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Chapter 1

The Random Structural Eigenvalue Problem

1.1 Introduction

In this chapter we will take the first step in the direction of incorporating in the dynamic analysis
of the structures the uncertainties associated with the values of the connection stiffnesses.

Under the assumption that the moment-rotation relationship for the joints is linear, each
connection stiffness is represented by a single parameter, i.e., the slope of the M - 0 curve. This
parameter should be determined from a series of tests performed for each type of connection and
for a given size of the structural elements that converge to the joint. The results presented in
[1], [2] and [3] may be mentioned as examples of such experimental investigations. In particular,
Altman et al. (3] identified the most important parameters that control the initial stiffness in
bolted beam-column connections. Any change in the value of these parameters will cause a
variation in the linear relationship assumed.

Although using the test results it is possible to assign a value to the rotational stiffness of
a given connection configuration, one cannot guarantee that this value will be the same for all
the connections of the same type in a given structure. The values of the connection stiffness
obtained from a test shoullobe regarded as the mean value of the stiffness of connections with
the same configuration. There will always be a degree of dispersion due to the variations in the
several parameters that control the connection behavior. Therefore, it is logical to consider the
connection stiffness as a random variable in the structural model. In this case both the stiffness
and the mass matrix will have random coefficients, since both are function of the fixity factors,
which in turn are defined in terms of the connection stiffness. The finite element equations of
motion of the structure become a set of ordinary differential equations with time-independent
random coefficients. Although the equations of motion are random they are still linear and hence
they could, at least in principle, be decoupled and solved by modal analysis. The eigenvalue
problem associated with the equations of motion also becomes random, and the eigenvalues and
eigenvectors of the system end up being random variables as well. The object of this chapter
is to study this random algebraic eigenvalue problem associated with a structural system with
random flexible joints. The dynamic response of these systems will be addressed in the following
chapter.
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1.2 Connection Stiffness as a Random Variable

The determination of the probability associated with a particular value of stiffness requires the
knowledge of either its distribution function or its density function. In general, the choice of
a distribution to describe the probabilistic behavior of a physical variable is governed by the
nature of the phenomenon. In the particular case of a variable that represents the total effect of
several random causes, the central limit theorem leads to the conclusion that its distribution is
asymptotically normally distributed. As it was mentioned before, there are a number of factors
that contribute to the variability of the stiffness of a given connection. Consequently, it is
reasonable to assume that the stiffness values can be modelled as random variables with normal
or Gaussian distribution.

In our case, the value of the connection stiffness can be regarded as the sum of a deterministic
component and a component representing random perturbations due to the variability in the
controlling parameters. These variations can be caused, for example, by fluctuations in the
material characteristics, the geometry of the connection, the assembling method or the quality
control of the process. Therefore, the stiffness value of the i- th structural joint can be represented
as follows:

K. - K, + a, (1.1)

where Ki is the random rotational stiffness of the joint, Ki is a deterministic constant and a, is a
random perturbation. In order to simplify the analysis the mean value of the random perturbation
will be incorporated into the deterministic component so that ai can be regarded as a zero-mean
random variable. Moreover, if we assume that the probability distribution of the connection
stiffness is normal, then we conclude that ai is also normal, since normal random variables
remain normal under linear transformations. With the above considerations it is straightforward
to show that the first two moments of the random variables a, and Ki are given by:

E{,j) = 0 ; E{Ki) = Ki (1.2)

E {(a,)2} - ,, ; E{/(K,)2} = -- , + k'2 (1.3)

Hence, the mean value of the stiffness is ', , and its variance a2 K is equal to the variance 2, of

the random perturbation a,. These two quantities define completely the probability distribution.

1.3 Second Order Perturbation Technique

In the formulation of a probabilistic finite element method based on the second order perturbation
technique, each random variable is expanded about its mean value and terms up to second
order are retained. The rates of change of the eigenproperties with respect to the fixity factors
calculated in the previous chapter will be used to obtain expressions for the mean and variances
of the eigenproperties in terms of the first and second moments of the random stiffnesses. For
this reason, this type of approach is called a second - moment analysis. The inherent limitation
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of this formulation is that the statistical variations of the random variables have to be small in
order to obtain acceptable accuracy, as it is the case with all perturbation-based methods.

If the random parameters of the structure are substituted by their means or expected values,
we obtain an averaged version of the structural system. Therefore, using the mean values of the
joint stiffness to define the system matrices, the solution of the associated eigenvalue problem
results in a deterministic set of eigenproperties. It will be shown later that these eigenproperties
coincide with the mean values of those obtained through a perturbation method based on a first
order expansion. Hence, to study the difference between the deterministic eigenproperties of
the averaged system and the mean values of the eigenvalues and eigenvectors associated to the
random system, it is necessary to include at least second order terms in the expansions.

The eigenvalue problem for a structural system with N unconstrained degrees of freedom and
R random flexible joints is:

{[K(K)] - Ai(K) [M(K)]} Oi(K) = 0 ; i= 1,2,...,N (1.4)

where [K] and [M] are the stiffness and mass matrices whose coefficients are function of the
random variables K1 , K 2, ..., KR. These variables are expressed in vector form as follows:

S" K12 ... KRT1.5)

The eigenvalues Ai and eigenvectors # become nonlinear functions of the variables K 1 , K2 , ... , KR
and hence they are also random quantities. The specific form of the nonlinear functions cannot be
determined, except for trivial cases. Nevertheless, assuming that the variables K, are constrained
to small fluctuations about their mean values, we can express the eigenproperties as Taylor series
expansions in terms of the random stiffness parameters. The coefficients of the expansions are
evaluated at the mean value vector defined as follows:

k" = {K( fK2 ... k'Rr (1.6)

Therefore, the eigenvalues An be approximated as:

A,(K) = A,(K) + R (K----k.) +

+ R R O 2 A, (Km - km))(Kn - k.) (1.7)
,.I1 n=i1 O 8Kn1 K=z

Introducing the notation:

A, = A,(i) (1.8)

= O-•A (1.9)
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H K - 6K-K K =k (1.10)

and expressing the random perturbations from the mean values of the stiffness coefficients as:

Gmn - Km, - Kmn (1.11)

equation (1.7) can be written as:

R 1 R R
+, = A, + am + E , i f..,O an (1.12)

m=l m1l n=1

Proceeding in a similar way, the second order Taylor series expansion for the eigenvectors can be
written as:

,1,, = + am + am,,. (1.13)
m=1 m=1 n=1

where:

•i= *,(K') (1.14)

Am '0OKmI k

,,,S = (1.16)

In the previous chapter we defined the Taylor series expansion for the eigenvalues and eigenvectors
in terms of the so-called lb4ty factors #i . These non-dimensional factors allowed us to obtain
compact expressions for thecoefficients involved in the calculation of the rates of change of the
eigenproperties. At first sight, it seems convenient here to make use of the same expansions.
However, recalling that the fixity factors are defined in terms of the joint stiffness as:

14 1 (1.17)

= 1+ 3 _F

we observe that if the variables KI are considered to be normal random variables, the same
assumption cannot be extended to the factors pi , since equation ( 1.17) does not define a
Ba • ua•sfmLkalm. Therefore, if we are interested in maintaining the Gaussian distribution
assumption to take advantage of its properties, the expansions have to be written in terms of the
variables a, . However, we can still employ the available expressions for the rates of change of
the eigenproperties making use of the chain rule:

I 3,, =A~ -~ A1 •[, 0 (1.18)

M~m M"8m
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OK. M Mm-(1.19)

A .. 2 + Aq for m = n
Imn• OKra MR Al ga- fr (1.20)

' =Km 8K, •• form~n

82 A. J =*,( ) + 1 fom=(1.21)
=OKra Kn I orH

in which:

I 0Km ( L 3 )(1.22)

02Am -6 (1.23)I K-, (K,+ 31L) 3 (

To obtain the expected values of the i - th eigenproperties, it is necessary to apply the expected
value operator to the expansions ( 1.8- 1.11). Considering equation (1.2), we can write:

R R

E{A,} = A, + 1 A! - E{ama,}) (1.24)

IE•{•} -- + 1 F _iuE{OmG,} (1.25)

2 M=1 n=1

From these equations, we can see that the expected values differ from the zero-order terms
that are solution of the averaged problem, and the difference is a linear function of the covariances
of the random variables.

