A SIAM Conference on Optimization was held on May 11-13, 1992 in Chicago. Over three hundred papers were presented at the 75 sessions.
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
Final Report
Fourth SIAM Conference on Optimization
May 11-13, 1992
Chicago

The Fourth SIAM Optimization conference gave further evidence of the continuing growth and interest in optimization. As evidence of this observation we note that there were 262 papers presented at the 1989 conference, but 301 papers at this conference.

The conference themes, invited speakers, and minisymposia of the conference were chosen around three main areas:

- Large scale optimization problem
- Optimization applications
- Optimization problems in control

This was done because the organizers felt that optimization research will lead to significant advances in scientific computing by addressing important applications problems. Of special interest were the following minisymposia on optimization problems in applications:

- Global and local optimization methods for molecular chemistry problems
- Optimal design of engineering systems
- Optimization problems in chemical engineering
- Problems "off-the-shelf" Newton methods won't solve
- Protein Folding - A challenging optimization problem

Interaction between optimization researchers and application scientists was fostered by organizing sessions along optimization areas. As a result, attendance at sessions was increased. The main complaint was that there were too many interesting talks; never that there were no interesting talks at a given time.

We also tried to attract application scientists to the conference by arranging for a pre-conference tutorial centered on optimization software. The tutorial was quite successful with 93 attendees. Attendees of the tutorial praised, in particular, the presentations, and the software guide that was part of the program. A copy of the software guide is enclosed.

We also tried to increase interaction between attendees by scheduling the social sessions together with the poster sessions. This resulted in well attended poster sessions, and considerable discussion between the attendees.

Complaints centered around the large number of presentations. In order to accommodate the large number of presentations, and keep the number of parallel sessions to a
reasonable number (6), many of the talks were shifted to poster sessions. This decision was not entirely popular. Possible methods for dealing with this problem are scheduling a four day conference, and being more selective in the acceptance of papers. Each of these solutions has obvious drawbacks. A more imaginative use of poster sessions may be a better solution. At this conference we tried to increase the status of poster sessions by awarding a prize for best poster. This had some success.

The general feeling was that the conference was highly successful, and that there was a definite need for SIAM Conferences on Optimization. The technical program, the SIAM staff, and the choice of city and site, were singled out as noteworthy by the attendees. The enclosed program contains additional details of the meeting. In particular, the program overview is on page 3.

Jorge Moré (co-chair)
Argonne National Laboratory

Jorge Nocedal (co-chair)
Northwestern University

Jane Cullum
IBM Thomas J. Watson Research Center

Donald Goldfarb
Columbia University
LIST OF ATTENDEES

CONFERENCE OF 'OPTIMIZATION

MAY 11-13, 1992
Nehiddin, Al-Geaali
University of Calabria
Department of Systems
87036 Rende-Cosenza
Cosenza, Calabria 87036
Italy
0984-493209

Natalia, Alexandrov
Rice University
Department of Math Sciences
P O Box 1892
Houston, TX 77251-1892
natalia@rice.edu

Abdulrahim, Alghandi
Apt # 201
16 W 465 Mockingbird Lane
Hinsdale, IL 60521
(708) 986-8303

Farid, Alizadeh-Dekharghani
4
1235 Cortez Dr
Sunnyvale, CA 94086-5651
alizadeh@icsi.berkeley.edu (408) 894-3037

Faliz, Al-Khayyal
Georgia Inst of Technology
School Industrial & Syst Engr
Atlanta, GA 30332-0205
(312) 988-8889
falkhayy@tri01.gatech.edu

J Ray, Alley
Board of Trade
821 W Broadmoor
Pedria, IL 61614

Deborah F, Allinger
Draper Laboratories
Department ES
555 Technology Square
Cambridge, MA 02139-3339
(617) 258-2269

Juergen, Amendinger
Univ of Southern California
Dept of Applied Mathematics
1154 W 30th Street
Los Angeles, CA 90007

Paul B, Anderson
3521 Launcelot Way
Annandale, VA 22003-1

Kurt M, Anstreicher
University of Iowa
Dept of Management Science
Iowa City, IA 52242
(319) 335-0859

Jasbir, Arora
University of Iowa
College of Engineering
1129 Engineering Bldg
Iowa City, IA 52242

Miroslav D, Asic
Ohio State University
Department of Mathematics
University Drive
Newark, OH 43055
(614) 366-9418
masic@magnus.acs.ohio-state.edu

David S, Atkinson
273 Altgeld Hall
1409 W Green St
Urbana, IL 61801-2917
(217) 333-1809

Giles, Auchmuty
University of Houston
Department of Mathematics
Houston, TX 77204-3436
(713) 749-2124
auch@uh.edu

Brett M, Averack
Bldg 221
9700 South Cass Ave
Argonne, IL 60439-4836
(708) 252-6529
averick@ansl.gov (914) 945-1298

Francisco, Barahona
IBM Corporation
T J Watson Research Center
PO Box 218
Yorktown Hights, NY 10598-0218
barahonna@ibm.com

Jesse L, Barlow
Penn State University
Department of Computer Sci
University Park PA 16802
(814) 863-1705

Niroslav D, Asic
Ohio State University
Department of Mathematics
University Drive
Newark, OH 43055
(614) 366-9418
masic@magnus.acs.ohio-state.edu

Brett M, Averack
Bldg 221
9700 South Cass Ave
Argonne, IL 60439-4836
(708) 252-6529
averick@ansl.gov (914) 945-1298

Francisco, Barahona
IBM Corporation
T J Watson Research Center
PO Box 218
Yorktown Hights, NY 10598-0218
barahonna@ibm.com

Jesse L, Barlow
Penn State University
Department of Computer Sci
University Park PA 16802
(814) 863-1705
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Address</th>
<th>Phone</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ali, Bouaricha</td>
<td>INRIA, Domaine de Voluceou</td>
<td>Rocquencourt BP 105, 78153 Le Chesnay Cedex, France</td>
<td>(415) 723-0002</td>
<td>boys@isl.stanford.edu</td>
</tr>
<tr>
<td>Gordon H, Bradley</td>
<td>Naval Postgraduate School</td>
<td>Monterey, CA 93943</td>
<td>(408) 646-2359</td>
<td>jerome@ucsd.edu brenan@aerospace.aero.org</td>
</tr>
<tr>
<td>Dennis L, Bricker</td>
<td>University of Iowa</td>
<td>Iowa City, IA 52242</td>
<td></td>
<td>buckley@agb.royalroads.ca dsbunch@ucsdavis.edu or.bitnet</td>
</tr>
<tr>
<td>Hermann G, Burchard</td>
<td>Oklahoma State University</td>
<td>Stillwater, OK 74078</td>
<td>(405) 744-5690</td>
<td>burchard@memo.math.okstate.edu (206) 543-6183</td>
</tr>
<tr>
<td>Cheri, Bush</td>
<td>University of Cincinnati</td>
<td>M L 71, Cincinnati, OH 45221</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gale F, Capps</td>
<td>Sherwin-Williams Company</td>
<td>Automotive Tech Center, Chicago, IL 60628</td>
<td>(312) 821-2152</td>
<td></td>
</tr>
<tr>
<td>M. Bouhtou</td>
<td>INRIA</td>
<td>Rocquencourt BP 105, 78153 Le Chesnay Cedex, France</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stephen, Boyd</td>
<td>Stanford University</td>
<td>Stanford, CA 94305</td>
<td>(415) 723-0002</td>
<td>boys@isl.stanford.edu</td>
</tr>
<tr>
<td>Jerome G, Braunstein</td>
<td>Naval Postgraduate School</td>
<td>Monterey, CA 93943</td>
<td></td>
<td>jerome@ucsd.edu brenan@aerospace.aero.org</td>
</tr>
<tr>
<td>Kathryn E, Brenan</td>
<td>Naval Postgraduate School</td>
<td>Monterey, CA 93943</td>
<td></td>
<td>jerome@ucsd.edu brenan@aerospace.aero.org</td>
</tr>
<tr>
<td>Albert G, Buckley</td>
<td>Royal Roads Military College</td>
<td>FMO Victoria VOS 180, British Columbia, Canada</td>
<td>604-363-4594</td>
<td></td>
</tr>
<tr>
<td>David S, Bunch</td>
<td>University of California, Davis</td>
<td>Davis, CA 95616</td>
<td>(916) 752-2248</td>
<td></td>
</tr>
<tr>
<td>Richard H, Byrd</td>
<td>University of Colorado</td>
<td>Department of Computer Science</td>
<td></td>
<td></td>
</tr>
<tr>
<td>John A, Burns</td>
<td>Virginia Polytechnic Institute</td>
<td>Blacksburg, VA 24061</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paul H, Calamai</td>
<td>University of Waterloo</td>
<td>Dept of Systems Design Eng</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Celso, Cariabri</td>
<td>Univ of Illinois & Urbana</td>
<td>Department of forestry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alan, Carle</td>
<td>Rice University</td>
<td>Cntr for Resc on Parallel Comp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(713) 285-5368</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>carle@rice.edu</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Edward J, Dean
University of Houston
Department of Mathematics
4800 Calhoun Road
Houston TX 77204-3476
(713) 749-2124

Kalyanmoy, Deb
Univ of Ill/ Urbana-Champaign
Dept of Engr, 104 S Mathews Ave
117 Transportation Building
Urbana IL 61801

E, De Klerk
University of Pretoria
Dept of Mechanical Engr
Pretoria 0001 RSA

Jose L, De La Fuente
Iberdrola
Hemisfilia 3
28001 Madrid
Spain

Renato, De Leone
University of Wisconsin
Department of Computer Science
1210 W Dayton
Madison WI 53705
(608) 262-5083
deleone@cs.wisc.edu

Robert W, Deming
SUNY College-Oswego
Department of Mathematics
Oswego NY 13126
(315) 341-2736

J E, Dennis Jr
Rice University
Dept of Mathematical Sciences
P O Box 1892
Houston TX 77251-1892
(713) 527-4094
dennis@rice.edu (0192) 39-7915

Alvaro R, De Pierro
Universidade Estadual Campinas
Inst Matematica Estatistica e Ciencia da Computacao
13081 Campinas SP
Brazil
dba@math.fundp.ac.be
alvaro@bruce.ansp.br

Burton, Didier
F J N D P
Department of Mathematics
Rempart de la Vierge 8
B-5000 Namur
Belgium

Garry, Didinsky
University of Illinois
Coordinated Science Lab
1101 W Springfield Avenue
Urbana IL 61801

Raymond S, Di Esposti
6439 Hardwick Street
Lakewood CA 90713
(213) 336-8404
diespos@ aerospace.aero.org Russia

I I, Dikin
Siberian Energy Institute
130 Lermontov Street
Irkutsk 664 033

Jiu, Ding
Univ of Southern Mississippi
Department of Mathematics
Southern Station, Box 5045
Hattiesburg MS 39406
(601) 266-4292
ding@usmc6.bitnet

Gianni, Di Pillo
University of Rome
Dept of Information & Systems
Via Eudossiana 18
00184 Rome
Italy
domich@bldf.nist.gov

Paul D, Domich
National Inst of Standards & Technology 881
325 Broadway
Boulder CO 80303-3322
(303) 497-5112

R A, Donnelly
Auburn University
Department of Chemistry
Auburn AL 36849

Asen L, Contchev
Mathematical Reviews
416 4th St
Ann Arbor MI 48107
(313) 996-5270
ald.achilles.mr.ams.com

Robin, Duquette
1800 Montee Ste-Julie
Varennes J3X 1S1
Quebec, Canada
(514) 652-8239
David G, Garrett
10543 Xylon Rd S
Bloomington MN 55438-1922
(612) 656-2222

David M, Gay
35 Livingston Ave
New Providence NJ 07974-2219
(908) 582-5623
dmg@research.att.com

David, Gideon
46922 S Canaan Rd
Athens OH 45701-9460
(614) 592-5166

Jurgen, Gerlach
Radford University
Dept of Math & statistics
Radford VA 24142-5772
(703) 831-5437
jgerlach@ruacad.ac.runet.edu

Omar N, Ghattas
Carnegie Mellon University
Dept of Civil Engineering
Fttsburgh PA 15213

Jean Charles, Gilbert
INRIA
Domaine de Voluceau
BP 105 78153
Le Chesnay France

Philip E, Gill
Univ of California-San Diego
Department of Mathematics
9500 Gilman Drive
La Jolla CA 92037-0112
(619) 534-4879
peg@optimal.ucsd.edu

Paul A, Gilmore
7128 Turner Creek Rd
Apex NC 27502-8520

Robert, Ginn
#38
425 E 84th Street
New York NY 10028
(212) 249-5469

Isidoro, Gitter
Centro de Investigacion y Estudios Avanzados del IPN
Department de Matematica
Zacatenco 07300 - Mexico City
Mexico

Neal, Glassman
1 Paddock Ct
Potomac MD 20854-2328

William K, Glunt
3210 Shadetown
Lexington KY 40503
(606) 258-8864

Jean Louis, Goffin
McGill University
Faculty Management
1001 Sherbrooke St West
Montreal H3A 1C5
Quebec, Canada

Beila S, Goldman
17A
1445 N State Parkway
Chicago IL 60610

Donald, Goldfarb
Columbia University
IE & OR Dept
New York NY 10027
(212) 280-8011

Susana, Gomez
IIMAS - UNAM
Department Numerical Analysis
Apo Box 20-726
Mexico DF 01200
Mexico

Raghu, Gompa
Indiana University
Department of Mathematics
P O Box 9003
Kokomo IN 46902
(317) 455-9267

Clovis C, Gonzaga
COPPE - UFRJ
Caixa Postal 68511
21945 Rio De Janeiro
Brazil
gonzaga@brincc.bitnet
<table>
<thead>
<tr>
<th>Name</th>
<th>Department/Institution</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>James I, Northrup</td>
<td>Mathematics</td>
<td>Colby College, Waterville ME 04901</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(207) 872-3114, jinorthr@colby.edu (717) 675-9255</td>
</tr>
<tr>
<td>M. Mouri-Moghadam</td>
<td>Mathematics</td>
<td>Penn State University, Department of Mathematics, P O Box PSU</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lehman PA 18627-0217</td>
</tr>
<tr>
<td>Kimberly, Gates</td>
<td>Applied Physics Lab</td>
<td>John Hopkins University, John Hopkins Road, Laurel MD 21723-8009</td>
</tr>
<tr>
<td>Francis J, O'Brien Jr</td>
<td>Mathematics</td>
<td>Naval Underwater Systems Ctr, Code 2211, B 1171-1, Newport RI 02841</td>
</tr>
<tr>
<td>Aurelio Ribeiro L, Oliveira</td>
<td>Rice University</td>
<td>Dept of Math Sciences, PO Box 1892, Houston TX 77251-1892</td>
</tr>
<tr>
<td>Rick, Olson</td>
<td>Loyola University of Chicago</td>
<td>Dept of Mgmt Science, 820 N Michigan Ave, Chicago IL 60611</td>
</tr>
<tr>
<td>James B, Orlin</td>
<td>Technology</td>
<td>Massachusetts Institute of Technology, E53-357, Cambridge MA 02139</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(617) 253-6606, jorlin@eagle.mit.edu</td>
</tr>
<tr>
<td>Brian, Ostrow</td>
<td>Computing Services</td>
<td>SBC/OC Services LP, 141 W Jackson Blvd, Chicago IL 60604</td>
</tr>
<tr>
<td>Michael L, Overton</td>
<td>Courant Institute</td>
<td>New York NY 10012-9189, (212) 998-3121, overton@cs.nyu.edu</td>
</tr>
<tr>
<td>Robert W, Owens</td>
<td>Mathematical Sciences</td>
<td>Lewis & Clark College, Portland OR 97219</td>
</tr>
<tr>
<td>Laura, Palagi</td>
<td>Informatica e Sistemihe</td>
<td>Sapienza di Roma, Dept of Informatica e Sistemi, Via Buonarroti 12</td>
</tr>
<tr>
<td>Jong-Shi, Pang</td>
<td>Mathematical Sciences</td>
<td>The Johns Hopkins University, Dept of Mathematical Sciences, Baltimore MD 21218</td>
</tr>
<tr>
<td>Shao Wei, Pan</td>
<td>Electrical & Comp Sci</td>
<td>Univ of Wisconsin & Madison, Dept of Electrical & Comp Sci, 1415 Johnson Dr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Madison WI 53705, (608) 262-9205, pan@ece.wisc.edu</td>
</tr>
<tr>
<td>Panos M, Pardalos</td>
<td>Industrial Engineering</td>
<td>University of Florida, Dept of Industrial Engineering, 303 Weil Hall</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gainesville FL 32611</td>
</tr>
<tr>
<td>Teresa A, Parks</td>
<td></td>
<td>3401 Rice Blvd, Houston TX 77005-2293</td>
</tr>
<tr>
<td>João M, Patricio</td>
<td></td>
<td>University De Coimbra, Apartado 3008, 3000 Coimbra, Portugal</td>
</tr>
<tr>
<td>Terpolilli, Peppino</td>
<td></td>
<td>ELF Aquitaine, Av Larribau, Pau 64018 cedux, France</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33 5983 4547</td>
</tr>
<tr>
<td>Andrew T, Phillips</td>
<td></td>
<td>838 Southern Hills Ct, Arnold MD 21012-861, (301) 267-2798</td>
</tr>
</tbody>
</table>
Jane E. Pierce
SAS Institute
SAS Campus Drive
Bldg J-4
Cary NC 27513
(919) 677-8000 X7636

George, Pitts
Virginia Polytechnic Inst
Department of Mathematics
461 McBryde Hall
Blacksburg VA 24060

Frank, Plab
University of Edinburgh
Parallel Computing Centre
James Clerk Maxwell Bldg
Mayfield Rd Edinburgh EH3 3AF
Great Britain

Todd D. Plantenga
724 Mulford Street
Evanston IL 60202

Paul E. Plassmann
Argonne National Laboratory
Division of Math & Comp Sci
Argonne, IL 60439

Louis J. Podrazik
Supercomputing Research Qen
17100 Science Dr
Bowie MD 20715-4378

Polyar
IBM-T J Watson Research Center
Department of Mathematics
PO box 218
Yorktown Hghts NY 10598

Florian A. Potra
University of Iowa
Department of Mathematics
Iowa City IA 52242-0001
(319) 335-0776
fpotra@umax.wseeg.uiowa.edu

M J D, Powell
University of Cambridge
Department of Applied Math
Silver Street
Cambridge, CB3 9EW
0223-337889
mjdp@amtp.cam.ac.uk

David T. Price
611 E Prairie Ave
Wheaton IL 60187-3824

Malcolm C. Pullan
University of Cambridge
Inst of Mgmt Studies
Mill Lane
Cambridge CB2 1RX
Great Britain

Maijian, Qian
University of Washington
Department of Mathematics
GS-50
Seattle WA 98195
(206) 543-1150
qian@math.washington.edu

Abdur, Rais
Purdue University
Dept of Industrial Engr
Griscom Hall
West Lafayette IN 47907
(317) 494-8522
rais@ecn.purdue.edu

Joanna, Rakowska
Virginia Polytechnic Inst
& State University
Department of Mathematics
Blacksburg VA 24061

danny@cs.cornell.edu

Motakuri V, Ramana
Johns Hopkins University
Dept of Mathematical Sciences
Baltimore MD 21218

Marcos, Raydan
University of Kentucky
Dept of Mathematics
Patterson Office Tower 735
Lexington KY 40506-0027

Daniel, Ralph
Cornell University
Department of Computer Science
Upson Hall
Ithaca NY 14853-7501
(607) 254-8863

David, Reiner
O'Connor & Associates
Quantitative Research Dept
141 West Jackson Boulevard
Chicago IL 60604-2901
(312) 322-7171
James M. Renegar
Cornell University
School Oper Res & Ind Eng
Upson Hall
Ithaca NY 14853-7501
(607) 255-9142
renegar@orie.cornell.edu

Jeffrey G. Renfro
Dyna Optin Tech Product
Dept of Research Development
1613 Karankawas Ct
Deer Park TX 77536

Mauricio G.C. Resende
AT&T Bell Laboratories
Room 20-152
600 Mountain Avenue
Murray Hill NJ 07974-201

(908) 582-2118

Ulf T. Ringertz
Aeronautical Research
Institute of Sweden
Box 11021
S-161 11 Bromma
Sweden
46 8 7591204
na.ringertz@na-net.ornl.gov

Stephen M. Robinson
University of Wisconsin
Department Industrial Engineer
1513 University Avenue
Madison WI 53706-1512
(608) 263-6862

Phillip, Rogaway
1 B M
11400 Burnet Road
Austin TX 78758-365

Janet E. Rogers
484 Golden Lane
Longmont CO 80501

Janet E. Rogers
Nat'l Inst of Stand & Tech
Dept of Appl & Comp Math 881
325 Broadway
Boulder CO 80303-3328

Jack W. Rogers Jr
Auburn University
Division of Mathematics
218 Parker Hall
Auburn University AL 36849

Cornelis, Roos
Delft University of Technology
Dept of Math & Informatics
P O Box 356
2600 AJ Delft
Netherlands
3115-782530
wiro12ahdetud1.tudelft.nl(bitnet)

J Ben, Rosen
University of Minnesota
Department of Computer Science
200 Union St SE
Minneapolis MN 55455-0154

Norma, Rueda
Merrimack College
Dept of Math and Comp Sci
North Andover MA 01845
(508) 837-5000 X4262
rueda@merrimack.edu

I Bert, Russak
Naval Postgraduate School
Code 53RU
Monterey CA 93940
(408) 646-2293

Bert W. Rust
Nat'l Inst of Standards & Tech
Bldg 225, Room A-151
Gaithersburg MD 20899
(701) 975-3811
wrwvax.cam.nist.gov Germany

Ekkehard W. Sachs
University of Trier
FB IV Mathematik
Postfach 3825
5500 Trier
0651/201-2858
sachs@uni-trier.dbp.de

Ibrahim, Sadek
University of North Carolina
Department of Mathematics
Wilmington NC 28401

Nikolaos V. Sahinidis
University of Illinois
Dept Industrial & Mech Eng
1206 W Green Street
Urbana IL 61801
(217) 244-1304
sahinidi@uxh.cso.uiuc.edu

Peter, Salamon
S D U
Department of Mathematical Sciences
San Diego CA 92182
(619) 594-7204
Vasile, Sima
Institute for Informatics
Research Division
Bd Republicii #35, Sector 2
70332 Bucuresti
Romania

Amar, Singh
University of Waterloo
Dept of Systems Design Engr
University Avenue
Waterloo N2L 3G1
Ontario, Canada

Kerstin, Singer
Oregon State University
Department of Mathematics
402 West Hall
Corvallis OR 97331-1418

Joseph A, Smith
U S Coast Guard
Marine Systems
Avery Point
Groton CT 06340
(203) 441-2656

Stuart H, Smith
Purdue University
Krannert School of Mgmt
West Lafayette IN 47907
(317) 494-4441
shsmith@midas.mgmt.purdue.edu (703) 323-2728

Ariela, Sofer
George Mason University
Department ORAS
4400 University Drive
Fairfax VA 22030344
asofer@gmuvm.bitnet

Mikhail V, Solodov
Univ of Wisconsin / Madison
Dept of Computer Science
1210 West Dayton Street
Madison WI 53706

Trond, Steihaug
University of Bergen
Department of Informatics
Hoyteknologisenteret
N-5020 Bergen
Norway
47-5-944169
trond@elk.li.vib.no

Julio Michael, Stern
213 N Tioga
P O Box J
Ithaca NY 14850
(607) 257-8138
jstern@cs.cornell.edu

Richard Evan, Stone
Northwest Airlines Inc
Department E 3100
5101 Northwest Dr
St Paul MN 55111-3034

Virginia L, Stonick
Carnegie Mellon University
Department of Electrical & Computer Engineering
Pittsburgh PA 15213-3590
(412) 268-6636
ginny@ece.cmu.edu

Rob, Stubbs
Northwestern University
Dept of Indu Engr & Mgmt Sc
evanston IL 60208

Brian, Summer
234 Needle Leaf Lane
Sugar Land TX 77479-5038
(713) 954-6235

Jie, Sun
Northwestern University
Dept of Industrial Engineering and Management Sciences
Evanston IL 60208
(708) 491-7008
symes@rice.edu

William W, Symes
7807 Chimon Cir
Houston TX 77071-3372
(713) 527-4805
symes@rice.edu

Toshihiko, Takahashi
Kajima Corporation
Information Processing Center
2-7 Motoakasaka 1-Chome
Minato-ku, Tokyo 107
Japan

Hitoshi, Takehara
MTB Investment Tech Inst
Department of Research
Nihon Bldg 2-6-2 Otemachi
Chiyodaku Tokyo 100
Japan

Masayoshi, Tamura
756 California Avenue
Palo Alto CA 94306
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Department</th>
<th>Address</th>
<th>Phone</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Richard A, Tapia</td>
<td>Rice University</td>
<td>Dept of Mathematical Sciences</td>
<td>Box 1892, Houston, TX 77251-1892</td>
<td>(713) 527-4049</td>
<td>ratgrice.edu</td>
</tr>
<tr>
<td>Pablo, Tarazaga</td>
<td>University of Puerto Rico</td>
<td>Department of Mathematics</td>
<td>P O Box 5000, Mayaguez, PR 00709</td>
<td>(809) 265-3848 X3257</td>
<td>p.tarazaga@brucac.upr.edu</td>
</tr>
<tr>
<td>Marc, Teboulle</td>
<td>University of Maryland</td>
<td>Dept of Civil Engineering</td>
<td>Cincinnati, OH 45221</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andre L, Tits</td>
<td>University of Maryland</td>
<td>Dept of Electrical Engineering</td>
<td>Houston, TX 77251-1892</td>
<td>(713) 527-4049</td>
<td></td>
</tr>
<tr>
<td>Michael J, Todd</td>
<td>Cornell University</td>
<td>Sch of Oper Rsch & Indus En</td>
<td>Ithaca, NY 14853-4810</td>
<td>(607) 255-9135</td>
<td></td>
</tr>
<tr>
<td>Philippe L, Toint</td>
<td>Fac Univ Notre Dame de la Paix</td>
<td>Dept of Mathematics</td>
<td>Brussels, B-5000 Namur, Belgium</td>
<td>(32) 81-229 061</td>
<td></td>
</tr>
<tr>
<td>Jon W, Tolle</td>
<td>University of North Carolina</td>
<td>Department of Mathematics</td>
<td>Chapel Hill, NC 27599</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaoru, Tone</td>
<td>Saitama University</td>
<td>Grad School of Policy Sci</td>
<td>Saitama 338, Japan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virginia J, Torczon</td>
<td>Rice University</td>
<td>Dept Of Mathematical Sciences</td>
<td>Houston, TX 77251-1892</td>
<td>(713) 285-5176</td>
<td></td>
</tr>
<tr>
<td>Jay S, Treiman</td>
<td>Western Michigan University</td>
<td>Dept of Math & Statistics</td>
<td>Kalamazoo, MI 49008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Michael W, Trosset</td>
<td>Cornell University</td>
<td>Sch Of Oper Rsch & Indus En</td>
<td>Ithaca, NY 14853-4810</td>
<td>(607) 255-9135</td>
<td></td>
</tr>
<tr>
<td>Paul Y, Tseng</td>
<td>University of Washington</td>
<td>Dept of Mathematics</td>
<td>Seattle, WA 98195</td>
<td>(206) 543-1177</td>
<td></td>
</tr>
<tr>
<td>Takashi, Tsuchiya</td>
<td>Institute of Statistical Math</td>
<td>4-6-7 Minami-Azabu, Minato-ku</td>
<td>Tokyo 106, Japan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Levent, Tuncel</td>
<td>Cornell University</td>
<td>Sch Of Oper Rsch & Indus En</td>
<td>Ithaca, NY 14853-4810</td>
<td>(607) 255-1270</td>
<td></td>
</tr>
<tr>
<td>Kathryn L, Turner</td>
<td>Utah State University</td>
<td>Department Of Mathematics</td>
<td>Logan, UT 84322-3900</td>
<td>(801) 750-2817</td>
<td></td>
</tr>
<tr>
<td>Daniel, Tuyttens</td>
<td>Faculte Polytechnique de Mons</td>
<td>Dept of Math & Oper Research</td>
<td>9 Rue de Houdain, B-7000 Mons</td>
<td>(513) 556-3643</td>
<td></td>
</tr>
<tr>
<td>James G, Uber</td>
<td>University of Cincinnati</td>
<td>Dept Civil/Environmental Eng</td>
<td>Cincinnati, OH 45221-1007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warwick, Winton</td>
<td>Prairie View College</td>
<td>Dept of Civil Engineering</td>
<td>Logan, UT 84322-3900</td>
<td>(801) 750-2817</td>
<td></td>
</tr>
</tbody>
</table>
| shapes, sizes of objects in the image are not used.
<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Address</th>
<th>Phone</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>George Vairaktarakis</td>
<td>University of Florida</td>
<td>Dept of Indu & Systems Engr, 303 Neil Hall, Gainesville, FL 32611</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Russ Vander Wiel</td>
<td>University of Illinois</td>
<td>Dept of Mech & Indus Engr, 1206 W Green Street, Urbana, IL 61801</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R J Vanderbei</td>
<td>AT&T Bell Laboratories</td>
<td>Room 2C-124, 600 Mountain Avenue, Murray Hill, NJ 07974-201</td>
<td>(201) 582-7589</td>
<td></td>
</tr>
<tr>
<td>Nguyen Van Hien</td>
<td>FNDP Namur</td>
<td>Department of Mathematics, 8 Rempart De La Vierge, Namur B-5000, Belgium</td>
<td>32-81-229061 ext2436</td>
<td>vardi@duvm vavasis@cs.cornell.edu</td>
</tr>
<tr>
<td>Avi Vardi</td>
<td>Drexel University</td>
<td>Department of Mathematics & Computer Science, Philadelphia, PA 19104</td>
<td>(215) 895-6824</td>
<td>vardi@duvm vavasis@cs.cornell.edu</td>
</tr>
<tr>
<td>Stephen A Vavasis</td>
<td>Cornell University</td>
<td>Department of Computer Science, Upson Hall, Ithaca, NY 14853-9500</td>
<td>(607) 255-9213</td>
<td></td>
</tr>
<tr>
<td>James Vegeais</td>
<td></td>
<td>5256 Lynd Ave, OH 44124-1031</td>
<td>(216) 581-5493</td>
<td>vegeaisj@rcwil1.dnet.bp.com</td>
</tr>
<tr>
<td>Geraldo Veiga</td>
<td></td>
<td>Apt 215, 2000 Durant Ave, Berkeley, CA 94704-1501</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jose A Ventura</td>
<td></td>
<td>Penn State University, 207 Hammond Bldg, University Park PA 16802</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jorge R Vera</td>
<td>Cornell University</td>
<td>Dept of Operations Research, 319 Upson Hall, Ithaca, NY 14853</td>
<td>(607) 255-1270</td>
<td>vera@orie.cornell.edu</td>
</tr>
<tr>
<td>Jean-Philippe Vial</td>
<td>University of Geneva</td>
<td>2 Rue De Candolle, CH-1211, Geneva 4, Switzerland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luis Nunes Vicente</td>
<td>Universidade de Coimbra</td>
<td>Departamento de Matematica, 3000 Coimbra, Portugal</td>
<td>(351) 39-28097</td>
<td></td>
</tr>
<tr>
<td>Ole Vignes</td>
<td>Norsk Hydro</td>
<td>PO Box 4313, Nygardstangen, N-5028 Bergen, Norway</td>
<td></td>
<td></td>
</tr>
<tr>
<td>John A Volmer</td>
<td>Northwestern University</td>
<td>Department of IE / MS, 800 W Quincy St, Arlington, VA 22217</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gregory M Vydra</td>
<td>Z S Associates</td>
<td>1800 Sherman Avenue, Evanston, IL 60201</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Don Wagner</td>
<td>Northwestern University</td>
<td>Department of IE / MS, 800 W Quincy St, Arlington, VA 22217</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gregory M Vydra</td>
<td>Z S Associates</td>
<td>1800 Sherman Avenue, Evanston, IL 60201</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jen-Shan Wang</td>
<td>Nanjing University</td>
<td>Department of Mathematics, 22 Han Kou Road, Nanjing, Jiangsu 210 008, People's Republic of China</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Institution</td>
<td>Department</td>
<td>Address</td>
<td>Phone</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------------------------------</td>
<td>-------------------------------------</td>
<td>-----------------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Tao, Wang</td>
<td>Johns Hopkins University</td>
<td>Dept of Mathematical Sciences</td>
<td>Baltimore, MD 21218</td>
<td></td>
</tr>
<tr>
<td>Layne T, Watson</td>
<td>WPI & SU</td>
<td>Dept of Computer Science</td>
<td>Blacksburg VA 24061-4094</td>
<td>(703) 231-7540</td>
</tr>
<tr>
<td>Per Ake, Wedin</td>
<td>University of Umea</td>
<td>Institute of Information Processing</td>
<td>S-90187 Umea, Sweden</td>
<td></td>
</tr>
<tr>
<td>Clark, Wells</td>
<td>University of Kentucky</td>
<td>Department of Mathematics</td>
<td>Blacksburg, VA 24061-4094</td>
<td>(703) 231-7540</td>
</tr>
<tr>
<td>Norman Daniel, Whitmore Jr</td>
<td>Amoco Production Company</td>
<td>Department of Research</td>
<td>Blacksburg, VA 24061-4094</td>
<td></td>
</tr>
<tr>
<td>J Ernest, Wilkins Jr</td>
<td>Clark Atlanta University</td>
<td>PO Box J</td>
<td>Atlanta, GA 30314</td>
<td></td>
</tr>
<tr>
<td>Karen A, Williamson</td>
<td>Rice University</td>
<td>Dept of Mathematical Sciences</td>
<td>Houston, TX 77251-1892</td>
<td>(713) 285-5178</td>
</tr>
<tr>
<td>Henry, Wolkowicz</td>
<td>University of Waterloo</td>
<td>Department of Combinatorics and Optimization</td>
<td>Waterloo, N2L 3G1, Ontario, Canada</td>
<td>61-2-697 2998</td>
</tr>
<tr>
<td>Robert S, Womersley</td>
<td>University of New South Wales</td>
<td>School of Mathematics</td>
<td>Kensington, NSW 2033</td>
<td></td>
</tr>
<tr>
<td>Margaret H, Wright</td>
<td>AT&T Bell Laboratories</td>
<td>Room 2C-462</td>
<td>Murray Hill, NJ 07974-2010</td>
<td>(201) 582-3498</td>
</tr>
<tr>
<td>Stephen J, Wright</td>
<td>Argonne National Laboratory</td>
<td>MCS Division</td>
<td>Argonne, IL 60439</td>
<td></td>
</tr>
<tr>
<td>Chih-Hang, Wu</td>
<td>Penn State University</td>
<td>Dept of Indus & Mgmt Syst</td>
<td>State College, PA 16801</td>
<td></td>
</tr>
<tr>
<td>Zhijun, Wu</td>
<td>Cornell University</td>
<td>Dept of Computer Science</td>
<td>Ithaca, NY 14853</td>
<td></td>
</tr>
<tr>
<td>Guo-Liang, Xue</td>
<td>Army High Performance</td>
<td>Computing Research Center</td>
<td>Minneapolis, MN 55445</td>
<td></td>
</tr>
<tr>
<td>Hiroshi, Yabe</td>
<td>Science Univ of Tokyo</td>
<td>Faculty of Engineering</td>
<td>Tokyo, Japan</td>
<td>03-3260-4271 Ex 3560</td>
</tr>
<tr>
<td>Jonathan, Yackel</td>
<td>Univ of Wisconsin/Madison</td>
<td>Dept of Computer Science</td>
<td>Madison, WI 53706-1685</td>
<td></td>
</tr>
<tr>
<td>Hiroshi, Yamashita</td>
<td>Mathematical Systems Institute</td>
<td>Bldg 6F</td>
<td>Shinjuku-ku, Tokyo 160-00</td>
<td></td>
</tr>
<tr>
<td>Wing K, Yeung</td>
<td>The Aerospace Corporation</td>
<td>Software Support Office</td>
<td>Madison, WI 53706-1685</td>
<td></td>
</tr>
</tbody>
</table>
Fourth SIAM Conference on

May 11-13, 1992
Hyatt Regency Hotel
Chicago, Illinois

Sponsored by SIAM
Activity Group on
Optimization

And Tutorial on Numerical Optimization and Software
May 10, 1992

CONFERENCE THEMES

Large-Scale Optimization
Interior-Point Methods
Algorithms for Optimization
Problems in Control
Network Optimization Methods
Parallel Algorithms for Optimization Problems

SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS

SCIENCE AND INDUSTRY ADVANCE WITH MATHEMATICS
Contents

Tutor.............. 2
Get-Togethers............ 3
Program Overview 3
Program-at-a-Glance 4-5
Conference Program 6-18
Registration Information 18
Abstracts:
Minisymposia and
Contributed Presentations A1-A48
Author Index A49-A57
Upcoming Conferences ... Back Cover

Organizing Committee

Jorge Moré (Co-chair)
Mathematics and Computer
Science Division
Argonne National Laboratory

Jorge Nocedal (Co-chair)
Department of Electrical Engineer-
ing and Computer Science
Northwestern University

Jane K. Cullum
IBM Thomas J. Watson
Research Center

Donald Goldfarb
Department of Operations Research
and Industrial Engineering
Columbia University

Funding Agencies

SIAM would like to thank both the Air Force
Office of Scientific Research and the
Department of Energy for their partial support
in conducting this conference.
Following are subject classifications for the sessions. The codes in parentheses designate session type and number. The session types are: Invited (IP), Minisymposium (MS), Contributed (CP), and Poster (P).

Advanced Environments for Optimization Software
Advanced Environments for Optimization Software (MS10, page 10)
ADIFOR—Automatic Differentiation in Fortran and Applications to Optimization (MS17, page 13)
Cheap Gradients and Beyond: The Promise of Automatic Differentiation in Optimization (IP6, page 11)

Algorithms for Optimization Problems in Control
Control Problems I (CP7, page 9; P1, page 9)
Control Problems II (CP28, page 18)
Convex Optimization Problems Arising in Controller Design (IP4, page 10)
Optimal Control of Flexible Systems (MS25, page 17)
Optimization in Control and Differential Equations (MS15, page 12)
Scheduling of Manufacturing Systems (IP5, page 10)
Stochastic Problems (P1, page 9)

Global Optimization
Computational Global Optimization (MS16, page 13)
Genetic Algorithms in Function Optimization (MS23, page 17)
Global Optimization (CP8, page 9; P2, page 14)
Simulated Annealing (CP5, page 8)

Interior Point Methods
Finite Termination and Basis Recovery Using Interior Point Methods for LP (MS22, page 16)
Interior Methods for Large-Scale Nonlinear Optimization Problems (IP2, page 6)
Linear Programming: Analysis and Theory I (CP17, page 13; P1, page 9)
Linear Programming: Analysis and Theory II (CP27, page 17)
Linear Programming: Computational Issues I (CP10, page 11)
Linear Programming: Computational Issues II (CP20, page 15)
Recent Computational Advances in Interior Methods (MS1, page 6)
Recent Developments in Interior Point Methods for Linear Programming (IP8, page 15)
Recent Theoretical Advances in Interior Point Methods (MS7, page 8)

Large-Scale Optimization
Algorithms for Solving Large Nonlinear Optimization Problems (IP7, page 15)
Bound Constrained Problems I (CP3, page 7)
Bound Constrained Problems II (CP22, page 16)
Development of Codes for Large-Scale LP, QP and NLP (IP1, page 6)
Large-Scale Nonlinear Optimization (MS19, page 15)
Large-Scale Constrained Optimization I (CP1, page 6)
Large-Scale Constrained Optimization II (CP11, page 11)
Parallel Algorithms in Optimization (MS18, page 15)
Robust Optimization: Models and Solution Strategies (MS8, page 8)
Quadratic Programming: Models and Solution Strategies (MS13, page 11)
Sparse Matrix Problems (CP6, page 8)

Network Optimization Methods
Large-Scale Network Optimization: An Assessment (IP9, page 16)
Network Flow Algorithm (MS12, page 11)
Network Optimization: Five Decades of Applications (IP5, page 10)
Network Optimization I (CP4, page 9; P1, page 9)
Network Optimization II (CP24, page 16)

Optimization Algorithms and Software
Advances in Operator/Matrix Splitting Methods (CP14, page 12)
Advances in Proximal Point Methods (MS6, page 7)
Combinatorial Optimization (MS2, page 6; CP23, page 16; P1, page 10)
Constrained Nonlinear Optimization (MS4, page 7)
Constrained Optimization I (CP9, page 9; P1, page 9; P2, page 14)
Constrained Optimization II (CP14, page 12; P1, page 9; P2, page 14)
Constrained Optimization III (CP29, page 18; P1, page 9; P2, page 14)
Convex Programming (CP16, page 12; P1, page 9; P2, page 14)
Linear Complementarity (CP19, page 13)
Optimization Problems Involving Eigenvalues — Part I (MS9, page 8)
Optimization Problems Involving Eigenvalues — Part II (MS24, page 17)
Optimization Problems Over Matrices (CP26, page 17)
Optimization Algorithms and Software (P1, page 10; P2, page 14)
Unconstrained Optimization (P2, page 13)

Optimization Problems in Applications
Global and Local Optimization Methods for Molecular Chemistry Problems (MS21, page 16)
Optimal Design of Engineering Systems (MS11, page 10)
Optimization Problems in Chemical Engineering (MS3, page 6)
Problems “Off-the-Shelf” Newton Methods Won’t Solve (MS 5, page 7)
Protein Folding—A Challenging Optimization Problem (MS13, page 12)

Parameter Estimation and Data Fitting Problems
Data Fitting Problems I (CP2, page 7; P2, page 14)
Data Fitting Problems II (CP12, page 11)
Data Fitting Problems III (CP21, page 15)
Minimax Problems (CP25, page 17)
Nonlinear Least Squares (CP18, page 13)
<table>
<thead>
<tr>
<th>Saturday, May 9</th>
<th>Sunday, May 10</th>
<th>Monday, May 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>6:00 PM-8:00 PM</td>
<td>8:00 AM-4:00 PM</td>
<td>7:00 Registration for Conference opens</td>
</tr>
<tr>
<td>Registration for Tutorial opens</td>
<td>Registration for Tutorial opens</td>
<td>Regency Ballroom Foyer</td>
</tr>
<tr>
<td>Regency Ballroom Foyer</td>
<td>9:00 AM-5:30 PM</td>
<td>8:15 Opening Remarks</td>
</tr>
<tr>
<td>9:00 AM-5:30 PM</td>
<td>Tutorial</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Regency C</td>
<td>6:30 PM-9:00 PM</td>
<td>8:30 IP1 Development of Codes for Large-Scale LP, QP and NLP</td>
</tr>
<tr>
<td>Registration for Conference opens</td>
<td>Regency Ballroom Foyer</td>
<td>Roger Fletcher</td>
</tr>
<tr>
<td>7:00 PM-9:00 PM</td>
<td>9:15 IP2 Interior Methods for Large-Scale Nonlinear Optimization Problems</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Welcoming Reception</td>
<td>10:00 Butten for Conference opens</td>
<td>Margaret H. Wright</td>
</tr>
<tr>
<td>Regency Ballroom Foyer</td>
<td>10:00-11:50 Concurrent Sessions (Minisymposia and Contributed)</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>10:30-11:50</td>
<td>Concurrent Sessions (Minisymposia and Contributed)</td>
<td>11:00 Coffee and Exhibits</td>
</tr>
<tr>
<td>10:15 MS1 Recent Computational Advances in Interior Point Methods</td>
<td>MS2 Combinatorial Optimization</td>
<td>12:00 Lunch</td>
</tr>
<tr>
<td>Organizer: Sanjay Mehrotra</td>
<td>Organizer: Francisco Barahona</td>
<td>12:30 IP3 Network Optimization: Five Decades of Applications</td>
</tr>
<tr>
<td>Regency A/B</td>
<td>Water Tower Room</td>
<td>Thomas L. Magnanti</td>
</tr>
<tr>
<td>MS3 Optimization Problems in Chemical Engineering</td>
<td>MS4 Constrained Nonlinear Optimization</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Organizer: Lorenz T. Biegler</td>
<td>Organizer: Richard H. Byrd</td>
<td>1:30 IP4 Recent Theoretical Advances in Interior Point Methods</td>
</tr>
<tr>
<td>Toronto Room</td>
<td>University of Illinois at Urbana-Champaign</td>
<td>Organizer: Kurt M. Anstreicher</td>
</tr>
<tr>
<td>CP1 Large-Scale Constrained Optimization I</td>
<td>CP2 Data Fitting Problems I</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>Belmont Room</td>
<td>CP3 Bound Constrained Problems I</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>CP4 Network Optimization I</td>
<td>CP5 Simulated Annealing</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Toronto Room</td>
<td>CP6 Sparse Matrix Problems</td>
<td>CP7 Control Problems I</td>
</tr>
<tr>
<td>Acapulco Room</td>
<td>CP8 Global Optimization</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Gold Coast Room</td>
<td>CP9 Constrained Optimization I</td>
<td>Water Tower Room</td>
</tr>
<tr>
<td>3:00 Coffee and Exhibits</td>
<td>3:00 Concurrent Sessions (Minisymposia and Contributed)</td>
<td>6:00 Poster Session I</td>
</tr>
<tr>
<td>Regency D</td>
<td>3:30 MS7 Recent Theoretical Advances in Interior Point Methods</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Organizer: Kurt M. Anstreicher</td>
<td>Belmont Room</td>
<td>6:30 Poster Session I</td>
</tr>
<tr>
<td>MS8 Robust Optimization: Models and Solution Strategies</td>
<td>MS9 Optimization Problems Involving Eigenvalues - Part 1 of 2</td>
<td>New Orleans Room</td>
</tr>
<tr>
<td>Organizer: John M. Mulvey</td>
<td>Organizer: Michael L. Overton</td>
<td>New Orleans Room</td>
</tr>
<tr>
<td>MS10 Robust Optimization: Models and Solution Strategies</td>
<td>MS11 Optimization Problems Involving Eigenvalues - Part 2 of 2</td>
<td>New Orleans Room</td>
</tr>
<tr>
<td>Organizer: John M. Mulvey</td>
<td>Organizer: Michael L. Overton</td>
<td></td>
</tr>
</tbody>
</table>
Tuesday, May 12

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:30</td>
<td>Registration Opens</td>
<td>Regency Ballroom Foyer</td>
</tr>
<tr>
<td>8:30</td>
<td>IP4 Convex Optimization Problems Arising in Controller Design</td>
<td>Regency A/B</td>
</tr>
<tr>
<td></td>
<td>Stephen Boyd</td>
<td></td>
</tr>
<tr>
<td>9:15</td>
<td>IP5 Scheduling of Manufacturing Systems</td>
<td>Regency A/B</td>
</tr>
<tr>
<td></td>
<td>P. R. Kumar</td>
<td></td>
</tr>
<tr>
<td>10:00</td>
<td>Coffee and Exhibits</td>
<td>Regency D</td>
</tr>
<tr>
<td>10:30</td>
<td>Concurrent Sessions (Mini symposia and Contributed)</td>
<td>MS10</td>
</tr>
<tr>
<td></td>
<td>Advanced Environments for Optimization Software</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Organizer: Robert Fourer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MS11 Optimal Design of Engineering Systems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Organizer: Omar N. Ghanas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CP10 Linear Programming Computational Issues I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Belmont Room</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CP11 Large-Scale Constrained Optimization II</td>
<td>Toronto Room</td>
</tr>
<tr>
<td></td>
<td>CP12 Data Fitting Problems II</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td></td>
<td>CP13 Quadratic Programming</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>12:00</td>
<td>Lunch</td>
<td></td>
</tr>
<tr>
<td>1:30</td>
<td>IP6 Cheap Gradients and Beyond: The Promise of Automatic</td>
<td>MS12</td>
</tr>
<tr>
<td></td>
<td>Differentiation in Optimization</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Andreas Griewank</td>
<td></td>
</tr>
<tr>
<td>2:30</td>
<td>Concurrent Sessions (Mini symposia and Contributed)</td>
<td>MS13</td>
</tr>
<tr>
<td></td>
<td>Network Flow Algorithm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>James B. Orlin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MS14 Protein Folding--A Challenging Optimization Problem</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Organizers: David M. Gay and Margaret H. Wright</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Regency A/B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MS14 Advances in Operator/Matrix Splitting Methods</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Organizers: Paul Tseng and James V. Burke</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toronto Room</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CP14 Constrained Optimization II</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td></td>
<td>CP15 Unconstrained Minimization</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CP16 Convex Programming</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>3:50</td>
<td>Coffee and Exhibits</td>
<td>Regency D</td>
</tr>
<tr>
<td>4:20</td>
<td>Concurrent Sessions (Mini symposia and Contributed)</td>
<td>MS15</td>
</tr>
<tr>
<td></td>
<td>Optimization in Control and Differential Equations'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Organizer: Carl T. Kelley</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Belmont Room</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MS16 Computational Global Optimization</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Organizer: J.B. Rosen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>New Orleans Room</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MS17 ADIFOR: Automatic Differentiation in Fortran and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Applications to Optimization</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Organizers: Christian Bischof and George Corliss</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acapulco Room</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CP17 Linear Programming Analysis and Theory I</td>
<td>Toronto Room</td>
</tr>
<tr>
<td></td>
<td>CP18 Nonlinear Least Squares</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water Tower Room</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CP19 Linear Complementarity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gold Coast Room</td>
<td></td>
</tr>
<tr>
<td>6:00</td>
<td>Poster Session II</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>7:30</td>
<td>Business Meeting</td>
<td>Belmont Room</td>
</tr>
<tr>
<td></td>
<td>SIAM Activity Group on Optimization</td>
<td></td>
</tr>
</tbody>
</table>

Wednesday, May 13

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:30</td>
<td>Registration opens</td>
<td>Regency Ballroom Foyer</td>
</tr>
<tr>
<td>8:30</td>
<td>IP7 Algorithms for Solving Large Nonlinear Optimization Problems</td>
<td>Regency A/B</td>
</tr>
<tr>
<td></td>
<td>Nicholas I.M. Gould</td>
<td></td>
</tr>
<tr>
<td>9:15</td>
<td>IP8 Recent Developments in Interior Point Methods for Linear Programming</td>
<td>Regency A/B</td>
</tr>
<tr>
<td></td>
<td>Michael J. Todd</td>
<td></td>
</tr>
<tr>
<td>10:00</td>
<td>Coffee and Exhibits</td>
<td>Regency D</td>
</tr>
<tr>
<td>10:30</td>
<td>Concurrent Sessions (Mini symposia and Contributed)</td>
<td>MS18</td>
</tr>
<tr>
<td></td>
<td>Algorithms in Optimization</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Organizer: Stephen J. Wright</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MS19 Large-Scale Nonlinear Optimization</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Organizer: Phillip E. Gill</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toronto Room</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MS20 Complexity Issues in Numerical Optimization</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Organizer: Stephen A. Vavasis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acapulco Room</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CP20 Linear Programming: Computational Issues II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Belmont Room</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CP21 Data Fitting Problems III</td>
<td>Water Tower Room</td>
</tr>
<tr>
<td></td>
<td>CP22 Bound Constrained Problems II</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>12:00</td>
<td>Lunch</td>
<td></td>
</tr>
<tr>
<td>1:30</td>
<td>IP9 Large-Scale Network Optimization: An Assessment</td>
<td>BS12</td>
</tr>
<tr>
<td></td>
<td>Michael D. Grigoriads</td>
<td></td>
</tr>
<tr>
<td>2:30</td>
<td>Concurrent Sessions (Mini symposia and Contributed)</td>
<td>MS21</td>
</tr>
<tr>
<td></td>
<td>Global and Local Optimization Methods for Molecular Chemistry Problems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Organizer: Robert B. Schnabel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Belmont Room</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MS22 Finite Termination and Basis Recovery Using Interior-Point Methods</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For LP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Organizer: Amr S. El-Bakry</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Regency A/B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CP23 Combinatorial Optimization</td>
<td>Water Tower Room</td>
</tr>
<tr>
<td></td>
<td>CP24 Network Optimization II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toronto Room</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CP25 Minimax Problems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acapulco Room</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CP26 Optimization Problems over Matrices</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gold Coast Room</td>
<td></td>
</tr>
<tr>
<td>3:50</td>
<td>Coffee and Exhibits</td>
<td>Regency D</td>
</tr>
<tr>
<td>4:20</td>
<td>Concurrent Sessions (Mini symposia and Contributed)</td>
<td>MS23</td>
</tr>
<tr>
<td></td>
<td>Genetic Algorithms in Function Optimization</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Organizer: David Levine</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acapulco Room</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MS24 Optimization Problems Involving Eigenvalues - Part 2 of 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Organizer: Michael L. Overton</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Belmont Room</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MS25 Optimal Control of Flexible Systems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Organizer: M.R. Nowi-Moghadam</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water Tower Room</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CP27 Linear Programming: Analysis and Theory II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Regency A/B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CP28 Control Problems II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gold Coast Room</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CP29 Constrained Optimization III</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toronto Room</td>
<td></td>
</tr>
<tr>
<td>6:00</td>
<td>Conference Adjourns</td>
<td></td>
</tr>
</tbody>
</table>
I feature of research. Another important issue has been the use of generalised elimination schemes in QP and NLP, which allow the effective use of sparse matrix methods. In these schemes second order information is handled through a dense representation of the reduced Hessian matrix and global convergence is assured by the use of an I-1 line search with second order corrections using a trust region framework. The speaker will discuss various aspects of the implementation of such a scheme.

