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ADMISSION CONTROL IN INTEGRATED VOICE/DATA
MULTIHOP RADIO NETWORKS

1 INTRODUCTION

Voice and data impose conflicting requirements on the networks that must support

them. For example, voice communication requires that there be very low variability of the

time delay, so that a continuous voice stream is presented to the user at the destination;
typically, delivery in nearly real time is required. 1 In contrast, data traffic can often tolerate
both long delay (except for certain time-critical messages) and high variability of delay.
Also, data transmission requires very low probability of error to ensure the preservation of
data integrity, whereas voice communication can tolerate considerably higher error rates as a

result of the inherent redundancy of speech signals.

Traditionally, separate networks have been used to handle voice and data traffic.
However, greater efficiency can be achieved if the available network resources are shared
intelligently by these two classes of traffic. The voice/data integration problem is an example

of a much broader class of common engineering problems that deal with efficient use of a
limited set of resources to meet certain requirements of service. In this problem the resource
set is the communication channel (i.e., bandwidth, which may include a mixture of diverse
communication media such as 1HF and UHF terrestrial links, SATCOM, etc.) and the
hardware associated with maintaining and using the channel (e.g., transmitters, receivers,
buffers); the demands are voice traffic and data traffic. The use of common resources for
these different classes of traffic has the potential not only to reduce the resources needed to
support user demands, but also to provide improved performance through the adaptive

sharing of resources.

The different requirements for the voice and the data processes motivate the

customary approach of establishing a circuit-switched path (i.e., either a true circuit or a
virtual circuit) between communicating nodes for the duration of a voice call, 2 and using

packet switching with queueing (at source and relay nodes) for data traffic. Because the
source and the destination nodes are not generally within direct communication range of each

other, the use of relaying over multihop paths is required for both classes of traffic. We

I Although it would certainly be possible to consider systems in which voice messages are stored for
forwarding at a later time, either at the source node or at an intermediate node, we do not address this
posibility in this report. Typically, delays greater than 0.25 s are considered unacceptable.
2 In this report, the terminology of "call" always refers to a voice call, whether or not voice is explicitly
mentioned.

Manuscrp avpoved November 7, 1992.
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assume that voice calls that are not accepted for immediate transmission (in practical terms,
this may mean within several hundred ms of their arrival) are "blocked," i.e., lost from the

system, a mode of operation generally referred to as "blocked calls cleared." 3 Appropriate

performance measures for this mode of operation include blocking probability and throughput.

Performance measures appropriate for data traffic include delay and throughput. A common

performance criterion used in integrated networks combines voice and data measures to yield

the weighted sum of voice-call blocking probability and data-packet delay.

Network performance can be improved by administering controls in the form of call

admission policies for voice traffic, as well as by routing and by link-activation scheduling [1,

2] for both voice and data. These are complex, interdependent problems that must be

addressed to determine the form of the "optimal" integration scheme. Each is a complex

problem in its own right that has been (for the most part, separately) examined in

homogeneous network settings (i.e., voice-only or data-only networks) [3]. In this report

we recognize the interdependence of these problems, but focus primarily on the voice-call

admission control problem. We eliminate the need to solve the routing problem by assuming

the use of fixed multihop paths between source-destination pairs, although we do touch upon

the issue of choosing good paths. Similarly, we eliminate the need to address the link-

activation scheduling problem by assuming the use of channelization in the frequency domain

(by means of frequency-division multiple, access--FDMA) rather than in the time domain (by

means of time-division multiple access-TDMA).4

Although a great deal of attention has been paid to the modeling and performance

evaluation of circuit-switched voice in communication networks [4, 5], relatively little has

been done until recently on the question of voice-call admission control in such systems. An

uncontrolled mode of operation is typically assumed, in which all voice calls are admitted as

long as sufficient network resources (e.g., link bandwidth) are available; calls are blocked if,

and only if, resources are not available for them. Accepting a call implies a long-term

commitment of the resources in the circuit (i.e., until the call is completed); it effectively

reduces the resources available to other voice calls and to data. In a controlled system, it

may be advantageous to block a call even though resources are currently available because

the acceptance of a particular call now may result in the blockage of several other future calls

(or perhaps a call of higher precedence) that could otherwise have been accepted, and may

cause long queueing delays for data traffic. A clever network administrator may be able to

3 Although not necessarily the best from a practical standpoint, this mode of operation results in a
mathematically tractable system model that is amenable to numerical evaluation.
4 Law in this section we discuss briefly the differences between FDMA and TDMA operation.
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improve performance by selectively blocking some calls even though resources are available,
or by reserving a certain portion of the resources for data only.

In [6] Viniotis and Ephremides show that, for a single node, the optimal access

control takes the form of a switching curve, i.e., the decision on whether to accept a voice call
depends monotonically on the number of voice calls already in progress and on the data-
packet queue size. The detailed structure of the switching curve depends on factors such as

traffic statistics and the cost function (e.g., the relative weighting of voice-call blocking
probability and data-packet delay). They extended their results to certain tandem network
configurations [7], but no results of this type have been obtained for more general network

configurations. An example of a suboptimal access-control scheme is the "boundary"
approach [8], under which the network's resources are divided into two compartments, one

for voice traffic and the other for data traffic. Voice calls are admitted as long as the channels

(e.g., frequency subbands or time slots) in the voice compartment are not all occupied. The

position of the boundary, which is independent of the data-packet queue size, is chosen to

minimize the specified performance criterion. Under the "movable-boundary" version of this

scheme, data traffic is permitted to use any idle portion of the voice compartment with the
understanding that the subchannel will be returned to voice upon demand. This is possible

because the transmission of a data packet requires only a short-term commitment of
resources. Voice traffic is independent of data traffic in such systems (since the position of

the boundary does not depend on queue size), although data performance depends on the
voice traffic because the resources available for data depend on those being used by voice.

The problem of call admission is considerably more complicated in multihop networks.

In this report we focus our attention on the particular case of circuit-switched multihop
wireless networks, for which the question of admission control has been virtually

unaddressed; in fact, there have been only few attempts to develop circuit-switched models

that incorporate the properties of wireless networks, and these have been for cellular radio
and single-hop satellite communication rather than general multihop configurations. In

particular, we endeavor to show how the recently introduced methodology of multiple-service,

multiple-resource (MSMR) modeling, in conjunction with the use of "coordinate convex"

policies [9, 101, can be used to study voice admission control in radio environments. These
policies base admission-control decisions on the state of the network, i.e., on the set of

currently active voice calls (and not only on whether or not resources are available to support
the call). The potential advantage of state-dependent admission control is the possibility of

performance gains in terms of overall blocking probability (or, equivalently, throughput) if

calls can be selectively rejected even in the presence of available resources.

3



Although coordinate-convex policies are not, in general, optimal, our studies

demonstrate that they are quite effective. Under reasonable modeling assumptions, the

MSMR methodology leads to a product-form probability distribution for system state, which

permits system evaluation without solving the balance equations of the underlying Markov
chain. However, the limitations of this approach become evident through the explosive

growth of the computational complexity as the network size increases. In this report we

propose efficient, suboptimal techniques that stem from the MSMR formulation and that can

be applied to wireless networks.

The key property that distinguishes the multihop radio environment from wireline

networks is the broadcast nature of radio transmission, which permits each transmission to

be heard by all of the transmitting node's neighbors. A negative consequence of the

broadcast property is the possibility of interference, which necessitates the scheduling of a

node's transceiver resources in coordination with those of its neighbors; in this study we

assume the use of orthogonal FDMA channefization, which simplifies the scheduling issue

greatly. We assume that enough frequency subchannels are available so that each node has

several transmission frequencies for its exclusive use;5 a node tunes one of its receivers to

the appropriate transmitter frequency of each of the neighbors it wants to listen to. This

problem can also be addressed in the time domain, in which case it is generally known as

link-activation scheduling [1, 2]. Typically, a single frequency channel is divided on a time-

division basis, with frequency reuse exploited by nodes sufficiently distant from each other.

This problem is considerably more difficult than the frequency-domain version just discussed,

and most versions of it are NP-complete (i.e., cannot be solved in polynomial time). The

increased difficulty arises from the fact that each node must coordinate its link-activation

schedule (i.e., the time slots in which its transmissions and receptions take place) with those

of all of its neighbors.6

On the other hand, a beneficial feature that arises from the broadcast mode of

transmission is the flexibility to support a time-varying set of communication links in

response to changing topology and changing communication requirements; a link can be

formed between two nodes as long as they are within communication range of each other,

5 This assumption may be relaxed to permit frequency reuse in distant parts of the network.
6 The direct dual of this problem in the frequency domain would be the case in which only a small number of
frequencies are available (instead of a set of unique frequencies at each node), in which case the difficulty of the
frequency allocation problem would be comparable to that of link activation. Our assumed availability of a
sufficient number of frequencies eliminates the need to coordinate frequency use, and thus eliminates the
scheduling problem.
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provided that transceivers are available to do so. These properties are discussed in greater

detail in Section 2.

In addition, multihop radio networks differ vastly from wireline telephone networks,

both in size (number of nodes) and in the number of channels available at each node. Several

approximation techniques that work well for the case of trunk-type links are based on the

capability of trunk lines to support a large number of calls simultaneously. However,

Geraniotis has recently shown [11] that the stochastic knapsack and Pascal approximations

studied by Ross et al. [12, 13] provide fairly good agreement for smaller systems also, thus

suggesting that they may be applicable to multihop radio networks as well.

Our study is actually intended as a stepping stone toward modeling integrated voice-

data service on multihop radio networks. The idea of integration in wireless networks that

we have proposed [14] relies on the use of "boundary" techniques that allocate a portion of

the channel bandwidth to the voice traffic and the remainder to data. The resulting voice
"sub-network" can be analyzed in the manner described here. Thus our approach can be

subsequently augmented to address the data portion of the network. We discuss briefly how

the residual capacity that is unused by voice traffic can be used to support data traffic.

1.1 Outline of the Report

In Section 2 we develop a model for multihop voice communication in radio networks,
and formulate the problem of optimal voice admission control in such a network. Under

certain reasonable assumptions, which are discussed, a "product-form" solution can be

applied to this model to measure network performance characteristics such as blocking

probability and throughput.

In Section 3 we discuss some of the computational issues associated with evaluating

product-form solutions. A recursive procedure is developed to accelerate the evaluation of a

large number of different admission control policies, and a descent-search method is

developed to minimize the number of policies that must be evaluated in searching for the

optimal one. In Section 4 we present numerical examples of the effects of different control

policies on network performance measures such as blocking probability and throughput. The

benefits of admission control policies and route selection algorithms are also compared.

In Section 5 we discuss two important classes of networks that are either building

blocks of multihop networks or display significant behavior. First we consider tandem

networks, and demonstrate the high degree of complexity that arises even in relatively simple

networks We also consider "multi-cross networks," in which several mutually disjoint

circuits intersect (and therefore compete for resources) with a multihop circuit.
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In Section 6 we introduce the concept of "residual data capacity," and discuss how

this capacity that is unused by voice traffic can be used to support data traffic. We show how

our circuit-switched voice models can be used to obtain a measure of the residual data

capacity, and consequently, a metric that allows simultaneous optimization of both the data

and voice portions of an integrated network.

Our conclusions, which are summarized in Section 7, indicate that the application of

admission control can, in fact, lead to improved performance. However, this improvement is

of significant proportions only if the various call types are not all weighted equally. If they are

equally weighted, any attempt to perform sophisticated admission control adds very little

improvement to simple admission policies that accept all calls as long as there are available

network resources. We also address the impact of the choice of path sets used to implement

the circuits, and we show that the use of good path sets can be more important than the

admission control policy.

2 A VOICE-ONLY MODEL

We first consider a radio network with only voice traffic, in which a multihop circuit is

established between the source and destination nodes throughout the duration of the call.

