MARYLAND
COLLEGE PARK CAMPUS

A PRIORI ERROR ESTIMATES OF FINITE ELEMENT SOLUTIONS
OF PARAMETRIZED NONLINEAR EQUATIONS

by

Takuya Tsuchiya
and
Ivo Babuška

Technical Note BN-1142

November 1992

INSTITUTE FOR PHYSICAL SCIENCE
AND TECHNOLOGY

93-02063
Title
A Priori Error Estimates of Finite Element Solutions of Parametrized Nonlinear Equations

Author(s)
Takuya Tsuchiya¹ - Ivo Babuska²

Performing Organization Name and Address
Institute for Physical Science and Technology
University of Maryland
College Park, MD 20742-2431

Contract or Grant Number(s)
CCR-88-20279 (NSF)
N00014-90-J-1030 (ONR) & CCR-88-20279 (NSF)

Distribution Statement
Approved for public release: distribution unlimited

Abstract
In this paper, a priori error estimates of finite element solutions of second order parametrized strongly nonlinear equations in divergence form on one-dimensional bounded intervals are studied. The Banach space $W_0^{1,\infty}$ is chosen in formulation of the error analysis so that the nonlinear differential operators defined by the differential equations are nonlinear Fredholm operators of index 1. Finite element solutions are defined in a natural way, and several a priori estimates are proved on regular branches and on branches around turning points.
A Priori Error Estimates of Finite Element Solutions of Parametrized Nonlinear Equations

Takuya Tsuchiya1 Ivo Babuška1

Abstract. Nonlinear differential equations with parameters are called parametrized nonlinear equations. This paper studies a priori error estimates of finite element solutions of second order parametrized strongly nonlinear equations in divergence form on one-dimensional bounded intervals. The Banach space $W_0^{1,\infty}$ is chosen in formulation of the error analysis so that the nonlinear differential operators defined by the differential equations are nonlinear Fredholm operators of index 1. Finite element solutions are defined in a natural way, and several a priori estimates are proved on regular branches and on branches around turning points. In the proofs the extended implicit function theorem due to Brezzi, Rappaz, and Raviart [Numer. Math., 36, pp1-25, 1980] plays an essential role.

Key words. parametrized nonlinear equations, Fredholm operators, regular branches, turning points, finite element solutions, a priori error estimates

AMS(MOS) subject classifications. 65L10, 65L60

Abbreviated title. FE Solutions of Parametrized Nonlinear Equations

1 Department of Mathematics, Faculty of Science, Ehime University, Matsuyama 790, Japan. Research was partially supported by National Science Foundation under Grant CCR-88-20279.

2 IPST, University of Maryland, College Park, MD 20742-2431, U.S.A. Research was partially supported by the U.S. Office of Naval Research under Grant N00014-90-J-1030 and the National Science Foundation under Grant CCR-88-20279.
1. Introduction.

Let X, Y be Banach spaces and $\Lambda \subset \mathbb{R}^n$ a bounded interval. Let $F : \Lambda \times X \rightarrow Y$ be a smooth operator. The nonlinear equation

$$F(\lambda, u) = 0,$$

with parameters $\lambda \in \Lambda$ is called parametrized nonlinear equations.

Let $(\lambda, u) \in \Lambda \times X$ be a solution of (1.1). Intuitively, the set of the solutions of (1.1) would form n-dimensional hypercurves in the Banach space $\mathbb{R}^n \times X$. If $D_u F(\lambda, u) \in \mathcal{L}(X, Y)$, the Fréchet derivative of F with respect to u, is an isomorphism, then, by the implicit function theorem, the above intuition is correct, i.e. there exists a locally unique branch of solutions around (λ, u), and the branch is parametrized by λ. Such branches on which $D_u F(\lambda, u)$ is isomorphism at each (λ, u) are called regular branches.

However, if $D_u F(\lambda, u)$ is not an isomorphism, the state of equilibrium defined by (1.1) becomes unstable and the behavior of the solutions is unpredictable; the hypercurve of the solutions might be a fold, or there might be several hypercurves of solutions intersecting at that point. The folding points are called turning points. The points at which the hypercurves of solutions are intersecting are called bifurcation points. (Note that the definition of bifurcation points given by some authors includes turning points.)

In this paper we deal with the parametrized nonlinear equation $F : \Lambda \times H^1_0(J) \rightarrow H^{-1}(J)$ with one parameter $\lambda \in \Lambda$ defined by

$$F(\lambda, u) = 0, \quad (\lambda, u) \in \Lambda \times H^1_0(J),$$

$$< F(\lambda, u), v > := \int_J \left[a(\lambda, x, u'(x))v' + f(\lambda, x, u(x))v \right] \, dx, \quad \forall v \in H^1_0(J),$$

where $J := (b, c) \subset \mathbb{R}$ is a bounded interval, and $a, f : \Lambda \times J \times \mathbb{R} \rightarrow \mathbb{R}$ are sufficiently smooth functions. Since F is a second order differential operator in divergence form, finite element solutions of (1.2) are defined in a natural way.

Brezzi, Rappaz, and Raviart [BBR1-3] presented a comprehensive work on the numerical analysis of parametrized nonlinear equations. They first proved an extended implicit function theorem with error estimates on Banach spaces. Then, using the implicit function theorem, they obtained several results of a priori error estimates of finite element solutions [BBR1,2]. In [BBR3], they considered approximation of solution branches around bifurcation points, which will not be dealt with in this paper.
Following [BRR1-3], Fink and Rheinboldt released several papers about numerical analysis of parametrized nonlinear equations ([FR1,2], [R], and references therein). While the formulation of [BRR1-3] was rather restrictive, Fink and Rheinboldt developed their theory of a priori error estimates of numerical solutions in a very general setting using the theory of differential geometry.

Fink and Rheinboldt employed the theory of Fredholm operators. Let X and Y be Banach spaces and $F: X \rightarrow Y$ a differentiable mapping. Then, F is called Fredholm on an open set $U \subset X$ if the Fréchet derivative $DF(z)$ satisfies the following conditions at any $z \in U$:

1. $\dim \ker DF$ is finite,
2. $\text{Im} DF$ is closed,
3. $\dim \text{coker} DF$ is finite.

We must note that, in the above prior works by Brezzi, et al. and Fink-Rheinboldt, only mildly nonlinear equations were considered. If $a(\lambda, x, y)$ in (1.3) is nonlinear with respect to y, the operator F is called strongly nonlinear (quasilinear), otherwise it is called mildly nonlinear (semilinear).

Following the above prior works, we here develop a thorough theory of a priori and a posteriori error estimates of finite element solutions of (1.2) on regular branches and on branches around turning points in the case that the number of parameters is one, that is, $\Lambda \subset \mathbb{R}$. Since our formulation of parametrized nonlinear equations includes strongly nonlinear equations, our theory is an essential extension of the prior works.

In this paper we present the theory of a priori error estimates. In [TB1] the theory of a posteriori error estimates and several numerical examples will be given. In the following the outline of this paper is described.

First, we show that the exact and finite element solutions of (1.2) form one-dimensional smooth manifolds. If F is mildly nonlinear, showing that solutions form manifolds would not be very difficult. If F is strongly nonlinear, however, it would become very difficult, or F would not be even differentiable in $\Lambda \times H^1_0(J)$.

Therefore, we redefine (1.2) and (1.3) using the Sobolev space $W^{1,\infty}(J)$. Then, F becomes as smooth as the functions a and f, and it is a Fredholm operator in a certain open set. From the Fink-Rheinboldt theory, we conclude that the exact and finite element solutions form smooth manifolds under suitable conditions.

Next, we prove several a priori estimates of finite element solution manifolds of (1.2) using the
extended implicit function theorem due to Brezzi, Rappaz, and Raviart [BRR1]. As mentioned before, we need to take the Sobolev space $W^{1,\infty}(J)$ as the stage of the error analysis of finite element solution manifolds. However, using $W^{1,\infty}(J)$ in the formulation make the finite element analysis difficult. So we have to come up with several new tricks to overcome this difficulty. The following is the most essential trick:

Since our operator F is defined on $W^{1,\infty}(J)$, its Fréchet derivative $D_u F$ is a linear operator on $W^{1,\infty}(J)$. However, $D_u F$ can be extended to an element of $L(H^1_0, H^{-1})$ and thus the usual theory of finite element can be applied to $D_u F$.

Another new idea is ‘rotation’ or ‘pivoting’ of the coordinate to handle turning points. In [BRR2], a slightly different formulation from that of [BRR1] was used to deal with turning points. In Fink-Rheinboldt’s theory, certain isomorphisms were introduced in the formulation so that both regular branches and branches around turning points were treated simultaneously. In this paper, we put an auxiliary equation in the original equation (1.2) so that the enlarged operator is an isomorphism between Banach spaces around turning points or on ‘steep slope’. Then we do the same thing what we do on regular branches to the extended operator.

In this paper one-dimensional case is discussed. Under certain assumptions the results obtained here will be extended to two-dimensional case in [TB2].

This paper is a revision of a part of one of the authors’ Ph.D. dissertation [T].

2. Preliminary.

In this section we prepare notation and a necessary lemma.

Let $J := (b, c) \subset \mathbb{R}$ be a bounded interval. For a positive integer m and a real $p \in [1, \infty]$, we denote by $W^{m,p}(J)$ the usual L^p-Sobolev space of order m, that is,

$$W^{m,p}(J) := \{ u \in L^p(J) \mid D^k u \in L^p(J), 0 \leq k \leq m \}.$$

We define the norm of $W^{m,p}(J)$ by

$$\|u\|_{W^{m,p}} := \sum_{k=0}^m \|D^k u\|_{L^p}.$$

For $p \in [1, \infty]$, we define the closed subspace $W_0^{1,p}(J)$ by

$$W_0^{1,p}(J) := \{ u \in W^{1,p}(J) \mid u = 0 \text{ on } \partial J \}.$$

As usual, we denote $W^{m,2}(J)$ and $W_0^{1,2}(J)$ by $H^m(J)$ and $H^1_0(J)$, respectively.
Note that $C_0^\infty(J)$, the set of infinitely many times differentiable functions with compact supports, is dense in $W_0^{1,p}(J)$ for p, $1 \leq p < \infty$, but if $p = \infty$, $C_0^\infty(J)$ is not dense in $W_0^{1,\infty}(J)$.

By the Poincaré inequality, the norm

$$
\|u\|_{W_0^{1,p}} := \|u\|_{L^p}
$$

is equivalent to the norm $\| \cdot \|_{W_1^p}$ in $W_0^{1,p}(J)$. We always take the norm (2.1) for $W_0^{1,p}(J)$ in this paper.

For $1 \leq q < \infty$ and p with $\frac{1}{p} + \frac{1}{q} = 1$, let $W^{-1,q}(J)$ be the dual space of $W_0^{1,q}(J)$ with the norm

$$
\|F\|_{W^{-1,q}} := \sup_{\|w\|_{W_0^{1,q}} = 1} \langle F, w \rangle_q, \quad F \in W^{-1,q}(J),
$$

where $\langle \cdot, \cdot \rangle_q$ is the duality paring between $W^{-1,p}(J)$ and $W_0^{1,q}(J)$. Then we have

Lemma 2.1. For any $F \in W^{-1,p}(J)$ with $1 < p \leq \infty$, there exists a unique $u \in W_0^{1,p}(J)$ so that

$$
\langle F, u \rangle_q = \int_J u'v'dx, \quad \forall v \in W_0^{1,q}(J). \quad \square
$$

Lemma 2.1 is a direct consequence of [B, Proposition VIII.13].

In notation of this paper, we omit ‘(J)’ from the notation of Sobolev spaces when there is no danger of confusion. Also, we write $\langle \cdot, \cdot \rangle$ instead of $\langle \cdot, \cdot \rangle_q$ when the setting of the duality paring is obvious.

Subscripts like a_γ and f_λ stand for partial derivatives with respect to x and λ, respectively.

3. Formulation of the Problem.

In this section we formulate our problem rigorously. To do this we define the nonlinear operator

$$
F : \Lambda \times W_0^{1,\infty} \to W^{-1,\infty} \text{ by, for } \lambda \in \Lambda \subset \mathbb{R} \text{ and } u \in W_0^{1,\infty},
$$

$$
\langle F(\lambda, u), v \rangle := \int_J [a(\lambda, x, u'(x))v'(x) + f(\lambda, z, u(x))v(x)]dx, \quad \forall v \in W_0^{1,1},
$$

where $\langle \cdot, \cdot \rangle$ is the duality paring between $W^{-1,\infty}$ and $W_0^{1,1}$.

For F being well-defined and smooth we require several conditions for a and f.

A function $\psi : \Lambda \times J \times \mathbb{R} \to \mathbb{R}$ is called Carathéodory continuous if ψ satisfies the following conditions: for $(\lambda, z, y) \in \Lambda \times J \times \mathbb{R}$,
If $\psi(\lambda, x, y)$ is Carathéodory continuous, $\psi(\lambda, x, u(x))$ is Lebesgue measurable with respect to x for any Lebesgue measurable function u.

Let $\alpha = (\alpha_1, \alpha_2)$ be usual multiple index with respect to λ and y. That is, for $\alpha = (\alpha_1, \alpha_2)$, $D^\alpha a(\lambda, x, y)$ means $\frac{\partial^{\alpha_1}}{\partial \lambda^{\alpha_1}} \frac{\partial^{\alpha_2}}{\partial y^{\alpha_2}} a(\lambda, x, y)$.