Roger Fletcher
Department of Mathematics and Computer Science
University of Dundee, Scotland

9:15/Regency A/B
IP2/Chair: Michael J.D. Powell, Cambridge University, United Kingdom
Interior Methods for Large-Scale Nonlinear Optimization Problems
Since 1984, substantial attention has been lavished on interior methods for constrained optimization, with increasing focus on nonlinear problems. Interior methods are closely related to classical barrier techniques of the 1960s which fell from favor because of their apparent inefficiency compared to approaches such as sequential quadratic programming methods. Interior methods can become a viable solution alternative for nonlinear problems only after resolution of several generic issues of algorithmic structure and convergence. Their application to large-scale problems necessarily involves sparse linear algebraic procedures that can overcome the inherent ill-conditioning associated with the barrier Hessian. The speaker will describe several promising strategies in interior methods for large-scale nonlinear problems.

Margaret H. Wright
AT&T Bell Laboratories

10:00/Regency D
Coffee

10:30-11:50
Concurrent Sessions
(Mini-symposia and Contributed)

MSJ/Regency A/B
Recent Computational Advances in Interior Point Methods
The speakers in this minisymposium will present recent developments on the implementation aspects of interior point methods for linear and nonlinear optimization problems. They will discuss new algorithms and linear algebra techniques developed due to implementation needs of these methods. The algorithms and techniques include predictor-corrector methods, the use of conjugate gradient methods, matrix factorization schemes for symmetric indefinite matrices, and crossing over to simplex method from interior solutions.

Organizer: Sanjay Mehrotra
Northwestern University

10:30
Interior Point Methods for Large Scale Quadratic Programming
David Shanno, Rutgers University and Tami Carpenter, Princeton University

10:50
Primal-Dual Symmetric Formulations of the Predictor-Corrector Method for QP
R.J. Vanderbei, Princeton University

11:10
Solving Symmetric Indefinite Systems in Interior Point Methods
Sanjay Mehrotra, organizer and Robert Fourer, Northwestern University

11:30
Switching from Interior to Vertex Solutions in OSI
J.A. Tomlin, IBM Almaden Research Center and J.J.H. Forrest, IBM Thomas J. Watson Research Center

MSJ/Water Tower Room
Combinatorial Optimization
The speakers will address algorithmic and polyhedral aspects of several combinatorial problems. They will discuss finding maximum weighted forest with degree constraints related problems, delta-omega transformations of planar graphs as a reduction technique for combinatorial problems, a polynomial algorithm for minimum weighted bases of vector spaces, and the 2-connected subgraph problem.

Organizer: Francisco Barahona
IBM Thomas J. Watson Research Center

10:30
The Degree Constrained Forest Problem
Bruce Gamble, Northwestern University

10:50
Delta-Wye-Delta Reducibility of Three Terminal Planar Graphs
Isidoro Gitter, University of Waterloo, Canada

11:10
Minimum Weight Bases for Vector Spaces
David Hartvigsen, Northwestern University

11:30
Algorithms and Polyhedral Results for the 2-Connected Steiner Subgraph Problem
Abder Rais, Purdue University

MSJ/Toronto Room
Optimization Problems in Chemical Engineering
Chemical engineering applications have long been a rich source of complex and challenging optimization problems. Applications include the analysis of laboratory and plant data, design of chemical processes, process control and operation, and planning and scheduling tasks. The engineering models consist of sets of nonlinear algebraic and differential equations that may include several thousand variables and in many cases involve nonsmooth and discontinuous relations and discrete decisions. The speakers in this minisymposium will provide an overview of process optimization problems by industrial practitioners. They will discuss problems from reactor optimization, overall process optimization, and incorporation of process dynamics into the problem formulation. The speakers will emphasize the unique features of each application and describe the current methods used in their solution.

Organizer: Loren T. Biegler
Carnegie Mellon University

10:30
A Concise Overview of Chemical Engineering Optimization Applications
Loren T. Biegler; organizer

10:50
Theoretical Modeling of Amoco's Gas-Phase Horizontal Stiffened-Bed Reactor for the Manufacturing of Polypropylene Resins
Michael Caracotsios, Amoco Chemical Company

11:10
Optimization Using Process Simulators
Hern-shan Chen and Thomas P. Kucera, Aspen Technology, Inc., Cambridge, MA

11:30
Large-Scale Process Optimization with Differential Equations
A.M. Mosthidi, DOT Products, Inc.

CP1/Belmont Room
Large-Scale Optimization I
Chair: Gianni Di Pillo, Universita di Roma "La Sapienza", Italy

10:30
Recursive Components in Large Optimization Models
Arie Stolbjerg Drud, ARKI Consulting and Development A/S, Denmark

10:50
Numerical Experience with LANCELOT (Release A) in Large Scale Nonlinear Programming
A. Conn, IBM Thomas J. Watson Research Center; N. Gould, Rutherford Appleton Laboratory, United Kingdom; and Philippe Toint, Facultes Universitaires Notre Dame de la Paix, Belgium

11:10
Singularities in Large-Scale Structural Optimization
James D. Guttill, Surya N. Punnak and Laszlo Berke, NASA Lewis Research Center

11:30
The Design of a Large-Scale NLP Code for Trajectory Optimization Problems
K. Bredin, W. Hallinan and W. Yenung, The Aerospace Corporation
CP2iGold Coast Room
Data Fitting Problems I
Chair: C. Lemarechal, INRIA, France
10:30 POSM - A Nonlinear Optimization Program Suitable for Engineering Shao Wet Fuz and Yu Ren Hu, University of Wisconsin, Madison
10:50 A Comparison of Some Methods for Estimating Rate Constants in Chemical Kinetics Per-Ake Wden, University of Umea, Sweden and Lemart Eddberg, Royal Institute of Technology, Sweden
11:10 On the EM Algorithm and a Generalization of the Proximal Point Method Alvaro Rodolfo de Pietro, Universidade Estadual de Campinas, Brazil
11:30 Experimental Data Integration in Large Scale System Analysis L. Michael Sant, Christian Brothers University and Join P. Butak, NASA, George C. Marshall Space Flight Center
CP3i/Neptune Room
Bound Constrained Problems I
Chair: Panos Pardalos, University of Florida
10:30 Bounded Least Squares for PET Linda Kaufman, AT&T Bell Laboratories
10:50 Data Parallel Quadratic Programming with Box-Constrained Problems Jill Mesirov and Mike McKenna, Thinking Machines Corporation and Stavros A. Zenios, University of Pennsylvania
11:10 Massively Parallel Solution of Quadratic Programs via Successive Overrelaxation Renato De Leone and Mary A. Tork Roth, University of Wisconsin, Madison
11:30 On the Effects of Scaling on Projected Gradient Methods for Solving Bound Constrained Quadratic Programming Problems Jesse L. Barlow, Pennsylvania State University and Gerardo Toraldo, Università della Basilicata, Italy

12:00-1:30 Lunch

1:30/Regency A/B
IP3/Chair: Jorge Nocedal, Northwestern University
Network Optimization: Five Decades of Applications
Evolving in the best tradition of applied mathematics, network optimization is a subject that is grounded in theory and arises in a remarkably wide variety of problem domains. It poses considerable challenge - for modeling, algorithm development, and efficient computation. Drawing upon almost 200 applications from a textbook (in press) on network flows co-authored by R. Ahuja, J. ORlin and T.L. Magnanti, the speaker will provide an overview of a variety of fields, including computer and communications systems, distribution and transportation systems, engineering, management science, manufacturing, production and inventory planning, the medical sciences, and the social sciences and public policy.

Thomas L. Magnanti Sloan School of Management and Operations Research Center Massachusetts Institute of Technology

2:30-3:50 Concurrent Sessions
(Minisymposia and Contributed)

MSi/Regency A/B
Constrained Nonlinear Optimization
The speakers in the minisymposium will discuss new algorithms for solving nonlinearly constrained optimization problems. These optimization problems occur in applications such as engineering design, industrial process control, data fitting and trajectory control. For small to medium size problems with exact data, the method of choice has come to be some version of successive quadratic programming (SQP), but for large or noisy problems other approaches must be developed. The speakers in the minisymposium will present some extensions of SQP and discuss some totally different approaches.

Organizer: Richard Byrd University of Colorado
2:30 A Truncated SQP Algorithm for Large-Scale Nonlinear Programming Problems Paul Bratoc, National Institute of Standards and Technology and Jon W. Tolle, University of North Carolina, Chapel Hill
2:50 A Direct Search Method That Employs Quadratic Model Functions M.J.D. Powell, Cambridge University, United Kingdom
3:10 An Interior Point Algorithm for Nonlinearly Constrained Problems Leon Leibrock and Guang-Yu Ye University of Texas, Austin, and John C. Plemmer, Southwest Texas State University
3:30 Constrained Optimization Algorithms Using Linearized Convex Quadratic Functions Richard Byrd, organizer and Jorge Nocedal, Northwestern University

MSi/Belmont Room
Problems "Off-the-Shelf" Newton Methods Won't Solve
There are important optimization problems, from a variety of applications areas, for which standard "off-the-shelf" quasi-Newton methods do not work and in fact, usually perform quite badly. These problems arise in such areas as biotechnology, control, electrical engineering, and geophysics. All the problems share certain features. First, the function evaluation routines are expensive to compute. Second, analytic expressions for the derivatives are difficult to obtain and finite-differenc approximations are not trustworthy. Third, the underlying function may not even be differentiable. Fourth, while local solutions are often of interest, the global solution is usually desired.

The speakers will present some of these problems and describe their efforts to solve them. They will discuss alternate optimization methods that, in certain instances, are more appropriate for some of the problems under consideration.

Organizer: Virginia Torczon Rice University
2:30 Control System Radial and Nonstandard Optimization Problems John A. Bura and Kimberly Oates, Virginia Polytechnic Institute and State University and Gunter Peichl, Universitat Graz, Austria
2:50 An Algorithm for Optimizing MESPET Design Paul A. Gillmore and C.T. Kelley, North Carolina State University
3:10 Optimization Techniques for Nonlinear Programming Potentially Well Suited for Large-Scale Problems Michael E. Cavin, Richard S. Judson and Juan Mesa, Sandia National Laboratories
3:30 Velocity Estimation: A Difficult Nonlinear Optimization Problem from Selonology William W. Symes, Rice University

MSi/Water Tower Room
Advances in Proximal Point Methods
The proximal point method constitutes one of the most powerful and versatile tools available for optimization and, in general, for solving monotone operator equations. Applications of this method give rise to numerous well known techniques for convex and convex-concave programming, such as powerful splitting techniques, thus making it potentially well suited for large-scale program decomposition and massively parallel computation.

The speakers in this minisymposium will present some of their recent results with a focus on new algorithms using the proximal point method and new implementations. Recent advances in the convergence analysis of these algorithms, including techniques for accelerating convergence, will also be discussed.

Organizers: James V. Burke and Paul Tseng University of Washington
2:30 Newton-like Proximal Point Methods: Convergence and Application Majid Kianian, University of Washington
2:50 Some Recent Results on Proximal-like Methods in Convex Optimization Marc Teboulle, University of Maryland, Baltimore County
2:30 A Generic Auction Algorithm for the Minimum Cost Network Flow Problem
Dimiter P. Bertsekas, Massachusetts Institute of Technology and David A. Castanon, Boston University

2:50 An Efficient Implementation of a Network Interior Point Method
Mauricio G.C. Resende, AT&T Bell Laboratories and Geraldo Veiga, University of California, Berkeley

3:10 A Class of Trust Region Algorithms for Optimization Using Inexact Projections on Convex Constraints: Application to the Nonlinear Network Problem
Amick Sarten, Facultes Universitaires Notre Dame de la Paix, Belgium

2:50 A New Iterative Method for Solving Symmetric Indefinite Linear Systems Arising in Optimization
Roland W. Freund, WABF, Inc.

3:10 Preconditioned Iterative Techniques for Sparse Linear Algebra Problems: Arising in Circuit Simulation
William D. McQuain, Calvin J. Ribbens and Layne T. Watson, Virginia Polytechnic Institute and State University and Robert C. Melville, AT&T Bell Laboratories

3:30 Graph Coloring and the Estimation of Sparse Jacobian Matrices Using Row and Column Partitioning
Troy Steinhag and A.K.M. Shahadat Hossain, University of Bergen, Norway

Coffee

4:20-5:40 Concurrent Sessions (Minisymposia and Contributed)

MSB/Toronto Room
Optimization Problems Involving Eigenvectors

MSB/Balboa Room
Recent Theoretical Advances in Interior Point Methods

MSB/New Orleans Room
Optimization Problems Involving Eigenvectors — Part 1 of 2

Organizer: John M. Mulvey
Princeton University

4:20 General Modeling Framework for Robust Optimization
John M. Mulvey, organizer

4:40 Decomposition and Robust Optimization
Bock Jin Chon and Stephen M. Robinson, University of Wisconsin, Madison

5:00 Robust Optimization: Massively Parallel Solution Methodologies
Stavros A. Zenios, University of Pennsylvania

5:20 Robust Optimization: Interior Point Solution Methodologies
Robert J. Vanderbei, Princeton University

Organizer: Michael L. Overton
Courant Institute of Mathematical Sciences, New York University

4:20 Semi-definite Programming: Duality Theory, Eigenvalue Optimization and Combinatorial Applications
Paul Alizadhe, University of Minnesota

4:40 Measures for Symmetric Rank-one Updates
Henry Wolkowicz, University of Waterloo, Canada

5:00 Shape Optimizing Eigenvectors of the Laplacian
Jean Pierre Haberly, Fordham University

5:20 Bounds for Eigenvectors and Singular Values of Matrix Completions
Mark W. W. van der Horst, College of William and Mary
Monday Afternoon

CP7/Acapulco Room
Control Problems 1
Chair: William Hager, University of Florida
Christine A. Shoemaker and Li-Zhi Liao, Cornell University
4:40 Applications of Structured Secant Approaches in Hilbert Space
J. Huchens, Universitat Trier, Germany
5:00 Solution of a Nonlinear Boundary Control Problem by Reduced SQP
F.-S. Kupfer and E.W. Sachs, Universitat Trier, Germany
5:20 A New Homotopy Method for Solving the H2 Optimal Model Reduction Problem
Yuzhen Ge and Layne T. Watson, Virginia Polytechnic Institute and State University and Emmanuel G. Collins, Jr., Harris Corporation, Melbourne, FL

CP8/Gold Coast Room
Global Optimization
Chair: Regina Hunter Madmio, Rider College
4:20 An Application of Semi-Infinite Programming to Nonlinear Approximation Problems
Miroslav D. Asee, Ohio State University and Vera V. Kryazheva-Vujicic, University of Belgrade, Yugoslavia
4:40 New Method of a Global Optimization Alexander A. Bolonkin, Courant Institute of Mathematical Sciences, New York University
5:00 Efficient Hybrid Techniques for Solving Some Global Optimization Problems
Luis N. Vicente and Joaquim J. Judd, Universidade de Coimbra, Portugal
5:20 Potential Transformation Methods for Global Optimization
Jack W. Rogers, Jr. and Robert A. Donnelly, Auburn University

CP9/Water Tower Room
Constrained Optimization I
Chair: Paul Boggs, National Institute of Standards and Technology
4:20 A Global Convergence Theory for a Trust Region Algorithm for Constrained Optimization
J. E. Dennis, Jr. and Maria Cristina Maciel, Rice University
4:40 An Implicit Trust Region Algorithm for Constrained Optimization
Frederic Bonnans and Geneviève Lebuny, INRIA, France
5:00 Numerical Experience with a Meno Function Set for Inequality Constraints
Anthony J. Kearsley, Rice University
5:20 Another Look at Direction Finding Methods
Mark Cowen and Michael Kostreva, Clemson University

6:00/Regency F
Poster Session 1
(During the session, complimentary beer, assorted sodas, chips and dips will be available.)

LINEAR PROGRAMMING
Parallel Extreme Point Algorithms for Linear Programming
Mohan Sudhi and John Mamis, University of California, Los Angeles
An Algorithm for a Class of Continuous Linear Programs
Malcolm Craig Pullan, Judge Institute of Management Studies, Cambridge, United Kingdom
New Directions for Progress in Linear and Nonlinear Programming
Vicor Pant, Lehman College, City University of New York, Bronx
Perturbation Analysis of Hoffman's Bound for Linear Systems
Zhi-Qian Lu, McMaster University, Canada and Paul Tseng, University of Washington, Seattle
Stability of the Optimal Solution of a Linear Program to Simultaneous Perturbations of All Data
Jiri Rohn, Charles University, Czechoslovakia

INTERIOR POINT METHODS
Interval Methods for Degenerate Linear Programs
Frank Plub, University of Edinburgh, Scotland
Optimization of Large Structural Systems by Using Karmanar's Method
S. Hernandez, J. Masa, and J. Doria, University of Zaragoza, Spain
A Modified Termination Rule for Karmanar's Algorithm
J. N. Singh, College of Business Management, India and D. Singh, Indian Institute of Technology, India
Applications of Linear Programming to Medical Diagnosis
Xu Shu Rong, Zhejiang University, China
Projective Interior Point Methods with O(\sin(t)\sin(n)) Step Complexity
Donald Goldfarb, Columbia University and Dong Shaw, Rider College

CONVERGENCE THEORY
Barrier Methods for Large-Scale Nonlinear Programming
Stephen Nash and Ariela Sofer, George Mason University
Image Reconstruction from Noisy Projections: A Regularized Dual-Based Iterative Method
Alfredo Noel Iusem, Instituto de Matematica Pura e Aplicada, Brazil
Numerical Experience with the Modified Barrier Functions Method for Linear-Constrained Optimization Problems
David Jensen, Roman Polyak and Rina R. Schneier, IBM Thomas J. Watson Research Center
The Nonconvex Separable Resource Allocation Problem with Continuous Variables
Emile Haddad, Virginia Polytechnic Institute and State University

CONTROL PROBLEMS
Optimization of Interactions in an Interconnected System
Ronald A. Perez, University of Wisconsin, Milwaukee
Hierarchical Coptrols in Stochastic Manufacturing Systems with Convex Costs
S. Sethi, Q. Zhang, and X.Y. Zhou, University of Toronto, Canada
Methods of Solution of Boundary Value Problem of Optimal Theory
Alexander A. Bolonkin, Courant Institute of Mathematical Sciences, New York University
On Certain Optimization Problems in Banach Spaces with Nonsmooth Equality Constraints
uszio Leziewicz-Kowalewska, Southern Illinois University, Edwardsville, and Stanislaw Waleczak, University of Lodz, Poland

STOCHASTIC PROBLEMS
Comparative Study of Stochastic Approximation Algorithms in the Multivariate Kiefer-Wolfowitz Setting
Daniel C. Chin, Johns Hopkins University

NETWORK OPTIMIZATION
Comparison of Approximate and Exact Solution Methods for Network Location Problems
Geraldo R. Mateus, Universidade Federal de Minas Gerais, Brazil and Jean-Michel Thizy, University of Ottawa, Canada
Sensitivity of the Time Bounds for Network Flow Path Searches when Critical Nodes are Altered
Andrew W. Harrell, U.S. Army Waterways Experiment Station
An Implementation of a Parallel Interior Point Method for Multicommodity Flow Problems
Guangyi Li, Rice University and Irvin J. Lustig, Princeton University
A General Overshipment Solution to the Transportation Problem of Three Dimensions
N. J. C. M. van der Woude, Technische Universiteit, Netherlands
An Algorithm for Solving the Cost Optimization Problem in Precedence Diagram Network
Miklos Hajsa, Technical University of Budapest, Hungary
Redistribution Transport Means the Traffic in the Area of Subway is Shut
Aleksander Mishchenko, Plekhanov Academy of National Economy, Russia
Algorithms for the Production and Vehicle Routing Problems with Deadlines
M. A. Forbes, J. N. Holt, P. J. Kilib, and A. M. Watts, University of Queensland, Australia
COMBINATORIAL OPTIMIZATION
A Primal-Dual Interior Point Method with Cutting Planes for the Linear Ordering Problem
John E. Mitchell and Brian Borchers, Rensselaer Polytechnic Institute
Three Approximation Algorithms that Minimize the Rectilinear Steiner Tree on a Hypercube Network
Tao Zhou and Dionysios Koutantzos, Western Michigan University
Alternating Sequences Relative to Maximum Independent Sets of Independence Systems
Tao Wang, John's Hopkins University
Cutting for Quadratic Programming Producing Several Types of Primal-Dual Algorithms
Tao Wang, John's Hopkins University

OPTIMIZATION ALGORITHMS AND SOFTWARE
Newton Modified Barrier Function Complexity for Quadratic Programming Problems
Aharon Melman, California Institute of Technology and Roman Polyak, IBM Thomas J. Watson Research Center
Interior Point Algorithms and Dynamic Systems
Zai-yun Diao, Shandong University, People's Republic of China
Modelling of an Economic Incentive Approach in Environmental Protection
A. D. Blikun, Water Problems Institute of the USSR Academy of Sciences Sadovo-Chernigazskaya, Russia
The Optimization with Formally-Defined Criterion
Michael Aron Alexandrov, Moscow Geologic-Prospecting Institute, Russia
Optimization Modelling for Neural Networks and Mathematical Biology
Richard S. Segall, Eastern Kentucky University
Optimal Regularity of Equilibria and Material Instabilities
Salim M. Haidar, Northern Michigan University
Functions with Unstable Images: Cracks
Guangxiang Fang, Daniel Webster College and Jack Warga, Northeastern University

MAY 12
Tuesday Morning

7:30 Ballroom Foyer
Registration opens

8:30 Regency A/B
IP4/Chair: Jane K. Cullum, IBM Thomas J. Watson Research Center
Convex Optimization Problems Arising in Controller Design
Many problems in control systems design and analysis can be cast as convex nondifferentiable optimization problems. In many cases these problems come far closer to the "real" engineering design or analysis problem than any problem for which an "analytic" solution is known. The cost, of course, is that solving such a problem requires more computation than solving a problem that has an "analytic" solution. However, great advances in computer power and the development of powerful specialized algorithms for convex nondifferentiable optimization problems mean that these problems will have great practical relevance in the future. Indeed, in some cases these problems can be solved so quickly that the engineer can manipulate the problem parameters (design specifications) and view the resulting solution (design) in real time.
Several methods have been successfully applied to these problems. The ellipsoid algorithm of Shor, Yudin, and Nemirovsky has proved reliable, and interior point methods recently developed by Nesterov and Nemirovsky and others show great promise.
Stephen Boyd
Information Systems Laboratory
Department of Electrical Engineering
Stanford University
9:15 Regency A/B
IP5/Chair: Jane K. Cullum, IBM Thomas J. Watson Research Center
Scheduling of Manufacturing Systems
Manufacturing systems consist of several machines producing several types of parts. Machines are subject to various disruptions such as random failures, yield losses, and processing time and demand changes. Nevertheless, it is important to dynamically schedule them in real-time to produce all parts in the required amounts, at close to their due dates, while keeping work-in-process and manufacturing lead times small. In this presentation, the speaker will address some of the issues involved in effectively running manufacturing systems, with a special focus on problems from the semiconductor industry.
P. R. Kumar
Department of Electrical and Computer Engineering, and Coordinated Science Laboratory
University of Illinois, Urbana-Champaign
10:00 Regency D
Coffee

10:30-11:50
Concurrent Sessions (Mini-symposia and Contributed)

MS10 Water Tower Room
Advanced Environments for Optimization Software
Successful optimization methods must be more than fast and reliable. Users increasingly expect an advanced algorithm to be made available in an advanced computing environment. The speakers will present an introduction to diverse environments that have been designed to help mathematical programming users specify and manage their models, data, and results. The presentations will be of direct interest to conference participants who develop applications of linear programming, nonlinear programming or combinatorial optimization. The session will also be of interest to algorithm developers, because of its implications for interface design and its relevance to issues in the creation and maintenance of test problems.
Organizer: Robert Fourer
Northwestern University
10:30 Optimization Model Management
David S. Hirst, IDA, MathPro Incorporated, Washington, DC
10:50 Graph-Grammars for Network Flow Modeling
Christopher V. Jones, Simon Fraser University, Canada
11:10 AIMS: An Environment for Advanced Integrated Modeling Support
Johannes J. Bischop, Technical University of Twente, The Netherlands
11:30 An Introduction to ASCEND: Its Language and Interactive Environment
Ramana Krishna and Peter Piela, and Arthur Westerberg, Carnegie Mellon University

MS11 Regency A/B
Optimal Design of Engineering Systems
The speakers in this mini-symposium will address optimization problems in engineering design, in particular structural and shape optimization problems that arise in the geometric design of civil, mechanical, and aerospace systems. The increasing complexity of the engineering systems (requiring larger numbers of design variables to describe them) and resolution requirements of the governing partial differential equations (leading to larger numbers of state variables when discretized) mean that these problems are of larger scale. The speakers will discuss: "Gradient and sensitivity analysis, automated meshing, design/analysis integration and algorithms for large-scale problems and advanced architecture computers. The presentations collectively span formulations, structures, algorithms and difficulties encountered in some optimal engineering design problems.
Organizer: Omar E. Ghattas
Carnegie Mellon University
10:30 Design/Analysis Process Integration for Shape Optimization of Mechanical Parts
Shivkumar Kodiyalam, General Electric Co.
The numerical solution of most nonlinear optimization, especially on large-scale problems.

Chair: Irvin Lustig, Princeton University

10:30 Computational Issues in the Interior Point Methods
Geraldine M. Hemmer, Northeastern University

10:50 More on Dual Ellipsoids and Degeneracy in Interior Algorithms for Linear Programming
Kurt M. Anstreicher and Jun Ji, University of Iowa

11:10 A Long-Step Inverse Barrier Hybrid Algorithm for Linear Programming
Alexander Hipolito, University of Torino, Genoa, Italy

11:30 Decomposition in LP Based on Modified Barrier Function
David Jensen and Roman Polyak, IBM Thomas J. Watson Research Center

Large-Scale Constrained Optimization II
Chair: Arne Stolbjerg Drud, ARKI Consulting and Development A/S, Denmark

10:30 Finding Optimal Orthotropic Composites
Rob Lipton, Worcester Polytechnic Institute and James Northrup, Colby College

10:50 Using Barrier Methods for Solving Large-Scale Crystallographic Problems
Paul B. Anderson, PRC Inc.; Stephen G. Nash and Ariela Sofer, George Mason University

11:10 Optimal Design of Trusses by Smooth and Nonsmooth Methods
Aharon Ben-Tal, Technion, Israel Institute of Technology, Israel

11:30 On-line Optimal Control of a Large-Scale Water System
R. Grino, Gabriela Cembrano, Institut de Cibernètica (UPC-CSIC), Spain

10:30 Conjugate Directions Methods for Large-Scale Optimization
Jasbir S. Arora and Guangyao Li, University of Iowa

11:10 Optimization Methods in Curve and Surface Design
Thomas A. Grandine, The Boeing Company

11:30 Data-Parallel Optimal Shape Design of Airfoils
Omar N. Ghottas, Technical University of Denmark

Cheap Gradients and Beyond: The Promise of Automatic Differentiation in Optimization

The numerical solution of most nonlinear optimization problems requires the evaluation of objective gradients and constraint Jacobians as well as the approximation of the Hessians of the Lagrangian, or at least its product with several vectors. Currently, first derivatives are either evaluated by user supplied code or estimated by divided differences, and second derivatives are often approximated sequentially by secant updating. For various reasons this is unsatisfactory for obtaining derivative information, especially on large-scale problems.

Automatic differentiation software produces extended object code that evaluates first and second derivatives as well as error estimates for the underlying functions themselves. The numerical calculations are based on the chain rule, and the derivative values are therefore exact up to round-off. The integration of automatic differentiation into optimization packages greatly enhances user friendliness, ensures maximal solution accuracy, and facilitates faster convergence than the use of higher order methods.

The speaker will give an overview of automatic differentiation and discuss its advantages in optimization problems.

Andreas Griewank
Mathematics and Computer Science Division
Argonne National Laboratory

MS12/Belmont Room
Network Flow Algorithms

An important special case of linear programming is the network flow problem, both because of its wide applicability and because of the existence of special purpose algorithms that solve minimum cost flow problems orders of magnitude faster than other linear programs.

The speakers in this minisymposium will discuss an implementation of an algorithm for solving a stochastic network optimization problem on the massively parallel connection machine, the results of the DIMACS's challenge, (an experimental study on implementations of network flow algorithms on sequential and parallel machines), an improved algorithm for the minimum cut problem, and improved algorithms for providing useful feedback to the modeler of a minimum cost flow problem when the formulation has no feasible flow.

Organizer: James B. Orlin
Massachusetts Institute of Technology

2:30 Proximal Minimizations with D-convex Conjugate Functions and a Massively Parallel Solution of Stochastic Networks
Stavros Zenios and Soren S. Nielsen, The University of Pennsylvania
2:30 The DIMACS Challenge: A Cooperative Experimental Study of Network Flow and Matching Algorithms
Catherine C. McGeoch, Amherst College

3:10 Finding the Minimum Cut in a Network
Jianxiu Hao, GTE Laboratories Incorporated and James B. Orlin, organizer

3:30 Diagnosing Infeasibilities in Network Flow Problems
Jianxiu Hao, GTE Laboratories Incorporated and James B. Orlin, organizer

2:30 Some Saddle-Function Splitting Methods for Convex Programming
Jonathan Eckstein, Thinking Machines Corporation

2:50 Monotone Operator Splitting and Linear Complementarity
Jonathan Eckstein, Thinking Machines Corporation; Michael C. Ferris, University of Wisconsin, Madison

3:10 Splitting Methods for Symmetric Affine Variational Inequality Problems, with Application to Extended Linear-Quadratic Programming
Jong-Shi Pang, John Hopkins University

3:30 Forward-Backward Splitting in Large-Scale Optimization
George H. G. Chen and R. Tyrrell Rockafellar, University of Washington

MS13/Regency A/B
Protein Folding - A Challenging Optimization Problem
Most proteins have a characteristic shape to which they quickly return after being provoked to another shape. Understanding why proteins assume the shapes they do is currently of considerable interest and could be of great practical importance in medicine and biotechnology.

In this minisymposium, the speakers view the protein folding problem as a large and difficult optimization problem - that of minimizing the energy of the protein. They will provide an informative overview and discuss aspects of the problem that show why it is of interest both as a global and as a local optimization problem.

Organizers: David M. Gay and Margaret H. Wright
AT&T Bell Laboratories

2:30 A New Computational Approach to the Protein Folding Problem
Thomas F. Coleman, David Shalloway and Zhijun Wu, Cornell University

2:50 Use of Constraints and Other Approaches to Protein Folding
David M. Gay, co-organizer, Teresa Head-Gordon and Frank H. Stillinger, AT&T Bell Laboratories, and Margaret H. Wright, co-organizer

3:10 Renormalization Group and the Protein Folding Problem
Panos M. Pardalos, University of Florida; David Shalloway, Cornell University

M514/Toronto Room
Advances in Operator/Matrix Splitting Methods
Operator/Matrix splitting provides a powerful framework for developing broad classes of decomposition methods for large-scale continuous optimization. By tailoring the splitting to the problem, it has been possible to construct simple and highly parallelizable algorithms for linear and quadratic programming, network programming, stochastic programming, as well as the solution of boundary value problems.

The speakers in this minisymposium will present some recent results on splitting schemes and will address issues such as convergence and implementation (on either a sequential or a parallel machine).

Organizers: Paul Tseng and James V. Burke
University of Washington

2:50 Parallel Implementation of Truncated Newton Methods
Robert H. Leary, San Diego Supercomputer Center

3:10 Implementing a Parallel Asynchronous Newton Method on a Distributed Memory Architecture
Donatello Conforto, Lucio Grandinetti and Roberto Musmanno, Universita della Calabria, Italy

3:30 Modifying the BFGS Update by Coleman Scaling Techniques
Dirk Stieg, University of Cambridge, United Kingdom

CP16/Gold Coast Room
Convex Programming
Chair: J. Sun, Northwestern University

2:30 The Global Convergence of a Class of Primal Potential Reduction Algorithms for Convex Programming
Renato D.C. Monteiro, University of Arizona

2:50 On the Affine Trust Region Interior Point Algorithm for Quadratic Programming
Frederic Bonnans and Mustapha Bouhtou, INRIA, France

3:10 Algorithms for the Convex Inequalities Problem
Motakuri Venkata Ramana and Shing-Fung Han, Johns Hopkins University

3:30 Experimentation with the Interior Cutting Plane Method (ICPM)
J.-L. Goffin, McGill University, Canada and J.-P. Vial, Universite de Geneve, Switzerland

3:50/Regency D
Coffee

4:20-5:40 Concurrent Sessions (Minisymposia and Contributed)

MS15/Belmont Room
Optimization in Control and Differential Equations
Algorithms for nonlinear equations and optimization in infinite dimensional spaces may differ in both analysis and formulation from conventional algorithms for such problems in finite dimension. Functional analytic considerations, such as choice of spaces or compactness of nonlinear maps, are important in the design and theory of such algorithms. When these algorithms are discretized, the resulting methods for the finite dimensional approximate problems are often new, preserve underlying functional analytic properties, and preserve structural properties such as sparsity pattern and symmetry. The role of compactness in superlinear convergence, the design of good preconditioners, and new methods that exploit functional analytic properties of infinite dimensional problems are research issues.

The speakers in this minisymposium will discuss a variety of such algorithms and their properties in the context of applications such as optimal control problems, integral equations, boundary value problems, and parameter identification.

Organizer: Carl T. Kelley
North Carolina State University

4:20 Optimization Methods for Elliptic Systems
Carl T. Kelley, organizer

4:40 Numerical Methods for Nonlinear Parabolic Control
Ekkehard W. Sachs and F.S. Kupfer, Universitat Trier, Germany

5:00 Parallel Optimization in Groundwater and Petroleum Resources Management
R. Michael Lewis, Rice University

5:20 Augmented Lagrangian and SQP Techniques for Nonlinear Illposed Inverse Problems
Karl Kunisch, Technische Universitat Graz, Austria
Computational Global Optimization

Many important practical optimization problems (such as engineering design and protein folding problems) have multiple local optima, but it is the global optimum that is usually desired. Stochastic and deterministic methods for finding the global optimum have been proposed.

The speakers in this mini symposium will present recent computational results for both constrained and unconstrained global optimization problems, using stochastic and deterministic methods. In the stochastic method a likely global optimum is found with a high probability. In the deterministic method a point is found whose function value is within a specified tolerance of the global optimum. The speakers will discuss the advantages and disadvantages of these methods.

Organizer: J.B. Rosen
University of Minnesota

4:20 Computational Comparison of Two Methods for Constrained Global Optimization
A.T. Phillips, U.S. Naval Academy, Annapolis, MD and J.B. Rosen, organizer

4:40 Computational Approaches for Solving Quadratic Assignment Problems
Panos M. Pardalos, University of Florida, and Yong Li, Pennsylvania State University

5:00 An MILP Relaxed Dual Formulation for the GOP Algorithm
C.A. Floudas, V. Visweswaran and Brigitte Jaumard, Princeton University

5:20 Minimizing the Lennard-Jones Potential Function on a Massively Parallel Computer
G.L. Xue and W.R.S. Maier, Army High Performance Computing Research Center, Minneapolis and J.B. Rosen, University of Minnesota

ADIFOR - Automatic Differentiation in Fortran and Applications to Optimization

Given a collection of Fortran subroutines describing a function f, ADIFOR produces a Fortran code that computes the matrix-matrix product J = df/dx where J is the Jacobian of f, and x is a user-initialized input matrix. This allows the user to compute the Jacobian itself J = f(x) or to compute a matrix-vector product J x v at little additional cost.

The cost of evaluating the derivatives is roughly proportional to the number of columns of S, so in particular a matrix-vector product J x v is about as expensive to compute as one column of the Jacobian. As a by-product of the derivative computation, the user is able to determine the structure of the Jacobian automatically.

From a user's point of view, ADIFOR has a very simple interface to the optimization code, since only a Fortran code for the description of the initial function has to be provided, yet one need not worry about loss of accuracy or convergence due to finite-difference errors. The speakers will give examples illustrating how ADIFOR can be used to generate subroutines to evaluate the derivatives that are typically needed by optimization codes.

Organizers: Christian Bischof and George Corliss
Argonne National Laboratory

The Functionality of ADIFOR
George Corliss, co-organizer

The Performance of ADIFOR Codes
Alan Carle, Rice University

Automatic Differentiation in Nonlinear Programming and Parameter Identification
Alan Carle, J.E. Dennis, Jr., Guangyi Li and Karen Williamson, Rice University

Experience with Various Automatic Differentiation Tools in Orthogonal Distance Regression
Janet Rogers, National Institute of Standards and Technology

A Superlinearly Convergent O(n^2)-iteration Predictor-corrector Algorithm for Linear Complementarity Problem
Siming Huang, Jun Ji and Florian Petra, University of Iowa

Solution of Large Scale Monotone Linear Complementarity Problems
Joao M. Patricio and Joaquim J. Judice, Universidade de Coimbra, Portugal and Luis M. Fernandes, Escola Superior de Tecnologia de Tomar, Portugal

Undamped Newton Method for Solving Linear Complementarity Problems
Ubaldo M. Garcia-Palomares, Universidad Simon Bolivar, Venezuela

4:20 A Scaling Technique for Finding the Weighted Analytic Center of a Polytope
David S. Atkinson and Pravin M. Vaidya, University of Illinois at Urbana-Champaign

4:40 Adding and Deleting Constraints in a Path-Following Method for Linear Programming
D. den Hertog, C. Roos and T. Terlaky, Delft University of Technology, The Netherlands

5:00 On the Convergence of Interior-Point Methods to the Center of the Solution Set in Linear Programming
Yin Zhang, University of Maryland, Baltimore County and Richard A. Tapia, Rice University

5:20 Interior-Exterior Augmented Lagrangian Approach for LP
Roman Poljak and Rina R. Scheuer, IBM Thomas J. Watson Research Center

Nonlinear Least Squares
Chair: Ariela Sofer, George Mason University

4:20 Nonclassical Gauss-Newton Methods
C. Fraley, Statistical Sciences, Inc. and University of Washington, Seattle

4:40 Variations of Structured Broyden Families for Nonlinear Least Squares Problems
Hiroshi Yabe, Science University of Tokyo, Japan and Rice University

5:00 Relationship between Structured and Factorized Quasi-Newton Methods for Nonlinear Least-Squares Problems
Tosihiko Takahashi, Kajima Corporation, Japan and Hiroshi Yabe, Science University of Tokyo, Japan

Linear Complementarity
Chair: Layne T. Watson, Virginia Polytechnic Institute and State University

4:20 An Interior Point Algorithm for Linear Complementarity Problems
Jia Ding, University of Southern Mississippi

4:40 A Superlinearly Convergent O(n^2)-iteration Predictor-corrector Algorithm for Linear Complementarity Problem
Siming Huang, Jun Ji and Florian Petra, University of Iowa

5:00 Solution of Large Scale Monotone Linear Complementarity Problems
Joao M. Patricio and Joaquim J. Judice, Universidade de Coimbra, Portugal and Luis M. Fernandes, Escola Superior de Tecnologia de Tomar, Portugal

5:20 Undamped Newton Method for Solving Linear Complementarity Problems
Ubaldo M. Garcia-Palomares, Universidad Simon Bolivar, Venezuela

6:00 Regency A/B
Poster Session 2
There will be a cash bar during the session. Chips and dips are complimentary.

UNCONSTRAINED OPTIMIZATION

On the Convergence of Pattern Search Methods
Virginia Torczon, Rice University

The Barzilai and Borwein Gradient Method for the Large Scale Unconstrained Minimization Problem
Marcos Raydan, University of Kentucky

The Development of Parallel Nonlinear Optimization Algorithm for Chemical Process Design
Karen A. High, Oklahoma State University and Richard D. La Roche, Cray Research, Inc.

Unconstrained Minimization on Massively Parallel Computers
Robert S. Maier and Guo-Liang Xue, University of Minnesota, Minneapolis

On the Detection and Exploitation of Unknown Sparsity Structure in Nonlinear Optimization Problems
Richard G. Carter, AHPCRC, University of Minnesota and Argonne National Laboratory

Fixed-Point Quasi-Newton Methods
Jose Mario Martinez, IHEC-UNICAMP, Brazil

Data Analysis Techniques for Optimization
John C. Nash, University of Ottawa, Canada

Efficient and Stable Computation of Quasi-Newton Updates
Vasile Sima, Research Institute for Informatics, Romania

Efficient Parallel Minimization Algorithms in Computational Fluid Dynamics
E. de Klerk and J.A. Suyman, University of Pretoria, South Africa and L. Pretorius, University of South Africa, Pretoria, South Africa

Experiments with the Broyden Class of Quasi-Newton Methods
M. Al-Baali, University of Calabria, Italy

On the Performance of a Trust Region Newton Method for Large-Scale Problems
Brent M. Averick and Richard C. Carter, Army High Performance Computing Research Center, Minneapolis, and Jorge J. Moré, Argonne National Laboratory
Recent Developments in Interior-point Methods for Linear Programming

The speaker will describe recent developments in interior-point methods for linear programming and extensions. It is now accepted that these methods can be very effective for solving large-scale linear problems (including ones with nearly 13 million variables), but there remain large gaps between their empirical behavior and the supporting theory. The most efficient algorithms use a primal-dual approach with very long steps and usually infeasible iterates. In contrast, the theory typically addresses shorter step methods maintaining feasibility throughout. Recent work addresses the derivation of polynomial algorithms with fast local convergence and methods that approach feasibility and duality simultaneously or can take advantage of warm starts. Finally, there are extensions to various nonlinear optimization problems, although computational results are mostly limited to quadratic programming with linear constraints.

Michael J. Todd
School of Operations Research and Industrial Engineering
Cornell University

11:10 Parallel Algorithms in Optimization

11:30 Large-Scale Nonlinear Optimization

10:30 Solving Linear Stochastic Network Problems using the Proximal Point Algorithm on a Massively Parallel Computer, and an Application from the Insurance Industry

Soren S. Nielsen and Stavros A. Zenios, University of Pennsylvania

10:50 Parallel Constraint and Variable Distribution

M. C. Ferris and Olvi L. Mangasarian, University of Wisconsin, Madison

11:10 Parallel Algorithms for Minimizing the Ginzburg-Landau Free Energy Functional for Superconducting Materials

Paul E. Plassmann, Argonne National Laboratory and Stephen J. Wright, organizer

11:30 Parallel Optimization in Groundwater and Petroleum Resources Management

Robert M. Lewis, Rice University

Organizer: Stephen J. Wright
Argonne National Laboratory

MAY 13
Wednesday Morning

10:00-11:50 Concurrent Sessions (Mini symposium and Contributed)

MS18/Regency A/B
Parallel Algorithms in Optimization

Parallels in optimization algorithms is often most achieved by taking advantage of the structure of certain problems or classes of problems. The speakers in this session will discuss a variety of optimization problems and applications, and will show why parallelism is needed and how it be achieved in each case.

Organizer: Stephen J. Wright
Argonne National Laboratory

10:30 Solving Linear Stochastic Network Problems using the Proximal Point Algorithm on a Massively Parallel Computer, and an Application from the Insurance Industry

Soren S. Nielsen and Stavros A. Zenios, University of Pennsylvania

10:50 Parallel Constraint and Variable Distribution

M. C. Ferris and Olvi L. Mangasarian, University of Wisconsin, Madison

11:10 Parallel Algorithms for Minimizing the Ginzburg-Landau Free Energy Functional for Superconducting Materials

Paul E. Plassmann, Argonne National Laboratory and Stephen J. Wright, organizer

11:30 Parallel Optimization in Groundwater and Petroleum Resources Management

Robert M. Lewis, Rice University

Organizer: Stephen J. Wright
Argonne National Laboratory

10:00-11:50 Concurrent Sessions (Mini symposium and Contributed)

MM19/Toronto Room
Large-Scale Nonlinear Optimization

Recent research in large-scale nonlinear optimization has led to dramatic progress in several areas of application, including optimal power distribution, optimal trajectory calculation and optimal structural design. Much of this success can be attributed to new theoretical and algorithmic developments that have extended classical sequential quadratic programming (SQP) methods and barrier-function methods to large problems.

In this minisymposium the speakers will highlight some of these new developments and discuss some new results in optimal trajectory calculation and optimal structural design.

Organizer: Philip E. Gill
University of California, San Diego

10:30 SQP Algorithms for Large-Scale Constrained Optimization

Samuel K. Eldersveld, Stanford University and Philip E. Gill, organizer

10:50 Large-Scale Issues in Newton Methods for Linearly Constrained Optimization

Anders Forsgren, Royal Institute of Technology, Stockholm, Sweden and Walter Murray, Stanford University

11:10 Optimization of Complex Aircraft Structures

Ulf T. Rasmusen, The Aeronautical Research Institute of Sweden, Bromma, Sweden

11:30 SQP Methods and Their Application to Optimal Trajectory Calculations

Philip E. Gill, organizer; Walter Murray and Michael A. Saunders, Stanford University

10:00-11:50 Concurrent Sessions (Mini symposium and Contributed)

MS20/Acapulco Room
Complexity Issues in Numerical Optimization

Following the development of interior-point methods for optimization, complexity analysis has become a major tool in the analysis of optimization algorithms. As problems of increasing size are attempted, understanding the asymptotic complexity of algorithms becomes more important than ever. The speakers in this minisymposium will present recent research into complexity issues for linear and nonlinear optimization.

Organizer: Stephen A. Vavasis
Cornell University

10:30 Issues in Strong Polynomiality in Nonlinear Optimization

Dorit Hochbaum, University of California, Berkeley

10:50 The Complexity of Quadratic Programming

Mihir Bell, IBM Thomas J. Watson Research Center, and Phillip Rogaway, IBM, Austin, TX

11:10 On Minimization of Convex Separable Functions

Panos Pardalos, University of Florida, and Naftan Kouvou, Pennsylvania State University

11:30 Toward Probabilistic Analysis of Interior-point Algorithms for Linear Programming—Part 2 of 3

Yinyu Ye, University of Iowa

10:00-11:50 Concurrent Sessions (Mini symposium and Contributed)

CP20/Belmont Room
Linear Programming: Computational Issues II

Chair: Robert J. Vanderbei, Princeton University

10:30 Numerical Comparisons of Local Convergence Strategies for Interior-Point Methods in Linear Programming

Ann El-Bakry and Richard Tapia, Rice University and Yin Zhang, University of Maryland, Baltimore County

10:50 L-Infinity Algorithms for Linear Programming

Jerome G. Braunstein and Philip E. Gill, University of California, San Diego

11:10 A New Approach for Parallelizing the Simplex Method

Frank Plack, University of Edinburgh, Scotland

11:30 Solving Stochastic Linear Programs on a Hypercube Multicomputer

George B. Dantzig, Stanford University; James K. Ho, University of Illinois, Chicago; and Gerd Infanger, Stanford University

10:00-11:50 Concurrent Sessions (Mini symposium and Contributed)

CP21/Water Tower Room
Data Fitting Problems III

Chair: Susana Gómez, IIMAS-Universidad National Autonoma de Mexico, Mexico

10:30 The U.S. Coast Guard Interactive Resource Allocation Problem

J. Walter Smith, U.S. Coast Guard R&D Center

10:50 Optimization Problems Arising in Multidimensional Scaling

Michael W. Trosset, Tucson, Arizona; Pablo Tarazaga, University of Puerto Rico, Mayaguez; and Richard A. Tapia, Rice University

MS18/Regency A/B
Parallel Algorithms in Optimization

Parallels in optimization algorithms is often most achieved by taking advantage of the structure of certain problems or classes of problems. The speakers in this session will discuss a variety of optimization problems and applications, and will show why parallelism is needed and how it be achieved in each case.

