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Abstract-The dynamic characteristics of flexible composite beams are controlled by heating sets
of shape memory alloy (NITINOL) fibers embedded along the neutral axes of these beams. The
activation of the shape memory effect of the fibers increases the elastic energy and enhances the
stiffness of the composite beams. With such capabilities, the vibration modes of the beams can be
tailored and shifted away from the excitation frequency band in order to avoid undesirable
vibrations.

Emphasis is placed, in the present study, on the effect of intentional electrical heating of a
selected subset of the NITINOL fibers on the overall dynamics of the beams. The effect of the
associated thermal energy propagating through the composite on the unintentional thermal
activation of additional subsets of the NITINOL fibers is accounted for. Such an effect is not only
significant but also essential to the thorough understanding of the operation of NITINOL-
reinforced composites.

Finite element models are developed to describe the interaction between the thermal and
dynamic characteristics of the NITINOL composites as well as the interaction between the
intentional and unintentional activation of the NITINOL fibers. The models are experimentally
validated and close agreement is obtained between the theoretical predictions and the experimental
results. The mathematical models and procedures described in this paper provide an invaluable
means of predicting realistic performance of NITINOL-reinforced composites.

NOMENCLATURE

(Al interpolating function of beam deflection nyric QUA" IN•IEETED 3
[A,] ith element of [A]
A, cross-sectional area of the beam
[B] matrix of the first derivatives of the nodal interpolating functions
[C], [D] first and second derivatives of the interpolating function of beam deflection
E. Young's modulus of the beam Accesion For
[F] vector of external loads acting on the beam
h convective heat transfer coefficient NTIS CRA&I

I,4 area moment of inertia of the beam DTIC TAB
k thermal conductivity of the beam Unannoun cý
[k'. . ] matrices given by eqns (16), (17) and (18), respectively Justlf:caton)
[K,] stiffness matrix of the beam element
ly, I: direction cosines of outward normals to the beam boundaries By
L length of the beam element and NITINOL fiber Dist. .iti.
N4, external moment acting at the ith node
[M1] mass matrix of the beam element Avmkvyriy uo:.c_
m,(i,j) the element ij of the mass matrix
[N] interpolating function of the beam temperature AD ,. , A L.
N, interpolating function of the ith node Dist
p number of vertices of the element

,n.tp mamechanical, net and thermal axial loads acting on the beam
(P, ] matrix given by eqn (19)
qý generalized coordinate of the nth vibration mode of the NITINOL fiber
4ý generalized acceleration of the nth vibration mode of the NITINOL fiber
Q heat flux per unit area
St., boundaries of the NITINOL fibers and the beam, respectively
t time
TO initial tension in a NITINOL fiber
T, total tension in a NITINOL fiber
Vý shear force acting at the ith node
w transverse deflection of the beam and NITINOL fibers
x, y. z Cartesian coordinates along the beam neutral axis and cross-section. respectively
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Greek letters

a thermal diffusivity of the beam
[6] the deflection vector of the beam element
di angular deflection of the ith node
0 temperature at any location (y, z) of the beam cross-section
G., ambient temperature
[Gel vector of the nodal temperatures of the element
01 mode shape of the nth mode
co, natural frequency of the nth mode.

1. INTRODUCTION

Considerable attention has been devoted recently to the utilization of the Shape Memory
NIckel-Titanium alloy (NITINOL) in developing SMART composites that are capable of
adapting intelligently to external disturbances (Ikegami et al., 1990; Rogers et al., 1991;
Baz et al., 1990, 1991a,b). Such wide acceptance of NITINOL stems from its unique
behavior when it is subjected to particular heating and cooling strategies. For example,
the alloy becomes soft when it is cooled below its martensite transformation temperature
and becomes about four times stiffer when it is heated above its austenite transformation
temperature (Funakubo, 1987). Furthermore, if the alloy is trained to have a particular
shape while in its austenite phase, it will memorize this shape. If the alloy is then cooled to
its martensite phase and subjected to plastic deformation, it will return to its memorized
shape when it is heated above the austenite transformation temperature. The phase trans-
formation from martensite to austenite produces significant forces as the alloy recovers its
original shape. The alloy acts as an actuator transforming thermal energy into mechanical
energy (Perkins, 1975; Duerig et al., 1990). Accordingly, if the NITINOL fibers are
embedded inside a composite matrix at optimal locations, they can be used to control the
static and dynamic characteristics of the resulting SMART composite. The control action
is generated by the described stiffening of the NITINOL fibers and/or the shape memory
effect. With such built-in control capabilities, the performance of the SMART composites
can be optimized and tailored to match changes in the operating conditions.

It is therefore the purpose of this study to develop a thorough understanding of the
fundamentals governing the operation of NITINOL-reinforced composite beams. The
individual contributions of the composite matrix, the NITINOL fibers and the shape
memory effect to the overall dynamic performance of the composite beams will be
determined. Also, the influence of the temperature distribution inside the composite,
which results from the activation of a small subset of the NITINOL fibers, on the overall
performance of the entire beam will be addressed both theoretically and experimentally.
Such an important interaction between the thermal and dynamic characteristics of the
NITINOL-reinforced composites has not been addressed in the previous analyses of
Rogers et al. (1991) and Jia and Rogers (1989). In these studies, the NITINOL-reinforced
composites have been considered to operate isothermally even though the activation and
deactivation of the NITINOL fibers subject these composites to non-uniform temperature
fields. Furthermore, the effects of intentional electrical heating of a selected subset of the
NITINOL fibers and the associated thermal energy propagating through the composite on
the unintentional thermal activation of additional susbsets of the fibers have not been
considered by Rogers et al. (1991) and Jia and Rogers (1989). These effects significantly
alter the dynamics of NITINOL-reinforced composites, particularly those made of
multi-lamina where the intentional electrical activation of a NITINOL lamina, by an
active controller, will generate enough heat to activate thermally and unintentionally the
adjacent NITONOL laminas. The phenomena associated with intentional electrical
activation and the associated unintentional thermal activation will be addressed, in detail,
in the present study.

The present paper is organized in five sections. In Section 1 a brief introduction is
given. In Sections 2 and 3 the dynamic and thermal models of the NITINOL-reinforced
composites are presented, respectively. The experimental behavior of a single and two-
layer NITINOL-reinforced composite is given in Section 4, both in the time and frequency
domains. Section 5 summarizes the results and the conclusions of the study.
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2. THE DYNAMICS OF NITINOL-REINFORCED COMPOSITE BEAMS

In the present study, the NITINOL-reinforced composites are made by embedding
the NITINOL fibers inside vulcanized rubber sleeves placed along the neutral axes of
these composite beams, as shown in Fig. I. In this arrangement, the NITINOL fibers are
free to move during the phase transformation process in order to avoid degradation
and/or destruction of the shape memory effect which may result when the fibers are
completely bonded inside the composite matrix.

FIIIERGLASS COMPOSITI, IIIEAM

SLEEVE JNITINOL FIBER

Fig. 1. A schematic drawing of the cross-section of a NITINOL-reinforced composite beam.

The dynamic characteristics of this class of NITINOL-reinforced beams are obtained
by dividing each beam into finite elements. The forces typically acting on any of these
elements are displayed in Fig. 2 along with the associated nodal displacements. The
stiffness and mass matrices of each beam element are derived in Sections 2.1 and 2.2,
respectively, using the theory of Bernoulli-Euler beams. The overall stiffness and mass
matrices of the entire beam are obtained by assembling the stiffness and mass matrices of
the individual elements (Paz, 1991).

I j A

(a) (b)

Fig. 2. NITINOL-reinforced beam element with forces and resulting displacements.

2.1. The stiffness matrix

The element stiffness [K,] is made up of the flexural rigidity of the beam, the
geometric stiffness that accounts for the axial and thermal loading as well as the stiffne- s
imparted by the elasticity of the NITINOL fibers. The combined stiffness of the element
is obtained using the principle of conservation of energy and equating the work done by

external loads to the strain energies stored in the element as follows:

Sum of work done by external loads = Sum of stored strain energies

or

2 [F]T[FI + P,/2 (dw/dx)z dx + P/2 (dw/dx)2 dx
L L

=EmIm/2 ý(d 2w/dx2 )2 dx+ 7 0/2 (dw/dx) dx (1)

where the terms on the left-hand side denote the work done by the transverse loads and

moments, the axial mechanical loads Pm and axial thermal loads P, respectively. The

terms on the right-hand side define the strain energy stored by virtue of the flexural
rigidity E,,I,, of the beam and the energy stored in the NITINOL fibers due to their
rr~nnver-e deflec~rinn w while. under tengion T reprnecTivelv
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In eqn (1), the thermal loads P, is generated by changes in the temperature AO of
the element caused by changes in the ambient temperature or by the activation and
de-activation of the NITINOL fibers. It is given by

Pt = a A19 EAm, (2)

where a is the thermal expansion coefficient of the composite, E.m is its modulus of
elasticity, and Am is the cross-sectional area of the beam.

Equation (1) reduces to

[6]T[F] = E.I. (d2 w/dx 2)2 dx - (/ dx, (3)

where P, is the net axial force given by

P. = (Pm. + P - T). (4)

Defining a proper displacement function for the composite beam element, one can
write the deflection w as

w = (A][5], (5)

where the elements of matrix [A] are a function of x (Fenner, 1975).
Accordingly, dw/dx and d2w/dx 2 can be obtained by differentiating eqn (5) with

respect to x to yield

dw/dx = [C][J] and d2w/dx 2 = [D][6]. (6)

If the stiffness matrix [K1] of the element is defined by the following relationship

[F] = [KeI[I], (7)

then [K1] can be determined by combining eqns (3), (6) and (7) as follows:

[e = EmIm I' [D]T [D] dx - Pn [C]NTC] dx. (8)

The element stiffness matrix [K1], given by eqn (8), consists of two components:
the conventional transverse stiffness and the geometric stiffness that combines the effect
of the axial mechanical loads, axial thermal loads and the tension of the NITINOL
reinforcing fibers. Equation (8) also represents the basic equation for understanding the
role that the NITINOL fibers can play in controlling the stiffness of the composite beam.
For example, if the initial fiber tension To, resulting from the pre-strain alone, is high
enough to counter-balance the mechanical and thermal effects (i.e. Pn = 0), then the beam
stiffness can be maintained unchanged. For higher pre-strain levels, the beam stiffness can
be enhanced. Further enhancement can be achieved when the shape memory effect of the
NITINOL fibers is activated by heating the fibers above their phase transformation
temperature. The additional tension, induced into the fibers by the phase recovery forces,
makes the net axial load P. negative and accordingly increases the overall stiffness of the
beam. However, it is essential that the total tension in the NITINOL fibers, i.e. the
sum of the tension due to the pre-strain and the phase recovery force, must exceed the
mechanical and thermal loads and compensate for the softening effect in the matrix
resulting from heating the NITINOL fibers inside the composite matrix.

2.2. The mass matrix

The element m,(ij) of the mass matrix [M1 ] of the beam element is obtained using
the consistent mass formulation (Zienkiewicz and Taylor, 1989) as follows:

me(i,j) = PmAm IAAjAdx (9)

where Ai and Aj are the ith and jth elements of the vector A given by eqn (5). Also in
eqn (9), p,,, denotes the density of the composite beam.
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The classical finite element approach is used to form the equations of motion of the
assembly of several beam elements along with the appropriate boundary conditions. The
solution of the eigenvalues of the resulting homogeneous equations gives the natural
frequencies of the composite beam as influenced by the properties of the matrix and the
NITINOL fibers. It is important to note that these properties are influenced by the
temperature distribution inside the beam which is developed by virtue of activating and
de-activating the NITINOL fibers. A study of the temperature distribution inside
NITINOL-reinforced beams is presented in Section 3.

The analysis presented here is for an orthotropic laminate that has a single layer of
unidirectional NITINOL fibers. Such an analysis can be used along with the classical
laminate theory to assemble the stiffness matrix for a multi-laminate composite beam.
A similar approach is carried out for modeling the static and dynamic characteristics of
NITINOL-reinforced composite plates (Ro, 1992).

3. THERMAL CHARACTERISTICS OF NITINOL-REINFORCED COMPOSITE BEAMS

The thermal characteristics of NITINOL-reinforced composite beams are influenced
primarily by the temperature distribution inside the composite. A thermal finite element
model is developed to determine steady-state and transient temperature distributions
resulting from different activation strategies of the NITINOL fibers. The theoretical
predictions are compared with experimental measurements in order to validate the
thermal model.

It is important here to note that although the finite element model used in predicting
the beam dynamics is a one-dimensional model, with the single dimension taken along the
beam neutral axis, the thermal model is considered to be two-dimensional model to
predict the temperature distribution over the beam cross-section. Such a distinction is
made because the temperature distribution, along the beam neutral axis, is assumed to be
uniform. This assumption is confirmed experimentally and is attributed to the fact that
the NITINOL fibers are oriented parallel to the neutral axis (Baz et al., 1992). The beam
temperature, however, varies only over the cross-section and its magnitude depends on the
number and location of the activated or de-activated NITINOL fibers. The resulting
temperature distribution can be used to compute an average modulus of elasticity of the
composite. The average temperature rise above ambient can also be used to compute the
axial thermal loading on the beam P, which results from fixing the two ends of the beam.

The two-dimensional thermal modeling of the beam is favored over a one-dimen-
sional lumped-parameter approach because it provides a more accurate simulation of the
thermal state of the beam.

THE THERMAL FINITE ELEMENT MODEL

The energy balance equation that governs the heat transfer across the beam can be
written, in a two-dimensional Cartesian coordinate system, as follows

a20 a20 Q 1 a0
S+ a + k = at (10)

where E is the beam temperature at time t and location (y, z) as defined in Fig. 3. In
eqn (10), Q defines the rate of heat generated per unit area during the activation of
the NITINOL fibers. Also, k denotes the conductivity of the beam and oz its thermal
diffusivity.

The above equation is subject to the following boundary and initial conditions

k -I1 +- a) I+ Q = 0 on boundaryS 1 , (II)

k1 aE.- h(® - 0,) = 0 on boundary S:. (12)
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Y

* Dotlndary S2 Boundary S,

SLEEVE COMPOSITE BEAM NITINOL FIBER

Fig. 3. Schematic drawing of the beam cross-section with heat transfer boundaries.

and
®(y, Z, t = 0) = 00(Y, Z) on the beam cross section. (13)

Equation (11) defines the condition at the NITINOL fiber circular boundary S1 on
which the heat flux Q is specified, and eqn (12) specifies the conditions at the beam outer
boundary S2 where the interaction with the ambient temperature 0a is through convective
heat transfer with coefficient h. The boundaries S, and S2 are defined in Fig. 3. In
eqns (11) and (12), ly and Iz denote the direction cosines of the outward normals to the
boundaries. Equation (13) describes the initial temperature distribution over the beam
cross-section at time t = 0.

Assuming a linear interpolating function [N] with triangular elements that have
isotropic thermal properties, then the temperature G at any y, z and t can be expressed in
terms of the nodal temperatures [E0] as follows

0 = [NI[®G. (14)

Using the Galerkin method along with the assumed interpolating functions, one can
write the following finite element equation (Rao, 1988)

[ + ([k§] + [kH])(e] = [pe], (15)

where

[kr] k/c[N]T [N] dA, (16)

[ke] = "h [N]T[N] dS2 , (17)

[k•]= 1L. 'k[B]T[B] dA, (18)

and

(pej 14'~Q[NIT dA - ~sQ[N]T dSj + Lf hO. (NIT dS2  (19)

with

[B] = 8N•/ay wN2/8y ... aNpl/a (20)
Wilk/a aN2/a ... aNp/8z I

where subscript p is the number of vertices of the element (p = 3 for a triangular element).
The individual element equations are assembled to form the overall equation of the

NITINOL-composite beam which can be solved for the nodal temperatures. The solution
is based on a Crank-Nicolson trapezoidal scheme (Hughes, 1977).

The thermal finite element model developed in Section 3 is used to generate the
temperature distribution over the beam cross-section which in turn is utilized to compute
the average properties of the beam, as for example its modulus of elasticity, under
different operating conditions. The theoretical predictions of the thermal characteristics
will be compared with experimental measurements, obtained in Section 4, in order to
check the validity of the thermal model.
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4. EXPERIMENTAL CHARACTERISTICS OF A NITINOL-REINFORCED BEAM

4.1. Experimental set-up, materials and methods

The characteristics of NITINOL-reinforced beams are computed using the developed
dynamic and thermal models. The theoretical predictions are experimentally validated
using a composite beam made of randomly oriented glass fibers embedded in a low cure
temperature polyester resin. The beam is 30cm long, 2.5 cm wide and 0.156 cm thick
mounted in a clamped-clamped arrangement. The temperature dependence of the
modulus of elasticity of the beam, shown in Fig. 4, is obtained experimentally using the
Dynamic, Mechanical, and Thermal Analyzer (DMTA) of Polymer Laboratories Ltd
(1990).

Four NITINOL 55 fibers, that are 0.55 mm in diameter, are embedded inside the
beam through vulcanized rubber sleeves that have an outer diameter of 0.95 mm. The
NITINOL fibers used have an austenite transformation temperature of about 500C. The
performance of the composite beam is monitored when different subsets of the NITINOL
fibers are intentionally activated by a controlled electrical current. Monitored also is
the unintentional activation of the remaining NITINOL fibers which results from the
thermal energy propagating from the electrically activated fibers. The effect of such an
unintentional activation on the overall performance of the NITINOL-reinforced beam is
determined, in detail, for different intentional activation strategies.

The experimental set-up used in measuring the interaction between the intentional
electrical and unintentional thermal activation of the NITINOL fibers is shown in Fig. 5.
In the figure, the beam is clamped in a fixed-fixed arrangement and the NITINOL fibers
are divided into two sets which are separately clamped. The first set is electrically
activated whereas the second set is activated by the unintentional thermal energy propa-
gating from the first set through the composite beam. In the arrangement shown in
Fig. 5, the first set includes fibers number 1, 2 and 4 while the second set is made only of
fiber number 3. The phase recovery forces developed by each set of fibers are separately
measured using two separate load cells.

The time history of the phase recovery forces developed by each set of fibers is
sampled by a computer when the first set is subject to a step electrical current. The corre-
sponding time histories of the temperatures generated in the NITINOL fibers and the
composite beam are also monitored by the computer. When steady-state conditions are
attained the modes of vibration of the beam are measured using a modally tuned impact
hammer (Ewins, 1984).

4 0E9

3 0E9 \

\

-o I OFR O",
i n. r-

00
02 40 0 60 2 00U 0 1000

TEMPERATLUPE ( 'C

F:g. -. Eftfect of operating temperature on modulus of elasticity of the test fibergias,
composite beam.
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Fig. 5. Experimental set-up used in monitoring the performance of NITINOL-reinforced beams.

4.2. Experimental results

A. Electrical actiation of three fibers

A. 1. Phase recovery forces

Figures 6a and 6b show the time response of the phase recovery forces developed by
the intentional electrical activation of fibers 1, 2 and 4, and the unintentional thermal
activation of fiber 3, respectively. In the displayed characteristics, all the NITINOL fibers
are initially pre-tensioned to 26.6 N per fiber and the electrically activated fibers are
subjected to a step electric heating of 5.4 W per fiber. Figure 6a shows that the phase
recovery forces of the electrically activated fibers quickly rise to their peak value of 66 N
per fiber. On the other hand, Fig. 6b indicates that fiber number 3, which is not intention-
ally activated by the electrical current, experiences a delay of about 100 s before its starts
developing its phase recovery forces. This time delay is the time needed for the thermal
energy propagating from the electrically activated fibers to reach and heat fiber 3 above
its phase transformation temperature. Following this time delay, the phase recovery force
builds up relatively slowly to a peak value of 50.4 N which is a very large force that cannot
be neglected. The slow rise to the peak force is attributed primarily to the thermal capaci-
tance of the composite beam and to the heat lost to the surroundings across the beam
surfaces. Hence, the resulting unintentional thermal activation of the NITINOL fiber
number 3 changes the total tensile force T, of the reinforcing fibers and the total elastic
energy of the beam. These changes are rather complex and mainly depend on the tempera-
ture distribution inside the composite beam. In addition, such changes are significant and
must be accounted for as they alter the stiffness and the dynamics of the entire beam, as
will be shown in what follows.

A.2. Modes of vibration

The effect of different activation strategies on the first threee modes of vibration of
the NITINOL-reinforced composite beam is shown in Figs 7a and 7b when the initial
tension is 26.6 N per fiber. These results are obtained after steady-state temperatures
and forces are attained. Comparisons are also given with the modes of the beam with
unactivated fibers. For instance, when fibers 1, 2 and 4 are electrically activated while
fiber 3 is thermally activated, the first three modes of vibration are found to be 94.9, 192.5
and 318.7 Hz, respectively. This is in comparison to 87.9, 184.92 and 315.0 Hz when all
the fibers are unactivated. The increase in the three modes of vibration, of 7.907, 4.1%
and 1.15%, respectively, is attributed to the increase in the fiber's tension developed
by both the intentional electrical and the unintentional thermal activation of these fibers.
In order to isolate the two effects, fiber 3 is replaced by another NITINOL fiber which has
a very high phase transformation temperature of 1001C. In this manner the thermal
energy propagating through the beam will not result in a high enough temperature to
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Fig. 6. Time history of the recovery forces with three activated NITINOL fibers.
(a) Electrically activated, (b) thermally activated.

induce the thermal activation of fiber 3. Accordingly, the initial tension applied to
fiber 3 will remain unchanged at 26.6 N even after the electrical activation of fibers 1, 2
and 4. This is not the case with the original low phase transformation temperature fiber
where the tension increased from 26.6 to 50.4 N following the electrical activation of
fibers 1, 2 and 4. In this way the effect of unintentional thermal activation on the beam
dynamics can be isolated and quantified.

The modes of vibration measured with the high phase transformation temperature
fiber are 92.3, 182.5 and 291.3 Hz. This corresponds to an increase of 5.02%, -0.53%
and -7.507o as compared to the modes of vibration with unactivated fibers. Accordingly,
the thermal activation accounts for about 36.4%, 113% and 752% of the total increase in
the normal modes. Such percentages are very significant and cannot be neglected. For the
sake of completion, the effect of activating all the four fibers electrically on the natural
frequencies of the beam is shown in Fig. 7b along with the frequencies obtained with all
fibers unactivated.

A.3. Temperature distribution

In order to develop a thorough understanding of the effect of unintentional thermal
activation, it is necessary to consider the temperature distribution over the cross-section
of the composite beam shown in Fig. 8a. Figure 8b shows the theoretical temperature
distribution when fibers 1, 2 and 4 are electrically activated, and Fig. 8c shows the
corresponding distribution when all the four fibers are electrically energized. The
distributions displayed represent the steady-state distributions obtained by the thermal
finite element model after 700 s from the initiation of the step heating of the NITINOL
fibers. It is evident from Figs 8b and 8d that the electrical activation of fibers 1, 2 and 4
generates temperatures around fiber 3 in excess of its phase transformation temperature.
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Fig. 7. Natural frequencies of NITINOL-reinforced beam. (a) Three activated fibers,
(b) four activated fibers.

Under such conditions, the phase transformation is induced thermally and fiber 3 starts
developing its phase recovery force. The extent of completion of the phase transforma-
tion process and the magnitude of the force developed depend on how high the beam
temperature becomes in relation to the phase transformation temperature.

