physical, geometrical and dynamical properties of
test composite beam

Length Width thickness density Young’sZMod. 1st Mode 2nd Mode 3rd Mode
(cm) (cm) {cm) (gm/cc) (GN/m™) (Hz) (Hz) (Hz)
48.0 5.0 0.25 0.73 4.35 1.88 11.75 33.15

The composite beam, with the embedded SMA sensor, is mounted in a
cantilevered manner on an oscillating platform which can oscillate freely
on two guide rails. The rails are set parallel to the transverse
vibration direction of the beam. A shaker (Wilkoxon Research model F3/F9,
Bethesda, MD) is driven with a sinusoidal function generator to provide
controlled vibration of the platform and in turn the composite beam. The
resulting beam vibration is monitored by the SMA sensor which is provided
with only two segments. The first segment extends between the beam tip 1
and its fixed rcot whereas e second segment extends between the beam
mid-span point 2 and the fixed base. The resistances of the two segments
are measured using amplifiers model P-3500 from Measurements Group,

Raleigh, North Carolina. The amplifiers operate with 9 Volt DC power
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source. The conditioned outputs of the amplifiers are sampled by a
386-microprocessor via an input/output board (model DASH-16 from
METRABYTE, Taunton, MA). The sampling rate used is 190 Hz with an
accuracy of 12 bits which corresponds to 4.88x1073 mm. The displacements
of the first and second modes are computed from the measurements of the
resistance of the two segments using equation (15). Also, the physical
displacements of the beam tip and mid-span are computed, in the
microprocessor, using equation (19). The physical displacements obtained
from the SMA sensor are compared with those measured by two laser sensors
‘(model IIIB-LA40OHR , Aromat Corp., New Providence , NJ). The laser
sensors are placed on the oscillating platform facing the beam tip and
mid-span points. The sensors have accuracy of 20 um over a frequency
band between 0-1000 Hz.

The calibration of the SMA sensor is carried out by comparing the
sensor output with the output of the laser sensors according to the
procedure outlined in the appendix. Such a procedure is important to
account for errors in the sensor’s parameters as the fiber position a and
segments length L;®. The laser sensors are calibrated by reflecting their
light beam off a micrometer head. The spacing between the head and the

laser emitter is varied and the output of the laser sensor is recorded.

3.2. Performance of the SMA sensor

3.2.1. in the time domain

The composite beam with the embedded SMA sensor is
subjected to three different initial sinusoidal excitations at 1.9, 7 and
11.8 Hz respectively. The first and third excitation frequencies are
selected in order to resonant the beam at its first and second modes of

vibration. Following the initial excitation period, the shaker driving the
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platform is turned off and the beam is left to vibrate freely. The
signals of the SMA sensor and the laser sensors are then sampled by the
computer over a period of 1.5 seconds. All the sampling and the results,
reported in this study, are carried out during the transient period which
follows the steady-state excitation by the shaker.

Figure (3) shows the corresponding length changes of the two SMA
wire segments at the three excitation conditions. These length changes AL
are used along with equation (19) to compute the physical displacements at
the tip and mid-span of the beam. Figure (4) shows the computed physical
.displacements as obtained by the SMA sensor along with the corresponding
displacements of the laser sensors when the first vibration mode of the
beam is excited. Such a comparison indicate excellent agreement between
the measurements of the SMA and the laser sensors.

Figures (5) and (6) display similar comparisons between the
displacements of the SMA and the laser sensors, at the beam tip and
mid-span, when the excitation frequencies are 7 and 11.8 Hz respectively.
The two figures clearly demonstrate the accuracy of the SMA in monitoring
the vibration of the beam in the time domain.

It is essential to note that all the measurements and the
calculations of the modal and physical displacements are carried out, in
real time, with a sample interval of 5.2 ms. This interval is
corresponding to a sampling rate of 190 Hz which is at least 8 times

greater than the Nyquist frequency limit necessary to avoid aliasing.

3.2.2. in the frequency domain
The performance of the SMA in the frequency domain is
evaluated by impacting the composite beam with a modally tuned impact

hammer (model PCB- GK291B02, PCB Piezotronics, Depew, NY). The response
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of the SMA sensor as well as that of the laser sensors to such impacts are
analyzed using a dual channel spectrum analyzer. These responses are used
to predict the frequency response of the different vibration modes.
Figures (7) and (8) show the normalized power spectra of the SMA and the
laser sensors outputs at the beam tip and its mid-span respectively. It
is evident that the response of the SMA sensor matches that of the laser
sensors in the frequency domain. Furthermore, the experimental
frequencies obtained by the analysis of the SMA sensor output are in close
agreement with the theoretical predictions w; which are given by
172
w, = (ky L)%/ (L;2) (E1/pA) (20)

where k; is the wave number of the ith mode given by equation (7). In
particular, the first three modes are found experimentally to be 1.875,
11.76 and 33.15 Hz whereas the corresponding theoretical predictions are

1.89, 11.8S and 33.18 Hz respectively.

However, it 1is essential to note that the bandwidth of the
prototype SMA sensor is limited by the fact that it has two sampling
points. This implies that it can only measure excitations up to the

second mode of vibration which is 11.8 Hz.

4. CONCLUSIONS

The feasibility of a new class of distributed SMA sensors in

measuring modal and physical displacements of composite beams is

successfully demonstrated. The sensors utilize SMA wires which are
embedded inside the matrix of the composite beams. Such an arrangement
can be augmented with sets of embedded actuators, as SMA or
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piezo-electric, in order to develop a class of SMART composite beams which
have built-in vibration and shape control capabilities. These capabilities
can be utilized along with any of the modal control algorithms, such as
those developed by Baz et al [15-16], to control the structural vibrations
and shape of these SMART composites.

The general theory of operation of the distributed sensor is
presented for monitoring N modal and physical coordinates. The
experimental validation of the sensor performance is demonstrated for a
composite beam where the first two modes of vibrations dominate its
'dynamic response. The physical displacements of the beam tip and mid-span
as obtained by the two-mode distributed sensor are found to be in
excellent agreement with the measurements of conventional laser sensors.
Emphasis however should be placed on the fact that the distributed sensor
is tested with excitations within its frequency band capabilities. If the
sensor is designed to monitor low frequency excitations and the external
frequency band exceeds its maximum frequency limit, then it is essential
to use low pass filters to filter out the high frequency contents in the
sensor signals in order to avoid conventional observation spillover
problems [19] and spatial aliasing [17]. This typical instrumentation
problem can be avoided by proper selection of the sensor’'s bandwidth
to be compatible with the expected excitation frequency band. However,
for more accurate monitoring of the displacements it is recommended to
provide the SMA sensor with more bandwidth than the excitation frequency
band, i.e number of sampling points N should be greater than the number of

displacements P to be determined. In this manner, equation (15) becomes:
U= [u uy .. upl® = p/A [CT CI7! CT AR (21)

where U is the vector of P modal displacements, C is a matrix (PxN) whose
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entries are given by equation (10) and [CT C]! CT is the pseudo-inverse
of C. Such a statistical appréach, as N>P, of the over determined equation
CuU = p./A AR ensures that the modal displacements U extracted are the
least-squares estimates. This will be particularly important in the
case of noisy measurements. The modal displacements U extracted can then
be used to compute the physical displacements Y of the beam using the
following transformation equation
Y=9¢U (22)

where ¢ is the mode shape matrix (NxP) whose entries ¢;; correspond to the
’shapes of the jth mode at location i.

It should be pointed out also that the theory developed in this
study can be easily extended to utilize the distributed SMA sensor to

monitor the vibration of two or three dimensional motions as for example

of plates or more complex structures.
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APPENDIX

CALIBRATION OF THE SMA DISTRIBUTED SENSOR

The linear nature of the SMA distributed sensor, as defined by
equations (15) and (19), makes its calibration a rather simple process.
Such a calibration is necessary to account for errors in the parameters of
the sensor such as the position and length of the SMA wire and its
different segments. The calibration procedure is based on the use of a
'conventional laser sensor placed at location i along the beam to monitor
the beam physical displacement y,, at time sample k. The beam is
subjected to a general excitation and the corresponding resistance changes
AR, of the different wire segments are determined at the same sample
interval k. The collection of a set of z measurements of the physical
displacement y;, and the resistance changes AR, may be concatenated, based

on equation (19), to form the following equation:

Yi = AR Cl (A"l)
where
Y, = vector of concatenated physical displacement measurements
given by
T
= [in) Yikse1) -+ Yi(kez-1) ] ’ (A-2)
AR = matrix of concatenated resistance changes, given by
= R B8R (k) .o+« BRyy) 1
B8Ry (k+1) 8R3 (k+1) o+ + BRy(ke1)
» (A-3)
LARl(lnz-l) AR2(k<rz-1) et ARN(k+z—1)
and C, = vector of sensor parameters at location i, given by
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[ cll Cla . e CIN ]. (A-4)

The elements of the vector C; can then be computed using the least

mean squared estimates as follows

C, = [aRT AR]™! ART v, (A-5)

The above procedure is repeated by moving the laser sensor to
location j and estimating the vector Cj of sensor parameters in a similar
manner. When all the rows C;® are estimated, the matrix C is formed and
the calibration process of the distributed sensor is completed provided
that the modal shape matrix ¢ is already known or is experimentally

determined using the classical modal analysis methods [20].
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NOMENCLATURE

distance between SMA wire and neutral axis

cross sectional area of wire

cross sectional area of beam

matrix given by equation (10) (NxN)

matrix given in equation (21) (PxN)

ith row of C matrix

Young’s modulus of composite beam

force acting on beam

area moment of inertia of beam

sample order

the wave number for the ith mode given by equation (7)
length of ith segment

moment acting on beam

number of wire segments, number of measured modes,

and number of measured physical coordinates

number of accurate modal displacements

resistance of ith wire segment

time

beam thickness

modal coordinate of ith mode

modal coordinate vector (Nx1)

accurate modal coordinate vector (Px1)

distance along the neutral axis of beam

deflection in transverse direction

vector of physical deflection of tapping points

vector of concatenated physical displacements at ith
location

number of calibration samples

constant for ith mode given by equation (6)
change in length of ith segment

vector of length changes (Nx1)

changes in resistance of ith segment

vector of resistance changes (Nx1)

matrix of concatenated resistance changes
strain in SMA wire

mass density of composite beam

electrical resistivity of SMA wire

mode shape for ith mode

modal shape matrix (NxN) given in equation (17)
modal shape matrix (NxP) given in equation (22)
the ith mode
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ABSTRACT

