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Techno-Sciences, Inc.

1 Introduction

This is the final report for the Phase I project "Realtime Control of Multiple

Sensor Systems," (DAAL03-92-C-0025). In Phase I we defined and developed

an analytical framework for solution of a class of sensor scheduling problems.

We developed prototype software tools for their numerical analysis. We also

developed special solution techniques for sensor scheduling in linear Gaus-

sian systems and for Gaussian signals observed through nonlinear functions.

These results establish the feasibility of sensor scheduling methodologies for

a class of sensor and signal processing models.

1.1 Sensor Scheduling and Signal Processing

Sensor technology for military (and civilian) applications has undergone

rapid development during the past decade. Improvements and new devel-

opments include focal plane electro-optical arrays, electronically scanned ar-

rays, multistatic operational modes, active-spread spectrum-waveforms, and

automatic target recognition systems. Conventional systems like radar have

been improved, and new technologies have been placed into operation like

Infrared Search and Track (IRST), Electro-Optical (EO) sensors, and various

type of Electronic Support Measures (ESM) with Automatic Target Recog-

nition capability. Countermeasures and counter-countermeasures have also

been improved and the operational environment has become increasingly de-

manding.

The increased use of multiple sensor systems on platforms has led to

changes in the way sensors implemenations and operations are designed and

used. In traditional single sensor systems the decision processes (detection,
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estimation, tracking, classification, etc.) could be located within the process-

ing unit of the sensor. In effect, the decision process is part of the sensor

system, and it works with the low dimensional signals generated by the sensor

signal processing.

In contrast, in a multi-sensor system, each sensor is only a contributer to a

composite decision process. This data fusion process lies outside the sensor's

processing capability. It brings a new element to the design of sensor systems

in which the operational performance of each individual sensor is important

only as an element of the whole [17]. Sensor fusion is the aggregation of the

information from all the sensors. As currently used, sensor fusion does not

involve the active "control" of the sensor elements.

As used in our work sensor scheduling and control involves the simultane-

ous selection, based on quantitative performance measures, of a configuration

of sensors (from a collection of sensors) to collect data and associated sig-

nal processing (detection/estimation) schemes for the individual sensors in

the active configuration. Sensor management in this sense is a key concern

in design and operation of multiple sensor platforms and distributed sensor

networks in both military and commercial applications. Platforms having

multiple sensors (e.g., satellites or aircraft with radar, infrared, video de-

tectors, ESM, comm links, etc.) must manage the sensor configuration and

coordinate ("fuse") the data obtained from the sensors in use at any time.

The data may vary in quality as a function of the system and target state.

Scheduling and manipulating (controlling the parameters of) the sensor

suite as a function of time and state is necessary to obtain the best over-

all performance (detection, estimation, and identification). Given a sensor

configuration, algorithms are required for allocating confidence or making

decisions based on data collected from different types of sensors - in real

time. These are the two main issues addressed in this research.

For example, radar sensors are more accurate than infrared sensors for

2
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range tracking, but infrared generally supplies better bearing data. Detecting

a target and classifying it using the two types of sensors involves decisions to

activate the radar, to control its parameters (sweep space, range gate, etc.),

and to accept or reject hypotheses in real time based on the two types of infor-

mation being provided by the sensors. This process involves not only sensor

data fusion in the conventional sense; but also dynamic feedback control of

the sensor system itself, including on-off activation of the active (emissions)

sensor, and optimal control of its parameters while active. There can also be

continuous control in the signal processing algorithms (e.g., automatic gain

control). Constraints on emissions to limit self-exposure must be taken into

account in using the active sensor(s). Limiting the search space can improve

the detection of targets in that space, but hinder the detection of targets

elsewhere.

In sensor networks (e.g., satellite surveillance networks or underwater

sonar arrays) one needs to coordinate data collected from many sensors dis-

tributed over a large geographical area, and in some cases manage the com-

munications among the sensors. Conflicts must be resolved and a preferred

set of sensors selected over finite (short) time intervals, and utilized in detec-

tion, estimation, or control decisions. Similarly, large scale industrial (e.g.,

chemical) processes include an information network for collecting and pro-

cessing data, and making the results available to operators and automatic

controllers for actions. The need to collect and coordinate this information

in a systematic way is critical to effective and efficient operation of the plant.

In these problems the dynamic management and scheduling of sensors

may, in principle, be based on optimization of certain performance measures.

These performance measures should include terms allocating penalties for er-

rors in detection and/or estimation. They must also include terms for costs

associated with operating the sensors; e.g., turning sensors on or off, and for

switching from one sensor configuration to another. For example, turning

3
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on an active radar sensor increases the detectability of the platform, and

this should be reflected as a switching cost. In certain applications, using a

more accurate, more complex sensor, may require higher bandwidth commu-

nications and/or more computational resources allocated to that sensor. If

quantified, these costs can be included in the control of the sensor systems.

In distributed networks sensor scheduling may mean the physical move-

ment of a platform (such as a helicopter or airplane) to a particular geograph-

ical location. In large scale systems use of several (often hundreds) sensors

for decision making may provide better average performance, but may re-

duce the response time of the system to changing conditions; and increase

computational and communication costs both in terms of hardware and soft-

ware. The latter are obviously evident in large computer/communication

networks. The values of the operating and switching costs can depend the

values of the state vector. For example, certain types of sensors have ac-

curacy or noise characteristics that vary as a function of the values being

measured. There are costs associated with the transfer of information, or

tracking records, when there are changes in the set of sensors used. These

costs can also depend on the state process.

1.2 Sensor Scheduling and Sensor Fusion

Sensor fusion generally refers to the aggregation of information from several

sensors to produce statistical determinations (detection, estimation, etc.)

superior to the determinations achieved from any single operational sensor.

Sensor fusion, interpreted in this way, is a component of the sensor scheduling

formalism.

In its most classical form sensor fusion involves an aggregate hypothesis

testing procedure (see, e.g., in [18, 38, 40]). Several sensors receive and pro-
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cess data from some phenonmenon, each performing statistical evaluations

of the data. For example, each sensor might implement a Neyman-Pearson

(NP) test on its data stream to decide between two hypotheses (H0 , H1).