Figure 8d shows also that the rise of the beam temperature, near fiber 3, is rather
slow because of the thermal capacitance of the beam and also because of the heat losses
to the environment across its surfaces. Accordingly, there is a time period before the
beam temperature rises to the phase transformation temperature and before fiber 3
starts generating its phase recovery force. During that period of time and until steady-
state conditions are attained, the dynamics of the beam will be continuously varying.
Predictions of such behavior are only possible through the interaction between the thermal
and dynamic finite element models.

Comparison between the theoretical and the experimental temperatures of the
activated NITINOL fiber and the beam surface are shown in Figs 8d and 8e when three
and four fibers are electrically activated, respectively. It is evident that theoretical
predictions are in close agreement with the experimental results.

B. Electrical activation of two fibers

B. 1. Phase recovery forces

The effect of electrically activating two NITINOL fibers (1 and 2, 1 and 4, or 2
and 4) on the phase recovery forces developed by the thermal activation of the remaining
two fibers is shown in Fig. 9. Figure 9a shows the forces developed by the electrically
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Fig. 9. Time history of the recovery forces with two activated NITINOL fibers.
(a) Electrically activated, (b) thermally activated.

* activated fibers and Fig. 9b shows the corresponding forces developed by the remaining
thermally activated fibers. The magnitude of the forces developed by the electrically
activated fibers is exactly the same, irrespective of their location. However, the magnitude
of forces generated by the thermally activated fibers depends on their location, inside
the beam, relative to the location of the electrically activated fibers. The least forces
are developed when the electrically activated fibers are located near the edges of the

* beam (fibers 1 and 4) where most of their generated thermal energy will be lost to the
surrounding. The remaining portion of the thermal energy will propagate inside the beam
to thermally activate the remaining two fibers (2 and 4). Higher forces are developed
when the electrically activated fibers (1 and 2, or 2 and 4) are located away from the
beam edges. For instance, when fibers 2 and 4 are electrically activated they produce a

* total force of about 132 N while the thermally activated fibers (1 and 3) develop a total
force of about 95 N. Definitely, the magnitude of such unintentionally generated forces
cannot be neglected.

It is again evident that the interaction between the electrical and thermal activations
plays a very important role in determining the total tension developed by the NITINOL
reinforcement which in turn determines the dynamic behavior of the entire composite

* beam.

B.2. Modes of vibration

The effect of diferent electrical activation strategies of two fibers on the modes of
vibration of the beam is shown in Fig. 10 and the results are summarized in Table I.
These results are obtained after steady-state temperatures and forces are attained.
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Fig. 10. Natural frequencies of a NITINOL-reinforced beam with two activated fibers.
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Table I and Fig. 10 indicate that the dynamic performance of the composite beam,
is significantly influenced by the different electrical activation strategies. This is in spite
of the fact that two fibers are always activated in all these strategies. The studies of Rogers
et al. (1991) and Jia and Rogers (1989) predict that the beam performance remains the
same for all the cases considered.

Table 1. Effect of activation strategy of two fibers on the
modes of vibration of the beam

Number of Modes of vibration (Hz)
fibers

activated First Second Third

None 87.9 184.9 315.0
All 100.1 202.5 323.7

1 and 4 88.4 182.5 305.0
1 and 2 88.8 183.8 307.4
2 and 4 93.5 190.1 315.0
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Furthermore, it is interesting to note that when the effect of the unintentional
thermal activation is negligible, as when fibers I and 4 are electrically activated, the
beam becomes less stiff than a beam with unactivated fibers. This is clearly manifested
by the drop in the frequencies of the second and third modes of vibration. Such a
drop is attributed to the fact that the phase recovery forces generated by fibers I and
4 are not high enough to compensate for the softening effect of the matrix modulus

due to the heating of the fibers. However, when the unintentional thermal activation
effect becomes significant, as when fibers 2 and 4 are electrically activated, the beam
performance is considerably enhanced. This is evident from the significant increase in the
natural frequencies of the beam. The improved performance is due to the additional
recovery forces developed by the unintentional thermal activation of fibers I and 3.

B.3. Temperature distribution

The interaction between the thermal and dynamic behavior of the beam can best
be understood by considering the temperature distributions across the cross-section of
the NITINOL-reinforced beam for different activation strategies. Figure 11 displays
such temperature distributions along with comparisons between the theoretical and
experimental temperatures of the activated NITINOL fibers and the beam surface. Close
agreement between the theoretical and experimental results is evident.

4.3. Further comparisons between theory and experiments

Figure 12 shows comparison between the theoretical and the experimental natural
frequencies of the beam for different activation strategies and different initial fiber
tensions. The effect of interaction between the electrical and thermal activation of the
NITINOL fibers is taken into consideration in these results. Close agreement is also
evident between the theoretical predictions and experimental measurements.
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5. CONCLUSIONS

The dynamic and thermal characteristics of NITINOL-reinforced composite beams
have been presented. The fundamental issues governing the behavior of this new class of
SMART composites have been introduced. Particular emphasis has been placed on the
interaction between the intentional electrical activation of subsets of the NITINOL fibers,
by an active controller, and the associated unintentional activation of neighboring
NITINOL fibers. It is shown that such an interaction plays a significant role in deter-
mining the dynamic behavior of the entire composite beam. Furthermore, such interac-
tion cannot be neglected as in the previous studies of Rogers et al. (1991) and Jia and
Rogers (1989).

It is also shown that the dynamic and thermal models developed in this study enable
the accurate prediction of the behavior of NITINOL-reinforced composite beams. With
such models it would be possible to design NITINOL-reinforced composites that have
continuously tunable structural characteristics to adapt to changes in the operating
conditions. These features will be particularly useful in many critical structures that are
intended to operate autonomously for long durations in isolated environments such as
defense vehicles, space structures and satellites.
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ACTIVE CONTROL OF NrTNOL-REINFORCED COMPOSITE BEAM
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Department of Mechanical Engineering

The Catholic University of America
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1. INTRODUCTION

Considerable attention has been devoted recently to the utilization
of the Shape Memory NIckel-Titanium alloy (NITINOL) in developing SMART
composites that are capable of adapting intelligently to external
disturbances (Ikegami et al. 1990, Rogers et al.1991, and Baz et al.
1990 and 1991). Such wide acceptance of NITINOL stems from its unique
behavior when it is subjected to particular heating and cooling
strategies. For example, the alloy becomes soft when it is cooled
below its martensite transformation temperature and becomes about four
times stiffer when it is heated above its austenite transformation
temperature (Funakubo 1987). Furthermore, if the alloy is trained to
have a particular shape while in its austenite phase, it will memorize
this shape. If the alloy is then cooled to its martensite phase and
subject to plastic deformation, it will return to its memorized shape
when it is heated above the austenite transformation temperature. The
phase transformation from martensite to austenite produces significant
forces as the alloy recovers its original shape. The alloy acts as an
actuator transforming thermal energy into mechanical energy (Perkins
1975 and Duerig et al. 1990). Accordingly, if the NITINOL fibers are
embedded inside a composite matrix at optimal locations, they can be
used to control the static and dynamic characteristics of the resulting
SMART composite. The control action is generated by the described
stiffening of the NITINOL fibers and/or the shape memory effect. With
such built-in control capabilities, the performance of the SMART
composites can be optimized and tailored to match changes in operating
conditions.

Emphasis is placed, in the present work, on using the shape memory
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effect of the NITINOL fibers to control the performance of fiberglass
composite beams. The NITINOL fibers are embedded inside vulcanized
rubber sleeves placed along the neutral axes of these composite beams
as shown in Figure (1). In this arrangement, the fibers are free to
move during the phase transformation process in order to avoid
degradation and/or destruction of the shape memory effect which may
result when the fibers are completely bonded inside the composite
matrix.

FIBERGLASS COMPOSITE BEAM

SLEEVE NITINOL FIBER

Figure (1) - A schematic drawing of the cross section of a
NITINOL-reinforced composite beam

The basic phenomena governing the thermo-dynamic performance of the
NITINOL fibers and NITINOL-reinforced composites will be presented.
The NITINOL fibers will be utilized to control the buckling and the
flow-induced vibrations of NITINOL-reinforced fiberglass composite
beams.

2. CHARACTERISTICS OF THE NITINOL FIBERS

Knowledge of the thermal and dynamic behavior of the shape memory
NITINOL fibers is essential to the understanding of their role in
controlling the performance of NITINOL-reinforced composites. The
thermo-dynamic behavior of the NITINOL fibers has been extensively
studied throughout the last two decades (Funakubo 1987, Perkins 1975,
Jackson et al. 1972). However, we will present a different outlook
which will be crucial in developing the basic principles governing the
performance of NITINOL-reinforced composites.

Emphasis is placecf on studying the effect of the operating
temperature and the pre-strain level on the recovery forces and. most
importantly, on the natural frequencies of end-restrained NITINOL
fibers. Such end-restrained fibers constitute the basic building
block of NITINOL-reinforced composites.

Figure (2) shows a schematic drawing of the experimental set-up
used to determine such thermo-dynamic characteristics. In the set-up,
the NITINOL fiber is clamped in a holder at one end and connected to a
load cell at the other end. The load cell monitors the pre-strain
level of the fiber when it is in its martensitic phase. It also
provides continuous measurements of the recovery force when the fiber
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undergoes its phase transformation due to external electric heating.
The fiber temperature is monitored by a thermocouple bonded to the
NITINOL fiber. The fiber assembly Is mounted on an sliding table which
is connected to a mechanical shaker. Random excitations are used to
drive the shaker and the table, thus applying a transverse displacement
to the fixed ends of the NITINOL fiber. The resulting oscillations of
the fiber are measured by a non-contacting magnetic sensor mounted on
the table. The shape memory effect of the NITINOL fiber is energized
electrically and the resulting fiber temperature, recovery force and
amplitude of oscillation are continuously sampled by a digital
computer.

Power supply
To Analyzer

To Computer 00 ,-Loading Screw

•'•\. I ]• Fiber

S• Thermocouple

Oscillating Table

Linear Bearings SBeaing •To Shaker

Figure (2) - Experimental set-up for monitoring thermo-dynamic
behavior of NITINOL fibers.

The effect of the pre-strain level on the recovery force, as a
function of time during a heating and cooling cycle, and
force-temperature characteristics are shown in Figures (3-a), and (3-b)
respectively. The recovery force increases almost linearly with
increasing pre-strain levels. Such characteristics conform with
published results.

The new outlook on the thermo-dynamic characteristics of the NITINOL
fibers is demonstrated by the effect of the pre-strain on the natural
frequencies of the fiber as shown in Figure (4). The figure displays
the spectrum analysis of the amplitude of oscillation of the fiber, at
different pre-strain levels, with and without the activation of the
shape memory effect.

Figure (4) indicates that activating the shape memory effect
results in a significant increase of the natural frequency of the fiber
which becomes more pronounced with Increasing pre-strain levels.
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Figure (4) - Effect of pre-strain on the natural frequencies of
unactivated (u) and activated (a) NITINOL fibers.

A better understanding of the underlying phenomena can be obtained
by treating the NITINOL fiber using the classical theory of vibrating
strings. The wave equation for transverse vibrations of a undamped
freely vibrating string, which Is tightly stretched with a tension TO,
Is given by (James et al. 1989)

a2w 1 w
1- -, (1)

;x2 2 2
OX c a t



where w is the transverse deflection of the string at a distance x
along the string at time t. In equation (1), the constant c is the
wave propagation speed given by

c = V To / PL (2)

where PL is the mass per unit length of the string.

Using conventional separation of variables approach for a string of
length L which is fixed at both ends, the transverse deflection w is
written as

w

W OnCn(3)

n=2

where On and q. are the mode shape and the generalized coordinate for
the nth mode of vibration respectively. Using equation (3), equation
(1) reduces to

2
qn + wn qn = 0 , for n=1, 2, .. (4)

where wn is the natural frequency of a fixed-fixed string given by

Wn ( n n / L ) V/ o / PL for n=1, 2, .. (5)

Accordingly, the natural frequency of the string is proportional to
the square root of its tension. Using this relationship, the effect of
the pre-strain (or the initial tension) of the NITINOL fibers on the
first natural frequency of the unactivated and activated fiber is shown
in Figure (5). Two distinct linear characteristics are observed with a
significant increase in the natural frequency when the fiber is
activated. A unified characteristic can be obtained when the effect
of total tension Tt, which is the sum of the initial tension and the
phase transformation force of the activated fibers, is considered as
shown in Figure (6). The natural frequencies of the unactivated and
activated fiber fall on a single straight line which has a slope
of(n/2L vpd-). In this analysis the effect of thermal expansion on the
fiber tension is negligible as compared to the phase transformation
force.

Therefore, the classical theory of vibrating strings can be used to
predict the dynamics of unactivated as well as activated NITINOL
fibers. Accordingly, the theory of vibrating strings can be utilized
to determine the strain energy stored in NITINOL fibers embedded Inside
composite beams as the beams deflect from their equilibrium position
under the action of external loads. Using this approach to determine
the thermo-dynamic behavior of NITINOL fibers, it Is possible to
develop a thorough understanding of the static and dynamic performance
of NITINOL-reinforced composites.
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3. CHARACTERISTICS OF NITINOL-REINFORCED COMPOSITE BEAMS

3.1. STATIC CHARACTERISTICS

The static characteristics of NITINOL-reinforced composite beams
are primarily governed by their stiffness. The beam stiffness is made
up of different components which include: the flexural rigidity of the
beam, the geometric stiffness that accounts for the axial and thermal
loading as well as the stiffness imparted by the elasticity of the
NITINOL fibers. The individual components of the beam stiffness can be
determined by considering the NITINOL-reinforced beam element shown in
Figure (7) with the forces acting on it and the associated
displacements. The combined stiffness of the element can be obtained
using the principle of conservation of energy and equating the work
done by external loads to the strain energies stored in the element. In
the present analysis, the theory of Bernoulli-Euler beams is used with
the assumption of small deflections.

Mi

(t PM Tt.
Pt --•--Pt t"

t •C0UPOSITE NITIOLt JTY

MATRIX FIBER

(a) (b)

Figure (7) - NITINOL-reinforced beam element with forces and
resulting displacements

3.1.1. EXTERNAL WORK

The work done by the external loads includes:

a. work done by transverse loads and moments (WU)

This work is given by

Wi = i/2 (SIT [F], (6)

where [31 and iF] are the displacement and transverse loads vectors,
respectively, given by



[6] = [Wj 1 & wj 6j]T, (7)

and [F] = [V1 M, V MJiT, (8)

with w, and 61 are the linear and angular deflections of node I,
respectively and V, and M, are the shear and moment acting at node i,
respectively.

b. work done by the axial mechanical loads (W2,)

W2, is given by L

S= Ps / 2 f (dw/dx) 2  dx, (9)

0
where P. is the external axial compressive load acting along the
neutral axis of the beam element.

c. work done by the axial thermal loads (M 2 0)

Hzt represents the work done by the thermal loads Pt on the beam
element due to changes in the temperature AE of the element caused by
changes in the ambient temperature or during the activation and
de-activation of the NITINOL fibers. It Is given by

L

S= Pt / 2 f (dw/dx) 2  dx, (10)

0

where Pt is given by

Pt = otAe E_ A., (11)

where a is the thermal expansion coefficient of the composite, E, is
its modulus of elasticity and A. is the beam cross sectional area.

3.1.2. STORED STRAIN ENERGY

The stored strain energy consists of two components:

a. strain energy of beam (W3 )

The energy stored in the beam element due to its bending is given
by L

S= Em I, / 2 f (d 2w/dx 2 )2 dx (12)

00
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b. strain energy of NITINOL fibers Lw4)

Considering the NITINOL fiber as a string with a tension T which is
displaced laterally a distance w from the neutral axis of the beam.
Then its stored strain energy W4 is given by

L

S= T / 2 f (dw/dx ) 2  dx. (13)

0

* Equating the sum of the work done by the external forces F, P, and
Pt to the sum of the strain energies stored in beam and NITINOL fibers
gives

Wi + W• + W2t = W3 + W4. (14)

* Substituting equations (6), (9), (10), (12) and (13) into equation
(14) yields

L L

[81T [F] = E, I. f (d 2 w/dx 2 ) 2 dx - P. f (dw/dx) 2 dx, (15)

0 0

where Pn is the net axial force give by

Pn = ( P. + Pt - T). (16)

Defining a cubic displacement function for the composite beam
element, of the following form

w = a + b x + c x2 + d x3  (17)

where a, b, c and d are constants that can be calculated in terms of
the deflections of the nodes i and j bounding the beam element. Then
equation (17) can be rewritten as

w = (A] (51, (18)

where the elements of matrix [A] are function of x (Fenner 1975).

Accordingly, dw/dx and d2 w/dx 2 can be obtained by differentiating
equation (18) with respect to x to yield

dw/dx = (Cl [6] and d~w/dx 2 = [DI [61, (19)

where the matrices [CC and (D] are given by



[C] d ([A) and [D] ([A]) (20)dx d

The following relationships can also be obtained from equation (19)

(dw/dx) 2 =[3]T(CITT[cJ(• and (d 2 w/dx2 ) 2 =[SIT[D]T[(DI[5]. (21)

If the stiffness matrix [Ke] of the element is defined by the
following relationship

[F] = [Kel (31, (22)

then, [Ke] can be determined by combining equations (15), (21) and (22)
as follows

L L

[Kel = E, I. f [D]T[7] dx - Pn f [C]T[C] dx (23)

0 0

It can be seen from equation (23), that the element stiffness
matrix [KJ] consists of two components: the conventional transverse
stiffness and the geometric stiffness that combines the effect of the
axial mechanical loads, axial thermal loads and the tension of the
NITINOL reinforcing fibers. Equation (23) also represents the basic
equation for understanding the role that the NITINOL fibers can play in
controlling the static characteristics of the composite beam. For
example, if the beam is not reinforced by NITINOL fibers (i.e. T = 0)
and the mechanical and thermal loads induce compressive stresses in the
beam, then the geometric stiffness will increase and the total element
stiffness will decrease. When the combined effect of the mechanical
and thermal loads reaches a critical magnitude such that the geometric
stiffness becomes equal to the flexural stiffness of the beam, the
beam stiffness vanishes and the beam becomes elastically unstable.
Subjecting the beam to any additional external disturbance will cause
the beam to buckle.

It should be pointed out that the thermal loading, as it increases
the geometric stiffness, also decreases the flexural stiffness of the
beam because it reduces its effective Young's modulus Em. Such a dual
effect makes the beam buckle under smaller thermal loads than under
pure mechanical loading.

However, the critical load of the un-reinforced beam can be
increased by embedding pre-strained NITINOL fibers into the beam. If
the tension T, resulting from the pre-strain alone, is high enough to
counter-balance the mechanical and thermal effects then the beam
stiffness can be maintained unchanged. For higher pre-strain levels,
the beam stiffness can be enhanced. Further enhancement can be
achieved when the shape memory effect of the NITINOL fibers is
activated by heating the fibers above their phase transformation
temperature. The additional tension, induced into the fibers by the
phase recovery forces, makes the net axial load P, negative and
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Increases accordingly the overall stiffness of the beam element.
However, It Is essential that the total tension In the NITINOL fibers,
I.e., the sum of the tension due to the pre-strain and the phase
recovery force, must exceed the mechanical and thermal loads and
compensate for the softening effect in the matrix resulting from

* heating the NITINOL fibers Inside the composite matrix.

Therefore, effective control of the stiffness of NITINOL-reinforced
composites can be achieved by proper selection of the initial
pre-strain level of the NITINOL fibers. This selection is particularly
crucial, in view of the results of Figure (3), as the pre-strain level

* determines the generated levels of recovery forces.

The finite element model of the NITINOL-reinforced beams describes
the interaction between the external loads, operating conditions and
the geometrical and physical parameters of the composite beam and the
NITINOL fibers. It defines how the NITINOL fibers can be utilized to
tailor the stiffness of the composite to compensate for environmental
and operating conditions and disturbances. The stiffness obtained for
the Individual elements of the beam can be assembled using the
classical finite element approach (Fenner 1975). The assembled model
can then be subjected to the appropriate boundary conditions in order
to compute the deflections corresponding to particular external loading
conditions. The analysis presented is for an orthotropic laminate that
has a single layer of unidirectional NITINOL fibers. Such an analysis
can be used along with the classical laminate theory to assemble the
stiffness matrix for a multi-laminate composite beam. Similar approach
can be carried out for modeling the static bnd dynamic characteristics
of NITINOL-reinforced composite plates.

The finite element model developed will be validated with
experimental results obtained with fiberglass composite beams.

3.2. DYNAMIC CHARACTERISTICS

The dynamic characteristics of NITINOL-reinforced beams are
obtained by combining the stiffness matrix (Kel with the mass matrix
[Mel of the beam to form the following element equation of motion

[M0 ] (ý1 + [KJ] [8] = [F], (24)

where [6] is the nodal acceleration vector. The elements me(i,j) of the
element mass matrix [Me] are obtained using the consistent mass
formulation (Zlenkiewicz and Taylor 1989) as follows

L

me(i,j) = p, A f [Al] [AJ] dx (25)
0
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where [A,] and [A,] are the ith and jth elements of the vector A given
by equation (18).

The classical finite element approach is used to form the equations
of motion of the assembly of several beam elements and the appropriate
boundary conditions are then applied. The solution of the eigenvalues
of the resulting homogeneous equations give the natural frequencies of
the composite beam as influenced by the properties of the matrix and
the NITINOL fibers. It Is important to note that these properties are
influenced by the temperature distribution Inside the beam which is
developed by virtue of activating and de-activating the NITINOL fibers.
A study of the temperature distribution inside NITINOL-reinforced beams
will be presented in the following section.

0 3.3. THERMAL CHARACTERISTICS

The thermal characteristics of NITINOL-reinforced composite beams
are influenced primarily by the temperature distribution inside the
composite. A thermal finite element model is developed to determine

0 steady-state and transient temperature distribution resulting from
different activation strategies of the NITINOL fibers. The theoretical
predictions are compared with experimental measurements in order to
validate the thermal model.

It is important here to note that although the finite element model
used in predicting the beam dynamics is a one-dimensional model, with

0 the single dimension taken along the beam neutral axis, the thermal
model is considered to be a two-dimensional model to predict the
temperature distribution over the beam cross section. Such a
distinction is made because the temperature distribution, along the
beam neutral axis, is assumed to be uniform. This assumption is
confirmed experimentally and is attributed to the fact that the NITINOL

* fibers are oriented parallel to the neutral axis. The beam
temperature, however, varies only over the cross section and its
magnitude depends on the number and location of the activated or
de-activated NITINOL fibers. The resulting temperature distribution
can be used to compute an average Young's modulus of the composite.
The average temperature rise above the ambient can also be used to
compute the axial thermal loading on the beam Pt which results from
fixing the two ends of the beam.

The two-dimensional thermal modeling of the beam is favored over a
one-dimensional lumped-parameter approach because it provides more

* accurate simulation of the thermal state of the beam.

3.3.1 THERMAL FINITE ELEMENT MODEL

The energy balance equation that governs the heat transfer across
the beam can be written, in two-dimensional cartesian coordinate system

*, as follows
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aze a2e 1 a e
- + - + -(26)

8y 2  az 2  k a t

where 8 is the beam temperature at time t and location (y,z) as defined
in Figure (8). In equation (26), Q defines the rate of heat generated
per unit area during the activation of the NITINOL fibers. Also, k
denotes the conductivity of the beam and a its thermal diffusivity.