If the random variables are considered to be uncorrelated, then it is possible to write:

E{O I} =6.a. (1.26)

where 6rmu is the Kroenecker delta, and u, is the variance of the random variable a. • With
this assumption, equations (1.22- 1.23) take the form:

2 ,ui+ 1 .m m (1.27)

E# { = + , ,. . . (1.28)
mini
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The variance of the i - th eigenvalue is given by:

I fi = E {(Ai - E { Ai }) 2 } (1.29)

Substituting the corresponding expressions for Ai and E{fAil given by equations (1.12) and
(1.4), respectively, and considering the linearity of the expected value operator, we can write:

+oE ( R 4a am an)"}(m=1 (m= n=
+iE • i, . Ef am a.} +! ~ ~m=1i n=1i

R ,, l o. o,a,, ,, .
Ir

*~~ ~~ +EF AA'ama.-

(R R

I If we consider the properties of normal zero-mean random variables, we are lead to the conclusionI that the fourth and fifth terms in the above expression must vanish, since they involve oddit RnR

EmomeEsIra m Eaa as )I = 1.1

4, = Z ]E •, •,. { oma)-
i=1= n1

1 +, • AfL, A'*E {am an E , a.) (1.33)

m=1 n=i r=1 *=I

I 10
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I The joint moment of four normal random variables can be written in terms of lower order moments
as follows:i E{amanaa.) = Ela.m an) E{Jaa.} + Eaa,) Efaoa.}+

+ E am a.} E{fa,,a} (1.34)

and the multiple summation in the last term of equation (1.30) can be expressed in the following
form:

iZf' All E { a, a, a,.
m=1 n=1 r=1--I 1

!M, a i fp's + if $i +

m=1 n=1 r=1 #=I

I+n$. •") E am an E{a,a.} (1.35)

Substituting equation (1.33) into equation (1.30), we finally obtain:
I--R R---

m=1 11=1

+ t L E • + " 1 E{aman) E{a,.a)} (1.36)

mz, nil r=1 2-1 =

The expression for the eigeietor variance can be obtained following an analogous derivation:

to: + *ff f I(i"" fin L, , E{a ,}E~a,.and (1.:a)

I 2~~~li = E E ~(~IU 2(.8
m =1 m= 1I~fnn Ef (12 ~a+.)") (1.39)

m=1 n= i rml ,sl
SIf we assume that the random variables are uncorrelated, then equations (1.34) and (1.35)

reduce to-

2 A111) 0
lml n=1

= m, ,=, =!lbi') o 2 (1.39)

(7, ^i f2 f



I 1.4 Numerical Examples

In the first part of this section we will validate the expressions for the first and second order
moments of the eigenproperties derived in this chapter. For this we will consider the plane frame
illustrated in Figure (2.4) and we will compare the values of the moments obtained with the
2nd order perturbation expansion method against the results of a Monte-Carlo simulation. The
Monte- Carlo simulation (hereafter referred to as MCS) is a very powerful method to determine
the performance of systems with random parameters. The method consists in the generation of
a set of systems derived from the original system by assigning values to the random parameters.
All the systems are later statistically processed using techniques of sampling and parameter
estimation [4,5]. The values assigned to the parameters of the systems are obtained by means of
an algorithm that generates random numbers. This requires to select the probability distribution
function that governs the behavior of these parameters.

Once the accuracy of the expressions obtained with the Second Order Perturbation Method
(from now on designated as SOPM) is established, they will be used to obtain the probability
density function of the eigenvalues and elements of the eigenvector. This will allow us to assess the
level of dispersion in the dynamic properties of the structure introduced by the random variation
of the stiffness coefficients. The two-level frame in Figure (2.16) will be used for this purpose.

1.4.1 Example No. 1: One-Story Frame

The subroutine GGNSM of the STAT-IMSL library 161 was used to generate two sets of random
numbers. Both sets of numbers have a covariance matrix equal to the identity matrix. A pair
of 50 uncorrelated standard normal random deviates ({RQJQ},i = 1,2,...,50) with zero mean
value and variance equal to one were generated in this way. It is well known that normal random
variables remain normal under linear transformations. Therefore, these variables can be used
to generate another set of random normal variables ({ki*,k 2,),i = 1,2, ...,50) with mean value
equal to k and standard deviation ak,. The relationship between the two sets is:

kI, = al& + k = (pIL + 1)k ; i=1,2,...,50 (1.40)

k2 Q, = Ok + k€ = (pkQi + 1)k ; = 1,2,...,50 (1.41)

Fifty pairs of numbers representing the stiffness coefficients of the rotational springs at the
beam's ends were generated in this way. The mean value of the coefficients kj6 , k2. is such that
the corresponding fixity factor is 0.50. Two different sets of pair of coefficients were generated
for two values of the coefficient of variation (c.o.v.) of the stiffness parameters, Ph = 0.10 and Ph
= 0.20.

Tables (1.1-6) present the mean values and standard deviations for the eigenvalues and eigen-
vectors of the first two modes of the frame in Figure (1.1) calculated with the two approaches.
The frame was modelled with only three elements and 6 dof because the aim of the analysis is to
compare the accuracy of the perturbation method without being concerned about the accuracy
of the calculated eigenproperties. Tables (1.1) and (1.2) show the expected value and standard
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deviation of the lower eigenvalue of the frame, respectively. The results shown under the Monte-
Carlo column are the sample mean and sample standard deviation. All the tables include the
limiting values corresponding to a confidence interval of 95%. It can be seen that the results
obtained via the SOPM always lie within the confidence interval. Note also that according to the
table, doubling the standard deviations of the connection stiffness produces the same effect on
the standard deviations of the eigenvalues. The same phenomenum can be observed in the c.o.v.
of the eigenvalues in Table (1.3). This reveals an almost linear probabilistic dependence between
the stiffness of the connections and the eigenvalues of the structural system. Examining Table
(1.3) it becomes apparent that the structural system filters out the effect that the uncertainties
in the stiffness of the connections have on the eigenvalues of the system. For instance, when the
c.o.v. of the stiffness of the joints is 0.10, the c.o.v. of the first and second eigenvalue is 0.0139
and 0.0378, respectively.

Tables (1.4-6) show the comparison in the statistics of the first eigenvector calculated using
the SOPM and the MCS technique for two values of the c.o.v. of the connection stiffness. It is
illustrative to discuss some characteristics of the results presented in these tables. The expression
for the expected value of the i - th eigenvector given by equation (1.28), includes the 2nd order
derivatives of the eigenvector. It is shown in Chapter 3 of ref.[7] that these 2nd order derivatives
are obtained in terms of a linear combination of the eigenvectors of the deterministic system
associated with the mean values of the stiffness coefficients. Due to the symmetric configuration
of the structure under consideration, these deterministic eigenvectors (or modal shapes) are either
symmetric or antisymmetric. Thus, the expected values of the eigenvectors of the random system
are also either symmetric or antisymmetric. The same situation occurs with the variance of the
eigenvectors. The expression for the variance of the i - th eigenvector is given by equation
(1.39), and it includes the squares of the 1st order derivatives and the squares of the 2nd
order derivatives. Therefore, for this particular example the variance vectors are also symmetric.
On the other hand, the results of MCS are obtained from the statistical processing of a set of
structures which are not necessarily symmetric, since the stiffness coefficients are uncorrelated
random variables. Therefore, for a sample of finite size the expected values and variances of the
eigenvectors do not necesssily show a strict symmetry. In spite of this fact, the mean values
and standard deviations of all the elements of the eigenvector calculated using the SOPM fall
inside the 95% confidence interval. The c.o.v. for the first mode of vibration are presented in
Table (4.6). The table shows that the modal dof associated with the horizontal displacement of
the ends of the beam (1st and 4th elements) are practically insensitive to the uncertainties in the
stiffness of the connections. Moreover, there is an almost linear statistical relation between the
components of the eigenvector and the stiffness of the joints. In this as well as in the previous
tables the agreement between the perturbation-based results and the Monte-Carlo technique is
remarlable.

1.4.2 Example No. 2: Two-Story Plane Frame

The next example is the two-story plane frame modelled with 42 dof shown in Figure 1.2. The
stiffness coefficients of the connections at the ends of the beams at the first level, denoted as
(a),(b),(c) and (d), are considered as uncorrelated normal random variables. They have a distri-
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bution such that the mean value of the fixity factors is 0.70. Two different c.o.v., 0.10 and 0.20,
will be used to describe the dispersion in the values of the stiffness coefficients.

The probability density function (PDF) corresponding to the stiffness coefficient of one of
the flexible joint for three c.o.v. is shown in Figure (1.3). The multivariate density function
corresponding to the four random stiffness coefficients is obtained as the product of the individual
PDF since the random variables are assumed to be uncorrelated. Figure (1.4) shows the PDF
for the case of two random stiffness coefficients.