The static and dynamic characteristics of flexible fiberglass
composite beams are controlled by activating optimal sets of shape memory
alloy (NITINOL) wires which are embedded along the neutral axes of these
beams. The underling phenomena influencing the behavior of this class of
composite structural members are presented. The individual contributions
of the fiberglass-resin laminate, the NITINOL wires and the shape memory
effect to the overall performance of the composite beam are determined at
different operating temperatures and initial preloads of the wires. The
modes of vibration of the fiberglass beams are measured with and without
the NITINCL reinforcement at various operating conditions. With properly
designed NITINOL reinforcement, it is shown that the beams can become
stiffer and less susceptible to buckling. The modes of vibrations of the
activated Nitinol-reinforced composite beams can also be shifted to higher
frequency bands relative to those of the unactivated or un-reinforced
beams. Finite element models are developed to describe the static, dynamic
and thermal interaction between the NITINOL wires and the fiberglass-resin
laminates. Close agreement is obtained between theoretical predictions and
experimental results. With such tunable characteristics, the
NITINOL-reinforced composite beams can be effective in attenuating the

vibrations induced by various external disturbances.




1. INTRODUCTION

Considerable attention has recently been devoted to the utilization of
the Shape Memory NIckel-TItanium alloy (NITINOL) in developing SMART
composites that are capable of adapting intelligently to external
disturbances (lkegami et al. (1], Rogers et al. [2], and Baz et al. [3-4]).
Such wide acceptance of NITINOL stems from its unique behavior when it is
subjected to particular heating and cooling strategies. For example, the
" alloy becomes soft when it is cooled below its martensite transformation
temperature and becomes about four times stiffer when it is heated above
its austenite transformation temperature (Funakubo [S]). Furthermore, when
the alloy is trained to have a particular shape while in its austenite
phase, it will memorize this shape. If the alloy is then cooled to its
martensite phase and subject to plastic deformation, it will return to its
memorized shape when it 1is heated above the austenite transformation
temperature. The phase transformation from martensite to austenite produces
significant forces as the alloy recovers its original shape. The alloy
acts as an actuator transforming thermal energy into mechanical energy
(Perkins [6] and Duerig et al. ([7]). Accordingly, if the NITINOL fibers
are embedded inside a composite matrix at optimal locations, tﬁey can be
used to control the static and dynamic characteristics of the resulting
SMART composite. The control action 1is generated by the described
stiffening of the NITINOL fibers and/or the shape memory effect. With such
built-in control capabilities, the performance of the SMART composites can
be optimized and tailored to match changes in operating conditions.

Emphasis is placed in the present work on using the shape memory effect
of the NITINOL fibers to control the performance of fiberglass composite
beams. The NITINOL fibers are embedded inside wvulcanized rubber sleeves
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placed along the neutral axes of these composite beams as shown in Figure
(1). In this arrangement, the fibers are free to move during the phase
transformation process in order to avoid degradation and/or destruction of
the shape memory effect which may result when the fibers are completely
bonded to the composite matrix.

The basic phenomena governing the static and dynamic performance of the
NITINOL-reinforced composites will be presented, both theoretically and
experimentally. in this paper.

The paper is organized in five sections. In section 1, a brief
introduction is given. In sections 2 and 3, the finite element models
describing the static and dynamic characteristics of the NITINOL-reinforced
beams are introduced respectively. The experimental validation of the

finite element models is presented in section 4 and the conclusions are

summarized in section 5.

2. STATIC CHARACTERISTICS OF NITINOL-REINFORCED BEAMS

The static characteristics of NITINOL-reinforced composite beams are
primarily governed by their stiffness. The beam stiffness is made up of
different components which include: the flexural rigidity of the beam, the
geometric stiffness that accounts for the axial and thermal loading, as
well as the stiffness imparted by the elasticity of the NITINOL fibers.
The individual components of the beam stiffness can be determined by
considering the NITINOL-reinforced beam element shown in Figure (2) with
the forces acting on it and the associated displacements. The combined
stiffness of the element can be obtained using the principle of
conservation of energy and equating the work done by external loads to the
strain energies stored in the element. In the present analysis, the theory

of Bernoulli-Euler beams is used with the assumption of small deflections.
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2.1. EXTERNAL WORK
The work done by the external loads includes:
a. work done by transverse loads and moments (W)
This work is given by

W, = 172 (817 [F], (1)

where [8] and [F] are the displacement and transverse loads vectors,

respectively, given by

(81 = w, & w; 9,17, (2)

" and [Fl = (v, M Vv, M]IT, (3)

where w; and ¢; are the linear and angular deflections of node 1,
respectively and V; and M; are the shear and moment acting at node 1,

respectively.

b. work done by the axial mechanical loads (W,,)

Wo, is given by [8] as .

Woy = Py, / 2 J' (dw/dx)? dx, (4)
o

where P, is the external axial compressive load acting along the neutral

axis of the beam element.
c. work done by the axial thermal loads (W)

W,, represents the work done by the thermal loads P, on the beam
element due to changes in the temperature A8 of the element caused by
changes in the ambient temperature or during the activation and

de-activation of the NITINOL fibers. [t is given by

L
Wo, = Py / 2 I (dw/dx)? dx, (5)
0
where P, is given by
P, = a 40 E; A, (6)
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where a is the thermal expansion coefficient of the composite, E; is its

modulus of elasticity and A, is the beam cross sectional area.

2.2. STORED STRAIN ENERGY

The stored strain energy consists of two components:
a. strain energy of beam (W;)

The energy stored in the beam element due to its bending (9] is given

by
’ L

Wy =E, I / 2 J' (d2w/dx?)? dx (7)

o
where E; I, is the flexural rigidity of the beam.

b. strain energy of NITINOL fibers (W,)

Considering the NITINOL fiber as a string, as shown by Baz et al [10],
with a tension T which is displaced laterally a di “"ance w from the neutral

axis of the beam, then its stored strain energy W, is given by [9]

L
W,=T/2 I (dw/dx)? dx. (8)

0

Equating the sum of the work done by the external forces F, P, and P,

to the sum of the strain energies stored in beam and NITINOL fibers gives
Wy + Wop + Wy, = Wy + W, (9)

Substituting equations (1), (4), (5), (7) and (8) into equation (9) yields

L L
[81T(F] = E, I, J (d2u/dx®)? dx - P, j (du/dx)? dx, (10)
[o] o]

where P, is the net axial force give by
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Defining a cubic displacement function for the composite beam element,

of the following form
w=a+bx+cx?+dx3 (12)

where a, b, ¢ and d are constants that can be calculated in terms of the
deflections of the nodes i and j bounding the beam element, equation (12)

can be rewritten as

w = [A] (8], (13)

where the elements of matrix [A] are function of x (Fenner [11]).

Accordingly, dw/dx and d%w/dx? can be obtained by differentiating

equation (13) with respect to x to yield

dw/dx = [C] [8] and d%w/dx®= [D] [s], (14)
where the matrices [C]) and [D] are given by
42

-d -
(C] = 3 (1AD) and [D] = =2 ([A]). (15)

The following relationships can also be obtained from equation (14)

(dw/dx)2 =[8]T[CIT[CI(8] and (dZw/dx?)2 =[s8]1T(D]IT(D](5]. (16)

If the stiffness matrix [K,] of the element is defined by the following

relationship
(FI = [K.] (8], (17)

then, [K.,] can be determined by combining equations (10), (16) and (17) as

follows
L L
K.l = E, I, I (DIT(D] dx - P, I ([CIT[C] dx. (18)
0 0

It can be seen from equation (18), that the element stiffness matrix

(K,] consists of two components: the conventional transverse stiffness and
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the geometric stiffness that combines the effect of the axial mechanical
loads, axial thermal loads and the tension of the NITINOL reinforcing
fibers. Equation (18) also represents the basic equation for understanding
the role that the NITINOL fibers can play in controlling the static
characteristics of the composite beam. For example, if the beam is not
reinforced by NITINOL fibers (i.e. T = 0) and the mechanical and thermal
loads induce compressive stresses in the beam, then the geometric stiffness
will increase and the total element stiffness will decrease. When the
- combined effect of the mechanical and thermal loads reaches a critical
magnitude such that the geometric stiffness becomes equal to the flexural
stiffness of the beam, the beam stiffness vanishes and the beam becomes
elastically unstable. Subjecting the beam under this condition to any
additional external disturbance will cause the beam to buckle.

It should be pointed out that the thermal loading, as it increases the
geometric stiffness, also decreases the flexural stiffness of the beam
because it reduces its effective modulus of elasticity E;. Such a dual
effect makes the beam buckle under smaller thermal loads than under pure
mechanical loads.

However, the critical load of the un-reinforced beam can be increased
by embedding pre-strained NITINOL fibers into the beam. If the tension T,
resulting from the pre-strain alone, is high enough to counter-balance the
mechanical and thermal effects then the beam stiffness can be maintained
unchanged. For higher pre-strain levels, the beam stiffness can be
enhanced. Further enhancement can be achieved when the shape memory effect
of the NITINOL fibers is activated by heating the fibers above their
austenite phase transformation temperature. The additional tension,
induced into the fibers by the phase recovery forces makes the net axial

load P, negative, and accordingly increases the overall stiffness of the
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beam element. However, it is essential that the total tension in the
NITINOL fibers, i.e., the sum of the tension due to the pre-strain and the
phase recovery force, must exceed the mechanical and thermal loads and
compensate for the softening effect produced in the matrix by the heating
the NITINOL fibers. Therefore, effective control of the stiffness of
NITINOL-reinforced composites can be achieved by proper selection of the
initial pre-strain level of the NITINOL fibers. This selection is
particularly crucial as the pre-strain level determines the generated

" levels of recovery forces [10].