Data traffic can then be integrated into this model as discussed in Section 6.

2.1 Problem Formulation

Network topology can be described in terms of the communication resources available

at each node and the connectivities between nodes, where FDMA is used to provide

contention-free channel access. To illustrate our problem formulation, we consider the simple

seven-node star-network example shown in Fig. 1. Nodes 2 - ? are each connected to only

node 1, thus necessitating the use of node 1 as a relay in all multihop circuits. We consider

three particular source-destination pairs (2-5, 3-6, and 4-7), which correspond to Circuits 1,

2, and 3, respectively. The state of the system is defined to be x = (xl, x2, x3), where xi is

the number of calls currently active over Circuit i.

In an uncontrolled system, a voice call is accepted as long as there are sufficient

resources at all nodes along the multihop path. For example, if node i has Ti transceivers, it

can support up to Ti simultaneous calls.7 We refer to the limits imposed by the values of Ti

7 Other models are certainly possible. For example, if traffic is one way, rather than interactive, the source
node would not have to dedicate a receiver to support the call. Similarly, receive-only nodes would not need
transmitters. The approach presented here can be modified straightforwardly to accommodate variations such
as these. The implicit assumption that the number of transmitters and receivers at a node are equal, which lets
us describe the node in terms of a single parameter Ti, is used here because of convenience of notation, and can
easily be relaxed.
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as the "system constraints." For example, if each of the nodes shown in the three-circuit
network of Fig. 1 has five transceivers, the resulting uncontrolled system state space Q is as
shown in Fig. 2. Equivalently, the system constraints expressed as inequalities describe the

system state space:

xi ! 5; x2 < 5; x3: <5; (i.e., no more than 5 calls may be accepted on any circuit)

Xl + x2 +x3 5 5. (the hub, node 1, can handle no more than 5 calls)

223

7
.._._ 4

circuit 3 1

circuit 1

circuit 2 5
6

Fig. 1 - A simple 3-circuit network

X3

¢ 4

x3

Vx17
1 2 3 4 5

Xl

Fig. 2- The admissible state space fQ for the network of Fig. 1

In general, a vector description of circuit j in terms of the nodes it traverses is given by

ci = (CI, cCCJ3, c -.... , CjN),

where

7



f 1, if circuitj traverses node i

c 0, otherwise

and N is the number of nodes in the network. In the example shown in Fig. 1, circuit 1 is thus
represented as

Cl = (1100100).

Now we can express the system constraints as

Sxjcji <5 Ti, i =l,...,N (1)

j=1

where J is the number of types of circuits in the network. Although the system constraints

limit the number of simultaneously active calls at each node, in radio networks there still

exists a certain degree of flexibility in how the transceivers at each node are configured. For

example, if node 1 has three transceivers, it can configure its connections in a variety of ways

(such as all three connections to node 2; one connection to each of nodes 2, 3, and 5, etc.) as

long as the total number of simultaneously active calls does not exceed three (and provided

that the neighboring nodes also have transceivers available for this purpose).

The situation in wireline networks is similar, but the flexibility to reconfigure a node's

connections is not present because the number of channels available on each link connecting a

pair of nodes remains constant. In this case a system of equations similar to Eq. (1) can be

written in which the index i now refers to a particular link (rather than to a node). Thus cji

would take on the value of 1 if and only if circuit j traverses link i. The system constraints

would be again written in terms of Ti, which would be now interpreted as the number of calls

that can be supported by link i.

In this report we do not address the protocol issues that are associated with call

setup, such as the control messages that must be exchanged to disseminate the network

state to all nodes. Our focus is on the development of a mathematical system model that

demonstrates the performance improvement that can be achieved through the use of

admission control. Protocol issues will be addressed in the future, and will take advantage of

the insights gained through these studies.

2.2 Control Policy

Our ultimate goal is to achieve optimal network performance by exercising an

admission control policy on calls. In our studies of voice-only networks we use the criterion

of blocking probability; when we extend our study to integrated networks we plan to use the

8



weighted sum of blocking probability and expected data-packet delay. In practice, the true

optimal solution is usually elusive, and we must settle for a good suboptimal solution.

The system constraints limit the state space L2 in which x is allowed to take values.

We assume that the state space is coordinate convex [15]. The primary characteristic of

such systems is that if x is an admissible state (x r Q) and xj > 1, then x' = (XI, X2, ... , xP-1,

.... xj) must also be an admissible state (x'G Qf). This condition implies the very reasonable

property that call completions are not blocked, and that call durations are independent of the

system state. We consider policies that retain the coordinate convexity of the state space.

Under such policies, a new call is admitted with probability 1 if the state to be entered is in

the admissible region; otherwise, it is blocked with probability 1. The objective is to

determine the coordinate convex set W2 that provides the optimum value of the specified

performance index. Thus, a coordinate convex policy is specified in terms of the set of

admissible states, which is defined by a set of linear inequality constraints corresponding to

coordinate convex regions in discrete state space. The control policy is effectively a further

restriction of the admissible state space defined by the system constraints (Eq. (1)). Under

reasonable conditions on arrival and service time distributions, the use of coordinate convex

policies results in a product-form characterization of the system state, which greatly

simplifies the evaluation of system performance, as is discussed in Section 2.3.

Although coordinate convex policies are not necessarily optimal, Jordan and Varaiya

have provided examples in which they perform almost as well as dynamic programming

solutions [9].8 The advantages of coordinate convex policies are that they are easy to

implement and evaluate because of their product-form solution, thus permitting the solution of

considerably larger problems than are possible by using dynamic programming.

For notational purposes, we subdivide the control policy into a set of circuit

"thresholds," and a set of "control constraints." Thresholds restrict the number of calls that

will be admitted to the individual circuits, and can be expressed as

xj < Xj = threshold on circuit j, 1:< j5 <J. (2)

Threshold Xj "cuts" the state space with a hyperplane that is perpendicular to the xj axis and

intersects the axis at Xj, as illustrated in Fig. 3.

The control constraints are restrictions on the sums of the number of calls of various

types, i.e.,

8 Dynamic programming policies, which are in general not coordinate convex, specify not only a set of

admissible states but also which transitions between admissible states are permitted.
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for various sets I, where I is a subset of the set of all call types. The coefficients aij are

included in Eq. (3) to permit different weights for different call types. One case that may

require the use of nonunit values of aij (i.e., * 1) is a network that offers services which have

different bandwidth requirements; e.g., transmission of video may require the equivalent

bandwidth of several voice channels. In fact, nonunit values may be required even when all

services use the same bandwidth. Unit values of the coefficient alj allow control constraints

to cut the state space with a "45°" hyperplane. An example in which I = (1,2), rijj = 1 for all

j, and Yj =4 is shown in Fig. 4.

X 
10

-3

X2

Fig. 3 --State space restricted by setting threshold X3 =4

X3

-4

3

X2

.e 1 2 3 4 5
X1

Fig. 4 -- Example control constraint
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Foschini and Gopinath [16] have shown that, for multiple service single resource
(MSSR) networks with 3 services (the present example fits into this class of problems),
unity values for the arj are sufficient to obtain the optimal coordinate convex control policy.
Jordan and Varaiya [9] have generalized this result to include any number of services.
However, they have also shown that the values of ajj might be different from 1 in the optimal
coordinate convex policy for MSMR (multiple services multiple resources) networks, which,
in general, include the networks we are considering.

Although it is generally necessary to evaluate all coordinate convex policies--that is,
all combinations of threshold values, all I's that represent linear combinations of the circuits
with all values of Yj, and all appropriate values of ajj -- to discover and verify the optimal one,

we use atj = 1 throughout this paper. This simplification is required because of the

complexity of the problem for even small networks. Since the parameters we wish to
optimize are the boundaries of the state space (which are specified by the control policy), the

dimensionality of the problem is equal to the number of control policy constraint equations.

(This can be seen in Fig. 4, where the optimum value of YI must be determined in addition to
the optimal threshold values for the three call types.) Consideration of nonunit ZIj would
cause the dimensionality to explode. 9 The use of alj = 1 is also partially justified by the

theoretical results of Foschini and Gopinath [16] and Jordan and Varaiya [91, and our
empirical observations that indicate that control policies using only 450 constraints are very
nearly, if not actually, optimal.

An important question is how to organize the description of the different coordinate
convex regions. The individual thresholds must be examined, and the sets I must be

determined. We find the sets I by examining the set of circuits that intersect at each node.
In the network of Fig. 1, the only location that circuits intersect is at node 1 where all three
circuits cross. A control constraint xl + X2 + X3 : YI is not useful because it amounts to
reducing the capacity of node 1 to the Yj value. Therefore, we only consider the following
three control constraints:

Xl + x2:5 YI,

X1 + X3:5 Y2,

X2 + X35 <Y3.

We have found that adjusting the thresholds is generally the most powerful form of

optimization; once the optimal set of thresholds (based on a threshold-only search) has been

9 Note that if the problem were not a discrete one, the dimensionality would actually become infinite.

Although there are infinitely many values of oqj, there are only a finite number of discrete subspaces.
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found, continued search over the set of control constraints (i.e., adjusting the values of the
Ye's) typically yields only small reductions in the blocking probability.

2.3 The Product-Form Distribution

We assume that the generation process for a call of type j (i.e., a call that uses circuit

j) is Poisson with arrival rate Xj, and that its duration is exponentially distributed with mean

Ip/j; the corresponding load is pj = Xj/gj. Furthermore, control is centralized, and the

resources (at all nodes) needed by a circuit are acquired simultaneously when the call arrives
and are released simultaneously when the call is completed. Calls are blocked when one or
more nodes along the path do not have a transceiver available or when a decision is made not
to accept a call, as is discussed below. Blocked calls are assumed to be lost from the

system.' 0

Under these conditions, in conjunction with the use of coordinate convex policies, the
Markov chain describing the system state is time reversible and has the product-form

stationary distribution

(x) = jr(O)I• •,
j=l "j!

where x(O) is the normalization constant given by

J •-

It is convenient to define an index quantity associated with any given subset 1' of the state

space by

J xij

Zxflj~l jx.t

Then the connection between the admissible state space Q and the crucial quantity x(O) is

provided by the relation G(Q) = {x(O)}-1.

The control policy is defined by the specification of the admissible state space Q. For

any such state space, it is straightforward (though time consuming) to evaluate ix(O), which

10 It is certainly possible to consider systems in which blocked calls are queued at the source node (instead of
being lost) until resources for them become available at all nodes along the path. Although a Markov model
can be set up for such a system, the practical applicability of this approach is limited to small systems because
the product-form solution does not apply in that case. The equilibrium distributions of the Markov chain can
be evaluated either by means of the balance equations or by stepping it through the transitions until it
"rlaxes" as steady state is approched.

12



in turn permits the evaluation of performance measures such as throughput and blocking

probability. In state x the total number of active calls is

J
YWx)= 1xi

j=1

Throughput r(Ql) is simply the expected number of active calls averaged over the system

state:

r(fl) = Xv r().
Xefl

Blocking probability Pb(A) is the ratio of the expected number of blocked calls per unit time

to the expected total number of call arrivals per unit time:

PjPbjP() .+ 1) 4E Q)pr(x)
j=) U-z:blockingstate) j=1

j=1 j=1

where Pbj#) is the probability of blocking a call of type j (i.e., the fraction of type-j calls that

are blocked), a "blocking state" is any one of the states on the boundary of the region fl in

which at least one type of call must be blocked, and 1(-) is the indicator function, which is 1 if

the argument is true and 0 otherwise.