Organizer: Stephen J. Wright
Argonne National Laboratory

10:30 Solving Linear Stochastic Network Problems using the Proximal Point Algorithm on a Massively Parallel Computer, and an Application from the Insurance Industry

Soren S. Nielsen and Stavros A. Zenios, University of Pennsylvania

10:50 Parallel Constraint and Variable Distribution

M. C. Ferris and Olvi L. Mangasarian, University of Wisconsin, Madison

11:10 Parallel Algorithms for Minimizing the Ginzburg-Landau Free Energy Functional for Superconducting Materials

Paul E. Plassmann, Argonne National Laboratory and Stephen J. Wright, organizer

11:30 Parallel Optimization in Groundwater and Petroleum Resources Management

Robert M. Lewis, Rice University

Organizer: Stephen J. Wright
Argonne National Laboratory

10:00-11:50 Concurrent Sessions (Mini symposium and Contributed)

MS19/Toronto Room
Large-Scale Nonlinear Optimization

Recent research in large-scale nonlinear optimization has led to dramatic progress in several areas of application, including optimal power distribution, optimal trajectory calculation and optimal structural design. Much of this success can be attributed to new theoretical and algorithmic developments that have extended classical sequential quadratic programming (SQP) methods and barrier-function methods to large problems.

In this minisymposium the speakers will highlight some of these new developments and discuss some new results in optimal trajectory calculation and optimal structural design.

Organizer: Philip E. Gill
University of California, San Diego

10:30 SQP Algorithms for Large-Scale Constrained Optimization

Samuel K. Eldersveld, Stanford University and Philip E. Gill, organizer

10:50 Large-Scale Issues in Newton Methods for Linearly Constrained Optimization

Anders Forsgren, Royal Institute of Technology, Stockholm, Sweden and Walter Murray, Stanford University

11:10 Optimization of Complex Aircraft Structures

Ulf T. Rasmusen, The Aeronautical Research Institute of Sweden, Bromma, Sweden

11:30 SQP Methods and Their Application to Optimal Trajectory Calculations

Philip E. Gill, organizer; Walter Murray and Michael A. Saunders, Stanford University

10:00-11:50 Concurrent Sessions (Mini symposium and Contributed)

MS20/Acapulco Room
Complexity Issues in Numerical Optimization

Following the development of interior-point methods for optimization, complexity analysis has become a major tool in the analysis of optimization algorithms. As problems of increasing size are attempted, understanding the asymptotic complexity of algorithms becomes more important than ever. The speakers in this minisymposium will present recent research into complexity issues for linear and nonlinear optimization.

Organizer: Stephen A. Vavasis
Cornell University

10:30 Issues in Strong Polynomiality in Nonlinear Optimization

Dorit Hochbaum, University of California, Berkeley

10:50 The Complexity of Quadratic Programming

Mihir Bell, IBM Thomas J. Watson Research Center, and Phillip Rogaway, IBM, Austin, TX

11:10 On Minimization of Convex Separable Functions

Panos Pardalos, University of Florida, and Naftan Kouvou, Pennsylvania State University

11:30 Toward Probabilistic Analysis of Interior-point Algorithms for Linear Programming—Part 2 of 3

Yinyu Ye, University of Iowa

10:00-11:50 Concurrent Sessions (Mini symposium and Contributed)

CP20/Belmont Room
Linear Programming: Computational Issues II

Chair: Robert J. Vanderbei, Princeton University

10:30 Numerical Comparisons of Local Convergence Strategies for Interior-Point Methods in Linear Programming

Ann El-Bakry and Richard Tapia, Rice University and Yin Zhang, University of Maryland, Baltimore County

10:50 L-Infinity Algorithms for Linear Programming

Jerome G. Braunstein and Philip E. Gill, University of California, San Diego

11:10 A New Approach for Parallelizing the Simplex Method

Frank Plack, University of Edinburgh, Scotland

11:30 Solving Stochastic Linear Programs on a Hypercube Multicomputer

George B. Dantzig, Stanford University; James K. Ho, University of Illinois, Chicago; and Gerd Infanger, Stanford University

10:00-11:50 Concurrent Sessions (Mini symposium and Contributed)

CP21/Water Tower Room
Data Fitting Problems III

Chair: Susana Gómez, IIMAS-Universidad National Autonoma de Mexico, Mexico

10:30 The U.S. Coast Guard Interactive Resource Allocation Problem

J. Walter Smith, U.S. Coast Guard R&D Center

10:50 Optimization Problems Arising in Multidimensional Scaling

Michael W. Trosset, Tucson, Arizona; Pablo Tarazaga, University of Puerto Rico, Mayaguez; and Richard A. Tapia, Rice University
CP22/Gold Coast Room

Bound Constrained Problems II
Chair: Trond Steihaug, University of Bergen, Norway

10:30 A New Modified Newton Algorithm for Nonlinear Minimization Subject to Bounds
Thomas F. Coleman and Yuying Li, Cornell University

10:50 An Algorithm for Large Scale Optimization Problems with Box Constraints
Francisco Facchinei and Laura Piaci, Universita di Roma “La Sapienza”, Italy and Stefano Lucidi, Istituto di Analisi dei Sistemi ed Informatica del CNR, Italy

11:10 A Trust Region Algorithm for Nonlinear Programming
Pan-Chieh Chou, J. E. Dennis, Jr., and Karen A. Williamson, Rice University

11:30 Trust Region Methods for Large Constrained Optimization
Marsha L. Laker and Jorge Nocedal, Northwestern University

11:10 The Classical Newton Method for Solving Strictly Convex Quadratic Programs and Data Smoothing Problems
W. Li and J. Sweetts, Old Dominion University

11:30 Objective Function Conditioning with Smoothness Constraints
Stephen F. Eleson, Princeton University

CP23/Water Tower Room

Combinatorial Optimization
Chair: Henry Wolkowicz, University of Waterloo, Canada

2:30 Approximation Algorithms for Indefinite Quadratic Programming
Stephen A. Vavasis, Cornell University

2:50 On Matriod Problem and Lagrangian Relaxation
Richa Agrawala, David Fernandez-Baca and Anand Medepalli, Iowa State University

3:10 Totally Unimodular Combinatorial Problem
Renato De Leone and Mary A. Tork Roth, University of Wisconsin, Madison

3:30 Parallel Dynamic Programming Algorithms for the 0-1 Knapsack Problem
Pav H. Ng, University of Minnesota, Morris; and Collette R. Coullard, Northwestern University

MS22/Regency A/B

Finite Termination and Basis Recovery Using Interior-point Methods for LP
There has been considerable recent activity in constructing procedures to be used with interior-point methods that give exact (i.e., highly accurate) solutions in a finite number of steps. Two key ideas for accomplishing this are the projection of the current iterate on the optimal facet, once this facet has been identified, and the change over to a simplex-type method in order to obtain a basic solution.

The speakers in this minisymposium will discuss aspects of this activity.

Organizer: Amr S. El-Bakry, Rice University

2:30 An Implementation of a Strongly Polynomial Time Algorithm for Basis Recovery
Irvin J. Lustig, Princeton University

2:50 Finite Termination in Interior-point Methods
Sanjay Mehrotra, Northwestern University

3:10 Recovering an Optimal LP Basis from an Interior Point Solution
Robert E. Bixby, Rice University and Matthew J. Saltzman, Clemson University

3:30 On Obtaining Highly Accurate or Basic Solutions using Interior-point Methods in Linear Programming
Amr-S. El-Bakry, organizer, Robert E. Bixby and Richard A. Tapia, Rice University, and Yin Zhang, University of Maryland, Baltimore County

MS21/Belmont Room

Global and Local Optimization Methods for Molecular Chemistry Problems

Scientists are often interested in finding the configurations of chemical systems that have the lowest energy, because these configurations correspond to the most likely states in nature. The resulting optimization problems typically have large numbers of parameters and very large numbers of local minimizers. Thus, they are challenging global optimization problems, whose solutions also require efficient large-scale local optimization software. The speakers in this session will discuss molecular chemistry problems and will discuss methods for solving both the global and local optimization problems that arise from them.

Organizer: Robert B. Schnabel
University of Colorado, Boulder

2:30 Potential Transforms Applied to Geometry Optimization in Macromolecular Chemistry
Robert A. Donnelly, Auburn University

2:50 Large-Scale Optimization in Computational Chemistry Problems
Tamar Schlick, Courant Institute of Mathematical Sciences, New York University

3:10 A Global Optimization Approach for Microcluster Systems
C.A. Fieudas and C.D. Maramis, Princeton University

3:30 Global Optimization Methods for Molecular Configuration Problems
Robert B. Schnabel, organizer, Elizabeth Eskow and Richard H. Byrd, University of Colorado, Boulder

MS24/Toronto Room

Network Optimization II
Chair: Dimitri Bertsekas, Massachusetts Institute of Technology

2:30 A Fast Primal-Dual Algorithm for Generalized Network Linear Programs
Norman D. Caut, University of California, Los Angeles

2:50 Network Assistant to Construct, Test and Analyze Network Algorithms
Gordon H. Bradley, Naval Postgraduate School and Homero F. Oliveira, Centro Tecnico, Aerospacial S Jose dos Campos, Brazil
3:10 Advanced Implementation of the Dantzig-Wolfe Decomposition Applied to Transmission Networks
Fatima G. Ayyon, Telefonica Investigacion y Desarrollo, Spain; Jorge Galan, Angel Marin and Angel Menendez, E.T.S. Ingenieros Aeronauticos, Spain

3:30 Algorithms for Solving the Large Quadratic Network Problems
Chih-Hung Wu and Jose A. Ventura, Pennsylvania State University

CP25/Acapulco Room
Minimax Problems
Chair: Kaj Madsen, The Technical University of Denmark, Lingby, Denmark

2:50 A Method for Generalized Minimax Problems
Gianni Di Pillo and Luigi Grippo, Universita di Roma "La Sapienza", Italy and Stefano Lucidi, Institute di Analisi dei Sistemi ed Informatica del CNR, Italy

3:10 Convergence Conditions for the Regularization Methods that Solve the Min-max Problem Cristino Gigoio, ITAM, Mexico and Susana Gomez, Instituto de Investigaciones en Matematicas Aplicadas y en Sistemas-Universidad Nacional Autonoma de Mexico, Mexico

3:30 The Phase-Problem in Crystallography
A. Decarreau, Universite de Poitiers, France; D. Hilhorst, Universite de Paris-Sud, France; C. Lemarchand, INRIA, France; and Jorge Navaza, Universidad de Paris-Sud, France

CP26/Gold Coast Room
Optimization Problems Over Matrices
Chair: Richard G. Carter, AHPCRC, University of Minnesota and Argonne National Laboratory

2:50 An Optimization Problem on Subsets of the Symmetric Positive Semidefinite Matrices
Pablo Tarazaga, University of Puerto Rico, Mayaguez; Michael Trosset, Tucson, Arizona; and Richard Tapia, Rice University

2:50 Minimization of Nonlinear Functionals Over Finite Sets of Matrices
John Jones, Jr., Air Force Institute of Technology and George Washington University

3:10 Positive Definite Constrained Least Square Estimation of Matrices
H. Hu, Northern Illinois University

3:30 An Interior-point Method for Minimizing the Largest Eigenvalue of a Linear Combination of Symmetric Matrices
Florian Jarre, Universitat Wurzburg, Germany

3:50/Regency D
Coffee

4:20-5:40 Concurrent Sessions
(Minisymposia and Contributed)

MS22/Acapulco Room
Genetic Algorithms in Function Optimization
Genetic algorithms are search procedures that use a population of candidate solutions in their search and use operators such as selection, crossover, and mutation that have analogies in population genetics and natural selection. A simple algorithm, GAS, has been successful in finding good solutions to a wide variety of difficult optimization problems. The speakers in this minisymposium will present several applications of genetic algorithms to difficult optimization problems.
Organizer: David Levine
Argonne National Laboratory

4:20 Genetic Algorithms in Combinatorial Optimization
Kalyanmoy Deb, University of Illinois, Urbana

4:40 Parallelization of Probabilistic Sequential Search Algorithms
Prasanna Joag, DePaul University

5:00 A Genetic Algorithm For The Set Partitioning Problem
David Levine, organizer

5:20 A Hybrid Genetic Approach to Energy Minimization in Layered Superconductors
David Malon, Argonne National Laboratory

MS24/Belmont Room
Optimization Problems Involving Eigenvalues - Part 2 of 2
(See page 8 MS9 for description)
Organizer: Michael L. Overton
Courant Institute of Mathematical Sciences, New York University

4:20 On Minimizing the Largest Generalized Eigenvalue of an Affine Family of Hermitian Matrix Pairs
Michael K. H. Fan and Batool Nekooie, Georgia Institute of Technology

4:40 On the Variational Analysis of All the Eigenvalues of a Symmetric Matrix Dongyi Ye, and Jean-Baptiste Hiriart-Urruty, University of New South Wales, Australia

5:00 Optimality Conditions and Duality Theory for Minimizing Sums of the Largest Eigenvalues of a Symmetric Matrix
Michael L. Overton, organizer and Robert S. Womersley, University of New South Wales, Australia

5:20 Variational Properties of the Spectral Abscissa and Spectral Radius Maps
James V. Burke, University of Washington and Michael L. Overton, organizer

MS25/Water Tower Room
Optimal Control of Flexible Systems
The central purpose of this minisymposium is to present mathematical and engineering aspects of suppressing the vibrations of flexible structures which arise in several branches of engineering. The speakers will discuss control problems for distributed parameter systems governed by partial differential equations. Problems in structural mechanics and spacecraft applications are often of this type. The speakers will address the assessment of the current state of control theory and its applications, evaluate the needs of the control community, and identify possible directions for future development.
Organizers: M.R. Nouri-Moghdam
Penn State University and I. S. Sadek
University of North Carolina, Wilmington

4:20 A Mathematical Programming Approach for Optimal Control of Distributed Parameter Systems
M. Nouri-Moghdam and I.S. Sadek, organizers

5:20 Optimal Control of Non-Classically Damped Distributed Structures
Ramin S. Esfandiari, California State University, Long Beach

5:40 Simultaneous Design - Control Optimization of Composite Structures
Sarp Adali, University of California, Santa Barbara

CP27/Regency A/B
Linear Programming: Analysis and Theory II
Chair: Roman Polyak, IBM Thomas J. Watson Research Center

4:20 On the Complexity of Approximately Solving LP's Using Minimal Computational Precision
James Renegar, Cornell University

4:40 Pre-Selection of the Phase I - Phase II Balance in a Path-Following Algorithm for the "Warm Start" Linear Programming Problem
Robert M. Freund, Massachusetts Institute of Technology

5:00 Global Convergence of a Primal-Dual Exterior Point Algorithm for Linear Programming
Masakazu Kojima, Tokyo Institute of Technology, Japan; Nimrod Megiddo, IBM Almaden Research Center and School of Mathematical Sciences, Israel; and Shinji Mizuno, The Institute of Statistical Mathematics, Japan

5:20 Polynomial Complexity versus Fast Local Convergence for Interior Point Methods
Florian Potra, University of Iowa
Registration Information

Registration Fees

<table>
<thead>
<tr>
<th>SIAG/CP28</th>
<th>SIAM G/T*</th>
<th>SIAM Member</th>
<th>Non-Member</th>
<th>Student</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tutorial</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advance</td>
<td>$120</td>
<td>$120</td>
<td>$135</td>
<td>$55</td>
</tr>
<tr>
<td>On-Site</td>
<td>$135</td>
<td>$135</td>
<td>$155</td>
<td>$75</td>
</tr>
<tr>
<td>Conference</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advance</td>
<td>$120</td>
<td>$125</td>
<td>$150</td>
<td>$25</td>
</tr>
<tr>
<td>On-Site</td>
<td>$145</td>
<td>$150</td>
<td>$180</td>
<td>$25</td>
</tr>
</tbody>
</table>

*Members of SIAM Activity Group on Optimization
**Lunch is included in the cost of registration for tutorial attendees.

CP28/Gold Coast Room

Control Problems II
Chair: Layne T. Watson,
Virginia Polytechnic Institute
and State University

4:20 Implicit Functions and Lipschitz
Stability in Control and Optimization
A.L. Dontchev, Mathematical Reviews,
Ann Arbor, MI and W.W. Hager,
University of Florida, Gainesville

4:40 Optimization in Impulsive Stochastic
Control: Time Splitting Approach
Alexander A. Yashkevich, University
of North Carolina, Charlotte

5:00 H* Optimization with Decentralized
Controllers
Garry Didinsky and Tamer Basar,
University of Illinois, Urbana

CP29/Toronto Room

Constrained Optimization III
Chair: Luigi Grippo,
Universita di Roma “La Sapienza”, Italy

4:20 A Comparison of Barrier Function
Methods with Lagrangian Method for
Nonlinear Programming
Amarinder Singh and Kumaraswamy
Ponnambalam, University of Waterloo,
Canada

4:40 Recent Improvements on FSQP
Jian L. Zhou and Andre L. Tits,
University of Maryland, College Park

5:00 An Affine-Scaling, Nonsmooth
Newton Hybrid for Constrained
Optimization
Danny Ralph, Cornell University

5:20 A Primal-Dual Interior Point Method
for Linear and Nonlinear
Programming
Hiroshi Yamashita and Takahito
Tanabe, Mathematical Systems
Institute, Inc., Japan

6:00 Conference adjourns
Interior Point Methods for Large Scale Quadratic Programming

The talk is concerned with logarithmic barrier methods for large scale quadratic programming problems. Several methods for preserving sparsity when the Hessian matrix is sparse will be discussed, with some comparative computational results. Several variants of the conjugate projected gradient method for problems with dense Hessians will also be discussed, again with comparative computational results.

David Shanno
Rutgers University
New Brunswick, NJ 07960

Tami Carpenter
Princeton University
Princeton, NJ

Primal-Dual Symmetric Formulations of the Predictor-Corrector Method for QP

Replacing the usual standard form with one allowing equality and inequality constraints as well as sign-constrained and free variables yields problem formulations that are primal-dual symmetric and closer to industry standard MPS form. We will report on our computational experience regarding an implementation of the predictor-corrector variant of the one-phase primal-dual path-following algorithm for convex quadratic programming problems presented in (almost) primal-dual symmetric form.

R. J. Vanderbei
Department of Civ. Eng. and Ops. Res.
Princeton University
Princeton, NJ 08544

Solving Symmetric Indefinite Systems in Interior Point Methods

It is standard to solve the least squares problem in interior point methods by forming normal equations. In this talk we discuss the use of augmented system approach to solve the dense least squares problems. This approach handles dense columns naturally. We show that this approach also leads to an easy and numerically stable treatment of free variables. We give computational results on the problems in netlib using higher order primal-dual methods to demonstrate the effectiveness of augmented system approach.

Robert Fourer and Sanjay Mehrotra
Department of IE/MS
Technological Institute
Northwestern University
Evanston, IL 60208-3119

Switching from interior to vertex solutions in OSL

The Optimization Subroutines Library (OSL) contains a variety of both interior point and simplex methods for linear programming. Many applications solve rapidly as LPs by interior methods but require basic solutions, e.g. for continuing to

MIP by branch and bound. We discuss methods used in OSL for this switch-over process.

J.J.H. Forrest
IBM Watson Research Centre
Yorktown Heights, NY 10598

J.A. Tomlin
IBM Almaden Research Centre
San Jose, CA 95120

The Degree Constrained Forest Problem

We consider the problem of finding a maximum weight forest that satisfies given upper and/or lower bound constraints on the degree of each node. This problem is NP-hard in general. We will consider several special cases of this problem and decide for each whether it is NP-hard or polynomially solvable. Both algorithms and polynomials will be presented.

Bruce Gamble
M.E.D.S. Department
J.L. Kellogg Graduate School of Management
Northwestern University
Evanston, IL 60208

Delta-Wye-Delta Reducibility of Three Terminal Planar Graphs

We study Wye-Delta (star to triangle) and Delta-Wye transformations in graphs. G. Epifani in 1966, proved the Akers-Lehman conjecture, that any planar graph with two terminals can be reduced by means of Delta-Wye-Delta operations to a single edge. The last two nodes being the original two terminals. The three terminal case, also conjectured by Akers remained open. We settle the 3-Terminal conjecture by proving that any 2-connected planar graph with three terminals can be Delta-Wye-Delta reduced to K_3 with vertex set the original three terminals. As a consequence of this result, we characterize some classes of nonplanar reducible graphs, in particular we show that graphs not contractible to K_3 are reducible. The applications of the Delta-Wye-Delta method include: shortest path and maximum flow problems, K-terminal reliability, counting spanning trees, counting perfect matchings, computing the partition function for the Ising model, knot theory, and reducibility of almost regular matroids, among other. We discuss our results in relation to some of these problems. The Delta-Wye-Delta method in rare cases provides the most efficient algorithm to solve a particular problem. It does however give a general framework to solve many problems efficiently. The results presented in this work imply efficient algorithms, for some we explicitly provide them.

Isidoro Gitler
Dept. of Combinatorics & Optimization
University of Waterloo
Waterloo, Ontario, Canada N2L 3G1

Minimum weight bases for vector spaces

The all pairs min cut problem on a nonnegative edge weighted graph is to find, for each pair of nodes, a min cut that separates the pair. We show that this problem and others are special cases of the more general problem of finding a minimum weight basis for a vector space (when an arbitrary basis is given). We present a polynomial time algorithm (based on linear programming) for this general problem (over the reals).

David Hartvigsen
Kellogg Graduate School of Management
Northwestern University
Evanston, IL 60208
A Concise Overview of Chemical Engineering Optimization Applications

This talk serves to introduce the SIAM minisymposium and briefly surveys the application of optimization algorithm tools in chemical engineering. Qualitative descriptions of problems will be given in process analysis and the development of engineering models, design and optimization of flowsheets and optimization algorithms applied to process dynamics. Also various aspects of chemical engineering models will be classified and summarized according to problem size and functionality; characteristics of appropriate optimization algorithms are then discussed. The talk will therefore set the stage for more detailed analysis of each optimization application, which will be addressed by speakers in this minisymposium.

Lorenz T. Biegler
Carnegie Mellon University
Chemical Engineering Department
Pittsburgh, PA 15213

Theoretical Modelling of Amoco's Gas Phase Horizontal Stirred Bed Reactor for the Manufacturing of Polypropylene Resins.

Rigorous theoretical treatment of Amoco's gas phase horizontal stirred bed reactor allowed us to develop a mathematical model that closely follows the behavior of the commercial reactor over a wide range of operating conditions. The modeling equations derive from a fundamental kinetic mechanism of the propylene/ethylene polymerization over Amoco's proprietary Ziegler-Natta based supported catalyst. The model accounts for the effects of catalyst deactivation, cocatalyst and catalyst modifier as well as the effect of the chain transfer agents, in this case hydrogen and alkyl aluminum. The flow pattern of the powder inside the horizontal reactor is modeled by a series of continuous stirred tank reactors of equal volume but unequal mean residence times. The yields are then calculated by applying the principles of superposition over the train of the continuous stirred tank reactors. This analysis provides us with flexibility of performing model discrimination studies in order to predict the optimal number of continuous stirred tank reactors that follow the behavior of the commercial unit over a wide range of operating conditions. Further extension of the model to permit optimization of the catalyst activity while reducing temperature gradients inside the reactor has led to a tri-level mixed integer nonlinear optimization problem which is currently under investigation and will be the focus of this presentation.

Dr. Mike Caracotsios
Amoco Chemical Company
Polymers Research and Development
Post Office Box 3011
Naperville, Illinois 60566

Optimization Using Process Simulators

Chemical process simulators are used to optimize processes in all phases from original process conception through design, scale-up, and operations. Some characteristics of the NLP problem, such as number of variables and constraints, change considerably from one application to another. Other characteristics are common to almost all applications. These include the nonlinear nature of the equations and discontinuities, especially those caused by changes in the state of the system. This paper reviews the current algorithms used in process simulation and optimization and typical applications solved by optimization using process simulators.

H.S. Chen and T.P. Kisala
Aspen Technology, Inc.
Cambridge, MA 02139

Large Scale Process Optimization with Differential Equations

Large Scale process optimization problem involving differential/algebraic equations (DAE) will be discussed. The approach used for solving these problems is based on using a sparse Successive Quadratic Programming (SQP) algorithm combined with orthogonal collocation on finite elements. Using orthogonal collocation allows the conversion of the DAE constraints in the optimization problem to a representative set of algebraic equation constraints that can be handled in the traditional nonlinear programming format. This method has been applied to the real time optimization of commercial chemical processing units. Issues in the formulation and solution of these problems will be discussed.

A.M. Morshed
DOT Products, Inc.
1613 Karankwas Center
Deer Park, TX 77536

Recursive Components in Large Optimization Models

Large models, linear as well as nonlinear, often have many recursive equations, both before and after a simultaneous core. The paper will discuss how to take advantage of this structure in nonlinear models, both in a preprocessing step and during the optimization itself, and the requirements this will have on the model representation. It will give statistics on the percentage of recursive equations in a set of large practical models from engineering and economics implemented in GAMS, and on the savings that have been achieved by using the recursive structure.

Arne Stolbjer Dru
ARKI Consulting and Development A/S
Bagsvaerdvej 246 A
DK-2880 Bagsvaerd
Denmark

Numerical experience with LANCELOT (Release A) in large scale nonlinear programming

The field of large scale nonlinear programming has been growing considerably in the past five years, due to the combined interest of practitioners and the ongoing progress in algorithm design. The LANCELOT
A Comparison of Some Methods for Estimating Rate Constants in Chemical Kinetics

Estimation of unknown rate constants in chemical kinetics is an application of nonlinear least squares problems, where the model function is defined by a system of ODE's, usually stiff. We present here a comparison of different ways of formulating and solving the optimization problem. The standard approach, which can take advantage of stiffness, is to let an ODE-solver compute the value of the function to be minimized in each iterative step of the optimization procedure. An alternative approach is to use a difference approximation of the gradient which allows one to compute derivatives with respect to the parameters.

The testbatch consisted of very sized artificial and real world problems. The tests have been performed with a MATLAB system, in which a function library, diffpar, has been developed for this kind of problem.

Per-Ake Wedin
Institute of Information Processing
University of Umea
S-901 87 Umea, SWEDEN

A Comparison of Some Methods for Estimating Rate Constants in Chemical Kinetics

Estimation of unknown rate constants in chemical kinetics is an application of nonlinear least squares problems, where the model function is defined by a system of ODE's, usually stiff. We present here a comparison of different ways of formulating and solving the optimization problem. The standard approach, which can take advantage of stiffness, is to let an ODE-solver compute the value of the function to be minimized in each iterative step of the optimization procedure. An alternative approach is to use a difference approximation of the gradient which allows one to compute derivatives with respect to the parameters.

The testbatch consisted of very sized artificial and real world problems. The tests have been performed with a MATLAB system, in which a function library, diffpar, has been developed for this kind of problem.

Per-Ake Wedin
Institute of Information Processing
University of Umea
S-901 87 Umea, SWEDEN

On the EM Algorithm and a Generalization of the Proximal Point Method

The EM algorithm is a very well known method for computing maximum likelihood estimates, appearing in several important applications like emission computed tomography, factor analysis, finite mixtures computation, etc. On the other hand, the proximal point algorithm (PPA) is another important method for solving general optimization problems using a sequence of regularized subproblems.

In this work we show the close relations existing between the EM algorithm and some generalization of the PPA.
Experimental Data Integration in Large Scale System Analysis

In complex flow systems such as the Space Shuttle Main Engine (SSME), reconciliation of experimental data with predictions based on theoretical analysis is a difficult task. Although heuristic integration methods are common, such techniques lack a firm statistical foundation. More robust reconciliation schemes are needed for accurate performance prediction.

The speaker will describe a generic optimization strategy for the systematic integration of experimental data in large scale system analysis. The theoretical basis of this strategy will be discussed, and the results of SSME flow system analysis with test data integration will be presented.

L. Michael Santí
Christian Brothers University
Mechanical Engineering Department
650 East Parkway South
Memphis, TN 38104

John P. Butas
National Aeronautics and Space Administration
George C. Marshall Space Flight Center
Propulsion Laboratory - EP52
Marshall Space Flight Center, AL 35812

Bounded Least Squares for PET

The image reconstruction problem in positron emission tomography can be written as a large linear least squares problem subject to non-negativity constraints. There are hundreds of elements that will eventually be zero, but it is important not to distinguish between small and zero. The important information is in the large elements. Projected gradient techniques and active constraint techniques spend too much time determining which elements are at bound. A better approach uses a projective transformation and solves the least squares problem with preconditioned conjugate gradients with a diagonal preconditioner containing an approximate distance to the constraints.

Linda Kaufman
Room 2C-461
Bell Labs
Murray Hill, N.J. 07974

Data Parallel Quadratic Programming with Box-Constrained Problems

We develop designs for the massively parallel solution of quadratic programming problems subject to box constraints. In particular, we consider the class of algorithms that iterate between projection steps that identify candidate active sets, and Newton-like steps that explore the working space.

Implementations are carried out on a Connection Machine CM-2. They are shown to be very efficient in solving very large problems - up to 360,000 variables. The massively parallel implementation outperforms significantly implementations of the same algorithm on a shared memory vector architecture, (Alliant FX/8) and of interior point algorithms implemented on an IBM 36090-605S vector supercomputer.

Jill Mesirov
Mike McKenna
Thinking Machines Corporation
245 First Street
Cambridge, MA 02142

Stavros A. Zenios
University of Pennsylvania
Philadelphia, PA 19104

Massively Parallel Solution of Quadratic Programs via Successive Overrelaxation

In this talk we will discuss serial and parallel successive overrelaxation (SOR) solutions of specially structured large scale quadratic programs with simple bounds. By taking advantage of the sparsity structure of the problem, the SOR algorithm was successfully implemented on two massively parallel Single-Instruction-Multiple-Data machines: a Connection Machine CM2 and a MasPar MP1. Computational results for the well-known obstacle problems show the effectiveness of the algorithm. Problems with millions of variables have been solved in a few minutes on these massively parallel machines, and speedups of 90 or more were achieved.

Renato De Leone
Center for Parallel Optimization.
Computer Sciences Department
University of Wisconsin Madison
1210 West Dayton Street
Madison, WI 53706 phone: (608) 262-5083
FAX: (608) 262-97
email: delone@cs

Mary A. Tork Roth
Center for Parallel Optimization.
Computer Sciences Department
University of Wisconsin Madison
1210 West Dayton Street
Madison, WI 53706
email: torkrot@cs.wisc.edu

On the effects of scaling on Projected Gradient Methods for Solving Bound Constrained Quadratic Programming Problems

We consider the bound constrained quadratic programming problem min \(\frac{1}{2} x^T A x - c^T x \) subject to \(a_l \leq x \leq a_u \). Here \(A \) is an \(n \times n \) symmetric matrix, \(c \) is a vector, and \(a_l \leq a_u \). We have investigated projected gradient strategies for this problem. In this paper, we give reasons why such strategies will tend to be well behaved for positive definite matrices \(A \). Moreover, we show why diagonal scaling will greatly improve this behavior. We present bounds on the difference between the optimal stepsize for the gradient direction and the optimal stepsize for the projected gradient direction for positive definite \(A \). We show that diagonal scaling will improve the bound and that the bound is particularly good for generalized diagonally dominant matrices.

Jesse L. Barlow
Computer Science Department
The Pennsylvania State University
University Park, PA 16802
E-mail: barlow@cs.psu.edu
Telephone: 814-865-1705
FAX: 814-865-3176

Gerardo Toraldo
Università della B. Catt
85100 Potenza, Italy
E-mail: TORALDO@IPZVX85.CINECA.IT
Telephone: 011-39-81-551-6996
FAX: 011-39-81-551-6355
A Truncated SQP Algorithm for Large Scale Nonlinear Programming Problems

In this paper we propose an SQP algorithm for the inequality constrained nonlinear programming problem. The emphasis here will be on two aspects of the general procedure, namely, the approximate solution of the quadratic subproblem and the need for an appropriate merit function. We first describe an appropriate merit function for the inequality constrained problem and an (iterative) interior-point method for solving (approximately) the quadratic subproblem. We then show that the approximate solution yields a descent direction for the merit function. An implementation of our algorithm is suggested and some numerical results are presented.

Paul T. Boggs
National Institute for Standards and Technology, Gaithersburg, MD
Jon W. Tolle
University of North Carolina, Chapel Hill, NC

A direct search method that employs quadratic model functions

Recently the author extended the Nelder and Mead simplex method to constrained optimization calculations by constructing linear models of the objective and constraint functions, these models being defined by linear interpolation at the vertices of the current simplex. Excellent accuracy can be achieved, but usually the number of iterations is high due to the unsuitability of linear models when curvature is important. Therefore we address the idea of defining quadratic models by interpolation at \(\binom{n+1}{2} \) points, where \(n \) is the number of variables.

A way of picking and updating the points is described that maintains nonsingularity of the interpolation equations. Further, some numerical results compare this technique with other methods.

M.J.D. Powell
University of Cambridge
Dept of Applied Maths and Theor Phys
Silver Street
Cambridge, CB3 9EW, England
Telephone: (England) 223-337889
Fax: 223-337918

An Interior Point Algorithm for Nonlinearly Constrained Problems

We describe an extension of the primal-dual interior point LP algorithm to large sparse NLP's of general form. It applies the equation solving procedure of Duff, Nocedal, and Reid to the Kuhn-Tucker conditions of a barrier problem, so each trial step is computed by solving an LP. Options investigated include predictor-corrector variants, and second order corrections for speeding up the equation solver. Second derivatives are required, and we discuss how these may be obtained and manipulated, when coupled to an algebraic modeling language like GAMS. Computational results are provided for an implementation using IBM's OSL simplex LP code.

Prof. Leon Lasdon and Prof. Gang Yu both have the following address:
Department of Management Science and Information Systems
College of Business Administration
The University of Texas at Austin
Austin, TX 78712-1175

Jon W. Tolle
Department of Computer Information Systems and Administration Sciences
Southwest Texas State University
San Marcos, TX 78666

Constrained Optimization Algorithms Using Limited Memory Methods

In optimization problems where the number of variables is too large to allow a full Hessian approximation to be stored, limited memory methods generate a quasi-Newton approximation to the Hessian reflecting only the most recent updates, with a great savings in storage. These methods have proven very effective for unconstrained optimization. In this talk we consider some issues in adapting limited memory methods to solving large scale bound constrained and generally constrained optimization problems. We make use of a new compact closed form representation for limited memory quasi-Newton matrices that facilitates operations with constraints. We discuss an algorithm for bound constrained optimization that uses this representation with significant savings in linear algebra costs. We also consider the use of limited memory approximations in a successive quadratic programming method for general constrained optimization.

Richard H. Byrd
Computer Science Department
University of Colorado
Boulder, Colorado 80309

Jorge Nocedal
Dept. of Electrical Engineering and Computer Science
Northwestern University
Evanston, Illinois 60208

Control System Radii and Nonstandard Optimization Problems

The development of numerical methods for control of systems governed by partial differential equations often makes use of finite element, finite difference or Galerkin schemes to produce a finite dimensional "design model". Once this finite dimensional "approximating" control system is constructed, numerical or linear algebra algorithms are used to solve the corresponding finite dimensional control problem. The numerical conditioning of the finite dimensional control problem will depend on the choice of the approximation scheme as well as the type of control problem to be solved. Control system radii often provide a measure of the conditioning of specific control problems. In this talk, we discuss several nonstandard optimization problems that occur when one attempts to compute control system radii for Galerkin approximations of infinite dimensional control systems.

John A. Burns
Kimberly L. Oates
Interdisciplinary Center for Applied Mathematics
Department of Mathematics
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061

Gunther Peichl
Institut fur Mathematik
Universitat Graz
A-8010 Graz, AUSTRIA

An algorithm for optimizing MESFET design

We discuss an optimization algorithm for use in MESFET design. This resulting code is used in conjunction with a GaAs MESFET model (TEFEL) in a widely distributed CAD package for microwave semiconductor devices. The n-dimensional...
functions to be optimized have two levels of structure. A simple larger level, and a finer level of structure which imposes a rough surface on the basin. This rough surface gives the problem many local extrema. The algorithm is a projected quasi-Newton method which uses a decreasing sequence of finite difference steps to avoid local extrema and approximate the global minima as well as possible.

P. Gilmore & C.T. Kelly
Department of Mathematics
North Carolina State University
Box 80205
Raleigh, NC 27695

Optimization Techniques for Molecular Structure Determination
An important area of research in computational biochemistry is the design of molecules for specific applications. In the design of drugs, the treatment of cancer. The design of these chemicals depends on the accurate determination of biological macro-molecules.

The underlying assumption in this problem is that molecules assume the structure of lowest free energy which reduces the problem to a global minimization problem. However the large number of local minima makes this an extremely difficult problem for all standard optimization methods. We will discuss several approaches to this problem, including a genetic algorithm, a Nelder-Mead simplex method, and a Newton method, along with numerical results.

Michael E. Colvin, Richard S. Judson, Juan C. Mesa,
Sandia National Laboratories, Livermore, CA

Velocity Estimation: A Difficult Nonlinear Optimization Problem from Seismology
The estimation of velocities in the earth from seismic waveform data is a difficult and still uncompleted task in geophysical data processing. Straightforward formulations of velocity estimation as a best-fit problem are plagued by severe computational difficulties: local (Newton-like) optimization algorithms simply fail to yield useful results. This talk will review the reasons for the failure of best-fit via Newton, and outline a modification of the best-fit approach more amenable to local techniques.

William W. Symes
Department of Mathematical Sciences
Rice University
P.O.B. 1892
Houston, TX 77251

Newton-like Proximal Point Method: Convergence and Application
The Proximal Point Method (PPM) has long been noticed as one of the attractive methods for convex programming and min-max convex-concave programming. Yet, the classical PPM typically exhibits slow convergence so a key question concerns how the convergence of the method can be accelerated. It has been noted that the PPM is equivalent to the steepest descent method for minimizing a certain differentiable function associated with the problem. Thus, one way is to apply a second-order method to minimize this function. Unfortunately, owing to the complexity of the function, this approach does not appear to be feasible. Instead, we will introduce an extended proximal point algorithm. This method is more difficult to implement than the classical PPM and yet, under mild conditions on the problem, is superlinearly convergent. When applied to convex programming and min-max convex-concave programming, this method shows encouraging numerical results compared with the classical PPM.

Maqian Qian
Department of Mathematics
University of Washington
Seattle, Washington 98195

Some Recent Results on Proximal-like Methods in Convex Optimization
Proximal-like minimization methods can be constructed by replacing the usual quadratic regularization kernel with kernels which are typically entropy-like in form. This approach leads to several interesting algorithms for solving convex programs. This talk will report on some recent progress on convergence analysis, new variants and potential applications of these proximal-like methods.

Marc Teboulle
Department of Mathematics & Statistics
University of Maryland
Baltimore County Campus
Baltimore, MD 21228

Convergence Rates of Proximal Point Algorithms for Convex Minimization
Traditionally, the convergence analysis for the proximal point algorithm (PPA) for the minimization of a convex function \(f: \mathbb{R}^n \rightarrow \mathbb{R} \cup \{\infty\} \) has been studied in terms of the distances \(\|x^{k+1} - x^k\| \), where \(x^k \) is the \(k \)th iterate. In this talk, we show that global estimates can be obtained in a simple manner for the residual \(f(x^k) - \min f \), without any restrictive assumptions on the function \(f \).

We first obtain such estimates for the classical PPA method. It is also shown that the trajectory of the PPA is asymptotically indistinguishable from a continuous trajectory. This fact throws light on the efficiency of some aggressive stepsize selection rules employed in the literature.

We then propose an acceleration of the classical PPA, using some ideas of Nesterov. This algorithm has close connections with the conjugate gradient algorithm of Hestenes and Stiefel.

Osman Guler
Faculty of Technical Mathematics and Informatics
Delft University of Technology
Mekelweg 4, Room 6.14
2628 CD Delft
THE NETHERLANDS

Partial Proximal Algorithms and Partial Methods of Multipliers: The Quadratic and Entropy Cases
We consider an extension of the proximal minimization algorithm where only some of the minimization variables appear in the quadratic proximal term. We interpret the resulting iterates in terms of the iterates of the standard algorithm and we show a uniform descent property, which holds independently of the proximal terms used. This property is used to give simple convergence proofs of parallel algorithms where multiple processors simultaneously execute proximal iterations using different partial proximal terms.
MONDAY PM

Dimitri P. Bertsekas, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139.
Paul Tseng, Department of Mathematics, University of Washington, Seattle, WA 98115.

A Generic Auction Algorithm for the Minimum Cost Network Flow Problem

In this paper we broadly generalize the assignment auction algorithm to solve linear minimum cost network flow problems. We introduce a generic algorithm, which contains as special cases a number of interesting algorithms, including the E-relaxation auction method, the auction algorithm for transportation problems, a new network auction algorithm, and a new algorithm for the K node-disjoint shortest path problem. We provide a broadly applicable complexity analysis of the generic algorithm, and we demonstrate the performance of various special cases of the algorithm via computational experimentation.

Dimitri P. Bertsekas
Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology
Cambridge, MA 02139

David A. Castanon
Department of Electrical and Computer Engineering
Boston University
Boston, MA 02215

An Efficient Implementation of a Network Interior Point Method

DNLN, an efficient implementation of the dual affine scaling algorithm for minimum cost capacitated network flow problems is described. The efficiency of this implementation is the result of three factors: the small number of iterations taken by interior point methods; efficient solution of the linear system that determines the ascent direction; and a strategy used to stop the algorithm with an optimal primal vertex solution. The combination of these three ingredients results in a code that can solve minimum cost network flow problems having hundreds of thousands of vertices in a few hours on a MIPS R3000 processor, whereas the sequential simplex implementation requires several days. Extensive computational experiments compare DNLN with VERTLO.

Mauricio G.C. Resende
AT&T Bell Laboratories, Murray Hill, NJ
Geraldo Veiga
University of California, Berkeley, CA

A Class of Trust Region Algorithms for Optimization Using Inexact Projections on Convex Constraints: Application to the Nonlinear Network Problem

A class of trust region based algorithms is presented for the solution of nonlinear optimization problems with a convex feasible set [1]. A generalization of simulated annealing is introduced. The algorithm is constructed in analogy to the action of Maxwell's Demon and has been motivated by an information-theoretic analysis of simulated annealing. The algorithm is based on an ensemble of identical systems that are annealed in parallel. The ensemble evolves according to a sequence of target distributions with the aim of ending up in a distribution that is concentrated on optimal solutions. The algorithm is based on collective moves and has been implemented for graph bipartitioning and seismic deconvolution. Its performance is compared with conventional simulated annealing and a downhill search algorithm.

Annick Sartenaer
P. U. N. D. P.
Department de Mathematique
Rempart de la Vierge 8
B-5000 Namur, Belgium

LSNNO, a FOIOTRAN Subroutine for Solving Large-scale Nonlinear Network Optimization Problems

We describe the implementation and testing of LSNNO, a new FOIOTRAN subroutine for solving large-scale nonlinear network optimization problems. The implemented algorithm applies the concepts of partial separability and partitioned quasi-Newton updating to high-dimensional nonlinear network optimization problems. Some numerical results on both academic and practical problems are reported.

Daniel Tuyttens
Faculte Polytechnique de Mons
Departement de Mathematique et de Recherche Operationnelle
Rue de Houdain, 9
B-7000 Mons, Belgium

Classification Tree Optimisation by Simulated Annealing

This research investigates a new approach to the design of classification trees. Trees have application in such areas as diagnostic systems, pattern recognition, and expert systems. Current methods of tree design that guarantee optimal solutions, such as dynamic programming, are not practical since required storage and/or CPU time grow exponentially with problem size. Greedy algorithms, based on Information Theory, while being fast, do not guarantee optimality and do not easily accommodate constraints. Our research applies simulated annealing to find tree designs that are optimal or near-optimal with respect to arbitrary cost criteria.

Richard S. Buyy
University of Southern California
Los Angeles, CA, and
The Aerospace Corporation
P.O. Box 9267
Los Angeles, CA 90009
Raymond S. DiEsposito
The Aerospace Corporation

Ensemble Simulated Annealing for Parallel Architectures

An adaptive implementation of simulated annealing for parallel architectures is presented. The implementation uses ensembles of random walkers, i.e. many identical copies of the problem running nearly independently. One processor (the master) collects values of the first two moments of the energy and adaptively adjusts the temperature and the ensemble size. The other processors perform independent simulated annealing and share only a common temperature. The implementation is easily adapted to different problems and different parallel platforms.

Peter Salamon, Luqing Wang, Andrew Klinger, and Yaghout Nourani-Wriaul, with previously published analysis of this type, the theory presented allows for a wide range of general norms. Furthermore, the proposed algorithms do not require the explicit computation of the projected gradient, and can therefore be adapted to cases where the projection onto the feasible domain may be expensive to calculate. The talk will concentrate on the application of a particular practical algorithm to the class to the solution of the nonlinear network problem and some numerical experiments will be reported.

A generalization of simulated annealing is introduced. The algorithm is constructed in analogy to the action of Maxwell's Demon and has been motivated by an information-theoretic analysis of simulated annealing. The algorithm is based on an ensemble of identical systems that are annealed in parallel. The ensemble evolves according to a sequence of target distributions with the aim of ending up in a distribution that is concentrated on optimal solutions. The algorithm is based on collective moves and has been implemented for graph bipartitioning and seismic deconvolution. Its performance is compared with conventional simulated annealing and a downhill search algorithm.
Beamforming with Simulated Annealing

Beamforming is an excellent application of simulated annealing because the number of parameters is large and it is possible to compute energy changes efficiently. The unknowns include the directions and discretized time series of the sources. Performance may be improved by including additional unknowns such as the contribution of noise or corrections to the locations of receivers. The cost function is parabolic in each of the time series parameters. Improved efficiency is achieved by accepting uphill perturbations only for the non-parabolic parameters. Beamforming by optimization significantly outperforms conventional beamforming methods in which all of the unknowns are collapsed to a single steering parameter. A smaller receiver-to-source ratio is desired and it is easy to benefit from this priori information. Results will be presented for real and simulated acoustic data, including cancellation of noise from a horizontal array towed in the ocean and extraction of a single speaker from a crowd.

Michael D. Collins and W.A. Jeremiah
Naval Research Laboratory
Washington, DC 20375

A Sparse Updating Approach to Problems in Column Block Angular Form

We propose a basis-updating technique for active set methods for the special case that the constraints are in column block angular form (CBAF). CBAF occurs in time-series and other partitioned problems. Our updating approach is based on an orthogonal factorization and has the special property that the CBAF structure is preserved after an arbitrary number of pivots. The algorithm allows block parallelization and individual block reiterations.

Julio M. Stern. University of Sao Paulo
Stephen A. Vavasis, Cornell University

A New Iterative Method for Solving Symmetric Indefinite Linear Systems Arising in Optimization

Many optimization algorithms, such as interior-point methods for linear and nonlinear programs or sequential programming methods for constrained nonlinear programs, require the solution of Kuhn-Tucker optimality conditions. Typically, this leads to linear systems with symmetric, but highly indefinite coefficient matrices. Often, these systems are very large and sparse and it is attractive to use iterative techniques for their solution. Unfortunately, existing algorithms for symmetric systems, such as SYMMLQ and MINRES, usually converge slowly for highly indefinite matrices. Furthermore, these schemes can be used only with positive definite preconditioners, which leaves the systems highly indefinite. In this talk, we propose a new iterative method for solving symmetric indefinite linear systems, which can be combined with general symmetric preconditioners. The algorithm can be interpreted as a special case of the QMR approach for non-Hermitian linear systems, which was recently proposed by Freund and Nachtigal, and, like the latter, it generates iterates defined by a quasi-minimal residual property. The proposed method has the same work and storage requirements per iteration as SYMMLQ or MINRES, however, it usually converges in considerably fewer iterations. Numerical experiments for linear systems arising in optimization problems are reported.

Ro' and W. Freund
Research Institute for Advanced Computer Science
Mail Stop Ellis Street
NASA Ames Research Center
Moffett Field, CA 94035

Hongyuan Zha
Computer Science Department
Stanford University
Stanford, CA 94305

Preconditioned Iterative Techniques for Sparse Linear Algebra Problems Arising in Circuit Simulation

The DC operating point of a circuit may be computed by tracking the zero curve of an associated artificial-parameter homotopy, and it is possible to devise curve tracking algorithms for such homotopies that are globally convergent with probability one. These algorithms require computing the one dimensional kernel of the Jacobian matrix of the homotopy, and hence the solution of a linear system of equations. These linear systems are typically large, highly sparse, nonsymmetric and indefinite. A number of iterative methods, including Craig's method, GMRES(k), BICG, QMR and LSQR, are applied to a suite of test problems derived from simulations of bipolar circuits. Preconditioning can have a significant impact on the performance of these methods, and several techniques are considered, including ILU and variations, and block diagonal preconditioners. Timings and convergence statistics are given for each iterative method and preconditioner.

William D. McQuain, Calvin J. Ribbens, and Layne T. Watson
Department of Computer Science
Virginia Polytechnic Institute & State University
Blackburg, VA 24061-0106
Robert C. Melville
AT & T Bell Laboratories
600 Mountain Avenue
Murray Hill, NJ 07974-2070

Graph coloring and the estimation of sparse Jacobian matrices using row and column partitioning

It is well known that a sparse Jacobian matrix can be estimated in much less function evaluations than the number of columns by using the CPR technique. The CPR method estimates a group of columns using one function evaluation. An often cited example by S. Eisenstat shows that if the rows of the matrix are partitioned in two blocks then fewer function evaluations is needed. In this talk we will discuss a direct method to estimate the Jacobian matrix and show the relationship between grouping together both rows and columns and the graph coloring problem. We will also discuss an implementation of the direct method.