The finite element model of the NITINOL-reinforced beams describes the
interaction between the external loads, operating conditions and the
geometrical and physical parameters of the composite beam and the NITINOL
fibers. It defines how the NITINCL fibers can be utilized to tailor the
stiffness of the composite to compensate for environmental and operating
conditions and disturbances. The stiffness obtained for the individual
elements of the beam can be assembled using the classical finite element
approach (Fenner [11]). The assembled model can then be subjected to the
appropriate boundary conditions in order to compute the deflections
corresponding to particular external loading conditions. The analysis
presented is for an orthotropic laminate that has a single layer of
unidirectional NITINOL fibers. Such an analysis can be used along with the
classical laminate theory (Vinson and Sierakowski [12]) to assemble the
stiffness matrix for a multi-laminate composite beam. A similar approach
has been carried out for modeling the static and dynamic characteristics of
NITINCL-reinforced composite plates (Baz, Ro and Gilheany (13]). The
finite element model developed will be validated with experimental results

obtained with fiberglass composite beams.
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3. DYNAMIC CHARACTERISTICS OF THE NITINOL-REINFORCED BEAMS

The dynamic characteristics of NITINOL-reinforced beams are obtained by
combining the stiffness matrix [K.,] with the mass matrix [M,] of the beam

to form the following element equations of motion
(M1 (8] + (K] (&) = [F], (19)

where [3] is the nodal acceleration vector. The elements m.(i,j) of the
. element mass matrix [M,] are obtained using the consistent mass formulation
(2ienkiewicz and Taylor [14]) as follows
L
m,(i,3) = p, A, J A, A, dx, (20)
0

where A; and A; are the ith and jth elements of the vector A given by

equation (13).

The classical finite element approach is used to form the equations of
motion of the assembly of several beam elements and the appropriate
boundary conditions are then applied. The solution for the eigenvalues of
the resulting homogeneous equations give the natural frequencies of the
composite beam as influenced by the properties of the composite matrix and
the NITINOL fibers. It is important to note that these properties are
influenced by the temperature distribution inside the beam which is

developed by virtue of activating and de-activating the NITINOL fibers.

4. EXPERIMENTAL VALIDATION

4.1 Test facility and experimental beam

The characteristics of NITINOL-reinforced beams are computed using the
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4
developed static and dynamic models. The theoretical predictions are

compared with experimental results obtained with a composite beam made of
randomly oriented glass fibers embedded in a low cure temperature polyester
resin. The beam is 30 cm long, 2.5 cm wide and 0.156 cm thick and is
mounted with fixed-fixed boundary conditions. The temperature dependence of
the modulus of elasticity of the beam, shown in Figure (3), is obtained
experimentally using the Dynamic, Mechanical, and Thermal Analyzer (DMTA)

of Polymer Laboratories, Ltd ([15].

Four NITINOL S5 fibers, that are 0.55 mm in diameter, are embedded
inside the beam through vulcanized rubber sleeves that have outer diameter
of 0.95 mm. Two sets of NITINOL fibers were used. The first set consisted
of trained fibers that have an austenite transformation temperature of
s50°c. However, the second set is untrained and the shape memory effect has
not been imparted to it. The two sets are inserted, one at a time, inside
the sleeves and the effect of the shape memory and the associated phase
recovery forces on the performance of the composite beam are monitored when
the beam is exposed to different ambient temperatures. The experimental
set-up, shown in Figure (4), is placed inside a temperature-controlled
chamber to determine the natural frequencies of the fixed-fixed beam as a
function of the ambient temperature. In the set-up the NITINOL-reinforced
beam is fixed at both ends, whereas the NITINOL fibers are clamped in a
holder at one end and connected to a load cell at the other end. The load
cell monitors the pre-strain level of the fibers when they are in their
martensitic phase, as well as continuously measuring the recovery force
when the fibers undergo phase transformation. In this arrangement, the
fibers are activated thermally by controlling the temperature of the

environmental chamber. The measurements are carried out after steady-state
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and thermal equilibrium conditions are attained. Under these conditions,
the composite matrix and the NITINOL fibers are all at the same equilibrium
temperature. At each equilibrium temperature, the composite beam is
subjected to random vibrations and the resulting response is monitored by
an micro-accelerometer bonded to the beam. The response is analyzed in the

frequency domain to determine the modes of vibration of the composite beam.

4.2 Natural frequencies of NITINOL-reinforced beams

Figure (5-a) shows the measured changes in the first natural frequency
of the beam when it is reinforced with untrained NITINOL fibers which are
pre-strained at different levels. The changes are normalized with respect
to the natural frequency w, of the un-reinforced beam measured at 25°C,
i.e. 50.1 Hz. The normalized characteristics of the un-reinforced beam are
also plotted to serve as a datum for defining both the effect of
reinforcing the beam with NITINOL fibers and the effect of the pre-strain
level. It can be seen that the frequency of the un-reinforced beam drops
as the amblent temperature increases and the beam losses 1its elastic
stability and start to buckle when the temperature exceeds 40°C . The drop
in the natural frequency of the un-reinforced beam is attributed to the
softening of the matrix which is clearly demonstrated by the loss in the
modulus of elasticity of the beam as shown in Figure (3).

Reinforcing the beam with pre-strained untrained NITINOL fibers
considerably increases the natural frequency of the beam. The extent of
the upward shift in natural frequency increases with increased pre-strain
level. An increase of about 40% is obtained at room temperature when the
pre-strain level 1is only O0.26%. However, as the ambient temperature
increases the frequency shift drops in a manner similar to the

characteristics of the plain un-reinforced beam. Such a drop is again
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attributed to the softening effect of the matrix and the fact that the
untrained NITINOL fibers act as a static pre-tensioning device that produce
constant tension which 1is independent of temperature. Therefore, the
frequency enhancement 1is only generated by the reinforcement and the
pre-strain effects, and not by the shape memory effect. It is important
to note that considerably higher increases in the natural frequencies can

be obtained by further increases of the pre-strain level up to its maximum
permissible level of 6%.

However, a greater frequency shift can be achieved by imparting the
shape memory effect to the NITINOL fibers. The fibers are trained over 2S0
cycles using the procedure outlined by Johnson [16]. The trained fibers
are inserted into the composite beam to replace the untrained set and the
frequency shifts Dbecome significant, particularly at high ambient
temperatures. This is clearly demonstrated in Figure (5-b). For
temperatures between room temperature and 40°C, the frequency shifts
obtained are similar to those with the untrained fibers within experimental
accuracy. Once the ambient temperature exceeds the SOOC. i.e. the
austenite phase transformation temperature of the NITINCL fibers, the
frequency shift characteristics changes from a gradually decaying trend to
one that is a gradually increasing. Such a sudden change is the result of
the contribution of the phase recovery forces developed by the shape memory
effect which is illustrated in Figure (6).

The shape memory effect generates strain energy in the NITINOL fibers
to counterbalance the softening effect of the composite matrix with
increasing temperature. As the amount of strain energy developed depends
on the initial pre-strain level, it can merely compensate for the softening
effect to maintain the beam frequency at nearly a constant value which is

independent of ambient temperature as shown for pre-strain level of 0.078%.
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It can also increase the beam frequency as the ambient temperature
increases as indicated for pre-strain levels of 0.22 and 0.26%. For a
pre-strain level of 0.26% and ambient temperature of 90°C, the frequency
increase reaches about 70% as compared to an 18% increase when untrained
fibers are used. In this manner, the individual contributions of the
pre-strain, matrix softening and shape memory effect on the frequency shift
are isolated. This facilitates checking the validity of the mathematical

models against the experimental results.

Comparisons between the theoretical predictions and the measurements
are shown in Figures (7-a) and (7-b) fer NITINOL fibers without and with
shape memory effect, respectively. The figures include comparisons for the

first and second modes of vibrations. Close agreement between theory and

experiments is evident.

5. CONCLUSIONS

The static and dynamic characteristics of NITINOL-reinforced
composite beams have beer presented. The fundamental issues governing the
behavior of this new class of SMART composites have been introduced.
Applications of NITINOL reinforcing to control the static and dynamic
behavior of composite heams have been successfully demonstrated.

Emphasis has been placed in the presentation on the actuation
capabilities of the NITINOL fibers. However, extensive efforts are in
progress to wuse the NITINOL fibers to extract modal and physical
displacements of structures with multi-modes of vibration (Baz, Poh and
Gilheany {17]).

With such built-in sensing and controlling capabilities,

NITINOL-reinforced composites can provide a means for continuously tuning
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the structural characteristics to adapt to changes 1in the operating
conditions. These features will be particularly useful in many critical
structures that are intended to operate autonomously for long durations in

isolated environment such as defense vehicles, space structures and

satellites.
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NOMENCLATURE

interpolating function of beam deflection

ith element of [A]

cross sectional area of beam

first and second derivatives of interpolating function
of beam deflection

Young’'s modulus of beam

vector of external loads acting on beam

area moment of inertia of beam

stiffness matrix of beam element

length of beam elemeat and NITINOL fiber

external moment aciing at ith node

mass matrix of bcan element

the element i, j of the mass matrix

mechanical, net and thermal axial loads acting on beam

generalized coordinate of the nth vibration mode of
NITINOL fiber

generalized acceleration of the nth vibration mode of
NITINOL fiber

time

initial tension in a NITINOL fiber

total tension in a NITINOL fiber

shear force acting at the ith node

transverse deflection of beam and NITINOL fibers

work done by transverse loads

work done by mechanical axial loads

work done by thermal axial loads

strain energy of beam

strain energy of NITINOL fiber

cartesian coordinates along beam neutral axis and cross

section respectively

the deflection vector of beam element
axial temperature difference

angular deflection of ith node

mode shape of the nth mode

natural frequency of the nth mode
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ABSTRACT

Positive Position Feedback
(AMPPF)} method 1is presented for controlling the
vibration and shape of flexible structures. The
proposed strategy combines the attractive attributes of
the Independent Modal Space Control (IMSC) of
Meirovitch and Positive Position Feedback (PPF) of Goh

An  Adaptive Modal

and Caughy. The controller 1is designed in the
uncoupled modal space using only modal position signals
to damp the vibration of undamped modes. The

parameters of the AMPPF controller are also adjusted in
an adaptive manner in order to follow the performance
of an optimal reference model. In this way., optimal
damping and zero steady-state errors can be achieved
even in the presence of uncertain or changing
structural parameters

The adaptation laws governing the stable variation
of the AMPPF controller parameters are derived using
Lvapunov stability theorem. The effectiveness of the
AMPPE in controlling the vibration and shape of a
variable mass cantilevered beam is demonstrated
experimentally. The performance obtained with the AMPPF
algorithm is compared with those of other classical
control algorithms. The results obtained emphasize the
potential of the AMPPF algorithm as an efficient means
for controlling flexible structures with uncertainties
in real time.