Let $d \geq 1$ be an integer. For α, $|\alpha| \leq d$, we define the maps $A^\alpha(\lambda, u)$ and $F^\alpha(\lambda, u)$ for $(\lambda, u) \in \Lambda \times W^{1,\infty}_0$ by

\begin{align*}
A^\alpha(\lambda, u)(x) &\equiv D^\alpha a(\lambda, x, u'(x)), (3.2) \\
F^\alpha(\lambda, u)(x) &\equiv D^\alpha f(\lambda, x, u(x)). (3.3)
\end{align*}

We then assume that

Assumption 3.1. For all α, $|\alpha| \leq d$, we suppose that

1. For almost all $x \in J$, $D^\alpha a(\lambda, x, y)$ and $D^\alpha f(\lambda, x, y)$ exist at all $(\lambda, y) \in \Lambda \times \mathbb{R}$, and they are Carathéodory continuous.

2. The mapping A^α defined by (3.2) is a continuous operator from $\Lambda \times W^{1,\infty}_0$ to L^∞, and the image $A^\alpha(U) \subset L^\infty$ of any bounded subset $U \subset \Lambda \times W^{1,\infty}_0$ is bounded.

3. The mapping F^α defined by (3.3) is a continuous operator from $\Lambda \times W^{1,\infty}_0$ to L^1, and the image $F^\alpha(U) \subset L^1$ of any bounded subset $U \subset \Lambda \times W^{1,\infty}_0$ is bounded.

Assumption 3.1 is satisfied if $a, f : \Lambda \times J \times \mathbb{R} \rightarrow \mathbb{R}$ are, for instance, C^d functions. By simple computation we obtain the following Lemma.

Lemma 3.2. Suppose that a and f satisfy Assumption 3.1. Then F defined by (3.1) is a C^d mapping. Its Fréchet derivatives are written as

\begin{align*}
\langle D_u F(\lambda, u) \psi, v \rangle &= \int_J [a_y(\lambda, x, u'(x))\psi'v' + f_y(\lambda, x, u(x))\psi v]dx, \\
\langle D_\lambda F(\lambda, u) \eta, v \rangle &= \eta \int_J [a_\lambda(\lambda, x, u'(x))v' + f_\lambda(\lambda, x, u(x))v]dx.
\end{align*}

for $\psi \in W^{1,\infty}_0$, $v \in W^{1,1}_0$, and $\eta \in \mathbb{R}$. Moreover, we have the following estimates

\begin{align*}
\|D_u F(\lambda, u)\|_{L(\Lambda \times J \times W^{1,\infty}_0)} &\leq \|a_y(\lambda, x, u'(x))\|_{L^\infty} + \|f_y(\lambda, x, u(x))\|_{L^1}, \\
\|D_\lambda F(\lambda, u)\|_{W^{-1,\infty}_0} &\leq \|a_\lambda(\lambda, x, u'(x))\|_{L^\infty} + \|f_\lambda(\lambda, x, u(x))\|_{L^1}. \quad \Box
\end{align*}
Now, we define our problem.

Problem 3.3. Under Assumption 3.1 with \(d \geq 1 \), solve the following equation: Find \(\lambda \in \Lambda \) and \(u \in W_0^{1,\infty} \) such that

\[
<F(\lambda, u), v> = 0, \quad \forall v \in W_0^{1,1},
\]

where \(F \) is defined by (3.1). □

In this section we prove that, if \(a(\lambda, x, y) \) satisfies certain conditions, \(F \) will be a nonlinear Fredholm operator and solutions of Problem 3.3 form a one-dimensional differential manifold. The following lemmas are essential.

Let \(p \in (1, \infty] \) and \(\alpha \in L^\infty \). Define \(A : W_0^{1,p} \rightarrow W^{-1,p} \) by

\[
< Au, v > := \int J \alpha(z)u'(z)v'(z)dz, \quad \forall v \in W_0^{1,q},
\]

where \(\frac{1}{p} + \frac{1}{q} = 1 \), and \(< \cdot, \cdot > \) is the duality pairing between \(W^{-1,p} \) and \(W_0^{1,q} \). Then we have

Lemma 4.1. Suppose \(\alpha^{-1} \in L^\infty \) and \(\int \frac{dx}{\alpha(x)} \neq 0 \). Then \(A \) is an isomorphism between \(W_0^{1,p} \) and \(W^{-1,p} \).

Proof. First, we prove that \(A \) is onto. Let \(c_0 := \int J \frac{dx}{\alpha(x)} \). Take an arbitrary \(F \in W^{-1,p} \). By Lemma 2.1 we know that there exists a unique \(\psi \in W_0^{1,p} \) such that

\[
<F, v > = \int J \psi'(z)v'(z)dz, \quad \forall v \in W_0^{1,q}.
\]

Let \(c_1 := \frac{1}{c_0} \int J \frac{\psi'(x)}{\alpha(x)}dx \) and \(u(x) := \int_0^x \frac{\psi'(t) + c_1}{\alpha(t)} dt \). Then it follows that \(u \in W_0^{1,p} \), and \(< Au, v > = < F, v > \) for all \(v \in W_0^{1,q} \). Hence, \(A \) is onto.

Next, we show that \(A \) is one-to-one. Suppose that \(u_1, u_2 \in W_0^{1,p} \) and

\[
\int J \alpha(x)u_1'(x)v'(x)dx = \int J \alpha(x)u_2'(x)v'(x)dx, \quad \forall v \in W_0^{1,q}.
\]

By [B, Lemma VIII.1], there is a constant \(c_2 \) such that \(\alpha(x)(u'_1(x) - u'_2(x)) = c_2 \) for almost all \(x \in J \). Since

\[
0 = \int J (u'(x) - u'_2(x))dx = c_2 \int J \frac{dx}{\alpha(x)} = c_0 c_2,
\]

we have \(u_1 = u_2 \). Therefore, \(A \) is one-to-one.
and $c_0 \neq 0$, we conclude that $u'_1(x) = u'_2(x)$ and $u_1 = u_2$. That is, A is one-to-one.

Since A is continuous and bijective, A^{-1} is also bounded by the closed graph theorem. Therefore, A is an isomorphism between $W^{1,p}_0$ and $W^{-1,p}$.

Lemma 4.2. Suppose that $\alpha^{-1} \in L^\infty$ and $\int I \frac{dx}{\alpha(x)} = 0$. Then

1. $\dim \ker A = 1$ and $\ker A = \{ \varphi \in W^{1,p}_0 | \varphi'(x) = c_0 \alpha(x)^{-1}, c_0 \in \mathbb{R} \}$,
2. $\text{Im} A \subset W^{-1,p}$ is closed,
3. $\dim \coker A = 1$.

Proof. (1) Let $\varphi(x) := \int_b^x \frac{dt}{\alpha(t)}$. Then, by the assumption, we have $\varphi \in W^{1,\infty}_0 \subset W^{1,p}_0$, and $< A\varphi, v > = 0$ for all $v \in W^{1,q}_0$. Therefore, $\varphi \in \ker A$.

Conversely, for any $u \in \ker A$, there is a constant c_0 such that $\alpha(x)u'(x) = c_0$ for almost all $x \in J$. This implies that $u = c_0 \varphi$. Hence, (1) is proved.

(2) First, we define the subset $X \subset W^{1,p}_0$ by

$$X := \left\{ \psi \in W^{1,p}_0 \left| \int J \frac{\psi'(x)}{\alpha(x)} dx = 0 \right. \right\}$$

Clearly, X is a closed subspace of $W^{1,p}_0$.

Let $T \in \mathcal{L}(W^{1,p}_0, W^{-1,p})$ be the isomorphism defined by $< Tu, v > := \int u'v' dx$, $\forall v \in W^{1,q}_0$. Let $\tilde{X} := T(X)$. Take any $\psi \in X$, and define $u(z) := \int_b^z \frac{\psi'(t)}{\alpha(t)} dt$. Then, we have $u \in W^{1,p}_0$, and $< Au, v > = < T\psi, v >$, for all $v \in W^{1,q}_0$. Hence, we have that $\text{Im} A \subset \tilde{X}$.

Now, take any $\eta \in W^{1,p}_0$ and define γ by $\gamma(z) := \int_b^z (\alpha(t)\eta'(t) - c_1) dt$, where $c_1 := \int_J \alpha \eta' dx / |J|$. We check that $\gamma \in W^{1,p}_0$ and $T\gamma = A\eta$. Moreover, we have $\gamma \in X$ because

$$\int_J \frac{\gamma'(x)}{\alpha(x)} dx = \int_J \frac{\eta'(x) dx - c_1}{\alpha(x)} = 0.$$

Hence, we conclude that $\text{Im} A = \tilde{X}$ and $\text{Im} A$ is closed.

(3) As before, define $\psi_0 \in W^{1,p}_0$ by $\psi_0(z) := \int_b^z \alpha(t)^{-1} dt$. Since $\int_J (\psi_0'/\alpha) dx = \int_J \alpha^{-2} dx \neq 0$, we have $\psi_0 \notin X$. Let $c_2 := \int_J \alpha^{-2} dx > 0$. Take any $\psi \in W^{1,p}_0$ and let $c_3 := \int_J (\psi'/\alpha) dx$.

Then $\psi - (c_3/c_2)\psi_0 \in X$ because

$$\int_J \frac{\psi'(x) - (c_3/c_2)\psi_0'(x)}{\alpha(x)} dx = \int_J \frac{\psi'(x)}{\alpha(x)} dx - \frac{c_3}{c_2} \int_J \frac{dx}{\alpha(x)^2} = 0.$$

This implies that for any $\psi \in W^{1,p}_0$ there exist $c_4 \in \mathbb{R}$ and $\psi_1 \in X$ such that $\psi = c_4 \psi_0 + \psi_1$.

The uniqueness of such decomposition is obtained by a simple computation.
Therefore, we showed that \(W^{-1,p} = \text{Im} A \oplus \text{span}\{T\psi_0\} \), and (3) is proved. \(\square \)

From Lemma 4.1 and Lemma 4.2 and the definition of Fredholm operators, we finally obtain

\textbf{Theorem 4.3.} If \(\alpha^{-1} \in L^\infty \), then the linear operator \(A \) defined by (4.1) is a Fredholm operator and \(\text{ind} A \), the index of \(A \), is 0. \(\square \)

Let us now return to our main problem. We define the subset \(S \subset \Lambda \times W_0^{1,\infty} \) by

\[S := \{ (\lambda, u) \in \Lambda \times W_0^{1,\infty} | a_y(\lambda, z, u'(x))^{-1} \in L^\infty \}. \]

Since the mapping \(\Lambda \times W_0^{1,\infty} \ni (\lambda, u) \mapsto a_y(\lambda, z, u'(x)) \in L^\infty \) is continuous, we have

\textbf{Lemma 4.4.} If \(a \) and \(f \) satisfy Assumption 3.1 with \(d \geq 1 \), \(S \) is an open set in \(\Lambda \times W_0^{1,\infty} \). \(\square \)

Now, from the standard theory of Fredholm operators, we obtain the following theorem:

\textbf{Theorem 4.5.} Suppose that \(a \) and \(f \) satisfy Assumption 3.1 with \(d \geq 1 \). Then in \(S \), the operator \(F : S \rightarrow W^{-1,\infty} \) defined by (3.1) is a nonlinear Fredholm operator of index 1.

\textbf{Proof.} From Lemma 3.2 and Theorem 4.3, the operator \(D_u F(\lambda, u) : W_0^{1,\infty} \rightarrow W^{-1,\infty} \) is Fredholm and its index is 0 for \((\lambda, u) \in S \). Since \(DF(\lambda, u) : \mathbb{R} \times W_0^{1,\infty} \rightarrow W^{-1,\infty} \) is written as

\[DF(\lambda, u)(\eta, \psi) = D_u F(\lambda, u)\psi + \eta D\lambda F(\lambda, u) \] for \(\eta \in \mathbb{R} \) and \(\psi \in W_0^{1,\infty} \), Theorem 4.5 is concluded. \(\square \)

We define the subset \(\mathcal{R}(F, S) \subset S \) by

\[\mathcal{R}(F, S) := \{ (\lambda, u) \in S | DF(\lambda, u) \text{ is onto} \}. \]

and have

\textbf{Lemma 4.6.} For any \((\lambda, u) \in \mathcal{R}(F, S) \), \(\dim \text{Ker} D_u F(\lambda, u) \) is at most 1.

\textbf{Proof.} Assume that \(N := \dim \text{Ker} D_u F(\lambda, u) \geq 2 \) for some \((\lambda, u) \in \mathcal{R}(F, S) \). Note that the elements of \(\text{Ker} DF(\lambda, u) \) are solutions of the linearized equation

\[DF(\lambda, u)(\mu, \psi) = \mu D\lambda F(\lambda, u) + D_u F(\lambda, u)\psi = 0, \] \(\mu \in \mathbb{R}, \ \psi \in W_0^{1,\infty} \).
If $D_\lambda F(\lambda, u) \notin \text{Im}D_u F(\lambda, u)$, by (4.4), we obtain

$$\text{Ker}D F(\lambda, u) = \{(0, \phi) \in \Lambda \times W_0^{1,\infty} \mid \phi \in \text{Ker}D_u F(\lambda, u)\}$$

and $\dim \text{Ker} D F(\lambda, u) = N > 1$. This contradicts to (4.3) and $\text{ind} F = 1$.