Thus the goal is to restrict the admissible state space to a coordinate convex region

such that the desired performance measure is optimized. The direct approach is to compute

x(O) and the performance index for all possible coordinate convex regions. The discrete

optimization procedure developed by Jordan and Varaiya [9] to make the search more

efficient is not directly applicable when the performance metric is blocking probability because

their procedure requires that the cost criterion be a function of the state and not dependent on

the control policy." They have also developed a continuous model that reduces complexity

[17, 18), but this model, like the discrete one, is more appropriate for throughput, which is

indeed directly a function of the system state. In our paper we have developed a recursive

procedure to accelerate the evaluation of a large number of different admission-control

11 To see that this is true, consider the performance measure associated with each state x (which is then
averaged over the admissible set of states to obtain system performance). The performance criterion of
blocking probability has the property that it has a value of 1 for calls of type j in states that are blocking
states for calls of type j, and zero elsewhere. Thus its value depends on the control policy. In contrast, the
criterion of throughput has a value of Wx) in state x, independent of the control policy. However, optimizing
throughput is equivalent to optimizing blocking probability. Therefore, Jordan and Varaiya's approach can be
indirectly used to minimize blocking probability.
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policies, and a descent-search method to minimize the number of policies that must be

evaluated in searching for the optimal one; both of these are applicable to either cost criterion.

3 COMPUTATIONAL ISSUES IN EVALUATING PRODUCT-FORM SOLUTIONS

Knowledge that the equilibrium distribution x(x) satisfies the product-form

distribution greatly simplifies the evaluation of system performance. Since the distribution is
known to within the normalization constant x(O), there is no need to solve the balance
equations associated with the Markov chain that describes our system. However, the

evaluation of x(O) is computationally intensive because it requires the evaluation and

summation of a large number of terms of the form rlp. l xji . Considerable effort has been
exerted in developing efficient procedures for calculating the normalization constant (see e.g.,
[19]), but such methods are generally problem specific and of little help to our problem. In

this section we discuss the approaches we have used.

3.1 A Recursive Procedure

Recursive techniques are used in many of the schemes that have been proposed to

evaluate the normalization constant. Since we must calculate x(O) (equivalently, G(')) for
a potentially large number of subspaces in our problem, we have developed a different

recursive technique that exploits previous calculations of G(fQ) for different Q, which are

subsets of W.

Figure 5 shows the basic principle of our approach by means of a two-dimensional

example. Assume we have already evaluated the normalization constant associated with

region Q', and now want to evaluate the normalization constant associated with region W.

The brute-force approach would be simply to add up all the terms of the form rHp./x,! that

correspond to policies in Q'. However, it is easy to see that fl' contains all of the policies in

0, plus a few additional ones. Thus G(QV) = G(Q) + G(l' - fQ). Therefore, the only policies

for which terms of the form Ilp' j/xA! have to be computed are those in the region Q'- -1;

their sum is added to the already-available quantity G(Q), thereby resulting in a significant

reduction in the computational burden. Actually the computation process is still somewhat

complex because the sequence of coordinate convex regions that are examined is not

monotonically increasing in all dimensions, and consequently it is necessary to keep track of

which of the previously examined regions provides the most useful information for the

evaluation of the normalization constant corresponding to the subspace of current interest.

Doing so requires a great deal of bookkeeping. Even so, considerable improvement is

achieved as compared with the direct approach.
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Xi

Fig. 5 - A two-dimensional example of our recursive procedure

Thus our recursive procedure facilitates the search of the multitude of coordinate

convex regions by reusing the frequently performed calculations for smaller regions in

calculating a performance index for a larger region. For example, let Pb(Q) denote the

blocking probability for a coordinate convex region fQ, B denote the set of blocking states for

this region, and B, c B denote the set of states that block calls of type j. If we have

computed Pb(Q) then we can compute Pb(Q), for a region fl" that is created by suitably

augmenting fl, as follows:
J i

IpjG(0') + pjG(B; B)+
PbP) jffil j=l

j-I j-- i=l i"=j="i j

j=1

where both the first expression in the numerator and G(Q) have been previously calculated.

Using this recursive formula to evaluate different regions 0l', the tedious calculation of the

blocking probability for many regions is essentially reduced to simply summing the

probabilities that the system is in one of the states in the slice of space (Q'- fQ).

Thus, we are able to use data obtained in performing the relatively inexpensive

calculations of the normalization constant for the smallest state spaces to efficiently calculate

the normalization constant for larger state spaces. Since we cannot know a priori which state
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space will provide the best performance, they all must be evaluated. 12 Although our approach

differs from the recursions described in [19], the two methods are not mutually exclusive.

We believe that our method could be made more efficient by the inclusion of techniques

similar to those described in [19].

3.2 Descent Search and the Question of Unimodality

We noted earlier that the direct method of determining the optimal policy is to

evaluate performance for all possible coordinate convex regions, an enormous computational

task for all but very small systems. Thus, as other researchers have also observed, it is

often advisable (or even mandatory) to use a non-exhaustive search strategy that attempts

to find a good, although generally suboptimal, policy. However, in systems with a single local

optimum of the performance measure, which is also the global optimum, gradient or descent-

search methods provide a non-exhaustive search strategy that can be used to expedite the

search of the state space without sacrificing achieving the optimal solution. Performance
measures that have a single local optimum are known as unimodal. Although we have not

rigorously verified that blocking probability is indeed a unimodal function of the coordinate
convex policy parameters for the type of network we are considering, empirical evidence,
which is presented here and in Section 4.1, suggests that it is. Empirical evidence also
indicates that, even if the unimodality conjecture is not correct, descent search methods are

effective heuristics for finding good admission control policies. In this subsection we address
the issue of unimodality and how it may be used to enhance the search for the optimum policy.

First we consider a very simple example with only one circuit, which is operating at a

utilization rate of p = 1. Figure 6 shows the blocking probability Pb as a function of the
threshold Xi. As one would expect, Pb decreases monotonically with X1. Thus the unimodal
property is satisfied. A slightly more complicated example is shown in Fig. 7, which

represents the case in which two circuits, each with p = 3, share a node and hence compete
for use of network resources. The total capacity of the node is ten simultaneous calls. Again,

the behavior is rather uninteresting because the optimum policy is to admit all calls (of either

type) until the system is saturated. Thus unimodality holds in this case also.

12 Except when using the descent-search technique described in Section 3.2. However, our recursive procedure
is stil helpful in this case, even though conducting a descent search does not require evaluation of all
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Fig. 6 -Blocking probability for a single circuit as a function of the threshold X1 ,P= 1
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Fig. 7- Blocking probability as a function of the thresholds X1 and X2 (e (0,1,2,...,10)) for a
pair of circuits that intersect at a node, p = 3

This problem can be made more interesting by associating different costs with the

blocking of calls of different types. Again we consider a system with two call types sharing a

single node. However, we now associate different costs with blocking calls of the different

types. In particular, the cost of blocking type-i calls is 2 and that of blocking type-2 calls is

1. Figure 8 shows the "blocking cost" for such a system with p = 20 and a nodal capacity of

10 calls (a very heavily loaded system); two views are shown to permit a better

understanding of the 3-dimensional surface. In this case, the optimal policy is no longer to
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admit all calls. The minimum value of blocking cost is obtained by admitting only type-2

calls.13 However, system behavior is again unimodal.

1.501.5

1A AS~1.3

13 
i .3<

1.1 3 1.2 4 V-

, 7 10 9 7 5 3 1

Fig. 8 - Blocking "cost" as a function of the thresholds X1 and X2 (e (0,1,2,...,10))
for a pair of circuits that intersect at a node, p = 20, cost of blocking type 1 calls = 2,

cost of blocking type 2 calls = 1

Although the figures related to these specific examples demonstrate unimodality, we

have not been able to prove that blocking probability is a unimodal function of the boundaries

of the state space. Nonetheless, the figures do suggest that using some form of a steepest

descent or gradient search method may prove helpful in our search for the optimal control

policy. Furthermore, if the conjecture of unimodality can be substantiated, we are guaranteed

to converge to an optimal control policy when we use a descent-based search method.

3.2.1 Descent Search

Gradient search is normally associated with continuous space; the literature contains

much research into and many variations of gradient search in the continuous domain. A good

overview and several examples are presented in [20]. In the discrete domain, however, to

speak of gradient search is not technically correct because derivatives do not exist. Instead,

we use a heuristic descent-search method to perform an efficient and effective search for the

optimal control policy. In this section we present an overview of the search technique; a

detailed description and an example of our descent search method are given in Section 5.1. 1.

Recall that the variables we wish to optimize, the Xj's and the Yj's, actually define the

boundaries of the state space representing the number of calls of each type. The search

13 At lower values of p some calls of type I are admitted.
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starts from some policy no = (X,, ..,Xij, Yl, ... , YI), which is typically (but not necessarily)

the uncontrolled state space where the Xj's and the YJ's are all set at their maximum value.

The idea is to search among immediate neighbors of Co (i.e., control policies that only vary

from the policy Do by ± I in a few coordinates14 ) for a policy that gives better performance. If

improved perfor`ance is possible at one of the neighboring policies, say Q, move to that point

(i.e., set nlo = fl) and, again, search among immediate neighbors of C for a policy that gives

better performance. Continue in this manner until the search among neighbors finds none that

can provide better performance. If the conjecture of unimodality is correct, this point is the

optimal control policy; otherwise, it is only a local minimum that may or may not be the

optimal policy. To verify the unimodality property a bit more conclusively, although without

total certainty, we have performed descent searches from many different initial policies to see

ff different solutions are found. In every case examined, the searches converged to the same

solution.

We perform the search in two loops. In the first loop, which we call the thresholds-

only loop, the optimum "threshold-only" policy (i.e., the optimum set of threshold values

(Xj)) is found (the control constraint limits [the YI] are set at their maximum value). A

descent search of threshold-only policies can generally be rapidly performed. It has been our

experience that such a search yields a control policy that is nearly optimal. Thus, the

threshold-only loop efficiently moves the search close to the optimum. The second loop,

called the "combined loop," continues the search from the optimal threshold-only policy; in

this loop both the thresholds and the control constraint limits are optimized. 15 Because this

loop includes both the thresholds and the control constraints, it can be much more time

consuming than the thresholds-only loop.

4 NUMERICAL EVALUATION OF NETWORK PERFORMANCE

The examples presented in this paper were evaluated using computer programs that

were developed and refined using Mathematica [21]. Mathematica provides a method for

performing symbolic as well as numeric evaluation of tedious expressions. However,

symbolic evaluation rapidly becomes unwieldy, both in terms of time and memory, as the

number of symbolic variables grows. Therefore, we inevitably end up performing numeric

evaluation. Many of our numeric analyses have been run on Macintosh computers using a

Mathematica program. The more costly runs (in terms of time and memory) have been

programmed in C and C++ and run on Sun 4 and IBM RISC system 6000 workstations.