If the stiffness coefficients have a normal distribution, the eigenvalues of the system will
also be normally distributed. The PDF of the first eigenvalue is shown in Figure (1.5). The
mean value and the standard deviation to plot the curve were calculated with the SOPM. The
eigenvalues in the horizontal axis were divided by the correspondinor eigenvalue obtained from
the deterministic eigenproblem using the mean value of the stiffness coefficients. The c.o.v. for
the random eigenvalue are 0.0078 and 0.0158 when the c.o.v. of the stiffness coefficients are 0.10
and 0.20, respectively. This indicates that, as in the previous example, the structure is not very
sensitive to the uncertainties in the stiffness of the non-rigid joints. Figures (1.6) to (1.8) show
the PDF for the 2nd, 3rd and 4th eigenvalues. The 3rd eigenvalue is the most sensitive to the
random variability of the connections' stiffness. For c.o.v. of the stiffness equal to 0.10 and 0.20,
the respective c.o.v. of the 3rd eigenvalue are 0.0146 and 0.0296. It can be noted that the 2nd
and 4th eigenvalues do not have a significant dispersion meaning that they are not much affected
by the uncertainties in the stiffness of the connections at the first floor.

The PDFs for selected elements of the lower four eigenvectors are displayed in Figures (1.9-
12). The results for the let eigenvector are shown in Figure (1.9). The random connections
have a more pronounced effect in the modal dof associated with the vertical displacement of the
node in the beam c - d. The two PDF's for this dof depicted in the figure have c.o.v. equal to
0.3072 and 0.6172 for c.o.v. of the stiffness equal 0.10 and 0.20, respectively. Although the effect
is not as pronounced as in the previous case, the uncertainties in the connections also have an
important influence in the rotation of joint (d). The PDF's associated with this dof plotted in
the figure have c.o.v. equalto 0.0253 and 0.0517. On the contrary, the horizontal displacement
of node (d) is relatively insensitive to the random connections, as evidenced by the sharp PDF
for this dof shown in the figure.

Figure (1.10) show similar results but this time for the 2nd eigenvector. The PDF's are similar
to those for the let elgenvector. The PDF's for the modal displacements corresponding to the 3rd
eigenvalue are presented in Figure (1.11). In this case, the largest dispersion is associated with
the horizontal displacement of node (d). The c.o.v. are 0.0239 and 0.0485 when the respective
coefficients for the stiffness are 0.10 and 0.20. Finally, Figure (1.12) displays the results for the
4th eigenvector. Here the vertical displacement of the interior node on beam (c)-(d) is the modal
dof most affected by the randomness of the connections. The distributions have c.o.v. equal
to 0.0712 and 0.1425 when the distribution of the stiffness have c.o.v. equal to 0.10 and 0.20,
respectively.
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Table 1.1: Eigenvalue Statistics: Mean Values.
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Table 1.2: Eigenvalue Statistics: Standard Deviations.
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Table 1.3: Eigenvalue Statistics: Coefficients of Variation.
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Table 1.4: First Eigenvector Statistics: Mean Values.
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Table 1.5: First Eigenvector Statistics: Standard Deviations.
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Table 1.6: First Eigenvector Statistics: Coefficients of Variation.
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Chapter 2

Response of Structures with Random Parameters

2.1 Introduction

In the previous chapter we presented the application of the stochastic finite element method to
determine the statistics of the natural frequencies and modes of structures with flexible random
connections. In this chapter we will apply the same technique to calculate the statistics of the
response of this type of structures when they are subjected to deterministic dynamic excitations.
The level of complexity of the analysis is significantly increased due to the fact that the perturba-
tion expansion that was used in the previous chapter may lead to a solution that is "non-uniform"
or unbounded in time. The perturbation expansion previously used is usually referred to as the
"stmightforvard expandson". The approximate solution generated by this method is only ap-
plicable in the initial instants of time due to unbounded terms appearing in the higher order
terms of the expansion. To overcome the difficulties associated with this technique, a solution
methodology based on the "method of multiple saues" will be developed.

First we will examine the deterministic and stochastic response of single dof systems in which
the natural frequency and the excitation are functions of a set of parameters. The parameters
will be considered as detersjnistic perturbations on a set of initial values in the first case, and as
random variables in the sec~d case. This study will not only allow us to comprehend the cause
and significance of the unbounded terms but the results are important for the final goal, i.e, the
response statistics of multi-dof systems with random time-invariant parameters. The latter study
is undertaken in the last sections of this chapter. For multi-dof systems, the random parameters
will be identified as the stiffess coefficients of the rotational springs representing the flexible
connections. The case of a single and multi-dof system subjected to a simple dynamic loading
will be examined in detail to illustrate the application of the straightforward expansion and the
multiple scales approach.

2.2 Single Degree-of-Freedom Systems

Consider a single dof oscillator with natural frequency w, and damping ratio f subjected to an
excitation f(t):
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i(t)+ 2 w (t) + w2 Yt) = f(t) (2.1)

We will assume that the natural frequency of the oscillator and the excitation are function
of R variables al, a2 , ... ,0 R. The reason for assuming this dependence will become apparent
later when we calculate the statistics of the response. To shorten the notation we will group the
parameters am in a single vector a. These parameters represent perturbations in the original
values of w and f(t). Without loss of generality, the initial or unperturbed state of w and f(t)
will be associated with the zero value of the parameters am . The response of the oscillator will
also be a function of the parameters am and equation ( 2.1) can be written as:

,(a,t)+ 2 fw a,t) + w2 ('a,t) = f(a,t) (2.2)

2.2.1 The Straightforward Expansion

The objective of the analysis presented in this and in the following sections is to obtain the re-
sponse t(a, t) without having to solve equation ( 2.2) and assuming that we know the unperturbed
values of w and f(t). A straightforward perturbation expansion can be used for this purpose. The
method of straightforward expansion is similar to the second order perturbation method used in
Chapter 4 to calculate the statistics of the eigenvalues and eigenvectors. It consists in obtaining
an approximate expression for the response by means of a Taylor series expansion in terms of the
parameters am. Retaining only up to second order terms in the series we can write:

R 1 It it
ri(at) = nt) + E , (t) a + i E L4f(t) a. (2.3)

ml m&=-I n=1

where qo(t) is the response of the system when the parameters assume the initial or unperturbed
values. The superscripts I and II represent, respectively, the first and second order rates of
change of the function r(a, t) with respect to the parameters am evaluated at the initial state of
the system. That is:

•.t)- = -iK, t)= (2.4)
Dam 10-0

- OR~t (2.5)

The derivatives of the response n(a, t) with respect to the parameters am are not known at this
stage. The goal of the solution process is precisely to obtain these derivatives.

To simplify the notation in the subsequent developments the following notation will be intro-
duced:

T)= 4v(t)am (2.6)

92(t0 (2.7)
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When using perturbation methods it is customary to introduce a coefficient e to identify the
order of the different terms involved in the expansions. Employing equations ( 2.6 ) and ( 2.7)
and the perturbation parameter e, the expansion ( 2.3) can then be written as follows:

q(a, t) = 170(t) + 6 i(t) + 62 vh(t) (2.8)

As it will become evident later, for the cases we are interested in, the natural frequency and
the excitation in equation ( 2.2) are nonlinear functions of the parameters a,. Except for trivial
cases, it is not possible to obtain the exact closed form functional relationship. However, the
frequency and the excitation can also be expanded in Taylor series around the initial values of
the parameters am:

RRR
w-e) a + EWa + Ea (2.9)

,u=1 R=1

where the first and second order rates of change of w and f(t) are defined as:

;w &(*) 1()0 (2.11)

8Gm 8am d,, = m 8&n, l

Introducing the following notation the first and second order correction terms:

R R
F, ~W"', a" h1 t M >2141(t)Om (2.13)

1  R J2-•-)= 1 E-f-•,,claa, (2.14)

and using equations ( 2.13- 2.14) along with the perturbation parameter e the expansions in
equations ( 2.9- 2.10) can be written in the simpler form:

W(0) = + W + C2(2.15)

f(a,t) = fo(t) + _ f,(t) + 62 f 2(t) (2.16)

Substituting equations (2.8) and (2.9-2.10) in (2.2) yields:

(Vt) + 6 ,i(t) + C2 (t)) +
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+ 2f (CO + C W1 + 62W2) (40o(t) + c ih (t) + 2i%(Q)) +

+ (0+ 6 W1 + eW 2 ) 2 (%7(t) + £ qh (t) + C217(t))

-fo(t) + e f(t) + e2f 2(t) (2.17)

Collecting terms of the same order in the perturbation parameter, we obtain the following
hierarchical equations:

0(°)": ij(t) + 2 f 0 4o(t) + C2 no(t) = fo(t) (2.18)

O(el) : ih(t) + 2 f0 i(t) + C2 jh(t) = 11(t) (2.19)

0(c2) : 42(t) + 2CfQi(t) + C 2 iy(t) = 12(t) (2.20)

where:

11(t) = f1(t) - 2 zi iwoD(t) - 2Ca wiio(t) (2.21)

12(t) = f2(t) - 2 f,,",,(t) - (2C,,. + w,,) %(t) - 2fw, 41 (t) - 2Cw, ,h(tX2 .22)

It is important to note that the excitation terms k(t) for the first and second order equations
contain, respectively, the solutions of the zero and first order equations. Since the differential
operator in the three equations ( 2.18- 2.20) is the same, these excitation terms associated with
the solutions of the lower q•der equations are a potential source of complications. Indeed, it is
possible that resonance phdzomena may occur in the higher order equations since the forcing
functions for these equations are the solutions of the equations of lower order. In this case the
solutions will have some terms that grow with time which are characteristic of resonant responses.
In the terminology of perturbation methods these terms are called secular terms. As we discusse
later, this problem will take place for almost all excitations.