Therefore, we should conclude that $D_\lambda F(\lambda, u) \in \text{Im}D_u F(\lambda, u)$. Let $\psi_0 \in W_0^{1,\infty}$ be such that $D_\lambda(\lambda, u) = D_u F(\lambda, u)\psi_0$. Then we obtain

$$(4.5) \quad \text{Ker}D F(\lambda, u) = \{(\mu, -\mu \psi_0 + \phi) \in \Lambda \times W_0^{1,\infty} \mid \mu \in \mathbb{R}, \phi \in \text{Ker}D_u F(\lambda, u)\},$$

and hence $\dim \text{Ker} D F(\lambda, u) = N + 1 > 1$. Therefore, we get a contradiction again, and Lemma 4.6 is proved. □

The elements of $R(F, S)$ are called regular points. The elements of $F(R(F, S))$ are called regular values.

By Theorem 4.5, we can apply the Fink-Rheinboldt theory ([FR1],[FR2],[R]) to the operator F and obtain the main theorem of this section.

Theorem 4.7. Suppose that a and f satisfy Assumption 3.1 with $d \geq 1$. Let $e \in F(R(F, S))$. Then

$$M = M_e := \{(\lambda, u) \in R(F, S) \mid F(\lambda, u) = e\}$$

is a one-dimensional C^d-manifold without boundary. Moreover, for each $(\lambda, u) \in M$, the tangent space $T_{(\lambda, u)}M$ at (λ, u) is $\text{Ker}D F(\lambda, u)$.

Therefore, if $0 \in F(R(F, S))$, the solutions of Problem 3.3 form a one-dimensional C^d-manifold without boundary in $R(F, S)$. □

In the sequel of this paper we always assume that $0 \in F(R(F, S))$.

Now, let us consider the linearized equation (4.4). From Lemma 4.6, we would have four cases for $(\lambda, u) \in R(F, S)$.

Case 1. $\text{Ker}D_u F(\lambda, u) = \{0\}$ and $D_\lambda F(\lambda, u) \in \text{Im}D_u F(\lambda, u)$.

In this case, by the implicit function theorem, there exists a unique C^d map $\Lambda \ni \lambda \mapsto u(\lambda) \in W_0^{1,\infty}$ such that $F(\lambda, u(\lambda)) = 0$ for any λ. Hence, this case corresponds to regular branches. □

Case 2. $\dim \text{Ker}D_u F(\lambda, u) = 1$ and $D_\lambda F(\lambda, u) \notin \text{Im}D_u F(\lambda, u)$. 10
In Case 2, using the well-known Liapunov-Schmidt reduction (see, for instance, [GS]), we can show that this case corresponds to (general) turning points. □

Case 3. \(\text{Ker}D_uF(\lambda, u) = \{0\} \) and \(D_\lambda F(\lambda, u) \notin \text{Im}D_uF(\lambda, u) \).

By a similar argument to the proof of Lemma 4.6, we see that this case cannot happen. □

Case 4. \(\dim \text{Ker}D_uF(\lambda, u) = 1 \) and \(D_\lambda F(\lambda, u) \in \text{Im}D_uF(\lambda, u) \).

By (4.5), we have \(\dim \text{Ker}DF(\lambda, u) = 2 \) and \(\dim \text{Coker}DF(\lambda, u) = 1 \). Hence, this is not the case for \((\lambda, u) \in \mathcal{R}(F, S) \). In this case we may have a bifurcation phenomenon. □

By the above consideration we now know that

\[
(\lambda, u) \in \mathcal{R}(F, S) \quad \overset{\text{def}}{\iff} \quad (\lambda, u) \in S \text{ and } DF(\lambda, u) \in L(\mathbb{R} \times W_0^{1,\infty}, W^{-1,\infty}) \text{ is onto},
\]

\[\implies \text{we have either Case 1 or Case 2.}\]

5. Regularity of Solutions.

In this section we examine the regularity of the solutions \((\lambda, u) \in \mathcal{M}_0 \). To do it we need additional assumptions. Let \(p^* \), \(2 \leq p^* \leq \infty \) be taken and fixed.

Assumption 5.1. Under Assumption 3.1 with \(d \geq 1 \), we assume that

1. For all \(\lambda \in \Lambda \), the functions \(a(\lambda, \cdot, \cdot), a_y(\lambda, \cdot, \cdot) : J \times \mathbb{R} \to \mathbb{R} \) are continuous.
2. For all \((\lambda, y) \in \Lambda \times \mathbb{R} \), there exist \(a_\lambda(\lambda, x, y) \) for almost all \(x \in J \) and are Carathéodory continuous.
3. The composition functions \(f(\lambda, x, u(x)), a_\lambda(\lambda, x, u'(x)) \) are in \(L^{p^*} \) for any \((\lambda, u) \in \Lambda \times W_0^{1,\infty} \).

Moreover, for any bounded subsets \(K \subset \Lambda \times W_0^{1,\infty} \),

\[
\{f(\lambda, x, u(x)) \in L^{p^*} | (\lambda, u) \in K\}, \quad \{a_\lambda(\lambda, x, u'(x)) \in L^{p^*} | (\lambda, u) \in K\}
\]

are bounded in \(L^{p^*} \). □

Lemma 5.2. Let \((\lambda, u) \in \mathcal{M}_0 \). Suppose that Assumption 3.1 and 5.1 hold. Then \(u \in C^1(J) \).

Proof. Define \(f_0 \) by \(f_0(x) := -f(\lambda, x, u(x)) \). By Assumption 5.1(3), we have \(f_0 \in L^{p^*} \). Now, consider the following equation

\[
(5.1) \quad \int_J \Phi'(z)v'(z)dz = \int_J f_0(z)v(z)dz, \quad \forall v \in H_0^1.
\]

11
There exists a unique solution $\Phi \in W^{2,p^*}$ of (5.1). Thus, we have

$$a(\lambda, x, u'(x)) = H(x) \in W^{1,p^*},$$

where $H(x) := \Phi'(x) + c_1$ with some constant c_1.

Now, for a fixed $\lambda \in \Lambda$, define the function $G : J \times \mathbb{R} \to \mathbb{R}$ by $G(x, y) := a(\lambda, x, y) - H(x)$.

Note that $G_y(x, y) = a_y(\lambda, x, y)$ and, by Assumption 5.1(1), G and G_y are continuous. Also we remark that, for almost all $x_0 \in J$ and $y_0 := u'(x_0)$, we have $G(x_0, y_0) = a(\lambda, x_0, u'(x_0)) - H(x_0) = 0$ and $a_y(\lambda, x_0, y_0) = a_y(\lambda, x_0, u'(x_0)) \neq 0$ because $(\lambda, u) \in \mathcal{M} \subset S$ and (4.2).

Therefore, by the implicit function theorem, we conclude that, in the each neighborhood of x_0, there exists a unique continuous function T such that $T(x_0) = u'(x_0)$ and

$$G(x, T(x)) = a(\lambda, x, T(x)) - H(x) = 0.$$

This means that $T(x) = u'(x)$. Hence, $u'(x)$ is continuous for all $x \in J$. \square

The following is the main theorem of this section.

Theorem 5.3. Under Assumption 3.1 and 5.1, we have $u \in W^{2,p^*}$ for all $(\lambda, u) \in \mathcal{M}_0$.

Moreover, for all bounded closed subsets $\mathcal{M} \subset \mathcal{M}_0$, there exists a constant $K(\mathcal{M})$ such that

$$\sup_{(\lambda, u) \in \mathcal{M}} \|u\|_{W^{2,p^*}} \leq K(\mathcal{M}).$$

Proof. Let $H \in W^{1,p^*}$ be defined by (5.2). For small $\delta > 0$ we write

$$\frac{H(x + \delta) - H(x)}{\delta} = a_y(\lambda, x + \delta, u'(x + \delta) + \epsilon(u'(x + \delta) - u'(x))) \frac{u'(x + \delta) - u'(x)}{\delta} + a(\lambda, x + \delta, u'(x))$$

with $0 < \epsilon < 1$. Since $H \in W^{1,p^*}$, H' exists at almost all $x \in J$ and $H' \in L^{p^*}$. From $(\lambda, u) \in \mathcal{M}_0 \subset S$, it follows that $a(\lambda, x + \delta, u'(x + \delta))^{-1} \in L^\infty$, that is,

$$|a(\lambda, x + \delta, u'(x + \delta))| \geq \gamma > 0 \quad \text{for any } x + \delta \in J.$$

By Lemma 5.2, we have $u'(x + \delta) \to u'(x)$ as $\delta \to 0$. Hence we obtain

$$(5.3) \quad |a_y(\lambda, x + \delta, u'(x + \delta) + \epsilon(u'(x + \delta) - u'(x)))| > 0$$

for all $x \in J$ and sufficiently small $\delta > 0$, and

$$(5.4) \quad \lim_{\delta \to 0} a_y(\lambda, x + \delta, u'(x + \delta) + \epsilon(u'(x + \delta) - u'(x))) = a_y(\lambda, x, u'(x))$$
because of Assumption 5.1(1). By (5.3), (5.4) and Assumption 5.1(2), we conclude that, for almost all \(x \in J \), \(\lim_{\delta \to 0} (u'(x + \delta) - u'(x))/\delta \) exists and

\[
(5.5) \quad u''(x) = \lim_{\delta \to 0} \frac{u'(x + \delta) - u'(x)}{\delta} = \frac{H'(x) - a_x(\lambda, x, u'(x))}{a_y(\lambda, x, u'(x))}.
\]

Since \(H', a_x(\lambda, x, u'(x)) \in L^p \), we obtain \(u'' \in L^p \) and \(u \in W^{2,p} \).

Now, let \(\tilde{M} \subset M_0 \) be a bounded closed subset. Then, we have

\[
(5.6) \quad \sup\{||a_y(\lambda, x, u'(x))^{-1}||_{L^\infty}; (\lambda, u) \in \tilde{M}\} < \infty.
\]

The last part of Lemma 5.3 is obtained by (5.5), (5.6), and Assumption 5.1(3).

6. Finite Element Solution Manifold.

Recall that we are considering

Problem 6.1. Find \(\lambda \in \Lambda \) and \(u \in W_0^{1,\infty} \) such that

\[
(6.1) \quad < F(\lambda, u), v > = 0, \quad \forall v \in W_0^{1,1}.
\]

Naturally, we define the finite element solution of (6.1) in the following way. Let \(\mathcal{S}_h \subset W_0^{1,\infty} \subset W_0^{1,1} \) be a finite element space. The space of piecewise linear functions is an example of \(\mathcal{S}_h \). We define the finite element solutions of Problem 6.1 by

Problem 6.1FE. Find \(\lambda_h \in \Lambda \) and \(u_h \in \mathcal{S}_h \) such that

\[
(6.2) \quad < F(\lambda_h, u_h), v_h > = 0, \quad \forall v_h \in \mathcal{S}_h.
\]

Then, using the Fink and Rheinboldt theory, we will show that the solutions of Problem 6.1FE also form a differential manifold.

Let \((\cdot, \cdot) \) be the inner product of \(H_0^1 \) defined by \((u, v) := \int_J u'v'dx \) for \(u, v \in H_0^1 \). Since \(\mathcal{S}_h \subset H_0^1 \), we define the canonical projection \(\Pi_h : H_0^1 \to \mathcal{S}_h \) by \((\psi - \Pi_h \psi, v_h) = 0, \forall v_h \in \mathcal{S}_h \) for \(\psi \in H_0^1 \).

We see the following equivalences. Define an isomorphism \(T \in \mathcal{L}(W^{-1,\infty}, W_0^{1,\infty}) \) by \(< \eta, v > = (T \eta, v), \forall v \in W_0^{1,1} \) for \(\eta \in W^{-1,\infty} \). Then, we observe that, for any \(v_h \in \mathcal{S}_h \) and \(v \in H_0^1 \),

\[
(6.2) \quad < F(\lambda_h, u_h), v_h > = 0 \iff < F(\lambda_h, u_h), \Pi_h v > = 0 \iff (TF(\lambda_h, u_h), \Pi_h v) = 0 \iff (\Pi_h TF(\lambda_h, u_h), v) = 0 \iff < T^{-1}\Pi_h TF(\lambda_h, u_h), v > = 0.
\]
Since \(H^1_0 \) is dense in \(W^{1,1}_0 \), we conclude that Problem 6.1_{FE} is equivalent to

Problem 6.1^*_{FE}. Find \(\lambda_h \in \Lambda \) and \(u_h \in \hat{S}_h \) such that

\[
< F_h(\lambda_h, u_h), v > = 0, \quad \forall v \in W^{1,1}_0,
\]

where \(P_h := T^{-1}\Pi_h T \in \mathcal{L}(W^{-1,\infty}, W^{-1,\infty}) \) and \(F_h(\lambda_h, u_h) := P_h F(\lambda_h, u_h) \). \(\square \)

Our formulation of Problem 6.1^*_{FE} seems to depend on \(T \) and \(\Pi_h \). However, we claim that, even if we take other \(T_\alpha, \Pi^\alpha_h \) and define the finite element solutions by \(< T^{-1}_\alpha \Pi^\alpha_h T_\alpha F(\lambda_h, u_h), v > = 0 \) for all \(v \in W^{1,1}_0 \), this formulation is equivalent to Problem 6.1^*_{FE}.