The decisions are transmitted to a "fusion center" where further processing

is done to arrive at the "best decision." For example, the fusion center could

implement a NP test on the sensor decisions. Using this formulation, it is

possible to show, for example, that a configuration of N similar sensors, each

characterized by the same probability of false alarm, probability of detection

pair (PF, PD), can achieve aggregate (PF, PD) superior to the best individual

sensor if N > 3 [40]. If the sensors transmit "quality of estimate" (con-

fidence level) information together with the decisions to the fusion center,

then performance can be further improved [17, 40].

Defined in this way, the sensor fusion process may be regarded as pro-

viding information used in sensor management as a dynamical process. For

example, the decision to activate additional sensors could be based on the fail-

ure of the aggregate NP test at the fusion center to provide a decision with

a sufficiently high confidence level using available information. Similarly,

sensors with controllable parameters (sweep rate, sweep volume) could be

commanded to change those parameters to conduct a more effective surveil-

lance. If sensor activation or control involves exposure through emission of

radiation or limits the detection of new targets by concentration of activ-

ity, then these "costs" can be weighed against the detection and estimation

improvements gained by active control.

Sensor fusion algorithms are generally developed based on static infor-

mation (as described above) which may include all the information gathered

to present time. While the signal processing algorithms used at the sensors

might be recursive (e.g., Kalman filtering), the processing at the fusion center

is static; it generally does not update the likelihood (NP) test recursively.1

' In our terminology a recursive process is one which updates its state at any time based
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Figure 1.1: Sensor fusion, scheduling, and control.

In contrast, our formulation of sensor scheduling is essentially a dynamical

process leading to a feedback control strategy to manage the sensor configu-

ration. The diagram in Figure (1.1) illustrates the relationship between these

views of sensor scheduling and sensor fusion.

on the previous state and the new information available. It does not use all past infor-

mation, except as summarized in the "state variables." The Kalman filter is a recursive

algorithm, the Wiener filter is not. Recursive algorithms require fixed memory size (the

state dimension); non-recursive algorithms require "growing memory."

6
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1.3 Sensor Scheduling and Man-in-the-Loop Systems

In many operational environments a human decision maker interacts with the

sensor systems on a continous basis; for example, the Radar Intercept Officer

in tactical aircraft. The human's function includes subjective fusion of the

information presented by the sensors to make determinations about the state

of the operating environment. We shall briefly comment on an example of

the design of interactive multi-sensor management systems (the KOALAS

architecture) to illustrate the role played by a sensor scheduling subsystem

in the man-machine interaction. This is important for some applications of

multiple sensor systems like ground based control surveillance networks (of

satellites); and in civilian systems like criminal entry surveillance systems.

In the work described in [6, 23, 24] the interactive architectures developed

by Barrett and his colleagues [5] for real time decision support system have

been applied to the development of sensor utilization systems for tactical

aircraft. In this architecture, the human operator plays a key role in the

sensor management process. Based processed data from the sensors (a subset

of the total), the operator can inject "hypotheses" into the system, altering

the sensor configuration to evaluate specific possibilities.

Thus, if the infrared search and track sensor (IRST) indicates a target on

a heading, the radar can be activated to provide a range measurement, or if

already active, its sweep volume can be revised to focus along the bearing

indicated by IRST. In the implementations discussed in [6, 23] when a hy-

pothesis is entered by the operator, the sensor configuration is selected (by

a rule based expert system) to "best" evaluate this hypothesis. The expert

system contains knowledge about sensor use provided by subject matter ex-

perts. The overall architecture for this interactive decision support process

is called KOALAS (Knowledgeable, Observation Analysis-Linked Advisory

System).

7
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Our formulation of sensor scheduling could embedded naturally into the

KOALAS architecture (or other man-in-the-loop sensor fusion systems with

similar function). The scheduling algorithm plays a role analogous to the

expert system in selecting the best sensor suite configuration to evaluate a

hypothesis. The selection is based on quantitative models and performance

criteria. Clearly, in situations where such models are not available, or in those

where subjective factors (threat intent) dominate the engagement, quantita-

tive algorithms may not be appropriate. However, if signal and target mod-

els are available and useful, the sensor scheduling is useful. For autonomous

platforms it is perhaps the best choice.

In Figure (1.2) we show the KOALAS architecture modified to incorporate

a sensor scheduling block. In the diagram all elements inside the dashed line

are automatic. The operator interaction takes place through the interface.

The scheduler functions as an automatic controller to manage the sensor

system in respond to inputs from the operator and feedback signals from

the signal processing subsystem. In the absence of operator inputs it would

control the sensor system "automatically" using the algorithms described in

the next section.

An operator input could serve as a manual control, or as a constraint on
the scheduling controller. Alternately, the operator input could determine

the specific cost structure used to determine the optimal sensor configuration;

e.g., weigh radar performance 10 times more heavily than IRST performance

as components of the overall sensor system performance index. Given the

performance index (weightings) the scheduler would compute and implement

the optimal configuration.

This same philosphy could be used for autonomous vehicles in certain op-

erational environments. For example, a priori knowledge about anticipated

operational scenarios could be stored in the system. When a particular sce-

nario is detected (e.g., atmospheric versus extra-atmospheric or deep versus

8
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Figure 1.2: Sensor scheduling in a man-in-the-loop system.
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shallow water operations), then the sensor performance index could be modi-

fied to reflect the scenario. The scheduling algorithm then solves for the best

configuration, given the performance index, and indirectly, the operational

scenario.

In summary, the theme in our formulation is management of a system

of sensors providing data (for signal processing), including information of

widely varying quality about parameters or variables of interest, for control,

detection, estimation, and information fusion etc. The goal of the research

is to develop systematic conceptual, analytical, and numerical methods for

their treatment.

Our specific objective is to quantify the scheduling/management proce-

dures and develop algorithms for sensor schedulng and control. In Phase I,

we demonstrated how this may be done for certain types of sensors and signal

processing algorithms. We showed that the optimal sensor scheduling prob-

lem can be described as an impulse control problem with partial observations

in a finite dimensional state space. We then showed that the partially ob-

served (stochastic control) problem can be transformed into a linear control

problem with perfect observations evolving on an infinite dimensional state

space. We showed that the transformed optimal impulse control problem can

be solved by a system of quasi-variational inequalities (QVIs); the analog of

dynamic programming for control problems with discrete valued controls and

switching costs.