Trend Steihaug and A.K.M.Shahadat Hosain
University of Bergen
Department of Informatics
Nasjonalt teknologisenter
N-5020 BERGEN NORWAY

Toward Probabilistic Analysis of Interior-Point Algorithms for Linear Programming

We propose an approach based on interior-point algorithms for linear programming (LP). We show that the algorithm solves a class of LP problems in strongly polynomial time, O(√n log²n)-iteration, where each iteration solves a system of linear equations with n-variables. The statistical data of the solutions of the NETLIB problems seem to indicate that most of these problems are in this class. Then, we show that some random LP problems, with high probability (probability converges to one as n approaches infinity), are in this class. These random problems include Borgwardt’s and Todd’s probabilistic models with the Gaussian distribution.
An Artificial Self-Dual Linear Program.

How to initiate primal-dual interior point algorithms for linear programs is an important issue. One approach is to construct an artificial primal-dual pair of linear programs having known interior feasible solutions. Another is to modify primal-dual interior point algorithms so as to start from infeasible or exterior points. The latter leads to a so-called primal-dual exterior point algorithm. We introduce an artificial self-dual linear program for which we can adapt many primal-dual interior point algorithms, and discuss its relations to the exterior point algorithm.

Masakazu Koizumi: Dept. of Information Sciences, Tokyo Institute of Technology, Oh-Okayama, Meguro, Tokyo 152, Japan

Nimrod Megiddo: IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099, USA

Shinji Mizuno: The Institute of Statistical Mathematics, 4-6-7 Minami-Azabu, Minato-ku, Tokyo 106, Japan

Akiko Yoshise: Institute of Socio-Economic Planning, University of Tsukuba, Tsukuba, Ibaraki 305, Japan

On the Convergence of the Iteration Sequence in Primal-Dual Interior Point Methods

Speaker: Richard Tapia, Rice University

(No abstract received at the time this Program went to press).

Ellipsoidal trust regions and prox functions for linearly constrained nonlinear programs

Trust region methods for inequality constrained optimization have been successfully developed mostly for simple constraints, using as trust regions the intersection of spheres and the feasible set. We approach linear constraints using interior points and ellipsoidal trust regions that change size and shape simultaneously to deal respectively with precision of the model functions and adaptation to the interior of the feasible region. In this talk we study the global convergence of the resulting algorithms both for convex and nonconvex problems, discussing the relationship of trust regions and prox functions.

Clioas C. Gonzaga
COPPE - Federal University of Rio de Janeiro
Cx. Postal 68511, 21945 Rio de Janeiro, RJ, Brazil
E-mail gonzaga@brlncc.bitnet.

"General Modeling Framework for Robust Optimization"

Robust optimization provides a systematic, practical approach for handling inaccuracies which occur in real-world data. Two forms of robustness are proposed: feasibility, and objective function. The framework encompasses several classical methods for noisy data. The resulting models are large-scale nonlinear programs, whose structure can be exploited by parallel/distributed algorithms.
Semi-Definite Programming: Duality Theory, Eigenvalue Optimization, and Combinatorial Applications

We consider the problem of minimizing a linear function of a symmetric matrix X, subject to linear constraints on the matrix and the additional condition that X be positive semi-definite. Formally, we solve the semi-definite programming problem (SDP):

$$\min \{ C \cdot X : X \succeq 0, \ A_i \cdot X = b_i \text{ for } i = 1, \ldots, m \}$$

where \cdot indicates the inner product of matrices (that is, $A \cdot B = \sum A_{ij} B_{ij} = \text{trace}(A^T B)$), and $X \succeq 0$ means X is positive semi-definite. We will develop a duality theory for this problem, and show that this theory is quite similar to duality in linear programming. We will also derive a “complementary slackness” theorem analogous to linear programming. Furthermore, we will show that various eigenvalue optimization problems are special instances of the SDP problem. The most general form is:

$$\min \{ m_1 \lambda_1(X) + \cdots + m_k \lambda_k(X) : A_i \cdot X = b_i \text{ for } i = 1, \ldots, m \}$$

where $m_1 \geq \cdots \geq m_k \geq 0$ are given constants and A_i are given matrices. We will derive dual problems and complementary slackness results for these problems as well. Finally, we will demonstrate some applications of the SDP problem in combinatorial optimization, in particular, in maximum clique, graph partitioning, and the largest k-partite subgraph problems.

Farid Alizadeh
University of Minnesota
Minneapolis, Mn, 55455
e-mail: alizadeh@cs.umn.edu

Measures for SR1 Updates

Measures of deviation of a symmetric positive definite matrix from the identity are introduced. They give rise to symmetric rank-one (SR1) sized updates. The measures are derived by considering the volume of the symmetric difference of the ellipsoids, which form the current and updated quadratic models, for quasi-Newton methods for unconstrained minimization. In addition, it is shown that the ℓ_2 condition number provides a relationship between the various sized updates and provides a way of choosing between sized updates. A common theme for the measures is the importance of the eigenvalues of the updates. Replacing the eigenvalues by a (scaled) norm condition is discussed. Numerical tests are included.

Henry Wolkowicz
Department of Combinatorics and Optimization
Faculty of Mathematics
University of Waterloo
Waterloo, Ontario, N2L 3G1, Canada

Shape Optimizing Eigenvalues of the Laplacian

We present a numerical analysis of a 1956 conjecture of Payne, Polya, and Weinberger. The conjecture asserts that the ratio of the first two eigenvalues of the Laplacian on a bounded domain Ω of the plane with Dirichlet boundary conditions reaches its minimum value precisely when Ω is a disk. A crucial feature of this problem is the loss of smoothness of the objective function at the solution. The following results form the core of our numerical treatment. First, we construct finite dimensional families of deformations of a disk equipped with a uniform triangulation. This permits the formulation of a discrete model of the problem via finite element techniques. Second, we build on the work of M. Overton to derive optimality conditions in terms of Clarke's generalized gradients for nonsmooth functions. These ideas are then combined into an algorithm and implemented in Fortran.

J-P. Raeberly
Fordham University
Bronx, NY

Bounds for Eigenvalues and Singular Values of Matrix Completions

Two kinds of completion problems are discussed:

- Identification of the least upper bound and of the greatest lower bound for the p-th eigenvalue of hermitian completions of a given $n \times n$ partial matrix (the eigenvalues of a hermitian matrix are arranged in the non-increasing order).

- Identification of the greatest lower bound for the p-th singular value of completions of a given $m \times n$ block triangular partial matrix (again, the singular values are arranged in the non-increasing order).

The second problem may be viewed as an extension to other singular values of Parrott's theorem (S. Parrott, J. Funct. Anal. 30 (1978), 311-328). The Toeplitz case will also be discussed.

The talk is based upon joint work with I. Gohberg, L. Rodman, and T. Shalom.

Hugo J. Woerdeman
Department of Mathematics
The College of William and Mary
Williamsburg, Virginia 23187

Advantages of Differential Dynamic Programming

Over Stage-Wise Newton's Method for Optimal Control Problems

This paper examines the analytical and computational differences between Differential Dynamic Programming (DDP) and stage-wise Newton's method, which are both quadratically convergent methods for solving discrete-time optimal control problems. Results presented indicate DDP converges in many fewer iterations and with less CPU time than that required by Newton's method. In addition, the numerical results indicate that Newton's method is more likely to require a shift procedure to overcome problems with non-positive definite matrices. Reasons for these differences are explained. For difficult, non-convex, large scale example problems, DDP computes solutions over ten times faster than the stage-wise Newton's method.

Christine A. Shoemaker and Li-Zhi Liao
School of Civil and Environmental Engineering
Cornell University
Ithaca, N.Y. 14853 USA

Numerical Solution of an Optimal Control Problem arising in Phase Field Models

This talk is concerned with the numerical solution of an optimal control problem governed by a parabolic PDE with a free boundary. The free boundary is handled using the enthalpy method. This leads to a system of nonlinear parabolic PDEs defining the state. We focus on the optimization part of the control problem discussing how to incorporate its structure and how to deal with the scale induced by discretization.

M. Heinkenschloss
Universität Trier
FB IV - Mathematik
Postfach 140392
D-W-5500 Trier
Federal Republic of Germany
Solution of a Nonlinear Boundary Control Problem by Reduced SQP

We present a new approach for the numerical solution of a control problem governed by a nonlinear diffusion equation. Problems of this type occur for example when firing ceramic products in a kiln. We interpret the discretized problem as a constrained minimization problem, and we use a suitable representation for the null space of the Jacobian of the constraints to develop a reduced secant method which exploits the sparsity pattern of the Jacobian and offers practicable storage requirements. Compared to Newton's method for the unconstrained problem the proposed algorithm avoids the solution of nonlinear equations per iteration and the computation of second derivatives. A fast two-step superlinear convergence can be observed numerically.

F.-S. Kupfer and E. W. Sachs
Universität Trier
FB IV - Mathematik
Postfach 3825
D-W-5500 Trier
Federal Republic of Germany

A New Homotopy Method for Solving the H^2 Optimal Model Reduction Problem

The optimal model reduction problem, arising from various engineering applications, is one of the fundamental problems in control and system theory. Current methods for solving this problem include reducing the problem to the optimal projection matrix equations, which are then solved by a homotopy method. For a large system the computer time needed to obtain a satisfactory solution may be prohibitive. The new approach we propose is to apply a probability-one homotopy method directly to the cost function and use far fewer independent variables than the optimal projection equation approach, thereby considerably reducing the execution time and storage requirements. Several examples are given and the results of the new approach are compared with those obtained by the current methods.

Yuzhen Ge, Layne T. Watson
Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061-0106
Emmanuel G. Collins, Jr.
Harris Corporation
P.O. Box 94000
Melbourne, Florida 32902

An Application of Semi-infinite Programming Methods to Nonlinear Approximation Problems

We consider the problem of uniform approximation by rational functions over compact sets. Such problems can be easily reduced to semi-infinite programming problems; unfortunately, these SIP problems are nonlinear and usually nonconvex. A method for finding global solutions to this type of SIP problems is described; it generates a sequence of (usually large scale) linear programming problems. Strategies for the reduction of the size of these LP problems based on their special structure are also investigated and illustrated on numerical examples.

Mirjana D. Asic
Department of Mathematics
The Ohio State University
Newark Campus, University Drive
Newark, OH 43055-1787
Vera V. Kovacevic-Vujicic
Department of Mathematics
Faculty of Organizational Sciences
University of Belgrade
ul. Jove Ilica 154
11040 Belgrade - Yugoslavia

New Method of a Global Optimization

Most practical problems are described by complex nonlinear equations (differential, discrete, combinatorial, etc.). A new method of optimization of a re-definition of the functional over a wider set and a deformation of the functional on the initial and additional sets is proposed. The method allows (a) to reduce the initial complex problem of optimization to a series of simplified problems, (b) to find the subsets containing the points of global minimum and to find the subsets containing better (or worthier) solutions than the given one, (c) to obtain a lower estimate of the global minimum. The author applied this method to many technical problems: control, automation, aviation, aerodynamics, econometrics, games, theory of counter strategy, etc.

Alexander A. Bolonkin
Courant Institute of Mathematical Sciences
New York, USA

Efficient Hybrid Techniques for Solving some Global Optimization Problems

In this talk we discuss a number of hybrid techniques that seem to be worthwhile for the solution of bilevel, bilinear and nonconvex quadratic programs. The procedures are based on Sequential LCP or parametric optimization and incorporate interior point methods or descent algorithms for nondifferentiable optimization. Computational experience is included to show the appropriateness of these methodologies.

Luis N. Vicente and Joaquim J. Judice
Departamento de Matematica
Universidade de Coimbra
3000 Coimbra
Portugal

Potential Transformation Methods for Global Optimization

Several techniques for global optimization treat the objective function as a force-field potential. In the simplest case, trajectories of the differential equation \(\dot{x} = -V_x \) sample regions of low potential while retaining the energy to surmount passes possibly leading to even lower local minima. A potential transformation is an increasing function \(V: R \to R \). It determines a new potential \(g = V(f) \), with the same minimizers as \(f \), and new trajectories satisfying \(\dot{x} = -Vg = -\nabla Vf \). We discuss a class of potential transformations that greatly increase the attractiveness of low local minima. As a special case, this provides a new approach to Griewank's equation [JOTA 34(1988)11-30].

Jack W. Rogers, Jr.
Division of Mathematics
Auburn University, AL 36849

Robert A. Donnelly
Department of Chemistry
Auburn University, AL 36849

A Global Convergence Theory for a Trust Region Algorithm for Constrained Optimization

A global convergence theory for a trust region algorithm for solving the large, smooth nonlinear programming problem is presented. The algorithm is a generalization of the Steiglitz-Toi dogleg method for the unconstrained case, via a Vardi subproblem. Using the augmented Lagrangian as merit function, a scheme for updating the penalty parameter is discussed and global convergence theorems are established.
MONDAY PM

J. E. Dennis, Jr.
Maria Cristina Maciel
Department of Mathematical Sciences
Rice University, P.O. Box 1892
Houston, Tx 77251.

An Implicit Trust Region Algorithm for Constrained Optimization

In order to solve the problem
\[\min f(x); g(x) = 0; \quad x \leq x \leq x. \]
we consider algorithms that at each iteration solve
\[\min \nabla f(x^k)^T d + \frac{1}{2} d^T M d + \frac{\alpha^k}{2} d d^T \]
\[s.t. \quad g(x^k) + g(x^k) d^k = 0; \quad x \leq x + d^k \leq x. \]

Although the direction \(d^k \) is also the solution of some trust region problem we find advantages in manipulating \(\alpha^k \) instead of the size of the region. We establish asymptotic properties of the direction for large \(\alpha^k \). This allows us to design a globally convergent algorithm. Under reasonable assumptions this algorithm is superlinearly or quadratically convergent.

Frédéric BONNANS and Geneviève LAUNAY
INRIA - Projet PROMATH, Domaine de Voluceau,
BP 105, 78153 Rocquencourt, France.

Numerical Experience with a Merit Function for Inequality Constraints

Recently, Boggs, Tolle and Kearsley suggested a merit function for inequality constrained nonlinear programming problems. The merit function has many desirable properties. In this talk, we discuss the numerical effectiveness of this merit function for solving large scale, inequality constrained, nonlinear programs using the sequential quadratic programming (SQP) algorithm

Anthony J. Kearsley
Department of Mathematical Sciences
Rice University
Houston, TX 77251-1892

Another Look At Direction Finding Methods

Solving inequality constrained nonlinear programming problems by the method of feasible directions requires the solution of a linear or quadratic programming subproblem to determine an improving direction. Important consideration is the length of the direction vector. Several direction finding methods have been proposed, all of which impose a length constraint while using a gradient projecting criteria. A new formulation is suggested in which the trade-off between length and projection is made explicit in a quadratic objective function. Computational experience on published test problems will be reported.

Mark Cawood
Michael Kostreva
Department of Mathematical Sciences
Clemson University
Clemson SC 29634-1907

Parallel Extreme Point Algorithms for Linear Programming

We view the linear program as a search graph. A node in this graph corresponds to a (row) basis, and an arc connects nodes whose corresponding bases differ in only one vector. Each node has a cost corresponding to the objective function value of the basis (plus penalties for violated constraints). A monotone path has successive nodes of non-increasing value. Searching for an optimal solution can be done in two ways: (a) taking parallel monotone paths, or (b) speeding the traversal of one monotone path. We discuss some strategies for parallel search. For the other approach, we present a non-deterministic algorithm based on revised simplex. The algorithm specification is architecture-free.

Mohan Sodhi
John Mamer
Anderson Graduate School of Management at UCLA
405 Hilgard Ave.,
Los Angeles CA 90024.

An Algorithm for a Class of Continuous Linear Programs

This paper discusses a class of continuous linear programs posed in a function space called separated continuous linear programs (SCLP). A dual linear program and a corresponding discrete approximation are introduced followed by a discussion of their properties. The discrete approximation gives rise to an improvement step which is constructed from any given feasible (non-optimal) solution to SCLP. A strong duality result follows from this. There are a variety of possible implementations of an algorithm for solving SCLP problems using this improvement step. Finally some computational results are given from one possible implementation.

Malcolm Craig Pullan
Judge Institute of Management Studies
Mill Lane
Cambridge CB2 1RX, England

New directions for progress in linear and nonlinear programming.

Recent rapid progress in linear programming due to the use of interior point methods raised some challenging problems, in particular, of parallel acceleration and numerical stability [compare our paper in Computers and Mathematics with Applic., Modified Barrier Function Method and Its Extensions, vol. 20, pp. 1-14, 1990]. We will present some new techniques for such problems and demonstrate their efficacy.

Prof. Victor Pan
Department of Mathematics and Computer Science
Lehman College/CUNY
250 Bedford Park Blvd., West
Bronx, New York 10468

Perturbation analysis of Hoffman's bound for linear systems

In 1952, A. Hoffman published a bound on the distance from any point to the solution set of a linear system. This bound subsequently has found applications in the sensitivity analysis of linear programs and the convergence analysis of descent methods for linearly constrained minimization. In this talk, we give simple necessary and sufficient conditions under which the constant in Hoffman's bound is bounded under local perturbations on the linear operator and local/global perturbations on the right hand side. Also, we relate these conditions to a uniform boundedness property of the vertex solutions. This work may have additional co-authors.

Zhi-Quan Luo
Department of Electrical and Computer Engineering,
McMaster University, Hamilton, Ontario, L8S 4L7, Canada

Paul Tuning
Department of Mathematics,
University of Washington, Seattle, WA 98195, U.S.A.
Stability of the Optimal Solution of a Linear Program to Simultaneous Perturbations of All Data

Consider a linear programming problem having a unique nondegenerate basic optimal solution. We are interested in checking whether the set of optimal basic indicators remains stable under simultaneous/mutually independent perturbations of all data within given tolerances and, in the positive case, in computing the exact bounds on the optimal solutions of the perturbed problems. These questions arise naturally e.g., in case of inexact data and cannot be seemingly solved by known parametric LP methods. We construct four nonlinear matrix equations having unique matrix solutions. If the diagonal vectors of the four matrices satisfy some conditions, then the problem is basis stable in the above sense and the four diagonal vectors form the exact bounds on the optimal solutions of the perturbed primal and dual problems.

Jiri Rohn
Dept. of Applied Math.
Charles University
Malostranske nam. 25
11800 Prague
Czechoslovakia

Interval Methods for Degenerate Linear Programs

We describe a simplex-like algorithm for Linear Programming which maintains reliability even for highly degenerate problems. The algorithm is based on a method of Fletcher [1] which dualizes the problem when degeneracy occurs. The original method of Fletcher has a guarantee of termination, but although it works usually well in practice there is no guarantee that it terminates at the exact solution. As a remedy we use interval arithmetic [2] to control the roundoff error so that we obtain guaranteed bounds for the solution, which are refined by an iterative process.

References

Frank Plab
Edinburgh Parallel Computing Centre
University of Edinburgh
Edinburgh, Scotland, UK

Optimization of Large Structural Systems By Using Karmarkar's Method

Optimum design of structures is an engineering field where optimization techniques have been used from several years ago. Even though many of the problems are nonlinear they are sometimes solved by a sequence of linearization procedures. The method proposed by N. Karmarkar for linear programming claims to be more efficient than simplex methods for large size problems containing several hundred or thousand variables and conditions.

In this paper Karmarkar's method is used to solve some examples of optimum structural design as size optimization of trusses and shape optimization of steel cable in prestressed concrete beams. Each example is modeled with increasing range of variables and conditions in order to check effectively of the method to the problem scale.

S. Hernandez, J. Mata, and J. Doria
Department of Mechanical Engineering
University of Zaragoza
Maria de Luna, 3
50015 Zaragoza, SPAIN

A Modified Termination Rule for Karmarkar's Algorithm

In this note we have proposed a modified termination rule for Karmarkar's algorithm for linear programming. It enables the algorithm to save a large number of iterations (about 80 percent) and ensures its early termination compared to that of Karmarkar.

J.N. Singh
College of Business Management
Chapra, Pin. 841301
Bihar, INDIA

D. Singh
Department of Humanities and Social Sciences
I.I.T. Bombay
Bombay 400 076, INDIA

Applications of Linear Programming to Medical Diagnosis

We give application of interior point methods to medical diagnosis in this paper. Suppose that we have two pattern sets A and B which include features of cancer and non-cancer respectively. We find a pair of parallel planes which separate some points of A from B by solving 2n linear programming in each step. We can completely separate A from B by a finite number of steps, t.e., we can construct discriminant function f, such that f(a) > 0, f(b) = 0. Initial tests for samples of stomach cancer show that this method is efficient.

Xu Shu Rong et al.
Department of Computer Science
Zhongshan University
Guangzhou, China

Barrier Methods for Large-scale Nonlinear Programming

Barrier methods transform a constrained optimization problem to a sequence of unconstrained problems. We discuss the use of Newton-type methods to solve these unconstrained problems. Issues of stability and efficiency will be discussed, particularly in the large-scale case. Numerical experiments will be reported.

Stephen Nash and Ariela Sofer
ORAS Department
George Mason University
Fairfax, VA 22030

IMAGE RECONSTRUCTION FROM NOISY PROJECTIONS: A REGULARIZED DUAL-BASED ITERATIVE METHOD.

An iterative method for a problem of image reconstruction from noisy projections which is a large scale optimization problem is presented. The method uses a regularization of the objective functional and is based on its dual formulation which is
MONDAY PM

a semi-separable convex minimization problem with linear constraints, where the function to be minimized is the sum of a Burg entropy and a quadratic function. From the special structure of this new formulation in combination with a Bregman's type method, a computationally attractive algorithm emerges and its convergence properties are proved.

ALFREDO NOEL IUSEM
Instituto de Matemática Pura e Aplicada
Estrada Dona Castorina, 110
IMPA - RIO DE JANEIR; RJ - CEP 22460
BRASIL

Numerical Experience with the Modified Barrier Functions Method for Linear-Constrained Optimization Problems
We report our computational experience with the Modified Barrier Functions (MBF) method for solving optimization problems with linear constraints. The numerical realization of the primal MBF method leads to Newton's method for finding a minimum of a strongly convex and smooth function, and updating the dual variables by using a simple formula. A primal-dual approach based on MBF also leads to solving a Lagrangian system of equations by the Newton method. In both cases the key procedure is the solution of a normal system of equations (a least squares problem).

The numerical results for linear, quadratic and convex programming problems with linear constraints are discussed.

D. Jensen, R. Polyak, and R. Schneur
IBM Thomas J. Watson Research Center
Yorktown Heights, NY 10598

The Nonconvex Separable Resource Allocation Problem with Continuous Variables
New results are presented for solving the well-known nonlinear programming problem: Minimize $F = \sum f_i(x_i)$ subject to $\sum x_i = X$ and $x_i \geq 0$ which has been studied over the past thirty years in numerous application areas. Whereas current solution methods are restricted to convex $f_i(x_i)$, the new results allow the functions $f_i(x_i)$ to be nonconvex and multimodal, with any number of maxima and minima over $[0,X]$. Necessary and sufficient conditions characterizing the local minima of $F(x_1, x_2, ..., x_n)$ are derived which enable the determination of all minimum points of $F(x_1, x_2, ..., x_n)$ and hence its global minimum. The results are used to solve examples which no other analytical criteria can solve.

Emile Haddad, Ph.D.
Department of Computer Science, Virginia Polytechnic Institute and State University, 2978 Telestar Court, Falls Church, VA 22042

Optimization of Interactions in an Interconnected System
The problem of improving the performance of an interconnected dynamical system consisting of a gas turbine engine coupled to an airframe operating throughout the whole flight envelope in the presence of predominantly destructive dynamical interactions is addressed in this paper. It is shown that by optimizing the interactions between these subsystems significant performance improvements over previous control schemes can be obtained.

Ronald A. Perez
Mechanical Engineering Department
University of Wisconsin-Milwaukee
Milwaukee, WI 53201

Hierarchical Controls in Stochastic Manufacturing Systems with Convex Costs
We study production planning problems with unreliable machines. The method of hierarchical controls has proved effective in reducing the overall complexities of these problems. The idea is to construct an asymptotically-optimal control for the original problem from a near optimal control for a simpler limiting problem. So far the asymptotic errors have been obtained only for systems with linear production cost functions.

We present a new method to enable us to handle systems with general convex cost functions.

S. Sethi, Q. Zhang, and X. Y. Zhou
Faculty of Management
University of Toronto
246 Bloor St. W.
Toronto, Ontario
M5S 1V4 Canada

Methods of Solution of Boundary Value Problem of Optimal Theory
The author considers the usual optimal control problem of minimizing the functional among all the solutions of the differential system. The problem is solved by the following new methods: Method of Piecewise Optimization, Method of Sliding along a Directrix, Method of Descent along Phase Trajectories, Method of Iterations, Method of Descent in State Space.

Alexander A. Bolonkin
Courant Institute of Mathematical Sciences
New York, USA

On Certain Optimization Problems in Banach Spaces with Nonsmooth Equality Constraints
The problem of finding the tangent space in optimization problems with equality constraints is crucial in determining necessary conditions of optimality. The classical Lusternik theorem about the tangent space requires the operator F that describes equality constraints to be of class C^1 in the neighborhood of x_0. Here, a certain generalization of the Lusternik theorem which requires that the operator F be only differentiable at x_0 and Lipschitzian in its neighborhood is presented. Application to some general optimization problems in Banach spaces with mixed equality and inequality constraints is shown. The theory is illustrated with an example.

Urszula Ledzewicz-Kowalewka, Department of Mathematics and Statistics, Southern Illinois University at Edwardsville, Edwardsville, IL 62026;
Stanislaw Walczak, Institute of Mathematics, University of Lodz, 90-238 Lodz, Poland.
Comparative Study of Stochastic Approximation Algorithms in the Multivariate Kiefer-Wolfowitz Setting

Stochastic approximation (SA) algorithms are used to find a root of the multivariate gradient equation that arises in function minimization problems for which only noisy measurements of that function are available. This type of problem can be found in neural network training, stochastic optimization, adaptive control, etc. This paper studies three SA algorithms in the multivariate Kiefer-Wolfowitz setting: standard finite-difference SA (FDSA) of Kiefer-Wolfowitz (1952), Blum (1954), random-directions SA (RDSA) of Kushner-Clark (1978), and simultaneous-perturbation SA (SPSA) of Spall (1988, 1992). These algorithms have been shown to be almost surely convergent to the root and to produce estimates having asymptotically normal distributions. The efficiency of the algorithms are judged from the mean square errors of the estimates. Although it is impossible to make a completely general statement about the efficiency of the algorithms, both theoretical and numerical studies indicate that SPSA tends to be more efficient than FDSA or RDSA in most cases of practical interest, especially in high-dimensional problems.

Daniel C. Chin
The Johns Hopkins University, Applied Physics Laboratory
Johns Hopkins Road
Laurel, Maryland 20723-6099

Comparison of approximate and exact solution methods for network location problems.

Medium to large network location problems have been solved approximately with considerable success. Standard techniques focus on the sequential choice of locations, often based on greedy heuristics. At the same time, exact solutions methods to solve network location problems have recently embodied Lagrangian relaxation methods. Their success depends crucially on Lagrangian heuristics to generate feasible incumbents. To analyze the relationships between the two approaches, we provide a Lagrangian framework which enables us to rank well-known heuristics and to produce estimates having asymptotically normal distributions. The efficiency of the algorithms are judged from the mean square errors of the estimates. Although it is impossible to make a completely general statement about the efficiency of the algorithms, both theoretical and numerical studies indicate that SPSA tends to be more efficient than FDSA or RDSA in most cases of practical interest, especially in high-dimensional problems.

Geraldo H. Mateus
Universidade Federal de Minas Gerais,
Departamento de Ciencia da Computacao
Jean-Michel Thizy
Faculty of Administration,
University of Ottawa

Sensitivity of the Time Bounds for Network Flow Path Searches when Critical Nodes Are Altered.

It will be explained how to optimize the traffic flow (throughput) across the movement network of paths and cross-corridors generated by digital terrain map A* grid search algorithms. In this approach, in order to determine the sensitivity of the overall network movement graph to changing the flow values at certain critical nodes, the solution searches for the goal node over the whole path space. Some theorems will be used to compute time bounds for the number of paths searched (in terms of the maximal number of incoming and outgoing edges at a vertex) using this procedure to compute a maximal and minimum cost flow.

Dr. Andrew W. Harrell
U.S. Army Waterways Experiment Station
Mobility Systems Division
Vicksburg, MS 34181

An Implementation of a Parallel Interior Point Method for Multicommodity Flow Problems

An implementation of the primal-dual predictor-corrector interior point method is specialized to solve linear multicommodity flow problems. The block structure of the constraint matrix is exploited via parallel computation. The bundling constraints require the Cholesky factorization of a dense matrix. A method that exploits parallelism for the dense Cholesky factorization is described along with the resulting implementation. The implementation is 70 to 90 percent efficient, depending on the problem instance. For a problem with K commodities, a speedup for the interior point method of 0.8K is realized.

Guangy Li
CRPC and Dept. of Mathematical Sciences, Rice University
Irvin J. Lustig
Dept. of Civil Engineering and Operations Research, Princeton University

A General Overshipment Solution to Transportation Problem of Three Dimensions

In this paper the general solution of the Hitchcock transportation problem resulting from the application of the method of reduced matrices is emphasized. The initial solution have some negative \(X_{ij} \) values. A useful interpretation of such negative values may lead to overshipment solutions. Methods of finding optimal overshipment solutions are discussed.

Dr. Nabih N. Mikhail
Department of Mathematics
Liberty University
Box 20,000
Lynchburg, VA 24506-8001

A primal-dual interior point method with cutting planes for the linear ordering problem.

We describe a cutting plane algorithm for the linear ordering problem, using linear programming relaxation. The linear ordering problem is an NP-hard combinatorial optimization problem with many applications, including triangulation of input-output matrices. The linear programs which arise are solved using a primal-dual interior point method. The method we use attempts to detect cutting planes early, in order to avoid vertices of the polyhedra of the relaxations. Computational results are presented. A simplex-based cutting plane algorithm for this problem has previously been described by Grötschel, Jünger and Reinelt (Operations Research 32(1984) pp1195-1220).

John E. Mitchell
Dept of Mathematical Sciences
Rensselaer Polytechnic Institute
Troy NY 12180
Brian Borchers
Dept of Mathematical Sciences
Rensselaer Polytechnic Institute
Troy NY 12180

Three Approximation Algorithms that Minimize the Rectilinear Steiner Tree on a Hypercube Network

This paper presents a generalization of the rectilinear Steiner tree from the plane to the m-hypercube and also three approximation algorithms that solve the generalized problem. The three approx-
Practical Heuristics For Scheduling Precedence Graphs Onto Multiprocessor Architectures

The scheduling problem is the problem of optimally mapping the modules of an application program represented as a directed-acyclic graph, onto a hardware architecture so that the final completion time of the application is minimized. It is well known, except for some special cases, that this problem is NP-Complete. Many heuristics have been developed; however, the important issue of data dependencies among modules and the inter-processor communication overhead have been neglected or strongly restricted. In this paper we propose more practical heuristics that include the above mentioned parameters. We extend the BWARCFF (earliest task first) heuristic to handle complete heterogeneous architectures, and observe that a random scheduling of

the source modules could result in a less efficient schedule, a point that was overlooked. Also, for this architecture an assumption is made that algorithmic edges are always mapped to architecture edges, although a more efficient communication path could exist. Furthermore, we lift the above assumption and consider incomplete, as well as complete hardware architectures. So, in addition to selecting processors for module execution, we also select optimal communication channels for message transfers.

Kiran Bhutani
The Mathematics Department
The Catholic University Of America, Washington D.C

Abdella Battou
The Electrical Engineering Department
The Catholic University Of America, Washington D.C

Integer Search Method

Optimizing the plan manufacturing products is referred to the Integer Programming (IP). It is an important problem how effectively to solve IP. The current methods for IP are almost finding in the real domain indirectly. It appears that the potential advantage of integer number does not be explored thoroughly and the computational complexity is added implicitly. The Integer Search Method (ISM) is closely combining the cutting method with the search method in the integer domain. ISM greatly explores the effect of the
own character of IP on the solving process and breaks free from conventions of the current methods for IP.

Wu Xingbao
Department of Applied Mathematics
Wuhan College of Metallurgic Management Cadre
Renjia Road, Wuhan, Hubei, Zip Code, 430081
People's Republic of China

Newton Modified Barrier Function Complexity for Quadratic Programming Problems

The numerical realization of the Modified Barrier Function method for the Quadratic Programming (QP) problems leads to the Newton MBF method. It was shown that for any nondegenerate QP problem there exists a so-called "hot start". From this point on, after each large multipliers update, subsequent iterations remain in the Newton area for the new function associated with the new multipliers. That means that the "hot start" or, rely on the Newton steps necessary after each update in order to reach the next update. Newton steps are necessary after each update in order to reach the next update. All results can be extended to nondegenerate convex programming problems.

A. Meleman, Coftech
R. Polyak, IBM J J Watson Research Center

Interior Point Algorithms and Dynamic Systems

In this paper a unified view point for handling variety of interior point algorithms in solving LP problems presents an incentive mechanism that encourage polluters to reduce their discharges to proper level in a cost-effective manner. It is shown that in CEIS optimal pollution taxes is to be proportional to the dual of the problem. Numerical experiments with real-life data are also analyzed.

Optimization Modelling for Neural Networks and Mathematical Biology

This paper presents some of the applications of optimization to the mathematical modeling of problems associated with neural networks and mathematical biology. The problems pertaining to neural networks include such applications as the dynamics of pattern retrieval, which entail network equilibrium properties, and learning rules which can be modeled by nonlinear optimization functions. The associated problems in mathematical biology include such applications to population dynamics, dynamic diseases, competition models, epidemic models and their spatial spread. The application of variational inequalities to these problems is also discussed.

Future directions of the research are discussed.

Dr. Richard S. Segall
Eastern Kentucky University
Department of Mathematics, Statistics and Computer Science
Richmond, KY 40475-3133

Optimal Regularity of Equilibria and Material Instabilities

The study of regularity of weak equilibrium solutions to, for instance, nonlinear systems of pde's originating from applications in continuum physics is still in its early stage. Within this context, there are very few known (Ball, Morrey, Murat, Virga...) results which, from a practice viewpoint, seem fundamentally dependent on the (a priori) availability of equilibrium solutions. Using the field theory of variational calculus, I will be presenting my recent result on optimal regularity of such solutions along with its connection to material instabilities (e.g. fracture). Remarks on a (new) seemingly promising approach to this study will be proposed.

Salim M. Haidar
Northern Michigan University
Department of Mathematics and Computer Science
Marquette, MI 49855

Functions with Unstable Images: Cracks.

The main subject of this paper deals with the conditions under which a continuous function f has an unstable image, crack C. This subject is...
motivated by the study of the converse problem of controllability and of attainable sets.

For the case when C is an (~1)-dimensional manifold, we characterize cracks that admit "escape fields". Then we discuss the nonnegativity of a related function and the zero topological index condition on C. For the case when the dimension of C is lower (which appears to be qualitatively different), we studied the sufficient conditions for a set C to be a crack, respectively a local crack of

Guangxiong Fang, Engineering, Math and Science Division, Daniel Webster College, Nashua, NH 03063

Jack Warga, Department of Mathematics, Northeastern University, Boston, MA 02115

Optimization Model Management

The practical, day-to-day use of an LP, MILP, or NLPIIP model requires not merely solving the model, but rather managing it. Optimization model management (MM) encompasses not only the basic tasks of matrix generation, solution, and report writing but also a host of essential supporting tasks: symbolic model formulation, database management, scenario (case) management, solution analysis and query, ad hoc reporting, and results presentation. The advent of desktop computing is stimulating development of new MM techniques and software products. This presentation offers (1) an overview of MM functions and requirements and (2) a quick survey of leading-edge MM software.

David S. Hirshfeld
MathPro Incorporated
1019 19th Street, N.W.
Suite 1300
Washington, DC 20036

Graph-Grammars for Network Flow Modeling

Graph-grammars provide a theoretically grounded, powerful, and graphical mechanism for manipulating graphs. We used graph-grammars to develop modeling tools for a wide variety of mathematical models that are conveniently expressed as graphs, e.g., project management, decision analysis, vehicle routing. We present the application of graph-grammars to minimum cost network flow modeling and discuss a prototype implementation.

Christopher V. Jones
Simon Fraser University
Faculty of Business Administration
Burnaby, B.C., V5A 1S6 Canada

AIMS: An Environment for Advanced
Integrated Modeling Support

The AIMS system is designed to support mathematical programming modeling activities in an operational environment. In such an environment there is a need for a powerful modeling language as well as a fast and interactive modeling system capable of interact with other software systems. The current modeling systems that support large-scale linear, nonlinear, mixed-integer and combinatorial programming models have been designed for modeling in a strategic planning environment. In such an environment the requirements for speed and a sophisticated modeling language have been less pronounced. During the presentation the distinct features of the AIMS system will be discussed, and future developments will be outlined.

Johannes J. Bisschop
Department of Applied Mathematics
Technical University Twente
P.O. Box 217
7500 AE Enschede
The Netherlands

An Introduction to ASCEND: Its Language and Interactive Environment

Recently there has been a growing realization among researchers and practitioners that current technologies do not adequately support mathematical modeling "in the large". In this paper, we discuss a technology called ASCEND, which addresses this issue. We describe two aspects of the technology: a modeling language and an interactive modeling environment. The ASCEND language is structured, declarative, and strongly typed, and incorporates object-oriented extensions. The interactive environment is based on the notion of a concurrent set of tools which reflect the various phases of ASCEND modeling. These tools do not enforce a strict sequence of operations, but rather have been designed to support the flexible access implied by declaratively specified models. Algebraic equational models are the current class of models that can be specified and worked with in ASCEND.

Ranayya Krishnan,
Peter Fiesler,
Arthur Westerberg
Carnegie Mellon University,
Pittsburgh, PA 15213

Design/Analysis Process Integration for Shape Optimization of Mechanical Parts

Shape Optimization is becoming an increasingly important aspect of the design automation process. Shape optimization requires the ability to define and iteratively control the shape of a part, as the part evolves from some initial state to a converged solution. Both finite element based and geometry-based approaches have been used for formulating and controlling this class of problems. The development of automatic mesh generators, that are capable of producing a valid finite element mesh in a complex domain, have made fair large changes in the part's shape possible. In addition, the use of optimization concepts during the iterative design process have made shape optimization of large scale 3-D structures possible in a practical design environment.

Srinivas Kodiyalam
Solid Mechanics Program
General Electric Company
Building K-1, Room 2A25
F.O. box 8
Schenectady, NY 12301

Conjugate Directions Methods for Large-Scale Optimization

Large-scale NLP problems require enormous calculations. Most existing methods are not suitable for such problems. Following the approach for large-scale unconstrained problems, a concept of constrained conjugate directions is presented. Starting with a quadratic problem having equality constraints, the constrained conjugate directions

method is developed, proving its finite convergence and other properties. The method is then extended for general nonlinear problems. Descent function, restart parameter, and step size determination are discussed. The method is evaluated using some 150 NLP problems of varying difficulty and dimensions. The new method solves most of the problems, thus the basic concept of the method is validated. For a large-scale-structured optimization problem, the method is more efficient than the SQP method, by a factor of 3 in one case.

Jasbir S. Arora, Professor
Guangyao Li, Graduate Research Assistant
OPTIMAL DESIGN LABORATORY
College of Engineering
The University of Iowa
Iowa City, Iowa 52242

Optimization Methods in Curve and Surface Design
Modern CAD systems often provide the capability for engineers to modify designs by changing design parameters without providing clues as to how these parameters should be modified. Optimization methods allow quantifiable design objectives to guide the modification of these parameters. Examples of design objectives include maximizing part strength, minimizing part weight, and minimizing manufacturing cost. Quantitative objectives allow the computer to perform the tedious iterative adjustments of design parameters which have traditionally been carried out iteratively at CAD terminals. This talk will explore some of the optimization techniques which can be used to produce better designs while significantly reducing the cost of producing them.

Thomas A. Grandine
The Boeing Company
P.O. Box 24346, MS 7L-21
Seattle, WA 98124

Data-Parallel Optimal Shape Design of Airfoils
The emergence of scalable, massively parallel computers has made it possible to solve some practical shape optimization problems, such as optimum wing design, and to envision the optimal design of a complete aircraft within the coming decade. Here, we describe data-parallel algorithms and data structures for a class of nonlinearly-constrained optimal shape design problems. We also describe an implementation on the Connection Machine CM-200 of a shape optimization methodology for airfoil design, using the full-potential approximation of the Navier-Stokes equations for flow simulation.

Omar N. Chatti
Carlos E. Gracch
Carnegie Mellon University, Pittsburgh, PA

Computational Issues in the Interior Point Methods
Interior point methods used to solve linear programming problems are investigated. Specific computational issues are discussed using five netlib problems. A primal-dual projective algorithm (solved by both the Big M and the Two Phase Methods), an affine-scaling algorithm, and a path-following algorithm are investigated and compared.

Geraldine M. Hemmer
Department of Mathematics
Northeastern Illinois University
5500 N. St. Louis Ave.
Chicago, IL 60625-4699

More on Dual Ellipsoids and Degeneracy in Interior Algorithms for Linear Programming
We consider the problem of constructing ellipsoids, to allow the elimination of non-binding constraints, in a dual potential reduction algorithm for linear programming. When the problem being solved is non-degenerate, such a procedure is certain to eventually identify exactly which constraints are active at the solution. However, performance of the basic procedure on even mildly degenerate problems has been disappointing. In this talk we present a new strategy for strengthening the ellipsoid construction, and report results of the new method on problems with varying degrees of degeneracy.

Kurt M. Anstreicher and Jun Ji
Dept. of Management Science
University of Iowa
Iowa City, Iowa 52242

A Long-Step Inverse Barrier Hybrid Algorithm For Linear Programming
The algorithm's direction is a weighted combination of the dual affine scaling (DAS) direction and a quasi-Newton inverse-barrier centring direction that unlike the Newton and the pure DAS directions behaves properly near the boundary. A long step to the boundary is thus possible. The weights forming the combination are obtained by a 2-variable dual simplex planar search making the algorithm a hybrid simplex-interior point algorithm. The algorithm retains DAS's long-step ascent property while eliminating its stopping-the-boundary weakness. Computational results are presented.

Alexander Hipolito
Department of Industrial and Systems Engineering
303 Well Hall
University of Florida
Gainesville, FL 32611

Decomposition in LP based on Modified Barrier Function
We consider two approaches which are based on the Modified Barrier Function (MBF) for the decomposition of a block-diagonal linear programming problem. The first approach is applied to LP with equality linking constraints. Using the MBF we solve the linking constraints. Then we find the minimum of the MBF under the remaining constraints for a fixed penalty parameter and fixed Lagrange multipliers. This minimum is used to update the Lagrange multipliers for the linking constraints. We show that this method has a linear rate of convergence whenever the primal problem has a unique solution. To find the minimum of the MBF we use methods which decompose the problem and enable us to solve the subproblems for every block in parallel.

The second approach we apply to linear programs with equality constraints and non-negative variables. Again the MBF is used to remove the non-negativities and using the MBF minimum under linear constraints, we update the residuals for the dual problem. This method also converges with a linear rate of convergence if the primal problem has a unique solution.

The numerical realization of this method leads to the Newton method. To find the Newton direction one has to solve the normal system of equations which in this case can be decomposed because of the block-diagonal structure of the I.P.

D. Drezner and R. Polyak
IBM T.J. Watson Research Center

Finding Optimal Orthotropic Composites
Many composite materials which appear in nature may be considered orthotropic. The elastic behaviour of these composites under shear stresses is characterized by three independent shear moduli. We consider the totality of orthotropic composites made from two isotropic linearly elastic components in fixed proportion. For a prescribed triple of shear stresses we provide a method for finding the strongest orthotropic
Using Barrier Methods for Solving Large-scale Crystallographic Problems

A central problem of X-ray crystallography is to determine a set of phases corresponding to experimentally measured X-ray intensities. This problem can be formulated as a large-scale nonlinear program. Even small problems in this class can have more than 5,000 variables. Evaluation of the objective function and gradient involves three dimensional Fourier transforms, and the Hessian matrix is both dense and generally indefinite. The nonlinear programs are solved using a barrier approach, with a truncated-Newton method to solve the subproblems.

Optimal Design of Trusses by Smooth and Nonsmooth Methods

The talk will describe methods for optimal design of trusses (bridges, towers, etc.). These problems give rise to models which are large scale and often nonconvex. In important special cases, we derive equivalent formulations which are dramatically simpler (quadratic, or even linear programs). Often the equivalent problems are convex but nonsmooth. We report on the performance of several nonsmooth methods in solving these truss design problems.

On-line Optimal Control of a Large-Scale Water System

The paper describes an application of mathematical programming and network flow theory to the optimal control of the Barcelona water system. The importance of the application lies in its reduction of the operation costs, mainly related to the treatment and pumping operations from the rivers to different elevations in the city, and the maintenance of a good quality of service to the users of the network.

The problem presents high dimensionality, constraints on states and controls and a nonlinear performance index; so that conventional dynamic programming techniques are not appropriate. The adopted method caters for these problems successfully and has been implemented in programming for on-line operation in the Barcelona telecontrol system.
Shape Matching via Piecewise Linear Approximation

The shape matching problem is concerned with fitting an input shape, represented by a set of discrete boundary data, to a defect-free shape. The proposed optimal approach is to minimize the Euclidean error norm of the boundary data with respect to the model shape. The analysis of polygonal objects is particularly important to automated inspection due to the large number of production parts with this type of profile. It is especially crucial to many machine vision applications, because an arbitrary shape can always be approximated by a polygon. This presentation will include two shape representation schemes, the matching procedure, and some computational results.

Jose A. Vounga and Jen Ming Chen
Department of Industrial and Management Systems Engineering, The Pennsylvania State University
207 Hammond Bldg., University Park, PA 16802

Numerical experiments with an interior point method for large sparse convex quadratic programming.

For theoretical and practical reasons, quadratic programming problems (QP) have attracted the interest of the mathematical programming community. In particular, interior point-like algorithms have been extended to deal with QP problems due to their relative success for solving large-scale LP problems in polynomial time. In this work we will present an implementation of the interior point algorithm proposed by Goldfarb and Liu. The algorithm is based on the logarithmic barrier function method. It requires the solution of an equality constrained strictly convex quadratic problem at each Newton iteration. The implementation relies on the iterative solution of the Kuhn-Tucker equations associated with this problem with a preconditioned conjugate gradient-like method. We present a numerical comparison on a set of non-trivial strictly convex problems.

J.L. Morales-Pérez and R.W.H. Sargent
Centre for Discrete Mathematics and Theoretical Computer Science
U.K.

A New Modified Newton Method for Large-Scale Quadratic Programming

We describe a new efficient method to solve general large-scale quadratic programming problems. In theory the method is globally and superlinearly convergent and in practice the method is efficient and robust. The method is applicable to both positive-definite and indefinite QPs. We discuss the ideas behind the algorithm and the theoretical results and will present numerical results.

Thomas F. Coleman, Computer Science Department, Cornell University, Upson Hall, Ithaca, New York, 14853

Jianguo Liu, Department of Applied Mathematics, Cornell University, Sage Hall, Ithaca, New York, 14853

A Robust Algorithm for Special Quadratic Programming

To develop a robust trust region algorithm for nonlinear programming, one needs an efficient, reliable algorithm for equality constrained quadratic programming (QP). In the context of nonlinear programming, the quadratic programming algorithm not only must be able to compute the solution to the QP if it has a unique solution, but it must be able to handle lack of second-order sufficiency in the QP. Thus, the algorithm must find a good descent direction of zero or negative curvature when the quadratic objective function is unbounded below on the feasible set. If the QP has an infinite number of solutions, then the algorithm will calculate the shortest of these. We use the Bundle-Purtell decomposition and shifted Power iterations to reach all the goals mentioned above. This approach is much (more than 20 times) cheaper than the eigen-decomposition approach. Also, it is easy to exploit parallelism by using this approach. Our numerical results show that both the sequential version and the parallel version of this algorithm are efficient.

Guangye Li
John E. Dennis, and Karen A. Williamson
CRPC and Dep't. of Mathematical Sciences, Rice University

Implementation of a Schur-Complement Method for Large-Scale Quadratic Programming

Many engineering applications lead to large and sparse numerical optimization problems. These applications include data fitting, trajectory optimization and optimal design for fluid dynamics.

One of the most successful methods for solving numerical optimization problems is sequential quadratic programming. This talk focuses on quadratic programming which constitutes the inner-loop of this optimization method.

In particular, this talk describes implementation of a quadratic programming method based on a sparse symmetric matrix factorization and use of its Schur complement. A factorization of the Schur complement is updated to account for changes in the active set of constraints.

Theoretical aspects of the method, such as the possibility of successive equality constrained problems, will be considered. In addition, the problem of obtaining a feasible point will be examined. Test results on "real-world" engineering problems will be presented along with proposed extensions to the current work.

Paul Frank and John Betts
Boeing Computer Services
Seattle, WA

Proximal Minimizations with D-functions and the Massively Parallel Solution of Stochastic Networks

We will present algorithms for the solution of LINEAR stochastic network problems on massively parallel computers. The algorithms combine primal-dual, row-action algorithms with the proximal minimization with D-functions. Numerical results and comparisons with epsilon-relaxation algorithms will be reported.

Stavros A. Zenios
Soren S. Nielsen
Decision Sciences Department
The Wharton School
University of Pennsylvania
Philadelphia, PA 19104

Between November 1990 and October 1991, the center for Discrete Mathematics and Theoretical Computer Science (DIMACS) sponsored a cooperative "algorithm: implementation contest" among members of the research community. Participants implemented algorithms for Maximum Flows, Min-cost Flows, Assignment, and (nonbipartite) Matching problems, and performed experimental studies of algorithmic performance. A DIMACS group provided standard problem definitions and input formats, and suggested tests of the algorithms. The results of the project were presented at a workshop in October 1991. Several programs, instance generators, and related files are available from DIMACS through anonymous ftp.

