
AD-A259 609

Technical Report 1358

Automated Program
Recognition by
Graph Parsing

Linda Mary Wills

MIT Artificial Intelligence Laboratory

: " DTIC
_ : .. ', -,

JAN 22 1993

_ 93-01046 93 J21 034-

REPORT DOCUMENTATION PAGE ForM N=o07-101MB NO 0704-0188

Pub•ic reporting burden for this collection of information is estimated to averaqe I hour oer response. including the time for revewing Instructions. searchrg e.-st'ng sata sour'.,
gathering and maintaining the data needed, and completing and reviewing the collection of information Send comments retarding this burden estimate or any other asoect Of this

ol lection of information, including suggestions for reducing this burden, to Washington meadouarteru Servces. 0|rectorate or infortaOn Ooerations and Reports. 12 IS Jefferson

Oavis Highway, Suite 1204. Arlington. VA 22202-4302. and to the Office of Management and Budget. PenefwOrk Reduc.tion Project (0704.018). Washington. OC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

T RJuly 1992 technical report
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Automated Program Recognition by Graph Parsing N00014-88-K-0487
IRI-8616644

6. AUTHOR(S) CCR-898273

Linda Mary Wills

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) B. PERFORMING ORGANIZATION

Artificial Intelligence Laboratory REPORT NUMBER

545 Technology Square AI-TR 1358
Cambridge, Massachusetts 02139

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADORESS(ES) 10. SPONSORING/ MONITORING

Office of Naval Research AGENCY REPORT NUMBER

Information Systems
Arlington, Virginia 22217

11. SUPPLEMENTARY NOTES

None

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Distribution of this document is unlimited

13. ABSTRACT (Maximum 200 words)

The recognition of standard computational structures (cliches) in a

program can help an experienced programmer understand the program.

Based on the known relationships between the clichis, a hierarchical

description of the program's design can be recovered. We develop and

study a graph parsing approach to automating program recognition in

which programs are represented as attributed dataflow graphs and a

library of clichis is encoded as an attributed graph grammar. Graph

parsing is used to recognize cliches in the code.

(continued on back)
14. SUBJECT TERMS (key words) Is. NUMBER OF PAGES

design recovery debugging 335
reverse engineering cliche recognition 16. PRICE COOE
vroiram understandnint doc-amntation 2eneration

17. SECURITY CLASSIFICATION 1. SECURITY CLASSIFICATION 1. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

NSN 75404)1-2-5500S Standard Form 296 (Rev. 2-89)
Prescribed bV ANSI StillM
2•6. 02

Block 13 continued:

We demonstrate that this graph parsing approach is a feasible and
useful way to automate program recognition. In studying this ap-
proach, we have experimented with two medium-sized, real-world sim-
ulator programs. There are three aspects of our study. First, we eval-
uate our representation's ability to suppress many common forms of
program variation which hinder recognition. Second, we investigate
the expressiveness of our graph grammar formalism for capturing pro-
gramming cliches. Third, we empirically and analytically study the
computational cost of our recognition approach with respect to the
real-world simulator programs.

dI'C qUALITY IINtLECTED 5

j006551OU Pof
UTIS GRA&I
DTIC TAB
unanounoed 0

just Lficatio

Distributlonl
SAvailXalll'Y C oless

valailit ed182
all /or

Dist Speooll

A muiu m e o ~lnmi na ~nnmn

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Technical Report No. 1358 July 1992

Automated Program Recognition by Graph
Parsing

Linda Mary Wills

Abstract

The recognition of standard computational structures (cliches) in a
program can help an experienced programmer understand the program.
Based on the known relationships between the cliches, a hierarchical
description of the program's design can be recovered. We develop and
study a graph parsing approach to automating program recognition in
which programs are represented as attributed dataflow graphs and a
library of cliches is encoded as an attributed graph grammar. Graph
parsing is used to recognize clich6s in the code.

We demonstrate that this graph parsing approach is a feasible and
useful way to automate program recognition. In studying this ap-
proach, we have experimented with two medium-sized, real-world sim-
ulator programs. There are three aspects of our study. First, we eval-
uate our representation's ability to suppress many common forms of
program variation which hinder recognition. Second, we investigate
the expressiveness of our graph grammar formalism for capturing pro-
gramming clich6s. Third, we empirically and analytically study the
computational cost of our recognition approach with respect to the
real-world simulator programs.

Copyright (g) Massachusetts Institute of Technology, 1992

The research described here was conducted at the Artificial Intelligence Laboratory of the Mas-
sachusetts Institute of Technology. Support for the laboratory's artificial intelligence research has
been provided in part by the following organizations: National Science Foundation under grants
IRI-8616644 and CCR-898273, Advanced Research Projects Agency of the Department of Defense
under Naval Research contract N00014-88-K-0487, IBM Corporation, NYNEX Corporation, and
Siemens Corporation.

The views and conclusions contained in this document are those of the author and should
not be interpreted as representing the policies, expressed or implied, of these organizations.

Acknowledgments

I would like to thank my thesis advisor, Chuck Rich, for his continual support and encour-

agement over all my years at MIT. He has provided valuable guidance and advice at crucial

times and he has shared many interesting ideas with me. I admire his energy, generosity,

and integrity.

I am thankful to Richard Waters for his constant encouragement and cheerfulness, and

for providing many fresh insights.

I am grateful to the members of my committee, David McAllester, Peter Szolovits, as

well as Chuck Rich and Richard Waters, for their patient and careful reading of my thesis.

They offered valuable insights and suggestions for presenting these ideas and they have

broadened my perspective.

I appreciate Rudi Lutz's willingness to discuss the subtleties of his parsing algorithm.

I have also benefited from helpful discussions with Yishai Feldman, John Hartman, Stan

Letovsky, and Dilip Soni.

Several members of the AI Lab have provided encouragement and interesting discus-

sions, especially Bonnie Dorr, Eric Grimson, Bob Hall, Ellen Hildreth, Tomas Lozano-Perez,

Howard Reubenstein, Monica Strauss, Tanveer Fathima Syeda-Mahmood, and Yang Meng

Tan. I greatly appreciate the friendliness and exceptional helpfulness of Andrew Chien, Bill

Dally, and Mike Noakes.

The generosity, support, and encouragement of Christian Bauer, Avelino Gonzalez, and

Soheil Khajenoori made it possible for me to finish this thesis. I am grateful to Ashok Goel,

Janet Kolodner, Robert McCurley, and Spencer Rugaber for many interesting technical

conversations.

I appreciate the moral support of my friends, Janet Allen, Anita Killian, Anuja Mari-

wala, Elizabeth Turrisi, and especially Jean Moroney.

I am thankful to my family - Mom and Dad, Len and Janet, Judy Ann and Jim, Diane,

Tom, Stephen, Mark, Mom and Dad Wills, Kitty and Stevie - for providing many happy

distractions.

I am fortunate to have a wonderful husband, Scott, who gives me unfailing love and

support, and so much happiness.

Finally, I am grateful to my parents for their constant love and their confidence in me.

This thesis is dedicated to them.

--. ..,,,• mmmm am, mmmmmmmlm m m mmmm m mm mm m mmmmmm m

Contents

1 Introduction 5
1.1 M otivations 5
1.2 Toward a Hybrid Program Understanding System 8
1.3 What is Involved in Automating Program Recognition? 10

1.4 Graph Parsing Approach 12
1.5 Goals and Contributions 15
1.6 Outline of Report .. 18

2 The Knowledge, Program Corpus, and Recognition Examples 19

2.1 What are the Clich&s? 19

2.1.1 Simulation Domain Context 20
2.1.2 Informal Clich6 Acquisition Strategy 21
2.1.3 Sequential Simulation Clich6s 23

2.1.4 The General-Purpose Clich&s 33
2.2 Real-World Programs 33

2.3 Recognition Examples 38

2.3.1 Common Program Variations 38

2.3.2 Examples of Capabilities 39
2.4 Breadth of Coverage 53

3 The Flow Graph Formalism 59

3.1 Flow Graphs 60
3.2 Flow Graph Grammars 62

3.2.1 Embedding Relation 62

3.2.2 Flow Graph Grammar Derivations 64
3.2.3 Attribute Conditions and Transfer Rules 65

3.3 Motivations for Formalism: Program Recognition Application 69
3.3.1 The Partial Program Recognition Problem 73

3.4 Extensions to the Flow Graph Formalism 74

3.4.1 Structure-Sharing 76

3.4.2 Aggregation 80

2

3.5 Chart Parsing Flow Graphs 100

3.5.1 Recognizing Share-Equivalent Flow Graphs 109

3.5.2 Recognizing Aggregation-Equivalent Flow Graphs 110

3.5.3 Matching St-Thrus 113

3.6 Related Graph Grammar Work 119

3.6.1 Classes of Graphs 119

3.6.2 Embedding Mechanism 120

3.6.3 Graph Parsers 120

4 Applying Parsing to Recognition 122

4.1 Expressing Programs and Clich6s in the Flow Graph Formalism122

4.1.1 Attribute Language 123

4.1.2 The Plan Calculus 130

4.1.3 Codifying Cliches: Using the Plan Calculus as a Stepping Stone . . 134

4.1.4 Examples of Codifying Simulation Cliches 143

4.2 Architectural Details 154

4.2.1 Translating Programs to Flow Graphs 154

4.2.2 Additional Monitor to Handle Recursion Unfolding 156

4.2.3 Paraphraser 160

5 Capabilities and Limitations 163

5.1 Variations Tolerated 163

5.1.1 Syntactic Variation 164

5.1.2 Organizational Variation 167

5.1.3 Delocalized Cliches 169

5.1.4 Unrecognizable Code 169

5.1.5 Function-Sharing 174

5.1.6 Redundancy 174

5.1.7 Implementation Variation 175

5.2 Limitations .. 175

5.2.1 Missing or Derived Dataflow 176

5.2.2 "Missing" Cliche Parts 178

5.2.3 Expressing Cliches with Loose Constraints 179

5.2.4 Enqueuing New Messages and Events 183

5.2.5 Modifications to Example Programs 184

5.2.6 Conclusion 186

6 Analysis 187

6.1 Cost .. 188

6.1.1 Brief Algorithm Description 188

6.1.2 Complexity 192

3

6.2 Counting Items 195

6.2.1 Item Trees 196

6.2.2 Constraints Prune Item Trees 197

6.2.3 Grammar Facilitates Reusing Sub-Search Space Exploration208

6.2.4 Empirical Observations of Item Trees 208

6.2.5 Modeling Constraint Consistency 213

6.2.6 Counting Zip-ups 214

6.2.7 Partial Node Orderings 216

6.2.8 Summary of Item Count 222

6.3 Component Costs 222

6.4 Other Performance Improvements 225

6.4.1 Decomposition 225

6.4.2 Indexing ... 227

6.4.3 Interleaved Decomposition and Indexing 227

6.4.4 Avoiding Unnecessary Copying 228

6.5 Conclusion 229

7 Conclusions 231

7.1 Empirical Studies 232

7.2 Future .. 233

7.2.1 Multiple Recursion 233

7.2.2 Interfacing with Other Recognition Techniques 233

7.2.3 Disambiguating Data Structure Operation Instances 234

7.2.4 Side Effects to Mutable Data Structures 237

7.2.5 Advising GRASPR 240

7.3 Related Work .. 243

7.3.1 Representation 244

7.3.2 Other Recognition Techniques 248

7.4 Applications ... 254

A Flow Graph Recognition is NP-Complete 255

B The Example Programs 259

C The Grammar Encoding the Clich6 Library 289

4

Chapter 1

Introduction

Experienced engineers are able to quickly determine the behavior and properties of a com-

plex device by recognizing familiar, standard forms in its design. These standard forms,

which we call clichis [110, 112, 115, 137, 117], are combinations of primitive mechanisms

which engineers use frequently because the combinations have been found useful in prac-

tice. From experience, the engineers have come to expect the clichdd forms to exhibit certain

known behaviors. By relying on this "pre-compiled" knowledge, engineers are able to effi-

ciently understand and build complex devices containing clichdd components without always

reasoning from first principles. Rich [110, 112, 117] has developed a model of engineering

problem solving in which synthesis and analysis methods are based on the recognition and

use of clich6s. He calls these inspection methods.

This report deals with automating the recognition of cliches in computer programs.

Clich6s in the software engineering domain are stereotypical algorithmic computations and

data structures. Examples of algorithmic clich6s are list enumeration, binary search, and

quick-sort. Examples of data-structure cliches are sorted list, priority queue, and hash table.

Several experiments [58, 83, 128, 142] give empirical data supporting the psychological

reality of cliches and their role in understanding programs. In trying to understand a pro-

gram, an experienced programmer may recognize parts of the program's design by identi'y-

ing cliched computational structures in the code. Knowing how these structures implement

other more abstract structures, the programmer can build a hierarchical description of the

program's design. We call this process program recognition. Program recognition is one

technique, among several, used by programmers in the more general task of understanding

programs.

1.1 Motivations

It is because human software engineers recognize clich6s that we would like to automate

program recognition. This gives us both theoretical and practical motivations.

From a theoretical standpoint, automated program recognition is an interesting artificial

5

intelligence problem. It is an ideal task for studying how programming knowledge and

experience can be represented and used. (However, in automating program recognition, the

goal is not to mimic the cognitive process used by programmers to recognize clich6s, but

to mimic only the use of experiential knowledge in the form of clich6s to achieve a similar

result of understanding the program.)

Our practical motivation stems from an interest in building automated systems that

assist software engineers with tasks requiring program understanding, such as inspecting,

maintaining, and reusing software. Such collaboration requires that the automated assistant

be able to communicate with engineers in the same way as they communicate with each

other when performing these tasks. They refer to instances of cliches and assume knowledge

of their well-known properties and behaviors. For example, they might discuss changing a

program from using an ordered associative linked list to using a hash table to gain efficiency.

They discuss the change at a high level of abstraction and justify their design decisions

using the established properties of the clichds. They are also able to explain the design of

a program to each other on multiple levels of abstraction. They can convince each other of

the properties or behavior of a program by pointing out the existence of clichds in its design

and then leveraging off the accumulated body of experience surrounding the clichds. The

known properties of the clichds are used directly, rather than constructing formal proofs or

performing formal complexity analyses to establish that the properties hold.

If an automated assistant is to collaborate with human engineers in the same way, it

must share the same knowledge of clichds and their properties. It must be able to recognize

instances of clich6s, without requiring the human engineer to explicitly identify and locate

them in a program.

This recognition ability would be a valuable component of automated software tools
and assistants that perform tasks requiring program understanding. They would be able to

explain their understanding of the program in terms familiar to a human engineer. They can

respond to requests from the engineer that are phrased in terms of abstract computational

structures in the program, rather than low-level commands that spell out actions to be

performed on language primitives. (For example, Waters' KBEaacs [116, 117, 139] shows

how an automated isistant can aid a human engineer while communicating at a high-level

of abstraction. In KBEmacs, this model is constructed as the program is being built. A tool

like KBEnacs can be used to maintain existing code (not written with the help of KBEmacs),

if the clich6s from which the code is constructed are recognized.)

Incorporating an automated recognition system into software tools and assistants yielU,

more than just communications benefits for human-computer interaction. By mimicking the

human engineer's "short-cut" to understanding a program's design, an automated recogni-

tion system provides an efficient way to reconstruct design information. It bypasses complex

reasoning about how behaviors and properties arise from a certain combination of language

primitives. The behaviors and properties can be used directly by these tools.

Collaboration between a person and an automated recognition system is mutually ben-

6

eficial. An automated recognition system provides capabilities which complement the per-

son's abilities. An automated system has significantly better memory capabilities than a

person. These are valuable in maintaining multiple possible views of the program and in

keeping track of details about what has been found so far. Also, some clich6s may be easier

for the computer to recognize because they are hidden or delocalized in the textual code

representation, but are localized in the computer's internal representation.

On the other hand, people have some capabilities that can greatly aid the recognition

system. They may have access to many different sources of knowledge about the program,

beyond the source code, including its goals or specification, documentation, comments,

execution traces, a model of the problem domain, and typical properties of tho program's

inputs and outputs. Even though some of this information can be incomplete and inaccurate,

it provides an important independent source of expectations about a program's purpose

and design. These expectations can be used to guide the recognition system by focusing its

search on particular parts of a program for particular clich6s.

The person can also provide information not easily recoverable from the code which can

help the recognition system to recognize more of the program. For example, the person

can undo an optimization that takes advantage of an opportune dataflow equality. This

may uncover a datafiow dependency that must exist for a particular clich6 to be recognized.

(More concrete instances of the type of information that can help push the recognition of

some cliches through are described in Section 5.2.)

Automated tools are also being developed to aid the human engineer in extracting

design information and generating expectations from many different sources in addition to

the code. An exemplary system is DESIRE, which is being developed by Biggerstaff [12, 13].

A central part of DESIRE is a rich domain model, which contains machine-processable

forms of design expectations for a particular domain as well as informal semantic concepts.

It includes typical module breakdowns and typical terminology associated with programs

in a particular problem domain. Techniques for recognizing patterns of organization and

linguistic idioms in the program are being developed to generate expectations of the typical

concepts associated with these patterns. These expectations can be used to quickly draw

attention to sections of the program wher-r there may be cliches related to a particular

concept in the domain.

Other, more conventional techniques for reverse engineering l'!e programs have focused

on extracting a given system's module structure. This is typicaul., aone by using clustering

[62] and slicing [59, 140, 141] techniques, which bring together parts of a program based on

identifier and procedure names, data dependencies, and call relationships, among other fea-

tures [13, 19, 46, 51, 56, 123, 124, 143]. Programming and maintenance environments, such

as MicroScope (7], Cleveland's system [20], and Marvel [66], provide tools for performing

various types of dependency, dynamic, and impact analyses and for browsing the results in

the form of call graphs, datafiow graphs, execution histories, and program slices.

These techniques and environments can contribute to a user's understanding of a pro-

7

gram. While they alone do not provide a deep understanding, they extract information that

can help a person generate advice and expectations. Based on these, the person can guide

an automated recognition system, so that a deeper understanding may be obtained. The

results of recognition can in turn enhance the capabilities of these automated techniques

by providing a more abstract view of a program. For example, dependencies between more

abstract data objects can be computed and used to create more abstract clusters.

1.2 Toward a Hybrid Program Understanding System

Because program understanding requires many different techniques besides program recog-

nition, and draws upon various sources of knowledge besides the code, program under-

standing systems of the future will be hybrid systems. They will integrate many different

special-purpose components for extracting design information from a program and its asso-

ciated documentation, domain model, etc. The components will communicate with human

engineers, who can provide additional guidance and information.

The benefits of such co-operation between specialists in solving complex problems that

require several, diverse types of knowledge are well known. For example, research in black-

board architectures [37, 63, 99] and hybrid knowledge representation systems [113] study

ways of achieving co-operative problem solving.

Figure 1-1 shows a model of a hybrid program understanding system. It is roughly

divided into two complementary processes: expectation-driven (top-down) and code-driven

(bottom-up). The heuristic top-down process uses knowledge such as the program's goals,

domain model, and documentation to generate expectations about the program's design.

These can be used to guide the code-driven process, which can confirm, amend, or reject

them by checking them against the code.

Since there are many different types of things an engineer or application tool might
wish to understand about a program, the program understanding system can be directed

by specific questions from the engineer or application.

The details of this hybrid system have not yet been fleshed out. We believe that a

key part of the code-driven component is an automated recognition system. The labels on

the communication links between the expectation-driven and code-driven components are

useful inputs and outputs to a code-driven system based on recognition. However, these do

not entirely specify the communication between, or the nature of, these components. Also,

the diagram is not meant to imply that all the techniques integrated into the hybrid system

are either solely code-driven or expectation-driven. Some may themselves be hybrids.

Some of the questions that must be answered in the design of such a hybrid system
are what techniques should be incorporated and what is the appropriate division of labor

between them? There are also managerial problems in the co-ordination of techniques and

the integration of different types of knowledge and representations [93].

Determining which techniques to incorporate and what their individual responsibilities

8

(Expectation-Driven)
Analyis

Analsis••Quetions
guidance, design

hypotheses trees A.swers [•"-Applications

Exhaustive
(Code-Driven)

Analysis

QuesIons

Bare Source Code

Figure 1-1- A hybrid program understanding system.

9

are requires analyzing the candidate techniques to determine their relative strengths, limi-

tations, and computational expense. Our research takes a step toward the long-term goal

of a hybrid program understanding system by exploring the strengths and weaknesses of a

particular program recognition technique.

In particular, we develop and study a graph parsing approach to program recognition.

This approach represents the program in a dataflow graph representation and the clich6

library in a graph grammar and then uses graph parsing to recognize clichis in the code.

The grammar rules capture implementation relationships between the cliches. The parsing

technique yields a hierarchical description of a plausible design of the program in the form

of derivation trees specifying the clichds found and their relationships to each other.

We demonstrate that the flow graph parsing approach is a feasible and useful way to

automate program recognition. We also identify its shortcomings. This information will
help us to make the appropriate division of labor between the integrated components of the

hybrid program understanding system.

To do this, we developed an experimental system that performs recognition on realistic,

medium-sized programs. Given a program and a library of clich6s, it finds all occurrences of

the clichds in the program and builds a hierarchical description of the program in terms of

the clich6s found. (In general, there may be several such descriptions.) We call our system

GRASPR, which stands for "GlRtph-based System for Program Recognition."

1.3 What is Involved in Automating Program Recognition?

To automatically recognize interesting clich6s in real-world programs, a number of issues

must be addressed. This section discusses the key issues.

What are the cliches? We must identify the clich6s that programmers use. These

include both general programming cliches that most programmers use (e.g., those found in

textbooks on programming [3, 21, 76]) and domain-specific clich&s that are used to solve

particular problems. For the results of recognition to be useful, we also need to collect
the information that is associated with each clichM, such as its behavior, pre- and post-

conditions, complexity, and common design rationale for choosing it. In general, clich6

library acquisition requires domain modeling, which is itself an entire area of active research

[106].
How are cliche6s and programs encoded? Once cliches are identified, they must be ex-

pressed in a machine-manipulable form which makes relationships between the clich6s ex-

plicit. To facilitate recognition, the representation of clich6s and programs should suppress

details that obscure the similarity between two instances of the same clich6. A negative

example is a textual representation of clichds and programs. The program text contains

details about how data and control flow is achieved in terms of programming language

constructs. This introduces syntactic variation across programs that achieve the same data

and control flow but use different constructs or different programming languages. Other

10

types of variation besides syntactic include variations in the implementations of some ab-

stract clichM, the organization of components, the amount of redundant computation, and

the contiguousness (or localization) of cliches. These are described further in Sections 2.3.1,

5.1, and 5.2. The representation should remove as much variation as possible between two

instances of the same clich6.

How are clichis recognized efficiently? The recognition technique must deal with vari-

ation, allow partial recognition of a program, and have a flexible control strategy. To deal

with the variation that the chosen representation cannot eliminate, the recognition tech-

nique might view the program in multiple ways and at several levels of abstraction, or

introduce transformations to reveal the similarities between programs and cliches.

In addition to dealing with variation, the recognition technique should allow partial

recognition of the program, since programs are rarely constructed entirely of cliches. Unfa-

miliar parts of the program must not deter recognition of the familiar parts.

Finally, the recognition technique should have a flexible control strategy, particularly if

it is expected to interact with other components in a hybrid system. There may be a range

of possible inputs to the recognition system as well as a variety of types of outputs desired

from it. The types of inputs to the recognition system that tend to vary are the advice given

to guide the search for cliches and the expectations and hypotheses generated from external

knowledge sources. These vary depending on the amount of information that already exists

about the program and its development (e.g., in its associated documentation). The input

also changes as the recognition system and expectation-driven components interact. The

task to which recognition is being applied also affects the type of information available

as input. For example, in debugging, verification, or program tutoring applications, a

specification of the program is often available from which strong guidance can be generated,
while this information is often lacking in maintaining old code.

The application task can also place restrictions on the time and space allotted to the

recognition system. For example, a real-time response may be required of the system if a

person is using it interactively as an assistant in maintaining code. In this situation, it may

be more desirable to quickly recognize cdich6s that are more "obvious" rather than spending

more time to uncover clich&s that are more hidden (e.g., by an optimization which must be

undone for them to be revealed). It should be possible to prioritize the search for certain

clich6s, so that obvious ones are recognized early, while still reserving a "try harder" phase

in which the more hidden cliches can be found. This allows us to gain efficiency without

permanently sacrificing completeness.

Not only is it important that the recognition system be responsive to directions and

additional information besides the code, it must have a control strategy that is flexible

enough to perform a variety of recognition tasks. There are many reasons a human engineer

or some application tool may want recognition to be performed, since they typically want

to understand many different things about a program. The recognition task depends on

what needs to be understood. For example, if the recognition system is going to be applied

11

to verification, it can use a strategy that finds any complete recognition of the program.

On the other hand, if it were applied to documentation generation, it would be better for

it to produce all possible full, as well as partial, analyses. For applications in which near-

misses of clich6s should be recognized, such as debugging, the best partial analysis might

be desired. A flexible control strategy is needed that can be tailored to a variety of different

recognition tasks.

To summarize, the main issues in automating recognition are: acquiring the clich4 hi-

brary, choosing a representation A,-d efficient technique that tolerates variation, and provid-

ing a flexible control strategy. This report deals primarily with the problems of tolerating

variation and providing a flexible, efficient recognition technique. It deals secondarily with

the clich4 acquisition problem by discussing experiences in manually acquiring our clichM

library. It does not discuss aids for acquisition.

1.4 Graph Parsing Approach

There are two key aspects of our approach.

1. Representation shift: Instead of looking for clich6s directly in the source code, GRASPR

translates the program and clichds into a language-independent, graphical representa-

tion. The clich&s and the relationships between them are encoded in graph grammar

rules.

2. Flexible recognition architecture: Recognition is achieved by parsing the program's

graphical representation in accordance with the graph grammar encoding of the

clich6s. A chart parsing algorithm is used which makes search and control strategies

explicit, enabling them to accept advice and additional information from external

agents.

Figure 1-2 shows GRASPR's architecture. In keeping with the bottom-up nature of the

recognition process, the figure shows the program and cliche library inputs at the bottom

and the more abstract results of recognition at the top. The recognition process is to be

read upward. This also makes it easier to see how GUSPR fits into the hybrid system shown

in Figure 1-1.

GRASPR translates the program into a flow graph, which is a restricted type of directed

acyclic graph (as is described in Section 3). Basically, the graph represents operations in its

nodes and dataflow dependencies between them in its edges. It is annotated with attributes

which represent additional information about the program, for example, its control flow.

A program is translated into an attributed flow graph in two steps. The first step per-

forms a data and control flow analysis of the program to yield a Plan Calculus representation

of it. The Plan Calculus is a program representation developed by Rich, Shrobe, and Wa-

ters (110, 111, 112, 117, 127, 137] in which a program is captured in an annotated directed

12

(Design
Trees)

Advice

------------- t---

Graph Checkk

Parse Constraints

"1-~ Attributes + • • 4 Constraints

(Flow Graph) 0 =>

(Flow Graph Grammar)

Encode

Plant

t Cliche Library

Translate (Plans and Overlays)

Source Code

Figure 1-2: GRASPR's architecture.

13

graph, called a plan. The structure of this graph explicitly captures both data and control
flow, as well as aggregate data structure accessors and constructors, and recursion. The

second step of the translation encodes the plan in an attributed flow graph representation.

The Plan Calculus is used as a stepping stone in the translation of the program to
an attributed flow graph. The main reason the program is not translated directly to the

flow graph is that the attributes are easier to compute from the plan than to generate in
one shot during the data and control flow analysis. A secondary reason is that GAUSPR

is intended as one component of an intelligent software engineering assistant, called the
Programmer's Apprentice (PA) [117]. By being able to encode plans in its internal flow

graph representation, GRASPR can more easily interface to other components of the PA,
which all share the Plan Calculus representation.

The Plan Calculus is also a representation that has been found useful in representing the
clich6 library. It allows relationships between cliches to be captured in the form of overlays.

These represent the knowledge that an instance of one cliche can be viewed as an instance
of another (e.g., a specification clich6 and an implementation clich6).

Cliches are translated from a Plan Calculus representation to an attributed flow graph
grammar by a process similar to the encoding of plans in attributed flow graphs. The gram-

mar rules encode the relationships specified in overlays. Each rule also places constraints
on the attributes of any flow graph structurally matching the rule's right-hand side. These

constraints explicitly encode the variations that are allowed in the values of attributes in

clich6 instances.

Once the program and clichi library are encoded in an attributed flow graph and flow
graph grammar, recognition is achieved by parsing the flow graph in accordance with the
grammar. Constraint checking is interleaved with parsing for efficiency (as described in
Sections 3.2.3 and 6.2.2). Essentially, graph parsing matches the dataflow structure of clich&s
and constraint checking deals with the other details of clich&s that cannot be represented

in the graph structure or are sources of too much variation if graphically represented.

Parsing yields hierarchical descriptions of the program's design in the form of the possible
derivations of the program's flow graph from the flow graph grammar that was extracted

from the clichi library. These are called design trees.

By shifting the representation of programs and clich&s from text to a flow graph, GRASPR

is able to overcome many of the difficulties of syntactic variation and noncontiguousness.
It abstracts away the syntactic features of the code, exposing the program's algorithmic

structure. It concisely captures the data and control flow of programs, independent of the
language in which they are written. Also, many clich&s that are delocalized in the program

text are much more localized in the flow graph representation.

The graph grammar captures relationships between clich&s so that the results of recog-

nition can be given on multiple levels of abstraction. Grammar rules relate abstract clich6s
to their implementations. This enables GUASPR to deal with implementation variation: two

implementation clich&s can be recognized as the same abstract clich6. The grammar also

14

captures commonalities between cliches so that large numbers of cliches can be encoded

more compactly.
In using a graph parsing approach, we are not trying to mimic the recognition process

of human programmers. No claim is being made that formal parsing is a psychologically

valid model of how programmers understand existing programs. For the present work, a

grammar is simply a useful way to encode the programmer's experiential knowledge about

programming so that parsing can be used for program recognition.

1.5 Goals and Contributions

The goal of this research is to show that graph parsing is a good computational model

for automating program recognition, and to identify its capabilities and limitations. We

demonstrate the following:

"* We can encode many interesting programming cliches and the relationships between

them in a flow graph grammar.

"* The flow graph formalism provides an effective representation for tolerating many

classes of variation.

" Flow graph parsing can be used to recognize the cliches. The derivation trees that

result provide a useful hierarchical description of the program, over multiple levels of

abstraction.

" Limitations in the power of the recognition system to recognize certain clich6s can be

alleviated by accepting additional design information from an external agent (such as
a person), who is interacting with it.

"* Recognition by flow graph parsing can be performed efficiently in real-world situations.

"* The complexity of the recognition process can be controlled if the parser's control

strategy is sufficiently flexible and responsive to advice from an external agent.

We show these things by experimenting with real-world program examples, which are

medium-sized (in the 500 to 1000 line range) simulation programs written in Common Lisp
by members of a parallel-processing research group at MIT. (Section 2.2 describes them

further.) We are able to express both general programming clich&s and cliches from the

simulation domain in a flow graph grammar. GUSPR recognizes these cliches in the example
programs efficiently.

Our experimentation also reveals shortcomings in our graph parsing approach. Many

of the limitations can be compensated for by other techniques and by using other sources
of knowledge which may be available in the context of a hybrid program understanding

system.

15

The specific contributions of this research are the following. (This list includes brief

statements of how these contributions advance the state-of-the-art of recognition research.

More details on related research are given in Section 7.3.)

" We develop and use a flow graph grammar formalism in which programs and cliches

can be concisely represented so that much variation is eliminated and relationships

between clich6s are encoded.

This graph-based representation has significant advantages over the text-based rep-

resentations used by many other recognition systems, particularly in dealing with

syntactic variation.

" We present a recognition architecture with a general, flexible control structure that can

accept advice and guidance from external agents. The trade-off between recognition

power and computational expense can be explicitly controlled so that some clich&s are

recognized quickly, while other more expensive recognitions are postponed to a "try-

harder" phase. The algorithm exhaustively finds all possible recognitions of clich&s and

can generate multiple views of a program as well as partial "near-miss" recognitions.

This architecture forms a seed for a hybrid program understanding system.

Other recognition systems are committed to a rigid (often ad hoc) control strategy.

Most search for a single best interpretation of the program, while permanently cutting

off alternatives. They often build heuristics into the system for controlling cost that

are chosen on a trial-and-error basis. They cannot try harder later to incrementally

increase their power. They also cannot generate multiple views of the program when

desired, nor provide partial information when only near-misses of cliches are present.

Some recognition techniques can use information obtained from one or two other

techniques (e.g., theorem proving or dynamic analysis of program executions) with

which they are integrated. Many recognition techniques also take information about

the goals and purpose of the program (in the form of a specification or model program).

While these techniques show the utility of these additional sources of information, they

rely on this information being given as input, rather than accepting it and responding

to it if it becomes available.

" We analyze the graph parsing approach to program recognition to determine how it

would fit into the context of a hybrid program understanding system.

We address the questions:

- What types of variations is the technique robust under? What types of variations

are a problem. What other techniques must be used to remove the variation?

- Are graph grammars expressiveness enough to encode programming clichis?

- Is the technique feasible for large programs? How can the cost be controlled?

16

The observations we make in this analysis are based on our experiences in applying

GRASPR to the recognition of two example programs. They do not represent com-

plete lists of the capabilities and limitations of the graph parsing approach. Further

experimentation is needed with more programs and in multiple problem domains.

Much of the early work in program recognition provides no analysis of the represen-

tations or techniques used. More recent research includes some empirical analysis,

typically studying the accuracy of recognition and the recognition rates over sets of

programs (usually student programs in program tutoring applications). With the

exception of Hartman's work [55], discussions of limitations have focused mainly on

practical implementational limitations, rather than on general limitations of the ap-

proach. They also do not describe how additional information or guidance can help.

Our recognition system is able to recognize programs and cliches containing a wide

range of types of program features. In particular, it is able to represent and recognize

programs that contain conditionals, loops with any number of exits, recursion, ag-

gregate data structures, and simple side effects due to assignments. (Suggestions for

future work in dealing with side effects to mutable data structures are given in Sec-

tion 7.2.4.) This allows GRASPR to recognize larger programs than existing recognition

systems. It also enables encoding and recognition of domain-specific cliches as well as

general-purpose ones, since many domain-specific clichis are aggregate data structure

cliches. This allows empirical study of our recognition technique on programs that

are not contrived nor biased toward our work.

With the exception of CPU [84], existing recognition systems cannot handle aggregate

data structure cliches and a majority do not handle recursion. Talus [95] heuristically

handles some side effects to lists and arrays. The largest program recognized by any

existing recognition system is a 300-line database program recognized by CPU. All

other systems work with programs on the order of tens of lines. None deal with

domain-specific cliches, except Laubsch's system [81, 82].

A secondary contribution is a graph parsing algorithm which is an extension of the
parsers of Lutz [90] and Brotsky [15] to handle a wider class of graph grammars. In

particular, it is able to parse graph grammars that encode aggregation, which hierar-

chically groups graph edges, not just nodes. This algorithm has potential applications

in areas other than program recognition, e.g., circuit verification and plan recognition.

Section 7.2 discusses some applications.

We do not contribute automated aids to the acquisition of the clich6 library. However,

we do discuss our experiences in manually acquiring the clich6s.

This type of discussion has not appeared in any other work on program recognition

of which we are aware.

17

1.6 Outline of Report

Chapter 2 describes the clich6 library and our experiences in acquiring it. It also demon-

strates GRASPR's recognition of these cliches in the example simulation programs. Chapter 3

describes the flow graph formalism which forms the basis of our representation shift. It also

presents a flow graph chart parsing algorithm, which provides a flexible recognition control

strategy. It includes a summary of related work in the general area of graph grammar

formalisms. Chapter 4 gives details of issues that arise in applying flow graph parsing to

program recognition and how GRASPR solves them. Chapter 5 discusses the capabilities and

limitations of the parsing approach in terms of the variations tolerated, and the expressive-

ness of flow graph grammars. Chapter 6 studies the computational cost of our approach,

both empirically and analytically. Finally, Chapter 7 concludes with a summary of the

strengths and weaknesses of the parsing approach, ideas for future work (particularly in the

context of a hybrid system), and a brief comparative summary of related work in program

recognition.

18

Chapter 2

The Knowledge, Program Corpus,

and Recognition Examples

An important part of automating program recognition is codifying the knowledge that

experienced programmers use to recognize programs. This knowledge is in the form of

algorithmic and data structure clichis. It includes both general-purpose clich&s that occur

in programs over all problem domains, as well as those specific to a particular domain.

Our library must capture and express these cliches at a level of abstraction that allows

them to be recognized in a broad range of programs. The ideal is that the cliches be concisely

represented, but efficiently recognized in many forms. Recognition of a clichM should be

immune to many common syntactic and implementational variations. For example, the

same cliches should be recognized in programs that differ only in which syntactic binding

and control constructs they use or in which programming languages they are written. Also,

an abstract cliched operation that exists in two programs should be recognized in both,

even if the programs differ in which standard implementation of the operation is used.

This chapter discusses the cliches we have captured so far in our library. It also describes

the corpus of programs we chose on which to base both our clich6 acquisition and our

empirical study of recognition. Finally, it gives examples of the capabilities of GRASPI in

recognizing these clich6s not only in our example corpus, but also in a range of variations

of them. (Chapter 3 discusses the formalism we use to abstractly and concisely capture

our cliches to make this possible.) Our examples provide both a demonstration of what is

feasible as well as motivation for our formalism and recognition technique.

2.1 What are the Cliches?

Our clich6 library contains a core set of general-purpose, "utility" cliches, along with a set

of cliches from the domain of sequential simulation. The domain-specific clichis are built on

top of the core utility cliches (i.e., they use utility clich6s as components or implementations).

The general-purpose cliches are well-known, widely used algorithms and data structures,

19

such as those described in introductory computer science textbooks (e.g., (3, 21, 76]). They

are found in programs across all problem domains. They include common operations on

priority queues, hash tables, lists, and first-in-first-out (FIFO) queues, as well as basic

iteration clichds, such as sequence enumeration, filtering, accumulation, and counting.

The domain-specific cliches in our library are found in programs that sequentially simu-

late parallel systems. More specifically, we have encoded the subset of common algorithms

and data structures found in this domain that are used to sequentially simulate message-

passing parallel systems.

A message-passing system contains a collection of processing nodes which communicate

with each other via messages. Each processing node contains a processor, a network in-

terface, and a block of distributed memory. The message-passing system takes a program

in the form of a set of message handlers and a starting message. The program begins by
sending the starting message to its destination node. The node executes the handler for

that message's type. In addition to changing the state of the node, this can cause the node

to send messages to other nodes (e.g., to request the value of some variable or to delegate

some sub-tasks). When these messages are handled by their destination nodes, additional

messages might be sent.

It is possible for a message to be received by a node while it is handling another message.

Therefore, each node has a local buffer which accumulates the messages received while the

node is busy. When the node finishes handling a message, if its buffer is non-empty, the

node pulls a message from the buffer and handles it. The buffer is emptied in FIFO order.
This is done to maintain the invariant that two messages received by the same node must

be handled in the order in which they are received.

The behavior just described is simulated by the programs in which our library's domain-
specific cliches are found. This is a subset of the actual behavior of a real message-passing

system, which also includes routing messages through the network, for example. However,

this simplified model is a typical one simulated in parallel architecture research. The simu-

lation allows statistics to be gathered on such properties as the number of nodes busy over
time (a measure of concurrency), average message execution times, and average message

waiting times.

2.1.1 Simulation Domain Context

It is instructive to see how the domain we have chosen fits into the larger world of simulation
programs. It is a subset of the problem domain of sequential simulation, as opposed to par-

allel simulation, of parallel systems. Our cdichi library contains only sequential algorithmic

clichis.

Within the domain of sequential simulation, there are two types of simulators: discrete-

event and continuous. Discrete-event simulators model the behavior of a system over discrete

points in time. Continuous simulators model behavior that is characterized by state that

20

changes continuously. (Continuous simulators typically solve a set of differential equations

that express how the system's state changes over time. Continuous simulation is used, for

example, to study heat dissipation in computer systems.) Our simulation clich6s are found
in discrete-event simulators. The discrete points in time at which a message-passing system

can be modeled are when a message is sent, received, or handled.

Within the domain of discrete-event sequential simulation, our class of simulator pro-

grams are most similar to simulators that model queueing systems [91]. In a queueing
system, there is a collection of one or more servers which service tokens (sometimes called
"customers"). There is a notion of arrival time and processing time of tokens; tokens get

buffered in a queue if they arrive while a server is busy. The queueing discipline is typically
first-in, first-out, but it can be a different one if tokens need not be serviced in the order in
which they arrive. A common real-world situation captured by the queueing system model

is the servicing of bank customers by one or more tellers, where the customers wait in a

single line.

The queueing system model (using a FIFO queueing discipline) is similar to the message-
passing multi-processor model. Servers are analogous to processing nodes and servicing a
token is analogous to handling a message. However, there are two key differences. One

is that in the queueing system, servicing a token does not create new tokens which feed

back to the servers. In the message-passing machine model, handling a message can cause
new messages to be sent. The other key difference is that in the queueing system model,

the waiting tokens are not targeted for a particular server to service. Whichever server is
idle when a token is removed from the queue is the one that gets the job. In the message-

passing model, on the other hand, each message is sent to a particular node for handling.
The message's destination is determined when the message is sent. Our class of simulator
programs can be seen as modeling a multi-queue multi-server system with feedback (in
which tokens are targeted for particular servers and servers have local FIFO queues for

buffering tokens when the server is busy).

2.1.2 Informal Cliche Acquisition Strategy

In acquiring our domain-specific cliches, we used an informal strategy. (Developing a do-

main modeling methodology for clich6 acquisition is beyond the scope of this research.) We
worked in two directions. One was bottom up by manually understanding two program

examples in our domain. (These are described in Section 2.2.) This allowed us to identify
concrete computational structures that were used in the simulators' designs. The differences

between the two programs in implementing the same high level operation helped us to gen-
eralize our cliches. The similarities between the programs pointed out common components

that some cliches shared. We were fortunate in that the authors of the programs were ac-
cessible for answering our questions about the design of the programs. Their explanations

helped us not only to understand the programs, but also to identify the clich&s, since the

21

authors often referred to algorithms and data structures that they considered to be typical.

Our second direction was top-down. We read textbooks in the area of simulation, such

as [91, 1511, to pick up the vocabulary and descriptions of typical high-level computational

structures that are used. We then mapped these down to portions of the example programs

that embody them.

In identifying the clich6s to be captured, we tried to identify the most general form of

each clich6 and then express it in a way that canonicalized specializations of it. (This was

done both by using an abstract representation and by providing mechanisms for viewing
specializations as the more general form.) However, sometimes this canonicalization was

not possible and we needed to include specializations of the clich6 in the library along with

the generalized forms. In these cases, we relied on empirical frequency of occurrence of the

specialized forms, to avoid enumerating all possible variations (which can be expensive and

incomplete).

This issue came up most frequently in trying to capture clichdd operations on aggre-

gate data structures. We encountered three distinguished types of parts of aggregate data

structures:

"* Primary - a part that holds a piece of data directly. (For example, a Hash Table data

structure contains a Buckets part which is usually an array).

" Handle - a part that is used to look up a primary part. (For example, a data structure

might contain a primary part Node that represents a processing node or it might

contain an integer (an identification number) that is used to index into another data

structure to retrieve the structure representing a node.)

"* Secondary - a piece of data that is an unnecessary part of a data structure in that it
can be computed from a primary part or a handle part of the data structure. These are

usually cached values. (For example, a Circular-Indexed Sequence includes a sequence

part, and two indices which keep track of the bounmd3 on the filled-in portion of the

sequence. It can have an additional secondary part which keeps a running count of

the number of elements in the Circular-Indexed sequence. This part is unnecessary

because it can be computed from the size of the sequence and the boundary indices.)

If we were to capture all aggregate data clichds in their general form - as aggregates

of only primary parts - we would have trouble recognizing them in cases where handles

are used and in cases where secondary (cached) parts are used to circumvent computation

performed on primary parts. So, we capture these specialized forms, but only if they are

common. That is, we capture data clichds that are common optimizations and common

uses of handles.

Sometimes an optimization of some generalized clich6 is possible in the particular context
in which it is used, but this optimization is not a common one. Perhaps it takes advantage

of a rare alignment with other ciches or of opportune dataflow equalities. Since it is not

22

common, it is not in the clichi library. (Likewise for handles.) Unless we can undo the

optimization or use of a handle, the recognition of the clich6 will be hindered. Section 5.1.5
describes a class of common optimizations which can be undone. Sections 5.2.2 and 5.2.1
discuss some optimizations and uses of handles that should be able to be undone, but which

require advice from an external agent.

2.1.3 Sequential Simulation Clichds

There are two common designs for sequential simulators of parallel systems. One is a

synchronous simulation, which mimics the real system by maintaining a global clock and
simulating the actions of the nodes in "lock-step." On each tick of the clock, the simulator
"advances" each node by simulating what the node would do in the real system on that

clock tick. In this type of simulation, all simulated nodes are synchronized to the global
clock. At each clock tick, the state of the simulated nodes gives a snapshot of the state of
the system at the time represented by the clock tick.

The other common sequential simulator design is event-driven. In this type of simulator,
there is an agenda of events, which represent work to be done by the nodes. The simulator

iteratively pulls an event from the agenda and performs the work associated with it. This
may cause new events to be generated, which are added to the agenda. The simulation ends
when the agenda is empty. Unlike in synchronous simulation, the actions of the nodes are

simulated asynchronously rather than all being in step with a global clock. The nodes each

keep track of their own local time, which is updated when they process an event.

Our clich6 library contains algorithmic and data structure cliches that make up the
designs of event-driven and synchronous simulators for message-passing systems. The next

two sections discuss these designs and the clich&s from which they are constructed.

A Common Synchronous Simulation Design

A common design used in synchronous simulators of message-passing systems has data
structures representing processing nodes and messages. (In this discussion, we denote the
data structure representing a node as SYNCH-NODE to distinguish it from the real processing

node. Similarly, MESSAGE denotes the data structure representing a real message.) Each
SYNCH-lODE contains a Local-Buffer part, whose value is a FIFO queue of messages, and a

Memory part which represents the state of the node being represented. Each KESSAGE data

structure contains a Destination-Address which specifies the node to which the message it

represents was sent. It also typically contains a message Type, which is used to look up a
handler for the message, Arguments which are used in executing the handler, and Storage-

Requirements which specify how much local memory space is need to store arguments and

locals during handler execution.
All SYCH-lNDEs are collected in a sequence, called an ADDRESS-uP, which maps an integer

address to a SYNCH-NODE. The SYNCH-NODE indexed by an integer i is the one representing the

23

real node whose address is i in the machine being simulated. A global buffer of MESSAGEs is

also maintained to help model message delivery delay, as is explained below.

A common algorithm used for synchronous simulation proceeds as follows. The simu-

lation is begun by adding a "start" MESSAGE, which is given as input, to the global MESSAGE

buffer. On each iteration of the simulation, the following actions are taken.

" A termination condition is checked and if satisfied, the simulation stops. This condi-

tion is that the global MESSAGE buffer and all the Local-Buffers of the SYNCH-IODEs are

empty.

"* The MESSAGEs in the global buffer are "delivered," which means each is placed in the

Local-Buffer of the SYNCH-NODE to which they were sent (i.e., the SYNCH-NODE in the

ADDRESS-MAP indexed by the MESSAGE's Destination-Address part).

"* Each SYNCH-NODE is polled to see if it has any work to do, i.e., if it has any MESSAGES in

its Local-Buffer. If so, a MESSAGE is pulled from the buffer (maintaining FIFO order)

and handled. If any new MESSAGES are sent as a result, they are buffered in the global

MESSAGE buffer.

The global MESSAGE buffer is used to ensure that delivery delay is modeled. Buffering the

MESSAGEs sent during a clock cycle prevents a message from being sent and handled during

the same cycle.

The invariant that messages to the same node are handled in the order in which they are

received is modeled by using a FIFO queue to locally buffer the MESSAGES that a SYNCH-NODE

must handle. A MESSAGE will not be handled by a SYNCH-NODE until all the MESSAGES enqueued

on the FIFO queue ahead of it have been handled.

What it means for a MESSAGE to be "handled" (or what action of a processing node

is simulated) by the simulator varies across simulators. It depends on why a sir aation

is being performed and which aspects of a message-passing system are of interest. For

example, some simulators might want to simulate the message handler execution on the

node in order to gather statistics about operation frequencies or average message execution

time on each node. Other simulators might only want to simulate message sends that result

from handler execution, in order to gather information about average message waiting times,

typical size of buffers needed, and the number of nodes busy. In addition, the set of message

handling actions that are simulated varies over the machines that are being simulated. The

machine architecture of a real node determines which actions it performs; only these can

be simulated.

We have begun to identify and capture some cliches in the area of simulating node

actions. These include algorithms for looking up and executing message handlers as well

as clich6s found in the domain of program execution. Below we discuss the cliches we have

captured so far and Section 5.2 describes the difficulties we encountered in acquiring them.

24

Although we have identified some cliches in this area, it is unlikely that the code for

simulating the actions of nodes will always be a clich6. There is a wide variety of reasons to

simulate a message-passing system, resulting in a wide range of node behaviors to mimic.

This variation is reflected in the diverse code responsible for simulating a node's actions.

So, we also look at the issues involved when an integral part of an algorithmic clich6 for

synchronous or event-driven simulation may be filled with unfamiliar, non-clich6d code. It

is difficult to encode such a clich6 in a flow graph grammar so that it can be recognized by

graph parsing. This is discussed in Sections 4.1.4 and 5.2.3.

There are many variations of the algorithm described in this section that still achieve

synchronous simulation. For example, on each iteration, our algorithm performs three

actions in the following order: test for termination, deliver messages, and poll and advance

nodes by one step. The other variations of this algorithm in which a different ordering is

used also perform synchronous simulation. However, the current clich6 library contains only

the one given above as an algorithmic clich6. Section 5.2 discusses the problems we face in

trying to concisely encode and recognize the other variations.

The algorithm and data structures used in this synchronous simulation design are cap-

tured in our clich6 library as clichds. However, the clich6s are not flat structures, but are

hierarchically built out of other cliches. The hierarchical organization allows sharing of

common sub-computations among cliches, which helps us avoid redoing work during recog-

nition. This also highlights the salient characteristics between two similar cliches which is

useful in controlling recognition cost and choosing between near-miss recognitions of the

clich6s. (However, no static organization can do this perfectly, since saliency is relative.)

Figure 2-1 shows the names of the algorithmic clich6s upon which the Synchronous-

Simulation algorithmic clich6 is built. Lines connecting the names indicate relationships

between the named cliches. (This is only a portion of the clich6 library. Figure 2-3 shows

additional algorithmic clich6s used in a common event-driven simulation design which is

described in the next section. Also, the fringe of the trees in Figures 2-1 and 2-3 contain

the names of general-purpose clich6s and small triangles to indicate that the sub-tree of

clich6 names upon which they are built is not shown. Refer to Figure 2-5 for these clich6

names and how they relate to the other general-purpose clich6s in the library.) Figure 2-2

shows the aggregate data cliches in our library and how they relate to each other.

The trees of clich6 names are shown only to give a flavor of the structure of the clich6

library. More description of the clich6s and details of how they are encoded are given in

Section 4.1.

There are three types of relationships between the clich&s in the library. One type of

relationship is composition: Cliches may contain other cliches as parts. (This relation is

shown in the trees of Figures 2-1 and 2-2 as a set of branching lines, grouped by a circular

arc. The root name represents a clich6 that is composed of the clich6s named by the

branches.)

For example, the aggregate data structure SiYCH-iODE consists of two parts, a Buffer and

25

Sequmntial-Siwulaon-of-MuaagePuaig-System

Sycrni-Siultin vmtDrvekSimulation

I A
Syonu-t lto--lobal-Measage-Buffer

Queuehaaw Global-Bnffers-and-Nods Earit-ismuatio4-Finiahed

Stack- IZFo. Priority-Queue, Deliver-Mueasage-ad-Sep-odes Synlnuo.Smlto-nb
Push Enquwue Insert

A A A Dlier4ees Advance-Noe GlobaI-dcl-as Emptny?

Evanwtereand-Deliver-Mawags Pti Faode-adDo-Work Loa-ufesEpy

Destructive- Deliver- Sequence-and- Do-Work EnumerateNodes- Stack- FF0- Priority-
Queue-Ewmerntion Meage- Index- Accunmat Cbeck-Bufferst Epy Empty? Queue

A Accmulate, Enumeration X T T AL Empty?

ASequence- Local-Bufrms-A
De~~esaeDo-Wort Etammuation Always-Empty?
Deliver. Accumulation A\

Looup-odeadqueu&eI Loca-Buffer-
EdUdaextract- Non-Eqpty?
and-

Homde-
Lookup- Local-Buffer- Record-at- EO
Destination Enqueuc, Destination

IJ LOCal.Buffer. Local- New- Handle-
Selec-Term FH0- New-emfulf~Trm Mng

Empty? Deamu

A A
Figure 2-1: Synchronous simulation clich6s.

26

Execution-Context Handier

SyblNode Sequence Symbol Integer

Synch-Node Asynch-Node

SQueue • Associative- Integer

FEFO stack Prio'riy-

Circular- Indexed- Linked- Associative-

Indexed- Sequence list List Hash-Table

equence Integer Sequence Integer Integer
Ordered- Unordered-

Sequence...nteger Associative- Associative-
List List

Event Instruction

Message Real Symbol Sequence

Integer Sequence Symbol Integer

Figure 2-2: Aggregate data cliches.

27

a Memory, each of which is another clich6: a Queue and an Associative Set, respectively.

A similar relationship can occur between algorithmic cliches. The algorithmic clich6 of

Synchronous Simulation using a Global Message Buffer is composed .of three other clich&s:

Queue-Insert, Generate- Global-Buffers-and-Nodes, and Earliest-Simulation-Finished.

The second type of relationship that can occur between two cliches is an implementa-

tion relationship: A clich6 may implement a more abstract clich6. For example, a FIFO,

Stack, or Priority Queue can implement a Queue. Poll-Nodes-and-Do-Work is an imple-

mentation of Advance-Nodes. (Lines between clich6 names in Figures 2-1 and 2-2 that are

not grouped or starred represent thio relationship. Of two clich6s connected by a line, the

upper one is implemented by the lower. Branching ungrouped lines represent alternative

implementations of the root.)

The third type of relationship occurs when one clich6 is a temporal abstraction of an-

other. Temporal abstraction is a technique developed by Waters [117, 137, 138] and further

extended by Rich and Shrobe [110, 127], in which a clichid fragment of iterative computa-

tion is viewed more abstractly as an operation on a sequence of values - the sequence of

values that are processed over time, one per iteration. For example, Sum is a temporally

abstract operation that takes a sequence of numerical values and produces their total. This

is a temporal abstraction of a loop fragment in which each iteration computes the sum of

a new value and the result of the sum computed on the previous iteration. The temporal

abstraction of this fragment views the sequence of new values accumulated in the sum as

the input to Sum. (Lines marked with an asterisk in Figure 2-1 indicate that the upper

clich6 name is an operation that temporally abstracts the lower iterative cich6.) In Figure

2-1, Generate-Global-Buffers-and-Nodes is an example of a temporally abstract operation.

It takes the initial global MESSAGE buffer and the initial collection of SYNCH-IODEs and creates

a sequence of new global MESSAGE buffers and SYNCH-NODE collections. (This is a temporally

abstract view of the iterative computation performed on each iteration of the simulation in

which MESSAGEs are delivered and SYNCH-b0DEs are stepped.)

A Common Event-Driven Simulation Design

This section describes a common event-driven simulator design for message-passing systems.

It has data structures ASYNCI-NODE and MESSAGE, representing processing nodes and messages,

respectively. It also has an EVENT data structure, which represents the arrival of a MESSAGE at

an ASYNCH-IODE. Each ASYNCH-IODE data structure maintains its own local Clock. It also has

a Memory part, holding its state. There is a sequence containing all ASYNCI-NODEs, called

an ADDREUS-M•P, which maps each integer address to an ASYNCH-IODE (as in the synchronous

simulation design). MESSAGEs typically have the same parts as those in the synchronous sim-

ulation design (Destination-Address, Type, Arguments, Storage-Requirements). An EVENT

contains an Object, which is a MESSAGE to be handled, and a Time at which the work to be

done on the object (i.e., handling a message) was scheduled (i.e., when the MESSAGE arrives

28

7t

at an ASYNCI-IODE).

A global agenda, called the EVENr-QvEUE, keeps track of EVENTs that need to be processed.

The agenda is implemented as a Priority Queue, in which the EVENT with the earliest Time

has the highest priority.

The event-driven simulator is given an initial EVENT, whose Object is a starting MESSAGE

and whose Time is the MESSAGE's arrival time. This is added to the EVENT-QVEUE. On each step

of the simulation, the highest priority EVENT is pulled from the EVENT-QUE•E and processed.

Processing an EVENT means simulating the handling of the MESSAGE in the EVENT's Object

part. The simulated message handling is done in the context of the ASYNCH-NODE that

represents the real node that is the destination of the message. This is looked up using

the Destination-Address part of MESSAGE as an index into the sequence ADDRESS-MAP. (As we

mentioned earlier, the portion of the simulator that simulates a processing node's message

handling actions varies. Below, we describe an initial set of cliches that may be used.

However, this portion of the simulator is not guaranteed to always be clich~d.)

When an EVENT is processed, the Clock of the destination ASYNCH-NODE for its MESSAGE

Object is updated: the ASYNCII-NODE's Clock becomes the maximum of its current time

and the arrival time of the MESSAGE (i.e., EiVuE's Time). (The ASYNCE--NODE's current time

can be later than the arrival time if the simulator is mimicking a real situation in which

the real node was busy when the message arrived. The arrival time can be later than an

ASYNCH-NODE's current time if in the real situation being simulated, the real node is idle

when the message arrives.)

Handling a MESSAGE can cause other MESSAGEs to be sent. These are added to the

EVENT-QUEUE. The event-driven simulation ends when the EVENT-QUEVE is empty.

An important characteristic of this algorithm is that the MESSAGEs are handled non-pre-

emptively, which means that once an ASYNCI-NODE starts to handle a MESSAGE, it will not be

interrupted, e.g., by receiving another MESSAGE.

Another property of the algorithm is that at each step, the globally earliest unprocessed

MESSAGE received so far is chosen to be handled. Since the EVENT pulled from the EVEINT-QUE•E

is always the one with the earliest Time, and since Time is the arrival time of the MESSAGE

in the ENTu's Object part, the MESSAGE chosen to be handled next is always the one with

the earliest arrival time of the MESSAGEs that have not yet been handled.

These two properties ensure that once a MESSAGE is chosen for handling, no NESSAGEs

will subsequently be generated that have an arrival time earlier than the MESSAGE chosen.

In other words, MESSAGES are handled in the order they arrive. So the simulator models the

invariant obeyed by the real machine: messages to the same node are handled in the order

in which they are received.

Figure 2-3 shows the structure of the portion of the clichU library that contains the

event-driven simulation clich, and the clichis it is built upon. (For data clich6s, refer to

Figure 2-2.)

29

SequenatilSimulatio-Mmof.cs-Pusing-Syszcm

Evat-Dfivm~Simu~afio Syneb"Mou-Simulalion

Pfiofityý ~sr GenetateEvetiQueues-and-Nodes Co-EvliegEDS-Finisbod

Deqme-ad-io=Cý ýCo-tmaw-EDS-Fmisbed

Piuc-ucea fe~en-wt PrioityQwwueEmpty?

Lookup- (Jpdow Recrd* Haodle-
Deoawdnio Node-Time Desfiwti Mesag

Select- Max Nw
Tamn Tamn

Figure 2-3: Event-driven simulation clich~s.

30

Node Action Simulation Clichs

The two simulators for message-passing parallel systems contain a component that simulates

some or all of the actions that a real processing node takes when handling a message.

Which actions are simulated depends on the behavior of interest for the simulation. We

have begun to collect some clichis that occur in simulators that model message handler

lookup and execution on a node. These clich6s are found in the broader domain of program
execution in general, and the domain of program interpretation (or evaluation) in particular

[1]. Figure 2-4 shows the structure of this portion of the library.

The clich&s we have collected so far are those for the following.

"* Looking up a handler based on a NESSAGE's Type, which is typically an Associative-

Set-Lookup or Property-List-Lookup, depending on how the handlers are stored.

" Loading the MESSAGE's Arguments into the Memory part of an ASYNCH-NODE or SYICH-
NODE (depending on whether the simulator is event-driven or synchronous). This in-

volves looking up the ASYNCH-NODE or SYCH-INODE indexed by the MESSAGE's Destination-

Address, enumerating the Arguments, accumulating them in a sequence, and adding

the sequence to the Memory part (typically an Associative Set).

" Executing the handler on the input data given in the Arguments. An EXECUTION-

CONTEXT data structure is used to keep track of the Node executing the handler (which

is an ASYNCH-NODE or SYCH-INODE), the Status of the execution (a Symbol), Bindings

of variable names to Memory locations (in an Associative Set), and the Instructions

being executed (which is an Indexed Sequence: a data structure with two parts: a Base

sequence of INSTRUCTIONs and an integer Index which acts as an instruction pointer).

An INSTRUCTION consists of an Operator (symbol), and a set of Arguments (typically

in a list or an adjustable-length sequence), which may be other INSTRUCTIONs.

The handler execution involves iteratively fetching the next instruction to be executed

using the current value of the instruction pointer. A standard Lisp EVALUATE/APPLY

recursion is then used to interpret the INSTRUCTIOI with respect to the current values

of the variable names stored in Memory. The Operator part of the INSTRUCTION is used

to look up a Common Lisp function for simulating the actions of the procesh'ng node in

applying that operator type to arguments. The EVALUATE/APPLY recursion "evaluates"

an INSTRUCTION by iterating through its Arguments, recursively evaluating each one,

and then applying the function associated with the INSTRUCTION's Operator to the

results.

We have made a first attempt at capturing the knowledge needed to recognize program

execution clich&s. Our experiences in encoding these clich&s in the graph grammar helped

us to understand both the strengths and weaknesses of the formalism for expressing certain

types of programming ideas. This is discussed further in Chapter 5.

31

Handle-Message

Lookup-and-Execute-Hander

Lockup- Lockup- Load- Record-at- Fetch-lnstniction hierpret- Running-
Handler- Destintidon Arguments Destination Instruodion Status?

for-Message oa-Jom rs Idxd

Lockup Seln- Synch- AsYnch- New- Sequence- Evaluate- Running-
Handler Term Node Node Term Extrac Apply Test

L~oad-

Property-list- Associative- Argumenfts- Evaluate- Fetch-and
Lookup Set-L~oku into-Menny Arguments Apply-Op

Liu to- Assocative-
Sqace Set-Add Enum-Eval-Coiect Fec-p aply

Ust Evaluate Cons- Property- Associative-
Eniumeraton Accunudat lst-Lockp Set-Lockup

A A7^A A
Figure 2-4: Node action simulation cliches.

32

2.1.4 The General-Purpose Cliches

Figure 2-5 gives an abstract picture of the relationships between the groups of general-
purpose clichis that are contained in the library. Each box represents a set of algo-
rithmic clich~s that represent either operations on some aggregate data structure clich6
(e.g., Priority-Queue) or basic iteration or computational clich6s (e.g., Sum, Sequence-
Enumeration, Absolute-Value). Each box contains the names of some of the clich~s con-
tained in the group it represents.

The arrows between the boxes indicate that the clich~s in the source group use the
clich6s in the sink group as components, or the cliches in the source group are abstractions
of those in the sink group. For example, the arrow from FIFO to Circular-Indexed-Sequence
(CIS) indicates that cliched operations on FIFOs can be implemented as clich6d operations
on CISs. The arrow from CIS to Basic-Iteration-Cliches indicates that the operations of
manipulating a CIS use basic iteration clich6s as components (e.g., the operation of enumer-
ating a CIS uses a Bounded-Count operation as a component, which generates a sequence

of integers within some interval).
The cliche library does not contain all existing algorithmic cliches that operate on the

data structures mentioned in Figure 2-5. We captured a fair number, but due to time

limitations, we could not collect a complete set.

2.2 Real-World Programs

In studying program recognition, we focused on two programs which were written in Com-
mon Lisp by researchers in a parallel architecture group at MIT. The programs sequentially
simulate the parallel execution of programs by a fine-grain message-passing parallel machine
(which is described in [26]).

One program, called Pisin, simulates the parallel execution of programs in terms of the
operations of a "parallel interface" (Pi) [146, 147]. (A parallel architecture interface sepa-
rates parallel programming model issues from machine hardware issues, in a way analogous
to the von Neumann interface for sequential computers. For more details, see [146].) It uses
the event-driven algorithm and the program interpretation clich&s that are in our library.

The other simulator simulates the parallel execution of programs written in a language
called "Concurrent SmallTalk" [251. We will refer to this simulator as CST. It uses the
synchronous simulation design.

The CST simulator program is actually a module in a larger program which provides a
programming environment for compiling, simulating, tracing, and gathering and displaying
statistics on the execution of Concurrent SmallTalk code. Functions that call the simulator
are not analyzed, neither are the metering, tracing, and plotting functions that it calls.

There are a few important points about the example simulators that are relevant to our
study of recognition. One is that currently, GUASPR is unable to recognize cliches in programs

33

Associative-SetQue

Add Isr

Remove ti

Hashtbl Puioaity-Quoue FIFO stock

L~ookup Insert Enq-ea Push

Delete Enyty Doqu Pop

ExutEmpty? Empty?

Associative-Ilas

LookUP Crcular-indexed-

Delete Sequenc

Empty?

Unoadered-Associative- Onicred-Associative-

list List

InetERIAc Indexed-Sequence Linked-

Lookup LOOkw muc List

Delete Dl~este Fetch+Updaft Eein
* * .. in"" Cons-Accmolation

Bomp*Updot Reverse

Basic-Iteration-Operstions

SeqUea.UaMIrion
Filter
Samn

LLSequmo

Basic Opemlions
Absoltee.Vulue

hcra"eg
Dwemamt

Figure 2-5: General-purpose cliches.

34

that contain operations that destructively modify mutable data structures. Our plan is to
study the recognition of aggregate data structures, independent of issues concerning side ef-
fects to them, and then attempt to tackle the problems of mutable data structures later. So,
we manually converted the example programs to programs that contain only non-destructive
versions of the data structure operations. For example, we replaced destructive alterations

to data structures with changes to copies of the data structures We also propagated these
changes to the data structures that pointed to the altered data structure, and so on. We
essentially routed the dataflow by hand so that all aliasing was taken into account. (Section
7.2.4 gives more details. Appendix B contains the original versions of the two simulator
programs, followed by their functional translations.)

In doing the translation, we found that many of the translation steps are automatable.
For certain types of side effects, it may be possible to automatically uncover straightforward
types of aliasing patterns and replace them with their non-destructive counterparts. The
insights we gained should help us extend GRASPI in the future to deal with side effects to
mutable objects, as discussed in Section 7.2.4.

All of the clichis in our current library are "pure" in that they include no destructive
operations (such as RPLACD, RPLUCA, or SEWF in Common Lisp).

Another important point concerns how the programs simulate message handling. We
mentioned earlier that we have only begun to encode the clich6s found in code that is
responsible for simulating a processing node's action of handling a message. We have
experimented with recognizing these clich6s in Pisin, which contains them. However, we
would also like to explore the issues that arise when an integral part of an algorithmic
clich6 can be filled with unfamiliar, perhaps loosely constrained code. The CST program
allows us to explore these difficulties because it contains code for simulating a node's action
that is not clich.d (at least with respect to our current library of clichds). Details of these
difficulties and suggestions for solving them are given in Sections 4.1.4 and 5.2.3.

Our final point is that even though Pisin contains clich6d node action simulation code,
problems still arise in expressing and recognizing certain cliches. This is because part of
the information about how to simulate a node's action is given as input, rather than being
statically contained in the program. In particular, PiSin takes a set of message handlers as
input. Each handler provides a set of instructions to be executed when handling a certain
type of message. For example, Figure 2-6 gives a handler for a Factorial message, which
iteratively computes the factorial of a single argument (I). (The x is a local variable.) The
instructions in the handlers are written in a language of Machine Operations (e.g., Tinao,
Branch-Zero). Each Machine Operation has a Common Lisp function associated with !t
that specifies how to simulate the actions of the processing node in executing that machine

operation. They are defined in terms of simulator functions. For example, Figure 2-7 shows
the functions that are associated with the operations Tinos and Branch-Zero.

Like the set of handlers, the definitions of Machine Operations are inputs to PiSia. This
means they are not available for analysis or recognition. The problem that this poses is

35

(define-handler Factorial (N) (W)

(print-user "-&running simple loop test'%,")

(write (self) I 1)

Loop

(branch-zero (read (self) 1) Done)
(write (self) I (times (read (self) X) (read (self) N)))
(write (self) N (minus (read (self) N) 1))

(branch-zero 0 Loop)

Done

(print-user "'&the answer is 'd'%" (read (self) W))
(destroy-segment (self)))

Figure 2-6: A message handler for Factorial.

that the data and control flow of the entire PiSim program cannot be statically computed.

It depends on the input for a particular simulation. The implication of this is that we do

not have complete knowledge about who calls the simulator functions or how their inputs
and outputs are connected. The problems we have encountered as a result are discussed in

Section 5.2.

Choice of Programs: Breaking Out of the Toy Program Rut

In choosing programs to use in our study of recognition, our goal was to break out of the rut
of automating the recognition of "toy" programs, in which most earlier recognition research

has been caught. Both simulator programs (PiSim and CST) do this. Their sizes fall in the

500 to 1000 line range, rather than being on the order of tens of lines, which is the typical
size of programs dealt with in previous recognition research.

Program length is only an approximate indicator of the potential difficulty of recognizing

a program. In addition to choosing larger programs, we have chosen programs not written
by us (the designers of the recognition system). The simulator programs are not contrived

examples. They were written, without bias, to solve a particular real-world problem.

A key advantage of this is that it provides challenges to the recognition approach that

might not be anticipated by us, as developers of it. Even though we may need to change or
simplify the original program to allow recognition to occur, we are aware of the limitation of

our approach that requires this. We also are aware of the type of transformation that should

be made or the advice that should be given to help deal with the shortcoming. (Section

5.2 discusses the limitations observed and Section 5.2.5 summarizes changes made to the

original programs to yield the programs that GRASPR recognizes.)
Additionally, the programs indicate which characteristics of programs are typical. This

helps us in analyzing our recognition technique. For example, recognition by graph parsing
can be expensive if there are excessive amounts of redundant computation, which causes

36

(Define-Operation Times (Active-Task X Y)
(nmltiple-value-bind (Nev-Time Task-Node Nev-Task)

(Increment-Time-Of Active-Task 1)
(values (* X Y) 1ev-Task)))

(Define-Operation Branch-Zero (Active-Task Test-Variable Label)
(multiple-value-bind (New-Time Task-Node Neo-Task)

(Increment-Time-Of Active-Task 1)
(if (zerop Test-Variable)

(values Label

(Make-Task :Handler (Task-Handler Nev-Task)

:lode (Task-lode Nev-Task)

:Segment (Task-Segment 1eo-Task)
:IP Label

:Status (Task-Status Nev-Task)))

(values nil Nev-Task))))

Figure 2-7: The definition of two Machine Operations.

ambiguity. However, this characteristic is rare in the example simulator programs. Knowing

which characteristics are typical or rare in real-world programs helps us determine which

factors influence the practicality of our approach.

Another aspect of the simulator programs which distinguishes them from the "toy" pro-

grams studied previously is that they contain domain-specific clich6s. These go beyond
general-purpose clich6s, such as operations on queues, stacks, and hash tables, which have

been the focus of previous recognition research. The programs contain common simulation

algorithms and data structures. By recognizing these clich6s, GRASPR provides more useful

program understanding capabilities than if it recognized the general-purpose cliches alone.

This allows us to explore the expressiveness of the graph grammar formalism as a repre-

sentation for domain-specific clich6s. (On the other hand, the current clich6 library has

been acquired with the example programs in mind. More empirical studies are needed to

evaluate the ability of the existing system to recognize new programs with the same library

and to determine how much the library must change to recognize them.)

The simulator programs also contain a fair amount of unfamiliar code mixed in with

cliched computational structures. In experimenting with them, we test GRASPR's abilities

to perform partial recognition, which is required in dealing with any realistic, non-trivial

program.

37

2.3 Recognition Examples

Besides identifying the knowledge needed to understand and construct programs, it is im-
portant to capture this knowledge in such a way that it can be applied to a broad range of

programs. In automating program recognition, our goal is to codify programming clich~s

at a level of abstraction that allows us to recognize them in programs that vary widely in
such details as syntactic constructs used, programming language chosen, data structure and

subroutine decomposition, and implementational choices. In addition, we provide recogni-
tion techniques that are robust under other types of variation, such as variation due to

function-sharing optimizations and unfamiliar code.

This section gives examples of the recognition capabilities of GRASPR. This serves to
demonstrate what GRASPR can do in terms of the classes of variation it can tolerate. It also
provides motivating examples of the goals we have for our representational formalism and

recognition technique.

2.3.1 Common Program Variations

Program recognition is difficult due to the wide range of possible variations among programs.

An instance of a clich6 may appear in a variety of forms. The following is a list of some of
the common types of variation found in programs. (This does not provide a complete list

of the variations we encountered in our empirical recognition studies with PiSin and CST.

Chapter 5 discusses more variations, both those tolerated and not tolerated by our current

system.)

"* Syntactic variation in control and binding constructs. There are typically many ways
to achieve the same net flow of data and control. Variable, function, data structure,

and part names vary widely. Also, syntax varies over programming languages.

" Implementation variation. A given abstraction can often be implemented by a set of

different concrete algorithms and data structures.

" Delocalization. Parts of a clich6 are sometimes widely scattered throughout the text

of a program, rather than being contiguous.

" Unrecognizable code. Not all programs are constructed completely of cliches. Recog-
nition must be able to ignore an unpredictable amount of unrecognizable code.

" Variation in the organization of components. Programs can be decomposed into sub-

routines in a variety of ways. Also, data structures can aggregate pieces of data in a

multitude of different nested organizations.

" Redundancy. Programs may vary in how much computation is repeated in the same
instance of a cliche. For example, when the result of some inexpensive computation

38

is needed more than once, the program may simply recompute the value each time it
is needed rather than caching the result in a temporary variable.

e Optimizations. A great deal of variation occurs between optimized and unoptimized
programs even though they may contain the same abstract clichM. A common form
of optimization introduces function-sharing in which the implementations of two or
more distinct abstract structures are merged.

2.3.2 Examples of Capabilities

GRASPR is able to recognize both CST and Pisia as sequential simulators of message-passing
parallel systems. It recognizes the synchronous simulation design in CST and the event-driven

simulation design in PiSin. It also recognizes the message-passing program execution cliches
in the portion of Pisim's code that simulates handling messages.

The primary output of GRASPR is a forest of design trees. A design tree indicates the
clich6s found in the program and how they are related to each other. Figure 2-8 shows a
portion of the design tree produced in recognizing Pisim. Subtrees that are not shown are
collapsed into small triangles below a clich6 name. The dashed lines at the tree's fringe are
links to primitive operations in the source code, which indicate the location of a particular
clich6 in the code. The drawing of the design tree is a simplified version of the actual
description produced by GRASPR. The description is simplified (for presentation purposes)
in that only operations are specified in the leaves of the tree, while the actual description
includes information about the data involved in each clich6 instance. In general, GRASPR
may produce several design trees, representing recognition of multiple, perhaps overlapping,
clich6s in the code.

(The design trees are graph grammar derivation trees, which are described in Section
3.2.2. In general, they may be graphs in that a recognized clich6 may be a component or
implementation of two or more higher-level cliches.)

A secondary way to view the output of GRASPl is provided by a tool, called "Para-
phraser," which takes the design trees produced during recognition and generates textual
documentation based on them. Paraphraser knits together schematized textual fragments
associated with the recognized cliches, filling in slots with identifiers taken from the source
code (e.g., .BVuT-QUEUE*). It bases the structure of the text on the relationships between
the cliches.

Figure 2-9 shows some of the documentation generated for the design tree shown in Fig-
ure 2-8. The documentation, although stilted, does describe the important design decisions
in the program and can help a programmer locate relevant objects in the code (via the
identifiers).

One potential benefit of automated program recognition is to use such automatically
produced documentation to maintain poorly documented or undocumented programs. Au-
tomatically produced documentation can be updated whenever the source code changes,

39

Sequiential-Simulation-of-Message-Passing-System

EetD ive-Simulmion

Priotity-Queue-Insert Generte-Event-Queus-and-Nodes Co-Earliest-EDS-Fmisbed

Ordered Associative-XX

Lis-Insert Dequeuo-andProess-Generation CoIeaieEDS-Finisbed

Piioripy-Queue-Emwac Proes-Event Priority-Queu-Empty?

Ofd-AM ocatve-List-Extac I demd-Ascafivo-
list-Empty?

List-Pop Lookup- Update- Record-at- Handfl-
/ NDestination Node-Time Destination Messagety

Select- Selec-I
Head Tanil1 ntil

dr J elc-max New- Lou-nd-Exeaae-HAndlr

i rTerm TeIrm

max copy-roplac-et Loolup- Lookup- 0

aref Handler- Destination
for-Mesag

Property- Selc t-Term

g9m am(t

Figure 2-8: Design tree for Pisim..

40

PISIN sequentially simulates a parallel message-passing system.
It is implemented as an Event-Driven Simulation.

1: Event-Driven Simulation asynchronously simulates a collection of
processing nodes handling messages, using an event-driven algorithm. An

event-queue *EVEIT-QUEUE* of events is maintained. To start, an initial

event EVENT is inserted in the event-queue. On each step, an event is

pulled off and processed, which may create new events to be added to the

event-queue. The asynchronous nodes (which represent processing nodes)

are collected in an address-map, called *NODES*.

Event-Driven Simulation is composed of a Priority-Queue Insert, a Co-Earliest

Event-Driven Simulation Finished and a Generate Event Queues and Nodes.
2: Priority-Queue Insert inserts EVENT in the priority queue
EVEUT-QUEUE. An element's priority P is higher than another's Q,

if P < Q. If an element already exists in the priority queue with

the same priority, then the new element is inserted into the queue

after the existing element.

Priority-Queue Insert is implemented as an Ordered Associative List Insert.
3: Ordered Associative List Insert inserts EVENT in the

ordered associative list *EVEUT-QUEUE*...

2: Co-Earliest Event-Driven Simulation Finished takes a sequence of

event-queues and a sequence of address-maps and returns the address-map

in the sequence of address-maps that corresponds to the first empty

event-queue in the sequence of event-queues.
Co-Earliest Event-Driven Simulation Finished temporally abstracts

Co-Iterative Event-Driven Simulation Finished.

3: Co-Iterative Event-Driven Simulation Finished terminates

the simulation when the current event-queue (*EVENT-QUEUE*e)
is empty, returning the current value of the address-map (*IODES*).

The event-queue is implemented as a Priority Queue.

The Event-Driven Simulation Finished Test is implemented as a

Priority Queue Empty.
4: Priority Queue Empty tests whether the priority queue

EVENT-QUEUE is empty....

2: Generate Event Queues and Nodes generates event-queues and address-

maps by repeatedly dequcuing the current event-queue and processing
the event dequeued. Processing an event causes new events to be added

to the event-queue and a new address-map to be created. The initial

event-queue is *EVEUT-QUEUE* and the initial address-map is *NODES*...
Generate Event Queues and Nodes temporally abstracts Dequeue and

Process Generation....

Figure 2-9: Some of the documentation generated for Pisim.

41

solving the pernicious problem of misleading, out-of-date documentation.
The current implementation of Paraphraser is heuristic and fragile. Documentation

generation is not a primary focus of this research. The problem of applying recognition to

program documentation needs further study, perhaps borrowing techniques from natural

language generation.
Besides documentation, there are a variety of ways to present the results of recognition,

depending on how the results will be used. Future work is needed to find the presentation
appropriate for effective interaction with people and other automated tools.

Syntactic Variation

The design tree and documentation shown in Figures 2-8 and 2-9 were produced by
GRASPR in recognizing PiSin. The top-level portion of Pisia is shown in Figure 2-10. (The
source code for data structure definitions and some subroutines are not shown.) Inject is
the top-level function which starts the Pisin simulator. It takes an initial start message

type and the message's arguments. After some initialization, it creates a Message data
structure, based on information about storage requirements computed from the Handler
that is associated with the message type. It randomly generates a destination address for
the message and computes the message's arrival time from the destination Node's current
time. Once the message is created, an Event is constructed, whose Object part is the Message
and whose Time is the arrival time. The Event is placed on the event-queue *Event-Queue*

and Execute-Events is run to iteratively extract and execute the highest priority event on
the event-queue.

Given a syntactic variation of this code, such as the code in Figure 2-11, GRASPR is able
to recognize the same cliches to produce the same design tree and documentation (mod-
ulo identifiers). Recognition is robust under variations in variable names (Length versus
Menory-Needed), binding and control constructs (cond versus if), and names of data struc-
tures and their parts (Message versus Msg and Message-Destination versus Msg-Dest-Addr).

Start-PiSin also differs from Inject in the ordering of computations in the let binding
clauses. It routes dataflow differently, using fewer local variables. It also passes the event

queue around explicitly, rather than maintaining a global variable. Recognition robustness
is achieved as a result of the representation shift performed by GRASPi which translates both
programs into the same graphical representation. In this representation, syntactic details
are suppressed.

Organization of Components

The representation used by GRASPR also suppresses details of how programs are decom-
posed into subroutines and how aggregate data structures are organized. For example, the
code in Figure 2-12 differs from the original PiSim code shown in Figure 2-10 in structural
organization. It bundles up the initialization and storage requirement computations into

42

(detvar *Event-Queu** nil "this is the global event-queue')

(detvar *Nodes* nil "this is the node array's)

(dot struct Message
(Destination nil)

(Length 0)
(Type nil)

(Arguments nil))

(detutruct Event

(Time 0)

(Object nil))

(detun Inject (Type frest Arguments)

(Make-Nodes)

(Clear-Nodes)

(Clear-Event-Queue) ;; resets *Event-Queue* to NIL

(let* ((Handler (Get-Handler Type))

(Length (4 (Handler-Arity Handler)

(Handlor-Number-COt-Locals Handler)

2))

(Destination (random (Number-Ct-Nodes)))

(Arival-Time (Node-Time (Translate-Node Destination)))

(Message (Make-Message :Destination Destination

:Length Length

:Type Type
:Arguments Arguments))

(Event (Make-Event :Time Arrival-Time
:Object Message)))

(Enquoue-Event Event)

(Execute-Events)))

(detun Enqueue-Event (New-Event)

(it (or (null *Event-Queue*)

(< (Event-Time New-Event)

(Event-Time (tirst *Event-Queue*))))

(setq *Event-Queue*
(cons New-Event *Evsnt-Queue*))

(setq *Event-Queue*

(Insert-Event New-Event *Event-Qusue*))))

(detun Execute-Events 0)

(cond ((null Elvent-Queue*)
Nodes)

(t (Execute-Next-Event)

(Execute-Events)))

Figure 2-10: Top-level portion of PiSim code.

43

(delver *P-Nodes*anil "collection of nodes")

(defutruct Nag
(Dest-Addr ail)
(Storage-Length 0)
(Type nil)
(Args nil))

(defstruct Event
(Time 0)
(abject nil))

(defun Start-PiSim (Start-Msg-Type Arga)
(Nake-Nodes)
(Clear-Nodes)

(let* ((Address (random (Number-Of-lodes)))

(Nag-Handler (Get-Handler Start-Nsg-TypW)

(Memory-Needed (+ (Handler-Arity Nag-Handler)

(Handler-Number-Of-Locala Nag-Handler)

2))

(Pending-Events

(Enquene-Event

(Make-Event :Time (lode-Time (Translate-Nod. Address))
:Object (Nake-Xsg :Dest-Addr Address

:Storage-Length Memory-Needed,
:Type Start-Nag-Type
:Args Args))

nil)))

(Execute-Events Pending-Events)))

(defun Enqauen-Event (New-Event Event-Queue)
(it (or (null Event-Queue)

(< (Event-Time Now-Event)
(Event-Time (first Event-Queue))))

(sotq Event-Queue
(cons 1ev-Event Event-Queue))

(aetq Event-Queue
(Insert-Event low-Event Event-Queue)))

Event-Queue)
(defun Execute-Events (Pending-Events)
(it (null Pending-Events)

*P-Nodese

(Execute-Events
(Execute-Next-Event Pending-Events))))

Figure 2-11: A syntactic variation of the portion of Pisim shown in Figure 2-10.

44

(delver *Kehsage-fteue* nil "this is the global message queue")

(dot var *Nodes* nil "this in the node array,)

(defstruct Msg

(Destination nil)

(Arrival-Time 0)

(Data nil))

(dot atruct Handler-Data

(Type nil)

(Length 0)
(Arguments nil))

(defun Initialize-Simulator0

(Nake-lodes)
(Clear-Nodes)

(Clear-Nessage-Queus)) ;; resets *Nesxage-Queue* to NIL

(dot un Conpute-Storage-Rqatx (Type)
(let ((Handler (Get-Handler Type)))

(+ (Handler-Arity Handler)

(Handler-lumber-Of-Locals Handler)

2))

(defun Inject (Type krest Arguments)

(Initialize-Simulator)

(lot* ((Length (Compute-Storage-Rqiats Type))

(Destination (random (lumber-of-lodes)))

(Arrival-Time (Node-Time (Translate-lode Destination)))

(Handler-Data (Make-Handler-Data :Type Type
:Length Length

:Arguments Arguments))

(Message (Make-Mug :Destination Destination
:Arrival-Time Arrival-Time
:Data Haudler-Data)))

(Enquoue-Mossage Message)
(Process-Nessageu)))

(defun Enquoue-Message (Message)
(if (or (null slessage-Queneo)

(< (Meg-Arrival-Time Message)
(Nsg-Arrival-Time (first elesuage-Queue*))))

(sotq *Xessago-Queuee

(cons message 0*22sage-QUOUee))

(sotq *Kessag*-Queue*

(Ins ert-Message Message *Nessage-Queue*)))
(defun Process-Messages 0)

(cond ((null eOessage-QuenoO*N Codes*)
(t (Process-lort-Mossage)

(Process-Messages))))

Figure 2-12: An organizational variation of the top-level portion of PiSim.

45

subroutines. It also aggregates data differently. The original code defines an Event data
structure with two parts: an Object and a Time. The Object part is filled by a Message

data structure, which has the parts Destination, Length, Type, and Arguments. Pending

Events (containing Messages to be handled) are queued in an *Event-Queue*.

In the variation of this code shown in Figure 2-12, there is no Event data structure.

Instead MNg data structures are placed directly in an event-queue, called *Message-Queue*.

Each MNg contains all the data that is in a Message in the original code and additionally

has an Arrival-Time part, which plays the role of the Time part of Events in the original

code. Some of the data aggregated in Mag is aggregated further into a sub-structure, called

Handler-Data. This structure contains the parts Length, Type, and Arguments found in

Message originally and it is nested inside the Mag data structure, under the Data part.

Despite these differences, GRASPR recognizes the same cliches in this code as in the original

code in Figure 2-10.

It is important that recognition be robust under organizational variations because the

clichds in the current library are themselves organized hierarchically. It is crucial that the

program need not mirror this same organization for the cliches to be recognized in it.

This is because the library organization is not necessarily based on the typical way

these clichds are organized in programs. There are two reasons it is not. One is that there

is not always exactly one "typical" or common decomposition of cliches into subroutines

or nesting of aggregate data structures. The second is that it may be better to base the

library's organization on other criteria besides what is typical. For example, the organization

might be chosen to emphasize salient parts of clich6s to facilitate recognition performance

improvements or to help choose the best partial analysis during near-miss recognition.

On the other hand, information about typical decompositions may provide valuable

expectations about the location of clich6s in a program. This can considerably narrow

down the search for clich6s, as discussed in Section 6.4.1.

Our representation does not eliminate information about the boundaries of subroutines

and user-defined data structures within the program. It merely suppresses it, so that the or-

ganizational variation does not hinder recognition. It places this information in annotations

on the graphical representation of the program. So, although in general we do not require

that a program's function and data structure organization match the organization of the

cliches in our library, it is possible to impose constraints on the cliches being recognized,

requiring that they occur within certain boundaries. These boundaries can be heuristically

defined based on information, such as subroutine or data structure decomposition. (See

Section 6.4.1 for more details.)