14 Changing several coordinates simultaneously results in "diagonal" moves to neighboring policies.

15 The thresholds determined in the threshold-only loop may be changed as the search proceeds through the

combined loop.
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4.1 A 10-Node, S-Circuit Example

Many of our numerical examples are based on the sample network shown in Fig. 9, in

which links are shown connecting all nodes that are within communication range of each

other. Figure 10 shows five circuits superimposed on this network graph; a call on one of

these circuits requires the use of one transceiver at every node along the corresponding path,

as discussed earlier. We can view this network as providing five services, one corresponding

to each of the five circuits.
2

6 '8
Fig. 9- An example ten-node multihop network2 4-

CC -2
',00 

**0 '0'ILJ •t ._*5- C4 -"' C4

10 c5 -

3 6 8
Fig. 10- Five circuits superimposed on the network of Fig. 9

By examining Fig. 10, we can expand the system constraints Eq. (1) as follows:

Xj rmin {T'}, j=l,...,5, i=l,...,O
i3 node ie circuitj

xj + x2:5 T1 (system constraint from node 1)

xI + x3 + X5 5 T5 (system constraint from node 5)

xI + X4 + x55 T 7 (system constraint from node 7) (4)

The first of these inequalities states simply that the number of calls of type j cannot exceed

the number of transceivers at any of the nodes along the path. The other three inequalities

reflect the fact that the transceivers at a node are shared among the different types of circuit

that pass through the node; in this example, only nodes 1, 5, and 7 support more than one
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type of circuit. The control policy, which is expressed in terms of the variables Xj and Yj

whose values are to be optimized, is obtained from the system constraints and is written as

Xj 5 Xj (thresholds)

XI + x3 5 YI (control constraints from node 5)

Xl + X4 Y2 (control constraints from node 7)

XI + X55 Y '3 (control constraints from node 5)

X3 + X5 Y 1'4 (control constraints from node 5)

X4 + X5 Y l'5 (control constraints from node 7) (5)

We consider an example in which the loads of all circuits are equal (i.e., pj = p, j = 1,

... ,5), and three transceivers are allocated to each node (i.e., Ti = 3, i = 1, ... , 10). Table 1

shows the optimal16 policy in terms of overall call blocking probability as p is increased from

0.5 to 10,17 as well as the uncontrolled and the optimal blocking probability Pb 18 At low

network loads, it is best to accept all calls. As p is increased, calls of type 1 are the first to

have their threshold reduced. This is intuitively satisfying because circuit 1 shares at least

one node with each of the other circuits. Calls of type 5 are the next to have their threshold

reduced. This is because they interfere with calls of type 3 and 4. Calls of type 2, 3, and 4

never have their thresholds reduced because (after type 1 and type 5 calls have been

eliminated) they do not share resources with any other type of call.

It turns out that, for this example, the control constraints are not effective in improving

performance beyond the improvement provided by the thresholds alone. Although 1'3 does, in

fact, decrease with increasing p, thereby suggesting that it has an impact on system

performance, examination of Table 1 shows that this variation is simply a tracking of the

quantity X1 + X5, and thus provides no new information. Holding Y3 = 3 constant for all listed

values of p and optimizing only over the threshold values yields the optimal Pb value.

Conversely however, holding the Xj values constant at 3 and optimizing over the Yj only

16 We use the term optimal rather casually in this paper. As a result of the complexity of this problem, we
have not performed an exhaustive search of all coordinate convex policies for any of the examples considered.
Therefore, we cannot be certain that any solution we find is truly optimal. However, we conjecture that these
solutions are optimal because the use of a descent search has not found any better solutions. This constitutes
sufficient evidence provided that blocking probability is actually a unimodal function of the boundaries of the
state space as discussed in Section 3.2.
17 Values of p greater than I can be acceptable because node i has Ti (typically greater than one) transceivers.
Actually, there is no fundamental limit on p, which represents the offered traffic; however, it is clear that Pb
approaches I for sufficiently large p.
18 Table Al in the Appendix presents the policies found for the same network and parameters, but based on
throughput as the performance measure. As that table shows, optimizing over blocking probability or
throughput yields the same control policy.
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yields the optimal Pb value for p > 3.0. Of course, for the large p values Y3 = 0 is equivalent

toX 1 =X 5 = 0.

Table 1 - Optimal coordinate convex control licies for the network of Fig. 10
Thresholds Control Constraints uncontrolled optimal V

P X1 [X2l X3 X4 X5 Y Y2 Y3 Y4 Y5 P bP• gain

0.5 3 3 3 3 3 3 3 3 3 3 0.13528 0.13528 0.0
1.0 2 3 3 3 3 3 3 3 3 3 0.32221 0.32203 0.05493
1.5 0 3 3 3 3 3 3 3 3 3 0.44626 0.43965 1.48052
2.0 0 3 3 3 2 3 3 2 3 3 0.52972 0.51220 3.30760
2.5 0 3 3 3 1 3 3 1 3 3 0.58958 0.56694 3.83968
3.0 0 3 1-3 3 0 3 3 0 3 3 0.63485 0.60769 4.27846
10 0 3 1 3 3 0 3 3 0 3 3 1 0.85086 0.83924 1.36545

T % gain = 100 (Pbuncontrolled) - Pb(optimal))/Pb(uncontrolled)

The last column in Table 1 shows the "% gain," i.e., the percentage of reduction in the

call blocking probability obtained by restricting the state space. The maximum improvement

found was 4.27% when p = 3. This raises a fundamental question: Is the improvement

obtained by administering control worth the effort invested? This question cannot be

answered on the basis of a single isolated example, but it is worth considering as our studies

progress. Many of the examples presented in this report were motivated by the desire to find

a case where the use of an admission control policy has a substantial impact on the network

performance. tables A2 and A3 in the Appendix are examples in which different p values for

each circuit were examined with the thought that the presence of circuits with high (or low)

utilization rates (p values) relative to the other circuits might allow a control policy to have a

more substantial impact than is shown in Table 1. However, Tables A2 and A3 indicate that

various utilization rates do not appreciably effect the gain obtained by administering control.

In Section 5.2 we explain this inability to obtain significant performance gains by showing

how networks tend to be "self regulating."

The optimal policies listed in Table 1 were obtained by performing an exhaustive

search over all subspaces defined by the thresholds and control constraints of Eq. (5). This

search was facilitated by our recursive technique for computing the normalization constants

and the corresponding blocking probabilities associated with each candidate subspace. It is

instructive to observe the behavior of the blocking probability as the admissible subspace is

varied. These observations may give some insight into the conjecture that blocking

probability is a unimodal function of the state space boundaries.

Figures 11 - 13 show the effects of a call admission policy in which only the

thresholds are adjusted to minimize call blocking probability. The axes on these curves are

arranged in a rather nonstandard way, which requires explanation. The z axis shows the
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blocking probability as a function of the 1,024 admissible combinations of threshold values (x
and y axes). The threshold values are organized along the x and y axes according to a basm-
4 counting process; e.g., on the axis labeled "Thresholds for circuit 1 and 2 calls," the
threshold values are (0,0,X 3 ,X4 ,X5 ), (0,1,X 3,X4 ,X5 ), (0,2,X3 ,X4,X 5 ), {0,3,X 3,X4,X5 ),
({,0,X3,X4 ,X5 ), {1,1,X3,X4 ,XS} ... , (3,2,X 3,X4 ,X5 ), (3,3,X 3,X4 ,X5 ). Thus, the peaks (local
maxima) along this axis correspond to threshold values of 0 for type 2 calls. Similarly, the
threshold values on the axis labeled "Thresholds for circuit 3, 4, and 5 calls" are
(XI,X2 ,0,0,0), (X1,X2 ,0,0,1), (X1,X2 ,0,0,2), [XIX 2 ,0,0,3), [X1,X2 ,0,1,O), (X1,X2 ,0,1,1}, ... ,
(XIX 2 ,0,3,3), (XIX 2,1,0,0), ... , (X1,X2 ,3,3,3). Thus the four major peaks along this axis
correspond to threshold values of 0 for both type 4 and 5 calls; the minor peaks correspond to
threshold values of 0 for only the type 5 calls.

0

0.2

I

.S'S

Fig. 11 - Blocking probability vs. threshold values for the five circuits of Fig. 10, p - 0.5
Figure 11 indicates that when the traffic levels are low (p = 0.5) the best admission

policy is to accept calls whenever the required resourc'. is available, i.e., the optimal set of
call thresholds is (3,3,3,3,3). However, as the traffic levels increase, the blocking probability
can be reduced by limiting the number of calls on certain circuits. Figure 12 shows that with p
= 2.0 for each circuit, the blocking probability is minimized by blocking all calls on circuit 1 and
allowing no more than two calls on circuit 5. Figure 13 shows that when p = 3.0, the optimal
admission policy is to accept calls only on circuits 2, 3, and 4, and to block all calls on circuits
1 and 5.
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Fig. 13- Blocking probability vs. threshold values for the five circuits of Fig. 10, p = 3.0

The Unimodality Issue Revisited

Although the plots of Figs. 11 - 13 do not at first appear to exhibit the property of

unimodality, upon Closer examination it can be seen that the figures actually reinforce the

unimodality conjecture. The initial multimodal appearance is a result of the organization of

the threshold values along the axes. We are forced to view a six-dimensional plot in three

dimensions. When the organization of the data is understood, one can see that the ridges are
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the result of a "dimensional shift;" properties of unimodality are exhibited almost
everywhere, except at the points of transition, e.g., from Xj = 3 to Xj = 0.

To clarify this point, consider the plots shown in Figs. 14 and 15. In these figures only
the thresholds X1 and X5 are varied through the range [0, 6]. The remaining thresholds X2,
X 3 , and X4 , as well as the Yj are held constant at the value Ti = 6. Thus, we are able to

present a legitimate three-dimensional plot of blocking probability versus thresholds. In the
figures, additional plots (14(b), 14(c), and 15(b))are used to magnify the ordinate about the

minimum blocking probability value; these plots show the that there is, in fact, a single local
optimum. Figure 14 shows that when p = 2.0, the optimal threshold settings are X 1 = 3 and

X5 = 6. When p =3.5, as in Fig. 15, the optimal threshold settings are X 1 = 0 and X5 =3.
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(c)
Fig. 14-m Plots of blocking probability vs. threshold values that illustrate unimodality, p = 2.0

25



.5o.0.4158

"F. 0.415o v S•'0.4154--

S""1/ i0.4152

0.42~ 0.415--
0.4• • .•,..c_ . _..41"

.3 3 311............ 3- 5
X 5 X , X 5 5s 1 X ,

(a) (b)
Fig. 15 -- Plots of blocking probability vs. threshold values that illustrate unimodality, p = 3.5

4.1.1 Blocking Cost Minimization: A Weighted Performance Index

A commonly used approach in problems of this type is to attempt to optimize a cost

function related to throughput or blocking probability, rather than optimizing the overall

network throughput or blocking probability. Thus a "weight," which reflects the revenue

returned for providing the service, or the cost (e.g., lost revenue) of failing to provide the

service (i.e., blocking the call), is assigned to each call type. For example, certain circuits

may be more heavily weighted because they carry traffic of higher priority. This approach is

reasonable for the network of Fig. 10, because circuit 1 clearly uses more resources, and

creates more conflicts, than any of the other circuits. If the revenue returned for providing

circuit 1 is not greater than that for the other circuits, it would probably be most cost effective

to eliminate circuit 1. This is, in fact, what the analysis of the previous section has suggested

(i.e., as the traffic rate increases, the resources allocated to circuit 1 are the first to be

reduced).

We have examined the effect of weighting in the network of Fig. 10. Calls on circuits

2. 3, 4, and 5 were assigned an equal weight of w2+ = 1, and different weighting values wl

were evaluated for calls on circuit 1. These weights were incorporated into a "blocking cost"

performance measure defined by

I:PjWjpbjb 5

IEpj
j=1
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where Pbj is the probability of blocking a call on circuit j, i.e., the fraction of type-j calls that

are blocked. The results of descent searches based on this metric and four different weighting

factors are shown in Table 2 (only the thresholds are shown because the control constraints

did not affect the results). With type I calls 1.5 times as costly as the other calls, the optimal

control policy is the same as that for the unweighted network. As wl increases, however, the

optimal policy shifts to favor circuit 1 calls so that when wl ; 5 the only calls admitted to the

network are those on circuit 1. With this weighting scheme, the gain obtained by

administering control can be made arbitrarily large by increasing the call cost.