Let \(\alpha \in L^\infty \) be such that \(\alpha(x) \geq \epsilon > 0 \) for all \(x \in J \), where \(\epsilon \) is a constant. Let \((\cdot, \cdot)_\alpha \) be the inner product of \(H^1_0 \) defined by \((u, v)_\alpha := \int_J \alpha u v' dx \) for \(u, v \in H^1_0 \). Define the isomorphism \(T_\alpha \in \mathcal{L}(W^{-1,\infty}, W^{1,\infty}_0) \) by \(\eta, v := (T_\alpha \eta, v)_\alpha, \forall v \in W^{1,1}_0 \) for \(\eta \in W^{-1,\infty} \). Also, define the canonical projection \(\Pi^\alpha_h : H^1_0 \rightarrow \hat{S}_h \) by \((\psi - \Pi^\alpha_h \psi, v)_\alpha = 0, \forall v \in \hat{S}_h \) for \(\psi \in H^1_0 \). By the same manner as in (6.2), we observe that, for any \(v_h \in \hat{S}_h \) and any \(v \in H^1_0 \),

\[
< F(\lambda_h, u_h), v_h > = 0 \iff < T^{-1}_\alpha \Pi^\alpha_h T_\alpha F(\lambda_h, u_h), v > = 0.
\]

Therefore, with the definition \(P^\alpha_h := T^{-1}_\alpha \Pi^\alpha_h T_\alpha \), we conclude that

\[
(6.3) \quad P_h F(\lambda_h, u_h) = 0 \iff P^\alpha_h F(\lambda_h, u_h) = 0.
\]

Hence, our claim is demonstrated.

We will see that these observation is very important for our \(a \)-priori error estimates because (6.3) guarantees that we can take any \(\alpha \in L^\infty \) (that is, \((T_\alpha, \Pi^\alpha_h) \)) such that \(\alpha \geq \epsilon > 0 \) in our error analysis.

In the statement of Problem 6.1^*_{FE}, we defined \(F_h : \Lambda \times \hat{S}_h \rightarrow W^{-1,\infty} \). Following the Fink-Rheinboldt theory we extend \(F_h \) to \(\Lambda \times W^{1,\infty}_0 \). Define \(T^\alpha_h : \Lambda \times W^{1,\infty}_0 \rightarrow W^{-1,\infty} \) by

\[
T^\alpha_h(\lambda, u) := (I - P^\alpha_h) T^{-1}_\alpha u + P^\alpha_h F(\lambda, u),
\]

where \(I \) is the identity of \(W^{-1,\infty} \).

Lemma 6.2 ([R.,Lemma 5.1]). The operator \(T^\alpha_h \) satisfies the following:

1. \(T^\alpha_h(\lambda, u) = 0 \) for some \((\lambda, u) \in \Lambda \times H^1_0 \) if and only if \((\lambda, u) \in \Lambda \times \hat{S}_h \) and \(F_h(\lambda, u) = 0 \).
2. \(T^\alpha_h \) is a Fredholm operator of index 1 on \(\Lambda \times H^1_0 \). \(\square \)
By Lemma 6.2, we have the following theorem as a consequence of the Fink-Rheinboldt theory.

Theorem 6.3. Suppose that F is C^d mapping ($d \geq 1$). Then the set of the finite elements solutions of Problem 6.1_{FE},

$$\mathcal{M}_h := \{ (\lambda, u_h) \in \mathcal{R}(F, \Lambda \times H^1_0) | F_h(\lambda, u_h) = 0 \},$$

is a C^d manifold without boundary. □

Part 1: Regular Branches.

We are ready to start to consider a priori error estimates of the FE solution manifold \mathcal{M}_h. In the consideration of error estimates, we always assume the following.

Assumption 7.1. We assume that

1. Assumption 3.1 with d (i.e. F is a C^d Fredholm map).
2. $0 \in F(\mathcal{R}(F, S))$ (i.e. $\mathcal{M}_0 \neq \emptyset$).
3. Assumption 5.1 (i.e. $u \in W^{2,p^*}$, $2 \leq p^* \leq \infty$ for any $(\lambda, u) \in \mathcal{M}_0$).
4. \mathcal{S}_h is regular and \(\lim_{h \to 0} \inf_{u_h \in \mathcal{S}_h} \| u - u_h \|_{H^1_0} = 0 \), for any $u \in H^1_0$.
5. The triangulation of \mathcal{S}_h (in one dimensional case, the partition of J into small intervals) satisfies the inverse assumption [C,p140]. □

In the sequel, we denote by $\hat{\Pi}_h : W^{1,1}_0 \to \mathcal{S}_h$ the interpolant projection. We also denote by C or C_i, i is non-negative integers, generic constants which are independent of $h > 0$.

The main tool of our a priori error estimates is the following implicit function theorem due to Brezzi, Rappaz, and Raviart [BRR1, Theorem 1].

Theorem 7.2. Let X, Y and Z be Banach spaces. Let $S \subset X$ and $y : S \to Y$ a function defined in S. Let f be a C^1 mapping defined in a neighborhood of $S \times y(S)$. Suppose that the function $S \ni x \mapsto y(x) \in Y$ satisfies the uniform Lipschitz condition; there exists a constant C_2 such that

$$\| y(x) - y(x^*) \|_Y \leq C_0 \| x - x^* \|_X, \quad \forall x, x^* \in S.$$
Suppose in addition that the following hypotheses hold:

(i) for all \(x_0 \in S \), \(D_y f(x_0, y(x_0)) \) is an isomorphism of \(Y \) onto \(Z \) with

\[
\sup_{x_0 \in S} \|(D_y f(x_0, y(x_0)))^{-1}\|_{L(Z,Y)} \leq C_1,
\]

(ii) we have

\[
\sup_{x_0 \in S} \|D_x f(x_0, y(x_0))\|_{L(X,Z)} \leq C_2,
\]

and there exists a monotonically increasing function \(L_1 : \mathbb{R}^+ \to \mathbb{R}^+ \) such that for all \(x_0 \in S \) and all \((x, y) \in B_\varepsilon((x_0, y(x_0)))\)

\[
\|Df(x, y) - Df(x_0, y(x_0))\|_{L(Y \times Y, Z)} \leq L_1(\varepsilon)(\|x - x_0\| + \|y - y(x_0)\|).
\]

Then, one can find three constants \(a, b, d > 0 \) depending only on \(C_0, C_1, C_2 \) and \(L_1 \) such that, under the condition

\[
\sup_{x_0 \in S} \|f(x_0, y(x_0))\|_Z \leq d,
\]

There exists a unique \(C^1 \) function \(g : \bigcup_{x_0 \in S} B_\varepsilon(x_0) \to Y \) which satisfies

\[
f(x, g(x)) = 0,
\]

and maps \(B_\varepsilon(x_0) \) into \(B_\delta(y(x_0)) \) for \(x_0 \in S \). Moreover, we have for all \(x_0 \in S \) and all \(x \in B_\varepsilon(x_0) \)

\[
\|g(x) - y(x_0)\|_Y \leq K_0(\|x - x_0\| + \|f(x_0, y(x_0))\|_Z),
\]

where the constant \(K_0 > 0 \) depends only on \(C_1, C_2 \). \(\square \)

Our first main theorem is as follows.

Theorem 7.3. Suppose that Assumption 7.1 holds for \(d \geq 2 \). Also suppose that, at

\((\lambda_0, u_0) \in M_0, D_u F(\lambda_0, u_0) \in L(W_0^{1,\infty}, W^{-1,\infty})\) is an isomorphism.

Then, for sufficiently small \(h > 0 \), there are a positive \(\varepsilon_\lambda_0 > 0 \), a constant \(b(\lambda_0) > 0 \), and a unique \(C^2 \) map \([\lambda_0 - \varepsilon_\lambda_0, \lambda_0 + \varepsilon_\lambda_0] \ni \lambda \mapsto \hat{u}_h(\lambda) \in S_h \) such that

(7.1) \[
F_h(\lambda, \hat{u}_h(\lambda)) = 0,
\]

(7.2) \[
\|\hat{u}_h(\lambda) - \bar{u}_h(\lambda)\|_{H^1} \leq b(\lambda_0)h^{1/2 + \eta},
\]

for any \(\eta \) with \(0 < \eta < \frac{1}{2} \).

Moreover, we have for some constant \(K(\lambda_0) > 0 \)

(7.3) \[
\|\hat{u}_h(\lambda) - u(\lambda)\|_{H^1} \leq K(\lambda_0)\|u(\lambda) - \bar{u}_h(\lambda)\|_{H^1}.
\]

Here, the constants \(b(\lambda_0) \) and \(K(\lambda_0) \) are independent of \(h \) and \(\lambda \in [\lambda_0 - \varepsilon_\lambda_0, \lambda_0 + \varepsilon_\lambda_0] \).
Proof. Since the proof is somewhat long, we divide it into several steps.

Step 1. It follows from Lemma 3.2 that, for \((\lambda, u) \in \mathcal{M}_0\), \(DF(\lambda, u) \in \mathcal{L}(\mathbb{R} \times H_0^1, H^{-1})\)
and
\[
\begin{aligned}
\{ \lambda \times W_0^{1,\infty} \ni (\lambda, u) \mapsto DF(\lambda, u) \in \mathcal{L}(\mathbb{R} \times H_0^1, H^{-1}) \} \\
\text{Lipschitz continuous on bounded subset.}
\end{aligned}
\]
\tag{7.4}

We, moreover, claim that, if \(D_uF(\lambda, u) \in \mathcal{L}(W_0^{1,\infty}, W^{-1,\infty})\) is an isomorphism for \((\lambda, u) \in S\),
\(D_uF(\lambda, u)\) is an isomorphism of \(H_0^1\) to \(H^{-1}\) as well.

Define \(Q, R \in \mathcal{L}(H_0^1, H^{-1})\) by
\[
2 < Q\psi, v >_2 := \int_\Omega \alpha(x)\psi'v'dx, \quad 2 < R\psi, v >_2 := \int_\Omega \beta(x)\psi v dx, \quad \forall \psi, v \in H_0^1,
\]
where \(\alpha(x) := a_y(\lambda, x, u'(x))\) and \(\beta(x) := f_y(\lambda, x, u(x))\).

By Theorem 4.3, \(Q\) is a Fredholm operator of index 0 and \(R\) is compact. Hence, \(D_uF(\lambda, u) = Q + R \in \mathcal{L}(H_0^1, H^{-1})\) is a Fredholm operator of index 0. Therefore, if \(\ker D_uF(\lambda, u) \subset H_0^1\) is trivial, \(D_uF(\lambda, u) \in \mathcal{L}(H_0^1, H^{-1})\) is an isomorphism.

Let \(\psi \in H_0^1\) be such that \(D_uF(\lambda, u)\psi = 0\). This means that \(-(\alpha(x)\psi')' + \beta(x)\psi = 0\) in the distributional sense. Since \(\beta \in L^1\), we conclude \(\psi \in W^{2,1}\) by a standard regularity argument. Hence, \(\psi \in W_0^{1,\infty}\) and \(0 = D_uF(\lambda, u)\psi \in W^{-1,\infty}\). Since we assumed that \(D_uF(\lambda, u) \in \mathcal{L}(W_0^{1,\infty}, W^{-1,\infty})\) is an isomorphism, we obtain \(\psi = 0\). Therefore, our claim is proved.

Step 2. We prepare inequalities which we will use later. By Assumption 7.1(5) we have the inverse inequality \([C,\text{Theorem 3.2.6}]\),
\[
\|v_h\|_{W_0^{1,\infty}} \leq C_3h^{-\frac{1}{2}}\|v_h\|_{H_0^1} \leq C_3h^{-\left(\frac{1}{2} + \eta\right)}\|v_h\|_{H_0^1}, \quad \forall v_h \in \mathcal{S}_h,
\]
\tag{7.5}
for any \(\eta > 0\).

Since \(D_uF(\lambda_0, u_0) \in \mathcal{L}(W_0^{1,\infty}, W^{-1,\infty})\) is an isomorphism, we conclude by the implicit function theorem that there exist \(\varepsilon_1 > 0\) and a unique \(C^2\) map
\[
(\lambda_0 - \varepsilon_1, \lambda_0 + \varepsilon_1) \ni \lambda \mapsto u(\lambda) \in W_0^{1,\infty}
\]
such that \(u_0 = u(\lambda_0)\) and \(F(\lambda, u(\lambda)) = 0\). Thus, it follows that
\[
\|\tilde{\Pi}_h u(\lambda^*) - \tilde{\Pi}_h u(\lambda)\|_{H_0^1} \leq C_4|\lambda^* - \lambda|,
\]
\tag{7.6}
for all \(\lambda, \lambda^* \in (\lambda_0 - \varepsilon_1, \lambda_0 + \varepsilon_1)\). In (7.6) we used the fact that \(\sup_{h > 0}\|\tilde{\Pi}_h\|_{\mathcal{L}(H_0^1, H_0^1)} < \infty\) (see e.g. \([C,\text{Theorem 3.1.6}]\)).
By Theorem 5.3 we know that $u(\lambda) \in W^{2,p}$ and

$$C_5 := \sup \left\{ \|u(\lambda)\|_{W^{2,p}} ; \lambda \in \left[\lambda_0 - \frac{\epsilon_1}{2}, \lambda_0 + \frac{\epsilon_1}{2} \right] \right\} < \infty.$$

Thus, by [C, Theorem 3.1.6], we see

$$\|u(\lambda) - \bar{\Pi}_h u(\lambda)\|_{W_0^{1,\infty}} \leq C C_5 h^{-1/2}. \tag{7.8}$$

Let $\alpha_0(x) := a_y(\lambda_0, x, u_0(x))$. Since $a_y(\lambda_0, x, u_0(x))^{-1} \in L^\infty ((\lambda_0, u_0) \in M_0 \subset S), u_0 \in W^{2,p} \subset C^1[0,1]$, and Assumption 5.1(1), we can assume without loss of generality that

$$\alpha_y(\lambda_0, x, u_0(x)) \geq \exists \delta_0 > 0. \tag{7.9}$$

Then, we define the bilinear form $A : H_0^1 \times H_0^1 \to \mathbb{R}$ by

$$A(u, v) := \int \alpha_0(x) u' v' dx, \quad \forall u, v \in H_0^1.$$

Also, we define the canonical projection $\Pi_h^0 : H_0^1 \to \mathcal{S}_h$ by

$$A(u - \Pi_h^0 u, v_h) = 0, \quad \forall v_h \in \mathcal{S}_h \tag{7.10}$$

for $u \in H_0^1$. Then, it follows from Assumption 7.1(4) and (7.9) that

$$\lim_{h \to 0} \|u - \Pi_h^0 u\|_{H_0^1} = 0, \quad \forall u \in H_0^1. \tag{7.11}$$

Now, define $T_0 : H^{-1} \to H_0^1$ by

$$\langle \Phi, v \rangle = \int \alpha_0(x)(T_0 \Phi)' v' dx, \quad \forall v \in H_0^1,$$

for $\Phi \in H^{-1}$, and define $F_h^0 : \Lambda \times W_0^{1,\infty} \to W^{-1,\infty}$ by

$$F_h^0(\lambda, u) := (I - P_h^0)T_0^{-1} u + P_h^0 F(\lambda, u),$$

where I is the identity map of $W_0^{1,\infty}$ and $P_h^0 := T_0^{-1} \Pi_h^0 T_0 \in \mathcal{L}(W^{-1,\infty}, W^{-1,\infty}).$

Note that, by Lemma 6.2, $F_h^0(\lambda, u) = 0$ if and only if $(\lambda, u) \in M_h$.

