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PREFACE

This Note documents insights into the use of computer modeling for difficult policy

problems. These insights have been arrived at in the context of the project "Measuring the

Operational Value of Intelligence and Electronic Warfare (OPVIEW)." The project, part of

the Applied Technology Program, was undertaken by the Army's Arroyo Center. Its

objective is to develop a methodological approach and supporting model as tools for

anaiyzing and measuring the operational value of Intelligence and Electronic Warfare (IEW)

in combat outcome terms. This Note expresses a general "vision" of how to use exploratory

modeling to support policy studies. To see how this vision is being applied to analyzing the

contribution of IEW to combat outcomes, see N-3 101-A, Methodological Considerations in

Using Simulation to Assess the Conihat Value of Intelligence and Electronic Warfare.

THE ARROYO CENTER

The Arroyo Center is the U.S. Army's federally funded research and development

center (FFRDC) for studies and analysis, operated by RAND. The Arroyo Center provides

the Army with objective, independent analytic research on major policy and management

concerns, emphasizing mid- to long-term problems. Its research is carried out in five

programs: Policy and Strategy; Force Development and Employment; Readiness and

Sustainability; Manpower, Training, and Performance; and Applied Technology.

Army Regulation 5-21 contains basic policy for the conduct of the Arroyo Center.

The Army provides continuing guidance and oversight through the Arroyo Center Policy

Committee, which is co-chaired by the Vice Chief of Staff and by the Assistant Secretary

for Research, Development, and Acquisition. Arroyo Center work is performed under

contract MDA903-9 1 -C-0006.

The Arroyo Center is housed in RAND's Army Research Division. RAND is a

private, nonprofit institution that conducts analytic research on a wide range of public policy

matters affecting the nation's security and welfare.

Lynn E. Davis is Vice President for the Army Research Division and Director of the

Arroyo Center. Those interested in further information concerning the Arroyo Center
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should contact her office directly:

Lynn E. Davis

RAND

1700 Main Street

P.O. Box 2138

Santa Monica, CA 90406-2138

Telephone: (310) 393-0411
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SUMMARY

The use of computer models for most policy analysis purposes has a fundamentally

different character from what is classically considered modeling in engineering and the hard

sciences. Models in the physical sciences are often used to make detailed predictions; most

systems of concern to policymakers, however, cannot be predictively modeled. This Note

describes how "exploratory modeling" provides a rationale for how computer models can

be fruitfully employed in support of policy studies. It also suggests improvements that could

be made both in the methodology and technology of computer modeling for policy.

The use of computer models for policy analysis has encountered a variety of

difficulties, including:

"• Unwieldy size

"* Problems with verification and validation

"* Inadequate sensitivity analysis

"* User inability to understand model internals and outputs

"* Systematic bias arising from considering only those phenomena for which good

models can be constructed.

Potentially undesirable consequences of these difficulties include using models to

rationalize institutional prejudices, poor models driving out careful thinking, and tending to

emphasize those aspects of a problem that can best be simulated. The result can often be

that computer models provide an illusion of analytic certainty for problems that are not that

well understood or, in the worst cases, provide scientific costume for points of view that are

self-serving. Many of these problems are the result of a confusion between predictive

modeling and the exploratory use of models to support reasoning about complex problems.

Most models used for policy studies will have signiticant associated uncertainties that

bar their use for prediction and make validation of model correctness impossible. When

experimental validation is no longer possible, no model can be asserted to be a correct model

of the target system, and no conclusions can be safely drawn without examining alternative

models.
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For problem areas in which prediction is not possible, computer models may

nevertheless be useful as a means to assist reasoning. Even quite simple models are capable

of exhibiting behaviors that surprise their creators. Consequently, unanticipated implications

of our assumptions may be revealed by building and executing models. Even when a model

is not validated, it can serve as an "inference engine," showing us where innocuous

appearing assumptions lead to predicted behaviors at variance with initial expectations. By

throwing light on obvious but treacherous assumptions, computer modeling can perform an

important service in the search for understanding. Thus, the use of models can help us to

discover novel insights, although establishing the relevance of any such insight to particular

problems must be accomplished outside of the models.

In exploratory modeling, a model run cannot be considered a prediction of events in

the world; it is rather a computational experiment that yields information about the model

itself. Where prediction and experimental validation is not possible, no single "true" model

for the system of interest can be agreed upon. However, in such situations we need not be

restricted to the use of any single model in our reasoning. Although all plausible models

cannot be examined, insight can be gained by exploration of a number of them.

The goal of exploration is a compelling argument illuminating the choice among

policy options. In constructing such an argument, models must be built and used in service

to an analytic strategy, and in a study's conclusions they are relevant only in the context of

an argument that takes their limitations into account. The unaugmented outputs of a

nonpredictive model never have a particular meaning for policy.

Because a thorough search among all plausibility models is not possible, analytic

strategies will often focus on the elucidation of critical cases that support choosing one

policy from a list of options even when the exact range of outcomes is unknown. Examples

are the discovery of taxonomies of worst cases that allow choosing among options by risk

aversion, the use of a fortiori arguments, and identifying cases where expenditures make a

difference or where competing models may be distinguished. In this way, even where

models do not predict, they can be used to discover facts true of all plausible models or to

convince by example. However, their value is always relative to a logical context

established outside the models. The argument is the central result, not the outputs of any

computer program.

Exploratory modeling allows for the flexible allocation of resources (human as well

as computational) to those aspects of the problem that are judged most critical in arriving at

such an argument. Given a fixed analytic budget (in dollars, people, or time), analysis must

provide the best insights possible based on what is known about the problem at hand.



- vii -

The increasing availability of computer power makes aggressive pursuit of

exploratory modeling a growing possibility. However, this will require changes in both the

technological support for computer modeling and the methodology of model development.

This Note suggests several innovations in the methodology of model construction that would

facilitate better exploitation of exploratory modeling's potential. These innovations include:

"Model design driven by the question being asked rather than by details of the

system being stu(Iied. Rather than building a single model which is used to

answer a variety of questions (as would be possible for predictive,

experimentally validated models), the model is designed to answer a specific

question. Models made to serve study goals will result in beticr studies than

studies driven by what can be modeled.

" The use of multiple models rather than a single "monolithic" model. Since no

model generated will be a valid representation of the true state of the world,

there is no need to produce a single model. Consequently, the complexities of

the target system can be represented by an ensemble of models and by

supporting analysis. The scope of any individual model can be designed to

maximize its utility for answering a specific question (including the need for

understandability and sensitivity analysis). The linear process of developing a

conceptual model, implementing it as a program, and running cases is replaced

by a much more iterative approach, in which preliminary modeling leads to

insights that affect the design of subsequent models.

" Model development by a process of "selective resolution." This approach uses

aggregate models for preliminary analysis that then guides the development of

more detailed models. In particular. the aggregate models are used to discover

what factors are critical to deciding a particular question, allowing only the

most critical factors to be disaggregated in subsequent modeling.