Table 2- timal control policies for the weighted network of Fi. 10
Thresholds optimal uncont. %t

P IWl w2+ X1 ,.X2 X3 X4 X5 P• Ph gain

3 1.5 1 0 3 3 3 0 0.707692 0.721298 1.88632
3 2 1 2 3 3 3 0 0.796118 0.807741 1.43895
3 5 1 3 0 0 0 0 1.14615 1.3264 13.5894
3 10 1 3 0 0 0 0 1.49231 2.19084 31.8841

t % gain = 100 (P'(uncontrolled) - Pb'(optimal))/Pb(uncontroUed)

4.1.2 Increased Capacity

Thus far, we have not shown a need for the control constraints. Although they were

included in the descent search, they were never found to yield a performance improvement in

the network of Fig. 10 with three transceivers per node. In this section we let each node

have eight transceivers (Ti = 8), and restrict the maximum number of calls on any one circuit

to six (Xj < 6). We return to the case in which the calls are not weighted. In Tables 3 and

A4 (in the Appendix), we show that the increased capacity allows the control constraints to

contribute to the network performance. In Table 3, we introduce the following notation:

Ft'Q = the throughput of the uncontrolled system,
rX = the throughput of the system controlled by adjusting only the thresholds,

= the throughput of the fully controlled (using both thresholds and control
constraints) system,

Pb(Q) = the blocking probability of the uncontrolled system,
Pb(WlX) = the blocking probability of the system controlled by adjusting only the

thresholds,
Pb(fl*) = the blocking probability of the fully controlled system,
Ox = the best control policy for the system controlled by adjusting only the

thresholds,
Q = the optimal control policy (using both thresholds and control constraints).

The threshold policy QX is simply the set of threshold values X1, .... , X5 ), and the optimal

policy is the set of Xi's and the Yi's (XI, ... , X5,Y 1, ... , Y5). Elements of fl* that are

different from those corresponding elements of Ox are shown in bold. We see that
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incorporation of the control constraints permits the increase of some of the threshold values.
For example, with p = 3.5 the threshold X1 can be increased from 2 to 3 by administering the

policy 0l, in which the control constraint (xI + x5 Q Y3 is set at 5. Thus the maximum

number of type-I calls is increased, but the sum of the number of type-I and type-5 calls that
can be simultaneously active is reduced from 7 to 5 under W*. In this example, use of Q*
resulted in a slight improvement over the performance obtained by using Ox.

Table 3 - Optimal control policies for the network of Fig. 10
with increased capacity (Ti = 8, X, < 6)

p ra rx r" Pb(O) Pb(WX) Pb(Q') fx Q*
{%gSn)t (%m• )t  

____nt ____nt

2.5 10.1807 10.1811 10.1811 0.18555 0.185512 0.185511 (5,6,6,6,6) (5,6,6,6,6,
- 0.0040) 10.0042) (0.0175) {0.0183} 8,8,7,8,8)

3.5 12.0336 12.07499 12.07667 0.31237 0.310001 0.309905 (2,6,6,6,5) (3,6,6,6,5,
(0.3438) (0.3578) _0.7568) {0.7876) 8,8,5,8,8

4.5 13.2986 13.48778 13.50657 0.40895 0.400543 0.399708 (2,6,6,6,3) (2,6,6,6,4,
(1.4222) (1.5635) 12.0555) J2.2598) 8,8,4,8,8)

5.5 14.2267 14.57842 14.62406 0.48267 0.469876 0.468216 (1,6,6,6,2) (2,6,6,6,3,
1 (2.4721) (2.7929) 1(2.6497) (2.9935) 8,8,3,8,8)

6.5 14.9364 15.45569 15.51528 0.54042 0.524440 0.522607 (1,6,6,6,2) (2,6,6,6,2,
(3.4768) (3.8757) . _2.95681 (3.2960) 8,8,2,8,8)

7.5 15.4950 16.13004 16.23304 0.58680 0.569865 0.567119 (1,6,6,6,1) (2,6,6,6,2,
(4.0985) (4.76321 (2.88601 (3.35411 8,8,2,8,8)

8.5 15.9449 16.68042 16.77403 0.62483 0.607519 0.605317 (1,6,6,6,1) (2,6,6,6,2,
(4.6127) (5.1997) H2.7697) (3.1222) 8,8,2,8,8)

10 16.4753 17.28274 17.36501 0.67049 0.654345 0.652700 (1,6,6,6,1) (2,6,6,6,2,
{4.9006) (5.4000) (2.4084) (2.6537) 8,8,2,8,8)

15 17.5489 18.34001 18.39848 0.76601 0.755467 0.754687 (1,6,6,6,1) (2,6,6,6,2,
1(4.5078) (4.8420) (1.3770) (1.4787) 1}1 8,8,2,8,8)

t All gains are relative to the uncontrolled system.

4.1.3 Increased Congestion

The network of Fig. 10 has the property that circuits 2, 3, and 4 do not share any
resources among themselves. In an effort to study systems in which there is a greater
degree of resource sharing, we have modified this network as shown in Fig. 16. We have
added a new node, node 11, and we have extended circuits 2, 3, and 4 so that they all include

this new node, thereby producing a direct competition for system resources among the three

circuits. This adds three new control constraints to those enumerated in Eq. (5), and a new

system constraint is added to those enumerated in Eq. (4). The complete set of system

constraints is now
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nu min {7ll, j=1,..,5, i=1,...,1

b3 no&d ie chitj

xI + x2 < TI (system constraint from node 1),
X1 + x3 + x55 T 5  (system constraint from node 5),
xI + x4 + x5 < T7 (system constraint from node 7),
X2 + x3 + x4:5 TI I (new system constraint from node 11). (6)

The complete control policy is
xj < Xj (thresholds),

XI + x3 5 Y1 (control constraint from node 5),

Xl + x45 <Y2 (control constraint from node 7),

X1 + X5 <5 Y3 (control constraint from node 5),

X3 + X5 5 Y4 (control constraint from node 5),

X4 + X5 Y "5 (control constraint from node 7),

X2 + X3 5 Y6 (control constraint from node 11),

x2 + X45 <Y 7  (control constraint from node 11),

X3 + X45 <Y8 (control constraint from node 11). (7)

•I••' -- l• |mummma

C2 Sme
C c3[ \ c I 2"---

1 omC 5  Ic3

C5 C4  C

10 c5  - -"--"

3 68

11

Fig. 16 - A modified, increased-congestion version of the network in Fig. 10

The results of a series of descent searches for the optimal control policy are shown in

Table 4. Note that, although improved performance was obtained both by adjusting the

thresholds and by exercising the control constraints, the reduction in blocking probability is

never more than 2% over a wide range of p values. It is interesting to note that the threshold

constraints (the first five elements) of Q* are identical to the corresponding elements of fLIX

over the entire range of p.
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Table 4 Contr policies for the moreavil congested network of Fig. 16
p I Pb() Pb(OX) Pb(*) total fx Q*

-gil)t gain
3.5 0.393439 0.392404 0.392404 0.2631 (5,6,3,3,6) (5,6,3,3,6,

_(02631) (0.0) ] 8,8,8,8,8,8,8,6)
4.5 0.498875 0.495574 0.495564 0.6637 (5,6,3,3,6) (5,6,3,3,6,

(0.6617) (0.0020) 8,8,7,8,8,8,8,6)
5.5 0.574471 0.568364 0.568352 1.0652 (4,6,2,2,6) (4,6,2,2,6,

1 (1.0631) (0.0021) 6,6,7,8,8,8,8,4L
6.0 0.604512 0.597356 0.597341 1.1862 (4,6,2,2,6) (4,6,2,2,6,

1 (1.1837) (0.0025) 6,6,7,8,8,8,8,4)
6.5 0.630650 0.622929 0.622913 1.2269 (4,6,2,2,6) (4,6,2,2,6,

(1.2243) (0.0026) 6,6,7,8,8,8,8,4)
7.0 0.653579 0.645607 0.645590 1.2223 (4,6,2,2,6) (4,6,2,2,6,

1 1 1.2198) (0.0025) 6,6,7,8,8,8,8,4)
8.0 0.691874 0.682415 0.682415 1.3671 (2,6,1,1,6) (2,6,1,1,6,

(1.3671) (0.0) 3,3,8,7,7,7,7,2)
9.0 0.722550 0.710954 0.710954 1.6050 (2,6,1,1,6) (2,6,1,1,6,

S(1.6050) (0.0) 3,3,8,7,7,7,7,2)
10 0.747659 0.735114 0.735104 1.6792 (2,6,1,1,6) (2,6,1,1,6,

1 (1.6779) (0.0013) 3,3.7,7,7.7,7,2)
20 0.867150 0.857811 0.857787 1.0799 (2,6,1,1,6) (2,6,1,1,6,

S(1.0770) 0.0029}) 1 3,3,7,7,7,7,7,2)
T%gain = lO0(Pb(f•)-Pb(QX))fPb(12)

* %gain = l00(Pb(Qx)-Pb(fl*))IPb((QX)

total gain = l00(Pb(Q)-Pb(Q*))1Pb(Q)

4.2 Routing and Admission Control

To evaluate the relative benefits of routing and admission control, we investigated the

performance that is achievable using different path sets. The routing scheme developed in

[22, 23] was applied to the network of Fig. 10 to find path sets with minimum "congestion."

The first step in this routing method is the generation of sets of highly node-disjoint paths

between each of the source-destination (SD) pairs by means of a modified version of

Dijkstra's shortest-path algorithm. In our case, the five SD pairs consist of the end nodes of

each of the five circuits; we call the pair of end nodes of circuit 1 "SD pair 1," etc. A total of

11 paths were found-three between each of SD pairs 1, 2, and 3, and one between SD pairs

4 and 5.
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Table 5 - Set of paths between the 5 SD pairs of Fig. 10
found by the modified Dijkstra's algorithm

SD Pair Path Number Nodes Traversed
0 1 5 7 9

1 1 1 2 4 7 9
2 1 3 6 8 7 9
3 2 1 3

2 4 2 5 3
5 2 4 7 8 6 3
6 4 5 6

3 7 4 7 8 6
8 4 2 1 3 6

4 9 8 7 10
5 10 5 7

This set of paths was then used as input to a program that performs an exhaustive
search-of all possible sets of exactly one path between each SD pair-to find the path

set(s) that minimizes congestion 19 within the network. Two path sets were found to have
the minimum congestion under the metric used. One is the set of paths used in Fig. 10, which
we now denote as path set (0,3,6,9,10), or the "nominal path set." Here the path numbers
refer to those shown in Table 5. The second path set (1,3,6,9,10), which also has minimum

congestion, is shown in Fig. 17. We refer to this as the "improved path set" for reasons that
will soon become apparent. The most heavily congested path set 12,5,7,9,10), which we refer

to as the "worst path set," is shown in Fig. 18.

2 k4

C % 9 '270 cc3 b
fl ,C 57- 9 2 ---

C2 C4 C5

C C10

3 6 8
Fig. 17 - The improved path set (1,3,6,9,10)

19 This program computes congestion by taking a weighted sum of the number of shared nodes between all
pairs of paths. In (22] we describe several different measures of congestion that were evaluated in our study of
neural network models; according to the congestion measure used here, the worst path set is three times more
congested than the improved pah set.
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C51~ csi C3

3 6 8

Fig. 18 - The worst path set (2,5,7,9,10)

Our studies have shown that the degree of improvement (if any) achieved through
admission control depends on the path sets that are used. For example, an examination of
Fig. 18 reveals that all five paths intersect at node 7. Thus, the five circuits are competing for
a single (set of) resource, which results in the higher blocking probability and the lower
throughput that is shown in Fig. 19. Because of the one-to-one relationship between the
number of calls in the network and the number of transceivers in use at node 7, the results of
the analysis agree with intuition for this network: Blocking any incoming call to reserve
resource for a call on different circuit causes an increase in the blocking probability, even if the
expected call has a much higher arrival rate than the blocked call. The best control policy for
this network is no control.