1. INTRODUCTION

Considerable emphasis has been recently placed on
the development of wide variety of adaptive control
algnrithms to effectively control the vibration and
shape of large flexible structures. Such algorithms aim
at compensating for the problems arising from the
uncertainty of accurately modeling the dynamics of
these structures, truncation of their dynamic models
and the assocliated control spillover from the residual
medes, variation of the structural parameters and
nonstationarity of the disturbances acting on the
structures. Without the appropriate adaptation to
these problems, fixed gain controllers become totally
inadequate to meet the control objectives and the
desired performance requirements

Distinct among the recently developed adaptive

control algorithms is that of Bar-Kana and Kaufman [1]
which relied in its operation on coilocated pairs of
sensors/actuators and on feeding back position and
velocity outputs. The controller emploved the direct
reference mocdel approach to theoretically control the
vibration of beams., plates and frames. Similar
approach, but with proportional and integral
controlier, has been utilized by [h et al (2] to
experimentally control a $S.6 m antenna at the JPL.
K.Ossman et.al. [3] have thecretically developed an
adaptive model following controller, for SCJOLE. in
which positicn and velocity outputs are forced via a
variable structure control to track reference position
and velocity paths. K.Ossman et.al. developed also an
indirect adaptive controller in which the system
parameters are estimated by a recursive least-squares
and an LQ controller is designed to quickly damp out
the vibration {3]. The effect of the spillover from
the unmodeled modes is found to cause the control
inputs of this algorithm and the system outputs to grow
without bound. Silverberg and Norris [4] devised a
self-tuned indirect adaptive controller which
identifies the structural dynamics and updates the
associated control gains to uniformly damp out the
vibration of the structure.

In all the above algorithms, the indirect adaptive
controllers and the direct reference models are
designed in the physical-coupled space. For large
structures this presents serious computational
challenges particularly when Kalman filtering ls needed
as in Ref. ([2]). In the present study. the proposed
Adaptive Modal Positive Position Feedtack (AMPPF)
controller and its reference model are designed
completely in the independent modal space with the
open~-loop equations of the system remaining uncoupled
even after including the modal controller. Also, the
AMPPF uses only modal position signals to obtain stable
and damped performance. Such performance is attained
by positively feeding back the position signals through
tuned first order filters. The performance of the
AMPPF algorithm is enhanced by augmenting it with a
“time sharing” strategy that utilizes small number of
actuators to control larger number of modes. The AMPPF
algorithm is based on the fixed parameter Modal
Positive Position Feedback (MPPF) algorithm developed




by Baz et.al. which has been suzcessfully utilized to
control the vibration of simple beams (S] and more
complex structures (6]

The present study aims at developing the
adaptation laws of the AMPPF algorithm and
experimentally evaluate its effectiveness in
controlling the vibration and shape of a cantilevered
beam.

This paper is organized in five sections. A brief
introduction is given in section 1. The concept of
the MPPF and the AMPPF algorithms are presented in
sections 2 and 3 respectively. Section 4 includes the
experimental evaluation of the algorithm along with
comparisons with other algorithms. Section S
summarizes the coanclusions of this study.

2. MODAL POSITIVE POSITION FEEDBACK (MPPF)

2.1. Concept

The basic concept of the HMPPF method can be
clearly understood by considering the diagram shown in
Flgur%h(l). where the controller is used to control
the i mode of an undamped flexible structure in the
independent modal space. The controller feeds back
positively the modal displacement u; through a first
order filter that has a time constant t;. The flilter
output Y, is added to the desired reference modal
displacement up, and resulting signal is amplified by a
proportional controller gain K,. This gain is set equal
to y,w;, to be in a form similar to that of Goh and
Caughey's (7], where w, is the natural frequency of the
i mode. The amplified signal f,, 1.e. the modal
control action, is then sent to control the {*" mode of
the structure.

Phesddy Pt

i '

Figure (1) - Block diagram of the MPPF controller

Mathematically. the interaction between the
structural mode and the controller can be described as
follows:

- 2
Structure: u, * wf u = £, = ¥y w (¥ +uy ), (1)

Filter: T, Y v Y= oy (2)
The above structure-filter system has the
following closed-loop transfer function

2
ul/unl=7lu?(r,svl)/{t‘s3+szbrlufs~wl(l—7|)1. (3)

where s 1is the Laplace operator. Applying Routh’s
stability criterion, the system is asympotically stable
for value of O s 7, s 1 and 7T, z 0. Accordingly. It
is possible for an undamped system to attain asymptotic
stability by feeding positively its position signal
through a simple first order fllter without the need
for any velocity feedback. This constitutes the basic
premise of the present control algorithm.
Conceptually, the algorithm possesses this favorable
stable performance because the first order filter is
in effect equivalent to an integral controller with
negative feedback. It is also important to note that if

the modai position signal is fed back negatively,
instead of positively, through the {irst order fiiter,
the system will always be unstable

2.2. Parameters of MPPF

2.2.1 controller gain (3,)

The implementation of this modal control algorithm
requires the selection of two design parameters, {.e.,
7, and T,. Actually, only the time constant 1, of the

filter needs tqQ be selected since 7y, must assume a
fixed value ¥,= 0.5 to eliminate the controller
steady-state error as indicated by equations (1) and
(2). Such a value is < 1 and satisfies the asymptotic
stability condition previously discussed. Therefore,
this algorithm can be equally used for accurate shape
control (ug, = 0 ).

2.2.2. filter time constant (v,

The optimal value of the time constant t, of the
filter is determined by dividing the numerator and
denominator of equation (3) by t,u; to yield the
following equation

- -3, =2,z
u/up, Ty (s Zay+1)/ (s ‘G\SZ‘S‘lA‘Tl) a,l. (42

where a; = 1 / 1w and s = 5 / w, The above system
has the following characteristic equation

s" + a, s+ s

+ {(1-y,} oy = ©C, (5}
which has the root locus plot shown in Figure (2) for
7, = 0.5 and O<a,;<w. The correspording damping ratio §,
of the closed-loop system obtained from the root locus
plot, 1s shown in Figure (3) as a furncticn of a which
is the only design parameter of the system. Figure (3)
indicates that the damping ratioc attains a maximum
value of 20.07 % when a, = 1 18. This optimal vaiue is
very close to the PPF results obtained experimentally
by Fanson and Caughey [8].
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Figure (2) - Root locus of the MPPF method with 7,=0.S.
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Figure (3) - Effect of a, on closed-loop damping of
MPPF method with 7,=0.5.




[n summary., using first order fiiters, instead of
the second order filters of Goh and Caughey, has
simplified the design without compromising the damping
rcharacteristics of the controller. More importantly,
since the analysis presented is applicable to any mode,
uniform damping for all the modes results if all their
filters are tuned to satisfy the optimal tuning
condition ( «, = 1.18 ). Accordingly, a damping ratio
of 20.07 % can be maintained for any mode i, that has
natural frequency w;, by selecting the time constant T,
of its filter such that

T, = 17 118w for 1 = 1,2,...N, (6)

where N is the number of controlled modes.

3. ADAPTIVE-MPPF with PARAMETER ADAPTATION (AMPPF)

3.1. Need for parameter adaptation

In order to effectively utilize the MPPF method in
contreolling the shape and vibration of flexible
structures in an optimal manner, it is essential to
investigate other inherent features of the method.
Such features can be easily revealed by considering the
root locii of the MPPF characteristic equation (9S),
shown in Figure (4), for different values of the gain
y, as «, is varied from 0 to . It is evident that
increasing y; beyond 0.5 while maintaining it below the
stability limit (i.e. 7,s1) results in significant
changes in the shape of the root locii. More
importantly, the branches of the root locii converge
towards the real axis of the s plane indicating that
higher closed-loop damping ratios can be achieved.
Figure (S) shows the combined effect of 7, and a; on
the attainable damping ratios as extracted from the
plots of Figure (4). It is clear that for any value of
the controller gain 7, there is an optimal value of a
for which the closed-loop damping ratio assumes |its
maximum. In section 2, it was shown that If ¥, is set
equal to 0.5 to ensure zero steady-state error; a
maximum damping ratio of 0.207 is attained when «; is
1.18. Increasing 7, to 0.9 requires that a, be 1.768
to reach a maximum damping ratio of 1.00. Such a
significant increase in the damping ratio occurs
however at the expense of increasing the steady-state
arror, (1-u;7ug ) = 1-1/(1/9,-1), to 800%  Therefore,
increasing the damping ratio above 0.207 cannot be
achieved without compromising the steady-state error.
This will only occur if the two parameters 7, and «
are maintained constant throughout the control process
at wvalues other than 0.5 and 1.18 respectively.
However, it is possible to combine the high damping and
zero steady-state error characteristics by adjusting
the parameters ¥, and a, in an adaptive manner.
Specifically, one would start the control process with
the highest damping possible (i.e. the largest value of
y,} and as the process approaches its completion the
gain y, 1s adjusted to be as close as possible to 0.5
in order for the structure to reach its final shape or
state with zero steady state error. During the
process of adjusting the gain 7, the parameter «, lis
also adjusted accordingly in order to achieve the
maximum damping.

