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Abstract

This paper presents a general theoretical framework for ensemble methods of constructing
significantly improved regression estimates. Given a population of regression estimators, we
construct a hybrid estimator which is as good or better in the MSE sense than any estimator
in the population. We argue that the ensemble method presented has several properties: 1) It
efficiently uses all the networks of a population - none of the networks need be discarded. 2) It
efficiently uses all the available data for training without over-fitting. 3) It inherently performs
regularization by smoothing in functional space which helps to avoid over-fitting. 4) It utilizes
local minima to construct improved estimates whereas other neural network algorithms are
hindered by local minima. 5) It is ideally suited for parallel computation. 6) It leads to a very
useful and natural measure of the number of distinct estimators in a population. 7) The optimal
parameters of the ensemble estimator are given in closed form.

Experimental results are provided which show that the ensemble method dramatically im-
proves neural network performance on difficult real-world optical character recognition tasks.

1 Introduction

Hybrid or multi-neural network systems have been frequently employed to improve results in clas-
sification and regression problems (Cooper, 1991; Reilly et al., 1988; Reilly et al., 1987; Scofield
et al., 1991; Baxt, 1992; Bridle and Cox, 1991; Buntine and Weigend, 1992; Hansen and Salamon,
1990; Intrator et al., 1992; Jacobs et al., 1991; Lincoln and Skrzypek, 1990; Neal, 1992a; Neal,
1992b; Pearlmutter and Rosenfeld, 1991; Wolpert, 1990; Xu et al., 1992; Xu et al., 1990). Among
the key issues are how to design the architecture of the networks; how the results of the various
networks should be combined to give the best estimate of the optimal result; and how to make

"Research was supported by the Office of Naval Research, the Army Research Office, and the National Science
Foundation.
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best use of a limited data set. In what follows, we address the issues of optimal combination and
efficient data usage in the framework of ensemble averaging.

In this paper we are concerned with using the information contained in a set of regression
estimates of a function to construct a better estimate. The statistical resampling techniques of
jackknifing, bootstrapping and cross validation have proven useful for generating improved regres-
sion estimates through bias reduction (Efron, 1982; Miller, 1974; Stone, 1974; Gray and Schucany,
1972; Hairdle, 1990; Wahba, 1990, for review). We show that these ideas can be fruitfully extended
to neural networks by using the ensemble methods presented in this paper. The basic idea be-
hind these resampling techniques is to improve one's estimate of a given statistic, 0, by combining
multiple estimates of 8 generated by subsampling or resampling of a finite data set. The jackknife
method involves removing a single data point from a data set, constructing an estimate of 0 with
the remaining data, testing the estimate on the removed data point and repeating for every data
point in the set. One can then, for example, generate an estimate of 0's variance using the re-
sults from the estimate on all of the removed data points. This method has been generalized to
include removing subsets of points. The bootstrap method involves generating new data sets from
one original data set by sampling randomly with replacement. These new data sets can then be
used to generate multiple estimates for 0. In cross-validation, the original data is divided into two
sets: one which is used to generate the estimate of 0 and the other which is used to test this esti-
mate. Cross-validation is widely used neural network training to avoid over-fitting. The jackknife
and bootstrapping methods are not commonly used in neural network training due to the large
computational overhead.

These resampling techniques can be used to generate multiple distinct networks from a single
training set. For example, resampling in neural net training frequently takes the form of repeated
on-line stochastic gradient descent of randomly initialized nets. However, unlike the combination
process in parametric estimation which usually takes the form of a simple average in parameter
space, the parameters in a neural network take the form of neuronal weights which generally have
many different local minima. Therefore we can not simply average the weights of a population of
neural networks and expect to improve network performance. Because of this fact, one typically
generates a large population of resampled nets and chooses the one with the best performance and
discards the rest. This process is very inefficient. Below, we present ensemble methods which avoid
this inefficiency and avoid the local minima problem by averaging in functional space not parameter
space. In addition we show that the ensemble methods actually benefit from the existence of local
minima and that within the ensemble framework, the statistical resampling techniques have very
natural extensions. All of these aspects combined provide a general theoretical framework for
network averaging which in practice generates significant improvement on real-world problems.