To examine the pheomenon we proceed to study the solution of the hierarchical equations
(2.18- 2.20). Some of the material in the sequel is well known from the elementary theory of
ordinary differential equations. However, it is believed that its inclusion here is warranted because
it is crucial for our discussion on the appearance of secular terms.
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2.2.1.1 Solution of the Zeroth Order Equation

We begin by examining the zero order equation ( 2.18):

iýo(t) + 2 f Q o(t) + Z2 17(t) fo(t)

There are two ways to express the total solution of equation ( 2.18). One way is to write
down the solution as the sum of an homogeneous or complementary solution tn'(t) and an inho-
mogeneous or particular solution IAM(t):

now() = n(t) + 4H(t) (2.23)

The homogeneous solution has the form:

nff (t) = ae-f' Sin(Cidt + 9) (2.24)

where a and 0 are coefficients to be determined later and Qd is the damped natural frequency:

Cd = c •/- (2.25)

The inhomogeneous solution depends on the particular form of the right hand side term
in equation ( 2.18). The solution ,f (t) can be obtained using, for example, the method of
undetermined coefficients. The complete solution can then be written as:

qo(t) = a e- Sin(rdt + 9) + YJH(t) (2.26)

The coefficients a and 9 must be obtained by applying the initial conditions to the total response
given by equation ( 2.26).

Alternatively, the solution of equation ( 2.18) can be written in terms of the response to initial
conditions 4C(t) and the forced response 4(t):

a

40 now) = nC(t) + 4(t) (2.27)

The response to initial conditions vc(t) is identical to equation ( 2.24):

n(t) = ao e-(' Sin(ridt + Oo) (2.28)

with the difference that the coefficients ao and 9o have to be obtained by applying the initial
conditions only to the solution defined by equation ( 2.28). The forced response tg(t) is expressed
in terms of a convolution integral:

= j o(T) h(t - r) dT (2.29)

where h(t) is the unit impulse response function which for an underdamped system is defined as:

1
h(t) = e-('sin(wdt) (2.30)

Wd
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Therefore, the total solution becomes:

tio(t) = ao e-"ro Sin (Cidt + Oo) + f J o(r) e-r4t-`) Sin (Wd(t - r)) dr (2.31)

Based on the analysis of the results obtained so far, the following observations about the two
solution methods and the potential difficulties associated with them can be made:

When the solution is expressed in the form of equations ( 2.26) or ( 2.31), the terms 7&(t)
or ng(t) are harmonic functions with frequency equal to the natural frequency of the oscillator.
Clearly, these terms will induce secular terms in the solution of the first order equations.

When the excitation is defined by a relatively simple expression, the response can be obtained
using the method of equation ( 2.26). In most situations, there will not be any harmonic compo-
nents with the oscillator's frequency included in the inhomogeneous solution 77 R(t). Therefore,
in this case the only source of secular terms will be the homogeneous solution fr(t). However,
one must take into account that both solutions become interconnected when the total solution is
used to satisfy the initial conditions.

When the integral in equation ( 2.31) is solved for a specific loading function, the resulting
expression will have harmonic components with frequency equal to the oscillator's frequency. If
the initial conditions are zero, this is the only term that will introduce secular terms.

2.2.1.2 Solution of the First Order Equations

To solve the first order equations we substitute equations ( 2.6) and ( 2.13) in equation ( 2.19),
and equate those terms in both sides that are multiplied by the same variable a,.. The m - th
equation of first order can then be written as follows:

(t) + 2 , , ,,,(i) + 02,9,(t) =/,(t) (2.32)

where: E

]fn(t) = f",(t) - 2 fw j(t) - 2 wj w, %(t) (2.33)

Substituting in the above expression the zeroth order solution defined in equation ( 2.26) we
obtain:

111(t) 2=aW1 e2-frat ((I- 2 ) Sin (rdt + 9) + 7 1 =j~a~t +9)+
7 -T o 2(,,, t+ )

+ f.(t) - 2 uI (f ij'(t) + Cj i )) (2.34)

The solution of equation ( 2.32) can be written as the sum of the response due to the initial
conditions and the forced response. For zero initial conditions, the latter term will manifest
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the limitations of the method. Therefore, we will focus our attention on this term. The forced
response can be obtained substituting in the Duhamel integral the excitation defined in equation
(2.34):

= (2Ca (1_f2) 1 e-tc• Sin (Cadr + 9) h(t - )dr-

- 2wa c V-f Cos(6dr + 9) h(t-r)dr +

+ I'f.' (r) - 2 w' (f i.j"(r) + w igH(r)) h(t -r) dr (.50 IM s() (2-35)

Solving the first two integrals the forced response becomes:

171(t)F = 4Caw. ae-•C4 [pdtCOs(Wdt + 9) - r CadtSin (Odt + 9) -

- Sin(ffdt) (p Coa(9) - r Sin(9))] +

+ fj f.(r) - 2 w.(•/•iH(r) + w YJH(T)) h(t -r)dr (2.36)

where the coefficients p and r are:
p = 1- (2.37)

r = •(2.38)

Note that if damping is tIeglected, the first two terms inside the brackets in equation (2.36)
become unbounded due to the terms linear in the variable t.

2.2.1.3 Deterministic Straightforward Expansion for the Undamped Oscillator Sub-
jected to a Step Force

In order to gain insight into the peculiarities of the approximate solutions obtained via perturba-
tion techniques, the specific case of an undamped oscillator subjected to a step load of magnitude
Fo will be considered. The oscillator is assumed to be stationary when the load is applied. The
equation of motion assumes the simple form:

qoet) + W(0)2 q1(&,t) = F0  (2.39)

To express the solution by means of the perturbation expansion in equation ( 2.8) we need
to solve the hierarchy of equations ( 2.18- 2.20). To express the solution of the zeroth order
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I
I

equation ( 2.18) in the form of equation ( 2.26) we need to define the particular solution ,H(t).
By inspection of equation ( 2.39), it follows that:

iff(t)- F• (2.40)

The total solution assumes the form:

0o(t) = a Sin(C + 9) + (2.41)

and after satisfying the initial conditions it becomes:

Fo (1 - Co.(ct)) (2.42)

I Obviously, had we used the alternative approach of equation (2.31) we would have arrived
at the same result.

Next we need to solve the first order equation ( 2.19). We begin by substituting equations
(2.6) and ( 2.13) in equation ( 2.19) and equating the coefficients of the variables an . In this
way we obtain R equations, with a typical equation having the form:

S+ 2.(t) - m(t) (2.43)

3 The excitation term is defined as:

i4'(t) = r2 wmo- (Coe(Cat) - 1) (2.44)

I To obtain the solution of first order we will use this time the convolution integral approach.
Since the initial conditions are zero, the total first order response is:

q m q,(s) = 24~ j', (Co8(0t) - 1) h(t - r) dr (2.45)
Sca0

Carrying out the integration leads to:

Fo- (Co29F) + Ot Sin(rat) - 1) (2.46)

As it was anticipated, equation ( 2.46) exhibits an unbounded behavior in time. Obviously, this
is not in conformity with the physical reality: the response of an undamped oscillator subjected
to a suddenly applied constant force should oscillate about the static response.

To calculate the second order solution we need to use the zeroth and first order solution to
obtain each of the terms q//,,(t) in the second order equations. However, if the solution given by
equation ( 2.46) is used, the solutions of the second order equations will contain terms quadratic
in t. In general, it is possible to show that if we seek a solution based on an expansion of order
n, the n - th term in the expansion will have a secular terms of the form t2 [8].
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The reason why the straightforward expansion fails to approximate the actual response of the
system becomes apparent if we compare the total perturbation solution with the actual solution.
Using equations ( 2.42), ( 2.46), ( 2.13) and (2.8) the approximate solution is:

Fo Co(R) + R
17(t) a! (I - + 2 w,. Z (Cos(Cit) + wt Sin(Ct) - 1) am (2.47)

m1l

whereas the exact solution is : IF0  (1a-Cos(w(a)t)) (2.48)

The approximate solution ( 2.47) tries to reproduce the exact solution with harmonic terms
that have the same undamped frequency 0 of the unperturbed system. Therefore, the approx-
imate and exact solutions differ both in ampitude and phase. The phase difference makes the
two solution stand apart more and more with time. After a certain time, the correction terms are
unable to correct the unperturbed term. In fact, due to the presence of secular terms in the first
order correction in equation ( 2.47), the fundamental assumption of the perturbation method is
no longer valid.