The Note also suggests improvements to computer technology (in computer

language, human interface, and complexity management tools as part of an integrated

simulation environment) to support modeling. The methodology proposed here would in

many cases replace a complex monolithic model with numerous simpler models. Relative

model simplicity would be obtained by exporting complexity outside the model and into the

surrounding computational environment and analytic context. One reason why this shift is
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attractive is that when complexity is not buried inside a model, more powerful software tools

can be provided to manage it. Aggressive exploitation of the approach championed here

requires the development of such tools. These tools taken together amount to a computer

environment to support exploratory modeling. Such an environment should allow smart

people to navigate efficiently through the space of plausible models and model outcomes to

construct lines of reasoning and to make themselves smarter. Proposed computer tools

would meet the following three general needs:

, Support for iterative and adaptive modeling

* Assistance in managing the complexity of numerous models, cases, and

relationships between them

Means for portraying the results of exploratory modeling.

The use of exploratory modeling cannot make the uncertain certain, nor can it make

complex problems simple. But it can motivate better use of computers in support of policy

analysis, provide for a better allocation of resources in dealing with the real problems, and

afford some protection against fooling ourselves.



ix -

ACKNOWLEDGMENTS

The ideas articulated here have developed in the conte.t ot 'igorous research into

simulation at RAND, and many of my colleagues have contributed in one way or another.

The author appreciates the thoughtful review comments of Patrick Allen, Edison Cesar,

Edward Hall, James Hodges, Iris Kameny, Eric l.arson. Jed Marti, Norman Shapiro, Warren

Walker, and Robert Worley.



- xi -

CONTENTS

P R E F A C E ..................................................... iii

SU M M A R Y .............................. ..................... v

ACKNOW LEDGM ENTS .......................................... ix

Section
1. INTRO DUCTION ......................................... .I

2. THE PROBIEM: lPRETENDIN( TO 1)O WHAT CAN'T BE 1)ONE .... 3
The Shortcomings of Computer Models ........................ 3
W hy M odels (;o W rong ................................... 6
Trying to Predict the Unpredictable ........................... 8

3. EXPLORATORY MODEIING ................................ II
The Search for Insight ..................................... 11
Sensitivity A nalysis ....................................... 13
Using Exploratory Modeling to Support Policy Analysis ............ 14

4. IMPLICATIONS FOR BUILDING EXPILORATORY MODELS ....... 17
Question-Driven Modeling versus 1)ata- Driven Modeling . ........... 17
Not One Model, but Many .................................. 18
Selective Resolution ...................................... 19
Computer Technology to Support Exploratory Modeling ............ 20

5. SCIENCE. OPERATIONS RESEARCH, AND THE ROLE OF THE
COM PUTER ......... .......... ......................... 26

B IBLIO G RA PH Y ................................................ 29



-1-

1. INTRODUCTION

The use of computer models to support policy analysis' is a troubled business.

Studies using large computer models have met with numerous difficulties, including

problems with verification. ',alidation. sensitivity analysis, and opaqueness of model

internals and outputs. These problems have often caused the justification of these models to

be questioned, and the use of comiputer models has on various occasions been criticized as

"bad science." "an excuse for not thinking," or even as "fraudulent" (Hodges, 1991;

Freedman, 1981; Schrage, 1989; Slocklisch, 1975). Such criticisms have been aimed at the

use of computer modeling in varied domains including economics, military science, and

global climatology. Even proponents of computer modeling as a methodology will admit

that there are ollen signiticant problems with model quality.

The use of computer models for most policy purposes has a fundamentally different

character from the paradigm of modeling in engineering and the hard sciences. In particular,

it is important to distinguish between "predictive" models that may be experimentally

validated to predict detailed behavior in a target system and "exploratory" models that

cannot. Failure to properly recognize this distinction is the primary cause for most of the

problems that have been encountered in the use of computer modeling for policy analysis.

The confusion between prediction using experimentally validated models and other uses for

modeling is extremely dangerous as model outcomes can be misleading when erroneously

interpreted as predictions.

Enormous increases in the availability of computational power in the past few years

has made the exploratory use of computer models possible for the first time. The

exploratory use of nonpredictive models can usefully inform decisionmaking, but it requires

a different approach to modceing than is used when prediction is possible.

The rationale of "exploratory modeling" advanced here explains how computer

models can fruitfully support policy studies. It also suggests improvements both in the

methodology and technology of computer modeling for policy. Where prediction and

experimental validation are i.jt possible, no single "true" model for the system of interest

can be agreed upon. However, in such situations we need not be restricted to the use of any

iComputer models have other uses, such as gaming systems in support of training or
as a representation of expert knowledge. This Note does not conside- these uses; it focuses
solely on the use of modeling to support analytic studies.
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single model in our reasoning. This Note explains how this flexibility (supported by modern

computing capabilities) opens up new options for modeling complex systems, avoiding the

use of large models and easing problems with verification, understandability, and sensitivity

analysis.

Section 2 describes the problems to which computer models are prone and analyzes

why they occur. Section 3 describes and attempts to justify the paradigm of exploratory

modeling. Section 4 considers the implications of these ideas for the methodology of

building models and for desirable supporting computer technology. Section 5 relates points

made here to developments in computational science generally.
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2. THE PROBLEM: PRETENDING TO DO WHAT CAN'T BE DONE

THE SHORTCOMINGS OF COMPUTER MODELS

Consider the following fictional account.

In 199x, the Joint Chiefs decide they need to develop improved means for

making (and defending) procurement decisions. (This story would not change

much if the problem was avoiding global warming or preventing the next

economic recession.) In order to analyze the differential impact of alternative

decisions on potential combat outcomes, they decide to build the penultimate

combat simulation. The wisest experts in military science are drawn together to

define the model. A crack team of programmers is assembled to implement it

on the most advanced computers, using state-of-the-art software tools. All

relevant databases are made available for the eflort. In all cases, the best

regarded modeling techniques are used, and military experts are consulted to

ensure the realism of each submodel. In order that the penultimate model be

valid for a wide range of contingencies, all phenomena that might potentially be

influential on battle outcomes are included, and all details that might prove

pivotal are represented. This results in a very detailed model (because of a nail,

the shoe was lost, because of the shoe the horse, etc.). The model is seen as

realistic because it includes many factors, and lots of hard engineering data can

be used, enhancing the model's credibility.

The resulting computer program is, of course, quite large, involving several

million lines of code. And because new studies often suggest needed

modifications, the length continues to grow even after the model becomes

operational. For the model to execute within a reasonable time it must run on

the newest massively parallel supercomputers. Even on these machines, only a

few cases can be run. The main constraint on how fast cases can be run is not

execution time but the time required to set up the hundreds of thousands of input

parameters. The outputs of the model are so voluminous that figuring out who

is winning is not trivial either. These problems are met by yet more computer

programs that automate the process of setting up initial conditions and
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summarizing the outputs. The effective study turnaround time remains long,

however, because the computer software requires highly trained operators, and

they unfortunately are in short supply. It is still difficult to understand why

certain simulated results occur, but warfare is a complex business, and no one

really expected simulation to make that complexity go away. In spite of these

problems, the state-of-the-art graphics makes for great demonstrations and

study outputs are very compelling to their sponsors. All of the software

managers and military action officers get promoted.