In Phase I we implemented prototype numerical algorithms to solve these

QVIs. Solution of the QVIs leads not only to the optimal cost functions;

but also to the optimal switching schedule expressed in terms of switching

and continuation sets in the state space. We also developed a simplified

scheduling strategy for (linear) sensor systems operating on Gaussian signals.

10



STechno-Sciences, Inc.

2 Summary of Phase I Work

2.1 A Model for Sensor Scheduling for Diffusion Processes

The basic model used in our formulation of optimal sensor scheduling is

as follows: A signal (or state) process x(.) is given, modeled by the vector

valued, nonlinear diffusion process

dx(t) = f(x(t))dt + g(x(t))dw(t), x(O) = •, t E [0,T] (2.1)

in JR'. We consider M noisy observations of x(.), described by

dy'(t) = h'(x(t))dt + Rj/ 2dvi(t), yi(O) = 0 (2.2)

with values in IRdt. Here w(.), vi(.) are independent Wiener processes and

Ri = RT > 0 are di x di matrices.

For linear dynamics, these equations take the form

dx(t) = A(t)x(t)dt + B(t)dw(t), x(0) = •, t E [0,T] (1')

and

dyi(t) = Hg(t)x(t)dt + Rj' 2dv'(t), y'(O) = 0. (2')

Thus, due to the linearity of the problem, the state x(t) and observations

y(t) will be Gaussian.

The sensor scheduling problem is to determine an optimal utilization

schedule for the available sensors, so as to simultaneously minimize the cost

of errors in estimating a function of x(.) and the costs of using and switching

between various sensors. We need to specify these costs. Let ci(x) denote

the cost per unit time when using sensor i, and the state of the system is

11
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x; let kio(x), ko•(x) denote the cost for turning off, respectively on, the ith

sensor when the state of the system is x. The signal processing objective is

to compute, at time T, an estimate ý(T) of a given function 4(x(T)) of the

state.2 The estimation error (cost) is defined by

E{ce(4€(x(T)) - ý(T))} := E{I€(x(T)) - ý(T)12} (2.3)

We use AK to denote the set of all possible sensor activation configurations.

An element v E A is a word of length M from the alphabet {O, 1}. If the 0 h

position in v is occupied by an 1, the tJh sensor is activated (used), if by a 0

the 1th sensor is off. There are N = 2 M elements in AK. A sensor schedule is

a piecewise constant function u(.) [0, T] -+ K.

We let Tj E [0, T] denote the switching times in the schedule; i.e., the

times when at least one sensor is turned on or off. Suppose the schedule

before a switch is v E AK, and z1 E Mh is the schedule after the switch. Then

the associated switching cost is

k.,,(x) = k,o(x) + • ko (x). (2.4)
{iEL'}{iJW fV-"}-

The total operating cost, associated with use of the sensor schedule v E K/

is

c,(X) = c,(X) (2.5)

In (2.4), (2.5), the symbol {i E v} denotes the set of all indices (from the

set {1, 2, ... , M} which are occupied by a 1 in v (i.e., the indices corresponding

to the sensors which are on); similarly the symbol {i f! v) denotes the set of

indices of sensors that are off.
2 State estimation is discussed here as a generic application of sensor signal processing.

Detection and hypothesis testing could be treated by methods similar to those discussed.

12
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The observations, under sensor schedule u(.) are

dy(t, u(t)) := h(x(t), u(t))dt + r(u(t))dv(t), (2.6)

where it is apparent that the available observations depend explicitly on the

sensor schedule u(.). In (2.7), for x E iRn, v E M,

hl(x)xl.1(1)

h(x, v) h'(x)x{1 ,}(i) (2.7)

hM (x)xju} (M)

a block column vector, where in standard notation

1, if the ith position in the word v is occupied by an 1
0, otherwise

(2.8)

Similarly for v E K

r(z) := Block diagonal{R•1/2X{f}(i)}, (2.9)

where Ri are the symmetric, positive matrices defined above. In (2.7)

v(t) := (2.10)
vU (t)

is a Wiener process. Based (2.8), for all V E AK

h(.,v) : iRnn _,RD, r(v) : RD. --+ /RD, D=dl+d2 +...+dm. (2.11)

13
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As an example, consider the case M = 2, N = 4. Theng= {00, 01, 10, 11}

and

h(x, 00) = ],h(x,O01) 0 ~(X0 'h()'

(2.12)

h(x, 10) h= (x)] h(x, 11) = [/l(x)]
while

r(00)=[0 0] r(10)=[R1/ 0]
0 0 0 0

(2.13)

o0 R 2 1 10 "

Clearly the dimension of the range space of y(., v) is D, := E=1 di X{u}(i)..

Also, for all v, y(t, v) E fRD.

Following established terminology for switching (impulse) control prob-

lems (c.f. [10]), we see that a sensor scheduling strategy is defined by an

increasing sequence of switching times rj E [0, T] and the corresponding se-

quence vj E M of sensor activation configurations. We shall denote such a

strategy by u(.), where

vj, t E [rj,rj+i); j=1,2,.... (2.14)

The sensor scheduling problem involves the simultaneous minimization of

costs due to estimation errors and sensor system operation. The estimation

and scheduling processes are interrelated, and we must therefore consider

joint estimation and sensor scheduling strategies. Such a strategy consists of

two inseparable parts: the sensor scheduling strategy u (see (2.15)) and the

14
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state estimator 4. The set of admissible strategies Uad is the customary set

of strategies adapted to the sequence of observations defined in terms of the

a-algebras

("U(')) := a,{y(s, u(.)), s <_ t}. (2.15)

That is, we consider strict sense admissible controls in the sense of [19].

This statement must be interpreted carefully. First, as indicated in (2.15), the

observation data depends (as is evident from (2.7) - (2.10)) strongly on the

sensor schedule u(.). This dependence is non-standard, since the dimensions

of the observation vector and the noise covariance change drastically at each

switching time ri. In standard stochastic control formulations [19, 12], the

dependence of observations y on controls u(.) is generally implicit. This

is a key difficulty of the sensor scheduling problem which limits the use of

standard techniques (e.g., Girsanov transformations). Second (2.15) means

that the switching times ri and the sensor configurations vi, which define

a schedule u(.), must be adapted to the observation data T'y("(), which

itself depends essentially on the values of ri and vi. This is analogous to

"free-boundary" problems in mathematical physics where the location of the

boundary conditions depend on the solution. As we shall see later, the (QVI)

conditions which define the optimal switching cost involve free boundaries

also.