Catherine C. McCarthy
Department of Mathematics
Amherst College
Amherst, MA 01002

Finding the Minimum Cut in a Network

We consider the problem of finding the minimum capacity cut in a network G with n nodes. This problem has applications to network reliability and survivability and is useful in subroutines for other network
optimization problems. One can use a maximum flow problem to find a minimum cut separating a designated source node s from a designated sink node t, and by varying the sink node one can find a minimum cut in a sequence of at most n maximum flow problems. We then show how to reduce the running time of these n maximum flow algorithms to the running time for solving a single maximum flow problem.

Jianxiu Hao
GTE Laboratories Incorporated
40 Sylvan Road
Waltham, MA 02254

James B. Orlin
MIT Sloan School of Management
Cambridge, MA 02139

A New Computational Approach to the Protein Folding Problem

Protein folding problems can be expressed as optimization problems. Unfortunately, the optimization formulation usually requires a global minimizer of a nonlinear function of many variables - a very difficult problem. In this talk, we discuss a new approach to this problem emphasizing computational issues, including the use of parallelism. Preliminary computational results will be presented.

Thomas F. Coleman, Computer Science Department,
Cornell University, Upson Hall, Ithaca,
New York, 14853

Diagnosing Infeasibilities in Network Flow Problems.

In this talk, we will discuss a new approach to diagnosing infeasibilities in network flow problems. The protein folding problem can be expressed as a minimum cut problem in a network. We will present an overview of the computational issues, including the use of parallelism. Preliminary computational results will be presented.

Thomas F. Coleman, Computer Science Department,
Cornell University, Upson Hall, Ithaca,
New York, 14853

Renormalization Group and the Protein Folding Problem

We will present an overview of general global optimization techniques which may be applicable to the protein folding problem. In particular, we will describe the application of renormalization group methods, which have been successful in other difficult problems in statistical physics, in this context. This approach can be used to provide a novel, deterministic computational annealing procedure that should be applicable to a variety of global minimization problems with partially-separable objective functions.

Pance M. Pardalos
University of Florida, Gainesville, FL
David Shalloway
Cornell University, Ithaca, NY
Splitting Methods for Symmetric Affine Variational Inequality Problems, With Application to Extended Linear-Quadratic Programming

We show how, under a semi-quadratic assumption, an extended linear-quadratic programming problem can be converted into a symmetric affine variational inequality problem. This reformulation provides the basic framework for the potential application of a host of matrix splitting methods, exact or inexact, for solving the extended linear-quadratic program.

Jong-Shi Pang
Department of Mathematical Sciences
Johns Hopkins University
Baltimore, MD 21218-2489

Forward-Backward Splitting in Large-Scale Optimization

Among splitting methods for large-scale optimization, the forward-backward algorithm holds special potential because it requires backward steps on only one of the component mappings. It can be used to solve saddle point problems, in which the Lagrangian is the sum of two expressions, one of which is highly separable while the other is far from separable. Such problems cover a wide range of models in dynamic and stochastic optimization. For these, forward-backward splitting leads to decomposition into separate subproblems to be solved in each time period. New convergence results support the viability of such an approach.

George H.-G. Chen
Department of Applied Mathematics
University of Washington
Seattle, WA 98195

R. Tyrrell Rockafellar
Dept. of Math./Dept. of Applied Mathematics
University of Washington
Seattle, WA 98195

Line-search Techniques for Quasi-Newton Methods in Equality Constrained Optimization

Quasi-Newton methods with line-searches are not easy to implement in equality constrained optimization. The nice combination of the BFGS formula and the Wolfe line-search cannot be readily extended because of the difficulty in realizing the positivity of \(\frac{1}{2} \delta^2 \), where \(\delta^2 \) is the change of some gradient and \(\delta^2 \) is some corresponding step. It is known that this extension can be done when only the projected Hessian of the Lagrangian is updated. A way of realizing this consists in modifying the search path at the step-size trials where the Wolfe condition is not satisfied. The path becomes piecewise linear and, asymptotically, only one evaluation of the reduced gradient is necessary per iteration.

We will present further theoretical results on this subject, including a discussion on the connection between the line-search method and the update criterion, which determines when an update is appropriate. We will also present numerical experiments comparing different implementations with the SQP method.

Jean Charles Gilbert, INRIA – Rocquencourt
BP 105, 78153 Le Chesnay Cedex, France.

A Penalty Function Approach to the General Bilevel Problem

The bilevel programming problem is a two level mathematical program:

\[
\min_{x,y} \quad f(x,y), \\
\text{s.t.} \quad G_i(x,y) \geq 0, \quad \forall i \in R = \{1, \ldots, r\}, \\
y \text{solves} \quad \min \quad f(x,y), \\
\text{s.t.} \quad g_i(x,y) \geq 0, \quad \forall i \in P = \{1, \ldots, p\}.
\]

We propose solving the problem by replacing the inner problem by the Kuhn-Tucker first order necessary optimality conditions and then solving the resulting single level problem by an exact penalty function technique. We will present both theoretical and preliminary numerical results, as well as discussing some of the difficulties and advantages of such an approach.

Paul H. Calamai
Department of Systems Design Engineering
University of Waterloo
phcalamai@diax.waterloo.edu
Lori M. Case
Department of Computer Science
University of Waterloo
lmcase@eumman.waterloo.edu
Andrew R. Conn
T. J. Watson Research Center
P. O. Box 218, Yorktown Heights, N. Y. 10598
arconn@watson.ibm.com

A Trust Region Method for Nonlinear Optimization Problems

In this paper, we consider the optimization problem with nonlinear equality constraints

\[
\min_{z} \quad f(z), \\
\text{s.t.} \quad c(z) = 0,
\]

where \(f(z) : \mathbb{R}^m \rightarrow \mathbb{R}^1 \) and \(c(z) : \mathbb{R}^m \rightarrow \mathbb{R}^n, m \leq n \). The usual Newton or quasi-Newton method has to deal with a full Hessian which is an \(n \times n \) matrix. Therefore, it is not suitable for solving large problems. Here we suggest a reduced Hessian algorithm with a double dogleg method to solve the trust region subproblem approximately. The detail of the algorithm will be discussed and test results from different sets of problems will also be presented.

Yuan-Ann Fau
IMSL, Inc., 2500 Permain Tower, 2500 CityWest Blvd.,
Houston, TX 77042

Jianshong Zhang
Department of Mathematics, City Polytechnic of Hong Kong,
Tai Chee Avenue, Kowloon, Hong Kong

Detong Zhu
Department of Mathematics, Shanghai Normal University,
200034, Shanghai, China

The Value Function in Hierarchical Optimization

We consider the properties of the value function of perturbed hierarchical, two-level, optimization problem. The properties of the value function are one measure of the stability of an optimization problem. We show that Lipschitz type properties of the argmin multifunction for the lower level problem translate into Lipschitz properties of the value function for the whole problem. This, combined with nonsmooth analysis, may be used to derive optimality conditions for hierarchical optimization problems. The conditions required for this work and their implications for the study of the argmin of the whole hierarchical optimization problem will be discussed.

Jay S. Treiman
Western Michigan University, Kalamazoo, MI
Roxin Zhang
Northern Michigan University, Marquette, MI
TUESDAY PM

Parallel Implementation of Truncated Newton Methods

We describe the parallel implementation of a class of truncated Newton methods for the solution of large-scale unconstrained optimization problems. These methods are of particular interest in computation because analytic derivatives are available, such as potential energy minimization for large molecules, or neural network training. The methods are characterized by: a) approximate solution of the Newton equation by Krylov subspace methods, with a truncation criterion based on norm of the residual, and b) approximation of the required Hessian-gradient products by gradients differences. Computational results are presented for solution of a neural network problem on an Intel iPSC/860 MIMD parallel supercomputer.

Robert H. Leary
San Diego Supercomputer Center
P. O. Box 85608
San Diego, CA 92186

Vector Performance Criteria in Unconstrained Optimization

We are concerned with globalization techniques for unconstrained minimization algorithms. Current methods for ensuring global convergence are based on the enforcement of a monotonic decrease of the objective function values. It is known that this requirement may cause severe inefficiencies in the minimization of highly nonlinear functions. To overcome this difficulty, some nonmonotone algorithms have been proposed.

In this work we present a more general theory of global convergence based on the introduction of a vector performance criterion and we relate this approach to the use of vector Lyapunov functions in the stability analysis of dynamical systems.

Luigi Grippo
Dipartimento di Informatica e Sistemistica, Università di Roma "La Sapienza", via Eudossiana 18, 00184 Roma, Italy

Francesco Lampariello, Stefano Lucidi
Istituto di Analisi dei Sistemi ed Informatica del CNR, Viale M. Mondino 30, 00185 Roma, Italy

Implementing a Parallel Asynchronous Newton Method on a Distributed Memory Architecture

A parallel asynchronous version of the Newton method for solving nonlinear optimization problems has been developed. In particular, a hierarchical parallel scheme, whereby r-parallel processors are used within each task, has been proposed. The aim is to investigate the parallel asynchronous behavior of the Newton method for the solution of large scale unconstrained optimization problems on a distributed memory parallel computing environment, to experimentally give evidence of the possible benefits and drawbacks of the asynchronous idea. A set of test problems, with different characteristics, has been used to carry out the numerical experiments, with the aim of evaluating and assessing the behavior of the parallel algorithm when faced with several kinds of problems. The results demonstrate the efficiency of the asynchronous parallel implementation.

Domenico Conforti, Lucio Grandinetti, Roberto Musmanno
Di Elettronica, Informatica e Sistemistica (D.E.I.S.), Università della Calabria
87036 Rende-Cosenza, Italy

Modifying the BFGS Update by Column Scaling Techniques

We consider variable metric algorithms that use an approximation \(B \) to the second derivative matrix in order to calculate the search direction. Specifically, we work with the decomposition \(2Z^T = B^{-1} \). Many researchers have studied modifications of the BFGS update that apply scaling techniques to the columns of the matrix \(Z \). The author has suggested a scaling algorithm that preserves global and superlinear convergence and outperforms the unmodified BFGS update on a range of ill-conditioned test problems. New research in the field including an extension of the new method to large-scale problems is presented.

Dirk Siegel
Department of Applied Mathematics and Theoretical Physics
University of Cambridge
Silver Street
Cambridge CB3 9EW
England

The Global Convergence of a Class of Primal Potential Reduction Algorithms for Convex Programming

We describe the global convergence of a class of interior point primal potential reduction algorithms for the linearly constrained convex programming problem. Interior point algorithms for convex programming have been presented which require that the functions involved satisfy an unusual Lipschitz condition. Our algorithm is the first potential algorithm which does not impose any such condition. The directions used by our class of algorithms are sufficiently general so as to include as special case several directions that have been used in the literature in the context of LP problems.

Renato D. C. Monteiro
Systems and Industrial Engineering Department
University of Arizona
Tucson, AZ 85721

On the Affine Trust Region Interior Point Algorithm for Quadratic Programming

The subject of this talk is the theoretical and numerical study of the algorithm for quadratic programming with trust region and affine scaling. We show that, under mild hypotheses, the algorithm converges towards a point satisfying the first-order optimality conditions, and give an estimate of the asymptotic rate of convergence. Our hypotheses are 1) the linear independence of gradients of active constraints and 2) that the quadratic problems have all positivity conditions are deleted or converted to equalities have at most one solution. We discuss the numerical implementation and give numerical results that indicate a good behavior for a number of test problems.

M. Bouhout and F. Bonnans
INRIA, BP105, 78153 Rocquencourt, France

Algorithms for the Convex Inequalities Problem

Let \(f_1, f_2, \ldots, f_m \) be twice continuously differentiable convex functions. Let \(G = \{ x : f(x) \leq 0 \} \). Then there exists a unique \(\bar{x} \) in the closure of \(G \), such that \(\| \bar{x} \| = \inf_{x \in G} \| x \|_2 \). We develop a globally convergent algorithm that generates sequences \((x_k) \) and \((y_k) \) such that \(f(x_k) \leq y_k \) and \(y_k \) converges to \(\bar{x} \) under the minimal assumption that the set \(\{ x : f(x) \leq 0 \} \) is non-empty.
As a special case, when \(\beta = 0 \), any accumulation point of the sequence \(\{x^n\} \) belongs to the set \(\{x: f(x) \leq 0\} \).

Motakuri Venkata Ramana and Shih-Ping Han
Department of Mathematical Sciences
The Johns Hopkins University
Baltimore, MD 21218-2689, USA

Experimentation with the Interior Cutting Plane Method (ICPM)
The interior point cutting plane method essentially applies to convex programming. It deals with a linear relaxation of the original problem. The relaxation is made of supporting and separating hyperplanes which are sequentially generated by a so-called oracle. The ICPM strives to follow the central path of the current linear relaxation, but the path is modified by the introduction of new cutting planes. This strategy makes it possible to solve a convex programming problem by generating only a few cutting planes.

The method has been subject to rather extensive testing on a variety of problems, ranging from geometric programming, to standard nondifferentiable programs and to the decomposition of linear programming problems. It has been found robust and reliable. We shall discuss the equation error and the output least squares

problems. It has been found robust and reliable. We shall discuss the equation error and the output least squares.

J.-L. Goffin
Faculty of Management
McGill University
1051 Sherbrooke St. West
Montreal, P.Que., H3A 1G5, Canada

J.-P. Vial
Département d'économie commerciale et industrielle
Université de Genève
2 rue de Candolle
CH-1211 Genève 4, Switzerland

Optimization Methods for Elliptic Systems
Systems of semilinear elliptic partial integro-differential equations arise in the study of competitive systems, optimal damping, and semiconductor modeling. These systems may be transformed to compact fixed point problems by premultiplying by the inverse of the highest order term, typically a Helmholtz operator. The resulting problems can often be attacked with conventional Newton-like methods, such as Broyden's method or the chord method, if a good preconditioner can be found. The search for such preconditioners is made complicated in many applications by large convection terms and/or nonsmooth nonlinearities. In this presentation I will discuss some of the issues that arise in construction of preconditioners and proofs of superlinear convergence.

C. T. Kelley
North Carolina State University, Raleigh, NC

Numerical Methods for Nonlinear Parabolic Control Problems
Many optimal control problems with partial differential equations described by evolution processes occurring e.g. in heat conduction can be reformulated as optimization problems. Often the constraints and the objective function in the optimization formulation exhibit a special structure which can be used for the design of fast numerical algorithms. Also the choice of function spaces is an issue which influences the results on the convergence for the numerical methods. We discuss some of these features for Sequential Quadratic Programming and related methods. We present numerical results for some nonlinear boundary control problems.

F.-S. Kupfer and E. W. Sachs
Universität Trier
FB IV - Mathematik
Postfach 3004
W-5500 Trier
Germany

Parallel Optimization in Groundwater, and Petroleum Resources Management
A number of optimization problems arise in the management of groundwater and petroleum resources. The dominant computational expense in these NLP is the solution of the p.d.e. that describe flow in porous media. We will describe an approach to such problems that integrates domain decomposition methods with NLP algorithms, thereby exploiting computational parallelism.

Our idea is based on the observation that in the context of NLP, domain decomposition methods contain implicit constraints which should be made explicit in the NLP. We will discuss our approach for the case of a parameter identification problem from subsurface flow.

Robert Michael Lewis
Department of Mathematical Sciences
Rice University
Houston, Texas 77251-1892

Augmented Lagrangian and SQP Techniques for Nonlinear Illposed Inverse Problems
Augmented Lagrangian techniques are robust solvers for nonlinear illposed inverse problems combining the equation error and the output least squares techniques. Their convergence is analyzed and their numerical behaviour is compared for different norms in the observation space as well as between regularization in parameter and in output space. Reduced SQP-methods are then compared to the augmented Lagrangian technique both with respect to convergence rate and numerical behaviour. Finally second order update augmented Lagrangian techniques are described and compared to SQP methods. Numerical results are given on identifying interfaces from boundary measurements.

Karl Kunisch
Technische Universität Graz
Institut für Mathematik
Koperniksgrasse 24
Graz
AUSTRIA

Computational Comparison of Two Methods for Constrained Global Optimization
Computational results comparing two different linearly constrained concave global minimization algorithms, evaluated on the same set of test problems, will be presented. The first method is a stochastic approach which applies a pair of bayesian stopping rules involving the number of total local minima found and the fraction of the domain explored. The second method is a deterministic approach utilizing linear underestimators and sufficient condition tests.

J.B. Rosen
Computer Science Department
University of Minnesota
4-192 EE/CESci Building
200 Union Street S.E.
Minneapolis, MN 55455

A.T. Phillips
Computer Science Department
United States Naval Academy
572 Holloway Road
Annapolis, MD 21402-5002
TUESDAY PM

COMPUTATIONAL APPROACHES FOR SOLVING QUADRATIC ASSIGNMENT PROBLEMS

We will present heuristics and exact algorithms for solving the quadratic assignment problem (QAP). Computational results will be presented based on classical test problems available in the literature and problems generated by a new test problem generator. We will also discuss parallel algorithms for solving the QAP and present preliminary computational results.

Yong Li, Penn State University, Computer Science Dept., University Park, PA 16802
Panos M. Pardalos, University of Florida, Dept. of Industrial & Systems Engineering, Gainesville, FL 32611

An MILP Relaxed Dual Formulation For The GOP Algorithm

In Floudas and Visweswaren (1990), a new global optimization algorithm (GOP) was proposed for solving constrained nonconvex problems. The approach involves the decomposition of the original problem into primal and relaxed dual subproblems that are solved iteratively to converge to the global solution. In this paper, a new formulation of the relaxed dual problem, where binary variables are introduced to represent combinations of bounds of the variables, is proposed. The reformulation enables the solution of all the relaxed dual problems at each iteration through a single mixed-integer linear programming (MILP) problem. The reformulated MILP approach is illustrated through a simple example and comparisons with the original algorithm are presented.

V. Visweswaren and C.A. Floudas and Brigitte Jaurand Department of Chemical Engineering Princeton University Princeton, N.J. 08544-5263

Minimizing the Lennard-Jones Potential function on a Massively Parallel Computer

The Lennard-Jones potential energy function arises in the study of low-energy states of proteins and in the study of cluster states. This paper presents a mathematical treatment of the potential function, deriving lower bounds as a function of the cluster size, in both two and three dimensional configurations. These results are applied to the minimization of a linear chain, or polymer, in two-dimensional space to illustrate the relationship between energy and cluster size. An algorithm is presented for finding the minimum-energy lattice structure in two dimensions. Computational results obtained on the CM-5, a massively parallel processor, support a mathematical proof showing an essentially linear relationship between minimum potential energy and the number of atoms in a cluster. Computational results for as many as 30000 atoms are presented. This largest case was solved on the CM-5 in approximately 40 minutes at an approximate rate of 1.1 gigaflops.

G.L. Xue, R.S. Wietcz
Army High Performance Computing Research Center 1100 South Washington Avenue
Minneapolis, MN 55415

J.B. Rosen
Computer Science Department
University of Minnesota
200 Union Street S.E.
Minneapolis, MN 55455

The Functionality of ADIFOR

Library packages for optimization either expect the user to provide code for the Jacobians or the Hessians required by the optimization algorithm, approximate the required derivatives by finite differences, or else have gone to great length to develop derivative-free algorithms. However, given the code defining the objective function and the constraints, the techniques of automatic differentiation support the computer generation of code defining the derivatives using the chain rule. ADIFOR (Automatic Differentiation In FORtran) is a Fortran source-to-source translator. Given Fortran code for a function, ADIFOR employs the data analysis capabilities of the ParaScope Fortran programming environment to generate portable Fortran 77 code. The calling sequence for the ADIFOR-generated code is a straightforward extension of the calling sequence for the original code. The generated code uses a hybrid combination of the forward and reverse modes of automatic differentiation to compute the derivatives. ADIFOR preserves the parallelization and vectorization already present in the code and extends the scope of possible further parallelization and vectorization.

George Corliss
Mathematics and Computer Science Division
Argonne National Laboratory

The Performance of ADIFOR codes

The ADIFOR project’s goal is to provide exact (up to machine precision) derivatives of functions defined by Fortran programs as cheaply as possible. This talk outlines the implementation of ADIFOR and presents experimental results indicating that the time required for ADIFOR-generated codes to compute exact derivatives is quite competitive with divided differences on the examples given, which symbolic differentiation would almost certainly fail. We conclude that ADIFOR-generated derivatives are a more than suitable substitute for hand-coded or divided-difference derivatives, especially considering that the availability of exact derivatives may significantly increase the efficiency of codes in which good derivatives are critical to convergence.

Alan Carle
Center for Research on Parallel Computation
Rice University
P. O. Box 1892
Houston, TX 77251-1892

Automatic Differentiation in Nonlinear Programming and Parameter Identification

In this talk we will discuss how automatic differentiation makes feasible the solution of some ODE inverse problems. Our algorithms for estimating the parameters that appear in ordinary differential equation models are based on a nonlinear programming framework, and by incorporating the structure of the parameter identification problem into the optimization algorithm, the calculation of analytical derivatives required for the optimization becomes both tractable and cheap.

Alan Carle, John E. Dennis, Jr., Guangye Li and Karen A. Williamson
Center for Research on Parallel Computation
Rice University
P. O. Box 1892
Houston, TX 77251-1892

Experience with Various Automatic Differentiation Tools in Orthogonal Distance Regression

In this talk, we examine the effect of using Jacobian matrices obtained by automatic differentiation on the performance of the orthogonal distance regression package JDRPACK. Analyzing regression problems arising at NIST, we compare results obtained using Jacobian matrices generated by automatic differentiation tools such as ADIFOR with
results obtained using a divided difference Jacobian. Several characteristics are considered, including the quality of the solution, the size of the resulting generated code, and the CPU time required to obtain the solution.

Janet E. Rogers
Applied and Computational Mathematics Division
National Institute of Standards and Technology
Boulder, Colorado 80303-3328

A Scaling Technique for Finding the Weighted Analytic Center of a Polytope

Let a bounded full dimensional polytope be defined by the system $Ax \geq b$ where A is an $m \times n$ matrix. Let a_i denote the ith row of the matrix A, and define the weighted analytic center of the polytope to be the point that minimizes the strictly convex barrier function $-\sum_{i=1}^{m} w_i \ln(a_i - b)$. The proper selection of weights w_i can make any desired point in the interior of the polytope become the weighted analytic center. As a result, the weighted analytic center has applications in both linear and general convex programming. If some of the w_i's are much larger than others, then Newton's method for minimizing the resulting barrier function is very unstable and can be very slow. Previous methods for finding the weighted analytic center relied upon a rather direct application of Newton's method potentially resulting in very slow global convergence. We present an enhancement of Newton's method that is based on the scaling technique of Edmonds and Karp. The scaling algorithm runs in $O(\sqrt{m} \log W)$ iterations, where m is the number of constraints defining the polytope and W is the largest weight given on any constraint. The complexity of each iteration is dominated by the time needed to solve a system of linear equations.

David S. Atkinson
University of Illinois at Urbana-Champaign, Urbana, IL

Pravin M. Vaidya
University of Illinois at Urbana-Champaign, Urbana, IL

Adding and Deleting Constraints in a Path-Following Method for Linear Programming

We analyse the effect of shifting, adding and deleting respectively of a constraint on the position of the analytic center, the distance to the central path, and the value of the potential function. Based on the obtained results we are able to analyse a strategy for building up and down the linear program while using a path-following method. We will prove that in the worst case the complexity is the same as the complexity of the standard path-following method. In practice this build-up and down scheme is likely to save much computational effort. The method starts with a (small) subset of the constraints, and follows the corresponding central path until the iterate is close to (or violates) one or more of the constraints. Then these constraints are added to the current system. On the other hand, when the current iterate is close to the central path, constraints which, in some sense, lie far from the iterate, are deleted. This process is repeated until we reach an optimal solution.

D. de Hertog
Delft University of Technology, Delft, The Netherlands

C. Roos
Delft University of Technology, Delft, The Netherlands

T. Terlaky
Delft University of Technology, Delft, The Netherlands

On the Convergence of Interior-Point Methods to the Center of the Solution Set in Linear Programming

The notion of the central path plays an important role in the convergence analysis of interior-point methods. Many interior-point algorithms have been developed based on the principle of following the central path, either closely or otherwise. However, whether such algorithms actually converge to the center of the solution set has remained an open question. In this paper, we demonstrate that under mild conditions, when the iteration sequence generated by a primal-dual interior-point method converges, it converges to the center of the solution set.

Yin Zhang
Department of Mathematics and Statistics
University of Maryland, Baltimore County
Baltimore, Maryland 21228

Richard A. Tapia
Department of Mathematical Sciences
Rice University
Houston, Texas 77251-1892

Interior-Exterior Augmented Lagrangian Approach for LP

We consider LP problems of the form

$$\begin{align*}
\min_{x} & \quad \mathbf{c}^T x \\
\text{subject to} & \quad A x = b, \quad L x \leq u, \\
& \quad x \geq 0
\end{align*}$$

where A is an $m \times n$ matrix, \mathbf{c} is a vector, and b, L, u, and u are vectors.

We are going to use a path-following method and define the central path $x(t)$ as the solution of the system $\nabla_h f(x(t)) + \lambda(t) A^T A x(t) = 0$, where $f(x) = \frac{1}{2} x^T A^T A x$. The central path is a curve in the interior of the feasible region that converges to the solution as $t \to 0$. The path-following method is based on the idea of Newton's method for solving nonlinear systems of equations.

We will prove the convergence of the path-following method to the center of the solution set.

Non-classical Gauss-Newton Methods

The classical Gauss-Newton method for nonlinear least squares may converge to a point that is not a stationary point if the sequence of Jacobians approaches a loss of rank. This talk introduces a new class of line-search algorithms which in the search direction at each iteration is an unmodified Gauss-Newton direction, possibly different from the classical Gauss-Newton direction. Global convergence to a stationary point is a consequence of the fact that, in the worst case, the Gauss-Newton direction that is used is actually the steepest-descent direction.

C. Fiala
Statistical Sciences, Inc.
Department of Mathematics
P.O. Box 218
Yorktown Heights, NY 10598

Finding the Global Minimum of Nonlinear Least Squares Using Real and Interval Arithmetic

We address the problem of finding the global minimum of a nonlinear least squares problem with box constraints (NLSB). These problems are currently solved by using software, either for local minimization of NLSB-problems or for global minimization of general box constrained problems. We combine real and interval arithmetic in using a stabilized

TUESDAY PM
TUESDAY PM

Gauss-Newton algorithm for local minimization and a revised interval analysis method for excluding subregions not containing local minima. The proposed algorithm is suitable for implementation on parallel computers of MIMD-type. Now a sequential implementation is discussed and compared to the interval analysis method.

Jerry Eriksson
University of Umeå, Umeå Sweden
Per Lindström
University of Umeå, Umeå Sweden

Relationship between Structured and Factorized quasi-Newton Methods for Nonlinear Least-Squares Problems

Recently, structured quasi-Newton methods have been studied by Sheng Songbai and Zou Zhihong, and Yabe and Takahashi. In this presentation, we generalize the update of Sheng Songbai et al. and propose a new family corresponding to the Brogan family. Further the relationship between the factorized quasi-Newton family and the structured secant update from the convex class proposed by Martinez is suggested and some numerical experiments are shown.

Hiroshi Yabe
Faculty of Engineering
Science University of Tokyo
Tokyo, JAPAN

An Interior Point Algorithm for Linear Complementarity Problems

Most current interior point methods for the linear complementarity problem can be classified as the potential reduction method and the path-following method. We propose a new approach which solves the corresponding quadratic programming problem directly, using the scaled projections of gradients of the objective function. Then we explore the polynomial-time convergence property of the new algorithms.

Jiu Ding
Department of Mathematics
Southern Station, Box 5045
University of Southern Mississippi
Hattiesburg, MS 39406-5045

A Superlinearly Convergent $O(\sqrt{nL})$-Iteration Predictor-Corrector Algorithm for Linear Complementarity Problems

Ye, Tapia and Zhang proved that a version of Murota-Todd-Ye predictor-corrector algorithm for LP which solves the LP in at most $O(\sqrt{nL})$ iterations has the property that locally the duality gap converges to zero Q-superlinearly. In this paper we extend the algorithm to a class of linear complementarity problems. The extended algorithm possesses the same global complexity and local superlinear convergence property.

Sining Huang
University of Iowa, Iowa city, IA
Jun Ji
Florian Potra
University of Iowa, Iowa City, IA

SOLUTION OF LARGE SCALE-MONOTONE LINEAR COMPLEMENTARITY PROBLEMS

The Linear Complementarity Problem (LCP) consists of finding vectors z and w in \mathbb{R}^n such that

$$w = q + Mt, t \geq 0, z \geq 0, zw = 0$$

where q in \mathbb{R}^n and M in $\mathbb{R}^{n \times n}$ are given. The LCP is said to be monotone if its matrix M is positive semi-definite. In this talk we discuss the most important direct and iterative algorithms for the solution of large-scale monotone LCPs, namely principal pivoting algorithms, damped-Newton and proximal-point procedures, interior-point methodologies and projected-gradient algorithms. A comparative study of the efficiencies of these algorithms which highlights the benefits and drawbacks of each one of the different methodologies.

Joao M. Patricio, Joaquim J. Judice
Departamento de Matematica, Universidade de Coimbra, 3000 Coimbra, Portugal
Luis M. Fernandes
Escola Superior de Tecnologia de Tomar, 2300 Tomar, Portugal

Undamped Newton Method for Solving Linear Complementarity Problems

Linear Complementarity Problems (LCP) arise in economic equilibrium and quadratic optimization problems; therefore many practical problems can be formulated as LCP. Actually, Newton Method is used for solving LCP, but a damped formulation, which requires the use of a stepsize procedure, has to be used in order to attain global convergence. It has been observed that this damped Newton method could become impractical when excessive Armijo-like stepsize procedures have to be performed at many iterations. We prove theoretically that global convergence is guaranteed even if no stepsize procedure is performed; that
Newton's method solves the LCP globally and with a superlinear rate of convergence under conventional assumptions. Numerical experiments support the theory.

Ubaldo M. Garcia-Palomares
Universidad Simon Bolivar
Departamento de Procesos y Sistemas
Apartado 8900
Caracas, 1086. Venezuela

The Barzilai and Borwein Gradient Method for the Large Scale Unconstrained Minimization Problem

We consider the use of the Barzilai and Borwein gradient method for the solution of large scale unconstrained minimization problems. This method requires no line search and so, near the solution, it requires considerably less computational effort than any of the Conjugate Gradient methods.

We discuss the convergence properties of the method and present numerical results.

Marcos Raydan
Department of Mathematics
University of Kentucky
Lexington, KY 40506

The Development of Parallel Nonlinear Optimization Algorithms for Chemical Process Design

... study investigated parallel nonlinear optimization for chemical process design. A sequential successive quadratic programming algorithm was developed with the BFGS inverse Hessian update. Algorithms using a parallel finite difference Hessian, Straeter's parallel variable metric update, and Freeman's projected parallel variable metric update were investigated. Schnabel's parallel partial speculative gradient evaluation techniques was used to calculate the numerical gradient. Simultaneous function evaluations were performed for a parallel line search algorithm. Simultaneous minimizations were performed with the sequential BFGS algorithm for parallel global optimization. The success of these algorithms show potential for efficient minimization of design problems.

Karen A. High
School of Chemical Engineering
Oklahoma State University
Stillwater, Oklahoma 74078

Richard D. La Roche
Gray Research, Inc.
Gray Research Park
655 E. Lone Oak
Eagan, MN 55121

Unconstrained Minimization on Massively Parallel Computers

We describe recent experience with two computational models for massively parallel optimization on high-performance supercomputers, including the next-generation Connection Machine. The "single-problem" model employs fine-grain parallelism to solve large-scale problems. The "multi-problem" model employs large-grained parallelism to address global optimization problems. For the single-problem model, we present comparative results for the Truncated Newton (Nash) and the LM-BFGS (Nocedal and Li) on a number of large-scale test problems. We discuss performance in terms of kernel speed, iterations, and code adaptability. For the multi-problem model, we present results for stochastic global optimization of several nonconvex test problems using standard algorithms for local search. We discuss performance in terms of speed, number of local searches, and convergence behavior of the local search routines.

Robert S. Maier and Guo-Liang Xue
Army High Performance Computing Research Center
University of Minnesota
Minneapolis, MN 55419 USA

On the Detection and Exploitation of Unknown Sparsity Structure in Nonlinear Optimization Problems

Given a known sparsity structure, dramatic computational improvements can typically be realized through the use of specialized linear algebra routines and/or the use of graph coloring algorithms to efficiently generate Hessian approximations. In practical applications, however, the true structure of a problem may not be obvious to the unsophisticated user, or may even be specified incorrectly. Another difficulty involves problems for which the sparsity structure changes during the iteration.

We investigate the consequences of errors in the assumed sparsity structure, and present an inexpensive algorithm for detecting significant errors. Global convergence is demonstrated in a trust region framework.

Richard G. Carter
AIPGCR, University of Minnesota

Fixed-Point Quasi-Newton Methods

We study iterative methods defined by

$$x_{k+1} = \Phi(x_k, E_k),$$

where $$x_k \in \mathbb{R}^n$$ and $$E_k$$ lies on a space of parameters. We establish sufficient conditions for local convergence and for convergence at an ideal linear or superlinear rate. We develop a theory of least-change secant update methods for this class of processes.

Several examples are given showing a wide range of applications of the new theory.

José Mario Martínez
Dept. of Applied Mathematics
IMECC - UNICAMP
CP 6065 - 13081 Campinas SP
E-MAIL: MARTINEZ@BRUC.ANSP.BR

Data Analysis Techniques for Optimization Code Test Results

The comparison of test results for optimization codes involves fairly large sets of multivariate data. This paper presentation considers some of the presentation and analysis approaches which have been used by different workers. These are compared to a variety of techniques recently developed or popularized in statistical research. The availability and ease of use of such methods are considered. The author will attempt to suggest some choices of techniques which require little effort or expenditure from the user but which elucidate important features of test result data.

John C. Nash,
Faculty of Administration,
University of Ottawa,
Ottawa, Ontario, KIN 6N5.
TUESDAY PM

Efficient and Stable Computation of Quasi-Newton Updates

Quasi-Newton techniques are frequently used for the numerical solution of quadratic programming or linearly and nonlinearly constrained optimization problems. The key computational step of these techniques is the updating of a symmetric positive definite matrix after a symmetric rank two modification, involving an addition and a subtraction of dyads. Most current implementations rely on updating the Cholesky factor of this matrix using standard plane rotations. Some inefficiencies and numerical difficulties may arise mainly due to the subtraction operation.

The paper discusses efficient and stable quasi-Newton updates using modified Householder transformations and hyperbolic transformations.

Vasile Sines
Computer Process Control Laboratory
Research Institute for Informatics
7156 Bucharest, Romania

Efficient Parallel Minimization Algorithms in Computational Fluid Dynamics

Parallel computing in computational fluid dynamics has grown increasingly important in the last decade. In particular, parallel solution algorithms for discretization equations constitute a major research field. This presentation concerns the implementation of Snyman's dynamic minimization algorithms as nonlinear solvers for systems of discretization equations in fluid flow and heat transfer. These particular algorithms evaluate only the gradient of the objective function and not the function itself, and are therefore efficient parallel algorithms. Different formulations of the minimization problem for this application, as well as numerical experiments to obtain the parallel efficiency of the minimization algorithms concerned, are presented.

E. de Klerk and J.A. Snyman
Department of Mechanical Engineering
University of Pretoria, Pretoria
Republic of South Africa

1. Pretorius
Department of Computer Science
University of South Africa
Pretoria
South Africa

A Flexible Elimination Method for Nonlinear Constrained Optimization

The authors propose a new elimination method for solving problems in the SQP framework. The theory has its roots in the Brown-Brent methods for nonlinear systems of equations. The practical motivation lies in the nature of many "real-life" problems, especially engineering problems where the constraints are given in the form of differential equations. Such problems, when discretized, are usually large and sparse and have a structure that can be exploited. The proposed method offers a flexible way to solve problems, given a particular structure. The constraints can be processed in groups, aggregated according to various criteria, such as minimum fill-in during solution, degree of non-linearity, or natural grouping. This flexibility makes it possible to solve problems of varying size, sparsity and structure with a single optimization code.

Natalia Alexandrov
John E. Dennis, Jr.
Department of Mathematical Sciences
Rice University, P.O. Box 1892
Houston, TX 77251.

Local convergence analysis of the method of centers

In this talk, we investigate the asymptotic behavior of the method of centers when applied to the nonlinear program min\sum_{i=1}^m g_i(x). This method consists in solving a sequence of subproblems

\[\min p \log(f(x) - t_1) - \sum \log(g_i(x)). \]

We investigate conditions on p which ensure that the solutions x(t_1) form a differentiable trajectory. If x(t) denotes a local solution of the unconstrained subproblem, we define a function h(x(t),t) such that h(x(t'),t) = 0 for a point x' = x(t') satisfying the sufficient second order conditions. We investigate again conditions on p, this time to ensure that h(x(t'),t) \neq 0. This allows us to apply Newton's Method to the function h, thereby yielding a quadratic convergence rate with respect to function values. Finally, we evaluate the tradeoffs of approximately solving the unconstrained subproblems. More precisely, we propose an approximation criterion such that the quadratic convergence rate for the function values is retained, and we evaluate the work needed to obtain such an approximate solution. Improvements are made available by the use of an extrapolation strategy, as used recently in numerically efficient penalty algorithms.

Abdellatif Mansouri
Jean-Pierre Dussault
Adelakn Marnoumi
Département de mathématiques et d'informatique
Faculté des sciences
Université de Sherbrooke
Sherbrooke, PQ, CANADA
JIK 1R1

Bilevel Formulations in Concurrent Modeling of the Design Process

Concurrent modeling, as an emerging theme in engineering design research, also offers interesting new challenges in applied optimization. The basic problem is to include downstream product-life considerations in early design decision-making. In current methods, concurrency has usually been modeled by different multiobjective formulations. As a way to further improve the designer's insight in modeling concurrency, we propose the use of a bilevel formulation and its various interpretations in input optimization and Stackelberg games.

Using applications from mechanical design, this presentation will address nondifferentiability in bilevel models and will report on new computational approaches to solve these models.

J. R. Jagannatha Rao
Assistant Professor
Department of Mechanical Engineering
The University of Houston
Houston, TX 77204-4192.

Nonlinear Programming Model For Software Development Process

Software developer deals with two conflicting objectives of minimizing the resources utilized and maximizing the quality accomplished in the development process. This paper develops nonlinear programming
model that enables a software manager to determine optimal levels of resource allocation in each stage of software development process that maximize the software quality within the given budget. Software quality is described through a number of quality factors such as reliability, maintainability, portability, and etc. Each quality factor is a function of the quality metrics which affect that quality factor. Nonlinear relationship is assumed between resources spent and level of quality metric attained. An example will illustrate the model.

Nalina Suresh
Department of Mathematics
University of Wisconsin-Eau Claire
Eau Claire, WI 54701

A.J.G. Babu
Department of industrial and Management Systems
University of South Florida
Tampa, Florida 33620

An interior-point algorithm for quadratically constrained entropy minimization problems

Entropy minimization problems with linear or quadratic constraints are widely used in engineering and social sciences. Traditionally, the solution of such problems were solved by Lagrange multipliers techniques. Interior point methods, for linearly constrained entropy minimization problems have recently been studied and have proved successful in solving some large scale problems in image reconstruction. We present an interior point algorithm that minimizes a biased quadratic function. The problem is converted to a central path trajectory in the interior of the feasible set. The algorithm was also used by other authors for different problems. The primal-dual gap is made less than a given ε in at most \(O(\ln(1/\varepsilon)) \) steps where \(n \) is the dimension of the problem and \(m \) is the number of quadratic inequality constraints.

Jun Ji
University of Iowa, Iowa city, IA

Florian Potra
University of Iowa, Iowa city, IA

Optimum Design of Rotational Wheel and Casing Structures under Transient Thermal and Centrifugal Loads

Transient thermal and centrifugal loads on turbomachinery rotors have increased with recent increases in gas temperatures and tip speeds. Rotor weights must be decreased to improve rotor dynamics and to reduce bearing loads. Moreover, blade tip clearances must be decreased to improve aerodynamic efficiency. An optimum design technique offering the lightest possible wheel shape under specified stress and clearance limits is therefore required.

This paper introduces an optimum design system developed for turbo-machinery rotors. Sequential linear programming is used in the optimizing process and non-steady-state thermal analyses of wheels and casings are performed by numerically analyzing multi-ring models. Stress and deformation analyses of these wheels and casings are performed by using Donath's method with the same multi-ring model. This optimum design program is applied to the design of multistage axial flow compressor wheels.

Toshio Hattori

The choice of the Lagrange multiplier in the framework of successive quadratic programming method

We study the choice of the Lagrange multiplier for equality constrained optimization problem when the successive quadratic programming strategy is used to solve the problem. Some of the fundamental properties of the distinct Lagrange multiplier formulas will be discussed. The numerical stability of all these Lagrange multiplier formulas and some numerical results will also be presented.

Debora Cores
Richard Tapia
Department of Mathematical Sciences
Rice University, P.O. Box 1892
Houston, TX 77251

Conditions for Continuation of the Efficient Curve for Multi-objective Control-structure Optimization

In recent years there has been considerable interest in bi-objective structural optimization, which gives the designs (known as efficient solutions) where one objective can be improved only at the expense of the other. The optimal solutions to the problem of minimizing the bi-objective cost function \(J = (J_1, J_2) \) can be found by optimizing the convex combination \((1 - a)J_1 + aJ_2 \) of a structural cost \(J_1 \) and a control cost \(J_2 \). A recently developed active set algorithm using homotopy methods to trace the efficient curve has been implemented for the bi-objective control-structure optimization of a ten-bar truss with two colocated sensors and actuators. The efficient curve for this example consists of three disconnected parts. Two parts are discontinuous with stationary solutions bridging the discontinuities. The relevant question is what the conditions are for continuation of the path. This paper attempts to apply Robinson's general theory about the stability of perturbed systems for determining such conditions, and to examine their computational feasibility.

Joanna Rakowska
Department of Mathematics
Raphael T. Haftka
Department of Aerospace and Ocean Engineering
Layne T. Watson
Department of Computer Science
Virginia Polytechnic Institute & State University
Blacksburg, VA 24061-0106

The scaled proximal decomposition on the graph of a monotone operator

We present a different derivation of Spingarn's decomposition method for convex programming (Math.Prog.32,2,1985). It is based on the proximal decomposition on the graph of a maximal monotone operator. The convergence of the method is proved without using the concept of the Partial Inverse. This allows us to add a scaling factor which accelerates the convergence in the strongly monotone case. These results are supported by numerical experiments performed on a minimum facility location problem with mixed polyhedral norms.

Philippe Mahey
Laboratoire ARTEMIS
IMAG, BP 53X, F-38041 Grenoble, France

Pham Dinh Tao
LMAI- INSA Rouen
BP 86, 76131 Most St Aignan
France
TUESDAY PM

Convex Optimization Problem Yields the Markov Process Steady Probability Distribution

We show that the solution of a steady Konoorov system for the markov process probability distribution minimizes the convex function having a form of free energy of the certain thermodynamic system. Based on this observation we deploy numerical methods of convex optimization and statistical mechanics for approximating the steady probability distribution of large-scale markov processes. We apply this approach to performance analysis and optimization of large-scale circuit switched communication networks.

Vladimir Marbukh
Nyc Department of Sanitation
Operations Management Division
125 Worth Street, Room 811
New York, NY 10013

A LAGRANGIAN DUAL APPROACH FOR ASSIGNING TOOLS TO MACHINES IN A FLEXIBLE MANUFACTURING SYSTEM

The flexible manufacturing system (FMS) considered has machines capable of handling several tools stored in a magazine. Magazine capacity is restricted, and tools can occupy more than one unit space. Cluster analysis techniques determine dependency between each pair of tools. Tools common in a production sequence and located in different machines result in FMS travel. A linear integer program is formulated to minimize travel among a predetermined number of machines. Lagrangian relaxation is applied to a set of constraints, resulting in a separable problem. The dual problem is solved by a subgradient algorithm.

T. H. D'Alfonso and J. A. Ventura
Department of Industrial and Management Systems Engineering
The Pennsylvania State University
University Park, PA 16802

Optimal Design for Model \(y = \frac{ax}{(1+bx)} \)

with Multiplicative Error

We solve an optimum experimental design problem which involves a nonlinear statistical model \(y = \frac{ax}{(1+bx)} \) with multiplicative random error. The model has been used in various industrial fields, where it is named as Langmuir model or Michaelis-Menten model. In both finite sample case and asymptotic case, we find the location of the design points (levels) of the control variable and the weight at each point such that the generalized variance of the estimates of the parameters \(a \) and \(b \) is minimized. The assumptions for achieving this optimization are reduced to minimum. The methodology can be applied to other nonlinear regression optimal design problems.

(1) Shankang Qu
(2) Shrinivas Kati
Department of Statistics
University of Missouri-Columbia
Columbia, MO 65211

Pattern Recognition and Classification Using Time Series

Pattern recognition is concerned with comparing a shape \(A \), which is found in a scene, to a set of shapes \(B \), which are pre-stored as reference shapes. Based on a similarity measure, the shape \(A \) will be recognized and classified as one of the reference shapes in \(B \). An investigation of a two-dimensional object recognition technique based on the use of autoregressive-integrated-moving-average (ARIMA) approach is proposed. The boundary profile of the object is first extracted as a set of sequential discrete data. This set of data is then described in a time series manner. An ARIMA scheme is applied to derive the best-fitting model based on statistical evaluation. This recognition process uses the sum of weighted Euclidean distances of the model parameters between the input shapes and the reference shapes. This approach is invariant to the object size, position, orientation, and the starting point.

Jen-Ming Chen, Jose A. Ventura and Chih-Hang Wu
Department of Industrial and Management Systems Engineering
The Pennsylvania State University
207 Hammond Bldg, University Park, PA 16801

Numerical Experiments with One Dimensional Adaptive Cubic Algorithm

A code and numerical experiments with one dimensional adaptive cubic algorithm are presented. It is demonstrated that the algorithm is applicable for full global optimization of a large class of functions including discontinuous and unbounded functions. Experiments with such functions show that successive runs yield monotonically improving results which descend onto the set of all global optimizers, if the sequence of experimental runs is properly organized.

André Ferrari
LASSY, Université de Nice-Sophia Antipolis,
équipe de l'URA 1376 du C.N.R.S.,
41 Bd. Napoléon TII, 06041 Nice, CEDEX, FRANCE

Efim A. Galperin
Département de mathématiques et d'informatique
Université du Québec à Montréal
C.P. 8888, Succ. A, Montréal, Qué., CANADA H3C 3P8

A Random Global Search Technique for Lipschitz Functions

We present results of a random search technique for global optimization of Lipschitz continuous functions. This is in answer to the ongoing challenge of efficient algorithm development in this area. In particular our algorithm is an attempt to approximate Pure Adaptive Search. "Brackets" the level set with upper and lower envelopes, using Lipschitz cones. This paper explores the expected closeness of the bracket to the level set for various functions.

Regina Hunter Mladineo
Management Sciences Dept.,
Rider College, Lawrenceville, NJ 08648.

An Algorithm for Graph Imbedding

An algorithm is presented for imbedding a copy of a graph \(A \) into graph \(B \). The algorithm uses penalty functions which penalize for self-intersection and simulated annealing to minimize the penalty. The algorithm is conveniently implemented on parallel platforms. Assuming imbeddings of \(A \) into \(B \) exist, the algorithm can be used further to search for imbedding with minimum size. Applications for adapting a given parallel algorithm for different parallel platforms are described.

Yaghoot Neuran, Andrew Klinger, Luqing Wang, and Peter Salamon
Department of Mathematical Sciences
San Diego State University
San Diego, CA 92182

The Inverse Shortest Paths Problem

The inverse shortest paths problem in a graph is considered, that is the problem of recovering the arc costs given some information about the shortest paths in the graph. The problem is first motivated by some
T. solve discontinuous piecewise differentiable optimization problems. Y. Andrew R. Conn University of Houston-Downtown, nonsmoothness in the heat approaches. It The descent algorithm elaborated uses active set and restricted penalty approach allows one to consider such problems subject to a constraint may cause larger penalty from other.

A. Ann Arbor, MI 48105 in Finite digit computations. In interval Computer Methods Corporation

Department of Computer Science

Western Michigan University

Dionysios Kountanis

the above mentioned criteria than the previously known algorithms, relative to

Two new algorithms are also presented and analyzed.

Dionysios Kountanis

Western Michigan University

Department of Computer Science

Kalamazoo, MI 49008

Two Approximation Algorithms for the Routing Problem

Several algorithms have been presented in the past that construct approximate solutions to the optimal Rectilinear Steiner Tree problem.

This paper reviews some of the known efficient routing algorithms. These algorithms are experimentally analyzed using their time complexity, total size of the resulting Steiner tree, number of changes in direction, separability and stability as quality measures.

Two new algorithms are also presented and analyzed. It is shown that both algorithms perform better than the previously known algorithms, relative to the above mentioned criteria

Dionysios Kountanis

Western Michigan University

Department of Computer Science

Kalamazoo, MI 49008

Nikolaos T. Liolios

Computer Methods Corporation

2487 Stone

Ann Arbor, MI 48105

Discontinuous Piecewise Differentiable Optimization

A theoretical framework and a practical algorithm are presented to solve discontinuous piecewise differentiable optimization problems. A penalty approach allows one to consider such problems subject to a wide range of constraints involving piecewise differentiable functions. The descent algorithm elaborated uses active set and restricted gradient approaches. It is a generalization of the ideas used to deal with nonsmoothness in the exact penalty function. Numerical results will also be presented.

Andrew R. Conn

T. J. Watson Research Center, P. O. Box 218, Yorktown Heights, N. Y. 10598

Nuclear Cones and Pareto Optimization

We present a general necessary and sufficient existence test for Pareto optimum in a general ordered locally convex space. By this result we can see the importance of nuclear cones in Pareto optimization. Several interesting conclusions are also obtained.

George Isaac

Département de Mathématiques

College Militaire Royal

St-Jc Quebec

Canada, J0J 1R0

STUDY OF SOME MULTIPOOR PLANAR STRIPLINE DISCONTINUITIES OPTIMIZATION OF THEIR CHARACTERISTICS BY CONSIDERATION OF THEIR FORM

This paper presents one approach for the study of multiport planar stripline structures using isotropic or anisotropic substrate.