The above equation is subject to the following boundary and
initial conditions

88 88

k -- ,+ -- ]+ Q = 0 on boundary S,, (27)
ey az

k[ -- •+ -4 ] + h (8 - ea) = 0 on boundary S2, (28)ty + z

and e (y, z, t=o) = e8 (y, z) on beam cross section (29)

Equation (27) defines the condition at the NITINOL fiber circular
boundary S, on which the heat flux Q is specified, and equation (28)
specifies the conditions at the beam outer boundary S2 where the
interaction with the ambient temperature 9a is through convective heat
transfer with coefficient h. The boundaries S1 and S2 are defined in
Figure (8). In equations (27) and (28), y and 4 denote the direction
cosines of the outward normals to the boundaries. Equation (29)
describes the initial temperature distribution over the beam cross
section at time t = 0.

y

Boundary S2 Boundary S1

z

SLEEVE- COMPOSITE BEAM NITINOL FIBER

Figure (8) - Schematic drawing of beam cross section with heat transfer
boundaries.



Assuming a linear interpolating function [N] with triangular
elements that have Isotropic thermal properties, then the temperature S
at any y, z and t can be expressed, in terms of the nodal temperatures
[8]1 as follows

e = (NI (e*], (30)

Using Galerkin method along with assumed interpolating functions,
one can write the following finite element equation (Rao 1988)

[k'4] (601 (fkel [k:*, ) (8el] (P-1, (31)

where (ke41 = f f k/a (NIT (N] dA ,(32)

[0)I = fh [N IT [NI dS2e, (33)

(keI = f k [B IT (B] dA (34)

A°

and (P [ I ff f N] dA-f Q [NIT dS1 + h9 [NIT dS 2. (35)

A SA 2

with [B] O N1/8y aN2/ay ... aN P/"y (36)

8N/ az aN2/az ... aNp/az

where subscript p Is the number of vertices of the element (p= 3 for
triangular element).

The individual element equations are assembled to form the overall
equation of the NITINOL-composite beam equation which can be solved for
"the nodal temperatures. The solution is based on a Crank-Nicolson
trapezoidal scheme (Hughes 1977).

3.4. NUMERICAL AND EXPERIMENTAL RESULTS

3.4.1. BASIC CHARACTERISTICS OF BEAM

The characteristics of NITINOL-reinforced beams are computed using
the developed static, dynamic and thermal models. The theoretical
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predictions are compared with experimental results obtained with a
composite beam made of randomly oriented glass fibers embedded In a low
cure temperature polyester resin. The beam Is 30 cm long, 2.5 cm wide
and 0.156 cm thick mounted in clamped-clamped arrangement. The
temperature dependence of Young's modulus of the beam, shown In Figure
(9), is obtained experimentally using the Dynamic, Mechanical, and
Thermal Analyzer (DMTA) of Polymer Laboratories, Ltd (1990).

4 OE9

S3.0E9

S2.0E9,

= OE9•
0

0.0
0.0 20 0 400 60.0 80.0 1000

TEMPERATURE ( 'C)

Figure (9) - Effect of operating temperature on Young's modulus of the
test fiberglass composite beam

Four NITINOL 55 fibers, that are 0.55 mm in diameter, are embedded
inside the beam through vulcanized rubber sleeves that have outer
diameter of 0.95 mm. Two sets of NITINOL fibers were used. The first
set consisted of trained fibers that have austenite transformation
temperature of 50 0 C. The second set however is untrained and
accordingly, the shape memory effect has not been imparted to it. The
two sets are inserted, one at a time, inside the sleeves and the effect
of the shape memory and the associated phase recovery forces on the
performance of the composite beam are monitored when the beam is
exposed to different ambient temperatures. The experimental set-up,
shown in Figure (10), is placed inside a temperature-controlled chamber
to determine the natural frequencies of the fixed-fixed beam as a
function of the ambient temperature. The set-up is very similar to
that used in studying the thermo-dynamic characteristics of the NITINOL
fibers. However, instead of activating the NITINOL fibers
electrically, the fibers are activated thermally by controlling the
temperature of the environmental chamber. The measurements are carried
out after steady-state and thermal equilibrium conditions are attained.
Under these conditions, the composite matrix and the NITINOL fibers are
all at the same equilibrium temperature. At each equilibrium
temperature, the composite beam is subjected to random vibrations and
the resulting response is monitored by an micro-accelerometer bonded to
the beam. The response is analyzed in the frequency domain to
determine the modes of vibration of the composite beam.
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To Computer e 0l 0 To power supplyell L com po site IMr N0L
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Oscillating Table
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To Shaker

Figure (10) - Experimental set-up used in monitoring the performance of
NITINOL-reinforced beams

3.4.2. THE STATIC AND DYNAMIC CHARACTERISTICS

Figure (11-a) shows the measured changes in the first natural
frequency of the beam when it is reinforced with untrained fibers which
are pre-strained at different levels. The changes are normalized with
respect to the natural frequency %b of the un-reinforced beam measured
at 250C. The normalized characteristics of the un-reinforced beam are
also plotted to serve as a datum for defining the effect of reinforcing
the beam with NITINOL fibers and also the effect of the pre-strain
level. It can be seen that the frequency of the un-reinforced beam
drops as the ambient temperature increases and when the temperature
exceeds 40 0C the beam losses its elastic stability and start to buckle.
The drop in the natural frequency of the un-reinforced beam is
attributed to the softening of the matrix which is clearly demonstrated
by the loss in the Young's modulus of the beam as shown in Figure (9).

Reinforcing the beam with pre-strained untrained NITINOL fibers
considerably increases the natural frequency of the beam. The extent
of the upward shift in natural frequency increases with increased
pre-strain level. An increase of about 40% is obtained at room
temperature when the pre-strain level is only 0.26%. However, as the
ambient temperature increases the frequency shift drops in a manner
similar to the characteristics of the plain un-reinforced beam. Such a
drop is again attributed to the softening effect of the matrix and the
fact that the untrained NITINOL fibers act as a static pre-tensioning
device that produce constant tension which is independent of
temperature. Therefore, the frequency enhancement is only generated by
the reinforcement and the pre-strain effects, and not by the shape
memory effect.
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Figure (11) - Effect of the ambient temperature and pre-strain level on
enhancing the first mode of vibration of clamped-clamped
composite beam reinforced with NITINOL fiber without (a)
and with (b) shape memory.



ic is important to note tnat consiaeraoLy nigner increases in
natural frequency can be obtained by further increases of the
pre-Strain level to its maximum permissible level of 6%.

However, a greater frequency shift can be achieved by Imparting the
shape memory effect to the NITINOL fibers. The fibers are trained over
250 cycles using the procedure outlined by Johnson (1984). The trained
fibers are inserted into the composite beam to replace the untrained
set, the frequency shifts become significant, particularly at high
ambient temperatures. This Is clearly demonstrated in Figure (l1-b).
For temperatures between room temperature and 40 0 C, the frequency
shifts obtained are similar to those with the untrained fibers within
enxerimental accuracy. But, once the ambient temperature exceeds the
50 C temperature, which Is the austenite phase transformation
temperature, the frequency shift characteristics changes from a
gradually decaying trend and develops a gradually increasing profile.
Such a sudden change is a reflection of the contribution of the phase
recovery forces developed by the shape memory effect which is
illustrated in Figure (12).

40
Pre-strain

Z 3 0 , .. - -. . . . . . r .. . . . . . . .C ] 0 .2 2

S20 • •... • •

> Ia ... -".... 0 0.078

0'
20 30 40 50 60 70 80 90 100 110

Temperature (°C)

Figure (12) - Effect of pre-strain level and ambient temperature on the
phase recovery forces of trained NITINOL fibers.

The shape memory effect generates strain energy in the NITINOL
fibers to counterbalance the softening effect of the composite matrix
with increasing temperature. The amount of strain energy developed,
depends on the initial pre-strain level, it can merely compensate for
the softening effect to maintain the beam frequency at nearly a
constant value which is independent of ambient temperature as shown for
pre-strain level of 0.078%. It can also increase the beam frequency
as the ambient temperature increases as indicated for pre-strain levels
of 0.22 and 0.26%. With pre-strain level of 0.26%, the frecquency
increase reaches about 70% of that at ambient temperature of 90 C as
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compared to 18% Increase when untrained fibers are used. In this way.
the Individual contributions of the pre-strain, matrix softening and
shape memory effect on the frequency shift are Isolated. This
facilitates checking the validity of the mathematical models against
the experimental results.

Comparisons between the theoretical predictions and the
measurements are shown in Figures (13-a) and (13-b) for NITINOL fibers
without and with shape memory effect, respectively. The figures
include comparisons for the first and second modes of vibrations.
Close agreement between theory and experiments is evident.
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Figure (13) - Comparison between the theoretical and experimental
frequencies of composite beam reinforced with NITINOL
fibers without (a) and with shape memory (b).

3.4.3. THERMAL CHARACTERISTICS OF BEAM

The thermal finite element model developed in section 3.3.1 is used
to generate the temperature distribution over the beam cross section
which in turn is utilized to compute the average Young's modulus of the
beam under different operating conditions. Such thermal
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characteristics will be presented in this section and compared with
experimental results in order to check the validity of the theoretical
predictions.

Figure (14) shows a sample of the finite element mesh used in the

analysis of the timperature field in the NITINOL-reinforced beam.

7//1 /A//// /////

Figure (14) - The finite element mesh of the thermal model of the
NITINOL-reinforced beam.

Figures (15), (16) and (17) show the steady-state temperature and

Young's modulus distributions over the cross section of the beam when

activating all the four fibers, the two extreme fibers, and the middle
two fibers, respectively. It is evident that the activation strategy,
as well as the number and location of the activated fibers,result in
dramatic variations of the temperature and Young's modulus
distribution. These variations influence the static and dynamic
characteristics of the composite beam. Hence, integration of the
thermal and mechanical models is essential to the understanding and the
prediction of the behavior of NITINOL-reinforced composites.

Comparisons are shown in Figures (15) through (17) with the
experimental results when the fibers are activated electrically with
8.3 watts/fiber and when steady-state conditions are attained after 720
seconds. The temperature distribution is also monitored during the
720 second period required to reach steady-state at six different
locations. Figure (18) displays the spatial distribution of these
measurement stations.
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Figure 15 -Temperature and Young's-modulus distribution over beam
cross section when all four NITINOL fibers are activated
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Figure 16 - Temperature and Young's modulus distribution over beam
cross section when the two extreme NITINOL fibers are

activated
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Figure (18) - Spatial distribution of temperature measurement stations

Figures (19-a) and (19-b) show comparisons between the experimental
and theoretical temperature distributions over the beam cross section
at three stations located on the outer surface of the beam. Close
agreement between theory and experiment is evident.

EXPERIMENT: HEATING 4 FIBERS THEORY: HEATING 4 FIBERS
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Figure (19) - Comparison between theoretical and experimental
surface temperature distributions over beam cross
sections with all four NITINOL fibers activated.

Figure (20) shows the experimental surface temperature of the beam
along its longitudinal axis. It is clear that the temperature is
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practically constant along the beam longitudinal axis. Such
* measurements validate the assumption used in deriving the thermal model

and justify the use of the two-dimensional simulation of the beam.

EXPERIMENT: HEATING 4 FIBERS
150-
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TIME( SEC )
Figure (20) - Experimental surface temperature of the beam along its

longitudinal axis.

4. APPLICATIONS OF NITINOL-REINFORCED COMPOSITE BEAMS

The feasibility of utilizing NITINOL-reinforcing fibers to actively
* control the buckling and flow-induced vibrations of composite beams are

demonstrated in this section.

4.1. ACTIVE BUCKLING CONTROL

0 The new trend of designing light weight and large structures render
these structures to be more susceptible to failure due to buckling.
Baz and Tampe (1989) were successful in to enhancing the buckling
characteristics of long slender beams by using external helical shape
memory actuators. In the present study, actuators in the form of
NITINOL fibers are embedded inside the long slender beams. With such
a configuration, beams can be manufactured from light weight sections
that have built-in capabilities for withstanding failure due structural
instabilities. It was shown theoretically in section 2 that
NITINOL-reinforced composite beams can have enhanced buckling
characteristics depending on the pre-strain level of the NITINOL fibers
in comparison with the external mechanical and thermal loads acting on
these beams. The validation of such theoretical model is
experimentally demonstrated in this section.

04
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4.1.1. THE EXPERIMENTAL SET-UP

Figure (21) shows a schematic drawing of the experimental set-up
used In actively controlling the buckling of a NITINOL-reinforced beam.
The beam dimensions are 63.75 cm by 2.5 cm by 0.44 cm. The beam is
reinforced by eight o.55 mm NITINOL fibers which are embedded
symmetrically along the neutral axis of the beam.

SERVO-CYLINDE CLAMP COMPOSITE BEAM CLAM CLAM SRo-CYN

RON-CONTACTING TO COMUTERPL

FROM COMPRESSOR PRUSVRE NITINOL WIRES COMPOSITE BEAM FROM COMPUTER PRESERE FRO COMPRESSOR

Figure (21) - Schematic drawing of the active buckling control
experiment.

One end of the beam is clamped to a fixed base and the other end is
connected to the piston of a loading cylinder. The cylinder is
pressurized by compressed air from the storage tank of an air
compressor. The increasing compressive load applied by the load
cylinder to the beam will eventually cause the beam to buckle. The
resulting deflection of the beam Is monitored continuously by two
non-contacting sensors which are placed on both sides of the beam. The
sensors also serve as physical stops to prevent excessive deflection
once buckling has occured. The output signals of the sensors are sent
to a micro-computer via a set of analog-to-digItal converters. The
processing these signals Is shown In the controller block diagram shown
In Figure (22). When the beam deflection exceeds a pre-set value of a
dead-band, the controller Is turned on using a proportional controller
with a saturation limit. The control action is sent via a
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Figure (22) - Block diagram of the active buckling control system

digital-to-analog converter to a power amplifier to activate the
NITINOL fibers embedded inside the compressively loaded composite beam.
The activation of the NITINOL fibers will compensate for the monitored
deflection and the phase recovery forces developed in the fibers will
attempt to bring the beam back to its undeflected position.

It is important here to note that the controller dead-band is
essential to prevent chattering of the controller as observed by Baz,
Iman and McCoy (1990). Also, the saturation limiting of the maximum
voltage applied to the NITINOL fibers is necessary to avoid destruction
of the shape memory effect of the NITINOL fibers due to excessive
heating.

In the active buckling control system described, the NITINOL
reinforcing fibers are clamped at one end to the fixed base and at the
other end to pre-tensioning cylinder via a load cell. The load cell
monitors the initial value of the pre-tension applied to the NITINOL
fibers by the pre-tensioning cylinder. The load cell also continuously
measures the phase recovery forces developed in the NITINOL fibers as
they undergo their phase transformation.

4.1.2. EXPERIMENTAL RESULTS

Figure (23) shows a comparison of the performance with and without
the active buckling control. The results displayed are for a
NITINOL-reinforced beam with each of the eight fibers has an initial
tension of 33.7 N which corresponds to an initial pre-strain of 0.35%.
For the controlled cases, the controller dead band corresponds to
deflection error of 0.0176 nun and the controller gain is 2727 volt/mm.
The saturation limit is 6 volts/fiber and the maximum current is 1.6A.
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Figure (23) -Performance of active buckling control system with 0, 4
and 8 NITINOL fibers activated with a dead band = 0.0176
mm and control gain = 2727 volts/mm.
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In Figure (23-a), the deflection of the beam resulting from the
application of a gradually increasing compressive load is shown. The
rate of load increase Is 500 N/mmn as shown in Figure (23-b). It can
be observed that the uncontrolled beam buckles when the compressive
axial loads starts exceeding 330 N. However, when all eight NITINOL
fibers are activated, the beam can withstand axial loads up to 950 N
before it starts to buckle. Therefore, with the NITINOL reinforcement,
it is possible to triple the critical buckling load of the beam. With
four activated fibers, the critical buckling load is about 700 N which
corresponds to about double the critical load of the uncontrolled beam.
Figure (23-c) shows the corresponding time history of the temperature
of the NITINOL fibers due to the activation and de-activation of the
controller. In Figure (23-d), the time history of the phase recovery
forces developed in the NITINOL fibers is shown. The tension in the
fibers remains equal to the initial pre-tension, i.e. 33.7N x 8 =
269.6N, for the uncontrolled case. However, the tension increases to
approximately 1000 N when eight NITINOL fibers are activated.

With such capability, it is possible to energize different sets of
the NITINOL fibers to counterbalance the external loading condition and
avoid buckling of the composite beam. Therefore, for small external
loads, it is only necessary to energize a few fibers, but as the load
increases, the controller can energize a larger number of fibers to
maintain the beam in its undefelected form.

The effect of varying the controller parameters on the performance
of the active control system is shown in Figures (24), (25) and (26).
In Figure (24), the effect of varying the control dead-band on the
system performance is shown. In this case, the controller will be off
until the beam deflection exceeds the dead band. Once the deflection
exceeds the dead band , the controller is energized. This is
accomplished by the heating of the NITINOL fibers and the development
of the phase recovery forces as shown in Figures (24-c) and (24-d),
respectively. For the range of dead bands considered, between 0.0176
mm and 0.528 mm, the effect on the critical buckling loads is
insignificant.

The effect of varying the controller gain from 2727 volt/mm to
136.35 volt/mm on the system performance is shown in Figure (25). This
effect varies the slope of temperature rise of the NITINOL fibers and,
in turn, the rate at which the corresponding phase transformation
forces are recovered. Changing the controller gain is found to
influence to some extent the critical buckling load. For example, when
the controller gain is 2727 volt/mm the critical buckling load Is 950
N and when the gain is reduced to 136.35 volt/mm the critical buckling
load become about 850. Therefore, reducing the controller gain by a
factor of 1/20 only results in a 10.5% reduction in the critical
buckling load.

The effect that the pre-tension has on the system performance Is
shown in Figure (26) for dead band of 0.0176 mm and controller gain of
2727 volts/mm. It is clear from the results obtained that , the
pre-tension plays the most crucial role in controlling the buckling of
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Figure (26) - Effect of initial pre-tension on the performance of the
active control system when the dead band is 0.0176 mm,
the controller gain is 2727 volts/mm and 8 fibers are
activated.
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the beam. Increasing the tension from 0.0 N/fiber to 33.7 N/fiber
increases the critical buckling load from about 100 N to 950 N,
respectively.

4.1.3. COMPARISON BETWEEN THEORY AND EXPERIMENTS

The mechanism of actively conc-olllng the buckling of the
NITINOL-reinforced beam can best be understood by considering Figure
(27-a). The figure represents the theoretical prediction of the
buckling characteristics of actively controlled NITINOL-reinforced
beams. In the figure, the applied axial load is increased gradually at
a linear rate of SO0 N/mmn. For the uncontrolled beam, the critical
buckling load is fixed at 320 N and remain unchanged with time. This
load corresponds to a pre-tension of 33.5 N/fiber. When the applied
load becomes equal to the critical buckling load, the beam is on the
verge of elastic instability. The beam will buckle once the applied
load exceeds the fixed critical buckling load. For the case of
controlled beam, the beam starts at time t = 0 with the same buckling
load as the uncontrolled beam. When the controller senses any
deflection greater than the dead band due to the application of the
external load, the buckling characteristics of the beam is enhanced as
represented by the dashed characteristics. The activation of the
NITINOL fibers makes the beam less susceptible to buckling as the
critical buckling load is increased to become 850 N instead of the
original uncontrolled load of 320 N. Accordingly, the controlled beam
will not buckle until the applied load exceeds the theoretically
predicted limit of 850 N.

The effect of varying the pre-tension levels on the theoretical
prediction of the critical buckling load is shown in Figure (27-b)
along with the corresponding experimental results. It is evident that
there is a close agreement between theory and experiment.

4.2. ACTIVE CONTROL OF FLOW-INDUCED VIBRATIONS

The phenomenon of vibrations Induced by the flow of fluids past
flexible structures has been of concern for many years. This concern
is attributed to the detrimental effects that such vibrations can have
on the integrity of these structures. Several attempts have been made
to passively and actively control the flow-induced vibrations of
various structural members. For example, Baz and Ro (1991) utilized a
direct velocity feedback controller to control the vortex-induced
vibrations of a flexible cylinder. The control system relied in its
operation on an electromagnetic actuator to provide the control action
necessary to resist the flow-induced vibration. Baz and Kim (1992)
developed a modal space control method to control the vortex-induced
vibrations of a flexible cylinder using piezo-electric actuators.
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Figure (27-a) - Theoretical prediction of critical buckling load of
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In this study, NITINOL fibers are used as embecded actuators to
control the flow-induced vibrations of NITINOL-reinforced composite
beams. The control action used is of the ON-OFF type. When
undesirable vibrations are detected, the NITINOL fibers are activated.
The strain energy generated In the fibers by the phase transformation
makes the beam stiffer and shifts its natural frequencies away from the
excitation frequency. This modal tuning of the beam dynamics in
response to the external disturbances can result in reducing the
amplitude of vibration of the beam to acceptable limits. This will
only be true if the flow-induced vibrations have a narrow frequency
band. For broad band excitations, the modal tuning mechanism will not
be effective in attenuating the induced vibrations as it merely shifts
the vibration energy to higher frequency bands. However, in
NITINOL-reinforced composites an additional mechanism can play a
dominant role in the suppression of broad band vibrations. This
mechanism is generated by the temperature-dependent damping
characteristics of the composite matrix as shown in Figure (28). These
characteristics are obtained experimentally using the Dynamic,
Mechanical , and Thermal Analyzer (DMTA).

1.0-

S0.8

* 0.6

O 0.4

0 0.2 0

01 I I I

0 20 40 60 80 100

Temperature ('C)
Figure (28) - Loss coefficient of fiberglass composite beam

When the NITINOL fibers are activated, the temperature of the
matrix increases as indicated in section 3.4.3. Such a temperature
increase is accompanied with an increase in the loss coefficient of the
matrix as displayed in Figure (28). Operation at a temperature
corresponding to the maximum loss coefficient is essential to achieve
maximum structural damping. At that temperature, the dissipation of
the vibration energy will be maximum and the attenuation of broad band
vibrations will also be maximum.
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Therefore, in NITINOL-reinforced composites, the interaction
between the modal tuning and the enhanced damping characteristics Is
crucial In controlling both narrow and broad band vibrations.

4.2.1. TEST BEAM AND FACILITY

Figure (29) shows a schematic drawing of the test beam mounted in a
clamped-clamped configuration inside a low speed wind tunnel. The beam
Is 30 cm long, 2.5 cm wide and 0.156 cm thick. It is made of
fiberglass/polyester resin composite with four embedded NITINOL fibers.

The fibers are 0.55 mm in diameters and are inserted inside 0.95 -m

vulcanized rubber sleeves. The elastic and damping characteristics of
the beam are shown In Figures (9) and (28) respectively.

The beam is mounted inside a 30 cm x 30 cm test section of a low
speed wind tunnel and is subjected to flow speeds between 4.8 and 8.3
m/s.

T P WIRE I 1 DWAM SU•ACX

TE R P tATURE T T •1" l3DWl.i.1Ul

AXAL.YZZEXX 0 SUPPpLY

FLOW SENSOR

Figure (29) - A schematic drawing of a NITINOL-reinforced beam mounted
inside a low-speed wind tunnel.