Given a sensor schedule u(.), the corresponding cost is

jTJ(u(.),ý) := E{I¢(x(T) )-¢(T) 12+10 c(x(t), u(t))dt+Ey k(x(t), u(,rj_,), u(T-j) }.

(2.16)

The three terms correspond to the estimation error, the operational cost of

the sensors, and the cost of switching among sensor configurations.

Here for x E 1RP, v,v' E Af c(x, v) c=c,(x), and k(x,v,z/) = k,,(x),.
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In summary, the optimal sensor scheduling including nonlinear filtering

is therefore the determination of a strategy achieving

inf J(u(.), (2.17)
u(.), 41

among all admissible strategies.

This problem involves the simultaneous estimation and optimal control/-

scheduling of a system with partial observations. Using recent research in the

control theory of stochastic systems with partial observations, it is possible

to convert the problem (2.17) into an optimal control problem with perfect

observations of the conditional density of the signals. The conditional density

functions evolve on an infinite dimensional space, which increases the diffi-

culty in solving the system; however, they satisfy a linear (Zakai) equation.

The conversion is described below.

To simplify the presentation, we order the elements of A( according to the

numbers they represent in binary form. For example in the case M = 2, N

= 4 we replace AK = {00,01, 10, 11} by the set of integers {1, 2, 3, 4}. That

is, the one-one correspondence between A( and {1, 2,..., N} is described by

V '-+ (integer represented by v) + 1 (2.18)

k ý-4 binary representation of (k - 1).

This permits us to replace all the v, t/ by the corresponding integers from

{1,2,...,N}.

2.1.1 Transformation of the Control Problem

The transformation is given two steps: (i) reformulate the scheduling problem

as a "standard" impulse control problem; (ii) use a probability (Girsanov)

16
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transformation to rewrite the cost function in terms of the conditional density

which becomes the state for the control/scheduling problem.

Reformulation as an Impulse Control Problem: Consider an impul-

sive control defined as follows: There is a sequence rl < T 2 ... < rk < ... of

increasing stopping times. To each time ri we associate an F,,i-measurable

random variable ui with values in the set of integers { 1, 2, ... , N}.3 We

define

u(t) = ui, ,ri t < ri+,, i = 0, 1, 2,... (2.19)

and set ro = 0. We require that ri f T as i f oo, with rk = T possible for

some finite k.

Let vi be the element of Ar, corresponding to ui via (2.18). Then define

h(x,u(t)) := h(x, vi), ri :5 t < r+,+, (2.20)

where h(x, v) is defined by (2.8), in terms of the given functions h'(.). Clearly

h(., u(t)) maps 1Rf into JRD for all sensor schedules u(.). and is obviously

bounded and Holder continuous in x. Define also

r(u(t)) := r(vi), Tri < t < ri+T , (2.21)

where r(.) is defined by (2.10), in terms of the given matrices Ri, i =

1,2,.. ., M. Clearly r(u(t)) maps Ro into IRD for all sensor schedules u(.)

but it is singular. Define h(x, v) to be the vector valued function
3Recall that N = 2 M and the binary representation of each integer 1, 2,..., N deter-

mines a sensor activation configuration by (2.18).

17
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R 1 /2 hl (x)x{,} (1)

h(x, v) := R '(x)Xf.•(i) (2.22)

R-1/ 2hM(x)x{.}(M)

with X{v}(i) defined as in (2.9). Let

h(x,u(t)) := h(x,v1 ), r < t < r,+,. (2.23)

Clearly h(-, u(t)) maps BV" into jjfD for all sensor schedules u(-). We refer

to u(.) as the impulsive control It defines the decision to select one of the

functions h(., k), k E {1, 2,. .. , N} at a sequence of decision times. This

provides a mathematical formulation of the sensor selection decision process.

To simplify the notation we take O(x) = x. For this choice the selection

of the optimal estimator q(T) is the conditional mean

O(T) = Eu(){x(T) I ••("u('))}, (2.24)

where Eu() denotes expectation with respect to Pu('), the probability defined

by the sensor schedule. Let p(u, t) denote the conditional probability measure

of x(t), given F("u(')), on H?". It is convenient to express (2.24) as a vector

valued functional of p(u, t)

ý(T) = 4(Ib((u,T)) = fJt xdp(u,T). (2.25)

This transformation permits us to rewrite the cost as a function of the

impulsive control u(.) only (i.e., the selection of the estimator 4(-) has been

eliminated):

J(u(.)) = Eu(){IIx(T) - $(p(u,T))II + j0T c(x(t), u(t))dt

18
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+ E k(x(rj), u(r,,u(r,)XjT}, (2.26)
j=1

where XT<T is the characteristic function of the SI-set {w; ri(w) < T}.

To prevent zero cost switching cycles, we assume that the switching costs

are uniformly bounded below

k(x,i,j) Ž ko, x E IR', i, j E {1,...,N} (2.27)

with k0 a positive constant. As a consequence of this assumption, for T finite

the optimal policy will exhibit a finite number of sensor switchings.

The optimal sensor selection problem can now be stated precisely as the

optimization problem: P : Find an admissible impulsive control u*(.) such

that

J~u* 0) inf J(u(.)), (.8J~*.)= (2.28)

u(') E Uad

where Uad are all impulsive control strategies adapted to P.('•u(u)). Problem

P is a non-standard (because the dimension of the state changes) stochastic

control problem of a partially observed diffusion.

The equivalent fully observed problem: Next we transform the im-

pulse control problem, to a fully observed stochastic control problem, by

introducing an evolution equation for the conditional density. Based on the

theory of nonlinear filtering, consider the operator

p(u(.),t)(t) = E{C(t)O(x(t)) I .TY(''('))} (2.29)

for each impulsive control u(.) where the functional C is defined by

Sexp{j0 h(x(s),u dz(s) - ~jIh(X(S),u(S))I 2 ds}
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where T denotes transpose, I I is the ]RD norm.