After some time, however, the penultimate model begins to develop enemies.

Outputs often tend to show little impact for some types of forces or weapon

systems, even though proponents may consider them crucial. Upon

examination, certain aspects of model output can be demonstrated to be

unrealistic. This is ascribed to details that failed to make it into the model.

Some assumptions about the nature of warfare that were made in designing the

model are contested by detractors. Although there are far too many inputs to do

a thorough sensitivity analysis, occasionally someone discovers a case where a

small change creates a big swing in outcome. This is pointed out to be not

unrealistic, but is distressing to those who are rationalizing multi-million dollar

expenditures by comparing simulation runs. In response to these problems the

model is frequently revised. Unfortunately, its size make revision nontrivial,

and making sure revisions have not created obscure bugs is very time

consuming (unfortunately, some of the original programmers have moved on :o

new jobs). Eventually the entire enterprise collapses under its own weight, and

use of the penultimate model is abandoned. Work immediately begins on its

successor.

This story is admittedly dramatized and oriented to a worst case. Nonetheless, there

exist failed simulation models whose story is quite similar, and most large simulation efforts

for policy analysis have encountered at least some of the problems mentioned here. Wise

analysts are of course not as foolish as the protagonists of this story. However, the effort to

build the penultimate combat simulation model is completely consistent with existing

conventional wisdom, evidenced both by the way we build models and the way we talk

about them.
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Recently, many have voiced their criticisms of big modeling efforts in policy areas

(Hodges, 1991). These critics generate lists of problems to which computer models are

prone. The following is yet another such list:

" Computer models often tend to be large and to continue growing throughout

their history.

" It is difficult to verify that the program correctly implements the advertised

conceptual model. The sheer size and complexity of models often make it

essentially impossible to guarantee that they have been completely debugged

and to ascertain whether there are conceptual errors in the model the program

implements. These problems apply equally to the computer program and to its

outputs, and affect all phases of a model's history - its construction, use,

maintenance, and modification for new purposes.

" The extreme size and complexity of these models make it difficult to examine

the computer code to learn what the model actually does. This problem can be

somewhat mitigated by documentation, but documentation tends to be

inadequate and out of date.

" Because of this opacity, experts not associated with a model must rely upon a
"priesthood" of model cognoscenti. One must trust the "priesthood" to have

done a good job and to be correctly portraying the details of the model's internal

structure.

"* Consequently, computer models are seldom subjected to peer review.

"• It is extremely difficult to adequately determine how sensitive model outputs

are to uncertainty in the inputs.

" There is a corresponding tendency to underestimate (or ignore) the uncertainty

(or inaccuracy) of inputs to models. This includes both explicit inputs and

assumptions made in the process of building the model.

" There is a strong tendency to model in detail phenomena for which good

models can be constructed, and to ignore phenomena that are difficult to model,

producing a systematic bias in the results.

These technical difficulties can interact with psychological or bureaucratic

tendencies to produce a host of problems, including using models to rationalize

institutional prejudices, poor models driving out careful thinking, and tending to

emphasize those aspects of a problem that can best be simulated. The result can
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often be that models provide an illusion of analytic certainty for problems that

are not that well understood, or in the worst cases provide scientific costume for

points of view that are self-serving.

While these problems have varying technical attributes, and particular problems may

be managed through technological improvements, the myriad complaints are but symptoms

of a single fundamental problem that lies in our assumptions about what models are and how

they are used.

WHY MODELS GO WRONG

The preceding list of ills has often been noted and has resulted in a variety of

prescriptions, falling into two broad classes: proposed improvements to the computer

technology for constructing models, and critique of the methodology of using large models.

Both points of view have their merit, but both fail to capture the crux of the problem.

Technological fixes alone will not solve these problems. Computer science has

provided numerous toolsi to facilitate the construction, maintenance, modification, and

verification of large programs. They are all useful and improve our ability to effectively

produce large models. Further technological innovations are desirable and continue to be

made. However, although the use of advanced computer technology ameliorates some of

the problems listed in the previous section, it does not alter the overall pattern. A given

model may be more tersely and understandably expressed in an appropriate language, but

there is a threshold beyond which a program becomes difficult to understand. It is better to

write computer models in an appropriate high-level language, but regardless of what

language they are written in they still tend to grow large and to become unmanageable.

High-level languages and other techniques will not affect the overall pattern unless the

reasons the models become so large are addressed. Furthermore, no technological fix has

yet been proposed for the problems of validation and sensitivity analysis. Computer

technology by itself cannot resolve the general problem.

The reverse point of view is opposition to the use of computer models or criticism of

instances of their use. In its most extreme form this view holds that the construction of large

models is a bad idea, period. Small models have few of the ills of large ones. A small

model may have limits to its utility, but a modest model whose shortcomings are easily

'Examples are improved programming languages, improved computer/user
interfaces, and managerial techniques for controlling large software engineering efforts.
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established is preferable to an elaborate model with enormous potential to mislead.

However, there are problems whose inherent complexity cannot be wished away, and the

dictum that only small or simple problems can be addressed by computer modeling means

that computers may not be used to study just those phenomena for which their potential

utility seems highest. Thus, this view throws out the baby with the bath water. While there

are certainly problems for which modeling is not a useful tool, the key question is not
whether to build computer models, but rather how models can support policy studies.

By far the most telling evidence against either the technology or the size hypothesis
for modeling problems is the striking counterexample that there are very large models

implemented with relatively primitive tools (e.g., FORTRAN) that have been enormously

successful. Examples include digital wind tunnels and codes developed to simulate nuclear

explosions.

What differentiates those problems for which computer modeling has been strikingly

successful from those for which it has been problematic? There is one clear difference:

computer modeling has been successful in those domains for which the models make

predictions that can be verified by experiment.2 Modeling efforts become troubled when

there is no possibility of experimentally validating model correctness and utility. Validation

may not be possible because the necessary experiments cannot be carried out, historical data

are inadequate, theory is insufficiently mature to suggest models capable of making

predictions; because cases of interest require initial conditions or boundary conditions that

can only be guessed at; or because nonlinearities in the model cause even modest

uncertainties in the inputs to produce substantiai uncertainties in the results. Most systems of

interest for policy analysis cannot be predicted for several of these reasons. It is not possible

to stage World War III several times in order to resolve questions of interest to combat

modelers, nor to guess what the initiating circumstance might be.

Means other than predicting the outcomes of experiments have been used as

validation measures, including experimental validation of submodels where possible,

determining model parameters from validated sources, and the prediction of general

characteristics of system behavior (as opposed to the prediction of specific details).