The NITINOL fibers have an initial pre-tension of 17.6 N each and
are electrically activated by applying a voltage of 4.5 V across each
fiber. This generates a current of 1.85 A and a total of 8.325 watts

are dissipated in the composite beam. The resulting shift of the first
three natural frequencies of the beam are shown in Figure (30). The
figure shows the time history of the frequency shift when all the four

fibers are activated for two minutes and then de-activated for the
remaining six minutes.

The effect of varying the number of activated fibers on the
frequency shift of the first three modes is shown in Figure (31-a)
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Figure (30) - The shift of the first three modes of the
NITINOL-reinforced beam during the activation and
de-activation cycles of all the four NITINOL fibers
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Figure (31) - Effect of number of activated NITINOL fibers on the
frequency shift and damping ratio of the first three
modes of the NITINOL-reinforced beam.
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after steady-state conditions are attained. The results displayed in
the figure are normalized with respect to the natural frequencies
measured at 250 C. The corresponding variation of the modal damping is
shown in Figure (31-b). The figure clearly indicates that increasing
the number of activated fibers results in enhancing the damping
characteristics of the beam. This is attributed to the increase in the
beam temperature when the number of activated fibers is increased.
This in turn makes the composite matrix of the beam operate near the
point of maximum loss coefficient shown in Figure (28).

4.2.2. EXPERIMENTAL RESULTS

The performance of the NITINOL-reinforced composite beam subjected
to flow-induced vibrations is monitored at different flow speeds with
and without the activation of the NITINOL fibers. The experiments aim
at demonstrating the feasibility of NITINOL fibers in attenuating the
flow-induced vibrations.

Figure (32) shows the spectra of the amplitude of vibration of the
beam as measured at different flow speeds ranging between 4.8 m/s and
8.32 m/s. The figure also shows a comparison between the amplitudes of
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Figure (32) - Spectra of the amplitudes of vibration of the
NITINOL-reinforced beam at different flow speeds with
and without the activation of the four NITINOL fibers.
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Figure (34) - Effect of activating different numbers of NITINOL fibers
on the spectra of the amplitude of flow-induced vibration
at flow speed = 8.32 m/s
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amplitude of flow-induced vibration at flow speed of 8.32
M/s
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Emphasis has been placed In the presentation on the actuation
capabilities of the NITINOL fibers. Extensive efforts are, however, In
progress to use the NITINOL fibers to extract modal and physical
displacements of structures with multi-modes of vibration (Baz, Poh and
Gilheany 1991).

With such built-in sensing and controlling capabilities,
NITINOL-reinforced composites can provide a means for continuously
tuning the structural characteristics to adapt to changes In the
operating conditions. These features will be particularly useful In

* many critical structures that are Intended to operate autonomously for
long durations in isolated environment such as defense vehicles, space
structures and satellites.
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NOMENCILATURE

[A] interpolating function of beam deflection
(A,] Ith element of [A]
As cross sectional area of beam
(B] matrix of first derivatives of the nodal interpolating

functions
c wave propagation speed
[C], [D] first and second derivatives of interpolating function

of beam deflection
F, Young's modulus of beam
(F] vector of external loads acting o~n beam
h convective heat transfer coefficient
IM area moment of inertia of beam
k thermal conductivity of beam
[I (,2,31 matrices given by equations (32), (33) and (34)

respectively
(Ke] stiffness matrix of beam element
ty, 4 direction cosines of outward normals to beam boundaries
L length of beam element and NITINOL fiber
H, external moment acting at ith node
(Me] mass matrix of beam element
me(i,j) the element i,j of the mass matrix
IN] interpolating function of beam temperature
N1  interpolating function of ith node
p number of vertices of element
Pan*t mechanical, net and thermal axial loads acting on beam
[Pe] matrix given by equation (35)
qn generalized coordinate of the nth vibration mode of

NITINOL fiber
generalized acceleration of the nth vibration mode of
NITINOL fiber

U heat flux per unit area
S1,2  boundaries of the NITINOL fibers and beam respectively
t time
To initial tension in a NITINOL fiber
Tt total tension In a NITINOL fiber
V1  shear force acting at the ith node
w transverse deflection of beam and NITINOL fibers
W1 work done by transverse loads
W•m work done by mechanical axial loads
Wzt work done by thermal axial loads
W3 strain energy of beam
W4 strain energy of NITINOL fiber
x, y, z cartesian coordinates along beam neutral axis and cross

section respectively
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Greek letters

It thermal diffusivity of beam
(4] the deflection vector of beam element
61 angular deflection if ith node
8 temperature at any location (y,z) of beam cross section

0a ambient temperature
[ee] vector of nodal temperatures of element
01 mode shape of the nth mode

Wn natural frequency of the nth mode

I

I

I
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NOMENC.ATURE

(A] interpolating function of beam deflection
(Al] Ith element of (A]
A, cross sectional area of beam
(B] matrix of first derivatives of the nodal interpolating

functions
c wave propagation speed
[C], [D] first and second derivatives of interpolating function

of beam deflection
E. Young's modulus of beam
[F] vector of external loads acting on beam
h convective heat transfer coefficient
IM area moment of inertia of beam
k thermal conductivity of beam
[k1 , 2 , 3 ] matrices given by equations (32), (33) and (34)

0 respectively
(Ke] stiffness matrix of beam element
ty, t direction cosines of outward normals to beam boundaries

L length of beam element and NITINOL fiber
M, external moment acting at ith node
[M.] mass matrix of beam element
me(i,j) the element i,j of the mass matrix
(N) interpolating function of beam temperature
N, interpolating function of Ith node
p number of vertices of element
Fm n t mechanical, net and thermal axial loads acting on beam
(Pe] matrix given by equation (35)
Sqn generalized coordinate of the nth vibration mode of

NITINOL fiber
in generalized acceleration of the nth vibration mode of

NITINOL fiber
Q heat flux per unit area
S 1 , 2  boundaries of the NITINOL fibers and beam respectively
t time
To initial tension in a NITINOL fiber
Tt total tension in a NITINOL fiber
V1  shear force acting at the ith node
w transverse deflection of beam and NITINOL fibers

*W work done by transverse loads
W2m work done by mechanical axial loads
W2 t work done by thermal axial loads
W3 strain energy of beam
W4 strain energy of NITINOL fiber
x, y, z cartesian coordinates along beam neutral axis and cross

0 section respectively
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ABSTRACT

The buckling characteristics of flexible fiberglass composite beams
are actively controlled by activating optimal sets of a shape memory alloy
(NITINOL) wires which are embedded along the neutral axes of the beams.
With such active control capabilities, the beams can be manufactured from
light weight sections without compromising their elastic stability. This
feature will be invaluable in building light weight structures that have
high resistance to failure due to buckling.

A finite element model is developed to analyze the individual
contributions of the fiberglass-resin laminate, the NITINOL wires, and the
shape memory effect to the overall performance of the composite beams. A
closed-loop computer-controlled system is built to validate the finite
element model. The system is used to control the buckling of a fiberglass
polyester resin beam which is 63.75 cm long, 0.45 cm thick and 2.54 cm wide
reinforced with 8 NITINOL - 55 wires that are 0.55 mm in diameter. The
results obtained confirm the developed theoretical model and indicate that
the critical buckling load can be increased three times when compared to
the uncontrolled beam.

1. INTRODUCTION

Considerable attention has been devoted recently to the utilization of
the Shape Memory Nickel-TItanium alloy (NITINOL) in developing SMART
composites that are capable of adapting intelligently to external
disturbances (Ikegami et al. 1990, Rogers et al.1991, and Baz et al. 1990
and 1991). Such wide acceptance stems from the fact that NITINOL acts as an
actuator converting thermal energy into mechanical energy (Perkins 1975 and
Duerig et al. 1990) as it undergoes its unique phase transformation from
low temperature martensite to high temperature austenite. During this
phase transformation process large phase recovery forces are generated and
thereby alter the strain energy of the composite inside which the NITINOL
fibers are embedded. With such capabilities, the static and dynamic
performance of the SMART composites can be optimized and tailored to match
changes In the operating conditions.

Emphasis is placed, in the present work. on using the shape memory
effect of the NITrNOL fibers in controlling the buckling of fiberglass
composite beams. The NITINOL fibers are embedded inside vulcanized rubber
sleeves placed along the neutral axes of these composite beams as shown in

0 1992 [OP Publishing Ltd
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Figure (1). In this arrangement, the fibers are free to move during the
phase transformation process In order to avoid degradation and/or
destruction of the shape memory effect which may result when the fibers are
completely bonded inside the composite matrix. The NITINOL fibers are
trained to memorize the shape of the unbuckled beam and when the beam is
deflected under the action of external compressive loads, the controller
activates the NITINOL fibers by heating them above their transformation
temperature. The generated phase recovery forces bring the beam back to
its memorized undeflected position. The present study is motivated by the
work of Baz and Tampe (1989) where external helical shape memory actuators
are used to enhance the buckling characteristics of long slender beams.

WDA9 WAN baDS(r°) (pm,>l,,

YZ30 ZMMON TZp"l0p

UNDEO UCTO DVUtC1D
6--L LNCONTROLLED -' COff'ROU.ED

Figure (1) - Principle of buckling control of NITINOL-reinforced composites

2. STATIC CHARACTERISTICS OF NITINOL-REINFORCED BEAMS

The static characteristics of NITINOL-reinforced composite beams are
primarily governed by their stiffness. The overall beam stiffness is made
up of the following components: the flexural rigidity of the beam, the
geometric stiffness that accounts for the axial and thermal loading as well
as the stiffness imparted by the elasticity of the NITINOL fibers. These
individual components of the beam stiffness can be determined by
considering the NITINOL-reinforced beam element shown in Figure (2) with
the forces acting on it and the associated displacements. The combined
stiffness of the element can be obtained using the principle of
conservation of energy and equating the work done by external loads to the
strain energies stored in the element. In the present analysis, the theory
of Bernoulli-Euler beams Is used with the assumption of small deflections.

T, v,- T%-

(a) (b)
Figure (2) - NITINOL-reinforced beam element with forces and displacements
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2.1 External Work

The work done by the external loads Includes:

a. work done by transverse loads and moments (Wi): This work Is given by

WI = 1/2 [6]T [F], (1)

where [3] is deflection vector and IF] is transverse load vector.

b. work done by the axial mechanical loads (V2,): W2, is given by

L

S= P, / 2 f (dw/dx) 2  dx, (2)

0

where P, is the external axial compressive load acting on the beam.

c. work done by the axial thermal loads (' 2t): W2t represents the work
done by the thermal loads Pt on the beam element due to changes in the
temperature 69 of the element caused by changes in the ambient temperature
or during the activation and de-activation of the NITINOL fibers. It is
given by

L

S= Pt / 2 j (dw/dx)z dx, (3)

0

where Pt is Pt - a AB E, A,, (4)

where a is the thermal expansion coefficient of the composite, E, is its
modulus of elasticity and A, is the beam cross sectional area.

2.2 Stored strain energy

The stored strain energy consists of two components:

a. strain energy of beam (13): The energy stored in the beam element due
to its bending is given by L

W3 = E. I. / 2 J (d2w/dx 2)2 dx, (5)

0
where E, I, 'is the flexural rigidity of the beam.

b. strain energy of NITINOL fibers (WU): Considering the NITINOL fiber as
a string with a tension T which is displaced laterally a distance w from
the neutral axis of the beam. Then its stored strain energy W4 is given by

L

44 = T / 2 f (dw/dx) 2 dx. (6)

0
Equating the sum of the work done by the external forces F, P. and Pt

to the sum of the strain energies stored in the beam and the NITINOL fibers
gives

W1 + W24 + W2t = W 3 + W4" (7)
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Substituting equations (1), (2), (3), (5) and (6) Into equation (7)
yields

L L

[3]T[F) = E. I. 1 (d2w/dx 2 )2 dx - P, f (dw/dx) 2 dx, (8)
0 0

where P. is the net axial force give by

P, = ( P, + Pt - T). (9)

Defining a proper displacement function for the composite beam element,
one can write the beam deflection w as

w = (A) (6]. (10)

where the elements of matrix [A] are function of x (Fenner 1975).

Accordingly, dw/dx and d2w/dx2 can be obtained by differentiating
equation (10) with respect to x to yield

dw/dx = [C] [(] and d2w/dx2= (D] (a]. (11)

If the stiffness matrix [Ke] of the element is defined by the following
relationship

(F] = (K.] (6], (12)

then, (Kel can be determined by combining equations (8), (11) and (12) as

follows

L L

(K.e = E. I. f [D]T[D] dx - P. f (C]T[C] dx. (13)

0 0

The element stiffness matrix (Kel of equation (13) consists of two
components: the conventional transverse stiffness and the geometric
stiffness that combines the effect of the axial mechanical loads, axial
thermal loads and the tension of the NITINOL reinforcing fibers. Equation
(13) also represents the basic equation for understanding the role that the
NITINOL fibers can play in controlling the static characteristics of the
composite beam. For example, if the beam is not reinforced by NITINOL
fibers (i.e. T = 0) and the mechanical and thermal loads induce compressive
stresses in the beam, then the geometric stiffness will increase and the
total element stiffness will decrease. When the combined effect of the
mechanical and thermal loads reaches a critical magnitude such that the
geometric stiffness becomes equal to the flexural stiffness of the beam,
the beam stiffness vanishes and the beam becomes elastically unstable.
Subjecting the beam to any additional external disturbance will cause the
beam to buckle.

It should be pointed out that the thermal loading, as it increases the
geometric stiffness, also decreases the flexural stiffness of the beam
because it reduces its effective modulus of elasticity E.. Such a dual
effect makes the beam buckle under smaller thermal loads than under pure
mechanical loading.
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However, the critical load of the un-reinforced beam can be increased
by embedding pre-strained NITINOL fibers into the beam. If the tension T,
resulting from the pre-strain alone, is high enough to counter-balance the
mechanical and thermal effects then the beam stiffness can be maintained
unchanged. For higher pre-strain levels, the beam stiffness can be
enhanced. Further enhancement can be achieved when the shape memory effect
of the NITINOL fibers is activated by heating the fibers above their phase
transformation temperature. The adoitlonal tension, induced into the
fibers by the phase recovery forces, makes the net axial load Pn negative
and accordingly increases the overall stiffness of the beam element.
However, it is essential that the total tension in the NITINOL fibers,
i.e.. the sum of the tension due to the pre-strain and the phase recovery
force, must exceed the mechanical and thermal loads and compensate for the
softening effect in the matrix resulting from heating the NITINOL fibers
inside the composite matrix.

Therefore, effective control of the stiffness of NITINOL-reinforced
composites can be achieved by proper selection of the initial pre-strain
level of the NITINOL fibers. This selection is particularly crucial as the
pre-strain level determines the generated levels of recovery forces.

3. THE EXPERIMENTAL SET-UP AND RESULTS

3.1. Experimental set-up

Figure (3) shows a schematic drawing of the experimental set-up used in
actively controlling the buckling of a NITINOL-reinforced beam. The beam
dimensions are 63.75 cm by 2.5 cm by 0.44 cm. The beam is reinforced by
eight 0.55 mm NITINOL fibers which are embedded symmetrically along the
neutral axis of the beam.

SERVO-CYUNDER CLAMP COMPOSTE BEAM CLAMP CLAMP S-RVO-CYUNDER

POSITION SENSOR I
RON-CONTACTING 7O COUPI'ER

rROM cOMrRasOR FRESSRE NMNOL WIRCS COMPOSITE BEAM FROM COMPUTlER PRESSURE FROM COMPRESOR

LOAD CELL

Figure (3) - Schematic drawing of the active buckling control experiment.

The right end of the beam is clamped to a fixed base and the left end
is connected to the piston of a loading cylinder. The cylinder is
pressurized by compressed air from the storage tank of an air compressor.
The increasing compressive load applied by the load cylinder to the beam
will eventually cause the beam to buckle. The resulting deflection of the
beam is monitored continuously by a non-contacting sensor which is placed
at the mid-span of the beam. The sensor also serves as physical stop to
prevent excessive deflection once buckling has occured. The output signals
of the sensor Is sent to a micro-computer via a set of analog-to-digital
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converters. The processing of the sensor's signal is shown in the
controller block diagram shown in Figure (4). When the beam deflection
exceeds a pre-set value of a dead-band, the controller is turned on using a

no y~-y

Figure (4) - Block diagram of the active buckling control system

*proportional controller with a saturation limit. The control action is
sent via a digital-to-analog converter to a power amplifier to activate the
NITINOL fibers embedded inside the compressively loaded composite beam.
The activation of the NITINOL fibers will compensate for the monitored
deflection and the phase recovery forces developed in the fibers will
attempt to bring the beam back to its undeflected position.

In the active buckling control system described, the NITINOL
* reinforcing fibers are clamped at one end to the fixed base and at the

other end to pre-tensloning cylinder via a load cell. The "load cell
monitors the initial value of the pre-tension applied to the NITINOL fibers
by the pre-tensioning cylinder. The load cell also continuously measures
the phase recovery forces developed in the NITINOL fibers as they undergo
their phase transformation.

3.2. Experimental Results

Figure (5) shows a comparison of the performance with and without the
active buckling control. The results displayed are for a
NITINOL-reinforced beam with each of the eight fibers has an initial
tension of 33.7 N which corresponds to an initial pre-strain of 0.35X. For

*the controlled cases, the controller dead band corresponds to deflection
error of 0.0176 mm and the controller gain is 2727 volt/mm. The saturation
limit is 6 volts/fiber and the maximum current is 1.6A.
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Figure (5) - Performance of buckling controller with 0, 4 and 8 NITINOL
fibers e ctivated (dead band = 0.c0176 m, gain d 2727 volts/am).
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Figure (6) - Effect of dead band (gain 2727 volts/mm, Initial
pre- tens ion/filber z:33.7N and 8 fibers are activated).
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In Figure (5-a), the deflection of the beam resulting from the
application of a gradually Increasing compressive load is shown. The rate
of load increase is 500 N/min as shown in Figure (5-b). It can be observed
that the uncontrolled beam buckles when the increasing compressive axial
load exceeds 330 N. However, when all eight NITINOL fibers are activated,
the beam can withstand axial loads up to 950 N before it begins to buckle.
Therefore, with the NITINOL reinforcement it is possible to almost triple
the critical buckling load of the beam. With four activated fibers, the
critical buckling load is about 700 N which corresponds to about double the
critical load of the uncontrolled beam. Figure (5-c) shows the
corresponding time history of the temperature of the NITINOL fibers due to
the activation and de-activation of the controller. In Figure (5-d), the
time history of the phase recovery forces developed in the NITINOL fibers
is shown. The tension in the fibers remains equal to the initial
pre-tension, i.e. 33.7N x 8 = 269.6N, for the uncontrolled case. However,
the tension increases to approximately 1000 N when eight NITINOL fibers
are activated.

It is also possible to energize different sets of the NITINOL fibers to
counterbalance the external loading condition in order to prevent buckling
of the composite beam. For small external loads it is only necessary to
energize a few fibers, but if the load increases the controller can
energize a larger number of fibers to maintain the beam in its undefelected
form.

The effect of varying the controller parameters on the performance of
the active control system is shown in Figures (6), (7) and (8). In Figure
(6), the effect of varying the control dead-band on the system performance
is shown. In this case, the control action is only generated when the beam
deflection exceeds the dead band. This is accomplished by the heating of
the NITINOL fibers and the development of the phase recovery forces as
shown in Figures (6-c) and (6-d), respectively. For the range of dead
bands considered, between 0.0176 mm and 0.528 mm, the effect on the
critical buckling loads is insignificant.

The effect of decreasing the controller gain from 2727 volt/mm to
136.35 volt/mm on the system performance is shown in Figure (7). This
effect decreases the slope of temperature rise of the NITINOL fibers and,
in turn, the rate at which the corresponding phase transformation forces
are recovered. Changing the controller gain is found to influence to some
extent the critical buckling load. For example, when the controller gain
is 2727 volt/mm the critical buckling load is 950 N and when the gain is
reduced to 136.35 volt/mm the critical buckling load Lecome about 850N.
Therefore, reducing the controller gain by a factor of 1/20 only results in
a 10.5% reduction in the critical buckling load.

The effect that the pre-tension has on the system performance is shown
in Figure (8) for a dead band of 0.0176 mm and controller gain of 2727
volts/mm. It is clear from the results obtained that , the pre-tension
plays the most crucial role in controlling the buckling of the beam.
Increasing the tension from 0.0 N/fiber to 33.7 N/fiber increases the
critical buckling load from about 100 N to 950 N, respectively.

4. COMPARISON BETWEEN THEORY AND EXPERIMENTS

The mechanism of actively controlling the buckling of the
NITINOL-reinforced beam can best be understood by considering Figure
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(9-a). The figure reFresents the theoretical prediction of the buckling

characteristics of actively controlled NITINOL-reinforced beams. In the

figure, the applied axial load is increased gradually at a linear rate of

500 N/min. For the uncontrolled beam, the critical buckling load is fixed

at 320 N and remains unchanged with time. This load corresponds to a

pre-tension of 33.5 N/fiber. When the applied load becomes equal to the

critical buckling load, the beam is on the verge of elastic instability.

The beam will buckle once the applied load exceeds the fixed critical

buckling load. At time t = 0, the controlled beam has the same buckling

load as the uncontrolled beam. But, when the controller senses any

deflection greater than the dead band due to the application of the

external load, the buckling characteristics of the beam is enhanced as

represented by the dashed characteristics. The activation of the NITINOL

fibers makes the beam less susceptible to buckling as the critical buckling

load is increased to become 850 N instead of the original uncontrolled load

of 320 N. Accordingly, the controlled beam will not buckle until the

applied load exceeds the theoretically predicted limit of 850 N. The

effect of varying the pre-tension levels on the theoretical prediction of

the critical buckling load is shown In Figure (9-b) along with the

corresponding experimental results. It is evident that there is a close

agreement between theory and experiment.
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Figure (9-a) - Theoretical prediction of critical buckling load of

controlled and uncontrolled beams.
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S. CONCLUSIONS

The buckling charact~eristics of NITINOL-reinforced composite beams have
been presented. The fundamental issues governing the behavior of this new
class of SMART composites have been introduced. Applications of NITINOL
reinforcing fibers in the control of buckling have been successfully
demonstrated.

Emphasis has been placed in the presentation on the actuation
capabilities of the NITINOL fibers. Extensive efforts are, however, in
progress to use the NITINOL fibers to extract modal and physical
displacements of structures with multi-modes of vibration (Baz. Poh and
Gilheany 1991).

With such built-in sensing and controlling capabilities,
NITINOL-reinforced composites can provide a means for continuously tuning
their structural characteristics to adapt to changes in the operating
conditions. These features will be particularly useful in many critical
structures that are intended to operate autonomously for long durations in
isolated environment such as defense vehicles, space structures and
satellites.
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ABSTRACT

A new class of distributed sensors is presented which can measure

both the modal and physical displacements of vibrating composite beams.

The sensor relies in its operation on a set of super-elastic Shape Memory

Alloy (SMA) wires which are embedded off the neutral axes of the vibrating

beams. The wires are arranged in a special manner which allows continuous

monitoring of the deflection curve of the beam. The output signals of the

SMA wires are processed to determine the modal displacements of the beam

and the physical displacements at critical discrete points along the beam

axis.