The paper is organized as• follows. In Section 2, we describe the Basic Ensemble Method
(BEM) for generating improved regression estimates from a population of estimates by averaging
in functional space. In Section 3, simple examples are given to motivate the BEM estimator. In
Section 4, we describe the Generalized Ensemble Method (GEM) and prove that it produces an
estimator which always reduces the mean square error. In Section 5, we present results of the GEM
estimator on the NIST OCR database which show that the ensemble method can dramatically
improve the performance of neural networks on difficult real world problems. In Section 6, we
describe techniques for improving the performance of the ensemble methods. Section 7 contains
conclusions.



2 Basic Ensemble Method

In this section we present the Basic Ensemble Method (BEM) which combines a population of
regression estimates to estimate a function f(x) defined by f(x) = E[ylx].

Suppose that that we have two finite data sets whose elements are all independent and identically
distributed random variables: a training data set A = {(Xn, y,)} and a cross-validatory data set
CV = {(xi, yi)}. Further suppose that we have used A to generated a set of functions, Y" = f,(x),
each element of which approximates f(x). 1 We would like to find the best approximation to f(x)
using Y.

One common choice is to use the naive estimator, fNive(x), which minimizes the mean square
error relative to f(X), 2

MSE[fi] = Ecv[(ym - fi(x.))2 ],

thus
fNaive(x) = argmin{MSE[f,]}.

This choice is unsatisfactory for two reasons: First, in selecting only one network from the pop-
ulation of networks represented by Y, we are discarding useful information that is stored in the
discarded networks; second, since the CV data set is random, there is a certain probability that
some other network from the population will perform better than the naive estimate on some other
previously unseen data set sampled from the same distribution. A more reliable estimate of the
performance on previously unseen data is the average of the performances over the population T.
Below, we will see how we can avoid both of these problems by using the BEM estimator, fBEM(X),

and thereby generate an improved regression estimate.
Define the misfit of function fi(z), the deviation from the true solution, as m,(x) f (x)- f,(x).

The mean square error can now be written in terms of m,(X) as

MSE[f,] = E[m'].

The average mean square error is therefore

MSE =E[m].
I:=1

Define the BEM regression function, fBEM(x), as

i=N i=N11
fBEM(x) _= N f() f - -N 7,X

If we now assume that the mi(x) are mutually independent with zero mean, 3 we can calculate the
mean square error of fBEM(z) as

MSE~fBEM] = E[( m,)2]

'For our purposes, it does not matter how YF was generated. In practice we will use a set of backpropagation
networks trained on the A data set but started with different random weight configurations. This replication procedure
is standard practice when trying to optimize neural networks.2Here, and in all of that follows, the expected value is taken over the cross-validatory set CV.

"aWe relax these assumptions in Section 4 where we present the Generalized Ensemble Method.
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which implies that

MSE[fBEM] = -MSE. (2)

This is a powerful result because it tells us that by averaging regression estimates, we can reduce
our mean square error by a factor of N when compared to the population performance: By in-
creasing the population size, we can in principle make the estimation error arbitrarily small! In
practice however, as N gets large our assumptions on the misfits, m,(x), eventually breakdown (See
Section 5).

Consider the individual elements of the population 7. These estimators will more or less follow
the true regression function. If we think of the misfits functions as random noise functions added
to the true regression function and these noise functions are uncorrelated with zero mean, then the
averaging of the individual estimates is like averaging over the noise. In this sense, the ensemble
method is smoothing in functional space and can be thought of as a regularizer with a smoothness
assumption on the true regretsion function.