Although these are useful checks, they result in only partial validation of the model, reducing

2By experiment I mean any use of data obtained from the target system to check the
outputs of a model. Thus a model might be validated by replicating historical data. The
experiment in this case is setting the model inputs to the historical situation and seeing
whether the model correctly "predicts" the historical outcome.
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the range of uncertainty associated with its products but still leaving it inadequate to make

detailed predictions. 3 Reducing the amount of uncertainty associated with a model is

obviously desirable. Improving the scientific basi- of models used for policy analysis is an

important goal. For most such models, however, the remaining uncertainty will always be

significant. As long as a model has significant uncertainty, it belongs in a separate class

from models that reproducibly make detailed predictions of system behavior. Thus it is

important to distinguish between experimental validation and other measures that do not

(completely) validate the model. Models that are not predictive must be used much

differently from those that can be (reproducibly) experimentally validated.

TRYING TO PREDICT THE UNPREDICTABLE

Building models (whether computerized or not) that make accurate predictions is

much of what science is all about, and an orientation toward predictive modeling is deeply

rooted in the cultural heritage of science. Consequently, in applying computer modeling to

problems in policy analysis, aspects of the predictive modeling paradigm are generally

employed (usually implicitly) even when the impossibility of experimental validation is well

recognized.

The predictive modeling paradigm is to develop a model that captures the causal

dependencies of the target system and thus yields both an improved understanding of the

nature of that system and an ability to make predictions about the target system's behavior.

The process of building predictive computer models has clear stages:

"* Development of the theory or conceptual model

"* Implementation of the corresponding computer model

* Verification that the computer program correctly implements the conceptual

model (debugging)

* Validation of the model by successfully predicting target system behavior

(experimental validation)

3Note that "validity" is commonly used in two different senses: (1) as a boolean (a
model is either validated or it is not), and (2) as a scalar (a model may become gradually
more valid as various partial checks are made). Confusion between these two uses has
clouded many discussions of the validation issue. Typically the unvalidated state (in the
boolean sense) of models is noted, and partial validation measures are then prescribed as an
available solution.
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" Sensitivity analysis to yield guidelines of how much error should be expected in

the predictions given known amounts of error in the model inputs

" Using the validated model to predict where experimental determination of the

answers is impossible, expensive, or otherwise unavailable (running cases).

This paradigm for modeling a target system is such a deep part of our culture that it

may be regarded as "obvious." However, when experimental validation is impossible, its

use is not justified. Whereas the hard sciences build models (whether implemented on

computers or not) that may be verified experimentally, policymakers are typically concerned

with systems for which experiments cannot be conducted, and that have characteristics

making detailed prediction difficult or impossible even should experimentation be possible.

Consequently, the simplistic use of modeling to predict an outcome based on its inputs is ill-

suited to many problems of importance. The methodology of predictive modeling (construct

a model, use its predictions to distinguish among alternative choices) is similarly ill-suited

for these problems. Building models can still he of value, but to be useful the models must

be used differently than they would if they made predictions. Their use requires a different

epistemological rationale and motivates a different development style.

Currently, models for policy studies are built as though they were to be used to make

predictions, even if that is not the fundamental intent. This assumption reveals its presence

through the inclination toward single monolithic models incorporating all known factors of

importance and through an orientation toward best estimate cases. This development

approach does not make appropriate use of the model impossible, merely difficult and hence

less likely. The (often unconscious) use of the predictive paradigm for cases where it is not

appropriate causes many of the problems that have been encountered with computer

modeling. Consider, for example, the prevalent tendency to emphasize "building a model"

over carefully thinking through an analysis. Emphasis on building a model would make

sense if the possession of a model allowed prediction. But where prediction is not possible,

a model is of little use without an analytic framework that makes its outputs relevant.

Particularly revealing are difficulties with verification and validation. When models can be

used for prediction, a single experiment in which the model successfully predicts system

behavior can provide a great deal of validation and verification. The issues of verification

and validation become much more vexing when model outputs cannot be checked by

experiment.
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The tendency for models to grow very large is at least in part a product of the

confusion between models built for prediction and those used for other purposes. When a

model can be used to predict, it can be validated through its predictions. Among competing

predictive models, the most preferred is the simplest that makes correct predictions.

However, when models cannot be validated in such a direct fashion, the quality of a model

must be assessed by other means. Often, judgments of model quality are based upon the

degree of completeness (the inclusion of all factors and phenomena that might influence

outcomes for at least some cases). In contrast with models of predictable target systems that

are simplifications of reality, models of unpredictable systems often are attempts to copy the

full complexity of the target system. The designers of such models have fallen into a

worship of false-reductionism: the more details a model contains, the more accurate it will

be. This reductionism is false in that no amount of detail can provide validation, only the

illusion of realism. This tendency is reinforced by an economic consideration: a model is

more useful if it can be applied to a wide range of cases, so extra factors must be included to

extend the range of the model. But is a model that does not predict a large number of cases

really more useful than a model that does not predict only a few?

The growth in model size is related to an assumption that all details must be

accounted for with a single monolithic model. When an experimentally validated model can

be produced, this assumption can be justified. When experimental validation is no longer

possible, no model can be asserted to be a correct model of the target system, and no

conclusions can be safely drawn without examining alternative models. So, where there is

no single "true" model, it is no longer necessary to use one model only. As will be described

below, this realization opens up new options for modeling complex systems, avoiding the

use of large models and easing problems with verification, understandability, and sensitivity

analysis.

Predictive models make great screwdrivers, but pound nails rather poorly. For

problems involving practical barriers to experimental validation, significant uncertainties, or

strong nonlinearities, a different tool is needed.
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3. EXPLORATORY MODELING

THE SEARCH FOR INSIGHT

"The purpose of computing is insight, not numbers."

Richard Hamming'

That we may be unable to predict the behavior of a system does not mean that we

know nothing about it. Similarly, a model's inability to make predictions does not

necessarily make it valueless.

How then can models be used if they are not validated and cannot make reliable

predictions? This question is a version of the more general one: "Of what use is partial

information?". For some questions, partial information may be useless, but for many

problems partial information can provide partial answers. For most policy problems, some

decision must be made (at least the decision to do nothing), regardless of the level of

uncertainty. Policy analysis requires understanding the implications of what is known,

which for systems with significant nonlinearities may not be all that obvious. When dealing

with complex systems, both that which is known and that which is uncertain may be best

represented by computer models. Thus, computers can have a role in reve:, ing the

implications of what is known or believed and the possible consequences of that which is

unknown or uncertain. What is at issue is not whether they can be useful but rather, how are

they best employed'?

To usefully employ nonpredictive models, a methodology must be adopted that is

much different from that appropriate for prediction. Small numbers of cases run on a single

best estimate model are informative if the model makes valid predictions, but can be very

misleading otherwise. When models are used to calculate the implications of what may be

assumed or hypothesized, careful study may require a multiplicity of models and cases. A

predictive model is an artifact that, once it is experimentally validated, can be widely

applied. By contrast, exploratory modeling serves as an infrastructure to support reasoning.