The notation is chosen so as to emphasize the dependence on u(-). The

operator p(u(.), t) is the unnormalized conditional probability measure of x(t)

given 7YI("u(')), [26]. As we shall see below, it can be written in terms of a

conditional density which satisfies a linear stochastic PDE.

A straightforward calculation [1] implies that

E{IIx(T) - ((p4u,T)112} = EIIP(p(u(.),T))}

where T is a functional on finite measures of iR" defined by

T =II(x)11 2  (2.30)
i(1)

where xz(x) = I1x112, x E IIn, and p is any finite measure on JRn such that

the quantities p(X2) and p(X) make sense.

Using these definitions, we can rewrite the cost corresponding to schedule

u(.)

J(u(-)) = E{'I(p(u(.),T)) +j0 < p(u(.),t),C(u(t)) > dt

+ < p(u(-),r,),K(ui) > X,,<T}. (2.31)
i=l

where < p(u(.), t), V) > denotes inner product in L 2 (JRn), and p(u(.),.) unnor-

malized conditional density which is the "information" state of the equivalent

fully observed stochastic control problem.

The evolution equation for p(u(.), .) is the Zakai equation from nonlinear

filtering theory.

Let

L*: aW+i(x)ai, (2.32)
is-i Ox, O, i5 1 Ox

Introducing the notation
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RT'1 h1(x)x{,} (1)

b(x,v) = Rjhi(x)X{p}(i) (2.33)

Rj-lhM(x)Xp.,}(M)

Then

dp(u(.),t) = L*p(u(.),t)dt +p(u(.),t)6(.,u(t))Tdy(t,u(.))

p(u(.),O) = Po, (2.34)

where y(t, u(t)) is the observation process as a function of the sensor schedule.

Thus, the "state" of the optimal sensor scheduling problem satisfies a

stochastic partial differential equation forced by the "controlled" observa-

tions process dy(t, u(.)). The "controls" u(.) are the selections of the sensor

configurations as a function of time. This formulation of the optimization

problem involves complete observations of the (infinite dimensional) state

p((u(.), t). Using it, we can define optimality conditions using an extension

of the classical theory of impulse control problems [10].

2.1.2 Linear Gaussian Systems

For the linear case, as modeled in Phase I, the Zakai equation reduces to

the standard Kalman filter. Thus if the state x(t) and observations y(t)

are described by equations (1') and (2'), and if we take O(x) = x in the

cost function, then the estimate i(t) (the conditional mean of x(t) given the

observations) and the error covariance (matrix) a(t) are given by

dic(t) = (A - aH'R-'H)1dt + aH'R-1 dy(t) !(0) = E[x], (2.35)

6r(t) = (BB' - a'R-lHa) + Au + am' u(O) = cov(x). (2.36)
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Hence, p(u(.),t) is Gaussian and is given by

p(z,u(.),t) = (det 2u ( , t)) -2 exp(-1(z- •(u( ')'t))'a - (u(')'t)(z-1(u(')'t)))
(2.37)

where n =dimension of the state vector x(t).

2.2 Quasi-Variational Inequalities for the Optimal Schedule

Consider (2.34) with fixed schedule u(t) = j, and let pj denote the corre-

sponding density p(.,j). Then for j E {1,2,...,N}

dpi = L*pj dt + pjhj dz(t), pj(O) = 7r, (2.38)

where

:h(.,j). (2.39)

We set

-Dj(t)(F)(ir) = E{F(pj,,(t))}, (2.40)

where Pj,, indicates the solution of (2.38) with initial value 7r.

To simplify the statement and analysis of the quasi-variational inequalities

that solve the optimization problem, we consider the case N = 2, that is, a

single sensor which is scheduled to turn on or off. Consider the cost functions

C, C(i,.), i = 1,2,

Kg K(1,2)

K 2 := K(2,1). (2.41)

and the notation for the expected cost

C1 (ir) = (Cl,ir) (2.42)
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Consider now the set of functionals U1 (7r, t), U2 (7r, t) such that

U1 ,U2 E C(0,T;CI)

UV(.,t) > , U2 (.,t) > 0

U1 (ir,T) = U2(r,T) = kP(ir)

(2.43)

Ul (7r, t) 4< )l(s -t) Ul(S) (7r)+ l(D 1 t)Cl(zr) dAit
v2(7r,t) _< b2(s -t)U2(s)(r) + "P2 (A - t) C2 (7r) d

Vs>t

(2.44)

U1 (7r,t) • Kl(7r)+U 2(Or,t)

U2 (ir,t) < K 2(7r)+UV(7r,t). (2.45)

We shall refer to (2.43) as the system of quasi-variational inequalities

(QVI). In writing this system we have used the notation U,(s)(r) = UQi(r, s), i =

1,2.

This system defines the "optimal cost" for the sensor scheduling problem

in much the same way that the Hamilton-Jacobi-Bellman dynamic program-

ming equation defines the optimal cost in a conventional optimal (stochastic)

control problem. Solution of the QVI's not only gives the optimal cost, it also

provides an optimal schedule. This is analogous to the case in conventional

control problems in which the optimal control is (roughly) the gradient of

the optimal cost function.

To understand how the conditions define the cost, consider the two sets

of inequalities (2.44) (2.45). At any time in the course of the interval [0, TJ it

is either optimal to use the existing sensor configuration, or it is optimal to
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switch to another configuration. If either member of the first set of inequal-

ities (2.44) holds with equality, then the corresponding sensor configuration

is optimal; that is, use the one which holds with equality. This corresponds

to optimal estimation with a given sensor. Equality in one of the members

of (2.44) means that the "cost to go" Uj(7r, t) is equivalent to the Bellman

dynamic programming condition.

Alternatively, if equality holds in one member of (2.45), then it is optimal

to switch. For example, suppose optimality holds in the first member, then

it is optimal to switch from sensor 1 to sensor 2, incurring switching cost

K1 (7r) and continue using sensor 2, incurring operating cost U2 (7r, t). In this

case inequality will hold in (2.44).