2.2.1.4 Response Statistics of the Undamped Oscillator Subjected to a Step Force

When the response statistics are calculated with the straightforward expansion, the limitations
of the method will also emerge here, as we will demonstrate next. We will consider again the
undamped oscillator subjected to a step loading function, but now the parameters a,,, are zero
mean random variables.

First we will calculate the expected value of the response •(a, t). As it was pointed out
before, the exact dosed formi relationship between the response q(a, t) and the parameters a is
not available. Hence, in orde to apply the expected value operator to the response it is convenient
to express q(a, t) as an expansion in terms of the random variables a,. . Retaining up to first
order terms we have:

IG,t) - i%(t) + E 4(t) a. (2.49)
m1l

Applying the expected value operator E{...} to this expression we obtain:

E{N(a,t)} = 90(t) (2.50)

Therefore, the expected value of the response calculated with a first order straightforward
expansion coincides with the response of the unperturbed system. In other words, the mean
function is equal to the response of the deterministic system in which the random parameters
an are evaluated at their mean values. If instead of equation ( 2.47), we use a second order
expansion, we would obtain second order terms in equation ( 2.50). However, these terms would
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have quadratic secular terms. For undamped systems the second order terms grow indefinitely
and soon the expansion becomes invalid. In any case, the result obtained with the first order
expansion, equation ( 2.50), is also wrong as it is explained next.

To demonstrate the fallacy in the solutions obtained with a straightforward expansion, we
propose to carry out the following conceptual experiment. Consider a sufficiently large number
of undamped oscillator with quiescent initial conditions. Let the natural frequencies of the
oscillators be random variables with the same mean values. Suppose that the same deterministic
loading of limited duration is applied to the oscillators at the same initial instant of time. Due
to the different perturbations in the mean values of the natural frequencies of the oscillators,
their responses will become more and more out of phase with time. Consider now an instant of
time t' sufficiently far away from the initial instant and calculate the instantaneous mean value
of the response at this instant. The initially small differences in the instantaneous values of the
individual responses grew so much that at time t' they are completely random. It is logical to
conclude that the sample mean of the oscillators' responses at this time approaches zero. In the
limit, as we increase the number of oscillators in the experiment, the sample mean estimator tends
to the mean or expected value of the response E{fKt')). Evidently, the mean value calculated
with a straightforward expansion of any order would never be equal to zero for the undamped
case.

If we repeat the experiment with a set of damped oscillators the discrepancy in the straight-
forward expansion results described before will not manifest with the same intensity. In this case
the individual responses of each of the oscillators would independently tend to zero by virtue of
the damping in the system. Therefore, if we calculate the sample mean at increasing instants of
time we will obtain that a sample mean that decreases with time. If we use the straightforward
expansion to calculate the expected value of the response, it will yield a value that does tend to
zero. However, it should be clear that this result is due to the presence of damping in the system
and is not by way of probabilistic reasons as it should be.

Let us turn back our attention to the undamped oscillator subjected to a step load. We will
attempt to obtain the variace of the response using a fist order (straightforward) perturbation
expansion. The variance of the response can be obtained from:

0,;(t) = (q(@4t) - E{,Ka, (2.51)

Substitution of equation ( 2.49) in ( 2.51) yields:

C+- ,1) w.w. E{a,,} (2.52)
in=i n-•

Taking into account equation ( 2.46) the variance becomes:

O'Ro(Co.Q.Cit) + Cat Sint Zat) -t n~ (2.532=) 1, (2.53!rn-



If all the random variables am are assumed to be uncorrelated, this expression reduces to:
R 2

7 4 (Cos(Cit) + wt Sin(-at)

Examining the above expression we conclude that the use of a first order straightforward
expansion to calculate the response variance gives rise to a quadratic secular term.

2.2.1.5 The Method of Multiple Scales

We have shown that using an approximate solution that does not take into account the change
in the frequency due to the perturbations in the parameters of the oscillator gives rise to a
series of problems that also affect the response statistics calculations. We will examine another
approximate method that can explicitly take into account the modification of the frequency. This
technique, known as the method of multiple scales, was originally conceived by Nayfeh [8] and it
has been successfully used in the solution of weak nonlinear systems.

We will consider again equation ( 2.2) for a viscously damped oscillator in which the natural
frequency is a function of R parameters al,C2, ... , aR. We will again seek a solution in the form
of an expansion but now the terms in the expansion will depend not only in the parameters am
but also in products of amt, ,•mat, etc. We can then write:

q(a,t) = V(a1l,02,...,ancat,0a2t,...,aRt, t) (2.55)

The solution can also be written as:

q(a, t) = ?Xa1,a2,...,0R,To,T1,T2, ...,TR) (2.56)

where the variables Tm are defined as:

Tin = Om t (2.57)

We could have considered that the solution is also a function of terms aCmt2 , Omt 3 , etc. This
is equivalent to keeping second, third, etc. terms in the expansions. Since the analysis with the
multiple scales method is more complicated than with the straightforward expansion, in order to
simplify the presentation only first order terms are retained in the expansions.

The variables To and the set T1, T2, ...,TR can be thought of as two different time scales which
justify the name of the method. Indeed, since am is a small perturbation, T, represents a slower
scale than the zeroth order scale To = t.

Due to the functional relationship assumed for the response q(a, t) in equation ( 2.56), the
time derivatives in equation ( 2.2) need to be expressed in terms of the new time scales To and
T1,T 2,...TR . Using the chain rule:

d(...), ) + 0R a) (2.58)
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2(...) 8= (...) a2(...)
dt2  m - o' +2 2 am (2.59)

In order to simplify the notation in the subsequent developments we introduce two differential
operators:

I z... L)am (2.60)B rn , •1~""),,

I -2') = a2() (2.61)

82'7 m-1 OT a-FM

Using the above notation and the perturbation parameter e as a book-keeping device to keep
track the order of the magnitudes of the different terms involved, equations ( 2.58 - 2.59 ) can bewritten as:

as:-d('... + (2.62)

d2 .. 82 .) + 082(...) (2.63)
dt2  -HO -R

It is becoming clear now that we will replace the ordinary differential equation of motion
(2.2) by a partial differential equation, thus complicating the original problem. However, this

apparent complication is far outweighed by the inherent advantages of the multiple scales method

I [8] as we will have occasion to verify it.

Alike in the straightforward expansion, the natural frequency and the loading function have
to be expanded in terms of the variables a,. The series will be truncated at the first order and
we will consider that the excitation depends only on the lower time scale To . Hence, w(a) and
f(a, t) are approximated wilh the expansions:

R
+~e E ~ WM~m (2.64)

m=1

R

f(At) = fO(TO) + E !4To)am (2.65)
min]

where the superscript I indicates the first order rate of change of the functions:

""I= IuI - mo =if(T°) O (2.66)

Introducing the following definitions:
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I = R •(2.67)

I f(To) = •f4 (TO) am (2.68)

equations (2.64 - 2.65 ) can be written as:

I W(a) = w + e w (2.69)

f(a, To) = fo(To) + e ft (To) (2.70)

The response is also expressed as a Taylor series expansion truncated at the first order:

R
9(a,t) = ,o(To,TiT 2,...,TR) + 4M, (To, TT 2,...,TR) am (2.71)

The rates of change of the response are defined in the usual manner:

IL(TO,T1,T 2,...,TR) f (et) (2.72)

Introducing the following notation for the summation term:

ji(TO,Tl,T2,...,TR) E 4_ i(TOTl,T 2,...,TR) am (2.73)
m=1i

I we can write:

,(0,t)'- 11O(TO, Ti,T2,...,Ti) + eh (TO, T1, T 2 ,...,TR) (2.74)

I Substituting equations ( 2.62- 2.63), ( 2.69- 2.70) and (2.74) in ( 2.2) lead to:

I 82 2(...) )(ý

+ +2 (+ wi)( +e +))i+

I+ (a + WI)2 (% + e?) fo(To) + ef 1 (To) (2.75)

Collecting the terms of the same order in the perturbation parameter e lead to two hierarchical
equations of motion:
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0(0) : 0 2+ =fo(To) (2.76)
a roh U0 + C42 y

0(6'): Loo + 2 f C + 2 • A=f (2.77)

where the excitation in the first order equation is:

11 = f,(To) -(2.78)

Also in this case one should bear in mind that equation ( 2.77) actually implies R equations of
first order, each of them associated with the coefficients et. in the definition of V, , equation
(2.73). Moreover, it should be noticed that here also the excitation term in equation ( 2.78)
contains the response of the equation of lower order, as well as the first two derivatives of the
response.