The theoretical and experimental performance of the sensor are

presented in both the time and frequency domains. Comparisons are given

between the experimental performance of the SMA distributed sensor and

that of conventional laser sensors in order to demonstrate the accuracy

and merits of the distributed SMA sensor. The results obtained suggest

the potential of this new class of sensors as a viable means for

controlling the vibrations of flexible composite beams and plates

particularly with modal control algorithms. [ Work supported by grant from

ARC].
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1. INTRODUCTION

Considerable interest has been directed recently towards the

development of a wide variety of distributed sensors for monitoring the

vibration of composite flexible structures. Distinct among these sensors

are those relying in their operation on optical fibers [1-21,

piezo-electric films (3-4] and Shape Memory Alloy (SNA) wires [5-6] which

are embedded in the composite matrix of the flexible structures. By far

the most commonly used and researched class of embedded sensors is the

optical fibers sensors. These sensors have been developed to monitor not

only structural vibrations [1] but also temperature distribution [7],

cracks and defects [8] as well as curing of composite matrices [9]. In

spite of such wide acceptance, the complexity of the instrumentation and

the signal processing algorithms associated with optical fibers sensors

still poses many serious challenges that remain to be addressed [10].

Such problems are avoided with the embedded piezo-electric film

sensors developed by Lee [31. These sensors utilize specially shaped

piezo-electric films to monitor the modal coordinates of vibrating beams

and plates. The shaping of the films aims at isolating the individual

modal signals in a manner similar to the modal filtering technique of

Meirovitch [11]. Such specially configured piezo-electric films have also

been used by Lee et al [4] to monitor uniaxial and pure shear strain rates

in vibrating beams. In spite of their on-line and real time measurement

capability without the need for any signal processing, the configured

piezo-electric films are restricted to the singular structural

configuration that they are designed for and are limited to simple and

time invarying structures.

The use of shape memory wires as embedded distributed sensors provides
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a viable alternative to optical fibers and piezo-electric film sensors.

The SMA sensors require very simple instrumentation and when properly

designed, they require very simple signal processing algorithms to extract

modal and physical coordinates of the vibrating structures. The sensors

rely in their operation on the changes in the electrical resistance of the

SMA wires when subjected to a':ial loading in a manner similar to

conventional discrete strain gage sensors. This physical property has

been successfully utilized in monitoring the position of robotic joints

[121. The SMA sensor have also been used at Virginia Polytechnic

Institute [5] and Boeing Aerospace [6] to measure a single mode of

vibration of composite flexible beams [5-6]. No attempt has been made

however to use the SMA sensor to monitor several modes of vibration or to

extract the modal and physical parameters of vibrating structures.

It is therefore the purpose of this study to develop such a SMA sensor

which is capable of monitoring multi-modes of vibration of flexible

composite beams in order to extract individual modal and physical

parameters of these beams. Furthermore, this study documents the

performance of such SMA sensors, both in the time and frequency domains,

and validates their performance by comparison with conventional sensors.

It is important to note that the SMA sensor relies in its operation on the

use of the classical modal decomposition approach [13]. This approach has

been recently utilized, by many investigators, to extract the modal

displacements of vibrating beams [14-16] and plates [17] from the

measurements of a set of discrete sensors. The placement strategy of these

discrete sensors is, however, very critical in order to avoid nodes of

vibration. This is in contrast to the distributed SMA sensor which can be

placed at any place along the beam without any concern about the location

of the nodes of vibration. Such versatility makes the SMA sensor suitable
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for monitoring the vibration of more complex structures where the location

of the nodes of vibration can not be accurately determined particularly

for higher order modes.

Accordingly, this paper is organized in four sections and an appendix.

In section 1, a brief introduction is given and section 2 presents the

theoretical principles of the sensor. The experimental performance of the

sensor is given in section 3 and the conclusions are summarized in

section 4. The calibration of the sensor is described in the appendix.

2. THEORETICAL MODELING OF THE SENSOR

2.1. Monitoring the modal coordinates

The multi-mode distributed SMA sensor relies in its operation on a SMA

wire embedded inside a composite beam as shown in Figure (1). The wire is

placed, at a distance a, off the neutral axis of the beam. The wire is

tapped along its length at different locations 1, 2, .. , N where N is

equal to both the number of modal coordinates to be extracted and the

number of physical coordinates to be estimated. The changes ALI, AL2,

. and ALN in the lengths Lj, L2, .. and LN of the different segments of

the wire, due to the vibration of the beam, are monitored continuously by

measuring the changes AR1 , AR2, .. and ARN in the electrical resistances

of these segments such that

ALI = (ARI A) / Pe for i=l, .. , N (1)

where A is the wire cross sectional area and Pe is its electrical

resistivity.

The changes in the lengths ALI are related to the curvature of the

deflection curve of the beam as it vibrates under the action of the
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external loads. Assuming small deflections and that the SMA wire

experiences the same linear strains as the host beam in which the wire is

embedded, then the changes ALI can be calculated from

L. L . ' 2y

AL, = f c dx a a x-- dx (2)

0 0

where c is the axial strain in the wire and y is the beam deflection

in the transverse direction which obeys the following partial differential

equation describing the dynamics of a Bernoulli-Euler beam [131, is

a4y 2y
E 1 pAb t2 - F (x-x + M x-x) (3)

where El is the flexural rigidity of the beam, p is the mass density,

Ab is the beam cross sectional area, t is the time, F1 is a point load

acting on the beam at location x,, M, is a moment acting on the beam at

location xj, 6 is the kronecker delta function and S' is the unit doublet

function. Applying the separation principle [13] to equation (3), the

transverse deflection y(x,t), at any location x and time t, can be written

as a linear combination of the mode shapes 0,(x) of the beam as follows

N

y(x,t) = ( #1Cx) u,(t) (4)
1=1

where u1 (t) and 0,(x) are the generalized modal coordinate and the

corresponding mode shape respectively for the ith mode. The mode shape

OI(x) for a cantilevered beam is given by

0,(x) = [cosh(kix) - cos(kix)]-ai [sinh(kix)-sin(kix)] (5)

with ai given by
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Oct = [cosh(kL 1 ) + cos(ktL1 )] / [sinh(k1 LI)+sin(k1 L1 )] (6)

and ki is defined as the wave number of the ith mode which satisfies the

following characteristic equation

cos (k1Lj) cosh (k 1LI) + 1 = 0 (7)

Substituting equations (5), (6) and (7) into equation (4) the

transverse deflection y at any x and t can be determined. The resulting

equation can be used to calculate the beam curvature a2y/ax2 which is in

turn can be substituted into equation (2) to calculate the change in

.lengths ALi.

After some manipulations, the vector of length changes ALi can be

calculated from

N

ALI = a Z ki[(sinh(kiLi)+sin(kiLi)) - •j(cosh(kjLi)-cos(kjLi)l]uj (8)

j=1

Letting AL be the vector of length changes given by

AL = [ALI AL2 . ALN]T, (9)

C be a (NxN) matrix whose constant and known entries cij are

given by

Cj =a kj[(sinh(kjLj)+sin(kjLi)) - %j(cosh(kjL,)-cos(kjLi)J], (10)

and U be the vector of the beam modal coordinates given by

U = [u 1 U2  - UNIT (11)

Then substituting equations (8), (10) and (11) into equation (9), it

yields the following matrix equation for the vector of length changes

AL = C U (12)
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indicating that the changes in the lengths AL of the different segments of

the SMA wire are linearly related to the modal coordinates U of the

composite beam.

Defining AR as the vector of resistance changes of the different

wire segments , i.e.

AR = [AR 1 AR2 ... ARN]T (13)

and substituting for ARi from equation (1), the above equation reduces to

AR = A/Pe AL (14)

Combining equations (12) and (14), gives the modal coordinate vector U

in terms of the resistance changes vector AR as follows

U = Pe/A C-1 R (15)

i.e. measuring the changes AR of the N segments of the SMA wire can be

used to directly calculate the N modal coordinates of the vibrating

composite beam as the matrix equation (15) represents a set of N linear

equations in the N unknowns u,, u2, ., and uN.

It should be noted that the matrix C is always non-singular i.e. a

solution for equation (15) always exists, unless two tapping points of the

SMA wire coincide. This means that the length of the corresponding two

wire segments is equal resulting in a matrix C with two equal rows.

Accordingly, the rank of matrix C is reduced to N-1. Of course such

condition will not occur on purpose. However, if it does occur the sensor

can still extract (N-i) modal and (N-1) physical displacements. In other

words, the tapping points of this distributed sensor can be placed any

where along the beam even coinciding with any node of vibration. This is

not the case with discrete sensors such as conventional strain gages and

accelerometers where these sensors should not be placed at nodes of

vibration. Such critical placement requirement of the discrete sensors
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limits their use to simple structures and favors the use of the

distributed sensor described in this study.

2.2. Monitoring the physical coordinates

In a similar fashion, the measurements of AR can also be used to

compute the N physical coordinates of the vibrating beam. This can be

achieved by defining Y as a vector of physical coordinates given by

Y = [ y(Lj) y(L 2 ) .... y(LN)] T (16)

Therefore, from equation (4) the following matrix equation can be

written

Y = u (17)

where 01= -I(Lj) . N(LI) (18)

0 1 (L 2 ) .. . (L2)

S. . . . . . . . . . . . . . . . . . .

01(LN) . ¢(LN)

From equations (15) and (17), the physical transverse displacement

vector Y of the N taping points can be calculated from the measurements of

the resistance changes AR of the N segments of the SMA wire as follows

Y = Pe / A C- 1 AR (19)

Equations (15) and (19) constitute the basic equations that govern

describing the capability of the distributed SMA sensor in extracting the

modal and physical coordinates of a vibrating composite beam from the

measurements of resistance changes of N segments of the wire. In these

equations, the calculation of both the modal and physical coordinates of a

beam is shown to be very simple as it is reduced to merely the solution of
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two sets of simultaneous linear equations.

Equations (15) and (19) will be utilized in the following section to

extract the coordinates of an experimental beam and the results obtained

will be compared to the results measured by conventional laser sensors.

The above analysis of the SMA sensor indicates that the sensor is in

effect a multi-mode distributed strain gage. Such distributed nature of

the sensor has many inherent advantages. First, it makes the placement of

the sensor and its tapping points insensitive to the location of the nodes

of vibration. This of course is not the case for conventional discrete

strain gages where the sensors can not be placed at these nodes. Second,

because the SMA sensor relies on integrating the strain along the wire

segments, as described by equation (2), its output signal will be less

noisy than that of conventional strain gages and high signal-to-noise

ratios can be obtained. Third and because of its embedded nature the SMA

sensor can also detect structural failures by monitoring the failure of

any wire segment. These advantages make the SMA sensor suitable for

accurately monitoring the vibration and integrity of complex SMART

composites.

Worth noting also is that the theory developed for the SMA sensor

is based on the knowledge of the mode shapes of the beam or the structure

inside which it is embedded. However, the cantilevered beam example given

in this study can be easily extended to beams with other boundary

conditions.

3. EXPERIMENTAL PERFORMANCE OF THE DISTRIBUTED SENSOR

3.1. Experimental set-up

Figure (2) shcws a schematic layout of the experimental set up used
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in evaluating the performance of the SMA distributed sensor in both the

time and frequency domain. The sensor is made of a 0. 125 mm diameter SMA

wire embedded inside a composite beam whose physical, geometrical and

dynamical properties are given in Table 1. The SMA wire itself is

manufactured from a super-elastic Nickel-Titanium alloy called NITINOL

which has a resistivity of 0.644xi0-6 ohm/m. Such an alloy is selected

because its super-elasticity allows the wire to experience large

deformations, about ten times more than conventional materials, and still

completely spring back to its original undeformed shape [18]. This

feature makes the sensor suitable for monitoring the vibration of very

flexible structures without exhibiting any plastic deformations.

Table 1 - Physical, geometrical and dynamical properties of
test composite beam

Length Width thickness density Young's 2Mod. 1st Mode 2nd Mode 3rd Mode

(cm) (cm) (cm) (gm/cc) (GN/m/) (Hz) (Hz) (Hz)

48.0 5.0 0.25 0.73 4.35 1.88 11.75 33.15

The composite beam, with the embedded SMA sensor, is mounted in a

cantilevered manner on an oscillating platform which can oscillate freely

on two guide rails. The rails are set parallel to the transverse

vibration direction of the beam. A shaker (Wilkoxon Research model F3/F9,

Bethesda, MD) is driven with a sinusoidal function generator to provide

controlled vibration of the platform and in turn the composite beam. The

resulting beam vibration is monitored by the SKA sensor which is provided

with only two segments. The first segment extends between the beam tip 1

and its fixed root whereas .e second segment extends between the beam

mid-span point 2 and the fixed base. The resistances of the two segments

are measured using amplifiers model P-3500 from Measurements Group,

Raleigh, North Carolina. The amplifiers operate with 9 Volt DC power
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source. The conditioned outputs of the amplifiers are sampled by a

386-microprocessor via an input/output board (model DASH-16 from

METRABYTE, Taunton, MA). The sampling rate used is 190 Hz with an

accuracy of 12 bits which corresponds to 4.88x10- 3 mm. The displacements

of the first and second modes are computed from the measurements of the

resistance of the two segments using equation (15). Also, the physical

displacements of the beam tip and mid-span are computed, in the

microprocessor, using equation (19). The physical displacements obtained

from the SMA sensor are compared with those measured by two laser sensors

(model IIIB-LA40HR , Aromat Corp., New Providence , NJ). The laser

sensors are placed on the oscillating platform facing the beam tip and

mid-span points. The sensors have accuracy of 20 pm over a frequency

band between 0-1000 Hz.

The calibration of the SMA sensor is carried out by comparing the

sensor output with the output of the laser sensors according to the

procedure outlined in the appendix. Such a procedure is important to

account for errors in the sensor's parameters as the fiber position a and

segments length Lis. The laser sensors are calibrated by reflecting their

light beam off a micrometer head. The spacing between the head and the

laser emitter is varied and the output of the laser sensor is recorded.

3.2. Performance of the SMA sensor

3.2.1. in the time domain

The composite beam with the embedded SMA sensor is

subjected to three different initial sinusoidal excitations at 1.9, 7 and

11.8 Hz respectively. The first and third excitation frequencies are

selected in order to resonant the beam at its first and second modes of

vibration. Following the initial excitation period, the shaker driving the

S- 13 -



platform is turned off and the beam is left to vibrate freely. The

signals of the SMA sensor and the laser sensors are then sampled by the

computer over a period of 1.5 seconds. All the sampling and the results,

reported in this study, are carried out during the transient period which

follows the steady-state excitation by the shaker.

Figure (3) shows the corresponding length changes of the two SMA

wire segments at the three excitation conditions. These length changes AL

are used along with equation (19) to compute the physical displacements at

the tip and mid-span of the beam. Figure (4) shows the computed physical

displacements as obtained by the SMA sensor along with the corresponding

displacements of the laser sensors when the first vibration mode of the

beam is excited. Such a comparison indicate excellent agreement between

the measurements of the SMA and the laser sensors.

Figures (5) and (6) display similar comparisons between the

displacements of the SMA and the laser sensors, at the beam tip and

mid-span, when the excitation frequencies are 7 and 11.8 Hz respectively.

The two figures clearly demonstrate the accuracy of the SMA in monitoring

the vibration of the beam in the time domain.

It is essential to note that all the measurements and the

calculations of the modal and physical displacements are carried out, in

real time, with a sample interval of 5.2 ms. This interval is

corresponding to a sampling rate of 190 Hz which is at least 8 times

greater than the Nyquist frequency limit necessary to avoid aliasing.

3.2.2. in the frequency domain

The performance of the SMA in the frequency domain is

evaluated by impacting the composite beam with a modally tuned impact

hammer (model PCB- GK291B02, PCB Piezotronics, Depew, NY). The response
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of the SMA sensor as well as that of the laser sensors to such impacts are

analyzed using a dual channel spectrum analyzer. These responses are used

to predict the frequency response of the different vibration modes.

Figures (7) and (8) show the normalized power spectra of the SMA and the

laser sensors outputs at the beam tip and its mid-span respectively. It

is evident that the response of the SMA sensor matches that of the laser

sensors in the frequency domain. Furthermore, the experimental

frequencies obtained by the analysis of the SMA sensor output are in close

agreement with the theoretical predictions w, which are given by

1/2

o = (k, LI) 2/ (L1
2 ) (EI/pA) (20)

where k, is the wave number of the ith mode given by equation (7). In

particular, the first three modes are found experimentally to be 1.875,

11.76 and 33.15 Hz whereas the corresponding theoretical predictions are

1.89, 11.85 and 33.18 Hz respectively.

However, it is essential to note that the bandwidth of the

prototype SKA sensor is limited by the fact that it has two sampling

points. This implies that it can only measure excitations up to the

second mode of vibration which is 11.8 Hz.

4. CONCLUSIONS

The feasibility of a new class of distributed SMA sensors in

measuring modal and physical displacements of composite beams is

successfully demonstrated. The sensors utilize SMA wires which are
I

embedded inside the matrix of the composite beams. Such an arrangement

can be augmented with sets of embedded actuators, as SMA or
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piezo-electric, in order to develop a class of SMART composite beams which

have built-in vibration and shape control capabilities. These capabilities

can be utilized along with any of the modal control algorithms, such as

those developed by Baz et al [15-16], to control the structural vibrations

and shape of these SMART composites.

The general theory of operation of the distributed sensor is

presented for monitoring N modal and physical coordinates. The

experimental validation of the sensor performance is demonstrated for a

composite beam where the first two modes of vibrations dominate its

dynamic response. The physical displacements of the beam tip and mid-span

as obtained by the two-mode distributed sensor are found to be in

excellent agreement with the measurements of conventional laser sensors.

Emphasis however should be placed on the fact that the distributed sensor

is tested with excitations within its frequency band capabilities. If the

sensor is designed to monitor low frequency excitations and the external

frequency band exceeds its maximum frequency limit, then it is essential

to use low pass filters to filter out the high frequency contents in the

sensor signals in order to avoid conventional observation spillover

problems [19] and spatial aliasing [171. This typical instrumentation

problem can be avoided by proper selection of the sensor's bandwidth

to be compatible with the expected excitation frequency band. However,

for more accurate monitoring of the displacements it is recommended to

provide the SMA sensor with more bandwidth than the excitation frequency

band, i.e number of sampling points N should be greater than the number of

displacements P to be determined. In this manner, equation (15) becomes:

U = [u1 u 2 .. upiT = pe/A [CT a]-1 ET AR (21)

where U is the vector of P modal displacements, C is a matrix (PxN) whose
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entries are given by equation (10) and [CT a]-l aT is the pseudo-inverse

of C. Such a statistical approach, as N>P, of the over determined equation

C U = p/A AR ensures that the modal displacements U extracted are the

least-squares estimates. This will be particularly important in the

case of noisy measurements. The modal displacements U extracted can then

be used to compute the physical displacements Y of the beam using the

following transformation equation

Y = i U (22)

where i is the mode shape matrix (NxP) whose entries Oij correspond to the

shapes of the jth mode at location i.

It should be pointed out also that the theory developed in this

study can be easily extended to utilize the distributed SHA sensor to

monitor the vibration of two or three dimensional motions as for example

of plates or more complex structures.
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APPENDIX

CALIBRATION OF THE SMA DISTRIBUTED SENSOR

The linear nature of the SHA distributed sensor, as defined by

equations (15) and (19), makes its calibration a rather simple process.

Such a calibration is necessary to account for errors in the parameters of

the sensor such as the position and length of the SMA wire and its

different segments. The calibration procedure is based on the use of a

conventional laser sensor placed at location i along the beam to monitor

the beam physical displacement Yik at time sample k. The beam is

subjected to a general excitation and the corresponding resistance changes

ARk of the different wire segments are determined at the same sample

interval k. The collection of a set of z measurements of the physical

displacement Yik and the resistance changes ARk may be concatenated, based

on equation (19), to form the following equation:

Yi = AR C (A-I)

where

Y = vector of concatenated physical displacement measurements
given by

T

- [YikW Yi(k.1) .... Yi](k+z-1) I (A-2)

AR = matrix of concatenated resistance changes, given by

-AR1(k) AR2 (k) .... N(k)

ARl(k+l) AR2(k÷l) .... ARN+(k*)

(A-3)

ARI(k+z-1) AR2(k+z-1) .... -RN(k~z-l)

and C1 = vector of sensor parameters at location i, given by
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T

- [Cl C12 ... CIN ] (A-4)

The elements of the vector C1 can then be computed using the least

mean squared estimates as follows

C1 = [ART AR]-1 ART Yi (A-5)

The above procedure is repeated by moving the laser sensor to

location j and estimating the vector Ci of sensor parameters in a similar

manner. When all the rows C1 s are estimated, the matrix C is formed and

the calibration process of the distributed sensor is completed provided

that the modal shape matrix 0 is already known or is experimentally

determined using the classical modal analysis methods (20].
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NOMENCLATURE

Latin letters

a distance between SMA wire and neutral axis
A cross sectional area of wire
Ab cross sectional area of beam
C matrix given by equation (10) (NxN)
C matrix given in equation (21) (PxN)
C, ith row of C matrix
E Young's modulus of composite beam
F force acting on beam
I area moment of inertia of beam
k sample order
ki the wave number for the ith mode given by equation (7)
Li length of ith segment
M moment acting on beam
N number of wire segments, number of measured modes,

and number of measured physical coordinates
P number of accurate modal displacements
R, resistance of ith wire segment
t time
T beam thickness
ui modal coordinate of ith mode
U modal coordinate vector (Nxl)
U accurate modal coordinate vector (Pxl)
x distance along the neutral axis of beam
y deflection in transverse direction
Y vector of physical deflection of tapping points
Yj vector of concatenated physical displacements at ith

location
z number of calibration samples

Greek letters

(XI constant for ith mode given by equation (6)
AL1  change in length of ith segment
AL vector of length changes (Nxl)
ARt changes in resistance of ith segment
AR vector of resistance changes (Nxl)
AR matrix of concatenated resistance changes
C strain in SMA wire
p mass density of composite beam
Pe electrical resistivity of SMA wire
0i mode shape for ith mode
* modal shape matrix (NxN) given in equation (17)
0 modal shape matrix (NxP) given in equation (22)
W, the ith mode
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ABSTRACT

The static and dynamic characteristics of flexible fiberglass

composite beams are controlled by activating optimal sets of shape memory

alloy (NITINOL) wires which are embedded along the neutral axes of these

beams. The underling phenomena influencing the behavior of this class of

composite structural members are presented. The individual contributions

of the fiberglass-resin laminate, the NITINOL wires and the shape memory

effect to the overall performance of the composite beam are determined at

different operating temperatures and initial preloads of the wires. The

modes of vibration of the fiberglass beams are measured with and without

the NITINOL reinforcement at various operating conditions. With properly

designed NITINOL reinforcement, it is shown that the beams can become

stiffer and less susceptible to buckling. The modes of vibrations of the

activated Nitinol-reinforced composite beams can also be shifted to higher

frequency bands relative to those of the unactivated or un-reinforced

beams. Finite element models are developed to describe the static, dynamic

and thermal interaction between the NITINOL wires and the fiberglass-resin

laminates. Close agreement is obtained between theoretical predictions and

experimental results. With such tunable characteristics, the

NITINOL-reinforced composite beams can be effective in attenuating the

vibrations Induced by various external disturbances.



1. INTRODUCTION

Considerable attention has recently been devoted to the utilization of

the Shape Memory NIckel-TItanium alloy (NITINOL) in developing SMART

composites that are capable of adapting intelligently to external

disturbances (Ikegami et al. (1], Rogers et al. [2], and Baz et al. [3-41).