"The computer can have a significant role augmenting human reasoning because of the

nonlinearity of most models of interest for policy problems. For nonlinear models, it is often

'Hamming, 1962.
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difficult to anticipate how a model will behave when it is executed, and even quite simple

models are capable of exhibiting behaviors that surprise their creators. Consequently,

building and executing models have the potential for revealing unanticipated implications of

our assumptions. Even when a model is not validated, it can serve as an "inference engine,"

showing us where innocuous appearing assumptions lead to predicted behaviors at variance

with initial expectations. By throwing light on obvious but treacherous assumptions,

computer modeling can perform important service in the search for insight. However,

establishing the relevance of any such insight to particular problems must be accomplished

outside of the models. 2

When used for exploratory modeling, the computer functions as a prosthesis for the

imagination, allowing the discovery of novel explanations of known facts or unrealized

properties of conjectures. The use of this prosthesis to browse through the space of plausible

models can result in improved insight. However, policy may require that this tool be used in

a structured fashion.

We can pose the general problem of reasoning with incomplete information as a

search problem. The goal of the search is conclusions that can be safely drawn in spite of

imperfect knowledge. Such conclusions correspond to facts or relationships that are

invariant across all plausible models. The search may be through the set of possible models

consistent with what is known. Or it may be made at a more abstract level, where the search

is among alternative formulations, with the goal of a perspective that simplifies the problem

to reveal the desired invariance. Exploratory modeling uses computer models to support the

search process.

During the course of an analysis, initial explorations to develop insight should lead to

a structured sampling of the space of plausible models and cases. Possible approaches to

such structure include a compilation of the range of possible outcomes given feasible policy

options, the construction of risk/benefit tradeoffs, flexibility against the unexpected, and

prudent hedges. It is important to note that unlike predictive modeling, in exploratory

modeling the outputs of models have meaning only when seen in a context provided by such

an analytic strategy.

2Consequently, it must be emphasized that computer models must be regarded as
decision aids, not decisionmakers, in policy contexts.
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SENSITIVITY ANALYSIS

It may be illuminating to consider the relation of exploratory modeling to the concept

of sensitivity analysis. For any numerical computer program, sensitivity analysis is the

process by which uncertainty in inputs is related to uncertainty in outputs (Ronen, 1988;

Suri, 1989; Suri, 1987). For predictive models, sensitivity analysis is important because it

allows possible errors in inputs to be translated to possible error ranges in outputs when

running cases. For models that are believed to be predictive (because of confidence in the

correctness of the conceptual model) but that lack thorough experimental validation,

sensitivity analysis is critical. Extreme sensitivity of the outputs on the inputs could cause

the model to be nonpredictive for practical purposes, even when the conceptual model is

correct. Unfortunately, for a model of more than modest size, an exhaustive sensitivity

analysis through running excursions is combinatorially impossible. Consequently, in most

model building enterprises, sensitivity analysis (when performed at all) is done only as a spot

check. Lip service is paid (one morally should do some sensitivity analysis), but because it

is impossible to do a thorough sensitivity analysis. one does the best one can and then moves

on. The models are not designed with sensitivity analysis in mind, rather they are designed

as though the sensitivities were known a priori to be strongly bounded (that is, it is assumed

that the model will be predictive).

For "well-behaved" models, ranges of inputs are mapped to ranges of outputs and a

thorough sensitivity analysis can be made by testing extremal points. Arbitrary nonlinear

models may not be so well behaved, however. A continuous range of an input value can be

mapped (as a result of bifurcations or "catastrophes") to an arbitrary number of

discontinuous ranges of output values. For complex models whose mathematical

characteristics are not well understood, completely characterizing the implications of

uncertainty in one input could require very large numbers of cases. Thus, the common

tendency to perform a handful of excursions on a complex computer simulation and label

that a sensitivity analysis is rather suspect.

In the context of exploratory modeling, "sensitivity analysis" is rather a misnomer.

Although such an analysis can be conducted on an individual model, there can be many

different models involved in the exploration of the implications of alternative assumptions

and formulations. Furthermore, for exploration, sensitivity analysis is not a "nice-to-

have" side task, it is the main result. Describing ranges of outcomes (assigning error ranges

to the outputs) is a central goal of the analysis.
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A complete sensitivity analysis assesses the behavior of all plausible models. To do

this thoroughly will in general be impossible. Instead we must rely upon a strategy for

sampling the (generally infinite) space of models and cases. If the statistical properties of all

parameters were known, and the dependence of the outputs upon the inputs were sufficiently

well behaved, a mathematically rigorous strategy for sampling could he devised. In general,

however, a sampling strategy will need to be devised to search Ior critical cases, using

human judgment to prioritize the investigation of the unccrtaiities involved. The result will

not be a mathematically rigorous answer, but rather an imperfect image of the complete

envelope that improves gradually as more cases are run.

In practice, only a finite number of cases can be run. Given a fixed analytic budget

(in dollars, people, or time), analysis must provide the best insights potssible based on what is

known about the problem at hand. The exploration strategy will usually take advantage of

knowledge not contained in the models and will be structured by the pursuit of a compelling

argument illuminating the choice among policy options. Exploratory modeling allows for

the flexible allocation of resources (human as well as computational) to those aspects of the

problem that are judged most critical.

USING EXPLORATORY MODELING TO SUPPORT POLICY ANALYSIS

We resort to computer calculation when the complexities of detail in a reasoning

process exceed our ability to do the calculation in our heads. In an earlier era, when the

complexity grew too great to be kept in one's head, one relied upon a blackboard or piece of

paper to hold the details. Yet no one viewed an '.tgument as persuasive because it came

from a blackboard. Arguments needed to be persuasive in and of themselves, and the

blackboard was a useful tool in arriving at a persuasive argument. Similarly, I believe that

the use of computers in support of policy analysis should be as "dynamic blackboards."

They can be very useful in working through the details, but the final result must be

compelling and inspectable on its own. Convincing via the outputs of what is ultimately a

"black box" is superstitious behavior that must eventually cease as our sophistication in the

use of computers to assist reasoning grows. Models that are not "black boxes" can be used

for convincing, but their value is still relative to a logical context established outside of the

model. The argument is the central result, not the outputs of any computer model.

Insights developed through exploratory modeling need not necessarily be private or

subjective. Exploration can he completely unstructured, with the sole goal of developing

intuition, or it can be guided by a strategy for surveying the envelope of plausible models in
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support of a policy study. The product of such an exploration will not be a computer model,

validated or otherwise. Neither will it typically be a single number, graph, or table that gives

the answer to a specific question. Rather, the tinal product of a successful exploration will

be an argument or chain of reasoning. This chain will start from assumptions, lead to some

conclusion, and possibly have some model outputs as individual steps. It is quite unlikely

that this argument will ever be entirely computer generated. In fact, the product of

exploratory modeling could often be a line of reasoning that makes no reference to computer

models whatsoever.

When models do appear in a final product, they will be providing links in the chain of

reasoning: if we assume X, then Y follows computationally. The logical coherence that

makes many individual steps lead to a conclusion must be provided outside of the models.