2.2.1.6 Solution of the Zeroth Order Equation

We will proceed to examine the response of the zeroth order equation ( 2.76). As we discussed
earlier, its solution can be written as the sum of the homogeneous and inhomogeneous solutions
f(t) and r4H(t), respectively:

qO(TO,T,,T 2,...,TR) = f4(T0,T,,T2,...,TR) + gr(To) (2.79)

The homogeneous solution has the explicit form:

vA!(TOTIT2,7...,TiR) = ae-076 Sin (r, 7To + 9) (2.80)

It is important to note thabthe coefficients, and 0 are constant with respect to the time scale
To . However, in general, they do depend on the scales T. That is:

4 = a(T79,T2 ,...,ITR) ; 9= -(T7,T 2 ...,"TR) (2.81)

2.2.1.T Solution of the Pint Order Equations
Substituting in equation ( 2.77) the operators defined in equations ( 2.60- 2.61) and taking into

account equation ( 2.78) we obtain:

it 02 - R R
an + 2(a Ae + C2• ,elm =

Rf (o A 02E ,10 - C R R
f00 o 2,a 2 C (2.82)

2 Ml Mal
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Equating coefficients of the variable a,. in both sides of the equation leads to:

o+ 2f oo+ (2.83)
aro OTO

where:

= f/(To) - 2 82, 2 f oo- 2CDw o (2.84)

Substituting the zeroth order solution defined by equations (2.79) and ( 2.80) in the above
equation and carrying out the derivatives indicated, equation (2.84) assumes the form:

7; + 2 f C o"; + C02 =

0 Om
=2• Zj OT + a ° ,,a a -2ý + (g2 _ ). -i'T* Sin (CjTo + 0) +

8a 0~~C~ Cos (CiT 9
CD (f. a('• Hat~ m• -. Oy- - ) e-0~ +o(dT 0)"1+

+ f,'(To) - 22 f Ol (To) - 2• T,(T 0) (2.85)T0 o

The first two terms in the right hand side of equation ( 2.85) will give rise to secular terms
in the first order solution. In order to obtain a uniform expansion, i.e. free of secular terms,
the method of multiple scales impose that the coefficients of the trigonometric functions with
frequency equal to the unperturbed natural frequency must vanish:

+ a -8-" (2(2 - 1) w, -- 0 (2.86)

ae W a, = 0 (2.87)

Solving these equations we obtain the two coefficients a and 0 that wil guarantee that no secular
terms will occur in the expansion, at least up to the first order.
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2.2.1.8 Deterministic Multiple Scales Expansion for the Undamped Oscillator Sub-
jected to a Step Force

Before proceeding with the calculations of the statistics of the response it will prove advantageous
to apply the method of multiple scales to calculate the deterministic response of an oscillator sub-
jected to an excitation described by a mathematically simple expression: a step forcing function.
For simplicity, damping will be neglected and the oscillator is assumed to be initially at rest. The
equation of motion reduces to equation ( 2.39)

i(a t) + F(0)2 •(a,e) = F0

The solution of order zero is:

no (To, TI, T2, ..., Tn) = a Sin (at + 9) + L (2.88)

For this particular case the equation of first order becomes:

824 +a2n' =2 (a -w .,o) Sin ( +To+9) +
or, T M \OTmn

- 2 a - Co,(aTo + 9) - 2r F0 (2.89)
8CTa

The problematic terms are the two trigonometric functions with frequency a. Therefore, the
conditions for elimination of secular terms require that:

&T 1, a = 0 (2.90)

8 = 0 (2.91)

From the second equation it follows that:

a = a+O(e2 ) (2.92)

Note that the coefficient a is constant with respect to the time scales Tm . However, it may
depend on time scales of the second order (which we did not include in the analysis). This is
indicated in equation ( 2.92) with the term 0(62). The other coefficient 9 can be found considering
equations ( 2.90) and ( 2.92). It follows that:

R
0= EWIT" + 0o + O(E2) (2.93)

mn=i

The solutions of the R equations of first order consist of the particular solutions only. Therefore,
by inspection of equation ( 2.89) we can write:
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i aF0  (2.94)

Substituting the coefficients a and 9 from equations ( 2.92- 2.93) in equation ( 2.80) and
adding the zeroth and first order solution according to equation ( 2.74), we obtain:R R

t) = ao Sin t + LW,'24  nmt + 00 + f ( -I _ Mm) (2.95)

The final task is to obtain the undetermined coefficients a0 and 0o. Evaluating the above expres-
sion in 17(0) = 4(0) = 0 it is easy to show that the total solution is:

F°1 2 R ( R

17(t) = 2 1 (- C ~ E Wji-mCo + E Q;L m t ))(2.96)
It is interesting to compare the multiple scales solution, equation ( 2.96), with the straightfor-
ward expansion solution, equation ( 2.47). We immediately see that, unlike the straightforward
expansion, the multiple scales solution does include a first order correction in the unperturbed
natural frequency Cj.

2.2.1.9 Response Statistics of the Undamped Oscillator Subjected to a Step Force

The case in which the parameters am are random variables with zero mean will be examined
next. The objective is to calculate the mean value function and the variance function of the
response q(t).

To obtain the mean value we apply the expectation operator to equation ( 2.96):

E{t)(} = E {-( -(Ji4n (1 - CoS (t + •Wt amt (2.97)
S m=1 I \--

This expression can be re-accommodated as follows:

rnIi -E am) Co( t +r amt) t (2.98)E{nt) ) Cos 1-o MM I )=D,=

Before continuing it is relevant to underscore the fact that even though we used a first order
expansion, the expression for the expected value will differ from the response of the unperturbed
system. This is in contrast with the results obtained with the straightforward expansion.

We need to solve the multiple integrals associated with the following expected values:

E Co (t + tWoam, t
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4-0f0 J..2 f (C" a,... a.) Co(t + >W. a.mt) dal da2... daR (2.99)M=1

E{( w,,air) Cos(rat + W.a-t

f FF.F(ala2 ... an)(E4 10am) COS (Cd + Eia",mt) dal da2 ... daR
(2.100)

where the function f (a1, 02, ..,a.) is the joint probability density function of the random vari-
ables a. . The evaluation of these integrals is rather laborious. The final results are:{(o

E ,Cos t + E,.,,,,t = e- Coso(Cat) (2.101)

{os) (o(it + f(I , t)}

v \ml fnsl

~tSi(4t~(u~ 2 c e-;~r (2.102)
vn=, -ffl;•q~m

Therefore, the expected value of the response can be written as:

Eiq~)} = 32 (1 - (Coa(0,i) + Q(t) Sin (rit)) R(t)) (2.103)

where the following notation is used:

R 2
R , ffnm (2.104)

(t)= 2 t (2.105)

R(t) =e- P (2.106)

Next we will determine the variance of the response. We begin by calculating first the mean
square value of the response. Using equation ( 2.96), we can write:
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@-2a +

R R

+2 a4-m - I)Cos t + 2W, amt
m--=I (0---Ia I C os t ," (C R m )

- L--W.o' t L. (2.107)

The double summation terms in the variables aman have been neglected in the above equation.
Applying the expected value operator on equation (2.107) and recalling that the variables am

have zero mean, we obtain:

E({(t)2} = () 1 2E{ :w 1)Co( f 0. ) -Ef_) ( 2 I(C 1)o s (rt t
(/ RR

- Et -Wa.m -1 Co 2' t + E •a46amt) (2.108)
--I m=1 0 M=

To proceed further we need to calculate the expected values of expressions that involve the square
of the cosine function. This, in turn, requires to evaluate the following multiple integrals:

"2 (" t){Cos( t + R )} a

I--IF

f J(.F a l'02.. OR)C082( t+f>4WIa",t) dalda 2 ... daR (2.109)

E {( Wwf.am Co2 (rt + Y amt)} =

R 2c (at Ro
- .C ... f (--2...-R) EW-I-am) Cos + E Wm-' a t dal 2 ... daR

oo m=! M--1

(2.110)

After performing the evaluation of the integrals we obtain:
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2 (C R L )} 1( R
E Coo t + . am ' = 2 1 + II e-( ut)3 Co. (Wt) (2.111)

E{(Ei n )C8(G + W~~m)}=E •' am Cos t, + F••• m

R 1 ) 2 -(,n R t2t

-- t Sin (20t) E I(umwm)e(U~w ) 171 e-(fw~ (2.112)
m---1 nfi l;n#m

Using the above results along with the expected values of the expressions in equation ( 2.101-
2.102) and ( 2.104- 2.106), the mean square response can be written as:

E1 =(t) = (-) (! - 2(Coss(Ct) + Q(t)Sin(Cat)) e-Pt 2 +

+ 1 (Cos (2Wt) + 4Q(t) Sin (Wt)) e- 2  (2.113)

We note that as time passes, the mean square response tends to the value of the unperturbed
system. That is,

li3 E{l0t)2} C02 (2.114)

Finally, to obtain the response variance function we have to substitute equations ( 2.103) and
(2.113) in the following expression:

-. = E{frt)2} - (E{j(t)})2  (2.115)

2.3 Multi-Degree-of-Freedom Systems

We will consider structural systems in which the mass and stiffness matrices as well as the
excitation vector are function of the set of parameters al, a2, ... IR. These variables represent
perturbations on the values of a certain set of parameters of the system. We are specially
interested in the case in which the parameters am represent random variations about the mean
values. Using a vector a to collect the set of random variables, the equations of motion can be
written as:

[M(a)J i(a,t) + [C] *(gt) + [K(a)] v(at) = F(a,t) (2.116)

The excitation vector is assumed to be a function of the parameters a, in order to include
excitations of seismic origin in the analysis. In this case the vector P(a, t) assumes the form:
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F(a,t) - - [M(a)] ri,(t) (2.117)

where !g(t) is the acceleration of the base and r is the vector of influence coefficients.