Such wide acceptance of NITINOL stems from its unique behavior when it is

subjected to particular heating and cooling strategies. For example, the

alloy becomes soft when it is cooled below its martensite transformation

temperature and becomes about four times stiffer when it is heated above

its austenite transformation temperature (Funakubo [51). Furthermore, when

the alloy is trained to have a particular shape while in its austenite

phase, it will memorize this shape. If the alloy is then cooled to its

martensite phase and subject to plastic deformation, it will return to its

memorized shape when it is heated above the austenite transformation

temperature. The phase transformation from martensite to austenite produces

significant forces as the alloy recovers its original shape. The alloy

acts as an actuator transforming thermal energy into mechanical energy

(Perkins [6] and Duerig et al. [7]). Accordingly, if the NITINOL fibers

are embedded inside a composite matrix at optimal locations, they can be

used to control the static and dynamic characteristics of the resulting

SMART composite. The control action is generated by the described

stiffening of the NITINOL fibers and/or the shape memory effect. With such

built-in control capabilities, the performance of the SMART composites can

be optimized and tailored to match changes in operating conditions.

Emphasis is placed in the present work on using the shape memory effect

of the NITINOL fibers to control the performance of fiberglass composite

beams. The NITINOL fibers are embedded inside vulcanized rubber sleeves

- 2 -



placed along the neutral axes of these composite beams as shown in Figure

(1). In this arrangement, the fibers are free to move during the phase

transformation process in order to avoid degradation and/or destruction of

the shape memory effect which may result when the fibers are completely

bonded to the composite matrix.

The basic phenomena governing the static and dynamic performance of the

NITINOL-reinforced composites will be presented, both theoretically and

experimentally, in this paper.

The paper is organized in five sections. In section 1, a brief

introduction is given. In sections 2 and 3, the finite element models

describing the static and dynamic characteristics of the NITINOL-reinforced

beams are introduced respectively. The experimental validation of the

finite element models is presented in section 4 and the conclusions are

summarized in section 5.

2. STATIC CHARACTERISTICS OF NITINOL-REINFORCED BEAMS

The static characteristics of NITINOL-reinforced composite beams are

primarily governed by their stiffness. The beam stiffness is made up of

different components which include: the flexural rigidity of the beam, the

geometric stiffness that accounts for the axial and thermal loading, as

well as the stiffness imparted by the elasticity of the NITINOL fibers.

The individual components of the beam stiffness can be determined by

considering the NITINOL-reinforced beam element shown in Figure (2) with

the forces acting on it and the associated displacements. The combined

stiffness of the element can be obtained using the principle of

conservation of energy and equating the work done by external loads to the

strain energies stored In the element. In the present analysis, the theory

of Bernoulli-Euler beams is used with the assumption of small deflections.
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2.1. EXTERNAL WORK

The work done by the external loads includes:

a. work done by transverse loads and moments (WI)

This work is given by

Wi = 1/2 (.31T [F], (1)

where [61 and [F] are the displacement and transverse loads vectors,

respectively, given by

(a] = [w, 'di wi o•i iz, (2)

and [F] = [Vi Mi Vi Mi]T, (3)

where w, and Oj are the linear and angular deflections of node i,

respectively and Vi and Mi are the shear and moment acting at node i,

respectively.

b. work done by the axial mechanical loads (W21)

W2m is given by [81 as
L

S= Pm / 2 f (dw/dx) 2  dx, (4)

* 0

where Pm is the external axial compressive load acting along the neutral

axis of the beam element.

c. work done by the axial thermal loads (W2 0)

W2t represents the work done by the thermal loads Pt on the beam

element due to changes in the temperature AG of the element caused by

changes in the ambient temperature or during the activation and

de-activation of the NITINOL fibers. It is given by

L

S= Pt / 2 f (dw/dx) 2 dx, (5)

0

where Pt Is given by

Pt = a AG E. A,, (6)
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where a is the thermal expansion coefficient of the composite, E. is its

modulus of elasticity and Am is the beam cross sectional area.

2.2. STORED STRAIN ENERGY

The stored strain energy consists of two components:

a. strain energy of beam (W3 )

The energy stored in the beam element due to its bending (9] is given

by
L

W3 = Em Im / 2 f (d2w/dx 2 ) 2 dx (7)

0

where Em Im is the flexural rigidity of the beam.

b. strain energy of NITINOL fibers (W4 )

Considering the NITINOL fiber as a string, as shown by Baz et al [10),

with a tension T which is displaced laterally a di 'ance w from the neutral

axis of the beam, then its stored strain energy W4 is given by [91

L

W4 = T / 2 f (dw/dx) 2 dx. (8)

0

Equating the sum of the work done by the external forces F, Pm and Pt

to the sum of the strain energies stored in beam and NITINOL fibers gives

W1 + W2m + W2t = W3 + W4. (9)

Substituting equations (1), (4), (5), (7) and (8) into equation (9) yields

L L

[31T(F] = Em Im f (d2w/dx2) 2 dx - P, f (dw/dx) 2 dx, (10)

0 0

where Pn is the net axial force give by
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Pn= ( PM + Pt - T). (11)

Defining a cubic displacement function for the composite beam element,

of the following form

w = a + b x + c x2 + d x3, (12)

where a, b, c and d are constants that can be calculated in terms of the

deflections of the nodes i and j bounding the beam element, equation (12)

can be rewritten as

w = [A] (61, (13)

where the elements of matrix [A] are function of x (Fenner [11]).

Accordingly, dw/dx and d 2 w/dx 2 can be obtained by differentiating

equation (13) with respect to x to yield

dw/dx = [C] [(8] and d2w/dx 2= (D] (61, (14)

where the matrices [C] and [D] are given by
dd

[C] d (HA]) and [D] ([A]). (15)j -'x d'-x

The following relationships can also be obtained from equation (14)

(dw/dx) 2 =[ 8]T[CIT[C][6] and (d 2w/dx2 ) 2 =[a]T[D]T[D]D[]1. (16)

If the stiffness matrix [Ke] of the element is defined by the following

relationship

[F] = [K.] [81, (17)

then, [Ke] can be determined by combining equations (10), (16) and (17) as

follows

L L

[K.1 = E. I. f (D]T[D] dx - P, f (C]T[C] dx. (18)

0 0

It can be seen from equation (18), that the element stiffness matrix

(K.] consists of two components: the conventional transverse stiffness and

-8-



the geometric stiffness that combines the effect of the axial mechanical

loads, axial thermal loads and the tension of the NITINOL reinforcing

fibers. Equation (18) also represents the basic equation for understanding

the role that the NITINOL fibers can play in controlling the static

characteristics of the composite beam. For example, if the beam is not

reinforced by NITINOL fibers (i.e. T = 0) and the mechanical and thermal

loads induce compressive stresses in the beam, then the geometric stiffness

will increase and the total element stiffness will decrease. When the

combined effect of the mechanical and thermal loads reaches a critical

magnitude such that the geometric stiffness becomes equal to the flexural

stiffness of the beam, the beam stiffness vanishes and the beam becomes

elastically unstable. Subjecting the beam under this condition to any

additional external disturbance will cause the beam to buckle.

It should be pointed out that the thermal loading, as it increases the

geometric stiffness, also decreases the flexural stiffness of the beam

because it reduces its effective modulus of elasticity E,. Such a dual

effect makes the beam buckle under smaller thermal loads than under pure

mechanical loads.

However, the critical load of the un-reinforced beam can be increased

by embedding pre-strained NITINOL fibers into the beam. If the tension T,

resulting from the pre-strain alone, is high enough to counter-balance the

mechanical and thermal effects then the beam stiffness can be maintained

unchanged. For higher pre-strain levels, the beam stiffness can be

enhanced. Further enhancement can be achieved when the shape memory effect

of the NITINOL fibers is activated by heating the fibers above their

austenite phase transformation temperature. The additional tension,

induced into the fibers by the phase recovery forces makes the net axial

load Pn negative, and accordingly increases the overall stiffness of the

-9-



beam element. However, it is essential that the total tension in the

NITINOL fibers, i.e., the sum of the tension due to the pre-strain and the

phase recovery force, must exceed the mechanical and thermal loads and

compensate for the softening effect produced in the matrix by the heating

the NITINOL fibers. Therefore, effective control of the stiffness of

NITINOL-reinforced composites can be achieved by proper selection of the

initial pre-strain level of the NITINOL fibers. This selection is

particularly crucial as the pre-strain level determines the generated

levels of recovery forces [10].

The finite element model of the NITINOL-reinforced beams describes the

interaction between the external loads, operating conditions and the

geometrical and physical parameters of the composite beam and the NITINOL

fibers. It defines how the NITINOL fibers can be utilized to tailor the

stiffness of the composite to compensate for environmental and operating

conditions and disturbances. The stiffness obtained for the individual

elements of the beam can be assembled using the classical finite element

approach (Fenner [11]). The assembled model can then be subjected to the

appropriate boundary conditions in order to compute the deflections

corresponding to particular external loading conditions. The analysis

presented is for an orthotropic laminate that has a single layer of

unidirectional NITINOL fibers. Such an analysis can be used along with the

classical laminate theory (Vinson and Sierakowski [12]) to assemble the

stiffness matrix for a multi-laminate composite beam. A similar approach

has been carried out for modeling the static and dynamic characteristics of

NITINOL-reinforced composite plates (Baz, Ro and Gilheany [131). The

finite element model developed will be validated with experimental results

obtained with fiberglass composite beams.

10 -



3. DYNAMIC CHARACTERISTICS OF THE NITINOL-REINFORCED BEAMS

The dynamic characteristics of NITINOL-reinforced beams are obtained by

combining the stiffness matrix [Kel with the mass matrix [Mel of the beam

to form the following element equations of motion

(Mel] (1 + [Kj] [6] = IF], (19)

where [6] is the nodal acceleration vector. The elements me(i,j) of the

element mass matrix (Me] are obtained using the consistent mass formulation

(Zienkiewicz and Taylor [14]) as follows

L

me(i,j) = p, Am Ai Ai dx, (20)

0

where Ai and Aj are the ith and jth elements of the vector A given by

equation (13).

The classical finite element approach is used to form the equations of

motion of the assembly of several beam elements and the appropriate

boundary conditions are then applied. The solution for the eigenvalues of

the resulting homogeneous equations give the natural frequencies of the

composite beam as influenced by the properties of the composite matrix and

the NITINOL fibers. It is important to note that these properties are

influenced by the temperature distribution inside the beam which is

developed by virtue of activating and de-activating the NITINOL fibers.

4. EXPERIMENTAL VALIDATION

4.1 Test facility and experimental beam

The characteristics of NITINOL-reinforced beams are computed using the
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developed static and dynamic models. The theoretical predictions are

compared with experimental results obtained with a composite beam made of

randomly oriented glass fibers embedded in a low cure temperature polyester

resin. The beam is 30 cm long, 2.5 cm wide and 0.156 cm thick and is

mounted with fixed-fixed boundary conditions. The temperature dependence of

the modulus of elasticity of the beam, shown in Figure (3), is obtained

experimentally using the Dynamic, Mechanical, and Thermal Analyzer (DMTA)

of Polymer Laboratories, Ltd (151.

Four NITINOL 55 fibers, that are 0.55 mm in diameter, are embedded

inside the beam through vulcanized rubber sleeves that have outer diameter

of 0.95 mm. Two sets of NITINOL fibers were used. The first set consisted

of trained fibers that have an austenite transformation temperature of

50 C. However, the second set is untrained and the shape memory effect has

not been imparted to it. The two sets are inserted, one at a time, inside

the sleeves and the effect of the shape memory and the associated phase

recovery forces on the performance of the composite beam are monitored when

the beam is exposed to different ambient temperatures. The experimental

set-up, shown in Figure (4), is placed inside a temperature-controlled

chamber to determine the natural frequencies of the fixed-fixed beam as a

function of the ambient temperature. In the set-up the NITINOL-reinforced

beam is fixed at both ends, whereas the NITINOL fibers are clamped in a

holder at one end and connected to a load cell at the other end. The load

cell monitors the pre-strain level of the fibers when they are in their

martensitic phase, as well as continuously measuring the recovery force

when the fibers undergo phase transformation. In this arrangement, the

fibers are activated thermally by controlling the temperature of the

environmental chamber. The measurements are carried out after steady-state
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and thermal equilibrium conditions are attained. Under these conditions,

the composite matrix and the NITINOL fibers are all at the same equilibrium

temperature. At each equilibrium temperature, the composite beam is

subjected to random vibrations and the resulting response is monitored by

an micro-accelerometer bonded to the beam. The response is analyzed in the

frequency domain to determine the modes of vibration of the composite beam.

4.2 Natural frequencies of NITINOL-reinforced beams

Figure (5-a) shows the measured changes in the first natural frequency

of the beam when it is reinforced with untrained NITINOL fibers which are

pre-strained at different levels. The changes are normalized with respect

to the natural frequency Wb of the un-reinforced beam measured at 250C,

i.e. 50.1 Hz. The normalized characteristics of the un-reinforced beam are

also plotted to serve as a datum for defining both the effect of

reinforcing the beam with NITINOL fibers and the effect of the pre-strain

level. It can be seen that the frequency of the un-reinforced beam drops

as the ambient temperature increases and the beam losses its elastic

stability and start to buckle when the temperature exceeds 40 . The drop

in the natural frequency of the un-reinforced beam is attributed to the

softening of the matrix which is clearly demonstrated by the loss in the

modulus of elasticity of the beam as shown in Figure (3).

Reinforcing the beam with pre-strained untrained NITINOL fibers

considerably increases the natural frequency of the beam. The extent of

the upward shift in natural frequency increases with increased pre-strain

level. An increase of about 40% is obtained at room temperature when the

pre-strain level is only 0.26%. However, as the ambient temperature

increases the frequency shift drops in a manner similar to the

characteristics of the plain un-reinforced beam. Such a drop is again

- 15 -
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enhancing the first mode of vibration of fixed-fixed
composite beam reinforced with NITINOL fiber without (a)

and with (b) shape memory.



attributed to the softening effect of the matrix and the fact that the

untrained NITINOL fibers act as a static pre-tensioning device that produce

constant tension which is independent of temperature. Therefore, the

frequency enhancement is only generated by the reinforcement and the

pre-strain effects, and not by the shape memory effect. It is important

to note that considerably higher increases in the natural frequencies can

be obtained by further increases of the pre-strain level up to its maximum

permissible level of 6%.

However, a greater frequency shift can be achieved by imparting the

shape memory effect to the NITINOL fibers. The fibers are trained over 250

cycles using the procedure outlined by Johnson [16]. The trained fibers

are inserted into the composite beam to replace the untrained set and the

frequency shifts become significant, particularly at high ambient

temperatures. This is clearly demonstrated in Figure (5-b). For

temperatures between room temperature and 40 0 C, the frequency shifts

obtained are similar to those with the untrained fibers within experimental

accuracy. Once the ambient temperature exceeds the 50 0 C, i.e. the

austenite phase transformation temperature of the NITINOL fibers, the

frequency shift characteristics changes from a gradually decaying trend to

one that is a gradually increasing. Such a sudden change is the result of

the contribution of the phase recovery forces developed by the shape memory

effect which is illustrated in Figure (6).

The shape memory effect generates strain energy in the NITINOL fibers

to counterbalance the softening effect of the composite matrix with

increasing temperature. As the amount of strain energy developed depends

on the initial pre-strain level, it can merely compensate for the softening

effect to maintain the beam frequency at nearly a constant value which is

independent of ambient temperature as shown for pre-strain level of 0.078%.

- 17 -
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It can also increase the beam frequency as the ambient temperature

increases as indicated for pre-strain levels of 0.22 and 0.26%. For a

pre-strain level of 0.26% and ambient temperature of 90 C, the frequency

increase reaches about 70% as compared to an 18% increase when untrained

fibers are used. In this manner, the individual contributions of the

pre-strain, matrix softening and shape memory effect on the frequency shift

are isolated. This facilitates checking the validity of the mathematical

models against the experimental results.

Comparisons between the theoretical predictions and the measurements

are shown in Figures (7-a) and (7-b) for NITINOL fibers without and with

shape memory effect, respectively. The figures include comparisons for the

first and second modes of vibrations. Close agreement between theory and

experiments is evident.

5. CONCLUSIONS

The static and dynamic characteristics of NITINOL-reinforced

composite beams have been presented. The fundamental issues governing the

behavior of this new class of SMART composites have been introduced.

Applications of NITINOL reinforcing to control the static and dynamic

behavior of composite beams have been successfully demonstrated.

Emphasis has been placed in the presentation on the actuation

capabilities of the NITINOL fibers. However, extensive efforts are in

progress to use the NITINOL fibers to extract modal and physical

displacements of structures with multi-modes of vibration (Baz, Poh and

Gilheany [17]).

With such built-in sensing and controlling capabilities,

NITINOL-reinforced composites can provide a means for continuously tuning

- 19 -
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the structural characteristics to adapt to changes in the operating

conditions. These features will be particularly useful in many critical

structures that are intended to operate autonomously for long durations in

isolated environment such as defense vehicles, space structures and

satellites.
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NOMENCLATURE

[A] interpolating function of beam deflection
Ai ith element of [A]
Am cross sectional area of beam
[C], [D] first and second derivatives of interpolating function

of beam deflection
Em Young's modulus of beam
iF] vector of external loads acting on beam
IM area moment of inertia of beam
[Kel stiffness matrix of beam element
L length of beam elemeat and NITINOL fiber
MI external moment act.ing at ith node
[Me] mass matrix of bed, element
me(i,j) the element i,j of the mass matrix
Pm, n,t mechanical, net and thermal axial loads acting on beam
qn generalized coordinate of the nth vibration mode of

NITINOL fiber
qn generalized acceleration of the nth vibration mode of

NITINOL fiber
t time
To initial tension in a NITINOL fiber
Tt total tension in a NITINOL fiber
Vi shear force acting at the ith node
w transverse deflection of beam and NITINOL fibers
W1  work done by transverse loads
Wam work done by mechanical axial loads
War work done by thermal axial loads
W3 strain energy of beam
W4 strain energy of NITINOL fiber
x, y, z cartesian coordinates along beam neutral axis and cross

section respectively

Greek letters

[(] the deflection vector of beam element
As axial temperature difference
0i angular deflection of ith node
On mode shape of the nth mode
Wn natural frequency of the nth mode
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ABSTRACT control algorithms is that of Bar-Kana and Kaufman [I)
which relied in its operation on collocated pairs ofAn Adaptive Modal Positive Position Feedback snosataosado edn akpsto n

(AMPF meho is prseted fo cotrllig he sensors/actuators and on feeding back position and
(AJIPPF) method is presented for controlling the velocity outputs. The controller employed the direct

vibration and shape of flexible structures. The reference model approach to theoretically control the

proposed strategy combines the attractive attributes of vibran of am p la tes rally Similar

the Independent Modal Space Control (IMSC) of ationh f beams. plates and i ntegr

Meirovitch and Positive Position Feedback (PF) of Goh approach, but with proportional and integral
and Caughy. The controller is designed in theal 2 to

experimentally control a 5.6 m antenna a. the JPL.
uncoupled modal space using only modal position signals
to damp the vibration of undamped modes. The K.Ossman et.alf [31 have theoretically developed an

parameters of the AMPPF controller are also adjusted in adaptive model following controller, for SCLE. in

an adaptive manner in order to follow the performance which position and velocity outputs are forced via a
variable structure control to track reference positionof an optimal reference model. In this way, optimal an veoiypts smnea.dvlpdaso n

damping and zero steady-state errors can be achieved and velocity paths. K. Ossman et.al. developed also an
dampng and zeproestead ae o errtain be achagied indirect adaptive controller in which the system
even In the presence of uncertain or changing paaees re stmedbarcuiv las-ure
structural parameters. parameters are estimated by a recursive least-squares

The adaptation laws governing the stable variation and an LQ controller is designed to quickly damp out
of the AMPPF controller parameters are derived using the vibration (3J. The effect of the spillover from

of heAMPFcotrllr araetrsar driedusng the unmodeled modes is found to cause the control

Lyapunov stability theorem. The effectiveness of the

MPPF in controlling the vibration and shape of a inputs of this algorithm and the system outputs to grow

variable mass cantilevered beam is demonstrated without bound. Silverberg and Norris [41 devised a

:-:perimentally. The performance obtained with the AMPPF self-tuned indirect adaptive controller which
identifies the structural dynamics and updates the

algorithm is compared with those of other classical associates to unif l dampdat the

control algorithms. The results obtained emphasize the vsbratio oftre structure.

potential of the AMPPF algorithm as an efficient means i n al the abov ea

for controlling flexible structures with uncertainties c ntr llers and te direct rdels iae
ireltm.controllers and the d irec t reference models are

in real time. designed in the physical-coupled space. For large

1. INTRODUCTION structures this presents serious computational
Considerable emphasis has been recently placed on challenges particularly when Kalman filtering is needed

as in Ref. [2). In the present study, the proposed
the development of wide variety of adaptive control Adaptive Modal Positive Position Feedback (AMPPF)
algorithms to effectively control the vibration and controller and Its reference model are designed
shape of large flexible structures. Sich algorithms aim completely in the Independent modal space with the
at compensating for the problems arising from the open-loop equations of the system remaining uncoupled
uncertainty of accurately modeling the dynamics of even after including the modal controller. Also. thethese structures, truncation of their dynamic models AMPPF uses only modal position signals to obtain stable
and the associated control spillover from the residual and damped performance. Such performance is attained
modes, variation of the structural parameters and by positively feeding back the position signals through
nonstationarity of the disturbances acting on the tuned first order filters. The performance of the
structures. Without the appropriate adaptation to AMPPF algorithm is enhanced by augmenting it with a
these problems, fixed gain controllers become totally "time sharing" strategy that utilizes small number of
inadequate to meet the control objectives and the actuators to control larger number of modes. The AMPPF
desired performance requirements. algorithm is based on the fixed parameter Modal

Distinct among the recently developed adaptive Positive Position Feedback (MPPF) algorithm developed



by Baz et.al. which has been successfully utilized to the modal position signal is fed back negatively.

control the vibration of simple beams (5i and more instead of positively, through the first order filter.

complex structures [61. the system will always be unstable.