Thus in constructing such an argument, models must be built and used in service to an

analytic strategy, and in the conclusions of a study they are relevant only in the context of an

argument that takes their limitations into account. The unaugmented outputs of a

nonpredictive model never have a particular meaning for policy.

Thus, whereas experiments with computer models can produce insight, insight is

required prior to the structured use of modeling, if problems arising from complexity and

uncertainty are to be managed. Proper structuring of the problem space can provide a

strategy for exploration designed to confront problems with uncertainty and reveal

consequences for policy. Because thorough search of the plausibility envelope is not

possible, such strategies will often Focus on the elucidation of critical cases that support

choosing one policy from a list of options even when the exact range of oulcomes is

unknown. Examples are the discovery of taxonomies of worst cases that allow choosing

among options by risk aversion, the use of a tortiori arguments, and identifying cases where

expenditures make a difference or where competing models may be distinguished. The

existence proof provided by a single plausible model can demolish an erroneous "common

sense" argument, and thus contribute signiticantly lo clear thinking.

The exploratory approach compares positively with common ideas about the use of

computer models in several ways. In changing from a predictive to an exploratory

paradigm, we can better support the determination of expected ranges of variability ot

outcome, as opposed to generating best estimate predictions. which are meaningless without

error estimates. By moving the focus front "'the model'" to the line of reasoning, numerous

irrationalities in the use of models can be discouraged and opportunity is provided ftr the

inclusion of other analytic tools and expert judgment, which is often disenfranchised by the
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use of complex "black box" models. A more up-front portrayal of the exploratory aspect of

the analytic process will provide for client education and reduce the likelihood of the misuse

of model outputs and study conclusions.

In the past, retaining a predictive modeling orientation was partially motivated by

constraints on computational experimentation imposed by limitations in computer power.

However, the increasing speed of commonly available machines together with recent

advances in software technology now make the aggressive exploitation of exploratory

modeling possible for the first time. This paradigm can potentially provide two general

advantages to policy analysis. One is a basis for improved understanding of what computer

models do and do not provide, offering at least a partial remedy for existing problems with

the misuse of computer modeling. The other is improvement in the utilization of

computational resources in the service of policy studies. The range of uses for exploratory

modeling is limited not by problems with validation, but with limitations in the flexibility of

existing models and modeling support environments. Possibilities for improvements are

considered in the following section.
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4. IMPLICATIONS FOR BUILDING EXPLORATORY MODELS

Whereas exploratory analysis can be done using the single monolithic models that

typically result from model development in the predictive style, many aspects of these

models make exploratory use difficult. Furthermore, many shortcomings in the use of

models in policy studies result from a lack of caution regarding the predictive capabilities of

computer models. This suggests that approaches to model development that abandon the

pretense of predictive modeling and provide computer support for exploratory use could

provide enhanced capabilities. This section considers possible innovations in the

methodology and technology of model building that could provide for greatly improved

capabilities for exploratory modeling. Proposing new methodology and technology involves

some speculation, but none of what is proposed below is unprecedented, and the potential

benefits could be significant.

QUESTION-DRIVEN MODELING VERSUS DATA-DRIVEN MODELING

The predictive paradigm for model development is driven by the inputs to the model.

Models are defined by the entities in the target system that are to be represented, their

relationships, and (sub)models of their state changes over time. For predictive purposes, the

primary constraint is the availability of data. Once a model is experimentally validated, its

(correct) predictions can be used to address a variety of questions.

In contrast, exploratory modeling is best served by question-driven model design.

For problems in which no amount of data will suffice, the place to start is not with how to

represent aspects of the target system (what data the model contains) but rather with how the

model will be used (what answer the model is to provide). To use computer models to

inform policy, the strategy for how they will be useful should be factored into the design.

The questions that need to be answered can have a profound impact on what representations

are desirable. The realization that the way the models are actually used is exploratory rather

than predictive (at least if they are used responsibly) opens up the option of designing

models top-down (driven by their use) rather than bottom up (driven by the entire set of data

items that might be relevant to some question). Recent progress in software engineering

allows for the possibility of efficiently pursuing a much more interactive modeling style.
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At present, most model development betrays an assumption of predictive use in its

sequential "two-phase" style. The first phase is to construct a general model of the target

system. The second phase is to use that model to answer various questions by performing

runs. This approach makes sense if the model can be validated and used for prediction;

however, it creates enormous barriers to facile exploration. Exploratory use will require a

variety of modeling assumptions to address various needs. The "two-phase" style produces

single models that may not be well designed for the purposes they are put to. Such

compartmentalized development tends to result in large models (a result of trying to

anticipate all possible uses) that present serious barriers to adaptation for new uses.

Any single model makes some questions relatively easy to ask and others essentially

impossible because of the structure of the model. As the model grows in size, all questions

become proportionately harder to ask. Models built prior to identifying what the interesting

questions are will seldom be ideal (or even adequate) to address those questions. The use of

a large multipurpose model thus carries with it the enormous risk that the model will

constrain the set of questions that are asked, creating a systematic bias to the analysis. This

is akin to looking for a lost quarter only where the light is good.

NOT ONE MODEL, BUT MANY

Since many key questions may be identified during the process of an analysis,

exploratory analysis is best pursued using models designed and constructed in the context of

the analytic task and revised iteratively during the course of the analysis. This requirement

creates a need for different software tools, and also raises issues regarding the methodology

of model development. Rather than developing a single model that will be validated by

predicting the outcome of experiments, exploratory modeling must be iterative' (models are

frequently redesigned and reimplemented) and adaptive (models are revised as a result of

what is learned through their use).

Since no model generated will be a valid representation of the true state of the world,

there is no need to produce a single model. Consequently, the complexities of the target

system could be represented by an ensemble of models and by supporting analysis. The

scope of any individual model can be designed to maximize its utility for answering a

specific question (including the need for understandability and sensitivity analysis). The

paradigm of exploration allows for more flexible adjustment of model structure and content

ISee Boehm (1988) for a discussion of iterative modeling in a broader context.
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to serve the goals of a particular analysis. Better studies result if modeling is made to serve

study goals, rather than studies being driven by what can be modeled. The linear process of

developing a conceptual model, implementing it as a program, and running cases must be

replaced by a much more iterative approach, where preliminary modeling leads to insights

that affect the design of subsequent models.

During the process of exploration, many questions may be asked. Taken to extremes,

this approach could result in a separate model for each question. All else being equal, a

smaller number of versatile models are to be preferred as they will require less effort in their

construction. Thus we must seek a tradeoff between ease of construction (implying few

models) and ease of appropriate use (implying many). While this tradeoff will depend upon

the specifics of the problem (as well as model design), the various problems attending the

use of large models suggest that current methodology may be far from optimal.

The capability to produce numerous models can be provided in a number of ways.

Parameterized models allow for the exploration of the impact of ranges of parameter settings

(and thus provide multiple logical models with a single piece of software). Structural model

variations can be explored through model revision. Improving software tools for rapid

prototyping can be helpful in making these revisions possible. Instead of building

megamodels to support a variety of studies, modeling environments could be constructed

that incorporate baseline models, libraries of model components, and other tools to aid in

model construction, so that the process of building numerous model variants is made

tractable.