Accordingly. the AMPPF method capitalizes on the
inherent interaction between the controller parameters
to optimize the transient performance of the system.
[n this manner, although the structural parameters are
time invariant, better transients can be achieved by
adaptively making the controller parameters (7, and «,)
time varying. The desired time response can be obtained
by selecting a desired reference behavior and change
the controller to make the system follow the reference
model.
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Figure (S) - Effect of a, on closed-loop damping of
MPPF method for different gains 7,.

The interaction between the reference model and
the structure-filter systems is shown in the block
diagram of Figure (6). The laws governing the
adaptation ot the controller parameters 7y, and a (or
t,) are derived in the following section.

3.2. Adaptation laws
Mathematically, the dynamics of the structure and
following

its model reference are given by the
equations:
A. Structural system
. - 2 2
Structure dynamics: up+ w, up=y,wy (Yg+up ). (7
Filter dynamics: T, Qp L PR P (8)
T ol e Tatrahn LI ol Ah G et 4 —rr-fml T:- s ;—::—)v‘v“:’-rv‘vr;-'
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Figure (6) - Block diagram of the AMPPF method with
parameter adaptation.

B. Reference system

Reference model: U -2,u,-3,Uy=-3,/2 (Yp+ug), (9]

Reference filter: Y + a3 Y, = 33 Uy (10)

The reference model, described by equation (9), is
structured to be damped in contrast to the undamped
structural model and its gain is selected to ensure
stability and zero steady-state error (i.e. = 1/2).

The interaction between the structure dynamics and
the reference model dynamics is displayed in the block
diagram of Figure (6. Defining the state vector X,
and X, as  Xg= luy Uy YoIT and Xg= (u, ug YalT. the
structure and reference /stems can be written as

Structure system X, = A, X, + B, Upy. (11)
Reference system X, = A, X, + B, ug;. (12)
where,
0 1 0 0
2 2 2
Ap = ~w; 0 7wy | Bp = 7wy |

L /7, 0 ~-l/7y ]

0 1 0 0
A, = a, a, -.5a| and By = | - 52, (13)

a; O -2y o]

The matrices A, and B, of the reference model are given
in terms of the three coefficients a;, a, and a;.
Defining the error vector e and its derivative e
as . . .
e =X, - X, and e= Xn=Xp- (14}
and subtracting equation (11) from (12) ylelds

e = A + (A,m AKX, + (B,- Blug, = Age + £, (15)
where, f = ( Ay A)) X, + ( By~ By) ug,. (16)

Letting A,- A, =9 and B,- B, = § , then

. - Xp
e=A e+ (9 ¢l . (17)
u
To calculate the adaptation law,
Lyapunov function is defined:

V=elPe+hig.y >0, (18}

the following

where h (¢, ¢) = ¢ o - v w’ . (19)

For stable adaptation, V has to be strictly negative
{9], i.e.

V=e Pe+e Pe+h <O. (20)
Substituting e from equation (15) gives
V=el (ALP+PAJes+2e"Pf+nh (21)

To have stable adaptation ( V < Q0 ), the following

two conditions must be satisfied:

(ay 2eP f+h=0 (22)

(by select a stable reference model satisfying
the following Lyapunov equation:

AP+PA = -Q, (23)

where Q is a positive definite mairix,then equation
(21) reduces to

V=-eQe. (24)

Equation (22) gives the necessary adaptation laws
for wvarying ¥, and t; such that the stability 1is
ensured, 1i.e. Lyapunov stability theorom [9]) is
satisfied. This adaptation law can be determined by
considering the characteristic equation of the
reference system which can be written as

sJ-(az - ag)sz*[-a2 a; - a;ls+[-0.5a; az} = 0. (25)

If it is desired that the system should behave
like an optimal ITAE ( Integral of Time multiplied by
Absoulte Error ) third order system, then it should
have following characteristic equation {10]:

3

175w, 2 +21500 s+ w, =0. (26)

Selecting w,= w, of the system, and matching the
coefficients of two characteristic equations (2S) and
(26), a,, a; and a; can be found.

The parameter error matrices % and ¥ can be formed
as follows;

0 0 0
R N a, -(0.Say+rwl) | (27)
(a5-1/7,) 0 -(az-isTy)
0
G =By-B,=| -05a+0)] . (28)
0




Forming h using equation (19) yields

3 3
- - -1 -
= +
S Y
=1 J=1
(a2 2(ag-1/1, ) +al+ (0. 52, +7,07). (29)

Differentiating equation (29) with
yields:

respect to time

h= 4 (ay - 1/7,) T,/ T2+ 4 (0.5a, *+ 7,0}) wiz.  (30)

and defining the error vector e

le] xlp ey
e s Xy = X, = | Xou| - | Xp | =] €21 (31)
Yo Yo ey

then equation (22) becomes
(e,p3¢ezp4*e3p5)[(al¢wf)x,p*azxzp-(.Sal*wa)(Yp*uR,)]
+(epyre, psresps) [(a3-1/1,) (X,-Y, )]

22 2, 2 -
+2(ay-1/v )Ty /Ti+2(. 5a,+y,w() wy 7, = O. (32)

The above
adaptation laws

equation yields the following two

f|=‘0'Sff(elpa’eaps*eaps)( X1p =~ Y5 ), (33)
and
7 =-0.S(e1p2+e,p +e;3ps) X
( 2 v ¢ 2
fa +0 X p*2,) 5, - (. Sap sy wi) (Yp+ug )
3 3 (34)
w, (0. 5a; +ywy)
which depend on the elements of the P matrix. The

elements of the P matrix depend in turn on the Q matrix
of the Lyapunov equation (23) and on the parameters a,,
a, and a, of the reference model as indicated in the
appendix.

4. EXPERIMENTAL PERFORMANCE OF OPTIMAL MPPF ALGORITHM

4.1 EXPERIMENTAL SET-UP

A thin rectangular cantilevered beam Iis

constructed to validate the developed algorithm . The
design parameters of the beam are given in Table 1.
The beam is controlled by one piezo-electric bimorph
made from G1195- ceramic. The actuator is available
commercially (model number R205 ) from Piezo-Electric
Products, Inc., Metuchen, NJ 08840-4015 . Table 2 lists
the main design parameters of the actuator

The experimental beam and the piezo-actuator are
arranged as shown in Figure (7). The beam is divided
into three active elements. Bonded to the first
element, near the fixed end of the beam, is the
piezo-actuator. Three non-contacting position sensors

COPY AVATLABLE 70 TTyl DOTT (i) 0 00w

are used to monitor the physical displacements of the
three nodes in the transverse direction. The position
signals are sampled by a 386-based micro-processor
provided with an input/output board which has a
conversion time of 1S5S us and a resolution of 12 bits
The board analog outputs have a settling time of 30 us.

The micro-processor uses the three sampled signals
to compute the beam angular deflections and the linear
and angular velocities of the nodes The computed
state variables are used to calculate the modal
coordinates of the flexible system, the mode that has
the highest modal energy. the corresponding optimal
modal control force f, the physical control force
F. and the necessary voltage v to be sent to the
piezo-actuator. The implementation of these
calculations , i.e. the AMPPF algorithm , is carried
out in real time in 3.04 ms

Figure (8) outlines a flow chart of the AMPPF
algorithm indicating its main steps
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Figure (7) - Schematic drawing of the experimental beam,
piezo-actuator and sensors
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Figure (8) - Flow chart of the AMPPF method.
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4.2 Modal characteristics of the beam-actuator system

The modal characteristics of the experimental
beam are determined theoretically [S] and validated
experimentally using classical modal analysis
technique A comparison between the theoretical and
the experimental values of the first five vibration
modes of the beam-actuator system is given in Table 3.
The table gives also the modal damping as calculated
from the experimental results using the half power
approach [11].

4.3 Experimental results

In all the experiments conducted in this study,
the beam is excited at its second mode of vibration by
applying sinuscidal excitation of 20 volts in magnitude
to the piezo-actuator. The excitations are maintained
for a period of 0.15 seconds. The beam is either left
to vibrate freely [(i. e Uncontrolled) or wunder the
acticn of one mcdal control algorithm or another. The
above excitatien form is selected in order to excite
the second mode of vibrations. Excitation of modes
higher than the second would require faster
micro-processor in order to sample at least 10 sample
per pericd to achieve meaningful control. The
uncontrolled performance is used as datum for judging
the effectiveness of the different control algorithms.

4.3.1 Vibration control

The time response of the uncontrolled beam is
shown in Figure (9-a) indicating a very low natural
damping characteristics. Figure (9-b) shows the beam
time respense when it is controlled by the AMPPF
algorithm The values of the controller parameters
Yy. T;. ¥, and 1, for the first and second modes of
vibrations, are initially set at 0.99, 0.836, 0.99 and
N 0138 respectively. These initial values of the ¥;'s
and the a,'s are selected to ensure maximum initial
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Figure (9) - Time response of beam

a. uncontrolled and
b. controlled with AMPPF
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damping. During the adaptation proce<s. the resulting
time variations of the gains 7, , and the filter time
constants 1, , are shown in Figures (10-a) and (10-b)
respectively. The figures indicate that all the
adaptive gains and time constants converge to stable
values to ensure zero steady-state errors. Also, the
corresponding time histories of the modal displacements
of the beam are shown in Figures (11-a) and (11-b) for
the first and second modes respectively. The figures
demonstrate the effectiveness of the AMPPF algorithm in
following the dynamics of the desired reference modal
model.