By the definition of Π_h^0 and P_h^0, we immediately get

$$C_6 := \sup_{h > 0} \|P_h^0\|_{\mathcal{L}(H^{-1}, H^{-1})} < \infty. \tag{7.12}$$

It follows from (7.7), (7.12), and [C, Theorem 3.1.6] that

$$\|F_h^0(\lambda, \Pi_h u(\lambda))\|_{H^{-1}} \leq C_6 \|F(\lambda, u(\lambda)) - F(\lambda, \Pi_h u(\lambda))\|_{H^{-1}} \leq C_6 \int_0^1 \|\Psi t\|_{H^{-1/2}, H^{-1}} dt \|u(\lambda) - \Pi_h u(\lambda)\|_{H_0^1} \leq C_7 h, \quad \forall \lambda \in \left[\lambda_0 - \frac{\epsilon_1}{2}, \lambda_0 + \frac{\epsilon_1}{2} \right]. \tag{7.13}$$
where \(\Psi_t := D_u F(\lambda, (1-t)u(\lambda) + tu(\lambda)) \in \mathcal{L}(H_0^1, H^{-1}) \). Therefore, we obtain

\[
\limsup_{h \to 0} \left\{ h^{-\frac{1}{2} + \eta} \| P^0_h(\lambda, \hat{H}_h u(\lambda)) \|_{H^{-1}} ; \lambda \in [\lambda_0 - \frac{\epsilon_1}{2}, \lambda_0 + \frac{\epsilon_1}{2}] \right\} \leq \lim_{h \to 0} C_7 h^{\frac{1}{2} - \eta} = 0,
\]

for any \(\eta, 0 < \eta < \frac{1}{2} \).

Step 3. We claim that there exist a positive \(\epsilon_2 > 0 \) and a constant \(C_8 > 0 \) independent of \(h > 0 \) and \(\lambda \in [\lambda_0 - \epsilon_2, \lambda_0 + \epsilon_2] \) with

\[
\| D_u F_h(\lambda, \hat{H}_h u(\lambda)) v_h \|_{H^{-1}} \geq C_8 \| v_h \|_{H_0^1}, \quad \forall v_h \in S_h.
\]

First, we note that, by (7.4) and Step 1, the mapping

\[
(\lambda_0 - \epsilon_1, \lambda_0 + \epsilon_1) \ni \lambda \mapsto (D_u F(\lambda, u(\lambda)))^{-1} \in \mathcal{L}(H^{-1}, H_0^1)
\]

is continuous. Thus, we set

\[
\omega := \max_{\lambda \in [\lambda_0 - \frac{\epsilon_1}{2}, \lambda_0 + \frac{\epsilon_1}{2}]} \| (D_u F(\lambda, u(\lambda)))^{-1} \|_{\mathcal{L}(H^{-1}, H_0^1)}.
\]

Next, we write

\[
D_u F_h(\lambda, \hat{H}_h u(\lambda)) v_h = D_u F(\lambda, u(\lambda)) v_h^{(a)}
\]

\[
+ P_h^0(D_u F(\lambda, \hat{H}_h u(\lambda)) - D_u F(\lambda, u(\lambda))) v_h^{(b)}
\]

\[
- (I - P_h^0)(-T_0^{-1} + D_u F(\lambda_0, u_0)) v_h^{(c)}
\]

\[
+ (I - P_h^0)(D_u F(\lambda_0, u_0) - D_u F(\lambda, u(\lambda))) v_h^{(d)}.
\]

Let us examine the each term of (7.16). On (a), we immediately see

\[
\| D_u F(\lambda, u(\lambda)) v_h \|_{H^{-1}} \geq \omega^{-1} \| v_h \|_{H_0^1}.
\]

On (b), it follows from (7.4), (7.8), and (7.12) that

\[
\| P_h^0(D_u F(\lambda, \hat{H}_h u(\lambda)) - D_u F(\lambda, u(\lambda))) v_h \|_{H^{-1}}
\]

\[
\leq C_9 \| \hat{H}_h u(\lambda) - u(\lambda) \|_{W_0^{1,\infty}} \| v_h \|_{H_0^1} \leq C_9 C_9 h^{1 - \frac{\eta}{2}} \| v_h \|_{H_0^1}.
\]

On (c), we remind that

\[
2 < (-T_0^{-1} + D_u F(\lambda_0, u_0)) \psi, \psi > = \int f_\psi(\lambda_0, z, u_0(z)) \psi \, dz,
\]

and \(-T_0^{-1} + D_u F(\lambda_0, u_0) \in \mathcal{L}(H_0^1, H^{-1})\) is compact. Therefore, we conclude that

\[
\lim_{h \to 0} \| (I - P_h^0)(-T_0^{-1} + D_u F(\lambda_0, u_0)) \|_{\mathcal{L}(H_0^1, H^{-1})} = 0
\]
because of (7.11).

On (d) we observe the following. By (7.4) there exists a constant C_{10} such that

$$
\|D_u F(\lambda^*, u(\lambda^*)) - D_u F(\lambda, u(\lambda))\|_{L^2(H^1_0, H^{-1})} \leq C_{10} |\lambda^* - \lambda|.
$$

Take $\epsilon_2 > 0$ so that $\epsilon_2^{-1} \geq 2\omega C_{10} \sup_{\lambda > 0} \|I - P_h^0\|_{L^2(H^{-1}, H^{-1})}$. Then we have

$$(7.17d) \quad \|(I - P_h^0)(D_u F(\lambda_0, u_0) - D_u F(\lambda, u(\lambda)))\|_{L^2(H^1_0, H^{-1})} \leq \frac{\omega^{-1}}{2},$$

for any $\lambda \in [\lambda_0 - \epsilon_2, \lambda_0 + \epsilon_2]$.

From (7.16) and (7.17), we obtain

$$
\|D_u F_h^0(\lambda, \tilde{u}_h(\lambda))\|_{H^{-1}} \geq \left(\frac{\omega^{-1}}{2} - \delta(h)\right) \|v_h\|_{H^1_0},
$$

with $\lim_{h \to 0} \delta(h) = 0$. Therefore, we prove the claim (7.15) for sufficiently small h. \diamond

Step 4 Again, we prepare a few inequalities. It follows from (7.8) that

$$(7.18) \quad \|D_l F_h^0(\lambda, \tilde{u}_h(\lambda))\|_{H^{-1}} \leq C_9 \left(\|D_\lambda F(\lambda, u(\lambda))\|_{H^{-1}} + C_{11} h^{1-\frac{1}{2}}\right) \leq C_{12},$$

for all $\lambda \in [\lambda_0 - \frac{\epsilon_2}{2}, \lambda_0 + \frac{\epsilon_2}{2}]$ and $h > 0$.

By (7.4) and (7.12) we have

$$
\|D_l F_h^0(\lambda^*, v_h^* - \tilde{u}_h(\lambda))\|_{L^2(\mathbb{R} \times H^1_0, H^{-1})} \leq C_{13}(|\lambda^* - \lambda| + \|v_h^* - \tilde{u}_h(\lambda)\|_{W^{1,\infty}}), \quad \forall v_h^* \in \mathcal{S}_h,
$$

where $C_{13} = C_{13}(\|\lambda\|, |\lambda^*|, \|v_h^*\|_{W^{1,\infty}})$ is independent of h. Hence, by (7.5), there exists a monotonically increasing function $L_1 : \mathbb{R}^+ \to \mathbb{R}^+$ independent of h such that, for all $\lambda, \lambda^* \in [\lambda_0 - \frac{\epsilon_2}{2}, \lambda_0 + \frac{\epsilon_2}{2}]$ and all $v_h^* \in \mathcal{S}_h$ with

$$
\lambda^* - \lambda| + \|v_h^* - \tilde{u}_h(\lambda)\|_{H^1_0} \leq \xi, \quad 0 < \eta < \frac{1}{2},
$$

we have

$$(7.19) \quad \|D_l F_h^0(\lambda^*, v_h^*) - D_l F_h^0(\lambda, \tilde{u}_h(\lambda))\|_{L^2(\mathbb{R} \times H^1_0, H^{-1})} \leq L_1(\xi) h^{-\left(\frac{1}{2} + \eta\right)}(\|\lambda^* - \lambda| + \|v_h^* - \tilde{u}_h(\lambda)\|_{H^1_0}). \quad \diamond
$$

Step 5 This is the final stage of the proof. By (7.6), (7.14), (7.15), (7.18) and (7.19) we can apply Theorem 7.2 to the operator F_h^0 in the following situation;
\[X = \mathbb{R} \text{ with norm } h^{-\gamma}|\lambda|, \]
\[Y = \mathcal{S}_h \subset H^1_0 \text{ with norm } h^{-\gamma}\|v_h\|_{H^1}, \]
\[Z = \mathcal{S}_h \subset H^{-1} \text{ with norm } h^{-\gamma}\|T_0^{-1} u_h\|_{H^{-1}}, \]
\[S = [\lambda_0 - \epsilon_{\lambda_0}, \lambda_0 + \epsilon_{\lambda_0}] \text{ with } \epsilon_{\lambda_0} := \min \left(\frac{\delta}{2}, \epsilon_2 \right), \]
\[y(\lambda) = \tilde{\Pi}_h u(\lambda), \]

where \(\gamma := \frac{1}{2} + \eta \) for any \(\eta, 0 < \eta < \frac{1}{2} \). Since \(\|A_h\|_{L(X \times Y, Z)} = \|A_h\|_{L(\mathbb{R} \times H^1, H^{-1})} \) for all \(A_h \in \mathcal{L}(\mathbb{R} \times \mathcal{S}_h, \mathcal{S}_h) \) and (7.14), there exist a constant \(b(\lambda_0) > 0 \) independent of \(h \) and a unique \(C^2 \) function \([\lambda_0 - \epsilon_{\lambda_0}, \lambda_0 + \epsilon_{\lambda_0}] \ni \lambda \mapsto \tilde{u}_h(\lambda) \in \mathcal{S}_h \) such that

(7.20) \[\mathcal{F}^0_h(\lambda, \tilde{u}_h(\lambda)) = 0 \quad \text{and} \quad \|\tilde{u}_h(\lambda) - \tilde{\Pi}_h u(\lambda)\|_Y \leq b(\lambda_0), \]

and the inequality

(7.21) \[\|\tilde{u}_h(\lambda) - \tilde{\Pi}_h u(\lambda)\|_{H^1} \leq C_{14}\|\mathcal{F}^0_h(\lambda, \tilde{u}_h(\lambda))\|_{H^{-1}} \]

holds for all \(\lambda \in [\lambda_0 - \epsilon_{\lambda_0}, \lambda_0 + \epsilon_{\lambda_0}] \). From Lemma 6.2, we get (7.1) and (7.2) immediately from (7.20). Combining (7.13) and (7.21), we obtain (7.3) and complete the proof of Theorem 7.3.

Corollary 7.4. Suppose that the assumptions of Theorem 7.3 hold. Then, there exists a constant \(K_1(\lambda_0) > 0 \) independent of \(h > 0 \) and \(\lambda \in [\lambda_0 - \epsilon_{\lambda_0}, \lambda_0 + \epsilon_{\lambda_0}] \) such that

(7.22) \[\|u(\lambda) - \tilde{u}_h(\lambda)\|_{W^{1,\infty}} \leq K_1(\lambda_0)h^\eta, \quad 0 < \eta < \frac{1}{2}, \]

for any \(\lambda \in [\lambda_0 - \epsilon_{\lambda_0}, \lambda_0 + \epsilon_{\lambda_0}] \) and sufficiently small \(h > 0 \).