SELECTIVE RESOLUTION

Exploratory modeling allows for much greater flexibility in choosing appropriate

levels of resolution in models. The model that is built to answer a particular question should

generally be the smallest (lowest resolution) that satisfies that purpose. Keeping the model

as limited as possible minimizes problems with understandability and sensitivity analysis.

As different questions are asked during the course of an analysis, models of different

resolution may be required. Addressing broad tradeoffs may require aggregated models of

wide scope, whereas models for specific questions may require more focus and detail.

The resolution of a model must be distinguished from its size. Commonly, higher

resolution models are larger, as they attempt to address the same range of question while

providing greater detail. When this approach is taken, however, model understandability

and sensitivity analysis must be sacrificed. For exploratory use, we may entertain keeping
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model size within bounds (maintaining understandability and sensitivity analysis) by trading

off resolution for breadth. Typically, broader questions will be posed early in an analysis,

resulting in highly aggregated models. The insight gained from working with broad

aggregated models can motivate specific questions, requiring detailed modeling guided by

results obtained in preliminary analysis.

The selective refinement of aggregated models into higher resolution ones provides

an option for a structured approach to the problem of sensitivity analysis and the exploration

of the envelope of plausible models. Initial aggregated modeling efforts can be used to

bound and give insight into the question of range of plausible outcomes. The limited size of

aggregated models facilitates extensive sensitivity analysis. Subsequent modeling

incorporating more details would be guided by the outcomes of prior sensitivity analysis.

Efforts could be focused on adding those details or building the additional models that

contribute the most to the quality of the answer to the question at hand. Low-resolution

models (which typically run quickly) can be used to discover critical cases to be run at

higher resolution (which can be more computationally intensive). The results of high-

resolution modeling may also suggest parameter choices for more aggregated parameterized

models.

It will generally be desirable to increase the resolution of a model only for those

parameters that are shown to be critical to the question at hand. In this way, the results of

preliminary analysis with aggregated models can guide the allocation of resources in more

detailed modeling. At the same time, by adding resolution only where necessary in the

context of a specific question, the use of monolithic high-resolution models, with all their

attendant difficulties, may be avoW -1.

COMPUTER TECHNOLOGY TO SUPPORT EXPLORATORY MODELING

Harnessing computational power in service to human creativity requires that the

computer support be carefully designed to supplement and not inhibit. Addressing complex

and uncertain questions through exploratory modeling requires appropriate support software.

It is interesting to note that the "two-phase" approach to model development is

reminiscent of the rigid style of program development characteristic of the batch-processing

era of computation. Modern developments in interactive software environments allow for a

more fluid approach to computation, which is characterized by faster development times and

greater human productivity. This suggests that computer modeling for policy analysis is not

receiving the full benefit of appropriate computer support, and that a software environment
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designed to support exploratory modeling could provide significant improvements over

current approaches.

The methodology proposed here would in many cases replace a complex monolithic

model with numerous simpler models. Relative model simplicity (and hence many other

desirable qualities) would be obtained by exporting complexity outside the model and into

the surrounding computational environment and analytic context. One reason why this shift

is attractive is that when complexity is not buried inside a procedural model, more powerful

software tools can be provided to manage it. Aggressive exploitation of the approach

championed here requires the development of such tools. Whereas the usefulness of tools

must be demonstrated by their application to real problems, computer technology exists

which if applied to the problems of exploratory modeling promises significant enhancement

in computational suppoit compared with existing approaches to computer modeling.

A computer environment to support exploratory modeling should allow smart people

to efficiently navigate the space of plausible models and model outcomes to construct lines

of reasoning and to make themselves smarter. Computer tools are required that meet the

following three general needs:

* Support for iterative and adaptive modeling

* Assistance in managing the complexity of numerous models, cases, and

relationships between them

Means for portraying the results of exploratory modeling.

Support for Iterative and Adaptive Modeling

The predictive paradigm of model development often results in models that are

effectively "black boxes". Exploratory modeling requires just the reverse: WYSIWYG 2

models that can be easily understood and revised. The goal of WYSIWYG modeling is

made possible by the flexibility of exploratory modeling to obey constraints on the size of

models, the availability of high-level programming languages designed for understandability

and modifiability, and the use of interactive computer software environments allowing easy

Inspection and manipulation of model source code, parameters, and outputs. A fully

developed set of tools for easing program modification and understanding could be

characterized as a computer-assisted software engineering (CASE) environment for models.

2WYSIWYG = What you See Is What You Get. In other words, everything that is
important in the model is there to be seen. Models must be inspectable by their users
without prohibitive amounts of effort.
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The style of software development often referred to as "rapid prototyping" is well

suited for the needs of exploratory modeling. A key element here is the use of high-

level languages that support WYSIWYG modeling. The success of the RAND-ABEL

Table features (Allen and Wilson, 1988; Shapiro et al., 1988; Shapiro et al., 1985)

demonstrates that it is possible to write models that are inspectable, understandable, and

modestly modifiable by nonprogrammers. Further progress in this direction, along with

other initiatives in language design, could lead to fully general modeling languages

providing the accessibility of spreadsheets.

New models need not always be built from scratch; exploratory modeling may also

be supported through the use of parameterized models and by combining and revising

existing model components. It may be possible to construct modeling environments for

specific policy areas incorporating baseline model components to allow model construction

through combining model components, varying parameters, and model revision.

Constructing new models by combining model components requires standards for

model interfaces. Interface standards would also facilitate construction of hierarchic

ensembles of models and standard tools for viewing the behavior of models. The definition

of such interfaces is a challenging problem requiring innovation. The problem is eased

somewhat by having model components interact through a common data facility with an

associated standard data dictionary.

A variety of hypothetical software tools could also help to simplify the work of

exploratory modeling, although experimentation would be required to determine their actual

utility. One interesting possibility is a tool to support the "bottom-up" calculation of the

sensitivities associated with a particular model run through the automatic generation of

excursions. While this would in general involve significant computation, the rapid growth of

available computing power implies that a useful number of excursions could be computed

for models of moderate size. Furthermore, the possibility exists that significant computation

could be saved via software that caches intermediate sensitivity calculations in the context of

the large number of runs required to perform the complete sensitivity analysis (Rothenberg

et al., 1990).
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Support for Managing the Complexity of an Evolving Analysis

Although the use of multiple models can allow models to become simpler, the

relationships among models and the process of model and case management will become

more complex. The overall amount of detail may be as great or greater than that in a single

monolithic model, but would be distributed across multiple computer programs. In a sense,

the use of multiple models enforces a strict form of modularity, with implied benefits for

understandability and verification. This has the virtue of moving complexity out of

computer program internals (where it can be difficult to understand) and into the declarative

realm of model interrelationships where it may be more easily viewed, understood, and

manipulated. 3

There are various sorts of information that could usefully be represented in the

computer, including:

"* The evolving logical argument

"* The plan for the analysis

"* The various cases that support points in the logical argument

"* The models that were used to analyze thec- cases

* The databases used in running the models

* Other sources of information (such as off-line analyses, compilations of expert

opinion, historical data, or supporting graphics).