An additional benefit of the ensemble method's ability to combine multiple regression estimates
is that the regression estimates can come from many different sources. This fact allows for great
flexibility in the application of the ensemble method. For example, the networks can have different
architectures or be trained by different training algorithms or be trained on different data sets. This
last option - training on different data sets - has important ramifications. One standard method
for avoiding over-fitting during training is to use a cross-validatory hold-out set. ' The problem is
that since the network is never trained on the hold-out data the network may be missing valuable
information about the distribution of the data particularly if the total data set is small. This will
always be the case for a single network using a cross-validatory stopping rule. However, this is
not a problem for the ensemble estimator. When constructing our population F, we can train
each network on the entire training set and let the smoothing property of the ensemble process
remove any over-fitting or we can train each network in the population with a different split of
training and hold-out data. In this way, the population as a whole will seen the entire data set
while each network has avoided over-fitting by using a cross-validatory stopping rule. Thus the
ensemble estimator will see the entire data set while the naive estimator will not. In general, with
this framework we can now easily extend the statistical jackknife, bootstrap and cross validation
techniques (Efron, 1982; Miller, 1974; Stone, 1974) to find better regression functions.

"The cross-validatory hold-out set is a subset of the total data available to us and is used to determine when to
stop training. The hold-out data is not used to train.



3 Intuitive Illustrations

In this section, we present two toy examples which illustrate the averaging principle which is at the
heart of the ensemble methods presented in this paper.

A1
°•.3 2

B 3

Figure 1: Toy classification problem. Hyperplanes 1 and 3 solve the classification problem for the
training data but hyperplane 2 is the optimal solution. Hyperplane 2 is the average of hyperplanes
1 and 3.

For our first example, consider the classification problem depicted in Fig. 1. Regions A and
B represent the training data for two distinct classes which are gaussianly distributed. If we
train a perceptron on this data, we find that hyperplanes 1, 2 and 3 all give perfect classification
performance for the training data; however only hyperplane 2 will give optimal generalization
performance. Thus, if we had to choose a naive estimator from this population of three perceptrons,
we would be more likely than not to choose a hyperplane with poor generalization performance.
For this problem, it is clear that the BEM estimator (i.e. averaging over the 3 hyperplanes) is more
reliable.

For our second example, suppose that we want to approximate the gaussian distribution shown
in Fig. 2a and we are give two estimates shown in Fig. 2b. If we must choose either one or the
other of these estimates we will incur a certain mean square error; however, if we average these two
functional estimates we can dramatically reduce the mean square error. In Fig. 2c, we represent
the ensemble average of the two estimates from Fig. 2b. Comparing Fig. 2b to Fig. 2c, it is clear
that the ensemble estimate is much better than either of the individual estimates. In Fig. 2d, we
compare the square error of each of the estimates.

We can push this simple example a little further to demonstrate a weakness of the Basic En-
semble Methad and the need for a more general approach. Suppose that X -•,'(0, a2) and we are
given 1) - {xj}' and a. We can estimate the true gaussian by estimating its mean with

1j=N

or we can use a modification of the Jackknife Method (Gray and Schucany, 1972) to construct a
population of estimates from which we can construct an ensemble estimator. Define the ensemble
estimate as

1 j=N

--1K Z IIA(-,))
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Figure 2: a, b, c and d (clockwise from upper left). Fig. la shows the gaussian to be estimated. Fig.
lb. Two randomly chosen gaussian estimates compared to the true gaussian. Fig. 1c. Ensemble
average estimate compared to the true gaussian. Fig. id. Square error comparison of the three
estimates. Notice that the ensemble estimate gives the smallest square error.

where 1
1(-i)- N - 1 E-'

and

g(X; a)= e

We can now explicitly compare these two estimates using the mean integrated square error (MISE)
of the estimates,

MISE[g(x; a)] - Ev,[t-j (g(X; a) - g(X; 0)) 2dx].

Calculating MISE[g(x;js)j and MISE[gEmbj,(x)] in this special case, it is easy to show that
MISE[g(x-; 1)] < MISE[9•.embIe(Z)].

Comparing this result with Equation (2), there seems to be a contradiction: The ensemble average
is performing worse on average! The reason the ensemble performs worse on average is that two of
the main assumptions from Section 2 are wrong: The misfit functions from the population are not

Cory i %V'WdLA 1 D~iO1c; DOZO NCotr.ERWJO FULLY~L~ibiz.



uncorrelated nor are they in general zero mean. Since these assumptions do not hold in general,

we present an alternative formulation of the ensemble method in which these assumptions are not
made (See Section 4).