0.9. 18

0.8.Iw pa e0.7 j (Fig. 19) /'.on*W pah C
0.67 1Fig.-0)

~0.6 12
0.5

p p

Fig. 1path set itrmo
if04 9

103 (Fig. 18)
0.2

blocking probability and throughput (in the worst path set, the optimal policy is to
administer no control, i.e., fl* = {(6,6,6,6,6,8,..,8}

The more interesting question concerns the effect of routing and control on the two
minimum-congestion networks. By merely comparing the system and control constraints for
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these networks, which are shown below, one is led to suspect that the configuration of Fig.

17 may provide better performance than that of Fig. 10. One indication of this is the fact that

the nominal path set has two nodes (nodes 5 and 7) with the maximum nodal degree of three

(here, we define nodal degree to be the number of circuits of which a given node is an

element), but the improved path set has only one node (node 7) with the maximum nodal

degree. Although the routing congestion for the two path sets is identical, the system and

control constraints of both systems seem to indicate that the network of Fig. 17 is less

constrained.

SYSTEM CONSTRAINTS
Improved Path Set Nominal Path Set
xj 5 min {T,}, xi : min m [iT,

i3 node i cffutJ i3blO& iGchcltj

X1 + x2:5 min(TIT2) xl + x2 < TI
X1 +x35 <T4 Xl +X3 + X5 <:75T
x3+x5<T5 x1 +x4 +x59 "T7
X1 + X4 +X5 5T7

CONTROL CONSTRAINTS
Improved Path Set Nominal Path Set
Xj5 <Xj xj < Xj
Xl + X45YI xl + x35 Yl
Xl +x5 <Y'2 X1 +x< A5Y 2
x4 + x5 <Y'3• XI + X5 5 Y3

X3 + X55 Y4
X4 + X5 s Y5

In Figs. 20 and 21, curves of the network performance versus p for the nominal and the

improved path sets show the effects of routing in our example. The data supporting these

figures, and the optimal policies as p increases, are presented in Table A5. The figures also

show the effects of admission control by presenting curves of the performance when control is

used, and when it is not (uncontrolled), for both of the minimum congestion path sets. The

performance measure in Fig. 20 is throughput, and in Fig. 21 it is blocking probability. The

figures show that the improved path set (Fig. 17) does indeed provide better performance.

At low p values (< 6) the uncontrolled performance of the improved path set is better than

that of the controlled nominal path set (Fig. 10). At higher traffic rates, administering control

on the nominal path set does yield better performance than is possible in an uncontrolled

system that uses the improved path set; it also delivers a larger improvement percentage

than does administering control on the improved path set. However, the use of an admission
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control policy in conjunction with the improved path set clearly gives the best performance

across the range of p values.

19s.

13-
13

Fig. 20- Throughput vs. loading (p) for the two minimum-congestion path sets

We can make two observations about the performance curves shown in Figs. 20 and

21. (1) The choice of path sets to reduce congestion can be an effective method for improving

network performance. In fact, these figures indicate that it may be more effective than
admission control. (2) However, the application of admission control does improve further

the performance obtained by choice of good paths alone; at high traffic rates it produced
approximately the same amount of improvement as the outing scheme.
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Fig. 21- Blocking probability vs. loading (p) for the two minimum-congestion path sets

S AN EXAMINATION OF SPECIAL NETWORK CLASSES

To gain further insight into the effects of voice admission control on network

performance we have studied two different network classes. In Section 5.1 we examine the

ubiquitous tandem network, which can be thought of as a building block of multihop networks.

In Section 5.2 we study "multi-cross networks," a class of networks that give insight into

the reasons we have not been able to observe significant performance improvements through

the use of admission control policies.

5.1 Analysis of Tandem Networks

One of the basic building blocks in multihop networks is the tandem subnetwork. A

circuit-switched network may be viewed as a set of overlaid tandems between each source-

destination pair. Clearly, there is a large degree of interaction among the tandems, as

evidenced by the performance results we have presented thus far, thus making analysis and

numerical evaluation difficult for all but relatively small networks. We have therefore decided
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to investigate the case of an isolated tandem network to see if results could be obtained that

would apply to more general network configurations.

5.1.1 A Five-Node Tandem

Consider the five-node tandem network shown in Fig. 22. We consider all circuits

that consist of one- and two-hop calls; there are a total of seven in this network: four one-
hop circuits (1, 2, 3, and 4) and three two-hop circuits (5, 6, and 7). At node 3, five circuits

intersect (i.e., 2, 3, 5, 6, and 7); this is the largest number of circuits that can intersect in any

length tandem network that allows only one- and two-hop calls.

C5 C7

:6

Fig. 22 - A five-node tandem network

The system constraints for this network are:
xl + x5 T
xl + X2 + XS + X6 < T2

X2 + X3 + X5 + X6 + X7 5 T3
X3 + x4 + x6 + X5 < T4
x4 +x7 5 T5

and the control constraints are:

Node 2:
xl +x2:5 YI Xl +x2+x5<Y7

xl +x55 <Y2 xI +x2 +x65 Y8
xl +x66 <Y3 xl +x5 +x65 Y9
x2 +x 5 5 Y4  x2 +x5 +x65 YIO
x2 + X6 Y5
x5 + x6:5 Y6

Node 3:
X2 + X35 Yll X2+X3 + X55 Y18  x2+x3 +x5 +x65 Y27
X2 + x7 < YI2 X2 + x3 + X6:9 Y19 x2 + x3 + x5 + x7 5 Y28
X3 + X5 5 Y13 X2 + X3 + X7 5 Y20 X2 + X3 + X6 + X75 Y29
x3 + x65 Y14 X2 + X5 + X75 Y21 x2 + x5 + x6 + x 7 5 Y30
X3 +X7 X Y15 x2 +x6 + x7 5 <Y22 x3 + ':5 + x6 + x75 <Y31
X5 + X75 Y16 X3 + X5 + X6 <Y23
X6 + X7 5 Y1 7 x3 + X5 + X75 Y24

X3 + X6 + X75'25
X5 + X6 + X7 Y Y26

Node 4:
X3 + X45 Y32 x3 +x4 + x6 < Y35
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x4 +x6< Y33 X3 +X4 +X7V <Y36

A4 + X7: Y34 x4+x6+x7VY 37

Although the dimensionality of the state space is equal to the number of circuits (7 in

this example), the number of degrees of freedom (i.e., the number of parameters that need to

be optimized), and hence the dimensionality of the optimization problem, is equal to the

number of linear inequality constraints (thresholds and control constraints) that must be

considered when specifying the control policy. Thus, the dimensionality of the state space is

not the sole contributor to the dimensionality of the optimization problem. The complexity of

the problem in this seemingly innocent tandem network virtually explodes as a result of the

high degree of circuit interleaving (not the number of circuits). A descent search of this

network (using parameters Ti = 8 for all nodes i; XJ < 6 and pj = 5 for all circuits j) was

programmed in C; it ran for nearly 29 days (28 days, 20 hours, 28 minutes) on an IBM RISC

6000 without converging. After 7 iterations (2715 policies) of the threshold-only loop of the

search program, the best threshold-only solution (6,5,5,6,5,0,5) was found to have Pb =

0.613793, which is a 2.419437% improvement over the uncontrolled solution (Pb = 0.629012).

The best solution we have found has Pb = 0.613519 for the control policy
Q* = (6,5,5,6,5,0,5, <-- thresholds

8,8,6,6,5,5,5,8,8,8,8,8,8,5,5,8,5,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,6,8,8,8,8), <--- co.traints

which represents a 2.463% reduction in blocking probability from the uncontrolled system.

The implementation of the descent search that we used for this problem was

reasonable for the threshold-only portion of the search, but not for the search of the entire

space. The dimensionality of the threshold-only search problem, and hence the number of

control policies that must be evaluated to find a descent direction, is easily handled.

However, in the combined portion of the search where we were attempting to optimize both

the thresholds (the XJ's) and the control constraint limits (the YJ's), our search procedure

was overly ambitious. The time required to evaluate a single point, and the increased

dimensionality, which causes a large increase in the number of policies that must be

evaluated to determine a descent direction, combined to make our search impractical. We

estimate that the search would need another 1058 days (approximately three years) to

converge. Clearly, practicality considerations require the use of a more efficient, but less

thorough search. Let us explain with an example.

We will start the example at nearly the end of the threshold-only loop of the descent

search. We have just moved to the point flo = (6,5,5,6,5,0,5), i.e., XI = 6, X2 = 5, ... , X7 = 6.

The YJ are not listed because they are all fixed at 8, their maximum value. Now, the

immediate neighborhood of 0o must be searched for policies that give better performance.

For the threshold portion of the search, we define the immediate neighborhood to be all
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admissible policies Oln (policies that do not violate the system constraints) that can be

obtained by changing at most three of the threshold values in CIO by ±1. We systematically

select sets of three parameters to be varied, eventually selecting all the (7) =35 different
parameter triplets. For each triplet (Xi, Xj, Xk), we evaluate all combinations of parameter

values within ± 1 of the f0o value. Each member of the selected triplet can take either two or

three different values. If its value in the 12o policy is equal to a system constraint (e.g., XI =

6 orX6 = 0) it can only take one of two values in the fln policy (e.g., XI = 5 or 6, X6 = 0 or 1).
Triplet members whose values in the £11 policy are not equal to a system constraint (e.g., X2

= 5) can take one of three values in the fln policy (e.g., X2 = 4, 5, or 6). For example, when
i= 1,j = 2, and k = 6, the following policies must be evaluated:

£1l = (5,4,5,6,5,0,5), 112 = (5,4,5,6,5,1,5), C13 = (5,5,5,6,5,0,5),

S= (5,5,5,6,5,1,5), C15 = j5,6,5,6,5,0,5), 16- = (5,6,5,6,5,1,5),

C17 = (6,4,5,6,5,0,5), CI8 = (6,4,5,6,5,1,5), Q9 ( (6,5,5,6,5,0,5),

£110 = (6,5,5,6,5,1,5), 1111 = (6,6,5,6,5,0,5), Q112 = (6,6,5,6,5,1,5).

It can be seen that, for each triplet of parameter values, a minimum of 23 = 8 policies to

a maximum of 33 = 27 policies must be evaluated. Since there are 35 parameter triplets,

somewhere between 280 and 945 policies must be evaluated to search the immediate

neighborhood. A search of the immediate neighborhood of £1o found no policies that give

better performance. Therefore we conclude that 0.0 is the optimal threshold-only policy.

Before proceeding to the combined loop of the search, let us discuss the rationale for

simultaneously varying multiple parameters. We have found that varying each of the

thresholds individually may not allow the search to converge to the optimal policy. However,

empirical studies indicate that when several parameters are varied simultaneously, the

search will converge to the optimal policy from any starting point. How many are necessary

is uncertain; in the limit all parameters must be varied simultaneously, and the search

approaches an exhaustive one. It appears, however, that such extreme measures are not

necessary. In our smaller examples we have not seen any improvement by increasing the

number of simultaneously varied parameters beyond two or three.

In the combined portion of the search, the need to simultaneously vary multiple

parameters can be more readily seen. The benefit of raising the value of some Yj cannot be

measured if the Xj, (i r I) cannot also be simultaneously increased. In the present tandem

network, because Y27 through Y3 1 each influence four different thresholds, it appears that

varying five parameters simultaneously may be necessary.
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Returning to our descent search example. we start the combined loop from the state
fgo, which now incudes Y1. In this loop, we search the immediate neighborhood until we find a
policy Q' with improved performance. We immediately jump to this new point (CO = Ql') and
restart the combined search. The immediate neighborhood is larger in this portion of the
search. It includes all feasible policies On that can be obtained by changing at most five of
the parameter values in CIO by ±1. The search proceeds in a manner similar to that used in
the threshold-only loop, except now we select sets of five parameters instead of triplets.
This is where our search gets hung up. There are approximately 650,091 sets of five
parameters that must be checked to evaluate all immediate neighbors. For each of these sets
somewhere between 25 =32 and 35 = 243 different policies must be evaluated. Thus, a
minimum of between 21x 106 and 155x 106 policies must be evaluated before concluding that
the optimal policy has been found. Our program running on the IBM RISC computer can
evaluate about 100 policies per minute, which gives the basis of our estimate of
approximately three years to complete the search. Clearly, a different, more efficient
approach is needed to make this search practical.