2.2.1 QVIs for the Linear Gaussian Problem

Now consider our Phase I prototype problem of the linear case where the

evolving conditional density is given by (2.37) with u(t) = j. Note that

in this case the problem has been reduced to finite dimensions since we

need only determine the vectors it and ot, and not the infinite dimensional
"state" pg(7r,t). In this case the initial density ?r is parameterized by the

initial vector (x, p) of the conditional mean and variance. The QVIs then

become, for i = 1,2,

Uv(.,.,t) >0 , U2(.,.,t) > 0

Ul(x,p,T) = U2 (x,p,T) = %F(x,p) = E[x2] - E[x] 2 = p

(2.46)

Ue(x,p,t) _ ', (s -t)eU(s)(x,p)+ j DI(A,-t)Ci(x,p)dA

Vs >t
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(2.47)

Ux(x,p,t) K Ki(x,p) + U2(x,p,t)

U2(x,p,t) • K2 (x,p) + U1(x,p,t). (2.48)

To solve the QVIs numerically it is necessary to rewrite them in differ-

ential form (see, for example, [10] or [11] for details). First expand Ui(x +

d5, p + da, t + dt) about (x, p, t) to obtain

Ui(x + di,p + da,t + dt) = Ui(x,p,t) + E-I d.it + -Up ( dat+
Ou I 92Lr i2

dt +- - dit 2 + O(dt)
Sp,t) 20x 2  I (a,,p,t)

where dSit and dat may be obtained from the Kalman filtering and Riccati

equations (2.35) and (2.36). Applying Ti(') to these expressions and substi-

tuting into the QVIs gives

OUi a- 1 2Ui [d±t2 + "O(dt) (Ci(x,p).

-- dt E[did]- -dat - - - '-E [ (2.49)

To simplify the notation somewhat, consider a version of the Phase I

prototype problem with dynamics and observations given by

dxt = -axtdt + dwt

dy= h'xidt + dvt

where a > 0, wt and vt are zero mean unit variance Gaussian (Wiener)

processes, and
h•={O i=1

c i=2
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By varying the constants a and c, the "signal to noise" ratio of the dynamics

and the observations may be changed.

To complete writing the QVIs in differential form, the conditional expec-

tations of di and di 2 , these being the only stochastic terms (depending on

the observations) in the expansion, need to be calculated.

First from the Kalman filtering equation,

E[di;] = E [Aidt + h'a dyfl

= -At dt E [ + h'aE [dy'I'
where

A.= a for i = 1,
a + cor) for i = 2.

Taking as the initial condition x(t) = x, then E[it] = x. From the

observation equation

EidyI] = E[h'xtdt + dvt] = h'xidt,

since vt has zero mean.

Secondly,
E[(dxa) 2] = E[(Am~dt) 2 - 2h'oAdtdy + ('dy i) 2.]

All but the last term have order greater than dt. Hence,

F[(dx ) 2] = E [(h'a' dyi)] + O(dt)

(h = (yi2 +O0(dt)

(h Fi2 [ (dv2) ] + 0O(dt)

= ha' dt + O(dt)

Substituting into the QVI formulation (2.49) gives the differential formu-

lation for the Gaussian case as
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9U1  OUJ1  U

l + ax-f - - 2au() < C&(x,p)
Oa"p

(2.50)

aU2  I' (2) ((2)) 2) X0U 2  (2) (2c~ Ct ) O ~-a~ -c~)) ~

1 / (2)\2,92U2

2.2.2 Numerical Solution of the QVIs

In general, the QVIs cannot be solved analytically, so numerical approxima-

tions must be sought. One method of doing this has been formulated by

Rofman and Gonzalez [22]. They show that the solution to the QVIs for

optimal control problems with stopping times, and continuous and impulse

controls, is given as the maximum element of the set of subsolutions (that is,

none of the inequalities need be solved as equalities). Rofman and Gonzalez

then present a discretization procedure for finding these subsolutions in both
the stationary and non-stationary cases. A summary of their algorithm is

given in Figure (2.1).

To adapt the Rofman-Gonzalez algorithm to our problem (a non-stationary

terminal cost optimal control problem4 ) two minor (and related) modifica-

tions must be made.

First, the stopping time cost must be replaced by the terminal cost con-

dition

U,(7r,T) = AP(r) Vi

"Recall our problem is to generate the best estimate of state at time T by optimally
using some configuration of sensors under defined cost conditions.
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Rof man-Gonzalez Algorithm

Firs write OVIs as:

For a given grid of size h and e>O(Initialize Variables:1
L*i(4j.tqr)=w,(x,.1,) =0; VLi 1.N..QV1,Vp=ONX, Vq=O.NT

Start X Loop:
P=O

Start QVI Loop:.
i= I

wi-,t)= miD Iwj(xp~t,) +kU(j i ); wj(w 1,....,xp~tq)J

iN..QVI NO. 6+

G i (Xp-tq) = WA(P, q), Vi 
NO

< q>- 
NO.q-

,;'(xp,1q)=wi(xp,1q); Vi=1.N.QVI,Vp=D,NX.Vq-ONT

%( 14 xp,tq) -+ Wi(Xp.Iq) ast -+0;. and '(xp,tq) -ýV(x~t) ash -40.

Figure 2. 1: Flow diagram of the Rofman-Gonzalez algorithm for solving QVIs

of two independent variables.
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If, for example, ir is a probability measure and we are estimating the state

(as opposed to a given function of the state), then %F(r) is the variance with

respect to 7r.

The second modification is related to the first. The Rofman-Gonzalez

algorithms must be initialized by a known subsolution of the QVIs. For the

stopping time problems the trivial solution

Ui (X,t) = 0 Vx, t' i

is always a subsolution. For the terminal cost problem, this trivial solution

does not usually satisfy the terminal cost condition. To modify the algorithm

it is necessary to find a suitable initial solution. In general, this will not be

difficult, but will at times introduce minor restrictions on our problems.

For example, returning to the linear Gaussian prototype problem, the

QVIs in differential form are given by (2.50) and the boundary conditions

Ui(X,p,t) Ž0 0,

Ui(x,p,T) = IF(x,p),

Ui (x, p, t) < kii + Uj (x, p, t) for j $ i.

For this case, P(x,p) = var(7r(x,p)) = p. Thus Ui = 0 is not a solution

if p 5 0. Thus the derivative %u = 1, which leads to the condition that

the coefficients (in the QVIs) of t should be bounded by the running cost.