Delocalized Clich6s and Unfamiliar Code

Programs are rarely constructed entirely of cliches. Non-trivial programs are usually a
mix of cliched computational structures and unfamiliar code. In addition, the cliches are

46

-~ :1-- --.- 7t7 - M-~ WIF-.r7- -I .

(defun cst-start (init-mug)
(send-mug init-mug)
(shell-go))

(defun send-Bag (mug)
(setq *step-queue*

(enqusue *step-queue* zug))

(damun shell-go 0)

(cond ((step-don.) nil)
(t (step-nodes)

(shell-go))))

(defun step-nodes (0
(when *Profile* (profile-step))?

(when *log* (log-step))?

(when *trace*e

(record-traced-selectors ftrace-selectors*)) ;;?

(deliver-muxgs)

(when *meter-message-queues*?

(record-message-queue-data))?

(iteratively-step-nodes 0)

(setq *step-nr* (1+ estep-nre))))

(defun iteratively-step-nodes Wx

(if (>= x (array-total-size enodes*))

nil

(step-node x)

(iteratively-step-nodes (1+ xM))

(defun step-node (node-ur)

(let* ((node (get-node node-ar))

(q (node-queue node)))

(if (queue-empty? q)

nil

(multiple-value-bind (mag new-queue)

(dequeue q)
(uetq node

(make-node :queue new-queue
:objects (node-objects node)
:contexts (node-contexts node)
:busy-count (1+ (node-busy-count node)) ;;?

method-cache (node-method-cache node))) ;;?

(setq *nodes* (copy-replace-elt node node-zr *nodes*))

(multiple-value-bind (new-nodes new-step-queue)

(process-meg mug enodes* estep-queue*)

(setq *nodes* new-nodes

step-queue new-step-queue)))))

Figure 2-13: Top-level portion of CST. Question marks indicate unfamiliar code.

47

often interleaved with unfamiliar computation as well as with each other. This means that

parts of a clich6 may be scattered throughout the text of a program. Both of these factors

make recognition difficult not only to automate, but also for people to do correctly.

GRASPR is able to ignore unfamiliar code to partially recognize the program. It also
addresses the difficulty of recognizing delocalized clich6s by employing a program represen-

tation shift from source text to flow graph. Clich6 parts that are separated by unrelated

expressions in the text become neighboring nodes in a flow graph.

For example, Figure 2-13 shows the top-level portion of the CST program, which uses the

synchronous simulation design. (The source code for data structure definitions and some

subroutines are not shown.) In addition to the simulation algorithm and data structures,

this code contains calls to functions that perform various metering, logging, and statistics-

gathering operations. These operations are not clichdd, at least with respect to our current

library. The figure indicates unfamiliar portions of the code with question marks. The

clich6s in the program are not found in one contiguous section of program text, but are

interrupted with unrelated computations.

Not only are there unfamiliar computations interleaved with the algorithmic cliches, but

there are also parts of data structures that are not recognizable as part of any data clich6.

For example, the data structure nods consists of a Queue part (which acts as the local FIFO

buffer in the SY]nCH-NODE data clichg) and a Contexts part (which contains a data structure

that has a part corresponding to the Memory part of the SYNCH-10DE). The rest of the parts

of nods (Objects, Busy-Count, and Method-Cache) are novel, specific to this program. They

are used for gathering statistics and simulating the action of handling a message.

Despite the delocalization of the clich6s and the unfamiliar code, GRASPR is able to

recognize clich6d parts of this program. The design tree and documentation produced are

shown in Figures 2-14 and 2-15 (in abbreviated form).

Implementation Variation

Often, there is more than one clich6d implementation of an abstract operation or data type.

This can introduce variability between programs that on a high level of abstraction perform

the same abstract operation or use the same abstract data types. It is important that

GRASPR be able to recognize the same abstract clich&s in these variations.

For example, the CST program uses a FIFO queue to implement the queue of messages

collected on each cycle of the synchronous simulation and then delivered on the next. The

FIFO queue is implemented as a Circular Indexed Sequence, as shown in Figure 2-16.

However, another possible implementation of the queue is a LIFO queue (or stack), as

shown in Figure 2-17.
GRASPR produces the design-tree shown in Figure 2-18 for the code that uses this imple-

mentation. It differs from the tree in Figure 2-14 only in the subtrees that are highlighted

by dotted boxes in the figure. The rest of the tree, including the high-level description of

48

SY~ bz~ ous i L tatio. o

Bnup c~V~~4.....Td Nodes 1*dno" P

ularation .e fle DO -W O
M . . Index- r

Eawiturn Jo ~ ChekBufgaaJK46 Emp~ty?

LOO.Wof Sequenceu.a f
#Ad-Upda~t, ^

La.00~
"Audi*d. NOD-EMPY

7

Dutnjoe atordat. ou a.u. %t4a Ft1q).Buipy
7

sale TwM M10. NODROPM.?dU-W6*

Eaqeu No Ta ri?

I, Y ?ecwma4.dnh"

1ad F10

Figure 2-14: A poytion of design tree ProducedJ in reCognjZing CST.

49

CST sequentially simulates a parallel message-passing system.

It is implemented as a Synchronous Simulation.

1: Synchronous Simulation synchronously simulates a collection of processing

nodes handling messages. The synchronous nodes (which represent the

processing nodes) are collected in an address-map, called *NODES*. Each

node maintains a local buffer of pending messages to handle. Synchronous
Simulation is implemented as a Synchronous Simulation using Global

Message Buffer.
2: Synchronous Simulation using Global Message Buffer iteratively advances

each synchronous node in *NODES* by handling one message a piece. It uses
a global message buffer to ensure that nodes advance in lock-step. The

global buffer's initial value is *STEP-QUEUE*. The simulation starts by
adding an initial message INIT-MSG to *STEP-QUEUE*. The simulation eon-s

when no node has work to do (i.e., no more messages to handle) and the

global message buffer *STEP-QUEUE* is empty. As messages are handled, new
messages are created which are buffered on the global message buffer.

Synchronous Simulation using Global Message Buffer is composed
of a Queue Insert, an Earliest Simulation Finished and a Generate
Global Message Buffers and Nodes.

3: Queue Insert enqueues INIT-MSG on the Queue *STEP-QUEUE*, which is

implemented as a FIFO. Queue Insert is implemented as a FIFO Enqueue.
4: FIFO Enqueue enqueues INIT-MSG on the FIFO queue *STEP-QUEUE*,

which is implemented as a Circular Indexed Sequence....
3: Earliest Simulation Finished takes two input sequences: a sequence
of address-maps, starting with *IODES*, and a sequence of global

message buffers, starting with *STEP-QUEuE*. It outputs the first

address-map in the input sequence of address-maps that satisfies the

predicate that all nodes in the address-map have empty local buffers
and the corresponding global message buffer is empty.

Earliest Simulation Finished temporally abstracts Synchronous

Simulation Finished?.
4: Iterative Synchronous Simulation Finished tests whether a

synchronous simulation is finished by testing whether the
global buffer and all of the nodes' local buffers are empty....

3: Generate Global Message Buffers and lodes generates address-maps

and global message buffers by repeatedly delivering all
messages in the global message buffer *STEP-QUEUEw and

advancing the synchronous nodes in *NODES* by one step each....

Figure 2-15: A portion of the documentation generated for CST.

50

the program as a sequential simulation, remains the same.

It is impractical to enumerate all possible implementational variations of an abstract
cfich6 in the clich6 library. The hierarchical organization of the clich6 library allows imple-

mentation variation to be represented compactly.

Function-Sharing

Programs can vary widely, depending on which optimizations they make. A type of opti-
mization that occurs frequently in programs is one in which two abstract clich~s share some

functional part. In this case, the implementations of the cfich~s overlap. GRASPR is able to
recognize the two clich~s in a program whether or not their implementations overlap.

For example, one of the things the CST program does in gathering statistics is that it

iterates through the nodes and computes the average length of their FIFO queues before
it delivers messages on each clock cycle. Suppose we added the clich6 to our library that
performs this operation: it polls the SYNCH-10DEs, keeps a running total of their local buffer

sizes, and divides the sum by the number of SYNCH-NODEs.
This clich6 is found in the current CST code in the function avg-queue-length, which

is called by profile-step in step-nodes, as shown in Figure 2-19. The recognition of this

clich6 results in the design tree shown in Figure 2-20. (This tree is generated by GRASPR, in

addition to the design tree shown in Figure 2-14.)

Figure 2-21 shows a variation of the CST code in which the function-sharing optimiza-
tion has been introduced. In this code, the average queue length computation has been

moved into the iteration in iteratively-step-nodes that polls nodes and advances each
one in lock step. This function is already iterating through the nodes. So, in addition to
stepping each one, it has been made to keep a running total of their local queue lengths.

Its caller, step-nodes, finishes off the averaging computation. This optimization increases

the program's efficiency by enumerating the nodes only once.
GRASPR is able to recognize both the queue averaging cliche and the advance nodes cfich6

in this optimized program, even though the implementations of the cfich~s overlap. The

resulting design trees share a sub-tree, as shown in Figure 2-22.

Redundancy

Sometimes a part of a cliche might appear more than once in the same instance of a cfich6.
The repeated part is most often some inexpensive computation whose result is needed more
than once. The program may simply repeat this computation, rather than caching the
result in a temporary variable. An example of this occurs in the function Splice-in-Bucket
shown in Figure 2-23, which is used by a hash table insertion function contained in Pisia.

Splice-in-Bucket creates and inserts an entry into a hash table bucket, called Bucket-List,
which is an ordered associative list. It does this by "cdr'ing" down the Bucket-List, looking

for a place to insert the new entry so that the entries remain ordered with respect to their

51

(defun cat-start (init-msg)

(send-amsg init-msg)

(shell-go))

(defun deliver-mugs 0)

(cond ((queue-empty? *step-queues) nil)

(t (multiple-value-bind (msg new-step-queue)

(dequeue *step-queues)

(setq *step-queues new-step-queue)

(deliver-mugs))))

(defstruct queue

(head 0)

(tail 0)

(length 0)

(data-size *default-queue-sizes)

(data (make-array *default-quoue-sizes :adjustable t)))

(dofun queue-empty? (queue)

(= (queue-length queue) 0)))

(defun enquoue (queue obj)

(let* ((length (queue-length queue))

(old-size (queue-data-size queue))

(big-enough-queue (if (< length (1- old-size))

queue

(grow-queuo queue))))
(enqueue-base big-enough-queue obj)))

(defun enquoue-base (queue obj)

(let ((old-size (queue-data-size queue)))

(make-queue :head (queue-head queue)

:tail (mod (1+ (queue-tail queue)) old-size)

:length (1+ (queue-length queue))

:data-size (queue-data-size queue)

:data (copy-replace-elt obj

(queue-tail queue)

(queue-data queue)))))

(deotun dequeue (queue)

(let ((elt (aref (queue-data queue) (queue-head queue))))

(setq queue (make-queue :head (mod (1+ (queue-head queue))

(queue-data-size queue))
:tail (queue-tail queue)

:length (1- (queue-length queue))

:data-size (queue-data-size queue)
:data (queue-data queue)))

(values elt queue)))

Figure 2-16: Buffer queue implemented as a FIFO, which in turn is implemented as a CIS.

52

(defun queue-mpty? (queue)

(null queue))
(defun enqueue (queue obj)

(cons obj queue))

(defun dequeue (queue)

(values (car queue)

(cdr queue)))

Figure 2-17: Buffer queue implemented as a stack (LIFO).

Key parts. If an entry exists with the same Key as the new entry (Key), then the existing

entry's Value part is changed to the new Value. Number-Entries keeps track of the number

of entries in the hash table. It is incremented only if the new entry is inserted, not if an

existing entry is changed.

This function repeats the computation of accessing the first element of Bucket-List, us-

ing car, as indicated in the figure by asterisks. However, the clich6 for Ordered-Associative-

List-Insert contains only one part corresponding to these expressions. It matches more

closely the program shown in Figure 2-24. Gl&ASPR is able to recognize Ordered-Associative-

List-Insert in both variations.

2.4 Breadth of Coverage

The clich6s captured in our library cover a broad range of programs. The domain-specific

cliches occur in programs in the domain of sequential simulation of message-passing parallel

systems, while our general-purpose utility clich6s are found in programs across all domains.

However, the library's coverage is not absolute. Our "example-driven" cliche acquisition

was based on an extremely small sample set of programs in a particular domain. We make

no claims of fully modeling the simulation domain or even the subset of it that deals with

message-passing systems. Also, our library does not contain all utility clichds used by

experienced software engineers.

Despite these limitations, our library demonstrates the kinds of algorithms and data

structures that can be expressed within a graph grammar formalism. This formalism cap-

tures these cliches at a level of abstraction that enables recognition by graph parsing to be

robust under many common types of program variations.

53

Seqtmua.Stmzkiaon-of-Mems.-Pasm$-Syst-

Synchroao-Siulatiaon

Synhoin4,rmiiatacc-w-Global-Me.Sa-Buflfe

Qua~utGenmtet-Global-Buffersand-Nodes aletSaltinFisd

Stack-Push Detiver-Mesages-and-8tep-Nodes Syncfrnonc~wziaflc-Finshod?

eons Detiver-Mesmges Advanlce-~UGo..adLcIDfff-f~

Enumeste-end.Deiver-Mesage PoUt.Nodes-and-DO-Wotk Loca1-Buffers-Bnuty? Q~~y

DsrcieDeie- Sequencea~nd- DoWok uI- ýNodes-
Queue-Enurnerstioa H. .E"we?

Accumualate Enumeration '-S

Stack-Bourneratioon

Accumulation EMUM160 Aiways-Empty? l-tt

LkkN K-a-Etract- Locl-Ber-
........adUand- Non-Bropyt?

Handle

L~ookup- Local-Buffer- Record-st-

Destination Dunqusue Destination

NOMeICfy?]Bufer- Team MnafteSeun-_M?

Select-Term Miulo- mod .ernarn
a Str ",711

Mos ZIs M--Iy omuabe
B*ayfnto Iw-ts

ff64t-er Dup- ffd ea

1+

Figure 2-18: Design tree for implementational variation in which the buffer is a stack.

54

(dot un step-nodes ()
(when *profile* (profile-step))

(iteratively-step-nodes 0)

(defun profile-step 0)

(avg-queue-length)

(dot un avg-queue-length C)
(let ((tql 0))

(setq tql (sumi-queue-lengths 0 tql))

(/ tql (array-total-size *nodesM)))
(dot un sum-queue-lengths (x tql)

(it (>= x (armay-total-size *nodes*))

tql

(sum-queue-lengths
(1+ X)
(+ tql (queue-length (node-queue (get-node x)))))))

(dot un iteratively-step-nodes Wx

(it (>= x (array-total-size *nodes*t))

nil

(step-node x)

(iteratively-step-nodes (1+ x))))

Figure 2-19: Portion of CST that averages node queue lengths.

Avaige- off-Ber-Size

kAl

Figure 2-20: Design tree for queue length averaging computation.

55

(defun step-nodes ()

(when *profile* (profile-step))

(iteratively-step-nodes 0 0)

• (*total-queue-length*

(array-total-size *nodes*)) ...

(defun iteratively-step-nodes (x tql)

(cond ((>= x (array-total-size *nodes*))

(sotq *total-queue-length* tql)

nil)
(t (step-node x)

(iteratively-step-nodes

(1+ X)
(+ tql (queue-length (node-queue (get-node x)))))))

Figure 2-21: Optimization in which averaging is performed while advancing nodes.

56

QMe~bM Gmuut~bu&ffadun-DSEr-iý

Ix
F1~.Deh~muidstq,. s-d

I I x Ix

* *1

* I

AwWUca-Duffi-SizePl- idD.ok Lca-umEi? QmEy

Ei.nxWNdNooautsAergeDo-WA k&

Uc&&=,EAjAcm=w uat Oec-DufsE"

A!

* I

Figure 2-22: Design tree for optimized code, with shared sub-tree.

57

(defun Splice-In-Bucket (Value Key Bucket-List luaber-Entries)

(cond ((Empty-or-Low-Priority-Head? Key Bucket-List)

(values (cons (Rake-Entry :Key Key :Value Value)

Bucket-List)

(1+ lumber-Entries)))

((string= Key

(Entry-Key (car Bucket-List)))

(values (cons (Make-Entry :Key Key :Value Value)

(cdr Bucket-List))

Number-Entries))

(t (multiple-value-bind (New-Bucket-List lun-Entries)

(Splice-In-Bucket Value

Key

(cdr Bucket-List)

lumber-Entries)

(values (cons (car Bucket-List) ;

Now-Bucket-List)

lun-Entries)))))

Figure 2-23: Code containing a redundant CAR computation.

(defun Splice-In-Bucket (Value Key Bucket-List Number-Entries)

(cond ((Empty-or-Low-Priority-Head? Key Bucket-List)

(values (cons (Nake-Entry :Key Key :Value Value)

Bucket-List)

(1+ .umber-Entries)))

(t (let ((This-Entry (car Bucket-List)))

(cond ((string= Key

(Entry-Key This-Entry))

(values
(cons (Make-Entry :Key Key :Value Value)

(cdr Bucket-List))

lumber-Entries))

(t (multiple-value-bind (New-Bucket-List lun-Entries)

(Splice-In-Bucket Value

Key

(cdr Bucket-List)

lumber-Entries)

(values

(cons This-Entry low-Buckot-List) ;; e

lun-hntries)))))))))

Figure 2-24: Code in which the result of CAR is cached and reused.

58

Chapter 3

The Flow Graph Formalism

GRASPR is able to tolerate many of the common types of program variations mentioned

in Section 2.3.1 by using a dataflow graph representation for programs and by using a

flow graph grammar to encode programming clich6s. Program recognition is achieved by

parsing the dataflow graph in accordance with the flow graph grammar. There are several

advantages to using a graph grammar formalism to represent programs and clich&s:

"* Quasi-canonical form. Dataflow graphs abstract away irrelevant syntactic details and

give the representation programming-language independence.

" Localization. Dataflow graphs make dataflow dependencies explicit, imposing a partial

ordering on the program's operations (rather than the linear, total ordering imposed

by text). The effect is that patterns that are textually delocalized (noncontiguous)

can often become localized in a flow graph where only essential dataflow relationships

are captured.

"* Compact representatior. Only primitive operations and dataflow between them are

represented by the graph.

"* Fragmentary patterns can be represented without including unnecessary details.

"* Hierarchical relationships can be drawn between graphs, with the graph grammar

formalism providing a firm mathematical basis.

In this chapter, we define the flow graph grammar formalism used to represent programs
and clich&s. We present the basic formalism first and then describe extensions to it that allow

us to deal with variations due to redundancy versus structure-sharing, and variations in

aggregation organization. We then present a chart parser for flow graphs in this formalism.

Interleaved with the description of the formalism are sections that ground the description

in the concrete application of program recognition. These may help clarify and motivate
the restrictions on flow graphs and graph grammar rules. These sections are unnecessary

for understanding the general description of the formalism, which has a broad range of

59

applicability to other problem domains besides program recognition (as discussed in Section

7.4). In the final section, we summarize related graph grammar research.

3.1 Flow Graphs

A flow graph is an attributed, directed, acyclic graph, whose nodes have ports - entry and

exit points for edges. Flow graphs have the following properties and restrictions:

1. Each node has a type which is taken from a vocabulary of node types.

2. Each node has two disjoint tuples of ports, called its inputs and outputs. Each port

has a type, taken from a vocabulary of port types. All nodes of the same type have

the same number and type of ports in their input and output port tuples. The size

of the input port tuple of a node is called the input arity of the node, while its output

arity is the size of the node's output port tuple.

3. A node's inputs (or outputs) may be empty, in which case the node is called a source

(or sink, respectively).

4. Edges do not merely adjoin nodes, but rather edges adjoin ports on nodes. All edges

run from an output port on one node to an input port on another node. The ports

connected by an edge must have the same port type.1 (An exception to this is that a

port of the special designated type Any can connect to ports of any type.)

5. More than one edge may adjoin the same port. Edges entering the same input port

are called fan-in edges, while edges leaving a common output port are called fan-out

edges.

6. Ports need not have edges adjoining them. Any input (or output) port in a flow graph
that does not have an edge running into (or out of) it is called an input (or output)

of that graph.

7. Each flow graph has a vocabulary of attributes, which is partitioned into two disjoint

sets of node attributes and edge attributes. Each attribute has a (possibly infinite)

set of possible values. Associated with each node type is a finite subset of the node

attributes. These are the only attributes for which nodes of that type can hold values.

All edges hold a value for each of the edge attributes.

Flow graphs were first defined by Brotsky [15], drawing upon the earlier work on web

grammars [27, 94, 102, 105, 119]. Wills [144, 145] extended Brotsky's definition so that flow

graphs can include sinks and sources (item 3 above), fan-in and fan-out edges (item 5), and

attributes (item 7).

'In the future, a type hierarchy system may be used to allow ports to be connected if one port's type is

a subtype of the other's.

60

• "

M2 age 1
e 3:1 th e:4s:

c o lo r .b l u e. : n
3

Figure 3-1: An example attributed flow graph.

Figure 3-1 shows an example flow graph. We refer to nodes by their node type. If

there are two nodes with the same type, we precede the node type with a unique label.
Ports are identified using numeric annotations on the nodes. Each numeric port identifier

is followed by a colon and the port's type. The edges of the flow graph have been labeled
with subscripted "e"s.

Edge es connects two ports of type t3 , while edge e4 connects a port of type t4 with one
of type Any. Edges el and e2 fan out of port 2 on node b, while edges e3 and e6 fan into
port 1 of node g. Node d is a sink. Port 1 of node b is an input of the graph and ports 2
and 3 of node g are outputs of the graph. (Pictorially, we emphasize inputs and outputs of
the graph by drawing edge stubs adjoining them.)

In the figure, attribute-value pairs (in the form attribute:value) are shown in italics near

the node or edge which holds a value for the attribute. In this example, all node types have
the node attribute color. The node type g additionally has the attributes age and size
and the node of type g in this particular graph has values 15 and 60, respectively, for these
attributes. All edges have the attribute distance.

Useful Definitions

A flow graph H is a sub-flow graph of a flow graph G if and only if H's nodes are a subset
of G's nodes, and H's edges are the subset of G's edges that connect only those ports found
on nodes of H.

Isomorphism can be defined between flow graphs using a variation of its standard def-
inition, which accounts for edges adjoining ports, rather than nodes. Two flow graphs F,
and F2 are isomorphic if and only if there is a one-to-one mapping 0 of the nodes of F,
onto the nodes of F2 , such that adjacency is preserved - i.e., the ith output of a node n, is

connected to the jth input of a node n2 in F, if and only if the itOh output of the node 0(n1)
is connected to the jth input of the node O(n 2) in F2 .

61

3.2 Flow Graph Grammars

A flow graph grammar is a set of rewriting rules (or productions), each specifying how a

node in a flow graph can be replaced by a particular sub-flow graph. All rules in a flow graph

grammar rewrite a single left-hand side node to a right-hand side flow graph. The grammar
specifies which flow graphs are in a particular set of flow graphs, called the language of the

grammar.
In addition, the flow graph grammar may be attributed: Each rule can specify how

to compute attribute values of the rule's nodes from the attributes of other nodes in the
rule. Each rule can also impose constraints on the attributes of the rule's nodes. Every
flow graph in the language of an attributed grammar has attribute values that satisfy the

constraints of the rules generating the flow graph.
More precisely, a flow graph grammar G has four parts: two disjoint sets N and T of

node types, called non-terminals and terminals, respectively, a set P of productions, and
a set S of distinguished non-terminal types, called the start types of G. (By convention,
non-terminal types are denoted by capital letters, while terminal types are in lower case.)

Each production in P consists of the following five parts:

"* A flow graph L, called the left-hand side, containing a single node having a non-

terminal type.

"• A flow graph R, called the right-hand side, containing nodes of non-terminal or ter-

minal types.

"* An embedding relation C which specifies the correspondence between the ports of L

and R.

"* A set of attribute conditions, which impose constraints (in the form of relations) on
the attribute values of nodes and edges in R.

"* A set of attribute transfer rules, each of which specifies the value of an attribute of

L's node in terms of the attributes of the nodes and edges in R.

Sections 3.2.1 and 3.2.3 discuss the embedding relation and the attribute conditions and

transfer rules in more detail.

3.2.1 Embedding Relation

The embedding relation is necessary in flow graph grammar rules (unlike string grammar
rules) to provide connectivity information when an occurrence of a left-hand side is rewritten

during a derivation. It specifies how the ports connected to the left-hand side should be
connected to the right-hand side flow graph, and possibly to each other, when the left-hand

side is replaced by the right-hand side. (It is used in an analogous way in the reverse process

62

of reducing an occurrence of a rule's right-hand side to its left-hand side during recognition
or parsing.)

The embedding relation C is a binary relation on C x JZ U C, where C denotes the set of
left-hand side ports and 1Z denotes the set of right-hand side ports of a rule. A left-hand side
port Ii and a right-hand side port or another left-hand side port pj are said to "correspond"
if (4,pj) E C. The embedding relation is restricted in the following ways.

1. If a left-hand side port corresponds to a right-hand side port, then both ports must
be of the same direction (input or output). If two left-hand side ports correspond to
each other, they must be of opposite directions.

2. More than one right-hand side port and/or left-hand side port may correspond to
the same left-hand side port. However, more than one left-hand side port may not
correspond to the same right-hand side port.

3. Each left-hand side port corresponds to at least one right-hand side or left-hand side
port. (A right-hand side port need not correspond to some left-hand side port.)

The right-hand side ports corresponding to ports on the left-hand side node need not be
inputs or outputs of the right-hand side graph (i.e., they may be connected to other ports
in the graph).

The definition of the embedding relation is extended (as described in Section 3.4.2) to
encode aggregation information. However, the extended relation still obeys these restric-
tions.

When a left-hand side port 11 corresponds with another left-hand side port 12, the rule
is said to contain a straight-through (abbreviated "st-thru"). We discuss the significance of
st-thrus in the next section, where we describe how the embedding relation is used in the
derivation of flow graphs.

Figure 3-2 shows an example flow graph grammar. In this example, ports are referred
to as subscripted node types (e.g., a, refers to the port labeled 1 on the node with type a).
Port types are not shown. The port correspondences of each rule are indicated pictorially
by matching Greek letters. For example, left-hand side port A1 corresponds to right-hand
side port a,. (This grammar does not have attribute conditions or attribute transfer rules,
so they are not shown. See Section 3.2.3 for the details of attribute handling and Figure
3-5 for a complete picture.)

By convention, when a port correspondence involves an internal right-hand side port
(not an input or output of the right-hand side graph), we draw an edge stub coming into
or out of that port. We annotate the edge stub with the port correspondence label. For
example, this is done in drawing the rule for ron-terminal A in Figure 3-2. Also, when
two or more right-hand side ports correspond to the same left-hand side port, the edge
stubs from the right-hand side ports are drawn as if they are merged with each other. This
abbreviated notation is used, for example, in depicting the rule for B. (This makes it easier

63

"" I aI i B

zX

ad3

(aab

Figure 3-2: An example flow graph grammar.

to visualize how the right-hand side of a rule is embedded into a graph when the left-hand

side is expanded during derivation.)

Similarly, st-thrus are depicted as lines which do not adjoin any port, but which may

be merged with an edge stub and/or another st-thru. In drawings, they are annotated with

the pair of correspondence labels associated with the left-hand side ports that correspond.

The rule for F contains a st-thru, since ports F1 and F4 correspond.

3.2.2 Flow Graph Grammar Derivations

A flow graph is derived from a start type S. of a flow graph grammar by starting with a flow

graph containing a single node of type S0 and repeatedly applying the grammar's rewrite

rules (productions) to the non-terminals in this graph until no non-terminals are left.

Each rewrite rule specifies how an isomorphic occurrence of the rule's left-hand side L

can be replaced by the rule's right-hand side graph R. The embedding relation C of the

rule is used to embed R in the graph once L has been removed. In particular, for each

right-hand side port ri and left-hand side port 1i related by C, ri is connected to all of the

ports that were connected to 1i before L was removed.

In addition, if a left-hand side input port 1i corresponds to a left-hand side output port

li, then edges are drawn connecting each of the ports connected to 1i to each of the ports

connected to 1j. In other words, when a rule contains a st-thru, the embedding relation

64

between the ports involved, li and lj, imposes the constraint that the ports adjacent to 1,

and lj become connected directly to each other when the left-hand side is rewritten.
For example, a sample derivation of a graph from the grammar of Figure 3-2 is shown ill

Figure :•-3. When the non-terminal node A is expanded in the second step of the derivation,
A is removed from the graph, along with the edges adjoining its ports. Then the right-hand
side of t he rule for A is added to the graph. Finally, edges are drawn between the right-hand

side ports a], 112, and (2 and the ports to which A,, A2, and AI (respectively) had been

connected (i.e. X3, F2, and F.3).
In string grammars, the derivation tree is used as a canonical representation of equivalent

derivations, which abstracts away from the order in which productions are applied in the
derivations. It is useful to make use of a similar representation for flow graph derivations.

As in the string case, a derivation tree has vertices labeled with the node type of a
non-terminal that was expanded during the derivation. However, unlike the string case, the
children of each vertex are related in a partial ordering. The right-hand side graph ihl the
production for the vertex's label defines this partial ordering. (Derivation trees are normally
shown without the edges between the nodes of the tree to reduce clutter.) For example, the

derivation sequence of Figure 3-3 is represented by the derivation tree of Figure 3-4.

3.2.3 Attribute Conditions and Transfer Rules

So far, we have discussed the aspects of flow graph grammars that impose structural con-

straints on the flow graphs in their languages, for example, by constraining their node types
and edge connections. This section describes how the non-structural aspects of a flow graph
are constrained. Attributes are used to represent information that cannot be adequately
expressed in the structure of a flow graph. Attribute conditions in grammar rules impose

constraints on these attributes.
The concept of an attributed string grammar was formalized by Knuth [77] as a way to

assign semantics to strings in a context free language. Attribute values are computed from
other attribute values within a rule. This is called attribute evaluation. The attributes that

are computed represent some aspect of the "meaning" of the string being parsed (e.g., the
decimal value of a binary number).

Since then, attribute grammars have been used extensively in such areas as pattern
recognition [16, 17, 39, 48, 86, 135], compiler technology [40, 41, 47, 68, 74, 78, 79], pro-
gramming environments [6,28], software specification and development [38,97, 98, 101, 131],
and test case generation [30]. Raiha [107] gives a bibiography of the early papers. These
systems use attribute grammars to deal with nonstructural, semantic properties of a pat-

tern and to reduce the complexity of the grammar. Much of the theoretical work in this
area has focussed on developing efficient attribute evaluation strategies [28, 68, 73. 109],
the complexity of checking that attribute grammars are well-formed [64], and assisting the
writing of attribute grammars which contain complex dependencies among the attributes

65

4.

4.

Figure 3-3: An example derivation sequence.

66

HX 2 1im a I b

S

x A F yA A
a B e f

A
h d

Figure 3-4: An example derivation tree.

[29].
Our flow graph grammars are attributed grammars in the sense that their productions

contain attribute transfer rules for computing attribute values from the attribute values

of other nodes and edges within the rule. (These are also called "semantic rules" [77],
"attribute transfer functions" [16], or "attribute transfer specifications" [145].)

In general, attribute transfer rules can associate the attribute of some node or edge on

either side of a rule with a function for computing its value from the attributes of the other

nodes and edges (on either side) of the rule. Attributes that are computed for the left-hand

side node from the attributes of the right-hand side are called synthesized attributes. Those

that are computed for a right-hand side node or edge from the attributes of the left-hand

side node and/or other nodes and edges in the right-hand side are called inherited attributes.

Currently, the flow graph grammar used by the recognition system uses only synthesized

attributes. This is because our attributed flow graph grammars are not used so much for

computing attribute values, as for imposing constraints on the attributes of the flow graph

being parsed. Inherited attributes are useful if the value of an attribute involves complex

dependencies across the derivation tree. However, the attribute values computed in the

current system are based on simple relationships among attributes. Synthesized attributes

are adequate.

Constraints are imposed on attributes in the form of attribute conditions on grammar

rules. Attribute conditions are relations on the attribute values of the nodes and edges of a

flow graph grammar rule's right-hand side. They specify constraints that must be satisfied

by the attributes of a flow graph if it is in the language of the grammar. (These are also

called "context conditions" [68], "constraints" [145], and "applicability predicates"[16].)

The attribute conditions and attribute transfer rules of a production are used primarily

during parsing. (They can be used during generation to produce a set of conditions that

must be satisfied by the attribute values of the flow graph generated. However, this is not

how they are typically used.)

A parser for an attributed grammar engages in the following three activities when given

67

Anribute-Condiidons:

IIIIIIE 11111 2C dolo(b) = Color(A) = Codor(g)

I.... .. Attribute-Transfer Rules:
X X Size(S):= 10 Size(g) /Age(g)

Color(S):= ColorfA)

SAttribute-Conditions:
SDistance(<a3 . d, >) < D u nce(<h2 >)

Attribute-Transfer Rules:
SColor(A) :=fTColor(a), Color(h))

Figure 3-5: An example attributed flow graph grammar.

a string (or graph, in the case of attributed graph grammars) x:

1. Structural analysis - recover a derivation of x from a start type of the grammar and

create a derivation tree to represent the derivation. If no derivation tree is found,

reject x for membership in the language of the grammar. (This is the usual activity

performed by recognizers for non-attributed grammars.)

2. Attribute evaluation - propagate attribute values throughout the derivation tree in

accordance with the attribute transfer rules. Values for synthesized attributes move

upward as a function of the attribute values of the descendants of a node, while

inherited attribute values move downward from the ancestors.

3. Attribute condition checking - maintain the invariant that if all attribute values are

known for the attributes related by an attribute condition, then the condition must

hold. If a condition fails to hold, reject x.

If the recognizer finishes with an attributed derivation tree for x and all attribute con-

ditions of all productions involved are satisfied, then x is recognized as a member of the

language.

For example, Figure 3-6 shows the derivation tree that would result from parsing the

attributed flow graph in Figure 3-1 in accordance with the grammar of Figure 3-5. The

edges are drawn between the leaves of the derivation tree to show the edge attributes that

are involved in the parse. Dashed arrows show the propagation of attribute values.

The three parsing activities can be interleaved. The interleaving is particularly simple

in our parser, since only synthesized attributes are used. All attribute values of a derivation

node depend only on the attributes of the node's descendants. Attribute conditions can

be checked as soon as the right-hand side of a rule is recognized. Attribute values can

68

cojor: S S•.: 40

color. A

Figure 3-6: An attributed derivation tree.

be computed and transferred to the left-hand side node during the reduction of the right-

hand side to the left-hand side. Because the attribute condition checking is folded into the

structural parsing process (i.e., conditions are checked each time a reduction is attempted),

invalid parses can be cut off early.

In the future, if inherited attributes are needed, a more sophisticated attribute evaluation

and condition checking strategy will need to be employed (for example [28, 68, 73, 1091).

3.3 Motivations for Formalism: Program Recognition Ap-

plication

So far, the basics of the flow graph formalism have been described. There are two major

extensions to this formalism that increase the class of flow graphs and grammars that can

be succinctly expressed in it. However, before they are described, this section briefly shows

how the basic formalism is used in a particular application domain. This provides some

rationale for the restrictions on the grammar formalism that have been described so far.

(This section is not needed to understand the extensions. It may be read after the extensions

have been discussed.)

We apply the flow graph formalism to the representation of programs and programming

cliches. In particular, flow graphs serve as graphical abstractions of programs, flow graph

grammars encode allowable implementation steps between abstract operations and lower-

level operations, and the derivation trees resulting from parsing give the program's top-down
design.

69

(DEFUN RIGHTP (HYPOTENUSE SIDE1 SIDE2)

(LET* ((HYP-SQ (SQ HYPOTENUSE))
(DIFF (- HYP-SQ

(+ (SQ SIDE1)

(SQ SIDE2))))

(DELTA (IF (< DIFF 0)
(NEGATE DIFF)

DIFF)))

(IF (<= DELTA (* HYP-SQ 0.02))

T

NIL)))

Figure 3-7: Testing whether the three input sides form a right triangle.

The flow graph is used to represent the operations of a program and the dataflow between

them. Each non-sink node in a flow graph represents a function, with ports on the node

representing distinct inputs and outputs of the function. The ports' types are determined

by the signature of the function. Sink nodes represent conditional tests. The edges of a
flow graph represent dataflow constraints between the functions and tests. When the result

of a function is consumed by more than one function, the edges representing the dataflow

fan out. Edges that fan in represent the conditional merging of more than one dataflow.

For example, Figure 3-8 shows the flow graph representing the code shown in Figure
3-7.2 RIGHTP determines whether the inputs could be the lengths of the sides of a right

triangle. It checks whether the square of HYPOTENUSE is approximately equal to the sum of

the squares of SIDE1 and SIDE2.

Two special nodes of type B and E, which are not in N U T cap the ends of the
flow graph. These hold ports that represent the input and output values of data consumed

or produced by the code. These nodes make it easy to represent the fan-out of input data
to more than one function and the conditional fan-in of output data. For example, port 1

on E receives fan-in representing the conditional output of either constant T or NIL.

Attributes on nodes and edges are used to capture characteristics of a program that

cannot be adequately expressed in the structure of a flow graph. Control flow information
ib stored in the attributes of the flow graph representing a program. Each node has a

control environment attribute whose value indicates under which conditions the operation

represented by the node is executed. Nodes in the same control environment represent

functions that are all executed under the same conditions. (Section 4.1.1 describes the

vocabulary of attributes and attribute conditions used by the recognition system in more

detail.)

Sink nodes, representing conditional tests, carry two additional attributes, success-ce

'The function RIGHTP is taken from Problem 3-9 (p.42) in [148].

70

Figure 3-8: Attributed flow graph for RIGIKTP.

and failure-ce. These specify the control environments whose operations are executed when
the conditional test succeeds or fails, respectively.

Each edge holds a ce-from attribute which indicates the control environment in which

the edge carries dataflow. (In Figure 3-8, only ce-from attributes of edges that fan-in are

shown, to reduce clutter. The edges that do not fan-in all have ce1 as their ce-from attribute

value.)

Each edge also carries a constant-type attribute whose value is either a constant (such as
T, NlIL, 0) or undefined, depending on whether the edge represents dataflow from a constant.

For edges whose source is not a port on node B, the constant type is always undefined.

This attribute is not shown in Figure 3-8 for edges for which its value is undefined.

Program cdich&s are encoded in flow graph grammar rules. Informally, a rule can be seen

as specifying how an abstract operation, represented by the rule's left-hand side node, is im-

plemented in terms of lower-level operations, represented by the right-hand side flow graph.

(Section 4.1 gives more details of how this is done, as weil as other relationships between

cdich&s, besides implementation relationships, which are captured in grammar rules.)

Figure 3-9 shows a grammar containing a rule that represents the common cdich• of

testing whether two numbers are within some "epsilon" of each other. The rules representing

two common implementations of the Absolute Value clich4 demonstrate that the grammar

allows us to modularly specify implementation variations. The rules have typical embedding

relations. In the rule for Negate-if-Negative, two right-hand side ports (<1 and negate1)

correspond to the same left-hand side port. This represents the constraint that the input

to an isomorphic instance of the right-hand side must come from a source that fans out to

both <1 and negatei.

The rule for Negate-if-Negative also has a right-hand side port (<2) that does not
correspond to any left-hand side port. This right-hand side port represents the input coming

from the constant 0. It is important that in our formalism a right-hand side port is not

required to correspond to a left-hand side port, since otherwise we would have to add an

input to Negate-if-Negative to correspond to <2. This would destroy the modularity of the

71

a a

Antrabute-Transfer Rules.
cc := cegnudl-tess).
success-ca := faeur-ce~nutl-tess)
faditww-ce .= sauccess-cernaJ-sest

a Negate,-if-
a Vaue Negative 2

Anribute-Transfer Rules:
cc-ce(Negate-if-Negativ).

-4~te- ~Square- p
aO 1 Root- 2

of-Square

Aftribute-Transfer Rules.
ce := ce(Squarr-Root-of-Square).

a ,Negate-if- 2P o aDl
Negative tea

Attribute-Conditons: -
I. Seconid input to -<" receives constans twype =0.
2 Dwasflows owqron "negate" ifilure-ce(nuU-testj
3. Dataflow, antijke-:hnughfr- wpapv to ou~pw insues-enJ-*)

Attribute-Transfer Rules.
ce:- ce(nadl-tesr).

a Square- pa ~ / N
I Root- 2 U tS ~ 1 Q T -

of-Square

Attribute-Transfier Rules:
ce:- ce(SQRT)

Figure 3-9: Flow graph grammar encoding clich~s found in RIGITP.

72

grammar, since the extra input must be propagated up through the rules that use Negate-if-

Negative. We would need to add an input to the Absolute-Value node, but this extra input

would be meaningless for Absolute-Value's other implementation as Square-Root-of-Square.

The rule for Negate-if-Negative also shows how st-thrus are used to represent clich&l

operations in which some of the input data is not acted upon, but passes directly to the

output.

This grammar also shows typical attribute conditions and attribute transfer rules.

(These are stated informally in English in Figure 3-9. Section 4.1.1 gives a more formal

description of the actual attribute language used in encoding cliches.) A typical attribute

condition placed on an edge's attribute in a grammar rule is that it must carry dataflow in

a particular control environment (e.g., the failure-ce of some test).

Attribute conditions and transfer rules may refer to attributes of nodes and edges of the

rule's right-hand side. In addition, they may refer to edges in the input graph whose sources

or sinks match the inputs or outputs of the rule's right-hand side, or to edges matching st-

thrus. For example, the rule for Negate-if-Negative constrains the input to <2 to come from

a constant source of type 0. It also constrains the ce-from attribute of edges whose sources

match negate2 and of edges matching the st-thru.

3.3.1 The Partial Program Recognition Problem

We formulate the problem of recognizing clichis in programs in terms of solving a parsing

problem for flow graphs. This section defines these problems.

The parsing problem for flow graphs is: Given a flow graph F and a flow graph grammar

G, if F is in tho language of G, then produce all possible parses for F (i.e., all possible

derivation trees that yield F).

The subgraph parsing problem for flow graphs is: Given a flow graph F and a flow graph

grammar G, find all possible parses of all sub-flow graphs of F that are in the language of

G.

There are two types of program recognition: total, in which the entire program is rec-

ognized as a single clichi, and partial, in which the program may contain unrecognizable

parts but as much of the program as possible is recognized as one or more cliches.

The total recognition problem for programs is: Given a program and library of clich6s,

determine which clichis in the library are instantiated by the program as a whole. (Usually

a single program is recognizable as an instance of only one clichM, but this general definition

includes cases in which a program can be viewed in more than one way.)

The partial recognition problem is: Given a program and a library of clich&s, find all

instances of the clich&s in the program (i.e., determine which clichis are in the program and

their locations).

In this work, we are more interested in the partial recognition problem for programs.

(The total recognition problem is subsumed by it.) When we say "program recognition" we

73

Equality-within-Epsilon

Absolute- g null-
Value test

I
Negate-if-
Negative

< null- negate
test

Figure 3-10: Cliches recognized in RIGHTP.

mean partial program recognition.

The partial program recognition problem is solved by formulating it as a subgraph

parsing problem: Given a flow graph F representing the program's dataflow and a clich6

library encoded as a flow graph grammar G (with all non-terminals that represent clichis

as start types), solve the subgraph parsing problem on F and G.

The derivation trees that are produced are called design trees. The root of the tree

identifies a particular clich6 that was recognized and the yield of the tree indicates where

the clich6 was found. Intermediate non-terminals in the tree indicate the subclich~s that

implement the cliche that was found. Thus, casting partial program recognition as a parsing

problem yields as output not only the set of cliches and their locations, but also relationships

between the clich6 instances.

For example, Figure 3-10 shows the design tree produced by partially recognizing the
program RIGrP, represented as the flow graph in Figure 3-8 and using the graph grammar

of Figure 3-9.

When a program is partially recognized, one or more sub-flow graphs of the program's

flow graph encoding are recognized as members of the language of the graph grammar which

encodes the clich6 library. From the definition of a sub-flow graph, we can see that it is

possible to ignore portions of a flow graph before and after a recognizable sub-flow graph,

as well as portions that fan out from or into an internal port in the sub-flow graph.

3.4 Extensions to the Flow Graph Formalism

The next two sections discuss two major extensions to the flow graph grammar formalism

described so far. The first extension follows closely an extension made by Lutz [90] to a
graph formalism similar to ours, while the second is novel to our research. The extensions

are the following.

74

1. We expand the language of a flow graph grammar to include all flow graphs derivable

not only from a start type of the flow graph grammar, but also from flow graphs that

are "share-equivalent" to a sentential form' of the grammar. The notion of share-

equivalence captures the types of variation due to structure-sharing that the extended

formalism abstracts away. In a structure-sharing flow graph, a node plays the role

of more than one node of the same type by generating output that fans out or by

receiving input that fans in.

2. We extend the expressiveness of the flow graph grammar to allow it to capture the

rewriting of a single input (or output) of a non-terminal node into an aggregation of

inputs (or outputs) of a sub-flow graph. We then further expand the language of a

flow graph grammar to include all flow graphs that are "aggregation-equivalent" to

the flow graphs derivable from the grammar. The notion of aggregation-equivalence

defines the variation tolerated in how aggregates are organized.

In the program recognition application, the first extension is needed to deal with varia-

tion due to the common engineering optimization of function-sharing. The second extension

is important in being able to represent and recognize cliched operations on aggregate data

structures.

These extensions to the formalism are described in this section. However, the mecha-

nisms by which the parsing problem is solved for flow graphs in the extended formalism

are described in Section 3.5, after the parsing process for the basic unextended formalism

is presented.

We make these extensions to remove some forms of variation between semantically equiv-

alent programs that are not abstracted away by the graph representation alone. We essen-

tially do this by imposing an equivalence relation on the graphs representing the programs.

Alternatively, we could impose the equivalence relation at the source text level by trans-

forming program expressions directly. For example, a great deal of work has been done in

the term rewriting area [60, 61, 75]. These techniques are good for canonicalizing localized

parts of a program (e.g., by algebraic simplification and normalization). However, if the

expression that we want to rewrite is delocalized and interleaved with unrelated expres-

sions, we need to first apply subexpression shuffling and copying transformations to localize

it. This is avoided in the graph representation which tends to localize related operations.

Expression-based techniques also fall prey to syntactic variation. It would be useful to

combine the expression-based rewriting techniques with graph-based parsing. One way is

to canonicalize the text as much as possible first and then convert to the graph-based repre-

sentation and parse. Another is to interleave the two (maintaining multiple representations)
so that expression-based simplifications and normalizations can be done to aid recognition

and the graph-based representation can localize expressions to rewrite and abstract away

3A sentential form of a graph grammar is any flow graph that is derivable from a start type of the

grammar by the application of zero or more productions of the grammar.

75

F1 F2

F 3

Figure 3-11: These flow graphs should all be seen as equivalent.

syntactic differences.

3.4.1 Structure-Sharing

Flow graphs can be used to represent collections of components having inputs and outputs
that are produced or consumed by each other. In using this representation, we would like

to be able to view a flow graph in which two or more components of the same type are
collapsed into a single shared component as being equivalent to a flow graph in which the

two components are not collapsed. See Figure 3-11.

This is important in dealing with variation due to function-sharing, in engineering ap-
plications of the formalism. Function-sharing is a common engineering optimization made

during design, in which one component fulfills more than one purpose. For example, in an
optimized program, two or more functions may be applied to the result of a single (shared)

function application.

We employ a notion of share-equivalence to capture the relationship between flow graphs,
such as those in Figure 3-11. This notion was introduced by Lutz [901 for graphs similar to
ours. Share-equivalence is defined in terms of a binary relation collapses (denoted <1) on

flow graphs. Flow graph F1 collapses flow graph F2 if and only if there are two nodes nj
and n2 of the same node type t in F2 , having input arity I and output arity 0, such that

all of these conditions hold:

1. Either one or both of the following are true:

(a) Vi = l...I, the ith input port of n1 is connected to the same set of output ports

as the Oth input port of n2.

(b) Vj = 1...0, the jch output port of ni is connected to the same set of input ports

as the jth output port of n2.

2. F1 can be created from F2 by replacing nj and n2 with a new node n3 of type t with
the ith input (resp., output) of n3 connected to the union of the ports connected to

76

a a

Figure 3-12: a) A grammar. b) Its core language. c) Some flow graphs in its expanded

language.

the ith inputs (resp., outputs) of n1 and nl2.

3. The attribute values of n1 and n2 can be "combined." This is done by applying an

attribute combination function, which is defined for each attribute, to the attribute

values of n1 and n2. The attribute combination functions may be partial functions. If

the function is not defined for nl and n2 's attributes, then the attribute values cannot

be combined (and F1 does not collapse F2).

For example, in Figure 3-11, F1 collapses F2 which collapses F3 . Performing the trans-

formation in condition 2 from F2 to F1 is called "zipping up" F2. Its inverse is referred to

as "unzipping".

The reflexive, symmetric, transitive closure of collapses, <I°, defines the equivalence

relation share-equivalent. (In Figure 3-11, F1, F2, and F3 are all share-equivalent.)

The directly, derives relation (=*) between flow graphs is redefined as follows. A flow

graph F1 directly derives another flow graph F2 if and only if either F2 can be produced by
applying a grammar rule to FC, F 1 F2 , or F2 < F1.

As in string grammars, the reflexive, transitive closure of =*, is the derives relation (=*).

The language of a flow graph grammar G (denoted L(G)) is the set of all flow graphs, whose

nodes are of terminal type and which can be derived from a start type of G.

Thus, the notion of a language of a flow graph grammar C has been extended to include

77

4S
Z z A a I yB YAA

(c)

(A) 4

(b)

Figure 3-13: a) A grammar. b) A derivation sequence. c) A derivation graph representing

the derivation.

flow graphs that are generated by a series of not only production rule applications but

also zip-up and unzipping transformations. Since a zip-up or unzipping step can happen

anywhere in the derivation sequence, the language of a graph grammar G in this extended

formalism is a superset of the set of flow graphs share-equivalent to flow graphs in the
"core" language of G in the unextended formalism. For example, the flow graphs in Figure

3-12c are included in the language of the grammar in Figure 3-12a, even though they are

not share-equivalent to either of the flow graphs in the grammar's core language, shown in

Figure 3-12b.

Both generators and parsers for the language of a flow graph grammar can interleave

zipping and unzipping transformation steps with their usual expansion and reduction steps.

The parser used by the program recognition system reported here simulates the introduction

of these transformations into its reduction sequence, as is described in Section 3.5.1.

Structure-Sharing Derivation "Trees"

The extensions to the language of a flow graph grammar affect how equivalent derivat-on

sequences are captured in a single canonical tree representation. Because flow graph zip-up

can occur as part of a derivation sequence and this results in a shared subderivation, the

representation of a derivation as a tree is no longer possible. Derivations must be represented

as graphs. For example, see Figure 3-13.

In addition, there may be different derivation graphs, depending on when unzipping

is done in the derivation sequence. For example, Figure 3-14a shows a simple flow graph

78

(a)

(b)

S S

'A z W A z

c c

(C)

Figure 3-14: (a) A grammar. (b) Two derivations of same flow graph. (c) Two derivation

graphs representing the derivations.

79

grammar and Figure 3-14b gives two possible derivation sequences. In the first sequence,
the unzipping transformation happens in the second step. In the second derivation se-

quence, this transformation happens in the third step. An unzipping step is represented in

a derivation graph by a vertex that is a group of instances of that vertex, each with its own
sub-derivation. The two derivation sequences are represented by the two derivation graphs

in Figure 3-14c.

We arbitrarily choose those derivation graphs as canonical that represent derivation

sequences in which unzipping occurs at the earliest possible moment in the derivation se-

quence (i.e., unzip a non-terminal before it is expanded). In our example, the derivation

graph on the left is taken as canonical.

3.4.2 Aggregation

Grammar rules in our flow graph formalism specify how a non-terminal node can be rewrit-
ten as a particular grouping of terminal and non-terminal nodes (in the form of a flow

graph). We now extend it to also specify how a single input or output of a non-terminal

node can correspond to an aggregation of the inputs or outputs of a flow graph to which

the non-terminal node is rewritten.

In engineering application domains, this is useful in representing not only how aggrega-
tions of components make up a higher-level component, but also how the inputs and outputs

of the components are aggregated into fewer, more abstract types of inputs and outputs

of the higher-level component. In the programming domain, for example, the Circular In-

dexed Sequence Insert clich6 has two inputs: an element to insert and a clichdd aggregate

data structure (the Circular Indexed Sequence). The insert is implemented by a group of

primitive operations with several of their inputs representing the various parts aggregated

by the single Circular Indexed Sequence data type.

This section first considers a way to capture the aggregation of port types without

extending the formalism. This is found to be too intolerant of the variation that may

exist in the way port types are aggregated. However, it provides useful insights into what is

required to handle the variation. In particular, a notion of aggregation-equivalence is defined

to relate flow graphs that differ only in how they aggregate port types. The language of a

flow graph grammar is expanded to consist of all flow graphs aggregation-equivalent to flow

graphs derivable from a start type of the grammar.

Using Make and Spread Nodes

This section sets up a straw man which is a simple way to capture the aggregation of

port types into a single, more abstract port type without extending the graph grammar

formalism. This technique will work in restricted cases. However, as the next section

shows, it is too intolerant of variations in the organization of aggregates.

A simple way to capture the aggregation of port types into fewer, more abstract port

80

types is to use special nodes, called Make and Spread nodes. A Make node represents the
aggregation of input port types into the output port type, while a Spread node represents

the decomposition of the input port type into the output port types.

Each Make node has a tuple of input ports whose types compose the type of the Make's
single output port. The node type of a Make node is defined by the ordered tuple of its

output ports' types and its aggregate input port's type. Two Make nodes match if they

collect the same tuple of input port types into the same aggregate output port type. Spread

nodes are analogous to Make nodes, but have a single input port of aggregate port type

and a tuple of output ports which have types composing the input port's type.

Make and Spread node types come in pairs, called corresponding pairs. For each Make

node type, there is a corresponding Spread node type (and vice versa) for the same aggregate

type, such that the ith input of the Make corresponds to the ith output of the Spread in that
they have the same port type and represent the same part of the aggregate port type.

Using Make and Spread nodes, we can now write production rules such as the ones

shown in the grammar of Figure 3-15. For example, in the right-hand side of the rule for

A, Spread and Make nodes explicitly show how the inputs and outputs of nodes a and b
are aggregated into the abstract port type P. This port type is the type of both the input

and the output of the left-hand side node A. These types of rule require no extension to
the graph grammar formalism describe in Section 3.2. F1 in Figure 3-16 is the (only) flow

graph in the language of the grammar in Figure 3-15.

To simplify the discussion, we assume right-hand sides only have Spreads and Makes

on fringes and that no nesting of Spreads or Makes occurs on any right-hand side. A flow

graph grammar can always be transformed so that this is true.

We also assume that abstraction monotonically increases as we move up through the

grammar rules. Left-hand side port types are always either aggregates of (i.e., more ab-

stract than) their corresponding right-hand side port types or are of the same type as their

corresponding right-hand side port types. Right-hand side port types are never aggregates
of left-hand side port types. This means no flow graph in the language of a flow graph

grammar has inputs going to a Make node or outputs coming from a Spread node.

Problems Due to the Inflexibility of Makes and Spreads

The flow graph F1 in Figure 3-16 is the only one derivable from the start type S. However,

we would like to expand the language of the grammar to include flow graphs that differ

from this one solely in the way port types are aggregated within the graph. In particular,

the organization of aggregated port types may vary in any of the following ways:

1. Port types may be aggregated in any order, since aggregation is commutative. For

example, flow graph F 2 in Figure 3-16 aggregates types z and y into P in the opposite

order in which F1 does.

81

a C? 2:P IT P 2:P

S 92:P IT A2:P

Figure 3-15: A grammar representing aggregation, using Spread and Make nodes.

82

IwD 10 II I I: I l 3: II l l lX

i%. 2:x I:x a 1 1: 2., I:x d 2-*x

(Y2 IP I:P
CY2-p :P IP L. JP: P L:&jfI:Q IQ J.y 2.y

2.. 13:Q
y-P CY3-Q C, 3:i.y b 2. 2. e I

I Ew 0

I:w C 2. 1:w f 2:z
3:

F,

gý 2.y I:y b 2.y 1:y 04 Aý. 1-Y I:y e 3.y I:y

9,1- P :P IP :P Caye 7. P P IP I:p
0, x ?3:I:Q

IQ Q J:wV I d 2-x W2y-P f.,:f --P
I-vv E2-w Ný.' 2.w

I:w C 2: I:w f 3:
F2

:j I !::x j
002:x Ofz-x

ce 3:
i-y b 2-y 9ý 2.y e 3. 1:

Qý 2:y -Y 2.R 4 1 2.4
A w A 3: R

2:z 2. R
I:w C I I:w f 3: w

F
3

f

F
4

A. 2.. x I:mx 2 d 2=

2-.P 1:P IP 13:P i-P
'y ;-Y) 13.

1.7 2-y :y e 3.y

WFL3.

I:w C Iv 2a

FS

Figure 3-16: F, is the flow graph in the language of the grammar in Figure 3-15. The rest

are flow graphs aggregation-equivalent to it.

83

2. Aggregations of port types may be nested within other aggregations and the organi-
zation of this nesting does not matter, since aggregation is associative. For example,

flow graph F3 aggregates y and w into type R and then aggregates x and R, while F1

groups together x and y into P which is then aggregated with w.

3. Port types might not be aggregated at all. For example, flow graph F4 is a variation of
flow graph F1 in which no aggregation is done. A special case of this type of variation
is the variation due to the choice of which compositions of Spreads with Makes (and
vice versa) to simplify. For example, flow graph F5 results from the simplification of

F1 's composition of a Spread with a Make.

Aggregation-Equivalence

We would like the flow graphs F2, ... , F5 to be in the language of the grammar of Figure

3-15, not just F1 . To describe the relationship between these flow graphs, we define the

equivalence relation aggregation-equivalent on flow graphs.

First, we need to define the following terms.

" A Make-of-Spread composition is a Spread node connected to a Make node of cor-
responding type via edges between their corresponding part type ports. More pre-

cisely, a Make-of-Spread is a corresponding pair of Make and Spread nodes, such that

Vi = 1, ..., m, the ith output of the Spread node connects directly to the ith input of
the Make node and there are no other edges adjoining these ports (where m is the

number of part port types aggregated).

" A Spread-of-Make composition is analogous. It is a Make node connected to a Spread

node of corresponding type via an edge between the Make's output port and the

Spread's input port.

Now we can define the reflexive, symmetric, transitive relation aggregation-equivalent.

A flow graph F1 is aggregation-equivalent to another F2 (denoted F1 =A F2) if and only if
there exists a flow graph F3 , such that F, and F 2 can each be transformed to a flow graph
isomorphic to F3, using a (possibly empty) sequence of the following transformations:

1. For some corresponding pair of Spread and Make node types, Ts and TM, permute the
outputs of all (Spread) nodes of type T.g and the inputs of all (Make) nodes of type
TM, keeping connections intact and using the same permutation for all the Spreads

and Makes. (The flow graphs F1 and F2 in Figure 3-16 can be transformed into each

other using this transformation.)

2. For all compositions of Spread nodes, replace the composition sub-flow graph with a
single Spread whose output arity, m, is the number of outputs of the sub-flow graph
and Vi m 1,..., m, the ith output of the new Spread has the same port type and

84

, '- - . - -

Figure 3-17: F3 and F1 can be transformed to this flow graph by flattening nested Makes
and Spreads.

connections as the ith output of the sub-flow graph. Flatten all compositions of Make

nodes analogously. (This can be used to transform F1 to F6 (shown in Figure 3-17)
and F3 to F6, so F1 -A F3 in Figure 3-16.)

3. For any Make-of-Spread composition, replace the Make-of-Spread composition with

edges from the ports adjacent to the input of the Spread to the ports adjacent to the
output of the Make.

4. For any Spread-of-Make composition, replace the Spread-of-Make composition with

new edges drawn in the following way: Vi - 1, ... , m connect the ports adjacent to the
ith input of the Make to the ports adjacent to the jth output of the Spread (where

m - the Make's input arity - the Spread's output arity). (Fs results from applying
this transformation to F1 in Figure 3-16.)

5. Remove any Spread node whose input is an input of the flow graph and remove any

Make node whose output is an output of the flow graph. (Fs can be transformed to

Fn by using this transformation and by removing the Spread-of-Make composition.)

Transformations 1 and 2 allow variation due to commutativity and associativity of ag-

gregation, respectively, while conditions 3 and 4 allow variability in the simplification of
Spread-Make compositions. Transformation 5 is needed to allow flow graphs, like Ft, that

use no aggregation to be in the language of a grammar that aggregates port types.

We will call the first transformation the permutation transformation, since it permutes

the part port tuples of Makes and Spreads. The rest of the transformations are aggregation-

removal transformations. We will call the inverse of aggregation-removal transformations

mggregation-introductionp transformations, since they insert Spreads and Makes into a flow

graph.
We can use the aggregation-equivalence relation to expand what we mean by the lan-

guage of a flow graph grammar. If we call the set of flow graphs derivable from the graph

grammar (using the "derives" relation defined in Section 3.4.1) the "core" language of the

85

grammar, then we can define the language of the grammar to consist of all flow graphs
aggregation-equivalent to flow graphs in the core language.

Useful Definitions and Facts

A flow graph F1 is said to be less-aggregated than another F2 if and only if F1 can be

generated from F2 by applying any of the aggregation-removal transformations above. This

relation is transitive. If there is no flow graph less-aggregated than a flow graph F, then F

is said to be minimally-aggregated.

There is only one minimally-aggregated flow graph less-aggregated than or isomorphic

to a particular flow graph that can be obtained by the aggregation-removal transformations.

(However, there may be more than one minimally-aggregated flow graph less-aggregated or

isomorphic to a particular flow graph F that is aggregation-equivalent to F. These can be

transformed into one another by applying the permutation transformation.)

Whether the minimally-aggregated flow graph has any Spreads or Makes depends on

whether the formalism allows ports on terminal nodes to have aggregate port types. If

terminal nodes have no ports of aggregate type, then minimally-aggregated flow graphs will

have no Spreads or Makes.

To see this, suppose we have a minimally-aggregated flow graph F, with a Spread or

Make node n. The node n cannot be on F's fringe since otherwise it could be removed
by Transformation 5 to create a flow graph less-aggregated than F. So, n must be an

internal node. It must also be flat (i.e., it is not nested with another Spread or Make node),

since otherwise Transformation 2 could be applied to create a less-aggregate flow graph.

Since n is internal, its aggregate port P, is connected to another port p2, which must be of

aggregate port type. However, p2 must be the aggregate port of a node of corresponding

Make or Spread type, since only Spreads and Makes can have ports of aggregate type. This

would mean F contains a Spread-of-Make composition, which means F is not minimally-

aggregated. Therefore, a minimally-aggregated flow graph cannot contain a Spread or Make

node if there are no aggregate port types allowed on terminal nodes.

On the other hand, if terminal nodes have ports of aggregate type, then minimally-

aggregated flow graphs might have one or more Spread or Make nodes. Using reasoning

similar to that above, we can see that all Spread or Make nodes would be internal and flat,

with their aggregate port connected to ports on terminal nodes that are not Spread or Make

nodes.

These facts are useful in developing a recognizer for languages of flow graph grammars

that aggregate port types.

Recognizing Aggregation-Equivalent Flow Graphs

A generator or parser for the language of a flow graph grammar may perform the permu-

tation, aggregation-introduction and aggregation-removal transformations as steps in their

86

derivation or reduction sequence. Because there are many possible orderings in which to

apply the transformations and because doing this efficiently involves an extension to the

embedding relation of the graph grammar formalism, it is important to discuss how such a

recognizer is constructed. (A generator for the language is not described here, since we are

more interested in building recognizers for languages than we are in constructing language

generators, for the purposes of program recognition. A generator can easily be imagined by

reversing the recognition process.)

One way a recognizer for the language can work, given an input flow graph F, is in two

stages. The first would apply some sequence of the permutation, aggregation-removal and

aggregation-introduction transformations to F to produce a flow graph F', while the second

would apply a recognizer for the core language to F'. A flow graph F would be recognized

if a sequence of transformations is found which yields a new flow graph F' that is accepted

by a recognizer for the core language. Unfortunately, the first stage could involve a great

deal of search to find the appropriate transformation sequence.

A more promising approach is to divide up the stages differently so that no choices need

to be made. In the first stage only aggregation-removal transformations that work "down-

ward" by creating less-aggregated flow graphs are applied until a minimally-aggregated flow

graph is obtained. Then in the second stage, the aggregation-introduction and permutation

transformations are interleaved with the reduction actions of the recognizer for the core

language. The idea is that the grammar rules can provide guidance as to what to aggregate

and how to organize the aggregation so that the flow graph will be recognizable as a member

of the core language. The aggregation guidance is found in the Spreads and Makes of the

rule's right-hand side. This section gives the details of how the interleaving of recognition

with aggregation-introduction transformations works.

This is explained first for a restricted formalism in which no terminal nodes have ports of

aggregate port type and the union port type kny is a union of only primitive (non-aggregate)

port types. This simplifies the discussion since each minimally-aggregated flow graph in the

language of the graph grammar contains no Spreads or Makes.

Then a second formalism is considered in which the restriction is relaxed to allow the

type Any to be a union of all port types (including aggregate port types). This formalism

is still restricted in that the only (possibly) aggregate port type a (non-Spread, non-Make)

terminal node's port may have is Any. In this case, the minimally-aggregated flow graphs

in the graph grammar's language might contain Spreads and Makes. However, as discussed

above, these Spreads and Makes will each be flat and internal. Each Spread node must have

its input aggregate port connected to a port of type Any. The same must be true for each

Make node's output aggregate port.

87

(DEFUN POP-TWICE2 (STK)

(LET* ((FIRST (AREF (STACK-ELTS STK)
(STACK-PTR STK)))

(NEW-STK (RAKE-STACK :ELTS (STACK-ELTS STK)

:PTR (1+ (STACK-PTR STK))))

(SECOND (AREF (STACK-ELTS NEW-STK)

(STACK-PTA EEW-STK)))

(NEWER-STK (RAKE-STACK :ELTS (STACK-ELTS NEW-SmK)

:PTR (1+ (STACK-PTA NEW-STK)))))
(VALUES FIRST SECOND NEWER-STK)))

(DEFUN POP-TWICE (A I)

(LET* ((FIRST (AREF A I))

(NEW-I (1+ 1))

(SECOND (AREF A NEW-I))
(NEWER-I (1+ NEW-I)))

(VALUES FIRST SECOND A NEWER-I)))

Figure 3-18: Two programs each performing two consecutive Stack Pops.

What the Restrictions Mean in the Program Recognition Application

These two restricted formalisms are sufficient for capturing the types of aggregation that

arise in dataflow graphs representing programs that operate on aggregate data structures.

Allowing only non-aggregate port types on terminals, although restrictive, is still very

useful in representing a wide class of programs and cich~s in the program recognition

domain. For example, the minimally aggregated flow graph for both of the programs shown

in Figure 3-18 is given in Figure 3-19. (Attributes are not shown.) Each program can be

recognized as a Stack Pop, followed immediately by another Stack Pop, where the Stack is

implemented as an Indexed Sequence aggregate data clichi whose parts are an Index (an

integer) and a Base (a sequence).

(When we create the minimally-aggregated flow graph representing a program that uses

user-defined aggregate data structures, we remove Spread and Make nodes, which contain

naming information that is useful for presenting the results of recognition. We convert this

information to another form (attributes). See Section 4.2.3 for a discussion of how this

information is used.)

The second less-restrictive formalism is useful in representing programs in which ag-

gregate data structures are collected into primitive data types such as arrays and lists (in

Common Lisp). The accessors and constructors of these primitive data types (e.g., CAR,

coNs, noI) are primitives. They cannot be treated like Spreads or Makes of aggregate data

structures that have fixed, named parts, because their "parts" are accessed and inserted

88

-~~- -.-. . '

Figure 3-19: The flow graph for the programs POP-TWICE and POP-TWICE2.

Messager +2ae

l:is C 2Al :Event Time:

Anteger 1:ntge > 3:BooleIntegere

Figure 3-20: Flow graph with a node whose output port is of type Any.

at variable, computed positions. These primitive accessors and constructors have ports of
type Any.

For example, the code fragment (> 1ev-Tima. (Event-Tim. (car Event-Q/uene))) is part
of a program for inserting a user-defined data structure, called an Event, into a Priority

Queue which is implemented as an Ordered Associative List. The Event has parts Time
(an integer) and Object (a Message, which is a user-defined type). The Event is treated as

a priority queue element, whose priority is the Time part. This code fragment is testing

whether the first element of the input list, Event-Queue, has a Time part less than the value

of 1ev-Time (which is the Time of the event being inserted).
The attributed flow graph representing this code fragment is shown in Figure 3-20. Its

CAR has an output of type Any. (Rather than numeric port labels, the Spread in this example
uses mnemonic names, such as Time, for clarity.)

No Aggregate Port Types on Terminals

This section shows how the actions of a recognizer for the core language are interleaved

with aggregation-introduction transformations in a formalism that does not allow ports of

aggregate type on terminal nodes.

Since minimally-aggregated graphs have no Spreads or Makes, the Spreads and Makes

in the right-hand sides of rules cannot be matched. Only a sub-flow graph of the right-

hand side can be matched to nodes in the input graph. This sub-flow graph, called the

89

non-aggregated rhs, consists of the subset of nodes that are not Spreads or Makes and the

subset of edges connecting their ports.

Since right-hand sides of rules are assumed to contain no internal Spreads and Makes,
the non-aggregated rhs is the right-hand side graph minus its boundary Spreads and Makes.

These boundary Spreads and Makes contain valuable information about how the inputs and
outputs of the non-aggregated rhs should be aggregated to recognize a left-hand side that

has aggregate port types. We move this information into the embedding relation. We

remove the boundary Spreads and Makes so the right-hand side of each graph grammar

rule becomes the non-aggregated rhs.

Recall that the embedding relation, as described so far, relates left-hand side ports to

right-hand side ports and other left-hand side ports. (That is, C is a binary relation on

£ x)Z U £, where £ and IZ are the sets of left- and right-hand side ports, respectively.) A
single left-hand side port can correspond to a non-empty set of right-hand side and left-hand

side ports, while a single right-hand side port can correspond to at most one left-hand side

port.

We extend this embedding relation to relate each left-hand side port to a tuple of right-

hand side and left-hand side port sets, where the position in the tuple is significant. More

precisely, the embedding relation C is now on £ x (21uc)n where n varies. (A left-hand side

port and each right-hand side port in the tuple related to it are still said to "correspond"

with each other.)

The right-hand side ports are tupled and related to the left-hand side ports based on

the fringe Spread and Make nodes that are removed from each rule's right-hand side. When

a Spread node of output arity m is removed, the left-hand side input port corresponding

to its input port becomes related to a tuple in which Vi = 1, ... ,m the ilh element of the

tuple is the set of right-hand side ports (if any) connected to the ith output of the Spread.

Similarly, when a Make node of input arity m is removed, the left-hand side output port

corresponding to its output becomes related to a tuple, in which Vi = 1, .., m, the ith element
of the tuple is the set of right-hand side ports (if any) connected to the ith input of the

Make.

The rule for A in Figure 3-21a becomes the rule shown in Figure 3-21b when Spreads

and Makes are removed. Left-hand side port A 1 is related to the tuple of right-hand side

ports < {a,, di}, b, >. This is shown by tupling the Greek annotations associated with each
left-hand side port to reflect the aggregation of right-hand side ports corresponding to the

left-hand side port. (For simplicity, elements of tuples that are singleton sets degenerate to
the single element of the set in drawings. Tuples containing one element degenerate to that

one element.)

If any Spread node has an output j that connects directly to an input k of a Make node,
then a st-thru results between the left-hand side ports (l1 and 12) that originally corre-

sponded with the input of the Spread and the output of the Make, respectively. Specifically,

the jll element of the tuple corresponding with 11 contains 12 and the kth element of the

90

(a)

im 2:

~~Ž~PAb 2:y

(b)

Figure 3-21: (a) A rule which aggregates port types. (b) The same rule with aggregation

information moved to the embedding relation.

tuple corresponding with 12 contains 11.

This is illustrated in Figure 3-22 where the rule in part (a) is converted to the rule of

part (b) which contains a st-thru. A, corresponds with A2 in part y of aggregate port type

P.

Relation To Concrete Application Domain: St-Thrus in Data Aggregation

This case arises quite frequently in the program recognition domain. Operations on ag-

gregate data structures in which all parts of the data structure are used and/or changed
are rare in the simulator programs. Most operations work on only a subset of the parts.
For example, the operation for removing the first element from the cliched aggregate data
structure Circular Indexed Sequence (abbrev. CIS) accesses only four of its five parts and
changes only two parts. As shown in Figure 3-23, the CIS data structure has a Base, which
is a sequence, a Size, which is an integer, a Fill-Count, which is an integer count of the
number of elements in the CIS, and two index pointers (First and Last), which are positive
integers that specify the indices of the first and last elements in the CIS. The removal op-
eration uses the CIS's First part as an index into its Base part to retrieve the first element.

Then the First part is updated by being incremented or decremented (depending on the
direction of growth), modulo the Size part. The Fill-Count is also decremented. The Last
part is not used or changed. Also, the Base and Size parts are used but not changed. So,

91

CE~ 0.2m:x x 2:x '~

(a)

(b)

Figure 3-22: (a) An edge connects a Spread and Make. (b) This edge becomes a st-thru

when aggregation information is moved to the embedding relation.

there are three st-thrus in the rule for CIS Extract, representing the Last, Base, and Size

parts. The rule for CIS Extract is shown in Figure 3-24. (The CIS part names correspond-

ing to the elements of the tuples of correspondence labels are shown in the lower left-hand

corner.)

Using the Embedding Relation in Reduction

The embedding relation plays a key role in reduction which is at the heart of the recognition

process. A flow graph is recognized if it can be reduced to a single node having a start type.

Reduction steps are analogous to rewriting (or generation) steps. Rather than rewriting

an occurrence of the left-hand side of a rule to a sub-flow graph isomorphic to the rule's

right-hand side, we reduce an isomorphic occurrence of the right-hand side to an instance

of the left-hand side. In both cases, the embedding relation is used to determine how to

connect the replacement sub-flow graph to the rest of the graph, called the host graph.

The following is only a conceptual description of the reduction mechanism. While a

recognizer can be implemented to perform exactly these actions, it is not necessary that

it do so. In most generators, recognizers, and parsers, the flow graph is not destructively

transformed at each derivation or reduction step. The rewriting or reduction is simulated

in the state of the generator, recognizer, or parser. This allows backtracking and multiple

results to be formed (e.g., for ambiguous grammars).

Recall that the unextended embedding relation is used as follows. When a sub-flow

graph R is reduced to an instance of a rule's left-hand side L, an edge is created between a

port pi in the host graph and a port Lj of L, if and only if pi was connected to a port in R

92

Base:

IFill-
Last -- Count

_________________ Size

Figure 3-23: Circular Indexed Sequence data structure.

(8,t) 1

CS_2. Any

1: CIS Extract X 2
3: CIS

1:1: Integer Incrcennt/ 2 Inner ~ mod 3: Integer -0

3: Any

Mnemonic rnaple dejneft Menses
<Base FLrst. SvAe L~r& Fill-Cowu>

Figure 3-24: The rule for Circular Indexed Sequence Extract.

93

that corresponds to Li, according to the embedding relation.

Reduction using the extended embedding relation is more complicated. Several right-

hand side ports may correspond to the same left-hand side port, but we do not want all ports

in the host graph that are connected to these right-hand side ports to become connected to

the left-hand side port when the right-hand side is replaced with the left-hand side. Instead,

before we connect the left-hand side instance up to the ports of the host graph, we insert

Make and Spread nodes into the graph surrounding the left-hand side to bundle up the

inputs and outputs coming from or going to the ports of the host graph.

More specifically, for each left-hand side input port Lj having an aggregate port type,

a Make node is inserted. Its output is connected to Lj and its ith input is connected to

the host graph ports that are connected to the right-hand side ports in the ith element of

the tuple corresponding to Li. Likewise, for each left-hand side output port Lk having an

aggregate port type, a Spread node is inserted. Lk is connected to the Spread's input and

the ith output of the Spread is connected to the host graph ports that are connected to the

right-hand side ports in the ith element of the tuple corresponding to Lk.

The Make and Spread nodes specify how the minimally-aggregated flow graph should

be aggregated to recognize it as the left-hand side of the rule. When the reduction results in

a Make-of-Spread composition, the composition is simplified. (Note that Spread-of-Makes

are never created by this action.)

For example, the flow graph grammar of Figure 3-15, which expresses aggregation using

Spreads and Makes, is converted to the flow graph grammar of Figure 3-25, which expresses

aggregation in the embedding relation. A sample reduction sequence using the rules of this

grammar is shown in Figure 3-26.

A flow graph is recognized if it is reduced to a flow graph consisting of node of a start

type of the grammar, with (possibly empty) trees of nested Makes and Spreads, whose roots

are connected to the start type node's inputs and outputs, respectively.

The reduction transformation described here is simulated by our parser. Spreads and

Makes are not actually added to the graph being parsed (just as the graph being parsed is

not destructively reduced). Section 3.5.2 gives details of how the parser does this simulation.

No Aggregate Port Types on Terminals Except "Any"

We now slightly relax the restriction on our formalism that no terminal nodes have ports

of an aggregate type. We allow ports of type Any on terminal nodes to take on any port

type, including an aggregate port type. In this formalism, the minimally-aggregated flow

graphs in a graph grammar's language might contain Spreads and Makes which are flat and

internal. We call these residual Spreads or Makes. Each residual Spread node must have its

input aggregate port connected to a port of type Any. Likewise, the output aggregate port

on each residual Make node must connect to a port of type Any.

The main difference this makes to the reduction mechanism is that the simplification

94

a

x~: d~ f22x

LB3:

Figure 3-25: The grammar of Figure 3-15 with aggregation encoded in the embedding
relation.

95

V~ 2:P

IP PiPP

'p 0Q S -** IQ 3:w

IP J~p 2:P -
IQ ~~i:Q2 -Q :r,

113:

Fi ur 32 : p A re ucio se ue c ui gt e ra m ro Fg re 32 5.

p96 l

(a)

(b)

(c)

(e•

Figure 3-27: The reduction of a sub-flow graph using the rule for D from Figure 3-25.

of Spreads and Makes is not as straightforward. When a sub-flow graph isomorphic to the

right-hand side is reduced to a left-hand side with surrounding Makes and Spreads, the

Makes and Spreads may become connected to residual Spreads and Makes.

A composition of a Make with a Spread node may arise. However, the Make and Spread
will not usually be of corresponding type. The residual Make or Spread may even become

connected to a tree of nested Spreads or Makes, respectively. The usual, straightforward

Make-of-Spreadi simplification cannot be applied to this composition.

For example, the sub-flow graph containing nodes a, b, and c in Figure 3-27a is reduced

to a non-terminal node of type D, surrounded by Makes and Spreads, using the rule for D
from Figure 3-25. The result of the reduction is shown in Figure 3-27b.

There are two solutions to this. One is built on the other and is more powerful in that

it allows a useful form of partial recognition to be done. The basic solution is to perform

a special-case simplification to the composition. In particular, if all of the outputs of a

residual Spread are connected to inputs of a Make or tree of nested Makes (as they are

97

in Figure 3-27), then we can simplify this composition by drawing an edge from each port

connected to the residual Spread's input to each port connected to the output port of the

Make or of the root of the Make tree. We can simplify compositions involving residual

Makes in an analogous way.

For example, the flow graph in Figure 3-27b would simplify to the one in Figure 3-27c,

which can be recognized as an S, whose rule is in Figure 3-27d.

The main limitation of this basic solution is that it does not enable us to handle a form

of partial recognition that we find crucial in performing partial program recognition. In

particular, we would like to be able to recognize aggregate port types that aggregate only

a subset of the parts that are aggregated by a port type used in the input flow graph.

For example, suppose we have the flow graph shown in Figure 3-28a and we want to

recognize an S in it, whose rule is shown in Figure 3-28b. (Perhaps the flow graph in Figure

3-28a represents a program in which some cliched operation is being done to some parts (of

type x and y) of a user-defined data structure F, where these parts compose a cliched data

structure P. At the same time, the user-defined data structure might contain additional

parts (of type m and n) that are keeping track of some statistics, such as how many times

the parts of type x and y are accessed. The operations (p and q) to the statistics-keeping

parts are unfamiliar and need to be ignored when partially recognizing the program.)

The key to partial recognition of flow graphs is the ability to separate recognizable

portions of a flow graph from unrecognizable portions. For partial recognition of a flow

graph F to succeed, the recognizable section must be a sub-flow graph of F. (Recall the

discussion of Section 3.3.1.) The problem here is that residual Spreads and Makes keep

the unrecognizable portion of the input flow graph connected to the recognizable portion,

preventing simplification and recognition of a sub-flow graph of the input flow graph.

The reduction of the flow graph using the rule for A yields the flow graph in Figure

3-28c. We cannot simplify the composition of the residual Spread (Spread-F) with the

Make (Nake-P) as we do in the first solution because not all of the residual Spread's outputs

are connected to the Make's inputs. The same is true for compositions involving residual

Makes.

(Note that if there are no aggregate port types on terminal nodes, there are no residual

Spreads or Makes. So this form of partial recognition is handled easily in the more restricted

formalism.)

To solve this, we make use of the fact that fan-in and fan-out facilitate partial recognition

in that unrecognizable portions of a flow graph that fanout from or into ports internal to

recognizable portions can easily be ignored simply by not being included in the sub-flow

graph matched.

The idea is to break up residual Spreads into two Spreads, one of whose outputs connect

to the recognizable portion while the other's outputs connect to the unrecognizable portion.

(The input port types of the two Spreads become some brand new type.) The inputs to the

Spreads are connected to edges which fanout from the port(s) of type Any that connected

98

(b)

(c)!

(d)

Figure 3-28: (a) A flow graph only partially recognizable as the non-terminal S, whose rule
is in (b). (c) Result of reduction. (d) Breaking up residual Spreads and Makes to facilitate

partial recognition.

99

to the input of the original residual Spread. Residual Makes are broken up into two Makes

analogously. Thus, we isolate the recognizable portion from the unrecognizable portion by
inserting a fan-in or fan-out. For example, the sub-flow graph enclosed in a dashed line in
Figure 3-28d can be recognized as an S once the residual Spreads and Makes are broken

up.

How a residual Spread or Make is to be broken up is dctermined by which connections
we are trying to make with ports of type Any. In other words, the decomposition is not

guessed. It is determined by what we are trying to connect together. It may be broken up
in more than one way, depending on how many subsets of parts of an aggregate port type
can be partially recognized as distinct aggregate port types.

As is the case with the rest of the reduction mechanism discussed so far, this is all
simulated in the state of the parser. No graph operations are actually done. See Section
3.5.2 for more details.

3.5 Chart Parsing Flow Graphs

GRASPR uses a new graph parser which has evolved from Brotsky's flow graph parser [15].
It also has been influenced by a chart-based flow graph parsing algorithm developed by
Lutz [90]. See Figure 3-29. Brotsky's parsing algorithm generalized Earley's string parsing
algorithm [32] to flow graphs. Kay [71, 72] and Thompson [132, 133] also generalized

Earley's parser to create string chart parsing. This was a generalization of the control of
Earley's algorithm to allow flexibility in the rule-invocation and search strategies employed.
Lutz then generalized string chart parsing to a type of flow graph that is a slightly restricted

form of the flow graphs defined in this report. (Section 3.6 explains the difference.) The
flexibility of control in Lutz's flow graph chart parsing algorithm has been adopted by the
flow graph parser presented here.

An earlier version of our parser (described in [144, 145]) was an extension of Brotsky's
parser that allowed it to handle flow graphs that contain edges that fan-in or fan-out. It

also dealt with some variations due to structure-sharing (in particular, for parsing flow
graphs in which the derivations of two non-terminals overlap). Lutz independently devel-

oped more techniques for dealing with structure-sharing variations. These techniques have

been incorporated into our parser.

Our formalism further extends that of Lutz and our earlier formalism to include graph
grammars that encode aggregation information. Our parser also extends the class of flow
graph variations that are tolerated to include variations due to aggregation organization.

The main characteristics of the parser are:

"* It deterministically simulates a non-deterministic parser.

"* It finds all possible parses and keeps track of all partial analyses.

"* It can handle ambiguous grammars.

100

Earley '69

generalized o o generalized control

flow graphs

Broty ' 84 Kay '80, Thompson '81

extended class of flow / genraied to flowgraphs,

graphs and grammars / structure-sharing

Wills '87 Lutz '89

generalized control, \ / xtended class of flow

extended class of flow etne ls ffo

graphs and grammars, graphs and grammars,

(aggregation) (aggregation)

Wills '92

Figure 3-29: Flow graph parser evolution.

"* It reuses previously found parses so that it can avoid re-doing work (i.e., it shares

subderivations).

"* It has a flexible control structure. Its rule invocation strategy (top-down vs. bottom-

up) and its search strategy can be specified as part of its inputs.

"* The order in which parses are constructed does not matter. (This is useful in being

able to incrementally construct parses and to advise the parser to focus on certain

parts of its search while postponing others.)

"* It is able to make use of analyses it has obtained while parsing to create alternative
views of the input graph. This can in turn allow more analyses to be constructed.

"* During reduction, it can aggregate not only a set of right-hand side nodes into a single

left-hand side non-terminal, but also an aggregation of inputs (or outputs) of a right-

hand side flow graph into a single input (or output) of a left-hand side non-terminal.

The Basics of Chart Parsing

Chart parsers maintain a database, called a chart, of partial and complete analyses of the

input. This is shown in Figure 3-30. The elements in the chart are called items. (In

string chart parsing, they are called "edges." Lutz [90] calls them "patches.") An item

might be either complete or partial. Complete items represent the recognition of some

terminal or non-terminal in the grammar. Partial items represent a partial recognition of a

non-terminal.

A complete item for a terminal node is created for each node in the input graph during

initialization. A complete item for a non-terminal node is created when there are complete

101

Grammar: Input:

A a C

-g~-g.4 x Y x y

B b 6

Chart:

"complete item"

"partial item' LfQZi~

"fundamental I~

............ o ..o

o°o.......o~~~o aooooo°o....... ,

Figure 3-30: Graph chart parsing.

102

items for each of the constituents of the right-hand side of some rule for the node's type, and

the locations of the constituents satisfy the right-hand side's edge connection constraints.

Each complete item keeps track of the location in the input graph at which the instance

of the node type has been found. It also contains pointers to the subitems on which it

depends, as well as other information.

Partial items, on the other hand, contain information about how much of a rule's right-

hand side has been recognized so far. It contains a dotted rule, which specifies the non-

terminal being recognized, the rule used to recognized it, which constituents have been

found, and which constituents are still needed.

Fundamental Event

The most basic operation of a chart parser is to create new items by combining a partial

item with a complete one. This is called the fundamental event. If there is a partial item

that needs a non-terminal A at a particular location and if there is a complete item for

non-terminal A at that location, then the partial item can be extended with the complete

item. During extension, a copy of the partial item is created and augmented. This results in

a new item which is added to the chart. (When a partial item is extended with a complete

one, they are said to be "combined.") Duplicate items are never added to the chart. This

avoids redoing work. (Also, items are never removed from the chart.)

In the string chart parsing literature, the chart is described as a graph. The nodes

represent locations in the string being parsed and the edges represent the partial or complete

recognition of some terminal or non-terminal between two locations. In string chart parsing,

the retrieval of pairs of edges to participate in the fundamental event is based primarily on

location. Whenever a partial and complete edge meet (i.e., satisfy the adjacency criterion),

the pair becomes a candidate. The set of pairs are then further refined by an extendibility

criterion (which typically checks terminal or non-terminal types).

In string chart parsers, it makes sense to use the adjacency criterion as the first filter in

retrieving pairs of edges to be combined. It only requires looking up the edges that start at

a particular node in tlke chart (graph). Then Lhe extendibility criterion can be applied to

these edges.

However, in graph parsing, the "edges" 1'+ems) are between sets of ports. The adjacency

criterion now requires that the inpu.s and outputs of the completed item be a subset of the

outputs and inputs (respectively) of the partial one. Since there can be many possible pairs

of items that satisfy this criterion, we use part of the extendibility criterion to help retrieve

pairs of items to combine. Additional constraints have been added to the extendibility

criterion as a way of narrowing down the search for analyses. For example, some of the

non-structural constraints on attributes have been incorporated into the criterion. The

choice of which constraints to include depends on the cost of checking the constraints at

this point in the parsing. (See Section 6.2.2.)