Our work is based on the combination of the Conventional Boundary Element Method in the Junction, with Equivalent Waveguide Model or Edge Line Concept for the Transmission Lines. Using Green's Formula for the Inner Junction, the Expression of the Electromagnetic Field at Any Point can be obtained. Our Approach Allows Us to Optimize the Characteristics of the Compensated Bend or Tee by Consideration of the Form.

Christian CAVALU, Hervé BAUDRAN

Laboratoire d'Électronique, ENSEEIHT, 2, Rue Charles CAMichel, 31071 TOULOUSE CEDEX

Jacques COUOT

Laboratoire d'Analyse Numérique

Université Paul Sabatier

118, Route de Narbonne

31062 TOULOUSE France

On Width Minimization by Shift Transform Interval Multiplication

Applying interval arithmetic, we may find reliable solution bounds in finite digit computations. In interval function evaluation, we need design algorithms to minimize the width of result intervals. People have studied the standard centered form to bound the range of functions and claimed it is optimal. In this presentation, we treat the centered form as a special case of shift transformation. We present a theorem that the centered form may not be optimal in general. This is because the centerization may cause larger width penalty from other terms. We present algorithms to apply general shift transformations to obtain optimal results for certain functions. Numerical examples will be discussed also.

Chengyi Ru

Department of Applied Mathematical Sciences, University of Houston-Downtown, Houston, TX 77002.
Optimal Sampling Design for Dynamic Systems

We describe the use of Quasi-Newton nonlinear optimization methods to design optimal sampling schemes for dynamic systems. The system is assumed to be described by a set of ordinary differential equations that include a number of physical parameters to be identified. The objective of the optimal sampling design problem is to select values of sampling design variables that minimize the determinant of the theoretical parameter covariance matrix. This criterion is equivalent to minimizing the volume of a statistical confidence region for the parameters. Since the determinant of the parameter covariance matrix involves first order derivatives of the system state variables with respect to the parameters, the gradients of the sampling design objective function are second order derivatives of the dynamic system. One key feature of the numerical approach is the use of dynamic system sensitivity analysis techniques to calculate the needed first and second order derivatives efficiently and accurately. The general approach is applied to a complex biological process that describes the processes and reaction rates involved in the conversion of substrate to biomass, with the consumption of an electron acceptor. In this example, the optimal sampling design approach is used to design batch experiments for use in estimating various biochemical parameters.

James G. Uber
University of Cincinnati
Cincinnati, Ohio

An Algorithm for Solving Linear Inequality System

Solving a system of linear inequalities is one of the fundamental problems in optimization. A descent method to solve the question is presented in this paper. Usually, the descent direction cannot be obtained via the solution of a linear least square problem, otherwise, we need to solve a constrained least square subproblem. The step factor for the search direction is easy to calculate. Numerical experiments illustrate the feasibility of the new algorithm, but an efficient code for solving the special constrained least square problem is necessary.

Jiasong Wang, Professor
Department of Mathematics
Nanjing University
Nanjing, Jiangsu Province
P.R.CHINA 210008

Modelling of the vectors, uniformly-distributed on all directions in some hyperplane intersection

It's considered the method of random vector generation. The vectors must have uniformly distribution and must belong to some hyperplanes. This procedure of modelling is necessary for random search methods where various parameters must be satisfactory for some linear limits. Analogous problem is arrived in optimisation on multicomponent mixture.

First it's used the well-known algorithm of modelling of the points, uniformly-distributed on (n-k)-dimensional sphere (k-number of limits). Then the set of orthogonal transformations is performed in order to transport these points to our n-dimensional space. These transformations are the generalization of the famous Helmert transformation. The method have been used for optimisation problems in hydrogeology and geochemistry.

Genrich Celestin Tumarin
Moscow Geological-Prospecting Institute
Mathematical Modelling
Mikluho-Maklay str., 23, Moscow 117873 USSR

Constructive Neural Network Algorithm for Approximation of Multivariable Function with Compact Support and its Application for Inversion of the Radon Transform

Presenter: Nicolay Mangistak
Institute for Systems Studies
Academy of Sciences
9, Prospect 60-lei
Oktyabrsky, Moscow
117312 Russia

No brief abstract received, only extended (3-page) version.

T-Stationary Replacement for the Average Model of MDP

We consider an unbounded nonstationary Markov Decision Programming (MDP) with the average reward criterion. This problem has been little studied. In our earlier paper (see: 91b-9021 "Math Reviews") we provide a conception T-Stationary replacement property which is extended to average model in this paper. By use of this property the existence of optimal policies is proved under some hypotheses. Our work opens up a new way for the discussion about this field.

Wei Liren
Applied Mathematics Research Laboratory
Hunan Normal University
Changsha, Hunan 410006
People's Republic of China

Solving Linear Stochastic Network Problems using the Proximal Point Algorithm on a Massively Parallel Computer, and an Application from the Insurance Industry.

We use the proximal minimisation algorithm with D-functions (PMD) superimposed on a row-action algorithm for solving linear, two-stage stochastic network problems. The proximal point subproblems decompose by scenario and non-anticipativity is enforced iteratively. Extensive results from an implementation on a massively parallel Connection Machine CM-2 are presented, and an application from the management of a portfolio of insurance products (SPDAs) is discussed.

Soren S. Nielsen
University of Pennsylvania, The Wharton School, Decision Sciences Dept., Philadelphia PA 19104;
Stavros A. Zenios, University of Pennsylvania, The Wharton School, Decision Sciences Dept., Philadelphia PA 19104;

Parallel Constraint and Variable Distribution

Approaches for distributing constraints and variables among parallel processors are described. Each processor handles either a subset of the constraints or the variables with appropriate modifications to the problem. Typically an augmented penalty term is introduced in each subproblem to reflect the variables or constraints not treated by the subproblem. Convergence results and computational experience will be reported.

M.C. Ferris & O.L. Mangasarian
Computer Sciences Department
University of Wisconsin
1210 West Dayton Street
Madison, WI 53706
Parallel Algorithms for Minimizing the Ginzburg-Landau Free Energy Functional for Superconducting Materials

The Ginzburg-Landau theory of superconductivity effectively models many of the observed properties of superconductors, notably the vortex lattice solutions which arise in the "condensed state" when the strength of the applied magnetic field is between two critical values. The solutions can be obtained by using a discretized version of the Ginzburg-Landau free energy functional. The resulting optimization problem can be very large and nonlinear. Other difficulties arise because of the presence of saddle points and degeneracy at the solution. In this talk, we discuss parallel implementation of an inexact Newton strategy for minimizing the free energy functional. The core operation of solution of the damped Newton equations (a large sparse linear system in which the coefficient matrix is a damped version of the Hessian) is performed with a parallel preconditioned conjugate gradient technique.

Paul E. Plassmann and Stephen J. Wright
MCS Division, Argonne National Laboratory
Argonne, IL, 60439, USA

Parallel Optimization in Groundwater and Petroleum Resources Management

A number of optimization problems arise in the management of groundwater and petroleum resources. The dominant computational expense in these NLPs is the solution of the p.d.e. that describe flow in porous media. We will describe an approach to such problems that integrates domain decomposition methods with NLP algorithms, thereby exploiting computational parallelism.

Our idea is based on the observation that in the context of NLP, domain decomposition methods contain implicit constraints which should be made explicit in the NLP. We will discuss our approach for the case of a parameter identification problem from subsurface flow.

Robert Michael Lewis
Department of Mathematical Sciences
Rice University
P.O. Box 1892
Houston, TX 77251-1892

SQP Algorithms for Large-scale Constrained Optimization

We discuss several theoretical and practical issues concerning the extension of sequential quadratic programming (SQP) methods to large problems with equality and inequality constraints. An important feature of the methods to be discussed is the approximation of a reduced Hessian of the Lagrangian function. We shall define certain "pseudo-superbasic" variables and show how they can be used to improve efficiency when strict complementarity does not hold at the solution of a quadratic programming subproblem. Comparisons with NPSOL and MINOS are presented for about 100 small and large examples.

Sanford K. Eldredge
Stanford University, Stanford, CA
Philip E. Gill
University of California at Stanford, Stanford, CA

Large-scale Issues in Newton Methods for Linearly Constrained Optimization

In this talk, we describe Newton methods of the linesearch type that are described. The methods are based on computing directions of sufficient descent and sufficient negative curvature, and are suitable for large sparse problems with linear constraints. The focus of the talk is on how to compute the directions efficiently, and how to combine them in the linesearch. Finally, we discuss the role of the procedures described within algorithms for non-linearly constrained problems.

Anders Forsgren
Royal Institute of Technology
Department of Mathematics
S-100 44 Stockholm, Sweden

Optimization of Complex Aircraft Structures

In this talk, we describe Newton methods of the form: For large problems with equality and inequality constraints. An important feature of the methods to be discussed is the approximation of a reduced Hessian of the Lagrangian function. We shall define certain "pseudo-superbasic" variables and show how they can be used to improve efficiency when strict complementarity does not hold at the solution of a quadratic programming subproblem. Comparisons with NPSOL and MINOS are presented for about 100 small and large examples.

Robert Michael Lewis
Argonne National Laboratory
Department of Mathematics
MC3 Division, Argonne, IL, 60439, USA

WEDNESDAY AM

SQP Methods and their Application to Optimal Trajectory Calculations

A particularly successful application of nonlinear optimization has been in the area of optimal trajectory simulation. Optimal trajectory simulation involves the calculation of the best flight path of a spacecraft or aircraft. Recently, an approach based on Hermite collocation and sequential quadratic programming method NPSOL has been implemented in the optimal trajectory code OTIS. The code has had a significant impact on the area of space vehicle design, and is being used in the calculation of trajectories for the National Aerospace Plane, the Mars Lander and the single-stage-to-orbit test vehicle. We will review the application of SQP methods to optimal trajectory design and describe how the choice of method for the QP subproblem has a substantial effect upon the time needed to compute an optimal trajectory. We conclude by describing recent developments in large-scale optimization techniques that are likely to have an impact on optimal trajectory calculations.

Philip E. Gill
University of California at San Diego, La Jolla, CA
Walter Murray
Stanford University, Stanford, CA
Michael A. Saunders
Stanford University, Stanford, CA
The Complexity of Quadratic Programming

The QUADRATIC PROGRAMMING problem is to maximize a polynomial of degree two, \(f(x) = \sum_{i,j} a_{ij} x_i x_j \), inside the convex set \(Bx \leq c \). Not only is this problem NP-hard, but no polynomial-time algorithm is known for approximating the optimum, even very poorly. Here we give evidence why this is so: assuming that \(\text{P} \neq \text{NP} \), we show that there is no polynomial-time approximation algorithm for QUADRATIC PROGRAMMING. That is, any polynomial-time algorithm will produce estimates which are sometimes off by more than \(\omega(1) \) times the true optimum. The techniques used to establish this theorem stem from the study of interactive proof systems. In particular, we rely heavily on the recent contributions of \([Babai, Fortnow, Lund]\), \([Feige, Go#dawasser, Lovasz, Safra, Stieglitz]\), and \([Feige, Lovasz]\). We derive similar results for some other problems in continuous optimization.

Mihir Bellare
IBM T.J. Watson Research Center, Yorktown Heights, NY

Philip Rogaway
IBM, Austin, TX

ON MINIMIZATION OF CONVEX SEPARABLE FUNCTIONS

We consider the problem of minimizing a convex separable function in \(\mathbb{R}^n \) subject to box constraints and \(m \) equality constraints. We provide a characterization of solutions in terms of an arrangement of hyperplanes in \(\mathbb{R}^m \). We use the characterization to provide an exact algorithm for the problem which takes \(O(n^2m) \) operations (including function inversions). In particular, for the special case of the least-distance problem, we obtain a strongly polynomial algorithm for fixed \(m \), with running time \(O(n^2m) \).

Nainan Kovoor, Penn State University, Computer Science Dept., University Park, PA 16802
Panos M. Pardalos, University of Florida Dept. of Industrial & Systems Engineering, Gainesville, FL 32611

Toward Probabilistic Analysis of Interior-Point Algorithms for Linear Programming, Part 2

This is the second part of our talk on interior-point algorithms. Based on our finite termination result in Part 1, we rigorously show that some random LP problems, with high probability probability converges to one as \(n \) approaches infinity, can be solved in \(O(n \log n) \) interior-point iterations. These random LP problems include Borgwardt’s and recent Todd’s probabilistic models with the standard Gaussian distribution. Our result also holds for the average-case complexity analysis.

Yinyu Ye
Department of Management Sciences
College of Business Administration
The University of Iowa
Iowa City, IA 52242

Numerical Comparisons of Local Convergence Strategies for Interior-Point Methods in Linear Programming

The value of designing interior point methods for linear programming which possess the attribute of superlinear convergence is often questioned by some members of the linear programming community. In this study we present numerical experimentation which demonstrates the positive value of superlinear convergence, and also implies that the positive contribution is not merely a local phenomenon.

Amr El-Bakry
Richard Tapia
Department of Mathematical Sciences
Rice University, P.O. Box 1892
Houston, Texas 77251

Yin Zhang
Department of Mathematics and Statistics
University of Maryland Baltimore County Campus
Baltimore, Maryland 21228

L-INFINITY ALGORITHMS FOR LINEAR PROGRAMMING

We discuss a new \(L_\infty \)-infinitesimal algorithm for finding a feasible point for a linear program. The algorithm requires the same amount of work per iteration as traditional methods that minimize the sum of infeasibilities, but has the advantage that the steepest-edge pivot selection criterion may be used. We discuss the performance of the method when applied to the problems in the Netlib test set.

Jerome G. Bramble
University of California at San Diego, La Jolla, CA
Philip E. Gill
University of California at San Diego, La Jolla, CA

A New Approach for Parallelising the Simplex Method

It is well known that small changes to a code of the simplex method can lead to significantly different pivot sequences and hence a different number of pivots. We exploit this observation systematically by following different pivot sequences and different processors of a parallel MIMD computer. The progress of each processor is monitored by a neighbour of the currently best processor. Different pivot strategies including hybrid strategies are examined for their efficiency in this method.

Frank Plab
Edinburgh Parallel Computing Centre
University of Edinburgh
Edinburgh, Scotland, UK

Solving Stochastic Linear Programs on a Hypercube Multicomputer

Large-scale stochastic linear programs can be efficiently solved by using a blending of classical Benders decomposition and a relatively new technique called importance sampling. The talk demonstrates how such an approach can be effectively implemented on a parallel (Hypercube) multicomputer. Numerical results are presented.

George B. Dantzig
Department of Operations Research
Stanford University
Stanford, CA 94305-4022, USA
In this talk, we present new algorithms for solving the so-called t-Convex Approximation and Data Smoothing Techniques. University, Upson Hall, Ithaca, New York, 14853.

Recent developments in mathematical programming have shown that a variety of formulations of the most common approaches to Data Smoothing Problems is a collection of multivariate statistical techniques used for ordination to improvement of the behavior of the objective function by applying smoothness constraints.

Objective function conditioning with smoothness constraints

Seismic imaging of the earth's subsurface requires the alignment of multiple waveforms. A large scale nonlinear optimization problem arises when the time perturbations for each of the thousands of source and receiver points are estimated. The multimodal objective function causes solution algorithms, such as conjugate direction methods, to become trapped at local optimum. Many workers have attempted combinatorial optimization techniques to this problem, but these do not tend to scale well with problem size. I have tried to improve the behavior of the objective function by applying physically motivated constraints, such as spatial smoothness. The smooth object function allows computationally efficient projection algorithms to find the optimal solution reliably. Since a large fraction of the time shift measurements are erroneous, robust (l_1) estimation methods are used.

Stephen F. Elnston
Department of Geological and Geophysical Sciences
Princeton University
Princeton, NJ 08544

A New Modified Newton Algorithm for Nonlinear Minimization Subject to Bounds

We describe a new efficient method for large-scale nonlinear minimization subject to bounds. The method is very efficient in practice. We present numerical results to support this claim. We also discuss global convergence results and second-order convergence.

Thomas F. Coleman, Computer Science Department, Cornell University, Upson Hall, Ithaca, New York, 14853
Yuying Li, Computer Science Department, Cornell University, Upson Hall, Ithaca, New York, 14853
Large-Scale Optimization in Computational Chemistry Problems

In the semi-empirical approach of molecular mechanics, a target potential energy function is formulated for a molecular system and parameterized to reproduce known structural and thermodynamic properties for small molecules. The input consists of a known chemical composition (i.e., primary sequence), and the output is the three-dimensional structure. The parameterized function is then used to study the structure of large biomolecules, such as proteins and nucleic acids, composed of the same chemical subgroups. Minimization is performed to locate energy minima that correspond to biologically relevant configurations. Since potential energy functions are typically complex, involving many local minima, maxima, and transition points, efficient search techniques and minimization schemes must be combined. The natural separability of these functions - into local and non-local interactions, for example - can be exploited in minimization. In this talk, we will describe the application of a truncated Newton method for large separable problems to computational chemistry and its application to DNA structure. The structure is incorporated by using a preconditioned Conjugate Gradient method to solve approximately for the Newton search direction where the preconditioner is assembled from the lower-complexity terms. Since this preconditioner may not necessarily be positive definite, it is factored by a sparse modified Cholesky factorization.

Tamar Schlick
Courant Institute of Mathematical Sciences and Chemistry Department
New York University
251 Mercer Street
New York, New York 10012

A Global Optimization Approach for Microcluster Systems

A global optimization approach is proposed for finding the global minimum energy configuration of Lennard-Jones microclusters of atoms or molecules. First, the original nonconvex total potential energy function, composed by rational polynomials, is transformed to a quadratic one through a convexification procedure performed for each pair potential that constitutes the total potential energy function. Then, a decomposition strategy based on the GOP algorithm is designed to provide tight bounds on the global minimum through the solutions of a sequence of relaxed dual subproblems. A number of theoretical results are also presented that expedite the computational effort by exploiting the special mathematical and physical structure of the problem. Finally, this approach is illustrated with a number of example problems.

C. D. Maranas
C. A. Floudas
Department of Chemical Engineering
Princeton University
Princeton, New Jersey 08544-5263

Global Optimization Methods for Molecular Configuration Problems

Molecular configuration problems consist of finding the structure of a given molecule that minimizes its potential energy. These problems typically have large numbers of parameters, and very many local minimizers with function values near the global minimum and small regions of attraction. Thus they are very challenging global optimization problems. We discuss the application of stochastic global optimization methods to these problems. Our methods incorporate new techniques for solving large scale problems that are applicable to any partially separable objective function. The methods have successfully solved test problems with over 100 parameters, and have found a new global minimizer for at least one well-studied problem.
An implementation of a strongly polynomial time algorithm for basis recovery

Megiddo has shown that given primal and dual optimal solutions to a linear program, there exists a strongly polynomial time algorithm to identify an optimal basis. This algorithm consists of a primal simplex-like phase and a dual simplex-like phase and requires a maximum of \(n \) pivot steps. A number of issues were discussed about an implementation of this algorithm. Computational experience with the algorithm is presented that suggests that the algorithm is feasible in practice and suggests some natural extensions of the algorithm to handle numerical issues. In addition, a number of issues related to converting a near-optimal interior point solution of a linear program to a near-optimal vertex solution of a linear program are discussed.

Irvin J. Lustig
Princeton University, Princeton, NJ USA

Finite Termination in Interior Point Methods
We will present our theoretical and computational results for finite termination in linear programming. We describe an indicator function for partitioning the variables. We also show when to partition the variable. We demonstrate the practicality of our approach on problems in the netlib set.

Sanjay Mehrotra
Dept. of IE/MS
Northwestern University
Evanston, IL 60208-3119

Recovering an Optimal LP Basis from an Interior Point Solution
An important issue in the implementation of interior point algorithms for linear programming is the recovery of an optimal basic solution from an optimal interior point solution. In this paper we describe a method for recovering such a solution. Our implementation links a high-performance interior point code (OB1) with a high-performance simplex code (CPLEX). Results of our computational tests indicate that basis recovery can be done quickly and efficiently.

Robert E. Bixby
Department of Mathematical Sciences
Rice University
Houston, Texas 77251

On Obtaining highly accurate or basic solutions using interior-point methods for linear programming
Obtaining a basic solution or a highly accurate approximation to a solution of a linear program using an interior-point method is of practical importance and several methods for accomplishing this objective have been proposed. In this talk we discuss the advantages and disadvantages of some of these methods and propose several improvements.

Richard H. Byrd
Elizabeth Eskow
Robert B. Schnabel
Department of Computer Science
Campus Box 430
University of Colorado
Boulder, Colorado 80309

WEDNESDAY PM

Amr S. El-Bakry,
Robert E. Bixby,
Richard A. Tapia
Department of Mathematical Sciences
Rice University, P.O. Box 1892
Houston, Texas 77201.

Yin Zhang
Department of Mathematics and Statistics
University of Maryland
Baltimore County Campus
Baltimore, Maryland 21228.

Approximation Algorithms for Indefinite Quadratic Programming
We consider approximation schemes for indefinite quadratic programming. We propose a definition of approximation of the global minimum suitable for nonlinear optimization. We then show that such an approximation may be found in polynomial time for fixed \(e \) and \(k \), where \(e \) measures the closeness to a global minimum and \(k \) the rank of the quadratic term. We next look at the special case of knapsack problems, showing that a more efficient approximation algorithm exists. The feature of knapsack problems exploited here may also apply to control-theory problems.

Stephen A. Vavasis,
Cornell University

On Matroidal Knapsack Problems and Lagrangean Relaxation
Camerini et al. have introduced a class of optimization problems that involve finding an optimum base in a matroid subject to a set of knapsack constraints. While these problems are NP-hard, an optimum solution to the Lagrangean dual yields good upper bounds. A simplex-like algorithm to solve the dual performs well in practice, but is not guaranteed to run in polynomial time. We use the parametric search method of Megiddo to obtain a polynomial-time algorithm for the Lagrangean dual. Our algorithm builds and improves upon results of Aneja and Kabadi, exploiting the special characteristics of matroidal knapsacks.

Richa Agarwala, David Fernandez-Baca, and Anand Medepalli
Department of Computer Science,
Iowa State University,
Ames, Iowa, 50011

Parallel Dynamic Programming Algorithms for the 0-1 Knapsack Problem
This talk describes the implementation of two algorithms for the 0-1 knapsack problem based on dynamic programming. A standard dynamic programming algorithm was implemented on a Connection Machine CM-2 with 16K processors, and problems with hundreds of thousands of variables were solved in just over 1 minute.

Secondly, a modified dynamic programming algorithm that considers only non-dominated states was implemented on a 20-processor Sequent S81.

Renato De Leone and Mary A. Tork Roth
Center for Parallel Optimization
Computer Sciences Department
University of Wisconsin, Madison
1210 West Dayton Street
Madison, WI 53706

Totally Unimodular Leontief Directed Hypergraph
A Leontief directed hypergraph, LDH, is a generalization of a directed graph, where arcs have multiple (or no) tails and at most one head. We define a class of Leontief directed hypergraphs via a forbidden structure of an odd pseudocycle,

Evanston, IL 60208-3119

Iticha Agarwala, David Fernandez-Baca, and Anand Medepalli
Department of Computer Science,
Iowa State University,
Ames, Iowa, 50011

Parallel Dynamic Programming Algorithms for the
0-1 Knapsack Problem
This talk describes the implementation of two algorithms for the 0-1 knapsack problem based on dynamic programming. A standard dynamic programming algorithm was implemented on a Connection Machine CM-2 with 16K processors, and problems with hundreds of thousands of variables were solved in just over 1 minute.

Secondly, a modified dynamic programming algorithm that considers only non-dominated states was implemented on a 20-processor Sequent S81.

Renato De Leone and Mary A. Tork Roth
Center for Parallel Optimization
Computer Sciences Department
University of Wisconsin, Madison
1210 West Dayton Street
Madison, WI 53706

Totally Unimodular Leontief Directed Hypergraph
A Leontief directed hypergraph, LDH, is a generalization of a directed graph, where arcs have multiple (or no) tails and at most one head. We define a class of Leontief directed hypergraphs via a forbidden structure of an odd pseudocycle,
and we show that the vertex-hyperarc incidence matrices of the hypergraphs in this class are totally unimodular. Indeed, we also show that this is the largest class with that property. Consequently, the minimum cost flow problems defined on this class of LDH's yield integral optimal solutions provided the demand vectors are integral. We present examples of LDH's whose underlying matric matroids are graphic; cographic; and neither graphic nor cographic.

Dr. Peh H. Ng
Division of Mathematics,
University of Minnesota at Morris,
Morris, MN 56267

Dr. Collette R. Coullard
Department of Industrial Engineering and
Management Science,
Northwestern University,
Evanston, IL 60208

A Fast Primal-Dual Algorithm for Generalized
Network Linear Programs

The primal simplex method has enjoyed a pronounced computational advantage over primal-dual and out-of-kilter methods for solving large-scale generalized network LP's. In this presentation the speaker discusses a new primal-dual algorithm based on Rockafellar's monotropic programming theory. The key characterization of this algorithm is the use of efficient directions to monotonically decrease the number of infeasible constraints while optimizing a dual program. Numerical results indicate the algorithm rivals the speed of the simplex method on randomly generated benchmark problems.

Norman D. Curet
Anderson Graduate School of Management
UCLA
Los Angeles, CA 90024-1481

NETWORK ASSISTANT to Construct, Test and Analyze
Network Algorithms

NETWORK ASSISTANT is a system of portable C program modules to support the construction of efficient graph and network algorithms with capabilities to generate structured random networks and analyze test results. The system is designed for large-scale problems and includes high level constructs and various data structures for graphs, networks, trees, stacks, queues and heaps. It includes various algorithms for graph coloring, minimum spanning trees, shortest path, maximum flow and minimum cost network flow that demonstrate the use of the system and the efficiency of the resulting programs. These algorithms have been tested on thousands of random networks.

Gordon H. Bradley
Operations Research Department
Naval Postgraduate School
Monterey, CA 93943, USA

Minimax Problems Arising
in Optimal m-stage Runge-Kutta
Differencing Scheme for
Steady-state Solutions of
Hyperbolic Systems

In order to construct the optimal m-stage Runge-Kutta differencing scheme for solving steady-state solutions of hyperbolic systems, it is necessary to solve the minimax problem of the form

$$\min_{x \in \mathbb{R}^n} \max_{z \in S} f(x, z)$$

where S is a compact region in \mathbb{R}^n and f is a mth degree polynomial of z and is continuously differentiable in z. In this talk, we will first show that for each m, this minimax problem is equivalent to a convex programming problem and therefore it has a unique solution. Then we will present a numerical scheme which solves this minimax problem when S contains finite many complex numbers and approximates an optimal solution of this minimax problem when S is a compact region: $\{z : z \leq |z| \leq b\}$. Some testing results will also be discussed.
A Method for Generalized Minimax Problems

We consider the following generalization of the finite minimax problem:

\[\min_{z \in \mathbb{R}^n} f(y_1(z), \ldots, y_m(z)), \]

where

\[y_i(z) = \max_{j \in I} \phi_{ij}(z), \]

\(I \) is a finite index set and \(\phi_{ij} \) is a smooth function.

Problems of this form can be solved by employing methods of nondifferentiable optimization, but superlinearly convergent algorithms are not available.

Under suitable assumptions, we show that the problem is equivalent to the unconstrained optimization of a smooth function. Thus Newton-type methods can be employed.

Convergence Conditions for the Regularization Methods that Solve the Min-Max Problem

To solve the finite min-max problem, the authors have presented in earlier papers, first and second order regularization methods, that solve the non-differentiable problem, using a sequence of first order differentiable approximations. A dual vector parameter is used to generate these approximations. Conditions for several updating formulae for this parameter are given, to achieve global convergence to a Kuhn-Tucker point. Also second order conditions ensure convergence to a local minimum of the original problem, and a second directional derivative of the regularized function is then needed.

The relation between the regularization function and augmented Lagrangeans has also been presented before, but conditions for the penalty parameter to achieve convergence will be given.

The Phase-Problem in Crystallography

The problem is to compute the shape of a crystal, i.e. a function \(p(x) \) on the unit-cube (the electron density). Only the moduli of the Fourier coefficients of \(p \) are known, via X-ray diffraction; a possible formulation is to maximize an entropy function of \(p \), subject to the moduli-constraints. We present a hierarchical approach, giving birth to a minimax problem: \(\phi \) the inner maximization, the phases are fixed (and we actually minimize with respect to the Lagrange multipliers); then, the unknown phases solve the outer maximization problem.
WEDNESDAY PM

Positive Definite Constrained Least Square Estimation of Matrices

This paper presents a method for positive definite constrained least square estimation of matrices. The approach is to transform the positive definite constrained least square problem into an equivalent convex quadratic program with many linear constraints and solve the latter by generating and solving a sequence of convex quadratic programs. By specifying a parameter the method will find a sub-optimal solution in a finite number of iterations or an optimal solution in the limit.

H. Hu
Department of Mathematical Sciences
Northern Illinois University
DeKalb, IL 60115

An Interior-Point Method for Minimizing the Largest Eigenvalue of a Linear Combination of Symmetric Matrices

We consider the problem (P) of minimizing the largest eigenvalue of the matrix A(x) = A1 x + A2 x + ... + An x, where A1, A2, ..., An are symmetric matrices. The problem arises e.g., in the stability analysis of dynamical systems. Classical methods for solving (P) based on algorithms for nondifferential optimization exhibit a rather slow convergence behavior. Recently, Overton proposed a locally quadratically convergent method for solving (P). The method presented here is globally linearly convergent, and numerical experiments indicate that the method may be efficient in practice. In our talk we will outline a primal interior-point algorithm for solving (P) and present some theoretical and numerical results.

Floßian Jüre
Institut für Angewandte Mathematik
Universität Würzburg, Am Hubland
W-8700 Würzburg, Germany

Genetic Algorithms in Combinatorial Optimization

Genetic algorithms (GAs) are search procedures based on the mechanics of natural genetics and selection. GAs iteratively use Darwinian survival-of-the-fittest principle along with a structured recombination operator on a population of artificial chromosomes representing the problem parameters. Because of GAs' simplicity, global perspective, and implicit parallel information processing, they have been successful in a wide variety of problems including science, commerce, and engineering.

However, despite their empirical success, GAs have been criticized for their inherent linkage problem that causes GAs to converge to a false optimum in a class of problems called deceptive problems. A more flexible GA called a messy GA has been devised and tested for this purpose. Messy GAs work by first searching tight linkages in a problem and then combining them together to form the optimum in a way that mimics nature's processing of simple organisms to form more complex life forms. Theoretical analyses supported by empirical evidence have shown that messy GAs solve a problem of bounded deception in a time that grows only as a polynomial function to the number of decision variables on a parallel machine. These findings are interesting and encourage GA's application to difficult combinatorial optimization problems that remained unsolved for the want of suitable solution techniques.

Kalyanmoy Deb
University of Illinois
Urbana, Illinois 61801

Parallelization of Probabilistic Sequential Search Algorithms

We compare some strategies for the parallelization of probabilistic sequential search algorithms. We are concerned with those probabilistic sequential search algorithms which generate a sequence of candidate solutions where each solution is generated from the previous one by the application of a probabilistic local improvement operator. Two good examples of such algorithms are Lin's 2-opt strategy for the Traveling Salesman Problem and Simulated Annealing. We explore the concept of searching by a pool of candidate solutions. In this work we compare some strategies of parallelization of Lin and Kernighan's 2-opt operator for the Traveling Salesman Problem. In particular, we study tradeoffs between processors working independently and processors communicating at regular intervals. We show that a good strategy of parallelization is one that involves communication at fairly regular intervals. We also explore the selection strategy, of Holland's Genetic Algorithms as a strategy for information exchange.

Prasanna Jog
DePaul University
Chicago, IL 60614

A Genetic Algorithm For The Set Partitioning Problem

The Set Partitioning Problem is a difficult combinatorial optimization problem with many applications, a particularly important one being airline crew scheduling. Because it is a highly constrained problem, Set Partitioning is difficult for Genetic Algorithms. In this talk we discuss a method for computing approximate solutions to Set Partitioning Problems, based on a Genetic Algorithm augmented with a local search heuristic. We use several specialized data structures that are advantageous for solving Set Partitioning Problems.

Computational results are presented for several test problems.

David Levine
Argonne National Laboratory
Mathematics and Computer Science Division
9700 Cass Avenue South
Argonne, IL 60439

A Hybrid Genetic Approach to Energy Minimization in Layered Superconductors

This presentation describes a hybrid genetic approach to the solution of energy minimization problems that arise in the study of layered superconductors. The underlying problem is to understand the behavior of flux vortices in such materials in the presence of external magnetic fields.
On Minimizing the Largest Generalized Eigenvalue of an Affine Family of Hermitian Matrix Pairs

We consider the quasi-convex optimization problem:

$$
\inf_{x \in \mathbb{R}^n} \lambda \left(A_0 + \sum_{i=1}^{m} z_i A_i, B_0 + \sum_{i=1}^{m} z_i B_i \right)
$$

(1)

where A_i's and B_i's are Hermitian matrices, λ denotes the largest generalized eigenvalue, and, for any feasible z, the matrix $B_0 + \sum z_i B_i$ is assumed to be positive definite. We show that the solution of (1) can be obtained by estimating the solutions of a sequence of convex optimization subproblems, which will be solved by a proposed cutting plane based algorithm. Special considerations are given to utilize information between the subproblems. It is also shown that, with a technique of removing nonactive constraints in the LP problems involved in the cutting plane algorithm, the LP problems can be often solved very efficiently.

Michael K.H. Fan Batool Nekooie
School of Electrical Engineering
Georgia Institute of Technology, Atlanta, GA 30332

On the Variational Analysis of All the Eigenvalues of a Symmetric Matrix

Let $A(\cdot)$ be a real symmetric matrix-valued function of $x \in \mathbb{R}^n$, and $\lambda_1(x) \geq \lambda_2(x) \geq \ldots \geq \lambda_n(x)$ be its eigenvalues arranged in the decreasing order. The main purpose of this paper is to study two closed related problems, namely, the sensitivity analysis of any eigenvalue, say $\lambda_m(x)$, for $1 \leq m \leq n$, and the sensitivity analysis of $f_m(x)$, the sum of the m greatest eigenvalues, under some mild assumption such as $A(\cdot)$ is strictly differentiable. Based on the Ky Fan's variational principle and some chain rule of calculus, we derive a formula for the directional derivative of f_m and a computationally useful formula for the directional derivative of f_m. Using this latter formula and the relation $\lambda_m = f_m - f_{m-1}$, we then obtain the directional derivative of λ_m.

Jean-Baptiste Hiriart-Urruty and Dongyi Ye
Universit\`e Paul Sabatier
Laboratoire d'Analyse Num\'erique
Toulouse, FRANCE

Optimality Conditions and Duality Theory for Minimizing Sums of the Largest Eigenvalues of Symmetric Matrices

This paper gives max characterizations, in terms of the Frobenius inner product, of the sum of the largest eigenvalues of a symmetric matrix. These max characterizations show that if the matrix is a smooth function of a vector of parameters then the sum of the largest eigenvalues is a regular locally Lipschitz function of these parameters. The elements which achieve the maximum provide a concise characterization of the generalized gradient in terms of a dual matrix. The dual matrix provides the information required to either verify first-order optimality conditions at a point or to generate a descent direction for the eigenvalue sum from that point, splitting a multiple eigenvalue if necessary. A model minimization algorithm is outlined, and connections with the classical literature on sums of eigenvalues are explained. Sums of the largest eigenvalues in absolute value are also addressed.

M. L. Overton
Courant Institute of Mathematical Sciences
New York University
R. S. Womersley
School of Mathematics
University of New South Wales

Variational Properties of the Spectral Abscissa and Spectral Radius Maps

Variational properties for the spectral radius and spectral abscissa of an analytic matrix valued mapping $A : \mathbb{C}^n \to \mathbb{C}^{n\times n}$ are considered. A notion of directional differentiability is introduced that allows us to exploit the perturbation results of Newton, Puisieux, Kato, and Arnold. Lower bounds for the directional derivative are established which yield formulas for the directional derivative when a natural nondegeneracy condition is satisfied. These formulas are interpreted in the extreme cases where the eigenvalues attaining either the spectral radius or the spectral abscissa are nonderogatory or semisimple (nondefective). We conclude by investigating the relationship with the proximal normal subdifferential.

James V. Burke
Math. Dept., GN-50
University of Washington Seattle, WA 98195
Michael L. Overton
Computer Science Department
Courant Institute of Mathematical Sciences
New York University
251 Mercer St.
New York, NY 10012

A Mathematical Programming Approach for Optimal Control of Distributed Parameter Systems

A class of optimal control problem for a damped distributed parameter system is considered. The proposed approaches approximate each control force of the system by a Fourier-type series. In contrast to standard linear optimal control approaches, this method is an optimal approach in which the necessary condition of optimality is derived as a system of linear algebraic equations. The proposed approach is easy to apply to a large class of control problems. A vibrating beam excited by an initial disturbance is studied numerically in which the effectiveness of the control and the amount of force spent in the process are investigated in relation to the reduction to the dynamic response.

M. Nouri-Hagaham
Department of Mathematics
Penn State University
Lehman, PA 18627
I. S. Sadek
Department of Mathematical Science
University of North Carolina at Wilmington
Wilmington, NC 28403

WEDNESDAY PM
WEDNESDAY PM

Optimal Control of Distributed Parameter Systems: Exact and Approximate Methods

A maximum principle is employed to solve analytically a linear-quadratic optimal control problem of a certain class of elastic vibrating structures. The main characteristic of these techniques is reducing this problem to that of solving systems of algebraic equations, thus greatly simplifying the problem and making it computationally plausible. An illustrative example of an optimal control is given, and the computational results are compared with those of exact solution.

Ibrahim Sadek
Department of Mathematical Sciences
University of North Carolina at Wilmington
Wilmington, NC 28403

Optimal Control of Thin Plates by Point Actuators and Sensors

The optimal control of a class of self-adjoint distributed parameter systems (e.g., vibrating thin plates) using a combined open-closed loop control mechanism is considered. In particular, the proposed method involves the application of a finite number of actuators and sensors to actively dampen the undesirable transient vibrations of rectangular plate. This method gives an explicit optimal open-loop control as a function of the prescribed closed-loop control. The effectiveness of the proposed control is illustrated by a numerical example on a simply-supported plate subject to specific initial conditions. Moreover, the sensitivity of the method in conjunction with the locations of the actuator and sensor is examined by numerical simulations.

Mar. Anton
Department of Mathematics
University of North Carolina at Wilmington
Wilmington, NC 28403-3297

Optimal Control of Non-Classically Damped Distributed Structures

Optimal control of a large class of distributed systems is investigated. The behavior of such systems is governed by partial differential equations with an appropriate boundary condition where the damping is non-proportional. In controlling distributed systems with non-proportional damping, it is customary to express the equation in its state-space form and proceed with the available methods for lumped-parameter systems. However, a new, computationally efficient, iterative technique was introduced and shown to converge to the exact solution, requiring less operations than that needed for the larger state-space equations. Applicability, as well as robustness of this iterative method will be studied in detail. The proposed method will be applied to several physical systems and numerical results and simulations will be presented subsequently.

Ram~n S. Esfandiari
Department of Mechanical Engineering
California State University
Long Beach, CA 90840-5005

Simultaneous Design - Control Optimization of Composite Structures

The optimal layer thickness and optimal feedback control function are determined for a symmetric, cross-ply laminate. The objectives of the optimization is to maximize the fundamental frequency (design objective) and to minimize the dynamic response to external disturbances (control objective) subject to a constraint on the expenditure of control energy. The design/control problem is formulated as a multiobjective optimization problem by employing a performance index which combines the design and control objectives in a weighted sum. Numerical results are given for a laminate made of an advanced composite material. Comparisons of controlled and uncontrolled laminates as well as optimally designed and non-optimal laminates indicate the benefits of treating the design and control problems in a unified formulation.

Sarp Adali
Department of Mechanical Engineering
University of California at Santa Barbara
Santa Barbara, CA 93106
(On leave from the University of Natal Durban, South Africa).

On the Complexity of Approximately Solving LP's Using Minimal Computational Precision

Complexity theory has assumed problem instances are encoded with exact data, and algorithmic efficiency has been measured in terms of the (bit) length of the encoding. This is appropriate for combinatorial problems, but less so for numerical problems where the goal is to approximate a solution. If a numerical problem (or) makes more sense to measure a problem instance in terms of the stability of its solution under data perturbations. (If the solution is stable then crude data accuracy is sufficient and hence the bit length of the exact data is irrelevant.)

The speaker will discuss some highlights of research on linear programming which attempts to address these issues.

James Renegar
School of Operations Research and Industrial Engineering
Cornell University
Ithaca, NY 14853

Pre-Selection of the Phase I - Phase II Balance in a Path-Following Algorithm for the "Warm Start" Linear Programming Problem

In solving a linear program from an infeasible "warm start," it is useful to pre-select the tradeoff between infeasibility (Phase I) and non-optimality (Phase II). This paper presents a path-following algorithm that will follow a path from a given infeasible "warm start" to an optimal solution along a path with a pre-specified balance of infeasibility and nonoptimality. The algorithm obtains a fixed improvement in both objectives in $O(n)$ iterations using Newton's method, with no assumptions regarding foreknowledge of primal or dual solutions.

Robert M. Freund
M.I.T., Sloan School of Mgmt.
50 Memorial Drive
Cambridge, Mass. 02139
Global Convergence of a Primal-Dual Exterior Point Algorithm for Linear Programming

We propose an algorithm for solving a primal-dual pair of linear programming problems. The algorithm starts from any point at which nonegative vaules are positive. At each iteration of the algorithm, we compute the Newton direction for a system definning a center. The next itrate moves to the direction by different step sizes in primal and dual spaces. We show that in a finite number of iterations, the algorithm computes an approximate optimal solution or finds that the primal-dual pair has no interior feasible points in a wide region given in advance.

Masakazu Kojima
Departments of Information Sciences and Systems Science
Tokyo Institute of Technology
Meguro-ku, Tokyo 152, Japan

Nimrod Megiddo
IBM Almaden Research Center
650 Harry Road, San Jose, California 95120-6099
and School of Mathematical Sciences
Tel Aviv University, Tel Aviv, Israel

Shuji Mizuno
The Institute of Statistical Mathematics
4-6-7 Minami-Azabu, Minato-ku, Tokyo 106, Japan

Polynomial Complexity vs. Fast Local Convergence for Interior Point Methods

All interior methods for linear programming are basically iterative methods of a nonlinear flavor. At each iteration the origin (objective function, or the primal-dual gap, or a certain potential function, is decreased. The best complexity results show that the distance to the optimal value become less than \(2^{-i}\) in at most \(O(\sqrt{n})\) iterations. This translates into linear convergence rate with global factor \(1-\epsilon/\sqrt{n}\).

In practice much faster convergence is observed, especially when we are close to the solution. We discuss the relationship in between global convergence, local convergence, and finite termination criteria. New efficient algorithms that have optimal global and local properties are presented.

Florian Potra
University of Iowa, Iowa City, IA

Implicit Functions and Lipschitz Stability in Control and Optimization

The talk is concerned with Lipschitz properties of maps, defined implicitly by generalized equations. We discuss several known implicit functions and metric reularity results and present a new implicit function theorem for pseudo-Lipschitz maps. As applications we examine various stability problems in control and optimization, focusing in particular on the stability of the feasible sets and the optimal solutions.

A. L. Dontchev
Mathematical Reviews
Ann Arbor, MI 48107

W. W. Hager
University of Florida
Department of Mathematics
Gainesville, FL 32611

Applications of structured secant approaches in Hilbert space

Some problem classes of general importance like e.g. integral equations, parameter estimation problems and control problems possess special structure in their derivatives. To exploit these problem dependent properties we discuss applications of structured and totally structured secant approaches in the framework of Hilbert space problems. We show how problem dependent structure can be used to construct approximations of the Jacobian and the Hessian, respectively. We comment on the convergence theory for the given methods, discuss implementational issues and we present numerical results obtained for the discussed applications.

J. Haschens
Universität Trier
FB IV - Mathematik
Postfach 3825
D-54284 Trier
Federal Republic of Germany

Optimization in Impulsive Stochastic Control: Time Splitting Approach

Usually in stochastic control models the successive impulsive actions are meant to be separated by positive time intervals. However, in reasonable models with random outcomes of impulces, the precise optimum is attained only if controls with several instantaneous repetitions of impulses are also allowed. For a rigorous treatment of optimal control in such models, we introduce here a new notion referred to as stochastic processes with time splitting. In this framework, optimality conditions in the form of quasivariational inequalities are shown to hold. To illustrate, we present an example of a continuous-time two-armed bandit problem (studied in detail by D. Donchev).

Alexander A. Yashkevich
Department of Mathematics
University of North Carolina at Charlotte
Charlotte, NC 28223

H∞-Optimization with Decentralized Controllers

Even though the \(H^\infty\)-optimal control of linear systems with centralized controllers has reached a level of maturity during the past decade, little is known on extensions of this theory to decentralized systems, where different controllers acting on the same system have access to different output measurements. A major difficulty here is the establishment of the existence of globally optimal solutions, as well as their characterization, as opposed to local or person-by-person optimal solutions.

In this paper, we obtain \(H^\infty\) optimal solution for a discrete-time linear-quadratic disturbance rejection problem with a decentralized control/measurement structure. The approach uses the framework of zero-sum dynamic games, in which context we prove the existence of and obtain a characterization for a decentralized saddle point for a related soft-constrained game.

Garr Didinsky and Tamer Başar
Decision and Control Laboratory
Coordinated Science Laboratory
University of Illinois
1101 West Springfield Avenue
Urbana, IL 61801 / USA

A Comparison of Barrier Function Methods with Lagrangian Method for Nonlinear Programming

The problem of minimizing nonlinear functions often arises in practice. In the past few years there have been significant developments in different approaches used to solve these types of problems. However, of recent, since the introduction of Karmarkar's Interior-Point method for solving linear problems, a lot of interest has been renewed in using similar approaches for solving large nonlinear programming problems.

In this work large scale nonlinear problems are solved using Barrier and Pot ential functions, and the results compared with results from those obtained using Lagrangian methods. The classes of problems considered arise from VLSI placement, electricity generation and oil refinery production planning.
WEDNESDAY PM

Amarinder Singh
University of Waterloo, Waterloo,
On. N2L 3GI, Canada.

Kumaraswamy Ponnambalam
University of Waterloo, Waterloo,
On. N2L 3GI, Canada.
Telephone: (519) 885 1211 ext 3825.
Fax: (519) 746 4791

Recent Improvements on FSQP

Feasible Sequential Quadratic Programming (FSQP) has been studied for several years by the authors and their colleagues. Recent progress has been made in enhancing the efficiency of the method and applying it to the solution of engineering problems. A Fortran package has been developed and extensively tested.

In this talk we first review the basic FSQP scheme: tilting and bending of the search direction and possible use of a nonmonotone line search; the latter permits to avoid the Maratos effect at the sole expense of (possibly) a few additional function evaluations in early iteration (initialization). We then observe that, under mild assumptions, initialization is not necessary. Finally, we report numerical experiments on standard test problems as well as on control system design problems.

Jian L. Zhou and André L. Tits
Department of Electrical Engineering
and Systems Research Center
University of Maryland
College Park, MD 20742

An Affine-Scaling, Nonsmooth Newton Hybrid for Constrained Optimization

We present a hybrid of affine-scaling and local Newton’s method for nonsmooth equations, aimed at large-scale constrained optimization problems. Problems of interest include those of discrete time optimal control with inequality constraints on state and/or control variables. Convergence properties, computation, and potential for parallelism will be discussed.

D. Ralph
Department of Computer Science, Upson Hall
Cornell University
Ithaca, NY 14853.

A Primal-Dual Interior Point Method for Large Scale Linear and Nonlinear Programming

A globally convergent primal-dual interior point method for general nonlinear optimization problem is considered. The method solves the parameterized Karush-Kuhn-Tucker conditions for optimality by Newton or quasi-Newton iterations from an arbitrary initial point. The parameter attached to the complementarity conditions is used as a barrier parameter and tends to zero as the search proceeds. To obtain the global convergence of the iteration the barrier-penalty function with respect to the primal variable is used. A code for large scale linear programming is implemented and it solves all the test problems with total iterations which is almost same as that of OBI. A code for dense nonlinear problems is also implemented and it solves all the available (112) test problems of Shitkowski successfully with total iterations of about 2100 and 2500 function evaluations.

Hiroshi Yamashita
Isahito Tanabe
Mathematical Systems Institute, Inc.
6F AM Bldg, 2-5-7, Shinjuku, Shinjuku-ku
Tokyo, Japan 160
An Algorithm for Solving the Cost Optimization Problem in Precedence Diagram Network

In the first part of the performance, we extend the cost optimization problem solved by Kelley Walker and Fulkerson to the precedence diagramming network.

We allow the next precedence relationship between activities which are represented by nodes.

\begin{align*}
SSS: & \text{start-start-t} & SFS: & \text{start-finish-t} \\
FST: & \text{finish-start-t} & FFT: & \text{finish-finish-t}
\end{align*}

We briefly discuss the main differences between CPM and precedence diagram network, from the aspect of cost optimization problem.

Finally we show and explain the basic idea of the algorithm which is based on a network flow approach.

Miklos Hajdu
Technical University of Budapest
Department of Building Organization and Management
Muegyetem rkp. 3. K. II. 17.
Budapest, 1111.
Hungary

Redistribution Transport Means the Traffic in the Area of Subway is Shut

The task redistribution of the ground passengers transport means for the transport of passengers in the area of subway where the traffic is temporarily shut are under consideration.

The ground transport of the passenger according to the corresponding route from the another routes which are situated near the part subway above-mentioned. The redistribution of the ground passenger transport means take place according to criterion of minimisation additional loss time passenger for the waiting transport service. The stability of the received decision for the case of alteration of the passenger correspondences are under consideration.

Mishenko Aleksandr
Plekhanov Acad. National Economy
Dep. Econ. Cybernetics
Streymyari Pereyloc 28
113054 Moscow U.S.S.R.

Projective Interior Point Methods $O(\sqrt{nL})$ Step-Complexity

We develop a projective interior point method that is path-following and, hence, has a step-complexity of $O(\sqrt{nL})$. We also show how to modify Karmarkar's and several other projective interior point methods so that their step-complexities are also $O(\sqrt{nL})$, and relate these modified methods to potential reduction methods.