The above example helps to illustrate two important aspects of neural network regression which
should be considered when performing ensemble averages: For neural networks, the existence of

multiple local minima prohibits the simple parameter averaging we performed when we approx-

imated g(z;tz) in the example above. And in general we do not know whether the function we

are trying to estimate is representable by a given neural network as we assumed was true in the

example above.

4 Generalized Ensemble Method

In this section we extend the results of Section 2 to a generalized ensemble technique which always

generates a regression estimate which is as low or lower than both the best individual regressor,

fNaie(z), and the basic ensemble regressor, fBEM(z), and which avoids overfitting the data. In
fact, it is the best possible of any linear combination of the elements of the population F.

Define the Generalized Ensemble Method estimator, fGEM(X), as

i=N i=N

fGEM(X)- a• f(X)= f(x) + r ami(x),
i=1 1=1

where the a,'s are real and satisfy the constraint that E ai = 1. We want to choose the a,'s so as to

minimize the MSE with respect to the target function f(x). If again we define mi(z) - f(z) - f,(x)
and in addition define the symmetric correlation matrix Cj - E[m1 (x)rnj(x)] then we find that we

must minimize

MSE[.GEMI = aiaiCi. (3)
ij

We now use the method of lagrange multipliers to solve for ak. We want ak such that V k

a tj - 2A( a - 1)] 0.

This equation simplifies to the condition that

Ej akCk3  A.
k

If we impose the constraint, _ a, = 1, we find that

ai = (4)

"Ek Ej Ckj

If the m,(x)'s are uncorrelated and zero mean, Cj, = 0 V i $ j and the optimal a,'s have the simple

form
a,2

as = -- I



where a? = Cii, which corresponds to the intuitive choice of weighting the f,'s by the inverse of
their respective variances and normalizing. Combining equations (3) and (4), we find that the
optimal MSE is given by

MSE[fGEM] = c•'1 (5)

The results in this section depend on two assumptions: The rows and columns of C are linearly
independent and we have a reliable estimate of C. In certain cases where we have nearly duplicate
networks in the population F, we will have nearly linearly dependent rows and columns in C which
will make the inversion process very unstable and our estimate of C-1 will be unreliable. In these
cases, we can use heuristic techniques to sub-sample the population Y to assure that C has full
rank (See Section 6). In practice, the increased stability produced by removing near degeneracies
outweighs any information lost by discarding nets. Since the C we calculate is the sample correlation
matrix not the true correlation matrix, C is a random variable as are MSE[fGEM] and the optimal
ai's. Thus noise in the estimate of C can lead to bad estimates of the optimal a,'s. If needed, we
can get a less biased estimate of C-1 by using a jackknife procedure (Gray and Schucany, 1972) on
the data used to generate C.

Note also that the BEM estimator and the naive estimator are both special cases of the GEM es-
timator and therefore MSE[fGEM] will always be less than or equal to MSE[fBEM] and MSE[fNaiv].

An explicit demonstration of this fact can be seen by comparing the respective MSE's under the
assumption that the m1(x)'s are uncorrelated and zero mean. In that case, comparing Equations (1)
and (5), we have

MSE[fBEM] = • • - 1 _ = MSE[IGEM],
S

with equality only when all of the a1 are identical. This relation is easily proven using the fact that
•+ , > 2 V a, b > 0. Similarly we can write

2 > -c2]-'
MSE[fNai,,e]= -m > - = MSE[fGEM].

Thus we see that the GEM estimator provides the best estimate of f(z) in the mean square error
sense.

5 Experimental Results

In this section, we report on an application of the Generalized Ensemble Method to the NIST
OCR database. The characters were hand-segmented, hand-labelled and preprocessed into 120
dimensional feature vectors by convolution with simple kernels. The database was divided in to
three types (numbers, uppercase characters and lowercase characters) and each of these types was
divided into independent training, testing and cross-validatory sets with sizes listed below.



DATA SET TRAINING CV TESTING CLASSES
SET SET SET

Numbers 13241 13241 4767 10

Uppercase 11912 11912 7078 26

Lowercase 12971 12970 6835 26

We trained a population of 10 single hidden unit layer backpropagation networks for a variety of
different hidden unit layer sizes for each type of data. Each network was initialized with a different
random configuration of weights. Training was stopped using a cross-validatory stopping criterion.
For simplicity, we calculated the weights for the GEM estimator under the assumption that the
misfits were uncorrelated and zero mean.