The present study aims at developing the

adaptation laws of the AMPPF algorithm and 2.2. Parameters of MPPF

experimentally evaluate its effectiveness In

controlling the vibration and shape of a cantilevered 2.2.1 controller gain (3))

beam. The implementation of this modal control algorithm

This paper is organized in five sections. A brief requires the selection of two design parameters, i.e..

introduction is given in section 1. The concept of 71 and rt. Actually, only the time constant T, of the

the MPPF and the AMPPF algorithms are presented in filter needs ti be selected since 1, must assume a

sections 2 and 3 respectively. Section 4 includes the fixed value y,= 0.5 to eliminate the controller

experimental evaluation of the algorithm along with steady-state error as indicated by equations (I) and

comparisons with other algorithms. Section 5 (2). Such a value is < I and satisfies the asymptotic

summarizes the conclusions of this study. stability condition previously discussed. Therefore.

this algorithm can be equally used for accurate shape

2. MODAL POSITIVE POSITION FEEDBACK (MPPF) control (uRI S 0 ).

2.2.2. filter time constant (r,)
2.1. Concept The optimal value of the time constant rT of the

The basic concept of the MPPF method can be filter is determined by dividing the numerator and

clearly understood by considering the diagram shown in denominator of equation (3) by .i, to yield the

Figure (1). where the controller is used to control following equation

the ith mode of an undamped flexible structure in the

independent modal space. The controller feeds back -3 -2 -(S

positively the modal displacement ul through a first ul/uRITiai(s / l)/[s -a's a,]. (4)

order filter that has a time constant 't. The filter

output Yl is added to the desired reference modal where at = I / r101  and s = s / wi The above system

displacement uRI and resulting signal is amplified by a has the following characteristic equation

proportional controller gain K,. This gain is set equal

to I•W to be In a form similar to that of Goh and -- - (5)

Caughey's (7]. where wL is the natural frequency of the s + s s (a-.) s s (5

i mode. The amplified signal f,, i.e. the modal

control action, is then sent to control the t mode of w~ich has the root locus plot shown in Figure (2) for

the structure. 3, = 0.5 and 0<a,<w. The corresponding damping ratio <,
of the closed-loop system obtained from the root locus

plot, Is shown in Figure (3) as a functicn of a, which

.. ... is the only design parameter of the system. Figure (3)

.. indicates that the damping ratio attains a maximum
.. value of 2007 % when al = 1 18 This optimal value is

very close to the PPF results obtained experimentally

by Fanson and Caughey [81.
i ,, .... .,,. a, I II,. _________________________

Figure (1) - Block diagram of the MPPF controller. ,_

Mathematically. the interaction between the ..
structural mode and the controller can be described as

follows:
2 2

Structure: uj W 1 ul = f, = )j W ( Y + ul ), (1) "________,_'____

Filter: rI Y + Y4 u, (2) in.

The above structure-filter system has the Figure (2) - Root locus of the MPPF method with 71=0.5.

following closed-loop transfer function IO)

U l/'UR l=l iW 2l(T is -I )/ [T iS 3 s 2. T S i 1tij, (3 ) 0G 0

where s is the Laplace operator. Applying Routh's 0

stability criterion, the system is asympotically stable

for value of 0 a ya 1 and tI z 0. Accordingly, It I.t

is possible for an undamped system to attain asymptotic

stability by feeding positively its position signal

through a simple first order filter without the need 0 z0

for any velocity feedback. This constitutes the basic

premise of the present control algorithm. 000'
00• 0 0 0 10 50 20) 2:I iVI •l

Conceptually, the algorithm possesses this favorable

stable performance because the first order filter is r,.,,". e-st,-1-Alri-

In effect equivalent to an integral controller with Figure (3) - Effect of al on closed-loop damping of

negative feedback. It is also Important to note that if MPPF method with 7r=O.5.



In summary, using first order fiiters, instead of
the second order filters of Goh and Caughey. has

simplified the design without compromising the damping ' L-

characteristics of the controller. More importantly.

since the analysis presented is applicable to any mode,
uniform damping for all the modes results if all their ...

filters are tuned to satisfy the optimal tuning r
condition ( at = 1.18 ). Accordingly, a damping ratio
of 20.07 % can be maintained for any mode i, that has -, -,
natural frequency w,. by selecting the time constant T,
of its filter such that

Ti = I / 1. 18 W, for 1 - 1,2.... N (6) ".8

where N is the number of controlled modes. "1

3. ADAPTIVE-MPPF with PARAMETER ADAPTATION (ANPPF) -L

3.1. Need for parameter adaptation '°= (L)

In order to effectively utilize the MPPF method in
controlling the shape and vibration of flexible
structures in an optimal manner, it is essential to
investigate other inherent features of the method. L
Such features can be easily revealed by considering the
root locih of the MPPF characteristic equation (5), '
shown in Figure (4). for different values of the gain . - _-_

1, as a, is varied from 0 to m. It is evident that
increasing y, beyond 0.5 while maintaining it below the
stability limit (i.e. 31s5) results in significant r .- (:)
changes in the shape of the root locii. More I '
importantly, the branches of the root locii converge
towards the real axis of the s plane indicating that
higher closed-loop damping ratios can be achieved. Figure (4) - Effect of 71 on shape of root locus
Figure (5) shows the combined effect of 7, and at on of the MPPF method.
the attainable damping ratios as extracted from the
plots of Figure (4). It is clear that for any value of I 00
the controller gain y, there is an optimal value of a, 0"-oI)

for which the closed-loop damping ratio assumes its 0II

"-iXimum. In section 2. it was shown that If 7, is set 00 -n07
equal to 0.5 to ensure zero steady-state error; a
maximum damping ratio of 0.207 is attained when ac is
1. 18. Increasing y' to 0.9 requires that ai be 1.768 A O GO

to reach a maximum damping ratio of 1.00. Such a
significant increase In the damping ratio occurs .
however at the expense of increasing the steady-state E0I0
error, (l-ui/uRI) = 1-l/(1/•--1), to 800%. Therefore, 0M
increasing the damping ratio above 0.207 cannot be 020
achieved without compromising the steady-state error.
This will only occur if the two parameters Y, and at,
are maintained constant throughout the control process o(o "-
at values other than 0.5 and 1.18 respectively. 000 ii ' I no 1 00 1 5,0 2 00 ' io
However, it is possible to combine the high damping and
zero steady-state error characteristics by adjusting Te uis,,i Al1,h,,
the parameters y, and oL in an adaptive manner. Figure (5) - Effect of 1 on closed-loop damping of
Specifically, one would start the control process with MPPF method for different gains y,.
the highest damping possible (i.e. the largest value of
Y,) and as the process approaches its completion the
gain -y Is adjusted to be as close as possible to 0.5 The Interaction between the reference model and

in order for the structure to reach its final shape or the structure-filter systems is shown in the block

state with zero steady state error. During the diagram of Figure (6). The laws governing the

process of adjusting the gain y the parameter et is adaptation ot the controller parameters it and a, (or

also adjusted accordingly in order to achieve the T,) are derived in the following section.
maximum damping.

Accordingly. the ANPPF method capitalizes on the 3.2. Adaptation laws
inherent interaction between the controller parameters Mathematically, the dynamics of the structure and

to optimize the transient performance of the system. Its model reference are given by the following

In this manner, although the structural parameters are equations:
time invariant, better transients can be achieved by
adaptively making the controller parameters (½1 and a,) A. Structural system
time varying. The desired time response can be obtained Structure dynamics: upi (2 up=Y'w2 (YP*uRi). (7)
by selecting a desired reference behavior and change

the controller to make the system follow the reference Filter dynamics: T, Yp + YP = uP . (8)
model.

.r: ~ ~-.--r T-.. .. - -



.. __ _ _ _ _ _ _ _ _e - A. e + I •i [ (17)

To calculate the adaptation law, the following

4 ......... ,Lyapunov function is defined:

V eTPe -h (0 . > 0. (18)

where h (. (19)

For stable adaptation. V has to be strictly negative
(91. i.e.

,. V = P e + P e + h < 0 (20)

Substituting e from equation (15) gives

I',.',iIh. M ,.i IIl,-k V= eT [ A, P P A.] e - 2 eT P f + h (21)

Figure (6) - Block diagram of the AMPPF method with To have stable adaptation ( V < 0 ). the following

parameter adaptation.
two conditions must be satisfied:

B. Reference system a T

(a) 2 e P f +h = 0 (22)
Reference model: ii_,a2 u,-alu,=-a•/Z (ym+u•1, (9)

(b) select a stable reference model satisfying

Reference filter: Y - a 3 Y. = a 3 u.- (10) the following Lyapunov equation:

The reference model, described by equation (9). Is A, P + P A., - Q . (23)

structured to be damped in contrast to the undamped where Q is a positive definite matrixthen equation

structural model and its gain is selected to ensure (21) reduces to

stability and zero steady-state error (i.e. = 1/2).

The interaction between the structure dynamics and

the reference model dynamics is displayed in the block V = - eQ e . (24)

diagram of Figure (6). Defining the state vector XPEquation (22) gives the necessary adaptation laws

and X, as XY= [uL up yPjT and X.= (u. u. Y,,T, the for varying 2i and x such that the stability is

structure and reference systems can be written as ensured, i.e. Lyapunov stability theorom (9J is

satisfied. This adaptation law can be determined by

Structure system Xp = AP Xp + BP uRI. (11) considering the characteristic equation of the

reference system which can be written as

Reference system X,, = A,, X,, * B* uRI. (12)32
s -(a 2 - a 3 )s 2[-a 2 a3 - als+[-0.5aj aj) = 0. (25)

where, If it is desired that the system should behave

r0 1 0 j[0like an optimal ITAE ( Integral of Time multiplied by
Absoulte Error ) third order system. then it should

Ap = -wP 0 T1 wM{, Bp = ?W 1  have following characteristic equation (10]:

S + 1.75 w. so 2. 15 wo S + W 0 (26)

1 Selecting w,= w of the system, and matching the

0 I 0S0 coefficients of two characteristic equations (25) and
Am = at a. -.5a, and 8% = -Sall (13) (26). a,, a2 and a3 can be found.

The parameter error matrices ; and @ can be formed

I as follows;

The matrices A. and B. of the reference model are given 1

in terms of the three coefficients a1, a 2 and a 3 . 0 0 0

Defining the error vector a and Its derivative e =a,I 2 -(.5a, (27)

e = X. - XP and eý )(X-XP. (14) (a•-I/rk) 0 -(a3-i/•)

and subtracting equation (11) from (12) yields

e = A.e + (A,- AP)Xp + (B.- Bp)UR1 = Ae + f, (151 0

where, T = ( A- AP) XP * ( B.- BP) uR,. (16) 
0

Letting A,- AP = * and B.- BP 0 , then



Forming h using equation (19) yields are used to monitor the physical displacements of the

three nodes in the transverse direction. The position

3 3 signals are sampled by a 386-based micro-processor

-T 
provided with an input/output board which has a

h Z-r~e , -conversion time of 15 ps and a resolution of 12 bits.
h ~,J J =The board analog outputs have a settling time of 30 us.

1=1 J-, The micro-processor uses the three sampled signals

to compute the beam angular deflections and the linear2 2 2 2 2
=(a,.-jwi I2(a,-I/T,) ,a 2 ,(0.5a 1 +rTw1 ). (29) and angular velocities of the nodes The computed

state variables are used to calculate the modal
coordinates of the flexible system, the mode that has

yields: the highest modal energy, the corresponding optimal
modal control force fl. the physical control force

22 2 F and the necessary voltage v to be sent to the
h= 4 (a3 - I/ct) T'/ -÷, 4 (0.5a, X jW1l) W'. (30) piezo-actuator. The implementation of these

calculations . i.e. the AMPPF algorithm is carried
out in real time in 3.04 ins.

and defining the error vector e
Figure (8) outlines a flow chart of the AMPPFealgorithm indicating its main steps.

e=Xý - Xp= X2. X2p = e2 I r31) 0 __"rr

%. J yp e. Y - "' ......... • ' ...

then equation (22) becomes *-i -I. ... .. . .

.2 2.. . .".. . .'.. . . . . . ......
(eIp 3+e2 P4+ejps) [(a,1 wXlX.a 2X2 p-(.5al+2'wj)(Yp+URI)] -,

+(eIp3ce 2 ps5 e3 p 6 ) [(a3-1/r. ) (Xlp-Yp)]

2, 2 2 *• 1 0--- ,_
÷2{a3-1/T,)IT/T, 2(.Sa*T÷• ) W, 71 = 0. (32) -

The above equation yields the following two Figure (7) - Schematic drawing of the experimental beam.

adaptation laws piezo-actuator and sensors.

r,=-O. Sr(ep 34e 2p5 *e3 P6 )( Xlp - Yp ). (33)

and .7d*.-r-: cesS., nda Sr.i :.

z =-0.5(eip2+e2P 4 *e3pS) x c .... " l-c°l ..... la... •

(A (j2)V ýa2 X2  2
1P ..2v -(. 5a,+,341W )(y1p+URt)

22 (34) : t t . : zn:. -d -- tril gain$

w (0. 5a1 ?w 2

which depend on the elements of the P matrix. The c l , .
elements of the P matrix depend in turn on the Q matrix and :-.kil;s'

of the Lyapunov equation (23) and on the parameters at.
a2 and a3 of the reference model as indicated in the
appendix.

4. EXPERIMENTAL PERFORMANCE OF OPTIMAL MPPF ALGORITHM D.::. ....... .c ...... scl,

4.1 EXPERIMENTAL SET-UP r.........r : . ... ,ri

A thin rectangular cantilevered beam is .,,,+r, I.i.-" ard 5,e:,
constructed to validate the developed algorithm . The
design parameters of the beam are given In Table I. u,. . *3 :. '•cca:e 5515

The beam is controlled by one piezo-electric blmorph-:l, ,-rs •,r: and O ;. s
made from G1195- ceramic. The actuator is available
commercially (model number R205 ) from Piezo-Electric
Products. Inc.. Metuchen, NJ 08840-4015 . Table 2 lists
the main design parameters of the actuator. Cce,.,e 15 CM'I r;'. i,•i-, *-- .,o**,iS

The experimental beam and the plezo-actuator are sr cc-:'.- cl;, , ,
arranged as shown in Figure (7). The beam is divided
into three active elements. Bonded to the first
element, near the fixed end of the beam. Is the
piezo-actuator. Three non-contacting position sensors Figure (8) - Flow chart of the AMPPF method.

COPY U.V 1'TI :AEl+ .T - .,,.-2 1i.1 .; .'.. ....... -7



4.2 Modal characteristics of the beam-actuator system damping. During the adaptation proce-s. the resulting
time variations of the gains i7., and the filter time

The modal characteristics of the experimental constants rt.2 are shown in Figures (10-a) and (10-b)

beam are determined theoretically [51 and validated respectively. The figures indicate that all the

experimentally using classical modal analysis adaptive gains and time constants converge to stable

technique A comparison between the theoretical and values to ensure zero steady-state errors. Also. the

the experimental values of the first five vibration corresponding time histories of the modal displacements

modes of the beam-actuator system is given in Table 3. of the beam are shown in Figures (ll-a) and (li-b) for

The table gives also the modal damping as calculated the first and second modes respectively. The figures
from the experimental results using the half power demonstrate the effectiveness of the AMPPF algorithm in
approach ei mr. following the dynamics of the desired reference modal

apprach ll],modelI.

4.3 Experimental results A better insight into the effectiveness of the

In all the experiments conducted in this study. AMPPF algorithm can be gained by considering the Fast

the beam is excited at its second mode of vibration by Fourier Transform (FFT) of the beam response. Figure

applying sinusoidal excitation of 20 volts in magnitude (12) shows the frequency content of the response of the

to the piezo-a,-tuator. The excitations are maintained uncontrolled beam in comparison with the controlled

for a period of 0. 15 seconds. The beam is either left beam. These characteristics are obtained by sampling

to vibrate freely (i e Uncontrolled) or under the the beam tip position signal by a spectrum analyzer and

action of one modal control algorithm or another. The performing on it an FFT analysis. The figure

above excitation form is selected in order to excite effectiveness of the AMPPF method in simultaneously

the second mode of vibrations. Excitation of modes suppressing the vibration of the first two modes of

higher than the second would require faster vibration using a single piezo-electric actuator.

micro-processor in order to sample at least 10 sample

per period to achieve meaningful control. The Comparisons between the theoretical and

uncontrolled performance is used as datum for judging experimental time responses of the uncontrolled and

the effectiveness of the different control algorithms, controlled beam are shown in Figures (13-a) and (13-b)
respectively. The displayed results show close

4.3.1 Vibration control agreements between theory and experiments.

The ti.me response of the uncontrolled beam is

shown in Figure (9-a) indicating a very low natural

damping characteristics. Figure (9-b) shows the beam 03 -,
time response when it is controlled by the AHPPF -

algorithm The values of the controller parameters

-. l y.2 and Tz. for the first and second modes of -__
vibrations, are initially set at 0.99, 0.836, 0.99 and

0 0138 respectively. These initial values of the 3'(s '

and the a,'s are selected to ensure maximum initial

o -- =5 6Ii aa..

- .- .,7,
0.", - L' : 0.

(a) 
-

0 4

. . , . , '.

] ~~~~~ ~'! :cc) • • :0:-,

00 .- - 3 a$ 5 6

"-- ."Figure (10) - Time history of the control parameters

a. gain Z,., and b. time constant T",2

4.3.2 Vibration control of a variable mass system

(b - ,A better insight of the effectiveness of the

adaptive control algorithm can be gained by adaptively
controlling a variable mass system. The mass variation

-. 3 of the flexible system Is achieved by adding a mass to

7.- •t v: the free end of the beam. This additional mass changes

the first mode of vibration by 20 %.

Figure (9) -Time response of beam Figure (14) shows the time response of the

a. uncontrolled and controlled beam when an additional mass weighing 5.5 gm

b, controlled with ANPPF attached to the free end of the beam. Figures (15-a)

and (15-b) show the corresponding time histories of the

adaptive gains Ir.2 and time constant "T., of the

CL'I-Y i. '.t , C ;ABjT.; 0 . TIC -( :;iI ',. .YrCL



variable mass system.
It is evident that the AIIPPF algorithm has 

-successfuly adapted to the mass changes and has
effectively controlled the beam vibrations.

-

S0, c.._.. . . . . . - - jj3 50 i ( 41)

- ; "- O ,= -
II - (a)

- C" -- :7r5 :t
- -= -¢ 2,0

-- ,4 " ( ) ,

-0 10 20 33 41 3

(b)(b) Figure (13) - Comparison between theoretical and

- 2-2 experimental time response of the beam
, 2 -a. un,-:ntrolled and b. controlled

Ttr.- ;e 075
iMigure (11) - Time history of the mo' I isplacements

of beam and referer..ýe -.jue0
a. for first mode a-• n. for second mode E

00 00
-- I||.onitrolle.I

CnL~olcd -0 25.

. -0.50
'I, 0

0( 
-0.75

ni 0, I -1 000. 100 1t0 2.0 3 0 4 1 0

0 2 Time (sec)
Figure (14) - Time response of the variable mass beam.

onthe -- conroledan
0 5 0 100 15.0 20.0 4.3.4 System comparison

Fqrericy-IlZ Figure (17) shows the time response of the beamwhen the beam is controlled by the non-adaptive MPPF
Figure (12) - Frequency response of the free end of method. A comparison with the beam response with the

the controlled and uncontrolled beam AMPPF, shown in Figure (9-b). indicates that the
adaptation results in improving the system performance

4.3.3 Shape control considerably. Quantitative comparison between the two
The use of the AMPPF algorithm in controlling the methods can be obtained by considering the displacement

shape of the beam system is demonstrated in Figure (16) index Ud defined as the summation of the squared
when the beam is deflected 0. 1 mm off its initial position error of the beam tip over time:
zero-load position. The resulting time response of the
beam and the corresponding control voltage are shown In t
Figures (16-a) and (16-b) respectively. The two Ud 7 2 (
figures clearly demonstrate that the applied control Z... t) (35)
voltage reaches a steady-state value after the required t=o
shapes are attained. The model following capability of and the control votage index rU given by
the AIPPF algorithm is indicated in Figure (16-c) where
the modal displacement at the first mode of vibration t
is shown to track the desired reference model output Ur T v2(t) (36)

L=O
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(a) -

0.3 , -_o' -O -

- ac- ) 2, = e.. - I!

tat ,o-e0:,.(

0; Figure (17) -Time response of the beam when
controlled with MPPF method

2::

IM -

jwhere t* is the time of each experimental run. Table 4
Ci Flists the displacement and control voltage indices for

•,- itthe different algorithms.
.(b The experimental results obtained indicate the

___________________________Feffectiveness of the AM~PPF algorithm in suppressing
4 i 6 structural vibrations and controlling the shape of

fwexible structures in the presence of modeling errors

Figure (15) Time history of the control parameters and structural system changes. Comparisons, carried out

for the variable mass beam between the new algorithm and the non-adaptive sPPF
method, emphasizes its favorable vibration damping and

a. gain - and b. time constant -r,2  shape control characteristics.

S. CONCLUSIONS

This study has presented an adaptive modal control

adsutalgorithm which Is based on the Positive Position
igre 5 -Fime Feedback method. The algorithm utilizes only modal

position signals, fed through first order filters, to
damp out the vibration of undamped flexible systems.

-- IThe theory behind the algorithm is presented. The
adaptation laws necessary for luning the filters and

the controller gains are obtained, for all the
4 Z controlled modes, using Lyapunov's stability theory.

The algorithm is validated experimentally using a

single piezo-electric actuator to control the vibration

and shape of a flexible cantilevered beam. The
results obtained indicate the effectiveness of the

adaptation in improving the performance of the

controller particularly when it is used to control

beams with varying structural parameters.
(b) The study demonstrates clearly the simplicity and

_________________________potential of the method as an effective method for

- t 5controlling large number of vibration modes with a

smaller number of actuators . These features have

important practical implications that make the
:Tealgorithm viable for controlling large structures in

- real time.
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Theor mode - HzI 2,25 13.57 input matrices
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s. s Laplace and normalized Laplace operators
t time
t duration of experimental run
Ud.i displacement and control effort indices
ut, U1 . u1  modal displacement. velocity and

acceleration of ith mode
um. um..,. modal displacement, velocity and accelerat-

ion of ith mode of reference model.
up, up, up modal displacement, velocity and accelerat-

ion of Ith mode of structure.
URI reference modal displscement of Ith mode
v voltage applied across actuator
V. V Lyapunov function and its derivative
XI, 2  position and velocity state variables.
X-'p state vectors of reference and

structure-filter systems
Y1. Y1  output of ith mode filter and its derivative

Yt1 p transverse displacement of beam tip.

Greek Symbols

Oct dimensionless time constant of filters
dimensionless gain of the controller
time constant of the ith mode
parameter error of A matrix
parameter error of B matrix

wo frequency of reference model
(it frequency of the ith mode
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OPTIMAL VIBRATION CONTROL

WITH

MODAL POSITIVE POSITION FEEDBACK
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SUMMARY

The vibrations of flexible structures are controlled by an Optimal

Modal Positive Position Feedback (OMPPF) algorithm whose control forces are

generated by only using modal position signals to provide damping action to

undamped structural modes. The sub-optimal parameters of the OMPPF

controller are obtained by casting the synthesis problem as an optimal

control problem with incomplete state feedback. The performance of the

OMPPF algorithm is enhanced by augmenting it with a "time sharing" strategy

to share a small number of actuators between larger number of vibration

modes. The effectiveness of the algorithm in damping out the vibration of

flexible structures is validated experimentally using a cantilevered beam

whose multi-modes of vibration are controlled by a single piezo-electric

actuator. Theoretical performance predictions are found to be in close

agreement with experimental results.

KEY WORDS: Active vibration control

Modal Positive Position Feedback

Incomplete state feedback

time sharing of actuators



1. INTRODUCTION

Considerable emphasis has been placed, during the past few years, on

actively controlling the vibration of a wide variety of flexible structures.