Noting that these coefficients are just the (negative) right hand side of the

Riccati equations which implies

S< ci.

That is, any decrease of the overall cost gained by the sensor lowering the

variance (error) must be less than any cost incurred running the sensor. Thus
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this "restriction" is simply a consistency condition which is satisfied by any

solution. Hence this condition states that an initial condition must in fact

be a solution.

2.2.3 Computation of the Optimal Schedule

Given the solutions Uj(ir, t),j = 1,2,t E [0,T], then the optimal sensor

schedule is constructed in terms of the continuation and switching sets asso-

ciated with the solution. That is, at any given time t E [0, T] it is optimal

to "continue" with the existing sensor - equality holds in one of (2.44), and

inequality holds in both of (2.45). At a point t where equality holds in one

of (2.45), it is optimal to switch. Bearing in mind that the trajectories fol-

lowed by the costs Uj (7r, t), j = 1, 2, t E [0, T] depend on the underlying state

p(u(.), t), the points in the state space at which the members of (2.45) hold

with equality define the boundaries of the continuation sets. The bound-

aries are themselves the switching sets. When the state p(u(.), t) intersects

a boundary, it is optimal to switch.5

To see that this is the case, suppose that u(0) = 1 (we start out using

sensor 1). Then define

r• = inf{Ui(pi(t),t) = K1 (p1 (t)) + U2 (pi(t),t)} (2.51)

t<T

This is the first time at which it is optimal to switch (from 1 to 2). We write

p* (t) = p1 (t), t E [0, -r,"]. (2.52)

which is the state (conditional density) during the (initial) interval that sen-

sor 1 is in use.
5The paper [271 contains the explicit computation of switching and continuation sets

for a class of simple QVI's.

30



STechno-Sciences, Inc.

Next define

-2=* inf { U2(p 2 (t), t) = K 2(P2(t)) + Ui(p2(t))} (2.53)

This is the first time at which it is optimal to switch (back to 1 from 2).

Continuing this process, we construct a sequence of stopping times Trj <
Tr < 7- < .-.- which defines an optimal sensor schedule.

For example, returning to our Phase I prototype problem, Figure (2.2)

shows the solutions U, (x, 0.5, t). These solutions represent U, with the initial

condition of starting with the sensor either off (i = 0) or on (i = 1) for

p = 0.5, which is the steady state error when no sensor is used (sensor is

off). For these solutions, there was no cost incurred to shut off the sensor,

and running and switching costs were considered low. The sensor schedule

is as expected. That is, regardless of whether the sensor was off or on at the

start of the interval, it is off (white region) until the end of the interval at

which point it is turned on (black region6). The sensor is turned on at the

end of the interval for a time interval that will lower the error (variance) to

approximately the steady error (variance) of the sensor's on state balance by

the sensor's running and switching costs. For example, if these costs are too

high, the sensor will remain off.

In higher dimensions the problems and solutions become more compli-

cated since either individual sensors or combinations of sensors may be on.

A simple example taken from the Phase I work is given in Figure (2.3) for

two sensors. The four diagrams represent sensor schedules which initially

start in one of the four configuration (i = 1 both sensors off to i = 4 both

sensors on7 ). In this example, sensor two has five times the gain of sensor

'Throughout these graphs, there is not a consistency of color representation of the

sensors. This is an artifact of the plotting software used. Please see the text of the

interpretation of the schedules.
7 Again note that colors may not be consistent between diagrams.
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Figure 2.2: Solution and sensor schedule for a single sensor.
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one but costs two orders of magnitude greater to run. Switching costs for

both sensors are moderate with no cost incurred for turning a sensor off. But

note that the steady state solutions of the Riccati equations for all cases are
very close, making the sensitivity to the switching coots greater.

For i = 1 (sensor initially off), the sensor generally stays off (black region)

except for a small (white) region where the more powerful, and more costly,

sensor is turned on for a limited time when the initial state variable (x) is

low and likely to be lost is noise. The same behavior occurs for i = 2 where

the more powerful sensor is initially on. In this case the white region (sensor

one on) is slightly large since no "on" switching cost is incurred.

For the other two cases, there is a dramatic change. For i = 3 (the white

region) and i = 4 (the gray region) the second (weak but low cost sensor) is

always on. That is, if no switching cost is incurred for turning this sensor on

it will continue to run due to its low running cost. For i = 4, where the first

sensor is also initially on, it will stay on for a short period to lower estimate

error where needed but quickly shuts down due to its large running cost.

This example indicates the importance of defining good cost functions.
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2.3 Simplified Algorithms for Gaussian State and Sensor Models:

An Alternate Approach

In this section we solve the sensor scheduling problem when the state and

sensor observations satisfy linear gaussian models using an alternate formu-

lation which may be used to validate the QVI formulation. As before, the

optimal state estimate is obtained via Kalman Filtering. We assume that

the running cost associated with each sensor is a constant times the duration

the sensor is used and that a constant cost is associated with turning on

the sensor. Under these assumptions, the optimal sensor schedule is a single

interval sensor sr 1d .le policy. In fact, the scheduling of the sensors reduces

to the schedlli• , of sensor turn-on times, since once a sensor is turned on,

it remains on until the terminal time T.

Scalar State and Sensor Models: Assume that the state and two sensor

observation models obey the following scalar equations:

State dx = axdt + bdw

Sensor 1 dy, = cl xdt + dv

Sensor 2 dy2 = c2 x dt + dv.

Htre we have assumed both observation noises have unit variance. We do

this because the effect of increased or decreased observation noise can be

modeled by an appropriate change in the observation coefficient ci.

A sensor schedule consists of two sets of intervals Ii= { (a', b'), ... , (a'., b,,) }i

i =1,2 where sensor i is turned on at time a,* and turned off at time

bi for j = 1,...,ni. (We assume that the intervals are ordered such that
_a'l < b <_ a' < bi . .. a', < bn, < T.)

The sensor scheduling problem seeks to find a sensor schedule which min-
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imizes the cost function
2) ')+k 2 2+ls~22

J(Ii,12 ) = E((x(T)-!(T))2 )-+kl (bj-aj)-k 2 Z(bj-aj)+njsi-n2 s 2 .
j=1 j=1

Here ki is cost for running sensor i one time unit, ni si is the cost for switching

sensor i on n, times, and i(T) is the conditional expectation of x(T) given

the observations up to T.