Straight classification results are shown in Fig. 3, Fig. 5 and Fig. 7. In these plots, the clas-
sification performance of the GEM estimator (labelled "Ensemble' ), the naive estimator (labelled
"Best Individual") and the average estimator from the population (labelled "Individual") are plot-
ted versus the number of hidden units in each individual network. Error bars are included for the
average estimator from the population. In all of these plots there is an increase in performance
as the number of hidden units increases. Notice however, that in all of these results the ensemble
estimator was not only better than the population average but it was also as good as or better than
the naive estimator in every case.
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Figure 3: Uppercase percent Figure 4: Uppercase FOM

Typically for character recognition problems, it is worse for the network to make an error than
it is for the network to reject a pattern. This weighted cost can be taken into account by calculating
a Figure of Merit (FOM) instead of a straight performance measure. We define our FOM as follows

FOM S %Correct - %Rejected - 10(%Error).

In our simulations we found an optimal rejection threshold for each network based on the cross-
validatory set. FOM results are shown in Fig. 4, Fig. 6 and Fig. 8. Again notice that in all of these
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results, just as in the straight classification results, the ensemble estimator was not only better
than the population average but it was also better than the naive estimator.

These results for a difficult, real-world problem show that the GEM estimator is significantly
and dramatically better than standard techniques.

It is important to consider how many networks are necessary for the ensemble methods presented
in this paper to be useful. If we take the BEM result seriously (Eqn. 2), we should expect that
increasing the number of networks in the population can only improve the BEM estimator. However
as stated in Sec. 2, eventually our assumptions on the misfits breakdown and Eqn. 2 is no longer
valid. This fact is clearly demonstrated in Fig. 9 where we show the FOM performance saturate
as the number of nets in the population increases. In the figure, we see that saturation in this
example occurs after only 6 or 8 nets are in the ensemble population. This is a very interesting
result because it gives us a measure of how many distinct 5 nets are in our population. This
knowledge is very useful when sub-sampling a given population. This result also suggests a very
important observation: Although the number of local minima in parameter space is extremely large,
the number of distinct local minima in functional space is actually quite small!

sBy "distinct", we mean that the misfits of two nets are weakly correlated. It is of course arguable what should be
considered weakly correlated. For the purposes of this paper, networks are distinct if the related correlation matrix,
C, has a robust inverse.
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We can make another important observation if we compare Fig. 9 with Fig. 4. Consider the
value of the FOM on the test data for an ensemble of 4 networks (Fig. 9). Compare this value to
population average FOM for nets with 40 hidden units (Fig. 4). These values are not significantly
different; however, training a population of large nets to find the best estimator is computationally
much more expensive than training and averaging a population of small nets. In addition, small
networks are more desirable since they are less prone to over-fitting than large networks. 6

45
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Figure 9: Ensemble FOM versus the number of nets in the ensemble. Ensemble FOM graphs for the
uppercase training, cross-validatory and testing data sets are shown. Each net in the populations
had 10 hidden units. The graphs are for a single randomly chosen ordering of 20 previously trained
nets. No effort was made to optimally choose the order in which the nets were added to the
ensemble. Improved ordering gives improved results.

It is also interesting to note that there is a striking improvement for an ensemble size of only
two.

6 Improving BEM and GEM

One simple extension of the ensemble methods presented in this paper is to consider the BEM
and GEM estimators of all of the possible populations which are subsets of the original network
population ;r. ' All the information we need to perform subset selection is contained in the
correlation matrix, C, which only has to be calculated once.