103

Agenda Agenda

new . .w new "........ %
itemsitems ..

........... %..o........

ilm~i~r"h°ned [......... 1"'•':• '::*I o trcm ltdw a 1 '::::::::

monitor: *monitor.

"Who has
Ithis complete copltd.ht.

item....
item needs?" %................

%, % %--- %----......-.."...."-1 ,------..

Chart Chart

(a) (b)

Figure 3-31: (a) Adding a complete item to the chart. (b) Adding a partial item to the

chart.

Agenda-Based

In chart parsers, an agenda is used to queue up the items to be added to the chart. Items are

continually pulled off the agenda and placed in the chart. As an item is added, it is paired
with other items with which it can be combined. If the item being added is a complete

item, then it is paired with partial items that need it. On the other hand, if the item added

is a partial item, then it is paired with any complete items for the non-terminals it needs.

These two cases are illustrated in Figure 3-31.

The agenda makes it easy to control which things are added to the chart and when they
are added. This explicit control can be used to enforce a particular rule invocation strategy

or search strategy.

For example, we can make the parser adopt a bottom-up parsing strategy, as shown in

Figure 3-32. Whenever a complete item is added to the chart, new empty items can be

added to the agenda for each rule that needs the complete item to get started (i.e., the rule

has a minimal right-hand side node that is of the same type as the type derived by the
complete item). The new item is instantiated at a location that depends on the location of

the complete item.

Likewise, we can achieve a top-down parsing algorithm. First, during initialization,

empty items must be added for each rule that derives a start type of the grammar. (An
"empty" item is a partial item that needs complete items for all of its rule's right-hand

side constituents.) For each such rule, an empty item must be instantiated at each of the

possible matchings of the inputs of the input graph to the inputs of the rule's left-hand side.

Second, whenever a partial item is added to the chart, a new empty item must be added to

104

Agenda Bottom-up Rule Invocation Strategy:

....................
new % % partial

items _________ items Z
........

%-T --

........ a

Figuir 3-32: A botlenvo i steg complete item t
mtheagenfor: each.rule.that.derives.a.non-terminal.needed.by.the partial item Thee

"item mutnee instatae talcto htdpnso hr thepria item need the
nhson-eminlet constituent

item s p reont Tisae t g iz terminal for.which

.oG r a m m a

...................

tihre are rules w m a ing a ctity etteen theleft-hand and omt-aen sitdes. Thisri

hec sary ien hoan g rules who.e.rigthnsies h......av...ed ip ts e (rpar"ting i on stants)et

reaIon that crencpodesm agrecgaition rltoshis.em Ae top-downlabotmu strategy, wolsrqire thatsw

predlictathes oargaizaleontion. ofi ageation whkeni eahe emty rcgitem ifrsinstn-terinated (bforewic

thecesr item'slin rule'swos right-hand sides imace)nohaer wordts, itrequres searcing fortats thet

pigredc the2 Aorgnztion-u oagruegioation when each emptctsteddingfircompnsteniteteto(befrt.

appropriate sequence of aggregation-introduction transformations needed to recognize the

flow graph, as discussed in Section 3.4.2.)

The way in which the agenda is maintained determines not only the rtile invocation

strategy, but also the parser's search strategy. While we can control whether the parsing

algorithm proceeds top-down or bottom-up by controlling what gets added to the agenda,

we can choose a particular search strategy (e.g., depth-first or breadth-first), simply by

controleing the order in which items are pulled off of the agenda. The agenda might be

maintained as a first in, first out (FIFO) queue to achieve breadth-first search, for example.

The strategy for maintaining the agenda can be given by the user. It is one of the ways

105

Agenda

Figure~~~ 3-33........ Serhsrtg:siptt asr

Additional Monitor

;

%..•

Chart

Figure 3-33: Search strategy as input to parser.

advice from an expect ationh driven component or a human user can be incorporated into
the code-driven component. See Figure 3-33.

The parser is guaranteed to find every parse exactly once, no matter which rule invoca-

tion or search strategy is used.

Additional Monitors

One final aspect of the architecture of the parser is that it contains additional monitors that

watch the chart. See Figure 3-34. These detect the existence of certain kinds of items or

collections of items in the chart which can be used to generate other items. In particular,

they look for opportunities to view part of the input graph in an alternative way in order to

yield more parses. The graph is not explicitly changed to the alternative view. Instead, new

items are created which represent the alternative views and these are added to the agenda.

An example of this is employed in simulating the zipping up of an input graph as

explained in Section 3.5.1, which describes how share-equivalent flow graphs are recognized.

Selectively Trying Harder

We do not necessarily want the parser to generate all of the alternative views of the in-

put graph. So, the opportunities for generating new items representing these views are

queued on an agenda. These opportunities can be selectively pulled from the agenda and

performed. The parser can be given advice from an external agent about how and when

to make the selection. The parser can be made to incrementally try harder. It can report

106

Agenda

Ne Ite

: Additional

___ slAdditional
Ls J*S ..ssmonitors

%

Chart

"Figure 3-34: Additional monitors.

easy recognitions early, and then be given more time later to generate alternative views

that uncover the obscured dich6s. So, quick results can be obtained, without sacrificing

completeness in the long run.

The parser can also be directed to generate alternative views only within a certain area

of the input graph. For example, if no cliches were found in a particular area of the input

graph, the parser could try generating alternative views in that area in case this would allow

more cliches to surface.

Asking for Advice

The monitors might also detect question-triggering patterns in the chart. These are patterns

that indicate that a particular constraint is likely to hold. This is useful if the constraint is

costly for the parser to check. When such a pattern is found, the recognition system can ask

whether the constraint is satisfied. The question might be more easily answered by some

other source (such as an expectation-driven component in a hybrid recognition system).

Now that the basic operation of the chart parser for flow graphs has been described,

the next three sections give details of how the extensions to the formalism and st-thrus are

handled.

Motivations for Copying Before Extension

Each time a partial item is extendable by a complete one, a copy of the partial item is

created and the copy is extended. There are three reasons that the parser extends a copy

of partial item, rather than the original. One is that the parser is leaving itself open to

107

the possibility of ambiguity. It might be possible in the future for the partial item to be

extended with another complete item for the same right-hand side node. By not changing

the original partial item, the parser continually has a partial item that can accept alternative

derivations for its immediately needed nodes.

The alternative complete item need not be a duplicate of the first. If both satisfy the

constraints of the partial item, with respect to its matching so far, then both can extend

the partial item. For example, the two complete items might have overlapping locations,

but if the partial item only constrains the location that is shared by the two items, both

can extend the partial item. So the parser is using copying to deal with partial ambiguity.

The second reason is that copying facilitates partial recognition. When a complete item

is recognizing a partial item's immediately needed node that is on the left fringe, then

extending a copy of the partial item allows the partial item to be extended with a different

complete item, representing an instance of the left-fringe node at a different location in the

input graph. (This is a special case of ambiguity.)

A third reason to copy before extending is that this facilitates incremental analysis

[149]. There are two forms of incremental analysis. One is incrementally analyzing a static

input graph. This is achieved in chart parsing by iteratively adding complete items for each

of the input graph's nodes to the chart. A depth-first retrieval of items from the agenda

can ensure that all partial analyses of the input graph considered so far are created before

another node of the input graph is considered (i.e., the complete item for the node is added

to the chart).

The other type of incremental analysis is useful to do when the input graph is changing.

(This might happen when the recognition system is being used to aid maintenance, for

example.) It involves updating the results of a previously parsed input graph to account for

a modification to the input graph. This type of incremental analysis requires 1) creating

analyses of the new sub-flow graph and incorporating them into the existing analyses, and

2) retracting analyses that depend on the old sub-flow graph that has changed. Augmenting

existing analyses based on the new information is another case of the first type of incremental

analysis. Retracting analyses that are no longer valid involves first finding the items to

retract and then doing the retraction.

Copying before extension makes doing the retraction of an item easy. All partial items
whose copies were extended with the item are still around, unmodified. They represent

intermediate states in the search for an analysis, before the complete item advanced the

search. Retraction of an item can be done by "killing" the item in the chart and each

partial item it extended, as well as their item tree descendants. The original partial item

will remain.
Finding the items to retract requires keeping track of dependencies between the input

graph's structure (and attributes) and the items that represent recognitions of it. Most of
this dependency information is contained in the item's structure in the form of links to sub-

items that represent its components. The leaves of these links are the items for terminal

108

z A B

b D c

(a) 1

(b) (c)

Figure 3-35: Sharing a sub-derivation.

nodes in the input graph. However, more dependency information must be maintained

than is in the current implementation. If any edges are added or attributes are changed,

constraints might no longer be satisfied. The information of how items depend on the nodes,

edges, and attributes of the input graph is important not only in deciding which items to

retract, but also which previously failing items or item combination attempts might now

be valid. So this dependency information is also relevant in the incremental addition of

analyses and the augmentation of existing analyses.

3.5.1 Recognizing Share-Equivalent Flow Graphs

Recall from Section 3.4.1 that a recognizer or parser for a structure-sharing flow graph

grammar may work by interleaving zipping and unzipping transformation steps with the

usual reductions steps. Our chart parser simulates this introduction in two ways. First,

unzipping the input graph is simulated by allowing sub-derivations, in the form of sub-items.

to be shared. For example, suppose we give the parser the input flow graph shown in Figure

3-35a with the grammar of Figure 3-35b. Once the parser creates a complete item for D,

it is shared between the items for A and B. Parsing yields the derivation graph shown in

Figure 3-35c.

Second, zipping up the input graph is simulated using a "zip-up" monitor. For example,

an input flow graph might redundantly contain two instances of the same non-terminal A,

where the inputs and/or the outputs of the two instances fan out from or into the same

port(s). (See Figure 3-36b.) The right-hand side flow graph that we are looking for might

maximally share a single instance of the non-terminal (as does the rule for S in Figure

3-36a). We would like to view the input program as maximally sharing the two instances

of A, so that the right-hand side flow graph will match. This is done by generating an

item for A that "zips up" the two items for A that were created. (See Figure 3-36c.) The

location and sub-items of the new zipped up item is the union of the locations and sub-items

(respectively) of its zip-up components.

109

Also, the attribute values of the zipped up item's left-hand side are computed based on

those of the zip-up components. The attribute combination function associated with each

attribute held by the zip-up components' left-hand sides is used to compute a new value

of the attribute. In particular, for each attribute ai associated with the left-hand side's

non-terminal type, ai's combination function is applied to the attribute values held for ai

by the left-hand sides of the zip-up components. (The attribute combination functions may

be partial functions. If the function is not defined for the attributes of some left-hand sides

whose items are being zipped up, then the zip-up attempt fails.)

3.5.2 Recognizing Aggregation-Equivalent Flow Graphs

Following the discussion of Section 3.4.2, this section describes the recognition of aggregation-

equivalent flow graphs first for the restricted formalism in which no terminal has an aggre-

gate port type and then for the less restrictive formalism. Recall that the recognition

process for the restricted formalism included "inserting" Spread and Make nodes whenever

an isomorphic occurrence of a right-hand side is reduced to a left-hand side non-terminal

node with aggregate ports. The Spread and Make nodes serve to bundle up the edges

surrounding the non-terminal node. The recognition process also "simplified" any Make-

of-Spread composition that results from the insertion of Spreads and Makes. These actions

are simulated by the flow graph chart parser.

In particular, items keep track of where the right-hand side is found, using a set of

location pointers, which indicate which edges correspond to the inputs and outputs of the

right-hand side of the item's rule. To represent the addition of a Make or Spread, the

location pointers are placed in tuples, which are nested in tree structures. The nested

tuples reflect the organization of the aggregation of the edges to which they refer. An

element of the tuple can be either another tuple or a set of location pointers. (A set of more

than one location pointer represents fan-in or fan-out.) When items are combined, their

location pointers are compared to see if they represent a Make-of-Spread that simplifies

correctly. The corresponding parts of the tuples are compared. If both parts are tuples,

they are compared recursively. If both are sets, the sets must have a non-empty intersection

for the comparison to succeed. If one is a set and the other a tuple, the comparison fails.

For example, Figure 3-37a shows the flow graph in the language of the grammar in

Figure 3-25, whose reduction is shown in Figure 3-26. Location pointers are shown as

integers annotating the edges and edge stubs. Figure 3-37b shows the items created by the

parser in parsing this graph. The nested tuple on the input in the item for D, for instance,

represents the nested Make nodes "inserted" during the reduction sequence of Figure 3-26.

The creation of the complete item for S shows the comparison between the nested tuples

on the output of D and the input of E.

Note that the simulation method used by the parser relies on using a bottom-up rule

invocation strategy. It compares the tuples of location pointers that are organized based

110

4y

(a)

A

......... 1o11@ IIIIIIII IIII

%_I

A

(b)

(C)

Figure 3-36: (a) A graph grammar that maximally shares the non-terminal A. (b) An input
flow graph containing two redundant instances of A. (c) An alternative view created by
"zipping up" the input graph.

IlI

(A)

< >~I~ «1 2>3y «5 6> 3:y>6

I~nvabiona:

(1)

Figure 3-37: (a) A flow graph with location pointers. (b) Items created during parsing.

112

S........ m• nnnnnI I mR • N--,mmn I I9

on the recognition of a rule's right-hand side, rather than predicting the organization and

then verifying it by trying to match the right-hand side at the predicted location.

We now consider recognizing flow graphs in the less restrictive formalism in which there

still are no aggregate port types on terminal nodes, but the type Any is a union type of

aggregate and non-aggregate types. Recognition involves a special-case simplification of

compositions of residual Makes (or Spreads) with the nested Spreads (or Makes) that are

"inserted" during reduction. Recall that to perform partial recognition, in which parts of

an aggregate port type used in the input graph are ignored, we need to "break up" the

residual Spreads (or Makes) so that recognizable portions of the flow graph are separated

from unrecognizable portions.

This is simulated in the state of the parser, using operations on the location pointers

of items. Residual Spreads and Makes are removed from the input flow graph. They are

replaced with fan-out and fan-in, respectively.

(As is discussed in Section 4.2.3, some of the information found in residual Spreads and

Makes is useful for generating documentation about which data structure clich(s were found

in a program and how their parts relate to user-defined structures' parts. This information

is placed in attributes on the fan-out or fan-in edges that replace a Spread or Make.)

In the combination operation, a nested tuple of location pointers "inserted" during

reduction of a rule's right-hand side may be compared with a flat, unordered set of location

pointers, representing the fan-out or fan-in edges that replaced a residual Make or Spread.

The combination is valid if for each list LP of location pointers in the fringe of the tree

formed by the nested tuple, at least one location pointer in LP is a member of the flat set

of location pointers. Not all of the pointers in the flat set of location pointers need to be

members of some list of location pointers within the nested tuple.

For example, the input flow graph generated from the example of Figure 3-28 is shown

in Figure 3-38. In creating a complete item representing the recognition of S, the flat set of

location pointers representing the residual Spread, (2, 3,4, 5}, is compared with the tuple

of location pointers, < 2,3 >, representing the aggregation of types x and y into A's input

port type P. (See Figure 3-38b.) Likewise, the tuple < 6, 7 > is compared with the flat set

of pointers {6, 7, 8, 9). Both comparisons succeed.

3.5.3 Matching St-Thrus

When two left-hand side ports of a rule correspond with each other in the embedding

relation, the rule contains a st-thru. Because st-thrus are part of the embedding relation

rather than the right-hand side flow graph, they are not matched in the same way as nodes

and edges of the right-hand side. They can possibly match any edge in the input flow graph.

St-thrus impose a global constraint. Suppose a rule for a non-terminal A contains a

st-thru involving ports labeled 1 and 3 on A, as in Figure 3-39. If an item completes for A

and is combined with a partial item, the complete item places a constraint on the locations

113

2 6

(a)Lv~i~ g 2: a&. h 2:5 9i

(2,3,4,5) <2.3> .. 6. 7 .6.7.8.9.

(b)

Figure 3-38: Simulating the break up of residual Spreads and Makes.

of non-terminals that are connected to A at ports 1 and 3 in the partial item's rule. The
constraint requires that these adjacent non-terminals be located at endpoints of the same

edge. The st-thru essentially imposes a constraint that the non-terminals connected to A

at ports 1 and 3 be connected to each other. (See Figure 3-40.)
St-thrus differ based on whether or not they are structurally constrained and whether

or not they are optional. A st-thru is structurally constrained if the embedding relation

restricts it to matching edges that fan out (or in) with edges coming into (or out of) an

isomorphic occurrence of a right-hand side. In other words, a st-thru is constrained if one
or both of the two corresponding left-hand side ports also correspond to some right-hand

side port.
Structurally unconstrained st- thrus are not restricted in this way. They exist when two

left-hand side ports correspond to each other and no other right-hand side port. These

types of st-thrus often arise when a right-hand side with Spreads and Makes is translated

to a non-aggregated right-hand side. If the output of a boundary Spread connects directly

to an input of a boundary Make and neither port connects any other ports, a structurally

unconstrained st-thru arises.

We refer to structurally constrained st-thrus as simply "constrained" st-thrus (and struc-

turally unconstrained ones as "unconstrained"), with the understanding that this is refer-

ring only to structural constraints. Most st-thrus, including unconstrained ones, have non-

structural constraints (in the form of attribute conditions) imposed upon them by their

114

(a,x)

13 5

Figure 3-39: Grammar containing a rule with a st-thru.

...................................

" .. '".d me • , -

,......... .

... mBml.................~•Q......I...........................a.a.ooo.--......

Actual constraint

l.a............................eo~.....loellu....m...........................

: 6 ...
F 3

Fiue34:Cntaito obnto ipsdbSttrs

*115

rule.

Constrained and unconstrained st-thrus are both matched to a set of edges, which is

then narrowed down, based on the context in which its rule's right-hand side is reduced to

its left-hand side. An unconstrained st-thru initially matches the set of all edges, while the

constrained st-thru matches the subset of edges that satisfy the restrictions imposed by the

embedding relation. These sets of matching edges are shrunk as non-structural constraints

are checked and the reduction of higher-level non-terminals in the parse tree occurs.

For example, suppose a Circular Indexed Sequence Insert and a Circular Indexed Se-

quence Extract non-terminal were recognized in the input graph, as shown in Figure 3-41.

When the locations of the Insert and Extract non-terminals are compared during combina-

tion, the location pointer tuples are compared element-by-element. The First part of the

output of CIS Insert represents an unconstrained st-thru and is initially matched to all edges

(shown pictorially by a wild-card *). During combination, this First part is matched with

the First part of the input to the CIS Extract instance. This narrows down its matching

set of edges to those indicated by location pointers 10 and 13. The Size part of the CIS

Insert output also comes straight through CIS Insert's right-hand side, but because it fans

out with the input to MOD, it is constrained to be matched to a small number of edges

(those indicated by location pointers 5 and 6).

Global constraints represented by the st-thru are imposed by propagating reductions

in sets of matching edges across non-terminals and across edges. For example, once the

item for CIS Extract extends the partial item of Figure 3-41, the wild-card matches can be

reduced to a small set of matches. Figure 3-42 shows the result of propagation of st-thru

match reduction. Now CIS Extract's output constrains the location of its Last part (to

location 9), restricting the location at which the second CIS Insert should be found.

Constrained and unconstrained st-thrus can additionally be described as either optional

or required. Required st-thrus must be assigned a match, while optional st-thrus need not.

Optional st-thrus are useful in the program recognition domain, where it is often the

case that there is no edge matching a st-thru. This occurs if no operation makes use of the

data represented by the st-thru. For example, the edge indicated by the location pointer 18

in Figure 3-41 might not exist if nc. operation following the CIS Extract uses the Base part

of the output CIS. St-thrus representing data structure parts are optional. An example of

a required st-thru is that of the rule representing the Negate-if-Negative implementation of

the Absolute Value clich6. (See Figure 3-9.)

The only difference this designation makes is in what it means if the reduction of sets of

matching edges results in an empty set of possible matches. If the st-thru is required, this

empty set means the recognition of the rule's left-hand side failed. Otherwise, the set of

possible matches of an optional st-thru can become empty without causing the recognition

to fail.

116

Partial item:

9,(5,6).2>i

Complete Items for non-terminals found in input graph:

<B, F. 1. S, FC> <cB. F. L. S. FC>
14 <(7.8.,,(.6.> <(17,18),(1O,13).*.(5.6).2> 19 See Next

cis- Figure
Insert Exbtat

<16.¶,(15,7),(4,5,6).1> <I8,12,*,5,3>

-<B. F. L. S. FC> <B. F. L.. S. F>

1 e2'%D
ie .

\ *..%

117

S....... °°°°.....° °. °.....

14 <(17,18),'.
9(56)2>

< 16.*,(15.7).(405,6), 1 >

..

Compare Sort <B, F. L S. FC>
Derivations: (17 18),(10 13)'(56)2 19

<(17,18), '. 9,(5,6),2> CIS-
I I I I I Extract

<(17,18),(10,13),*,(5,6),2>

<B. F, L S. FC>

14 <(17,18),(10,13),
9,(56)2>

Insert

...

Resulting partial item. Notice that the location pointers have been propagated to
replace the wild-cards.

Figure 3-42: Propagating matches of st-thrus.

118

3.6 Related Graph Grammar Work

Graph grammars have been used widely in automatic circuit understanding and verification,

pattern analysis, compiler technology, and in software development environments. (See

[34, 35, 134] for several examples in these areas.)

There are many varieties of graph grammar formalisms. They vary both in the classes
of graphs that are generated and by the embedding mechanisms used. In this section, we

briefly discuss the classes of graphs commonly studied and relate our flow graphs to them.

Then we discuss typical embedding mechanisms. Finally, we describe interesting graph

parsers related to ours.

3.6.1 Classes of Graphs

Early graph grammar work focused on traditional graphs, in which nodes do not have

distinct entry and exit points ("ports"). This includes work on webs and web grammars

[27, 94, 102, 105, 119]. These traditional types of graphs are also generated by node-label

controlled (NLC) graph grammars [120] and by the algebraic rewriting approaches [23, 33].

(NLC grammars are controlled by node labels (i.e., our nod- .,es) in that labels are

important in choosing a node to rewrite and in that the einbedding relation is defined in

terms of labels, rather than specific nodes in a rule's right-hand side or in the host graph.

Edge-label controlled graph grammars [52 92] are closely related in that they can simulate

NLC grammars.) NLC grammars and algebraic rewriting is discussed further in Section

3.6.2. Their relation to each other is studied by Kreowski and Rozenberg in [80].

Traditional graphs are a special case of graph classes in which nodes have ports. These

more general graph classes include Lutz's flowgraphs [90] and hypergraphs [53], as well as

our flow graphs.

Lutz's [90] "flowgraphs" are a special type of our flow graph. They contain, in addition

to nodes, ports, and edges, tie-points which are intermediate points through which ports
are connected to each other. Since each port is connected to exactly one tie-point, fan-in

and fan-out are not captured to the same level of granularity as is captured by flow graphs.

For example, they cannot express the following situation: an output port P, fans out to

input ports P3 and p4, while output port P2 is only connected to P4.

Hypergraphs can be seen as flowgraphs (in Lutz's sense), where nodes in a hypergraph

correspond to tie-points and hyperedges correspond to flowgraph nodes. Engelfriet and

Rozenberg [36] and Vogler [136] study the relationships between hypergraph grammars and

boundary NLC graph grammars. (In boundary NLC grammars, no two non-terminal nodes

are neighbors in any right-hand side [121].)

119

3.6.2 Embedding Mechanism

Our basic flow graph formalism makes use of a simple embedding relation to specify the

connectivity of the right-hand side with the host graph when a left-hand side is expanded

during derivation. This type of embedding mechanism is quite common. However, in some

formalisms, embedding is more complicated.

In NLC rewriting, the connectivity of the right-hand side nodes with the nodes in the
"embedding area" (i.e., those nodes adjacent to the left-hand side node being expanded) is

determined by a connection relation on node labels (types). In particular, a right-hand side

node is connected to a node in the embedding area if their node labels are related by the

connection relation. (For example, if label 1I is related to label 12 all right-hand side nodes

having label 11 become connected to all nodes of label 12 in the embedding area.)

In set-theoretic approaches [96], the embedding can involve nodes that are not in the

immediate neighborhood of the left-hand side being replaced. The nodes to which the

right-hand side nodes are connected are specified by path expressions, such as "all nodes

that can be reached from the left-hand side node by following an outgoing edge of label k

and then an incoming edge of label i." These complicated embedding transformations are

used mainly in graph generation (e.g., for specification purposes in software development

environments [98, 97]).

Part of each production in the algebraic approach [38] is a set of gluing points, which

can be edges as well as nodes. Both the left- and right-hand sides of the productions can

be graphs containing more than one node. The gluing points are two sets of nodes and/or

edges, one for each side of the production. These sets are in bijective correspondence with

each other. They remain when the left-hand side is removed and form an anchor for the

right-hand side that replaces it. In other words, the embedding relation is captured in the

sets of corresponding gluing points.

3.6.3 Graph Parsers

Work on applications of graph grammars has focused mostly on graph generation, rather

than analysis. However, recently there has been more interest in developing graph parsers.

Bamji [8, 9] developed a special case of a chart parser for graphs equivalent to Lutz's flow

graphs. The interesting aspect of Bamji's graph grammar formalism is that his grammar

rules have an embedding relation in which each left-hand side port can be related to a set

of right-hand side ports. Unlike tuples in our embedding, these sets are not ordered and

the right-hand side ports aggregated in them are homogeneous in that they have the same

type and are not distinguished by position in the set. The chart parser imposes simple

set-intersection conditions between the port sets of adjacent non-terminals in right-hand

sides of rules.

Bamji developed this formalism for the purposes of representing and verifying circuit

designs. His parser's efficiency is gained by using only deterministic grammars and using

120

a straightforward rewriting: whenever a right-hand side matches a subgraph, replace it

(destructively) with the left-hand side. Bamji's parser does not try to obtain all possible

parses, just one is sufficient for verification.

Franck [44] and Kaul [69, 70] study precedence graph grammars. They both present a

precedence graph parser which is a straightforward extension of string precedence parsing

using the well-known Wirth-Weber precedence relations. Graphs can be parsed in linear

time with these parsers. However, precedence graph grammars are restricted to be unam-

biguous, and uniquely invertible. Precedence techniques may be useful to use on subsets of

our graph grammar that have these properties.

Bunke and Haller [18] and Peng, et al. [103] have both developed a parser for plex

grammars which are generalizations of Earley's algorithm similar to Brotsky's.

Wittenburg, et al. [150] give a unification-based, bottom-up chart parser which is similar

to Lutz's and our chart parser. Grammar rules place a strict (total) ordering on the nodes

in their right-hand sides. This ordering determines the order in which items are extended.

This creates fewer partial analyses, which is advantageous in terms of efficiency, but is a

drawback in terms of generating partial results when the graph contains unrecognizable

sections.

121

Chapter 4

Applying Parsing to Recognition

Chapter 2 described the cliches that we have collected in our library and Chapter 3 described
the basics of the parsing technique that we apply to recognize them in a wide range of

programs. This chapter fills in the details of encoding programs and cliches in the flow
graph formalism and of applying the flow graph parser to the partial program recognition

problem. Sections 3.3 and 3.4.2 gave glimpses of how programs and clichds are encoded in
the flow graph formalism. In Section 4.1, we review and fill in more details of this encoding.

Then in Section 4.2, we complete the picture by providing details of GRASPR's architecture.

4.1 Expressing Programs and Cliches in the Flow Graph

Formalism

We use the flow graph formalism to represent programs and programming clichds. In partic-
ular, flow graphs serve as graphical abstractions of programs, flow graph grammars encode
allowable implementation steps between abstract operations and lower-level operations, and

the derivation trees resulting from parsing give the program's top-down design.
The flow graph is used to represent the operations of a program and the dataflow between

them. Each non-sink node in a flow graph represents a function, with ports on the node

representing distinct inputs and outputs of the function. The ports' types are determined
by the signature of the function. Sink nodes represent conditional tests. The edges of a flow

graph represent dataflow constraints between the functions and tests. When the result of
a function is consumed by more than one function, the edges representing the dataflow fan

out. Edges that fan in represent the conditional merging of more than one dataflow. For

example, Figure 3-8 shows the attributed flow graph representation of the program RIGHTP,

given in Figure 3-7.

Information about a program's control flow, recursion, and data aggregation is captured

in the attributes of the flow graph representation of the program. Section 4.1.1 describes

the key attributes and conditions used in representing programs and programming cliches.

Attributed flow graphs and grammar rules can become difficult for people to read. For

122

presentation purposes, we make use of a macro-notation, called the Plan Calculus (developed

by Rich, Shrobe, and Waters [110, 114, 117, 127, 137]), which graphically summarizes some

classes of attributes and conditions, making them more readable. Section 4.1.2 introduces

this notation. The Plan Calculus is used I ,re only as a visual aid; the primary representation

used by GRASPR is the flow graph.

The Plan Calculus aided us in building the ichc library. It formed a representational
stepping stone between English descriptions of clichds and their encoding as attributed

flow graph grammar rules. It facilitates the capture of relationships between cich6s, such

as implementation relationships and temporal abstractions. Section 4.1.3 discusses this

further.

Section 4.1.4 demonstrates how the event-driven simulation clich6 and the clichds it is

built upon are expressed in the flow graph formalism. It goes from the English description
of the clichds to their Plan Calculus rendering and then to the flow graph grammar rules

that GRlSPR actually uses to recognize Pisim.

4.1.1 Attribute Language

Attributes on flow graphs store control flow, recursion, and data aggregation information

about a program. In particular, each node has a control environment attribute which

specifies when the operation represented by the node is executed, relative to when other

operations in the program are executed. Nodes in the same control environment represent

operations that are performed under the same conditions (so they are each performed the

same number of times). These nodes are said to co-occur.

Nodes that represent conditional tests have two additional attributes, success-ce and

failure-ce. Operations in the success-ce (resp. failure-ce) control environment are executed

when the conditional test succeeds (resp. fails).

Control environments form a partial order. A control environment cei is less than or
equal to another control environment cei (denoted cei C_ cej) iff nodes in cej are performed

at least as many times as those in cei. For example, the success-ce of a node representing a

conditional test is less than or equal to the control environment of the same node, because

operations on a conditional branch are performed less often than the conditional test.

A flow graph representing a recursive function F contains a node whose type is F.

This is called the recursive node. We assume our recursive functions always have at least

one exit test and are singly recursive. (Section 7.2.1 discusses extensions for modeling

multiple recursion in the future.) Figure 4-2 shows the flow graph representing the program

HT-Insert given in Figure 4-1. (This is a simple hash table program in which Structure

is an array of buckets. Each bucket is a list of strings, ordered lexicographically.) The

recursive node is the one labeled "Splice-In-Bucket."
We distinguish three control environments in flow graphs representing recursive func-

tions:

123

(defun HT-Insert (Element Structure)

(let* ((Key (Hash Element Structure))

(Bucket (aref Structure Key)))

(copy-replace-elt (Splice-In-Bucket Element Bucket)

Key

Structure))))
(defun Splice-In-Bucket (Element Bucket)

(if (null Bucket)

(cons Element Bucket)

(let ((Entry (car Bucket)))

(if (string> Entry Element)

(cons Element Bucket)

(let ((Rest (cdr Bucket)))

(if (string= Entry Element)

(cons Element Rest)

(cons Entry (Splice-In-Bucket Element Rest))))))))

Figure 4-1: A recursive function with multiple exits.

" recur-ce - the top-most control environment of the flow graph representing the recur-

sive function. It is the control environment of the node representing the first operation

performed by the recursive function. In Figure 4-2, this is ce2.

"* feedback-ce - the control environment of the node representing the recursive call within

the body of the recursive function. In Figure 4-2, this is ce8.

" outside-ce - the control environment in which the recursive function is called and

into which it exits. In Figure 4-2, it is cel. (If the recursive function is analyzed

independent of any callers, a new control environment is created to be the outside-

ce.)

The feedback-ce and the outside-ce are always C_ the recur-ce. Operations performed
before the exit test (i.e., in the recur-ce) are always performed more times than the recursive

call or the operations done upon exit, since they are performed when the recursion exits

as well as when it repeats. If there is only one exit, then the node representing the exit

test has the recur-ce as its control environment, the feedback-ce as its failure-ce, and the

outside-ce as its success-ce. (If a new control environment had been created to represent

the outside-ce, then it becomes equal to the success-ce of the test.)

Summing Incomparable Control Environments

Some subsets of control environments are said to be incomparable. In particular, if ce. and

Ceb are the success-ce and failure-ce of the same node, then the set {cea, Ceb} is incomparable.

124

Element Structure

Hash ce.. cel

arf Ce: cel

(Eloement)

__________(Bucket)

cec: ce2 Lnull-test
success-ce.* ce3
failure-ce: ce4 car ce:. ce4

C cons cec. ce3 ce:- ce4 C string>

Ce: ce4(nults

success-ce: cc6 C cr3c. e

ailure-ce:- ce5 K

ce: ce5 cons

1 ce.- ce6

ce-frcm: ce8

Figure 4-2: Flow graph representing RT-InSert.

125

In addition, the set of control environments in which a recursion is exited are incomparable.

(There will be more than one such control environment if the recursion has multiple exits.)

These are the set of control environments of the nodes that are executed in the base cases

of the recursion. For example, in Figure 4-2, the set {ce3, ce5, ce7} is incomparable.

We define a partial function +,, as the following. If a set S of control environments

is not incomparable, then +ce(S) is undefined. Otherwise, if S is a success-ce/failure-ce

pair for the same node, then +c,(S) is the control environment of that node. If S is a

set of control environments in which a recursion is exited, then +ce(S) is the outside-ce of

that recursion. In Figure 4-2, +ce{Ce3,ce5,ce7} = cel, while +ce{Ce3,ce5} is undefined.

(Intuitively, the result of -, can be viewed as the control environment in which operations

are performed as many times as the combined number of times operations in the control

environments of the incomparable set are performed.)

Another function •E, on sets of control environments is defined recursively in terms of

+ce as:

9 If IS = 2, then T,, S = +c,(S).

* If there is a set S' C S which is incomparable, then Ec, S = _,e(+,eS' U (S - S')).

* Otherwise, E, S is undefined.

In other words, if a single control environment can be obtained by recursively reducing

(using +,e) all incomparable subsets of the input set S, then that control environment is the

result. Otherwise, cE, S is undefined. For example, in Figure 4-2, E,, {ce3, ce5, ce7, ce8} =

2e,{ce3,ce5,ce6} = Ec,{ce3,ce4} = ce2. Also, Fce{ce3,ce5,ce8} = undefined, while

E I{ce3, ce5, ceT7} cel.
This summing function is used as the attribute combination function for control en-

vironment attributes. Recall from Section 3.5.1 that when two items are zipped up, the

attribute values of the resulting item's left-hand side are computed based on those of the

zip-up components. Each attribute has an attribute combination function associated with

it. This is used to compute a new value of an attribute, based on the values of that attribute

held by the zip-up components' left-hand sides. For all control environment attributes, the

attribute combination function is Zc,. This is a partial function. If the sum is not defined

for the set of control environments being combined, the zip-up of the items involved fails.

Partial Order Graph of Control Environments

We represent the partial ordering of control environments in an annotated partial order

graph which facilitates the operations of checking C and computing +ce and "ce The

annotated partial order graph has nodes representing control environments. An edge is

drawn from one node representing cei to another representing cej iff cei C_ cej. This edge is

annotated with the set of control environments that together with the source cei form an

incomparable set.

126

StceS, ce7} {c4 ce3j

{e3ce6} c4

Recursion inforration: [recur-ce: ce2, feedback-ce: ce8, ouuside-ce: cel]

Figure 4-3: Annotated partial order graph representing the relationships between the control

environments of HlT-Inser't.

Associated with this graph is a set of triples, one for each recursive function call rep-

resented by the flow graph. (There may be more than one if the flow graph represents a

program that calls more than one recursive function, including nested recursions.) Each

triple contains the recur-ce, feedback-ce, and outside-ce of the flow graph representing the

recursive function.

For example, Figure 4-3 shows the annotated partial order graph for the control envi-

ronments of the flow graph in Figure 4-2. One triple of recursion information is associated

with the graph.

Edge Attributes

Besides attaching control environment attributes to nodes, control flow information is con-

tained in attributes on edges. Each edge holds a ce-from attribute, which indicates the

control environment in which the edge carries dataflow. 'or example, in Figure 4-2, the ce-

from attribute on the edge from tho top-most cons (in the figure) to the copy-repl.ace-elt
indicates that the operation copy-reptace-sit receives dataflow only in the control environ-

ment ce3 which is the success-ce of the first numr-tet node. (Edges that fan in represent

conditional merging of dataflow.)

Each edge also carries a constant-type attribute whose value is either a constant (such as
T, ilIL, oa) or udeiined, depending on whether the edge represents dataflow from a constant.

Flow graphs for programs containing user-defined aggregate data structures hold at-
tributes that represent the aggregation information. Each edge holds an accessor attribute

that describes how the data it carries results from the destructuring of some data struc-

127

ture. Each edge also holds a constructor attribute that describes how the data it carries

becomes part of some data structure. (The value of these attributes is undefined if the

edge is not carrying data involved in some aggregation.) The attributed flow graph can

be seen as the flow graph that results from 1) making a flow graph that includes Spreads

and Makes to represent aggregation and then 2) transforming it into a minimally aggre-

gated flow graph using aggregation-removal transformations, and 3) replacing any residual

Spreads and Makes with fan-out and fan-in edges, respectively.

As these nodes are removed, the naming information they contain is placed into at-

tributes. This information is useful in presenting the results of recognition and can be a

source of guidance for the recognition system, as discussed in Section 4.2.3, 6.4.1, and 7.2.3.

Because these attributes are primarily used by the Paraphraser, we defer describing them

until Section 4.2.3.

Input and Output Correspondences

In addition to control environment attributes, flow graphs for recursive functions have at-

tributes which represent the relationship between the inputs (resp. outputs) of the flow

graph and the inputs (resp. outputs) of the node representing the recursive call. In par-

ticular, an output port po input-corresponds to an input port pi iff po is connected to the

jth input of the recursive node and pi represents an input to an operation that receives

dataflow from the jth input of the recursive function.1 Similarly, an input port pi output-

corresponds to an output port po iff pi is connected to the kth output of the recursive node

and P, represents an output that sends dataflow to the kth output of the recursive function.)

The input-corresponds and output-corresponds relations are not symmetric, transitive, or

reflexive.

For example, in the flow graph representing HT-Insert, shown in Figure 4-2, the output

port on the cdr node input-corresponds with each of the input ports of null-test, car, cdx,

and the second input of each of the cons's in control environments ce3 and ce5. (Input

and output correspondences are illustrated by subscripted asterisks and stars, respectively.)

The second input of the cons in the feedback-ce output-corresponds with the output port

of each of the cons nodes.

Because recursions can be nested within each other, it is necessary to be more specific

about the conditions under which a pair of ports input- or output-correspond (i.e., in

which recursion does the correspondence occur). This is done by associating with each

correspondence relation the feedback-ce of the recursion in which the ports correspond. All

correspondences in this flow graph have the feedback-ce ce8 associated with them.

'The input-corresponds relation was previously called feeds-back [145] in flow graphs representing tail-

recursive functions, but it was renamed in the current representation which is generalized to represent regular
recursion, as well as tail recursion.

128

a Negate-If- 2<31nu

Negative ats

Attribute-Conditions: negate 2

1. (source? (p> < 2) 0)
2. (ce= (ce-from (e> negate 2 Negate-If-Negative 2))

(failure-ce (n> null-test)))
3. (ce= (ce-from (st-thru> 1 2))

(success-ce (n> null-test)))
Attribute-Transfer Rules:

1. ce := (ce (n> null-test))

Figure 4-4: Flow graph grammar rule for Negate-if-Negative, with actual attribute condi-

tions.

Attribute Conditions and mransfer Rules

Graph grammar rules imrpose constraints on the attributes of the flow graphs to which their

right-hand sides match. The attribute conditions and attribute-transfer rules are expressed

in terms of:

" Functions that map a port, node, or edge in a rule's right-hand side or a rule's st-

thru to the port, node, or edge in the input graph to which it is matched when the

right-hand-side (and st-thru) are recognized. These are p>, n>, a>, and st-thru>.

" Attribute accessor functions which when given a node or edge return the value of that

attribute of the node or edge. For example, ce-from computes the ce-from attribute

value of an edge. These accessor functions are both primitive accessor retrieval func-

tions and functions built on top of them, such as control environment computations

involving +,,.

" Relations on the attribute values, such as E, and predicates on nodes and edges that

are defined in terms of these primitive relations and the attribute accessor functions.

For example, co-occur is a predicate that takes two nodes and checks whether their

control environments are equal.

For example, Figure 4-4 gives the rule for Negate-if-Negative, a common implementation

of the Absolute-Value clich6. (This rule is repeated from Figure 3-9, where the attribute

conditions were given informally.) In the first condition, (p> < 2) refers to the input graph

port matching the port labeled 2 on <. Source? tests whether this port receives dataflow

from a constant equal to 0.

129

a Comning-
' Up 2 11+

Attribute Conditions:

1. (input-corresponds? (p> 1+ 2) (p> 1+ 1)
(feedback-ce (innermost-recur (n> 1+))))

2. (ce= (ce-from (st-thru 1 2))
(recur-ce (innermost-recur (n> 1+))))

Atbibute-Tramnsfer Rules:

1. ce := (ce (n> 1+))

Figure 4-5: Grammar rule for counting-up clich6.

In the second condition, 9> is used to refer to an edge in the input graph whose source

matches an output of the rule's right-hand side. It constrains this edge to have a ce-from

attribute that is equal to the failure-ce of the node that matches null-test.

The third condition uses st-thru> to refer to an edge that matches the st-thru. It

constrains this edge to have a ce-from attribute that is equal to the success-ce of the node

that matches null-test.
The attribute-transfer rule computes the control environment of the left-hand side node

to be the control environment of the node matching null-test.

Attribute accessor functions are provided to compute the recursion information for the

innermost recursion containing a particular node. These are used in many constraints

for iterative clich6s. A typical constraint is that two ports input-correspond or output-

correspond in the feedback-ce of the innermost recursion containing some node.

For example, Figure 4-5 shows the grammar rule representing the iteration clich6,

counting-up, which repeatedly increments the value of its input, which starts with some

initial value and is subsequently the result of the increment performed on the previous it-

eration. The rule constrains the input graph ports matching the output and input ports

of 1+ to input-correspond in the feedback-ce of the innermost recursion in which the input

graph node matching 1+ occurs.

4.1.2 The Plan Calculus

Flow graphs annotated with the attributes and conditions described in the previous section

can become difficult for people to read. For presentation purposes, we make use of a graphical

notation, called the Plan Calculus [110, 117], which aids people in viewing flow graphs with

130

certain classes of constraints pertaining to programming. However, although the Plan
Calculus is used as a visual aid, the underlying attributed flow graph representation is

conceptually primary to our recognition approach.

The Plan Calculus is a graphical formalism for representing programs, cliches, and
relationships between clich6s. In the Plan Calculus, both clich6s and individual programs

are represented as plans. The relationships between clich6s are captured in overlays. This
section briefly describes plans and overlays as they relate to our attributed flow graph

formalism. (For more details, see Rich [110, 117].)

A plan graphically represents the operations of a program and the data and control flow
constraints between them in what is called a plan diagram. (Plans also specify preconditions

and postconditions in a separate logical language.) A plan diagram is a hierarchical graph
structure composed of boxes and arrows. Boxes denote operations and tests, while arrows

denote control flow and dataflow.

Plan diagrams can be seen as graphical depictions of flow graphs with certain classes

of attributes and conditions - those that pertain to control flow and data aggregation.
Plan diagrams and flow graphs share the same dataflow structure in that boxes represent

operations and arcs denote dataflow between them. However, plan diagrams also have arcs

that denote control flow and join boxes that represent the merging of control flow. A control
flow arc from a box A to a box B denotes that B eventually (not necessarily immediately)

follows A. A branch in control flow is represented by a test box. The rejoining of control
flow is represented by a join box. It has two sets of incoming dataflow arcs, one for each case
of the corresponding test that caused the control flow to branch out. The set of dataflow
arcs leaving the join carry the data of the set of inputs on either the T or the F side of the
join, depending on whether the T or the F branch (respectively) of the conditional is taken.

Like flow graph edges, dataflow arcs may fan out (which means the result of an operation
is used by more than one operation). However, they cannot fan into the same input, as
edges can in flow graphs. Instead, they are merged by join boxes. Control flow arcs may

fan in or out.

Figure 4-6 shows an example of a plan diagram, representing the following code fragment.

(lot ((tax 0.0))
(when (> gross min)

(setq tax (* percent gross)))
C- gross tax))

Solid arcs denote dataflow; cross-hatched arcs denote control flow. Each box in the plan
has a label, composed of a part name and a type. For instance, the label "multiply:*"
specifies that the plan in Figure 4-6 has a part named "multiply" of type "*." The part
names serve to distinguish between boxes in the plan that have the same type. The part
names in a given plan diagram must be distinct. The part "test" is a test box. Although in
this example, "test" has no data outputs, in general, data may flow out of a test box from
either the side labeled T or the side labeled F, depending on whether the output is produced

131

0.0

test:
,udl-test
F T

The~~~
o t o l w a c ,t s ,a dj i o

xemrpare:
e tt e c n rlfo

n o m t o h ti

multiply:
X

F T

Figure 4-6: The plan diagram for a code fragment.

when the test succeeds or fails, respectively. The box named "end" is a join. Its outgoing

dataflow arc carries the data coming from "multiply" when GROSS>MII (and the F branch

of "test" is executed), and 0.0, otherwise.

The control flow arcs, test, and join boxes represent the control flow information that is

in the control environment attributes. Boxes that represent operations that are tied together

by control flow arcs correspond to nodes that are all in the same control environment in our

flow graphs. The relationships between control environments are reflected in the structure

of the control flow arcs. The ce-from attributes and conditions on dataflow edges are

represented by dataflow routed through joins, which explicitly specify in which case of a
conditional branch data flows from a particular operation to another.

Control flow arcs are sometimes omitted when there is no conditional structure (i.e., all

operations are in the same control environment). For example, in Figure 4-6, the control

flow arcs between "compare" and "test" and between "end" and "subtract" can be omitted.

Plans may contain other plans as parts. If the type of a plan and a subplan within it

are the same, then the plan is recursively defined. An example is given in Figure 4-7. This

is the plan diagram representing the following code fragment which iterates over a list L,

counting the number of elements in it. A dashed box delimits the recursive subplan, with

enough details filled in to show the input- and output-corresponds relations.

(LET ((COUNT 0))
(LOOP (WHEN (NULL L) (RETURN COUNT))

(SETQ L (CDR L))

(SETQ COUNT (1+ COUNT))))

132

S rt

continue:

cdr-and -count

----- -- -- ------- -

F T

circular-indexed-sequence

Figure 4-8: Data plan for Circular Indexed Sequence.

133

. Old., Circular-Indexed-Sequence

ase: Sequnce First: Integer Size: Integer Last: Integer Fill-Count: Integer

-IItracF

Access-First: Update-First.

Dec-Count:

. ..r

e e~d

....------

H ase: Sequnene First: Integer Size: Integer Last: Integer Fi-CutIter

New: Circular-Indexed-Sequence

CIS-Extract

Figure 4-9: Plan for extracting an element from a Circular Indexed Sequence.

Plan diagrams can contain data as parts. A data plan is a plan whose parts are all

either data or (hierarchically) data plans. For example, Figure 4-8 shows a data plan

diagram representing the Circular Indexed Sequence (CIS) data structure. Figure 4-9 shows

a hierarchical plan that contains both data and computational parts. It is the plan diagram

for the familiar computation of extracting an element from a CIS. The two data subplans,

which represent the aggregation of data, depict the accessor and constructor information

that we encode in accessor and constructor edge attributes on flow graphs.

4.1.3 Codifying Cliches: Using the Plan Calculus as a Stepping Stone

Plans are used in the Plan Calculus both to represent programs and to define cliches.

Relationships between clich6s are represented by overlays. An overlay is a pair of plans and
a set of correspondences between their parts. They show how an instance of one clich6 can

be viewed as an instance of another. Overlays provide a general facility for representing

common shifts of viewpoint, such as implementing specifications and data abstractions, and

temporally abstracting iterations.

As grammar writers, we found it easier to express clich6s in the Plan Calculus first and

then to translate the plan definitions and ove-lays into graph grammar rules.

This section describes overlays and shows examples of how relationships between cliches

are captured in them. It then describes how overlays and plan definitions of cliches are

134

Old: Circular-lndeed-Sequencei- ------------------------ Cirecllar-olnleted'Sequenee"

base: first: size: last: fill-Commt:

a sequence integer integer integer integer

Old: FIFO

Access-First: Updnt-Firs: Dec-Count: FIFO-

bse: fc: stcount: I Di er- d-

inee negr itgrSequence-as-FIFO

I Output: New

CIS-FWrao-as-FdFO-Deq.u

Figure 4-10: Implementation overlay showing how FIFO-Dequeue can be implemented by

CIS-Extract.

encoded in attributed flow graph grammar rules.

Implementation Relationships

Recognizing clich6s on multiple levels of abstraction requires being able to view some clichfs

as implementations of more abstract clich&s. In the Plan Calculus, implementation overlays

capture these relationships.

The plan on the right of an implementation overlay is the plan definition for an abstract

operation or data structure. The plan on the left of the overlay is the plan definition of a

correct implementation of the abstract operation or data structure represented on the right.

For example, Figure 4-10 shows an implementation overlay that expresses the relation-

ship between the abstract clich~d operation FIFO-Dequeue and one possible implementation

135

of it, which is as a CIS-Extract clich6. The correspondences between the two sides of the

overlay show how the inputs and outputs of the abstract operation are related to those

of the implementation. They may be labeled with names of data overlays, as is the cor-

respondence between the input FIFO on the right and the input CIS on the left. The

CIS- Extract-as- FIFO- Dequeue overlay represents an implementation of the FIFO-Dequeue

operation, in which the FIFO is implemented as a Circular Indexed Sequence. The old and

new FIFOs of the FIFO-Dequeue operation correspond to the old and new Circular Indexed

Sequences of the implementation plan. These correspondences are labeled with the name

of the Circular-Indexed-Sequence-as-FIFO data overlay, which means that the old (resp.

new) CIS of CIS-Extract, when viewed as a FIFO correspond to the old (resp. new) FIFO

of FIFO-Dequeue.

Encoding Implementation Overlays in Grammar Rules

Our grammar formalism was developed to make it easy to represent shifts of viewpoint

from both abstract operations and abstract data structures to their implementations. It is

specifically able to encode the relationships expressed in implementation overlays, including

those in which the left-side plan definition contains data plans for aggregate data structures

as subplans.

Each plan definition of the algorithmic clichds is encoded in a flow graph grammar rule.

The type of the left-hand side node of the rule is the plan's name. The right-hand side is

the flow graph encoding of the plan, in which the control flow constraints summarized in

the structure of the plan are listed in attribute conditions. If the inputs or outputs of the

plan definition are data plans, the aggregation they represent is encoded in the embedding

relation of the rule.

In particular, suppose an input (or output) of a plan definition is an aggregate data
structure of type D, represented by a data subplan. The rule encoding of the plan definition

will have a left-hand side port whose type is D which corresponds to a tuple of right-hand

side and left-hand side ports. For each part pi of the data plan, the ith element of the tuple

is the set of right-hand side ports (if any) that encode the inputs or outputs of boxes to
which the part is connected. If the part is connected directly to a part in another data plan

in the plan definition, then the tuple will include the left-hand side port that encodes that

data plan.

(One way to see this encoding is: the ports in the tuple are determined as if the input

(or output) data plan were replaced by a fringe Spread (or Make) node. The embedding

relation that results from removing these fringe nodes (as described in Section 3.4.2) is the

same as the embedding resulting from this encoding.)

For example, Figure 4-11 shows the flow graph grammar rule encoding of the CIS-

Extract plan definition of Figure 4-9. (This figure is a repeat of Figure 3-24.) Attribute

conditions and transfer rules are not shown.

136

1:Integer Demrment 2: Iteger @

K (6,11)

<Mpasp cs- 2: Any
CIS ROWi~ 1

: Integer nlMg entl 2: in r mod 3: Inege

<er,T,Temet Int

Memtmgc a~pe doenf naesh:--V:•u Tr

<Bde, Firs ize, Lus Fi1.C0ount> |(a,•)

Figure 4-11: Rule encoding plan for CIS-Extract.

Currently, we are limited to encoding only those plans that contain data subplans only

at its inputs or outputs. However, internal data subplans can be represented by collapsing
a sub-flow graph of the flow graph that represents the left side of the overlay into a non-
terminal. This sub-flow graph can have the data plan as its input/output.

In addition to plan definitions of cich6s, each implementation overlay is encoded as a
flow graph grammar rule. These rules contain single nodes on both sides. The left-hand

side node's type is the type of the abstract operation on the right side of the overlay. The
right-hand side node's type is the name of the implementation plan on the overlay's left

side.
The embedding relation encodes the correspondences between the two sides of the over-

lay. If there is a correspondence between an input (or output) of the abstract operation on
the right side of the overlay and an input (or output) of the implementation plan, then the
left- and right-hand side ports that encode them in the grammar rule correspond to each
other in the rule's embedding relation. For example, Figure 4-12 shows the grammar rule

encoding of the overlay of Figure 4-10.

Sometimes a correspondence is labeled with the name of a data overlay that maps
an abstract data type to a concrete one. This mapping information is associated with the
corresponding ports in the rule. Different ports may have different data mappings associated

with them, even if they are of the same type.

When a rule that encodes an overlay is used in a parse, it uncovers a design decision

to implement a certain abstract operation or data structure as another operation or data

137

a FIFO- 2:.Any a CLS. I Ayr
: FFODeque : 1 : _ 1CIS Extracta

3: 3:S

x x

L CwamA&-SeqwAce4-FIFO

1: Cirodff-Ind~deJ-qWAe-u-FIfO

Figure 4-12: Rule encoding the CIS-Extract-as-FIFO-Dequeue overlay.

structure. The overlay mapping information is used to generate documentation of this

design decision.

Temporal Abstraction

In recognizing an iterative program, it is often useful to view ichchd fragments of itera-

tive computation as operations on a sequence of values. This technique is called temporal

abstraction. (See [110, 117, 127, 138].)

For example, a common computation that occurs in iterative programs is: on each

iteration a function is applied to the result of the previous application of the function (or to

an initial value on the first iteration). This is called the generation clich6. The plan diagram

for this iteration clich6 is shown on the left in the overlay of Figure 4-13. A common instance
of generation is counting-up, in which the generating function is 1+.

The temporally abstracted view of generation is as an operation Generate that takes an
initial value and a generating function and creates a sequence of values - the values processed
over time, one per iteration. For example, the temporal abstraction of the counting-up clich6

is the operation Count, which takes an initial value (i) and produces the sequence of values
[i+ 1, (i + 1) +1,.]

The temporal abstraction of iteration clich6s is formalized in the Plan Calculus using
temporal overlays. These relate a temporally abstract operation (on the right side of the

overlay) to the plan for an iteration clichi (on the left side). Figure 4-13 shows a temporal

overlay formalizing the temporal abstraction of generation as a Generate operation.

The correspondence labeled with an asterisk is called a temporal correspondence. This
denotes the relationship between the left side data part (the input to apply) and the right
side temporal sequence (the output of Generate). It specifies that the first term of the
temporal output sequence of Generate is equal to the initial input to apply; the second term

is equal to the same part of the recursively defined plan; and so on recursively. Temporal

overlays always contain at least one temporal correspondence.

Temporal abstraction allows an iterative program that is composed of iteration clichfs

138

input:

contnnue:g input:

generation

c ni u : I X
I oupt

nex* I

generation

Figure 4-13: Temporal overlay showing the view of Generation as a Generate operation.

to be seen as a composition of functions on sequences. This makes the program as easy to

understand and reason about as a non-iterative (straight-line) program.

Temporal abstraction also enables GRASPR to undo common function-sharing optimiza-

tions within iterative programs, such as loop-jamming, using the same techniques it uses to

deal with function-sharing due to common subexpression elimination. (These are the tech-

niques for parsing structure-sharing flow graphs, as is discussed further in Section 5.1.5.)

Also, it is easy to encode clichds by building them out of temporally abstract operations,

rather than expressing them as large, flat iteration patterns. Additionally, a composition

of abstract operations is easier to describe than a combination of overlapping, interleaved

iteration clich6s.

Encoding Temporal Abstractions in Grammar Rules

As with implementation relationships, flow graph grammar rules are able to capture tem-

poral abstractions by a straightforward encoding of temporal overlays.

Like any other algorithmic clich6, the plan diagram for an iteration clich6 is encoded in

a grammar rule whose left-hand side is a node whose type is the name of the clich6. The

right-hand side is the dataflow structure of the plan diagram.

The relationships between the inputs (resp. outputs) of the recursively defined plan and

the inputs (resp. outputs) of the recursive subplan are captured in "input-corresponds?"

and "output-corresponds?" conditions. For example, the rule for generation is shown in

Figure 4-14. It has attribute conditions that constrain the output of f to input-correspond

139

Node-Type ComnsLs:

f: (lambda (node-type) T)

Attibute Conditios:

I. (input-corresponds? (p> f 2) (p> f 11
(feedback-ce (innermost-recur (n> f))))

2. (ce= (ce-from (st-thru 1 2))
(recur-ce (innermost-recur (n> f()))

Atribute-Trusfer Rules:

1. ce := (ce (n> f))
2. generating-function := (node-type (n> f)W

Figure 4-14: Grammar rule encoding the plan for Generation.

to the input of f.

This rule's right-hand side is not exactly the dataflow structure of generation's plan

definition. The plan definition takes a function as input, which is iteratively applied, but the

right-hand side flow graph does not explicitly represent this functional input and application.

Instead, the right-hand side node has a generalized node type, which means the rule imposes

a constraint on the types of input graph nodes or non-terminal instances that can match
this node. In the rule for generation, the node type constraint is loose: any node type

matches. So any instances of a clich6d unary operation or a unary primitive operation that

satisfies the input-corresponds relationships will be recognized as an instance of generation.

(Generalized node types are used as a shorthand for several rules that have the same left-

and right-hand sides, except for variation in the node types of the right-hand side nodes.)
The reason the apply operation is not encoded directly in the grammar rule as a node

of type "apply" is that there would not be an input graph node to match it. Also, this
grammar rule cannot be used to recognize generation in programs in which the generating

function is an arbitrary composition of functions. This limitation is discussed in more detail

in Section 5.2.3.
The type of the input graph node matching the right-hand side is transferred to the left-

hand side's generating-function attribute. This can be constrained in attribute conditions

of rules that use generation.

Control flow constraints captured in the iteration clich6's plan are encoded in attribute

conditions referring to the control environments of the recursion (recur-ce, feedback-ce, and

outside-ce). For example, the plan diagram for the clichi iterative-search is shown on the

left in the overlay of Figure 4-15. This iteration clich is the familiar pattern of repeatedly

140

Iterative -Search-as.Eariaest

Figure 4-15: Temporal overlay relating the plan for Iterative Search and the operation
Earliest.

applying some test until it is satisfied by some value. When the test succeeds, the iteration

is terminated and the value is made available outside the iteration. This iteration clich• is

encoded in the flow graph grammar rule shown in Figure 4-16. (In the figure, ce<= stands

for C_ and ce-- is the equality relation between control environments.)

The first condition in this rule encodes the constraint summarized by the control flow

arcs, test, and join: the test must be an exit test of the iteration. This constraint translates

to a condition on how the control environments of the test and the recursion relate. In

particular, the recursive call should occur in the failure-ce of the test and the recursion

should be exited in the success-ce of the test.

The attribute condition actually loosens this constraint slightly to allow for other exit

tests of the recursion. The two parts of the condition are:

1. It must be possible for the recursive call to occur in the failure-ce of the test (but

another exit test may occur in the failure-ce which can prevent this from happening).

This is expressed as: the feedback-ce of the innermost recursion containing the test

must be C- the failure-ce of the test.

2. The success-ce of the test is one possible way to exit the recursion (but there may be

another exit test in whose success-ce the recursion is also exited). This is expressed

as the success-ce must be _C the outside-ce of the recursion.

This '•onstraint occurs in the encoding of many iteration constraints, so we defined a

141

a a Id

Node-Type Consrmis.

P: (lambda (node-type) (predicate? node-type))

Attibute Condidows:

1.)and (ce<= (feedback-ce (innermost-recur (n> PM)
(failure-ce (n> P)}}

(ce<z (success-ce (n> PH)
(outside-ce (innermost-recur (n> P)))

2. (ce= (ce-from (st-thru> 1 2))
(success-ce (n> PM)

3. (ce= (ce-from
(output-edge (recursive-node (innermost-recur (n> PM((

(edge-sink (st-thru> 1 2))))
(feedback-ce (innermost-recur (n> P)

Aanbute-Tramfer Rules:
1. ce := (ce (n> PH)

2. search-predicate -= (node-type (n> P))

3: success-ce (success-ce (n> P))

4. failure-ce := (failure-ce (n> P))

Figure 4-16: Grammar rule for Iterative Search clich6.

predicate, exit-predicate, that takes a terminal or non-terminal test node and checks these

conditions. So the abbreviate form of the first condition in Figure 4-16 is (exit-predicate

(n> P)). For example, the top-most null-test terminal node in Figure 4-2 is an exit-

predicate.

The second attribute condition in the rule for iterative-search constrains the output to

carry dataflow in the success-ce of the test. This expresses the constraint that the output

of the iterative-search clich6 is the first element to pass the test.

The third condition encodes the constraint that is depicted by the data and control

flow edges from the recursive sub-plan to the exit join in the plan diagram of Figure 4-15.

This constraint is that the output dataflow of the recursion that merges with the st-thru

must carry dataflow in the feedback-ce of the innermost recursion containing the test. This

ensures that there is no additional computation being performed on the way up out of the

recursion.

The function recursive-node finds the input graph node that represents the recursive

call of the recursion containing the exit test. The function output-edge finds the edge from

some output port of a recursive node to an input port. This function is only used when the

recursive node is expected to have only one output port that connects to the input port.

(The constraint fails if this is not true.) In this case, output-edge finds the edge that shares

its sink with the edge matching the st-thru.

This rather awkward type of condition is imposing a structural constraint (as well as

the ce-from constraint) which cannot be expressed in the structure of the rule's right-hand

142

a a Iterative-
Search

Attribute-Transfer Rules:

1. ce := (outside-ce (innermost-recur (n> Iterative-Search)))

2. search-predicate := (search-predicate (n> Iterative-Search))

Figure 4-17: Grammar rule encoding the temporal overlay Iterative-Search-as-Earliest.

side flow graph. It requires that there be an edge from a recursive node directly to the

output that merges with the st-thru. This constraint is expressed in attribute conditions,

rather than in the structure of the right-hand side of the rule because there is no way to

represent the edge from the recursive node to the output without including the recursive

node in the right-hand side. The edge cannot be expressed as a st-thru, since its source is

not an input to the non-terminal. If we did include the recursive node, we would have to

specify its arity. This would severely restrict the programs in which it can be matched to

only those with recursive nodes of the specified arity.

The attribute-transfer rules shown in Figure 4-16 specify that all of the control envi-

ronment attributes of the exit predicate are transferred to the non-terminal representing

iterative-search.

A temporal abstraction of iterative-search is the Earliest operation. This operation takes

a sequence of values and a predicate and finds the first term in the sequence satisfying the

predicate. This relationship is shown in the overlay of Figure 4-15.

A temporal overlay is encoded in a g-ammar rule in the same way as implementation

overlays. Figure 4-17 shows the rule for Earliest.
When an iteration clich6 is viewed as a temporally abstract operation, the operation

is seen as being in the control environment from which the iteration is called (i.e., its

outside-ce). This is expressed in the attribute-transfer rules of the rule encoding a temporal

abstraction: the control environment of the temporally abstract operation is the outside-ce

of the innermost recursion containing the iteration clich6.

4.1.4 Examples of Codifying Simulation Cliches

We used the Plan Calculus as a stepping stone in capturing our clich6s and then encodint.

them in a flow graph grammar. This section gives a flavor for how we did this. It shows the

plan definitions and overlays that capture some of the clich6s that were described in English

in Chapter 2. It then gives the grammar rules GRASPR uses in recognizing these cliches.

Encoding Event-Driven Simulation Clich~s

Recall from Section 2.1.3, that the event-driven simulation algorithm consists of the follow-

ing key steps:

143

Event-Queue:
Input: Priority-Queue
Eventl I Address-Map:

Seauence

Start:
Priority-Queue
Insert

SStep:

Generate-Event-
Queues-and-Nodes

ffEnd.Co-Earliest-
EDS-Finished

Event-Driven Simulation

Figure 4-18: Plan definition for Event-Driven Simulation lich6.

"* The event-driven simulator is given an initial EVENT, whose Object is a starting MESSAGE

and whose Time is the MESSAGE's arrival time. This is added to the EVENT-QUEUE.

"* On each step of the simulation, the highest priority EVENT is pulled from the EVENT-QUEUE

and processed.

"* Processing an EVENT means simulating the handling of the MESSAGE in the EVENT's

Object part. This involves:

- looking up the ASYNCH-NODE in the ADDRESS-MAP that is indexed by the Destination-

Address part of the MESSAGE.

- updating the ASYNCH-NODE's Clock to be the maximum of its current time and

the Time part of the EVENT. This creates a new ASYNCH-NODE.

- creating a new ADDRESS-MAP in which MESSAGE's Destination-Address part is mapped

to the new ASYICH-IODE.

- handling MESSAGE in the context of the ASYNCE-NODE.

"* The event-driven simulation ends when the EVENT-QUEUE is empty.

The event-driven simulation algorithm is encoded as a composition of two temporally ab-

stract operations, called Generate-Event-Queues-and-Nodes and Co-Earliest-EDS-Finished,

and a Priority-Queue Insert. The Priority-Queue Insert is the operation performed on the

first step of the simulation, which is to add a starting EVENT to the EVENT-QUEUE.

The temporally abstract operations embody the following temporally abstract view of

the iterative actions of the simulator. The simulator generates two sequences: one is a

144

sequence of EVENT-QUEUEs and the other is a sequence of ADDRESS-NAPs, using an operation

called Generate-Event-Queues-and-Nodes. It does this by repeatedly applying a function

that extracts the highest priority element (an EVENT) from the EVENT-QUEUE and processes

it. These two sequences feed into a temporally abstract operation called Co-Earliest-EDS-

Finished. This operation returns the AkDDRESS-NAP in the input sequence of ADDRESS-NAPs

that corresponds to the first empty EVENT-QUEUE in the other input sequence of EVENT-QUEUEs.

(These two operations are described further below.)

Temporal abstraction allows us to express this clich4 as a simple composition of tempo-

rally abstract operations. The complexity of how data feeds back during iteration and how

the output relates to the exit predicate is pushed down into the encoding of the individual

operations.

GeneratP'-Event- Queues-and-Nodes

Generate-Event-Queues-and-Nodes is a temporal abstraction of the iteration clich6 Dequeue-

and-Process-Generation, as shown in the overlay in Figure 4-19. This iteration clich6 is a

special case of the generation clich6. The generating function is a composition of Priority-

Queue Extract and Process-Event.

This is slightly more complicated than the generation cich6 described in Section 4.1.3 in

that it generates two sequences, rather than one. On each iteration, the generating function

is applied to the two results of the function's application on the previous iteration,

Co-Earliest-EDS-Finished

Co-Earliest-EDS-Finished is a special case of a more general temporally abstract operation,
called Co-Earliest, which is related to the Earliest operation described in Section 4.1.3. Co-

Earliest takes two input sequences, S1 and 52, and a predicate and it returns the term of S2

that corresponds to the first term of S satisfying the predicate. Co-Earliest-EDS-Finished

is an instance of Co-Earliest in which the predicate is a test for whether the simulation is

finished.

It is a temporal abstraction of the Co-Iterative-EDS-Finished iteration clich6, as shown
in the overlay of Figure 4-20. This iteration clich6 is the iterative fragment that terminates

the simulation when the current EVENT-QUEUE is empty, returning the current value of the

ADDRESS-NAP.

The temporally abstract operation Co-Earliest-EDS-Finished views the sequences of
EVENT-QUEUEs and ADDRESS-NAPS processed over the iterations as its two inputs. It returns the

ADDRESS-NAP in the sequence of ADDRESS-NAPs that corresponds to the first empty EVENT-QUEUE

in the sequence of EVENT-QUEUEs.

The grammar rules in Figures 4-21 and 4-22 encode the information in the plan def-

initions and overlays discussed so far. A legend specifies port type abbreviations used in
the figure. (The plan definitions, overlays, and the corresponding grammar rules for the

145

Event-Queue: Address-Map.

Priority-Queue Seqee

Generate-

- -Event-Queues-

Proess g esEem

Generation III

De:ra Ion

II

------------------- I

Dequeue-Process-Generation

EDS-Generate-as-Dequeue-Process-Generation

Figure 4-19: Ove~rlay showing the temporal abstraction of the iteration clich6 Dequeue-and-

Process-Generation.

146

Event-Queue: Address-Map:
Priority-Queue Sequence

Exit: Priority-

Oueue-Enwtv?

F T

Co-Earliest-

Continue: EDS-Finished

Co-Iterative- SI II
EDS-
Finished : i

I T

Address-Map:

Sequence

Co-herative-EDS-Finished

Co-Iterative-EDS-Finished-as-Co-Earliest-EDS-Finished

Figure 4-20: Overlay showing the temporal abstraction of the iteration lichc Co-Iterative-

EDS-Finished.

147

2:jQEvent-Driven 4- 8 Queuse- 3:PQ I:PQ and-Nodes 3:S IS .0 IShed
j 2 Simulation -0 Jn~be

Attribue Conditions: [All nodes co-0acur]

Auibute-TransfeuRules: 1. ce ;=(ce (n> Priority-Queue-Insert))

ISGeerate 4:S a 2s Dequeue- 4:S

Event-Queues-ý * Process-

Atmbute-Trawasc Rules:
1. ce :=(outside-ce (innermost-recur (n> flequeue-Process-Generation)))

I.2S Deqtueue-4ISPocss 5S .

I.V Process- I 3:a Pirt-*- vn
a JIPQ Gnration PQJi% . a T Queuet- L: 4: --

Anttibute Conditions: f i tX

1. (input-corresponds? (p> Process-Event 4)

(p> Priority-Queue-Extract 1)
(feedback-ce (innermost-recur (n> Priority-Queue-Extract))))

2. (input-corresponds?)p> Process-Event 5)
(p> Process-Event 3)

(feedback-ce (innermost-recur (n> Priority-Queue-Extract))))

3. (co-occur (n> Priority-Queue-Extract) (n> Process-Event)))

AttribiztTraisfer Ruies:

I. ce (ce (n> Process-Event))

EmEvent
PQ=-Prioty-Quei

A--Any

A.N=Asydi-Node
M=Meusa
MoInaee

Figure 4-21: Grammar rules for some Event-Driven Simulation chch~s.

148

IS COEarhe~. I:S Co-Iterative-

EDS- IS *EDS- :

Ambure-Twfrui Ruler
1. ce :=(outside-ce (innermost-recur (n> Co-Iterative-EDS-Finished)))

2.S CbItefve----

Ms- 3:S Maity.I
.ov I:PQF6MI:PQ Queue-I

Attibute Codns:oe

1. (exit-predicate (n> Priority-Queue-Empty?))

2. (ce= (ce-from (st-thru> 2 3))
(success-ce (n> Priority-Queue-Empty?)))

3. (ce: (ce-from (output-edge (recursive-node (innermost-recur (n> Priority-Queue-Empty?)))
(edge-sink (st-tflru> 2 3))))

(feedback-ce (innermost-recur (n> Priority-Queue-Empty?))))

Atunbute.Traser Rules:

1. ce :=(ce (n> Priority-Queue-Empty?))

2. success-ce (success-ce (n> Priority-Queue-Empty?))

2. failure-ce (failure-ce (n> Priority-Queue-Empty?))

Figure 4-22: Grammar rules for clich~s used by Event-Driven Simulation 66ic6.

149

Priority-Queue operations of Empty?, Insert, and Extract are not shown here, since they

do not illustrate any new points.)

Process-Event

The plan definition for the Process-Event clich6 is shown in Figure 4-23. This clich6 consists
of the four operations that are performed when an event is processed (as described at
the beginning of this section): looking up a destination ASYNCE-NODE, updating its Clock,

updating the ADDRESS-MAP, and handling the MESSAGE.

This plan contains a hierarchical data plan within it, which represents the EVENT data

clich4. It has two parts: an Object (a MESSAGE) and a Time (an integer). The Object part
is a MESSAGE data plan, which has four parts. The Destination-Address part (an integer) is
used to index into the ADDRESS-MAP sequence to look up the destination ASYICE-N0DE. This

ASYNCH-NODE is then given as input to the Update-Node-Time clich6, along with the Time
part of the EVENT. A new ASYNCH-10DE is returned and NEW-TERM is used to insert it into a

copy of the input ADDRESS-MAP, using the Destination-Address part of the MESSAGE as an

index. Finally, a Handle-Message operation is used to simulate the handling of the MESSAGE
in the Object part of EVENT. This operation takes the new ADDRESS-MAP and the EVENT-QUEUE

as inputs, as well as the MESSAGE, and returns an ADDRESS-MAP and EVENT-QUEUE.

Figure 4-24 shows the rule that encodes the Process-Event clichU, plus two rules that
derive the non-terminals Lookup-Destination and Record-at-Destination. These two ad-

ditional rules are needed because we cannot directly encode the hierarchical data plan for
EVENT in the embedding relation of one grammar rule. Grammar rules can only represent one

level of aggregation at a time. (This is a limitation of the current implementation of GRASPR.
It does not appear to reflect an inherent difficulty with the graph parsing approach.) To get
around this limitation, we decompose the dataflow graph structure of the plan so that we
separate those parts that access parts of the MESSAGE from those that access the EVENT. We

then create rules taking the non-terminals Lookup-Destination and Record-at-Destination

to the sub-flow graphs representing those parts that access the parts of MESSAGE.

The rules for Lookup-Destination and Record-at-Destination contain embedding rela-
tions in which a left-hand side port is mapped to a tuple containing some empty elements
(denoted by asterisks). This represents the fact that not all of the parts of the MESSAGE data
structure are used by the operations represented by nodes on the rule's right-hand side.

Part of the Process-Event clich6 is the Handle-Message operation. We have grammar
rules that encode one possible cich6d implementation of this operation. (These are not
shown here, since they are more of the same type we have seen already.)

However, we would also like to allow Process-Event (and the rest of the Event-Driven

Simulation clich4) to be recognized in simulators in which the Handle-Message operation
is non-clichbd. That is, we would like to think of this as applying a non-ciched function

to the MESSAGE which simulates the handling of a real message by a real processing node.

150

:Event......

Object: Message

yp. Arumnt:~ Destination- Time:

SSAddressn In nger

Address-Map: Sequence

Select-Termn

Process:

Handle-MessaZe

New-Event-Queue: New-Address-Map:
Priority-Queue Sequence

Process-Event

Figure 4-23: Plan definition for the Process-Event clich6.

151

2:QEvent2- Destinaton

1:E 4I

Attribute Conditions: [ADI nodes co-occur

Attrbue-TransferRules: 1. ce (ce (n> Lookup-Destinationi I

Mnemonic nqk elexent namer
<Object, Time>

2IMDestination i 2:1enn

Attrnbute-Trnsfe Ruies
1. ce :=(Ce In> Select-Term))

Mnemoic upe e(tempi =s.n-e

<D'e~mmo-Addre~s, Type, ArgoMnt Ssor-Reqaement>

Re:S ~ ~ . 3: New-3.

Attribute-Trasfer Rules:
1. ce .=(ce (n> New-Term))

Mnemnicttqde emet nmes

<Destmatw*Address Type, A rgwnera Storage-Reqvirexenu

Figure 4-24: Rules for Process-Event clich6.

152

Old: Asynch-Node

Memory ie
Associative- Time: g

Set Itgr ineuger
*------------ --------------- --------

Memory:
Associative- Time:

Se Inee

'AI-ýKý --------------New: A synch-Node

Update-Node-Time

Figure 4-25: Plan definition for the Update-Node-Time clich6.

Unfortunately, it is difficult to do this within the graph parsing framework. It would require
the Handle-Message non-terminal in the rule for Process-Event to derive an arbitrary flow

graph. In general, it is difficult to express and match a clich6 that is parameterized over

non-primitive, non-cliched functions. (This is the same problem we ran into in codifying the

generation cliche in Section 4.1.3. See Section 5.2.3 for more discussion of this problem.)

Update-Node-Time

Update-Node-Time is a cliched operation that synchronizes an ISYNCE-IODE's Clock to the
current "simulated time," which is the time of the most recent EVENT pulled from the

EVEIT-QUEUE. The operation takes a ISYNCE-IODE and the simulated time (an integer) and

returns a new ISYICH-IODE whose Clock is either the simulated time or the time of the
input ASYICH-IODE's Clock, whichever is later. The plan definition of this operation is

shown in Figure 4-25. An ASYICH-IODE has two parts: a Memory (an Associative Set)

and a Time (an Integer). This cliche takes an ASYICH-IODE and an integer and creates a

new ASYICH-NODE whose Time part is the maximum of the input integer and Time part of

the input ASYNCH-IODE. The Memory part of the output is the same as that of the input

ASYICH-NODE. The rule that encodes this plan definition is shown in Figure 4-26.

Enqueuing New Events

One of the actions of a processing node that is simulated as part of the simulation of message
handling is the creation and sending of new messages. One of the constraints on the event-

driven simulation algorithm is that whenever a message send is simulated, a new EVENT

153

1: A~Wi. Updae- IbrE
Node- : A0 < MA I.

Memwfi atlk eleme raw :
<Memory, Tew>

Figure 4-26: Grammar rule encoding the Update-Node-Time plan.

must be created and added to the EVENT-QUEUE. (Similarly, in the synchronous simulation

algorithm, when the message handling simulation simulates the sending of a mr ,sage, the

MESSAGE that represents it must be added to the global MESSAGE buffer.)

Unfortunately, this constraint is difficult to express in the grammar rule encoding and

to check in the simulator code. Partly this is because the node action simulation code is not

guaranteed to be clich6d, so we have no context in which to express the constraint. Another

reason is that the part of the simulation code that performs the activity of enqueuing new

EVENTs (or NESSAGEs) is typically given as input to the simulator. So, it is not available for

analysis. (As discussed in Section 2.2, PiSim takes as input a set of functions each of which

specifies how to simulate the actions of a node in executing some machine operation. Some

of these functions create new EVENTs and enqueue them.) These problems are discussed

further in Section 5.2.4.

Although this constraint is difficult to express and check within the current graph parsing

framework, it is not a hard constraint for a person to check. It might be easier to just ask

the user whether the constraint holds. This question can be asked with reference to the

particular locations in the program, corresponding to locations in the input graph where

the Handle-Message operation is likely to occur. (This can be based on where the rest of

Process-Event has been found.)

4.2 Architectural Details

This section fills in details of how flow graph parsing is used to solve the partial program

recognition problem. Section 4.2.1 describes how textual source code is translated into an

attributed flow graph. Section 4.2.2 discusses an additional monitor that tailors the parser

to deal with a type of graph variation that is specific to the program recognition application.

Section 4.2.3 describes how the Paraphraser presents the parser's results.

4.2.1 Translating Programs to Flow Graphs

A program is translated from source code to attributed flow graph in two stages. First, a

plan representation of the source code is created. Then, an attributed flow graph is com-

154

puted from this intermediate representation. Creating the intermediate plan representation

of the code facilitates the computation of attributes for the flow graph.

Source Code to Plan Diagram

The plan creation stage is itself composed of two stages: macro-expansion, followed by

symbolic evaluation. The macro-expander translates the program into a simpler language

of primitive forms. It does this by expanding any macro calls in the source program and

by using a set of additional macro-like definitions to expand each complex construct in the

source into a set of simpler forms. Ir particular, all of the control constructs are converted

to simple conditional and unconditional branches. All of the data constructs are converted

into bindings of or assignments to simple atomic variables.

The macro-expanded code is then symbolically evaluated. The evaluator follows all

possible control paths of the program, starting with some topmost ("main") function of

the program. It converts operations to boxes and places arcs between them, corresponding

to data and control flow. Whenever a branch in control flow occurs, a test box is added.

Similarly, when control flow comes back together, a join box is placed in the graph and all

data representing the same variable are merged together.

Boxes for user-defined functions are replaced with the plans for their definitions, except

for those within recursive functions. This flattening allows variability in the way programs

to be analyzed are broken down into subroutines. The user may also advise that certain calls

not be expanded for efficiency reasons. (Any unexpanded function whose name happens to

be a non-terminal in the grammar is systematically renamed, unless the user specifies that

the function is an instance of the clich6 named by the non-terminal.)

The symbolic evaluator inserts explicit selector and constructor boxes into the plan

diagram for each user-defined accessor and constructor.

The plan representation may be used as the target representation for many different

languages. The flow analyzer used by GRASPR translates Lisp programs into plans. Similar

analyzers were previously written not only for Lisp ([114, 137, 139]), but also for subsets of

Cobol [42], Fortran [137], and Ada [139], but are not used in this system.

Plan Diagram to Attributed Flow Graph

Once the plan representation for the program is created, it is encoded as an attributed flow

graph. The dataflow structure of the plan is retained in the flow graph. Control environment

attributes are computed from the control flow structure. Joins are replaced with edges that

fan in, annotated with ce-from attributes. Explicit accessors and constructors are also

replaced by attributed edges. Each accessor and composition of accessors is treated as a

Spread node and each constructor as a Make node. These Spreads and Makes are removed

using the aggregation-removal transformations described in Section 3.4.2. The residual

Spreads and Makes are then replaced with attributed fan-out and fan-in edges.

155

(defun Insert-Queue (Entry)
(cond ((Empty-or-Low-Priority-Head? Entry *Event-Queue*)

(push Entry *Event-Queues))

(t (let ((Next (cdr *Event-Queue*))

(Previous *Event-Queue*))

;; find spot to splice Entry in:

(loop do
(when (Empty-or-Low-Priority-Head? Entry Next)

(return))

(setq Previous Next)

(setq Next (cdr Next)))

; perform the splice:

(rplacd Previous (cons Entry Next))))))

Figure 4-27: Code that side effects the mutable data structure *Event-Queue*.

4.2.2 Additional Monitor to Handle Recursion Unfolding

One of the types of variations that can arise in recursive programs is that a loop in one

can be unrolled in another, or more generally, a recursion can be unfolded. This variation

arises in our program examples when we convert the impure programs to pure ones (having

no side effects to mutable objects). In this situation, special cases of a recursion sometimes

translate to the general recursive case. This means that the general case is redundantly

performed once, before the recursion is called.

For example, the code in Figure 4-27 destructively inserts Entry into the ordered asso-

ciative list *Event-Queue*. It first tests for the special case in which Entry belongs on the

front of the list (either because the list is empty or its first element has a lower priority

than Entry). In this case, it destructively places Entry on the front of *Event-Queue* using

push. Insert-Queue then performs the general case in which *Event-Queue* is searched for

the place to insert Entry and then Entry is spliced in at that place.

When this program is translated into its non-destructive version, shown in Figure 4-28,

the special case head insertion becomes the same as the normal splice-in operation.

Insert-Queue-Pure can be rewritten as Folded-Insert-Queue, shown in Figure 4-29, in which

the recursion is folded back up.

To deal with this type of variation, we provided an additional monitor to the flow

graph parser, which looks for an opportunity to view a program that contains an unfolded

recursion as one in which the recursion is folded back up. By generating this alternative

view, the parser is then able to recognize the program as if it did not have an unfolded

recursion. This augmentation of the parser with a new monitor tailors it to solve a problem

specific to its application to the program recognition problem. This section describes the

new monitor and how the new view is generated.

156

(detun Insert-Queue-Pure (Entry)

(setq *Event-Queue*

(cond ((Empty-or-Low-Priority-Read? Entry *Event-Queue*)

(cons Entry *Event-Queue*))

(t (cons (car *Event-Queue*)

(Splice-in Entry (cdr *Event-Queue*)))))))

(defun Splice-In (Entry Next)

(cond ((Empty-or-Lou-Priority-Head? Entry Next)

(cons Entry Next))

(t (cons (car Next)

(Splice-In Entry (cdr Next))))))

Figure 4-28: Functional version of Insert-Queue.

(defun Folded-Insert-Queue (Entry)

(setq *Event-Queue* (Splice-In Entry *Event-Queue*)))

(defun Splice-In (Entry Next)

(cond ((Empty-or-Lou-Priority-Head? Entry Next)

(cons Entry Next))

(t (cons (car Next)

(Splice-In Entry (cdr Next))))))

Figure 4-29: Version of Insert-Queue-Pure in which recursion is folded up.

157

Empty-or-Low-

Priority-Head

ce: cel ce: ce3 cdr
success-ce: ce2
failure-ce: ce3

tEmpty-or-Low-
I Priority-Head i

cons ce: ce2 ce: ceS cdr Ce: ce4

ce: ce C success-ce: Wd
failure-ce: ce4

I cons ce: ce4 Car Splice-In

e 3Cce-e3om: ce4c
I I1

I ------ -ce-frmcos c : CclS C: e

ce2 c-ceffo:rom: W

-I
Figure 4-30: Flow graph representing Insert-Queue-Pure.

158

cel ceS

(ce3) ce) (ce4J (ce3J

ce2 ce3 ce4

Recursion information: [recur-ce: ce5, feedback-ce: ce4, outside-ce: ce3J

Figure 4-31: Partial ordering relationships between the control environments of Insert-

Queue-Pure's flow graph.

Figure 4-30 shows the flow graph representation of Insert-Queue-Pure. A dashed box

is drawn around the boundary of the sub-flow graph representing its recursion. GRASPR

generates an alternative view of this flow graph in which the recursion boundary is expanded

outward and the redundant computation is collapsed together.

The way it works is based on the observation that when GRASPR tries to recognize an

unfolded program, most of the constraints (structural as well as attribute conditions) are

satisfied. The only ones that are not are those that refer to the program's recursion in-

formation (e.g., those constraining two ports to input-correspond or those referring to the

feedback-ce of the recursion).

So, constraints are placed into two classes: regular and recursion. When an item fails

only its recursion constraints, it is suspended, which means it is placed in a holding data

structure used by the new monitor. The monitor watches for another complete item, called

a partner, to be added to the chart that can collapse with the suspended item. An item

I, can collapse with another item Ip if they are recognizing the same non-terminal type

in control environments that are analogous. (This relation is defined below.) Collapsing

two items means creating a new item which is the same as the suspended item, but whose

constraints are checked in the context of the partner item.

Intuitively, two control environments are analogous if they contain operations that
would collapse together if the recursion were folded back up. For example, Figure 4-

31 shows the partial ordering of the control environments and recursion information for

Insert-Queue-pure. The analogous pairs of control environments are (cel, ce5), (ce2, ce3),

and (ce3, ce4).

The analogy relations are symmetric, but not reflexive, or transitive. Analogy relations

between control environments are computed from the surface plan during its translation to

an attributed flow graph.

Once a suspended item is collapsed with a partner, the new "collapsed" item is added
to the agenda. Its constraints are satisfied because they refer to attributes of the sub-flow

159

graph matched by the partner item. The collapsed item's left-hand side control environment

attributes are computed by applying the rule's attribute-transfer rules in the context of the

partner item and then translating them to the analogous control environment. (Attribute-

transfer rules that use recursion information in their computation are handled specially. In

particular, if the rule computes the Jutside-ce of the innermost recursion containing some

node, the control environment analogous to the recur-ce of this recursion is transferred.)

When a collapsed item is used to extend another item, it imposes new edge connection

constraints on the items for adjacent non-terminals. Suppose a collapsed item IA, having

partner I. extends another item to create an item Ic, where 'A is representing the derivation

of non-terminal A in the right-hand side of Ic's rule. If an item IB for a non-terminal

adjacent to A has a partner Iq, then Ip and !q should be connected together in the same

way as IA and 'B.

The suspend-collapse-resume mechanism for recursion folding can be generalized to a

"try-harder" technique for handling more types of near-misses besides those that fail recur-

sion constraints. More classes of constraints can be identified. When an item fails certain

classes of constraints, something might be done to cause them to be satisfied (e.g., changing

an attribute) or weakened (e.g., changing a co-occurence condition between two nodes to a

E condition). Then the item can be resumed simply by putting it back on the agenda. The

changes can be reported as conditions or assumptions under which some clich6 is recognized

in the program.