Donald Goldfarb
Department of Industrial Engineering and Operations research
Columbia University
New York, NY 10027

Dong Shaw
Rider College
Lawrenceville, NJ 08648

ADDENDUM

On the Convergence of Pattern Search Methods

We present a general convergence theory for a class of direct search methods, which we call pattern search methods. Direct search methods are methods for solving unconstrained optimization problems without computing, or even estimating derivatives.

We define pattern search methods to be direct search methods for which the search strategy at every iteration is predetermined by a particular pattern, or template. Examples include the multidirectional search algorithms of Dennis and Torczon, the factorial design algorithm of Box, and the (original) patterns search method of Hooke and Jeeves; each is distinguished by the choice of pattern used to drive the search procedure.

The theory we present is the most general of the known convergence results for these methods. The theory is also unusual in that pattern search methods require only strict decrease in the value of the objective function; no assumption of sufficient decrease is required to prove convergence.

Instead, an interesting appeal to discrete mathematics is used to complete the argument.

Virginia Torczon
Department of Mathematical Sciences
Rice University
Houston, TX 77251-1892

A Trust Region Method for Nonsmooth Programming

The classical trust region algorithm for smooth nonlinear programs is extended to the nonsmooth case where the objective function is only locally Lipschitzian. At each iteration, an objective function that carries both first and second order information is minimized over a trust region. The term that carries the first order information is an iteration function that may not explicitly depend on subgradients or directional derivatives. We prove that the algorithm is globally convergent. This convergence result extends the results of Powell for minimization of smooth functions, the results of Yuan for minimization of composite convex functions, and the recent model of Dennis, Li and Tapia for minimization of regular functions. In addition, compared with the recent model of Pang, Han and Rangaraj for minimization of locally Lipschitzian functions via line search, this algorithm has the same convergence property without assuming positive definiteness and uniform boundedness of the second order term. Applications of the algorithm to various nonsmooth optimization problems are discussed.

Liquan Qi
University of New South Wales, Kensington, NSW, Australia

Jie Sun
Northwestern University, Evanston, IL USA

Adaptive Filtering in Nonlinear Parameter Estimation with Serially Correlated Data Structures

Underwater detection and tracking is a complex, nonlinear state estimation problem. Previous work has demonstrated an efficient and flexible approach to the problem using compressed data sets. In this approach time segments of measured data are represented by sufficient statistics. It has been shown that tracking performance may be enhanced by exploiting the bias/noise variance tradeoff and adaptively selecting the rank of the statistic used for segment representation. Correlated noise structures, however, can cause severe modeling and
ADDENDUM

estimation anomalies. This paper extends the methods developed for adaptive rank selection to include the issue of serial correlation in the measurement noise structure. Monte Carlo simulation results for a trajectory estimation problem using noisy angle-of-arrival measurements are presented.

Frank O'Brien
Marcus L. Graham
Kai F. Gong
U.S. Naval Underwater Systems Center
Code 2211, B 1171-1
Newport Laboratory
Newport, RI 02841-5047

Quadratic Programming with Approximate Data: Ill-Posedness and Efficient Algorithms

We present algorithms for Quadratic Programming problems specified with approximate data. This is important when rounding errors prevent the use of exact numbers or only estimates of the real data are available. The algorithms are efficient from the point of view of computation and data needed, requiring an excessively precise approximation and excessive computation only for near-ill-posed instances. This work is a continuation of the research we have done for 'linear Programming, presented at ICIAM91, and points towards the understanding of ill-posedness in optimization and the formulation of a complexity theory of problem solving with approximate data.

Jorge R. Vera
Department of Operations Research
Cornell University
Ithaca, NY 14853

Experiments with the Broyden Class of Quasi-Newton Methods

In this talk we use a new rule to summarize numerical results required to solve a set of standard unconstrained optimization problems by new quasi-Newton methods. The new methods switch among several available methods and belong to a new class of methods proposed within the Broyden class on the basis of estimating the size of the eigenvalues of the Hessian approximation. The rule measures the improvement percentage of the methods against the BFGS method. The results show that the performance of the new methods is better than that of the BFGS method and almost similar to that of the idealized method of Byrd, Liu and Nocedal (1990) (which requires the calculation of the Hessian matrix at each iteration).

M. Al-Baali
Department of Systems
University of Calabria
87036 Arcavacata (Cosenza)
Italy

On the Performance of a Trust Region Newton Method for Large-Scale Problems

We are concerned with the solution of large-scale optimization problems with sparse Hessians. A trust region Newton method is used in which the trust region subproblems are solved by the preconditioned conjugate gradient method. In particular, we use an improved sparse incomplete Cholesky factorization as a preconditioner. The new algorithm is compared with several existing algorithms for unconstrained minimization: Convex and nonconvex (indefinite) problems from the MINPACK-2 test problem collection are used for these comparisons.

Brett M. Averick
Army High Performance Computing Research Center
University of Minnesota, Minneapolis, MN 55415

Richard G. Carter
Army High Performance Computing Research Center
University of Minnesota, Minneapolis, MN 55415

Jorge J. Moré
Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, IL 60439

Iteration Functions in Nonsmooth Optimization and Equations

Some globally convergent model algorithms have been proposed for solving nonsmooth optimization problems. These algorithms do not explicitly depend on subgradients, but are based upon: iteration functions of two arguments. Iteration functions of point-based approximations were also introduced in algorithms for solving nonsmooth equations to reach global or superlinear convergence. The existence of iteration functions depend upon the original function in the nonsmooth optimization or the nonsmooth equation problem. In nonsmooth optimization, Poliquin and Qi proved that a necessary condition for existence of iteration function , the sense of Pang-Han-Rangaraj or Qi-Sun is that the original function is pseudo-regular in the sense of Borwein, and a sufficient condition for existence of iteration function in the sense of Pang-Han-Rangaraj is that the original function is subsmooth (lower C*) in the sense of Rockafellar and Spingarn. It was also shown that such an iteration function is unique in general and is a certain kind of "continuous" approximation of the upper Dini directional derivative of the original function.

Liquan Qi
University of New South Wales, Kensington, NSW, Australia

Trust Region Methods for Large Constrained Optimization

We begin by considering bound-constrained problems and focus on two crucial questions: (i) how can we use negative curvature information, in particular, second derivatives? (ii) how can we keep the iteration cost to minimum? We propose an approach well-suited for large problems.

We then consider the general nonlinearly constrained problem and discuss an adaptation of an algorithm proposed by Byrd and Omojukun, designed to be efficient when the number of variables is very large. Numerical tests will be described.

Marucha Lalee and Jorge Nocedal
Northwestern University
<table>
<thead>
<tr>
<th>NAME</th>
<th>DAY</th>
<th>TIME</th>
<th>ENDTIME</th>
<th>SESSION</th>
<th>ABST.</th>
<th>ROOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adali, S.*</td>
<td>Wed PM</td>
<td>05:40</td>
<td>06:00</td>
<td>MS25</td>
<td>A44</td>
<td>Water Tower Room</td>
</tr>
<tr>
<td>Agarwala, R.</td>
<td>Wed PM</td>
<td>02:50</td>
<td>03:10</td>
<td>CP23</td>
<td>A19</td>
<td>Water Tower Room</td>
</tr>
<tr>
<td>Al-Baali, M.*</td>
<td>Tue PM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 2</td>
<td>A48</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Alexander, A.*</td>
<td>Mon PM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 1</td>
<td>A17</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Alexandrov, N.*</td>
<td>Tue PM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 2</td>
<td>A30</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Alladheh, F.*</td>
<td>Mon PM</td>
<td>04:20</td>
<td>04:40</td>
<td>MS9</td>
<td>A10</td>
<td>New Orleans Room</td>
</tr>
<tr>
<td>Anderson, P.B.*</td>
<td>Tue AM</td>
<td>10:50</td>
<td>11:10</td>
<td>CP11</td>
<td>A20</td>
<td>Toronto Room</td>
</tr>
<tr>
<td>Anstreicher, K.M.*</td>
<td>Tue AM</td>
<td>10:50</td>
<td>11:10</td>
<td>CP10</td>
<td>A19</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>Arora, J.S.*</td>
<td>Tue AM</td>
<td>10:50</td>
<td>11:10</td>
<td>MS11</td>
<td>A19</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Asle, M.D.*</td>
<td>Mon PM</td>
<td>04:20</td>
<td>04:40</td>
<td>CP8</td>
<td>A11</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Atkinson, D.S.*</td>
<td>Tue PM</td>
<td>04:20</td>
<td>04:40</td>
<td>CP17</td>
<td>A27</td>
<td>Toronto Room</td>
</tr>
<tr>
<td>Avruck, B.M.*</td>
<td>Tue PM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 2</td>
<td>A48</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Ayllon, P.G.</td>
<td>Wed PM</td>
<td>03:10</td>
<td>03:30</td>
<td>CP24</td>
<td>A40</td>
<td>Toronto Room</td>
</tr>
<tr>
<td>Babu, A.J.G.</td>
<td>Tue AM</td>
<td>11:30</td>
<td>11:50</td>
<td>CP3</td>
<td>A4</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Barelw, J.L.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basar, T.*</td>
<td>Wed PM</td>
<td>05:00</td>
<td>05:20</td>
<td>CP28</td>
<td>A45</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Battou, A.</td>
<td>Mon PM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 1</td>
<td>A16</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Baudrard, H.</td>
<td>Tue PM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 2</td>
<td>A36</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Bellare, M.</td>
<td>Wed AM</td>
<td>10:50</td>
<td>11:10</td>
<td>MS20</td>
<td>A36</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Ben-Ti, A.*</td>
<td>Tue AM</td>
<td>11:10</td>
<td>11:30</td>
<td>CP11</td>
<td>A20</td>
<td>Toronto Room</td>
</tr>
<tr>
<td>Renchakroun, A.</td>
<td>Thu AM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 2</td>
<td>A30</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Berke, L.</td>
<td>Mon AM</td>
<td>11:10</td>
<td>11:30</td>
<td>CP1</td>
<td>A3</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>Bertsekas, D.*</td>
<td>Mon PM</td>
<td>03:30</td>
<td>03:50</td>
<td>MS6</td>
<td>A7</td>
<td>Water Tower Room</td>
</tr>
<tr>
<td>Betts, J.</td>
<td>Tue AM</td>
<td>11:30</td>
<td>11:50</td>
<td>CP13</td>
<td>A21</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Bhutani, K.*</td>
<td>Mon PM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 1</td>
<td>A16</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Siegler, L.T.*</td>
<td>Mon AM</td>
<td>10:30</td>
<td>10:50</td>
<td>MS3</td>
<td>A2</td>
<td>Toronto Room</td>
</tr>
<tr>
<td>Bisschop, J.*</td>
<td>Tue AM</td>
<td>11:10</td>
<td>11:30</td>
<td>MS10</td>
<td>A18</td>
<td>Water Tower Room</td>
</tr>
<tr>
<td>Bixby, R.E.</td>
<td>Wed PM</td>
<td>03:10</td>
<td>03:30</td>
<td>MS22</td>
<td>A39</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Bixby, R.E.</td>
<td>Wed PM</td>
<td>03:30</td>
<td>03:50</td>
<td>MS22</td>
<td>A39</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Blanton, M.*</td>
<td>Wed PM</td>
<td>05:00</td>
<td>05:20</td>
<td>MS25</td>
<td>A44</td>
<td>Water Tower Room</td>
</tr>
<tr>
<td>Boggs, P.*</td>
<td>Mon PM</td>
<td>02:30</td>
<td>02:50</td>
<td>MS4</td>
<td>A5</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Bolonkin, A.*</td>
<td>Mon PM</td>
<td>04:40</td>
<td>05:00</td>
<td>CP8</td>
<td>A11</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Bolonkin, A.*</td>
<td>Mon PM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 1</td>
<td>A14</td>
<td>Water Tower Room</td>
</tr>
<tr>
<td>Bonnann, F.*</td>
<td>Mon PM</td>
<td>04:40</td>
<td>05:00</td>
<td>CP9</td>
<td>A12</td>
<td>Water Tower Room</td>
</tr>
<tr>
<td>Bonnann, F.*</td>
<td>Mon PM</td>
<td>02:30</td>
<td>03:10</td>
<td>CP16</td>
<td>A24</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Borchers, B.</td>
<td>Mon PM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 1</td>
<td>A15</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Bouhou, M.</td>
<td>Tue AM</td>
<td>08:30</td>
<td>09:15</td>
<td>CP4</td>
<td>A10</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Boyd, S.*</td>
<td>Tue AM</td>
<td>02:50</td>
<td>03:10</td>
<td>CP16</td>
<td>A24</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Bradley, G.H.*</td>
<td>Wed PM</td>
<td>02:30</td>
<td>03:10</td>
<td>CP24</td>
<td>A40</td>
<td>Toronto Room</td>
</tr>
<tr>
<td>Braune, G.*</td>
<td>Wed AM</td>
<td>10:50</td>
<td>11:10</td>
<td>CP20</td>
<td>A36</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>Brenan, K.*</td>
<td>Mon AM</td>
<td>11:30</td>
<td>11:50</td>
<td>CP1</td>
<td>A3</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>Bucy, R.S.</td>
<td>Mon PM</td>
<td>02:30</td>
<td>02:50</td>
<td>CP5</td>
<td>A7</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Burke, J.V.*</td>
<td>Wed PM</td>
<td>05:20</td>
<td>05:40</td>
<td>MS24</td>
<td>A43</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>Burns, J.A.*</td>
<td>Mon PM</td>
<td>02:30</td>
<td>02:50</td>
<td>MS5</td>
<td>A5</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>Burton, D.*</td>
<td>Mon AM</td>
<td>11:30</td>
<td>11:50</td>
<td>CP2</td>
<td>A4</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Butal, J.P.</td>
<td>Mon AM</td>
<td>03:30</td>
<td>03:50</td>
<td>MS4</td>
<td>A5</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Byrd, R.*</td>
<td>Mon PM</td>
<td>03:00</td>
<td>03:50</td>
<td>MS21</td>
<td>A39</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>Byrd, R.H.</td>
<td>Mon PM</td>
<td>03:30</td>
<td>03:50</td>
<td>MS21</td>
<td>A39</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calamari, P.H.</td>
<td>Tue PM</td>
<td>02:50</td>
<td>03:10</td>
<td>CP14</td>
<td>A23</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Caro, M.S.</td>
<td>Mon AM</td>
<td>11:30</td>
<td>11:10</td>
<td>MS3</td>
<td>A2</td>
<td>Toronto Room</td>
</tr>
<tr>
<td>Caro, A.*</td>
<td>Tue AM</td>
<td>04:40</td>
<td>05:00</td>
<td>MS17</td>
<td>A26</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Carpenter, T.</td>
<td>Mon AM</td>
<td>10:30</td>
<td>10:50</td>
<td>MS1</td>
<td>A1</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Carter, R.G.*</td>
<td>Tue AM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 3</td>
<td>A48</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Carter, R.G.*</td>
<td>Tue AM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 2</td>
<td>A29</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Case, L.M.*</td>
<td>Tue AM</td>
<td>02:50</td>
<td>03:10</td>
<td>CP14</td>
<td>A23</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Castanon, D.A.*</td>
<td>Mon PM</td>
<td>02:30</td>
<td>02:50</td>
<td>CP4</td>
<td>A7</td>
<td>Toronto Room</td>
</tr>
<tr>
<td>Cavalli, C.*</td>
<td>Tue AM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 2</td>
<td>A33</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Cavalli, C.*</td>
<td>Tue AM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 2</td>
<td>A33</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Cavalli, C.*</td>
<td>Tue AM</td>
<td>05:20</td>
<td>05:40</td>
<td>CP9</td>
<td>A12</td>
<td>Water Tower Room</td>
</tr>
<tr>
<td>Cembrano, G.*</td>
<td>Tue AM</td>
<td>11:20</td>
<td>11:50</td>
<td>CP11</td>
<td>A29</td>
<td>Toronto Room</td>
</tr>
<tr>
<td>Chen, G.H.*</td>
<td>Mon PM</td>
<td>03:30</td>
<td>03:50</td>
<td>MS14</td>
<td>A23</td>
<td>Toronto Room</td>
</tr>
<tr>
<td>Chen, H.-S.*</td>
<td>Mon AM</td>
<td>11:10</td>
<td>11:30</td>
<td>MS3</td>
<td>A2</td>
<td>Toronto Room</td>
</tr>
</tbody>
</table>

* = Speaker CP = Contributed Presentation MS = Minisumposium
Poster = Poster Session Abst. = Abstract Book Page Number
<table>
<thead>
<tr>
<th>NAME</th>
<th>DAY</th>
<th>TIME</th>
<th>ENDTIME</th>
<th>SESSION</th>
<th>ABST.</th>
<th>ROOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chen, J.-M.</td>
<td>Tue AM</td>
<td>11:30</td>
<td>11:50</td>
<td>CP12</td>
<td>A21</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Chen, J.-X.*</td>
<td>Tue PM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster</td>
<td>A32</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Chen, M.-Q.*</td>
<td>Mon PM</td>
<td>05:00</td>
<td>05:30</td>
<td>MS8</td>
<td>A5</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Chiu, C.</td>
<td>Tue AM</td>
<td>11:10</td>
<td>11:30</td>
<td>CP12</td>
<td>A21</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Chou, P.-C.*</td>
<td>Mon PM</td>
<td>09:00</td>
<td>09:30</td>
<td>MS12</td>
<td>A5</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Chun, B.J.*</td>
<td>Tue AM</td>
<td>10:30</td>
<td>11:00</td>
<td>CP12</td>
<td>A21</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Coleman, T.P.</td>
<td>Mon AM</td>
<td>06:00</td>
<td>06:30</td>
<td>MS12</td>
<td>A5</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Coleman, T.F.*</td>
<td>Mon AM</td>
<td>10:30</td>
<td>10:50</td>
<td>MS12</td>
<td>A5</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Collins, E.G.</td>
<td>Mon AM</td>
<td>10:00</td>
<td>11:30</td>
<td>MS12</td>
<td>A5</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Colvin, M.E.*</td>
<td>Mon AM</td>
<td>09:00</td>
<td>09:30</td>
<td>MS12</td>
<td>A5</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Conforti, D.*</td>
<td>Mon AM</td>
<td>10:30</td>
<td>11:00</td>
<td>MS12</td>
<td>A5</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Conn, A.</td>
<td>Mon AM</td>
<td>10:00</td>
<td>11:30</td>
<td>MS12</td>
<td>A5</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Conn, A.R.</td>
<td>Tue AM</td>
<td>09:00</td>
<td>09:30</td>
<td>MS12</td>
<td>A5</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Corliss, G.*</td>
<td>Wed AM</td>
<td>11:10</td>
<td>11:30</td>
<td>MS12</td>
<td>A5</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Corliss, G.*</td>
<td>Mon AM</td>
<td>10:30</td>
<td>11:00</td>
<td>MS12</td>
<td>A5</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Decarreau, A.</td>
<td>Mon AM</td>
<td>10:30</td>
<td>11:00</td>
<td>MS12</td>
<td>A5</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Den Hertog, D.</td>
<td>Tue AM</td>
<td>11:00</td>
<td>11:30</td>
<td>MS12</td>
<td>A5</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Dennis, J.E.*</td>
<td>Mon AM</td>
<td>10:30</td>
<td>11:00</td>
<td>MS12</td>
<td>A5</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Dennis, J.E.*</td>
<td>Mon AM</td>
<td>10:30</td>
<td>11:00</td>
<td>MS12</td>
<td>A5</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Dennis, J.E.*</td>
<td>Mon AM</td>
<td>10:30</td>
<td>11:00</td>
<td>MS12</td>
<td>A5</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Di Pillo, G.*</td>
<td>Mon AM</td>
<td>10:30</td>
<td>11:00</td>
<td>MS12</td>
<td>A5</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Diao, Z.-Y.*</td>
<td>Mon AM</td>
<td>10:30</td>
<td>11:00</td>
<td>MS12</td>
<td>A5</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>D'Alfonso, T.H.</td>
<td>Mon AM</td>
<td>10:30</td>
<td>11:00</td>
<td>MS12</td>
<td>A5</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Dantzig, G.B.</td>
<td>Mon AM</td>
<td>10:30</td>
<td>11:00</td>
<td>MS12</td>
<td>A5</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>De Klerk, R.</td>
<td>Mon AM</td>
<td>10:30</td>
<td>11:00</td>
<td>MS12</td>
<td>A5</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>De Leon, R.</td>
<td>Mon AM</td>
<td>10:30</td>
<td>11:00</td>
<td>MS12</td>
<td>A5</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>De Leon, R.</td>
<td>Mon AM</td>
<td>10:30</td>
<td>11:00</td>
<td>MS12</td>
<td>A5</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>De Pinto, A.*</td>
<td>Mon AM</td>
<td>10:30</td>
<td>11:00</td>
<td>MS12</td>
<td>A5</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Deb, E.</td>
<td>Mon AM</td>
<td>10:30</td>
<td>11:00</td>
<td>MS12</td>
<td>A5</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Decarreau, A.</td>
<td>Mon AM</td>
<td>10:30</td>
<td>11:00</td>
<td>MS12</td>
<td>A5</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Den Hertog, D.</td>
<td>Mon AM</td>
<td>10:30</td>
<td>11:00</td>
<td>MS12</td>
<td>A5</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Dennis, J.E.*</td>
<td>Mon AM</td>
<td>10:30</td>
<td>11:00</td>
<td>MS12</td>
<td>A5</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Dennis, J.E.*</td>
<td>Mon AM</td>
<td>10:30</td>
<td>11:00</td>
<td>MS12</td>
<td>A5</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Dennis, J.E.*</td>
<td>Mon AM</td>
<td>10:30</td>
<td>11:00</td>
<td>MS12</td>
<td>A5</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Di Pillo, G.*</td>
<td>Mon AM</td>
<td>10:30</td>
<td>11:00</td>
<td>MS12</td>
<td>A5</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Diao, Z.-Y.*</td>
<td>Mon AM</td>
<td>10:30</td>
<td>11:00</td>
<td>MS12</td>
<td>A5</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Didinsky, G.</td>
<td>Mon AM</td>
<td>10:30</td>
<td>11:00</td>
<td>MS12</td>
<td>A5</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>DiBongi, R.</td>
<td>Mon AM</td>
<td>10:30</td>
<td>11:00</td>
<td>MS12</td>
<td>A5</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Ding, J.</td>
<td>Mon AM</td>
<td>10:30</td>
<td>11:00</td>
<td>MS12</td>
<td>A5</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Donnelly, R.A.*</td>
<td>Mon AM</td>
<td>10:30</td>
<td>11:00</td>
<td>MS12</td>
<td>A5</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Donnelly, R.A.*</td>
<td>Mon AM</td>
<td>10:30</td>
<td>11:00</td>
<td>MS12</td>
<td>A5</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Dortonch, A.L.*</td>
<td>Mon AM</td>
<td>10:30</td>
<td>11:00</td>
<td>MS12</td>
<td>A5</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Dorla, J.</td>
<td>Mon AM</td>
<td>10:30</td>
<td>11:00</td>
<td>MS12</td>
<td>A5</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Drud, A.S.*</td>
<td>Mon AM</td>
<td>10:30</td>
<td>11:00</td>
<td>MS12</td>
<td>A5</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Dussault, J.P.*</td>
<td>Mon AM</td>
<td>10:30</td>
<td>11:00</td>
<td>MS12</td>
<td>A5</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Dussault, J.P.*</td>
<td>Mon AM</td>
<td>10:30</td>
<td>11:00</td>
<td>MS12</td>
<td>A5</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Eckstein, J.</td>
<td>Mon AM</td>
<td>10:30</td>
<td>11:00</td>
<td>MS12</td>
<td>A5</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Eckstein, J.*</td>
<td>Mon AM</td>
<td>10:30</td>
<td>11:00</td>
<td>MS12</td>
<td>A5</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Edsberg, L.</td>
<td>Mon AM</td>
<td>10:30</td>
<td>11:00</td>
<td>MS12</td>
<td>A5</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Elk, R.</td>
<td>Mon AM</td>
<td>10:30</td>
<td>11:00</td>
<td>MS12</td>
<td>A5</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Elk-Bakry, A.</td>
<td>Mon AM</td>
<td>10:30</td>
<td>11:00</td>
<td>MS12</td>
<td>A5</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Elk-Bakry, A.S.*</td>
<td>Mon AM</td>
<td>10:30</td>
<td>11:00</td>
<td>MS12</td>
<td>A5</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Elderfield, S.*</td>
<td>Mon AM</td>
<td>10:30</td>
<td>11:00</td>
<td>MS12</td>
<td>A5</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Eliot, S.F.*</td>
<td>Mon AM</td>
<td>10:30</td>
<td>11:00</td>
<td>MS12</td>
<td>A5</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Esfandiari, R.S.*</td>
<td>Mon AM</td>
<td>10:30</td>
<td>11:00</td>
<td>MS12</td>
<td>A5</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Eskow, E.</td>
<td>Mon AM</td>
<td>10:30</td>
<td>11:00</td>
<td>MS12</td>
<td>A5</td>
<td>Gold Coast Room</td>
</tr>
</tbody>
</table>

* = Speaker CP = Contributed Presentation MS = Minisymposium
Poster = Poster Session Abst. = Abstract Book Page Number
<table>
<thead>
<tr>
<th>NAME</th>
<th>DAY</th>
<th>TIME</th>
<th>ENDTIME</th>
<th>SESSION</th>
<th>ABST.</th>
<th>ROOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fletcher, R.*</td>
<td>Mon AM</td>
<td>08:30</td>
<td>09:15</td>
<td>IP1</td>
<td>06</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Floudas, C.A.*</td>
<td>Tue PM</td>
<td>05:00</td>
<td>05:20</td>
<td>MS16</td>
<td>A26</td>
<td>New Orleans Room</td>
</tr>
<tr>
<td>Floudas, C.A.*</td>
<td>Wed AM</td>
<td>08:30</td>
<td>09:15</td>
<td>MS21</td>
<td>A1</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Forrest, J.-J.H.</td>
<td>Wed AM</td>
<td>10:50</td>
<td>11:10</td>
<td>MS19</td>
<td>A35</td>
<td>Toronto Room</td>
</tr>
<tr>
<td>Forough, A.*</td>
<td>Wed AM</td>
<td>10:50</td>
<td>11:10</td>
<td>MS19</td>
<td>A35</td>
<td>Toronto Room</td>
</tr>
<tr>
<td>Fourer, R.</td>
<td>Mon AM</td>
<td>11:30</td>
<td>11:50</td>
<td>MS1</td>
<td>A1</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Fraley, C.*</td>
<td>Tue PM</td>
<td>04:20</td>
<td>04:40</td>
<td>CF18</td>
<td>A27</td>
<td>Water Tower Room</td>
</tr>
<tr>
<td>Frank, P.*</td>
<td>Wed AM</td>
<td>11:30</td>
<td>11:50</td>
<td>CP13</td>
<td>A21</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Freund, R.M.*</td>
<td>Wed AM</td>
<td>02:50</td>
<td>03:10</td>
<td>CP6</td>
<td>A8</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Galan, J.</td>
<td>Wed PM</td>
<td>03:10</td>
<td>03:30</td>
<td>CP24</td>
<td>A40</td>
<td>Toronto Room</td>
</tr>
<tr>
<td>Galperin, E.A.</td>
<td>Tue PM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 2</td>
<td>A32</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Ge, Y.</td>
<td>Mon AM</td>
<td>02:50</td>
<td>03:10</td>
<td>MS13</td>
<td>A22</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Ghattas, O.N.*</td>
<td>Tue AM</td>
<td>11:30</td>
<td>11:50</td>
<td>MS11</td>
<td>A19</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Ge, Y.</td>
<td>Mon PM</td>
<td>05:20</td>
<td>05:40</td>
<td>CP7</td>
<td>A11</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Ge, Y.</td>
<td>Mon AM</td>
<td>02:50</td>
<td>03:10</td>
<td>CP7</td>
<td>A15</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Gil, P.E.</td>
<td>Wed AM</td>
<td>11:30</td>
<td>11:50</td>
<td>MS19</td>
<td>A35</td>
<td>Toronto Room</td>
</tr>
<tr>
<td>Gil, P.E.</td>
<td>Wed AM</td>
<td>10:50</td>
<td>11:10</td>
<td>CP20</td>
<td>A36</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>Gilmore, P.A.*</td>
<td>Mon PM</td>
<td>02:50</td>
<td>03:10</td>
<td>MS5</td>
<td>A6</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>Gitler, I.*</td>
<td>Mon PM</td>
<td>10:50</td>
<td>11:10</td>
<td>MS2</td>
<td>A1</td>
<td>Water Tower Room</td>
</tr>
<tr>
<td>Goffin, J.L.</td>
<td>Tue PM</td>
<td>03:30</td>
<td>03:50</td>
<td>CP16</td>
<td>A25</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Goh, D.*</td>
<td>Mon AM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 1</td>
<td>A47</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Gomez, S.*</td>
<td>Wed AM</td>
<td>03:10</td>
<td>03:30</td>
<td>IP25</td>
<td>A41</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Gong, K.F.</td>
<td>Tue PM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 2</td>
<td>A47</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Gongzaga, C.C.*</td>
<td>Mon AM</td>
<td>05:20</td>
<td>05:40</td>
<td>MS7</td>
<td>A9</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>Gould, N.</td>
<td>Mon AM</td>
<td>10:50</td>
<td>11:10</td>
<td>CP1</td>
<td>A2-3</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>Gould, N.</td>
<td>Mon AM</td>
<td>09:30</td>
<td>09:50</td>
<td>IF27</td>
<td>15</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Graham, M.L.*</td>
<td>Tue AM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 2</td>
<td>A47</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Grandine, T.A.*</td>
<td>Tue AM</td>
<td>11:10</td>
<td>11:30</td>
<td>MS11</td>
<td>A19</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Grandinetti, L.</td>
<td>Tue AM</td>
<td>03:10</td>
<td>03:30</td>
<td>CP15</td>
<td>A24</td>
<td>Water Tower Room</td>
</tr>
<tr>
<td>Grier, A.*</td>
<td>Mon AM</td>
<td>01:30</td>
<td>01:50</td>
<td>IP6</td>
<td>11</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Grigoriadis, M.*</td>
<td>Wed AM</td>
<td>01:30</td>
<td>01:50</td>
<td>IF9</td>
<td>16</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Grin, K.B.</td>
<td>Wed AM</td>
<td>11:30</td>
<td>11:50</td>
<td>CP11</td>
<td>A20</td>
<td>Toronto Room</td>
</tr>
<tr>
<td>Grippo, L.</td>
<td>Wed AM</td>
<td>02:50</td>
<td>03:10</td>
<td>CP25</td>
<td>A41</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Grippo, L.*</td>
<td>Wed AM</td>
<td>02:50</td>
<td>03:10</td>
<td>CP15</td>
<td>A24</td>
<td>Water Tower Room</td>
</tr>
<tr>
<td>Grippo, L.*</td>
<td>Wed AM</td>
<td>02:50</td>
<td>03:10</td>
<td>CP15</td>
<td>A24</td>
<td>Water Tower Room</td>
</tr>
<tr>
<td>Guer, O.*</td>
<td>Mon AM</td>
<td>03:10</td>
<td>03:30</td>
<td>MS6</td>
<td>A6</td>
<td>Water Tower Room</td>
</tr>
<tr>
<td>Guptill, J.D.*</td>
<td>Mon AM</td>
<td>11:10</td>
<td>11:30</td>
<td>CP1</td>
<td>A3</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>Haddad, E.*</td>
<td>Mon PM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 1</td>
<td>A14</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Haagarty, J.P.*</td>
<td>Mon AM</td>
<td>05:00</td>
<td>05:20</td>
<td>MS9</td>
<td>A10</td>
<td>New Orleans Room</td>
</tr>
<tr>
<td>Haekst, R.T.</td>
<td>Tue PM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 2</td>
<td>A31</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Hager, W.W.</td>
<td>Wed AM</td>
<td>04:20</td>
<td>04:40</td>
<td>CP28</td>
<td>A45</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Hajdu, M.*</td>
<td>Mon AM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 1</td>
<td>A17</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Hallman, W.</td>
<td>Mon AM</td>
<td>11:30</td>
<td>11:50</td>
<td>CP1</td>
<td>A3</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>Han, S.-P.</td>
<td>Tue AM</td>
<td>03:10</td>
<td>03:30</td>
<td>CP16</td>
<td>A25</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Hao, J.</td>
<td>Tue AM</td>
<td>03:30</td>
<td>03:50</td>
<td>MS12</td>
<td>A22</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>Hao, J.*</td>
<td>Tue AM</td>
<td>03:10</td>
<td>03:30</td>
<td>MS12</td>
<td>A22</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>Harrell, A.W.*</td>
<td>Mon AM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 1</td>
<td>A15</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Hartwigsen, D.*</td>
<td>Mon AM</td>
<td>11:10</td>
<td>11:30</td>
<td>MS2</td>
<td>A1</td>
<td>Water Tower Room</td>
</tr>
<tr>
<td>Hattori, T.*</td>
<td>Tue AM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 2</td>
<td>A31</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Hemmer, G.H.*</td>
<td>Tue AM</td>
<td>10:30</td>
<td>10:50</td>
<td>CP10</td>
<td>A19</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>Hernandez, S.*</td>
<td>Mon AM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 1</td>
<td>A13</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>High, K.A.*</td>
<td>Tue AM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 2</td>
<td>A29</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Hill, R.*</td>
<td>Wed AM</td>
<td>03:30</td>
<td>03:50</td>
<td>CP25</td>
<td>A41</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Hipolito, A.*</td>
<td>Tue AM</td>
<td>11:10</td>
<td>11:30</td>
<td>CP10</td>
<td>A41</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>Hirvonen, D.S.*</td>
<td>Tue AM</td>
<td>10:30</td>
<td>10:50</td>
<td>MS16</td>
<td>A18</td>
<td>Water Tower Room</td>
</tr>
<tr>
<td>Ho, J.K.*</td>
<td>Wed AM</td>
<td>11:30</td>
<td>11:50</td>
<td>CP20</td>
<td>A37</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>Hochbaum, D.*</td>
<td>Wed AM</td>
<td>10:30</td>
<td>10:50</td>
<td>MS20</td>
<td>A36</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Hossain, A.K.M.</td>
<td>Mon AM</td>
<td>03:30</td>
<td>03:50</td>
<td>CP6</td>
<td>A8</td>
<td>Gold Coast Room</td>
</tr>
</tbody>
</table>

* = Speaker CP = Contributed Presentation MS = Minisymposium
Poster = Poster Session Abst. = Abstract Book Page Number
<table>
<thead>
<tr>
<th>NAME</th>
<th>DAY</th>
<th>TIME</th>
<th>ENDTIME</th>
<th>SESSION</th>
<th>ABST.</th>
<th>ROOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hu, C.*</td>
<td>Tue</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 2</td>
<td>A33</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Hu, H.*</td>
<td>Wed</td>
<td>09:10</td>
<td>10:30</td>
<td>CP28</td>
<td>A42</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Hu, H.*</td>
<td>Wed</td>
<td>09:10</td>
<td>10:30</td>
<td>CP2</td>
<td>A33</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Huang, S.*</td>
<td>Tue</td>
<td>04:40</td>
<td>05:00</td>
<td>CP19</td>
<td>A28</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Huschens, J.*</td>
<td>Mon</td>
<td>09:10</td>
<td>10:30</td>
<td>CP7</td>
<td>A45</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infanger, G.</td>
<td>Wed</td>
<td>10:30</td>
<td>11:50</td>
<td>CP20</td>
<td>A33</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Isac, G.*</td>
<td>Tue</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 2</td>
<td>A33</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Iusem, A.N.*</td>
<td>Mon</td>
<td>09:10</td>
<td>10:30</td>
<td>Poster 1</td>
<td>A14</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jarre, F.*</td>
<td>Wed</td>
<td>09:10</td>
<td>10:30</td>
<td>CP26</td>
<td>A42</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Jaulard, B.</td>
<td>Tue</td>
<td>10:30</td>
<td>11:50</td>
<td>MS16</td>
<td>A26</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Jelinski, L.W.*</td>
<td>Tue</td>
<td>09:10</td>
<td>10:30</td>
<td>MS10</td>
<td>A18</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Jensen, D.</td>
<td>Mon</td>
<td>09:10</td>
<td>10:30</td>
<td>MS3</td>
<td>A2</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Jensen, D.*</td>
<td>Mon</td>
<td>09:10</td>
<td>10:30</td>
<td>MS7</td>
<td>A9</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Ji, J.</td>
<td>Tue</td>
<td>09:10</td>
<td>10:30</td>
<td>MS10</td>
<td>A27</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Ji, J.*</td>
<td>Tue</td>
<td>09:10</td>
<td>10:30</td>
<td>MS7</td>
<td>A9</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Jogi, P.*</td>
<td>Tue</td>
<td>09:10</td>
<td>10:30</td>
<td>MS23</td>
<td>A42</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Jones, C.V.*</td>
<td>Tue</td>
<td>09:10</td>
<td>10:30</td>
<td>MS3</td>
<td>A2</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Jones, J.*</td>
<td>Wed</td>
<td>09:10</td>
<td>10:30</td>
<td>MS11</td>
<td>A18</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Jude, J.J.</td>
<td>Tue</td>
<td>09:10</td>
<td>10:30</td>
<td>MS15</td>
<td>A25</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Jude, J.J.*</td>
<td>Tue</td>
<td>09:10</td>
<td>10:30</td>
<td>MS15</td>
<td>A25</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Judson, R.S.</td>
<td>Mon</td>
<td>09:10</td>
<td>10:30</td>
<td>MS5</td>
<td>A6</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Katti, M.*</td>
<td>Tue</td>
<td>09:10</td>
<td>10:30</td>
<td>CP3</td>
<td>A4</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Kaufman, L.*</td>
<td>Mon</td>
<td>09:10</td>
<td>10:30</td>
<td>CP9</td>
<td>A12</td>
<td>Water Tower Room</td>
</tr>
<tr>
<td>Kearseby, A.J.*</td>
<td>Mon</td>
<td>09:10</td>
<td>10:30</td>
<td>CP9</td>
<td>A12</td>
<td>Water Tower Room</td>
</tr>
<tr>
<td>Kelley, C.T.</td>
<td>Mon</td>
<td>09:10</td>
<td>10:30</td>
<td>CP9</td>
<td>A12</td>
<td>Water Tower Room</td>
</tr>
<tr>
<td>Kelley, C.T.*</td>
<td>Tue</td>
<td>09:10</td>
<td>10:30</td>
<td>CP9</td>
<td>A12</td>
<td>Water Tower Room</td>
</tr>
<tr>
<td>Kisala, T.P.</td>
<td>Mon</td>
<td>09:10</td>
<td>10:30</td>
<td>CP9</td>
<td>A12</td>
<td>Water Tower Room</td>
</tr>
<tr>
<td>Klinger, A.*</td>
<td>Tue</td>
<td>09:10</td>
<td>10:30</td>
<td>CP9</td>
<td>A12</td>
<td>Water Tower Room</td>
</tr>
<tr>
<td>Klinger, A.*</td>
<td>Tue</td>
<td>09:10</td>
<td>10:30</td>
<td>MS7</td>
<td>A9</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Kodiyalam, S.*</td>
<td>Tue</td>
<td>09:10</td>
<td>10:30</td>
<td>MS7</td>
<td>A9</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Kojima, M.</td>
<td>Wed</td>
<td>09:10</td>
<td>10:30</td>
<td>MS7</td>
<td>A9</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Kojima, M.*</td>
<td>Mon</td>
<td>09:10</td>
<td>10:30</td>
<td>MS7</td>
<td>A9</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Kostrzewa, H.</td>
<td>Mon</td>
<td>09:10</td>
<td>10:30</td>
<td>MS7</td>
<td>A9</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Kountanis, D.</td>
<td>Tue</td>
<td>09:10</td>
<td>10:30</td>
<td>MS7</td>
<td>A9</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Kountanis, D.</td>
<td>Tue</td>
<td>09:10</td>
<td>10:30</td>
<td>MS7</td>
<td>A9</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Kountanis, D.</td>
<td>Tue</td>
<td>09:10</td>
<td>10:30</td>
<td>MS7</td>
<td>A9</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Kovoor, N.</td>
<td>Wed</td>
<td>10:30</td>
<td>11:50</td>
<td>MS15</td>
<td>A25</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>Kowalewska, U.L.*</td>
<td>Mon</td>
<td>09:10</td>
<td>10:30</td>
<td>MS15</td>
<td>A25</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>Krishnan, R.</td>
<td>Tue</td>
<td>09:10</td>
<td>10:30</td>
<td>MS15</td>
<td>A25</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>Kumar, P.R.*</td>
<td>Tue</td>
<td>09:10</td>
<td>10:30</td>
<td>MS15</td>
<td>A25</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>Kunisch, K.*</td>
<td>Tue</td>
<td>09:10</td>
<td>10:30</td>
<td>MS15</td>
<td>A25</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>Kupferman, W.A.</td>
<td>Mon</td>
<td>09:10</td>
<td>10:30</td>
<td>MS15</td>
<td>A25</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>Kupfer, P.F.</td>
<td>Tue</td>
<td>09:10</td>
<td>10:30</td>
<td>MS15</td>
<td>A25</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>Kupfer, P.F.*</td>
<td>Tue</td>
<td>09:10</td>
<td>10:30</td>
<td>MS15</td>
<td>A25</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>Kupfer, P.F.*</td>
<td>Tue</td>
<td>09:10</td>
<td>10:30</td>
<td>MS15</td>
<td>A25</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>Kupfer, P.F.*</td>
<td>Tue</td>
<td>09:10</td>
<td>10:30</td>
<td>MS15</td>
<td>A25</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La Roche, R.D.</td>
<td>Tue</td>
<td>09:10</td>
<td>10:30</td>
<td>MS15</td>
<td>A25</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>Lalee, M.*</td>
<td>Wed</td>
<td>10:30</td>
<td>11:50</td>
<td>CP25</td>
<td>A41</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Lampariello, F.</td>
<td>Wed</td>
<td>10:30</td>
<td>11:50</td>
<td>CP25</td>
<td>A41</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Lasdon, L.*</td>
<td>Mon</td>
<td>09:10</td>
<td>10:30</td>
<td>CP25</td>
<td>A41</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Leary, R.H.*</td>
<td>Mon</td>
<td>09:10</td>
<td>10:30</td>
<td>CP25</td>
<td>A41</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Lemaarchal, C.*</td>
<td>Wed</td>
<td>10:30</td>
<td>11:50</td>
<td>CP25</td>
<td>A41</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Levine, D.*</td>
<td>Wed</td>
<td>10:30</td>
<td>11:50</td>
<td>CP25</td>
<td>A41</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Lewis, R.M.*</td>
<td>Wed</td>
<td>10:30</td>
<td>11:50</td>
<td>CP25</td>
<td>A41</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Lewis, R.M.*</td>
<td>Wed</td>
<td>10:30</td>
<td>11:50</td>
<td>CP25</td>
<td>A41</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Li, G.</td>
<td>Tue</td>
<td>09:10</td>
<td>10:30</td>
<td>MS15</td>
<td>A25</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Li, G.*</td>
<td>Mon</td>
<td>09:10</td>
<td>10:30</td>
<td>MS15</td>
<td>A25</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Li, G.*</td>
<td>Tue</td>
<td>09:10</td>
<td>10:30</td>
<td>MS15</td>
<td>A25</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Li, G.*</td>
<td>Tue</td>
<td>09:10</td>
<td>10:30</td>
<td>MS15</td>
<td>A25</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Liao, L.-Z.</td>
<td>Mon</td>
<td>09:10</td>
<td>10:30</td>
<td>MS15</td>
<td>A25</td>
<td>Acapulco Room</td>
</tr>
</tbody>
</table>

* = Speaker CP = Contributed Presentation MS = Minisymposium
Poster = Poster Session Abst. = Abstract Book Page Number
<table>
<thead>
<tr>
<th>NAME</th>
<th>DAY</th>
<th>TIME</th>
<th>ENDTIME</th>
<th>SESSION</th>
<th>ABST.</th>
<th>ROOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liolios, N. T.*</td>
<td>Tue</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 2</td>
<td>A33</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Lipton, R.</td>
<td>Tue</td>
<td>10:30</td>
<td>10:50</td>
<td>CP11</td>
<td>A20</td>
<td>Toronto Room</td>
</tr>
<tr>
<td>Liu, J.</td>
<td>Tue</td>
<td>10:50</td>
<td>11:10</td>
<td>CP13</td>
<td>A21</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Lucidi, S.</td>
<td>Tue</td>
<td>02:50</td>
<td>03:10</td>
<td>CP15</td>
<td>A24</td>
<td>Water Tower Room</td>
</tr>
<tr>
<td>Lucidi, S.</td>
<td>Wed</td>
<td>02:50</td>
<td>03:10</td>
<td>CP25</td>
<td>A41</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Lucidi, S.*</td>
<td>Wed</td>
<td>10:50</td>
<td>11:10</td>
<td>CP22</td>
<td>A38</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Lui, J.</td>
<td>Mon</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 1</td>
<td>A12</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Lustig, I.J.</td>
<td>Mon</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 1</td>
<td>A15</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Lustig, I.J.*</td>
<td>Wed</td>
<td>02:30</td>
<td>02:50</td>
<td>MS22</td>
<td>A39</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Maciel, M.C.*</td>
<td>Mon</td>
<td>04:20</td>
<td>04:40</td>
<td>CP9</td>
<td>A12</td>
<td>Water Tower Room</td>
</tr>
<tr>
<td>Madison, K.*</td>
<td>Tue</td>
<td>10:30</td>
<td>10:50</td>
<td>CP12</td>
<td>A20</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Magnanti, T.L.*</td>
<td>Mon</td>
<td>01:30</td>
<td>02:15</td>
<td>IP3</td>
<td>07</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Magnitskii, N.*</td>
<td>Tue</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 2</td>
<td>A34</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Mahey, P.*</td>
<td>Tue</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 2</td>
<td>A31</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Maier, R.S.*</td>
<td>Tue</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 2</td>
<td>A29</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Maler, M.R.S.*</td>
<td>Tue</td>
<td>05:20</td>
<td>05:40</td>
<td>MS16</td>
<td>A26</td>
<td>New Orleans Room</td>
</tr>
<tr>
<td>Malon, D.*</td>
<td>Wed</td>
<td>05:20</td>
<td>05:40</td>
<td>MS23</td>
<td>A43</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Maner, J.</td>
<td>Mon</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 1</td>
<td>A12</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Mangasarian, O.L.*</td>
<td>Wed</td>
<td>10:50</td>
<td>11:10</td>
<td>Poster 2</td>
<td>A30</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Mansouri, A.</td>
<td>Mon</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 2</td>
<td>A32</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Maranas, C.D.</td>
<td>Wed</td>
<td>03:10</td>
<td>03:30</td>
<td>MS21</td>
<td>A38</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>Marbukh, M.*</td>
<td>Tue</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 2</td>
<td>A28</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Marin, A.*</td>
<td>Wed</td>
<td>03:10</td>
<td>03:30</td>
<td>CP24</td>
<td>A40</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Martinez, J.M.*</td>
<td>Wed</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 2</td>
<td>A29</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Mata, J.</td>
<td>Mon</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 1</td>
<td>A13</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Mateus, G.R.</td>
<td>Mon</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 1</td>
<td>A15</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>McCleach, C.*</td>
<td>Tue</td>
<td>02:50</td>
<td>03:10</td>
<td>MS12</td>
<td>A21</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>McKenna, M.</td>
<td>Mon</td>
<td>10:50</td>
<td>11:10</td>
<td>CP3</td>
<td>A4</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>McQuain, W.D.</td>
<td>Wed</td>
<td>03:10</td>
<td>03:30</td>
<td>CP6</td>
<td>A8</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Medegalli, A.</td>
<td>Wed</td>
<td>02:50</td>
<td>03:10</td>
<td>CP23</td>
<td>A39</td>
<td>Water Tower Room</td>
</tr>
<tr>
<td>Megiddo, N.</td>
<td>Mon</td>
<td>04:40</td>
<td>05:00</td>
<td>MS7</td>
<td>A9</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>Megiddo, N.</td>
<td>Wed</td>
<td>05:00</td>
<td>05:20</td>
<td>CP27</td>
<td>A45</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Mehrrotra, S.*</td>
<td>Mon</td>
<td>11:10</td>
<td>11:30</td>
<td>MS1</td>
<td>A1</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Mehrrotra, S.*</td>
<td>Mon</td>
<td>02:50</td>
<td>03:10</td>
<td>MS22</td>
<td>A39</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Melman, A.*</td>
<td>Mon</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 1</td>
<td>A17</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Melville, R.C.</td>
<td>Mon</td>
<td>03:10</td>
<td>03:30</td>
<td>CP6</td>
<td>A8</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Menendez, A.</td>
<td>Wed</td>
<td>03:10</td>
<td>03:30</td>
<td>CP24</td>
<td>A40</td>
<td>Toronto Room</td>
</tr>
<tr>
<td>Messirov, J.</td>
<td>Mon</td>
<td>10:50</td>
<td>11:10</td>
<td>CP3</td>
<td>A4</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Meyer, R.R.</td>
<td>Mon</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 1</td>
<td>A16</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Meza, J.*</td>
<td>Mon</td>
<td>03:10</td>
<td>03:30</td>
<td>MS5</td>
<td>A6</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>Mikhail, N.N.*</td>
<td>Mon</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 1</td>
<td>A15</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Mishenko, A.*</td>
<td>Mon</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 1</td>
<td>A47</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Mitchell, J.E.*</td>
<td>Mon</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 1</td>
<td>A15</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Mizuno, S.</td>
<td>Mon</td>
<td>04:40</td>
<td>05:00</td>
<td>MS7</td>
<td>A9</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>Mizuno, S.*</td>
<td>Wed</td>
<td>05:20</td>
<td>05:40</td>
<td>CP27</td>
<td>A45</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Mladino, R.H.*</td>
<td>Tue</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 2</td>
<td>A32</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Mongeau, H.*</td>
<td>Tue</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 2</td>
<td>A33</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Monteiro, R.D.C.*</td>
<td>Tue</td>
<td>02:30</td>
<td>02:50</td>
<td>CP16</td>
<td>A24</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Morales-Perez, J.L.*</td>
<td>Tue</td>
<td>10:30</td>
<td>10:50</td>
<td>CP13</td>
<td>A21</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Most, J.C.*</td>
<td>Tue</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 2</td>
<td>A28</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Morshed, A.M.*</td>
<td>Mon</td>
<td>11:30</td>
<td>11:50</td>
<td>MS3</td>
<td>A2</td>
<td>Toronto Room</td>
</tr>
<tr>
<td>Mulvey, J.M.*</td>
<td>Mon</td>
<td>04:20</td>
<td>04:40</td>
<td>MS8</td>
<td>A9</td>
<td>Toronto Room</td>
</tr>
<tr>
<td>Murray, W.</td>
<td>Wed</td>
<td>10:50</td>
<td>11:10</td>
<td>MS19</td>
<td>A35</td>
<td>Toronto Room</td>
</tr>
<tr>
<td>Murray, W.</td>
<td>Wed</td>
<td>11:30</td>
<td>11:50</td>
<td>MS19</td>
<td>A35</td>
<td>Toronto Room</td>
</tr>
<tr>
<td>Musmanno, R.</td>
<td>Tue</td>
<td>03:10</td>
<td>03:30</td>
<td>CP15</td>
<td>A24</td>
<td>Water Tower Room</td>
</tr>
<tr>
<td>Nash, J.C.*</td>
<td>Tue</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 2</td>
<td>A29</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Nash, S.</td>
<td>Mon</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 1</td>
<td>A13</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Nash, S.G.</td>
<td>Tue</td>
<td>10:50</td>
<td>11:10</td>
<td>CP11</td>
<td>A20</td>
<td>Toronto Room</td>
</tr>
<tr>
<td>Navaza, J.</td>
<td>Wed</td>
<td>03:30</td>
<td>03:50</td>
<td>CP25</td>
<td>A41</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Nekooie, B.</td>
<td>Mon</td>
<td>11:10</td>
<td>11:30</td>
<td>MS24</td>
<td>A42</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>Ng, P.H.*</td>
<td>Wed</td>
<td>03:30</td>
<td>03:50</td>
<td>CP23</td>
<td>A40</td>
<td>Water Tower Room</td>
</tr>
<tr>
<td>Nielsen, S.S.*</td>
<td>Tue</td>
<td>02:30</td>
<td>02:50</td>
<td>MS12</td>
<td>A21</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>Nielsen, H.B.</td>
<td>Tue</td>
<td>10:30</td>
<td>10:50</td>
<td>CP12</td>
<td>A20</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Nielsen, S.S.*</td>
<td>Wed</td>
<td>10:30</td>
<td>10:50</td>
<td>MS18</td>
<td>A34</td>
<td>Regency A/B</td>
</tr>
</tbody>
</table>