A Progressive-Search Method

We have examined a more efficient approach, which we call a "progressive" descent
search. Instead of performing the search in two loops (threshold and combined) and varying
five parameters at the outset of the combined loop, the progressive search starts by varying
only one parameter at a time in a "l-parameter" loop. In the 1-parameter loop, the
immediate neighborhood of fCO is defined to be all admissible coordinate convex policies Q'
that can be obtained by changing one of the parameter values in n0  by ±1. We
systematically select and evaluate the system performance under different U' until a policy
with improved performance is discovered, or until all the O' have been evaluated. If improved
performance is possible using policy Q', the search "moves" to Q' (i.e., we set gco = Q) and
the procedure is repeated. In the search of the tandem network, this procedure was repeated
17 times. The best solution Q* (the same policy as was found in the original search) was
found on the 16th iteration after evaluating a total of 193 policies; on the 17th iteration 50
more policies had to be evaluated to conclude no better policy could be found. If all the G' are
evaluated without finding one that yields better performance, the search progresses to the 2-
parameter loop.

The 2-parameter search starts from the point CIO that was found in the 1-parameter
loop. It proceeds in the same manner as the 1-parameter search, except now the immediate
neighborhood of go is defined to be all feasible coordinate convex policies fQ' that can be
obtained by changing at most two of the parameter values in CIO by ±1. In the search of
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policies for the tandem network, 2,379 different policies are in the 2-parameter immediate

neighborhood, but none deliver better performance than W*. The evaluation of these policies

took about 54 minutes.

The search has completed the 3-parameter (72,739 policies) and 4-parameter

(1,615,987 policies) loops without finding a better policy than W*. It was scheduled to

perform a 5-parameter loop as well. The 5-parameter search plan was never completed

because of the large number of policies that had to be evaluated. To perform the 5-parameter

loop another ((4fe x2 4 >) 17 x 106 to ((44)x 2 x 34 >) 175 x10 6 policies must be evaluated

to verify that * is the best policy. If a better policy is found in this loop, the number of

evaluations may be much larger. At a rate of 100 policies per minute (which is about the

average), it will take between four months and 3.5 years to complete these two loops.

Therefore, realistically the search had to be terminated at some point before the 5-parameter

search is completed.

This example illustrates the complexity of the problem. Although our descent search

methods are quite effective in reducing the number of policies that must be evaluated, it is not

practical to expect to complete the search, even in some apparently simple networks.

Nonetheless, these search methods do serve as heuristic techniques that can provide a good

policy in a reasonable amount of time.

5.12 A Four-Node Tandem

Reducing the network to a 4-node tandem as shown in Fig. 23 significantly reduces

the dimensionality of the problem. Again, we only consider one- and two-hop calls. The

maximum number of circuits intersecting at a node is 4, which occurs at nodes 2 and 3.
C4

Fig. 23 - A four-node tandem network

The system constraints for this network are:
Xl+X4 < TI
Xl+X2+X4+X5 2 T2
X2+x3+x4+x5 5 T3
X3+x5 • T4

and the control constraints are:

Node 2:
Xl +x25 Y1 X1 +x2 + x4< 5Y7
X1 +x45 Y2 xl + x2 + X5 <Y8
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Xl +x5: <Y3 x1 + x4 + X59 Y9
x2+x4< Y4 X2+A + X5< Y10
X2 + X5:9 Y5
x4+x5 Y6

Node 3:
x2 + x39 •YI x2 + x3 + x 4 :9 Y1 4
x3 +X4 5 Y1 x2X2 +x3 +x5 Y15
X3 + X55 Y1 3  X +x4 +x 5 5 Y1 6

Thus, by eliminating one node in the tandem network, the search space is reduced
from seven call types and 37 constraints to five call types and 16 constraints. A descent
search for the optimal control policy (using the same parameters as were used for the five-
node tandem) has been completed. The solution following the threshold only portion of the
search has Pb = 0.607774 for the policy (6,3,6,3,3), which is a 0.3676% improvement over the

uncontrolled system. The optimal policy is (6,3,6,3,3,8,8,8,3,3,3,8,8,8,3,8,8,8,8,8,8) and has
Pb = 0.596042.

5.2 Multi-Cross Networks and Network Self Regulation

In an attempt to determine the reason that such a small degree of performance
improvement was achieved through the use of admission control, we have examined the
network configuration of Fig. 24, which we refer to as a "multi-cross network." The
horizontal circuit co intersects each of the remaining N circuits, cl, ... , cN. Circuits cl through

cN are mutually disjoint and only share resources with circuit co. The network of Fig. 10,

which has served as the primary testing ground for our admission-control studies, is similar
to the multi-cross network since circuits C2, C3, and c4 each intersect circuit cl at one node,
and do not intersect at all with each other. However, it differs in that circuit C5 intersects with

circuit cl at two nodes, and with circuits C3, and c4 at one node each. Nevertheless, it is

reasonable to expect that an examination of multi-cross networks should be able to provide

some degree of insight into the operation of more complex networks.

Intuitively, it can be seen that at high utilization rates or at high N (the number of
mutually disjoint circuits intersecting circuit co) optimal admission control will restrict the
number of calls allowed on circuit co, ultimately not admitting any calls on this circuit.

Intuition might also suggest that the performance gain obtained by administering such control

would continue to grow with N.
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CI~ I Cf

Fig. 24 - An example of a multi-cross network

We have examined these hypotheses by applying our descent search method to a
series of multi-cross networks with increasing N and fixed utilization rates and capacities. In
these studies, we have set the node capacity Ti = circuit capacity = 6, PO = 14, and pI through

PN = 7. Since at most only two circuits intersect at any node, there are no control constraints
to adjust. Thus, the descent search attempts to find the optimum value of the N + 1 circuit

thresholds. The results of these efforts for N - 1, ... , 9 are shown in terms of blocking
probability in Figs. 25 and 26, and in terms of performance gain in Fig. 27. As our analysis of
Section 4 revealed, when equally weighted services are competing for a single (set of)
resource (e.g., in a multi-cross network with N = 1) the best strategy is to administer no
control-all calls are accepted as long as resources are available to serve them. Thus, in
Figs. 25-27 the optimal policy and the uncontrolled policy are the same when N = 1.
However, at the high utilization rates (p0 - 14, p I - pN = 7) assumed in this example, the

optimal policy for N > I is Q* = (0,6,6,...).

0.75 "

0.7 -

4`0.65" -

Q (6,6....

.6.......... ...... .................. .... ..
... ..... ...... .... ..... ..... i .......... i. .......... i ......... ............. i.............

S0 . .... ..... I

00.45 ------

0.45"

0.4- 1 i i
1 2 3 4 5 6 7 8 9

N
Fig. 25 - Blocking probability in multi-cross network vs. N
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It is noteworthy that, as shown in Fig. 25, blocking probability decreases as N

increases. In a multi-cross network with equal utilization rates on the N crossing circuits (cl

- CN),
Pb([)- POPbo(fP)+ NpPbl( P)

Po + Np1

since the circuit blocking probability Pbj(fl) = Pbl(fQ) forj > 1, i.e., the circuit blocking

probability is the same for all the N mutually disjoint crossing circuits. In the optimally

controlled network with N > 1 and Ql = Q* = (0,6,6A...), Pbo(a*) = 1.0 and Pbl(fil*) =

0.33133 (with pi = 7, Ti = 6). Thus, it is easy to see that

liM Pb(r(*) = Pbl(L2*

This limit holds in the uncontrolled network as well. With fQ = (6,6,... ), Pb0(f2) < 1.0

and Pbl(D) > Pbl(f*) for 1 < N < o. As shown in Fig. 26, PbO(fQ) increases with N; as it

approaches 1.0, Pbl(Q) approaches Pbl(fl*) and the uncontrolled overall blocking probability

Pb(Wl) approaches Pb(Q*), the value obtained by applying the optimal policy. Furthermore,

the limit holds for all values of P0 and Pl greater than zero. Thus, the arbitrary loading used

in the present example gives representative results for any loading (pie ... , PN > 0).

10.
0.9: Pwo(•)

=08l
J0. S" ... ~.. . . .... -,. .......... : ......... . ............ ........ -,. ......... ............0.7
S0.6"-

0.5

0.4
S.... ...... ...... 4............ .......... 4. ....................... . ........................-0 .3 " ........... ......

0 .2 ...... .... ........... • .......... ........... " ....... ... ....................... ........................

0.1
002

1 2 3 4 5 6 7 8 9 10
N

Fig. 26 - Circuit blocking probability vs. N

These observations give an explanation for the relatively small performance

improvements shown in Fig. 27, and seen in our studies of Section 4. They show that circuit-

switched networks tend to be self regulating. In the case of a multi-cross network, as N
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increases there is increased likelihood that the resources needed to complete a call on circuit

co will be seized by one of the N multi-cross circuits. Thus, without administering any
control, calls on co will have reduced access to the network and calls on the crossing circuits

(Cl - cN) will see improved access. In a general network setting with equally weighted calls,
this self-regulation phenomenon will tend to admit more calls on the circuits that compete

with the fewest other circuits, and reject more calls on the circuits that must compete with

many other circuits for resources. Our studies have shown that the best form of admission

control is to restrict the access of those circuits that interfere with many other circuits. Thus

the application of admission control and the result of self regulation achieve nearly the same

network performance. Network performance generally can be improved by administering

control, but the gain relative to the uncontrolled system is limited by the network's natural

self regulation.

18- 6

"------------...... •.. .... ...... ............. .......... .. .......

... 6...th .ro babhpu ty

~14

"L 4 " t........ .... ... ................ ..... L .... ... .......... .. i ............ .........
2 ~~ ~ .. ......... - .... ..... ..... ........ ..............

C0

6 -------------

*lOy

N
Fig. 27- Throughput and blocking probability gains vs. N

6 EXTENSION TO INTEGRATED NETWORKS

Thus far in our presentation, we have focused primarily on the voice-call process and

the corresponding performance measures of blocking probability and throughput. A necessary

part of calculating these performance metrics is the tedious calculation of the normalization

constant x(0). Once the normalization constant is known, however, it is a simple step to

obtain the steady state distribution ,c(x) of the call process. This information can then be

used to estimate the performance of an integrated voice/data network not only in terms of the
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voice metrics, but also in terms of certain data metrics and weighted sums of the voice and

data metrics.

From the steady state distribution of the voice call process, we can calculate the
expected voice state Y = (XJi, = 1,. .J) as follows:

x nP(x= = n)= y_.x,}

Assuming that data traffic is free to use a resource (transceiver) whenever it is not occupied
by voice traffic, the "residual data capacity" of an integrated network with given voice
utilization rates is an indicator of potential network performance with respect to data. We
have considered two different measures of residual data capacity: mean data capacity,
denoted Cm, and bottleneck data capacity, denoted Cb.

Both residual data capacity metrics require a node-based evaluation of the network.
We define the data capacity of node i, which we denote as CI, to be its expected data
transmission capacity (i.e., the average number of transceivers not involved in voice calls).
Thus

c, = T, - cix,T_,,
j=1

where Ti is the number of transceivers at node i, and

1l, node i e circuit j
cJi =[0, otherwise

as defined previously. Now we can write the mean data capacity as

CN

and the bottleneck data capacity as
N

Cb =nn{C},

where N = the number of nodes in the network.