4.2.3 Paraphraser

The output of the recognition process is a forest of design trees, representing the clich6s
found and how they relate to each other. One way to use this output is to automatically

generate documentation for the program recognized. Paraphraser is a tool which takes the
forest of design trees produced by GRASPR and generates textual documentation for each.

Each cich6 in our library has an associated schematized textual explanation fragment whose

slots may be filled in with identifiers in the program. (This is based on earlier work by

Cyphers (24] and Frank (45].)

Paraphraser starts at the root of a design tree and traverses it depth first, generating a

hierarchical description based on the explanation fragments associated with each clichb en-

countered. It reports the relationships between each cich6 in the tree and those immediately

below it (e.g., Queue-Insert is implemented by FIFO-Enqueue, Sum temporally abstracts

Summing). If an implementation relationship exists between two cliches and a data abstrac-

tion is uncovered, this is reported as well (e.g., The Queue is implemented as a FIFO.).

Variable names are included in the text to indicate the location of the clich6. Also, some

slots in the explanation fragments are filled in with primitive operation types, such as <

in An element's priority P is higher than another's Q, if P < Q. This often happens

when generalized node types are used. In this case the generalized node type matched

160

any primitive predicate that was a comparator. Paraphraser is also able to compute some

mappings from user-defined data structure part names to the part names of aggregate data

clich6s that are recognized. This is described below.

The user can select which design trees to document. By default, Paraphraser documents

all of them, starting with those whose roots are at the highest level in the library. Currently,

all cliches recognized are reported, including those that represent multiple views of some part

of the program. No single best interpretation is preferred. We view the job of selecting views

of the program and focusing on particular results of the recognition as the responsibility of

a higher-level control mechanism which has information about how the results will be used

and which view of the program is most useful.

Mapping Cliched Aggregate Names to User-Defined Data Structure Names

Paraphraser heuristically computes mappings from the names of user-defined data structures

and their parts to those of aggregate data cliches that are recognized in the program.

However, the current implementation is not robust. The mappings are often incomplete

and ambiguous. (This is an area requiring further work.)

The names of user-defined data structures and their parts are associated with edges in

the program's flow graph in the form of accessor and constructor attribute values. Each

accessor attribute has a value that describes how the data it carries to the edge's sink is

a part of the data structure at the edge's source. Because data structure accesses and

constructions can be composed, the values of these attributes are sets of ordered lists of

tuples of the form <structure-type part-name>, where the order corresponds to the order

of composition of the accesses or constructions. They are sets of ordered lists because an

edge can represent dataflow from more than one output of a selector to more than one

input of a constructor. For example, in the flow graph representing (1+ (queue-length

(node-queue (aref *nodes* i)))), the edge from the output of "aref" to the input of "1+"

has an accessor attribute of value (<lode Queue> <Queue Length>).

Each ordered list can be seen as a "path" that describes how the source data structure

is destructured to result in the piece of data at the sink. The path may be of arbitrary

length, since the piece of data may be nested deeply within several data structures.

Similarly, each edge holds a constructor attribute that describes how the data it carries

becomes part of some data structure. The value of the accessor and constructor attributes

is undefined if the edge is not carrying data involved in some aggregation.

The edge attributes are used to create the mappings between names in clich6d structures

and in user-defined ones. When an operation on a cliched aggregate data structure is

recognized, the parser has matched each part of the structure to an edge (or recursively

to a tuple of sub-part matchings, if the part itself is an aggregation). This creates a tree

representing the clich6d aggregate data structure's organization, with the leaves matching

edges in the flow graph representing the program. Those accessor and constructor values

161

FIFO Dequeue is implemented as a Circular

Sequence Extract. The FIFO is implemented as a CIS.

Circular Indexed Sequence Extract extracts the

first element from the Circular Indexed Sequence.

The First part: (<NODE QUEUE> <QUEUE HEAD>)

The Fill-Count part: (<NODE QUEUE> <QUEUE LENGTH>)

The Size part: (<NODE QUEUE> <QUEUE DATA-SIZE>)

The Base part: (<NODE QUEUE> <QUEUE DATA>)

Figure 4-32: Documentation containing a cliched-to-user-defined name mapping.

that are defined are combined to form trees that represent the portions of the user-defined

data structure organization. (There may be more than one if the recognition involves parts

from more than one user-defined data structure.) The fringes of these trees are matched

to the fringes of the cichcd organization tree. This generates mappings between the part

names of the lowest level structures involved. Mappings between higher level nodes of the

trees are heuristically computed. For example, if all parts of a clich6d data structure map

to all parts of a user-defined structure, then the two data structures map to each other.

Equality constraints are imposed locally by the rules for clich6 data structure operations.

These require that each clich6d part name map consistently to the same programmer-defined

part name (or set of names, if there is ambiguity in which attributes match).

Figure 4-32 gives an example of a mapping computed from the recognition of a CIS-

Extract. The mapping is included in the documentation of this clich6. This mapping is

incomplete in that the "Last" part of the Circular Indexed Sequence is not mapped to

anything. This is because in the program, the optional unconstrained straight-through rep-

resenting the "Last" part was not matched. Because not all of the parts of the clich~d

data structure are mapped, the mapping cannot be refined. If Last were mapped to

(<NODE QUEUE> <QUEUE TAIL>), then since the user-defined data structure QUEUE has no more

parts, QUEUE can be mapped to CIS and each of the part mappings can be reduced from

(<NODE QUEUE> <QUEUE x>) to (<QUEUE x>). If "Last" were mapped to (<NODE MAX-INDEX>),

and NODE had only parts "Queue" and "Max-Index," then NODE would be mapped to CIS

and the mappings would remain the same (i.e., not be reduced).

Ambiguity arises when an accessor or constructor attribute has a set of values that are

mapped to some clich6d part. It also occurs when some part of a program is recognized as

more than one data structure operation.

In addition to these local refinements to the mzppings, global constraint propagation

should be used to refine them further. Future research will focus on this. The results

can be valuable not only in presenting the results of recognition, but also as a source of

expectations which can be used to further guide and refine data structure recognition. (See

Section 7.2.3.)

162

Chapter 5

Capabilities and Limitations

There are two parts of our analysis of the graph parsing approach. One is identifying its

practical capabilities and limitations in the context of real-world programs. The other is
studying the computational cost of this approach. This chapter discusses the first aspect,

while Chapter 6 deals with the second. In this chapter, we consider both the robustness of

our recognition technique under common program variations and the expressiveness of our

graph grammar formalism for encoding programming cliches.

5.1 Variations Tolerated

Automated recognition of clich6s must be robust under a wide range of variations in pro-

grams. We employ three basic strategies for achieving this goal. First, we use an abstract

representation for programs and cliches. This representation suppresses many details which

can vary across programs but which do not constitute significant differences between the

clich6s that exist in the programs. Our representation exposes the algorithmic and dataflow
structure of the program, while abstracting away syntactic and organizational differences.

When some unimportant details are not suppressed by our representation (i.e., when

two or more program variations are not represented the same), we try a second strategy. We

pro-ide ways for GRASPR to generate cheap alternative views of the program representation.

These views are created by additional chart monitors during parsing, such as those that
deal with redundancy.

It is possible to also handle this in a pre-processing stage (rather than during parsing)
by choosing one variation as canonical and applying cheap transformations to canonicalize

other variations with respect to this one. However, sometimes seeing the transformation

opportunity requires performing recognition. For example, zipping up two instances of an

abstract operation that each involve a different implementation requires recognition to view
the redundant code as performing the same operation.

When a clich6 exists in two programs that are not represented the same in our represen-

tation or cannot be cheaply viewed as the same, we fall back on our third strategy. This is

163

to enumerate the variations in our library. For example, we use this tactic to deal with im-

plementation variation. However, when enumerating variations, we rely on our knowledge

of the empirical frequency of occurrence of the variations. We do not collect every variation

of a clich6 we can think of, only those that are common. The hierarchical structure of the

ichh library helps to make the enumeration concise.

These three tactics allow us to automate program recognition so that it is robust under

the common program variations described in Section 2.3.1. Our abstract representation

eliminates syntactic and organizational variation, as well as variation due to delocalization,

unfamiliar code, and some function-sharing optimizations. This is discussed in more detail

in Sections 5.1.1-5.1.5. By generating alternative views cheaply, GRASPR is able to deal

with variation due to redundancy, as is discussed in Section 5.1.6. Because implementation

variations are concisely enumerated in the clich6 library, GRASPR is able to recognize the

same abstract cich6d operation in programs that contain different implementations of the

operation. This is discussed in Section 5.1.7.

5.1.1 Syntactic Variation

In Section 2.3.2, we showed two programs (in Figures 2-10 and 2-11) which GRASPR recognized

as containing the same clich6s, even though they differ syntactically. This is due to the fact

that both programs are represented as the same flow graph, shown in Figure 5-1.

The figure does not show the complete flow graph. Some function calls are depicted as

nodes for brevity. However, they are sub-flow graphs in the actual representation. These

nodes are drawn with dotted lines to show that they hide some detail. Also, dashed lines

are drawn around the sub-flow graph representing the recursive function Execute-Events.

(Small filled-in circles indicate fan-in and fan-out. They are not special vertices in the flow

graph. They are used to distinguish edges that share sinks or sources from those that merely
cross each other.)

Accessor and constructor attributes on edges are not shown in the figure because they

differ for the two programs. Instead, the edges for which these attributes have defined values

(i.e., not undefined) are labeled <el>, ...,<e7>. Figure 5-2 lists the actual attribute values

for these edges for the programs of Figures 2-10, 2-11, as well as Figure 2-12.

The flow graph representation abstracts away syntactic differences between programs.

Attributed dataflow edges explicitly represent the net effect of binding and control con-

structs, abstracting away such details as which constructs are used, which variables are
bound, and whether data is passed through nested expressions or via bindings to interme-

diate variables.

Information concerning the names of user-defined data structures and their parts is

relegated to edge attributes, so that differences due to explicit accessor and constructor

functions do not arise in the structure of the graph.

Also, the representation captures only "essential" orderings of operations, which are

164

SB$

Get-Handler Make-Nodes CE:Cear-Event-~ e e

ce: CEOF

<,e6> ,<e7>

Clear-Nodes array-total- ce: ceo

Enqueandomn Ce: CEO

Execute-Events:e

----------------------- -------------------- I

IX I

cc Ie ulX
Iucs-e ce

Excue cI e

I SaiuCreS-ce. ce2

* Next-Event

I 2

Ieue c I e

Execute- Ce: c

Figure 5- 1: Flow graph representing the code in Figures 2-10, 2-11, and 2-12.

165

<el>: Accessor: undefined undefined

Constructor: ((<Message Arguments> <Event Object>)) (k<Msg Args> <Event Object>))

<e2>: Accessor: undefined undefined

Constructor: ((<Message Length> <Event Object>)) [((<Msg Storage-Length> <Event Object>))

<e3>: Accessor: undefined undefined

Constructor: ((<Message Type> <Event Object>)) ((<Msg Type> <Event Object>))

<e4>: Accessor: [(<Node Time>)) [(<Node Time>))

Constructor: ((<Event Time>)) ((<Event Time>))

<e5>: Accessor: undefined undefined

Constructor: ((<Message Destination> <Event Object>)) [(<Msg Dest-Addr> <Event Object>))

<e6>: Accessor: ((<Handler Arity>)) ((<Handler Arity>))

Constructor: undefined undefined

<e7>: Accessor: ((<Handler Number-of-Locals>)) [(<Handler Number-of-Locals>))

Constructor. undefined undefined

a b

<el>: Accessor: undefined

Constructor: ((<Handler-Data Arguments> <Msg Data>))

<e2>: Accessor: undefined

Constructor: ((<Handler-Data Length> <Msg Data>))

<e3>: Accessor: undefined

Constructor: [(<Handler-Data Type> <Msg Data>))

<e4>: Accessor: [(<Node Time>))

Constructor: {(<Msg Arrival-Time>))

<e5>: Accessor: undefined

Constructor: ((<Msg Destination>)]

<e6>: Accessor: ((<HandlerArity>))

Constructor: undefined

<e7>: Accessor: ((<Handler Number-of-Locals>))

Constructor: undefined

C

Figure 5-2: Attribute values for accessor and constructor attributes annotating the flow
graphs representing the programs in Figures 2-10 (column a), 2-11 (column b). and 2-12

(column c).

166

those determined by dataflow dependencies. Dataflow graphs make dataflow dependencies

explicit, imposing a partial ordering on the program's operations (rather than the linear, to-
tal ordering imposed by text). So programs which vary only in their ordering of independent

computations will have the same flow graph representation.
The attributed flow graph representation also captures constraints on data and control

flow, independent of the language in which they are expressed. This means the same library
of clichds can be used to recognize clich6s regardless of the language in which the program
containing them is written. If the data and control flow of a program can be statically
determined, then the program can be represented as an attributed flow graph. This is
true for most imperative, sequential programs written in conventional languages, such as

Fortran, Cobol, Lisp, and Ada.
Some examples of programs for which this is not true are those that contain nondeter-

ministic or concurrent language features. Also, programs that take other programs as input

cannot be fully modeled by our dataflow graph representation because part of their data

and control flow information is hidden in their input. (This is discussed further in Section
5.2.)

The abstraction properties of the flow graph representation enable clich6s to be rec-

ognized in programs without having to anticipate (and enumerate) all possible syntactic
variations of each clich6 and without relying on source-to-source transformations to canon-

icalize the code.

5.1.2 Organizational Variation

The flow grAph representation is also the key to dealing with variation in how programs

are decomposed into subroutines and how aggregate data structures are organized. In
this represeitation, the subroutine structure is flattened. Each call to a subroutine is
represented by the flow graph of the subroutine's body. In essence, the program is seen

as completcy open-coded. The key benefit of this is that instances of clichds which cross
subroutine houndaries are recognized as easily as those that are within a boundary. The

hierarchical organization of ciches built upon other cich6s need not be reflected in the
program's decomposition for the cliches to be recognized.

Of course, flattening all subroutinc calls is not always advantageous. When a subrou-
tine is used in several places throughout the code and contains cichcs entirely within its

boundaries, flattening it unnecessarily creates a large input flow graph and causes GRASPR

to repeat work. For example, utility subroutines for basic data structures often contain
general-purpose cichds entirely within their boundaries and they are usually called by sev-

eral higher-level functions. In this case, the subroutines should be recognized independently.

The results of recognition should then be duplicated and used wherever the subroutine was
called. For example, if a subroutine is recognized as a cich6, calls to it in the program should
be represented as an already-reduced non-terminal, which can be used in the recognition of

167

higher level clich&s. This involves simply adding complete items to the chart, representing

already-reduced non-terminals.

Besides eliminating variation due to subroutine decomposition, GRASPR also deals with

variation in data structure organization. It does this by representing accessors and con-

structors as attributed edges, rather than as explicit nodes in the flow graph, as are other

operations in the program. If the accessors and constructors were represented explicitly

as nodes, then the representation would fail to eliminate variation between programs that

aggregate the same data, but use different orderings of parts or different nesting of aggrega-

tions. (The problems with explicit representation of accessors and constructors as Spread

and Make nodes were discussed in more detail in Section 3.4.2.)

The flow graph formalism was specifically designed to allow aggregation-equivalent flow

graphs to be recognized. Programs are represented as minimally-aggregated flow graphs,
with any internal residual Spreads and Makes replaced with attributed fan-out and fan-in

edges. Cliches involving aggregate data structures are expressed in grammar rules in which

the aggregation is specified in the embedding relation. The cliches are then recognized in

programs by using the embedding relation to introduce the cliched aggregation organization

into the parsing process.

In Section 2.3.2, two organizational variations of PiSim arc pointed out (in Figures 2-10

and 2-12). In one, the initialization and storage-requirements computations are found within

Inject, while the other separates these computations out into the functions Initialize-

Simulator and Compute-Storage-Requirements. The first aggregates four pieces of data into

a Message data structure and then nests this inside an Event data structure, along with a

Time part. The other aggregates three pieces of data into a Handler-Data data structure

and then nests it inside a Msg data structure, along with a Destination and Arrival-Time

part. Both aggregate the same pieces of data, but using different nesting organizations,

ordering of parts, and names for structures and parts.

However, these two programs have the same basic flow graph representation, which is

shown in Figure 5-1. The only difference between the two is in their edge attributes, as

shown in Figure 5-2. (One program, Inject, iteratively calls a function Execute-Uext-Event,

while the other, Start-Pisim, calls Process-Iext-Message. The flow graph representations

of these two calls is the same for both. This flow graph is hidden in the dotted node labeled

"Execute-Next-Event." Likewise, the dotted node labeled "Enqueue-Event" represents calls

to the functions Enqueue-Event (by Inject) and Enqueue-Message (by start-Pisim), which

each have the same flow graph representation. Also, the recursive node shown in Figure

5-1 is labeled "Execute-Events," but in the flow graph for Start-Pisim, the recursive node

is labeled "Process-Messages." This difference is not significant, since the recursive nodes

are never expected to match any right-hand side node during parsing.)

168

5.1.3 Delocalized Cliches

Using the flow graph representation also addresses the problem that parts of a clich6 may

be scattered throughout the text of a program. Many cliches become much more localized

in the flow graph than in the program text because only essential dataflow relationships are

captured. For example, in Figure 2-13, a portion of the CST code is shown. Even though

parts of a simulation clich6 are separated by unrelated expressions in the source text, they

are translated into neighboring nodes in the flow graph representation of the program. This

representation is shown in Figure 5-3. The nodes that are unrelated to the simulation clich6

are shaded.

5.1.4 Unrecognizable Code

GRASPR is able to recognize clich6s despite the presence of unrecognizable code in the pro-

gram. This is partly due to GRASPR's clich6 localization abilities which helps to separate the

familiar from the unfamiliar parts of the program. The cliched sections of a program tend

to become localized in sub-flow graphs of the program's flow graph representation.

The other aspect of GRkSPR's approach that makes partial recognition possible is the

bottom-up parsing strategy it uses. It recognizes and reports low-level cdch~s, even if it

cannot reconstruct the higher level design that puts them together. All non-terminals are

treated as start-types of the grammar, so that each instance of any non-terminal is reported.

GRASPR has been specifically designed to solve the partial program recognition problem,

which is defined in Section 3.3.1: Given a program and a library of cliches, find all instances

of the clich6s in the program (i.e., determine which clich6s are in the program and their

locations). It formulates this problem in terms of the subgraph parsing problem, which is:

Given a flow graph F and a flow graph grammar G, find all possible parses of all sub-flow

graphs of F that are in the language of G.

In other words, when a program is partially recognized, one or more sub-flow graphs

of the program's flow graph encoding are recognized as members of the graph grammar

which encodes the clich6 library. It follows from the definition of a sub-flow graph, that it is

possible to ignore portions of a flow graph before and after a recognizable sub-flow graph,

as well as portions that fan out from or into an internal port in the sub-flow graph.

What this means in terms of partially recognizing programs is that GRASPR can recognize

a clich6 in the presence of unrecognizable code or code that belongs to other cliches, as long

as the clich6 is localized into a sub-flow graph of the program's flow graph representation.

It must be possible to separate the clich6 from the rest of the flow graph by disconnecting

a set of edges.

GRASPR is able to ignore unfamiliar code that "surrounds" a cich6 (in that it sends

dataflow to it and/or receives dataflow from it). See Figure 5-4b. It is also able to ignore

unfamiliar code that is done conditionally (assuming that the control flow constraints do

not require co-occurrence relations to hold between the component operations). See Figure

169

Shell-Go: EnUeue j : ceo

-a -- - - - ---------------------------
a T

* ~Step-Don~ea
ce: cc]

6e
*

moccess-ce: ce2 I E ce3 E OE CE: ce3

fawrce e3sucesce c4succeZs-ce. ce6 suc-cess-ce. ce8
failure-ce. ceS faikire-ce. ce7 failure-ce: ce9

ce. CES ce ce

Deliver-

ce. ce3 Messages

........

ae aE
IAcm-L Ie

faaee cel
..... cel

a ~ce: ce3a

* ~ ~ ~ e Muc:s-E CclO

ceC

E.m
t2 c fra

ac- a:Te4e-" e

ae ooj ae efrm

- -
a aý

Fiur a-:Fo rp ersnigteCTcd fFgr -3

a17a

2

2 2

b

Figure 5-4: a) Average clich6. b-c) Some cases in which a program can be partially recog-

nized.

5-4c.
GRASPR can partially recognize a program that not only has unfamiliar algorithmic frag-

ments, but also has data structures that aggregate unfamiliar parts. It is able to ignore
computation on unfamiliar parts of an aggregate data structure. This is a direct result of
the parser's techniques for recognizing aggregation-equivalent flow graphs, as described in
Sections 3.4.2 and 3.5.2. These techniques allow recognition of a clich6d data structure in
a user-defined data structure even when the clich6 aggregates only a subset of the parts

aggregated by the user-defined structure.

For example, suppose the clich6 library contained a clich6 called Extract-Message, which
is the common computation of looking up a SYNCH-NODE in an ADDRESS-MAP, given an integer

index, dequeuing its Buffer part and updating the ADDRESS-MAP so that the integer index
points to the new SYNCH-lODE. The rules encoding Extract-Message and the Local-Buffer-
Dequeue clich6 it contains as a part are shown in Figure 5-5.

This clich6 is found in the program shown in Figure 5-6 which operates on a user-defined
node data structure. The node consists of five parts, one of which (Queue) corresponds to
the Buffer part of a SYNCH-NODE. The value of *nodes* corresponds to the ADDRESS-MAP. In

addition to performing the Extract-Message operation, this program increments the Busy-

Count part of the new node created. It also calls process-message on the msg dequeued, the
ADDRESS-MAP, and *step-queue* (which is the global MESSAGE buffer).

GRASPR partially recognizes the node data structure as well as the program step. The flow
graph representation of step is shown in Figure 5-7. (The dotted node labeled "Dequeue"

is an abbreviation for a flow graph that is derived by the FIFO-Dequeue non-terminal.)
The destructuring and construction of the user-defined node data structure is represented

171

4: : Select- LoalBuffer I:M

<J Bu4 N.er. Term

Aftibute Conditions: JAil nodes •..•oor]

Atuibue-TronsferRules: 1. ce ::(ce (n> Select-Term))

:SNNDuue ~ a FIFO- I

Auibute-Transfer Rules:
1. ce := (ce (n> FIFO-Dequeue)) Legend:

Mnemonic tuple element names: I=bteger

<Buffer, Memory> F=FIFO

S=Sequeace

A=Any

SN=Sywbc-Node

M=Messae

Figure 5-5: Rules for Extract-Message and Local-Buffer-Dequeue clich6.

(defun step (node-nr)

(let* ((node (get-node node-nr))

(q (node-queue node)))

(multiple-value-bind (msg new-queue)

(dequeue q)

(setq node

(make-node :queue new-queue

:objects (node-objects node)

:contexts (node-contexts node)

:busy-count (1+ (node-busy-count node))

:method-cache (node-method-cache node))))

(setq *nodes* (copy-replace-elt node node-nr *nodes*))

(multiple-value-bind (new-nodes new-step-queue)

(process-message msg *nodes* *step-queue*)

(setq *nodes* new-nodes *step-queue* new-step-queue)))))

Figure 5-6: Code containing a partially recognized data structure.

172

SBS

Lrf
A.-((<Node Busy-Cowu*m>) A :((<Node Qimeue>))

DequLieu

A&C.-

. ((<Node Objects>)
.......... (<Node Contexts>)

(<Node Method- C: ((<NVode

Cache>)) Que~e>)

C.SES

Fiur 57:Flw rah epesnttin orstp

173-elae-l

in attributed fan-out and fan-in edges. This facilitates the separation of the unfamiliar

computation (the increment of the node's Busy-Count) from the familiar. It allows GRISPR

to recognize Extract-Message by parsing the sub-flow graph that results from disconnecting

the shaded portion of step's flow graph from the rest of the flow graph.

5.1.5 Function-Sharing

The derivations generated for programs by the flow graph parser do not have to be strictly

hierarchical. This means that GRASPR is able to recover the design of a program, ever, when

parts of the implementation of two distinct abstract operations overlap as a result of an

optimization. In effect, GRASPR "undoes" the optimization.

For example, in Section 2.3.2, Figures 2-19 and 2-21 show two programs that differ only

in that one optimizes the other by enumerating the array nodes once instead of twice. The

enumeration is shared between the two clich6d operations of advancing each node in nodes

and computing the average length of their Queue parts.

GRASPR is able to recognize these two clich6s in both programs, even though they overlap

in one. GRASPR does not destructively reduce the input flow graph representing the program.

It allows the recognition of a part of the flow graph to be seen as part of more than one

higher-level ciche. The resulting design trees share a sub-tree, as is shown in Figure 2-22.

5.1.6 Redundancy

GRASPR is able to deal with variation due to redundancy which occurs when some part of

a clich6 appears more than once in the same instance of a clich6. There are two types of

redundancy that we encountered in dealing with real programs.

One type is the repetition of some computation on the same set of inputs and/or produc-

ing outputs that are conditionally merged into the same consumer operation. An example

of this is discussed in Section 2.3.2 and shown in Figure 2-23. In this example, the computa-

tion of accessing the first element of Bucket-List using car is performed twice. The parser's

ability to recognize share-equivalent programs allows GRASPR to tolerate the variation due

to this type of redundancy. In particular, the parser zips up the flow graph representation

of the program, allowing it to recognize the clich6 Ordered-Associative-List. That is, it

generates an alternative view of the program in which the redundancy is removed.

The second type of redundancy occurs when a loop is unrolled or, more generally, a

recursion is unfolded. This arises in our example programs w!en we convert the original

programs, which contain destructive operations (causing side effects to mutable data struc-

tures), to their non-destructive versions. As described in Section 4.2.2, this is handled by

an additional chart monitor that creates an alternative view in which the recursion is folded

back up.

174

5.1.7 Implementation Variation

GRASPR is able to recognize two programs that perform the same clichMd abstract operation,

even though they may use two different implementations of that operation. This is because

the clich6 library is encoded in a grammar that explicitly captures implementation rela-

tionships between the cich6s. So GRASPR is able to view and describe structures on various

levels of abstraction.

This enables it to produce the same high-level description of the two versions of the CST

program shown in Figures 2-16 and 2-17 of Section 2.3.2, even though they differ on a lower

level of abstraction in their implementation of the global message queue. GRASPR produces

the design-trees shown in Figures 2-14 and 2-18 for the two versions. They differ only in

the subtrees that are highlighted by dotted boxes in Figure 2-18.

It is impractical to enumerate all possible implementational variations of an abstract

cich6 in the cich6 library as flat structures. However, the hierarchical organization of the

cich6 library allows implementation variation to be represented compactly.

5.2 Limitations

Our recognition approach is based primarily on dataflow graph matching and control flow

constraint checking. The success of this approach depends on being able to:

1. faithfully capture the program's dataflow in our flow graph representation and the

program's control flow in the attributes, and

2. express a programming cich6 in an attributed graph grammar rule in terms of its data

and control flow constraints (i.e., operation types and arity, dataflow connections,

control environment relationships).

In general, the limitations of our approach arise when one or both of these are not

possible to do. The first criterion is not possible when the dataflow or control flow of

the program cannot be completely captured by static analysis or the dataflow is not made

explicit (in that it is derived from intermediate computations). The second criterion is not

satisfied for cich6s that have loosely constrained dzata and control flow or that are defined

by characteristics other than data and control flow.

This section gives specific situations in which we encountered 5hese limitations in ex-

perimenting with the recognition of our example programs. It also suggests ways of dealing

with these problems, e.g., by collaborating with other mechanisms or eliciting and accepting

advice "rom a person. (There are additional limitations to the current recognition system

that, represent open research problems, rather than inherent difficulties with the approach.

These are discussed in Section 7.2.)

175

5.2.1 Missing or Derived Dataflow

Our cliches are basically expressed as dataflow graphs. A clich. can be recognized only if a

sub-flow graph of the flow graph representing the program is isomorphic to the clich6's flow

graph representation. Unfortunately, sometimes a clich6 exists in a program, but GRASPR

fails to find it because dataflow links are derived or missing.

The principal cause of missing dataflow (and control flow) information in our example
simulator programs is that they accept functions for simulating individual machine oper-

ations as input. This prevents data and control flow from being completely determined

statically.

We found three common causes of derived dataflow links in our example programs. One

is that a primary part of a clich6d data structure may correspond to a part of a data

structure in the program that is a handle. The handle is used to look up the piece of data

that actually corresponds to the clich6's primary part. For example, our Execution-Context

data clich6 contains a sequence of INSTRUCTIONs as a primary part. In the CST program, on

the other hand, the corresponding data structure, called context, has a "Code" part that

is a symbol. This symbol is used to look up a Block, which is a sequence of INSTRUCTIONs,

in a pooling structure containing all existing Blocks.

The problem with non-clich6d uses of handles is that they introduce intermediate com-

putation which interrupts data flowing from one primitive operation to another. This

computation looks up a piece of data using a handle into a pooling structure.

Unsimplified code is a second cause of obscured dataflow links. For example, in

(F (Abs-val (CG x))), where (G x) is always positive, there is always direct dataflow from

G to F.

A third cause is that a program may implicitly aggregate heterogeneous pieces of data,

rather than explicitly aggregating the data into a structure with named parts, using a struc-

turing primitive (such as DEFSTRUCT in Common Lisp). In implicit aggregation, a primitive

data structure, such as a list (in Common Lisp) or an array, is used to aggregate heteroge-

neous pieces of data, where the position in the data structure matters. For example, Pisim

creates and uses an array whose first two elements cache information about a MESSAGE (Type

and Storage-Requirements), while the rest of the array holds the MESSAGE's Arguments. This

array should be treated as an aggregate data structure with three parts: Type (a symbol),

Storage-Requirements (an integer), and Arguments (an array).

Implicitly aggregated data structures are accessed and constructed with primitive op-

erations (such as aref) on the data structures at fixed indices. These operations are not

converted to attributed edges, as are selectors and constructors for explicit aggregations.

There are two problems with this. One is that with explicit aggregation, the data

from one operation to another is represented as a direct edge annotated with accessor

and constructor attributes, but with implicit aggregation, this dataflow is interrupted by

primitive operations that access or update at a fixed index. In other words, the explicit

176

dataflow link is replaced by a "derived" dataflow link.

The other problem is that it loses the benefit of our representation for explicit aggre-

gation which facilitates the separation of familiar and unfamiliar computations on parts of

a data structure. This separation allows partial recognition of the data structure and the

computation on it. (This capability is discussed in Section 5.1.4.)

The underlying difficulty is that implicit aggregation hides the information that a certain

primitive access or update at a fixed location is actually a selector or constructor involving

a certain data structure and its parts. When data is. explicitly aggregated (e.g., using

DEFSTRUCT), the structuring primitive serves as a machine-readable comment that specifies

that some pieces of data are aggregated and are only accessed and constructed using certain

functions. It also provides information about which user-defined data structure and parts

are involved in the selection or construction. Additionally, it represents the intent of the

programmer to only use these accessors and constructors to manipulate the aggregation and

never deal with it directly using primitive operations.

(Note that people find it hard to deal with implicit aggregation as well. It requires

knowing how fixed locations in the data structure translate to the particular pieces of data

being aggregated. It requires effort to perform this mapping during recognition.)

Solution Suggestions

To deal with the variation due to missing or derived dataflow, GRkSPRl would profit from

advice from a user or collaboration with other automated techniques. For example, classical

rewriting or partial evaluation techniques can be applied to simplify parts of the program.

(See Letovsky [841 and Murray [95], for example.) By interleaving recognition with these

other techniques, alternative views of the program can be generated to facilitate recognition.

Recognition in turn can provide a more abstract view of the program and generate assertions

about parts of it, based on the known properties associated with the cich6s that have been

recognized so far.

One way for GRASPR to elicit advice is by looking for "question-triggering" patterns

(in addition to clich6s) which point to the possibility that some dataflow is derived. For

example, by looking for standard look up and update operations (such as associative-set

cich6s), GRASPR might uncover a use of a handle. Recognizing that each node created during

initialization is put into *1ODES* triggers asking the user if *NODES* always contains all the

NODEs ever created. A fixed-position array or list access suggests an implicit aggregation

is being used. These hypotheses can then be presented to the user or some expectation-

driven component for confirmation. Once the use of a handle or an implicit aggregation is

uncovered, GRASPR can generate an alternative view of the flow graph in which the derived

links are made explicit attributed edges.

It can be more difficult for GRASPR to confirm its hypotheses on its own than for a

human user to confirm them, since the user can take advantage of expectations generated

177

from the mnemonic names and documentation. For example, it can be easy for a person
to tell whether a particular data structure is a pooling structure, just by its name: *Nodes*

contains all lode data structures in PiSim, *Blocks* contains all Block structures in CST.

(Alternatively, the user can give GRASPR advice about which structures are pooling structures

up front, without waiting for GRASPR to ask for it).

A special (and common) case of implicit aggregation for which it is easy for a person
to give advice is manual abstraction. In this case, functions are explicitly defined which

perform the accesses and constructions involving fixed indices in an implicitly aggregated

data structure. In other words, the programmer manually defines the accessor and con-

structor functions for an implicitly aggregated data structure. (These functions are defined

automatically by explicit aggregation primitives (such as DEFSTRUCT).)

This is distinguished from general implicit aggregation in that the aggregation is ex-

plicit to people, even though it "looks" the same as implicit aggregation to GRASPR. The

aggregation is expressed in the naming conventions the manual abstraction functions use.

They also express the programmer's intent not to violate the abstraction by manipulating

the aggregate directly using primitive operations. Since GRASPR does not take naming con-

ventions into account, these functions are flattened just like any other function. However,

a person can easily give GRASPR the information that certain functions should be seen as

accessors and constructors for an aggregate data structure.

5.2.2 "Missing" Clich6 Parts

Another common reason for an algorithmic clich6 not to be recognized is because part of

the clich6 is replaced in the program by a special-case optimization. This optimization is

not a cich~d one; it happens to be possible in the context in which the clich6 is used.

A common instance of this occurs when some computation is avoided by using a value

that equals the result of that computation. This can be an opportune equality or an

intentionally cached value. For example, the cichM for polling the simulated nodes and

stepping those that have work to do contains an enumeration of the collection of simulated
nodes. The cich6 for enumeration when the collection is implemented as a sequence has

a part that computes the size of the sequence and then uses it to determine how many

elements to enumerate. The instance of this clichb in the CST code does not compute the

size of *NODES*, but instead uses *IUMBER-IODES* which is a global variable specifying the

size of *NODES*. This variable is used during initialization to create *NODES*.

Sometimes part of a cich6 is missing in the program because the general case represented

by the cbich6 has been simplified in the context of the program. For example, a part of the

Event-Driven Simulation clich6 is a Priority-Queue Insert which adds an initial EVENT to the

Event-Queue. Because the Event-Queue is empty at this point, the general case of this clichMd

operation can be reduced to the computation done when the priority queue is empty. (For

example, if the priority queue is implemented as an ordered associative list, the insertion

178

would simply cons the event onto the empty priority queue, without testing whether it is

empty or providing actions for splicing it in if its not empty.) If the special-case version

of the clich6 is a common optimization, then it is included in the library along with the

general case. However, when it is not, recognition of the clich6 fails. (We cannot expect all

possible optimizations in the context of use to be cliched and we do not want to enumerate

them all in the library.)

Solution Suggestions

What is needed for recognition to succeed in these cases is for the special-case computation

and the general-case clich6 to be seen as equivalent. In general, this cannot be done.

However, it may be possible to apply limited reasoning techniques to uncover dataflow

equalities or conditional simplifications in simple cases such as those discussed above.

Non-clich6d special-purpose optimizations often cause some, but not all of a clich6 to be

recognized. One way to elicit advice on whether some computation is a special-case opti-

mization is to find maximally-sized near-misses (partial recognitions) of the clich6 and then

generate a hypothesis that the cached value used is equal to the result of the computation

in the part of the clich6 not yet matched.
Recognizing maximally-sized near-misses is costly (as is discussed in Section 6.2.7).

However, we can generate them only for particular cliches and at particular locations in the

program in order to reduce the cost. For example, we can choose only promising cliches,

such as those for which some salient part has been recognized, and we can look for them

only in the areas of the program that have not already been recognized as part of other

unrelated cliches.

5.2.3 Expressing Clichds with Loose Constraints

In encoding clichds as constrained dataflow graphs in graph grammar rules we are required to

specify exactly which operations (or classes of operations) make up a clich6, how dataflow

connects them to each other, and their arity. For some cliches that we identified in our

simulator domain, this is difficult to do.

There are three different cases in which we encounter difficulties. One is in expressing

clichds that have as an integral part the application of an arbitrary, non-cichbd and non-

primitive function. A second case is in compactly representing possible variations in the

implementation of an algorithmic clich6 whose parts may be combined in several possible
valid configurations. The third case is in capturing a cich6d data and control flow pattern

in which the operations and tests are not tightly constrained to be of particular types. The

dataflow between them is only loosely constrained as well.

179

Arbitrary Function Application

We encountered two examples of types of cliches that are difficult to encode because a part

of them is the application of an arbitrary function. They are second-order patterns, in that

they are parameterized over arbitrary functions, which are non-cliched and non-primitive.

One example arises in encoding iteration cliches, as discussed in Section 4.1.3. These

clich6s all contain applications of arbitrary functions or predicates in an iteration. However,

we cannot encode these cliches without requiring the functions or predicates to be primitive

operations (terminals) or cliched functions (non-terminals). For example, it is not possible

to recognize the generation dichc in the following code.

(defun f (1)

(f (cdx (cdx 1))))

This is because the generating function is an arbitrary composition of primitives (i.e., the

generating function is (lambda (x) (cdr (cdx x))).

Another example of this problem arises in trying to capture the simulation cliches with-

out requiring that the code for simulating message handling be cich6d. In particular, we

wanted to express the clich6 for processing an event (in event-driven simulation) or ad-

vancing a node (in synchronous simulation) as having a part that applies some non-cliched

message handling simulation function.

Solution Suggestions

What is needed is a special-purpose mechanism (separate from the graph parser) to bundle

up the sub-flow graph that satisfies certain constraints. This mechanism can make use of

information about how much of the clichM has already been matched to focus on certain

locations. It can also make use of information available in the clich6's constraints.

For example, in the iteration clbchbs, the input and output correspondence constraints

place restrictions on which sub-flow graph can be bundled up. Waters [1381 has developed

general-purpose dataflow-based techniques for decomposing a program into temporally ab-

stract fragments. It would be useful to incorporate these decomposition techniques into

the recognition process to help bundle up possible functions. For instance, bundling up the

composition of cdrs in our example above can be done by grouping together the sub-flow

graph that is bounded by input and output ports that input-correspond.

In the case of bundling up message handling simulation code when no clich6d function

for it is recognized (as in cST), it might be possible to ask for advice on which part of the

program achieves this purpose. Also, based on the location of the rest of the clich6 and

which nearby parts of the program are unrecognizable, GRASPR might be able to hypothesize

approximately which part of the program should be bundled up.

IR~O

Implementational Variations

As we mentioned in Section 2.1.3, there are many variations of our synchronous simulation

algorithm. On each iteration, the algorithm we described performs three actions in the

following order: test for termination, deliver messages, and poll and advance nodes by one
step. The other variations of this algorithm in which a different ordering is used also perform

synchronous simulation.

However, each of these variations is represented by a different dataflow graph. For
example, the algorithm described in Section 2.1.3 has the form shown in Figure 5-8a. (This

is a sentential form of our current grammar which encodes the algorithm.) Two other valid
configurations are shown in Figure 5-8b and 5-8c. In fact, all six permutations of the three

actions are valid configurations.

The problem is that we must deal with these variations by enumerating them in the

cichb library. This is because the flow graph encoding forces us to specify the exact dataflow

connections between the three operations and therefore a particular ordering.

It is an open question whether there is a more compact representation for algorithmic

clichds that vary in this way. (For example, reasoning about a program's functional seman-
tics, as is done by Allemang's DUDU [4, 5], may help tolerate this variation.) In addition,
more experience with encoding clich6s is needed to tell how severe this problem is and how

frequently it occurs in practice.

General Data and Control Flow Pattern

Because our formalism forces us to specify many details of dataflow, operation types, etc.,
it is sometimes hard to express some common data and control flow patterns that are not
tightly constrained. One cich6 we had difficulty expressing is a common type of conditional
dispatch which occurs in program interpreters (particularly for the Lisp-like languages).

This clich6 is the "Evaluate" part of an EVALUATE/APPLY recursion for interpreting state-
ments in a language. The standard algorithm for this dispatches on the type of an expression

to code for handling that expression. For some expression types, there are standard com-

putations to perform. For example, for expressions that are constants, the expression is
simply returned. For expressions that are applications of some operator to a set of argu-

ments (which are themselves expressions), each argument is recursively evaluated and the

operation is applied to the set of evaluated arguments.
However, instances of this clich6 vary with the types of expressions that can be evaluated,

which depends on the language of the program being interpreted. The number and type of

test cases in the conditional dispatch vary. The actions that are dispatched to also vary.

The dataflow connection constraints are flexible. The problem is that in our formalism, we
must specify the number and types of tests and actions, and the exact dataflow between
them. A more abstract language for expressing abstract data and control flow patterns is

needed.

181

)KI

Finished Delive-

MM Res

FigureK 5X:S2 vldvritoso Synchronous Smlto agrtm

182mltin

The point of this section and the previous is that although the flow graph formalism

allows us to encode clich6s on a high level of abstraction, the level of abstraction is still

limited by the amount of detail that must be specified. Perhaps there are ways of com-

bining this formalism with even more abstract formalisms that will allow looser dataflow

constraints. For example, perhaps we can encode and recognize parts of clich6s within the

datafiow graph formalism, and then use a different encoding to express constraints on how

these parts fit together.

5.2.4 Enqueuing New Messages and Events

This section deals with a problem that arises both as a result of not being able to fully

determine the data and control flow of the example programs and of not being able to

express and efficiently check certain constraints.

As mentioned in Section 4.1.4, one of the actions of a processing node that is simulated

as part of the simulation of message handling is the creation and sending of new messages.

One of the constraints on both simulation algorithms is that whenever a message send is

simulated, a new EVENT or MESSAGE must be created and added to the event-queue or global

message buffer, respectively.

We did not include this constraint in the grammar rule encoding of the rules for the

synchronous and event-driven simulation cliches. There are three obstacles to expressing

and checking this constraint within our graph parsing framework.

One is that the computation involved (enqueuing new EVENTs or MESSAGEs) is buried

within the code for simulating a processing node's action. This code is not guaranteed to

be cich6d, so we do not have grammar rules that derive all possible flow graphs representing

this code. This means that we have no context in which to express the constraint.

Suppose it is clich6d, we still have a second problem which is that the part of the
simulation code that performs the activity of enqueuing new EVENTs (or MESSAGEs) is typically

given as input to the simulator. So, it is not available for analysis. The clich6 models the

application of functions for simulating a processing node's actions during an instruction

execution. Since these functions are not part of what is analyzed, the exact data and

control flow connecting th- enqueuing operation to the rest of the clich6 are not explicitly

represented.

Finally, suppose we had the code available. That is, rather than accepting functions

to simulate the actions of a processing node in executing some machine operation, suppose

the simulator program contains a large conditional which dispatches on machine operation

types to the code simulating operation execution. We encounter yet a third problem which

is that in the current parsing framework, it is difficult to express and check the constraint

that each time a message send is simulated, - i.e., a new EVENT (or MESSAGE) is created. - the

new EVENT (or MESSAGE) is added to the event-queue (or global message buffer). It requires

expressing and checking constraints that are quantified over instances of some computation.

183

A special-purpose global mechanism is needed to check this constraint, since the parser

is currently only able to check constraints on individual instances. In addition, it requires

some means of finding all instances of creating whatever user-defined data structure that

corresponds to our cliched aggregate EVENT (or MESSAGE). This requires unambiguous infor-

mation about the mapping from cliched data structures to user-defined ones. Also, since

aggregate data structure creation is encoded in edge attributes, finding the instances of

user-defined data structure creation cannot be done by recognizing a flow graph. Instead it

must focus on patterns in edge attributes.

In summary, problems arise when:

"* an integral part of clich6 is non-cliched and the constraint we want to express refers

to this non-clich6d part,

" the data and control flow relating the constrained part of the clich6 to the rest of the

clichM are not completely and statically determined (e.g., because part of the program

is read in as input), or

" the constraint quantifies over instances of some computation, particularly if the com-

putation is a data structure creation or access, not the application of some primitive

operations.

Solution Suggestions

Although the enqueuing constraint is difficult to express and check within the current graph

parsing framework, it is not a hard constraint for a person to check. The person has

the advantages of understanding mnemonic names which give clues about the purposes of

machine operations. A person might also have expectations about which machine operations

cause message sends, based on knowledge of the machine being simulated.

Rather than requiring that more code be given to GRASPR for analysis or extending the

parser to quantify constraints over instances, it might be easier to just ask the user whether

the constraint holds. The constraint should be expressed more generally as a condition on

the code that simulates a node's action. If we are already eliciting advice on which part

of the program handles a message (as suggested in Section 5.2.3), then we could also ask

whether this general constraint holds. GRASPR might also ask for the simulator function that

is called to perform the enqueuing and then can analyze that code to understand better

how the event-queue (or global message buffer) is implemented.

5.2.5 Modifications to Example Programs

To enable GRASPR to recognize the example simulator programs, we made the following

changes to the programs. Some avoid the inherent limitations of the graph parsing approach

discussed in this section. Others help GRASPR deal with difficulties in the current system,

which we expect to be addressed by extensions to GRASPR in the future. (For example.

184

these include recognizing programs that are multiply-recursive or that perform side effects
to mutable objects. See Section 7.2). Appendix B contains the original versions of the two

simulator programs, as well as their translations.

" We transl.,ted instances of implicit aggregation (including manual abstractions) to
explicit aggregations. For example, we defined a Task-Segment data structure in PiSim
to explicitly aggregate the Type, Storage-Requirements, and Arguments of a MESSAGE.

In CST, we replaced the manual abstraction for mag with a msg structure definition.

" We simplified conditionals and canonicalized conditions involving NOT, OR, and AND.

(See step-done and enqueue in CST, for example.)

" We manually undid special-case (nonclichdd) optimizations that take advantage of an

opportune dataflow equality or a cached value. That is, we restored the computational

part of a cllch6 that is avoided by an optimization. For example, in CST's step-nodes

function, which enumerates and steps the simulated nodes, the use of *number-nodes*

iF replaced by a call to array-total-size.

" To deal with the problem of encoding and recognizing loosely constrained cichds, we

provided advice to GRASPR about where these clichds were located. (In a future hybrid

system, we expect this advice to come from other recognition techniques that can deal

with these types of clichds. See Section 7.2.2.) During the translation of the PiSim

program to a plan, we advised the symbolic evaluator that the box representing the

call to the function Evaluate not be expanded. This avoids a limitation in the current

implementation of GRASPR which prevents it from translating multiply-recursive pro-

grams into meaningful attributed flow graphs. (See Section 7.2.1.) We also specified

that the unexpanded call to Evaluate is an instance of the "Evaluate" cliche. (See

Section 7.2.2.) Similarly, during the translation of the CST program, we specified that

the process-mug function not be expanded and that it represents an instance of the

Handle-Message non-terminal.

When the symbolic evaluator creates the plan representation of a program (which is

then translated to an attributed flow graph), it starts with some topmost function

and recursively expands calls to user-defined functions into their plan represerc ations.
Only plans for functions whose calls are reached by the evaluator are included in the

plan representation. This means the flow graphs for some functions in the example

programs are not included as sub-flow graphs of the input graph parsed. In particular,

those that are only called by Evaluate in PiSim and process-msg (or its subfunctions)

in CST are not included. Also, functions in PiSim called by the Machine-Operation

functions given as input to PiSim cannot be expanded into the program's plan repre-

sentation. In addition, some logging and tracing functions in both programs are not

expanded.

185

* We translated the programs into their functional versions by replacing destructive
operations with their non-destructive counterparts. (See Section 7.2.4 for ideas on

partially automating this translation.)

* All iterative computations are treated as tail-recursions by GRASPR. Currently, the

translation from iterative to tail-recursive procedures is done manually, but it is well-

known that this translation is straightforward to automate.

* Program breaks, errors, and non-local program exits are currently ignored in that
they are treated as ordinary calls to primitive operations. The non-local control flow

they cause is not modeled in our control flow attributes. Further research is needed
to determine how best to model non-local flow. See [117], Section 3.4, for further

discussion of this problem.

5.2.6 Conclusion

We have made observations of difficulties encountered in recognizing two programs. These

might be relatively rare problems or they might be common. There is currently no natural

partitioning of programs based on the difficult features they contain with respect to recogni-
tion. This report starts to point out some features that might distinguish programs that are

hard to recognize from others (at least within the realm of recognition based on dataflow

and control flow). Much more research is needed to map out this space of recognition

difficulty.

186

Chapter 6

Analysis

Our flow graph parsing algorithm is worst-case exponential in both space and time. For
each rule of the grammar, the parser is searching for a way to match each node of the
rule's right-hand side to an instance of the node's type in the input graph. This search is
inherently exponential. In fact, the flow graph recognition problem for flow graphs - given
a flow graph F and a grammar G, determine whether or not F is in the language of G
- is NP-complete. (Appendix A gives one proof of the NP-completeness of this problem.)
The flow graph recognition problem is simpler than the flow graph parsing problem for flow
graphs, so it is unlikely that there is a flow graph parsing algorithm that is not exponential

in the worst case.
Nevertheless, we apply our flow graph parsing algorithm to the problem of partial recog-

nition of programs and do not encounter the exponential behavior in practice. The reason
is that we take advantage of constraints specific to the program domain which are strong
enough to reduce the complexity and prevent the worst case from happening. (The appli-
cation of the parser to other problem domains requires similar use of strong constraints.)

Efficiency is also gained by using a graph grammar that captures much of the common-
ality among the flow graphs the parser is searching for. This enables the parser to reuse

results of exploring parts of the search space.
This chapter gives an expression for the time requirements of the parser, showing that

they depend on the number of full ary' partial analyses the parser generates. It points out
how the algorithm can be made to exhibit exponential behavior in the worst case. It then

explains how constraints make it feasible for us to apply this inherently exponential process
to practical program recognition. Weak constraints can arise in the general flow graph
parsing case in the form of ambiguity and disconnected right-hand sides of graph grammar

rules. However, additional program domain-specific constraints compensate for these weak

structural constraints.

Empirical evidence supports these arguments and shows the effectiveness of the con-
straints used. The empirical results were obtained by experimenting with the recognition of

the two example simulator programs, referred to as CST and PISIM. (These programs have

187

been modified from their original form (see Section 5.2.5) to get around the limitations of

the current system that are discussed in Sections 5.2 and 7.2. Even with these modifica-

tions, the programs provide a realistic base for experimentation in that the modifications

did not significantly affect the strength of constraints.) Further experimentation on more

programs is needed to broaden our understanding of which constraints are crucial and which

programs are inherently difficult to understand.

This chapter concludes with a few suggestions for improving the performance of the

parser.

6.1 Cost

This section presents an expression for the time requirements of the parsing and constraint

check:ng process which is at the heart of the recognition system. We first briefly describe

the particular instantiation of the general chart parsing algorithm, which is used by the

recognition system. The instantiation fixes the rule invocation strategy to be bottom-up.

(This is the strategy used by the current recognition system for reasons described in Section

3.5. The top-down version of the algorithm for grammars with a simple embedding relation,

which encodes no aggregation relationships, is equivalent to Brotsky's graph parsing algo-

rithm. See [15], for an analysis. For the top-down string parsing case, see Earley's analysis

[31, 32].)

We derive a formula for the average-case complexity of the bottom-up algorithm. The

cost depends on the number of items that are created by the parser. Section 6.2 characterizes

this number and shows how the worst-case exponential growth in the number of items is

prevented by domain-specific constraints in practice.

In the complexity expression, the numbers of various types of items created by the parser

are weighted by the costs of the parser's actions. Section 6.3 gives detaili of what the costs

of these actions depend upon.

6.1.1 Brief Algorithm Description

For the purposes of our analysis, we need to describe a few additional details about the

structure of items and graph grammars, so that we can refer to them.

Each rule in the grammar has an associated node ordering. This is a reflexive, anti-

symmetric relation, that need not be transitive. We denote it as _<,. We distinguish node

orderings in which all nodes are related in a chain, as strict node orderings. In these, there

is exactly one minimal node n1 (i.e., no other node is <n n1) and exactly one maximal

node nk (i.e., nk is not <,n any other node), all of the nodes are ordered from n1 to n. in a

sequence (nl,...,nk) such that ni :5n N+1 for i = I,...,k- 1, and no other pair of nodes is

related besides these. (The transitive closure of a strict node ordering is a total ordering.)

We call non-strict node orderings partial node orderings. The transitive closure of a partial

188

node ordering is a partial ordering.

We call the node type that an item is recognizing its label. Each partial item has a

grammar rule associated with it which is being used to recognize this node type. Also, each

partial item contains a set of needed nodes which ariý nodes not yet matched in the item

rule's right-hand side. We distinguish a subset of these as immediately needed. This subset

is determined by the rule's node ordering. Initially, the immediately needed nodes are the

minimal nodes. When a node x is matched, it is replaced in the immediately needed set

by all other nodes not yet matched that x is less than in the ordering. (If a partial item's

rule has a strict node ordering, the item will always have exactly one immediately needed

node.)

The immediately needed set determines which nodes are allowed to be matched next.

If a complete item for node-type A is added to the chart, only partial items that have

immediately needed nodes of type A can be extended by the complete item. Similarly, if a

partial item is added to the chart, it is only combined with complete items for those nodes

in its immediately needed set.

Each item has a set of input and output mappings which specify the location of the node-

type being recognized. For partial items, these might be empty. The location is specified in

the form of a set of mappings of ports on a node (whose type is the item's label) to sets of

location pointers (which may be nested due to aggregation, as described in Section 3.4.1).

Each location pointer specifies some input graph edge.

We are now ready to describe the chart parsing algorithm which uses a bottom-up rule

invocation strategy.

1. Initialization:

* Add complete items to the agenda for each input graph node. The label of each

item is the node label of the input graph node it represents.

* For each rule, add an empty partial item to the agenda. The label of the item is

the node-type of the rule's left-hand side. Make the item immediately need the

set of nodes that are minimal in the rule's right-hand side node ordering.1

2. Until the agenda is empty, continually pull an item X from the agenda and if X is not

a member of the chart, do the following:

* Add X to the chart.

* If X is a complete item and X's constraints are satisfied, then for each partial

item P in the chart that is extendable by X, make a new item extending P with

X and put it on the agenda.

'One or the other, but not both, of these initialization steps can add the items to the chart as an

optimization. Also, the empty partial items can be added to the agenda as they are needed, as described in

Section 3.5. To simplify the analysis, neither optimization is done here.

189

" If X is a partial item, then for each complete item C in the chart that can extend

X, make a new item extending X with C and put it on the agenda.

" Apply the tests and operations of the additional monitors to the item. For

example, for each complete item X whose constraints are satisfied, the zip-up

monitor determines whether there are items that can zip up with X. If so, it

performs the zip-ups and adds the results to the agenda.

To clarify, the check that "X is not a member of the chart" is checking that there is no

item in the chart that represents the same analysis as X. If X is partial, then this checks

that there is no other partial item that matches the same right-hand side nodes of some rule

to the same input graph terminal nodes or non-terminal instances. If X is complete, then

this checks that there is no other complete item with the same label at the same location

asX.
There are two situations in which an item can be created that is a duplicate of an

existing item. One occurs when there is structural ambiguity (i.e., there is more than one

way to derive the same flow graph from the same non-terminal).

The other situation occurs when two complete or partial items are created as a result

of a series of extensions, starting from the same partial item and involving the same set of

complete items for the same right-hand side nodes, but occurring in two different orders.

Figure 6-1 gives an example. The partial item lp immediately needs two nodes, nj of

type A and n 2 of type B. Two complete items are formed, one for A and the other for

B, such that both can extend Ip. Ip is extended to two new items Ip1 and Ip2- Since the

complete items for A and B are compatible in that they satisfy the binary constraints that

Ip's rule imposes on nj and n 2, Ip, and Ip2 are extended with the complete item for B

and A, respectively. The two resulting items are duplicates of each other, since they have

the same right-hand side nodes (n, and n 2) matched to the same non-terminal instances

(represented by the complete items for A and B).

This can only happen if a partial item is able to have more than one immediately needed

right-hand side node. Therefore, it occurs only when a rule has a partial node ordering.

Each complete and partial analysis created by the parser is added to the chart exactly

once. This is guaranteed because before adding an item to the chart, the parser explicitly

checks for a duplicate item already existing in the chart.

A grammar that is structurally ambiguous provides multiple ways to hierarchically view

a subgraph. The multiple derivations are sometimes useful for understanding purposes.

So, rather than simply throwing away duplicate complete items that represent different

derivations, we can store them in an auxiliary structure to be accessed when presenting the

parser's results.

Another clarification of the algorithm concerns the timing of constraint checking. Gram-

mar rules place a number of constraints on the nodes and edges that match their right-hand
sides. Some of these constraints are checked in the extendibility criterion (e.g., node type

190

I ---------- - -- - -- - -- -,

A I

I I

I I
I I

III _......i1.
II

B!

2 : 'M --------
•I |

D IIE~J4
""a aa. a,

a-a------------- ---- i-------- ------- --

Figure 6-1: Two series of extensions resulting in duplicate items.

191

and edge connection constraints). Others (e.g., most attribute conditions) are checked when

a complete item is added to the chart, before it is paired up with partial items to extend.

Section 6.2.2 discusses the design decision concerning which constraints should be checked

in the extendibility criterion and which should be postponed to apply to complete items

alone.

Additional details of this algorithm will be fleshed out as needed. In particular, many of

the details that are relevant to the actions of the parser, such as adding items to or looking

up items in the chart, have not been presented. These will be described when the cost of

each of these actions is considered.

6.1.2 Complexity

We can determine the cost of the parsing algorithm by considering the cost of each of its

sub-operations and how often they are performed (i.e., the total number of items they act

upon). To do this, it is useful to categorize the types of items created. We partition the

full set of items ever created, denoted by IT, in two ways. As shown in Figure 6-2a, one

partitioning views IT as consisting of four disjoint sets of items which are differentiated by

how the items in the sets were created. (The relative sizes of the sets in the figure is not

meant to reflect the relative sizes of the actual item sets.)

* I, is the set of complete items created during initialization for each of the terminal

nodes of the input graph.

o /R is the set of empty partial items created during initialization for each rule.

o Iz is the set of items created by zipping up two or more items.

o /E contains all items created by extension.

The second partitioning breaks up IT into two disjoint sets, as shown in Figure 6-2b:

* ID is the subset of /E that contains duplicate items that were created but not added

to the chart, and

* Ic is the set of items that are in the chart.

Figure 6-2c shows how the sets overlap across partitionings. We denote as If the subset

of items in the chart which are complete items. If is shown in Figure 6-2c as the shaded

portion.

We can now characterize the overall cost of the parsing algorithm by considering the

number of times each of the actions of the parser is applied. This can be expressed in terms

of the sizes of the various sets of items described above. This is because each action of the

parser acts upon a particular type of item and it is applied exactly once for each item of

that type. There are no additional costs not accounted for. The overall cost is a sum of the

action costs weighted by the number of items to which they apply.

192

1T

I R

c) T he relationship
betw een the paw tite rc s.

Figure
6-2: P artitions of the total item set.I19T

We consider which actions are applied to each of the items in each type of item set.
Each action is followed by a variable denoting the run-time cost of performing this action
on an item. These variables are used below in expressing the algorithm's complexity.

The following actions are taken upon each item ever created, whether or not it is added
to the chart (i.e., for all I E IT):

"* create it, which is one of these actions

- if I E In, create complete item for a terminal node (Cinatantiate-teminal)

- if I E IR, instantiate empty partial item (Cinstantiate-eempty)

- if I E IE, create item by extension (Cextnd)

- if I E IZ, create item by zipping up other items (Cip-,p)

"* add it to the agenda (Cagenda-add)

"* pull it from the agenda (Cagenda-retrieve)

"* look for a duplicate of it (Cdupticate-test).

Each item added to the chart (i.e., each item in Ic) additionally has the following actions
applied to it. (For now, assume the only additional monitor is the zip-up monitor.)

"* add it to the chart (Cchart-add),

"• look up items to combine with it (Ccombination-.lookup),

"* look up items to zip up with it (Czip-U,-lo o kup).

Each complete item in the chart (i.e., those in IJ) has its constraints checked (Cconstraint.-check).

The total run-time cost of this algorithm, in terms of the component action costs and
the size of the item sets is:

I 'TI * (Cagenda-add + Cageinda -retrieve + Cduplicate- test) +

IIEI * Ceztend +

I/CI * (Cchart-add + Ccombination-lookup) +

I 'RI * Cinstantiate- empty, +

IInI * Cinstantiate--terminal +

IIzI * Czip-up +

I II * (Ccontraints check + ip-p-ookp)

The sizes of the component action costs are typically quite small. They depend polyno-
mially upon the sizes of various parts of an item, such as the number of inputs or outputs.

These costs are detailed in Section 6.3, where empirical averages are also presented.

194

In a typical recognition run, the dominant terms in the complexity formula are the first

three. IE is typically the largest of the item sets in the first partitioning. Ic is the largest in

the second partitioning. It usually consists mostly of items that were created by extension

as opposed to instantiation or zip-up (i.e., a majority of Ic overlaps with IE).

The run-time space requirements of the parser also depend on the number of items

created by the parser. The space cost is O(IITI).

6.2 Counting Items

The algorithm's complexity (both time and space) depends on how much is recognized.

This is a feature of the algorithm and is a consequence of the bottom-up rule invocation
strategy used by the parser. The amount recognized can be measured by the number of

items the parser creates, since each represents a partial or complete recognition of some

sub-flow graph.

This section focuses primarily on characterizing the number of items that are created

by the parser through extension. In practice, more items are created by extension than

by instantiation or zip-up. Its size dominates the space cost, and the run-time cost of

operations over this set dominates the parser's time complexity.

To simplify the presentation, we temporarily assume that no items are created by zip-

ping up items. In this way, we avoid cluttering the discussion with details about zip-ups

which might be irrelevant to other applications of the graph parser besides program recog-

nition, which do not require parsing structure-sharing graph grammars. In Section 6.2.6,

we consider the effect of zip-ups on the total item count.

We also simplify the discussion by assuming for now that the nodes of each rule's right-

hand side are matched according to a strict node ordering. One effect of enforcing a strict

node ordering is that the parser does not generate duplicate items representing the same

analysis. That is, each item created by extension is unique in that there is no other item

for the same rule R which has the same matches for each of R's right-hand side nodes.

To see this, suppose an item I, were created for which there is a duplicate item 12.

The two items would have to be created through a series of extensions involving the same

complete items for the same right-hand side nodes, but the extensions would have to occur

in different orders. This is because each partial and complete item is added to the chart at

most once and they are combined with each other only once - when the second of the two

is added to the chart. So, the same partial item cannot be extended more than once by the

same complete item for the same node. Since the series of extensions must have occurred

in different orders, some partial item must have been extended with complete items for

more than one right-hand side node. This can only happen to a partial item that has more

than one immediately needed node, which can only occur when partial node orderings are

being used. Therefore, with strict node orderings, no duplicate items representing the same

analysis will be created.

195

Another effect of using a strict node ordering is that fewer partial items are created.

By the argument just given, strict node orderings permit only one possible series of partial

items leading to a complete item through extension. Partial node orderings may allow

several series of extensions, each involving a different set of partial items.

The reason we consider the case of using strict node orderings first is that this makes

it easier to see the effect of constraints on reducing the parser's search. We want to study

the growth in the number of items for a particular rule as the size of the items increases.

This growth is affected by two things: the constraints that are acting on the right-hand

side nodes matched so far and the number of immediately needed nodes an item can have.

Strict node orderings force the number of immediately needed nodes of any partial item to

be exactly one. So, imposing a strict node ordering on all rules allows us to study the effect

of constraints on the growth of the number of items, independent of the effect of multiple

immediately needed nodes.

Another reason we make this simplification is that parsing using a strict node ordering

is one of the ways in which this parser is expected to be used. It is more efficient than

parsing with partial node orderings since, in general, it allows fewer partial items to be

created. (String chart parsing is a general case in which strict node ordering is typically

used, where the "nodes" are string symbols.)

The analysis of the algorithm when partial node orderings are being used is an extension

of the analysis of this simplified form. This is given in Section 6.2.7, where the advantages

of using strict versus partial node orderings are also discussed.

The organization of this section is centered around the characterization of the number

of items generated for a single rule through extension. The total number of items created by

extension is the sum of this number over all the rules of the grammar. Section 6.2.1 defines

item trees, which relate the items created by the parser in matching a rule's right-hand side.

Sections 6.2.2 and 6.2.3 discuss the effect that constraints and the grammar have on the

growth of these trees. Empirical observations of the shape of item trees (i.e., the growth of

the number of items) created in two typical recognition runs are given in Section 6.2.4. In

Section 6.2.5, we borrow a theoretical model presented by Grimson [49, 50] in his analysis

of the constrained search object recognition technique, which is similar to the sub-flow

graph matching subprocess performed by our parser. The model helps us to understand

the role of constraints and suggests future research into ways of concretely measuring their

effectiveness for a particular input flow graph and grammar. The final two sections (6.2.6

and 6.2.7) lift the two simplifying assumptions of suppressing zip-ups and using only strict

node orderings and discuss the effects this has on the parser's complexity.

6.2.1 Item Trees

For each rule, the parser searches for a match of the rule's right-hand si~e nodes, such that

the rule's constraints hold. Each right-hand side node is matched to some terminal node or

196

some non-terminal instance that has been found in the input graph. The rule's constraints
are unary (such as node type constraints) or binary (such as edge connection constraints).

The items for a rule R represent each of the stages in this search. The size of an item is

the number of right-hand side nodes of the item's rule it has matched so far. The number

of items created is an indication of the amount of search the parser is doing.

The items for a rule R can be viewed as vertices of an item tree. The root of the tree is

the empty item for R. An item is the child of another item (called the parent) iff the parent

was extended to the child during parsing.

A parent item can be extended to two children items if more than one instance of

some right-hand side node type is found in the input graph and these instances satisfy the

constraints imposed by the item's rule with respect to the matches of other nodes that have

been made so far. (With partial node orderings, additional children are generated if an item

has more than one immediately needed node, as is discussed in Section 6.2.7.)

The growth in the number of items that are created by extension can be modeled by

these item trees. In the worst case, the number of items at the fringe of an item tree for

a given rule R can be exponential in the number of nodes in R's right-hand side, k. In

particular, if each node in the right-hand side can be matched to m instances of its node

type, then the number of possible complete items (of size k) is mk and the total number of

items created in recognizing R's right-hand side is E"= m'

Furthermore, in general, m can be much worse than linear in the number of nodes of
the input graph because of the recursive nature of the matching process in parsing. Each

of the complete items at the fringe of an item tree for a rule R represent instances of R's

left-hand side node type. Since there can be an exponential number of them, m can be

exponential. In the worst case, this exponential can build up as higher-level non-terminals

are recognized. (Assuming the grammar contains no cycles, we define the height of a node

type recursively as: the height of a terminal type is 0 and the height of non-terminal type

A is one plus the maximum of the heights of all node types on the right-hand sides of the

rules for A.)

As the worst case, suppose the following. All rules have right-hand sides of size k. Each

non- terminal has only one rule for it. Each right-hand side has either only terminals or only

non-terminals. Each terminal node can match n input graph nodes. Each non-terminal
in the same right-hand side is at the same height in the grammar. Then, the number of

complete items for a non-terminal at height h is nIc.

6.2.2 Constraints Prune Item Trees

It would be crazy to use this inherently exponential algorithm for program recognition

if it were not that, in practice, constraints prune item trees considerably. For example,

node type constraints alone are able to reduce the branching factor, which is the base of the
exponential. In the program examples, there is a variety of terminal and non-terminal node-

197

types, with a fairly flat distribution of instances. In CST, the average number of instances

of each node type is 3.6, with a median of 2. In PISIN, the average is 3.7, with median 2.

The exponential build-up of the number of instances of non-terminals as their height

increases is not typically encountered, either. The number of instances of non-terminals is

usually small and decreases as their height in the grammar increases. The reason is that

the recognition of high-level non-terminals requires more constraints to be satisfied than for

low-level non-terminals.

The worst-case exponential behavior of the parser is only encountered if the constraints

imposed by the grammar rules are weak. This section explores the constraints used in

applying the graph parser to program recognition and describes their effect on the growth

of item trees in terms of empirical observations.

A complete item for a non-terminal A is one in which for some rule for A, all the rule's

right-hand side nodes are matched to input graph nodes or non-terminal instances, such

that the rule's unary and binary constraints are satisfied. The unary constraints are the

node-type constraints that each node in the right-hand side imposes on the nodes matched

with it. The binary constraints are the following:

"* Edge connection constraints between pairs of ports on nodes. (These include the

constraints on aggregation organization discussed in Section 3.5.2.)

"* Attribute conditions, which are binary relations on the attributes of nodes and edges.

" Port precedence restrictions, which are constraints on the edges in an input graph that

can be mapped to the ports of a non-terminal. In particular, a transitive, irreflexive,

and antisymmetric relation precedes imposes an ordering on the ports in the input

graph. The source of each edge precedes the sink of the edge and the input ports of

each node precede each of the node's output ports. The port precedence constraint

is that no two input (or output) ports on a non-terminal can be mapped to a pair of

input graph edges in which the sink of one precedes the source of the other.

The port precedence restrictions are used to avoid cyclic reductions, such as the one

shown in Figure 6-3. The non-terminal A's top input port is mapped to the input graph

edge with location pointer 12 coming into b, while A's bottom input port maps to the edge

with location pointer 15 coming from a. This is illegal, since b's input pre,-des a's output.

The reason cyclic reductions are prevented is that they are unnecessary:

"* flow graphs are acyclic,

"* all sentential forms of a flow graph grammar are acyclic (i.e., you cannot derive a flow

graph that is cyclic),

"• a reduction step that creates a cyclic graph cannot be the inverse of any valid deriva-

tion step, so the cyclic graph will not be reduced further.

198

a ax t d

a

a) A simple grammar.

b) An input graph.

15

c) A cyclic reduction.

Figure 6-3: Grammar and input graph leading to an illegal, cyclic reduction.

Cyclic reductions do not cause any problems. They simply result in dead-end items that

are not used by anyone. We avoid them simply because they waste time and space. This

restriction can be lifted if a cyclic reduction is a useful interpretation to report and the flow

graph formalism is extended to include cycles.

Some of these unary and binary constraints are applied incrementally to each partial

item as the complete match is being built up. Since these are interleaved with the matching

process, we refer to them as match-interleaved constraints. They are applied as soon as the

portions of the right-hand sidc to which they refer are matched. These constraints are part

of the extendibility criterion.

Other constraints are postponed until the ma s complete (i.e., all nodes and edges

of the right-hand side are paired with nodes and edges of the input graph). These are

interleaved with the parsing process and are referred to as parse-interleaved constraints.

The decision about whether to match-interleave or parse-interleave a particular con-

straint depends on its effectiveness in pruning the search, the cost of applying it, and

its degree of applicability. Ideally, the match-interleaved constraint should be satisfied

by relatively few matches, be inexpensive to check, and apply to most nodes or pairs of

nodes. The current recognition system match-interleaves node-type, edge connection, co-

occurrence, and port precedence constraints. All attribute conditions besides co-occurrence

constraints, are parse-interleaved. This section discusses how this decision was made and

199

node-type number of instances

aref 6

mod 4

Increment-or- Decrement 12

Decrement 3

Table 6.1: Number of instances of CIS-Extract's node types.

describes the impact that match-interleaving of these constraints has on the complexity of

matching right-hand sides in the two example simulator programs.

We are not only trying to show the advantages of match-interleaving some constraints

versus parse-interleaving them. (The advantages are obvious.) We are mainly trying to show

the effect that various constraints have on the complexity. The case in which a constraint is

parse-interleaved is simply a base-line to which to compare the case in which the constraint

is match-interleaved. The improvement is a measure of the effectiveness of that constraint.

For most rules, node type and edge connection constraints are strong. The strength of

a node-type constraint depends on the number of instances of that node-type in the input

graph. Since the distribution of node types is fairly flat in the flow graphs representing

the two example programs, the node type constraint can usually significantly reduce the

number of possible matchings between right-hand side nodes and node type instances in

the input graph.

The strength of an edge connection constraint depends on the number of edges in the

input graph. If this number is low, then few pairs of incorrect matches between nodes will

satisfy the constraint. The flow graphs representing the two example programs had sparse

edge sets. The average degree of the ports in CST is 1.3, with a median of 1. In PIsIN, the

average degree is 1.5, with a median of 1.

However, there is a class of rules for which node type and edge connection constraints are

weak. In particular, in rules representing clichdd operations on aggregate data structures,

the right-hand side graph is usually made up of disconnected nodes. The operations on ag-

gregate data structures tend to be implemented using a set of less abstract operations that

act on the parts of the structure independently. In addition, many of the aggregate opera-

tions are implemented by primitive operations that are relatively common in the program

(e.g., +), as well as being common among the aggregate operations.

The plan for Circular-Indexed Sequence Extract is an example (see Figure 6-4). The

rule encoding a plan like this imposes few structural constraints, since it has few edges

between its nodes. It also contains nodes that are of relatively common node types. Table

6.1 shows the distribution of number of instances over these node types.

If no other constraints are interleaved with the matching process, a combinatorial ex-

plosion occurs in the number of items created in recognizing CIS-Extract. Figure 6-5 shows

200

. Old- Circular-Indexed-Sequence

I "
Base: Sequence First. Integer Size: Integer Loast: Integer Fill-Count: Integer

--- -- ---

Access-Firt Update-First:

Select-Term Increment/Decrement

Dec-Count:

Wrapr •Decrement

I I

ý New: Circutr-Indexd-Sequence

CIS-Extract

Figure 6-4: The plan for extracting from a Circular-Indexed Sequence.

201

0:
1: 3
2: 18
3: 216
4: 372

Figure 6-5: Bushy item tree produced in recognizing CIS-Extract with weak match-

interleaved constraints.

the bushy item tree created for CIS-Extract in this case. The items of size I are those

created in extending the initial empty partial item with the complete items representing

three instances of Decrement. Each of these are then extended with the six complete items

for the ARE terminal nodes, yielding 18 items. Each of these is extended by the 12 complete

items for Inc-or-Dec, yielding 216 items. Finally, the parser extends these with each of the

four complete items for NOD3 for which the edge connection constraint is satisfied.

This shows how a lack of strong match-interleaved constraints causes the number of

partial items to build up exponentially. In fact, flow graph parsing with a flow graph

grammar whose rules impose no edge connection constraints or any other binary constraint

is NP-complete. Appendix A shows that the problem of recognizing unordered context-

free grammars (UCFG) can be reduced to flow graph parsing. UCFGs are context-free string

grammars in which the symbols in the right-hand side string are considered unordered. (For

example, given a UCFG containing the rule S -o xyz, S can be recognized in the strings xyz,

yzz, zyx, etc.)

Fortunately, in applying the flow graph parser to program recognition, other constraints

can be interleaved with the matching process to prune item trees early. These are the co-

occurrence and port precedence constraints. (As described in Section 4.1.1, if two nodes in

a right-hand side are constrained to co-occur, then they must match nodes that represent

operations in the same control-environment.)

The precedence relation constraint enforces the condition that the data structure oper-

ation must cut across slices of dataflow, rather than allowing the disconnected pieces of the

operation to be recognized vertically in the same slice. See Figure 6-6. Cyclic reduction

avoidance prevents B from being recognized in the rightmost graph.

The advantage of match-interleaving these constraints can be seen by contrasting the

parser's performance when match-interleaving the constraints to its performance when these

constraints are parse-interleaved. In the parse-interleaving case, item trees for data structure

operations are extremely bushy and can be exponential in the worst case. Most of the items

at the leaves are killed by the co-occurrence and port precedence constraints when they

are finally applied. For example, the item tree for CIS-Extract, shown in Figure 6-5, has

202

A grammar rule

aba b d

'5- 1-

b b

d

B B

f

b f
b

d e

A legal reduction. An illegal reduction.

Figure 6-6: The restriction on legal instances imposed by the precedence relation constraint.

203

0:

1: 3

2: 3
3: 33:
4: 3

Figure 6-7: Skinny item tree produced in recognizing CIS-Extract with strong match-

interleaved constraints.

372 items at height 4, but only 3 of these satisfy the co-occurrence and port precedence

constraints.

With match-interleaving, the items trees are much shorter and skinnier, since the co-

occurrence constraints are applied as early as possible. Figure 6-7 shows the item tree for

CIS-Extract. As soon as the Decrement node is matched, the matches of all the other nodes

are disambiguated to involve only nodes in the same control environment.

The influence that match-interleaving co-occurrence constraints has on reducing the

parser's search can also be seen by contrasting the parser's time and space requirements

when match-interleaving is performed versus when parse-interleaving is used. We do the

same in order to study the influence of match-interleaved port precedence constraints. This

helps us evaluate the effectiveness of each constraint in reducing the overall complexity of

the parser and it allows us to compare the relative effectiveness of the two constraints.

Figure 6-8 shows the results of running the CST example under the following four

conditions: a) parse-interleave both constraints, b) match-interleave co-occurrence, parse-

interleave port precedence, c) parse-interleave co-occurrence, match-interleave port prece-

dence, and d) match-interleave both.2 In Figure 6-8, the number of items created by the

parser is shown as the number of items of three different types. "Successful" items are com-

plete items which satisfy all their rules' constraints. "Killed" items are complete or partial

items that have failed their rules' constraints. "Extendable" items are partial items that

have not yet failed any match-interleaved constraints and may be extended with complete

items for their immediately needed nodes. (The relationship between these sets and the

sets of complete and partial items is shown in Figure 6-9.)

The number of successful items remains the same over all the cases, as it should. The

effect of the two constraints can be seen in the total number of killed and extendable

items, which is reduced by more than 70% (from 2235 to 662) by match interleaving both

constraints. This has the effect of dramatically speeding up the parser - when match-
2The run times for the experiments in this chapter were obtained by running the recognition system on

a Sparc 2 in Lucid. These statistics were collected with zip-up creation being performed, since zip-ups are

needed to recognize the simulator clichis. However, the number of zip-ups created in these runs is relatively

small, as is discussed in Section 6.2.6.

204

a) Parse-Interleave Both

Time: 201 seconds

Successful: 329

Killed: 1432) 2235
Extendable: 803)

b) Match-Interleave Co-occur, c) Parse-Interleave Co-occur;

Parse-Interleave Precedence Match-Interleave Precedence

Tune: 86 seconds Time: 190 seconds

Successful: 329 Successful: 329

Killed: 505 ' 749 Killed: 1230' 1966
Extendable: 244) Extendable: 736)

d) Match-Interleave Both

Time: 86 seconds
Successful: 329

Killed: 446) 662
Extendable: 216)

Figure 6-8: Results of running CST example with constraints parse-interleaved versus match-

interleaved.

I Successfhl Killed Extendable

Complete Partial

Figure 6-9: Relationship of the sets of successful, killed, and extendable item sets to the

sets of complete and partial items.

205

a) Parse-Interleave Both

Tune: 179 seconds

Successful: 436

Killed: 774

Extendable: 339)

b) Match-Interleave Co-occur; c) Parse-Interleave Co-occur;

Parse-Interleave Precedence Match-Interleave Precedence

Time: 161 seconds Tune: 173 seconds

Successful: 436 Successful: 436

Killed: 572 835 Killed: 682)1
Extendable: 263 Extendable: 328

d) Match-Interleave Both

Tume: 148 seconds

Successful: 436

Killed: 525)7

Extendable: 263)

Figure 6-10: Results of running PISIN example with constraints parse-interleaved versus

match-interleaved.

interleaving both constraints, the parser is 133% faster than when parse-interleaving them. 3

This is because partial items are killed earlier. Only 12% of the killed items had less than half

of their rules' right-hand sides matched when the two constraints were parse-interleaved.

However, when the constraints were match-interleaved, 53% of the killed items had less

than half of their rules' right-hand sides matched. This causes fewer extendable items to

be created, and therefore fewer killed items as well.

Most of the savings are the result of match-interleaving co-occurrence constraints which

reduces the number of killed and extendable items by 66% (from 2235 to 749). Port prece-

dence constraints have a more modest effect, reducing this number by only 12% (from 2235

to 1966).

In the PIsIX example, match-interleaving has a less dramatic impact than in the CST

example, but it still helps, as can be seen in Figure 6-10. Match-interleaving both constraints

reduces the killed and extendable item count by 30% (from 1113 to 778). This is simply

because the rules used in recognizing the clich&s in PISIX had strong node type and edge

connection constraints with respect to the input graph representing the PISIN program.

There was not as much need to rely on co-occurrence or port precedence constraints to

prune the search.

As in the CST example, match-interleaving co-occurrence constraints had more of an
3 Performance is the reciprocal of execution time, so performance increase n (as in "X is n% faster than

Y") is computed from the relationship: I + - =--- Per f oSy.(ece r = Patterson

Section 1.2 [57].)

206

effect than match-interleaving port precedence constraints. Match-interleaved co-occurrence

checking reduces the number of killed and extendable items by 25% (from 1113 to 835),
while match-interleaved port precedence checking only reduced the number by 9% (from

1113 to 1010).

The two experiments above allow us to evaluate the co-occurrence and port precedence

constraints as candidates for match-interleaving, with respect to two particular input flow

graphs and a specific graph grammar. Co-occurrence constraints are excellent candidates, in

terms of their effectiveness, cost, and applicability. Co-occurrence constraints are effective

as evidenced by the vast decrease in the number of items created when they are match-

interleaved. They are particularly valuable when other binary constraints are weak which

is the case in the rules representing aggregate data structure cliches that are activated in

recognizing the CST example. Co-occurrence constraints can be checked cheaply by simply

comparing two attribute values. Since all nodes have control environments, co-occurrence

constraints are applicable to any pair of nodes in a right-hand side.

Port precedence constraints are also good candidates for match-interleaving, although

not as good as co-occurrence constraints. They are modestly effective in reducing the

number of items created. The cost of checking port precedence constraints incrementally

is no more than the cost of checking them all at once when an item is complete. Their

applicability is limited to only input ports of a right-hand side graph. That is, if they

are included as part of the extendibility criterion, they only apply to pairs of partial and

complete items in which the complete item is representing the recognition of a left-fringe

node.

Implications for Chart Organization

The decision as to which constraints should be interleaved with the matching process con-

cerns which constraints should be included as part of the extendibility criterion. The ex-

tendibility criterion is checked in two steps. Some parts of the extendibility criterion are

enforced when a candidate item is retrieved from the chart. The rest are checked by filtering

the candidate items that have been retrieved. The parts that are checked during candidate

retrieval influence the design of the organization of the chart.

If a certain constraint is strong in that it can usually be satisfied by only a few items and

this constraint refers to some attribute or part of an item, then it can be used as an index

into the chart. Node type and edge connection constraints are very important in reducing

the combinatorics of matching many right-hand sides. Currently, the chart is organized so

that complete items are indexed by their label and location and partial items are indexed

by the node types of their immediately needed nodes and the locations at which they are

needed. Constraints on node type and location are therefore enforced during item retrieval.

In the future, it might be beneficial to index on control-environment information as well.

207

6.2.3 Grammar Facilitates Reusing Sub-Search Space Exploration

In addition to constraints, the complexity of parsing can be reduced if the grammar captures
the commonalities among the flow graphs being recognized in its hierarchical structure. The

grammar may specify that a non-terminal derives some sub-flow graph that is common to
several other flow graphs. When an instance of this non-terminal is found, the results of

the recognition are reused in recognizing all the flow graphs that contain it, rather than

repeatedly matching the common sub-flow graph.

In terms of item trees, the effect of a good grammar organization such as this is that it

prevents multiple redundant sub-trees from being grown within each tree. In other words,
if the grammar captures commonality, the parser can avoid exploring parts of the search

space over and over.

6.2.4 Empirical Observations of Item Trees

In using the graph parser to recognize two example simulator programs, we have found the

item trees to be typically sparse and skinny. This section summarizes statistics concerning
the characteristics of the item trees that are created in recognizing the CST and PISIN

programs.

In the recognition runs, both co-occurrence and port precedence constraints are match-

interleaved. Also, zip-up creation was being performed by the parser, since it is needed to

recognize the simulator clich6s. Zip-up items increase the number of instances of particular

node types. However, the number of zip-ups only negligibly increases the number of items

created in parsing. Since there are so few of them, they do not significantly affect the node
type distribution nor the branching factor of item trees. Section 6.2.6 characterizes the

number of zip-up items created by the parser and gives empirical statistics for the actual

number created in practice.

The "bushiness" of the item trees gives an indication of whether the parser is encoun-
tering exponential behavior. We measure this property of the trees in the following ways.

We look at the maximum width of the item trees and observe how it changes as the height
of the item trees increases. The maximum width of an item tree is the maximum, over all

possible sizes of items, of the number of items in the tree of a particular size. (It is the
same as the maximum number of items at a particular level in an item tree.) If the parser

requires exponential space and time, the maximum width will increase exponentially with

the height of the tree. The height of an item tree is the maximum size of the items in the

tree.

We also look at the branching factor of the trees and how it varies as we increase the

height of the non-terminal being recognized. This is done to detect an exponential buildup
in the number of instances of non-terminals as their height in the grammar increases. (Recall

the worst case of this can cause 0 (nkh) number of instances of a non-terminal at height h

to be created using a rule whose right-hand side is of size k, as discussed at the beginning of

208

tree aximum average median

height maximum width maximum width maximum width

0 1 1.00 1

1 28 5.84 3

2 28 10.88 5

3 13 6.60 6

4 43 19.00 16

5 3 3.00 3

Table 6.2: Tree height versus maximum width statistics for item trees in CST.

tree maximum average median

height maximum width maximum width maximum width

0 1 1.00 1

1 24 5.77 4

2 43 8.09 5

3 9 6.00 6

4 38 13.25 4

5 0 0.00 0

6 0 0.00 0

7 32 32.00 32

Table 6.3: Tree height versus maximum width statistics for item trees in PiSiz.

Section 6.2.) ff the parser is experiencing an exponential explosion, the average branching

factor over all the trees of non-terminals of a particular height in the grammar will increase

as the height is increased. Otherwise, it will stay the same or decrease.

Maximum Width

For each item tree, we computed its maximum width, which is the maximum number of

items on any level in the tree. Tables 6.2 and 6.3 show, for each tree height, the maximum,

average, and median maximum width of the trees of that height.

As the tree height increases, none of the statistics for the maximum width of the trees

increase exponentially. This includes the maximum of the maximum widths of the trees

at each possible height, which would indicate the existence of even one bushy tree. For

the trees over a particular height, the average maximum width is typically much smaller

than the maximum maximum width and the median maximum width is even smaller. This

means that there are few relatively wide trees among trees of a particular height.

209

0: 0: 10:
1: 41: 121:3

2: 12 2: 38 2: 4

3: 43 3: 1 3: 4
4: 184: 74: 3

5: 12

6: 8
a) Tree from CST example b) Tree from PISIM example 7: 4

(height = 4, maximum width = 43) (height = 4, maximum width 38)

c) Tree from PISIM example

(height = 7, maximum width = 32)

Figure 6-11: The shapes of item trees having maximum maximum width.

In general, for trees of height 4 to 7 the maximum width level of an item tree occurs

in the middle of the tree. The width tapers off deeper in the tree, as constraints prune it.

Figure 6-11 shows the shapes of trees of height 4 and 7 which have the maximum maximum
width. The shapes are shown in terms of the width of each level.

Branching Factor

We now observe how the branching factor of an item tree changes as we vary the height of

the non-terminal being recognized by the items in the item tree. Tables 6.4 and 6.5 show the

maximum, average and median branching factor over all the item trees of each possible non-

terminal height for CST and PISIM, respectively. In general, the branching factors of item

trees produced in both examples decrease as the height of their non-terminal increases.

So there is no exponential build-up occurring as non-terminals higher in the grammar are

recognized.
For low-level non-terminals, the maximum branching factor is much worse than the

average or median branching factors. This shows that the relatively bushy trees for these

non-terminals are few in number. (For high-level non-terminals, the maximum branching

factor is comparable to the average and median branching factor, which is small - only 1

for most high level non-terminals in the CST example!)
The table also includes the maximum maximum width of all the trees at each non-

terminal height. This shows that in general the maximum width trees occur in recognizing

low-level non-terminals.