Proof. By (7.2) and the inverse inequality [C, Theorem 3.2.6], we have

\[\|\tilde{u}_h(\lambda) - \tilde{\Pi}_h u(\lambda)\|_{W^{1,\infty}} \leq b(\lambda_0)h^\eta, \]

for all \(\lambda \in [\lambda_0 - \epsilon_{\lambda_0}, \lambda_0 + \epsilon_{\lambda_0}] \). It follows from (7.8) that

\[\|u(\lambda) - \tilde{u}_h(\lambda)\|_{W^{1,\infty}} \leq \|u(\lambda) - \tilde{\Pi}_h u(\lambda)\|_{W^{1,\infty}} + \|\tilde{u}_h(\lambda) - \tilde{\Pi}_h u(\lambda)\|_{W^{1,\infty}} \]
\[\leq C \mathcal{C}_3 h^{1 - \frac{1}{d}} + b(\lambda_0)h^\eta \leq \exists K_1(\lambda_0)h^\eta. \]

Theorem 7.5. Suppose that Assumption 7.1 holds for \(d \geq 2 \). Also, suppose that \(\mathcal{M}_0 \subset \mathcal{M}_0 \) is a compact regular branch, that is, there is a compact interval \(\bar{\Lambda} \subset \Lambda \) and \(C^2 \) map \(\bar{\Lambda} \ni \lambda \mapsto u(\lambda) \in W^{1,\infty}_0 \) such that

\[\mathcal{M}_0 = \{(\lambda, u(\lambda)) \in \mathcal{M}_0 \mid D_\alpha F(\lambda, u(\lambda)) \text{ is an isomorphism for } \forall \lambda \in \bar{\Lambda} \}. \]
Then, for sufficiently small $h > 0$, there exists the corresponding finite element solution branch $\widetilde{M}_h \subset M_h$ which is parametrized by the same $\lambda \in \Lambda$ and

$$\left\| \tilde{\Pi}_h u(\lambda) - u_h(\lambda) \right\|_{H^1_0} \leq K_0 h^{1+\eta},$$

$$\left\| u(\lambda) - u_h(\lambda) \right\|_{H^1_0} \leq K_1 \left\| u(\lambda) - \tilde{\Pi}_h u(\lambda) \right\|_{H^1_0},$$

$$\left\| u(\lambda) - u_h(\lambda) \right\|_{W^{1,\infty}_0} \leq K_2 h^n$$

for all $\lambda \in \widetilde{\Lambda}$, $u(\lambda) \in \widetilde{M}_0$, $u_h(\lambda) \in \widetilde{M}_h$, and η with $0 < \eta < \frac{1}{2}$. Here, $K_0, K_1, K_2 > 0$ are constants independent of h and λ.

Moreover, we have

$$\widetilde{M}_h \subset \mathcal{R}(F,S).$$

Proof. From Theorem 7.3 and Corollary 7.4, (7.23), (7.24), and (7.25) are obtained immediately.

To show (7.26) we just have to realize that $D_u F(\lambda, u(\lambda)) \in \mathcal{L}(W^{1,\infty}_0, W^{-1,\infty})$ is an isomorphism for each $\lambda \in \widetilde{\Lambda}$ and

$$D_u F(\lambda, u_h(\lambda)) = D_u F(\lambda, u(\lambda)) + B_h,$$

where $B_h := D_u F(\lambda, u_h(\lambda)) - D_u F(\lambda, u(\lambda))$ and $\|B_h\|_{\mathcal{L}(W^{1,\infty}_0, W^{-1,\infty})} \to 0$ as $h \to 0$ because of (7.25). □

Remark 7.6. We can rewrite (7.23) and (7.25) as

$$\left\| \tilde{\Pi}_h u(\lambda) - u_h(\lambda) \right\|_{H^1_0} \leq K_0 h^{1-\epsilon}, \quad \left\| u(\lambda) - u_h(\lambda) \right\|_{W^{1,\infty}_0} \leq K_2 h^{1-\epsilon},$$

where $\epsilon > 0$ is an any small number. In linear cases, with certain assumptions of regularity of solutions, we would have error estimates like

$$\left\| \tilde{\Pi}_h u - u_h \right\|_{H^1_0} \leq Ch^2, \quad \left\| u - u_h \right\|_{W^{1,\infty}_0} \leq Ch.$$

It is not very clear whether or not the convergence rates of (7.23) and (7.25) are optimal. We might be able to improve the convergence rates with further assumptions for the regularity of solutions (Assumption 5.1 might not be enough to improve (7.23) and (7.25)). □

For $\| \cdot \|_{W^{1,p}_0}$-estimate, we have the following. Suppose that we have

$$\lim_{h \to 0} \left\| u - \Pi_h^0 u \right\|_{W^{1,p}_0} = 0, \quad \forall u \in W^{1,p}_0,$$

(7.27)
where $\Pi_h^I \in \mathcal{L}(W_0^{1,p}, W_0^{1,p})$ is defined by (7.10). For example, we can show that (7.27) is true for piecewise linear elements.

Theorem 7.7. Suppose that assumptions of Theorem 7.5 and (7.27) hold. Then, for sufficiently small $h > 0$, for the corresponding finite element solution branch $\bar{\mathcal{M}}_h \subset \mathcal{M}_h$, we have the following estimates:

$$
||\tilde{\Pi}_h u(\lambda) - u_h(\lambda)||_{W_0^{1,p}} \leq K_0 h^{1-p},
$$

$$
||u(\lambda) - u_h(\lambda)||_{W_0^{1,p}} \leq K_1 ||u(\lambda) - \tilde{\Pi}_h u(\lambda)||_{W_0^{1,p}},
$$

$$
||u(\lambda) - u_h(\lambda)||_{W_0^{1,\infty}} \leq K_2 h^\eta,
$$

for all $\lambda \in \tilde{\Lambda}$, $u(\lambda) \in \tilde{\mathcal{M}}$, $u_h(\lambda) \in \mathcal{M}_h$, and η with $0 < \eta < 1 - \frac{1}{p}$.

Part 2: Around Turning Points.

Let us consider a priori error estimates around turning points and/or on 'steep slopes'. Basic idea is as follows: just rotate the coordinate '90-degrees' and do the exactly same thing as in Section 7.

Recall that by the argument in Section 4 we know that we have either Case 1 or Case 2 for $(\lambda, u) \in \mathcal{M} \subset \mathcal{R}(F, S)$;

Case 1: Ker$D_u F(\lambda, u) = \{0\}$ and $D_\lambda F(\lambda, u) \in \text{Im} D_u F(\lambda, u)$.

Case 2: dim$\text{Ker} D_u F(\lambda, u) = 1$ and $D_\lambda F(\lambda, u) \notin \text{Im} D_u F(\lambda, u)$.

Suppose that $\gamma \in \mathbb{R}$ and $z_0 \in J$ are given in a certain way and fixed. Define $G : \mathcal{R}(F, S) \to \mathbb{R} \times W^{-1,\infty}$ by

$$
G(\lambda, u) := (u(z_0) - \gamma, F(\lambda, u))
$$

for $(\lambda, u) \in \mathcal{R}(F, S)$. Then, we have

$$
DG(\lambda, u)(\mu, \psi) = (\psi(z_0), \mu D_\lambda F(\lambda, u) + D_u F(\lambda, u) \psi).
$$

for $\mu \in \mathbb{R}$ and $\psi \in W_0^{1,\infty}$. First, we prepare the following lemma.

Lemma 8.1. Let $(\lambda, u) \in \mathcal{R}(F, S)$ and (μ_0, ψ_0) the basis of Ker$DF(\lambda, u)$. Suppose that $D_\lambda F(\lambda, u) \neq 0$. Then, we have $||\psi_0||_{C^0} > 0$. Moreover, with $z_0 \in J$ such that $\psi_0(z_0) \neq 0$. $DG(\lambda, u)$ is an isomorphism of $\mathbb{R} \times W_0^{1,\infty}$ to $\mathbb{R} \times W^{-1,\infty}$ for any $\gamma \in \mathbb{R}$.
Proof. Suppose that we are in Case 1. It follows from $D_1 F(\lambda, u) \neq 0$ that

$$\psi_1 := -D_u F(\lambda, u)^{-1}(D_1 F(\lambda, u)) \neq 0.$$

Thus, the basis of $\text{Ker} D F(\lambda, u)$ should be written as $(\mu_0, \mu_0 \psi_1)$. Hence, we obtain $\|\psi_0\|_C^2 = |\mu_0| |\psi_1|_C^2 > 0$.

Suppose that we are in Case 2. Let $\psi_0 \in W_0^{1,\infty}$ be such that $\text{Ker} D_u F(\lambda, u) = \text{span}\{\psi_0\}$. Then, $(0, \psi_0)$ is the basis of $\text{Ker} D F(\lambda, u)$ and the first part of Lemma 8.1 is trivial in this case.

Now, let us consider $DG(\lambda, u)$. Let $(\mu, \psi) \in \text{Ker} DG(\lambda, u)$, and $z_0 \in J$ such that $\psi(z_0) \neq 0$. Then, there exists $\delta \in \mathbb{R}$ such that $(\mu, \psi) = \delta (\mu_0, \psi_0)$. Thus, it follows from (8.1) and $\psi_0(z_0) \neq 0$ that $(\mu, \psi) = (0, 0)$. Hence, $DG(\lambda, u)$ is one-to-one.

Let (z, Φ) be any element of $\mathbb{R} \times W^{-1,\infty}$. Since $DF(\lambda, u)$ is onto, there exists $(\rho, \phi) \in \mathbb{R} \times W_0^{1,\infty}$ such that $\Phi = DF(\lambda, u)(\rho, \phi)$. Hence, we obtain $(z, \Phi) = DG(\lambda, u)((\rho, \phi) + \delta (\mu_0, \psi_0))$, where $\delta := (z - \phi(z_0))/\psi_0(z_0)$. Therefore, we have showed that $DG(\lambda, u)$ is onto and an isomorphism. \qed

From Lemma 8.1, we immediately obtain the following corollary.

Corollary 8.2. Let $(\lambda, u) \in \mathcal{R}(F, S)$. Suppose that $D_1 F(\lambda, u) \neq 0$. Then, for sufficiently small $h > 0$, there exists a nodal point $z_0 \in J$ of S_h such that $DG(\lambda, u)$ is an isomorphism. \qed

Remark 8.3. In Lemma 8.2 we showed that we always can choose a nodal point of S_h so that $DG(\lambda, u)$ is an isomorphism if $D_1 F(\lambda, u) \neq 0$. For example, if a nodal point $z_0 \in J$ is taken so that $\psi_0(z_0)$ is nearly equal to $\|\psi_0\|_{C^2}$, then $DG(\lambda, u)$ is an isomorphism.

Indeed, the manner of PITCON of choosing the continuation index is consistent to the above fact. After getting a point $(\lambda_h, u_h) \in \mathcal{M}_h$, PITCON computes the tangent vector $t_h = (y_0, ..., y_k) \in T_{(\lambda_h, u_h)} \mathcal{M}_h$ of the solution manifold \mathcal{M}_h (remember that $\text{Ker} DF_h(\lambda_h, u_h) = T_{(\lambda_h, u_h)} \mathcal{M}_h$). Then, the continuation index i_c is taken so that $|y_{i_c}| = ||t_h||_\infty$. In our case, $(y_0, ..., y_k)$ is like $(\mu_{0h}, \psi_{0h}(x_1), ..., \psi_{0h}(x_k))$, where $x_1, ..., x_k$ are nodal points of S_h, (μ_{0h}, ψ_{0h}) is the basis of $\text{Ker} DF_h(\lambda_h, u_h)$, and $y_{i_c} = \psi_0(z_0)$. (See [R] for the detail.) Thus, for sufficiently small $h > 0$, $|\psi_{0h}(z_0)|$ would be very close to $\|\psi_0\|_{C^2}$, and $\psi_0(z_0)$ is not zero.

Hence, in practical computation, we may expect that PITCON takes the right nodal point z_0, and $DG(\lambda, u) \in \mathcal{L}(\mathbb{R} \times W_0^{1,\infty}, \mathbb{R} \times W^{-1,\infty})$ is an isomorphism. \qed

24
Suppose that $D_A F(\lambda, u) \neq 0$ at $(\lambda, u) \in \mathcal{M}_0$. To 'rotate' the coordinate we define the operator $H : \mathbb{R} \times \mathcal{S} \rightarrow \mathbb{R} \times W^{-1,\infty}$ by

$$H(\gamma, \lambda, u) := (u(x_0) - \gamma, F(\lambda, u)), \quad \gamma \in \mathbb{R}, (\lambda, u) \in \mathcal{S},$$

where $x_0 \in J$ is taken so that $D_{(\lambda, u)} H(\gamma, \lambda, u) = DG(\lambda, u) \in \mathcal{L}(\mathbb{R} \times W^{1,\infty}_0, \mathbb{R} \times W^{-1,\infty})$ is an isomorphism.

Note that

$$DH(\gamma, \lambda, u)(s, t, \psi) = (-s + \psi(x_0), DF(\lambda, u)(t, \psi))$$

for $(s, t) \in \mathbb{R}^2$ and $\psi \in W^{1,\infty}_0$. Also, note that, by the implicit function theorem, for each $(\lambda, u) \in \mathcal{M}_0$ such that $D_A F(\lambda, u) \neq 0$, there exist $\epsilon_0 > 0$ and a unique C^2 map $(u(x_0) - \epsilon_0, u(x_0) + \epsilon_0) \ni \gamma \rightarrow (\lambda(\gamma), u(\gamma)) \in \mathcal{M}_0$ such that $(\lambda, u) = (\lambda(\gamma), u(\gamma))$ with $\gamma_0 := u(x_0)$, and $H(\gamma, \lambda(\gamma), u(\gamma)) = (0, 0)$, that is, $F(\lambda(\gamma), u(\gamma)) = 0$ and $u(\gamma)(x_0) = \gamma_0$ for any γ.