The solution of the equations of motion ( 2.116) can be obtained applying perturbation
techniques to the coupled equations of motion or to the uncoupled system of equations. We will
examine both cases.

2.3.1 Perturbation Method Applied to the Coupled Equations of Motion

To obtain a solution in the form of a perturbation expansion it is necessary to replace all the
system matrices as well as the response and excitation vectors by their respective Taylor series

expansion with respect to the variables a. Keeping only first order terms, we can write:

R

[M(&)J = [MI + M [Mi] om (2.119)

F* 0t = F(t) + JF"e'(t Om (2.120)
m=1

S(O,t) = 10(t) + E (t)Wa, (2.121)
m=1R

To shorten the notation the following terms are defined:

[K] =E [K-'1 am (2.122)

[MMM I Om (2.123)

m=1FI(t) = E PLO() am (2.124)

u(t) = E 1,W(t)a (2.125)
m=1

Equations ( 2.118- 2.121) can then be expressed as:

(K(a)] = •k] + e [Ki] (2.126)

[M(W)] = [Al + 6 [Mi] (2.127)

49



F(a,t) = P(t) + C FP1 (t) (2.128)

1(a,t) = 0o(t) + C V1 (t) (2.129)

Substituting the expansions in equations ( 2.126- 2.129) in the equations of motion ( 2.116) gives:

([Q] + - [M]) (i(t) + ei1(t)) + [IC(10(t) + Cii(t)) +

+ ([K] + e [KI]) (vo(t) + e %(t)) = P(t) + e F1 (t) (2.130)

The following hierarchical equations are obtained after collecting terms of the same order in the
perturbation parameter e:

O(WO) = [A?] i0(t) + [C]io(t) + [k] 1o(t) = 1F(t) (2.131)

O(e1 ) = [A?] it(t) + [C]4 1 (t) + [k] si(t) = PI(t) (2.132)
where:

P1 (t) = F,(t) - [Mflio(t) - [Kl]uo(t) (2.133)

It is important to keep in mind that equation ( 2.133) actually implies R systems of equations.
This is so because the vectors u(t) and P(t) are defined as linear combinations of R vectors ul,(t)
and F4m(t), respectively. Note also that the two sets of equations ( 2.131- 2.132) possess the same
matrix differential operator and only differ in the excitation term.

It will be assumed that the damping matrix corresponds to a classical damping model or that
the system has Rayleigh's damping. Hence, the zeroth and higher order systems can be decoupled
using the following transformations: (2.134)

SM(t) = [4] (t) (2.135)

The eigenvectors in [4] are those of the undamped unperturbed system. They are obtained from
the solution of the eigenproblem:

{[k] - X, [R]) ji = 0 (2.136)

Substituting the expressions ( 2.134- 2.135) in equations ( 2.131- 2.132) and premultiplying on the
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right by the transpose of the matrix [f] leads to the following two sets of uncoupled differential
equations:

O(eO) : iji(t) + 2 i Oi i)i,(t) + D? % (t) = Ni,(t) (2.137)

:(e1 ) ij, (t) + 2 i oi •s1(t) + i = NRi(t) (2.138)

where the modal excitation terms are given by:

NNI (t) = TjP(t) (2.139)

I,,) = *TF,(t) - r (t) - 1 iT %(t) (2.140)

The vectors rA and #i in the last equation are defined as:

rr = WT [M1] [4] (2.141)

-T = [KI] [41 (2.142)

Recalling that the vector si(t) is defined as an expansion in terms of the parameters am and that
fh(t) and v1(t) are related through the transformation in equation ( 2.135), we can express th(t)
as:

R

(t) M = a (2.143)

Each of the first order terms identified with the subscript 1 in equation ( 2.138) is defined as
a summation of derivativeslaultiplied by the variables am . Substituting these expressions and
equating the coefficients of the same variable am one obtains R equations with the form:

e. (t) + 2 f,(D,ýf (t) 4. O, q,.t)

N N

- , E4,1'.(t) - rii. (t) - r,. N.(M)-
m1n k1~;k#,

N
-Vii. Ilio(t) - E 'Pik. 11ko(t) (2.144)

kml;l~i

in which FPi. and rik. are the elements of the following two vectors:

IT. = ýT [MM/] [i (2.145)
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* ýjr [K].' (2.146)

It is seen that the excitation in the i - th equation of first order includes the i - th modal
acceleration io (t) and displacement % (t) obtained from the solution of the zeroth order equation.

These functions will act as resonant loading for the first order equations, therefore introducing
secular terms in the solutions. Liu, Besterfield and Belytschko [39,40] proposed to use a procedure
based on a numerical Fourier transform to filter out the harmonic components in the excitation
of the first order equation. Eliminating in this way the terms that lead to secular terms they
were able to obtain a uniform expansion. It should be pointed out that the secular terms appear
because the solution is only valid for short periods of time. Although by eliminating these terms,
the expansion is rendered uniform, this process does not intrinsically improve the approximate
solution. Indeed, the method still tries to estimate the exact response using terms with frequencies
equal to the natural frequencies of the unperturbed system.

2.3.2 Perturbation Method Applied to the Decoupled Equations of Motion

In this section we will present an alternative way to apply the perturbation technique for the
solution of the equations of motion ( 2.116). Although we may not know this matrix, it is
always possible to decouple the equations of motion using the eigenvector matrix [f(a)] in the
transformation:

u(a,t) =- [(a)] 0(a,t) (2.147)

The only conditions are those usual in modal analysis, namely that the system must be linear and
classically or proportionally damped. If the system has Rayleigh damping, that is if the matrix
[C] is defined as a linear combination of [K(a)] and [M(a)] , the equations of motion can also be
decoupled, but the modal dimping ratios would be function of the parameters a,, . We are not
going to study this case and we will concentrate in the case in which the damping ratios & are
all independent of a,. . The uncoupled equations of motion obtained from the transformation
(2.147) are:

j(a, t) + 2 ,&wi(a) 1ij(a,t) + w,(a)2 q,(a,t) = N(a,t) (2.148)

where the i-th generalized force is:

N,(at) = #,(a)T P(a,t) (2.149)

This method is more amenable for analytical study using the results of Section 2.2.2. Therefore,
it is adopted to examine in detail a specific example.
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2.3.2.1 Deterministic Response of Multi Dof System Subjected to a Step Force

Consider an undamped multi-dof system in which the excitation is defined by a mathemati-
cally simple expression. The same step loading function previously used for single dof system is
selected. The excitation vector is then:

F(t) = FOSU(t) (2.150)

where S is a vector with constant coefficients, F0 is the magnitude of the load and U(t) is the
Heaviside function. Ignoring the system damping the equation ( 2.148) reduces to:

#i,(a,t) + w,(a)2 q,(O,t) = N,(a,t) (2.151)

where:

N,(a,t) = Fo #,(a)T S U(t) (2.152)

A crucial simplification will be made at this point. We will neglect the effect of the parameters a,,,
on the eigenvectors #(e) in the definition of the modal excitation Ni . A similar assumption was
used by Prasthofer and Beadle [11] in their study of the response of a system with a single random
parameter. This assumption will greatly simplify the calculations of the response statistics in the
next section. We can then write:

-TN ,(a, t) =, R[,(t) = Fo #- SO~) (2.153)

Recalling the expression ( 2.96) in Section 2.2.2 for the response of a single dof system sub-
jected to a step force we have that:

•t) ( 1 - ( Co.o t + wI,,,m (2.154)

1 - + L Wt" aI W Wi mffil( m=fi

where -IN, Fo-T

To obtain the response in terms of the physical coordinates U(t) we will make use of the same
simplification as in equation ( 2.153):

N
Ui(t)= E 4 i',j(t) (2.155)I j=1

2.3.2.2 Response Statistics of a Multi-Dof System Subjected to a Step Force

We will consider now the problem of determining the statistics of the response of a multi-dof
system in which the mass and stiffness coefficients are function of random variables al, C2, ... , OtR.