These statistics show that the item trees produced in recognizing the two example

programs are typically skinny. These examples represent two real programs, showing the

good behavior of the parser in practice, despite its potential for worst case exponential

performance. Further experimentation is need with other programs to see how typical this

is and what additional constraints may be needed to keep the complexity under control.

210

non-terminal maximum average median maximum

height branching branching branching maximum

factor factor factor width

1 12.00 8.17 6.00 12
2 28.00 16.34 6.80 28

3 9.00 7.75 8.00 9

4 7.00 3.01 2.33 43

5 19.00 4.76 3.00 19

6 19.00 4.76 3.00 19

7 3.00 1.50 1.00 3

8 6.75 3.16 1.74 14

9 4.00 2.33 2.00 5

10 3.00 1.83 1.33 3

11 9.00 3.25 1.00 9
12 2.50 2.50 2.50 6

13 1.00 1.00 1.00 1

14 1.00 1.00 1.00 1

15 1.50 1.50 1.50 2

16 1.00 1.00 1.00 1

17 1.00 1.00 1.00 1

18 1.00 1.00 1.00 1

19 1.00 1.00 1.00 1

20 2.33 1.67 1.00 6
21 0.00 0.00 0.00 1

22 0.00 0.00 0.00 1

23 0.00 0.00 0.00 1

Table 6.4: CST: Branching factor statistics for item trees of non-terminals over the range of

possible node-type heights.

211

non-terminal maximum average median maximum

height branching branching branching maximum

factor factor factor width

1 15.00 8.35 7.00 38

2 24.00 8.90 4.00 24
3 10.00 6.46 6.25 43

4 4.00 2.69 2.50 16

5 7.00 2.13 2.00 7

6 2.00 1.51 1.50 9
7 5.00 2.73 2.33 6

8 2.00 2.00 2.00 2
9 3.00 2.33 3.00 3

10 3.00 1.87 1.60 4

11 3.33 3.33 3.33 6

12 7.00 4.50 2.00 7

13 2.00 2.00 2.00 2
14 2.00 2.00 2.00 2
15 3.00 2.50 2.50 4

16 4.00 3.00 4.00 4

17 4.00 2.50 1.00 4
18 2.39 2.39 2.39 32

19 4.00 4.00 4.00 4

20 2.56 2.56 2.56 8

21 4.50 4.50 4.50 5
22 4.00 4.00 4.00 4

23 1.60 1.60 1.60 4

Table " 5: PiSia: Branching factor statistics for item trees of non-terminals over the range

of possible node-type heights.

212

6.2.5 Modeling Constraint Consistency

We can discuss the effect constraints have on the complexity of recognition in terms of a

model of consistency Eric Grimson [49, 50] presented in analyzing his constrained search

object recognition algorithm. (This in turn is based on general analyses of the consistent

labeling problem of which constrained search and sub-flow graph matching are specializa-

tions.)

In constrained search, sensory data are searched for an object model, by incrementally

building a tree of interpretations, which are lists of pairings of data and model features.

Each node in the interpretation tree represents an interpretation of size k, where k is the

level of the node in the tree. The size of the interpretation is the number of pairings it

contains. Each of the children of a node that represents an int,.rpretation I represent an

augmentation of I with an additional pairing. At each step, the additional pairings are all

between the same data fragment and each of the possible model features.

Interpretation trees are analogous to item trees that are produced when strict node

orderings are used. However, the roles of model and data fragments correspond to the roles

of the input graph and right-hand side graph, respectively. (At each step in the item tree,

the partial items are all extended with complete items for the same right-hand side node,

not the same input graph node.)

Unary and binary constraints are used to prune the interpretation trees. For example,

these are edge length and relative dictance constraints. Grimson's formulatiol, captures

the notion that as the size of an interpretation increases, the probability that a random

matching of that size is consistent in terms of the constraints decreases. This means that

if the unary and binary constraints are strong enough, the interpretation trees will tend to

be sparse rather than bushy.

Grimson defines the number of analyses of a particular size in terms of the probability

that an analysis of that size will be consistent in terms of the constraints.

The probability that a set of data-model pairings will satisfy lmary and binary con-

straints even if they are not part of a correct interpretation depends on the strength of the

constraints. This in turn depends on the properties of the data and models. In the flow

graph parsing problem, several input graph nodes of the same type (ambiguity) will weaken

the unary node type constraints of right-hand sides containing that node-type. This will

make it more likely that a random pairing of an input graph node with a right-hand side

node will satisfy this constraint even though the pairing is not part of a valid interpretation.

Similarly, if the input graph is highly connected, edge connection constraints are more likely

to be satisfied by random pairings.

Grimson relates this probability to properties of the object recognition problem, such

as the amount of sensory error, the number of model fragments, and the model object's

perimeter. He then proves that the expected amount of search to find a correct interpreta-

tion is quadratic in the parameters (when all the data belong to the same object and the

213

identity of the object is known).

In thp, future, it would be interesting to compute the analogous relationship of proba-

bilities of consistency to properties of programs and clich6s, such as node-type or control

environment distributions or number of dataflow dependencies. The probabilities provide

a measure of the effectiveness of the constraints. This information could then be used to

automatically generate advice concerning the optimal order of application of constraints.

Grimson also provides interesting results that point out the need for good indexing and

selection techniques to control the complexity of recognizing partially occluded objects in

noisy, cluttered scenes. Indexing is the problem of selecting from the model object library a

small number of model objects that are likely to be in the scene. Selection is the problem of

grouping together data features that are likely to have come from the same object. These

results carry over to the program recognition domain. They will be relevant to future work

in applying our parser to the analogous task of near-miss recognition, which is the task

of finding the "best" partial recognition of a clich6. (Currently, our recognition system is

able to do partial recognition of programs, but does not generate maximally-sized partial

recognitions of clich(s.) Section 6.2.7 discusses this further.

6.2.6 Counting Zip-ups

The effect of zipping up complete items is that more instances of non-terminals may arise.

This can cause the branching factor to increase in item trees for higher-level non-terminals.

Usually, however, the binary constraints on the inputs and outputs of the zipped up items

(especially the edge connection constraints) are powerful enough to quickly disambiguate

the instances so the branching factor is not affected much.

The number of zip-ups depends on the number of instances of a non-terminal found at

a particular location such that:

* either all of the edges specified in the candidates' input mappings share the same

source ports or all of the edges in their output mappings share the same sink ports,

or both,

* none of the input mappings of the candidates overlap (i.e., contain common edges)

and neith,.r do the output mappings, and

* the attribute values of the zipped up item's left-hand side are defined, with respect to

the attribute combination function. (See Section 3.5.1.) In other words, zipping up

the candidates makes sense in tcrms of the attributes of the resulting non-terminal

instance.

To count the number of zip-ups for some non-terminal or terminal node-type, partition

items for the node-type into maximally-sized groups of items that can be zipped up, ac-

cording to the above definition. These groups may overlap. Within each group of items,

214

CST PiSim

height number of zip-ups height number of zip-ups

0 3 0 7

1 4 1 10

2 3 2 5

3 1 3 0

4 0 4 0

5 1 5 0

>6 0 >6 0

Table 6.6: Distribution of zip-up count over height of node-type in grammar.

zip-ups are created from each subset of the group (for subsets of size greater than one). So,

for a group g of items that can be zipped up, 2191 - 1g9 - 1 items are created.

Empirical Observations

Zipping up is actually a rare occurrence in practice. The reason is that programmers tend

not to write redundant code. Function-sharing is a common optimization employed to avoid

redoing work - for the programmer in writing the code and for the machine in executing it.

(Optimizations usually add to the complexity of recognition, but in this case, the function-
sharing optimization actually helps.)

The need for zip-ups does occur, but relatively infrequently. Programmers cannot (or do

not want to) share all common sub-computations. One reason is that sometimes it is cheap
to recompute some value whenever it is used and the programmer does not want to go to

the trouble of defining a local variable to hold the shared result. Another situation in which

redundancy can occur is in writing conditionals in which some but not all of the branches

contain common computations. The code is sometimes more understandable, and easier to
write correctly if the computation is repeated, rather than shared. This situation is rare,

since it is usually possible to combine the conditional cases that have the same consequence

into a single case. Both of these situations normally involve small expressions, containing

primitive functions. So the complete items that are typically zipped up are for terminals in

the input graph or low-level non-terminals.

In the CST example, only 12 zip-ups were created (out of 991 total items) and they all
were zip-ups of low level non-terminals. In PIsIK, only 22 zip-ups were created (out of

1224 total items). In both cases, they all were zip-ups of items for terminals or low-level

non-terminals, as the distribution of zip-up count over node-type height shows in Table 6.6.
(Terminal node types have height 0.)

In both examples, the size of the group of candidate items being zipped up was either

215

two or three, with an average of 2.1 and a median of 2.

(Both examples were run with strict node orderings on the rules and match-interleaved

co-occurrence and port-precedence constraints.)

6.2.7 Partial Node Orderings

When node orderings are not restricted to being strict, partial items can have more than

one immediately needed node. This causes more partial items to be created. It also causes

duplicate items to arise, which are worthless and are not added to the chart.

In terms of item trees, partial node orderings increase the branching factor of the trees.

A partial item can be extended more than once with complete items for the same node (if

there is ambiguity) and/or with complete items for more than one node (if the item has

more than one immediately needed node). Section 6.2 explored the effect of ambiguity on

the branching factor of item trees. This section discusses the effect of using partial node

orderings.

The worst case partial node ordering is no ordering at all: no pair of right-hand side

nodes is related. In this case, the number of different (non-duplicate) items created in

recognizing a rule's right-hand side of size k nodes is at least 2k. There is a partial item for
each member of the power set of the rule's right-hand side nodes. (More than 2 k items are

created if there is any ambiguity.) Contrast this with strict ordering in which only k items

will be created if there is no ambiguity.

With no node ordering, there will be m - 1 duplicates of an item of size m. To see

this, consider an item 11 of size m. 1 's parent is one of m possible parents (since there are

m ways of choosing a subset of size m - 1 of l's already matched nodes). All m possible

parents have been created, since there is no node ordering. One is t',e parent of 11. The

other m - 1 are parents of duplicates of I,.

So, with no node ordering, the total number of duplicate items created in recognizing a

right-hand side flow graph of size k is

k k
rn=1 Mn

This section gives some empirical observations of the recognition of our example pro-

grams under the conditions of three different node orderings. It then discusses the advan-

tages of using partial node orderings versus using strict node orderings, in terms of efficiency

and recognition power. Finally, it discusses ways of choosing a rule's node ordering.

Empirical Results

To get a feel for how partial node orderings affect recognition performance, we perform

recognition on our two example programs, using two different partial node orderings and

compare the results to those obtained using strict node orderings.

216

One partial node ordering is edge-based in that a node n1 is <,, another n2 if nj has an

output connected to an input of n2 and n2 has no input that is an input of the right-hand

side graph. The minimal nodes in this ordering are all the nodes in the right-hand side that

are on the left-fringe (i.e., have input ports that are inputs to the right-hand side flow graph).

When this node ordering is used, an empty partial item for recognizing some rule has all the
left-fringe nodes of the rule's right-hand side as its initial set of immediately needed nodes.

When a partial item is created by extending another partial item with a complete item for

some node x, all nodes connected to x that have not already been matched are added to

the immediately needed node set.

With the grammar used by the current system, an edge-based node ordering is an

approximation of having no node ordering, which the current recognition system cannot

handle because the current implementation is not flexible or robust enough. Edge-based

orderings take advantage of the fact that many of the right-hand sides of rules in our

grammar consist mostly of nodes that have at least one input that is an input of the right-

hand side flow graph. These nodes will all be considered minimal nodes in the node ordering.

If all nodes of a right-hand side have some input that is a right-hand side flow graph input,
then none of the nodes will be ordered with respect to any other node.

The other node ordering considered is topological: a node nj is _<, another n2 if the
two nodes are connected by an edge from n1 to n2 and there is no other node n3 such that

ni :5n n3 and n3 :5n n 2. (This is not exactly the same as a topological sort of a dag [211,
since it does not completely linearize the partial order imposed by the edges of the flow

graph. Nodes that have no edges connected to their inputs are not ordered with respect to

each other.)

Each program was run with the edge-based node ordering and then with the topological
node ordering. The results of these two runs can be compared to the results of recognizing

the programs using a strict node ordering on the rules. The strict node orderings are optimal

in that they are designed to match salient nodes first. They are manually assigned to the

grammar rules.

Tables 6.7 and 6.8 show the results of the three experimental runs on the CST and PISIM
programs, respectively. In the CST example, the strict node ordering is more than 200%

faster than the edge-based ordering, reducing the total number of items by 62%, creating
less than a third of the number of killed and extendable items. In fact, it creates less than

one fourth the number of partial items that are not killed (i.e., are extendable). The strict

node ordering does not save as much over the topological node ordering as it did over the
edge-based ordering. However, it nearly halves the number of extendable items.

Similarly, in the PISIM example, using the strict node ordering allows the parser to run

238% faster than with the edge-based ordering and there is a reduction by more than 50%
in the total number of items created with the edge-based ordering. Less than one fourth of

the number of extendable items are produced. Again, there is only a slight difference in the

number of items created in using the topological versus using strict node orderings.

217

items edge-based topological J strict

successful 329 329 329

killed 1296 491 446

extendable 994 418 216

total 2619 1238 991

killed+extendable 2290 909 662

[time (seconds) 260 104 86]

Table 6.7: Experimental runs with CST using three different types of node orderings.

items edge-based topological J strict
successful 436 436 436

killed 953 597 525

extendable 1073 356 263

total 2462 1389 1224

killed+extendable 2026 953 788

time (seconds) 501 187 148

Table 6.8: Experimental runs with PiSim using three different types of node orderings.

218

It is significant that the topological node ordering does nearly as well as the strict

node ordering in terms of efficiency, since it is based on an easy, automatable ordering

heuristic. The reason that the two node orderings yield comparable results is that the rules

are typically long and skinny so that the partial tr)logical node orderings are nearly strict

node orderings. The strict node orderings can be seen as topological node orderings that

are improved using saliency information.

The strict node orderings that were used in the example runs above were assigned

manually and were designed to place node types early in the ordering that are salient with

respect to the input graph. The measure of saliency of a node type is based on the number of

instances of that node type there are in the input graph; lower instance counts mean higher

saliency. This takes into consideration non-terminal node type counts, so this assignment of

strict node orderings relies on knowledge of the input graph and results of prior recognition

runs. Below, we discuss ways of approximately measuring the saliency of non-terminal node

types automatically.

Partial Versus Strict Node Orderings

There is no doubt that using partial node orderings is more expensive than using strict node

orderings. However, using partial node orderings has advantages in terms of flexibility and

tolerance when a clich6 is not entirely recognizable. Since it allows more than one order

in which to match right-hand side nodes, if a portion is missing, an order in which the

other portion is matched first can still yield useful partial information. With a strict node

ordering, only one order of matching is tried, so if a node is missing, all nodes following it

in the strict ordering will be prevented from being matched.

In other words, partial node orderings allows partial recognition of right-hand sides of

rules. This is a type of partial recognition which is different from the partial recognition of

the input graph. (In the program recognition domain, this is partial recognition of clichds,

as opposed to partial recognition of programs, as defined in Section 3.3.1.) To distinguish

it from partial recognition of the input graph, we use the term near-miss recognition.

Near-miss recognition is useful in being able to try harder. Pure near-miss recognition -

using no node ordering - generates maximally-sized partial analyses. These can give clues as

to which small set of constraints must be relaxed, suspended, or satisfied (e.g., by changing

the input graph) in order for some 6ich6 to be recognized. This has applications both in

debugging programs (in which a programmer meant to use a clich6 but did so incorrectly)

and in learning new cliches.

In general, with partial node orderings, the partial analyses can become larger and more

plentiful than with strict node orderings. This reveals a trade-off between the efficiency of
strict node orderings, which cut off analyses as soon as constraints are violated, and the

near-miss recognition power afforded by partial node orderings, which explores more of the
search space, "tolerating" constraint violations to gather more information about the input

219

graph.

To do near-miss recognition efficiently, the parser's search must be focused on a small

number of non-terminals at a small number of places in the input graph. Grimson provided

theoretical confirmation of this in his study of constrained search. The mapping between

constrained search and right-hand side matching makes his results applicable to near-miss

recognition by flow graph parsing as well.

Grimson found that constrained search is efficient when indexing and selection are per-

fect, as discussed in Section 6.2.5. However, an exponential amount of work is needed to tell

that a possibly partially occluded object model is not in a scene, even when good (but not

perfect) selection techniques are performed. So it is important that indexing techniques are

used to narrow down the library of models, rather than sequentially searching through the

library and using the exponential process to rule out incorrect models. Also, an exponential

amount of work is needed to find an object model in a cluttered scene if adequate selection

techniques are not used to distinguish the object from the noise. This is the case even if

perfect indexing is done. So both good indexing and good selection are needed to efficiently

perform recognition of partially occluded objects in cluttered scenes.

A few program recognition researchers, such as Johnson [65], Lukey [871, and Murray

[951, have worked on the problem of guiding the recognition system to a "best" partial

analysis in the context of program debugging applications. They use heuristics based on

saliency, mnemonic names, and partial analysis size, for example. Section 6.4 gives some

suggestions for ways of incorporating other possible indexing and selection techniques into

the current recognition system.

Choosing a Node Ordering

The node ordering of a rule determines the order in which individual unary and binary

constraints are applied. The best order is one in which stronger constraints are applied

first. An automatic assignment of node orderings to rules can look at the structure of the

rules' right-hand sides and at the input graph to get clues as to which ordering is most

likely to impose stronger constraints earlier.

Unary Constraints

The unary node-type constraints are strongest for salient node types. So a node-ordering

in which salient nodes are matched first is best. There are two useful notions of saliency.

One notion is a node type that is rare in the input graph. The other is a node type that

only appears in a few grammar rules.

The unary node-type constraint for nodes that are salient with respect t.. t'.

graph is strong in that they reduce the branching factor of item trees. Applying them early

can help disambiguate partial analyses while they are still small. (Reduction of branching

is most beneficial near the top of item trees, since binary constraints can usually keep the

220

branching factor down at lower levels.)

Ideally, node orderings that are based on saliency of node types with respect to the

input graph should take into account the number of instances of non-terminal as well as

terminal node types in the input graph. However, this requires knowledge of the results of

recognition.

We can use heuristics to automatically produce node orderings that approximate this

ideal assignment. Given a right-hand side, we can compute a frequency number for each

right-hand side node. The nodes of a rule's right-hand side are then ordered from smallest

to largest frequency of their node-type, so that salient nodes are earlier in the ordering.

(This is not necessarily a strict node ordering.)

For each terminal, the frequency number is the number of nodes in the input graph with

the same type. For a non-terminal A, take each rule R for A and recursively compute the

frequency numbers of the nodes in R's right-hand side, choosing the minimum frequency

number as the frequency of A with respect to R. Finally, combine these frequency numbers

over all the rules for A to get A's frequency. The combination function (e.g., sum, max,

average) chosen depends on how conservative or optimistic we want the heuristic to be.

The advantage of matching nodes that are salient with respect to the grammar first is

that the growth of an item tree for a rule does not begin until the salient node is found.

This has the effect of only activating the matching process for a particular rule when it is

worth it (i.e., when the rule's right-hand side or a near-miss of it is likely to exist in the

input graph). This is a form of indexing. It helps speed up recognition and it also produces

better partial analyses for near-miss recognition.

An issue that arises when using saliency measures based on the grammar is that as the

parsing proceeds, the grammar is changing. As the set of item trees is pruned away, the set

of grammar rules under consideration is effectively becoming smaller. Since the saliency of a

node-type is relative to the grammar, saliencies change as the grammar changes. Matching

a node that is salient with respect to an entire grammar might narrow down the grammar

to a few rules that contain that node. Then, with respect to these rules, there are other

salient node types (which might not have been salient with respect to the entire grammar).

These salient node types should be matched first, to disambiguate between the possibilities,

and so on. The point is that saliency with respect to a grammar changes as the grammar

changes, so if we are basing our node orderings on it, we will have to change the node

orderings dynamically as parsing proceeds.

Binary Constraints

Node orderings can also be created to force strong binary constraints to be checked earlier.

For example, the topological partial node ordering used in the experimental runs was effec-

tive in reducing complexity. It ensured that no node was matched until all nodes preceding

it in the right-hand side flow graph had been matched. This meant that when a node is

221

matched, there are edge connection constraints applicable to it and its preceding nodes.

The partial items are always extended by complete items for nodes that can be constrained

the most by the preceding nodes.

Another ordering heuristic is to match nodes earlier that have more binary constraints
applied to them. For example, match those with more output edges, before those with few

outputs, or match those that are constrained to co-occur, before those that are not. The

advantage of these heuristics is that they require no knowledge of the input graph.

6.2.8 Summary of Item Count

Recall from Section 6.1.2 that the overall cost of the parsing algorithm is

IITI * (Cagenda-add + Cagenda-retrieve + Cduplicate- test) +

ViEI * Ce.tend +

V IC * (Cchort-.dd + Ccombination -lookup) +

IIRI * Ci+stantiate-empty +

I In1 * Cinstantiate- terminal +

Izl * C +

1 Ii * (Cconsraint,-check + Czip-up-lookup)

The number of items created during initialization for the terminal nodes of the input
graph (JInI) is n, the number of nodes in the input graph. The number of empty partial
items also created during initialization (IIRI) is the number of rules in the grammar (IPI).

This section has discussed the number of items created by extension and zip-up and how

constraints and node orderings influence the size of these sets (IIEI and Izi). The number
of items in the chart is Ic = (lIEI - lIDI) + n + JPJ, where ID is the set of duplicate items.

If strict node orderings are used, then mIDJ = 0. The set of complete items that enter the
chart (If) are those in In and Iz and the subset of the complete items created by extension
that contains no duplicate items. The total number of items ITI = IIEI + n + IPI + lIzi -

IlIC + 1ID1.
We now detail the costs of the actions that are performed on each of these types of

items.

6.3 Component Costs

The sizes of the various types of item sets are weighted in the complexity formula by the
costs of applying the basic parser actions to each type of item. The terms in the formula

are ordered by the typical size of the set of items in the term, based on the empirical study

of recognizing CST and PISIM. The first three terms are dominant. It is best for the costs
weighting them to be smai]. We will consider the cost of each of the parser's actions in the

order in which it appears in the complexity formula.

222

The cost of adding to and retrieving an item, Cagenda-add and Cagenda -retrieve, are
small constants in the current implementation. They are implemented as simple queue

operations. In general, however, they may be more complex operations, depending on the

type of structure imposed on the agenda to implement more complicated search strategies.

Cduplicate-test is the cost of testing whether an item is a duplicate of an existing item

already in the chart. There are two different tests used, depending on whether the item is

partial or complete.

To describe the test of partial items, we need to define two more parts of the structure
of items. One is a set of sub-items which are complete items that represent the recognition

of the nodes that have been matched so far in the item rule's right-hand side. These are the

items that have successively extended partial items to ultimately result in this item. The
other new part of items is a set of super-items which are items that resulted from extending

a partial item with this item. Only complete items have super-items. An item might have

more than one super-item if a sub-derivation is being shared between two derivation trees.

(Super-items and sub-items of an item Ii are different than the item's parent or children

in item-trees. Links to super- and sub-items encode the structure of the derivation graphs
generated by the parser. The links to parent and children items in an item tree show the

history of extensions performed on items for the same rule.)
Each partial item will have a sub-item for each of the nodes of its rule's right-hand side

that have been matched so far. If a duplicate Id of a partial item Ip exists, Id will share all

of its sub-items with I4. So, given any partial item I4, we can tell if a duplicate of it exists

by taking any one of its sub-items I, and looking for one of its super-items (other than I4)

that has the same set of sub-items matched to the same nodes as 4p. If none is found, the
partial item is not a duplicate. The average cost is polynomial in the average number of
super-items an item can have and the number of sub-items being compared (which is the

size of the partial item being tested and which is less than the size of its rule's right-hand

side). The average number of super-items is 2.84 in CST and 2.07 in PISIx. Right-hand side

sizes range from 1 to 7 nodes.
To test whether a duplicate of a complete item Ic exists, we look in the chart for items

with the same label as Ic at the location of Ic. For each location pointer in the input

and output mappings of I,, the items for Ia's label at that location pointer are retrieved.
The sets of items retrieved for the location pointers are intersected. The average cost is
polynomial in the average number of location pointers per input or output mapping (3.21

in CST, 2.92 in Pism) and the average number of items retrieved (2.91 in CST, 2.61 in PISI).
The number of location pointers in the mappings is not the same as the number of

inputs and outputs of the left-hand side non-terminal of an item's rule or the number of

internal edges to immediately needed non-terminals. It depends on the degree of fan-out or

fan-in of edges in the input graph, and on the bushiness of nested location pointers which

represent aggregation. (In terms of the program recognition application, the size of the

nested location pointers representing aggregation depends on the complexity of the clich6d

223

data structure - how many parts it has and how many its sub-parts have, and so on.)

The cost of extension Cextend is the sum of the cost of

* copying an item: linear in the sizes of its parts, such as lists of callers and sub-items.

* updating input and output mappings: polynomial in the number of location pointers

in the input and output mappings of the complete item.

* comparing location pointer tuples on the inputs and outputs of adjacent non-terminals

and propagating st-thru matches: polynomial in the number of edges in the right-hand

side and the number of location pointers per right-hand side edge. (There may be

more than one location pointer on an edge due to fan-in or fan-out and aggregation.)

The average number of edges in a right-hand side is 0.53 and the average number of

location pointers per edge is 2.63 in CST and 4.16 in PISI.

The cost of recording an item (complete or partial) in the chart, Cchart-.add, is linear

in the number of location pointers in the input and output mappings of the iten. This is

because the item is recorded in the chart multiple times, once for each location pointer.

(For partial items, the "output mappings" are the sets of location pointers on the edges

to immediately needed non-terminals.) The chart is broken into two parts, one containing

only complete items and the other containing only partial items. The set of complete items

is indexed on the label of the item and on the location pointers of the item's input and

output mappings. The set of partial items is indexed on the location pointers and node

types of the item's immediately needed non-terminals. This makes it easier to look up all

complete items for a particular node type at a particular location (to combine with a given

partial item), and to look up all partial items needing a particular node type at a particular

location (to combine with a given complete item). The average number of times an item is

entered into the chart is 7.51 in CST and 6.35 in PISIM.

Ccomb,,atio,-lookup is the cost of looking up partial or complete items to combine with

an item that is entering the chart. Given a complete item for a non-terminal A, looking

up partial items for it to extend involves taking each location pointer in the mappings of
the complete item and looking up all partial items that immediately need A at the location

pointer. The candidate items retrieved are organized by item and for each candidate,
a validity check is performed. The validity check is an application of unary and binary

constraints. So, the cost of looking up partial items is a polynomial in the number of

location pointers in the mappings, the number of candidate items retrieved, and the cost of

applying the unary and binary constraints.

Given a partial item that immediately needs non-terminals A 1, ... , An, a similar cost is
incurred in looking up complete items for each of these non-terminals. This cost is summed

over the sets of location pointers on the edges going to each of the immediately needed

non-terminals.

224

The cost of checking parse-interleaved constraints Cconatraint- check is hard to character-

ize, since the constraint expressions can be arbitrarily complex. However, in the current

system, the constraints applied are very simple and this term contributes little.

The cost of looking up items to zip up with a given item IA is Czip-up-lookup. This

involves looking up each item Ic for IA's label A that satisfies the following conditions:

* either all of the edges pointed to by the location pointers in Ic's and IA's input

mappings share the same source ports or all of the edges pointed to by the location

pointers in their output mappings share the same sink ports, or both,

o none of the input mappings of either item overlap (i.e., contain common location

pointers) and neither do the output mappings, and

o the attribute values of the zipped up item's left-hand side are defined, according to

the attribute combination function.

The cost of doing this is polynomial in the number of location pointers contained in the

input and output mappings of IA, in the number of items retrieved per location pointer,

and in the cost of applying the attribute combination function.

The costs of creating empty partial items, Cinstantiate-empty, and complete items for

terminal nodes, Cinstantiate-terminal, during instantiation are both small constants.

The cost of zipping up a set of items Czi,-,7, is polynomial in the number of items
being zipped up (for the example programs, the typical number is 2 or 3) and in the cost

of zipping up the parts of the items (e.g., unioning sets of callers).

6.4 Other Performance Improvements

This section contains suggestions for improving the performance of the parser. These are

useful when constraints are not strong enough to prune the parser's search adequately. They
are also important if the parser is to be used for near-miss recognition in the future. Most

of these can benefit from advice from an external agent.

6.4.1 Decomposition

Parsing smaller flow graphs can be easier than parsing larger ones if the smaller flow graphs

are less ambiguous. Decomposing an input graph and then focusing the parser only on
sub-flow graphs within the decomposition boundaries can speed up recognition.

John Hartman [55] demonstrates the advantage of decomposition in program recog-

nition. He provides an efficient recognition technique for clich6d control concepts, which

hierarchically decomposes a program represented as a control flow graph into propers (single

entry/single exit control flow sub-graphs) and performs simple graph matching within the

propers.

225

This section gives some examples of program domain-specific heuristic decompositions
that can be used to focus our parser. They are all static decompositions that occur before

parsing is begun. Section 6.4.3 discusses dynamic decompositions.

Subroutinization provides one type of heuristic decomposition. The parser can be forced

to recognize non-terminals only within the boundaries of a subroutine or module. (When

using this heuristic, there is no need to "flatten" the program by expanding out all subrou-

tines within their callers. When the flow graph for an entire subroutine body is recognized

as a non-terminal A, all nodes representing calls of that subroutine can be replaced by a

node of type A.)

An analogous decomposition can be made based on data structure organization. The
idea is to require a non-terminal to be recognized only in sub-flow graphs whose nodes all

represent operations that are acting on parts of the same user-defined data structure. For

example, 1+ and AREF occur all over the input graph, but we should not pair them up as an
instance of the Stack-Pop clich6 if one is applied to the Tail part of a user-defined structure

Queue and the other is applied to the Instructions part of a Handler. Since our clichfs are

primarily based on dataflow, this partitioning seems natural. A single dataflow slice is not

always the best unit of decomposition, since aggregate data structures typically involve a

bundle of slices. This partitioning allows a bundle of slices to be considered as a unit.

Both of these decompositions work best if the programmer's decomposition of the pro-

gram into procedural and data abstractions is very close to a typical way programs in that

domain are decomposed.

The main problem with focusing the parser on each partition independently is that

completeness can be lost if clichfs occur across the partition boundaries. A more flexible

partitioning technique is to augment the extendibility criterion of the parser with a binary

partitioning constraint which requires that a complete item can only extend a partial item

if all of the partial item's sub-items and the complete item represent the recognition of

sub-flow graphs in the same partition. Combination attempts that fail this constraint can

be postponed, rather than eliminated altogether. This allows certain combinations to be

preferred over others, while allowing less favorable combinations to still be tried in a try-

harder phase.

The drawback with this scheme is that more combinations between pairs of items will

be attempted. When parsing is focused on sub-flow graphs independently, the combinations

that cross boundaries are not even attempted.

An advantage of incorporating a partitioning constraint into the extendibility criterion is

that it can be selectively applied. It would be like any other match-interleaved constraint in

that it can be specified on a rule-by-rule basis to apply to certain (not necessarily all) nodes

of each rule's right-hand side. The match-interleaved co-occurrence constraint currently

used by the parser can be seen as a partitioning constraint that requires certain right-hand
side nodes to occur within the same control-environment boundary.

Finally, the recognition system can make use of advice from an external agent, that has

226

access to more information about the program than is found in the source code. People

can often break up the program into pieces that "go together" in that they provide a

particular functionality or belong to the same abstract domain-specific concept. They base

this decomposition on design documentation and program comments or even just names

of subroutines and variables. (As part of the DESIRE project [12, 13] Josiah Hoskins has

proposed a neural-network-based approach to automating this process.) This information

can be used to focus the recognition system on particular sub-flow graphs and also to suggest

clich6s to look for within them (i.e., index into the ichc library - see the next section).

6.4.2 Indexing

Efficiency can be gained not only by reducing the focus of the parser to smaller sub-flow

graphs, but also by reducing its focus to a smaller subset of the grammar. For large

grammars, it is advantageous for recognition to be sub-linear in the size of the grammar.

The current parser makes use of indexing to some extent in that it only creates (non-

empty) items for rules when part of the rule's right-hand side has been found in the input

graph. The chart's structure allows the parser to index on the node type found to retrieve

partial items that immediately need it. Heuristics have been discussed in Section 6.2.7 for

choosing a node ordering that will force salient nodes to be matched first. This stunts the

growth of item trees until it is likely that a non-terminal instance or a near-miss of one

exists in the input graph.

Advice can also be given to the program recognition system from an external agent,

based on expectations about which clich6s are likely to be found in the program. This can

be used to narrow down the grammar given to the parser.

6.4.3 Interleaved Decomposition and Indexing

We can also interleave indexing and decomposition (selection) techniques with the parsing

process. The idea is to use strict node orderings first and then try harder later by giving

certain partial items partial node orderings, expanding their immediately needed nodes

based on the new orderings, and returning them to the agenda to continue parsing. Advice

from an expectation-driven component or heuristics can be used to choose the partial items

to "encourage". An example heuristic might be to choose partial items that have started

recognizing non-terminals in an area of the input graph in which no clich6 has been fully

recognized. Another heuristic is to choose the partial items that have the salient nodes of

their right-hand side matched already.

Interleaved indexing and decomposition techniques have an advantage over static tech-

niques that are applied before recognition in that they can make use of deeper knowledge

about the input graph based on the previous recognition results.

Hierarchically representing patterns in a graph grammar facilitates this process. If a

"flat" pattern were searched for, using a strict node ordering, the search would end as

227

soon as the parser fails to match the "next" node in the ordering. With a hierarchical

organization, more parts of the pattern can be recognized and used to make a more informed

decision about which candidate partial analyses should be pursued further with a partial

node ordering. This information can also be used to decide which node ordering to try.

6.4.4 Avoiding Unnecessary Copying

When a partial item is extendable by a complete one, a copy of the partial item is created

and the copy is extended. The reason is that this helps the parser deal with ambiguity

and allows it to perform partial recognition and incremental analysis. (See Section 3.5.)

However, sometimes a large number of the copies made are unnecessary, either because the

input graph is not ambiguous, it does not contain multiple instances of some node types, or

it is expected to remain static. This section suggests ways of avoiding unnecessary copying.

We can identify unnecessary copies retrospectively by looking for partial items that have

been extended with only one complete item for the same immediately needed node. In the

CST example (using strict node orderings), the percentage of copies that were unnecessary

is 13.5%. The percentage of the total number of items that are the results of unnecessary

copies is 10.9%. In the PISIN example (using strict node orderings), the percentage of copies

that were unnecessary is 14.7%. The number of items that are the result of an unnecessary

copy as a percentage of the total number of items is 11.6%.

Unnecessary copies contribute to both the height and width of item trees. When strict

node orderings are used, they contribute only to the height of trees.

The following are a few techniques for avoiding copying.

1. Lazy copying: Make a copy only when it is necessary. Extend partial items with

complete items without copying. However, when an alternative complete item arises

for an already matched node A in some item I0, make a copy, I1, of I0 and restore it

to the state I0 was in before the old complete item IA, was used to extend it. To do

this, we remove any links it has to super-items (since only complete items can have

super-items). We must also find out which sub-items of 1I must be retracted. These

are IAI and all complete items that extended it after IA1, which can be computed from

the node ordering and a history of the immediately needed sets. These are removed

from 11's set of sub-items and all information associated with I that was derived from

them is removed. (This requires keeping track of dependencies of parts of an item on

the sub-item parts, such as its inputs and outputs. It also requires allowing partial

items to be indexed based on already matched nodes as well as immediately-needed

nodes, so that new complete items can be paired up with them.) Once the retraction

is finished, I, can be extended with the alternative complete item.

This scheme is only worthwhile when the majority of copying is unnecessary. It

can be applied selectively to certain extensions if the parser has been given advice

228

that certain node-types are not likely to be found more than once or in a partially

ambiguous situation.

2. Structure-sharing: A common technique to avoid copying when there is little change

between the original and the copy is to share the common structure. The parser

can store one "original item" per rule plus a log of augmentations, representing the

successive extensions. This is a more compact way to record intermediate states in the

search. This technique is used in resolution theorem proving [14] and in unification-

based grammar parsing [67, 104].

3. Estimating Number of Instances: We can heuristically count the maximum possible

number of instances of a particular node type, based on the node type distribution of
the input graph. As soon as the maximum number of instances of a node-type A are

entered in the chart, if a partial item immediately needing A arises, the parser can

tell whether there is more than one possible complete item for A that can extend it.

If there is only one, then the partial item need not be copied before being extended.

However, this scheme is only beneficial if the heuristic for counting instances is good4

and most of the partial items that need a node-type A enter the chart after the

maximum number of instances of A have been found. An alternative is to use a less

conservative heuristic that computes a lower bound on the number of instances in

conjunction with lazy copying. This allows copying to be prevented earlier, without

sacrificing safety.

4. Restricted Control Strategy: The parser can be forced to produce all complete items
for node-types of a particular height h in the grammar before going up to the next

height h + 1, starting with the terminal node types (h = 0). This guarantees that all

instances of a node-type A have been found when a partial item immediately needing

A enters the chart. The partial item need not be copied before being extended if only

one complete item for A can extend it. The disadvantage is that the control of the

parser is severely restricted.

The decision and technique used to avoid copying depends on the severity of the problem

of unnecessary copying. In the two example programs, it is not severe enough to merit the

overhead of these techniques.

6.5 Conclusion

This section has shown the following.

* Although flow graph parsing is exponential in the worst case, it is feasible to apply it

to practical partial program recognition. Structural (node-type and edge connection)

4Perfectly counting the number of instances of a node-type is no easier than recognition itself.

229

constraints as well as program domain-specific constraints (e.g., co-occurrence) are

able to control the complexity in practice.

The type of node ordering imposed on the right-hand side nodes of rules affects the

parser's efficiency. Strict node orderings focus the search, generating fewer partial

analyses and duplicate items than partial node orderings. This reveals a trade-off

between efficiency and recognition power. The choice of how to order nodes within

a strict or partial node ordering also affects performance. This choice can be made

with the help of external advice or heuristics. It may need to dynamically change as

parsing proceeds.

The capability of generating maximally-sized partial recognitions of clich6s (i.e., near-

miss recognition) is expensive. Future near-miss recognition capabilities n usL take

advantage of advice and automated techniques for indexing and decomposition to be

feasible. These techniques can be interleaved profitably with recognition, rather than

being performed statically beforehand.

230

Chapter 7

Conclusions

We have developed and studied a graph parsing approach to program recognition in which

programs are represented as attributed flow graphs and the cliched library is encoded as an

attributed graph grammar. Graph parsing is used to recognize cliches in the code. We have

demonstrated that this graph parsing approach is a feasible and useful way to automate

program recognition.

The approach has two key features. One is the representation shift it employs. The

other is its exhaustive, systematic, but flexible control strategy. The graph representation

is able to suppress many common formis of program variation which hinder recognition.

This enables our recognition approach to be robust under syntactic, organizational, and

implementational variation, as well as variation due to delocalization, unfamiliar code, and

common function-sharing optimizations. Difficulties arise when a program's data and con-

trol flow are implicit or derived or cannot be determined statically.

The flow graph formalism is able to concisely encode algorithmic and data aggregation

ciches whose constraints are primarily based on data and control flow. These include

not only general-purpose programming cliches, but also cliches specific to the simulation

domain. Limitations arise in capturing loosely constrained cliches. Although the flow graph

formalism allows us to encode cliches on a high level of abstraction, the level of abstraction is

still limited by the amount of detail that must be specified about the cliches (e.g., operation

types and arity, dataflow connections, control environment relationships).

In studying the graph parsing approach, we have experimented with two real-world

simulator programs. We empirically and analytically studied the computational cost of

our recognition system with respect to these programs. We have found that although our

graph parsing algorithm is exponential in the worst case, its complexity is reduced in its

practical application to program recognition. Structural (node-type and edge connection)

constraints as well as constraints which are specific to the program recognition application

(e.g., co-occurrence) improve the parser's performance in practice. Section 7.1 discusses the

need for more empirical study.

Section 7.2 discusses some open research issues that have not yet been fully explored.

231

An important future goal is to complement our code-driven technique with an expectation-

driven technique that provides guidance based on such knowledge as the program's goals,

problem domain, and documentation. With its flexibility, our recognition architecture forms

a seed for this future hybrid program understanding system. It can make use of advice and

guidance from external agents. In Section 7.2.5, we summarize our observations of typical

forms of advice that would be helpful to our recognition system in controlling its complexity

and its search for clichds.

Section 7.3 gives a comparative summary of related work in program recognition. Fi-

nally, in Section 7.4, we briefly discuss applications of program recognition and of our

parsing formalism in general.

7.1 Empirical Studies

Our study is a step toward understanding a particular recognition technique in the context

of real-world programs. It tries to break out of the "toy" program rut. Our example
programs are medium-sized and not written by us. They start to give some indication of

what is typical in terms of characteristics of real-world programs. They contain domain-

specific clich(s as well as general utility clichds. They also contain unfamiliar code. This

allows us to study the ability of our parsing-based technique to perform various types of

partial recognition.

However, it is important to keep the findings of our empirical studies with just two

programs in perspective. We have made some general observations that we expect to be true

of programs and libraries other than those studied here. For example, we point out general

classes of variation that are handled, which types of constraints are effective in improving
performance, and situations in which partial recognition can occur. On the other hand, we

have also made specific observations about recognizing these programs using the current

library. For example, we observed that recognition by graph parsing can be done efficiently

in practice. We also discuss weaknesses of our representation and approach, but only those

that we encountered in our study. This is not a complete list. These are interesting only if

these programs and the library are typical.

Our example programs are still small, relative to real-world programs in the software

industry. There are bound to be issues of scaling up to large programs that have not yet

been encountered. More empirical studies are needed to:

* expand and refine the clich6 library,

* identify more classes of variation that can or cannot be tolerated,

• determine how severe and common the limitations are that we have pointed out,

* identify other factors that affect efficiency,

* determine if our experiences with good performance were lucky or typical and,

232

e evaluate the ability of the existing system to recognize new programs.

7.2 Future

This section discusses areas in which additional research is needed.

7.2.1 Multiple Recursion

Currently, GRISPR can represent and recognize singly-recursive programs. In the future,

we will extend its attribute language to capture the control flow information of multiply
recursive programs as well. This involves a straightforward generalization of recursion

information triples to hold more than one feedback-ce - one for each recursive call. To

express constraints on the control environment attributes of these programs, we will need

new ways of referring to particular feedback-ces. We can no longer refer simply to the

"feedback-ce in the innermost recursion" containing a particular operation or test. We

may need to identify common forms of multiple recursions, such as the familiar binary tree

recursion, in which the feedback-ces are related in standard ways. Then individual feedback-

ces can be referred to, based on their relationship to others in the multiple recursion.

In addition, more research is needed to extend the temporal abstraction techniques to
abstract multiply recursive programs. There may be some common types of multiple recur-

sion for which temporal abstraction is a straightforward generalization of the techniques for
singly recursive programs. For example, Rich [110] (Section 9.4) briefly discusses temporal

abstraction of binary tree recursions. In these programs, the feedback-ces are the same con-

trol environment. Other programs seem not to be amenable to temporal abstraction, such

as those in which one feedback-ce is C_ the other. (This arises when two or more functions

are mutually recursive and one calls itself, as in the familiar Evaluate/Apply recursion.)

Because the current implementation of GRASPR is not able to translate multiply-recursive

programs into meaningful attributed flow graphs, we selectively flattened the Evaluate/Apply

recursion within PiSia to avoid generating more than one recursive call. During the trans-

lation of the program to a plan, we specifically advised that the box representing the call

to the function Evaluate not be expanded into a flow graph representing the function's
body. The resulting flow graph contained only one recursive call, (in the iterative mapping

of Evaluate over a list of Arguments to which an operation is to be applied). The function

Evaluate in PiSim corresponds to what we would like to recognize as the "Evaluate" clich6.

7.2.2 Interfacing with Other Recognition Techniques

Recall from Section 5.2.3 that we had difficulty encoding the Evaluate clich6, due to its

loose constraints on data and control flow. Suppose that we not only advise GRASPR not to
expand the node representing the call to Evaluate, but we also specify that it is an instance

of the "Evaluate" clichM. (Normally when a user specifies that a function is not to be

233

expanded whose name happens to be a non-terminal in the grammar, GRASPR systematically

renames the function. We specify that the function is an instance of the "Evaluate" clich6

by overriding this renaming and labeling the node "Evaluate.")

This can be seen as a way to use results from another recognition technique (in this

case, performed by people), which applies more flexible constraints and can recognize the

body of Evaluate as the "Evaluate" clichý. In other words, GRASPR uses results from another

recognition technique in the form of an already reduced non-terminal "Evaluate" which the

other technique inserted into the flow graph representing the program.

An alternative way for GRASPR to use recognition results from other techniques is for these

techniques to create items representing the recognition results and add them directly to

GRASPR's parser agenda. For example, rather than directly relabeling the node representing

the call to Evaluate, a complete item can be created for the "Evaluate" non-terminal and

added to the parser's agenda. This has the advantage that the program is not destructively

modified by the insertion of the already-reduced non-terminal.

7.2.3 Disambiguating Data Structure Operation Instances

GRASPR has been designed to exhaustively and algorithmically recognize all cliches in a

program. It does not employ global consistency checks to rule out some analyses or to

disambiguate multiple views of the same part of a program. Its recognition process is
"monotonic" in that new recognitions cannot invalidate previously recognized structures.

Recognition of one cich6 does not depend on the failure to recognize another clich6.

There are two main reasons for this. One is that the code-driven parsing approach is not

best suited to perform the disambiguation of multiple views or global consistency checks.

These should be done by a higher-level control mechanism that has access to information

other than the program's data and control flow. It may have expectations about which

interpretations are most likely. Also, the parsing approach does relatively local constraint

checking. All consistency checks and disambiguation refer to individual instances of clich(s

that are parts of some larger clich6. A higher level mechanism can quantify over clich6

instances that are not explicitly related by being part of some larger clich6.

The second reason that GRASPR generates multiple, possibly ambiguous analyses is that

sometimes multiple views are useful in understanding a program. A higher-level control

mechanism may require different views at different times, depending on how the recognition

results are being used.

The interaction between GRASPR and a higher-level control mechanism would be partic-

ularly profitable in the recognition of aggregate data clichds. Data cliches are recognized

by recognizing operations on them. These operations form groups, called "suites," each of

which represents a globally consistent set of operations with respect to some data structure.

For example, Figure 7-1 shows four different consistent pairs of operations for inserting and

extracting elements from an indexed sequence. Each of these represent valid operations to

234

be used together in implementing a stack, since they maintain stack discipline. Each pair

is a suite.

When GRASPR recognizes an individual cliched data structure operation, it reports the

recognition of the operation and the data clich6. Some of these may be locally ambiguous.

For example, zerop and null can be empty tests for a variety of clich6d data structures. Also,

some recognitions might not be globally consistent with the recognition of other operations

on the same data elsewhere in the program. For example, recognizing one operation from a

suite in Figure 7-1 does not necessarily mean a Stack is being used in the program. Another

access or update to this same aggregate data structure elsewhere in the program might use

an operation from another suite.

GRASPR does not attempt to disambiguate recognitions of data structure operations. Nor

does it globally check that the data that has been recognized as the data clich6 is always

operated upon by operations in the same suite. The main reason is that GRASPR is not the

one best suited for this task.

It is difficult to do these things in the flow graph parsing framework, based only on the

data and control flow of the program. This is because instances of operations that act on the

same aggregations of data are often difficult to group together, in order to apply consistency

constraints (i.e., check that they are all in the same suite). As we discussed earlier, data and

control flow cannot always be completely determined or made explicit. So, the operations

are not always connected directly by dataflow. It may be possible to uncover direct dataflow

in some cases (e.g., implicit aggregation might be made explicit). However, often aggregate

data structures are collected in primitive data structures (e.g., lists or arrays) which do not

represent implicit aggregations. (For example, PiSii's *Event-Queue* is a homogeneous list

of Events.) For these, the connections between operations on the aggregate structures must

be derived.

In addition, negative constraints, such as that no other operations beside those in some

suite act on certain pieces of data, are difficult to check in our recognition framework. This

is particularly true when parts of the program are not available for analysis. For example,

in Pisia, the function Next-Instruction takes a user-defined data structure Task (which

corresponds to the EXECUTION-COITEXT data clich6) and fetches an IRSTRUCTIO1 from an

array of IISTRUCTIOs nested within the Task data structure. The function uses the current

integer value of the Task's "IP" part (which stands for "Instruction-Pointer") to index into

the array. It then increments the "IP" part. GRASPR recognizes this function as a "Stack-

Pop." However, in the machine operation simulation functions, which are given as input to

Pisim, the "IP" part of a Task is sometimes updated to an arbitrary value (in the code for

simulating branching operations), rather than being incremented or decremented.

Disambiguation and preferring recognitions may be done more easily by a higher-level

control mechanism which has access to other information about the program. For example,

user-defined part names provide a powerful clue to which structures an operation is acting

upon. It is often the case that the operations acting on data that was selected using the

235

Implementations of Stack-Push Implementations of Stack-Pop

index base elit base index

select-

new- index new-base
new-base elt new-index

index base elt base index

sec1

new- index new-base
new-base elt new-index

index

base elt base index

I+ nW-teI

new-index new-base new-base elt new-index

index

base elt base index

neow-tem seet 1+1- ex

new-index new-base new-base elt new-index

Figure 7-1: Four ways of implementing Stack-Push and Stack-Pop with the Stack imple-

mented as an Indexed-Sequence.

236

same set of part names or generating data that's always stored in the same set of part names,

are the only ones used to access or change those parts. Mnemonic variable names (including

synonyms) and stylistic conventions (e.g., module decomposition) can also be a good source

of expectations about how operations should be grouped. This information must be used

heuristically and non-monotonically. (Section 4.2.3 discusses an initial attempt to map

user-defined data structure and part names to clichdd structure names. However, these

mappings are not always complete or unambiguous.)

When portions of a program are not available for analysis, there may be other informa-

tion available about the interface between the unavailable code and the rest of the program,

such as which functions of the program are called and which new data structures are cre-

ated. This information can be used, for example, to determine that the "IP" part of a Task

is not always updated using increment or decrement, but can be given an arbitrary integer

value. The recognition process can be seen as giving as output the clichds recognized and a

set of assumptions or invariants on which the recognition of those clichds is dependent.

7.2.4 Side Effects to Mutable Data Structures

We studied the recognition of aggregate data structures, independent of issues concern-

ing side effects to mutable data structures. In order to do this, we manually translated

our example programs to pure (functional) versions and recognized pure clich6s in them.

Fortunately, the translation was straightforward and much of it may be automatable.

An open problem for the future is dealing with programs that contain mutable data

structures and destructive operations on them. The problem is modeling the dataflow

correctly in representing our programs as dataflow graphs. This is complicated, of course,

by aliasing. While we will not be able to automatically resolve all aliasing, it seems possible

to use recognition to uncover common, stereotypical aliasing patterns. Complex aliasing

patterns are not the norm [126, 1271.

If recognition is interleaved with dataflow analysis, aliasing patterns might be ecognized

and used to help correctly translate a destructive operation into its non-destructive version.

There are two main classes of mutations to mutable data structures:

1. mutations to fixed, named parts (e.g., (setf (queue-head queue) new-head)).

2. mutations to a "derived" part (e.g.. searching through a list for an element with some

property or satisfying some predicate and then deleting that element).

When a change is made to a fixed, named part of a data structure, this destructive

assignment should be replaced with non-destructive code which creates a new data structure

containing the new value for the part and the old values for the rest of the parts. It must

also recursively create new versions of the data structures within which this data structure

is nested. For example, consider the following destructive operation which updates the Time

part of a lode data structure, which is the value of the lode part of a given Task.

237

(defun Set-Time-Of (Task New-Time)

(setf (lode-Time (Task-lode Task))

New-Time))

The following non-destructive translation of this operation creates a copy of the Task's

lode, but giving the Time part the lou-Time. It also creates a copy of the Task, with the

new Node as its lode part. It also returns the new, updated structures so that the callers of
Set-Time-Of can use them.

(defun Set-Time-Of (Task New-Time)

(let ((Task-Node (Task-Node Task)))

(setq Task-Node (Make-lode :Time Neo-Time

:ID (Node-ID Task-Node)

:Segments (Node-Segments Task-lode)

:.odals (Node-lodals Task-lode)))

(values New-Time

Task-lode

(Make-Task :Handler (Task-Handler Task)

:Node Task-lode

:Segment (Task-Segment Task)

:IP (Task-IP Task)

:Status (Task-Status Task)))))

For nesting of fixed, named parts, it may be possible for the symbolic evaluator to keep

track of how the structures are nested. The symbolic evaluator can treat the variables bound

to data structures as bound to sets of "part variables," which are bound either to regular

values or to other data structures (i.e., sets of part variables). When a part is modified, the

part variables are traced backward to see what other objects are modified.

Aliasing is harder to uncover when mutations are made to derived parts because it's

harder to prove that the part changed is the same as the part pointed to by something

else. (In other words, the "nesting" relationships are derived.) However, these types of side

effects usually occur in clich6d operations, such as searching through a list and modifying

the element found or changing all elements of an array. If we heuristically (and nonmono-

tonically) assume that the aliasing pattern is localized and standard, we can transform the

clich6d side effecting operation to the functional version.

For example, a common aliasing pattern occurs in splicing an element into a recursive

data structure, such as a list. An example is in the following function which is used in

PiSim to enqueue events on an event queue (which is a priority-queue).

(defun Insert-Event (1ew-Event Event-Queue)

(if (or (null (cdr Event-Queue))

(< (Event-Time Nev-Event)

(Event-Time (second Event-Queue))))

;; push 1ev-Event on (cdr Event-Queue)

238

(rplacd Event-queue

(cons New-Event (cdr Event-Queue)))

(Insert-Event Nev-Event (cdr Event-Queue))))

In this splice-in operation, the program "cdrs-down" the list Event-Queue until it finds a

spot to insert the element 1ew-Event. Then the new element is spliced in by destructively

modifying the cdr of the current list. However, the current list is not only pointed to by the

variable holding the current list, but also by the cons cell at the end of the sub-list already

passed. This aliasing pattern is simple and localized within the recursive data structure and

the variables used in the splice-in program. It is very common in our example programs.

Suppose GRASPR recognized the pattern of cdr-ing down a list and replacing the cdr

(using rplacd) of the current list with a new list consisting of the new element followed by

the old cdr of the current list. Then it may be possible to replace this pattern with the

following non-destructive version in which the side effect is propagated up to the top of the

data structure.

(defun Insert-Event (New-Event Event-Queue)
(if (or (null (cdr Event-Queue))

(< (Event-Time Nev-Event)
(Event-Time (second Event-Queue))))

(cons (car Event-Queue)

(cons Nev-Event (cdr Event-Queue)))

(cons (car Event-Queue)

(Insert-Event Nev-Event (cdr Event-Queue)))))

In particular, the tall-recursive destructive program is replaced with a recursive non-destruc-

tive program and the list is cdr'd down as usual, but the elements passed on the way are

remembered in the stack of recursive calls and are used to create a copy of the front of the

list on the way back out of the recursion.

Another common type of aliasing involves pooling structures which contain all existing

instances of some type of data structure. For example, the array *Nodes* contains all NODE

structures. When a part "Time" of NODE is modified, this mutation should be replaced with

non-destructive code that not only creates a new NODE, with the new value for the part

"Time," but also creates a new *Nodes* array, with the new NODE in place of the old.

This update of the pooling structure requires knowing the inverse translation of an

object to its pooling structure. This can be difficult to compute. However, we found that in

our example programs, all of the objects contained in pooling structures had a part, such as

an "ID" number or a "Tag" symbol, that held an index into the pooling structure. A useful

form of advice is an identification of all pooling structures in the program (which is usually

easy for a person to provide, based on mnemonic variable names and documentation) and an

inverse mapping (if any) from the objects pooled to the pooling structure. As was suggested

for dealing with variation due to handles, GRASPR can elicit advice about pooling structures

by recognizing question-triggering patterns. (See Section 5.2.1.)

239

7.2.5 Advising GRASPR

We have presented a recognition architecture that has a flexible control structure in that it
can accept advice to help control its complexity and to guide its search for recognitions. This
advice can be given in a data-directed way, as opposed to modifying the parsing algorithm
to build heuristics into the system. There are a variety of "control knobs" and parameters
that are available to provide GRASPR with guidance.

* Strict versus partial node orderings: One form of advice that can be given to control
the computational complexity of the recognition system is a specification of the type of

node ordering that should be imposed on the right-hand side nodes of grammar rules.

Strict node orderings are cheaper, since they generate fewer partial and duplicate

items. However, partial node orderings provide more near-miss information, which is

important in dealing with buggy programs and in eliciting more advice.

* Node orderings: Another form of advice is the choice of how to order nodes within
a strict or partial node ordering. These can affect the order in which constraints
are imposed, so that stronger constraints are imposed early. (For example, requiring
salient nodes to be matched first imposes strong disambiguation constraints early.)

@ Selection of items from agenda: Procedures can be provided which decide which items
to pull from the current agenda and process. This is one way to control GRASPR's search
strategy. For example, certain partial items might be pulled from the agenda, based
on which part of the input program they have started to match or based on how much
of their right-hand sides they have matched already.

* Additional monitors: Special-purpose monitors can be defined to watch the chart for
particular types of items to enter. Additionally, rules for question-triggering patterns
can be included in the grammar along with the rules for clich6s. Monitors can watch
for these patterns and then interact with outside agents. Monitors can also be de-

fined to watch for opportunities to "try-harder" by generating alternative views or by
weakening some constraints that make an analysis fail. The recursion folding monitor

described in Section 4.2.2 is an example of monitoring for items that are failing certain
constraints, but which might be made to complete by forcing certain constraints to
be satisfied. The tasks set up by chart monitors can be prioritized so that those that
are expensive or less likely to be effective can be postponed while quick, promising

tasks are accomplished first.

o Indexing partial analyses: In addition to indexing into the chart to retrieve successful
recognitions, it is possible to index into the chart to retrieve partial analyses that
fall certain types of constraints. It is also possible to find out approximately how
far the recognition of some cich6 has gotten. GRASPA does this by taking the non-
terminal representing the clich6 and enumerating, in breadth-first fashion, the non-

240

terminals that this non-terminal is built upon in the grammar. For each non-terminal,

it looks up all successful and failed recognitions of the non-terminal in the flow graph

representing the program. It cuts off the breadth-first traversal whenever a successful

or failed item is found for a non-terminal. These are collected and given as output.

In other words, this finds the highest roots of the possible sub-derivation trees that

can build up to the recognition of the clich6's non-terminal. This currently does not
use any information about the location of the recognized non-terminals. It is best for

high-level cliches whose parts occur infrequently in the input flow graph. Failed items
contain information about which constraints they failed to satisfy. This is useful in

determining what can be done to push the recognition through.

Partitioning constraints: Section 6.4.1 described various heuristics for decomposing

a program into partitions which can be used to focus the parser. This information

can be used by augmenting the extendibility criterion with a binary partitioning con-

straint. This requires that a pair of complete and partial items that are candidates for

cowrination represent the recognition of sub-flow graphs within the same partition.

Combination attempts that fail this constraint can be postponed, rather than elimi-
nated altogether. This allows certain combinations to be preferred over others, while

allowing less favorable combinations to be available in a later try-harder phase. The

advantage is that completeness will not be lost due to heuristic partitioning. Also,

the partitioning constraint can be selectively applied on a rule-by-rule basis and to

particular pairs of nodes in a rule's right-hand side.

While GRASPR has flexible control capabilities, the control knobs and parameters listed
above form its current interface for accepting advice. More work is needed to develop a

higher-level interface between GRASPR and the other agents it will interact with in the future

hybrid system.

Other forms of advice that are useful to GP;ASPR include indications of which structures

in the program are pooling structures (for side effect analysis, and uncovering the use of
handles), and pointing out when implicit aggregation and manual abstraction are being

used. These might be elicited during recognition (based on question-triggering patterns) or
they might be given as machine-readable comments.

For GRASPR to intelligently ask questions of a user (e.g., based on recognizing question-

triggering patterns), it must be able to refer to parts of the source text. When GRASPR

represents programs as attributed flow graphs, it suppresses a great deal of detail. Although
the information is still around in annotations, GRASPR currently has only limited facilities

for efficiently mapping from one representation to another. (For example, it associates sets

of variables to dataflow edges. It can also recreate small expressions in the program.)

Additionally, GRASPR is expected to interact with other reasoning components in the fu-
ture, which will perform such things as conditional simplifications, reasoning about dataflow

equalities, and data structure operation disambiguation and consistency checking. Multiple

241

representations of the program (including source text) will need to be maintained for GRASPR

to interface with these other components.

Additional Code-Based Information Sources

Aside from eliciting advice from an external agent, some additional information can be

gleaned from the leftover non-cichcd parts of the program, particularly in the program's

error checking and its initialization procedures.

Error Conditions. Non-local exits are currently ignored. (The non-local -ontrol flow
they represent is not modeled.) However, error conditions could be a useful form of machine-

readable comment. They often give part of the specification for the program. For example,
when a Handler is invoked for a message and a list of arguments, PiSim checks whether

exactly the right number of arguments were given to the handler:

(when (not (= (Handler-Arity Handler) (length Arguments)))

(error "PiSim error: arity mismatch")).

If a clich6 is being looked for that has (length Arguments) as a subcomputation, but

the program uses (Handler-Arity Handler) instead, then we can use the assertion from the

error condition to push the recognition through.

A key advantage of error conditions is that they are easier to process and more up-to-date

than textual comments.

Initialization. GRASPR normally does not recognize computations for program initializa-

tion or reading in input, since these are usually non-standard. They vary with the way

the data is organized. However, we can extract information from this non-standard code

about how data structures are organized. For example, the following code for Clear-Nodes

tells how the parts of a Node interact. The part Nodals of a node is a key into the node's

Segments part, which is a hash table. The elements of this hash table are Segment data

structures, whose Data parts are trrays.

(defun Clear-Nodes ()

(loop for Node being the array-elements of *Nodes*
for lodals-ID = (Node-Nodals Node)

for lodals = (Hash-Lookup (lode-Segments Node) Nodals-ID)

doing (setf (Node-Time Node) 0)
doing (Clear-Hash-Table (Node-Segments Node))

doing (Hash-Insert (Node-Segments Node) Nodals-ID Nodals)

doing (loop with Data = (Segment-Data Nodals)
for Index from 0 below (array-total-size Data)

doing (setf (aref Data Index) 'Unbound))))

242

7.3 Related Work

We can contrast our work on program recognition with that of other researchers along

several lines. This section focuses mainly on the~distinctions between the program and clich6

representations and the recognition techniques used. Both affect how well the recognition
cystems can deal with variation, allow partial recognition, and fit into a hybrid system.

Our work is also distinguished from other program recognition research in that we an-

alyze our approach, both empirically and analytically. Much of the early work in program

recognition provides no analysis of the representations or techniques used. Some of the

more recent research includes some empirical analysis of techniques. They typically study

the accuracy of recognition and the recognition rates over sets of programs (usually stu-

dent programs in program tutoring applications) [65, 951. However, with the exception of

Hartman's work [55], discussions of limitations have focused mainly on practical implemen-

tational limitations, rather than on general limitations of the approach. They also do not

describe how additional information or guidance can help.

Our recognition work can also be compared to other work along the lines of the types

of programs and clich6s recognized. Our recognition system is able to recognize structured

programs and clich6s containing conditionals, loops with any number of exits, recursion,

aggregate data structures, and simple side effects due to assignments. This allows GRASPR to

recognize larger programs than existing recognition systems. It also enables encoding and

recognition of domain-specific clich6s as well as general-purpose ones, since many domain-

specific cdich6s are aggregate data structure cich6s. With the exception of CPU [84], existing

recognition systems cannot handle aggregate data structure clich6s and a majority do not

handle recursion. Talus [95] heuristically handles some side effects to lists and arrays.

The largest program recognized by any existing recognition system is a 300-line database

program recognized by CPU. All other systems work with programs on the order of tens

of lines. None deal with domain-specific clich6s, except Laubsch's system [81, 82]. Hart-

man's UNPROG [551 is the only system that has demonstrated recognition of unstructured

programs.

Our earlier work on the "Recognizer" [118, 144, 145] is typical of previous approaches

to automating program recognition. It recognized small, contrived example programs, on

the order of tens of lines. Its clich6 library consisted exclusively of general-purpose, utility

cich6s. The Recognizer could deal with programs containing conditionals, loops, but not

regular (non-tail) recursion or data aggregation. Like GRASPR, it used a dataflow graph

representation for programs and clich6s, but it employed a rigid control strategy. (It was

based on a subgraph parsing algorithm that evolved from Brotsky's algorithm. See Section

3.5.) The development of the Recognizer was a feasibility study to demonstrate that graph

parsing can be used to automate recognition, remove many types of variation, and create

a useful description of a program. Our current work moves beyond studying feasibility

by analyzing computational costs, studying GRASPR's tolerance (or vulnerability) to various

243

types of variation, identifying limits in graph grammar expressiveness for programming

cich6s, and studying how GRASPR can fit into a hybrid understanding system. GRASPR moves

into the next level of maturity of recognition systems.

7.3.1 Representation

Johnson's PROUST [65], Ruth's system [122], Lukey's PUDSY [87], Looi's APROPOS2 [85]
and Allemang's DUDU [4, 5] operate directly on the program text. This limits the variabil-

ity and complexity of the structures that can be recognized, because these systems must
wrestle directly with syntactic variations, performing source-to-source transformations to

twist the code into a recognizable form. Most of these systems' effort is expended trying to
canonicalize the syntax of the program, rather than concentrating on its semantic content.

In addition, diffuse cich6s pose a serious problem.

Because the types of patterns searched for in these systems are sets of statements, they

limit the types of programs in which they can be found. In PUDSY, the group of statements

matching a pattern must be contiguous, not scattered throughout the code. Ruth's system
translates programs into a Lisp-like model language consisting of a small set of primitive

operations. This representation abstracts away information about which particular bind-
ing and control constructs were used. However, it assumes program statements are totally

ordered (by control flow as well as dataflow), rather than partially ordered (by data de-

pendencies only). This prevents the system from recognizing that two programs that differ
only in the order of execution of two independent statements are the same modulo this

difference.
PROUST uses plan-difference rules to account for mismatches between the clich6s (which

Johnson calls "plans") it is looking for and the actual text of the program. These may allow

the code to be transformed into an equivalent syntactic variation of the code or they may
trigger the identification of a bug as being one listed in its bug catalog. Thus, allowable
variations in code are limited to those accounted for by plan-difference rules. To be flexible

and powerful, PROUST must have a large knowledge base of these rules. The number of
rules could be reduced, however, if a more abstract representation for programs were used,

or if the semantic equivalence of the mismatched code with the clich4 cculd be confirmed

using a theorem prover [95] or symbolic evaluation [87].

Allemang's DUDU (which stands for Debugging Using Device Understanding) [4, 5]
attaches information about a program's functional semantics to its representation. DUDU's
representation of clich6s extends Johnson's text-based plan representation [65] to include

not only goals and components for achieving them, but also causal links to show how
the components achieve the goals. For example, an iterative clich6 would be represented

as a program template of statements with assertions that the loop invariants hold after

initialization, after each iteration, and when the loop terminates, as well as assertions that
the terminating conditions hold when the loop terminates.

244

The functional representation specifies which parts of a clich~l program's proof of cor-
rectness are supported by which parts of its plan representation. (Allemang uses the func-

tional representation language of Sembugamoorthy and Chandrasekaran [125].) A key ben-
efit gained by this representation is that it provides useful information that can make it

easier to tolerate variation in how a function is achieved. Because it explicitly describes the

purpose or function of each part of a clich6 in the context of a larger proof of correctness, if

some part of the clich6 does not match the program, the functional representation describes
the function of that part. It may then be possible to prove that the mismatched portion
of the program still achieves this function. How much variation can be tolerated depends
on the generality of the associate proof (e.g., how generally are the loop invariants and

terminating conditions expressed).

Reasoning about functional semantics in this way requires that the recognition system
know the intended function or purpose of a program. Like Proust, DUDU was developed
in the context of debugging student programs, where this information is readily available.

However, for purely code-driven recognition (as is usually required in maintenance situa-
tions), near-miss recognition of clich6s must first be performed. This can be used to help

generate expectations about which subset of cliches to try harder to recognize by prov-

ing that the functions of their unrecognized parts are still being achieved. However, this

requires overcoming the expense of near-miss recognition (see Section 6.2.7) and defining

preferences among near-misses.
One drawback of Allemang's representation is that it is limited by its text-based rep-

resentation of cliches and programs. Since it directly extends Proust's text-based repre-

sentation, it inherits Proust's problems with syntactic variation. This can be avoided by
using a graph representation, such as ours, as the base upon which to attach the functional

information (see [4], Section 7.4).

Adam and Laurent's LAURA [2] represents programs as graphs, thereby allowing some

syntactic variability. However, the graph representation differs from ours in that dataflow
is represented implicitly in the graph structure. Nodes represent assignments, tests, and

input/output statements, rather than simply operations; arcs represent only control flow.
Because of this, LAURA must rely on the use of program transformations to "standard-
ize" the dataflow. (GILASPR need not perform these transformations, since the flow graph

representation shows net dataflow explicitly.) LAURA debugs a program by comparing it

to a given correct implementation, called the program model, of the algorithm which the

program is supposed to be using. Only the program model's implementation is recognizable

in the program; no implementational variation is allowed.
The system proposed by Fickas and Brooks [43] uses a Plan Calculus-like notation,

called program building blocks (pbbs), for clich&. Each pbb specifies inputs, outputs, post-

conditions, and pre-conditions. (Pbbs are equivalent to Water's segments [137].) The
structure of the library is provided by implementation plans, which are like implementation

overlays in the Plan Calculus. They decompose non-primitive pbbs into smaller pbbs, linked

245

by dataflow and purpose descriptions. However, on the lowest level of their library (unlike
that used by GRASPR), the pbbs are mapped to language-specific code fragments which are

matched directly against the program text. Thus, this system also falls prey to the syntactic

variation problem.

Murray's Talus [95] uses an abstract frame representation (called an E-frame) for pro-

grams. The slots of an E-frame contain information about the program, including the type
of recursion used, the termination criteria, and the data types of the inputs and outputs.

This representation helps abstract away from the syntactic code structure by extracting
semantic features from the program, allowing greater syntactic variability. However, listing

all characteristics of the code in E-frame slots fails to expose constraints (such as dataflow

constraints) in a way that facilitates recognition.

Bertels [11] defines a broad hierarchy of programming knowledge with programming

primitives on the bottom, problem solving strategies at the top and cdch~s at successively

higher levels of abstraction in between. The problem solving strategies are strategies for

debugging (e.g., slicing), program understanding (e.g., conjecturing), and program synthe-
sis (e.g., divide and conquer). Each level builds on the levels below it. Bertels' model

of programming knowledge also includes rules of programming discourse [128] which are

applicable at all levels in the hierarchy.

To represent cliches, Bertels uses conceptual schemes, which are essentially hierarchical
semantic networks. Like our flow graph formalism, these schemes focus on data and control

flow constraints. Each conceptual scheme hierarchically represents the decomposition of
some goal into subgoals and the methods for achieving them. They can also represent

multiple alternative methods for achieving some goal. Their hierarchical structure resembles

the organization of cliches in our library, as shown in Figures 2-1, 2-3, and 2-4. Additional
information included in the conceptual scheme identifies the roles and various characteristics

of the pieces of data used by the methods (e.g., that some piece is a divisor and has a

minimum value of 0). Dataflow connections are not explicitly represented.
At the lowest level, conceptual schemes are built out of "Semantically Augmented Pro-

gramming Primitives" (or SAPPs). These are programming primitives that have been clas-

sified in terms of their role in the program on a slightly higher level of abstraction. For
example, an assignment might be viewed as an increment and a predicate can be seen as

a loop exit test or a filter. In general, it is difficult to unambiguously make this classifi-

cation of primitives, but Bertels uses a very restricted unambiguous set of SAPPs. These

correspond to our lowest level cliches.

Letovsky's Cognitive Program Understander (CPU) [84] uses a lambda calculus represen-
tation for programs. CPU uses transformations to standardize (i.e., make more canonical)

the program's syntax and to simplify expressions. However, Letovsky generalizes canonical-

ization to be the entire means of program recognition. Canonicalization involves not only
standardizing the syntax of the program, but also standardizing the expression of standard

plans (i.e., cliches) in the program. Recognizing a plan that achieves a particular goal is

246

equivalent to canonicalizing the plan expression to the goal. So, CPU uses a single, general

transformation mechanism for dealing with syntactic variability and for recognition. In

contrast, GRASPR uses a special-purpose mechanism (the program-to-flow graph translator)

to factor out most of the syntactic variability before recognition is attempted.

For CPU to localize cliches in a lambda expression so that a transformation rule can

apply, numerous transformations need to be made to copy subexpressions and move them

around the program. For example, function-inside-if ([84], p.109) copies functional appli-

cations to all branches of a conditional and stored expressions are copied to replace each

corresponding variable reference. This is expensive both in the time it takes to apply

transformations and in the exponential space blow-up that occurs as a result. In our repre-

sentation, cliches are localized in the connectivity of the flow graphs. In addition, the ability

of the parser to generate multiple analyses enables GRASPR to recognize two cliches whose
implementations overlap without first copying the parts that are shared, as CPU must.

Another difference arising from the use of the lambda calculus formalism is in the types of

cliches that can be expressed. The components of a clich6 expressed in the lambda calculus

must be connected in terms of dataflow interaction. CPU's assumptLin is that clich&s are
tied together by dataflow, otherwise there is nothing bringing the results together. (One

exception to this is a data abstraction plan in which a non-lambda-calculus tupling operation

is used to bind together multiple dataflows into a single value.) In flow graph grammar rules,

clich6s can contain components that are disconnected in terms of dataflow, but which are

tied together by other constraints, such as control flow.

There is also a difference between CPU's transformations and our grammar rules. Simple

transformations are similar to grammar rules, but complex transformations often specify

procedurally how to change the program. For example, the loop analysis transformation

is procedural. Loop clichis, such as filtering out certain elements from a list that is being
enumerated, are transformed using a recursion elimination technique in which the patterns

of dataflow in a loop are analyzed and classified as stream expressions. Then, based on
dataflow dependencies, occurrences of primitive loop plans are identified and composed to

represent the loop. (This is Waters' temporal abstraction technique [137, 138].) Our rules,

on the other hand, are declarative. They can be used in both synthesis (generation) and

analysis (parsing).

Laubsch and Eisenstadt [81, 82] and Lutz [88] use variations of the Plan Calculus.

Laubsch and Eisenstadt's system differs from GUASPR in the recognition technique it employs.

Lutz proposes using a program recognition approach similar to ours. See Section 3.6 for

the relationship of Lutz's "flowgraphs" to our flow graphs. (Both of these approaches will

be described further in the next section.)

Ning's PAT [100, 54] organizes its cliche library as a hierarchy of event classes. Each

instance of a cliche is an object, which is an instance of an event class. Each object is a

set of attribute-value pairs, representing information about an abstract clich~d operation.

They specify the variables involved and lexical information (given in terms of statement line

247

numbers and block numbers) describing the control path leading to the event. Relationships

between program components, such as calling, declaration, and data dependencies, are

all encoded implicitly in the event object attributes. Interval logic (which is similar to

Allen's temporal logic) is used to derive these relationships during recognition. Because

these relationships are not made explicit in the representation, their derivation places a

computational burden on the recognition process.

Hartman's UNPROG [55] uses a graphical representation, called a hierarchical program

model, or HMODEL, that is roughly the dual of our dataflow graph representation. UNPROG

recognizes clich6d patterns of control flow, called control concepts, such as "read-process

loop", and "bounded linear search". The HMODEL representation consists of a hierarchi-

cally decomposed control flow graph and a type of dataflow graph. The nodes of the control

flow graph are primitive actions, tests, joins, or other sub-HMODELS and its edges rep-

resent the control flow between them. The control flow graph is hierarchically partitioned

by proper decomposition, which bundles up sub-graphs that are single-entry, single exit.

This static partitioning is performed before recognition is attempted. The dataflow graph

represents definition-use relations between the variable names referred to by the control

flow graph nodes.

The HMODEL representation can be seen as an encoding of plan diagrams (see Section

4.1.2) in a graph representation which retains the control flow information in the graph

structure, but which relegates the dataflow information to attributes (definition-use rela-

tions). However, unlike plan diagrams, HMODEL does not represent net dataflow: the

definition and use of variable names is explicitly captured and assignment is considered a

primitive action.

Due to its emphasis on control flow, the HMODEL representation is able to concisely

represent general control flow patterns, which are more difficult to capture in our dataflow

graphs. (See Section 5.2.3.) On the other hand, our dataflow graphs concisely capture

constraints on patterns of dataflow that must exist for instances of algorithmic and data

structure clich&s to occur. The two representations are complementary. UNPROG and

GRASPR could profitably co-operate as co-routines: UNPROG could quickly provide coarse-

grain analysis of control patterns, which suggest the existence of certain algorithmic clich6s,

while GRASPR could focus on a more detailed recognition of these clich6s in the parts of the

program narrowed down by UNPROG.

7.3.2 Other Recognition Techniques

Besides representational differences, GRASPR differs from other current recognition systems

in its technique for performing recognition. Existing recognition techniques differ from ours

mainly in the flexibility of their control strategy, how they use heuristics, and how much

knowledge about the purpose or goals of the program they require as input to help guide

their search.

248

Our recognition architecture has a general, flexible control structure which can accept

advice and guidance from external agents. Other existing recognition systems are committed

to a rigid (often ad hoc) control strategy. Most search for a single best interpretation of the

program, while permanently cutting off alternatives. This can cause clich~s to be missed.

They cannot try harder later to incrementally increase their power and find clich~s that

the heuristic recognition missed. They also cannot generate multiple views of the program

when desired, nor provide partial information when only near-misses of cliches are present.

In addition, many of these systems have heuristics for controlling cost built in directly.

These are are chosen on a trial-and-error basis. For example, they often evolve through

experimentation with sets of student programs until a good level of performance is reached.

Interesting future work with GR.&SPR will try to formulate probabilities of consistency for

constraints (see Section 6.2.5), which can be computed and used to automatically tailor

the recognition system to check certain constraints before others. This would dynamically

prioritize constraints based on a given program and library of clich6s, rather than statically

prioritizing them for good performance over "typical" programs and cliches.

Many recognition techniques also take information about the goals and purpose of the

program (in the form of a specification or model program). Some recognition systems can

accept and respond to information from other non-recognition techniques (e.g., a theorem

prover [95] or dynamic analysis of program executions [85]) with which they are integrated.

While these techniques show the utility of these additional sources of information, they

rely on this information being given as input, rather than accepting it and responding to

it if it becomes available. Most of these systems have been developed in the context of

intelligent tutoring systems for teaching programming skills. In this domain, the purpose of

the program being analyzed is very well-defined. It can be used to provide reliable guidance
to the program recognition process. However, in many other task applications, especially

software maintenance, information about the purpose of the program and its design is rarely

complete, accurate, or detailed enough to rely on as required input.

Johnson's PROUST [65] is a system that analyzes and debugs PASCAL programs written

by novice programmers. It takes as input a description of the goals of the program and

knowledge about how goals can be decomposed into subgoals, as well as the relationships

between goals and the computational patterns (cliches) that achieve them. Based on this

information, PROUST searches the space of goal decompositions, using heuristics to perma-

nently prune the search. (For example, it uses heuristics about which goals and patterns

are likely to occur together.) PROUST looks up the typical patterns that implement the

goals and tries to recognize at least one in the code. The low level patterns that actually

implement the goals are then found by simple pattern matching.

Ruth's system [122], like PROUST, is given a program to analyze and a description of
the task that the program is supposed to perform. The system matches the code against

several implementation patterns (clich&s) that the system knows about for performing the

task. Ruth's approach is similar to GL&SPR's in that the system uses a grammar to describe a

249

class of programs and then tries to parse programs using that grammar. The differences are

that Ruth's system makes use of knowledge about the purpose of the program (in the form

of a task description) to narrow down its search and the program is analyzed in its textual

form and is therefore parsed as a string. Another difference is that Ruth's system does no

partial recognition. The entire program must be matched to an algorithm implementation

pattern for the analysis to work.

Lukey's Program Understanding and Debugging System (PUDSY) [87] also takes as

input information about the purpose of the program it is analyzing, in the form of a program

specification, which describes the effects of the program. This description is not used,

however, in guiding the search for clich(s. Rather, PUDSY analyzes the program and then

compares the results of the analysis to the program specification. Any discrepancy is pointed

out as a bug. The analysis proceeds as follows. PUDSY first uses heuristics to segment the

program into chunks, which are manageable units of code (e.g., a loop is a chunk). It then

describes the flow of information (or interface) between the chunks by generating assertions

about the values of the output variables of each chunk. These assertions are generated by

recognizing familiar patterns of statements (called schema), similar to GILSPR's diches, in

the chunks. Associated with each schema are assertions describing their known effects on

the values of variables involved. For chunks that have not been recognized, assertions are

generated by symbolic evaluation.

Adam and Laurent's LAURA [2] receives information about the program to be analyzed

and debugged in the form of a model program, which correctly performs the task that the

program to be analyzed is supposed to accomplish. LAURA then compares the graphs of the

two programs and treats any mismatches as bugs. Since nodes are really statements of the

program, the graph matching is essentially statement-to-statement matching. The system
works best for statements that are algebraic expressions because they can be normalized

by unifying variable names, reducing sums and products, and canonicalizing their order.

The system heuristically applies graph canonicalizing transformations to try to make the

program graph better match the model graph. It can find low-level and localized bugs by

identifying slight deviations of the program graph from the model graph.

The system proposed by Fickas and Brooks' [43] starts with a high-level clich6 abstractly

describing the purpose of the program. From this, it hypothesizes refinements and decom-

positions to subclich~s, based on its implementation plans (analogous to overlays in the Plan

Calculus). These hypotheses are verified by matching the code fragments of the cliches on

the lowest level of the library with the code. While a hypothesis is being verified, other

outstanding clues (called beacons) may be found that suggest the existence of other diches.

This leads to the creation, modification, and refinement of other hypotheses about the code.

Murray's Talus system [95] is given a student program to be analyzed and debugged, as

well as a description of the task the program is supposed to perform. It has a collection of

reference programs that perform various tasks that may be assigned to the student. The

task description is used to narrow down the reference programs that need to be searched

250

to find one that best matches the student's possibly buggy program. Heuristic and formal
methods are interleaved in Talus's control structure. Symbolic evaluation and case analysis
methods detect bugs by pointing out mismatches between the reference program and the
student's program. Heuristics are then used to form conjectures about where bugs are

located. Theorem proving is used to verify or reject these conjectures. The virtue of this
approach is that heuristics are used to pinpoint relatively small parts of the program where

some (expensive) formal method (such as theorem proving) may be applied effectively.

However, the success of the system depends heavily on the heuristics that identify the
algorithm, find localized dissimilarities between the reference program and the student's

program, and map the student's variables to reference variables.

Looi's APROPOS2 [85] uses a technique very close to Talus's. It matches a Prolog
program against a set of possible algorithms for a particular task. Like Talus, it applies a
heuristic best-first search of the algorithm space to find the best fit to the code.

Bertels' [11] Camus performs recognition of programs for the purposes of debugging
student programs. It compares student programs against a model program as follows.

Camus uses a knowledge base containing the knowledge necessary to analyze a program
that is intended to solve the classic Noah Rainfall Problem [65]. The model and student
programs are each analyzed using this knowledge base. The analysis converts each program
into a "High Level Description" (HLD), containing the conceptual schemes that are found in
the program. Camus first "augments" the programming primitives found in the program by
classifying them in terms of their role on a slightly higher level of abstraction (i.e., it creates
SAPPs - see Section 7.3.1). Based on these SAPPs, conceptual schemes are recognized in

a bottom-up, heuristic fashion, using beacons as guides. The two HLD's are compared
(currently by a straightforward manual process) and any inconsistency or incompleteness
in the student HLD is reported as a bug.

There are a few other recognition techniques that, like GRASPR, are purely code-driven.
These will be described in the remainder of this section.

Letovsky's CPU [84] uses a technique called transformational analysis. It takes as input a
lambda calculus representation of the source code and a collection of correctness-preserving
transformations between lambda expressions. Recognition is performed by opportunistically
applying the transformations: when an expression matching a standard plan (clichi) is
recognized, it is rewritten to an expression of the plan's goal. This is similar to the parsing
performed by GRASPRL, except that CPU does not find all possible analyses. Rather, it
uses a simple recursive control structure in applying transformations: when more than one
standard plan matches a piece of code, an arbitrary choice is made between them. The

program is destructively reduced and the alternative is never explored further. Letovsky
defines a well-formedness criterion for the library of clich6d plans which requires that no
plan be a generalization of any other plan. If the library is well-formed, then this arbitrary
choice will not matter, since recognizing one plan will not prevent the recognition of another.

251

However, this relies on the fact that CPU performs a great deal of copying: if two cichýs

overlap in a program (e.g., as a result of merging implementations as an optimization), their

common subparts are copied so that each clich6 can be recognized individually without

interfering with the recognition of the other clichM. Unfortunately, this leads to the problem

of severe "expression swell."

CPU is not able to generate multiple partial analyses of the program. There are situ-

ations in which it is better (or necessary) to carry along multiple possible analyses, while

sometimes it is sufficient to generate just one analysis. For example, in verification applica-

tions, any analysis is all that is required. However, multiple analyses are often helpful for

programs in which there are unrecognizable sections which lead to several useful ways of

partially recognizing the program. Being able to generate partial (near-miss) recognitions

is important in robustly dealing with buggy programs as well as in eliciting advice.

The value of our flexible control strategy is that we can tailor it to a particular ap-

plication or input/output environment. GRASPR can be made to produce a single analysis,

by allowing each complete item to extend at most one partial item. Unlike CPU, however,

GRASPR can be made to generate more recognition results by exploring alternative analyses,

trying harder to find certain clich6s, and responding to incremental changes in the input

program that may uncover more clich6s and cause others to disappear.

Laubsch and Eisenstadt's system [81, 82] distinguishes between two types of cliches:

standard (general programming knowledge) and domain-specific. Standard clich6s are rec-

ognized in the program's plan diagram by nonhierarchical pattern matching (as opposed to
parsing). Then the recognized clich&s attach effect descriptions to the code in which they are

found. Symbolic-evaluation of the program's plan diagram computes the effect-description

associated with the entire program. Domain-specific library clich&s are recognized by com-

paring the program's effect description to the effect descriptions of clich6s in the library.

This transforms the problem of program recognition into the problem of determining the

equivalences of formulas. For the examples given, effect-descriptions are simple expressions.

However, in general, proving the equivalence of formulas is extremely hard.

Lutz [88, 89] has developed his flowgraph parsing algorithm as a general tool for use

in artificial intelligence. He proposes some applications which include program recognition.

The examples he sketches use flowgraphs to represent plan diagrams, such as the one shown

in Figure 4-6. He proposes using a program recognition process similar to GRASPR's. In

addition, his system will use symbolic evaluation to deal with unrecognizable code. Our

graph parsing algorithm evolved from the graph parsing algorithm Lutz developed [90] for

this purpose. Our algorithm extends Lutz's to handle data aggregation.

Ning's PAT [54, 1001 uses basically a bottom-up parsing approach, though not within a

formal parsing framework. PAT uses a rule-based inference engine to recognize clich&s (i.e.,

derive high-level program concepts, or events, from lower-level ones). Each rule consists

of a trigger pattern of program events, which specifies the events (operations and data

types) composing a clich6 and how they are related by various types of dependencies and

252

lexical relationships. The action of the rule is an assertion that a particular higher-level
event (clich6) exists in the program at a particular location. PAT can recognize overlapping

as well as delocalized cliches and it can do partial recognition. Its rules also distinguish

some events within patterns as "key" events, like beacons, that are searched for first. This

helps to reduce the search. This is similar to specifying a node ordering in our graph

grammar rules. The main difference between PAT's recognition architecture and GRASPR's

chart-parser-based architecture is in GRASPR's flexibility of control. GRASPR has explicit data-

directed mechanisms for guiding and advising the recognition process.