Several control algorithms have been considered ranging from the simple

velocity feedback control law 1,2 to the more imaginative methods such as

the Independent Modal Space Control (IMSC) of Meirovitch 3,4 and the

Positive Position Feedback (PPF) of Goh and Caughey5 . 1988, Baz and

co-workers 6,7 modified the IMSC to account for the control spillover and

devised a time sharing strategy to share small number of actuators between

larger number of modes. The Modified IMSC method (MIMSC) has been shown to

have favorable vibration damping characteristics as compared to the IMSC and

8the Pseudo-Inverse (PI) methods8. However the IMSC, PI, MIMSC and other

modal control methods, rely in their operation on feeding back both the

modal position and velocity signals of the controlled modes to achieve the

required vibration damping . Extraction of these signals from physical

measurements is both time consuming and computationally intensive especially

when dealing with large structures. In 1989, Baz et.al. 9,10 developed the

Modal Positive Position Feedback (MPPF) method to combine the attractive

attributes of the IMSC, MIMSC and the PPF methods. In the MPPF method, the

controller is designed completely in the independent modal space with the

open-loop equations of the system remaining uncoupled even after including

the modal controller. Also, the MPPF uses only the modal position signals

to obtain stable and damped performance. Such performance is attained by

positively feeding back the position signals through tuned first order

filters. Closed-form expressions are given for determining the controller

gains and the time constants of the filters in order to ensure stability,

zero steady-state errors and maximum closed-loop damping ratio. The

-2 -



attractive features of the MPPF method have been successfully demonstrated

9 10by controlling the vibration of simple beams and more complex structures

However, no attempt has been made to develop optimal control strategies to

enable the selection of the controller parameters in such a way that weighs

the relative merits of the vibrational energy vis-a-vis the control effort.

It is therefore the goal of this study to develop such strategies and

experimentally evaluate the effectiveness of the Optimal Modal Positive

Position Feedback (OMPPF) algorithm in controlling the vibration of a

cantilevered beam.

This paper is organized in five sections. A brief introduction is

given in section 1. The concept of the OMPPF algorithm and the selection

of its optimal parameters are presented in sections 2 and 3 respectively.

Section 4 includes the experimental evaluation of the algorithm along with

comparisons with other algorithms. Section 5 summarizes the conclusions of

this study.

2. THE CONCEPT OF THE "MPPF" ALGORITHM

The proposed method can be clearly understood by considering the block

diagram shown in Figure (1). In the figure, the controller is used to

control, in the independent modal space, the ith mode of an undamped

flexible structure.

The controller feeds back positively the modal displacement qj through

a first order filter that has a time constant r1. The filter output Y1 is

2amplified by a proportional controller gain K1 which is set equal to , w•,

where w, is the natural frequency of the ith mode. The amplified signal f1 ,

i.e. the modal control action, is then sent to control the ith mode of the

-3-
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structure.

Mathematically, the interaction between the structural mode and the

controller can be described as follows

2 2
The structure q + wi q = fI = Tj Wi Yj (1)

The filter ri +i I Yi= qi (2)

where the dots denote differentiation with respect to time t.

Defining a normalized time t" = wi t, then equations (1) and (2) reduce

to:

The structure q1 + q, = ji Y1 (3)

The filter Yi + CiYi= at qi (4)

where the primes denote differentiation with respect to the normalized time

t" and a, defines a dimensionless time constant of the filter which is given

by

Mi = 1 / C T i ) (5)

Equations (3) and (4) can be combined in the following equation:

+ qi = U = - (i (I - ji) qi- aj qi (6)

The selection of the optimal gain ji and dimensionless time constant a,

of the filter can be achieved by considering the following state-space

representation of equation (6):

X = A X + B u (7)

--. -5-



and y = C X (8)

such that u = D X (9)

where [q1 0 1 0 0

II

X= qj A= 0 0 1, B= 0

-qj 0 -1 0 1

C = [1 0 0] and D = [d, 0 d2 ] (10)

with dj= - ai (1 - 7j) and d2= - •! (11)

Considering the output matrix C, it is evident that the above state

representation conforms with the premise that only the modal displacement q,

is accessible for measurements. Also, the right hand side of equation (6)

and equation (9) define a fictitious control action u which is based on an

incomplete state feedback as the second element of the gain matrix D is zero

as indicated by equation (10). Once the gains d, and d2 of the fictitious

controller are optimally determined, as will described in section 3, the

gain 7, and the dimensionless time constant a, of the original modal

controller can be realized and the algorithm can be implemented according to

equations (1) and (2).

3. SELECTION OF THE OPTIMAL CONTROL PARAMETERS

3.1. Formulation of the optimal control problem

The optimal gains d, and d2  are determined by considering

first the following optimal control problem:

-6 -



Find the control action u

* to minimize the quadratic performance index

T
j f yT Qy + UT R u I dt*

0
(12)

suchthat X (A - B D) X,

y = CX,

u =-DX,

and X(O) = X

In the above problem, it can be easily shown11,12 that the performance

index J can be expressed as a quadratic form of the initial state X, as

follows

T

J = Xo P(O) Xo (13)

where P is symmetric and positive-definite matrix which is a solution of the

following Lyapunov matrix equation:

P = (A + B D)T P + P (A + B D) + CT Q C + DT R D (14)

such that P(T) = 0. For time invarying and stable systems, P approaches a

constant value determined by setting P = 0. Equation (14) is obtained by

differentiating the performance index with respect to time and using

equations (7) through (9).

It is important to note that the above optimal control problem, given

by equation (12), can not be directly solved using the solution (D = - R-1

BT P) of the classical linear quadratic regulator problem11 as the control

action u is based on an incomplete state feedback. For this class of

-7-



problems, the solution is found to depend on the initial state of the

system12-14 This results in time varying feedback which is not efficient

to implement particularly for large systems. Furthermore, it is not at all

certain that a system optimized for one initial disturbance will perform

satisfactorily for another disturbance. In order to ensure the

acceptability of the system performance for all initial conditions, the

performance of the worst case is optimized. This is achieved by considering

the following performance index M instead of the original performance index

J:
T

H=max J / X XX ) (15)
X0

This performance index normalizes the original performance index J with

respect to the initial state of the system X0 . Substituting

equation (13) into equation (15) gives:

max ( XT P(0) XO XT ) (16)

x0

It can be shown, as outlined in appendix A, that M is equal to the maximum

eigen value of the P matrix

M = 'max (P) (17)

Therefore, the normalized performance index M becomes independent of the

initial states of the system and the optimal control problem, given by

equation (12), can be rewritten as

Find the controller gains d, and d2

to minimize the performance index M
(18)

M = Amax (P)

such that:

(A + B D)T p + P (A + B D) + CT Q C + DT R D = 0

*-8 -



where A, B, C and D are as given in equation (10).

In other words, the above optimal control problem reduces to finding

the sub-optimal fictitious controller gains d, and d2 which minimize the

maximum eigen value of the matrix P that satisfies the steady-state Lyapunov

equation. The solution of such min-max problem yields d, and d2 which can

be used along with equation (1I) to compute the optimal gain Ti and filter

time constant (x of the MPPF algorithm.

3.2. Solution of the optimal control problem

The solution of the optimal control problem, given by equation (18), is

carried out according to the flow chart shown in Figure (2). For a given

weighting parameter R and an initial guess of the control gains d, and d2 ,

the elements of the matrix P are computed as outlined in appendix B. The

positive definiteness of the matrix P is checked and its eigen values Xi are

computed using the Jacobi method15 . The eigen values computed are ordered

to determine the maximum value AMa. This value is minimized by an
j

16optimization routine based on Powell's conjugate direction method6. The

subroutine modifies the initial guess by finding an improved combination of

di and d2 . The improved gains are used again to compute the elements of P

and find the corresponding Amax If the resulting ?max is smaller
J+1 J+1

than the initial value Aax , the process is repeated again. When no
f

further improvement can be attained, the optimum is reached.

-I
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3.3. Optimal parameters

Figure (3) shows the contours of constant maximum eigen values
(A ) of the matrix P drawn, as a function of d, and d2, in the y, and a.

plane when the weighting parameter R = 0.01. The figure shows also the

path followed from an initial guess (z1=0.9 and ai=2.5) until the optimum is

attained. Table 1 summarizes the optimal values of z, and a, for different

values of the weighting parameter R.

Table 1 indicates that the optimal value of the control gain Tj

remains nearly at 0.5 irrespective of the value of the weighting parameter

R. This optimal value ensures both stability and zero steady-state error of

the controller as can be seen from equations (1) and (2). However, the

optimal values of the dimensionless filter time constant a. are found to

decrease as the weighting parameter R is increased. For a given mode of

vibration wi, this means that the filter time constant T, increases with

increasing R as indicated by equation (5). Therefore, if attenuation of the

vibration is weighted to be more important than the control energy, i.e. R

is small, then the filter should be very fast and Ti should be small.

Conversely, when the control energy is considered to be more important then

the damping of the vibration, i.e. R is large, then the filter is tuned to

be slow and its time constant T! is accordingly large.

It is very important to note that the presented analysis being

applicable to any mode, results in the same optimal tuning conditions for

all the modes of vibration. Accordingly, optimal vibration control can be

achieved for any mode i, that has natural frequency wi, by selecting the

-11i-
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optimal control gain ji to be equal to 0.5 and the optimal time constant T,

of its filter such that

T1 = al / W, for i=l ... N (19)

where N is the number of controlled modes and ai is the optimal

dimensionless filter time constant given in Table 1.

Figure (4) shows a flow chart of the proposed OMPPF algorithm. The

algorithm performance is enhanced by augmenting it with a "time sharing"

strategy to share a small number of actuators to control larger number of

vibration modes. Such "time sharing" strategy has been shown 9-1 to be very

effective in controlling large structures with a small number of actuators.

This is unlike the classical IMSC method of Meirovitch 3 ' 4 where the number

of actuators needed must be equal to the number of modes to be controlled.

The effectiveness of the OMPPF algorithm in damping the vibration of

flexible systems is validated experimentally in the what follows.

4. EXPERIMENTAL PERFORMANCE OF OPTIMAL MPPF ALGORITHM

4.1 EXPERIMENTAL SET-UP

A thin rectangular cantilevered beam is constructed to validate the

developed algorithm . The design parameters of the beam are given in Table

2. The beam is controlled by one piezo-electric bimorph made from G1195-

ceramic. The actuator is available commercially (model number R205 ) from

Piezo-Electric Products, Inc., Metuchen, NJ 08840-4015 . Table 3 lists the

main design parameters of the actuator.

- 13 -



Input
Elastic and inertial

Properties of structure
& actuator

Compute normal modes and modal shape'
of total structure with actuators

Compute reduced modal shape matrices
corresponding to actuators and sensors locations

Compute
the optimal time constants of
filters of controlled modes

Excite the structure
Y I

>Monitor the physical displacements I

of the structure

SCompute the modal displacements and velocities

Compute the modal energies
and rank them in descending order

Dedicate the actuators to
equal number of

the highest energy modes

Compute the modal control forces

I
Compute the physical control forces and voltages

Send the control voltages to the actuators

Figure (4) - Flow chart of the OMPPF algorithm.



The experimental beam and the piezo-actuator are arranged as shown in

Figure (5). The beam is divided into three finite elements . Bonded to the

first element, near the fixed end of the beam, is the piezo-actuator. Three

non-contacting position sensors are used to monitor the physical

displacements of the three nodes in the transverse direction. The position

signals are sampled by a 386-based micro-processor provided with an

input/output board which has a conversion time of 15 gs and a resolution of

12 bits. The board analog outputs have a settling time of 30 Ms.

The micro-processor uses the three sampled signals to compute the beam

angular deflections and the linear and angular velocities of the nodes . The

computed state variables are used to calculate the modal coordinates of the

flexible system, the mode that has the highest modal energy, the

corresponding optimal modal control force f1, the physical control force

FC and the necessary voltage v to be sent to the piezo-actuator. The

implementation of these calculations , i.e. the OMPPF algorithm , is carried

out in real time in 3.04 ms.

4.2 Modal characteristics of the beam-actuator system

The modal characteristics of the experimental beam are determined

theoretically9 and validated experimentally using classical modal analysis

technique. A comparison between the theoretical and the experimental

values of the first five vibration modes of the beam-actuator system is

given in Table 4. The table gives also the modal damping as calculated from

17the experimental results using the half power approach

4.3 Experimental results

In all the experiments conducted in this study, the beam is
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excited at its second mode of vibration by applying sinusoidal excitations

of 20 volts in magnitude to the piezo-actuator. The excitations are

maintained for a period of 0.3 seconds. The beam is either left to vibrate

freely (i.e. uncontrolled) or under the action of one modal control algorithm

or another. The uncontrolled tip displacement, shown in Figure (6-a), is

used as a datum for judging the effectiveness of the control algorithm.

Figures (6-b) and (6-c) show the corresponding time response of the

beam when it is optimally controlled by the OMPPF algorithm with the

weighting parameter R set at 0.01 and the piezo-actuator is dedicated either

to the first mode alone or time shared between all the modes respectively.

It is evident that time sharing the actuator is more effective in damping

out the beam vibration. Such effectiveness comes about because the

actuator is dedicated to control the mode that has the highest instantaneous

modal energy. This is not necessarily the lowest mode of vibration as it

depends on the nature of the external disturbance.

Figure (7-a) and (7-b) show the corresponding optimal control voltage

sent to the piezo-actuator when it is used to control the lowest mode or

when it is time shared between the modes respectively. The figures indicate

that higher control voltage is needed when the actuator is time-shared

between modes. This is attributed to the need for fast response filters to

control higher order modes, as implied by equation (5), which results in

turn in higher control actions as indicated by equation (6).

The effect of varying the weighting parameter R on the performance of

the OMPPF algorithm, with its time sharing capability, is shown in Figure

(8). Increasing R results in slower vibration damping as more emphasis is

-17 -
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placed on the importance of the control effort over the vibration energy.

This emphasis is manifested by the decrease in the control voltages as R is

increased as indicated in Figure (9).

A better insight into the effectiveness of the OMPPF algorithm can be

gained by considering the Fast Fourier Transform (FFT) of the beam

response. Figure (10) shows the frequency content of the response of the

uncontrolled beam in comparison with the optimally controlled beam. These

characteristics are obtained by sampling the beam tip position signal by a

spectrum analyzer and performing on it an FFT analysis. The Figure

emphasizes the effectiveness of the new algorithm particularly when R is

increased and when it is augmented with the time sharing capability.

Comparisons between the theoretical and experimental time responses of

the uncontrolled and optimally controlled beam (with R=0.01) are shown in

Figures (11-a) and (11-b) respectively. The displayed results show close

agreements between theory and experiments.

S. CONCLUSIONS

This study has presented an optimal modal control algorithm which is

based on the Positive Position Feedback method. The algorithm utilizes only

modal position signals, fed through first order filters, to damp out the

vibration of undamped flexible systems. The theory behind the algorithm is

presented. Optimal tuning of the filters and the controller gains are

obtained, for all the controlled modes, using optimal control theory for

systems with incomplete state feedback. The algorithm is validated

experimentally using a single piezo-electric actuator to control the

- 21 -
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vibration of a flexible cantilevered beam. The results obtained indicate

its effectiveness in suppressing structural vibration particularly when it

is provided with time sharing capabilities.

The study demonstrates clearly the simplicity and potential of the

method as an effective method for controlling large number of vibration

modes with a smaller number of actuators . These features have important

practical implications that make the algorithm viable for controlling large

structures in real time.

ACKNOWLEDGEMENTS

This study was supported by a grant from the US Army Research Office
(Grant number DAAL03-89-G-0084). Special thanks are due to Dr. Gary
Anderson, the technical monitor and Chief of the Structures and Dynamics
Branch of ARO, for his invaluable and continuous technical inputs.

- 25 -



REFERENCES

1. Balas, M., "Direct velocity feedback control of large space structures",
J. of Guidance and Control 2, 252-253 (1979).

2. Forward, R.L., "Electronic damping of orthogonal bending modes in a
cylindrical mast", Journal of Spacecraft 18, 11-17 (1981).

3. Meirovitch, L. and H.Baruh, "Control of self-adjoint Distributed -
parameter systems", Journal of Guidance and Control 5 , 59-66 (1981).

4. Meirovitch, L., H.Baruh and H.Oz, " Comparison of Control Techniques for
large flexible systems", Journal of Guidance and Control 6, 302-310
(1983).

5. Goh, C.J. and T.K. Caughey, "On the stability problem caused by finite
actuator dynamics in the collocated control of large space structures",
Int.J.Control, 41, 787-802 (1985).

6. Baz,A., S.Poh -nd P.Studer, "Modified independent modal space control
method for active control of flexible systems.Journal of The Institution
of Mechanical Engineers , Part C, 203, 103-112 (1989).

7. Baz, A and S.Poh, "Experimental implementation of the modified
independent space control method", Journal of Sound and Vibration, 139,
1, 133-149 (1990).

8. Baz, A. and S.Poh, "Comparison between MIMSC, IMSC and PI in controlling
flexible systems", NASA Technical report number N87-25605 (1987).

9. Baz, A., S.Foh and J.Fedor, "Independent modal space control with
positive posiyion feedback", ASME Journal of Dynamic systems,
Measurements and Control, 114, 1, 96-103 (1992).

10.Poh, A. and A.Baz, "Active control of a flexible structure using a modal
positive position feedback controller", Journal of Intelligent Material
Systems and Structures, 1, 3, 273-288 (1990).

11.Lewis, F.L. Optimal Control. John Wiley & Sons, Inc, New York, 1986.

12.Kalmann, R.E. and J.E.Bartram, "Control system analysis and design via
the 'second' method of Lyapunov", ASME Journal of Basic Engineering, 82,
371-400 (1960).

13. Jameson, A., "Optimization of linear systems of constrained
configuration", Intl. Journal of Control, 11, 3, 409-421 (1970).

14.Moerder, D.D. and A.Calise, "Convergence of a numerical algorithm for
calculating optimal output feedback gains", IEEE Trans on Automatic
Control, AC-30, 9, 900-903 (1985).

15.Meirovitch, L., Computational methods in structural dynamics, Sijthoff &
Noordhoff, The Netherlands, 1980.

- 26 -



16.Reklaitis, G.V., A. Ravindran and K.M. Ragsdell, Engineering optimization:
Methods and applications, John Wiley & Sons, In'c., New York, 1983.

17. Ewins, D.J., Modal Testing : Theory and Practice, Research Studies Press
Ltd., Letchwoth, England, 1984.

- 27 -



APPEND I X-A

The Performance Index (M)

The performance index M is given by

nax J / (X (A-i)

Xo

This performance index normalizes the original performance index J with

respect to the initial state of the system X0. Substituting

equation (13) into equation (A-i) gives:

T T

max ( Xo P(O) Xo ) / X Xo X0 ) (A-2)
Xo

As P is symmetric, it has real eigen values A, and the corresponding eigen

vectors ui may be formed as an orthonormal set. If V is the eigen vector

matrix, then

VT V = I, (A-3)

and VT P(O) V = A (A-4)

where A is a diagnoal matrix with elements Ai. Assume that:

X0 = V z (A-5)

then,
T T T

XC X0  ) = C X0 P(O) X0 ) / C X X0

- ( zT A z ) / C zT Z

E ~A, 4)! E z (A-6)
2 ? Z2 ?i. Z2

but as, ý.I E zi i I ( A-7)

then, from equations (A-i), (A-6) and (A-7) we have

M = Amax (P) (A-8)
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APPEND I X -B

ELEMENTS OF MATRIX P

The matrix P is given by

P1  P2 P3

P P2  P4 Ps  (B-I)

P3  Ps P6

where the elements p, through P6, which satisfy the steady-state Lyapunov

equation (14), are given by

Pi = P3 - di Ps, (B-2)

P2 = d2 / [ 2d, (l-d 1 /d 2 ) 1, (B-3)

P3 = - I / d- d R /2, (B-4)

P4 = P6 - d2 PS - P3 , (B-5)

PS = P2, (B-6)

and P6 = - ( d2 R / 2 - ps / d2 ) (B-7)

with R denoting a scalar weighting factor.

For a given dI and d2 , p2 and P3 can be calculated first, then P5

followed by pl, P6 then P4.
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NOMENCLATURE

A structure-filter system matrix (3x3)
B input matrix (3xl)
C output matrix (0x3)
D fictitious controller gain matrix
d l ,d 2  fictitious controller gains
fl controlled modal force of the ith mode
FC Physical force vector
I identity matrix (3x3)
J performance index
Ki controller gain
M normalized performance index
P matrix satisfying Lyapunov equation (3xl)
pt ith element of matrix P
Q weighting matrix
q1 ,qi,q 1  modal displacement, velocity and acceleration of ith mode
R weighting parameter
T final time
t time
to dimensionless time
u control effort
v voltage applied across actuator
01 ith eigen vector of matrix P
V eigen vector matrix of matrix P
X state vector of structure-filter system (3xl)
Xo initial state vector
y system output
Yi the output of the ith filter
z any vector (3xl)

Greek Symbols

Oc dimensionless time constant of filters
Yj dimensionless gain of the controller
Amax,Xmin maximum and minimum eigenvalues of P matrix
A matrix of eigen values of P (3x3)
Ti time constant of the ith mode
1 frequency of the ith mode

Superscripts

1 dots on letter denote differentiation with respect to time
2 primes on letter denote differentiation with respect to

dimensionless time
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Table 1 - optimal values of Tj and ot for different R

R 0.01 1.00 10.00 100.00

cc! 1.139 1.043 0.598 0.1999

T! 0.505 0.503 0.5001 0.4988
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Table 2 -Main design parameters of test beam

Length Width Thickness Young's modulus density
(cm) (cm) (cm) (GN/m 2 ) (gm/cm

25.78 3.75 0.075 2.96 1.31
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* Table 3 - Main design parameters of the actuator

Length width thick. charge coeff. max.volt Young's mod. density

(cm) (cm) (cm) (m/v) (v/mil) (GN/m 2) (gm/cm3)

4.85 1.375 0.1 190x10- 12  25 63 7.8
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Table 4 - Modal characteristics of the beam system

Mode number 1 2 3 4 5

Theor. mode - Hz 1.62 11.0 64.7 87.4 157.7

Exper. mode - Hz 1.55 10.1 49.5 80.5 167.5

Error - % 4.3 8.1 23.5 7.9 -6.2

Modal damping .038 .022 .016 .015 .010

04
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vibration of the beam when all the four NITINOL fibers are activated or
Inactivated. tt is evident that the activation of the NITINOL fibers
shifts the first three modes of vibration to higher frequency bands and
that the enharned damping characteristics of the heated beam result in
considerable vibration attenuation for all the modes.

A summary of the amplitude attenuation obtained at different flow
speeds is given in Figure (33). Attenuations of about 40% are observed
for the three modes of vibration over the speed range considered.

50

*-- fIst mode
A -2A d mode
K--U. 3rd mode

4V

Wind speed (ixi/s)

Fi.gure (23) -Amplitude attenuation at different flow speeds

The effect of activating different number of fibers on the
attenL__-.Jon of the flow-induced vibrations is shown in- Figure (34)
at flow speed of 8.32 rn/s. Increasing the number of activated fibers
results in a proportionate reduction in the amplitude of vibration.

A summary of the effect of number of activated NITfINOL f ibers on
the amplitude of vibration normalized with respect' to the amplitude of
vibration of the uncontrolled beam, is shown In Figuvee (35).-

4The results obtained demonstrate the effectiveness of
NITINOL-reinforced composites in suppressing flow-induced vibrations
over a. wide range of flow speeds.

5. SUMMARY

T'he static, dynamic and thermal characteristics of
j)NrTINOL-reinforced~ composite beams have been presented. The

ftuidajnental issues governing the behavior of this new class of SMART
composites Liave b~aen introduced. Applicat, ons of NITINOL r~inforc.n
fibers in the control of buckling and flow-induced vibrations are
-successfully demon~strated.