The ability of the analyst to keep track of the myriad details of model characteristics,

interrelationships, cases, histories, implications, status, outcomes, and the like could be

greatly enhanced by an appropriate software environment. Even where a single model is

used for exploration, many cases must be run, creating the need for tools to help manage 'Ie

resulting complexity. Whereas the development and running of "the model" can be the

focus of activity for predictive modeling, exploration will not typically be model centered,

but rather is driven by the evolving analysis. A computational environment to support

exploratory modeling would similarly not be centered on a model but rather would have a

representation of the evolving logical argument and plan of analysis. These would form the

conceptual center for a data facility that would serve as an electronic record of the evolving

3Note that such benefits are contingent on insightful structuring of the problem.
Whereas declarative representations may be generally easier to understand than procedural
representations, no technique is a panacea.
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chain of reasoning that constitutes the analysis. Such a facility would be more than a

database, as it would contain not only data but also computer models, model runs, model

outputs, human notations, and all needed relationships among these entities. Such a facility

would in fact be a hypermedium (Barrett, 1988; CACM, 1988; Wurman, 1989) for

modeling.

Portraying the Results of Exploratory Modeling

Individual model runs can produce voluminous data; multiple such runs can produce

astronomical quantities. Developing intuition based upon the results of modeling requires

adequate means for viewing these results. The deluge of data that can be generated makes it

impossible for users to quantitatively examine more than a fraction of it. If insight is to be

generated from these outputs, means must be available to easily view the data for various

purposes. Means for viewing the results of exploratory modeling would be useful both for

presenting final results to the consumer of the analysis and for providing a powerful means

for the analyst to improve his intuition.

With the advent of raster graphics, entire fields of variables can be converted to color

images. Information conveyed in this way undergoes a qualitative change because it utilizes

the tremendous pattern recognition capabilities of the human eye-brain system. An

environment for exploratory modeling should include capabilities for the visualization of

data harvested across multiple cases.

Useful facilities may include not only graphical displays but also textual data

presentation tools and statistical facilities for the summarization of the results of multiple

cases. For example, regression analysis could be used to generate a simplified model

capturing the variability observed in multiple experiments with more complicated models

(e.g., repro models (Goeller et al, 1985)). Where the range of plausible outcomes is too

complex to be expressed simply by a number or a graph, but involves sets of tradeoffs the

decisionmaker should be sensitive to, a spreadsheet model synopsizing the relationships

could be a useful deliverable. A modeling environment could augment traditional forms of

conveying results with simple computer models. The ideal environment would allow the

study results, including final reports, briefing slides, and deliverable models, to be generated

in the same environment as the analysis. Once an analysis was complete, that part intended

for the end user could be detached from the supporting material and transferred via floppy

disk or CD-ROM.
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An Environment for Exploratory Modeling

The ideal computer environment for exploratory modeling would constitute a

"dynamic blackboard," allowing users with problem-smarts but only moderate computer

expertise to explore a universe of alternative problem formulations and computed

implications. The execution of models is only one aspect of this environment-recording and

helping to organize the growing body of results will be vital. Such a history would be a

record of all modeling experiments, including the model variants, and data going into any

modeling experiment as well as its outcome. The ultimate environment would have

attributes of brainstorming and outlining tools, database facilities, version control systems,

and general-purpose modeling environments. Such an environment would assist the user in

keeping track of an evolving analysis involving the construction of multiple models and

model variants, case runs, changing assumptions used, and tentative conclusions drawn.

The core representation tying all aspects of the environment together would be the
"story" of the analysis. This story would at the beginning of the analysis be the plan for the

analysis; at the end it would be the completed argument of assumptions leading to

conclusions. During the course of the analysis, the "story" would be a mixture of the two,

and would generally be considerably revised during the course of an analysis. Particular

cases and models to support them would be justified by steps in the "story." Thus the story

would not only be a human readable representation of the (notional or incomplete) study

results, it would also serve as the root of a complex network of interrelated entities,

including (descriptive) conceptual models, (executable) computer models, input data, case

runs, model outputs, checkpoint model states, and assorted others.

Although no computer software can guarantee good work through its use, a support

environment providing assistance for those tasks that computers do well (i.e., keeping track

of details) could free talented users to do what they are best at, discovering meaningful order

among a myriad of details.
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5. SCIENCE, OPERATIONS RESEARCH, AND THE ROLE OF THE COMPUTER

The computer is a powerful tool, but it can mislead as well as illuminate. Initial

attitudes toward computers have often manifested a naive belief in computer superiority,

free from human error. With experience this is replaced by an appreciation that a

computerized model allows one to view the implications of the model, but does not provide

any special access to truth. In addition to uncertainties regarding input data and the

correctness of the conceptual model, there is the additional uncertainty of whether the

machine (software and hardware) is performing correctly. Rather than a source of specially

accurate results, the outputs of computerized models must be viewed with additional

suspicion.

However, the computer's capabilities for rapidly performing many more arithmetic

or logical operations than the human mind gives it a prominent role in addressing problems

of great complexity. We are still early in the process of understanding how best to design

computer systems so that human capabilities are enhanced, not eclipsed, and the strengths of

the computer utilized and its liabilities minimized.

The initial use of computers in many scientific fields has been primarily for data

reduction and predictive modeling. The increasing availability of computational power has

resulted in the adoption of exploratory modeling approaches by researchers in many fields

(Anderson, 1988; Campbell et al., 1985; Lipman et al., 1989; Rose and Dobson, 1985;

Strauss, 1974). Exploratory use involves the "guessing" of details of systems for which

there are no data (such as the behavior of subatomic particles at very high energies or the

spatio-temporal activation patterns of large numbers of neurons in the brain). The

implications of these guesses can be computed, allowing the computer-assisted researcher to

look for interesting "guesses." As computing becomes easier than performing experiments,

this style of use becomes increasingly attractive. Its introduction is typically accompanied

by controversy, but exploratory approaches have been gaining credence as increasing

numbers of workers in various fields become computer adept. An example of scientific

discovery based upon exploratory modeling is the development of chaos theory, in which

anomalous behaviors were first seen in computer simulations, which led to later studies of

physical systems and mathematic theory. The use of exploratory modeling to "break trail"

for more traditional science is likely to become increasingly important. The requirement

that a model be validated prior to its use was motivated by computationally impoverished
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conditions. Now that reverse conditions hold, the use of the computer as a prosthesis for the

imagination is increasingly viable.

No discipline seems better disposed to benefit from the exploratory approach to

computation than the policy sciences, due to the complexity of the systems being reasoned

about and the abundance of problems for which no model can be experimentally validated.

No technical innovation is likely to be a panacea; however, the intelligent delivery of

computer power to support policy analysis could contribute significantly to improved

decisionmaking for complex and uncertain problems.
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