A better insight into the effectiveness of the
AMPPF algorithm can be gained by considering the Fast
Fourier Transform (FFT) of the beam response. Figure
(12) shows the frequency content of the response of the
uncontrolled beam in comparison with the controlled
beam. These characteristics are obtained by sampling
the beam tip position signal by a spectrum analyzer and
performing on it an FFT analysis. The figure
effectiveness of the AMPPF methoed in simultanecusly
suppressing the vibration of the first two modes of
vibration using a single piezo-electric actuator

Comparisons between the theoretical and
experimental time responses of the uncontrollied and
controlled beam are shown in Figures (13-a) and (13-b)
respectively. The displayed results show close
agreements between theory and experiments
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Figure (10) - Time history of the control parameters
a. gain 1.2 and b. time constant T, ;

4.3.2 Vibration control of a variable mass system

A better insight of the effectiveness of the
adaptive control algorithm can be gained by adaptively
controlling a variable mass system. The mass variation
of the flexible system is achieved by adding a mass to
the free end of the beam. This additional mass changes
the first mode of vibration by 20 %.

Figure (14) shows the time response of the
controlled beam when an additional mass weighing S.5 gm
attached to the free end of the beam. Figures (15-a)
and (15-b) show the corresponding time histories of the
adaptlive gains 7, , and time constant 1, , of the




variable mass system.
It is evident that the AMPPF algorithm has

successfuly adapted to the mass changes and has
effectively controlled the beam vibrations.
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Figure (12) - Frequency response of the free end of
the controlled and uncontrolled beam

4.3.3 Shape control

The use of the AMPPF algorithm in controlling the
shape of the beam system is demonstrated in Figure (16)
when the beam js deflected 0.1 mm off {its initial
zero-load position. The resulting time response of the
beam and the corresponding control voltage are shown in
Figures (16-a) and (16-b) respectively. The two

figures clearly demonstrate that the applied control
voltage reaches a steady-state value after the required
shapes are attained. The model following capability of
the AMPPF algorithm is indicated in Figure (16-c) where
the modal displacement at the first mode of vibration
i5 shown to track the desired reference model output
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Figure (13) - Comparison between theoretical and
experimental time response of the beam
a. unuontrolled and b. controlled

075
050
F 025
¢ 000
©
2 W/Mmmw
s -025
s
& -0.50
a
-0.75
-100 v v v , .
00 1.0 20 30 10 50

Time (sec)

Figure (14) - Time response of the variable mass beam.

4.3.4 System comparison

Figure (17) shows the time response of the beam
when the beam 1s controlled by the non-adaptive MPPF
method. A comparison with the beam response with the
AMPPF,  shown in Figure (9-b), indicates that the
adaptation results in improving the system performance
considerably. Quantitative comparison between the two
methods can be obtained by considering the displacement
index Uy defined as the summation of the squared
position error of the beam tip over time:

yZ (t) (35)

U, =
d tip '

t
t=0

and the control votage index U, given by

vZ(t) (36)

Ue =

i1,
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where t is the time of each experimental run. Table 4

lists the displacement and control voltage indices for
the different algorithms.

The experimental results obtained indicate the
effectiveness of the AMPPF algorithm in suppressing
structural vibrations and controlling the shape of
flexible structures in the presence of modeling errors
and structural system changes. Comparisons, carried out
between the new algorithm and the non-adaptive MPPF
method, emphasizes its favorable vibration damping and
shape control characteristics.

S. CONCLUSIONS

This study has presented an adaptive modal control
algorithm which is based on the Positive Position
Feedback method. The algorithm utilizes only modal
position signals. fed through first order filters, to
damp out the vibration of undamped flexible systems
The theory behind the algorithm is presented. The
adaptation laws necessary for tuning the filters and
the controller gains are obtained, for all the
controlled modes, using Lyapunov's stability theory.
The algorithm 1is validated experimentally wusing a

single piezo-electric actuator to control the vibration
and shape of a flexible cantilevered beam. The
results obtained indicate the effectiveness of the
adaptation in improving the performance of the
controller particularly when it is used to control
beams with varying structural parameters.

The study demonstrates clearly the simplicity and
potential of the method as an effective method for
controlling large number of vibration modes with a
smaller number of actuators These features have
important practical implications that make the
algorithm viable for controlling large structures in
real time.
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Table i - Main design parameters of test beam
Lengthn | Width | Thickness | Young's modulus densit
I (em) ; fem) | (em) (GN/m%) (gm/em”)
!

s T
fase g 37S | 0075 2.9% 1.31

Table 2 - Main design parameters of the actuator

!

riLengthiuldth‘thick lcharge CDeFf.‘max4voll Young's mod.; density

3
! (em) | (em) fem) ! (m70) (v/mil}|  (GN/mD) (gm/cm
i ass [1.375) o1 | 190c107'2 25 63 7.8

Table 3 - Modal characteristics of the beam system

rgﬁcde numbar 1 2
Theor mode - Hz 2.25 13.57
Exper mode - Hz 2.20 13.75

Error - % 2.22 1.10
Modal damping .01 .018

Table 4 - Displacement and control voltage indlces

Displacement tndex(nm®) Voltage [ndex (vort?)

AMPPE 0 36 27.83

i MPPE 0™ 1 16 97

Al AA Paper Number AIAA-90-1174-CP, 1990.

APPENDIX-A
ELEMENTS OF A, and P MATRICES

A.1. Elements of A, matrix

The parameters a;. a, and a; which define the elements
of the A, matrix are obtained by matching the
coefficients of the characteristic equation (25) of the
reference system with the coefficients of the optimal
ITAE characteristic equation (26). This gives a, as
the negative real solution of the following equation

3 2

aj +2.15 W al * 3.5 wh a,* 4w =0 (A-1)

where w, 1is the natural frequency of the optimal

reference system.

The parameters a, and aj can then be determined from:

a; = -1.75 w, + a, (A-2)
and ay = -2 u: / ay (A-3)
A.2. Elements of P matrix
The matrix P is given by
Py P2 P3
P = P2 P4 Ps (A-3)
Pa Ps Ps

where the elements p; through p,, are obtained by
solving the Lyapunov equation (23) which becomes:

( 0 2a; 2a; O 0 0 P 1"
1 a, o] a, a, o P2 Q2
0 -a;72 -a; 0 ay a, Py == |Q3 (A-5)
o 2 0 2a, O 0 Ps Qa2
0 o 1 -a,72 ay-ay 0 Ps Qa3
-0 © 0 0 -2a; -2a, ) 'pg J 33

where Q,,’s are the elements of the positive definite
matrix Q which are assumed by the control system
designer. Equation (A-1)., (A-2), (A-3) and (A-S) can
then be used to compute the elements p;'s of the P
matrix.

NOMENCLATURE
ay,2,3 parameters of reference model
Am.p reference and structure-filter system
matrices
Ba,p reference and structure-filter system
input matrices
e, e error vector and its derivative
e, tth error component (i=1-3)
£, modal control force of the ith mode
f vector defined by equation (16)
Fo . physical force vector
h, h positive definite function defined by
equation (19) and its derivative.
K, controller gain
mateix satisfying Lyapunov equation
Py ith « lement of matrix P
Q positive definite matrix defined in

Lvapunov equation (23)




C e

a.6 .
Uy, U Wy

Un. Uy, Uy

u Up, Up

pr

Ugy
v

V. V
X1,2

P
Y. ¥,
Yeip

Laplace and normalized Laplace operators

time

duration of experimenial run

displacement and control effort indices

modal displacement, velocity and
acceleration of ith mode

modal displacement, velocity and accelerat-

fon of ith mode of reference model.

modal displacement, velocity and accelerat-

lon of ith mode of structure.

reference modal displacement of ith mode

voltage applied across actuator

Lyapunov function and its derivative

position and velocity state variables.

state vectors of reference and
structure-filter systems

output of ith mode filter and its derivative

transverse displacement of beam tip.

Greek Symbols

ay
7y
T

€ €16

-]

dimensionless time constant of filters
dimensionless gain of the controller
time constant of the ith mode
parameter error of A matrix

parameter error of B matrix

frequency of reference model

frequency of the ith mode




— To appear in J. of Optimal Control —

OPTIMAL VIBRATION CONTROL
WITH
MODAL POSITIVE POSITION FEEDBACK
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SUMMARY

The vibrations of flexible structures are controlled by an Optimal
Modal Positive Position Feedback (OMPPF) algorithm whose control forces are
generated by only using modal position signals to provide damping action to
undamped structural modes. The sub-optimal parameters of the OMPPF
controller are obtained by casting the synthesis problem as an optimal
control problem with incomplete state feedback. The performance of the
OMPPF algorithm is enhanced by augmenting it with a "time sharing" strategy
to share a small number of actuators between larger number of vibration
modes. The effectiveness of the algorithm in damping out the vibration of
flexible structures is validated experimentally using a cantilevered beam
whose multi-modes of vibration are controlled by a single piezo-electric
actuator. Theoretical performance predictions are found to be in close

agreement with experimental results.

KEY WORDS: Active vibration control
Modal Positive Position Feedback
Incomplete state feedback

time sharing of actuators




1. INTRODUCTION

Considerable emphasis has been placed, during the past few years, on
actively controlling the vibration of a wide variety of flexible structures.

Several control algorithms have been considered ranging from the simple

1.2 to the more imaginative methods such as

3,4

velocit& feedback control law
the Independent Modal Space Control (IMSC) of Meirovitch and the
Positive Position Feedback (PPF) of Goh and Caugheys. 1988, Baz and
co-workers 6.7 medified the IMSC to account for the control spillover and
"devised a time sharing strategy to share small number of actuators between
larger number of modes. The Modified IMSC method (MIMSC) has been shown to
have favorable vibration damping characteristics as compared to the IMSC and
the Pseudo-Inverse (PI) methodsg. However the IMSC, PI, MIMSC and other
modal control methods, rely in their operation on feeding back both the
modal position and velocity signals of the controlled modes to achieve the
required vibration damping . Extraction of these signals from physical
measurements is both time consuming and computationally intensive especially

9,10 developed the

when dealing with large structures. In 1989, Baz et.al.
Modal Positive Position Feedback (MPPF) method to combine the attractive
attributes of the IMSC, MIMSC and the PPF methods. In the MPPF method, the
controller is designed completely in the indebendent modal space with the
open-loop equations of the system remaining uncoupled even after including
the modal controller. Also, the MPPF uses only the modal position signals
to obtain stable and damped performance. Such performance is attained by
positively feeding back the position signals through tuned first order
filters. Closed-form expressions are given for determining the controller

gains and the time constants of the filters in order to ensure stability,

zero steady-state errors and maximum closed-loop damping ratio. The
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attractive features of the MPPF method have been successfully demonstrated
by controlling the vibration of simple beams9 and more complex structures1
However, no attempt has been made to develop optimal control strategies to
enable the selection of the controller parameters in such a way that weighs
the relative merits of the vibrational energy vis-a-vis the control effort.