As before, these variables represent random perturbation about the mean values. The mean
values will be assumed equal to zero.
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The mean value of the displacement of the iN- th dof can be calculated with equation ( 2.155):

Elu,(t)) = 4,, Ejqi(t)} (2.156)

Using the results of Section 2.2.2 the expected value of the modal displacement %7 (t) is defined
as-
aE{i(t)} = N- (1 - (Co8(Coit) + Q i(t)Sin(•jt))e- 2 P, t) (2.157)

where:

R2

QO(t) = 2 Pjt (2.159)
-,j

To obtain the variance of the response vector s(t) we proceed as follows. The variance of the
i - th displacement can be calculated according to:

a.2U(t) = E{ui(t)2} - (E{ts(t)})2  (2.160)

Recalling equation ( 2.156) the second term in the right hand side of the previous equation can
be written as:

I N N
(E{ui(t)}) 2 = F 4,k 4,ik E{qj(t)} E{iq(t)} (2.161)

j=l kul

Moreover, according to equaion ( 2.155):

N N

Ui(t)2 = , E ,, 4f , 'i,( t ) 17 (t) (2.162)

It is convenient to write this expression as:

N N-i N
=(t)2 1E.' 2? q,(t) 2 +2 • 4 4i2, F 7 (t) 1,(t) (2.163)

ju! j=i k=j+l

The first term in equation (2.160) can be obtained calculating the expected value of the above
expression:

N N-i N
Elui(t)2 } = '4• Ef %(t)2) + 2 E • 4,, 4,, E{,b(t) ,h(t)} (2.164)

j4=1 k=j+I 54



The first term of this equation is the mean square value of the j - th modal displacement. This
can be calculated using equation ( 2.113) for a single dof system:

If % v(t)2) = Nj2(3

-2(Cos(4j t) + 2 Q,(t) Sin(Qjt)) e-, +I 1

+ j (Cos(Wjt) + 4 Q(t) Sin((2wit))e- ) (2.165)

where Pi and Qi(t) are defined in equations (2.158 and 2.159).

The terms in the second summation in the mean square value of the response are the expected
values of the product q,(t)qk(t). After some algebraic manipulations, the expression for these
expected values reduces to:

IE{9(*()qk(t)} = ,"•./ -

-Ak(t) e- 2 Pi t2 - Akj(t) e-1 Pkt- +

S+ B,1(t) e-sf S + Ci,(t) e- i DA 0 (2.16)

where the following definitions have been introduced:

I 4.(t) = Cos(4Drt) + 2t + Sin(ct) (2.167)

B,.(t (A,.(t) = (C+Co) t) + 2 tL (2.168)

(((COS((•, + Qs) t) + 2t (L--! + "•!'- Sn ((Co, + Q.) t)) (2.169)
C,.(t) = MCa Co

2 
a

= , , (2.170)

mM1
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N,.. E(TI~.(4"m (2.172)
mesl

R2s,.. = + W,. ) (2.173)
m--)

D,. r(sw) (2.174)

Finally, the variance of the response is calculated from equation (2.160) with the two terms
defined by equations ( 2.161) and ( 2.164) along with equations ( 2.165) and ( 2.166).

2.3.2.3 Numerical Examples

The plane frame shown in Figure (1.1) will be used to present the calculation of time-history
response statistics for a multi-dof system.

We will examine the undamped response to a step loading function acting on joint (a) in
the horizontal direction. The stiffness coefficients of the connections at the beam's ends are
considered as uncorrelated normal random variables. The mean value of the stiffness coefficients
is such that the corresponding fixity factor is 0.50, and two different values of c.o.v., 0.10 and
0.20, will be used to describe the degree of uncertainty in the distribution.

Figure (2.1) shows the time history for the expected value of the horizontal displacement of
joint displacement of joint (a). The curves were normalized by dividing them by the maximum
value of displacement of the system with (deterministic) rigid joints. The time ordinates were
also divided by the fundamental natural period of the rigid system. The effect of the uncertainty
associated to the connection stiffnesses can be asen in this figure: instead of oscillating with
constant amplitude, the expected value of the displacement presents a decrement for successive
cycles. As time increases, the expected displacement tends to a constant value. This effect can
be also seen in Figure (2.2) which shows the expected value and the mean square value of the
horizontal displacement of joint (a), for a c.o.v. equal to 0.20. As time increases, the mean square
value also tends to a constant value.
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Figure 2.1: Expected Value: Horizontal Displacement of Joint (a).
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Figure 2.2: Expected Value and Mean Square Value: Horizontal Displacement of Joint (a).
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Chapter 3

Conclusions and Recommendations for Future Work

3.1 Conclusions

A finite element model of a beam element was formulated to incorporate the effects of the flexi-
bility and eccentricity of the end connections on the dynamic behavior. A variational formulation
was employed to obtain the mass and stiffness matrices that consider both effects. The system
matrices were expressed as the sum of standard finite element matrices plus correction matrices.

The model developed was used in several numerical examples to examine how the dynamic
properties and response of structural elements are affected by the finite size and flexibility of
the connections. It was observed that the lower natural frequencies diminish as the connection
stiffness reduces, whereas their values increase with the joint size. It was shown that a structure
with initially rigid joints and non-coincident natural frequencies, may present frequency crossing
phenomena when the stiffness of the joints is changed. For structures subjected to localized har-
monic excitations it was shown that changes in connection stiffness can alter the frequency which
presents the maximum amplification. The case of structures subjected to seismic excitations
was also considered. Sever4design response quantities of a ten-story framework were calculated
usiug a response spectrum method and a modified SRSS rule to combine the modal responses.
It was shown that the joint characteristics (stiffness and size) have a more pronounced effect on
the design displacements than on the design forces. For the structure considered, it was observed
that an increase in the size cf the connections provokes an increase in the design base shear and
a decrease in the design displacements.

Expressions to calculate the derivatives of eigenvalues and eigenvectors with respect to the
fixity factors were derived explicitly, and they were used to study the eigenvalue sensitivity to
changes in the stiffness of the joints. It was shown that, for a given structure and depending
on which joints are perturbed, there is a maximum sensitivity interval for each eigenvalue. It
was also observed that it is possible to determine a certain pattern of perturbations that will
produce the maximum variation of a given eigenvalue. In general, this is achieved by introducing
on selected joints, perturbations which do not have necessarily the same magnitude.

To take into account the uncertainty in the values of the connection stiffness, they were
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modelled as random variables. A second order perturbation approach was used to formulate a
stochastic finite element model, which was used to predict the statistics of the eigenvalues and
eigenvectors. The results were validated by comparing them against a Monte-Carlo Simulation.
An excellent agreement was observed. The numerical examples showed that the level of dispersion
induced by the uncertainty of the connection stiffness varies with the eigenvalue number and is
different for the different components of the eigenvectors. For the example considered, it was
found that an almost linear statistical relation exists between the eigenproperties and the stiffness
of the joints.

The calculation of the statistics of the time-history response of single and multi-dof structures
with random parameters was studied. It was shown that the use of the straightforward expansion
leads to results that are not in agreement with the physical reality, from a probabilistic point of
view. A solution methodology based on the method of multiple scales was proposed to overcome
the shortcomings associated with the straightforward expansion technique. The formulation
developed was used to determine the response statistics of a structure subjected to a simple
loading case.

3.2 Recommendations

It is hoped that the work in these two reports can open the door for future studies that will
further enhance the understanding of the phenomenon. Some of the possible extensions and
generalizations of this study are the following:

The combined effect of the connections flexibility associated with rotational, torsional and
extensional degrees of freedom can be included in the finite element model.

The energy dissipation in the joints can be taken into account by means of rotational dampers
at the joints. An equivalent viscous damping model can be used to define the coefficients of
the dampers. The corresponding damping matrix may be developed following the methodology
presented in Chapter 2 of tre first report.

The sensitivity analysis presented in Chapter 3 of the first report can be also be extended to
include the effect of localized damping in the joints.

The effect of the correlation among the random variables representing the stiffness of the
connections can be included in the stochastic eigenvalue problem in Chapter 1 of the second
report.

The methodology developed in Chapter 2 of the second report can be generalized to include
more complicated loading functions than those used in this study. For instance, the case of a
linearly varying excitation can be very useful to study the response due to loadings defined by time
histories formed by linear segments, such as earthquake accelerograms. In this case one should
also consider the case in which the initial conditions are different from zero at the beginning of
the time interval in which the load is divided.

The effect of damping, neglected in the analysis in Chapter 2 of Part II, can be taken into
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account in the calculation of the response statistics. This is specially important to be able to treat
seismic excitations or other non-impulsive loads. The modal damping ratios can be regarded as
deterministic variables or, in a more general but also more complicated case, as random variables.

Finally, the nonlinear characteristics of the moment-rotation curves should be taken into
account. In this case the finite element matrices developed in Chapter 2 of Part I can be used as
"tangent matrices" for the nonlinear analysis.

6
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