* = Speaker CP = Contributed Presentation MS = Mini-symposium
Post. = Poster Session Abst. = Abstract Book Page Number
<table>
<thead>
<tr>
<th>NAME</th>
<th>DAY</th>
<th>TIME</th>
<th>ENDTIME</th>
<th>SESSION</th>
<th>ABST.</th>
<th>ROOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nikolopoulos, C.</td>
<td>Tue AM</td>
<td>10:50</td>
<td>11:10</td>
<td>CP12</td>
<td>A20</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Nikolopoulos, P.*</td>
<td>Tue AM</td>
<td>10:50</td>
<td>11:10</td>
<td>CP12</td>
<td>A20</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Nocedal, J.*</td>
<td>Mon PM</td>
<td>03:30</td>
<td>03:50</td>
<td>MS4</td>
<td>A5</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Nocedal, J.</td>
<td>Wed AM</td>
<td>11:30</td>
<td>11:50</td>
<td>CP22</td>
<td>A48</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Nordeide, L.M.*</td>
<td>Tue AM</td>
<td>11:10</td>
<td>11:30</td>
<td>CP12</td>
<td>A20</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Northrup, J.*</td>
<td>Tue AM</td>
<td>10:30</td>
<td>10:50</td>
<td>CP11</td>
<td>A20</td>
<td>Toronto Room</td>
</tr>
<tr>
<td>Nourani, Y.*</td>
<td>Mon PM</td>
<td>02:50</td>
<td>03:10</td>
<td>CP5</td>
<td>A7</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Nourani, Y.*</td>
<td>Wed AM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 2</td>
<td>A32</td>
<td>Regents A/B</td>
</tr>
<tr>
<td>Nouri-Moghadam, M*</td>
<td>Wed PM</td>
<td>04:10</td>
<td>04:40</td>
<td>MS5:5</td>
<td>A43</td>
<td>Water Tower Room</td>
</tr>
<tr>
<td>O'Brien, F.*</td>
<td>Tue PM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 2</td>
<td>A47</td>
<td>Regents A/B</td>
</tr>
<tr>
<td>Oates, K.</td>
<td>Mon PM</td>
<td>02:30</td>
<td>02:50</td>
<td>MS5</td>
<td>A5</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>Oliveira, H.F.</td>
<td>Wed PM</td>
<td>02:50</td>
<td>03:10</td>
<td>CP24</td>
<td>A40</td>
<td>Toronto Room</td>
</tr>
<tr>
<td>Orin, J.B.</td>
<td>Tue AM</td>
<td>03:10</td>
<td>03:30</td>
<td>MS12</td>
<td>A22</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>Orin, J.B.*</td>
<td>Tue AM</td>
<td>03:30</td>
<td>03:50</td>
<td>MS12</td>
<td>A22</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>Orozco, C.E.</td>
<td>Tue AM</td>
<td>11:30</td>
<td>11:50</td>
<td>MS11</td>
<td>A19</td>
<td>Regents A/B</td>
</tr>
<tr>
<td>Overton, M.L.*</td>
<td>Wed PM</td>
<td>05:20</td>
<td>05:40</td>
<td>MS24</td>
<td>A43</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>Overton, M.L.*</td>
<td>Wed PM</td>
<td>05:00</td>
<td>05:20</td>
<td>MS24</td>
<td>A43</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>Palagi, L.</td>
<td>Wed AM</td>
<td>10:50</td>
<td>11:10</td>
<td>CP22</td>
<td>A38</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Palomares, U.M.*</td>
<td>Tue PM</td>
<td>05:20</td>
<td>05:40</td>
<td>CP19</td>
<td>A29</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Pan, S.N.*</td>
<td>Mon AM</td>
<td>10:30</td>
<td>10:50</td>
<td>CP2</td>
<td>A3</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Pan, V.*</td>
<td>Mon PM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 1</td>
<td>A12</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Pang, J.S.*</td>
<td>Tue PM</td>
<td>03:10</td>
<td>03:30</td>
<td>MS14</td>
<td>A23</td>
<td>Toronto Room</td>
</tr>
<tr>
<td>Pardalos, P.*</td>
<td>Wed AM</td>
<td>11:10</td>
<td>11:30</td>
<td>MS20</td>
<td>A36</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Pardalos, P.M.*</td>
<td>Wed AM</td>
<td>11:10</td>
<td>11:30</td>
<td>MS13</td>
<td>A22</td>
<td>Regents A/B</td>
</tr>
<tr>
<td>Pardalos, P.M.*</td>
<td>Wed AM</td>
<td>04:40</td>
<td>05:00</td>
<td>MS16</td>
<td>A26</td>
<td>New Orleans Room</td>
</tr>
<tr>
<td>Patnaik, S.N.</td>
<td>Mon AM</td>
<td>11:10</td>
<td>11:30</td>
<td>CP1</td>
<td>A3</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>Patricio, J.M.*</td>
<td>Tue PM</td>
<td>05:00</td>
<td>05:20</td>
<td>CP19</td>
<td>A28</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Pelchii, G.</td>
<td>Mon PM</td>
<td>02:30</td>
<td>02:50</td>
<td>MS5</td>
<td>A5</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>Perez, R.A.*</td>
<td>Mon PM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 1</td>
<td>A14</td>
<td>Regents A/B</td>
</tr>
<tr>
<td>Phillips, A.T.*</td>
<td>Mon PM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 1</td>
<td>A16</td>
<td>Regents A/B</td>
</tr>
<tr>
<td>Piel, P.</td>
<td>Tue AM</td>
<td>11:30</td>
<td>11:50</td>
<td>MS10</td>
<td>A18</td>
<td>Belomont Room</td>
</tr>
<tr>
<td>Piskopos, L.</td>
<td>Mon PM</td>
<td>06:01</td>
<td>07:30</td>
<td>Poster 1</td>
<td>A16</td>
<td>Belomont Room</td>
</tr>
<tr>
<td>Plab, F.*</td>
<td>Mon PM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 1</td>
<td>A13</td>
<td>Belomont Room</td>
</tr>
<tr>
<td>Plab, F.</td>
<td>Wed AM</td>
<td>11:10</td>
<td>11:30</td>
<td>CP20</td>
<td>A36</td>
<td>Regents A/B</td>
</tr>
<tr>
<td>Plassmann, P.E.*</td>
<td>Wed AM</td>
<td>11:10</td>
<td>11:30</td>
<td>MS18</td>
<td>A35</td>
<td>Regents A/B</td>
</tr>
<tr>
<td>Platinum, J.C.*</td>
<td>Mon PM</td>
<td>03:10</td>
<td>03:30</td>
<td>MS4</td>
<td>A5</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Polyak, R.</td>
<td>Mon PM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 1</td>
<td>A14</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Polyak, R.*</td>
<td>Tue AM</td>
<td>11:30</td>
<td>11:50</td>
<td>CP10</td>
<td>A19</td>
<td>Regents A/B</td>
</tr>
<tr>
<td>Ponnambalam, K.</td>
<td>Wed PM</td>
<td>04:20</td>
<td>04:40</td>
<td>CP29</td>
<td>A46</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Potra, F.</td>
<td>Tue PM</td>
<td>04:40</td>
<td>05:00</td>
<td>CP19</td>
<td>A28</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Potra, F.</td>
<td>Tue PM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 2</td>
<td>A31</td>
<td>Regents A/B</td>
</tr>
<tr>
<td>Potra, F.*</td>
<td>Wed PM</td>
<td>05:20</td>
<td>05:40</td>
<td>CP27</td>
<td>A45</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Powell, R.J.D.*</td>
<td>Mon PM</td>
<td>02:50</td>
<td>03:10</td>
<td>MS4</td>
<td>A5</td>
<td>Regents A/B</td>
</tr>
<tr>
<td>Pretorius, L.</td>
<td>Mon PM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 2</td>
<td>A30</td>
<td>Regents A/B</td>
</tr>
<tr>
<td>Pullan, M.C.*</td>
<td>Mon PM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 1</td>
<td>A12</td>
<td>Regents A/B</td>
</tr>
<tr>
<td>Q</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qi, L.</td>
<td>Tue PM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 2</td>
<td>A47</td>
<td>Regents A/B</td>
</tr>
<tr>
<td>Qi, L.*</td>
<td>Tue PM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 2</td>
<td>A48</td>
<td>Regents A/B</td>
</tr>
<tr>
<td>Qu, G.</td>
<td>Tue PM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 2</td>
<td>A32</td>
<td>Regents A/B</td>
</tr>
<tr>
<td>Quian, M.*</td>
<td>Mon PM</td>
<td>02:30</td>
<td>02:50</td>
<td>MS6</td>
<td>A6</td>
<td>Water Tower Room</td>
</tr>
<tr>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rais, A.*</td>
<td>Mon AM</td>
<td>11:30</td>
<td>11:50</td>
<td>MS2</td>
<td>A2</td>
<td>Water Tower Room</td>
</tr>
<tr>
<td>Rakowska, J.</td>
<td>Tue AM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 2</td>
<td>A31</td>
<td>Regents A/B</td>
</tr>
<tr>
<td>Ralph, D.*</td>
<td>Tue AM</td>
<td>05:00</td>
<td>05:20</td>
<td>CP29</td>
<td>A46</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Ramana, M.V.*</td>
<td>Tue AM</td>
<td>03:10</td>
<td>03:30</td>
<td>CP16</td>
<td>A25</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Rao, J.R.R.*</td>
<td>Tue AM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 2</td>
<td>A30</td>
<td>Regents A/B</td>
</tr>
<tr>
<td>Raydan, M.*</td>
<td>Tue AM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 2</td>
<td>A29</td>
<td>Regents A/B</td>
</tr>
<tr>
<td>Renegar, J.*</td>
<td>Wed PM</td>
<td>04:20</td>
<td>04:40</td>
<td>CP27</td>
<td>A44</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Resende, M.*</td>
<td>Mon PM</td>
<td>02:50</td>
<td>03:10</td>
<td>CP4</td>
<td>A7</td>
<td>Toronto Room</td>
</tr>
<tr>
<td>Ribbens, J.*</td>
<td>Mon PM</td>
<td>03:10</td>
<td>03:30</td>
<td>CP6</td>
<td>A8</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Rikun, A.D.*</td>
<td>Mon PM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 1</td>
<td>A17</td>
<td>Regents A/B</td>
</tr>
<tr>
<td>Ringertz, U.T.*</td>
<td>Wed AM</td>
<td>11:10</td>
<td>11:30</td>
<td>MS19</td>
<td>A35</td>
<td>Toronto Room</td>
</tr>
<tr>
<td>Robinson, S.H.*</td>
<td>Mon PM</td>
<td>04:40</td>
<td>05:00</td>
<td>MS8</td>
<td>A9</td>
<td>Toronto Room</td>
</tr>
</tbody>
</table>

* = Speaker CP = Contributed Presentation MS = Minisymposium
Poster = Poster Session Abst. = Abstract Book-Page Number
<table>
<thead>
<tr>
<th>NAME</th>
<th>DAY</th>
<th>TIME</th>
<th>END TIME</th>
<th>SESSION</th>
<th>ABST.</th>
<th>ROOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rockafellar, T.R.</td>
<td>Tue PM</td>
<td>03:30</td>
<td>03:50</td>
<td>MS14</td>
<td>A23</td>
<td>Toronto Room</td>
</tr>
<tr>
<td>Rogaway, P.*</td>
<td>Wed AM</td>
<td>1:50</td>
<td>11:10</td>
<td>MS20</td>
<td>A36</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Rogers, J.*</td>
<td>Tue PM</td>
<td>04:10</td>
<td>05:40</td>
<td>CP8</td>
<td>A11</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Rogers, J.W.*</td>
<td>Mon PM</td>
<td>6:10</td>
<td>11:30</td>
<td>Poster 1</td>
<td>A12</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Rong, X.</td>
<td>Mon PM</td>
<td>06:00</td>
<td>11:30</td>
<td>Poster 1</td>
<td>A13</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Roos, C.*</td>
<td>Tue PM</td>
<td>04:40</td>
<td>05:00</td>
<td>CP17</td>
<td>A27</td>
<td>Toronto Room</td>
</tr>
<tr>
<td>Rosen, J.B.</td>
<td>Tue PM</td>
<td>04:20</td>
<td>04:40</td>
<td>MS16</td>
<td>A25</td>
<td>New Orleans Room</td>
</tr>
<tr>
<td>Sachs, E.W.</td>
<td>Mon PM</td>
<td>05:00</td>
<td>05:20</td>
<td>CP7</td>
<td>A11</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Sachs, E.W.*</td>
<td>Tue PM</td>
<td>04:40</td>
<td>05:00</td>
<td>MS15</td>
<td>A25</td>
<td>Water Tower Room</td>
</tr>
<tr>
<td>Sadek, I.S.</td>
<td>Wed PM</td>
<td>04:20</td>
<td>04:40</td>
<td>MS25</td>
<td>A43</td>
<td>Water Tower Room</td>
</tr>
<tr>
<td>Salamon, P.</td>
<td>Mon PM</td>
<td>02:50</td>
<td>03:10</td>
<td>CP5</td>
<td>A7</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Salamon, P.</td>
<td>Tue PM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 2</td>
<td>A32</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Salamon, P.*</td>
<td>Mon PM</td>
<td>03:10</td>
<td>03:30</td>
<td>MS22</td>
<td>A39</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Saltzman, M.J.*</td>
<td>Wed PM</td>
<td>03:10</td>
<td>03:30</td>
<td>MS13</td>
<td>A22</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Santti, L.M.*</td>
<td>Mon PM</td>
<td>11:30</td>
<td>11:50</td>
<td>CP2</td>
<td>A40</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Sargent, R.W.H.</td>
<td>Tue AM</td>
<td>10:30</td>
<td>10:50</td>
<td>CP13</td>
<td>A21</td>
<td>Toronto Room</td>
</tr>
<tr>
<td>Sartenaer, A.*</td>
<td>Wed PM</td>
<td>03:30</td>
<td>03:50</td>
<td>CP4</td>
<td>A7</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Saunders, M.A.</td>
<td>Wed AM</td>
<td>11:30</td>
<td>11:50</td>
<td>MS19</td>
<td>A35</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>Schlick, T.*</td>
<td>Wed PM</td>
<td>02:50</td>
<td>03:10</td>
<td>MS21</td>
<td>A38</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>Schnabel, R.B.*</td>
<td>Wed PM</td>
<td>03:30</td>
<td>03:50</td>
<td>MS21</td>
<td>A39</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Schneur, R.R.*</td>
<td>Mon PM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 1</td>
<td>A14</td>
<td>Toronto Room</td>
</tr>
<tr>
<td>Schneur, R.R.</td>
<td>Tue PM</td>
<td>05:20</td>
<td>05:40</td>
<td>CP17</td>
<td>A17</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Segall, R.S.*</td>
<td>Mon PM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 1</td>
<td>A17</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Sethi, C.</td>
<td>Mon PM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 1</td>
<td>A14</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Shalloway, D.</td>
<td>Tue PM</td>
<td>03:10</td>
<td>03:30</td>
<td>MS13</td>
<td>A22</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Shalloway, D.*</td>
<td>Tue PM</td>
<td>03:30</td>
<td>03:50</td>
<td>MS13</td>
<td>A22</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Shannon, B.*</td>
<td>Mon AM</td>
<td>10:30</td>
<td>10:50</td>
<td>MS1</td>
<td>A1</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Shaw, D.</td>
<td>Mon PM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 1</td>
<td>A47</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Shoemaker, C.*</td>
<td>Mon PM</td>
<td>04:20</td>
<td>04:40</td>
<td>CP7</td>
<td>A10</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Siegel, D.*</td>
<td>Tue PM</td>
<td>03:30</td>
<td>03:50</td>
<td>CP15</td>
<td>A24</td>
<td>Water Tower Room</td>
</tr>
<tr>
<td>Sima, V.*</td>
<td>Tue PM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 2</td>
<td>A30</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Singh, A.*</td>
<td>Wed PM</td>
<td>04:20</td>
<td>04:40</td>
<td>CP29</td>
<td>A46</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Singh, D.</td>
<td>Mon PM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 1</td>
<td>A13</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Singh, J.N.*</td>
<td>Mon PM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 1</td>
<td>A13</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Smith, J.W.*</td>
<td>Wed AM</td>
<td>10:30</td>
<td>10:50</td>
<td>CP21</td>
<td>A37</td>
<td>Water Tower Room</td>
</tr>
<tr>
<td>Snyman, J.A.*</td>
<td>Wed PM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 1</td>
<td>A30</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Sohdhi, M.*</td>
<td>Mon PM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 1</td>
<td>A12</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Sofer, A.*</td>
<td>Mon AM</td>
<td>10:50</td>
<td>11:10</td>
<td>CP11</td>
<td>A20</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Sofer, A.*</td>
<td>Mon PM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 1</td>
<td>A13</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Steihaug, T.*</td>
<td>Mon PM</td>
<td>03:30</td>
<td>03:50</td>
<td>CP6</td>
<td>A8</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Steihaug, T.*</td>
<td>Tue PM</td>
<td>11:10</td>
<td>11:30</td>
<td>CP12</td>
<td>A20</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Stern, J.M.*</td>
<td>Mon PM</td>
<td>02:30</td>
<td>02:50</td>
<td>CP6</td>
<td>A8</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Sun, J.*</td>
<td>Tue PM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 2</td>
<td>A47</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Suresh, N.*</td>
<td>Wed PM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 2</td>
<td>A31</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Suresh, N.*</td>
<td>Wed PM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 2</td>
<td>A31</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Suresh, N.*</td>
<td>Wed PM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 2</td>
<td>A47</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Symes, W.W.*</td>
<td>Mon PM</td>
<td>03:30</td>
<td>03:50</td>
<td>MS5</td>
<td>A6</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>Takahashi, T.*</td>
<td>Tue PM</td>
<td>05:00</td>
<td>05:20</td>
<td>CP18</td>
<td>A28</td>
<td>Water Tower Room</td>
</tr>
<tr>
<td>Tanabe, T.</td>
<td>Wed PM</td>
<td>05:20</td>
<td>05:40</td>
<td>CP29</td>
<td>A46</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Tao, P.D.</td>
<td>Tue PM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 2</td>
<td>A31</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Tapia, R.*</td>
<td>Tue PM</td>
<td>05:00</td>
<td>05:20</td>
<td>CP17</td>
<td>A27</td>
<td>Toronto Room</td>
</tr>
<tr>
<td>Tapia, R.*</td>
<td>Tue PM</td>
<td>02:30</td>
<td>02:50</td>
<td>CP26</td>
<td>A41</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Tapia, R.*</td>
<td>Wed PM</td>
<td>02:30</td>
<td>02:50</td>
<td>CP26</td>
<td>A41</td>
<td>Gold Coast Room</td>
</tr>
<tr>
<td>Tapia, R.*</td>
<td>Mon PM</td>
<td>05:00</td>
<td>05:20</td>
<td>MS7</td>
<td>A9</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>Tapia, R.*</td>
<td>Wed AM</td>
<td>10:30</td>
<td>10:50</td>
<td>CP20</td>
<td>A36</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>Tapia, R.A.*</td>
<td>Wed PM</td>
<td>10:50</td>
<td>11:10</td>
<td>CP21</td>
<td>A37</td>
<td>Water Tower Room</td>
</tr>
<tr>
<td>Tapia, R.A.</td>
<td>Wed PM</td>
<td>03:30</td>
<td>03:50</td>
<td>MS22</td>
<td>A39</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Tarazaga, P.</td>
<td>Wed PM</td>
<td>10:50</td>
<td>11:10</td>
<td>CP21</td>
<td>A37</td>
<td>Water Tower Room</td>
</tr>
<tr>
<td>Tarazaga, P.*</td>
<td>Wed PM</td>
<td>02:30</td>
<td>02:50</td>
<td>CP26</td>
<td>A41</td>
<td>Gold Coast Room</td>
</tr>
</tbody>
</table>

* = Speaker CP = Contributed Presentation MS = Minisymposium
Poster = Poster Session Abst. = Abstract Book Page Number
<table>
<thead>
<tr>
<th>NAME</th>
<th>DAY</th>
<th>TIME</th>
<th>ENDTIME</th>
<th>SESSION</th>
<th>ABST.</th>
<th>ROOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teboulle, M.*</td>
<td>Mon</td>
<td>02:50</td>
<td>03:10</td>
<td>MS6</td>
<td>A6</td>
<td>Water Tower Room</td>
</tr>
<tr>
<td>Terlaky, T.</td>
<td>Tue</td>
<td>04:40</td>
<td>05:00</td>
<td>CP17</td>
<td>A27</td>
<td>Toronto Room</td>
</tr>
<tr>
<td>Thizy, J.-M.*</td>
<td>Mon</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 1</td>
<td>A15</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Tite, A.L.*</td>
<td>Wed</td>
<td>04:40</td>
<td>05:00</td>
<td>CP29</td>
<td>A46</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Todd, M.J.*</td>
<td>Wed</td>
<td>09:15</td>
<td>10:00</td>
<td>IP8</td>
<td>15</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Toint, P.*</td>
<td>Mon</td>
<td>03:10</td>
<td>11:10</td>
<td>CP1</td>
<td>A2-3</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>Tolle, J.W.</td>
<td>Mon</td>
<td>02:30</td>
<td>02:50</td>
<td>MS4</td>
<td>A5</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Tomlin, J.A.*</td>
<td>Mon</td>
<td>11:30</td>
<td>11:50</td>
<td>MS1</td>
<td>A1</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Tork Roth, G.*</td>
<td>Mon</td>
<td>11:30</td>
<td>11:50</td>
<td>CP3</td>
<td>A4</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Tork Roth, M.A.</td>
<td>Wed</td>
<td>03:10</td>
<td>03:30</td>
<td>CP23</td>
<td>A39</td>
<td>Water Tower Room</td>
</tr>
<tr>
<td>Toint, P.*</td>
<td>Mon</td>
<td>10:50</td>
<td>11:10</td>
<td>CP1</td>
<td>A2-3</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>Thizy, J.-M.*</td>
<td>Mon</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 2</td>
<td>A33</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Tork Roth, M.A.</td>
<td>Wed</td>
<td>03:10</td>
<td>03:30</td>
<td>CP23</td>
<td>A39</td>
<td>Water Tower Room</td>
</tr>
<tr>
<td>Tont, M.*</td>
<td>Mon</td>
<td>11:30</td>
<td>11:50</td>
<td>MS1</td>
<td>A1</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Tite, A.L.*</td>
<td>Wed</td>
<td>04:40</td>
<td>05:00</td>
<td>CP29</td>
<td>A46</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Tipton, P.*</td>
<td>Mon</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 2</td>
<td>A33</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Tipton, P.*</td>
<td>Mon</td>
<td>10:50</td>
<td>11:10</td>
<td>CP1</td>
<td>A2-3</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>Tipton, P.*</td>
<td>Wed</td>
<td>02:30</td>
<td>02:50</td>
<td>MS4</td>
<td>A5</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Tipton, P.*</td>
<td>Mon</td>
<td>11:30</td>
<td>11:50</td>
<td>MS1</td>
<td>A1</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Tipton, P.*</td>
<td>Mon</td>
<td>11:30</td>
<td>11:50</td>
<td>CP3</td>
<td>A4</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Tipton, P.*</td>
<td>Wed</td>
<td>03:10</td>
<td>03:30</td>
<td>CP23</td>
<td>A39</td>
<td>Water Tower Room</td>
</tr>
<tr>
<td>Tipton, P.*</td>
<td>Wed</td>
<td>03:10</td>
<td>03:30</td>
<td>CP23</td>
<td>A39</td>
<td>Water Tower Room</td>
</tr>
<tr>
<td>Tipton, P.*</td>
<td>Mon</td>
<td>11:30</td>
<td>11:50</td>
<td>MS1</td>
<td>A1</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Tipton, P.*</td>
<td>Mon</td>
<td>11:30</td>
<td>11:50</td>
<td>CP3</td>
<td>A4</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Tipton, P.*</td>
<td>Wed</td>
<td>03:10</td>
<td>03:30</td>
<td>CP23</td>
<td>A39</td>
<td>Water Tower Room</td>
</tr>
<tr>
<td>Tipton, P.*</td>
<td>Wed</td>
<td>03:10</td>
<td>03:30</td>
<td>CP23</td>
<td>A39</td>
<td>Water Tower Room</td>
</tr>
<tr>
<td>Tipton, P.*</td>
<td>Mon</td>
<td>11:30</td>
<td>11:50</td>
<td>MS1</td>
<td>A1</td>
<td>Regency A/B</td>
</tr>
</tbody>
</table>

* = Speaker CP = Contributed Presentation MS = Minisymposium
Poster = Poster Session Abst. = Abstract Book Page Number
<table>
<thead>
<tr>
<th>NAME</th>
<th>DAY</th>
<th>TIME</th>
<th>ENDTIME</th>
<th>SESSION</th>
<th>ABST.</th>
<th>ROOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xingbao, W.*</td>
<td>Mon PM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 1</td>
<td>A17</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Xue, G.-L.</td>
<td>Tue PM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 2</td>
<td>A29</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Xue, G.L.*</td>
<td>Tue PM</td>
<td>05:20</td>
<td>05:40</td>
<td>MS16</td>
<td>A26</td>
<td>New Orleans Room</td>
</tr>
<tr>
<td>Xue, H.</td>
<td>Tue PM</td>
<td>05:00</td>
<td>05:20</td>
<td>CP18</td>
<td>A28</td>
<td>Water Tower Room</td>
</tr>
<tr>
<td>Xue, G.L.*</td>
<td>Tue PM</td>
<td>04:40</td>
<td>05:00</td>
<td>MS24</td>
<td>A46</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Ye, D.*</td>
<td>Wed PM</td>
<td>04:40</td>
<td>05:00</td>
<td>MS29</td>
<td>A43</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>Ye, Y.*</td>
<td>Mon PM</td>
<td>04:20</td>
<td>04:40</td>
<td>MS7</td>
<td>A8-9</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>Ye, Y.*</td>
<td>Wed AM</td>
<td>11:30</td>
<td>11:50</td>
<td>MS20</td>
<td>A36</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Yabeg, H.</td>
<td>Tue PM</td>
<td>11:30</td>
<td>11:50</td>
<td>CP1</td>
<td>A3</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>Yabeg, H.*</td>
<td>Mon AM</td>
<td>04:40</td>
<td>05:00</td>
<td>MS7</td>
<td>A9</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>Yackel, J.*</td>
<td>Mon AM</td>
<td>03:10</td>
<td>03:30</td>
<td>MS4</td>
<td>A5</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Yackel, J.*</td>
<td>Wed PM</td>
<td>04:40</td>
<td>05:00</td>
<td>MS7</td>
<td>A9</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>Yabe, H.</td>
<td>Tue PM</td>
<td>03:10</td>
<td>03:30</td>
<td>MS18</td>
<td>A34</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Yabe, H.*</td>
<td>Mon PM</td>
<td>03:00</td>
<td>05:10</td>
<td>CP3</td>
<td>A4</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Ye, H.</td>
<td>Mon AM</td>
<td>02:30</td>
<td>02:50</td>
<td>MS12</td>
<td>A21</td>
<td>Belmont Room</td>
</tr>
<tr>
<td>Yabeg, A.</td>
<td>Mon PM</td>
<td>02:50</td>
<td>03:10</td>
<td>CP6</td>
<td>A8</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Ye, Y.*</td>
<td>Mon PM</td>
<td>03:20</td>
<td>03:40</td>
<td>MS8</td>
<td>A9</td>
<td>Toronto Room</td>
</tr>
<tr>
<td>Yacun, J.*</td>
<td>Mon PM</td>
<td>02:30</td>
<td>02:50</td>
<td>MS28</td>
<td>A46</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Yacun, X.Y.*</td>
<td>Mon PM</td>
<td>02:30</td>
<td>02:50</td>
<td>CP14</td>
<td>A23</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Yacun, Y.</td>
<td>Mon AM</td>
<td>03:30</td>
<td>03:50</td>
<td>MS28</td>
<td>A36</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Zhang, Y.</td>
<td>Mon AM</td>
<td>03:30</td>
<td>03:50</td>
<td>CP20</td>
<td>A36</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Zhang, Y.*</td>
<td>Mon PM</td>
<td>03:10</td>
<td>03:30</td>
<td>MS22</td>
<td>A39</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Zhang, Y.*</td>
<td>Mon PM</td>
<td>03:10</td>
<td>03:30</td>
<td>MS29</td>
<td>A46</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Zhang, Y.*</td>
<td>Mon PM</td>
<td>03:10</td>
<td>03:30</td>
<td>CP3</td>
<td>A4</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Zhang, J.*</td>
<td>Mon PM</td>
<td>04:40</td>
<td>05:00</td>
<td>MS16</td>
<td>A8</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Zhu, J.*</td>
<td>Mon PM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 1</td>
<td>A16</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Zhu, J.L.</td>
<td>Mon PM</td>
<td>03:10</td>
<td>03:30</td>
<td>MS4</td>
<td>A5</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Zhu, T.*</td>
<td>Mon PM</td>
<td>03:10</td>
<td>03:30</td>
<td>MS28</td>
<td>A36</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Zhu, W.</td>
<td>Mon PM</td>
<td>03:10</td>
<td>03:30</td>
<td>MS16</td>
<td>A8</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Zhu, W.*</td>
<td>Mon PM</td>
<td>03:10</td>
<td>03:30</td>
<td>MS16</td>
<td>A8</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Zhu, D.</td>
<td>Mon PM</td>
<td>03:10</td>
<td>03:30</td>
<td>MS16</td>
<td>A8</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Zhu, Y.</td>
<td>Mon PM</td>
<td>03:10</td>
<td>03:30</td>
<td>MS16</td>
<td>A8</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Zhu, Y.*</td>
<td>Mon PM</td>
<td>03:10</td>
<td>03:30</td>
<td>MS16</td>
<td>A8</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Zimmermann, T.</td>
<td>Mon PM</td>
<td>03:10</td>
<td>03:30</td>
<td>MS28</td>
<td>A36</td>
<td>Acapulco Room</td>
</tr>
<tr>
<td>Forbes, M.A.</td>
<td>Mon PM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 1</td>
<td>A46</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Holt, J.N.</td>
<td>Mon PM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 1</td>
<td>A46</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Kilby, J.N.</td>
<td>Mon PM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 1</td>
<td>A46</td>
<td>Regency A/B</td>
</tr>
<tr>
<td>Watt, A.M.</td>
<td>Mon PM</td>
<td>06:00</td>
<td>07:30</td>
<td>Poster 1</td>
<td>A46</td>
<td>Regency A/B</td>
</tr>
</tbody>
</table>

* = Speaker CP = Contributed Presentation MS = Minisymposium
Poster = Poster Session Abst. = Abstract Book Page Number
Contains research and expository articles on the theory and practice of optimization, and papers that link optimization theory with computational practice and applications. Among the areas addressed are linear and quadratic programming, large-scale optimization, large-scale quadratic programming including the solution of large-scale nonlinear systems of equations, stochastic optimization, combinatorial optimization, mixed integer programming, nonsmooth optimization, convex analysis, numerical optimization including optimization algorithms for use on parallel architectures, and applications in engineering, management, and the sciences.

Quarterly. J. E. Dennis, Jr., Editor-in-Chief.

Editor-in-Chief
J. E. Dennis, Jr.

Editorial Board
K. M. Anstreicher
F. O. Barahona
D. P. Bertsekas
P. Boggs
A. R. Conn
D. Goldfarb
C. Gonzaga
C. T. Kelley
M. Kojima
O. L. Mangasarian
J. M. Martínez
J. J. Moré
G. Nemhauser
J. Nocedal
M. L. Overton

F. A. Potra
R. T. Rockafellar
R. W. H. Sargent
M. A. Saunders
R. B. Schnabel
A. Schrijver
L. T. Watson
L. T. Watson
P. L. Toint
R. W. H. Sargent
R. B. Schnabel
A. Schrijver

Representative Papers from Recent Issues
Global Convergence Properties of Conjugate Gradient Methods for Optimization
Jean Charles Gilbert and Jorge Nocedal

Large-Scale Optimization of Eigenvalues
Michael L. Overton

Cones of Matrices and Set-Functions and 0–1 Optimization
L. Lovász and A. Schrijver

Large Step Path-Following Methods for Linear Programming, Part I: Barrier Function Method; Part II: Potential Reduction Method
Clovis C. Gonzaga

Variable Metric Method for Minimization
William C. Davidon

A Potential Reduction Algorithm Allowing Column Generation
Yinyu Ye

A Version of the Bundle Idea for Minimizing a Nonsmooth Function: Conceptual Idea, Convergence Analysis, Numerical Results
Helga Schramm and Jochem Zowe

Direct Search Methods on Parallel Machines
J. E. Dennis, Jr. and Virginia Torczon

A General-Purpose Parallel Algorithm for Unconstrained Optimization
Stephen G. Nash and Ariela Sofer

Tensor Methods for Unconstrained Optimization Using Second Derivatives
Robert B. Schnabel and Ta-Tung Chow

On the Solution of Large Quadratic Programming Problems with Bound Constraints
Jorge J. Moré and Gerardo Toraldo

Convergence of Iterates of an Inexact Matrix Splitting Algorithm for the Symmetric Monotone Linear Complementarity Problem
O. L. Mangasarian

The SIAM Activity Group on Optimization fosters the development of optimization theory, methods, and software, including in particular, the development and analysis of efficient and effective methods, as well as their implementation in high-quality software. Areas of interest include unconstrained and constrained optimization, the solution of systems of nonlinear equations, linear programming, integer programming, and optimal control.

This activity group provides an environment for interaction among applied mathematicians, computer scientists, engineers, and others interested in optimization. It organizes conferences and sponsors minisymposia at annual meetings. A newsletter is sent periodically to all members.

Participation in SIAM activity groups is available to SIAM members only and costs just $10 per year.

To join, please contact:
SIAM Customer Service
3600 University City
Science Center
Philadelphia, PA
19104-2688

Telephone: 215-382-9800
Toll free in USA:
1-800-447-SIAM
Fax: 215-386-7999
E-mail: service@siam.org
Individual Membership Application 1992

Name (First Name, Initial, Last Name)

Mailing Address

City/State/Zip

Country /E-mail Address

Business Phone

Employer Name

Employer Address (City/State)

Telephone Listing in
Combined Membership List

I hereby authorize my telephone number and e-mail address to be listed in the Combined Membership List (CML) of AMS, MAA and SIAM.

Yes ______ No ______ Signature _______________________

Type of Employer

Check One

Type of Work

Check Two

Primary

Secondary

Salutation

University

Research

Dr.

College, 4-year

Adm./Mgmt.

Mr.

College, 2-year

Teaching

Ms.

Government

Consulting

Prof.

Industry/Corporation

Other

Other

Consulting

Gender: Male ______ Female ______

Other

Nonprofit

Education (Highest degree)

Institution

Major / Degree / Year

Primary Professional Interests

(Check no more than 3)

☐ Linear algebra and matrix theory. (01)

☐ Optimization theory and mathematical programming including discrete and numerical optimization, and linear and nonlinear programming. (12)

☐ Real and complex analysis including approximation theory, integral transforms (including Fourier series and wavelets), integral equations, asymptotic methods, and special functions. (02)

☐ Control and systems theory including optimal control. (11)

☐ Functional analysis and operator equations, and integral and functional equations. (26)

☐ Management sciences including operations research. (27)

☐ Ordinary differential equations including dynamical systems. (03)

☐ Communication theory including information theory and coding theory. (13)

☐ Partial differential equations including inverse problems. (04)

☐ Applied geometry including computer-aided design and related robotics. (14)

☐ Discrete mathematics and graph theory, including combinatorics, combinatorial optimization, and networks. (05)

☐ Image processing including computer graphics, computer vision, related robotics, and tomography. (15)

☐ Numerical analysis (theory). (06)

☐ Classical mechanics of solids including elasticity, structures and vibrations, constitutive models. (16)

☐ Computer science including computer architecture, computer hardware, computational complexity, applied logic, database, symbolic computation. (08)

☐ Fluid mechanics including turbulence, aerodynamics, multiphase flow. (17)

☐ Applied probability including stochastic processes, queueing theory, and signal processing. (09)

☐ Atmospheric and oceanographic sciences. (20)

☐ Statistics including data analysis and time series analysis. (10)

☐ Quantum physics, statistical mechanics, and relativity. (18)

☐ Geophysical sciences including reservoir modeling, seismic exploration, and petroleum engineering. (19)

☐ Chemical kinetics, combustion theory, thermodynamics, and heat transfer. (21)

☐ Materials science, polymer physics, and optics. (29)

☐ Astronomical sciences. (23)

☐ Environmental sciences. (24)

☐ Social sciences. (25)

☐ Computational mathematics including scientific computing, parallel computing, and algorithm development. (07)

☐ Economics. (26)

☐ Applied mathematics education (K-12, undergraduate curriculum, graduate study and modeling courses). (28)

☐ Other

Please Complete Reverse
Society Memberships

(Choose all that apply and circle your primary other one)

<table>
<thead>
<tr>
<th>ACM</th>
<th>AIAA</th>
<th>AMS</th>
<th>APS</th>
<th>ASA</th>
<th>ASME</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEE</td>
<td>IMS</td>
<td>MAA</td>
<td>ORSA</td>
<td>TIMS</td>
<td>Other</td>
</tr>
</tbody>
</table>

Membership

Dues cover the period January 1, 1992 through December 31, 1992. Members will receive all issues of SIAM Review and SIAM News. Members are entitled to purchase one each of no more than four SIAM journals, for their personal use only, at member discount prices. Student members have the same benefits as regular members. SIAM members may join any of the SIAM Activity Groups listed below at $10.00 per activity group.

Fees and Subscriptions

Compute payment as follows:

- Dues (Regular Members): $74.00
- Dues (Student Members): $15.00*
- Dues (Associate Members): $18.00**
- Dues (Activity Groups): $10.00 per group checked below:
 - Control & Systems Theory
 - Discrete Mathematics
 - Dynamical Systems
 - Linear Algebra
 - Optimization
 - Supercomputing
 - Geometric Design
 - Orthogonal Polynomials & Special Functions
 - Geosciences

*Students receive one AG membership free. Additional AG memberships are $10.00 each.
**Associate members are spouses of regular members.

SIAM Journal on:

<table>
<thead>
<tr>
<th>Member Prices: Domestic / Foreign</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied Mathematics (bimonthly) $48.00/$53.00</td>
</tr>
<tr>
<td>Computing (bimonthly) $48.00/$53.00</td>
</tr>
<tr>
<td>Control and Optimization (bimonthly) $48.00/$53.00</td>
</tr>
<tr>
<td>Discrete Mathematics (quarterly) $40.00/$43.00</td>
</tr>
<tr>
<td>Mathematical Analysis (bimonthly) $48.00/$53.00</td>
</tr>
<tr>
<td>Matrix Analysis and Applications (quarterly) $40.00/$43.00</td>
</tr>
<tr>
<td>Numerical Analysis (bimonthly) $48.00/$53.00</td>
</tr>
<tr>
<td>Optimization (quarterly) $40.00/$43.00</td>
</tr>
<tr>
<td>Scientific and Statistical Computing (bimonthly) $48.00/$53.00</td>
</tr>
<tr>
<td>Theory of Probability and Its Applications (quarterly) $99.00/$102.00</td>
</tr>
<tr>
<td>TOTAL $</td>
</tr>
</tbody>
</table>

I apply for membership in SIAM:

Signature ________________________________

Spouse's Name (If applying for Associate Membership) ________________________________

*Student Status Certification

CERTIFICATION (Student Members Only)

I hereby certify that the applicant is a full-time student or teaching/research assistant, or is a fellow who is actively engaged in a degree program and may be considered to be a full-time student:

Name of College or University ________________________________

Department Chair: Signature ________________________________ Date ____________

Please enclose payment with this application and mail to:

SIAM, P.O. Box 7260, Philadelphia, PA 19101-7260

For further information, please contact SIAM Customer Services

Telephone: 215-382-9800 / Toll-free (U.S. only): 800-447-SIAM

Telefax: 446715 / Fax: 215-386-7999 / E-mail: service@siam.org

Address: 3600 University City Science Center, Philadelphia, PA 19104-2688
BOOK TITLES OF INTEREST FROM SIAM

Proceedings in Applied Mathematics 47

Edited by
S. Gomez
J.P. Hennart
and R.A. Tapia

ADVANCES IN NUMERICAL PARTIAL DIFFERENTIAL EQUATIONS AND OPTIMIZATION Proceedings of the Fifth Mexico-United States Workshop

Proceedings of a workshop that emphasizes the numerical aspects of three main areas: optimization, linear algebra, and partial differential equations. Held in January 1989 in Yucatan, Mexico, the workshop was organized by the Institute for Research in Applied Mathematics of the National University of Mexico in collaboration with the Mathematical Sciences Department at Rice University.

This proceedings contains valuable papers in the areas of optimization theory and partial differential equations, and should be of value to researchers in numerical analysis.

1991 / xii + 365 pages / Softcover
ISBN 0-89871-269-9
List Price $47.50
SIAM Member Price $38.00
Order Code PR47

Proceedings in Applied Mathematics 53

Edited by
Andreas Griewank
and George F. Corliss

AUTOMATIC DIFFERENTIATION OF ALGORITHMS Theory, Implementation, and Application

An introduction and reference on techniques for evaluating derivatives of functions given by computer programs. By applying variants of the chain rule, first and higher derivatives are obtained efficiently and accurately. Among the unique features of this book are the coverage of the reverse mode and the application of adjoint codes in meteorology. A survey of 28 software implementations and an extensive bibliography are included.

1991 / xii + 353 pages / Softcover
List Price $48.50
SIAM Member Price $39.80
Order Code PR53

Classics in Applied Mathematics 5

Frank H. Clarke

OPTIMIZATION AND NONSMOOTH ANALYSIS

This book has been praised both for its lively exposition and its fundamental contributions. It first develops a general theory of nonsmooth analysis and geometry which, together with a set of associated techniques, has had a profound effect on several branches of analysis and optimization. It then applies these methods to obtain a powerful, unified approach to the analysis of problems in optimal control and mathematical programming.

This updated software version, like the original, focuses upon the central issues in optimization such as existence, necessary conditions and sensitivity, and presents results of considerable generality concerning these issues.

Contents: Chapter 1: Introduction and Preview; Chapter 2: Generalized Gradients; Chapter 3: Differential Inclusions; Chapter 4: The Calculus of Variations; Chapter 5: Optimal Control; Chapter 6: Mathematical Programming; Chapter 7: Topics in Analysis.

April 1990 / xii + 308 pages / Softcover
ISBN 0-89871-256-4
List Price $29.50
SIAM Member Price $22.80
Order Code CL05

Classics in Applied Mathematics 4

Anthony V. Fiacco and Garth P. McCormick

NONLINEAR PROGRAMMING Sequential Unconstrained Minimization Techniques

This book is a reprint of the original volume, which won the Lanchester Prize awarded by the Operations Research Society of America for the best work of 1968. Although out of print for nearly 15 years, this book remains one of the most referenced in the field of mathematical programming.

Recent interest in interior point methods generated by Karmarkar’s Projective Scaling Algorithm has created a new demand for this book since the methods that have followed from Karmarkar’s bear a close resemblance to those described in Nonlinear Programming: Sequential Unconstrained Minimization Techniques. There is no other source for the theoretical background of the logarithmic barrier function and other classical penalty functions.

This book analyzes in detail the “central” or “dual” trajectory used by modern path following and primal/dual methods for convex and general linear programming. As researchers begin to extend these methods to convex and general nonlinear programming problems, this book will become indispensable to them.

Contents: Chapter 1. Introduction; Chapter 2. Mathematical Programming — Theory; Chapter 3. Interior Point Unconstrained Minimization Techniques; Chapter 4. Exterior Point Unconstrained Minimization Techniques; Chapter 5. Extrapolation in Unconstrained Minimization Techniques; Chapter 6. Convex Programming; Chapter 7. Other Unconstrained Minimization Techniques; Chapter 8. Computational Aspects of Unconstrained Minimization Algorithms; Author Index; Subject Index.

1990 / xvi + 210 pages, Softcover
ISBN 0-89871-254-6
List Price $25.50
SIAM Member Price $21.30
Order Code CL04

CBMS-NSF Regional Conference Series in Applied Mathematics 37

Frank H. Clarke

METHODS OF DYNAMIC AND NONSMOOTH OPTIMIZATION

This monograph presents the elements of a new unified approach to optimization based on "nonsmooth analysis," a term introduced in the 1970's by the author, who is considered a pioneer in this field. Based on a series of lectures given at a conference at Emory University in 1986, this volume presents its subjects in a self-contained and accessible manner.

The book focuses mainly on deterministic optimal control, the calculus of variations, and mathematical programming. In addition, it features a tutorial in nonsmooth analysis and geometry.

Contents: Nonsmooth Analysis and Geometry: The Basic Problem in the Calculus of Variations; Verification Functions and Dynamic Programming: Optimal Control; References.

1990 / v + 90 pages, Softcover
ISBN 0-89871-241-6
List Price $17.50
SIAM/CBMS Member Price $14.00
Order Code CB57

To order
call toll-free in USA 1-800-447-SIAM;
outside the USA call 215-382-9800;
fax: 215-386-7999;
e-mail: service@siam.org;
send check or money order to:
SIAM, Dept. BC1991, P. O. Box 7260,
Philadelphia, PA 19101-7260.

Shipping and Handling
USA: Add $2.75 for the first book and $.50 for each additional book.
Canada: Add $4.50 for the first book and $1.50 for each additional book.
Outside USA/Canada: Add $4.50 per book.
SIAM Conferences, Meetings, and Symposia

1992

June 8-11, 1992
SIXTH SIAM CONFERENCE ON DISCRETE MATHEMATICS
University of British Columbia, Vancouver, Canada
Sponsored by SIAM Activity Group on Discrete Mathematics
Organizer: Pavol Hell, Simon Fraser University, Canada

July 8-11, 1992
SIXTH SIAM CONFERENCE ON DISCRETE MATHEMATICS
University of British Columbia, Vancouver, Canada
Sponsored by SIAM Activity Group on Discrete Mathematics
Organizer: Pavol Hell, Simon Fraser University, Canada

July 20-24, 1992
SIAM 40TH ANNIVERSARY MEETING
Century Plaza Hotel, Los Angeles, CA

September 17-19, 1992
SIAM CONFERENCE ON CONTROL AND ITS APPLICATIONS
Minneapolis, MN
Sponsored by SIAM Activity Group on Control and Systems Theory
Organizer: Kevin A. Gagne, University of Oklahoma, Norman

October 15-19, 1992
SIAM CONFERENCE ON APPLICATIONS OF DYNAMICAL SYSTEMS
Snowbird Resort and Conference Center
Salt Lake City, UT
Sponsored by SIAM Activity Group on Dynamical Systems
Co-organizers: Peter W. Bates, Brigham Young University, and Christopher K.R.T. Jones, Brown University

1993

January 25-27, 1993
FOURTH ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS
Radisson Plaza Hotel, Austin, TX
Sponsored by ACM-SIGACT and SIAM Activity Group on Discrete Mathematics
Abstract deadline: 7/13/92
Organizer: Vijaya Ramachandran, University of Texas, Austin

March 21-24, 1993
SIXTH SIAM CONFERENCE ON PARALLEL PROCESSING FOR SCIENTIFIC COMPUTING
Norfolk, VA
Abstract deadline: 9/14/92
Organizer: Richard Sincovec, Oak Ridge National Laboratory

April 19-21, 1993
SIAM CONFERENCE ON MATHEMATICAL AND COMPUTATIONAL ASPECTS OF THE GEOSCIENCES
Houston, TX
Abstract deadline: 10/5/92

June 7-10, 1993
SIAM CONFERENCE ON MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION PHENOMENA
University of Delaware, Newark, DE
Abstract Deadline: 11/13/92
Organizer: Ralph Kleinman, University of Delaware