These metrics require no knowledge of the data traffic statistics, nor do they exploit

such knowledge (other than through the choice of Cm or Cb). They give a gross estimate of

the network's ability to handle arbitrary data loading in the presence of a given voice traffic

load. Because these data metrics can be relatively easily calculated once the voice
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distribution is known, they can quite naturally be used in a metric e that consists of the

weighted sum of the residual data capacity and voice throughput.

e(Q) = C.+ ().

Here P is the weighting factor, which is chosen to reflect the relative importance of the voice

and data performance metrics, and C, is used to denote Cm or Cb. Furthermore, e can be

maximized by using our descent-search method (appropriately converted to an ascent

search), thus giving a good control policy for the integrated network.

In the future we plan to extend these results to incorporate performance measures for

data traffic that provide a more meaningful characterization, such as delay. In addition we

plan to investigate network control schemes in which admission-control policies for voice

traffic are permitted to depend on data-packet queue sizes. However, such an extension

would require a major change in the mathematical formulation because the voice traffic

process would no longer be characterized by a product-form solution. Finally, we intend to

study schemes in which the instantaneous value of the residual capacity is utilized.

7 CONCLUSIONS

We have addressed the issue of voice-call admission control in wireless networks.

We have used the MSMR methodology of Jordan and Varaiya, and introduced a modified

search technique for performance optimization. We have demonstrated that there exists a

natural tendency for networks to be self-regulating, and, consequently, the exercise of

admission control achieves minimal improvement in blocking probability or throughput
performance as long as all call types are weighted equally. However, we have shown that
admission control is imperative in cases of unequally weighted call types. Furthermore, we

have shown the intimate and sensitive connection between admission control and routing, the

latter being also a significant factor affecting network performance. In all cases we have

found that optimizing only the circuit thresholds (in which case the problem dimensionality is

equal to the state space dimensionality) results in control policies that are almost as good as

the optimal policy. Thus, good policies can be obtained with a much simpler search than is

required to optimize both the thresholds and the control constraints.

We have also shown how the analysis presented here can be applied to an integrated

voice-data environment in which voice can be separated from data operation by means of

boundary-based models, such as the one presented in [14]. We have exploited the product-

form circuit-switched voice model to derive data related metrics in an integrated voice-data

network. However, we have not yet completed the study of such an extension.
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APPENDIX

Table Al. - Blocking Probabilipi and Throughput Under Optimal Policies
for the Network of ig. 10 (see Section 4.1)

Circuit Thresholds optimal uncont. %t optimal uncont. %*

1 3 4 5 _ P, Pb gain thruput thruput am
0.5 3 3 3 3 3 0.13528 0.13528 0.0 2.161905 2.161905 0.0
1.0 2 3 3 3 3 0.322029 0.322206 0.054934 3.389854 3.388969 0.026103
1.5 0 3 3 3 3 0.439654 0.446261 1.48052 4.202593 4.15304 1.193183
2.0 0 3 3 3 2 0.512198 0.529719 3.3076 4.878022 4.702812 3.725655
2.5 0 3 3 3 1 0.566943 0.589581 3.83968 5.413216 5.130241 5.515823
3. 0 3 3 3 0 0.607692 0.634854 4.27846 5.884615 5.477187 7.438638
5 0 L 3 3 0 0.717797 0.743659 3.477683 7.055085 6.408533 10.08893
1 0 3 3 3 0 0.839239 0.850857 1.36545 8.038067 7.457160 7.789931

". % gain = 100 (Pb(uncontrolled) - Pb(optimal))/Pb(uncontrolled)

% gain = 100 (Thruput(optimal) -Thruput(uncontrolled))/Thruput(uncontrolled)

Table A2 - Optimal Policies for the Network of Fig. 10
with two different p values (see Section 4.1)

Circuit Thresholds optimal uncont. %t optimal uncont. %
I + 1 2 3 4 5 P, P gain thruput thruput gain
3 1 2 3 3 3 3 0.503803 0.505577 0.350904 3.473378 3.460959 0.358821
6 1 1 3 3 3 3 0.649511 0.654063 0.695910 3.504889 3.459372 1.315755
6 2 0 3 3 3 2 0.65157 0.679974 4.177282 4.878022 4.480360 8.875674
9 0.1 3 3 3 3 3 0.71592 0.71592 0.0 2.670357 2.670357 0.0
9 0.3 3 3 3 3 3 0.727096 0.727096 0.0 2.783617 2.783617 0.0
9 0.5 3 3 3 3 3 0.732078 0.732078 0.0 2.947146 2.947146 0.0
9 1 1 3 13 3 13 i0.729024 0.735929 0.938362 3.522692 3.432918 2.615090

9 2 0 3 3 3 2 10.713058 0.743175 4.052545 4.878022 4.366025 11.72686
9 3 0 3 3 3 0 0.71978 0.755392 4.714285 5.884615 5.136778 14.55850

T % gain = 100 (Pb(uncontrolled) - Pb(optimal))/Pb(uncontrolled)
* % gain = 100 (Thruput(optimal) -Thruput(uncontrolled))frhruput(uncontrolled)

P2+ -ý-> P2=P3=P4=P5

Table A3 - Optimal Policies for the Network of Fig. 10
with three different values (see Section 4.1)

Circuit Thresholds optimal uncont. %t

Pl P24 P5 1 2 3 4 5 Pb Pb gain

3 0.5 3 2 3 3 3 3 0.595280 0.595422 0.023849
3 0.5 9 2 3 3 3 3 0.757864 0.757978 0.01504
3 1 9 0 3 1 3 3 - 3 10.7 4 3 36 2 10 .74 7 13 1 10.50 44 6

9 0.1 3 3 3 13 3 3 10.772332 10.772332 1 0.0 1

T % gain = 100 (Pb(uncontrolled) - Pb(optimal))/Pb(uncontrolled)
P2-4 => P2P3=P4
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Table A4 - Optimal Policies for the Network of Fig. 10 with two different p values
and increased capacity (Ti = 8, Xi < 6, see Section 4.1.2)

PI P2+ rD r Pb(Q) Pb(Q*) Q*

(%gain)t {tmin)t

3 1 6.468452 6.468452 0.075935 0.075935 (6,6,6,6,6,
I(0.0) (0.0) 8,8,8,8,8)

6 1 7.559418 7.559418 0.244058 0.244058 (6,6,6,6,6,
o(0.0) (0.0) 8,8,8,8,8)

6 2 9.596429 9.598803 0.314541 0.314371 (5,6,6,6,6,
(0.0247) (0.0539) 8,8,8,8,8)

9 0.1 5.431453 5.431453 0.422186 0.422186 (6,6,6,6,6,
(0.0) (0.0) 8,8,8,8,8)

9 1 7.977183 7.977183 0.386371 0.386371 (6,6,6,6,6,
1 1 (0.0) (0.0) 8,8,8,8,8)

9 2 9.716658 9.742103 0.428432 0.426935 (5,6,6,6,6,
(0.2619) (0.3494) 8,8,7,8,8)

9 3 11.17181 11.38179 0.468009 0.458010 (3,6,6,6,6,
( 1.8796) (2.1365) 8,8,6,8,8)

9 5 13.51705 14.12021 0.533895 0.513096 (2,6,6,6,3,
1{1 (4.4622) ({ 3.8957) 8,8,3,8,8)

9 7 15.10664 15.91793 0.591712 0.569786 (2,6,6,6,2,
{ 5.3704) }( 3.7057) 8,8,2,8,8)

9 10 16.51665 17.35981 0.662926 0.645718 (2,6,6,6,2,
1 (5.1049) 1 2.5957) 8,8,2,8,8)

Gains are relative to the uncontrolled system.
P2+ => P2=P3fP4fP5
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Table AS--- Optimal Policies for the nominal (nom) and the improved (imp) networks

(see Section 4.2)
p ra rx r* Pb(Q) Pb(QX) Pb(il*) Ox

net %gain)t (%gain)t {%gan)t {%gain)t
2.5 10.1807 10.1811 10.1811 0.18555 0.185512 0.185511 (5,6,6,6,6) (5,6,6,6,6,

nom (0.0040) (0.0042) (0.0175) (0.0183) 8,8,7,8,8)

2.5 10.5556 10.55607 10.55607 0.15555 0.155514 0.155514 (5,6,6,6,6) (5,6,6,6,6,
- (0.0047) -(0.0257) 8,8,8)

3.5 12.0336 12.07499 12.07667 0.31237 0.310001 0.309905 (2,6,6,6,5) (3,6,6,6,5,
nom (0.3438) (0.3578) [_(0.7568) (0.7876) 8,8,5,8,8)

3.5 12.6020 12.63151 12.63151 0.27989 0.278200 0.278200 (3,6,6,6,5) (3,6,6,6,5,
-ip 10.2340) -(0.6021) -8,8,8)

4.5 13.2986 13.48778 13.50657 0.40895 0.400543 0.399708 (2,6,6,6,3) (2,6,6,6,4,
nom (1.4222) (1.5635) _2.0555) (2.2598) 8,8,4,8,8)

4.5 13.9609 14.07038 14.07038 0.37952 0.374650 0.374650 (2,6,6,6,3) (2,6,6,6,3,
- (0.7844) -(1.2824) 8,5,8)

5.5 14.2267 14.57842 14.62406 0.48267 0.469876 0.468216 (1,6,6,6,2) (2,6,6,6,3,
nom {(2.4721) (2.7929) 12.6497) f2.9935) 8,8,3,8,8)

5.5 14.9257 15.19319 15.19319 0.45725 0.44752 0.44752 (2,6,6,6,2) (2,6,6,6,2,
IMP (1.7925) (2.1277) 8,4,8)
6.5 14.9364 15.45569 15.51528 0.54042 0.524440 0.522607 (1,6,6,6,2) (2,6,6,6,2,

nora (3.4768) (3.8757) (2.9568) (3.2960) 8,8,2,8,8)

6.5 15.6425 16.06403 16.06403 0.51869 0.505722 0.505722 (2,6,6,6,2) (2,6,6,6,2,
i(p 12.6946) - (2.5004) 8,4,8)
7.5 15.4950 16.13004 16.23304 0.58680 0.569865 0.567119 (1,6,6,6,1) (2,6,6,6,2,

nom (4.0985) (4.7632) f2.8860) (3.3541) 8,8,2,8,8)
7.5 16.1936 16.69936 16.69936 0.56817 0.554684 0.554684 (2,6,6,6,2) (2,6,6,6,2,
imp (3.1230) - (2.3736) -8,4,8)

8.5 15.9449 16.68042 16.77403 0.62483 0.607519 0.605317 (1,6,6,6,1) (2,6,6,6,2,
nom (4.6127) (5.1997) 12.7697) (3.1222) 8,8,2,8,8)

8.5 16.6290 17.17527 17.17527 0.60873 0.595876 0.595876 (2,6,6,6,2) (2,6,6,6,2,
-M (3.2853),, (2.1117) 8,4,8)

10 16.4753 17.28274 17.36501 0.67049 0.654345 0.652700 (1,6,6,6,1) (2,6,6,6,2,
nom (4.9006) (5.4000) (2.4084) (2.6537) 8,8,2,8,8
10 17.1321 17.69306 17.69306 0.65736 0.646139 0.646139 (2,6,6,6,2) (2,6,6,6,2,

-lp (3.2745) - 1.7068) -8,4,8)

15 17.5489 18.34001 18.39848 0.76601 0.755467 0.754687 (1,6,6,6,1) (2,6,6,6,2,
nom 1 (4.5078) 4.8420) (1.3770) (1.4787) 8,8,2,8,8)
15 18.1136 18.59585 18.59585 0.75849 0.752055 0.752055 (2,6,6,6,2) (2,6,6,6,2,

p (2.6621) }1 (0.8477) 1 1 8,4,8)
T All gains are relative to the uncontrolled system.
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