In principal, the GEM estimator for F will be a better estimator than the GEM estimator for
any subset of F; however in practice, we must be careful to assure that the correlation matrix is
not ill<-,nditioned. If for example two networks in the population are very similar, two of the rows
of C will be nearly collinear. This collinearity will make inverting the correlation matrix very error

"*Of course we car not make the individual nets too small or they will not have sufficient complexity.
7This approach is essentially the naive estimator for the population of BEM and GEM estimators. Averaging over

the population of BEM or GEM estimators will not improve performance.



prone and will lead to very poor results. Thus in the case of the GEM estimator it is important to
remove all duplicate (or nearly duplicate) networks from the population F. Removing duplicates
can be easily done by examining the correlation matrix. One can remove all networks for which
the dot product of its row in the correlation matrix with any other row in the correlation matrix is
above some threshold. This threshold can be chosen to allow a number of nets equal to the number
of distinct networks in the population as described in Section 5.

An alternative approach (Wolpert, 1990) which avoids the potential singularities in C is to allow
a perceptron to learn the appropriate averaging weights. Of course this approach will be prone to
local minima and noise due to stochastic gradient descent just as the original population Y was;
thus we can train a population of perceptrons to combine the networks from Y and then average
over this new population. A further extension is to use a nonlinear network (Jacobs et al., 1991;
Reilly et al., 1987; Wolpert, 1990) to learn how to combine the networks with weights that vary over
the feature space and then to average an ensemble of such networks. This extension is reasonable
since networks will in general perform better in certain regions of the feature space than in others.

In the case of the BEM estimator, we know that as the population size grows our assumptions
on the misfits, mi(x), are no longer valid. When our assumptions breakdown, adding more nets
to the population is a waste of resources since it will not improve the performance and if the nets
we add have particularly poor performance, we can actually lower the performance of the BEM
estimator. Thus it would be ideal if we could find the optimal subset of the population Y over
which to average. We could try all the 2 N - 1 possible non-empty subsets of F but for large N
this search becomes unmanageable. Instead, we can order the elements of the population according
to increasing mean square error 8 and generate a set of N BEM estimates by adding successively
the ordered elements of Fc. We can then choose the best estimate. The BEM estimator is then
guaranteed to be at least as good as the naive estimator.

We can further refine this process by considering the difference between the mean square error
for the BEM estimator for a population of N elements and the mean square error for the BEM
estimator for the same population plus a new net. From this comparison, we find that we should
add the new net to the population if the following inequality is satisfied,

(2N + 1)MSE[fN] > 2 E E[mnewm,] ÷En+ E n
i5new

where MSE[fN] is the mean square error for the BEM estimator for the population of N and mnw
is the misfit for the new function to be added to the population. The information to make this
decision is readily available from the correlation matrix, C. Now, if a network does not satisfy this
criterion, we can swap it with the next untested network in the ordered sequence.

7 Conclusions

We have developed a general mathematical framework for improving regression estimates. In
particular, we have shown that by averaging in functional space, we can construct neural networks
which are guaranteed to have improved performance.

An important strength of the ensemble method is that it does not depend on the algorithm
used to generate the set of regressors and therefore can be used with any set of networks. This

"The first element in this sequence will be the naive estimator.



observation implies that we are not constrained in our choice of networks and can use nets of
arbitrary complexity and architecture. Thus the ensemble methods described in this paper are
completely general in that they are applicable to a wide class of problems including neural networks
and any other technique which attempts to minimize the mean square error.

One striking aspect of network averaging is the manner in which it deals with local minima.
Most neural network algorithms achieve sub-optimal performance specifically due to the existence
of an overwhelming number of sub-optimal local minima. If we take a set of neural networks which
have converged to local minima and apply averaging we can construct an improved estimate. One
way to understand this fact is to consider that, in general, networks which have fallen into different
local minima will perform poorly in different regions of feature space and thus their error terms will
not be strongly correlated. It is this lack of correlation which drives the averaging method. Thus,
the averaging method has the remarkable property that it can efficiently utilize the local minima
that other techniques try to avoid.

It should also be noted that since the ensemble methods are performing averaging in functional
space, they have the desirable property of inherently performing smoothing in fuctional space. This
property will help avoid any potential over-fitting during training.

In addition, since the ensemble method relies on multiple functionally independent networks, it
is ideally suited for parallel computation during both training and testing.

We are working to generalize this method to take into account confidence measures and various
nonlinear combinations of estimators in a population.
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