Suppose that $D_A F(\lambda_0, u_0) \neq 0$ at $(\lambda_0, u_0) \in \mathcal{M}_0$. Then by Corollary 8.2 there exists a nodal point $x_0 \in J$ of S_h such that $D_{(\lambda, u)} H(\gamma, \lambda_0, u_0) = DG(\lambda_0, u_0)$ is an isomorphism of $\mathbb{R} \times W^{1,\infty}_0$ to $\mathbb{R} \times W^{-1,\infty}$ for sufficiently small $h > 0$.

Theorem 8.4. Suppose that Assumption 7.1 holds for $d \geq 2$. Let $D_A F(\lambda_0, u_0) \neq 0$ at $(\lambda_0, u_0) \in \mathcal{M}_0$. We assume without loss of generality that there exists $x_0 \in J$ such that x_0 is a nodal point of S_h for all sufficiently small $h > 0$ and $D_{(\lambda, u)} H(\gamma, \lambda_0, u_0)$ is an isomorphism.

Then, there exist a positive $\epsilon_0 > 0$, constants $b(\lambda_0, u_0), k(\lambda_0, u_0) > 0$, and a unique C^2 map $[u_0(x_0) - \epsilon_0, u_0(x_0) + \epsilon_0] \ni \gamma \rightarrow (\tilde{\lambda}_h(\gamma), \tilde{u}_h(\gamma)) \in \Lambda \times \tilde{S}_h$ such that

$$F_h(\tilde{\lambda}_h(\gamma), \tilde{u}_h(\gamma)) = 0,$$

$$|\tilde{\lambda}_h(\gamma) - \lambda(\gamma)| + ||\tilde{u}_h(\gamma) - \tilde{\Pi}_h u(\gamma)||_{H^1_0} \leq b(\lambda_0, u_0) h^{\frac{1}{2} + \eta},$$

$$|\tilde{\lambda}_h(\gamma) - \lambda(\gamma)| + ||\tilde{u}_h(\gamma) - u(\gamma)||_{H^1_0} \leq K(\lambda_0, u_0) ||u(\gamma) - \tilde{\Pi}_h u(\gamma)||_{H^1_0},$$

for any η with $0 < \eta < \frac{1}{2}$. The constants $b(\lambda_0, u_0)$ and $K(\lambda_0, u_0)$ are independent of h and $\gamma \in [u_0(x_0) - \epsilon_0, u_0(x_0) + \epsilon_0]$.

Proof. The manner of the proof is exactly same to that of Theorem 7.3. We divide the proof into several steps.

Step 1. It follows from Lemma 3.2 and (8.2) that $DH(\gamma, \lambda, u) \in \mathcal{L}(\mathbb{R}^2 \times H^1_0, \mathbb{R} \times H^{-1})$ and

$$\begin{cases}
\mathbb{R} \times \Lambda \times W^{1,\infty}_0 \ni (\gamma, \lambda, u) \mapsto DH(\gamma, \lambda, u) \in \mathcal{L}(\mathbb{R}^2 \times H^1_0, \mathbb{R} \times H^{-1}) \\
\text{Lipschitz continuous on bounded subset}
\end{cases}$$

for sufficiently small $h > 0$.
We, moreover, claim that, if $DAF(A, u) \neq 0$ and $D(\lambda, u)H(\gamma, \lambda, u) \in C(R \times W_0^{1,\infty}, R \times W^{-1,\infty})$ is an isomorphism at $(\gamma, \lambda, u) \in R \times R(F, S)$, $D(\lambda, u)H(\gamma, \lambda, u)$ is an isomorphism of $R \times H_0^1$ to $R \times H^{-1}$ as well.

Let $\tilde{H} := D(\lambda, u)H(\gamma, \lambda, u) \in C(R \times H_0^1, R \times H^{-1})$. Then

$$\tilde{H}(\mu, \psi) = (\psi(z_0), DF(\lambda, u)(\mu, \psi)), \quad \mu \in R, \psi \in H_0^1.$$

We have to consider two cases.

Suppose that we are in Case 1, that is, $D_uF(\lambda, u) \in C(W_0^{1,\infty}, W^{-1,\infty})$ is an isomorphism. In this case, from the argument of Step 1 of Theorem 7.3, we know that $D_uF(\lambda, u) \in C(H_0^1, H^{-1})$ is an isomorphism. Thus, we can prove our claim by the exactly same manner of the proof of Lemma 8.1.

Next, suppose that we are in Case 2, that is, $\dim \ker Q = 1$ and $R \notin \text{Im} Q$, where $Q := D_uF(\lambda, u) \in C(W_0^{1,\infty}, W^{-1,\infty})$ and $R := D_\lambda F(\lambda, u)$. To avoid confusion we denote $D_uF(\lambda, u) \in C(H_0^1, H^{-1})$ by \tilde{Q}.

We first show that $\ker Q = \ker \tilde{Q}$. Obviously, we have $\ker Q \subset \ker \tilde{Q}$. Let $\psi \in \ker \tilde{Q} \subset H_0^1$. Then, we have

$$2 \langle \tilde{Q} \psi, \nu \rangle = \int \left[(\alpha(x)) \psi \nu' + (\beta(x)) \psi \nu \right] \, dx = 0, \quad \forall \nu \in H_0^1,$$

where $\alpha(x) := a_y(\lambda, z, u'(x))$ and $\beta(x) := f_y(\lambda, z, u(x))$. Hence, by a simple computation, we conclude that $\psi \in W^{2, p'} \cap H_0^1 \subset W_0^{1,\infty}$. Hence, $\ker Q = \ker \tilde{Q}$. By Theorem 4.3, we know that $\ind \tilde{Q} = 0$. Thus, we obtain $\dim \text{coker} \tilde{Q} = 1$.

Next, we want to show that $D_\lambda F(\lambda, u) \notin \text{Im} \tilde{Q}$. If $D_\lambda F(\lambda, u) \in \text{Im} \tilde{Q}$, there exists some $\psi_1 \in H_0^1$ such that

$$\int \alpha(x) \psi_1 \nu' \, dx = 2 \langle D_\lambda F(\lambda, u), \nu \rangle - \int \beta(x) \psi_1 \nu \, dx, \quad \forall \nu \in H_0^1.$$

Again, by a simple computation, we conclude that ψ_1 is in the domain of Q. This is a contradiction because we assumed $D_\lambda F(\lambda, u) \notin \text{Im} Q$.

Since we showed that $\dim \ker \tilde{Q} = 1$ and $D_\lambda F(\lambda, u) \notin \text{Im} \tilde{Q}$, we can prove our claim in the same way as in the proof of Lemma 8.1. \(\diamond \)

Step 2. We prepare several inequalities which we use later.

By the implicit function theorem, there exist ϵ_1 and a unique map

$$(u_0(z_0) - \epsilon_1, u_0(z_0) + \epsilon_1) \ni \gamma \mapsto (\lambda(\gamma), u(\gamma)) \in \Lambda \times W_0^{1,\infty}$$

26
such that \((\lambda_0, u_0) = (\lambda(\gamma_0), u(\gamma_0))\) with
\[\gamma_0 := u_0(x_0), \ u(\gamma)(x_0) = \gamma, \text{ and } F(\lambda(\gamma), u(\gamma)) = 0.\]

As in Step 2 of the proof of Theorem 7.3, we easily obtain the following inequalities.

\[(8.7) \quad \|\lambda(\gamma) - \lambda(\gamma)\| + \|\hat{H}_h u(\gamma) - \hat{H}_h u(\gamma)\|_{H^1_0} \leq C_{12} |\gamma - \gamma|, \quad \forall \gamma, \gamma \in I_1,\]

where \(I_1 := [u_0(x_0) - \frac{\delta_1}{2}, u_0(x_0) + \frac{\delta_1}{2}].\)

Let \(\alpha_0(x) := \alpha(\lambda_0, x, u_0(x)).\) Again, we can assume without loss of generality that

\[\alpha(\lambda_0, x, u_0(x)) \geq \exists \delta_0 > 0.\]

Then, we define the canonical projection \(\Pi^0_h : H^1_0 \to S_h,\) the isomorphism \(T_0 \in \mathcal{L}(H^{-1}, H^1_0),\)

and the \(C^2\) map \(\hat{F}_h^0 : \Lambda \times W^1_0 \to W^{-1,\infty}\) as in Step 2 of the proof of Theorem 7.3. Of course, we have (7.11) and (7.12).

Now, define \(\overline{F}_h^0 : \mathbb{R} \times S \to \mathbb{R} \times W^{-1,\infty}\) by

\[(8.8) \quad \overline{F}_h^0(\gamma, \lambda, u) := (u(x_0) - \gamma, \hat{F}_h^0(\lambda, u)), \quad \forall \gamma \in \mathbb{R}, (\lambda, u) \in S.\]

As in Step 2 of the proof of Theorem 7.3, we observe

\[\|\overline{F}_h^0(\gamma, \lambda(\gamma), \hat{H}_h u(\gamma))\|_{\mathbb{R} \times \mathcal{H}^{-1}} = \|\hat{H}_h u(\gamma)(x_0) - \gamma\| + \|\hat{F}_h^0(\lambda(\gamma), \hat{H}_h u(\gamma))\|_{H^{-1}} \leq C_{16}h, \quad \forall \gamma \in I_1.\]

Thus, we conclude that, for any \(\eta\) with \(0 < \eta < \frac{1}{2},\)

\[(8.9) \quad \lim_{\eta \to 0} \sup_{\gamma \in I_1} \lambda(\gamma) \|\overline{F}_h^0(\gamma, \lambda(\gamma), \hat{H}_h u(\gamma))\|_{\mathbb{R} \times \mathcal{H}^{-1}} = 0.\]

Step 3. We claim that there exist a positive \(\epsilon_2 > 0\) and a constant \(C_{17}\) independent of \(h > 0\) and \(\gamma \in [u_0(x_0) - \epsilon_2, u_0(x_0) + \epsilon_2]\) such that

\[(8.10) \quad \|D_{(\lambda, u)}\overline{F}_h^0(\gamma, \lambda(\gamma), \hat{H}_h u(\gamma))(\mu, v_h)\|_{\mathbb{R} \times \mathcal{H}^{-1}} \geq C_{17}\|\mu\| + \|v_h\|_{H^1_0}, \quad \forall \mu \in \mathbb{R}, \forall v_h \in S_h.\]

First, we remark that, by (8.6) and Step 1, the mapping

\[(u_0(x_0) - \epsilon_1, u_0(x_0) + \epsilon_1) \ni \gamma \mapsto (D_{(\lambda, u)}H(\gamma, \lambda(\gamma), u(\gamma)))^{-1} \in \mathcal{L}(\mathbb{R} \times H^{-1}, \mathbb{R} \times H^1_0)\]

is continuous. Thus, we set

\[\omega := \max_{\gamma \in I_1} \|((D_{(\lambda, u)}H(\gamma, \lambda(\gamma), u(\gamma)))^{-1})\|_{\mathcal{L}(\mathbb{R} \times H^{-1}, \mathbb{R} \times H^1_0)}.\]

27
Next, we write

\[(8.11)\quad D_{(\lambda,u)}F_{h}^{0}(\gamma,\lambda(\gamma),\bar{u}_{h}(\gamma))(\mu,v_{h}) = (v_{h}(x_{0}),DF(\lambda(\gamma),u(\gamma))(\mu,v_{h}))
\]
\[+(0,(DF_{h}^{0}(\lambda(\gamma),\bar{u}_{h}(\gamma))-DF(\lambda(\gamma),u(\gamma)))(\mu,v_{h})).\]

On the first term of right-hand side of (8.11), we have

\[(8.12)\quad ||(v_{h}(x_{0}),DF(\lambda(\gamma),u(\gamma))(\mu,v_{h}))||_{H^{-1}} \geq \omega^{-1}(||\mu|| + ||v_{h}||_{H_{0}^{1}}).\]

On the second term of right-side of (8.11), we write

\[(8.13)\quad (DF_{h}^{0}(\lambda(\gamma),\bar{u}_{h}(\gamma)) - DF(\lambda(\gamma),u(\gamma)))(\mu,v_{h})
\]
\[= -\mu(I-P_{h}^{0})DF(\lambda(\gamma),u(\gamma))^{(e)}
\]
\[+\mu P_{h}^{0}(DF(\lambda(\gamma),\bar{u}_{h}(\gamma)) - D_{\lambda}F(\lambda(\gamma),u(\gamma)))^{(a)}
\]
\[+P_{h}^{0}(D_{\lambda}F(\lambda(\gamma),\bar{u}_{h}(\gamma)) - D_{\lambda}F(\lambda(\gamma),u(\gamma)))^{(c)}
\]
\[-(I-P_{h}^{0})(-T_{0}^{-1} + D_{\lambda}F(\lambda_{0},u_{0}))v_{h}^{(s)}
\]
\[+(I-P_{h}^{0})(D_{\lambda}F(\lambda_{0},u_{0}) - D_{\lambda}F(\lambda(\gamma),u(\gamma)))v_{h}^{(e)}.\]

Let us check each term of (8.13). On (a), we have

\[(8.14a)\quad ||\mu(I-P_{h}^{0})DF(\lambda(\gamma),u(\gamma))||_{H^{-1}} \leq \epsilon(h)||\mu||,
\]
with \(\lim_{h \to 0} \epsilon(h) = 0\) because \(||(I-P_{h}^{0})DF(\lambda(\gamma),u(\gamma))||_{H^{-1}} \to 0\) as \(h \to 0\) uniformly with respect to \(\gamma\) on \(I_{1} = [u_{0}(x_{0}) - \xi^{+}_{s}, u_{0}(x_{0}) + \xi^{+}_{s}]\).