Hartman's UNPROG [55] performs a type of recognition that is complementary to ours.

Hartman has identified a restricted class of cliches, called control concepts, that can be

recognized efficiently. As mentioned earlier, UNPROG hierarchically models the program's

flow of control by performing a proper decomposition on the program's control flow graph.

Recognition is then performed by simple exact graph matching. This takes advantage of

the fact that typically the implementations of control concepts are not interleaved with each

other or with unrecognizable code within propers.

The difference between this technique and our parsing technique is that UNPROG's de-

composition of the program is static and independent of the matching, while in parsing, the

decomposition is dynamically driven by what is matched. The static, a priori decomposition

yields efficiency and scalability advantages. The search is reduced because control concepts

are localized within propers. There is no need to generate all partial matches of propers.

There is no ambiguity about how to match inputs and outputs of clich6d control concept

implementations to those of a proper, since all propers have one input and one output.

Hartman's research shows the benefits of good decomposition techniques.

This technique works well for control concept recognition. However, in general, the

danger of decomposing the program representation and then looking for particular cliches

only within the partitions is that a clich6 might be missed if it is not contained within

some partition boundary. This technique works best if there are standard decompositions

of clich&s and the cliches appear in programs in these same organizations. Future research

should look for other classes of cliches like control concepts and for methods of decomposition

that allow them to be recognized efficiently.

One way GRASPR can benefit from the efficiency of a priori decomposition without sac-

rificing completeness is to use some sort of decomposition, such as subroutiuization, or

bundles of slices all contributing to the same user-defined, aggregate data structure to do

an initial, quick recognition. Then "try-harder" later by looking for cliches that might cross

the boundaries, e.g., in areas where no cliche was recognized or by extending partial items

that are near-misses or have salient parts matched already. Section 6.4.1 discussed some of

these ideas.

A novel type of recognition is being pursued by Soni [129, 130] as part of the develop-

ment of a Maintainer's Assistant. This system will focus on recognizing guidelines which
constrain the design components of a program and embody global interactions between

253

the components. For example, guidelines express relations between the slots of data struc-

tures and constraints on how they may be accessed or updated. This type of recognition is

orthogonal to the recognition of clichds reported in this paper.

A completely different approach to recognition was proposed by Biggerstaff [12, 13].

A central part of his recognition system is a rich domain model. This model contains

machine-processable forms of design expectations for a particular domain, as well as infor-

mal semantic concepts. It includes typical module structures and the typical terminology

associated with programs in a particular problem domain. The goal of the recognition is to

link these conceptual structures to parts of the program, based on the correlation (experi-

entally acquired) between the structures and the mnemonic procedure and variable names

used and the words used in the program's comments. A grep-like pattern recognition is

performed on the program's text (including its comments) to cluster together parts of the

program that are statistically related. (The Unix tool grep searches files for given regular

expressions.)

The virtue of this type of recognition is that it quickly directs the user's attention to

sections of the program where there may be computational entities related to a particular

concept in the domain. While this technique cannot be extended to provide a deeper

understanding, it provides a way of focusing the search of other more formal and complete

recognition approaches, such as GRASPR's. Like Soni's recognition, it is orthogonal and

complementary to the recognition of clich6s reported here.

7.4 Applications

Being able to automatically recognize existing code has applications in many areas of soft-

ware development and maintenance, including software reuse, verification, debugging, op-

timization, program translation, and documentation. The ability to recognize clich6s in a

broad range of programs is also useful for computer-aided instruction of programmers. See

Wills [144, 145] and Hartman [55] for discussions of these applications.

Two other applications of our flow graph formalism and parser, not related to program-

ming, are automatic circuit verification and plan recognition. Circuit verification has been

cast as a graph matching problem, with much work focusing on heuristic techniques for

solving graph isomorphism [22, 108]. More recently, Bamji [8, 9] has shown how graph

parsing can be applied to this problem. This gains the advantage of being able to encode

an entire design methodology into a design grammar, so that a circuit can be verified with

respect to a class of correct circuits, not just one. Our parsing algorithm is applicable in

this area.

Plan recognition shares several difficulties with program recognition, such as dealing

with variation due to loose temporal ordering constraints, interleaved steps, and shared

steps among plans. Graphical nonlinear plan representations are amenable to the graph

parsing technique we used to solve these problems in program recognition.

254

Appendix A

Flow Graph Recognition is

NP-Complete

Barton, Berwick, and Ristad ([10], Chapter 7) give a clever reduction of the vertex cover

problem to the problem of recognizing sentences according to an unordered context-free

grammar (UCFG). A UCFG is a context-free string grammar in which the symbols in a right-

hand side string are considered unordered. (So, for example, given a UCFG containing the

rule S -+ xzyz, S can be recognized in the strings Xyz, yXz, zyx, etc.)

Our flow graph parsing algorithm can be used to perform UCFG parsing (and the simpler

recognition problem) on a special class of UCFGs, which I will call "flxed-UCFGs." Furthermore,

the same reduction proof given by Barton, et al. can be used to prove that the fixed-UCFG

recognition problem is NP-complete. This can be used to show that flow graph recognition

is NP-complete.

The class of fixed-UCFGs is the class in which each non-terminal derives strings of a fixed

length k, where k can be different for different non-terminals. For example, this grammar

S->AB I CDE
A ->a x

B->by w z
C -> C

D ->d f
E ->e g I h

is a fixed-UCFG. S only derives strings of length three (such as aWz or cfh), B only derives

strings of length two, the rest of the non-terminals all derive strings of length one. This

grammar

S ->A B

A ->a I x y z

B -> b

255

is not a fixed-UCFG, since A can derive two different length strings.

The grammar constructed in Barton, et al.'s NP-completeness proof to encode the vertex

cover existence question is always a fixed-UCFG. So, the same construction can be used to

reduce the vertex cover problem to the fixed-IJCFG recognition problem in polynomial-time.

We reduce the fixed-UCFG recognition problem to flow graph recognition as follows. For

each non-terminal, we first compute the length k of the strings it derives. This can be done

by imposing a partial ordering on the non-terminals, where non-terminal A < non-terminal

B if A appears on B's right-hand side.1 Then the k's can be computed bottom-up through

the partial ordering from the non-terminals that have only terminals on at least one of their

rules' right-hand sides.

Next, for each rule in the fixed-UCFG, A -- X1X2 X3...Xn, derivn!Ig strings of length k, we

create a graph grammar rule with

1. a left-hand side node of type A having k inputs and k outputs,

2. a right-hand side flow graph containing n nodes, where the i-th node has type xi and

each terminal node has a single input and a single output, while each non-terminal

node has j inputs and j outputs, where j equals the length of strings derived by that

non-terminal, and

3. the rule embedding function maps the i-th input (resp. output) of A to the i-th input

(resp. output) of the right-hand side graph. (None of the right-hand sides have edges

between ports.)

Finally, the input string is translated into a flow graph by creating a node for each

symbol, with the type of the node being the symbol type. Each node has one input and

one output. There are no edges between ports.

For example, Figures A-la and b show a fixed-UCFG and the graph grammar into which

it would be translated. Figure A-ic shows how the input string is translated into a flow

graph.

Now, we can decide whether a particular input sentence is in the language generated by

the fixed-UCFG simply by determining whether the flow graph is in the language generated

by the flow graph grammar encoding of the fixed-UCFG. The flow graph is in the language

of the flow graph grammar iff the input sentence is in the fixed-UCFG's language.

Since the NP-complete problem of fixed-UcFG recognition can be reduced to flow graph

recognition, the flow graph recognition problem is also NP-complete.

Note that the type of flow graph recognition that we are showing to be NP-complete is

simpler than the flow graph parsing problem. This in turn is even simpler than the subgraph

parsing problem in which program recognition is cast. This means that even if we were just

'Cycles in the grammar can be handled, but I do not describe how here. Alternatively, we can do this
NP-completeness proof with acyclic fixed-UCFGs.

256

S -0 AB I CDE

A - a I x

B • by I wz

C C- c

D -- d

E e e

a) An Unordered Context-Free Grammar.

b) Graph grammar that the UCFG above is translated into.

c) An input string. The flow graph it is translated into.

Figure A-i: Reducing fixed-UCFG recognition to flow graph recognition.

257

trying to recognize an entire program as a single clich6 and even if we did not need to deal

with fan-in or fan-out, we can still encounter exponential behavior.

Readers familiar with Brotsky's algorithm might contrast flow graph parsing (not sub-

graph parsing and not dealing with fan-in or fan-out or aggregation) with the parsing

Brotsky's algorithm does in polynomial time. The same types of flow graphs are parsed,

using the same types of flow graph grammars; no extension to the flow graph formalism is

necessary. The crucial distinction is that Brotsky's parser takes an additional input besides

the input flow graph and the flow graph grammar, which is a specification of how the inputs

of the input graph match to the inputs of the start type of the grammar. This information

is used to predict the start type at a particular location (i.e., a particular matching of inputs

of the input graph to inputs of the start type). Our parser, on the other hand must figure

out all the possible locations at which a non-terminal can be found. This increases the

computational complexity of the problem.

258

Appendix B

The Example Programs

This appendix contains the original PiSim and CST source code, as well as their functional

versions. Section 5.2.5 lists the changes made in translating between the original and

functional versions. The original Pisim code is listed on pages 260 to 265. Its functional

version is found on pages 266 to 274. The original CST code is on pages 275 to 280 and its

functional version is on pages 281 to 288.

259

; - Syntax:Common-Liep; Mode:LISP; Ba*e:10; Package:USER This translates a nods ID to a node.

.= sS=S.......=....= (defun Translate-Node (Node-ID)

P i S i a u 1 a t o r -- original version (aref *Nodes* Node-ID))

(in-package 'user) This function returns the number of nodes.

(proclaim '(optimize (compilation-speed 0) (safety 3) (speed 3))) (defun Number-Of-Nodee 0
(array-total-size *Nodes*))

Global Variables This function creates the node array according to the dimension
constant.

(defconstant *Machine-Dimensions* '(4 4 4)
"this is the machine dimensions') (defun Make-Nodes (0

(loop with Number-Of-Nodes = (apply 1' *Machine-Dimensions')

(defvar *Event-Queue* nil with Nodes = (make-array Number-Of-Nodes)
'this is the global event queue,) for ID from 0 below Number-Of-Nodes

for Node = (Make-Node :ID ID)
(defvar *Nodes* nil for Models-Segment = (Create-Read-Write-Segment 100)

"this is the node array') do (setf (aref Nodes ID) Node)
do (setf (Node-Nodals Node)

(defvar *Global-Bindings* (Make-Hash-Table) (Ad,,-Segment Nodals-Segment Node))
,these are the bindings for nodals, constants, etc.*) finally [setq *Nodes* Nodes)))

(defvar *Nodal-Count* 0 This function resets the node time and clears the node segment.
"This is the number of defined nodals&)

(defun Clear-Nodes 0

(defvar *Debug-Level* 0 (loop for Node being the array-elements of -Nodes-

'this is the debugging level*) for Nodals-ID = (Node-Nodals Node)
for Nodels = (Translate-Segment-On-Node Nodals-ID Node)

(defvar -Log* nil doing (setf (Node-Time Node) 0)

"-this is the logging information-) doing (Clear-Hash-Table (Node-Segments Node))
doing (Nash-Insert (Node-Segments Node) Nodals-ID Nodals)
doing

Structures (loop with Data = (Segment-Data Nodals)
for Index from 0 below (array-total-size Data)

(defstruct Node doing (setf (aref Data Index) 'Unbound))))
(Time 0)
(ID 0)
(Segments (Make-Hash-Table)) Segments
(Nodals nil))

This adds a segment to the node's segment translations. It
(defstruct Segment returns the unique segment ID.

(Type nil)
(Data nil) (defun Add-segment (segment Node)

(size 0)) (let ((Segment-ID (gensym "Segment-")))
(Hash-Insert (Node-Segments Node)

(defstruct Task Segment-ID

(Handler nil) Segment)
(Node nil) Segment-ID))
(segment nil)
(IP 0) This removes a segment ID from the node's segment translations.
(status 'New))

(defun Delete-Segment (Segment-ID Node)

(defstruct Message (Hash-Delete (Node-Segments Node)
(Destination nil) Segment-ID))
(Length 0)
(Type nil) This translates a segment ID to a segment on the specified
(Arguments nil)) task's node.

(defstruct Event (defun Translate-Segment (Segment-ID Task)
(Time 0) (Translate-Segment-On-Node Segment-ID
(Object nil)) (Task-Node Task)))

(defstruct Handler This translates a segment ID on a specified node.
(Name nil)
(Instructions nil) (defun Translate-Segment-On-Node (Segment-ID Node)
(Arity 0) (let ((Segment (Hash-Lookup (Node-Segments Node)
(Number-Of-Locals 0) Segment-ID)))
(Bindings (Make-Mash-Table))) (if (null Segment)

(break "PiSim error: missing segment')
(defstruct D-Sync Segment)))

(Suspended-Tasks nil))
This function creates a read-write segment.

(defatruct B-Sync
(Count 0) (defun Create-Read-Write-Segment (Size)
(Suspended-Tasks nil)) (Make-Segment :Size Size

:Type 'Read-Write

(defetruct Log :Data (make-array Size)))
(Type 'All)
(Task-Status-Profile (Make-Mesh-Table)) This function creates an associative set segment.
(Task-Type-Profile (Make-Mash-Table))
(Instruction-Type-Profile (Make-Hash-Table)) (defun Create-Associative-Set-Segment (Size)

)Operation-Type-Profile (Make-Mash-Table)) (Make-Segment :Size Size

(Concurrency-List nil) ;Type 'Associative-Set
(Old-Logs nil)) :Data (Make-Hash-Table Size)))

(defstruct Delta This function creates a cache segmbnt.
(Time 0)
(Value 0)) (defun Create-Cache-Segment (Size)

(Make-Segment :Size Size
.............. ;-Type 'Cache

Nodes :Data (make-array Size)))

260

This function reads a read-write segment. (defun Match-Cache (Key Segment)
(let* ((Index (Cache-Mash Key (Segment-Size Segment)))

(defun Read-Segment (Segment Offset) (Entry tarot (Segment-Date Segment) Index)))
(unless (equal (Segment-Type Segment) (if (and (not (equal Entry '"mty))

Reed-Write) (equal (first Entry) Key))
(break 'PiSim error: incorrect access operation for - (rest Entry)

segment type*)) 'Miss)))
(arof (Segment-Data Segment) Offset))

This function writes an entry in the cache, possible overwriting
This function writes a read-write segment. another value.

(defun Write-Segment (Segment Offset New-Value) (defun Insert-Cache (Key Segment New-Value)
(unless (equal (Segment-Type Segment) (setf (oref (Segment-Data Segment)

'Read-Write) (Cache-Hash Key (Segment-Size Segment)))
(break °PiSim error: incorrect access operation for - (cons Key New-Value)))

segment type-))
(setf (sraf (Segment-Data segment) Offset) This function removes a key from a cache. If the key is not present,

New-Value)) :; no action is taken.

This function attempts to match a key in an associative set (defun Remove-Key-Cache (Key Segment)
or cache segment. (let* ((Index (Cache-Hash Key (Segment-Size Segment)))

(Entry (aref (Segment-Data Segment) Index)))
(defun Match-Segment (Segment Key) (when (and (not (equal Entry 'Empty))

(case (Segment-Type Segment) (equal (first Entry) Key))
(Associative-Set (setf (aref (segment-Data Segment) Index)

(Hash-Lookup (Segment-Data Segment) Key)) 'Empty))))
(Cache

(Match-Cache Key Segment)) This function clears a cache.
(otherwise

(break *PiSim error: incorrect access operation for - (defun Clear-Cache (Segment)
segment type')))) (loop with Data = (segment-Data Segment)

for Index from 0 below (array-total-size Data)
This function inserts a key in an associative set or cache doing (setf (aref Data Index) 'Empty)))
segment.

................................. ==.=:: s

(defun Insert-Segment (Segment Key New-Value) Tasks
(case (Segment-Type Segment)

(Associative-Set This returns the node ID of the specified task's nodes.
(Hash-Insert (Segment-Data Segment)

Key (defun Node-Of (Task)
New-Value)) (Node-ID (Task-Node Task)))

(Cache
(Insert-Cache Key Segment New-Value)) This returns the time of a task. This is defined as the node

(otherwise time for the specified task.
(break "PiSim error: incorrect access operation for -

segment type*)))) (defun Time-Of (Task)
(Node-Time (Task-Node Task)))

This function removes a key fram an associative set or cache
segment. This sets the time of the specified task (i.e. the time of

the node of the specified task).
(defun Remove-Key-Segment (Segment Key)

(case (Segment-Type Segment) (defun Set-Time-Of (Task New-Time)
(Associative-Set (setf (Node-Time (Task-Node Task))

(Hash-Delete (Segment-Data Segment) Key)) New-Time))
(Cache

(Remove-Key-Cache Key Segment)) This increments the task time by the specified delta.
(otherwise
(break "PiSim error: incorrect access operation for - (defun Increment-Time-of (Task Delta)

segment type')))) (incf (Node-Time (Task-Node Task))
Delta))

This function clears an associative set or cache segment.
;; This returns the handler type of the task.

(defun Clear-Segment (Segment)
(case (SegOment-Type Segment) (defun Handler-Name-Of (Task)

(Associative-Set (Handler-Name (Task-Handler Task)))
(Clear-Hash-Table (Segment-Data Seagmnt)))

(Cache ;- This function creates a new task segment of the specified length.
(Clear-Cache Segment)) The number of arguments and message length values are compared with

(otherwise ; the handler arity and erity plus number of locals respectively. Two
(break "PiSim error: incorrect access operation for - is added to the arity and number of locals to account for the message

segment type*)))) length and type information stored'in the segment. The segment is
then initializes with the supplied arguments.

Caches (defun Create-Task-Segment (Length Task-Type Arguments Handler)
(let ((New-Segment (Create-Reed-Write-Segment Length)))

In Piim, caches are implemented as direct mapped arrays. A (when (not (- (Hendler-Arity Handler)
hash function computes an index into an array. Array entries (length Arguments)))
are cons cells are of the format: (Key . Value). (break "PiSim error: arity miimntch'))

(when (not (= Length (. (Handler-Arity Handler)
This is the hash function for caches. (Handler-Number-Of-Locals Handler)

2)))
(defun Cache-Hash (Key Size) (break *PiSim error: length/ handler storage mismatch'))

(when (numberp Key) (Write-Segment New-Segment 0 Length)
(setq Key (format nil I-a' Key))) (Write-Segment New-Segment 1 Task-Type)

(loop with String . (string Key) (loop for Argument in Arguments
for Character being the array-elements of String for Index from 2
summing (char-int Character) doing (Write-Segment New-Segment Index Argument))

into Value Mew-Segment))
finally (return (mod Value size))))

This function creates a new task for a message. The handler and
This function attempts to match a key in a hash table. node are determined. A new segment is creet- 1 and initialized.
If the key is found, the corresponding value is returned. ;; After the new task is created, its segment is added to the task's
Otherwise, 'Miss is returned. node. Finally the new task is returned.

261

(defun Create-Task (Message) This predicate tests if a statement is an instruction.
(let* ((Handler (Get-Handler (Message-Type Message)))

(Node (Translate-Node (Message-Destination Message))) (defun Instruction? (Statement)
(New-S*gaent (Create-Task-Segment (listp Statement))

(Message-Length Message)
(Message-Type Message) This function inserts a binding into a handler's bindings. If the
(Message-Arguments Message) specified handler is 'Global, the binding is inserted in the global
Handler)) bindings.

(New-Segment-ID (Add-Segment New-Segment Node))
(New-Task (Make-Task :Handler Handler (defun Insert-Binding (Nele Value Handler)

:Node Node (if (equal Handler 'Global)
:Segment New-Segment-ID))) (Hash-insert *Global-Bindings" Name Value)

New-Task)) (Hash-Insert (Handler-Bindings Handler) Name Value)))

This function executes a task. It executes instructions which This function looks up the binding of a symbol in the handler. If
change a task's status. If the status is 'Running, another it is not found there, the global bindings are checked.
instruction is executed.

(defun Lookup-Binding (Name Handler)
(defun Execute-Task (Task) (or (Hash-Lookup (Handler-Bindings Handler) Name)

(loop doing (Execute-Next-Instruction Task) (Hash-Lookup *Global-Bindings" Name)))
while (equal (Task-Status Task) 'Running)))

This function returns the number of instructions in a handler.

Events (defun Number-Of-Instructions (Handler)
(array-total-size (Handler-Instructions Handler)))

This function enqueues an event in the global event queue.
Events are enqueued in order on increasing event time. This function returns the handler object for the handler name. If
-- Note that when 2 events have the same time, the one sent the handler does not exist, an error message is printed.
to Enqueue-Event first has higher priority.

(defun Get-Handler (Name)
(defun Enqueue-Event (New-Event) (let ((Handler (get Name 'Handler)))

(if (or (null *Event-Queue*) (if (null Handler)
(< (Event-Time New-Event) (break 'PiSim error: unknown handler')

(Event-Time (first *Event-Oueue*)))) Handler)))
(push New-Event sEvent-Queue*)
(Insert-Event New-Event *Event-Queue*))) This function determines the number of instructions in a sequence

of statements and builds a instruction array of the correct size.

This function is used to enqueue events inside the event queue. ;I It then reads each statement. If it is an instruction, it is
It is part of a recursive, priority queue insert algorithm. inserted into the array. If it is a label, the label and

statement index is inserted into the handler's bindings.
(defun Insert-Event (New-Event Event-Queue)

(if (or (null (rest Event-Queue)) (defun Make-Instructions (Statements Handler)
< (Event-Time New-Event) (let (Instructions)

(Event-Time (second Event-Queue)))) (loop for Statement in Statements
(push New-Event (rest Event-Queue)) unless (Label? Statement)
(Insert-Event New-Event (rest Event-Queue)))) count Statement

into Number-Of-Statements
This function dequeues and returns a event from the global finally (setf Instructions
event-queue. If the queue is empty, nil is returned. (make-array Namber-Of-Statements))}

(loop with Index . 0
(defun Dequoue-Event (J for Statement in Statements

(pop *Event-Queue*)) when (Label? Statement)
do (Insert-Binding Statement Index Handler)

This function clears the event queue. when (Instruction? Statement)
do (setf (aref Instructions Index)

(defun Clear-Event-Queue) Statement)
(setq *Event-Queue* nil)) (incf Index))

(setf (Handler-Instructions Handler)
This function dequoues and executes the next event in the event Instructions)))
queue. If the event is a message, a new task is created. The
node time is adjusted if the event time is later than node This function indexes the parameters and locals in a handler.
time. If a event is executed, t is returned. This includes assigning a each parameter and value an index in the

handler segment. These assignments are included in the handler's
(defun Execute-Next-Event U) bindings. The arity and number of locals parameters are also set.

(let* ((Event (Dequeue-Event})
Task) (defun Index-Parameters-And-Locals, (Parameters Locals Handler)

(setq Task (Create-Task (Event-Object Event))) (loop for Parameter in Parameters
(Set-Time-Of Task for Index from 2

(if (> (Event-Time Event) doing (Insert-Binding Parameter Index Handler))
(Time-Of Task)) (loop for Local in Locals

(Event-Time Event) for Index from (. (length Parameters) 2)
(Time-Of Task))) doing (Insert-Binding Local Index Handler))

(Debug-Print I (setf (Handler-Arity Handler)
-[start: taok -a node -d time -d old status -al-r" (length Parameters))
(Handler-Name-Of Task) (Node-of Task) (setf (Handler-Number-Of-Locale Handler)
(Time-Of Taok) (Task-Status Task)) (length Locals)))

(Log-Task "ask)
(seta (Task-statue Task) 'Running) This function reads a handler from an expression. The resultant
(Adjust-Concurrency-List (Time-of Task) 1) handler is stored on the property list of the handler name.
(Execute-Task Task)
(Adjust-Concurrency-List (Time-of Task) -1) (defun Read-Handler (Expression)
(Debug-Print 1 (let ((Nafm (first Expression))

'(stop: task -a node -d time -d status -al-I' (Parameters (second Expression))
(Handler-Name-Of Task) INode-Of Task) (Locals (third Expression))
(Time-Of Task) (Task-Status Task)))) (Statements (nthcdr 3 Expression))

(New-Handler (Make-Handler}))
............. s (setf (Handler-Name New-Handler) Name)

Handlers (Index-Parameters-And-Locals Parameters Locals Neow-Handler)
(Meke-Instructions Statements New-Handler)

This predicate tests if a statement is an instruction. (setf (get Name 'Handler) New-Handler)))

(defun Label? (Statement) This allows the definition of handlers. This should be part
(symbolp Statement)) of a more general reader.

262

(defun Define-Handler (treat Expression)
(Debug-Print 0 *-&loading handler -a-&- (first Expression)) A nested expression (a list) is in the form (symbol argi arg2... .
(Reed-Handler Dprmssion) ;; In this as". Apply-Operation is recursively called.
nil)

(defun Evaluate (Active-Task Expression)
... - (when (equal (Task-Status Active-Task)

MNodals -RwUNING)
(typecae Expression

This allows the definition of nodals (node variables). An ((or number string)
index is assigned (using the number of existing nodals). A Expression)
new global binding is added. (symbol

(or (Lookup-Binding Expression (Task-Handler Active-Task))
(defun Define-Nodal (Hamv) Expression))

(Debug-Print 0 -- &defining nodal -a-S" Mame) (list
(cond ((not (null (Hash-Lookup *Global-aindings* Hame))) (Apply-Operation (first Expression)

(format t Active-Task
•-&warning: -a has already been defined globally-&- (rest Expression)))
Name)) (otherwise

(t (break "PiSim error: unknown exprensson')))))
(Insert-Binding Name sNodal-Count* 'Global)
(incf *Nodal-Count*)))) ;; This function returns the operation function for the operation

name. If the operation does not exist, an error message is
- -... ; printed.

;; Constants
(defun Get-Operation (Mama)

This allows the definition of global constants. The binding (let ((Operation (get Name 'Operation)))
is added to the global bindings. (if (null Operation)

(break "PiSim error: unknown operation')
(defun Define-Constant (Nams Value) Operation)))

(Debug-Print 0 -- &defining constant -a-&- Name)
(Insert-Binding Name Value 'Global)) ;; This is used to define processor operations.

...................................... (defmacro Define-Operation (Hame &rest Rest)
Instructions (setf (get ',Mame 'Operation)

e'(lambda ,$Rest)))
This function returns the next instruction of the handler to be
executed. The current instruction pointer (IP) is obtainedr.ibn= ..••............. . ..=•.......
from the task. The instructions are obtained from the handler. ; Debugging
The task instruction pointer is incremented. Note: the
instruction pointer is incremented AFTER the next instruction ; This prints debug massages depending on the debug level.
is fetched.

(defmacro Debug-Print (Level Format &rest Arguments)

(defun Next-Instruction (Task) '(when (<= ,Level *Debug-Level*)
(lot ((IP (Task-IP Task))) (format t Format ,rguments)))

(when (>. IP
(Number-Of-Instructions (Task-Handler Task))) This function sets the debug level.

(break "PiSim error: IP out of range'))
(incf (Task-IP Task)) (defun Set-Debug-Level (Mew-Level)
(aref (Handler-Instructions (Task-Handler Task)) (setq *Debug-Lovel* NMw-Level))

IPM

This function executes a single instructions. It first ; Logging
locates the next instruction using the task instruction
pointer. The instruction pointer is incremented. Then it ;; This predicate starts a new log, saving the current log.
applies the operation to the arguments.

(defun Start-New-Log ()
(defun Execute-Next-Instruction (Active-Task) (setq *L.g

(let ((Instruction (Next-Instruction Active-Task))) (Make-Log :Type (Log-Type *Log*)
(Debug-Print 2 " (executing instruction -])-&" :Old-Logs *Log*)))

(first Instruction))
(Log-Instruction Instruction) ;; This is used in a counting profile. The category count is
(Apply-Operation (first Instruction) ;; incremented, or created, if non-existent.

Active-Task
(rest Instruction)))) (defun Collect-Profile (Category Profile)

(if (Hash-Lookup Profile Category)
..==(Hash-Insert Profile

Operations Category
(1+ (Hash-Lookup Profile Category)))

This function applies a processor operation to a list of (Mash-Insert Profile Category I)))
arguments. Each argument is evaluated before the operation
is applied. The apply only takes place if the task status ;; This predicate tests if logging is enabled. If the log is nil, logging
is 'RUNNING. ;; is on.

(defun Apply-Operation (operation Active-Task Arguments) (defun Logging? U
(let ((Argument-List (not (or (null *log*)

(loop for Argument in Arguments (equal (Log-Type *Log*) 'None))))
collecting (Evaluate Active-Task Argument))))

(when (equal (Task-Status Active-Task) 'RUIEW) ;; This function logs the specified task. Presently, profiles of task types
(Log-Operation Operation) ;; and status' are maintained.
(push Active-Task Argument-List)
(apply (Get-operation Operation) (defun Log-Task (Task)

Argument-List)))) (when (Logging?)
(Collect-Profile (Task-Status Task)

This function evaluates the expression and returns the results. (Log-Task-Status-Profile *Log*))
This is an evaluator appropriate for the limited expressions (when (equal (Task-Statue Task) 'NMw)
in a Pi program. Expressions are only evaluated if the task (Collect-Profile (Handler-Hams-Of Task)
status is 'RUUIlt N. The following expression types are (Log-fl•esk-Type-Profile *Log*)))))

; possible:
A number or string returns the value of the number or string. ;; This function collects statistics on instruction types.

:3

A; A symbol is looked up in the handler bindings. If it is (defun Log-Instruction (Instruction)
;; present, the corresponding value is returned. Otherwise, the (when (Logging?)

symbol is returned. (cond ((not (equal (first Instruction) 'Write))

263

(collect-Profile (first Instruction) finally (return
(Log-1nstructiOn-TylP-Protile *Log)l) floop for Source-Component

((not (listp (fourth Instruction))) in Source-COmponents

(Collect-Profile 'Initialize for Destination-Component

(Log-lnstruction-Type-Profile *Log-))) in Destination-Components
((equal (first (fourth Instruction)) 'Read) summing (abe (- Source-Component

(Collect-Profile 'Move Destination-Component))

(Log-Instruction-Type-Profile -Log-))) into Distance

(t finally (return (- Distance (- Length lJJJJJl(
(Collect-Profile (first (fourth Instruction))

(Log-Instruction-Type-Profile This function injects a starting message into the machine. It
-Log*}) ;starts calculating the message length and destination. The

message is then enqusued, and events are executed until the

This function creates an operation profile. event queue is empty.

(defun Log-Operation (Operation) (defun Inject (Type &rest Arguments)

(when (Logging?) (Make-Nodes)
(Collect-Profile Operation (Clear-Nodes)

(Log-Operation-Type-Profile -Log*))) (Clear-Event-Queue)
(let* ((Handler (Get-Handler Type))

This function searches down a sorted list of deltas looking (Length (- (Handler-Arity Handler)
for an entry at a specified time. If such an entry is found, (Handler-Number-Of-Locals Handler)

its value is adjusted by Change. If no such value is found, 2))
a new delta is created an inserted at the correct position (Destination (random (Number-Of-Nodes}

in the list. lArrival-Time (Node-Time (Translate-Node Destination)))
(Message (Make-Message :Destination Destination

(defun Adjust-Concurrency-List (Time Change) :Length Length
(when (Logging?) :Type Type

(let ((Concurrency-List (Log-Concurrency-List *Log*))) :Arguments Arguments))

(cond ((or (null Concurrency-List) (Event (Make-Event :Time Arrival-Time

(< Time :Object Message)))

(Delta-Time (first Concurrency-List)))) (Enqueue-Event Event)

(push (Make-Delta :Time Time (loop
:Value Change) (cond ((null *Event-Queue*)

(Log-Concurrency-List *Log*))) (return))
((= Time (t

(Delta-Time (first Concurrency-List))) (Execute-Next-Event))))))

(incf (Delta-Value (first Concurrency-List))
Change)) ===..===============

(t ; Hash Table Functions

(Adjust-Rest-Of-Concurrency-Li St
Time Change Concurrency-List)))))) (defconstant MIN.NASHLTABLESIZE 11)

This is the recursive part of Adjust-Concurrency-List. (defstruct Entry
(Key nil :type symbol)

(defun Adjust-Rest-Of-Concurrency-List (Time Change (Value nil :type any))

Concurrency-List)

(cond ((or (null (rest Concurrency-List)) (defstruct aeshrable
(< Time (Delta-Time (second Concurrency-List)) (Num-Buckets nil :type integer)

(rplacd Concurrency-List (Number-Entries nil :type integer)
(cons (Make-Delta :Time Time (Buckets nil :type array))

:Value Change)
(rest Concurrency-Liet))); This function inserts a entry into the hash table. If a bucket

((= Time collision occurs, the entry is inserted in the list in increasing key

(Delta-Time (second Concurrency-List))) order. If a key collision occurs, the older entry is overwritten.

(incf (Delta-Value (second Concurrency-List)) This function also increases the hash table size if necessary.
Change))

(t (defun Hash-Insert (Table Key value)
(Adjust-Rest-Of-Concurrency-List (let* ((Index (Hash-Function Key

Time Change (rest Concurrency-List})U)) (HashTable-Num-Buckets Table)))
(Bucket-List (aref)NashTable-Buckets Table)

This function prints the information from the current log. Index)))
(cond ((or (null Bucket-List)

(defun Print-Log-Information () (string< Key (Entry-Key (car bucket-List))))
(when (or (equal (Log-Type *Log*) 'All) (push (Make-Entry :Key Key

(equal (Log-Type *Log*) 'Profile)) :Value Value)
(Print-Profile-Date)) (aref (HashTable-Buckets Table)

(when (or (equal (Log-Type *oLog*) 'All) Index))
(equal (Log-Type *Log*) 'Plot)) (setf (HashTable-Number-Entries Table)

(Plot-Concurrency))) (I- (HashTable-Number-Entries Table))))

(t
-==== ======='=-===== === = ===============(let ((This-Entry (car Bucket-List)))

Randoms (cond 1(string= Key (Entry-Key This-Entry))
;; if Key = key of This-Entry, then overwrite older

This function estimates the delivery delay of a message. It bucket entry. (New bucket has same Key as older
should be better than it is now. Bucket entry, but new entry value.)

)Lrsat t "-aBashing older bucket entry -A.'
(defun Deliv-.ry-Delay (Source Destination Length) This-Entry)

(when (or (>= Source (Number-Of-Nodes)) (setf (Entry-Value This-Entry)

(minusp Source) Value))
(>- Destination (Number-Of-Nodes)) (t
(minusp Destination)) (Splice-In-Bucket

(break *PiSim error: illegal node number')) Key Value Bucket-List Table)))))

(when (or (minusp Length) (if (1s (HeshTabl*-Number-Entries Table)

(zerop Length)) (HashTable-Num-Buckets Table))

(break "PiSim error: illegal message length')) (Nash-Resize Table)
(loop for Dimension in *Machine-Dimensions* Table)))

collecting (mod source Dimension)
into Source-Components)defun Splice-In-mucket (Key Value Bucket-List Table)

doing)setq Source (floor Source Dimension)) (let* ((Meat-List (odr Bucket-List))

collecting (mod Destination Dimension) (cond ((or (null Next-List)
into Destination-Components (string< Key (Entry-Kay (car Next-List))))

doing (setq Destination (floor Destination Dimension)) (rplaod Bucket-List

264

(cons (Make-Entry :Key Key (defun Mash-Delete (Table Key)
:Value Value) (let- ((Index (mash-Function Key

Next-List)) (NshT•able-Mum-9uckets Table)))
(serf (HashTable-eumber-Entries Table) (Bucket-List (tet (HashTable-Buckete Table)

(1+ (HashTable-Number-Entries Table)))) index)))
(t (if (null Bucket-List)

(let ((This-Entry (car Next-List))) Table
(cond ((string- Key (Entry-Key This-Entry)) (let 5(This-Entry (car Bucket-List)))

if Key . key of This-Entry, then overwrite (cond ((string- Key (Kntry-Key This-Entry))
older bucket entry's value. (Splice-Out-Bucket Key Bucket-List Table))

(format t -- &Bashing older bucket entry -A., ((string. Key (Entry-Key This-Entry))
This-Entry) (setf (aref (HashTable-Buckets Table)

(setf (Entry-Value This-Entry) Index)
Value)) (cdr Bucket-List))

(t (seif (HashTable-Number-Entriss Table)
(Splice-In-Bucket (I- (Hashfable-Number-Entries Table))))

Key Value Next-List Table)))))))) (t ;; Key string< key of This-Entry, so Key isn't found
Table))))))

This function resizes the hash table and rehashes the
entries. The hash table size is approximately doubled. (defun Splice-Out-Bucket (Key Bucket-List Table)

(let ((Next-List (cdr Bucket-List)))
(defun Hash-Resize (Table) (if (null Next-List)

(let ((Old-Buckets (HashTable-Buckets Table)) Table ;; fell off end of bucket list. Key not found
(Old-Size (HashTable-Num-Buckets Table)) (let ((This-Entry (car Next-List)))
(Now-Size (cond ((string> Key (Entry-Kay This-Entry))

(Determine-Nash-Table-Size (Splice-Out-Bucket Key Next-List Table))
(* (HashTable-Num-Buckets Table) 2)))) ((string- Key (Entry-Key This-Entry))

(setf (NashTable-NuM-Bucket9 Table) (rplacd Bucket-List
New-Size) (cdr Next-List))

(serf (HashTable-Buckets Table) (mttf (NashTable-Number-Entries Table)
(Make-Nash-Buckets Nw-Size)) (1- (HashTable-Number-Entries Table))))

(serf (HaahTable-Number-Entries) (t ;; Key string< Key of This-Entry. Key not found
0) Table)))))

(Copy-Over-Buckets 0 Old-Size Old-Buckets Table)
Table)) This function clears for all entries in the specified hash table.

(defun Copy-Over-Buckets (Index Old-Size Old-Buckets Table) (defun Clear-Hash-Table (Table)
(cond ((>= Index Old-Size) (lot ((Size (HshTable-Mum-Buckets Table)))

Table) (sate (HashTable-Num-Buckets Table) Size)
(t (setf (HashTable-Number-Entries Table) 0)
(let ((Bucket-List (aref Old-Buckets Index))) (serf (HashTable-Buckets Table) (Make-Nash-Buckets Size))))

(Copy-Over-Bucket Bucket-List Table)
(Copy-Over-Buckets This function picks the first prima number greater then or equal to
(1+ Index) Old-Size Old-Buckets Table))))) the specified size estimate. The minimum hash table size is enforced

here.
(defun Copy-Over-Bucket (Bucket-List Table)

(cond ((null Bucket-List) Table) (defun Determine-Hash-Table-Size (Size-Estimate &aux Size)
(t (if (t< Size&-gtiust MIN.HASITABL3_SIZB)
(let ((This-Entry (car Bucket-list))) (etq Size MIN-PASKLTABLESIZK)

(Hash-Insert Table (aetq Size Size-Estimate))
(Entry-Key This-Entry) (if (= (mod size 2) 0)
(Entry-Value This-Entry)) (setq Size (1+ Size)))

(Copy-Over-Bucket (cdr Bucket-List) Table) (loop
(if (null (Prima-Number-Test Size))

This functi- creates a hash table having the specified 0 of (setq size (. Size 2))
buckets. Since the size of a hash table must be a prima (return)))
number, the specified number of buckets is rounded up to a Size)
nearby prima. The now table is then initialized.

(defun Prima-Number-Test (Number)
(defun Make-Hash-Table (&optional Numo-Buckets) (let ((Index 3))

(let ((Size (Determine-Nash-Table-Size (cond ((= Number 2) t)
(or Num-Buckets MINHAS)_TASLE_8IZ})))) ((= (mod Number 2) 0) nil)

(Meke-HashTable :Nuo-Buckets Size (t
:Buckets (Make-Mash-Buckets Size) (loop
:Number-Entries 0))) (cond ((<= (Square Index) Number)

(if (- (mod Number Index) 0)
;;This function creates and initializes a bucket array. (return nil))

(setq Index (+ Index 2)))
(defun Nake-Nash-Buckets (Size) (t (return t))))))))

(make-array Size))

(defun Square (n)
This function looks up a key in the hash table. If it is (n n))
found, the entry pointer is returned. Otherwise, nil is
returned. This function calculates a hash table index froe a key

(symbol->string) and the hash table size.
(defun Hash-Lookup (Table Key)

(lot* ((Index (Nash-Function (defun Nash-Function (Key Size)
Key (NashTable-Num-Buckets Table))) (let" ((Sum 0)

(Bucket-List (aref (MashTable-Suckets Table) (Key-String (string Key))
Index))) (Length (1- (string-length Key-String))))

(loop (loop
(cond ((or (null Bucket-List) (cond ((< Length 0) (return))

(string<c Key (t
(Entry-Key (oar Bucket-List)))) (setq Sum

(return nil)) (. Sum (char-int (aref Key-string Length))))
((string= Key (setq Length (1- Length)))))

(Entry-Key (car Bucket-List))) (mod sum Size)))
(return (Entry-value (car Bucket-List))))

(t
(setq Bucket-List (odr Bucket-List)))))))

This function deletes an entry in the hash table.

265

;;, - Syntax:Coinon-Lisp; Mode:LISP; Base:l0; Packag*:USER -- (Arguments nil))

.................................. ====.a...... (defstruct instruction
p1 8 S m ula to r -- functional version (OP nil)

(Alga nil))

Global variables
Nodes

(defconstant -Machine-Dimensjons* '(4 4 4)
-this is the machine dimensional) This translates a node ID to a node.

(defvar *Event-Queue* nil (defun Translate-Node (Node-ID)
,this is the global event queue-) (aref -Nodes- Node-ID))

)defvar *Nodes* nil This function returns the number of nodes.
-this is the node array-)

(defun Number-Of-Nodes 0
(detvar *Global-Bindings* (Make-Nash-Table) (array-total-size -Nodes-))

'these are the bindings for nodals. constants. etc.,)
(defun Copy-Replace-Node (New-Node ID Nodes)

)defvar *Nodal-Count- 0 (Copy-Replace-Elt Now-Node ID Nodes))
-This is the number of defined nodals*)

This function creates the node array according to the dimension
(defvar *Debug-Level* 0 constant.

-this is the debugging level-)

(defun Make-Nodes 0
(defvar *Log* nil (let- ((Number-Of-Nodes (apply V' *Machine-Dinensions*))

-this is the logging information-) (Nodes (make-array Number-Of-Nodes))
MI 0)

(defvar *Global-Plist* nil (Node nil)
-The global property list.') (Nodals-Segment NIL))

(Make-Nodes-l Number-of-Nodes Nodes ID Node Nodals-Segment))

Structures (defun Mak*-Nodea-1 (Number-of-Nodes Nodes ID Node Nodals-Segment)
(cond ((not (< ID Number-Of-Nodes))

(defstruct Node (**tq *Nodes* Nodes))
(Time 0) (t
(ID 0) (setq Node (Make-Node :ID ID))
(Segments (Make-Nash-Table)) (setq Nodals-Segment (Create-Read-Write-Segment 100))
(Nodals nil)) (setq Nodes (Copy-Replace-Node Node ID Nodes))

(multiple-value-bind (Sgmt-ID Intermediate-Node)
)defstruct Segment (Add-Segment Nodal s-Segment Node)

(Type nil) (oetq Node
(Data nil) (Make-Node :Time (Node-Time Xntermediste-Node)
(Size 0)) :ID (Node-ID Intermediate-Node)

:Segments (Nods-Segments Intermediate-Node)
(defstruct Task :Nodal* Sgmt-ID))

(Nandler nil) (s"tq Nodes (Copy-Replac*-Nodo Node (Node-ID Node) Nodes)))
(Node nil) (Make-Nodes-I Number-of-Nodes Nodes (- ID 1) Node
(Segment nil) Nodals-Segment))))
lip 0)
(Status 'New)) This function the node time and clears the node segment.

(defstruct Message (defun clear-Nodes 0
(Destination nil) (let (MNode nil)
(Length 0) (Nodes-Index 0)
(Type nil) (Nodals-Id nil)
(Arguments nil)) (Models nil)

(Mnd-Index (array-total-size *Nodes*)))
(dsfstruct Event (Clear-Nodes-l Node Nodes-Index Nodals-Id Modals End-Index)))

(Time 0)
(Object nil)) (defun Clear-Nodes-I (Node Nodes-Index Nodals-Id Models En-Index)

(cond ((not (< Nodes-Index End-Index))
(defstruct Nandler nil)

(Name nil) (t
(instructions nil) (setq Node (aref *Nodes* Nodes-Index))
(Arity 0) (setq Nodsa-lsd (Node-Nodals Node))
(Number-Of-Locals 0) (setq Nodels (Translate-Segment-On-Node Nodals-id Nods))
(Bindings (Make-Nash-Table))) (setq Node (Make-Node :Time 0 ;,(setf (Node-Time Node) 0)

:1D (Node-ID Node)
)dsfetruct D-Sync :Segments (Node-Segments Node)

(Suspended-Tasks nil)) :Nodal* (Node-Nodals NodeU)
(oetq -Nodes- (Copy-Replace-Node Node (Node-ID Node) *Nodes*))

(dsfstruct 8-Sync (setq Node
(Count 0) (Make-Node :Time (Nods-Time Node)
(Suspended-Tasks nil)) *.ID (Node-ID Node)

zSegments (Cloor-Nssh-Tabl* (Node-Segments Noe)
)defstruct Log Nodal* (Node-Nodals Node)))

(Type 'All) (sotq *Nodes* (Copy-Replace-Node Node (Node-ID Node) *Nodes*))
(Task-Status-Profile (Makke-Nesh-Table)) (setq Node (Make-Node :Time (Node-Time Node)
(Task-Type-Profile iWake-Nash-Table)) :ID (Nods-ID Node)
)instruction-Type-Profil*)Mako-Nssh-Table)) :Segments (Mash-Insert (Node-Segments Node)
(Operation-Type-Profile (MakeP-Nash-Table)) Nodal s-ID
(Concurrency-List nil) Nodalsa)
(Old-Logo nil)) Models (Node-Nodels Node)))

(setq **,1es' (Copy-Replace-Node Node (Nods-ID Node) *Nodes*))
(dsfstruct Delta (let- ((Data (Segment-Data Models))

(Time 0) (index 0)
(Value 0)) (Data-Size (array-total-size Data)))

(Cliear-loodes-2 Data Index Date-Size))
)dsfstruct Task-Segment (setq Nodes-index (I. Nodes-Index))

(Storag*-Rgmto 0) (Clear-Modes-l Node Nodes-Index Nodals-Id Nodal@ End-Index))))
(Type nil)

206

(values New-Value

(defun Clear-Nodes-2 (Data Index Data-Size) (Make-Segment :Size (Segment-Size segment)
(cond ((not (< Index Data-Size)) :Type (Segment-Type Segment)

nil) :Data (Copy-Replace-Elt New-Value
(t Offset
(setq Data (Copy-Raplace-Zlt 'UNBOUND Index Data)) (Segment-Data Segment)))))
(setq Index (1 Index))
(Clear-Nodes-2 Data Index Data-Size)))) ;; This function attempts to match a key in an associative set or cache

Segment.

Segments (defun Match-Segment (Segment Key)
(case (Segment-Type Segment)

This adds a segment to the node's segment translations. It (Associative-Set
returns the unique segment ID. (Hesh-Lookup (Segment-Data Segment) Key))

(Cache
(defun Add-segment (segment Node) (Match-Cache Key Segment))

(let* ((Segment-ID (gensym uSegment-0)) (otherwise
(New-Segments (break "PiSim error: incorrect access operation for segment type'))))
(Hash-Insert (Node-Segments Node)

Segment-ID This function inserts a key in an associative set or cache segment.
Segment))

(Now-Node (defun Insert-Segment (Segment Key New-Value)
(Make-Node :Time (Node-Time Node) (case (Segmant-Type Segment)

:ID (Node-ID Node) (Associative-Set
:Segments New-Segments (values
:Nodals (Node-Nodals Node)))) (Make-Segment :Type (Segment-Type Segment)

(values Segment-ID New-Node))) :Data (Hash-Insert (Segment-Data Segment)
Key

This removes a segment ID from the node's segment New-Value)
translations. ;Size (Segment-Size Segment))

New-Value))
(defun Delete-Segment (Segment-ID Node) (Cache

(let- ((New-Segments (Insert-Cache Key Segment New-Value))
(Hash-Delete (Node-Segments Node) (otherwise

Segment-ID)) (break *PiSim error: incorrect access operation for segment type,))))
(New-Node (Make-Node :Time (Node-Time Node)

:ID (Node-ID Node) ;; This function removes a key from an associative set or cache segment.
:Segments New-Segments
:Nodals (Node-Nodals Node)))) (defun Remove-Key-Segment (Segment Key)

New-Node)) (case (Segment-Type Segment)
(Associative-Set

This translates a segment ID to a segment on the specified (Make-Segment :Type (Segment-Type Segment)
task's node. :Data (Hash-Delete (Segment-Data Segment) Key)

:Size (Segment-Size Segment)))
(defun Translate-Segment (Segmnt-ID Task) (Cache (Remove-Key-Cache Key Segment))

(Translate-Segment-on-Node Segment-ID (otherwise
(Task-Node Task))) (break "PiSim error: incorrect access operation for segment type*))))

This translates a segment ID on a specified node. :; This function clears an associative set or cache segment.

(defun Translate-Segment-On-Node (segment-ID Node) (defun Clear-Segment (Segment)
(let ((Segment (Hash-Lookup (Node-Segments Node) (case (Segment-Type Segment)

Segment-ID))) (Associative-Set
(if (null Segment) (Nake-Segment :Type (Segment-TYPe Segment)

(break "PiSim error: missing segment') :Data (Clear-Hash-Table (Segment-Data Segment))
Segment))) :Size (Segment-Size Segment)))

(Cache
This function creates a read-write segment. (Clear-Cache Segment))

(otherwise
(defun Create-Read-Write-Segment (Size) (break "PiSim error: incorrect access operation for segment type*))))

(Make-Segment :Size Size
:TVpe 'Reed-write ;; == ====
:Data (make-array Size))) Caches

This function creates an associative set segment. ; In PiSim, caches are implemented as direct mapped arrays. A hash
function computes an index into an array. Array entries are cons

(defun Create-Associative-Set-Segment (Size) cells are of the format: (Key . Value).
(Make-Segment :Size Size

:Type 'Associative-Set This is the hash function for caches.
:Data (Make-Hash-Table Size)))

(defun Cache-Hash (Key Size)
This function creates a cache segment. (when (numberp Key)

("etq Key (format nil -- a- Key)))
(defun Create-Ceche-Segment (Size) (let* ((String (string Key))

(Make-Segment :Size Size (Character nil)
:Type 'Cache (Value 0)
:Data (make-erray Size))) (Index 0)

(End-Index (array-total-size String)))
This function reads a reed-write segment. (Cache-Hash-1 String Character Value size Index nd-Index)))

(defun Read-Segment (Segment Offset) (defun Cache-Hash-I (String Character value Size Index End-Index)
(unless (equal (Segment-Type Segment) (cond ((not (< Index End-Index))

'Reed-Write) (mod Value sixe))
(break (t
•PiSim error: incorrect access operation for segment type')) (setq Character (aref String Index))

(aref (Segment-Data Segment) Offset)) (setq Value (+ (char-int Chatacter) Value))

(setq Index (1. Index))
This function writes a read-write segment. (Cach*-Hash-I String Character Value Size Index End-Index))))

(defun write-Segment (segment Offset New-value) ;: This function attempts to match a key in a hash table. If the key
(unless (equal (Segment-Type Segment) is found, the corresponding value is returned. Otherwise, 'Miss is

'Reed-Write) returned.
(break

PiSim error: incorrect access operation for segment type-))

267

(defun Match-Cache (Key Segment) (defun Increment-Time-Of (Task Delta)
(let* [(Index (Cache-Hash Key (Segment-Size Segment))) (let' ((Task-Node (Task-Node Task))

(Entry (aref (Segment-Data Segment) Index))) (New-Time (- (Node-Time Task-Node) Delta)))

(if (and (not (equal Entry -Empty)) (setq Task-Node (Make-Node :Time New-Time

(equal (first Entry) Key)) :ID (Node-ID Task-Node)

(rest Entry) :Segmen* (Node-Segments Task-Node)

"Hiss))) :Nodals (Node-Nodals Task-Node)))

(values New-Time

This function writes an entry in the cache, possibly Task-Node

overwriting another value. (Make-Task :Handler (Task-Handler Task)
:Node Task-Node

(defun Insert-Cache (Key Segment New-Value) :Segment (Task-Segment Task)

(let* ((Value (cons Key New-Value)) :IP (Task-IP Task)

(New-Segment-Data :Status (Task-Status Task)))))

(Copy-Replace-Elt Value
(Cache-Hash Key This returns the handler type of the task.

(Segment-Size Segment))
(Segment-Data Segment)))) (defun Handler-Name-Of (Task)

(values (Make-Segment :Type (Segment-Type Segment) (Handler-Name (Task-Handler Task)))

:Data Now-Segment-Data

:Size (Segment-Size Segment)) This function creates a new task segment of the specified length.

Value))) The number of arguments and message length values are compared with
the handler arity and arity plus number of locals respectively. No

This function removes a key from a cache. If the key is not is added to the arity and number of locals to account for the message

present, no action is taken. length and type information stored in the segment. The segment is
then initializes wtch the supplied arguments.

(defun Remove-Key-Cache (Key Segment)

(let* ((Index (Cache-Hash Key (segment-Size Segment))))defun write-Arguments (Arguments Index New-Segment)

(Entry (aref (Segment-Data Segment) Index))) (cond ((null Arguments)

(if (and (not (equal Entry 'Empty)) New-Segment)

(equal (first Entry) Key)) (t

(values (multiple-value-bind (New-Value Written-Segment)
(make-Segment :Type (Segment-Type Segment) (write-Segment New-Segment Index (car Argumentsi)

:Date (Copy-Replace-Elt 'Eipty (Write-Arguments (cdr Arguments)
Index (10 Index)

(Segment-Data Written-Segment)))))
segment))

:Size (Segment-Size Segment)) (defun Create-Task-Segment (Length Task-Type Arguments Handler)
'Empty) (let ((New-Segment (Create-Read-Write-Segment Length)))

(values Segment nil)))) (when (not (= (Handler-Arity Handler)

(length Arguments)))

This function clears a cache. (break *PiSim error: arity mismatch'))
(when (not (= Length (- (Handler-Arity Handler)

(defun Clear-Cache (segment) (Handler-Number-Of-Locals Handler)

(let- ((Data (Segment-Data Segment)) 2)))

(Index 0) (break "PiSim error: length/ handler storage mismatch'))
(End-Index (array-total-size Data))) (Hake-Task-Segment

(Clear-Cache-l Data Index End-Index Segment))) :Storage-Rqmts Length
:Type Task-Type

(defun Clear-cache-1 (Data Index End-Index Segment) :Arguments (Write-Arguments Arguments 2 New-Segment))))
(cond ((not (< Index End-Index))

Segment) :;; This function creates a new task for a message. The handler and

(t node are determined. A new segment is created and initialized.
(setq Data (Copy-Replace-Elt 'EMPTY Index Data)) ;1: After the new task is created, its segment is added to the task's

()etq Segment (Make-Segment :Type (Segment-Type Segment) :;; node. Finally the new task is returned.
:Data Data

:Size (Segment-Size Segment))) (defun Create-Task (Message)
(setq Index (1+ Index)) (let* ((Handler (Get-Handler (message-Type Message)))

(Clear-Cache-i Data index End-Index Segment)))) (Node (Translate-Node (Message-Destination Message))))
(Hake-Task :Handler Handler

; .=..=.......... =.=== :Node Node)))
Tasks

This function executes a task. It executes instructions which

This returns the node ID of the specified task's nodes. change a task's status. If the status is 'Running, another
instruction is executed.

(defun Node-Of (Task)
(Node-ID (Task-Node Task))) (defun Execute-Task (Task)

(multiple-value-bind (Value New-Task)

This returns the time of a task. This is defined as the node (Execute-Next-Instruction Task)
time for the specified task. (setq Task New-Task))

(if (equal (Task-Status Task) 'Running)

(defun Time-Of (Task) (Execute-Task Task)))

(Node-Time (Task-Node Toak)))

This sets the time of the specified task (i.e. the time of ;;.=.=.....=.=.=.==. =.-.=e= = =....a== .=.= .=====..

the node of the specified task). ;; Events

(defun Set-Time-Of (Task New-Time) ;; This function enqueues an event in the global event queue.

(let ((Tesk-NOde (Task-Node Task))) ;; Events are enqueued in order on increasing event time.
(setq Task-Node (Make-Node :Time New-Time - Note that when 2 events have the same time, the one sent to

:ID (Node-ID Task-Node) I: Knqueue-Event first has higher priority.

:Segments (Node-Segments Task-Node)
:Nodal@ (Node-Nodals Task-Node))) (defun Enqueue-Event (New-Event)

(values New-Time (if (or (null *Event-Queue')

Task-Node (< (Event-Time New-Event)
(Hake-Task :Handler (Task-Handler Task) (Event-Time (first *Event-Queue*))))

:Node Task-Node (metq Event-Queuei
:Segment (Task-Segment Task) (cons New-Event -Event-Queue*))

:IP (Task-IP Task) (setq *Event-Queue"
:Status (Task-Status Task))))) (Insert-Event New-Event *Event-Queue')())

This increments the task time by the specified delta. This function is used to onqusue events inside the event queue.

It is pert of a recursive, priority queue insert algorithm.

268

(defun Insert-Event (New-Event 5vent-Queue) ;; This function inserts a binding into a handler's bindings. If the
(if (or (null (rest Event-Queue)) specified handler is Global, the binding is inserted in the global

(< (Event-Time New-Event) bindings.
(Event-Time (second Event-Queue))))

(cons (car Event-Queue) (defun Insert-Binding (Name Value Handler)
Icons New-Event (rest Event-Queue))) (cond ((equal Handler 'Global)

(cons (car Event-Queue) (setq 'Global-Bindings'
(Insert-Event New-Event (rest Event-Queue))))) (Hash-Insert *Global-Dindings' Name Value))

(values Value Handler))
This function dequoues and returns a event from the global (t
event queue. If the queue is empty, nil is returned. (•etq Handler

(Hake-Handler :Hams (Handler-Name Handler)
(defun Dequaue-Event () :Instructions (Handler-Instructions Handler)

(let ((Event (car *Event-Queue*))) :Arity (Handler-Arity Handler)
(setq *Event-Queue* (cdr 'Event-Queue')) :Number-of-Locals
Event)) (Handler-Number-of-Locals Handler)

:Bindings
This function clears the event queue. (Hash-Insert (Handler-Bindings Handler)

Name
(defun Clear-Event-Queue () Value)))

(setq 'Event-Queue' nil)) (values Value Handler))))

This function dequoues and executes the next event in the This function looks up the binding of a symbol in the handler. If
event queue. If the event is a message, a new task is it is not found there, the global bindings are checked.
created. The node time is adjusted if the event time is
later than node time. If e event is executed, t is returned. (defun Lookup-Binding (Name Handler)

(or (Hash-Lookup (Handler-Bindings Handler) Name)
(defun Execute-Next-Event (0 (Hash-Lookup *Global-Bindings* Name)))

(let* ((Event (Dequeue-Event))
Task) This function returns the number of instructions in a handler.

(setq Task (Create-Task (Event-Object Event)))
(multiple-value-bind (New-Time Task-Node New-Task) (defun Number-Of-Instructions (Handler)

(Set-Time-Of Task (array-total-size (Handler-Instructions Handler)))
(if (> (Event-Time Event)

(Time-Of Task)) This function returns the handler object for the handler name. If
(Event-Time Event) the handler does not exist, an error message is printed.
(Time-Of Task)))

(setq 'Nodes- (defun Get-Handler (Name)
(Copy-Replace-Node (let ((Handler (get Name 'Handler)))

Task-Node (if (null Handler)
(Translate-Node (break 'PiSim error: unknown handler')

(Message-Destination (Event-Object Event))) Handler)))
'Nodes*))

(setq Task New-Task)) This function determines the numbei of instructions in a sequence
(let* ((Message (Event-Object Event)) of statements and builds a instruction array of the correct size.

(Node (Translate-Node (Message-Destination Message))) It then reads each statement. If it is an instruction, it is
(New-Segment (Create-Task-Segment inserted into the array. If it is a label, the label and

(Message-Length Message) statement index is inserted into the handler's bindings.
(Message-Type Message)
(Message-Arguments message) (defun make-Instructions (statements Handler)
(Task-Handler Task)))) (let (Instructions)

(multiple-value-bind (New-Segment-ID New-Node) (let ((Temp-Stits Statements)
(Add-Segment New-Segment Node) (Statement nil)

(setq Node New-Node) (Number-Of-Statements 0))
(setq *Nodes- (Copy-Replace-Node (setq Instructions

Node (Kake-Instructions-1 Instructions Tep-Stint Statement
(Message-Destination Message) Number-of-Statements)))"*Nodes*)) (let ((Index 0)

(setq Task (Hake-Task :Handler (Task-Handler Task) (Statement nil)
:Node Node (Temp-Stits Statements))
:Segment New-Segment-ID (multiple-value-bind (Instructions New-Handler)
:IP (Tamk-IP Task) (Make-Instructions-2 Instructions Temp-Stats Statement
:Status (Task-Status Task))))) Index Handler)

(Debug-Print 1 (setq Handler New-Handler))
[(start: task -a node -d time -d old status -a)-&- (•etq Handler

(Handler-Name-Of Task) (Node-Of Task) (Make-Handler :Name (Handler-Name Handler)
(Time-Of Task) (Task-Status Task)) :Instructionb Instructions

(Log-Task Task) :Arity (Handler-Arity Handler)
(setq Task :Number-of-Locals (Handler-Number-of-Locals

(Make-Task :Handler (Task-Handler Task) Handler)
:Node (Teak-Node Task) :Bindings (Handler-Bindings Handler)))
:Segment (Task-Segment Task) (values Instructions Handler)))
:IP (Task-IP Task)
:Status 'Running)) (defun Make-Instructions-1 (Instructions Temp-Stats Statement

(Adjust-Concurrency-List (Time-Of Task) 1) Number-of-Statements)
(Execute-Task Task) (cond ((null Temp-Stats)
(Adjust-Concurrency-List (Time-Of Task) -1) (setq Instructions (meke-array Number-Of-Statements)))
(Debug-Print I *[stop: task -a node -d time -d status -a]-&" (t

(Handler-Hame-Of Task) (Node-Of Task) (setq Statement (car Temp-Stats))
(Time-of Taok) (Task-Status Task)))) (setq Temp-Stmts (cdr Temp-state))

(cond ((not (Label? Statement))
................................. ..(if Statement

Handlers (setq Number-Of-Statements
(I+ umber-Of-Statements)))))

This predicate tests if a statement is an instruction. (Make-Instructions-I Instructions Temp-Stmts Statement
Number-of-Statements))))

(defun Label? (Statement)
(symbolp Statement)) (defun Make-Instructions-2 (Instructions Temp-Stats Statement Index Handler)

(cond ((null Temp-Stits)
This predicate tests if a statement is an instruction. (values Instructions Handler))

It (setq Statement (car Temp-Stats))
(defun Instruction? (Statement) (setq Temp-Stats (odr Temp-Stats))

(listp Statement)) (cond ((Label? Statement)
(multiple-value-bind (Value New-Hanler)

269

(Insert-Binding Statement Index Handler) (Index-Parameters-And-Locals Parameters Locals New-Handler))

(setq Handler New-Handler))) (multiple-value-bind (Instructions Hewer-Handler)

((Instruction? Statement) (Make-Instructions Statements New-Handler)

(progn (setq New-Handler Newer-Handler))

(setq Instructions (setq *Global-Pllst*
(Copy-Replace-Elt (Update-Plist Name 'Handler New-Handler))))
Statement Index Instructions))

(setq Index (I Index))))) This allows the definition of handlers. This should be part
(Make-Instructions-2 of a more general reader.
Instructions Temp-Stmits Statement Index Handler))))

(defun Define-Handler (&rest Expression)
This function indexes the parameters and locals in a handler. (Debug-Print 0 *-&loading handler -a-L* (first Expression))

8 This includes assigning a each parameter and value an index (Read-Handler Expression)
in the handler segment. These assignments are included in nil)
the handler's bindings. The arity and number of locals
parameters are also set.

Nodals
(defun Index-Parameters-And-Locals (Parameters Locals Handler)

(let ((Parameter nil) This allows the definition of nodals (node variables). An
(Temp-Parameters Parameters) index is assigned (using the number of existing nodals). A new
(Index 2)) global binding is added.

(setq Handler
(index-Parameters-And-Locals-l (defun Define-Nodal (Name)

Parameter Temp-Parameters (Debug-Print 0 "-&defining nodal -a-&* flame)
Index Handler))) frond ((not (null (Hash-Lookup *Global-Bindings* Name)))

(let ((Local nil) (format t *-.&warning: -a has already been defined globally-&"
(Temp-Locals Locals) Name))

(Index (. (length.Parameters) 2))) (t
(setq Handler (multiple-value-bind (Value Handler)

(Index-Parameters-And-Locals-2 Local Temp-Locals Index (Insert-Binding Name *Nodal-Count* 'Global))
Handler))) (setq HNodal-Count- (I- *Nodal-Count*))))f

(setq Handler (Make-Handler :Name (Handler-Name Handler)
:Instructions (Handler-Instructions

Handler) Constants
:Arity (length Parameters)
:Number-of-Locals This allows the definition of global constants. The binding
(Handler-Number-of-Locals Handler) :; is added to the global bindings.
:Bindings (Handler-Bindings

Handler))) (defun Define-constant (Name Value)
(setq Handler (Make-Handler :Name (Handler-Name Handler) (Debug-Print 0 "-&defining constant -a-&* Name)

:Instructions (Handler-instructions (multiple-value-bind (Value Handler)
Handler) (Insert-Binding Name Value 'Global)))

:Arity (Handler-Arity Handler)
:Number-of-Locals (length Locals) ;;============================ ---------

:Bindings (Handler-Bindings Instructions
Handler)))

Handler) This function returns the next instruction of the handler to be
executed. The current instruction pointer (IP) is obtained from

(defun Index-Parameters-And-Locals-I (Parameter Temp-Parameters the task. The instructions are obtained from the handler. The
Index Handler) ;: task instruction pointer is incremented. Note: tie instruction

(cond ((null Temp-Parameters) Handler) pointer is incremented AFTER the next instruction is fetched.
(t

(setq Parameter (car Temp-Parameters)) (defun Next-Instruction (Task)
(setq Temp-Parameters (cdr Temp-Parameters)) (let ((IP (Task-IP Task)))

(multiple-value-bind (Value New-Handler) (when (>= IP
(Insert-Binding Parameter Index Handler) (Number-Of-Instructions (Task-Handler Task)))

(setq Handler Hew-Handler)) (break "PiSim error: IP out of range*))
(setq Index (1+ Index)) (setq Tisk (Make-Task :Handler (Task-Handler Task)

(Index-Parametere-And-Locals-I Parameter Temp-Parameters :Node (Task-Node Task)
Index Handler)))) :Segment (Task-Segment Task)

:IP (1+ (Tabk-IP Task))
(defun Index-Parameters-And-Locals-2 (Local Temp-Locals :Status (Task-Status Task)))

Index Handler) (values (aref (Handler-Instructions iTack-Handler Task))

(cond ((null Toup-Locals) Handler) IP)
(t Task)))

(setq Local (car Temp-Locals))
(setq Temp-Locals (cdr Temp-Locals)) This function executes a single instructions. It first locates the

(multiple-value-bind (Value New-Handler) :; next instruction using the task instruction pointer. The

(Insert-Binding Local Index Handler) instruction pointer is incremented. Then it applies the operation

(eetq Handler Now-Handler)) to the arguments.

(setq Index (1+ Index))

(Index-Parameters-And-Locals-2 Local Temp-Locals Index (defun Execute-Next-Instruction (Active-Task)
Handler)))) (multiple-value-bind (Instruction New-Task)

(Next-Instruction Active-Task)
This function reads a handler from an expression. The (setq Active-Task New-Task)
resultant handler is stored on the property list of the (Debug-Print 2 • [executing instruction -a)-&
handler name. (Instruction-Op Instruction))

(Log-Instruction Instruction)
(defun Read-Handler (Expression) (multiple-value-bind (Value New-Task)

(let ((Name (first Expression)) (Apply-Operation (Instruction-Op Instruction)
(Parameters (second Expression)) Active-Task
(Locals (third Expression)) (Instruction-Args Instruction))
(Statements (nthcdr 3 Expression)) (seLq Active-Task Hew-Task)
(New-Handler (Make-Handler))) (values value Active-Task))))

(eetq Nw-Handler
(Make-Handler :Name Na.e.

:Instructions (Handler-Instructions : Operations
New-Handler)

:Arity (Handler-Arity New-Handler) This function applies a processor operation to a list of arguments.
:Numer-of-Locals Each argument is evaluated before the operation is applied. The
(HMandler-Number-of-Locals New-Handler) apply only takes place if the task status is 'RUNNING.
:Bindings (Handler-Bindings New-Handiler)))

(setq New-Handler (defun Apply-Operation (Operation Active-Task Arguments)

270

(multiple-value-bind (Argument-List New-Nodes (Setq 'Global-Plist"
New-Toak New-Event-Queue) '(LUdate-Plist .Name 'Operation @'(lambda Roest))))

(Evaluate-Arguments Arguments Active-Task)
(setq *Nodes' New-Nodes

Active-Task New-Task Debugging
"-Event-Queue' New-Event-Queue)

(cond ((equal (Task-Status Active-Task) This prints debug messages depending on the debug level.
'RUNNING)

(Log-Operation Operation) (defaacro Debug-Print (Level Format Lrest Arguments)
(multiple-volue-bind (Result New-Nodes New-Task '(when (<= ,Level *Debug-Level')

New-Event-queue) (format t ,Format ,@Arguments)))
(apply (Get-Operation Operation)

Argument-List :; This function sets the debug level.
"Nodes*
Active-Task (defun Set-Debug-Level (New-Level)
'Event-Queue') (setq *Debug-Level* New-Level))

(setq Active-Task New-Task
Nodes New-Nodes =-s=s============s=====

Event-Queue New-Event-Queue) Logging
(values Result Active-Task)))

(t (values nil Active-Task))))) This predicate starts a new log, saving the current log.

(defun Evaluate-Arguments (Arguments Active-Task) (defun Start-New-Log ()
(let ((Argument nil)) (setq 'Log* (Make-Log :Type (Log-Type -Log*)

(Evaluate-Arguments-1 Argument Arguments -Nodes- :old-Logs *Log*)))
Active-Task 'Event-Queue')))

This is used in a counting profile. The category count is
(defun Evaluate-Arguments-1 (Argument Arguments Nodes incremented, or created, if non-existent.

Active-Task Event-Queue)
(cond ((null Arguments) (defun collect-Profile (Category Profile)

(values nil Nodes Active-Task Event-Queue)) (cond ((Hash-Lookup Profile Category)
(t (let ((New-Value (I. (Hash-Lookup Profile Category))))

(setq Argument (car Arguments)) (setq Profile
(setq Arguments (cdr Arguments)) (Hash-Insert Profile Category New-Value))

(multiple-value-bind (Value New-Nodes New-Task (values New-Value Profile)))
NeW-Event-Queue) (t

(Evaluate Active-Task Argument) (values 1 (Hash-Insert Profile Category 1)))))
(multiple-value-bind (Argument-List Newer-Nodes

Newer-Task Newer-Event-Queue) This predicate tests if logging is enabled. If the log is nil,
(Evaluate-Arguments-I Argument Arguments New-Nodes logging is on.

New-Task New-Event-Queue)
(values (cons Value Argument-List) (defun Logging? ()

Newer-Nodes Newer-Task Newer-Event-Queue)))))) (not (or (null *log-)
(equal (Log-Type *Log') 'None))))

This function evaluates the expression and returns the
results. This is an evaluator appropriate for the limited ;: This function logs the specified task. Presently, profiles of task
expressions in a Pi programs. Expressions are only evaluated types and status' are maintained.
if the task status is 'RtUNNING. The following expression
types are possible: (defun Log-Task (Task)

(when (Logging?)
A number or string returns the value of the number or string. (multiple-value-bind (New-Value New-Profile)

(Collect-Profile (Task-Status Task)
A symbol is looked up in the handler bindings. If it is (Log-Task-Status-Profile *Log*))
present, the corresponding value is returned. Otherwise, the (setq 'Log"
symbol is returned. (Make-Log :Type (Log-Type *Log')

:Task-status-Profile New-Profile
A nested expression (a list) in the form (symbol argl arg2..). :Task-Type-Profile (Log-Task-Type-Profile *Log*)
In this case, Apply-Operation is recursively called. :Instruction-Type-Profile

(Log-Instruction-Type-Profile 'Log')
(defun Evaluate (Active-Task Expression) :Operation-Type-Profile

(when (equal (Task-Status Active-Task) (Log-Operation-Type-Profile -Log-)
"RUNNING) :Concurrency-List (Log-Concurrency-List -Log-)

(values :Old-Logs (Log-Old-Logs *Log*)))
(typecase Expression (when (equal (Task-Status Task) 'New)
((or number string) (multiple-value-bind (New-value New-Profile)
Expression) (Collect-Profile (Handler-Name-Of Task)

(symbol (Log-Task-Type-Profile *Log*))
(or (Lookup-Binding Expression (Task-Handler Active-Task)) (Notq *Log*

Expression)) (Make-Log :Type (Log-Type *Log*)
(list :Task-Statue-Profile
(multiple-value-bind (Value New-Task) (Log-Task-Status-Profile *Log-)

(Apply-Operation (Instruction-Op Expression) :Taek-Type-Profile New-Profile
Active-Task :Instru-tiin-Type-Profile
(Instruction-Arge Expression)) (Log-Instruction-Type-Profile 'Log*)

(setq Active-Task New-Task) :Operation-Type-Profile
Value)) (Log-Operation-Type-Profile *Log*)

(otherwise :Concurrency-List (L.og-Concurrency-List 'Log')
(break "PiSim error: unknown expression'))) :Old-Logs (Log-Old-Logs *Log*))))))))

Active-Task)))
This function collects statistics on instruction types.

This function returns the operation function for the operation
name. If the operation does not exist, an error message is (defun Log-Instruction (Instruction)
printed. (when (Logging?)

(cond ((not (equal (first Instruction) 'Write))
(defun Get-Operation (Name) (multiple-value-bind (New-Value New-Profile)

(let ((Operation (get Name 'Operation))) (Collect-Profile (first Instruction)
(if (null Operation) (Log-Instruction-Type-Profile 'Log'))

(break 'PiSim error: unknown operation') (setq Log.
Operation))) (Make-Log :Type (Log-Type *Log*)

:Task-Statue-Profile
This is used to define processor operations. (Log-Task-Status-Profile 'Log')

:Task-Type-Profile (Log-Task-Type-Profile
(defmacro Define-Operation (Mame &rest Rest) 'Log')

271

,Instruction-Type-Profile NeW-Profile (Log-Task-Statue-Profile *Log')
:Operation-Type-Profile .Task-Type-Profile
(Log-Operation-Type-Profile 'Lo~g*) (Log-Task-'rype-Profile *Log*)
:Concurrency-List .Instruction-Type-Profile
(Lag-Concurrency-List *Log*) (Log-Instruction-Type-Profile -Log*)
:old-Logs (Loog-Old-Logs *Log*))))) :Operation-Type-Profile

((not (listp (fourth Instruction))) (Lag-Operation-Type-Profile *Log*)
(multiple-value-bind (New-Value New-Profilel .Concurrency-List

(Collect-Profile 'Initialize (cons New-Delta
(Log-instruction-Type-Profile (Log-Concurrency-List 'Log*'
'Logi)) .Old-Logs (Log-Old-Logs -Log-))

* Log * New-Delta))
(Make-Log :Type (Log-Type *Lag'((Time (Delta-Time (first Concurrency-List(((

:Task-Statue-Profile (let* ((First-Delta (first Concurrency-List((
(Log-Task-Status-Profile *Log*) (New-Delta
:Task-Type-Profile (Make-Delta :Time (Delta-Time First-Delta)
(Log-Task-Type-Profile *Log') : Value (. (Delta-Value First-Delta)
:Instruction-Type-Profile New-Profile Change))))(
:Operation-Type-Profile (setq *Log*
(Log-Operation-Type-Profile -Log*)((Make-Log :Type (Log-Type -Log')
:Concurrency-List .Task-Status-Profi le
(Log-Concurrency-List *Log*) (Log-Task-Status-Profile *Log-(
:Old-Logs (Log-Old-Logs *Log'()))((:Task-Type-Profile

((equal (first (fourth Instruction)) *Read((Log-Task-Type-Profile *Log*)
(multiple-value-bind (Now-Value New-Prof ile(:Instruction-Type-Profile

(Collect-Prof~ie (Log-Instruction-Type-Profile -Log*)
'Move (Lo~g-Instruction-Type-Profile *Log*) (Operation-Type-Proti le

(setq *Log* (Log-Operation-Type-Profile 'Logll
(Make-Log :Type (Log-Type *Log*) .Conclurrency-List

:Task-Statue-Profile (cons New-Delta
(Log-Task-Status-Profile *Log*) (cdr (Log-Concurrency-List *Log*))
:Task-Type-Profile .Old-Logs (Log-Old-Logs *Log*))
(Log-Task-Type-Profile *Log*) (Delta-Value New-Delta(I
:Instruction-Type-Profile New-Profile (t
:Operation-Type-Profile (setq *Log*
(Log-Operation-Type-Profile *Log*) (Make-Log :Type (Log-Type *Log*)
:Concurrency-List .Task-Status-Profi 1.
(Log-Concurrency-List *Log*)((Log-Task-Status-Profile *Log*(
:Old-Logs (Log-Old-Logs *Log*))))) .Task-Type-Profile

(t (Log-Task-Type-Profile *Log*)
(multiple-value-bind (New-Value New-Profile) :Instruction-Type-Profile

(Collect-Profile (first (fourth Instruction)) (Log-Instruction-Type-Profile *Log')
(Log-Instruction-Type-Profile .Operation-Type-Profile
'Log')) (Log-Operation-Type-Profile 'Log*)

(setq *Log' .Concurrency-List
(Make-Log :Type (Log-Type *Log*) (Adjust-Rest -Of-Concurrency-List

:Task-Statua-Profile Time Change Concurrency-List(
(L~og-Task-Status-Profile *Log*) .Old-Logs (Log-Old-Logs 'Log'))))))))
:Task-Type-Profile
(Log-Task-Type-Profile 'Log') This is the recursive pert of Adjust-Concurrency-List.
:Instruction-Type-Profile New-Profile
:Operation-Type-Profilo (defun Adjust-Rest-Of-Concurrency-List (Time Change Concurrency-List)
(Log-Operation-Type-Profile 'Log-) (cond ((or (null (rest concurrency-List((
:Concurrency-List (< Time (Delta-Time (second Concurrency-List())(
(Log-Concurrency-List *Log*) (cons (car Concurrency-List)
:old-Logs (Lo~g-Old-Logs *Log*))))))))((cons (Make-Delta :Time Time ,Value Change)

(rest Concurrency-List())
This function creates an operation profile. (=Time (Delta-Time (second Concurrency-List(((

(cons (car Concurrency-List)
(defun Log-Operation (Operation) (cons (Make-Delta :Time (Delta-Time

(when (Logging?) . (second Concurrency-List))
(multiple-value-bind (New-Valuo New-Profile) :Value

(Collect-Profile operation ('(Delta-Value (second Concurrency-List))
(Log-Operation-Type-Profile 'Log*)) Change))

(setq *Log* (cdr (rest Concurrency-List)))))
(Make-Log :Type (Log-Type *Log*) (t

:Task-Status-Profile (cons (car Concurrency-List)
(Log-Task-Status-Profile *Log*) (Adjust-Rest-Of-Concurrency-List
:Task-Type-Profi le Time Change (rest Concurrency-ListW))())
(Log-Task -Type -Prof i I' Log*)
.Instruction-Type-Profile New-Profile This function prints the information from the current log.
.Operation-Type-Profile
(Log-Operation-Type-Profile *Log-) (defun Print-Log-Information (
.Concurrency-List (when (or (equal (Log-Type *Log*) 'All)
(Log-Concurrency-List 'Log') (equal (Log-Type *Log*) 'Profile))
.Old-Logs (Log-Old-Loogs *Log')))))) (Print-Profile-Data))

(when (or (equal (Log-Type *Log') 'All)
This function searches down a sorted list of deltas looking (equal (Log-Type 'Loog') 'Plot))
for an entry at a specified time. if such an entry is found, (Plot-Concurrency)))
its value is edjusted by Change. if no such value is found,
a new delta is created an inserted at the correct position in ;= -- - -

the list. Randoms

(defun Adjust-Concurrency-List (Time Change) This function estimates the delivery delay of a message. It
(when (Logging?) should be better than it is now.

(let ((Concurrency-List (Log-Concurrency-List *Log*)))
(cond ((or (null Concurrency-List) (defun Delivery-Delay (Source Destination Length)

(< Time (Delta-Time (first Concurrency-List)))) (when (or (>. Source (Number-Of-Nodes))
(let ((New-Delta (Make-Delta :Time Time '..inusp Source)

:Value Change))) (>. Destination (Number-Of-Nodel))
(setq -Lag' (minusp Destination))

(Make-Log :Type (Log-Type 'Log') (break -PiSim error-- illegal node number-))
:Took-Status-Profile (when (or (minuap Length)

272

(zorop Length)) (defun Execute-Events 4)
(break "PiSim error: illegal message length')) (cond ((null *Event-Queue*)

(let ((Dimension nil) (values -Event-Oueue* -Nodes-))
(Tep-Dimensions -Machine-Dimensions-) (t (Execute-Mext-Event)
(Source-Components nil) (Execute-Events))))
(Destination-Components nil))

(Delivery-Delay-l Dimension Temp-Dimensions ...
Source-Components Destination-Components ; Hash Table Functions
Source Destination Length)))

(defconstant MIN_MASHTABLLSIZE 11)
(defun Delivery-Delay-I (Dimension Temp-Dimensions

Source-Components (defetruct Entry
Destination-Components (Key nil :type symbol)
Source Destination Length) (Value nil :type any))

(cond ((null Temp-Dimensions)
(let ((Source-Component nil) (defotruct HashTable

(Destination-Component nil) (Num-Buckets nil :type integer)
(Distance 0)) (Number-Entries nil :type integer)

(Delivery-Delay-2 (Buckets nil :type array))
Source-Component
Destination-Component Distance Length (defun Hash-Insert (Table Key Value)
Source-Components Destination-Components))) (let* ((Index (Hash-Function Key (HashTable-Num-Buckets Table)))

(t (New-Table
(setq Dimension (car Temp-Dimensions)) (multiple-value-bind (New-Bucket-List Number-Entries)
(setq Temp-Dimensions (cdr Temp-Dimensions)) (Splice-In-Bucket Value
(satq Source-Components Key

(Put-on-End (mod Source Dimension) (aref (HashTable-Buckets Table) Index)
Source-Componenta)) (HashTable-Number-Entries Table))

(aetq Source (floor Source Dimension)) (Make-HashTable
(setq Destinetion-Components :Num-Buckets (HashTable-Num-Buckets Table)

(Put-on-End (mod Destination Dimension) :Buckets (Copy-Replace-Elt New-Bucket-List
Destination-Components)) Index

(setq Destination (floor Destination Dimension)) (HashTable-Buckets Table))
(Delivery-Delay-l :Number-Entries Number-Entries))))

Dimension Temp-Dimensions Source-Components (if (>= (HashTable-Number-Entries New-Table)
Destination-Components Source Destination (HashTable-Num-Buckets New-Table))
Length)))) (Hash-Resize New-Table)

New-Table)))
(defun Put-on-End (X List)

(cond ((null List) (defun Splice-In-Bucket (Value Key Bucket-List Number-Entries)
(list X)) (cond ((or (null Bucket-List)

(t (cons (car List) (string< Key (Entry-Key (car Bucket-List))))
(Put-on-End X (cdr List)))))) (values (cons (Make-Entry :Key Key

:Value Value)
(defun Delivery-Delay-2 (Source-Component Destination-Component Bucket-List)

Distance Length Source-Components (1+ Number-Entries)))
Destination-Components) (t (let ((This-Entry .(car Bucket-List)))

(cond ((null Source-Components) (cond ((string= Key (Entry-Key This-Entry))
(+ Distance (- Length 1))) (format t -- &Bashing older bucket entry -A.-

(t This-Entry)
(setq Source-Component (car Source-Components)) (values
(setq Source--omponents (cdr Source-Components)) if Key = key of This-Entry, then overwrite the older
(cond ((null Destinstion-Components) :; bucket entry. (New bucket has same Key as older

(+ Distance (- Length 1))) Bucket entry, but new entry value.)
(t (cons (Make-Entry :Key Key
(setq Destination-Component :Value Value)

(car Destination-Components)) (cdr Bucket-List))
(setq Destination-Components Number-Entries))

(cdr Destination-Components)) (t (multiple-value-bind (New-Bucket-List Num-Entries)
(setq Distance (Splice-In-Bucket Value

(. (abs (- Source-Component Key
Destination-Component)) (cdr Bucket-List)

Distance)) Number-Entries)
(Delivery-Delay-2 (values
Source-Component Destination-Component (cons This-Entry New-Bucket-List)
Distance Length Source-Components Num-Entries))))))))
Destinetion-Components))))))

(defun Hash-Resize (Table)
This function injects a starting message into the machine. It (let* ((Old-Buckots (Hashuable-Buckets Table))
starts calculating the message length and destination. The (old-Size (HashTable-Num-Buckets Table))
message is then enquoued, and events are executed until the (New-Size (Determine-Hash-Table-Size
event queue is empty. (* (HNahTable-Num-Buckets Table) 2)))

(New-Table (Make-HashTable :Num-Duckete Now-Size
(defun Inject (Type arest Arguments) :Number-Entries 0

(Make-Nodes) :Buckets (Make-Hash-Buckets New-Size))))
(Clear-Nodes) (Copy-Over-Buckets 0 Old-Size Old-Buckets New-Table)))
(Clear-Event-Queue)
(let* ((Handler (Get-Handler Type)) (defun Copy-Over-Buckets (Index old-Size Old-Buckets New-Table)

(Length (+ (Handlor-Arity Handler) (cond ((>. Index Old-Size) New-Table)
(Nandler-Humber-Of-Locals Handler) (t (let ((Bucket-List (aref Old-Buckets Index)))
2)) (Copy-Over-Buckets (1+ Index)

(Destination (random (Number-Of-Nodes))) Old-Size
(Arrival-Time (Node-Time (Translate-Node Destination))) Old-BScketo
(Nessage (Neke-Nessage :Destination Destination (Copy-Over-Bucket Bucket-List New-Table))))))

:Length Length (defun Copy-Over-Bucket (Bucket-List New-Table)
:Type Type (cond ((null Bucket-List) New-Table)

-Arguments Arg;ments)) (t (let ((This-Entry (car Bucket-list)))
(Event (Make-Event :Time Arrival-Time (Copy-Over-Bucket (cdr Bucket-List)

:Object KOSaO)V)) (Hash-Insert New-Table
(Enqueue-Zvent Event) (Entry-Key This-Entry)
(&xecute-Events))) (Entry-Value This-Zntry))) f)))

;:This function creates a hash table having the mpecified I of buckets.

273

Since the size of a hash table must be a prime number, the (def un Determine-Hash-Table-Size-l (Size)
specified number of buckets is rounded up to a nearby prime. (if (null (Prim*-Number-Test Size))
The new table ie then initialized. (Determjne-Mesh-Table-Size-l (- Size 2))

Size))
(defun Mak*-Hash-Table (&optional Hum-Buckets)

(let ((Size (Determine-Hash-Table-Size (defun Prime-Number-Test (Number)
(or Num-Buckets HIN-HASHLTABLL-SIZE)))) (let ((ndex 3))

(Hake-HashTable :Num-Buckets size (cond (=Number 2) t)
:Buckets WMake-Nash-Buckets Size) U=(mod Number 2) 0) nil)
:Number-Entrjes OMl (t (prime-Number-Test-1 Index Number))))

;;This function creates and initializes a bucket array. (defun Prime-Number-Test-I (index Number)
(cond ((<= (Square Index) Number)

(defun Hake-Hash-Buckets (Size) (if (= (mod Number Index) 0)
(make-array Size))

'..etq Index)- Inde4x 2))
This function looks up a key in the hash table. If it is (Prime-Number-Test-I Index Number))
found, the entry pointer is returned. Otherwise, nil is (t tW)
returned.