It is therefore the goal of this study to develop such strategies and
experimentally evaluate the effectiveness of the Optimal Modal Positive
Position Feedback (OMPPF) algorithm in controlling the vibration of a

" cantilevered beam.

This paper is organized in five sections. A brief introduction is
given in section 1. The concept of the OMPPF algorithm and the selection
of its optimal parameters are presented in sections 2 and 3 respectively.
Section 4 includes the experimental evaluation of the algorithm along with
comparisons with other algorithms. Section 5 summarizes the conclusions of

this study.
2. THE CONCEPT OF THE "MPPF" ALGORITHM

The proposed method can be clearly understood by considering the block
diagram shown in Figure (1). In the figure, the controller is used to
control, in the independent modal space, the ith mode of an undamped

flexible structure.

The controller feeds back positively the modal displacement q; through
a first order filter that has a time constant t;. The filter output Y, is
amplified by a proportional controller gain K, which is set equal to 7y wf,
where w; is the natural frequency of the ith mode. The amplified signal f,,

i.e. the modal control action, is then sent to control the ith mode of the
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structure.

Mathematically, the interaction between the structural mode and the
controller can be described as follows

The structure q; + wf q = f, = 7 “? Y, (1)

The filter T, Y v Y= oq (2)

where the dots denote differentiation with respect to time t.

Defining a normalized time t* = w; t, then equations (1) and (2) reduce

to:

”

The structure g, v+ q = 7, Y (3)
i i i 1

4

The filter Y, + a;¥;= o q; (4)

where the primes denote differentiation with respect to the normalized time
t* and «, defines a dimensionless time constant of the filter which is given
by

0, =17 (tg w ) (s)

Equations (3) and (4) can be combined in the following equation:

1t 7 ’ ”

q +q =u=- (1-72)q-aq (6)

The selection of the optimal gain 7; and dimensionless time constant «;
of the filter can be achieved by considering the following state-space

representation of equation (6):

-

X = AX+Bu (7)




and y = CX (8)

such that u = DX (9)
where d; 0 1 0 0
X= |q |, A=]| 0 0 1|, B= o |,
”
C= [1 0 0] and D= 1[d;, 0 d;] (10)
with di= - «; (1 - 9;) and dyp= - a (11)

Considering the output matrix C, it is evident that the above state
representation conforms with the premise that only the modal displacement q;
is accessible for measurements. Also, the right hand side of equation (6)
and equation (9) define a fictitious control action u which is based on an
incomplete state feedback as the second element of the gain matrix D is zero
as indicated by equation (10). Once the gains d; and d, of the fictitious
controller are optimally determined, as will described in section 3, the
gain 7; and the dimensionless time constant a«; of the original modal
controller can be realized and the algorithm can be implemented according to

equations (1) and (2).

3. SELECTION OF THE OPTIMAL CONTROL PARAMETERS

3.1. Formulation of the optimal control problem

The optimal gains d; and d, are determined by considering

first the following optimal control problem:

-6 -




Find the control action u

to minimize the quadratic performance index

T
»
J = J (yTQy +uTRu ] dt
0
(12)
such that X = (A - BD) X,
y = CX,
u = - D X,
and X(0) = X,
11,12

In the above problem, it can be easily shown that the performance
index J can be expressed as a quadratic form of the initial state X, as

follows

J = X} P(0) X, (13)

where P is symmetric and positive-definite matrix which is a solution of the

following Lyapunov matrix equation:

P=(A+BDTP+P(A+BD)+CTQC+D'RD (14)

such that P(T) = 0. For time invarying and stable systems, P approaches a
constant value determined by setting P = 0. Equation (14) is obtained by
differentiating the performance index with respect to time and using

equations (7) through (9).

It is important to note that the above optimal control problem, given
by equation (12), can not be directly solved using the solution (D = - R7!
BT P) of the classical linear quadratic regulator problem11 as the control

action u is based on an incomplete state feedback. For this class of




problems, the solution is found to depend on the initial state of the
system12_14. This results in time varying feedback which is not efficient
to implement particularly for large systems. Furthermore, it is not at all
certain that a system optimized for one initial disturbance will perform
satisfactorily for another disturbance. In order to ensure the
acceptability of the system performance for all initial conditions, the
performance of the worst case is optimized. This is achieved by considering
the following performance index M instead of the original performance index
J:

M=max J/ (X;X,) (15)
X9

This performance index normalizes the original performance index J with
respect to the initial state of the system X,. Substituting

equation (13) into equation (15) gives:

M= max (X, P(0) X, )/ (X:X,) (16)
Xo

It can be shown, as outlined in appendix A, that M is equal to the maximum
eigen value of the P matrix

M = Ay, (P) (17)

Therefore, the normalized performance index M becomes independent of the
initial states of the system and the optimal control problem, given by

equation (12), can be rewritten as

Find the controller gains d; and d,

to minimize the performance index M

M = A, (P)

(18)
such that:

(A+BD)TP+P(A+BD)+CTQC+DTRD=0

-8 -




where A, B, C and D are as given in equation (10).

In other words, the above optimal control problem reduces to finding
the sub-optimal fictitious controller gains d; and d, which minimize the
maximum eigen value of the matrix P that satisfies the steady-state Lyapunov
equation. The solution of such min-max problem yields d, and d, which can
be used along with equation (11) to compute the optimal gain ¥; and filter

time constant «; of the MPPF algorithm.

3.2. Solution of the optimal control problem

The solution of the optimal control problem, given by equation (18), is
carried out according to the flow chart shown in Figure (2). For a given
weighting parameter R and an initial guess of the control gains d; and d,,
the elements of the matrix P are computed as outlined in appendix B. The
positive definiteness of the matrix P is checked and its eigen values A; are
computed using the Jacobi methodls. The eigen values computed are ordered
to determine the maximum value Amax{ This value is minimized by an
optimization routine based on Powell’s conjugate direction method16. The
subroutine modifies the initial guess by finding an improved combination of
d, and d,. The improved gains are used again to compute the elements of P
and find the corresponding hmale. If the resulting Amaxj . is smaller

+ +

than the initial value A,,, ., the process is repeated again. When no
J

further improvement can be attained, the optimum is reached.
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Figure (2) - Flow chart of the computation of the optimal parameters.




3.3. Optimal parameters

Figure (3) shows the contours of constant maximum eigen values
(Apax) of the matrix P drawn, as a function of d; and d,, in the 7, and «
plane when the weighting parameter R = 0.01. The figure shows also the
path followed from an initial guess (7;=0.9 and «;=2.5) until the optimum is
attained. Table 1 summarizes the optimal values of 7; and «; for different

values of the weighting parameter R.

Table 1 indicates that the optimal value of the control gain 7,
remains nearly at 0.5 irrespective of the value of the weighting parameter
R. This optimal value ensures both stability and zero steady-state error of
the controller as can be seen from equations (1) and (2). However, the
optimal values of the dimensionless filter time constant «; are found to
decrease as the weighting parameter R is increased. For a given mode of
vibration w;, this means that the filter time constant t; increases with
increasing R as indicated by equation (5). Therefore, if attenuation of the
vibration is weighted to be more important than the control energy, i.e. R
is small, then the filter should be very fast and t; should be small.
Conversely, when the control energy is considered to be more important then
the damping of the vibration, i.e. R is large, then the filter is tuned to

be slow and its time constant T, is accordingly large.

It 1is very important to note that the presented analysis being
applicable to any mode, results in the same optimal tuning conditions for
all the modes of vibration. Accordingly, optimal vibration control can be

achieved for any mode i, that has natural frequency w;, by selecting the

-11 -



(10°0=Y) 4dd WANWILIO




optimal control gain ¥; to be equal to 0.5 and the optimal time constant <t

of its filter such that
T, = /oWy for i=1,.., N (19)

where N is the number of controlled modes and «; is the optimal

dimensionless filter time constant given in Table 1.

Figure (4) shows a flow chart of the proposed OMPPF algorithm. The
algorithm performance is enhanced by augmenting it with a "time sharing"
‘strategy to share a small number of actuators to control larger number of
vibration modes. Such "time sharing” strategy has been showng-11 to be very
effective in controlling large structures with a small number of actuators.
This is unlike the classical IMSC method of Meirovitch3’4 where the number
of actuators needed must be equal to the number of modes to be controlled.

The effectiveness of the OMPPF algorithm in damping the vibration of

flexible systems is validated experimentally in the what follows.

4. EXPERIMENTAL PERFORMANCE OF OPTIMAL MPPF ALGORITHM

4.1 EXPERIMENTAL SET-UP

A thin rectangular cantilevered beam is constructed to validate the
developed algorithm . The design parameters of the beam are given in Table
2. The beam is controlled by one piezo-electric bimorph made from G1195-
ceramic. The actuator is available commercially (model number R20S ) from
Piezo-Electric Products, Inc., Metuchen, NJ 08840-4015 . Table 3 lists the

main design parameters of the actuator.

-13_
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roperties of structure
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T

Y
Compute the modal control forces

|
Compute the physical control forces and voltages
Y
Send the control voltages to the actuators

<

-l

Figure (4) - Flow chart of the OMPPF algorithm.