The first term in the cost function is the conditional covariance of the

state, at time T, given the observations. It is well known that the conditional

covariance of x given the observations up to time t satisfies a scalar Riccati

equation

(R) { p(t, to; po) = 2 a p(t, to; po) + b2 - c2 p2 (t, to; po)

pi (to, to; Po) = Po0

If both sensors are on, the conditional covariance obeys equation (R)

with parameters {a, b,v 1 + c•}. We let p3 (t, to;po) denote the conditional

covariance when both sensors are on.

The search for the optimal sensor schedule over the class of all possible

sensor schedules can be reduced to the search of the optimal sensor schedule

over a much smaller set of schedules. In fact, it can be shown that the search

space for the optimal sensor schedule problem can be restricted to a search

over the set of single interval sensor schedules.

A single interval sensor schedule is a sensor schedule where ni = 1, i =

1,2. That is, a schedule where each sensor is on at most one time interval.

We now state an important result used to find optimal sensor schedules

for this case.

Fact: Assume that the state and observations for each sensor satisfy the

equations given above. Given any sensor schedule, S = {1,, 121 with ni 5 0,

there exists a single interval sensor schedule, S = {II, I2}, which has cost no
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greater that S, i.e.,

J(11,12) : J(1, 12).

To see how this develops, let =. = (bl - a,) and define

ni

Ii = {(T- LZ 1, T)}.
j=O

It is clear the S incurs the same running cost as S since both have their

sensors on for the same amount of time. It is also clear that S has no

greater switching cost than S since S switches at least once for each sensor.

It remains to be shown that S has no greater conditional covariance. The

complete proof relies on properties of solutions to the Riccati equation.

Finding the Optimal Sensor Schedule: We know that if a sensor is

switched on it will be switched off at time T. Hence determining the optimal

single interval sensor schedule reduces to finding the optimal sensor switch

on times.

The scalar Riccati equation can be solved by separation of variables. The

solution is given by

((Ai coth(Ait + wi) + a)/c Po > (Ai + a)/c2
pi (t; po)

(Ai tanh(Ait + vi) + a)/c? otherwise

where
A- a2 +b2C2A, = A+
wi = coth-l(cP•4o.- a)

vi = tanh-A( -A
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In order to compute some of the optimal sensor schedules we will need to

compute the derivative of pi(t; Po) with respect tc P0

dpi (t; po) Pi~ ( 1(

\ A, )

P A_ (A c2( o - a)2)

=p 2 apo + 2 - c2p •

Let tj be the switch-on time for Sensor 1 and t2 be the switch-on time

for Sensor 2. Let P0 = -b 2/2a. The optimal sensor schedule is found by

enumerating the six possible switching cases, computing there corresponding

optimal costs and picking the case with the lowest overall cost. The six

switching cases are (1) tj < T, t 2 = T; (2) t1 = T, t 2 < T; (3a) 0 < t1 < t 2 <

T, (3b) t1 = 0, t 2 < T; (4a) t 2 < tl < T, (4b) t1 < T, t 2 = 0; (5) t1 = t 2 < T;

(6) t1 = t2= T, no switching.
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Cases (1) and (2)

Let Ati = T - ti, then the cost is given by

Ji(Ati) = pi(Ati;po) + Ati ki + si

setting the derivative with respect to Ati equal to zero yields

P1 (Ati;po) = -ki.

Cases (3a) and 4(a)

Let p3 (t;po) be the solution to the Riccati equation when both sensors

are operating (i.e., c = /Vi7-). We will compute the solution for Case

(3a), a change in notation gives the solution for Case (4a).

Let At 12 = t 2 - tl and At 2 = T - t2 . The cost to minimize is given by

J(At1 2 , At 2 ) = p 3 (At 2 ;p1(At12 ;Po)) + Atl 2 k, + At 2 k2 + S1 + s 2.

Taking partial derivatives of J with respect to At1 2 and At2 and setting them

to zero yields the two equations:

/Pl(At12 ;PO) = i (cf + C3)P2(At12 ;PO)
P3 (At 2 ; Pi (At 12; P0))

P3 (At2 ;pI(At42;Po)) = -((ki + k2 )

Cases (3b) and (4b)

In this case the cost is given as a function of a single time t since the

other sensor is always on. Again, we will work out case (3b). The other case

is obtained by the appropriate notation changes.

Let At 2 = T - t 2. The cost to minimize is given by

J(At 2) = p3 (At 2 ; pl(T - At 2 )) + Tk, + At2 k2 + SI + S2

Taking the derivative of J with respect to At 2 and setting the result equal

to zero yields P3 +(P3) k2

2 p, + b2 - (•2+ )•-)pi
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with P3 = p3(At;pI(T - At;po)) and P, = pi(T - At;po).

Case 5

Let p 3(t;po) be as defined above. Let At = T - t. The cost to minimize

is given by

J(At) = P3(At;po) + At(k1 + k2) + S1 + s2

Taking derivative of J with respect to At and setting the result equal to zero

yields

P53(At;po) -(kl + k2).

Again, to solve find the optimal sensor schedule, solve for the optimal
switch-on times in each of the cases above, compute the corresponding cost

and pick the times which result in the lowest overall cost.

Example: Let a = -1, b = 1, cl -- 1, and c2 = 5. The optimal sensor

schedule depends on the values of the running costs kI, k 2 and the switching

costs S1, s2 . A graph of the optimal schedule switching curves is given in

Figure (2.4). In this example there is no switching cost for either sensor and

the running cost for each sensor range from exp(-8) to exp(4). The graph

is shown in log scale. Regions with the same sensor policy, i.e., t 2 < tl < T,

are shaded with the same color.

We see from the graph that when the running cost for each sensor is low,

relative to the conditional covariance, then both sensors are turned on. We

also see that as the running cost for a sensor is increased its likelihood of

being used is decreased, eventually the sensor is too expensive and hence not

used.

These results have an interesting interpretation. Not only do they tell

how to schedule the available sensors in order to make the optimal decision

in T time units, but they also indicate the minimum desirable duration for

the optimal schedule. That is, the smallest time necessary to obtain the

optimal state estimate.
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Figure 2.4: Switching Curves for Example 1.
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