(defun square (n) (* n n))
(defun Hash-Lookup (Table Key)

(let* ((Index (Hash-Function Key This function calculates a hash table index from a key
(HashTable-Num-Buckets Table))) (symbol->string) and the hash table size.

(Bucket-List (aref (HashTable-Buckets Table)
Index))) (defun Hash-Function (Key Size)

(Hash-Lookup-l Bucket-List Key))) (let* ((Sum 0)
(Key-String (string Key))

(defun Hash-Lookup-l (Bucket-List Key) (Length (I- (string-length Key-String))))
(cond ((or (null Bucket-List) (9etq Sum)Hash-Function-l Sum Key-String Length))

(string< Key (mod Sum Size)))
(Entry-Key (car Bucket-List))))

nil) (defun Hash-Function-I (Sum Key-string Length)
((string= Key (cond ((< Length 0)

(Entry-Key (car Bucket-List))) Sum)
(Entry-Value (car Bucket-List))) (t
it (setq Sum
(Hash-Lookup-l)cdr Bucket-List) Key)))) (+ Sum (char-int (aref Key-String Length))))

(setq Length (1- Length))
This function deletes an entry in the hash table. (Hash-Function-l Sum Key-String Length))))

(defun Hash-Delete (Table Key)
(let ((ndex (Hash-Function Key

(NashTable-Hum-Buckets Table))))
(multiple-value-bind (New-Bucket-List Number-Entries)

(Splice-Out-Bucket
Key
(aref (HashTable-Buckets Table) index)
(HashTable-Number-Entries Table))

(Hake-HashTable
:Num-Buckets (NashTable-Hum-Buckets Table)

:Buckets (Copy-Replace-Bucket New-Bucket-List
index
(NashTable-Buckets Table))

:Number-Entries Number-Entries))))

(defun Splice-Out-Bucket (Key Bucket-List Number-Entries)
(if (null Bucket-List)

(values nil Number-Entries) ;;fell off end of bucket list
(let ((This-Entry (car Bucket-List)))
(cond ((string> Key (Entry-Key This-Entry))

(multiple-value-bind (Hew-Bucket-List Num-Bntrios)
(Splice-Out-Bucket Key

(odr Bucket-List)
Number-Entries)

(values
(cone This-Entry New-Bucket-List)
Hum-gntries)))

((String. Key (Entry-Key This-Entry))
(values (cdr Bucket-List)

(I- Number-Entries)))
(t ;Key string< Key of This-Entry -> Key isn't found
(values nil Number-Entriee))))

This function clear# for all entries In the specified hash
table.

(defun Clekar-Hash-Table (Table)
(let ((Size (HashTable-Num-Buckets Table)))

(Nake-HeshTable :Num-Buckets Size
:Number-Zntries 0
:Buckets (Hake-Hash-Buckets Size))))

This function picks the first prime number greater then or
equal to the specified size estimate. The minimum hash table
size is enforced here.

(defun Determine-Nash-Table-Size, (Six*-2stimate &aux Size)
(if k Size-9stimate, NIN...NASHLTABLL.SIZE)

(eetq Size NINJIASH..TA8LE...IZ3)
(setq size Size-Estimate))

(if)- (mod size 2) 0)
(setq sixe (1+ size)))

(Dsteruln*-Hssh-Teble-Size-l Size))

214

-- Syntax: Common-lisp; Bass: 10.; Package: USER -- (defvar *step-queue*) ;holds mesnages awaiting delivery

CST simulator -- original version (dsfvar *step-nr*)

queue stuff (defyar -profile-) profiling flag, statistics recorded when true

(defvar -default-queue-size- 16 (defvar *profile-list*)
-Initial Queue Size')

(defvar *log* '0 message Logging Enable')
(defstruct queue

(head 0) (defvar *trace* '() *Nhether or not we're tracing*)
(tail 0)
(length 0) (defvar -trace-selectors * 1()
(data-size -default-quoue-size) 'list of selectors we're tracing*)
(data (make-array 'default-queue-size ()))

(defvar me~thod-cache* t)
(defun queue-firet (queue)

(if (ý (queue-length queue) 0) (defvar -method-cache-size* 10)
(aref (queue-data queue)

(queue-heed queue)))) (defvar *method-cach*-trace- I()
*Switch for method cache tracing')

(defun queue-empty? (queue)
(zerop (queue-length queue))) (defvar *method-cache-trece-list* 10)

*Global MC Trace list-)
(defun queue-list (queue)

(if (queue-empty? queue) (defvar -mter-memage-queues '
'Enable memnage queue size tracing*)

(let ((data (queue-data queue))
(head (queue-head queue)) (defvar *message..quoue..trace 'U
(tail (queue-tail queue)))

(if I< head tail) (defun get-node (node-nr)
(loop for index from head below tail (aref *nodes* node-nr))

collect (aref data index))
(nconc (loop for index from head ; code to access a message

below (queue-data-size queue) na mg is of the form (meg node-nr header selector obj-id args)
collect (aref data index))

(loop for index from 0 below tail (defun new-meg (node-nr header selector receiver ergo)
collect (aref data index))))) (if (limtp argo)

(append '(mog *node-nr header selector .receiver) ergo)
(defun enqueu* (queue obj) '(meg *node-nr header .selector receiver eargo)))

(let* ((ail (queue-tail queue))
(length (queue-length queue)) (dafun meg-node (neg)
(data (queue-data queue)) (cadr meg))
(old-size (queue-data-size queue)))

(if I< length I- old-size 2)) (defun meg-header (meg)
(progn (caddr meg))

(setf (aref data tail) obJ)
(setf (queue-tail queue) (defun meg-slotn In aeg)

(mod (1+ (queue-tail queue)) (nth I+ n 3) meg))
old-size))

(incf (queue-length queue))) (defun meg-selector (meg)
(proan (meg-slotn 0 meg))

(adjust-array data I(old-size 2))
(smktf (queue-data-size queue) (defun meg-receiver (neg)

I(old-size 2)) (meg-slotn 1 meg))
(let ((head (queue-head queue)))

(if I> head tail) ;;other came requires no copy (defun msg-args (meg)
(progn (nthcdr 5 meg))

(loop for index from heed below old-size
do (setf (aref data I+ old-size index)) (defun meg-argn in neg)

(aref data index)) (nth n (meg-args meg))
(netf (queue-head queue)

I. old-size head))))) (defun im-meg (men)
(onqueue queue obJ))))) (eq (car meg) 'meg))

(defun dequeue (queue) (defun meg-length (meg)
(if (queue-empty? queue) (1- (length meg)))

(error * -&Attempt to dequoue from an empty queue -9* queue)
(progn (defun deliver-megs

(let ((elt (aref (queue-data queue) (do 0
(queue-head iueue)))) ((queue-empty? *mtep-queue-))

(setf (queue-head queue) (let* ((meg (dequeue *step-queue-))
(mod (I+ (queue-head queue)) (node-nr (meg-node meg))

(queue-data-size queue))) (node (get-node node-nr))
(decf (queute-length queue)) (q (node-queue node)))

altMM))
(equcue q meg))))

code to access a node descriptor ; step-nodes walks through the nodes and attempts to run a
node =queue X objects X contexts x method-cache ; massage on each node

(defstruct node (defun step-nodes U)
(queue (make-queue)) (when -profile-

(objects (meke-array 32)) (profile-step))
(contexts (make-array 32)) (when *log'
(method-cache (make-array -method-cacho-six*-)) (log-step))
(busy-count 0)) (when -trace*

(record-traced-malectore * trace-melectorsi)I
(defvar *nodes*) (deliver-megm)

(when *mter-maemage-queuas*
(defvar *contexts*) (record-smesae-queue-date))

(dotimem (x nr-nodeel)
(defvar *nr-nodee* 2S6 'Vit also change nrnodes in CST world') (step-node2))

(incf *step-nr*l(

275

Run until no more work. on a reply, stuff data into slot and resume context
amesage is (reply context-nr slot-nr data)

(defun step-done () if value is a value, must allocate copy
(if (queue-empty? *step-queue*)

(do ((i 0 (. i 1))) (defun process-reply (meg)
((or (= i *nr-nodes*J (let- ((context-nr (msg-slotn 0 meg))

(not (quaue-empty7 (node-queue (get-node i))M))slot (meg-slotn 1 meg))
(s i *nr-nodes*)))) (data (meg-olotn 2 meg))

(context (get-context context-nr)))
(defun step-node (node-nr) (if context

(let* ((node (get-node node-nr)) (progn
(q (node-queue node))) (set-slot slot context data)

(if (not (queue-empty? q)) (resume-context context-nr)I}))
(let)(msg (dequeue q)))

(incf (node-busy-count node)) code to send a reply
(process-mbg meg)))I)

(defun reply-to-context (context-nr slot value)

(defun send-meg (meg) (let ((meg (new-neg (context-to-node context-nr)
(enqueue sotep-queue* mag)) 'reply context-nr slot (list value))))

(send-meg me)))
(defun cat-start (init-meg)

(send-meg init-meg) ;;;<??> handle did receiver
(shell-go)) send creates a new context and executes the first statement

if receiver is not atomic, look up class
(defun shell-go () ida are referred to like rid 3) to distinguish them from the integer 3.

(cond ((step-done)
nil) (defun process-send (meg)

(t (step-nodes) (let* ((receiver (meg-receiver mag))
(shell-go))))) (node (nag-node meg)))

(cond ((is-did receiver)
(defun process-meg (meg) (let* ((id (did-on-node receiver node)))

(if *profile* (if id
(setq *nr-nmgs-receivod* (process-normal-send meg id)

(+ 1 *nr-msgs-received*))) (forward-did-message node meg receiver))))
(let ((header (meg-header meg))) ((is-co receiver)

(case header (let ((id (did-on-node '(did ,(second receiver)) node)))
(send (process-send meg)) (process-normal-send nmg id)))
(call (process-call meg)) ((is-block receiver)
(new (process-new mag)) (process-block-send meg))
(newco (process-newco mag)) (t
(reply (process-reply meg))) (process-normal-send meg receiver)))))

nil))
(defun process-normal-send (meg receiver)

new creates a n~pw object on a node flet* ((selector (neg-selector meg))
new is of the form (new class reply-context reply-slot) (args (meg-ergo meg)))
or if the object is distributed, a count may be appended (if (is-id receiver)
for distributed objects, new-co messages are sent in a fanout (let* (id (second receiver))
tree to all constituents. Lobj (get-object id))

<77> (class-name (object-class obj))
(code (method-lookup selector class-name)))

(defun process-new (nag) (start-code code meg receiver ergs))
(let* ((class-name (seg-slotn 0 nag)) (let ((class-name

(reply-context (meg-slotn 1 meg)) (cond ((integerp receiver) 'integer)
(reply-slot (meg-slotn 2 meg)) ((floatp receiver) 'float)
(dist (class-ditt (get-class class-name))) ((symbolp receiver) 'symbol)))
(id (new-object class-name (meg-node mWg)))) (code (method-lookup selector class-name}))

(if diet (start-code code meg receiver arges)))))
(let ((size (msg-elotn 3 meg)))

(init-distributed-object id size (meg-node meg) (defun forward-did-message (node meg receiver)
reply-context reply-slot)) (setf (second meg) (id-to-node receiver))

(reply-to-context reply-context reply-slot id)))) (send-meg meg))

(defun init-distributed-object (Id size node reply-context (defun process-block-send (meg)
reply-slot) (let ((block (get-block (blkid-get-id (meg-receiver meg))))

(let{ ((size (if size (selector (meg-selector meg))
(min size *nr-nodes*) (ergs (meg-arge meg)))
default-distobj-size-)) (if (eq selector 'value)

(did (new-did node size))) (start-code block meg nil erg.)
(send-diet-mnit node id did 0 size node reply-context (cat-error *-&Block message other than value -S" me•g))

reply-slot)))
(defun start-code (code meg receiver arge)

(defun send-diet-init (node id did index size root reply-context (if code
reply-slot) (let ((nr-erge (block-nr-arge code)))

(let ((meg (new-meg node 'send 'newco id (cond ((= (. nr-arge 2)
(list index size root reply-context (length ergo))

reply-slot)))) (start-method (meg-node meg) code receiver arge))
(set-object-did (get-object (ref-id id)) did) (t
seond-meg asM))) (progn

(cat-error *-&wrong number of arguments in -S- meg)
the newco message is a hock to allow distributed object to be (cat-error *-&-S actuals, to match -S formals-
created, ergm nr-args))))))

(defun process-newco (meg) create a context, copy ergs from message, execute to first send
(let* ((class-name (meg-slotn 0 meg))

(did (mueg-olotn I meg)) (defun start-method (node code receiver erg.)
(index (msg-slotn 2 mmg)) (let ((context-nr (ref-id (new-context node code receiver))))
(size (mwg-slotn 3 ame) (copy-arge ergo context-nr)
(root (meg-slotn 4 meg)) (advance-context context-nr)))
(reply-context (meg-slotn 5 meg))
(reply-alot (meg-olotn 6 meg)) (defun copy-ergs (ergo context-nr)
(id (new-object cless-name (meg-node meg)))) (let ((context (get-context context-nr)))

(send-diet-init (meg-node mag) id did index size (loop for arg in argo
root reply-context reply-slot))) for i from 0 do

(set-context-olot context i argm))

276

advances context over next action now-array (context-node context) size)
,continue)

(defun advance-context (context-nr) (progn
(let ((next (execute-instruction context-nr))) (set-slat dest context 'c-f ut)

(when -profile- ct-new cloea-name context-nr dest size)
(ic r-icodes-executed.)) 'scpndt)

(when .thod-cache.
(et* H(node-nr (context-node (get-context context-ny))) creates a constitutent of a distributed object

(node (get-node node-ny))
(block (context-code (get-context context-ny)))) (dtfun execute-newco (context-nr inst)

(when mewthod-cache-trace* (let- ((context (get-context context-nr))
(let ((prey (first -method-cache-trace-listl)) (slot (cadr inat))

(if (not (and (equal (first prey) (arge (mapoar W'lmd x

,eua step-nr-) (get-slot x context))
eqa(second prey) (cddr inst)))

node-nr))) (object (get-object (ref-id (context-receiver context))))
(push '(.step-nr* node-nr ,(block-id block) (class (object-class object))

,(length (block-masts block))) (did (object-did object))
-mthod-cache-trace-list)))) (msg (new-mog (car ergo) 'newec clase did

(when (not (method-cache-present-p (append (cdr args) (list context-nr slot)))))
block (set-slot slot context '- t
(node-method-cache node)) (send-meg nag)

(progn 'continue))
(incf 'nr-blocks-loadsd*)
(method-cache-insert block (defun execute-jump (context -nr inst)

(node-method-cache node)))) (lett ((opcode (car mast)))
(case next (case opcode

(su spe nd nil) (falsejuep
(back-up (back-up-context context-nr)) (if (eq (get-slot (cady inat)
(continue (advance-context context-nr)) (get-context context-nr))
(dispose (remove-context context-nr)) 'false)
(otherwise (do-jump context-ny (caddr inst)(

(cat-error *-&Illegal value in advance context:-rB 'continue))

(do-jump context-ny (cadr mast)))))
<??> other opcodes

(defun do-jumsp (context-nr target)
(defun execute-instruction (context-ny) (let- ((context (get-context context-nr))

(let* ((inst (fetch-instruction context-ny)) (code (block-insts (context-code context))))
(opcode (car mast))) (set-context-ip context

(if *profile* (find-jusp-target code target 0))
(setq -nr-insts-*xecuted- 'continue))

(+ (- (length inat) 1)
-nr-insts-executsd))) (defun find-jump-torgat (code target nr)

(oxecuto-instruction-l inst opcode context-nr))) (if code
(lait* ((stat (car cods)

(defun execute-instruction-l (inst opcods context-ny) (type (car stat)))
(case opcode (if (and (eq type 'label)

(move (. (cadr stat) target))
(execute-move context-ny inat)) nr

((send se~nd forward) (I ind-jum-torget (cdr code) target (.nr IM)M)
(execute-send context-ny mast))

((falsejump jump) does a primop or sends a message
(execute-jump context-ny mast))

(label (defun execute-send (context-nr mast)
'continue) (lot* ((opcode (first inst))
((reply reply-x) (context (get-context context-nrj)
(execute-reply context-ny mast)) (operation
((return return-x) (let ((oper (third mast)))
(execute-return context-ny (nat)) (if (symbolp oper)
;;implement return icodes oper

(reply-console (get-slot oper (get-context context-ny)))))
(execute-reply-console context-nr mast)) (rargs (oddr mast))
(echo-console (reply-to
(execute-echo-console context-ny inst)) (Case -- Iod

(newco ((send cmend)
(execut*-newco context-ny mast)) (cons context-nr (second mast)))

(now (forward
(execute-new context-nr inst)) (get-slot (second mast) context)))))
(touch (basic-send orcood context-ny "pration rargs reply-to)))
(execute-touch context-ny inat))
(suspen if the operation is primitive, do it and continue
'suspend) otherwise, actually do a message send

(exit
'dispose))) (defun basic-send (pdecontext-ny operation rargs reply-to)

(let* ((context (get-context context-nrl)
(defun execute-touch (context-nr (nat) (all-arga (mapcay 1'(lamdo (z)

(lat* ((context (get-context context-ny)) (get-slot x context))
(ref (second inat))) rargo))

(if (equal (get-slot ref context) 'c-fut) (node 1context-nods context))
'back-up (dest (cdr reply-to))
'continue))) (op (is-primitive operation all-argo)))

(if (membr 'c-fut all-ergo)
sends away for a now object 'back-up

(if (and op
(defun execute-new (context-nr (nat) (equal (car reply-to) context-ny))

(let-* ((context (get-context context-ny)) (progn
(class-name (caddr mast)) (set-slot dsat context (aply op all-argo))
(doet (cadr (nat)) 'continue)
(size (get-slot (cadddr inat) context))) (pi'ogn

(if (eq class-nowe 'array) (cat-send nods (car all-args)
(progn operation (odr all-ergo)

(set-slot dest context (oar reply-to) (cdr reply-to))

277

Si var

(objhct-ivar
(get-oblect (ref-id (context-receiver context)))

(case opcode index))
(send ((arg var teap)

(set-slot dest context 'c-fut) (let (in (compute-slot slot context))
suspend) (context-slot context n})

lcsend (block
(set-slot dest context 'c-fut) slot)
'continue) (global

(forward (get-global index))
'continue))))))) (const

index))
(defun execute-move (context-nr mnat) (case slot

(let- ((context (get-context context-nr)) (self
(dest (second inst)) (context-receiver context)).
(arc (third inst))) (group

(set-slot dest context (get-slot arc context)) (object-did
'continue)) (get-object (ref-id (context-receiver context)})))

(requester
Reply sends the result and exits the context (cons (context-reply-context context)

(context-reply-clot context))))))
Idefun execute-reply (context-nr inst)

(let- ((context (get-context context-nr)) sets a slot
(reply-context (context-reply-context context))
(reply-slot (context-reply-slot context)) (defun set-slot (slot context value)
(value (get-slot (cadr inst) context))) (let ((type (car slot))

(if reply-context (index (cadr slot)))
(case reply-context (case type

(console ((arg var tamp)
(cat-display value)) (let (in (comPute-slot slot context)))

(otherwise (set-context-slot context n value)))
(when reply-slot (ivar

(reply-to-context reply-context reply-slot value))))) (set-object-ivar
"dispose)) (get-object (ref-id (context-receiver context)))

index

Return sends the result end continues to run in the context value))
(global

(defun execute-return (context-nr inst) (set-global index value))
(let* ((context (get-context context-nr)) ('0)

(reply-context (context-reply-context context)) '") do nothing if it's nil
(reply-slot (context-reply-slot context)) (otherwise
(value (get-slot (cadr inet) context))) (cst-error *-&Slot error -S" slot)))))

(if reply-context
(case reply-context ; ?7I - temporary hack to implement globals need to generate

(console code to send and receive
(cut-display value))

(otherwise (defun set-global (name value)
(when reply-slot (let* ((cell (assoc name *globals*)))

(reply-to-context reply-context reply-slot value))))) (if cell
'continue)) (rplacd (cdr cell) value)

(cet-error "-kunknown global -S" name))))
(defun execute-reply-console (context-nr !not)

(let* ((context (get-context context-nr)) (defun get-global (name)
(value (get-slot (cadr inst) context))) {let* ((cell (assoc name *globals*)I)

(cot-display value) (if cell
'dispose)) (cddr cell)

(cat-error '-&unknown global -S' name))))
(defun execute-echo-console (context-nr inst)

(let* ((context (get-context context-nr)) (defun fetch-instruction (context-nr)
(val-list (let* ((context (get-context context-nr))

(loop for val in (rest inst) (ip (context-ip context))
collecting (get-slot v.l context)))) (inst (block-inst ip (context-code context))))

(cot-display-list val-list)) (set-context-ip context (+ 1 ip))
'continue) inst))

returns a numerical offset into a context's arg/var list (defun next-instruction (context)
(lot ((ip (context-ip context)))

(defun conpute-slot (slot context) (block-inst ip (context-code context))))
(let ((type (car slot))

(index (cedr slot)) (defun back-up-context (context-nr)
(code (context-code context))) (let* ((context (get-context context-nr))

(case type (ip (context-ip context)))
(var (set-context-ip context (- ip 1))))
(+ index

2 resumes a suspended context
(block-nr-args code)))

(arg (defun rosume-context (context-nr)
index) (advance-context context-nfr))

itemp
(. index (defun mnit-nodes 0

2 (setq "step-queue' (make-queue))
(block-nr-orge code) (setq -nodew- (make-array *nr-nodes*))
(block-nr-vsrs code))) (dotimes (x "nr-nodes-)

(otherwise (setf (aref -nodes* x) (make-node))))
(cot-error *-&Slot nut.. be tesp, var, or arg: -S"

slot))))) (defun is-nods (node)
(node-p node))

gets a slot e.g., (ivar 0)
; ??> fix const and global (defun random-node 0

(random *nr-nodes'))
(defun got-slot (slot context)

(if (listp slot) (defun print-node (node-nr)
(let ((type (car slot))

(index (oedr slot)))
(case type 27"

(let ((node (get-node node-nr))) (defun block-method (blkid)
(format *standerd-output" (loop for method in -methods*

*-4"izO -S OUXB -S OSCIS -S Ct•WIMTS -S, when (eq (caddr method) blkid)
node-nr (node-queue node) return method))
(node-objects node) (node-contexts node))))

(defvar -blocks* 1 0
(defun init-contexts 0 *Icode blocks')

(serf 'contexts* (make-array 'init-nr-contexts* :adjustable t))
(setf 'nr-contexte" 'init-nr-contexts*) (defun get-block (block-tag)
(setf 'next-context' 0) (assoc block-tag *blocks'))
(serf 'free-contexts' (make-stack))
(serf 'context-state-resource* (make-array-resource))) (defun block-id (block)

(car block))
(defun initial-context (nr-slots)

(get-array *context-stats-resource* nr-slots)) (defun block-nr-args (block)
(cadr block))

(defun context-nr (context)
(nth 1 context)) (defun block-nr-vars (block)

(caddr block))
(defun context-node (context)

(nth 2 context)) (defun block-nr-temps (block)
(cadddr block))

(defun context-code (context)
(nth 3 context)) (defun block-inets (block)

(nth 4 block))

(defun context-ip (context)

(nth 4 context)) (deftn block-inst (n block)
(nth n (block-inst. block)))

(defun set-context-ip (context x)
(setf (nth 4 context) x)) returns the code

(defun context-state (context) (defun method-lookup (selector class-name)
(nth 5 context)) (let ((method (method-lookupl selector class-name)))

(if (null method)
(defun context-receiver (context) (progn

(nth 6 context)) (format 'standard-output"
*-&4message -S not iLplemented for class -S"

(defun context-slot (context n) selector class-name)
(aref (context-state context) n) M)

method)))
(defun set-context-slot (context n x)

(setf (aref (context-state context) n) x)) (defun method-lookupl (selector class-name)
(let* ((class (get-class class-name)))

(defun context-reply-context (context) (if class
(context-slot context (let* ((supers (class-supers class))

(block-nr-args (context-cod. context)))) (methods (class-methods class))
(method (assoc selector methodsM))

(defun set-context-reply-context (context x) (if method
(set-context-slot context (get-block (caddr method))

(block-nr-arge (context-code context)) (if (or (not (listp supers))
x)) (eq class-name 'object)

(eq clase-name nil))
(defun context-reply-slot (context) '0

(context-slot context (method-lookupl selector (car supers)) })))))
(. 1 (block-nr-args (context-cods context)))))

(defvar 'classes* "0(
(defun set-context-reply-slot (context x) *Class structure and methods')

(set-context-slot context
(. 1 (block-nr-args (context-code context))) (defun get-class (class-name)
x)) (let ((class (assoc class-nrm *classes')))

(if class
(defun get-context (context-nr) class

(aref 'contexts' context-nr)) (cat-error *-&Undefined Class -8' class-name))))

(defun context-to-node (context-nr) (defun class-name (class)
(context-node (get-context context-nr))) (car class))

(defun find-context (c-nr c-list) (defun class-supers (class)
(loop for context in c-list (cadr clams))

until I- c-nr (context-nr context))
finally (return context))) (defun class-vars (class)

(caddr class))
(defun live-contexts 0

(loop for index from 0 below (length 'conterxts) (defun class-methods (class)
when (aref *contexts' index) (cadddr class))

collect (aref 'contexts' index)))
(defun class-"ist (class)

(defun context-method (context) (fifth class))
(block-method (block-id (context-code context))))

(defvar *objects* nil)

A block identifier abstraction (defun get-object (id)
a block id is (block blksymbol) (aref 'objects* id))

(defun obJect-id (obj)
(defun make-blkid () (second obj))

(gensy- -'3WCK-))
(defun object-did (obJ)

(defun blkid-get-id (blkid) (third obj))
(cadr blkid))

(defun set-object-did (obJ z)
(defun is-blkid (id) (setf (third obj) x))

(equal (car id) 'block))

279

(defun ob'ject-node (ob3) (when new-msgs
(fourth obi)) (push (list **tep-nr- new-sega) *trace-list*)fll

(defun object-clexe (obi)
(fifth obj)) Filter out the traced selectors

(defun object-state (obji (defun selectively-copy-traced (sal-list moglisti

(sixth obi)) (loop for mug in msglist
when (member (meg-selector meg) eel-list) collect meg into result

(defun obe~ct-ivar (obj ni) finally (return result)))
(nth n (object-state obj)))

(defver *nr-megs-received* 0
(defun 9et-object-ivar (obj n x) 'Number of nags received in the current tine stop')

(sett (nth n (object-state obj)) x))
(delver *nr-insts-executed- 0

(defun is-object (obi) *lnsto executed. current time stop')
(eq (car obj) 'object))

(defvar *nr-icodes-executed- 0
(delun is-id (ret) -Icodes. current time step-)

(end)listp ref)
(eq (car ref) 'dl(defvar -nr-blocks-loaded' 0

*Number of Method Cache misses, current time step-
(defun is-id (ref)

(end (listp ref) (defun profile-step 0I

(eq (car refl 'did))) (push (make-profile-frame 'etep-nr'
(queue-length *step-queue' I

(defuin is-co (ret) *nr-inegs-received*

(and)listp ref) 'nr-insts-executod*
(eq (car ref) 'co)nr-icodes-executed'

nr-blocks-loaded-
(defun is-block (ref) (avg-queue-length)

(and (listp ref) (total-message-Iength))
(eq (car refl 'block))) 'profile-list*)

(sett 'nr-insts-executed* 0)
(defun ref-id (ref) (setf -nr-icods-executed* 0)

(cadr ret)) (setf -nr-blocks-loaded- 0)
(setf -nr-mags-raceived- 0))

(defun cut-error (string firest. args)
(apply #'format *standard-output* string args) (defun make-profile-frame (time-step msgs-new mugs-done
nil) insts-exec icodes-exec blocks-loaded

avg-q-length mugs-words)

(detun cat-display-list (elist) (list time-step mugs-new usgs-done

(format *standard-output* '-&-3D: * 'stop-nr'l inets-exec, icodes-exec blocks-loaded
(loop for val in alist avg-q-length mugs-words))

do (cst-display-l val)))
(defun record-message-queue-data (

(defun cat-display (value) (push (cons -step-nr*
(format -standard-output* *'-&-30: -step-nr-I (loop for index from 0 below *nr-nodes-

(cat-display-I value)) with uglen = 0
unless (zerop

(defun cst-display-l (value) (*atf mqlen

(cond ((listp value) (loop for message
(let ((type (car value)) in (queue-list

(index (cadr value))) (node-queue (get-node indlexj))

(case type sus (meg-length message))))
(id collect (list index uqlen)))

(format -standard-.output' * -S. (get-object index))) -message-queue-trace*)
(otherwise

(format *standar-d-output' -S- value))))) (defun avg-queue-length (
((arroyp value) (let ((tql 0))
(display-array value)) (dotimee (x *nr-nodes*)

(t (satq tql
(format *standard-output- - -9- value)))) (+ tql

(queue-length (node-queue (get-node x)))))
(defun display-array (value) (Itql *nr-nodes*)))

(let ((y nil))
(dotim~es (x (length value)) (defun total-emossge-longth (

(satq y (cons (araf value x) y))) (reduce V'+
(format *standerd-output* I -SI (reverse y)))) (mapcar V'message-length (queue-list *step-quoiue-))))

statistics functions (defun massage-length (message)
(-(length message) 2))

(defvar *log-list* ()
-Log of Nessagses')

log all massages, this step

(defun log-step (
(push (list -step-nr-

(copy-list (queue-list -step-queue-)))
log-list))

(defvar -trac*-list* 1()
-Messages we've recorded-)

record traced messages this step

(defun record-traced-selectors (traced)
flet I(new-mugs

(selectively-copy-traced traced
(que~ue-list *step-queue-) fl

230

• - Syntax: Comon-lisp; Bass: 10.; Package: US&R* (setq queue
CST simulator -- functional version (make-queue :head 0

:tail (queue-tail queue)
queue stuff ;length (queue-length queue)

:data-size (queue-data-size queue)
(defver *default-queue-size" 16 *Initial Queue Size-) :data (queue-data queue)))

(setq queue
(defetruct queue (make-queue %head (queue-head queue)

(head 0) :tail number-elements
(tail 0) :length (queue-length queue)
(length 0) :data-size (queue-data-size queue)
(data-size *default-queue-size) :data (queue-data queue)))
(data (make-array *default-queue-size* :adjustable t) ()etq queue

(make-queue :head (queue-head queue)
(defun queue-first (queue) :tail (queue-tail queue)

(if (> (queue-length queue) 0) :length number-eleuents
(aref (queue-data queue) (queue-head queue)))) :data-size (queue-date-size queue)

:data (queue-data queue)))
(defun queue-empty? (queue) (*etq queue

(queue-length queue) 0)) (make-queue :head (queue-head queue)
:tail (queue-tail queue)

(defun queue-list (queue) :length (queue-length queue)
(if (queue-empty? queue) :data-size (* old-size 2)

() :data (queue-data queue)))
(let ((data (queue-data queue)) (setq queue

(head (queue-head queue)) (make-queue :head (queue-head queue)
(tail (queue-tail queue))) :tail (queue-tail queue)

(if (< head tail) :length (queue-length queue)
(let ((index head) :data-size (queue-data-size queue)

(list nil) :data new-data))))
(end-index tail))

(queue-list-1 index end-index data list)) (defun copy-over-elts (old-data new-data from old-size number-elements)
(append (copy-over-eits-1 old-data new-data 0 from old-size number-elements))

(let ((index head)
(list nil) (defun copy-over-elts-l (old-data new-data new-index from old-size
(end-index (queue-data-size queue))) number-elements)

(queue-list-I index end-index list)) (cond ((>= new-index number-elements)
(let ((index 0) new-data)

(list nil) (t (copy-over-elts-1
(end-index tail)) old-data

(queue-list-1 index end-index list))))))) (copy-replace-elt
(aref old-data (mod (+ from new-index) old-size))

(defun queue-list-1 (index end-index data list) new-index
(cond ((not (< index end-index)) new-data)

list) (1+ new-index)
(t (setq list (cons (aref data index) list)) from

(setq index (1+ index)) old-size
(queue-list-1 index end-index data list)))) number-elements)))

(defun er.queue (queue obj) (defun dequeue (queue)
(let* ((length (queue-length queue)) (let ((elt (aref (queue-data queue)

(old-size (queue-data-size queue)) (queue-head queue))))
(big-enough-queue (setq queue (make-queue :head (mod (1. (queue-head queue))

(if (< length (1- old-size)) (queue-data-size queue))
queue :tail (queue-tail queue)
(grow-queue queue)))) :length (queue-length queue)

(enqueue-base big-enough-queue obj))) :data-size (queue-data-size queue)
:data (queue-data queue)))

(defun enqueue-base (queue obj) (setq queue
(let ((old-size (queue-data-size queue))) (make-queue :head (queue-head queue)

(setq queue :tail (queue-tail queue)
(make-queue :head (queue-head queue) :length (I- (queue-length queue))

:tail (queue-tail queue) :data-size (queue-data-size queue)
:length (queue-length queue) :data (queue-data queue)))
:data-size (queue-data-size queue) (values elt queue)))
:data (copy-replace-elt obj

(queue-tail queue) ;;; code to access a node descriptor
(queue-data queue)))) ;;; node - queue X objects x contexts X method-cache

(setq queue
(make-queue :head (queue-head queue) (defstruct node

:tail (mod (1+ •queue-tail queue)) (queue (make-queue))
old-size) (objects (make-array 32))

:length (queue-length queue) (contexts (make-array 32))
:data-size (queue-data-size queue) (method-cache (make-array *method-cache-size*))
:data (queue-data queue))) (busy-count 0)))

(setq queue
(make-queue shead (queue-head queue) (defstruct meg

:tail (queue-tail queue) (node nil) ;; a node number
:length (I+ (queue-length queue)) (header nil)
:data-size (queue-date-size queue) (selector nil)
-data (queue-data queue))) (receiver nil)

queue)) (args nil)) ;; a list

(defun grow-queue (queue) (defetruct context
(let ((old-size (queue-date-size queue)) (nr nil)

(new-size (* old-size 2)) (node nil)
(old-data (queue-data queue)) (code nil)
(new-data (make-array new-size)) (ip nil)
(head (queue-head queue)) (state nil)
(number-elements (queue-length queue)) (receiver nil))

(setq new-data
(copy-over-elts (defstruct block
old-data new-date head old-size number-elements)) (id nil)

281

Inr-args nil) (defun deliver-nags)
(nr-vars nil) (cond ((queue-empty? ustep-queue*)
(ni--temps nil) nil)
(insts nil)) (t)multiple-value-bind (mug new-ctep-queue)

(dequeue *step-queue*)
(defatruct class)setq *step-queue* new-step-queue)

(name nil) (let* ((node-nr (mug-nods mug))

(supers nil) (node (get-node node-nr))
(vars nil) (q (node-queue node))

(methods nil) (new-q (enqueue q mug))
(diut nil)) (new-node

(make-node :queue new-q
(defstruct object :objects (node-ob)ects node)

(id nil) :contexts (node-contexts node)

(did nil) :method-cache

)node nil))node-method-cache node)

(class nil) :busy-count
(state nil) (node-busy-count node))))

(uetq *nodes*
(defun object-ivar (obj n) (copy-replace-elt new-node node-nr *nodesM))

(nth n (object-state objM) (deliver-mugs))))

(defun is-object (obj) step-nodes walks through the nodes and attempts to run a message
)object-p obj)) on each node

(defun block-inst (n block) (defun step-nodesU
(nth n (block-inats block))) (when *profil*-

(profile-step))
)defvar *nodes*) (when *log*

(log-step))

(defvar -contexts-) (when *trace*
(record-traced-solectors * trace-sglectors*))

)defvar *step-queue*) (deliver-mugs)
(when *metar-message-queues*

(defvar *step-nr*) (record-message-queue-data))
(iteratively-step-nodes 0)

)defvar *nr-nodes* 256 *Must also change nrnodes in CST world') (setq *step-nr- (I. *step-nr-)))

)defvar -profile*);profiling flag, statistics recorded when true. (defun iteratively-step-nodes)x)
(if)>= x)array-total-size *nodes*))

(de~fvar *profil*-list-) nil
(step-node x)

(defvar *log*'U message logging enable (iteratively-step-nodes (1. xM))

)defvar *trace* 1(0 'whether or not we're tracing*)) Run until no more work.

)defvar *trace-selectors* '() *List of selectors we're tracing') (defun step-done U
(if (queue-empty? *step-queue*)

(defvar *method-cache- t) (nodes-unemployed? 0)
nil))

)defvar *method-cache-size* 10)
(defun nodes-unemployed? Mi

)defvar *method-cache-trace*' (cond ((>= i (array-total-size *nodes*))
-Switch for method cache tracing-) t)

((queue-empty? (node-queue (get-node i))
)defvar -method-cache-trace-list * U0 (nodes-unemployed?)+ i IM)

'Global MC Trace list') (t nil))

)defvar mneter-massags-queues '() (defun step-node (node-nr)
'Enable message queue size tracing') (let* ((node (get-node node-nr))

(q (node-queue node))
(defvar me~saage-queu*-trace 'U (if (queue-empty? q)

nil
(defvar *blocks* 'U (multiple-value-bind (mug new-queue)

'Icode blocks') (dequoue q)
(setq node

(defvar *claoses* '0 (make-node :queue new-quetue
'Class Structure and methods') :objects (node-objects node)

:contexts (node-contexts node)
)defvar -objects-) :busy-count (I- (node-busy-count node))

:method-cabhe (node-method-cache node))
)defun gett-node (nkode-nr) (setq *nodes*

(eref *nodes* node-nr)) (copy-replace-elt node node-nr *nodes*))
(mul tip) a-value-bind (new-nodes new-step-queue)

(defun geot-block (block-tug) (process-mug mug -nodes* step-queue*)
(assoc, block-tug *blocks*)))setq *nodes* new-nodes

step-queue new-step-queue))))))
(defun get-clues (class-name)

(let ((class (essoc clase-name *classes')) (defun send-mug.(mug)
(if class (uetq *step-queue (Onqueue *step-queue* mu))

class
icst-orror *-&Undefined Closs -9' class-nmn)))) (defun cat-start (init-mug)

(send-mug init-mug)
(defun get-object (id) (shell-go))
(eretf -objects* id))

(defun shell-go 0
(defun mug-argn (n mug) (cond ((step-done)

(nth n (smig-arge mug))) nil)
(t (step-nodes)

(defun mug-length (mug) (shell-go))))
(if (listp)msg-erge mug))

(. 4 (length)mug-srgu mug))) (defun process-mug (mug)
5)) (if -profile-

282

(oetq *nr-mngs-received* (defun reply-to-context (context-nr slot value)
(. 1 -nr-msgs-rsceived*))) (let ((mug

(let ((header (mug-header meg))) (amke-msg =node (context-to-node context-nr)
(case header :header 'reply

(send (process-send meg)) :selector context-nr
(call (process-call qng)) :receiver slot
(new (process-new ma.,i)) :argo (list value))))
(newco (proceso-newct msg)) (send-meg meg)))
(reply (process-reply meg)))

nil)) ;;<7?> handle did receiver
send creates a new context and executes the first statement

new creates a new object on a node if receiver is not atomic, look ip class
new is of the form (new class reply-context reply-slot) ida are referred to like '(id 3) to distinguish them from the integer 3.
or if the object is distributed, a count may be appended
for distributed objects, new-co message* are sent in a (defun process-send (meg)
fanout tree to all constituents. (let* ((receiver (meg-receiver meg))
<??> (node (meg-node meg)))

(cond ((is-did receiver)
(defun process-new (meg) (let* ((id (did-on-node receiver node)))

(let* ((class-name (meg-selector meg)) (if id
(reply-context (meg-receiver meg)) (process-normal-send meg id)
(reply-slot (first (meg-ergs meg))) (forward-did-message node meg receiver))))
(diet (class-diet (get-class class-name))) ((is-co receiver)
(id (new-object class-name (meg-node meg)))) (let ((id (did-on-node '(did , (second receiver)) node))l

(if dist (process-normal-send mug id)))
(let ((size (second (meg-urgs meg)))) ((is-block receiver)

(init-distributed-object id size (meg-node meg) (process-block-send meg))
reply-context reply-slot)) (t

(reply-to-context reply-context reply-slot id)))) (process-normal-send meg receiver)))))

(defun init-distributed-object (id size node reply-context (defun process-normal-send (meg receiver)
reply-slot) (let* ((selector (meg-selector meg))

(let* ((size (if size (args (meg-args mug)))
(min size *nr-nodes*) (if (is-id receiver)
default-distobj-size*)) (let* ((id (second receiver))

(did (new-did node size))) (obj (get-object id))
(send-dist-init node id did 0 size node reply-context (class-name (object-class obj))

reply-slot))) (code (meth.A-lookup selector class-name)))
(start-code code meg receiver ergs))

(defun send-dist-init (node id did index size root reply-context (let- ((class-name
reply-slot) (coind ((integerp receiver) 'integer)

(let ((meg ((floatp receiver) 'float)
(make-meg :node node ((symbolp receiver) 'symbol)P

:header 'send (code (mathod-lookup selector class-name)))
:selector 'newco (start-code code mug receiver args)))))
:receiver id
:ergs (defun forward-did-massage (node meg receiver)
(list index size root reply-context reply-slot))) (setq meg

(object (get-object (ref-id id))fl) (make-meg :node (id-to-node receiver)
(setq *objects* :header (meg-header mpg)

(copy-replace-elt *selector (meg-selector mug)
(make-object :id (object-id object) :receiver (meg-receiver mtg)

:did did :ergs (meg-arges mu•g)
:node (object-node object) (send-meg meg))
:class (object-class object)
:state (object-state object) (defun process-block-send (meg)
:ivar (object-ivar object)) (let ((block (get-block (blkid-get-id (mg-receiver meg))))

(ref-id id) (selector (=mg-selector meg))
objects)) (args (mug-arg naug)))

(send-meg meg))) (if (eq selector 'value)
(start-code block meg nil args)

the newco message is a hack to allow distributed object to be (cut-error '-&Block message other than value -S" meg))}
created.

(defun start-code (code mug receiver ergs)
(defun process-newco (meg) (if code

(let* ((class-name (meg-selector mug)) (let ((nr-args (block-nr-args code)))
(did (mug-receiver mug)) (cond ((= (+ nr-args 2)
(index (first (meg-argu meg))) (length ergo))
(size (second (neg-argu mug))) (start-method (mug-node eag) code receiver ergs))
(root (third (meg-argu meg))) (t
(reply-context (fourth (mug-urge meg))) (progn
(reply-slot (fifth (nog-args mug))) (cut-error *-&Wrong number of arguments in -S" meg)
(id (new-object class-name (meg-node mug)))) (cot-error *-&-S actuels, to match -s formals,

(send-dist-init (meg-node mug) id did index size ergs nr-args)m}}))}
root reply-context reply-slot)))

on create a context, copy erge from messege, execute to first send
;;on a reply, stuff date into slot end resume context

message is (reply context-nr olot-nr data) (defun start-method (node code receiver ergo)
if value is a value, must allocate copy (let ((context-nr (ref-id (new-context node code receiver))))

(copy-ergs srgs context-nr)
(defun process-reply (meg) (advance-context context-nr)))

(let* ((context-nr (mug-selector meg))
(slot (meg-receiver meg)) (defun copy-argu (arges context-nr)

(let ((context (get-context context-nr)))
(data (first (meg-arge meg))) (let ((srg nil)
(context (get-context oontext-nr))) (i 0))

(if context (copy-arge-l erg ergs i context))))
(progn

(set-slot slot context data) (defun copy-trgs-1 (erg ergs i context)
Iresume-context context-nr))))) (cond ((null ergo)

nil)
; code to send a reply (t

(uetq srg (car ergo))

293

(multiple-value-bind (value new-context) sends away for a new object
(set-context-slot context i arg)

(setq context new-context)) (defun execute-new (context-nr 'nst)
(setq arges (cdr args)) (let' ((context (get-context context-nr))
(setq i (1. i) (class-name (caddr inet))
(copy-args-1 ergs i context)))) (dest (cadr inst))

(size (get-slot (caddsir inst) context)))
advances context wer next action (if (eq claos-nam. 'array)

[progn
(defun advance-context (context-nr) (set-slot dest context

(let ((next (execute-instruction context-nr))) new-array (context-node context) size)
(when *profile* 'continue)

(setq *nr-icodes-executed* (progn
(1+ *nr-icodeo-executed))) (set-slot dest context 'c-fut)

(when *method-cache* (cat-new class-name context-nr dest size)
(let*)(node-nr (context-node (get-context context-nr))) 'suspend))))

(node (get-node node-nr))
(block (context-code (get-context context-nr)))) creates a conetitutent of a distributed object

(when *method-cache-trace*
(let ((prev (first "method-cache-trace-list*))) (defun execute-newco (context-nr inst)

(if (not (and (equal (first prey) (let* ((context (get-context context-nr))
etep-nr) (slot (cadr inst))

(equal (second prev) (erg. (mapcar *'(lambda (x)
node-nr))) 'get-slot x context))

(setq *method-cache-trace-list* (cddr instM)
(cons (list *step-nr* node-nr (object (get-object (ref-id (context-receiver context))))

(block-id block) (class (object-class object))
(length (block-insts block))) (did (object-did object))

•method-cache-trace-list*))))) (meg
(when (not (method-cache-present-p (make-meg :node (car args)

block :header 'newco
(node-method-cache node))) :selector class

(progn :receiver did
(setq *nr-blocks-loaded* :args

(1+ *nr-blocks-loaded*)) (append (cdr args) (list context-nr slot)))))
(method-cache-insert block (set-slot slot context 'c-fut)

(node-method-cache node)))))) (send-meg msg)
(case next 'continue))

(suspend nil)
(back-up (back-up-context context-nr)) (defun execute-jump (context-nr inst)
(continue (advance-context context-nr)) (let* ((opcode (car inst)))
(dispose (remove-context context-nr)) (case opcode
(otherwise (falsejump

(cst-error "-S.Illegal value in advance context:-S" (if (eq (get-slot (cadr inst)
next)M))) (get-context context-nr))

"false)
<??> other opcodes (do-jump context-nr (caddr inst())

"continue))
(defun execute-instruction (context-nt) (jump

(let* ((inst (fetch-instruction context-nr)) (do-jump context-nr (cadr inst))))))
(opcode (car inst)))

(if -profile* (defun do-jump (context-nr target)
(setq *nr-insts-executed* (let* ((context (get-context context-nr))

(+ (- (length inst) 1) (code (block-insts (context-code context))))
'nr-insts-executed*))((setq *contexts*

(execute-instruction-l inst opcode context-nr))) (copy-replace-elt
(make-context :nr (context-nr context)

(defun execute-instruction-1 (inst opcode context-nr) :node (context-node context)
(case opcode :code (context-code context)

(move :ip (find-jump-target code target 0)
(execute-move context-nr mnet)) :state (cortext-state context)

((send ceend forward) :receiver (context-receiver context))
(execute-send context-nr inet)) context-nr

((falsejump jump) :contexts*))
(execute-jump context-nr inet)) 'continue))

(label
"continue) (defun find-jump-target (code target nr)

((reply reply-x) (if code
(execute-reply context-nr inst)) (let* ((stat (car code))

((return return-x) (type (car stat)))
(execute-return conLext-nr mnet)) Of (and (eq type 'label) (= (cedr stat) target))

;; implement return icodes nr
(reply-console (find-jump-target (cdr code) target (+ nr 1)))))
(execute-reply-console context -nr inst)]

(echo-console does a primop or sends a message -

(execute-echo-console context-nr Inst))
(newco (defun execute-send (context-nr inst)
(execute-newso context-nr inst)) (let- ((opcode (first inst))

(new (context (get-context context-nr))
(execute-now context-nr inst)) (operation

(touch (let ((oper (third mnet)))
(execute-touch context-nr inst)) (if (symbolp oper)

(suspend oper
seu"pend) (get-slot oper (get-context context-nr)))))

(exit (rargs (cdddr inst))
'dispose))) (reply-to

(case opcode
(defun execute-touch (context-nr inst) ((send csend)

(let* ((context (get-context context-nr)) (cons context-nr (second inst)))
(ref (second inst)}) (forward

(if (equal (get-slot ref context) "c-fut) (get-slot (second inst) context)))))
'back-up (basic-send opoode context-nr operation rarge reply-to)))
'continue)))

284

if the operation is primitive, do it and continue (cons (get-slot va1 context)
otherwise, actually do a message send (execute-echo-coneole-1 vel vals context)))))

returns a numerical offset into a context's arg/var liat
(defun basic-send (opcode context-nr operation rargo reply-to)

(let- ((context (get-context context-nr)) (defun compute-slot (slot context)
(all-args (mapcar '(lambda tx) (let ((type (car slot))

(get-slot x context)) (index (cadr slot))
rargs)) (code (context-code context)))

(node (context-node context)) (case type
(dest (cdr reply-to)) (var
(op (is-Primitive operation all-arga))) (+ index

(if (member 'c-fut all-arge) 2
'back-up (block-nr-args code)))
(if (end op (arg

(equal (car reply-to) context-nr)) index)
(progn (temp

(set-slot dest context (apply op all-arge))). index
"continue) 2

(progn (block-nr-args code)
(cat-sand node (car all-ergo) (block-nr-vars code)))

operation (cdr all-argo) (otherwise
(car reply-to) (cdr reply-to)) (cst-error "-kSlot must be temp, var, or arg: -S" slot)))))

(case opcode
(send gets a slot e.g., (ivar 0)

(set-slot dest context 'c-fut) <??> fix const and global
"suspend)

(coend (defun get-slot (slot context)
(sat-slot dest context 'c-fut) (if (listp slot)
"continue) (let ((type (car slot))

(forward (index (cadr slot)))
'continue))))))) (case type

(ivar
)defun execute-move (context-nr inst) (object-ivar

(let* ((context (get-context context-nr)) (get-object (ref-id (context-receiver context)))
(dest (second inst)) index))
(arc (third inst))) ((arg var tamp)

(set-slot dest context (get-slot src context)) (let ((n (compute-slot slot context))
'continue)) (context-slot context n))))

(block
Reply sends the result and exits the context slot)

(global
(defun execute-reply (context-nr inst) (get-global index))

(let- ((context (get-context context-nr)) (const
(reply-context (context-reply-context context)) index)))
(reply-slot (context-reply-slot context)) (case slot
(value (get-slot (cadr inst) context))) (self

(if reply-context (context-receiver context))
(case reply-context (group

(console (object-did
(cat-display value)) (get-object (ref-id (context-receiver context)))))

(otherwise (requester
(when reply-slot (cons (context-rePly-context context)

(reply-to-context reply-context reply-slot (context-reply-slot context))))))
value)))))

"dispose)) sets a slot

Return sends the result and continues to run in the context (defun set-slot (slot context value)
(let ((type (car slot))

(defun execute-return (context-nr inst) (index (cadr slot)))
(let- ((context (get-context context-nr)) (case type

(reply-context (context-reply-context context)) ((erg var temp)
(reply-slot (context-reply-slot context)) (let ((n (comPute-slot slot context)))
(value (get-slot (cadr inst) context))) (multiple-value-bind (value new-context)

(if relply-context (sat-context-slot context n value)
(case reply-context value))

(console (ivar
(cst-display value)) (let ((id (ref-id (context-receiver context)))

(otherwiae (object (get-object id)))
(when reply-slot (setq -objects*

(reply-to-context reply-context reply-slot value))))) (copy-replace-*lt
'continue)) (make-object :id (object-id object)

:did (object-did object)
(defun execute-reply-console (context-nr inst) :node (object-node object)

(let- ((context (get-context context-nr)) :class (object-class object)
(value (get-slot (cadr inst) context))) :state

(cot-display value) (replace-nth index
'dispose)) (object-state object)

value))
(defun execute-echo-console (context-nr inst) id

(let* ((context (get-context context-nr)) -objects-))
(val-list value))

(let ((Val nil)) (global
(execute-echo-console-l val (rest inst) context)))) (set-global index value))

(cst-dimplay-list v.l-list)) ('()
'continue) 'U) 3; do nothing if it's nil

(otherwise
(defun execute-eoho-consol*-l (val vale context) (cat-error *-&Slot error -S" slot)))))

(cond ((null vale)
nil) (defun replace-nth (n list value)

(t (cond ((null list)
(satq Val (car vals)) nil)
(setq vale (cdr vals)) (= n 0)

2S3

(cons value (cdr list))) (defun is-node (node)
(t (node-p node))

(cons (car list)
(replace-nth (1- n) (defun random-node ()

(odr list) (random *nr-nodes'))
value)))))

(defun print-node (node-nr)
<??> - temporary hack to implement globals need to generate (let ((node (get-node node-nr)))
code to send and receive (format *standard-output* "-&NODE -S QUEUE -S ODJECTS -S COMTEXTS -S*

node-nr (node-queue node)
(defun set-global (name value) (node-objects node) (node-contexts nods))))

(let* ((cell (assoc name *globals-)))
(if cell (defun (nit-contexts ()

(setq *globals* (setf *contexts* (make-array 'init-nr-contexts' :adjustable tJJ
(replace-global (setf *nr-contexts' 'init-nr-contexts')

name)setf 'next-context' 0)
(cons (car cell) value) (setf *free-contexts* (make-stack))
'globals*)) (setf *context-state-resource* (make-array-resource)))

(cot-error --&unknown global -S, name))))
(defun initial-context (nr-slots)

(defun replace-global (name cell globals) (get-array 'context-state-resource* nr-slots))
(cond ((null globals)

nil) (defun context-slot (context n)
((eql name (car (car globals))) (aref (context-state context) n))

(cons (cone name cell)
(cdr globals))) (defun set-context-slot (context n x)

(t (let ((new-context
(cons (car globals) (make-context :nr (context-nr context)

)replace-global name cell (cdr globals)))))) :node (context-node context)
:code (context-code context)

(defun get-global (name) :ip (context-ip context)
(let* ((cell (assoc name *globale*))) :state (copy-replace-elt

(if cell x n (context-state context))
(cddr cell) :receiver (context-receiver context))))
(cat-error "-&unknown global -S" name)))) (setq *contexts*

(copy-replace-elt
(defun fetch-instruction (context-nr) new-context

(let- ((context (get-context context-nr)) (context-nr context)
(ip (context-ip context)) -contexts*))
(inst (block-inst ip (context-code context)))) (values x new-context)))

(setq *contexts*
(copy-replace-elt (defun context-reply-context (context)

(make-context :nr (context-nr context) (context-slot context
:node (context-node context) (block-nr-args (context-code context))))
:code (context-code context)
:ip (+ 1 ip) (defun set-context-reply-context (context x)
.state (context-state context) (set-context-slot context
:receiver (context-receiver context)) (block-nr-args (context-code context))

context-nr x))
-contexts.))

inst)) (defun context-reply-slot (context)
(context-slot context

(defun next-instruction (context) (+ I (block-nr-args (context-code context)))))
(let ((ip (context-ip context)))

(block-inst ip (context-code context)))) (defun set-context-reply-slot (context x)
(set-context-slot context

(defun back-up-context (context-nr) (+ 1 (block-nr-args (context-code context)))
(let- ((context (get-context context-nr)) x))

(ip (context-ip context))
(new-ip (- ip 1))) (defun get-context (context-nr)

(setq -contexts- (aref *contexts* context-nr))
(copy-replace-elt

(make-context :nr (context-nr context) (defun context-to-node (context-nr)
:node (context-node context) (context-node (get-context context-nrf))
:code (context-code context)
:ip new-ip (defun find-context (c-nr c-list)
:state (context-state context) (let ((context nil))
:receiver (context-receiver context)) (find-context-1 context c-nr c-list)))

context-nr
contexts)) (defun find-context-1 (context c-nr c-list)

new-ip)) (cond ((null c-list)
context)

resumes a suspended context (t
(aetq context (car c-list))

(defun resume-context (context-nr) (cond ((= c-nr (context-nr context))
(advance-context context-nr)) context)

(t
(defun init-nodes () (setq c-list (cdr c-list))

(setq *step-queue* (make-queue)) (find-context-l context c-nr c-list))))
(setq *nodes* (make-array *nr-nodes*))
(let ((x 0)) (defun live-contexts ()

(init-nodes-I x 'nr-nodes'))) (let ((index 0)
(limit (length -contexts')))

(defun mnit-nodes-1 (x n) (live-contexts-1 index limit)))
(cond ((not (< x n))

nil) :defun live-contexts-I (index limit)
(t (cond ((not (< index limit))
(sotq *nodes* nil)

(copy-replace-elt (make-node) x *nodes')) (t
(setq x (1+ x)) ()etq index (1 index))
(init-nodes-I x n)))) (let ((rest-live-context.

(live-contexts-I index limit)))
(if (aref 'contexts* index)

286

(cons (aref -contexts* index) (t
rest-live-contexts) (setq val (car &list))

rest-live-contexts)))) (setq &list (cdr *list))
(cat-di~splay-i val)

(defun context-method (context) (cat-display-list-i val suest))))
(block-method (block-id (context-code context))))

(defun cot-display (value)
(format -stankdard-output- -- &-3D: I lstep-nrl)

A block identifier abstraction (cst-djsplay-l value))
a biock id is (biock biksymboi)

(defun cat-display-l (value)
(cond ((listp value)

(defun make-blkid ()(lot ((type (car value))
(gensym 'BLOCK*)) (index (cadr value))

(case type
(defun bikid-get-id (bikid) (id

(cadr bikid)) (format -stankdard-output * -S* (get-ob]ect index)))
(otherwise

(defun is-blkid (id) (format -stsndard-output- -S- value)))))
(equal (car id) 'block)) ((arrayp value)

(display-array value))
(defun block-method (blkid) (t

(let ((method nil) (format -stanidard-output- I -S* value))))
(methods methods*))

(block-method-i method methods bikid))) (defun display-array (value)
(let ((y nil)

(defun block-method-i (method methods bikid) (x 0)
(cond ((null methods) flimit (length value)))

nil) (setq y (display-array-i x limit y value))
(t ~(format -standard-output* * -81 treverse, y))))

(setq method (car methods))
(*etq methods (cdr methods)) (defun display-array-i (x li~mit y value)
(if (eq (caddr method) bikid) (cond ((not (< x limit))

method y)
(block-method-i method methods bikid))))) (t

(Setq y (cons (are! value x) y))
returns the code (Setq x (1. I))

(display-array-i x limit y value)))
(defun method-lookup (selector class-name)

(let ((method (method-lookupi selector class-name)) statistics functions
(if (null method)

(progn (defvar -log-list- 1()
(format *standard-output- 'Log of Moesages')

*-&message .-S not isplemented for class -81
selector class-name)

10) log all m**essge this step
method)))

(defun log-step C
(defun method-lookupi (selector class-name) (aetq -log-list-

(let- ((class (get-class class-name))) (cons (list -step-nr-
(if class (copy-list (queue-list *step-queue*)))

(let* ((supers (class-supers class)) *log-list*)))
(methods (class-methods class))
(method (assoc selector methods))) (defvar 'trace-list* 'U)

(if method 'Messages we've recorded*)
(get-block (caddr method))
(if (or (not (listp supers))

(eq class-nmw 'object) record traced messags this step
(eq class-name nil))

'0 (defun record-traced-selectors (traced)
(method-lookupi selector (car supers)))))))) (let ((nev-msge

(selectively-copy-traced traced (queue-list 'step-queue'))))
(defun is-id (ref) (when now-mugs

(and (listp ref) (setq *trace-list'
(eq (car ref) 'i))(cons (list *step-nr* new-megs)

trace-list))))
(defun is-id (ref)

(and (listp ref) Filter out the traced selectors
(eq (car ref) 'did)))

(defun selectively-copy-traced (sal-list mogi ist)
(defun is-co (ref) (let ((mug nil))

(and (listp ref) (selectively-copy-traced-i mug sel-list maglist))l
(eq (car ref) 'co)))

(defun selectively-copy-traced-i (mug sel-list mugl ist)
(defun is-block (ref) (cond ((null muglist)

(and (listp ref) nil)
(eq (car ref) 'block))) (t

(*etq mug (car muglist))
(defun ref-id (ref) (setq muglist (cdr musglist))

(cadr ref)) (let ((rest-of-result
(selectiveiy-copy-traced-l mug eel-list mugisati)))

(defun cat-error (string &rest srgs) (if `mmbr (mug-selector msg) sal-list)
(spply $'-format -standard-output* string ergs) (cons mug rest-of-result)
nil) rest-of-result)U))

(defun cot-display-list (alist) (defvar *nr-mags-received* 0
(format -standard-output' 1-4-3D: * 'step-nr') *Number of mugs received in the current time step-
(let ((val nil))

(cat-display-list-i val alist))) (defvar 'ni-minsts-executed' 0
-Insto executed, current time step-)

(defun cot-display-list-i (val alist)
(cond ((null alist) (defyar *nr-ioodee-*xecuted' 0

nil) -Ioodes, current time step-)

2e7

(defvar -nr-blooks-loeded- 0 (defun message-length (message)
Number of Method Cache misses, current time stop) (if (listp (mug9-erg. message))

1. 3 (length (mug-erge message)))
(defun profile-step 1) 4))

(setq *profile-list.
(cons (make-profile-frame

*step-nr-
(queue-length *step-queue*)
-nr-msgs-receivad*
*nr-insts-executed.
*nr-icodes-executed.
-nr-blocke-loaded*
(avg-queue-length)
(total-message-length))

*profile-listJ))
(sett -nr-insts-executed' 0)
(setf *nr-icodes-executed- 0)
(seif *nr-blocks-loaded* 0)
(aitf -nr-msgs-received* 0))

(defun make-profile-frame (time-step nags-now utsgs-done
insts-exec icodes-exec
blocks-loaded
avg-q-length mugs-words)

(list time-step msgs-new mugs-done
insts-exec icodes-exec blocks-loaded
avg-q-length msgs-words))

(defun record-message-queue-data
(setq *message-quosu-tracel

(cons
(cons *step-nr*

(let ((index 0)
(limit *nr-nodes*)
(mqlen 0))

(record-message-queue-data- I
index limit mqlen)))

*mess&O*equeu*-trac**)))

(defun record-message-queue"-det-l (index limit mqlen)
(cond ((not (< index limit))

nil)
(t
(setq mqlen

(let ((message nil)
(messages (queue-list

(node-queue (get-node index))))
(sum 0))

(record-message--queue-data-2 message messages
sum)))

(let ((rest-queue-data (rec~ord-meesvge-queue-data-l
(1. index) limit 0)))

(if (not (zerop mqlon))
(cons (list index mqlen)

rest-queue-data)
rest-queue-deta)))))

(defun record-messago-queueo-data-2 (message messages sum)
(cond ((null messages)

sum)
(t

Isetq message (car messages))
(Netq messages (odr messages))

(setq sum (. sum (mug-length message)))
I record-message-queue-data-2 message messages sum))))

(defun avg-queue-lengthU
(lot)(tql 0))

(aetq tql (sum-queue-lengths 0 tql))
UI tql (array-total-size *node*-))))

(defun sum-queue-lengths (x tql)
(if (>= x (array-total-size *nodes-))

tql
(sum-queue-lengths

(1. x)
I+ tql (queue-length (node-queue (get-node x)))))))

(defun totel-message-lengthU
(let ((sum 0))

(total-messago-1ength-l
sum
(mepcar #'meseag-length (queue-list -step-queue-)))L(

(defun total --messag*-length-l (sue lengths)
(cwod U null lengths)

(t
(setq sum (# sum (car lenigths)))
(setq lengths (odr lengths))
(totalmsae-eghl aum lengths))))

233

Appendix C

The Grammar Encoding the

Clich6 Library

This appendix contains the grammar that encodes our clich6 library. It is an extraction of

key parts of the grammar rules, showing their graph structure and the documentation asso-

ciated with the cliches they represent. Due to space limitations, non-structural constraints

are not included.

The syntax of a grammar rule is as follows:

(Defrule <lhs node type>
<cliche name>
:U.S-Node-Types
<node label-type pairs>
:Edge-List
<source-sink pairs>
:Input-Embedding
<lhs-to-rhs mappings>
:Output-Embedding
<ihs-to-rhs mappings>
:St-Thrus
<lhs-to-lhs mappings>
:L-R-Link <cliche relationship>
:Doc
(<documentation string> <documentation arguments>))

The non-terminal node type of the rule's left-hand side is given by <lhs node type>.

The name of the clich6 represented by this non-terminal type is given by <cliche name>.

The keywords :RHS-Node-Types and :34ge-List specify the right-hand side flow graph.

:ltS-Node-Types describes the right-hand side nodes. The <node label-type pairs> is a

list of pairs of the form (<node-label> . <node-type>), each of which specifies the label

of a right-hand side node and its type. :Edge-List indicates which ports are connected

by a directed edge. The <source-sink pairs> is a list of pairs of the form (<source port

289

specification> . <sink port specification>), where each port specification is of the form
(<node label> <numeric port identifier>).

The keywords :Input-Embedding, :Output-Embedding, and :St-Thrus specify the embed-

ding relation of the rule. The <lhs-to-rhs mappings> in the input and output embeddings
is a list of mappings of the form (<lhs port specification> <rhs port specification>
[<data part or overlay name>]). The pair of port specifications describes the correspon-
dence between a port on the left-hand side node and a port on a right-hand side node.
The <data part or overlay name> is optional. It can name either a part of a cliched ag-

gregate data structure or a data overlay. For example, in the rule for CIS-Extract, there
is the lhs-to-rhs mapping ((CIS-Extract 1) (Access-Base 1) Base). This maps the Base
part of the CIS aggregate data structure represented by port 1 of the left-hand side node

CIS-Extract to port 1 of the right-hand side node Access-Base. An example of a lhs-
to-rhs mapping that includes a data overlay name is found in a rule for FIFO-Dequeue:

((FIFO-Dequeue 1) (Extract-CIS-First 1) Circular-Indexed-Sequence>FIFO). This maps

the first ports of the left-hand side and right-hand side nodes to each other and it specifies
that they are related by a data overlay that views a Circular-Indexed-Sequence as a FIFO
queue. Similarly, the <lhs-to-lhs mappings> following the :St-Thrus keyword is a list of
mappings of the form (<lhs input port specification> <lhs output port specification>

[<data part or overlay name>]). Such a mapping specifies that the two left-hand side ports

correspond, i.e., the rule contains a st-thru.

The <cliche relationship> given with the :L-R-Link keyword describes how the cliched
operation represented by the left-hand side node is related to the clich6d operation(s) rep-

resented by the right-hand side node(s). This information is used in annotating the links
of a design tree and in generating documentation.

The explanation fragment associated with a clichM is given in the :Doc keyword, whose
value consists of a <documentation string> with slots that are filled in by the <documentation

arguments>. The arguments are in the form of expressions that are evaluated in the context
in which the right-hand side of the rule is reduced to the left-hand side during parsing.

If a rule has been depicted in a figure in the document, then the figure's number is given
in a comment preceding the rule. (There is an index of the list of figures following this

appendix.)

The grammar rules are followed by an alphabetical list of the non-terminal node types
and the types of their ports. For example, a node of type ABC, having three ports of type
Integer, Symbol, and Queue, respectively, is listed as: (ABC 1:Integer 2:Symbol 3:Queue).

The number preceding each node type specifies the page on which the rules for the node

type begin.

290

(Defrule SEOUEITIAL-SINULATION-OF-NSSAGE-PASSING-SYSTE4 Figure 4-21.
-Sequential Simulation of Parallel Message-Passing System*
-RHS-Node-Types (Def rud. DEQURJE-AND-PROCESS-GENRATIOII
((SIMULATE-ASYNCHRONOUSLY . EVWI'-DRIVEN-SIMULATION)) *Dequeue and Process Generation-
:Input -3mbedding :RHE-Node-Types
(((SEQU~l'IAL-SIMUATION-OF-MRSSAGE-PASSING-SYSTfl4 1))(DO-EVEWI . PO-EXTRACT)

(SIMULATE-ASYNCHIRONOUSLY 3)) (PROCESS-THE-EVE~r . PROCESS-EVErN))
(SEOUD4TIAL-SIEJLATION-OF-MESSAGE-PASSING-SYSTU4 2) E&dge-List
(SIbIJIATE-ASYNCHRfoNOUSLY 1))) U(V(Q-EVDM' 3) .(PROCESS-THE-EVENT 2))

:Output-Embedding)(VQ-EVD4T 2) .(PROCESS-TNE-EVENr 1)))
(((SECUENTIAL-SflMiLATION-OF-MESSAGE-PASSING-SYSTUE 3) :Input-Embedding

(SINULATE-ASYNCNRONOUSLY 4))) MO(VEc3EtE-AND-PROCESS-GENERATION 1) (DO-EVENT 1))
:L-R-Link IMPLEMENTATION ((DRDUEL3E-AND-PROCESS-GENERATION 2) (PROCESS-TNE-EVRHT 3)))
:Doc :St-Thrus
)'sequentially simulates a parallel messege-passing system.*)) ())VEDUEUE-AND-PROCESS-GENERATION 2) (DEOUEUE-AND-PROCESS-GENERATION 4))

(W97IM)-AND-PEOCESS-GENERATIcSI 1) IDEQUEUE-AND-PROCESS-GflEWATION 3)))
(Vet rule SEUOUIAL-SIIEULATIOR-OF-MESEAGE-PASSING-SYSTUE :L-R-Link COMPOSITION
-Sequential Simulation of Parallel Wessage-Passing System- :Doc
:RHS-Node-Types ('dequeues the *vent queue -A and processes the event dequeued,-4-
((SIMoLATE-SYNCHRCNOIJSLY . SYNCHRONOUS-SIMULATION)) using the address-map -A.*
:Input-Embedding (INPUTr-PORT-NAME> (DOC-BP>)DEQUEUE-AIJD-PROCESS-GEHERATIC)N 1)))
((SEQUDITIAL-SIWJLATION-OF-MESSAGE-PASSING-SYSTRH 1) (INP7r-PORT-NAME> (DOC-BF> (DEK SE-AND-PROCESS-GENERATION 2)))))

(SINULATE-SYNCHRCNOUSLY 1))
)(SEg3E~fIAL-SIHULATION-OF-KESSAGE-PASSING-SYSTfEN 2) Figure 4-22.
)SIMtILATE-SYNCHRONWSLY 2)))

:output-Embedding (Defrule CO-EARLIEST-EDS-FINISHED
)(SEQUENTIAL-SIMaULATIOR-OF-NESSAGE-PASSING-SYSTUI 3) *Co-Earl jest Event-Driven Simulation Fini shed'
(SIMULATE-SYNCHRONOUSLY 3))) :RHS-Node-Types

:L-R-Link IMPLEMENTATION ((SOS-FINISHED? . CO-ITERATIVE-EDS-FINlSNED))
:Doc :Input-Embedding
'*sequentially simulates a parallel message-passing system.*)) M(CO-EARLIEST-EDS-FINISI4ED 1) (E~s-FiNISHED? 1))

((CO-EARI.IEST-EDS-FINISNED 2))EDS-FINISNED? 2)))
Figure 4-21. :Output-Embedding

(((CO-EARLIEST-EDS-FINISNED 3) (EDS-FINISHED? 3)))
De frule EVU4T-DRIVEN-SIMULATION :L-R-Link TU6PORAL-ABSTRACTION
-Event-Driven Simulation' :Doc
:RHS-Node-I'ypeS (-takes a sequence of event-queues and a sequence of address-maps and -4-
((INSERT-INITIAL-EVSNT . PO-INSERT) returns the address-map in the sequence of address-maps that -4-

(GENERATE-EVQ+NODES . GENERATE-EVElT-gUEt3ES-AND-NODEs) corresponds to the first empty event-queue in the sequence of -4-
)ED-FINISNED? . CO-EARLIEST-EDS-FXNXSHED)) event-queues.*))

:Edge-List
)))INSERT-INITMA-EVENr 3) .)GENERATE-EVQ.NODES 1)) Figure 4-22.

)(GENERATE-EVQ+NODES 4) . (ED-FINISHED? 2))
((G2NERATE-TVQ+NODES 3) . (ED-FINISHED? IM) (Del rule CO-ITERATIV-EDS-FINISNED

:Input-Embedding *Co-Iterative Event-Driven simulation Finished'
()EVENT-DRIVEN-SIHULATION 1) (INSERT-INITIAL-EVDIT 1)) :RHS-Node-Types
(EVENT-DRIVE.-SINULATION 2) (INSERT-INITIA-EVDNT 2)) ((TEMINATE-EDS? . PO-KIPTY))

U(EVENT-DRIVER-SIHIUATION 3) (GZNZRAT&-EVQ+NODES 2))) :Input-Embedding
:Output-Embedding (((CO-ITRATIVE-EDS-FINISHED 1) (TERMINATE-EDS? 1)))
)))EVENT-DRIVEM-SIMULATION 4) (ED-FINISHED? 3))) :St-Thrus
:L-R-Link COMPOSITION U (CO-ITERATMV-EDS-FINISHED 2) (CO-ITERATIVE-EDS-FINISHED 3)))
:Doc :L-R-Link CORPOSITX0N
)'asynchronously simulates a collection of processing nodes - -Doc
handling messages, using an event-driven algorithm. An - ('terminates the simulation when the current event-queue -)%
event queue -A of events is maintained. To start. en - is empty, returning the current value of the address-makp (-A) .- 4-
initial event -A is inserted in the event-queue. on each - The event-queue is implemented as a Priority Queue.'
step, an event is pulled of f and processed, which may - (INPUT-PORT-NAME> (Doe-SF> (CO-ITERATIVE-EDS-FINISNED 1)))
create new events to be added to the event-queue. - (INPUT-PORT-NAKE> (0CC-BP> (CC-ITE&RATXVE9-EDS-FINISHED 2)))))
The asynchronous nodes (which represent processing nodes) -
are collected in an address-map, celled -A., Figure 4-24.

)INPUT-PORT-NAME> (DOC-BP> (EVEWT-RIVfIN-SIMULATICSI 2)))
)INPUT-PORT-NANE> (Doe-nP> (EVDFT-DRIVDI-SINMn.ATIONIM1) (Defrule PRCCESS-VEVWF
(INPUTr-PORT-NAME> (DOC-DP> IEVERFT-DRIVEI-SIEIIATXON 3))))) 'Process Event*

:RKS-Node-Types
Figure 4-21. ((GET-DEST . LOOKUP-DESTINATION)

(TINE-UPDATE . tPDATE-NDDE-TIME)
(Defrule GEMURATE-EVUIT-QUEU)S-AIID-NODES (RECORD-OUT .RECORD-AT-DESTINATION)

*Generate Event Queues and Nodes- (PROCESS-THE-MSG . HANDLE-MESSAGE))
RtHS-Node-Types Edgte-List
)E3VZNT+NmDE-G1N-F . DEQUEUE-AND-PROCES9S-GDIEJRATION)) (((GET-VEST 3) . (TIME-UPDATE 1))
:input-Fambedding ((TIME-UPDATE 3) .(RECORD-VEST 1))
()GRNERATE-EVmfr-QUEUES-AND-NODES 1) (EVUNT+NODE-GDI-F 1)) ((RECORD-DES 4) .(PROCESS-THE-Soc 2))
((GDEIRATE-EVUFI-QUUIES-ANO-NODVES 2) (EVZNT+NODE-GDI-F 2))) :Input -Embedding

:Cutput-obahdding Ut (PRCCESS-EVZNT 1) (PROCESS-THE-MSG 1)
((GDERATE-EVUFY-gUEIES-AMVND-OEIS 3) (EVZRNrNDDE-GZRI- 3)) ORJEL')
(GIFARATS-EVFI'-QUMME-AND-NODES 4) (EVDIr+NOVE-GSN-F 4)))) (PROCESS-SEVDT 1) (RECORD-VEST 2)

:L-R-LI nk TZMPCRAL-ABSTRACTZON O&7CT)
:Doc ((PROCESS-EVlNT I1) (GET-VEST 2)
(-generates event queues and address-maps by repeatedly - DeJCT)

dequeuing the current event queue and processing the event - (PROCESS-EVUT 1) (TIME-UPDATEB 2)
dequeued. Processing an event causes new events to be -TIME)

added to the event queue and a new address-map to be - ((PROCESS-EVDT 2) (PROCZSS-THE-US 3))
created. The initial event queue is -A and the initial -((PROCESS-Evnff 3) (RECORD-VEST 3))
addroes-map is -A. -&- ((PROcESS-EV2NT 3) (GET-DaST 1)))
The outputs of this operation are 2 series:-t- :Cutput-bIbedding
one is the series of event queues and the other is the - (PROCESS-SEVUP 4) 4PROCESS-TH9-NsV 5))
"srises of address-maps created.,* ((PRGCES-S-VUUT 5) (PROCESS-THE-N90 4)))

(INPUT-POR1 -AME>IL :L-R-Link CWOMPOITION
(DOe-nP> (QZM1ATE-EVUIT-QUEU3S-ANV-NCVES 1))) :Doc

(IMPI7-PORT-IIAME> I'processes the event -A whose object -A is a Message. -4-
(Doe-nP> (QIE4RATE-EVUI-QOXWE-AMI-MO03S 2))))) using the asynchronous node that is the destination of the message.-k-

first the time of this node is updated with respect to the-k
time of the event's object -A. Then the node-&-

291

handles the Message, creating a new address-map and event -Destination Address pert of message -A In the global address-map-
q~ueu.* -A. It then creates a new node wl the message on the front of the-

)X,,~r-PORT-NAME> IDOC-BP> (PROCESS-EVEHT 1))) new node's local buffer. The new node is added to the global
(INPUr-PORT-NAME> (DOC-BP> (PROCESS-ZEVUT 1) OBJECT)) addrees-mwap.*
)INPUT-PORT-NAMZ' (DCC-9P> (PROCESS-EVENT 1) TIEME)) (INPUT-PORT-NAME. tDOc-BPI> (LOOEUP-MODE.NO.UPDATE 1))ý

IINPOT-PORT-NAME>)DOC-BP' (LOOEUP-NODE.NQ.UPDATE 2))))

Figure 4-26.
(Defrule DELIVER-MESSAGE

(Def rule UPDATE-NODE-TIME *Deliver Message'
-update Node Time- :RMS-Node-Types
:RHS-Node-Typeo) (MAZE-DELIVERY . L4OORUP-NODE.NOUPDATE))
((FIND-MAX . MAX)) :Input-Embedding
:lnput-Eibedding (I DELIVER-MESSAGE 1) (MAKE-DELIVERY 1,)

((UPDATE-NODE-TIME 1) (FIND-MAX I) ((DELIVER-MESSAGE 2) IMAKE-DELIVERY 2)))
TIME) :St-Thrus
))UPDATE-NODE-TIME 2) (FIND-MAX 2))) (((DELIVER-MESSAGE 2) (DELIVER-MESSAGE 3)))

:Dutput-Embedding :L-R-Link IMPLEMENTATION
(UPDATE-NODE-TIME 3) (FIND-MAX 3) :o

TIME)))'iteratively delivers the message -A to the node addressed by the-%-
:St-Thrus message's Destination-Address part.'

((UPDATE-NODE-TIME 1) (UPDATE-NODE-TIME 3) (INPUT-PORT-NMAE> (DOC-BP> (DELIVER-MESSAGE 1)))))
MUEMORY))

:L-R-Link COMPOSITION (Defrule DELIVER-MESSAGE-ACCUMULATE
:Doc 'Deliver Message Accumulate-
(*updates the time of the asynchronous node -A-*- :RHS-Node-Types

to be the maximum of its current time -A-%- U(THE-DELIVERY . DELIVER-MESSAGE))
and the input time -A.- :Input-Embedding

(INPUT-PORT-NAME> (DOC-BP> (UPDATE-NODE-TIME 1)) (U(DELIVER-MESSAGE-ACCUMULATE 1) (THE-DELIVERY 1))

(INPUT-PORT-NAME> (DOC-BP. (UPDATE-NODE-TIME 1) TIME)) ((DELIVER-MESSAGE-ACCUMULATE 2) (TNE-DELIVERY 2)))
(INRVr-PORT-NAME> (DOC-BP. (UPDATE-NODE-TIME 2))))) :Output-Embedding

(((DELIVER-MESSAGE-ACCUMULATE 3) (THlE-DELIVERY 3f))
(Defrule LOCAL-BUFFER-NO :L-R-Link TEMPORAL-ABSTRACTION

'Local Buffer Enqucue' :Doc
:RNS-Node-Types ('accumulates the new nodes created by delivering the message in the-%-
))BUPFER-MSG-LO)CALLY . FIFO-ENQUEUE)) series from -A into a new address-map -A.'
:Input-Psibedding (INPUT-PORT-NMAN> (DOC-BP. (DELIVER-MESSAGE-ACCUMULATE 1)))

(LOCAL-BUFFER-NO 1))BUFFELR-MSG-LO)CALLY 1)) (INPU'l-PORT-NAMKi' (DOC-BP. (DELIVER-MESSAGE-ACCUMULATE 2))))
((LOCAL-BUFFER-NO 2) (BUFFER-NSa-LOCALLY 2)

LOCAL-BUFFER)) (Defrule FJIUNERATE-AND-DELIVER-MESSAGES
:Output-Ebedding -Enumerate and Deliver Messages'

((LOCAL-BUFFER-NO 3) (BUFFER-MEG-LOCALLY 3) :RMS-Node-Typeg
LOCAL-BUFFER)))(D(EUMER.ATE-MESSAGES . DESTRUCTM-VE-OUE-EUUMERATION)

:St-Thrus (IIELIVER-TNE-MESSAGES . DELIVER-MESSAGE-ACCUMULATE)1
((LOCAL-BUFFER-NO 2) (LOCAL-BUFFER-NO 3) :Edge-List
MENORY)) (((ENUMERATE-MESSAGES 2) . (DELIVER-THE-MESSAGES 1))

:L-R-Link COMPOSITION Input-ambedding,
:Doc U((DlUMERATE-AND-DELIVER-MESSAGES 1) (CAUMERATE-NESSAGES M)
('enqueues the Message -A on the local butffer of the -((ENUMERATE-AND-DELrVER-MESSAGES 2) (DELIVER-TNE-MESSAGES 2)))

synchronous node -A.' :Output-Embedding
(INPUT-PORT-NAME> (DOC-BP. (LO)CAL-BUFFER-NO M))) (UIUMJERATE-AND-DELIVER-MESSAGES 3) (DELIVER -THE-MESSAGES 3)))
(INPUT-PORT-NAME> (DOC-BP> (LOCAL-BUFFER-NO 2))))) :L-R-Link COMPOSITION

:Doc
Figure 5-5. (-enumerates the messages in the global message buffer -A -

and delivers each one to the nodes addressed by the message's-
(Defrul e LO0CAL-BUFFER-DO Destination Address part. The new nodes created during delivery-
'Local Buffer Dequeue' are accumulated into a global address-map, implemented as a -

:RHS-Node-Types sequence, whose initial value is -A.-%-
((EXTRACT-MEG . FIFO-DEOUEUE)) The new (accumulated) global address-map is returned.'
:Input-Embedding (INPUTl-PORT-NAME> (DOC-BP> (SOWIERATE-AND-DELIVER -MESSAGES 1)))
((LOCAL-BUFFER-DO 1) (EXTRACT-MEG I) (INPUT-PORT-NAME> (DOC-BP. (NUIUERATE-AND-DELIVER-MESSAGES 2))))

LOOCAL-BUFFER))
:output -Ebiedi ng (Def rule DELIVER-MESSAGES
((LOCAL-BUFFER-DO 2) (EXTRACT-MEG 2)) 'Deliver Messages'
((LOCAL-BUFFER-DO 3) (EXTRACT-MSG 3) :RjlS-Nod&-Types

LoOCAL-BUFFER)) ((DIUNERATE-AND-DELIVER . DENMERATE-AND-DELIVER -MESSAGES)
:St-Thrus :Iziput-ftbedding
(((LOCAL-BUFFER-DO 1) (LOCAL-BUFFER-DO 3) (((DELIVER-MESSAGES 1) (ENONERATE-AND-DELIVER 1))

NEMORY))I ((DELIVER-MESSAGES 2) (ENUMERATE-AIID-DELIVER 2)))
:L-R-Link COMPOSITION :output-Embedding
:Doc (((DELIVER-MESSAGES 3) IDEINERATE-AND-DELIVER 3)))
(Ideq~ueus the first message (it any) from the local buffer - L-R-Link IMPLEMENTATION

of the Synch-Node -A.' :Dec
(INPUT-PORT-NAME> (DOC-BP. (LOCAL-BUFFER-DO MM)) ('delivrer the messages in the global message buffer -A. creating -4-

new nodes, which are accumulated into a global eddress-mop -I-
(Defrule LOOKUP-NODZ+N0.UPDATE whose initial value is -A.'

'Lookup Node, Enqueu& Message, and Update Node Map' (INPUT-PORT-NAME>)DOC-BP. (DELIVER-MESSAGELS 1U))
:RHS-Mode-Types (INPUT-PORT-NAME> (DOC-BP. (DELIVER-MESSAGES 2))))
((LOOEUP-DEST-NODE . LOOEUP-DESTIHATION)

(NO-MEG . LIOCAL-BUFFER-NO) (Defrule LOCAL-BUFFER-fIFTY?
(UPDATE-MAP . RECORD-AT-DESTINATION)) 'Local Buffer Emty Test'

:Zdg*-List :RMS-Node-TIypes
(((LOOEUP-DEE-NODE 3) . (NO-MEG 2)) ((ClECE-BUFFER . FIFO-ZM1-'Y7))

))HQ)-NEG 3) . (UPDATE-MAP 1))) :Input-Embadding
Input-ftibedding (((WOCAL-BUFPER-UIPTY7 1) (CHECK-BUFFER 1) LOCAL-BUFFER))

(UL4OOEUP-NODE.NO.UPDATE 1) (UPDATE-MAP 2)) ýL-R-Link COMPOSITION
((LOOEUP-MOOZeNO.UPDATE 1) (NO-NSG 1)) (:Doc

I (LOOEUP-NOOEN0eUPDATE 1) iLOOKUP-DEST-NODE 2)) ('tests whether the local buffer of synchronous node -A is empty.'
((L4OOEUP-NOOZ+NO.+UPDATE 2) (UPDATE-MAP 3)) (INPUT-PORT-NAME> (DOC-BP> (LO4CAL-BUFFER-EMP'IY? 1)))

WLO0UP-NODENO.UPDATZ 2)) LCOOEP-D&ST-NODS IM)
.Output-tabedding (Def rule LOCAL-BUFFER-IERIUIPTY?
(()LOOEUP-NODE.NO.UPDATE 3) (UPDATE-MAP 4))) 'Local Buffer Nonempty Test'
:L-R-Link COMPOSITION %Rx9-Nod*-Types
:Dec ((CHECK-BUFFER .FIFO-UEP'Yf))

('looks up the synchronous node at the address in the-

292

:Input -Ebedding :Input-Embodding,
)ULOOCAL-BUFFER-NOMMIPFT? 1) (CHECK-BUFFER 1) (((LXTRACT-AND-HANDLE-FIRST-MESSAGE 11 (EXTRACT-FIRST-NSG 11)

LO0CAL-BUFFER)) I(EXTrRA.C'-AND-HANDLE-FIRST-MESSAGE 1) (HAS-WORK? 1))
:L-R-Link COMPOSITION))EXTRCT-AND-HANDLE-FIRST-MESSAGE 2) (RECORD-WORKING-NODE 2))
:Doc I)EXTRCT-AND-HAND)LE-FIRST-ME.SSAGE 3) (RECORD-WORKINHG-NODE 3)J
(*tests whether the local buffer of synchronous node -A is -))XTRACT-AND-HANDLE-FIRST-NE.SSAGE 4) (HANDLE-THE-MESSAGE 3)j

noneapty.- : Output-Embedding
(INPUT-PORT-NANE> (DOc-HP> (LOOCAL-BUFFER-NOND4PT? 1))))) U(EXTRACT-AND-HANDLE-FIRST-MESSAGE 5) (HANDLE-T)4E-KESSAGE 4))

()EWIRACT-AND-NANDLE-FIRST-MESSAGE 6) (HANDLE-THE-MESSAGE 5)))
(De frule LOCAL-BUFFERS-ALWAYS-ENPTY? :Si-Thi-us

'Local buffer Always Empty Test* (El .TAC'r-AND-HANDLE-FIRST-NESSAGE 4)
:RHS-Node-Types (El RACT-ANO-HANDLE-FIRST-MESSAGE 6))

)(CONTINUOUS-CHECK . LOCAL-BUFFER-NONUEkPY?))) (EXTRACT-ANO-HANDLE-FIRST-MSSSAOK 3)
:Input-Embedding (EXTRACT-AND-HANDLE-FIRST-NESSSAOE 5)))

)LOUCAL-BUFFERS-AIMAYS-DEPTY? 1) (CONTINUOUS-CHECK 1))) -.L-R-Link COMPOSITION
:L-R-Link TDEPORAL-ABSTRACTION -.Doc
:Doc (*extracts the first message from the local buffer of synchronous node-4-
)'continually checks that each node in the input series of -- A if the node has work, i.e., messages queued up. The message is-4-
nodes -A has an empty local buffer. * then processed, which may generate new messages. The new messages -'.-

(INPUT-PORT-NAME> (DOC-BP>)LO)CAL-BUFPERS-AINAYS-fEMPTY? MMU) are collected on the message queue.'
(INPUIT-PORT-NAME> (DOC-BP> (EXTRACT-AND-HANDLE-FIRST-MESSAGE 1))))

)Def rule ENUM-NODES.CHECK-BUFFERS
'Enumerate Nodes and Check Buffers* (Defrule DO-WORK-ACCUMULATION
:RHS-Node-Types -Do Work Accumulation.
((ENUMERATE-NODES . SEGUENCE-ENJMERATION) :RHS-Node-Types
(BUFFER-AiMAYS-DEPTY .LOOCAL-BUFFERS-ALwAYS-DEPTY?)) I (EXTRACT-AND-HANDLE . EXTRACT-AND-HANDLE-Fl RST-NESSAGE))

:Edge-List :Input-Ebobdding
(((ENUMERATE-NODES 2) . BUFFER-ALWAYS-E4PTY 1)))))(DO-WORK-ACCUMULATION 1) (EXTRACT-AND-HANDLE 1))

:Input-Fisbedding) (DO-WORKt-ACCUNULATION 2) (EXTRACT-AND-HANDLE 2))
1(DJUW-NODES.CNECK-SUFFERS 1) (ENUMERATE-NODES I))) (DO-WORK-ACCUMULATION 3) (EXTRACT-AND-HANDLE 3))

:L-R-Link COMPOSITION U(DO-WORK-ACCUMULATION 4) (EXTRACT-AND-HANDLE 4)))
:Doc :St-Thrus
('enumerates the sequence of nodes -A end checks that each - (((DO-WORK-ACCUMULATION 4) (DO-WORK-ACCUMULATION 6))

node has an empty local buffer.*))DO-WORK-ACCUI4ULATION 3))OO-WORK-ACCUNULATION 5)))
(INPUT-PORT-NAME> IliaC-BP> (DRJM-NODES.CHECK-BUFFERS 1)))) :L-R-Link COMPOSITION

:Doc
(De frul e LOCAL-BUFFERS-EIPT? (-iteratively receives a synchronous node -A. extracts and handles its-
Local Buffers Empty first message if it has one in its local buffer, and accumulates the-
:RNS-Node-Types new messages that this generates in a global message buffer -A. This-
((CHECK-ALL-NODE-BUFFERS . ENUM-NODES.CHECK-BUFFERS)) also creates new nodes, which are accumulated in an address-map, whose-
:Input-Fjmbedding initial value is -A.*
((LOCAL-BUPFERS-UEPTY? 1) (CHECK-ALL-NoDE-BUFFERS 1))) (INFt~r-PORT-HANE>)DOC-BP> (DO-WORK-ACCUNULATION IM)

:L-R-Link IMPLEMENTATION (INPUT-PORT-HANE>)DOC-BF> (DO-WORK-ACCUMULATION 4)))
:Doc (INPUT-FORT-HANE> (0CC-HP> (DO-WORK-ACCUMULATION 3)))))
(*checks that all nodes in -A have an empty local buffer.'