The experimental beam and the piezo-actuator are arranged as shown in
Figure (5). The beam is divided into three finite elements . Bonded to the
first element, near the fixed end of the beam, is the piezo-actuator. Three
non-contacting position sensors are wused to monitor the physical
displacements of the three nodes in the transverse direction. The position
signals are sampled by a 386-based micro-processor provided with an
input/output board which has a conversion time of 15 pus and a resolution of
12 bits. The board analog outputs have a settling time of 30 us.

The micro-processor uses the three sampled signals to compute the beam
angular deflections and the linear and angular velocities of the nodes . The
computed state variables are used to calculate the modal coordinates of the
flexible system, the mode that has the highest modal energy, the
corresponding optimal modal control force f;, the physical control force

F. and the necessary voltage v to be sent to the piezo-actuator. The

c

implementation of these calculations , i.e. the OMPPF algorithm , is carried

out in real time in 3.04 ms.
4.2 Modal characteristics of the beam-actuator system

The modal characteristics of the experimental beam are determined
theoretically9 and validated experimentally using classical modal analysis
technique. A comparison between the theoretical and the experimental
values of the first five vibration modes of the beam-actuator system is
given in Table 4. The table gives also the modal damping as calculated from

the experimental results using the half power approach17.

4.3 Experimental results

In all the experiments conducted in this study, the beam is

- 15 -
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excited at its second mode of vibration by applying sinusoidal excitations
of 20 volts in magnitude to the pilezo-actuator. The excitations are
maintained for a period of 0.3 seconds. The beam is either left to vibrate
freely (i.e.uncontrolled) or under the action of one modal control algorithm
or another. The uncontrolled tip displacement, shown in Figure (6-a), is

used as a datum for judging the effectiveness of the control algorithm.

Figures (6-b) and (6-c) show the corresponding time response of the

"beam when it is optimally controlled by the OMPPF algorithm with the

weighting parameter R set at 0.01 and the piezo-actuator is dedicated either
to the first mode alone or time shared between all the modes respectively.
It is evident that time sharing the actuator is more effective in damping
out the beam vibration. Such effectiveness comes about because the
actuator is dedicated to control the mode that has the highest instantaneous
modal energy. This is not necessarily the lowest mode of vibration as it
depends on the nature of the external disturbance.

Figure (7-a) and (7-b) show the corresponding optimal control voltage
sent to the piezo-actuator when it is used to control the lowest mode or
when it is time shared between the modes respectively. The figures indicate
that higher control voltage is needed when the actuator is time-shared
between modes. This is attributed to the need for fast response filters to
control higher order modes, as implied by equation (5), which results in

turn in higher control actions as indicated by equation (6).

The effect of varying the weighting parameter R on the performance of

the OMPPF algorithm, with its time sharing capability, is shown in Figure

(8). Increasing R results in slower vibration damping as more emphasis is

-17 -
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placed on the importance of the control effort over the vibration energy.
This emphasis is manifested by the decrease in the contreol voltages as R is

increased as indicated in Figure (9).

A better insight into the effectiveness of the OMPPF algorithm can be
gained by considering the Fast Fourier Transform (FFT) of the beanm
response. Figure (10) shows the frequency content of the response of the
uncontrolled beam in comparison with the optimally controlled beam. These
.characteristics are obtained by sampling the beam tip position signal by a
spectrum analyzer and performing on it an FFT analysis. The Figure
emphasizes the effectiveness of the new algorithm particularly when R is

increased and when it is augmented with the time sharing capability.

Comparisons between the theoretical and experimental time responses of
the uncontrolled and optimally controlled beam (with R=0.01) are shown in
Figures (11-a) and (11-b) respectively. The displayed results show close

agreements between theory and experiments.

S. CONCLUSIONS

This study has presented an optimal modal control algorithm which is
based on the Positive Position Feedback method. The algorithm utilizes only
modal position signals, fed through first order filters, to damp out the
vibration of undamped flexible systems. The theory behind the algorithm is
presented. Optimal tuning of the filters and the controller gains are
obtained, for all the controlled modes, using optimal control theory for
systems with incomplete state feedback. The algorithm 1is wvalidated

experimentally using a single piezo-electric actuator to control the
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vibration of a flexible cantilevered beam. The results obtained indicate
its effectiveness in suppressing structural vibration particularly when it
is provided with time sharing capabilities.

The study demonstrates clearly the simplicity and potential of the
method as an effective method for controlling large number of vibration
modes with a smaller number of actuators . These features have important
practical implications that make the algorithm viable for controlling large

structures in real time.
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APPENDTIX-A

The Performance Index (M)

The performance index M is given by

M=nax J/ (XX, ) (A-1)
X0

This performance index normalizes the original performance index J with
respect to the initial state of the system X,. Substituting

equation (13) into equation (A-1) gives:

M= max (X.P(0)X, )/ (XiX) (A-2)
X9
As P is symmetric, it has real eigen values A; and the corresponding eigen

vectors u; may be formed as an orthonormal set. If V is the eigen vector

matrix , then

Vi v =1, (A-3)
and VIP(O) V= A (A-4)
where A is a diagnoal matrix with elements A,. Assume that:

X, =Vz (A-S)
then,

J/ (XE%x, )= (XsPO)X, )/ (XX, )

=(2zTAz)/s (2"z2)

= (YA /)2 (A-6)
but as, Amin X zf = Z A zf = Apax Z zf (A-7)

then, from equations (A-1), (A-6) and (A-7) we have

M = A, (P) (A-8)
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APPENDIX-B

ELEMENTS OF MATRIX P

The matrix P is given by

Py p2 P3
P = P2 Pq Ps
P3 Ps Ps

(B-1)

where the elements p; through pg, which satisfy the steady-state Lyapunov

equation (14), are given by

Py = P3 - d; Ps.
ps = dy / [ 2dy (1-dy/dy) 1,
p;=-(1/dy -d, R ) /2,
Ps = Pg ~ d2 Ps - P3,
Ps = P2,

and pg=- (dy R/ 2 -pg/ d5)

with R denoting a scalar weighting factor.

For a given d; and d,, p; and p3 can be

followed by p;, pg then p,.
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calculated first,

(B-2)
(B-3)
(B-4)
(B-5)
(B-6)

(B-7)

then Pg




NOMENCLATURE

structure-filter system matrix (3x3)
input matrix (3x1)
output matrix (1x3)
fictitious controller gain matrix
,da fictitious controller gains
controlled modal force of the ith mode
Physical force vector
identity matrix (3x3)
performance index
controller gain
normalized performance index
matrix satisfying Lyapunov equation (3x1)
P ith element of matrix P
Q . weighting matrix
qi,qi,'c'_i modal displacement, velocity and acceleration of ith mode
weighting parameter

?“—-Hn"‘l:hﬂ.bﬂw>

zl—"

v}

T final time

t time

t* dimensionless time

u control effort

v voltage applied across actuator
A3 ith eigen vector of matrix P

\' eigen vector matrix of matrix P
X state vector of structure-filter system (3x1)
X, initial state vector

y system output

Y, the output of the ith filter

z any vecter (3x1)

Greek Symbols

oy dimensionless time constant of filters

¥y dimensionless gain of the controller

Apax» Amin Maximum and minimum eigenvalues of P matrix
! matrix of eigen values of P (3x3)

T, time constant of the ith mode
Wy frequency of the ith mode
Superscripts

1 dots on letter denote differentiation with respect to time
2 primes on letter denote differentiation with respect to
dimensionless time




Table 1 - optimal values of ¥, and «, for

different R

R 0.01 1.00 10.00 106. 00
o, 1.139 1.043 0.598 0.1999
7y 0.505 0.503 0.5001 0. 4988
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Table 2 - Main design parameters of test beam

Length Width Thickness | Young's mgdulus densit
(cm) (cm) (cm) (GN/m°) (gm/cm™)
25.78 3.75 0.075 2.96 1.31
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Table 3 - Main design parameters of the actuator

width|thick. {charge coeff. |max.volt|{Young’s mod.| density
(cm) |(cm) (m/v) (v/mil) (GN/m?) (gm/cm3)
1.375| 0.1 | 190x10™*? 25 63 7.8
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Table 4 - Modal characteristics of the beam system

Mode number 1 2 3 4 5
Theor. mode - Hz 1.62 11.0 64.7 87.4 157.7
Exper. mode - Hz 1.55 10.1 49.5 80.5 167.5

Error - % 4.3 8.1 23.5 7.9 -6.2
Modal damping .038 .022 .016 . 015 .010
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vibration of the beam when all the four NITINOL fibers are activated or
unactivated. It is evident that the activation of the NITINOL fibers
shifts the first three modes of vibration toe higher frequency bands and
that the enhar<ed damping characteristics of the heated beam result in
considerable vibration attenuation for all the modes.

A summary of the amplitude attenuation obtained at different flow
speeds 1s given 1n Figure (33). Attenuations of about 40% are observed
for the three modes of vibration over the speed range considered.

80
& —@ 1stmode
A—— A 2nd made

R----l 3rd mode
80 A

....
.=

Attenuation (%)
3
T 4
1 ll’ .
¢
/i

4 5 8 7 8 s
Wind speed (m/s)

Figure (33) - Amplitude attenuation at different flow speeds

The effect of activating different number of f{ibers on the
attent:cion of the flow-induced vibrations is shown in Figure (34)
at flow speed of 8.32 n/s. Increasing the number of activated fibers
results in a proportionate reduction in the amplitude of vibration.

A summary of the effect of number of activated NITINOL fibers on
the amplitude of vibration normalized with respect to the amplitude of
vibration of the uncontrolled beam, is shown in Figure (35).

The results obtained demonstrate the effectiveness of
NITINOL-reinforced composites in suppressing flow~induced vibrations
over a wide range of flow speeds.

9. SUMMARY

The statie, dynamic and thermal characteristics . of
NITINOL-reinforced composite beams have been presented. The
Tundamental issues governing the behavior of this new class of SMART
composites have been introduced. Applications of NITINOL reéinforcing
fibers in the control of buckling and flow-induced vibrations are
Successfully demonstrated.
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