On (b), we easily obtain

\[(8.14b)\quad ||\mu P_{h}^{0}(D_{\lambda}F(\lambda(\gamma),\bar{u}_{h}(\gamma)) - D_{\lambda}F(\lambda(\gamma),u(\gamma)))||_{H^{-1}} \leq C_{18}h^{1-\frac{1}{2}}||\mu||.
\]

On (c) and (d), we immediately get (see Step 3 of the proof of Theorem 7.3)

\[(8.14c)\quad ||P_{h}^{0}(D_{\lambda}F(\lambda(\gamma),\bar{u}_{h}(\gamma)) - D_{\lambda}F(\lambda(\gamma),u(\gamma)))v_{h}||_{H^{-1}} \leq C_{19}h^{1-\frac{1}{2}}||v_{h}||_{H_{0}^{1}},
\]
\[(8.14d)\quad \lim_{h \to 0}||(I-P_{h}^{0})(-T_{0}^{-1} + D_{\lambda}F(\lambda_{0},u_{0}))||_{L(H_{0}^{1},H^{-1})} = 0.\]

On (e), by (8.6), there exists a constant \(C_{20}\) such that

\[||D_{\lambda}F(\lambda(\gamma),u(\gamma)) - D_{\lambda}F(\lambda(\gamma^{s}),u(\gamma^{s}))||_{L(H_{0}^{1},H^{-1})} \leq C_{20}|\gamma - \gamma^{s}|.
\]

for any \(\gamma, \gamma^{s} \in I_{1}\). Take \(\epsilon_{2} > 0\) so that \(\epsilon_{2}^{-1} > 2\omega C_{20}\sup_{h > 0}||(I-P_{h}^{0})||_{L(H^{-1},H^{-1})}\). Then, we have

\[(8.14e)\quad ||(I-P_{h})(D_{\lambda}F(\lambda_{0},u_{0}) - D_{\lambda}F(\lambda(\gamma),u(\gamma)))||_{L(H^{-1},H^{-1})} \leq \frac{\omega^{-1}}{2},\]
for any \(\gamma \in [u_0(x_0) - \epsilon_2, u_0(x_0) + \epsilon_2] \).

From (8.12) and (8.14), we obtain

\[
\|D(\lambda, u)H^0_h(\gamma, \lambda(\gamma), \tilde{v}_h u(\gamma)) \|_{\mathbb{R} \times H^{-1}} \geq \left(\frac{\omega^{-1}}{2} - \delta(h) \right) (|\lambda| + \|v_h\|_{H^1_0}),
\]

with \(\lim_{h \to 0} \delta(h) = 0 \). Therefore, we prove the claim (8.10) for sufficiently small \(h > 0 \).

Step 4. Again, we prepare a few inequalities. By (8.8), we see

\[
\|D(\gamma, \lambda(\gamma), \tilde{v}_h u(\gamma)) \|_{\mathbb{R} \times H^{-1}} = \|(-1, 0)\|_{\mathbb{R} \times H^{-1}} = 1.
\]

Also, we immediately obtain

\[
\|D(\gamma, \lambda, u^*) - D(\gamma(\lambda(\gamma), \tilde{v}_h u(\gamma)) \|_{\mathbb{R} \times H^{-1}} = C_{21}(|\gamma^* - \gamma| + |\lambda^* - \lambda(\gamma)| + \|u^* - \tilde{v}_h u(\gamma)\|_{\mathbb{R} \times H^{-1}}),
\]

where \(C_{21} = C_{21}(|\gamma^*|, |\lambda^*|, |\lambda|, |u^*|_{\mathbb{R} \times H^{-1}}) \).

Thus, by the inverse inequality (7.5) and (8.16), there exists a monotonically increasing function \(L_2 : \mathbb{R}^+ \to \mathbb{R}^+ \) independent of \(h \) such that, for all \(\gamma, \gamma^* \in [u_0(x_0) - \frac{\epsilon_1}{2}, u_0(x_0) + \frac{\epsilon_1}{2}] \), \(\lambda^* \in \Lambda \) and \(v_h^* \in \mathcal{S}_h \) with

\[
h^{-\left(\frac{1}{2} + \eta\right)}(|\gamma^* - \gamma| + |\lambda^* - \lambda(\gamma)| + \|v_h^* - \tilde{v}_h u(\gamma)\|_{H^1_0}) \leq \xi, \quad 0 < \eta < \frac{1}{2}.
\]

we have

\[
\|D(\gamma, \lambda, u^*) - D(\gamma(\lambda(\gamma), \tilde{v}_h u(\gamma)) \|_{\mathbb{R} \times H^{-1}} = L_2(\xi)h^{-\left(\frac{1}{2} + \eta\right)}(|\gamma^* - \gamma| + |\lambda^* - \lambda(\gamma)| + \|v_h^* - \tilde{v}_h u(\gamma)\|_{H^1_0}).
\]

Step 5. By (8.7), (8.9), (8.10), (8.15) and (8.17), we can apply Theorem 7.2 to the operator \(H^0_h \) in the following situation;

- \(X = \mathbb{R} \) with norm \(h^{-\chi} |\gamma| \),
- \(Y = \mathbb{R} \times \mathcal{S}_h \subset \mathbb{R} \times H^1_0 \) with norm \(h^{-\chi}(|\lambda| + \|v_h\|_{H^1_0}) \),
- \(Z = \mathbb{R} \times \mathcal{S}_h \subset \mathbb{R} \times H^{-1} \) with norm \(h^{-\chi}(|\lambda| + \|T_0^{-1} v_h\|_{H^{-1}}) \),
- \(S = [u_0(x_0) - \epsilon_0, u_0(x_0) + \epsilon_0] \) with \(\epsilon_0 := \min(\frac{\epsilon_1}{2}, \epsilon_2) \),
- \(y(\gamma) = (\lambda(\gamma), \tilde{v}_h u(\gamma)) \),

where \(\chi := \frac{1}{2} + \eta \) for any \(\eta, 0 < \eta < \frac{1}{2} \).
Since \(||A_h||_{C(I(x,y,z))} = ||A_h||_{C(E_{x,y}^{H}, H^{-1})} \) for all \(A_h \in C(R^2 \times \hat{S}_h, \mathbb{R} \times \hat{S}_h) \) and (8.9), there exist a constant \(b(\lambda_0, u_0) > 0 \), independent of \(h \), and a unique \(C^2 \) function \([u_0(x_0) - \epsilon_0, u_0(x_0) + \epsilon_0] \ni \gamma \mapsto (\tilde{\lambda}_h(\gamma), \tilde{u}_h(\gamma)) \in \mathbb{R} \times \hat{S}_h \) such that

\[
(8.18) \quad \tilde{H}_h^0(\gamma, \tilde{\lambda}_h(\gamma), \tilde{u}_h(\gamma)) = (0,0), \quad ||(\lambda(\gamma), \tilde{\Pi}_h u(\gamma)) - (\tilde{\lambda}_h(\gamma), \tilde{u}_h(\gamma))||_{H^{-1}} \leq b(\lambda_0, u_0),
\]

and the inequality

\[
(8.19) \quad |\lambda(\gamma) - \tilde{\lambda}_h(\gamma)| + ||u(\gamma) - \tilde{u}_h(\gamma)||_{L^2} \leq C_{22}||\tilde{H}_h^0(\gamma, \lambda(\gamma), \tilde{\Pi}_h u(\gamma))||_{H^{-1}}.
\]

It is clear that (8.18) implies (8.3) and (8.4). To get (8.5), we observe that

\[
(8.20) \quad ||\tilde{H}_h^0(\gamma, \lambda(\gamma), \tilde{\Pi}_h u(\gamma))||_{H^{-1}} = ||F^0_h(F(\lambda(\gamma), u(\gamma)) - F(\lambda(\gamma), \tilde{\Pi}_h u(\gamma)))||_{H^{-1}}
\leq C_{23}||u(\gamma) - \tilde{u}_h u(\gamma)||_{L^2}.
\]

Therefore, combining (8.19) and (8.20), we obtain (8.5) and complete the proof. \(\Box \)

By the same way as in Section 7, we obtain the following propositions.

Corollary 8.5. Suppose that the assumptions of Theorem 8.4 hold. Then, there exists a constant \(K_1(\lambda_0, u_0) > 0 \) independent of \(h > 0 \) and \(\gamma \in [u_0(x_0) - \epsilon_0, u_0(x_0) + \epsilon_0] \) such that

\[
|\lambda(\gamma) - \tilde{\lambda}(\gamma)| + ||u(\gamma) - \tilde{u}_h(\gamma)||_{W^{1,\infty}} \leq K_1(\lambda_0, u_0)h^\eta,
\]

for any \(0 < \eta < \frac{1}{2} \) and \(\gamma \). \(\Box \)

Theorem 8.6. Suppose that Assumption 7.1 holds for \(d \geq 2 \). Let \(\tilde{M}_0 \subset M_0 \) be a connected compact subset with the following properties:

1. \(D_{\lambda} F(\lambda, u) \neq 0 \) for any \((\lambda, u) \in \tilde{M}_0 \).
2. There exist \(z_0 \in J \) such that \(D_{(\lambda, u)} H(\gamma, \lambda, u) \) defined by (8.2) is an isomorphism for all \((\lambda, u) \in \tilde{M}_0 \).

Then \(\tilde{M}_0 \) is parametrized by \(\gamma = u(z_0) \). We assume without loss of generality that the above \(z_0 \) is a nodal point of \(\hat{S}_h \) for all sufficiently small \(h > 0 \).

Then there exists the corresponding finite element solution branch \(\tilde{M}_h \subset M_h \) which is parametrized by the same \(\gamma \), that is, \(u_0(h(\gamma)) = \gamma \) and \(F_h(\lambda_h(\gamma), u_h(\gamma)) = 0 \) for any \(\gamma \).
Moreover, we have

\[
|\lambda(\gamma) - \lambda_h(\gamma)| + \|\tilde{\Pi}_h u(\gamma) - u_h(\gamma)\|_{H^1_h} \leq K_2 h^{1+\eta},
\]

\[
|\lambda(\gamma) - \lambda_h(\gamma)| + \|u(\gamma) - u_h(\gamma)\|_{H^1_h} \leq K_3\|u(\gamma) - \tilde{\Pi}_h u(\gamma)\|_{H^1_h},
\]

\[
|\lambda(\gamma) - \lambda_h(\gamma)| + \|u(\gamma) - u_h(\gamma)\|_{W^{1,\infty}_0} \leq K_4 h^\eta,
\]

where \(\tilde{\mathcal{M}}_h \subset \mathcal{R}(F, S)\),

for all \(\gamma = u(x_0), (\lambda(\gamma), u(\gamma)) \in \tilde{\mathcal{M}}_0, (\lambda_h(\gamma), u_h(\gamma)) \in \tilde{\mathcal{M}}_h\), and \(\eta\) with \(0 < \eta < \frac{1}{2}\). Here, \(K_2, K_3, K_4\) are positive constants independent of \(h\) and \(\gamma\). \(\square\)

For the \(W^{1,p}_0\)-norm estimate, we have the following theorem as in Section 7.

Theorem 8.7. Suppose that the assumptions of Theorem 8.6 and (7.27) hold. Then, for the corresponding finite element solution branch we have the following estimates.

\[
|\lambda(\gamma) - \lambda_h(\gamma)| + \|\tilde{\Pi}_h u(\gamma) - u_h(\gamma)\|_{W^{1,p}_0} \leq K_5 h^{\frac{1}{p}+\eta},
\]

\[
|\lambda(\gamma) - \lambda_h(\gamma)| + \|u(\gamma) - u_h(\gamma)\|_{W^{1,p}_0} \leq K_6\|u(\gamma) - \tilde{\Pi}_h u(\gamma)\|_{W^{1,p}_0},
\]

\[
|\lambda(\gamma) - \lambda_h(\gamma)| + \|u(\gamma) - u_h(\gamma)\|_{W^{1,\infty}_0} \leq K_7 h^\eta,
\]

for all \(\gamma = u(x_0), (\lambda(\gamma), u(\gamma)) \in \tilde{\mathcal{M}}_0, (\lambda_h(\gamma), u_h(\gamma)) \in \tilde{\mathcal{M}}_h\), and \(\eta\) with \(0 < \eta < 1 - \frac{1}{p}\). Here, \(K_5, K_6, K_7\) are positive constants independent of \(h\) and \(\gamma\). \(\square\)
References

The Laboratory for Numerical Analysis is an integral part of the Institute for Physical Science and Technology of the University of Maryland, under the general administration of the Director, Institute for Physical Science and Technology. It has the following goals:

- To conduct research in the mathematical theory and computational implementation of numerical analysis and related topics, with emphasis on the numerical treatment of linear and nonlinear differential equations and problems in linear and nonlinear algebra.

- To help bridge gaps between computational directions in engineering, physics, etc., and those in the mathematical community.

- To provide a limited consulting service in all areas of numerical mathematics to the University as a whole, and also to government agencies and industries in the State of Maryland and the Washington Metropolitan area.

- To assist with the education of numerical analysts, especially at the postdoctoral level, in conjunction with the Interdisciplinary Applied Mathematics Program and the programs of the Mathematics and Computer Science Departments. This includes active collaboration with government agencies such as the National Institute of Standards and Technology.

- To be an international center of study and research for foreign students in numerical mathematics who are supported by foreign governments or exchange agencies (Fulbright, etc.).

Further information may be obtained from Professor I. Babuška, Chairman, Laboratory for Numerical Analysis, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742-2431.