(INPIur-PORT-NAME> (DCC-BP> (LOCAL-BUFFERS-DEMPIY? 1))) (Defrule DO-WORK-ACCUMULATE
-Do Work Accumulate'

)Def rule GLORAL-AND-LOCAL-BUFFERS-DEPTY? :RNS-Node-Types
*Global and Local Buffers Empty Test' ((ON-ACCUMULATION . DO-WORK-ACCUMULATION))
:RHS-Nod*-Types :Input-babedding

((CHECK-LOCAL-NODE-BUFFERS . LOCAL-BUFFERS-DEPTY?) (((DO-WORK-ACCUMULATE 1) (OW-ACCUMULATION 1))
(CHECK-GLODBAL-BUFFER . OUEUE-UEl'T?)) ((DO-WOR-ACCUMULATE; 2) (ON-ACCUMULATION 2))

:Input-Fisbedding ((DO-WORK-ACCUMULATE 3) (ON-ACCUMULATION 3))
((GLoOBAL-AND-LoOCAL-BUFFERS-DfPTY? 1) ((DO-WORK-ACCUMULATE; 4) (ON-ACCUMULATION 4)))
(CHECK-LOCAL-NODE-BUFFERS 1)) :Output -Ebabdding
)(GLODBAL-AND-LOCAL-BUFFERS-DIPTY? 2) (((00-WORK-ACCUMULATE 5) (ON-ACCUMULATION 5))
(CHECK-GLOBAL-BUFFER 1))) ((DO-WORK-ACCUMULATE 6) (ON-ACCUMULATION 6)))

:L-R-Link COMPOSITION :L-R-Link TDEPORAL-ABSTRACTION
:Doc :Dcc
)'testa whether the local buffers of the synchronous nodes in - ('takes a series of nodes and simulates them taking one, step (i.e.,-
are all empty and the global message buffer -A is also empty. * handling one message a piece from their local buffers). It -

(INPUT-FORT-NAME> accumulates the new nodes that this creates in an address-map, which-
(0CC-HP> (GLOHAL-AND-LOCAL-BUFFERS-DEMVIY? 1))) is given as output. It also accumulates all new messages generated-

(INPUT-FORT-NAME> during the node stepping in a global message buffer. which it also-
(0CC-HP>)GLOBAL-AND-LOCAL-BUFFERS-UEPT? 2))))) produces as output. The initial value of the address-map is -A and-

of the global message buffer is -A.'
(Defrule SYNCHRONOUS-SIMULATION-FINISHED? (INPUT-PORT-NMEM>)DDC-HP> (DO-WORK-ACCUMULATION 3)))

'Synchronous Simulation Finished?' (INPUT-PORT-NAME> (0CC-HP> (DO-WORK-ACCtNI3LATION 4)U)))
:RNS-Node-Types
((CHECK-ALL-BUFFERS . GLO)BAL-AND-LOCAL-BUFFERS-D4PTY?() (Defrule POLL-NODES-AND-DO-WORK
:Input-Embedding, 'Poll Nodes and Do Work'

U (SYNCHRONOUS-SIMULATION-FINISHED? 1) (CHECK-ALL-BUFFERS 1)) :RMS-Node-Types
((SYNCHRONOUS-SIMULATION-FINISHED7 2) (CHECK-ALL-BUFFERS 2))) ((POLL-NODES . SEOUENCE-AND-INOEX-DRA3R.ATION)

:St-Thrus (WORK . DO-WORK-ACCUMULATE))
(((SYNCHRONOUS-SIMULATION-FINISHED? 1) Ed~ge-List

(SYNCNRONOUS-SIMULAkTION-FINISNED7 3))) ((UPOLL-NODES 3) .(WORK 2))
:L-R-Link COMPOSITION ((POLL-NODES 2) .(WORK 1)))
.Doc :Input-Eabedding
(-tests whether a synchronous simulation is finished by - ((UPOLL-NOOES-AND-DO-WORK 1) (WORK 3))
testing whether the global buffer and all of the nodes', ((POLL-NODES-AND-DO-WORK 1) (POLL-NODES 1)))
local buffers are, empty.')) :Output-Embedding

(((POLL-NODES-AND-DO-WORK 2) (WORK 5))
(Defrule EXTRAC'r-AND-HANlDLE-FIRST-MESSAGE ((POLL-NODES-AND-DO-WORK 3) (WORK 6)))

*Extract and Handle First Message' : L-R-Link COMPOSITION
:RHS-Node-Types :Doc
((HAS-WORK? . LocAL-BEwRw-HNOnwrPY?) ('polls all nodes in -A and for each node that has messages on its-
(EXTRACT-FIRST-MEG . LOCAL-BUFFER-DO) local queue, it handles one of the messages.'
(ARCORD-WORKING-MODE . NWM-TERN) (INPUT-PORT-NAME> (0CC-HP> (POLL-NODES-AND-DO-WORK 1)))))
(HANDLE-THE-MESSAGE .HANDLE-MESSAGE))

Edge*-List (Defrule ADVANCE-NODES
(HEXTRACT-FIRST-MSG 2) .(HANDLE-THE-MESSAGE 1)) 'Advance Nds
((EXTRACT-FIRST-MSG 3) .(RECORD-WORKtING-NODE 1)) :RHE-Node-Types
((RECORD-WORKING-NODE 4) . (HANDLE-THE-MESSAGE 2))) ((STEP-NODES .POLL-NODES-AND-DO-WORK))

293

:Input-Embedding ((INITIAL-INSERT 3) .(SIMILXTION-STEP 2))
(((ADVANCE-NODES 1) (STEP-NODES 1))) U(SIHULATION-STEP 4) .(SIMULATION-FINISHED? 2))
:Output-Embedding ((SIMULATION-STEP 3) (SIM3LAT ION-FIMISHED? I)IJ
(UADVANCE-NODES 2) (STEP-NODES 2)) :input -Embeddinig

((ADVANCE-NODES 3) (STEP-NODES 3))) C))SYNCHRONOUS-SIHULATION-W-GL.OBAL-I4ESSAGE-BUFFER 1) iSIMUL.ATION-STEP 1-
:L-R-Link IMPLEMENTATION ((SYNCNRONOUS-SIMULATION-W-GLOBAL-MESSAGE-BUFFER 2) tINITIAL-INSERT 1))
.Doc :Output -Embedding
(-steps each node in -A that has work by processing 1 message - M SYNCHRONOUS -S I ULAkTION-W-GL4OBAL-MESSAGE-BUFFER 3)

each.' (SIMULATION-FINISHED? 3)))
(INPUT-PORT-NANE> (DOC-BPý (ADVANCE-NODES 1))) :L-R-Link COMPOSITION

:Doc
(Defrule EARLIEST-SIMULATION-FINISNED ('Iteratively advances each synchronous node in -A by handling one -

'E~arliest Simulation Finished, message a piece. it uses a global message buffer to ensure that -
:RNS-Nodo-Types nodes advance in lock-step. The global buffer's initial value is -
((FINISHED-TEST . SYNCHRONOUS-SIMULATION-FINISHED?)) -A. The simulation starts by adding an initial message -A to -A. -
:Input-Embedding The simulation ends when no node has work to do (i.e.. no more -
()(EARLIEST-SINULATIOt4-FINISNEO 1) (FINISHED-TEST 1)) messages to handle) and the global message buffer -A is empty. -
((EARLIEST-SIMULATION-FINISMED 2) (FINISHED-TEST 2))) As messages are handled, new messages are created which are -

;OutPult-Embedding buffered on the global message buffer.'
I(((EARLIEST-SIMULATION-FINISNED 3) (FINISHED-TEST 3))) (INPUT-PORT-MANE>
:L-R-Link TEMPORAL-ABSTRAC'rIOf (DCC-BP> (SYNCHRONOUS-SIMULATION-W-GWBSAL-MESSAGE-BUFFE.R 1)))
:Doc ()IUTPORT-NAME> (DOC-BP> (INITIAL-INSERT 2))
(Makes two input sequences: a sequence of address-maps, - (INPUT-PORT-NANE>

starting with -A. and a sequence of global message buffers., (0CC-BP> (SYNCHRONOUS-SIM4ULATION-W-GLOBAL-MESSAGE-BUFFER 2)))
starting with -A. it outputs the first address-map in the - (ZNPtTJ-PORT-NANE>)DOC-BP> (INITIAL-INSERT 2M)
input sequence of address-maps that satisfies the predicate - (INPUT-PORT-NAME>)DOC-BP> (INITIAL-INSERT 2fl))))
that all nodes in the address-map have empty local buffers
and the corresponding global message buffer is empty. * (Defrule SYNCMRONOUS-SIMUILATION

(INPUT-PORT-NAME> (DOC-EPi. (EARLIEST-SIMULATION-FINISNED 1)) 'Synchronous Simulation using Global Buffer"
(INPUT-PORT-NA14E>)DOC-BP> (EARLIEST-SIMULATION-FINISNED 2))))) :RHS-Node-Sypes

((SIMULATE-W-BtJFFER . SYNCHRONOUJS-SIMtJLATION-W-GLOBAL-MESSAGE-BUFFER))
(De frule DELIVER-MESSAGES-AND-STEP-NODES :Input -Embedding

'Generate by Message Delivery and Node Stepping-)U(SYNCHRONOUS-SIMULATION 1) (SIMULATE-W-BUFFER 1))
:RHS-Node-Types ((SYNCHRONOUS -SIMULATIONI 2) (SIMULATE-W-BUFFER 2))

)(DELIVER-ALL-MSGS . DELIVER-MESSAGES) :Output -Embedding
(STEP-ALL-NODES . ADVANCE-NODES)) () SYNCHRONOUS-SIMULATION 3) (SIHULATE-W-BtYFFER 3)))

:Edge-List :L-R-Link IMPLEMENTATION
(()DELIVER-ALL-MSGS 31 . (STEP-ALL-NODES j))) :Doc
:Input-Embedding ('synchronously simulates a collection of processing nodes handling
(((DELIVER-MESSAGES-AND-STEP-NODES 1))DELIVER-ALL-MSGS 2)) messages. The synchronous nodes (which represent the processing-
((DELIVER-MESSAGES-ANO-STEP-fJGDES 2))DELrvER-ALL-MSGS 1))) nodes) are collected in an address-map, called -A. Each node-
:St-Thrus maintains a local buffer of pending messages to handle.-
((DELIVER-MESSAGES-AND-STEP-NODES 2) (INPUT-PORT-NAME> (0CC-BPs (SYNCHRONOUS-SIMULATION 1))) ()

(OELIVER-MESSAGES-AND-STEP-ZQOOES 4))
((DELIVER-MESSAGES-AND-STEP-NODES 1) (O f rule F~tUMERATE-NOOEscoxFUTE-AVERAGE
)DELIVER-MESSAGES-AND-STEP-NODES 3))) -Enumerate Nodes and Compute Average'

:1.-R-Link COMPOSITION :RHS-Node-Types
:Doc)) DUM-NODES . SEQUENCE-AND- INDEX-FINUMERATIOfI)
('generates address-maps and global message buffers by - (COMPUTE-BUFFER-SIZE . SUN)

repeatedly delivering all messages in the global message - (SIZE-OF-SEQUENCE . SEQUENCE-SIZE)
buffer -A and advancing the nodes -A by one step each. - (COMPUTE-AVG . DIVIDE))
This causes more messages to be generated and added to the - :Edge-List
global message buffer and a new address-map to be created - ()DUM-NODES 2) . (COMPUTE-BUFFER-SIZE M)
on each iteration. The outputs of this operation are 2 - ((COMPUTE-BUFFER-SIZE 2) . (COMPUTE-AVG I))
series: one is the series of address-maps created and the -)SIZE-OF-SEQUENCE 2) . (COMPUTE-AVG 21)))
other is the series of global message buffers.' -Input-Embedding

(INPUT-PORT-NAME>))(EMUMERtATE-NODES.COMPUTrE-AVERAGE 1) (SIZE-OF-SEQtIDICE 1))
(DOC-BP> (DELIVER-MESSAGES-AND-STEP-NODES 2 f)))) DJ(ENUERATE-NODES.COMPUTrE-AVERAGE 1) (ENUM-NODES 1)))

(INPUT-PORT-NAME> :Output-Embedding
(0CC-BPS)OELrVER-MESSAGEs-AND-sTEP-NODEs 1))))))((DJUMERATE-NODES.COMPrJTE-AVERAGE 2) (COMPUTE-AVG 3)))

:L-R-Link COMPOSITION
(Def rule, GENERATE-GLO)BAL-BUFFERS-AND-NODES :Doc

'Generate Global Message Buffer and Nodes' ('enumerates all nodes in -A and computes the average of the sizes--
.RHS-Node-Types of their local buffers.'
((GEN-BUFFER-AND-NODES . DELIVER-MESSAGES-AND-STEP-NODES)) (INPUT-PORT-NAME> (DOC-BP> (ENUt4ERATE-NODESCGMPUITE-AVERAGE 1))

-input-Embedding
()(GFMERATE-GLýOmAL-BUFFERS-ANqD-NODES 1) (De frule AVERAGE-LOOCAL-BUFFER-SIZZE

(GmN-BUFFER-AND-NODES 1)) 'Average Local Buffer Size'
((GMERtATE-GLOBAL-BUFFERS-AND-NODES 2) :RMS-Node-Types

(GDJ-BUFFER-AND-NODES 2))) ((AVG-LB-SIZE . ENUIMRATE-NODES.COMPUTE-AVERAGE(J
:Output -Embedding : Input-Embedding
((GmNERATE-GLOBAL-BUFFERS-AND-NODES 3) M(AVERLAGE-LO4CAL-BUFFER-SIZE 1) (AVG-LB-SIZE 1f))

(GmN-BUFFER-AND-NODES 3)) :Output-EMbedding
((GDIERATE-GLOBAL-BUFIFERS-AND-NODES 4) (((AVERAGE-LOCAL-BUFFER-SIZE 2) (AVG-LB-SIZE 2(1)

(gmN-BUFFER-AND-NODES 4))) :L-R-Link IMPLEMENTATION
:L-R-Link TEMPORAL-ABSTRACTXON :Doc
:DoG (-computes the average of the local buffer sizes of all nodes in -A.'
('genrertes address-maps and global message buffers by - (INPUT-PORT-NMAE>)DOC-BP> (AVERAGE-LO3CAL-BUFFER-SIZE 1())))

repeatedly delivering all messages in the global message -
buffer -A and advancing the synchronous nodes in -A by one - (Defrule DESTRUCTIVE-,CUEUE-ENUMERATIUN
step each.' 'Destructive Queue Enumeration'

(INPUT-PORT-NAME> :RHS-Node-Types
(DOC-BP> (GmENAATE-GLoOBAL-BUFFERS-AND-NODES 2)) ((EWUM-Pg . PQ-ENUMERATION()

(INPUT-PORT-NAME> :Input-Embedding
(DOC-SPs (GDIERATE-GLODBAL-BUFFERS-AND-NODDS 1))))) t((DESTRUCTIVE-QUEUE-ENUMERATION 1)) mUK-Po 1)

PRIORITY-QUEUE,'QUEUE))
(Oaf rule SYNCHRONOUS-SIMULATION-W-OLOBAL-MELSSAGE-BUFFER :Output-Embeddi ng

'Synchronous Simulation using Global Mesa*-, Buffer' (((DE!STRtCTIVE-QUEUXE-DW(ERATION 2) (DIUM-Po 2))
:RHS-Nodt-Typen :L-R-Li nk IMPLEMENTATION

((INITIAL-INSERT .QUEUE-INSERT) :Doc
(SIMULATION-STEP . DERATE-GLoOBAL-BUrFFERS-AND-NOOES) ('destructively enumerates the Queue -A. which is implemented-4-
(SIMUI.ATION-FINISHED? . EARLIEST-sxMUEATioN-FINIsmzD) (as a Priority Queue.'

:Edge-List (INPUT-PORT-NAME> (DCC-BPs. (DESTRUCTIVE-QUEUE-ENUmERATION 1))j))

294

(Def rule DESTRUCTIVE-QUUE-DA)MERATION implemented as a FIFO.*
-Destructive Queue Enumeration' (INPUT-PORT-NAME> (DOC-EP> (QUEUE-EXTRACT 1()))J
:RHS-Node-Types
((ZNUM-7I70 . FIFO-DESRUCTIVE-DEJIEERTION)) (Defrule QUEUE-EXTRACT
:Input-Embeddxng -Queue Extract*
(1 (DESTRUCTIVE-QUEUE-SNREERATICN 1) (ESNU-FIFO 1) :RHS-Node-Types

FIPOuQUEUE1 I ((EXTRACT-FRON-STACE STACK-POP))
:Output -Embedding :Input-Embedding
(((DESTRUCTIVE-QUEUE-lWIERATION 2) (EWUK-FIFO 2))) (((QUEUE-EXTRACT 1) (EXTRACT-FROM-STACK 1)
:L-R-Link IMPLEMENTATION STACL..QUEUE))
:DOC :Output-Embedding
('destructively enumerates the Queue -A, which is - (((QUEUE-EXTRACT 2) (EXTRACT-FROM-STACK 2))

implemented as a FIFO-' * (QUEUE-EXTRACT 3) (EXTRACT-FROg4-STACK 3)
(INP~7r-PORT-NAi4E> STACK>QUEUE1)

(DOC-BP> (DESTRUCTIVE-QUEUE-ENUMERATION 1))))) :L-R-tLink IMPLEMENTATION
:DOCC

(Def rule DESTRUCTIVE-QUEUZE-DUMERATION (*extracts an element from the queue -A, which is implemented as a-
'Destructive Queue Enumeration' Stack.-
:RHS-Node-Types (INPUT-PORT-NANE> (DCC-SP> (QUEUE-EXTRACT 1)1)))

((ENUM-STACK . STACK-ENIWEERATION) 1
:Input-Embedding (Defrule QUEU-INSERT

(((DFSTRUCTIVE-QUEUE-ENUNERATION 1) (ENJM-STACK 1) 'Queue Insert'
STACK>QUEUE)) :RHS-Node-Types

:Output-Fzbedding ((ADD-TD-Q3 . PQ-INSERT1 1
(((DESTRUCTMV-QUEUE-ENUNERTION 21 (EWIN-STACK 2))) :Input-Embedding
:L-R-Link IMPLEMENTATION (((QUEUE- INSERT 1) (ADD-TO-03 1))
:Doc ((QUEUE-INSERT 2) (ADC-TD-Q3 2)
(-destructively enumerates the Queue -A. which is - PRZORZTY-QUEUESV.UEU))
implemented as a Stack.' : Output-Embedding
I INP(7r-PORT-NANE> U (QUEUE-INSERT 3) (ADD-TO-Q3 3)

(DOC-BP> (DESTRUCTIVE-QUEUE-DUMERATION 1))))) pRIORITy-QUEUE>QUEUEI 1
.L-R-Link IMPLEMENTATION

(Defrule STACK-DIUMERATION :Doc
'Stack Enumeration' ('enquoues -A on the Queue -A. which is implemented as a-
:RHS-Node-Types Pi-iority-Queue.1
1 (FI4UI-LL-DESTRUCTIVELY . LE)) (INPUT-PORT-NAI4E> (DOC-BP> (QUEUE-INSERT 1)))
:Input-Embedding (INPUT-PORT-NAME> (DOC-BP> (QUEUE-INSERT 2)))))
1 (STACK-ENUMERATION 11 (ENUN-LL-DESTRUCTIVELY 1)
LINKED-LIST.STACK)) (Defrule QUEUE-INSERT

:Output-Embedding 'Queue Insert'
((1STACK-EWJMERATION 2) (ENUM-LL-DESTRUCTIVELY 2))) :R14S-Node-Types
:L-R-Link IMPLEMNDTATION ((ADD-TD-Q2 . FIPO-D4QUEUE))
:Doe :Input-Embedditig
('destructively enumerates the Stack -A, which is - (((QUEUE-INSERT 1) (ADD-TO-Q2 1))
implemented as a Linked-List.' ((QUEUE-INSERT 2) (ADD-TO-Q2 2)

(INPUr-PORT-NAM4E> (DOC-EP> (STACK-ENUMERATION 1))))) FIFD>QUEUE))
:Output-Embedding

(Def rule STACK-ENUMERATION (((QUEUE-INSERT 3) (ADD-TO-Q2 3)
'S~tack Enumeration' FIPOi.QUEUE))
:RNS-Node-Types :L-R-Link IMPLEMENTATION
((ENUK-IS-DESTUCTIVELY . INDEXED-SEQUENCE-P2?UMERATION)) -.Doc
:Input-Embedding ('enqueues -A on the Queue -A. which is implemented as a PIFO.'
(((STACKt-7)UMERATION 1) (ENUM-IS-DESTRUCTIVELY 1) (INPUlr-PORT-NANE> (DOC-BP> (QUEUE-INSERT 1)))
INDEXED-SEQUDNCE>STACK) 1 (INFUTr-PORT-NANE> (DOC-BP> (QUEUE-INSERT 2)))))

:Output-EMbedding
(((STACK -ENUMERATION 2) (ENUM- IS-DESTRUCTIVELY 2))) (Defrule QUEUE-INSERT
:L-R-Link IMPLEMENTATION 'Queue Insert'
:Doc :RNS-Node-Types
('destructively enumerates the Stack -A, which is - ((ADD-TO-Ql . STACKt-PUSH))
implemented as an Indexed Sequence.' :Input-Embedding
(INPUTI-PORT-NANE,. (DOC-EP> (STACK-ZNUNERATION 1))))) (((QUEUE-INSERT 1) (AMl-TO-01 1))

((QUEUE-INSERT 2) (AI3D-TO-01 2)
(Def rule QUEUE-EXTRACT STACK,'QUEUE))

'Queue Extract' :Output-Embedding
:RNS-Node-Types (((QUEUE-INSERT 3) (ADD-TO-Ql 3)
((EXTRACT-PROK-PO . PQ-EXTRACTI) S'rACKi'QUEUEI)
.Input-Embedding :L-R-Link IMPLEMENTATION
(((QUEUE-EXTRACT 1) (EXTRACT-PRCU-PQ 1) :Doc

PRIORITY-QUEUE>QUEUE)) ('enqueues -A on the Queue -A, which is implemented as a Stack.'
:Output-Embedding (INPUT-PORT-NAME> (DOC-BP> (QUEUE-INSERT 1(1)
(((QUEUE-EXTRACT 2) (EXTRACT- ?ROM-PQ 2)) (INPUT-PORT-NANE> (DOC-BP> (QUEUE-INSERT 2)))))
((QUEUE-EXTRACT 31 (EXTRACT FROM-Pg 3)

PRIORITY-OQUEUE>QUEUEI I (Defrule QUEUE-ZMPTE?
* L-R-Link IMPLDEMETATION 'Queue zmty?'
.Doc :RHS-Node-Types
('extracts an element from the queue -A, which is -((MCFTY37 . PQ-ZMPTY))

implemented as a Priority Queue.-* :Input-Embedding
IINPUr-PORT-NANE> (DOC-SPi' (QUEUE-EXTRACT 1))))) (((QUEUE-BIPT? 1) (DIPTY37 1)

PRIORITY-QUEUE).UE1EUE)
(Defrule QUEU-EXTRACT :L-R-Link IMPLEMENTATION

'Queue Extract' :Doc
* RMS-Node-Types ('tests whether the Queue -A is empty.-4-
I (EXTRACT-PROM-PIPO . FIPO-DEQUEUEI The Queue is implemented as a Priority-Queue.'
:Input-Embedding (INPUTr-PORT-NAME> (DOC-BP> (QUEUZE-DPTT? 11)))))
(((QUEUE-EXTRACT 1) (EXTRACT-PROK-PIPO 1)

PIPO>QUEUE) (Defrule QUEUE-UEPTY?
.Output-Embedding Queue amty?,
(((QUEUE-EXTRACT 2) (EXTRACT-FROM-FIPO 2)) :RNS-Mode-Pypes
((QUEU-EXTRACT 3) (EXTRACT-FROK-PIPO 3) ((3T5V27 . FIPO-3171TY?((
PIPOi.OUEUEI IInput -Embedding

:L-R-Link IMPLUI3TATICH (((QUMI-UWrTY2 1) (zN31Y2? 1)
:Doc PIPO>OuXUI))
('extracts an element from the queue -A. which is -:L-R-Link IMPLUUMPATION

295

Doc ('Pops the stack -A. which is iisplemented as a Linked List.-
('test$ whether the Queue -A is empty.-&- (INPUT-PORT-NAME> (DCC-BPS (STACK-POP 1)))))

The Queue is implemented as a Piro.-
(INPUT-PORT-MNAE.> (DCC-BP'. (QUEIIE-EMPTY 1))))) (Defrule STACK-POP

'Stack-pop*
(Defrul& QUEUE-EMPTY? :RNS-Nod*-Types

'Queue Empty?* ((EXTRACT-FI.OM-I S . INDEXED-SEOUENCE-EXTRACT))
:RHS-Node-Types :Input-Embedding
((EMPTYl? . STACK-EMPTY?)) (((STACK-POP 1) (EXTRACT-FROM-IS 1)
:Input-Ebibdding INDEXED-SEGUENCE'.STACK))
(((QUEUE-EMPTY? 1) (EMPTYl? 1) :Output-Embedding

STACKsQUEUE)) (((STACK-POP 2) (EXTRACT-FROM-IS 2))
:L-R-Link IMPLEMENTATION ((STACK-POP .31 (EXTRACT-FROM-IS 31
:Doc INDEXED-SEQUEI4CE>STACKI(
(*tests whether the Queue -A is empty.-%-- :L-R-Link IMPLEMENTATION

The Queue is implemented as a Stack.,* :Doc
(INPUT-PORT-NAME> (0CC-BP> (QUEUE-EMPT? 1)))) (-pops the stack -A, which is implemented as an indexed-sequence.-

(INPUT-PORT-NAM>s (0CC-BP> (STACK-POP 1)))))
(Detrule STACK-EMPTY?

'Stack Empty?- (Defrule CIS-DESTRUCTIVE-ENMUERATION
:RHS-Node-Types 'Circular-Indexed-Sequence Destructive Enumeration'
((LL-EMprTY? . LIST-EMPTY)) :RNS-Node-Types
:Input-Embedding ((EI4UH-FINISHED7 . CIS-EMPT`Y)
(((STACK-EMPTY? 1) (LL-EMPTY7 1) (EXTRACT-NEXT . CIS-EXTRAC-.jj
t.INKED-LISTsSTCX)) :Input-Saibedding

:L-R-Link IMPLEMENTATION (((CIS-DESTRUCTIVE- ENMUERATION 1) (EXTRACT-NEXT 1))
:Doe I (CIS-DESTRUCTIVI.-ENUMERATION 1) (ENUM-FINISHED? 1())
(*tests whether the Stack -A is empty.-4- -.Output-Embedding
The stack is implemented as a Linked List.' (((CIS-DESTRUCTIVE-FNMUERATION 2) (EXTRACT-NEXT 2))1
(INPUT-PORT-NAME'. (DOC-BP> (STACK-EMPTY' 1))()) :L-R-Link COMPOSITION

-Doc
(Defrule STACK-EMPTY? (*enumerates all of the elements in the Circular-Indexed-Sequence -A.,

-Stack Empty?- by destructively extracting them from the sequence. The sequence-
:RHS-Node-Types is filled in -A.*
((IS-EMPTY? . INDEXEO-SEQUENCE-E4PTY(((INPrrr-PORT-NAME> (0CC-BPs ICIS-DESTREXCTIVE-ENUHERATION I)))
:Input-Embedding (GROWTH-DIRECTION (N> CIS-DESTRUCTIVE-ENUMERATION((1
(((STACK-EPT4lY7 1) (IS-EMPTY? 11

INDEXKD-SEQUENCE,.STACK(((Defrule FIFO-DESTRUCTrIVE-ENUMERATION
:L-R-Link IMPLEMENTATION *FIFO Destructive Enumeration'
:Doe :RHS-Node-Types
(*tests whether the Stack -A is empty.-4- ((ENUM-CIS-DESTRUCTIVELY . CIS-DESTRUCTIVE-ENUMERATION(1
The Stack is implemented as an Indexed Sequence.- Input-Embedding
(INPUT-PORT-NAME> (DOC-BP> (STACK-EMPTY? 1())))) (((FIPO-DESTUCTIVE-ENUMERATION 1) (ENUM-CIS-DESTRUCTIVELY 1)

CIRCULAR-INDEXED-SEQDUENCE>FIFO))
(Defrule STACK-PUSH :Output-Embedding

'Stack Push* (1(FIFO-DESTRUCTMV-ENMUERATION 21 (ENUM-CIS-OESTRUCTIVELY 2(11
:RHS-Node-Types :L-R-Link IMPLEMENTATION
((ADD-TD-LL . LIST-PUSH() :Doc
:Input-Embedding (-destructively enumerates the FIFO queue -A, which is implemented
(((STACK-POSH 1) (ADD-TO-LL 1)) as a Circular Indexed Sequence.-

((STACK-PUSH 21 (ADD-TO-LL 21 (INPUT-PORT-NAME> (DOC-BP> (FIFO-OESTRUCTIVE-ENUKERLATfON 1))1))
LINKED-LIST>STACK(1

:Output-Embedding (Defrule CIS-EMPTY
(((STACK-PUSH 31 (ADD-TO-LL 3) -CIS Empty*

LINKED-LIST>STACK) I RHS-Node-Types
:L-R-Link IMPLEMENTATION ((ZERO-FILL-COUNT? . COMMUTATIVE-BINARY-FUNCTION)
:Doc (TEST-EQUALITY . NULL-TEST))
(-pushes -A onto the stack -A, which is implemented as a - :Edge-List

Linked List.'* (((ZERO-FILL-COUNT? 3) . (TEST-EQUALITY 1)))
IINPuT-PORT-NAME> (0CC-BP> (STACK-PUSH M)1 :Input-Embedding
(INPUT-PORT-NAME> (DOC-BP> (STACK-PUSH 2))))) (((CIS-EMPTY 1) (ZERO-FILL-COUNT? 1)

FILL-COUHT(1
(Defrule STACK-PUSH :L-R-Link COMPOSITION

'Stack Push* :Doc
:RHS-Node-Types (-tests whether the Circular-Indexed-Sequence -A is empty.-
((ADD-TIO-IS . INDEXED-SEQUENCE-INSERT)) (INPUT-PORT-NAME> (DCC-BP> (CIS-EKPTY MM (
:Input-Embedding
(((STACK-PUSH 1) (ADD-TOD-IS 1)) (Defrule PIFD-EMPTY?
((STACK-PUSH 2) (ADD-TO-IS 2) -Piro Empty.

INDEXED-SEQUJEMCE'STACK)) 3RHS-Node-Types
:Output-Embedding ((CIS-EMPTY? . CIS-EMPTY))
(((STACK-PUSH 3) (ADD-TO-IS 31 :Input-Embedding
INDEXEO-SEQUENCE>STACK) ((((InFO-EMPT`Y? 1) (CIS-EMPTY? 1)

:L-R-Link IMPLEMENTATION CIRCULAkR-INDEXED-SEQUEMCE>FIFO))
.Doe :L-R-Link IMPLEXMETATION

(-pushes -A onto the stack -A, which is implemented as an -:Doc

Indexed Sequence. * (-tests whether the FIFO queue -A is empty. The FIFO is implemented
(INPUT-PORT-NAME> (DOC-BP'. (STACK-PUSH 1(1)) as a Circular Indexed Sequence.-
(INPUT-PORT-NAME> (0CC-BPs (STACK-PUSH 2) ())) (INPUT-PORT-NAMEs (0CC-BPs (FIFD-EMPTY? 1)))))

(Defrule STACK-POP (Defrul* CIS-FULL
*Stack-Pop *Cis Full,
:RHS-Nodo-Types :RHE-Node-Types

((EXTRACT-FRDM-LL . LIST-POP)) ((ONE-LESS . DECREMENT)
:Input-Embedding (WAX-FILL-COUNT? .LT)

(((STACK-POP 1) (EXTRACT-FROM-LL 1) (TEST-COMPARISON . ?RLL-TEST))
LIHK&D-LIST>STACK)) (Edge-List

:Output-Embedding (((ONE-LESS 2) . (MAX-PILL-COUHT? 2))
(((STACK-POP 2) (EXTRACT-FROM-LL 2j) ((MAX-FILL-COUtIT? 3) . (TESIT-COMPARISON I)))

((STACK-POP 3) (EXTRACT-PROM-LL 3) :input -2mbeddi ng
LINKED-LISTsSTACX) I (((CIS-PULL 1) (ONE-LESS 1)

:L-R-Link IMPLEMENTATION SIZE)
:Doc ((CIS-FULL 1) (MAX-FILL-CCUNT? 1) FILL-COUNT((

296

:L-R-Link COMPOSITION (Oefrule BOUNDED-CIS-ENUMERATION
:Doc -Bounded Circular-Indexed-Sequence Enumeration,
(*tests whether the r~ircular-Indoxed-Sequence -A is full.' :RHS-Node-Types

IINPUT-PORT-NAME> IDOC-BP> (CIS-FULL M))) ((COUNT-N-TIMES .BOUNDED-COUNT)
(COMBINE-COUNT-FIRST. COMINATION-FUNCTION)

(Defrule GROW-CIS (WRAP-INDEX N OD)
Grow circular-indexed-Sequence (M&P-ACCESS-CIS . SELECT-TERN))
%RNS-Node-Types :Edge-List
((THE-GROWER . INTERNEDIATE-OROW-CIS)))(((COUN!-N-TINES 3) . iCOIUINE-COUNT-FIRST 2))
:Input-Ebabdding ((COMBINE-COUNT-FIRST 3) .(WRAP-INDEX 1))
(((GROW-CIS 1) THNE-GROWER M)) ((WRAP-INDEX 3) .(NAP-ACCESS-CIS 2)))
:Output-Embedding :Input-Embedding
)))GROW-CIS 2) (THE-GROWER 3))) ((UDOUNDED-CIS-ENUNERATION 1))NAP-ACCESS-CIS 1))
:L-R-Link COMPOSITION ((BOUNDED-CIS-ENUMERATION 2) (COM) INE-COUNT-Fl RST 1))
:Doc ((BOUNDED-CIS-ENUMERATION 3) (COUNT-N-TIMES 2))
)-makes a new Circular Indexed Sequence that is double the -)(BOUNDED-CIS-ENUMERATION 4) (WRAP-INDEX 2)))

size of the circular Indexed Sequence -A and then - :Output-Embedding
transfers all of the elements of -A to the new CIS. The -)(D(OUNDED-CIS-ENUMERATION 5))NAp-ACCESS-CIS 3)))
new CIS's First is at index 0 and its Last is at index =- :L-R-Link COMPOSITION
the number of elements in the sequence.-4- ;Doc
The new sequence grows -A." * enumerates N elements of the Circular-Indexed-Sequence -A starting-
)INPUT-PORT-NAME>)DOC-BP> (THE-GROWER 1))) from -A. where N = -A. The sequence is filled in -A.'
(INPUT-PORT-NAME> (DOC-BP> (THE-GROWER I)))) INPUT-FORT-NAlES> (DOC-BP>)BOUNDED-CIS-ENUWERATION 1)))
(GROWTH-DIRECTION (N> THE-GROWER))) (INPUT-PORT-NANE> (DOC-DP> (BOUNDED-CIS-ENUEERATION 2))

)INPUT-PORT-NANE> (DOC-BP> (BOUNDED-CIS-ENUMERATION 3)))
(Defrule INTERMEDIATE-GROW-CIS (GROWTH-DIRECTION (H> BOUNDED-CIS-ENUWERATION))))

"Grow Circular-Indexed-Sequence (Intermediate)'
:RHS-Node-Types (Def rule CIRCULAR-INDEXED-SEOUF34CE-ENUNERATION
((ENUNERATE-WHOLE-CIS . BOUNDED-CIS-ENUNERATION) *Circular-indexed-Sequence Enumeration*
(DOUBLE-SIZE . DOUBLE) :RHS-Node-Types
(HAXE-NEW-BASE . NEW-SEQUENCE) U(ENUMERATE-ENTIRE-CIS . BOUNDED-CIS-ENUMERATION))
)sIJccEssrvE-INDICES .COUNT) :Input-bibedding
(ACCUMtiLATE-NEW-BASE SEQUENCE-ACCUMtLATE)))((CIRCULAR-INDSXED-SEQUEWCE-ENUMERATION 1) (ENUMERATE-FENTIRE-CI 5 1)

:Edge-List BASE)
()ENIJNERATE-WHOLE-CIS 5) . (ACCUHULATE-NEW-BASE 1)) ((CIRCULAR-INDEXED-SEQUEW4CE-ENUNERATION 1))ENUMERATE-01TIRE-CIS 2)

)(DOUBLE-SIZE 2) .)NAXE-HSW-BASE 1)) FIRST)
)HKAJE-NEW-BASE 2) .)ACCUHULATE-NEW-BASE 3)) ((CIRCUL.AR-INDEXED-SEQUENCE-ENUMERATION 1) (ENUKERATE-FENTIRE-CIS 3)
)(SUCCESSIVE-INDICES 2) . (ACCUMULATE-NEW-BASE 2))) FILL-COUNT)

:Input-FEsbedding ((CIRCULAR-INDEXED-SEQUENCE-ENUNERATION 1)) ENUHERATE-bET)RE-CIS 4)
)(INTERMEDIATE-GROW-CIS 1) (FENUNERATE-WHOLE-CIS 1) SIZE))

BASE) :Output -Embedding
)(INTERNSDIATE-GROW-CIS 1))ENUNERATE-WHOLE-CIS 2))((CIRCULAR-INDEXEOD-SEOUEWCE-ENUMERATION 2) (ENUMERATE ENTIRE-CIS 5)))

FIRST) :L-R-Link IMPLEMIENTATION
)(INTERMEDIATE-GROW-ClS 1) (ENUMERATE-WHOLE-CIS 3) :Doc
FILL-COUNT) (-enumerates all of the elements in the Circular-Indexed-Sequence -A.
))INTERNEDIATE-OROW-CIS 1) (DOUBLE-SIZE 1) SIZE) The sequence is filled in -A.,

)(INTFSRNSDIATE GROW-CIS 1) (ENUMKERATE-WHOLE-CIS 4) (INPUT-PORT-NAME> (DOC-BP>)CIRCULAR-INDEXED-SEOUEWCE-ENUMERATICN IM)
SIZE) (GROWTH-DIRECTION (N> CIRCULAR-INDEXED-SEOUENCE-ENUKERATION) (I)
)(INTERMEDIATE-OROW-CIS 2) (SUCCESSIVE-INDICES 1)))

:Output-Embedding (Defrule FIFO-ENUMERATION
((INTERNMEIArE-GROW-CIS 3) (ACCUMULATE-NEW-BASE 4) -FIFO Enumeration*
BASE) : RHS-Node-Types
((INTERMEDIATE-GROW-CIS 3) (DOUBLE-SIZE 2) ((ENUMERATE-CIS . CIRCULAR-INDEXED-SEOUENCE-EUMERATION))
SIZE)) :Input-Fzbedding

:St-Thrus (((FIFO-ENUNERATION 1) (ENtD4ERATE-CIS 1)
)))INTERNEDIATE-GROW-CIS 2))INTERNEDIATE-OROW-CIS 3)) CIRCULAR-INDEXED-SEOUENCE>FIFO))

((INTERMEDIATE-GROW-CIS 1) (INTERNEDIATE-OROW-CIS 3) :Output-Embedding
FILL-COUNTr))((FIFO-ENUNERATION 2) (EMNUERATE-CIS 2)))
((INTERMEOIATE-GROW-CIS 1) (INTERNEDIATE-OROW-CIS 3) :L-R-Link INPLEMENTATION
FILL-COUNT)) :Doc

:L-R-Link COMPOSITION (-enumerat~e the 1.10 queue -A. which is implemented as a Circular -
-Doc Indexed Sequence. The queue is not changed. The queue grows -A.'
(-intermediate non-terminal: Grow-CIS.*)) (INPUT-PORT-NANE> (DOC-BP> (FIFO-ENUMERATION 1)))

(GROWTH-DIRBCTION (N> FIFO-ENUMERATION))))
(Defrule COMBINATION-FUNCTION
*Combination Function' (Defrule CIS-AMD
-RHS-Node-Typ~e *Circular-Indexed1-Sequence Add*
((SUBTRACT-THUE . MINUS)) -RHS-Nod*-Types
:Input-Embedding ((FULL? . CIS-FULL)
(((COMBINATION-FUNCTION 1) (SUBTRACT-THEN 1)) (ROOMY-ADD .ROOMY-CIS-ADD)

)(COMBINATION-FUNCTIOM 2) (SUBTRACT-THEN 2))) (MAKE-ROOM . ROM-CIS))
:Output-Ubobdding :.Edg0-List
(((COMBrNATiON-FUNCTION 3) (SUBTRACT-THEM 3))) (((MAKE-ROOM 2) . (ROOMY-ADD 2)))
:L-R-Link COMPOSITION : Input-Eibedding
:Doc (((CIS-ADD 1) (ROOMY-ADD 1))
('subtracts -A from -A.'* ((CIS-ADD 2) (MAKE-ROOM M)

(INPUT-PORT-HAME> (DOC-DP> (COMBINATION-FVWCTIOM 2))) ((CIS-ADD 2) (ROOMY-ADD 2))
(INPO~r-PORT-NANE>)DOC-BP> (COMBIHATIOM-FUNCTIOM 2))))) ((CIS-ADO 2) (FULL? 1)))

:Output-Ebabdding
(Defrule COMBINATIOM-FUNCTION (((CIS-ADD 3) (ROOMY-ADD 3)))
*Combination Function' :L-R-Link COMPOSITION
:RHS -Node-Types ; Doe
((SUN-THUE . COMMUT~ATIVE-BINARY-P(NCTION)) (-adds the element -A to the Circular-Indexed-Sequence -A,-&-
:Input-2ibedding making room for it if the Circular-Indexed-Sequence is full.-4-
((COMBINATIOFE-FUNCTION 1) (SUN-THEM M) The sequence is filled in -A.*

((COMINATION-FUNCTION 2) (SUM-THCE 2))) (INPOUr-PORT-MANE> (DOC-DP> (CIS-ADD 1)))
:Output-Embedding (INPUT-PORT-NANI> (DOC-BP> (CIS-ADD 2)))
(((COMBIHATION-FUNC'?IOM 3) (S(RE-THEM 3))))GROWTN-DIRECTIoM (N> CIS-ADO))))
-L-R-Link COMPOSITION
:Doc IDefrule ROOMY-CIS-ADD
(-combine* -A and -A by adding them to each other.- *Roomy Circular-Indexed-Sequence Add*
(INPUTr-PORT-NAME> (DOC-BP' (CCHBIMATIOM-FUNCTION 1))) :RHS-Node-Typee
(INP~7r-PORT-NAIEE> IDOC-BP> (COEDINATION-FUNCTIOM 2)))))) (ADO-TO-DATA . NNW-TERM)

297

(DUMP-LAST -iNcRzWENT-oR-DECRzWE4T) :L-R-Link COMPOSITION
(WRAP-INDEX-AROUND) MOD) :Doc
(INCRDENlT-FILL-COUNT .INCREMENT)) ('extracts the first element from the Circular Indexed-Sequence -A.-t-
:Edge-List The Sequence is filled in -A.-
(UBUMP-LAST 2) .(WRAP-INDEX-AROUND 1))) (INPUT-PORT-NAME> (0CC-BP> (CIS-EXTRACT 2f))
:Input-Embedding (GROWTH-DIRECTION (N> CIS-EXTRACTM))
U((ROOMY-CIS-ADD 1) (ADD-TO-DATA 1)1

)(ROOIEY-CIS-ADD 21 (ADD-TO-DATA 3) Figure 4-12.
BASE)

I (ROOMY-CIS-ADD 2) (WRAP-INDEX-AROUND 2) (Defrule FIFO-DEQUEUE
SIZE) *FIFO Dequeue*
((ROOMY-CIS-ADD 2) (INCR~EI2NT-FILL-COUNT 1) -RHS-Node-Types

FILL-COUNT))(EXTRACT-CIS-FIRST .CIS-EXTRACT))
((ROOMf-CIS-ADD 2) (BUMP-LAST 1) :Input-Emsbedding
LAST))(P(IFO-DEQUEUE 1))EXTRACT-CIS-FIRST 1)
)(ROOMV-CIS-ADD 2) (ADD-TiO-DATA 2) CIRCULAR-INDEXED-SEOUENCEi.FIFJ))
LAST)) :Output-Embedding

:Dutput-Embedding)(P(IFO-DEOUEUX 2) (EXTRACT-CIS-FIRST 2))
(I ROOtIY-CIS-ADD 3) (WRAP-INDEX-AROUND 3) ((FlIFO-DEQUEUE 3) (EXTRACT-CIS-FIRST 3)

LAST) CI RCULAR-INDEXED-SEQUENCEi.FIPC))
()ROONY-CIS-ADD 3) (INCREMENTI-FILL-COUNT 2) :L-R-Link IMPLPEMENTATION

FILL-COUNT) :Doc
((ROOMY-CIS-ADD 3) (ADD-TO-DATA 4) ('dequeues the FIFO queue -A, which is implemented as a Circular-
BASE)) Indexed-Sequence.-t

:St-Thrus The queue grows -A.'
I)ROOMY-CIS-ADD 2) (ROOKY-CIS-ADD 3) (INPUT-PORT-NAME> (0CC-B?>)FIFO-DEOUEUE 1))
SIZE) (CROWTN-DIRECTION (N> FIFO-DECUEUEM))

I (ROOMY-CrS-ADD 2) (ROOMY-CIS-ADD 3)
FIRST)))Def rule EVALUATE-ARGUMENTS

:L-R-Link COMPOSITION * Evaluate-Arguments'
:Doc :RNS-Node-Types
(*adds the element -A to the Circular-Indexed-Sequence -A. - I(EVAL-EXPS . ENUM-EVAL-COLLECT))

(which has room for it) .- 4- :Input-Embedding
The sequence is filled in -A.* (((EVALUATE-ARGUMENTS 1) (EVAL-EXPS 1))

(INPUT-PORT-NAME> (0CC-BP> (ROONY-CIS-ADD M)) 1 (EVALUATE-ARGUMRNTS 2))EVAL-EXPS 2))
(INPUT-PORT-NAME> (0CC-B?> (ROOMY-CIS-ADD 2))) ((EVALUATE-ARGUMNDTS 3) (EVAL-EXPS 3))
(GROWTH-DIRECTION (N> ROOMY-CIS-ADD)))) I (EVALUATE-ARGUMF24TS 4) (EVAL-EXPS 4)))

:Output-Embedding
(Defrule FIFO-ENQUEUS)((EVALUATE-ARGUMENTS 5) (EVAL-EXPS 5))

-FIFO Enqueue- l(LEVALUATE-ARGUMmITS 6) (EVAL-EXPS 6))
:RNS-Node-Types I) EVALUATE-ARGUMENTS 7) (EVAL-EXPS 7))
)(ADD-TO0-CIS-LAST . CIS-ADD)))((VALUATE-ARGUMNDTS 9) (EVAL-EXPS 8)))
:Input-Embedding :L-R-Link IMPLEMENTATION
(((FIFO-ENOUEUE 1) (ADD-TO-CIS-LAST 1)) :Doc
((FIFO-ENOUEUE 2) (ADD-TO-CIS-LAST 2) (-evaluates the arguments -A.-
CIRCULAR-INDEXED-SECUP24E>FIFO) ((INPUT-PORT-NAME> (DOC-BP> (EVAL-EXPS UM)))

:Output-Embedding
(((FIFO-ENOUEUE 3) (ADD-TO-CIS-LAST 3) (Defrule ENUM-EVAL-CDLLECT
CIRCULAkR-INDEXE.D-SEODUENCE>FIFO() *Enumerate. Evaluate, and collect,

:L-R -Link IMPLE4MENTATION :Ri(S-Node-Types
:Doc ((ENUMERATE-ARGS .LE)

)e*nqueues -A on the FIFO queue -A, which is implemented as - (EVALUArE-THMfl .EVALUATE-MAP)

a circular Indexed Sequence.-%- (COLLECT-RESULTS . CONS-ACCUMULATE-UP))
The queue grows .-A.- :Edge-List

(INPUT-PORT-NAME> (0CC-B?' (FIFO-ENOUEUE 1))) MENDUMERATE-ARGS 2) . (EVALUATE-MALP 1)))
)INPUT-PORT-NAME> (0CC-BP> (FIFO-ENQUEUE 2)) :Input-Embedding
(GORWTH-DIRECTION)N> FIFO-ENgUEUE))) (((DIUM-EVAL-CDLLECT 1) (ENUMERATE-ARGS 1))

(I(lUM-EVAL-COLLECT 2) (EVALUATE-MAP 2))
Figures 3-24, 4-11. ((ENUM-EVAL-COLLECT 3) (EVALUATE-MAP 3))

((DIUM-EVAL-COLLECT 4) (EVALUATE-NAP 4)))
(Daf rule CIS-EXTRACT :Output-Embedding

Circulsr-Indexed-Sequence Extract (((ENUM-ErVAL-COLLECT 5) (COLLECT-RESULTS 2))
RNIS-Node-Types ((ENUM-EVAL-COLLECT 6) (EVALUATE-MAP 6))

((ACCESS-BASE SELECT-TERN) ((ENUM-tVAL-COLLECT 7) (EVALUATE-MAP 7))
(BUMP-FIRST. INCRUEMET-OR-DECREMrN) ((ENUM-EVAL-COLLECT 8) (EVALUATE-MALP 0)))
(WRAP-AROUND- INDEX . MOD) :L-R-Link COMPOSITION
(DECRDEMNT-FrLL-COUNT . DECRFEMEN)) :Doc

;Edg*-List ('enumerates the arguments -A, evaluates each one, and collects-4-
(((BUMP-FIRST 2) . (WRAP-AROUND-INDEX 1))) the evaluated arguments in a list, which it returns.,
:Input-Embedding (ZNPUT-PORT-NAME> (DCC-B?, (SNUMERATE-ARGS 1)))))
(((CIS-EXTRACT 1) (BUMP-FIRST 1)
FIRST) IDefrule EVALUATE-MAP
((CIS-EXTRACT 1) (ACCESS-BASE 2) 'Evaluate Map*
FIRST) : RNS-Node-Types

((CIS-EXTRACT 1) (ACCESS-BASE 1) ((ITER-EVAL . ITERATIV-EVALUATION))
BASE) : Input-Embedding

)(CIS-EXTRAC'r 1) (WRAP-AROUND-INDEX 2) (((EVALUIATE-MAP 1) (ITER-EVAL 1))
SIZE) ((EVALUATE-MAP 2) (ITER-EVAL 2))
((CIS-EXTRACT 1) (DECRDEMET-FILL-COUtBT 1) ((EVALUATE-MAP 3) (ITER-EVAL, 3))
FILL-COUNT)) ((EVALUIATE-MAP 4) (ITER-EVAL 4)))

:Output-robodding :Output-tobedding
)))CIS-EXTRACT 2) (ACCESS-BASE 3)) (((EVALUATE-MAP 5) (ITER-EVAL 5))
((CIS-EXTRACT 3) (WRAP-AROUND-INDEX 3) ((EVALUATE-MAP 6) (ITER-EVAL 6))
FIRST) ((EVALUATE-MAP 7) (ITER-EVAL 7))
((CIS-EXTRACT 3) (DECRUEKW-FILL-COUNT 2) ((EVALUATE-MAP 8) (ITER-EVAL 8)))
FILL-COUNT)) :L-R-Link TDEPORAL-ABSTRACTION

:St-Thrus :Doc
(((CIS-EXTRACT 1) (C15-EXTRACT 3) 'empplies the function EVALUATE to each expression in the input-
LAST) series of expressions.-))
1(013-EXTRACT 1) (CIS-EXTRACT 3)
SIZE) (Defrule ITZRATIVE-EVALUATION
((015-EXTRACT 1) (CIS-EXTRACT 3) *Iterative Evaluation'
BASE)) :RMS-Node-Types

298

)(MAP-EVAL. . EVALUATE)) (Def rule LOOKUP-HAZ4DLER
:Input-Fzabedding 'Lookup Handler'
(HITERATIVE-EVAWUATION 1) (MALP-EVAL I)) :RHS-Node-Typen
()ITERAT1VE-EVALUATION 2) (MAP-EVAL 2)) ((LCOOIWP-HANDLER-PROPERTY . PROPERTY-LIST-LOOKUP))
((ITERATIVE-EVALUIATION 3) (M).P-EVAL 3)) :Input-Embeddxng

))ITERATIVE-EVALUATION 4) (MAP-EVAL 4))) (((LOOKUP-KAZ4DLER 1) (OOKUP-HNADLER-PROPERTY 1)))
:Output-Labedding :Output-Embeding
)))ITERATIVE-EVALUATION 5) (MAP-EVAL 5))) ML)OOKUP-HANDLER 2))LOOKUP-HANDLER-PROPERTY 3)))
:St-Thrus :L-R-Link IMPLEMENTATION

(ITERATIVE-EVALUATION 4))ITERATIVE-EIVALUATION 8)) :Docc
MTEP.ATXVE-EVALUATIOA4 3) (ITERATIVE-EVALdUATION 7)) (-looks up the handler named -A.*

ITERATIVE-EVALUATION 2)) ITERATIVE-EVALUATION W)) (INPUT-PORT-NMAE> (DOC-BP>) LOCKUP-HANDLER 1)))))
:L-R-Link COMPOSITION
:Doc (Defrule FETCH-OP
(-iteratively applies the function Evaluate.*)) *Fetch Operator*

:RHS-Node-Types
)Defrule RUNNING-STATUS?) (OOKUP-OP .ASSOCIATIVE-SET-LOOKUP))

'Execution Still Running Predicate, :Input-Embedding
:RHS-Node-Types M)FETCN-OP 1) (LOOKUP-OP 1)))
((STATUS-RUNNING? . RUNNING-TEST)) :output-Embedding,
:Input-Embedding (((FETCH-OP 2) ILOOKUP-OP 3)))
((RUNNING-STATUS? 1) (STATUS-RUNNING? 1) :L-R-Link IMPLUEDENTATION
STATUS)) :Doc

:L-R-Link TEMPORAL-ABSTRACTION (*looks up the operator named -A.-4-

:Doc The global associative set of operators is -A."
(,checks whether the execution context -A is still running -(INPUT-PORT-NAME>)DOC-BP>)FETCH-OP 1)))

by looking at its STATUS part.* (SOURCE-TYPE (P> (LOCKUP-OP 2)))))
(INPUT-PORT-NAME>)DOC-BP> (STATUS-RUNNING? 1))))

)Defrule FETCH-OP
)Uefrule RUNNING-TEST 'Fetch Operator*

*Running Test' :RHS-Node-Types
:RHS-Node-Types) (TNE-PLIST-LOOKUP . PROPERTY-LIST-L4OCKUP))
((RUNNING? .COMNUT~ATIVE-BINARY-PUNCTION) : Input-Embedding
(RUN-SPLIT . ULL-TEST)) ((FETCN-OP 1) (THE-PLIST-LOOKUP 1)))

:Edge-List :Output-ambedding,
(((RUNNING? 3) . (RUN-SPLIT 1))) (((PETCN-OP 2) (TNE-PLIST-LOOKUP 3)))

:Input-Eb~bdding :L-R-Link IMPLEMENTATION
(RUNNING-TEST 1) (RUNNI1NG? 1))) :Docc

:L-R-Link COMPOSITION (-looks up the operator named -A.'
:Doc (INPUT-PORT-NAME> (DOC-BP>)FETCH-OP 1)))))
(*checks whether -A -A -A.'

(INPUT-PORT-NAME> (DOC-BP> (RUNNING? M)) (Defrule FETCN-AND-APPLY-OPERATOR
(FUNCTION-TYPE (FUNCTION-INFO (N> RUNNING?))) 'Fetch and Apply Operator'
(SOURCE-TYPE (0CC-nP> (RUNNING? 2))))) :RHS-Node-Types

((GET-OPERATOR . FETCH-OP)

(Defrule HANDLE-MESSAGE (APPLY-OPERATOR . APPLY))
'Handle Message' -Edge-List
:RHS-Node-Types (((GET-OPERATOR 2) . (APPLY-OPERATOR I)))
((PROCESS . LOOKUP-A34D-EXECUTE-HANDLER)) : Input-Embedding
:Input-Esbedding (((FETCN-AND-APPLY-OPERATOR 1) (GET-OPERATOR 1))
)(((HANDLE-MESSAGE 1) (PROCESS 1)) ((FETCN-AND-APPLY-OPERATOR 2) (APPLY-OPERATOR 2))

((HANDLE-MESSAGE 2) (PROCESS 2)) ((FE'IVN-AND-APPLY-OPERATOR 3) (APPLY-OPERATOR 3))
((HANDLE-MESSAGE 3) (PROCESS 3))) ((FETCN-AND-APPLY-OPERATOR 4) (APPLY-OPERATOR 4))

:OutpUt-Fmbadding ((FETCN-AND-APPLY-OPERATOR 5) (APPLY-OPERATOR 5)))
((HANDLE-MESSAGE 4) (PROCESS 6)) :Output-Embedding
((HANDLE-MESSAGE 5) (PROCESS 7))))(((FETCH-AND-APPLY-OPERATOR 6) (APPLY-OPERATOR 6))

:L-R-Link IMPLUEMETATION ((FETCN-AND-APPLY-OPERATOR 7) (APPLY-OPERATOR 7))
:Doc ((FETCH-AND-APPLY-OPERATOR 9) (APPLY-OPERATOR 8))
('handles the message -A by looking up its handler code and - ((PETCN-AND-APPLY-OPERATODR 9) (APPLY-OPERATOR 9)))

executing it.- :L-R-Link COMPOSITION
(INPUT-PORT-NAME> (DOC-BP> (HANDLE-MESSAGE 1))))) :Doc

('fetches the operator associated w/ -A and applies it to the-4-
(Dofrule LOOKU`P-NANDLER-FORt-MESSAGE evaluated arguments -A.'

'Lookup Message Handler' (INPUfl-PORT-NANE> (DOC-BP> (FETCH-AND-APPLY-OPERATOR 1)))
:RHS-Node-Typen (INPUT-PORT-MANE> (DOC-BP> (FETCH-AND-APPLY-OPERATOR 2)))))
((LOCKUP-HANDLER-OF-TYPE . LOOKUP-HANDLER))
:Input-ambedding (Defrule EVAWUATE-AND-APPLY
((WLAOKUP-HANDLIR-FOR-MESMAE 1) (LOCKUP-HANDLER-OF-TYPE 1) 'Evaluate Arguments and Apply Operator-

TYPE)) oRHs-Node-Types
:Output-embedding) (EVAL-ARGE EVALUATE-ARGUMUITS)
(((LOCEUP-HAMDLER-POR-MESSAGE 2) (LOCKUP-HANDLER-OF-TYPE 2))) (APPLY-OP. FETCH-AND-APPLY-OPERATOR))
:L-R-Liflk INPLUIMMTATION :Edge-List
:DOC (H(EVAL-ARGS 8) .(APPLY-OP 5))
('looks up the handler for message -A's type -A.' ((EVAL-ARGS 7) .(APPLY-OP 4))

(INIUTf-PC'1-NAME,ý (DOC-EP> (LOCKUP-HANDLER-POR-MESSAGE I))) ((EVAL-ARGS 6) .(APPLY-OP 3))
)IWUIPT-PORT-NAME> (0CC-SP> (LOOKUP-HANDLER-FOR-MESSAGE 1) ((EVAL-ARGS 5) .(APPLY-OF 2)))

TYPE))) :input-sabedding
(((EVAWATE-AND-APPLY 1) (APPLY-OP 2))

(Defr'lIe LOCKUP-HANDLER ((EVALUATE-AND-APPLY 2) (EVAL-ARGS 2))
'I .okup Handler- ((EvALUATE-AND-APPLY 3) (EVAL-ARGS 2))
:RHS-18ode-Typeo ((EVALUATE-AND-APPLY 4) (EVAL-ARGS 3))
((ASSOCIATE-HANDLER-NAME . ASsOCIATIVE-SET-LOCKUP)) ((EVALUATE-AND-APPLY 5) (EVAL-ARGS 4)))
:I nput - 8keddi ng :Output-mobedding
)()LOCKUP-HANDLER 1) (ASSOCIATE-HANDLER-MNAE 1))) U(EIVAWUATE-AND-APPLY 6) (APPLY-OP 6))
:Output-Sabeding ((EVALUATE-AND-APPLY 7) (APPLY-OP 7))
(M OCKUP-HANDLE 21 (ASSOCIATE-HANDLER-NAIME 3))) ((EVALJUATE-AND-APPLY 8) (APPLY-OP 8))
:L-R-Link 1101UIUTATION ((EVALUATE-AND-APPLY 9) (1APPLY-OP 9)))
:DOC :L-R-Link COMPOSITION
('looks up the handler named -A.-4- :Doc

The global associative set of operators is -A.- ('evaluates the arguments -A. fetches the operation -A end aplies-4-
(INPUT-PCWI'-MAM&> (0CC-UP> (LDOCKP-HANDLER 1))) it to the evaluated arguments.'
(SOURCE-TYPE (P. (ASSOCIATEL-HANDLER-NAME 2))))) (INPU'-PORT-MNAM> (DOC-BP> (EVALUATE-AND-APPLY 2)))

(INPUT-PORT-NAMZ> (0CC-np> (EvALUTE-AND-APPLY IM)))

299

(Detrule INTERPRET-INSTRUCTION :Input-Embedding
-Interpret Instruction-)U(LOAD-ARGUMN4DTS--INTO-KMIORY 1) (TRANSFER-ARG-LIS'r 1)
iRHS-Nod*-Types ARGUMNDTS)
((EVAL-APPLY .EVALUATE-AND-APPLY))))LOAD-ARGUMENTS-1 NTO -MEMORY 1) (TRANSPLR-ARG-LIST 21
:Input-Ebebdding STORAGE-REOUI RDEMETS)
1))ITrw PmE-IN'rumrI 1) (EVAL-APPLY 1)J)LoAD-ARGUKETS -INT'O-NflORY 2) (ADD-TO-HMD4ORy 3)))
OP) :Output -Embedding
I)INTERPRET-INSTUCTION 1) (EVAL-APPLY 2) (()LOAD-ARGuNENTS -INTO -MEMORY 3) (ADD-TIO-MEWORY 4M)
ARCS) :L-R-Link COMPOSITION
((INTERPRET-INSTRUCTION 2) (EVAL-APPLY 3)) :Doc

((INTERPRET-INSTIICTION 3) (EIVAL-APPLY 4)) ('takes the list of arguments in the message -A and converts it to -

))INTERPRET-INSTRUCTION 4) (EVAL-APPLY 5))) an indexed-sequence of size -A, which it then stores in the memory
:Output-Ezsbedding -A, at key -A.'
((INTERPRET- INSTRUCTION 5) (EVAL-APPLY 7)) (INPUT-PORT-NAKE> (OOC-BP> (LOAD-ARGt1METS-INTO-MEMORY 1)

(INTERPRET-INSTUCTION 6))EVAL-APPLY 8)) ARGUMNT1IS))
U(INTiERPREil 14STRUCTION 7) (EVAL-APPLY 9))) (INPUTr-PORT-NAME> (DOC-BPi' (LOAD-ARGLIMENrS-INTO-MEMORY 1)

:L-R-Link IMP.,fl4FTATION STORAGE-REOUX REMENTS))
:Do- (INPUT-PORT-NMAE> (DOC-DP> (LOAD-ARGUMfl4TS-INTO-ND4ORY 2)))
(*interprets the instruction -A by evaluating its arguments -(INPUT-PORT-NAME> (DOC-BP> (ADD-TO-MFJIORY 2)))))
-A and applying its operator -A to them.*

I INPUT-PORT-NAME> (DOC-BP> (INTERPRET-INSTRUCTION M)) (lDef rule LOAD-ARGUMENTS-INTO-SN
I INPUT-PORT-NAME> (lIOC-BP> (I INERPRET- INSTRUCTION 1) -Load Arguments into Synch-Node'

INST-ARGS)) :RHS-Nodo-Types
(INPUr-PORT-NAME> (DOC-BP> (IN'rERPRET-INSTRUC'rION 1) I)BASE-LOAD-ARGUMENTS . LOAD-ARGU4ENTS-INTO-MFMORY))

INST-OP))) :Input-Fzmbedding
I(ULOAD-ARGUMENTS-INTO-SN 1) 1 BASE- LOAD -ARGUMENTS 1))

IDe frule LOOKUP-ANO-EXECUTE-HANIILER))LoAD-ARGUKENTS- INTO-SN 2) (BASSE-LOAD -ARGUMENTS 2)
-Lookup and Execute Message Handler' MEMORY))
:RHS-Node-Types :Output-Embedding
((GET-IIESTINATION-NODE .LOOKtUP-DESTINATION) I I(LOAD-ARGUMZNrS-INTO-SN 3) (BASE-LOAD-ARGUMENTS 3)

(LOAD-ARGS . LOAD-ARGUMENTS) MEMORY))
)RECORD-NEW-NODE .RECORD3AT-DESTINATZON) :St -Thrua
(GET-HANDLER-CODE .LOOKUP-HANDLER-FOR-MESSAGE) MU)AD-ARGUMENTS-INTO-SN 2) (LOAD-ARCUMEN'TS-INTO-SN 3)
(GET-NEXT-INSTRUCTION . PETCH-INSTRUCTION) LOCAL-BUFFER))
(INTERPRET . INTERPRET- INSTRUCTION) :L-R-Link IMPLEMENTATION
(STILL-RUNNING? . RUNNING-STATUS?)) :D)oc

iSdge-List ('loads the arguments of the Message -A into the Memory part of the-
1))CET-DESTINATION-NODE 3) . ILOAD-ARGS 2)) Node -A- which is implemented as a Synch-Node.*
I)LOAD-ARCS 3) .(INTERPRET 3)) (INPUT-PORT-NA1ME> IDOC-BP> (LOAD-ARGUMENTS-INTO-SN IM)
I (LOAD-ARGS 3) .(RECORD-NEW-NODE 1)))INPUT-PORT-NAi4E> (DOC-BP> iLOAD-ARGUMNDTS-INTO-SN 2)))))
I (RECORD-NEW-NODE 4) .(INTE9RPRET 2))
((GEIT-NANDLER-CODE 2) .(INTERPRET 3)) (Defrule LOAD-ARGUMEW'S-INTO-AN
((GET-HANDLER-CODE 2) .(GET-NEX'r-INSTRUCTION 2)) -Load Arguments into Asynch-Node'
((GET-NEXT-INSTRUCTION 4) .(INTERPRET 3)) :RNS-Node-Types
((GET-NEXT-INSTRUCTICN 3) .(INTERPRET 1)) ((BASE-LOAD-ARGUMENTS . LOAD-ARGUMENTS-INTO-EMEORY))
((INTERPRET 6) . (STILL-RUNNING? 1))) :Input-Embedding

:Input-Embedding (((LOAD-ARGUMENTS-INTO-AN 1) (BASE-LOAD-ARGUMENTS 1
()ILOOKUP-AND-EXECUTE-HANtILER 1) (RECORD-NEW-NODE 2)) ((LOAD-ARGUMENTS-INTO-AN 2) (BASE-LOAD-ARGUWENTS 2) NEWNRY))
((LOOKUP-ANO-EXECIUrE-NANDLER 1) (LOAD-ARCS 1)) :Output -Psbedding
((LOOEUP-AND-XEICIITE-NANDLER 1) (GET-DESTINATION-NODE 2)) (((LOAD-ARGUMENTS-INTO-AN 3) (BASE-LOAD-ARCUMENTS 3) MEMORY))
((LOEKUP-ANO-EXECUTE-HANDLER 1) (GET-HANDLER-CODE 1)) :St-Thrus
((LOOKUP-M fl-EXECUTE-HANDLER 2) (RECORD-NEW-NODE 3)) (((U0AD-ARGUKENTS-INTo-AN 2) (LOAD-ARGtIMDNrS-INTO0-AN 3)
((LOOKUP-AND-EXEIt=E-HANDLER 2) (GET-DESTINATION-NODE 1)) TIME))
)(LOOKUP-AND-EXECUTE-NANDLER 3) (INTERPRET 4)) :L-R-Link IMPLEMENTATION
l(LOOKUP-AND-EXECIUrE-HANDLER 4) (GET-NEXT-INSTRUCTION 1)) :Doc
(LOOKUP-AiID-EXECUTE-HAI4DLER 5) (INTERPRET 3))) (-loads the arguments of the Message -A into the Memory part of the

:Output -Embedding Node -A which is implemented as an Asynch-Node.'
)L(OOEUP-AND-EXECUTE-HANDLER 6) (INTERPRET 5)))INPUT-PORT-NANE> (DOC-BP> (LOAD-ARGUHPE4TS-INTO-AN 1)))
)(LOOKUP-AND-EXECtJTE-NANDLER 7) (INTERPRET 7))) (INPUT-PORT-NAME> (DOC-BP>)LOAD-ARGUMWPTS-INTD-AN 2)))))

:L-R-Link COMPOSITION
.Doc De fru le LOAD-ARGUM(ENTS
(-looks up the handler for the message -A. loads the - -Load Arguments*
argniments of the message into the message's destination - :.RHS-Node-Types
node, and then executes the handler instructions, starting - ((LOAD-AN . LOAD-ARGUMENTS-INTO-AN))
with the one pointed to by -A. As long as the execution - :Input-Embedding
context's status is -A, the next instruction (pointed to - (((LOAD-ARGIRNENTS 1) (LOAD-AN I))
by -A) is executed., *)LOAD-ARGUMENTS 2) (LOAD-AN 2)

(INPUT-PORT-NAUE> (DOC-BP>.)LOOKUP-AND-EXECUTE-NANDLER 1))) ASYNCN-NODEi.NODE))
)INP(7r-P0RT-NMAN> (DOC-BP>.)WOOUP-AND-EXECUTE-NANDLER 4))) :Output-Emkiedding
(INPUT-PORT-NAME> (DOC-EP>)LOOKUP-AND-EXECU'rE-NANDLER 5)))) LOAD-ARCUMENrS 3) (LOAD-AN 3)
(IN`PUT-PORT-NAME> (DOC-EP> (LOOKUP-AND-EXECL)TE-NANDLER 4)))) ASYNCN-NODE>NODE)(

:L-R-Link IMPLEMENTATION
(Defrule FETCH-INSTRUCTION :Doc

*Fetch Next Instruction" (-loads the arguments of Message -A into the memory of node -A.-
:RMS-Node-Types (INPUT-PORT-NAME> (DOC-8P> (LOAD-ARGUMENrS M)
((FETCH-Il . INDEXED-SZOUENCE-EXTRACT)) (INPUT-PORT-NAME> (DOC-BP>)LOAD-ARGUMENTS 2)))))
:Output -Embedding
(((FETCH-INSTRUCTION 3) (FETCH-Il 2)) (Defrule LOAD)-ARGUMNWIS
((FETN-INSTRUC-TrOK 4) (FE'IcR-Il 3)1) *Load Arguments'

:L-R-Link COMPOSITION :RHS-Nod&-Type5
:D-. ((LOAD-SN . LOAD-ARGUIENTrS-IN70-SN()

('fetches the next instruction (pointed to by -A) in the ! input -faibeddi rg
sequence -A- ((ULOAD-ARGUKENTS 1) (LOAD-SN 1))

(ZNPrrr-PORT-NANE> (DCC-EP> (FETCHN-INSTRUCTION 1))) ((LOAD-ARGUMENTS 2) (LOAD-SN 2)
(INPUT-FoRT-NAKE> (DOC-BP> (FETCN-INSTRUCTION 2))))) SYNCH-NOOE,>NODE))

:Output-Embedding
(Oaf rule LOAD-ARGUMMM?-INTO-MRiORT ((LOAD-ARGUMNDTS 3) (LOADýSN 3)

'Load Arguments into Memory- SYNCH-NOD2)-NOD())
RS-Node-Types :L-R-Link IMPLEMENTATION

((TRANSFIR-ARO-LIST . LIST-10-98QUDCE(:Doc
(ADD-TO-MEMORY . ASSOCIATIVZ-SET-ADD)) ('loads the arguments of message -A into the memory of node -A.'

:Edge-List 11NPUT-PORT-NMEE> (DOC-UP> (LOAD-ARGUMENTS IM)
(((TRANSFER-ARO-LIST 3) . (ADD-TO0-MEMORY 1))) (INPUT-PORT-NAME> (DOC-9P> (LOAD-ARGLUMNTS 2)))))

300

(Defrule FETCNUPDATE :Doc
'Fetch and Update- ('adds -A to an Indexed-Sequence, which has parts:-4-
:RNS-Nodt-Types Base (an sequence) -A,-&-
I (FETCH-FROM-BASE -SELECT-TURN) and an index -A into the sequence.-4-
(BACKUP-INDEX .INCREDINT-OR-DECRDEKET)) The sequence is filled in -A.-4-

:Input-Embedding The index is updated after the input is added to the Base.*
((FETCNHtIPDATE 1) (PETCH-FRDM-BASE 2) INDEX) (INPUT-PORT-NANE> (DOC-BP>)BUMP.UPDATE 1)))

)(FETCF-UPDATE 1) (BACKUP-INDEX 1) INDEX) (INPUT-PORT-BANE> (DOC-BP> (BUMAP.UPDATE 2) BASE))
((FETCHOPDATE 1) (FETC-FROI-BASE 1) BASE)))INPOlr-PORT-NANE> (DOC-BP> (BUMP.UPOATE 2) INDEX))

:Output -Ebedding (GROWTH-DIRECTION (N> BUMP.UPOATE))))
U)FETCHiIWOATE 2) (FETC-FROM-BASE 3))

((FETCH.UPDATE 3) (BACKUP-INDEX 2) INDEX)) (Defrule INDEXED-SBOUENCE-INSERT
tSi-Thrus *Indexed-Sequence Insert-

())FETCH.UPDATE 1))FETCH+UPDATE 3) BASE)) :BBS-Node-Types
:L-R-Link COMPOSITION ()I-S-INSERT2 . IJPDATE.BUMP))
.Doc :Input-Embedding
(*extracts an element from an Indexed-Sequence. which has (()INDEXED-SCOUENCE-INSEIRT 1))I-S-INSERT2 1))

parts -4- ((INDEXED-SEQUD(CE-INSERT 2) 1I-S-INSERT2 2)))
Base (an sequence) -A. -4- :Output-SEbedding
and an index -A into the sequence.-4- (((INDEXED-SEOUflCE-INSERT 3))I-S-INSERT2 3W))

The sequence is filled in -A. The Index is updated after - :L-R-Link IMPLEMENTATION
the output is fetched from the Base.' :Doc

(INPUT-PORT-NANE>)DOC-BP> (FETCH.UPDATE; 1) BASE)) ('inserts -a into the Indexed Sequence -A.,
)INPUT-PORT-NAME> (DOC-BP,)FETCN.UPDATE 1) INDEX)) (INPUT-PORT-NANE> (DOC-BP> (INDEXED-SEOUENCE-INSERT 1)))
(GROWTN-DIRECTION (N> FETCNUPDATE)))) (INPtFI-PORT-NAME> (DOC-BP> (INDEXED-SEOUENCE-INSERT 2)))))

(af rule UPDATE.FETCN (Defrule INDEXED-SEGUENCE-INSERT
*update and Fetch, * Indexed-Sequence Insert*
BBHS-Node-Types :RBS-Node-Types
((FETCH-FROM-BASE2 .SELECT-TERN) ((I-S-INSERTl . BUKP.UPDATE))

(BACKUP-INDEX2 . ZNCRDEkWF-OR-DECRDEEBT)) :Input-SEbedding
:Edge-List (U(INDEXED-SEOUENCE-INSERT 1))I-S-INSERTl 1)

)(BACKUP-INDEX2 2) . (FETCN-FROM-BASE2 2))) ((INDIXED-SBOURME-INSERT 2))I-S-INSERTl 2))
:Input-SEbedding :output-Embedding

)UPDATE.FETCN 1))BACKUP-INDEX2 1) INDEX) (((INDEXED-SBOUDlCE-INSERT 3) (I-S-INSERTl 3)))
)((IPDATEFETCH 1) (FETCH-FROM-BASE2 1) BASE)) :L-R-Link IMPLEMENTATION

:Output-Embedding :Doc
))UPDATEFETCH 2) (FETCH-FROM-BASE2 3)) (-inserts -a into the Indexed Sequence -A.-

)(UPDATE+FETCN 3) (BACKUP-INDEX2 2) INDEX) (INPUT-FORT-NANE>)DOC-BF> (INDEtXE-SEOUENCE- INSERT 1))
:St-Thrus (INPUTr-FORT-NAME>)DOC-BP> (INDEXED-SECAUU4CE- INSERT 2))))
))UPDATE+FETCN 1))UPDATE+FETCN 3) BASE))
:L-R-Link COMPOSITION (Defrule INDEXED-SEOUENCE-EXTRACT
:Doc * Indexed-Sequence Extract*

eIxtracts an element from an Indexed-Sequence, which has - RMS-Node-Types
parts:-4- M(-S-EXTRACT2 . UPDATE+FETCH))

Base (an sequence) -A, -4- :Input-Embedding
and an index -A into the sequence.-4- (((INDEXED-SEQUENCE-ETXRACT 1) (I-S-EXTRACT2 1)))

The sequence is filled in -A. The Index is updated before - :Output-Embedding
the output is fetched from the Base.- (U(INDEXED-SBQUZCE-EXTRACT 2) (I-S-EXTRACT2 2))

)INPUT-PDRT-NANE>)DOC-BP> (UPDATZaFETCH 1) BASE) ((INDEXED-SEOUzMC-gXTRACT 3) (I-S-EXTRACT2 3)))
(INP~rr-PORT-NANE> (DOC-BP> (UPDATE+FETCH 1) INDEX)) :L-R-Link IMPLEMENTATION
)GROWTN-DIRECTION (N> UPDATE.FETCN)))) :Doc

(-extracts the current element from the indexed Sequence -A.'
(Def rule UPDATE.BUMP) INPUT-PORT-NANE> (DOC-BP> (INDEXED-SEgUENCE-EXTP.ACI' 1)))))

'Update and Bump*
:RNS-Node-Types (Defrule INDEXED-SEQUENCE-EXTRACT
((BUMP-INDEX INCRfEKEHT-OR-D5CRUEMET) * Indexed-Sequence Extract-
(ADD-TOD-BASE NEW-TERN)) :RHS-Node-Types

:E~dg*-List))-S-EXTRACTI . FZIVN.UPDATE))
((BUMP-INDEX 2) . (ADD-TO-BASE 2))) :Input-Ebedding
:Input-Embedding (((INDEXED-SEOUENCE-EXTRACT 1) (I -S-EXWRACTl 1)))

)tIUPDATE+BUMP 2) (BUMP-INDEX 1) INDEX) -Output-Embedding
(IIPDATZaBUMP 2) (ADD-TO-BASE 3) BASE) (((IMD9EXD-S8QUflCE-EXTRACT 2) (I-S-EXTRACTl 2))
(tUPDAkTE.BUMP 1) (ADD-TO-BASE IM) ((LNDEXED-S~gO3NCE-i&TRACT 3) (I-S-EXTRAC'TI 3)))

:Output-Embedding :L-R-Link IMPLEMENTATION
(((UPDATE+SUMP 3) (BUMP-INDEX 2) INDEX) :Doc
((UPDATEZfltNP 3) (ADD-TO-BASE 4) BASE)) (-extracts the current element from the Indexed Sequence -A.'

:L-R-Link COMPOSITION (INPWI-PORT-MAME> (DOC-BP> (INDUEXD-SE1DIECE-EXTR'ACT 1)l))))
:Doc
'-adds -A to an Indexed-Sequence, which has parts:-Ik- (Defrule INDEXED-SEOI3DCE-ACCUMULATION

Sose (an sequence) -A,-4- * Indexed-Sequence Accumulation-
and an Index -A into the sequence.-4A- :RHS-Node-Types

The sequence in filled in -A.-4- ((INSERT-INTO-I-S -INDEXED-SECUDSCE-INSERT))
The Index is updated before the Input is added to the Base.' -input-Embedding
(INPUT-FORT-NMAN> (DOC-BP> (UPDATE.ESIP M)) (((INDZEXD-SM93ZE-ACCUMILATION 1) (INSERT-INTFO-I -S 1))
(INPUT-PORT-NANE> (DOC-BP> (UPDATIL44VMP 2) BASE)) ((INDEX3D-88OUUEN-ACCEAWIATION 2) (INSERT-INTO-1-6 2))
(INPUT-PORT-NANE> (DOC-BP> (UPDATE.MNEMP 2) INDEX)) :St-Thrus
(GOWTHr-DIRECTION (N> UPDAT3.BINP))) (((INDWEED-S3OUZlCB-ACCUNWLATION 2) (INDEXED-SffqJMCE-ACCU§1ULkTION 3)1)

-L-R-Link TEMPORAL-ABSTRACTION
(Defrule BUNP.UPDATE :Doc

'BuMp and Update' '-accumulates the elements in the serises into a new indexed-sequence.'
:RNS-Node-Types (INPUT-PORT-MANE> (DOC-BP> (INDEXED-SEQU)3CE-ACC(A6JIATION 1)))))
((KWM-INDEX2 .INDRSHENT-OR-DRECRINlT)

(ADD-TO-BA532 .NSI-TZRJ)) (Def rule ASSOCIATIVE-S&T-ADD
:Input-3mbedding 'Associative Set Add*
(((KWi+UPOATB 2) (ADD-TO-RAS32 2) INDEX) RMS-Nodes-TYPeS

((3IUiP.UPDATZ 2) MBIE-INDEX2 1) INDEX) ((THS-ALIST-INS3T . ASSOCIATIVE-LIST-INSERT))
((DCUMP.UPDAT2 2) (ADD-TO-UASE2 3) BASE) :Input -ambdding
((BENP.UPDATZ 1) (ADD-TD-mAS12 M)) (((ASSOCIATIV-SETr-ADD 1) (THB-ALIST-INSER~T 1))
:Output-ambedding ((ASSOCIATIVE-SET-ADD 2) (THS-ALIST-INStT 2))
(((BEIP+UPDATB 3) (BUWP-IMDEX2 2) INDEX) ((ASSOCIATIVE-SET-ADO 3) (THE-ALIST-INSERT 3)))
((BUMP.UPDAT2 3) (ADO-TO-3A532 4) BASE)) :output -abeddi ng
:L-R-Link COMPOSITION (((ASSOCIATIVE-SET-ADD 4) (THE-ALIST-INSERT 41))

301

:L-R-Link IMPLEMENATATIONI (INPUT-PORT-NAIIE> (DOC-BPý)ASSOCIATIVE-SET-LOOIWP 2))!
:Doc (FUNCTION-NAMEE (FUNCTION-TYPE
('inserts -A (Associated W/ key -A) in the associative set -A.-)KEY-COIPARATOR-INPO (Nc THE-ALLIST-LOOKUPfl))

An element X occurs before enother Y if X's key -A Yes key. - FUNCTION-NANE (FUNCTION4-TYPE
An element X replaces another Yf if X's key -A Yes key.- (KEY-EOUALITY-INTO (N> TiIE-ALIST-LOOKtJPH)))j
(INPIUr-PORT-NAME> (DOe-BP> (ASSOCIATIVE-SET-ADD 1)))
)l?71'-POfRTNANE> (DOC-SP> (ASSOCIATIVE-SET-ADD 2M) (Def rule ASSOCIATIVE-SLET-L4OKUP
(INPUT-PORT-NANE>))XIC-BP> (ASSOCIATIVE-SET-ADD 3))) -Associative Set Lookup'
(FUNCTION-NAME (FUNCTION-TYPE :RNS-Node-Types

(KEY-COMPARATODR-IHFO (N> THE-ALIST-INSERT))))))THE-Wr-LDOOUP . HASH-LOOKUP))
(FUNCTION-TYPE (FUNCTION-TYPE :Input -Fmbedding

(KEY-EOUALITY-1INFO (N> THE-ALIST-INSERT)))))))))ASSOCIATIVE-SKTr-LOOKUP 1))THE-HT)-LOOKUP 1))
((ASSOCIATIVE-SE'r-LOOKI3P 2))THE-Hr-LOOKUP 2)))

(Defrule ASSOCIATIVE-SET-ADD :Output-Embedding
*Associative Set Add.)) ASSOCIATIVE-SET-LOCOKUP 3) (THE-H'r-LooOKUP 3)))
:RHS-Node-TYpes :L-R-Link IMPLEMENTATION
))THE-NT-INSERT . HASH-INSERT)) :Doc
:Input-EAmbedding (-looks up an element associated wl key -A in the associative set -A.,
)))ASSOCIATIVE-SET-ADD 1) (TNE-HT-INSERT 1)) An element X occurs before another Y' if X's key -A Y's key.-
()ASSOCIATIVE-SETr-ADD 2) (THE-HT-INSERT 2j) An element X ia retrievel if X's key -A -A.*
((ASSOCIATIVE-SET-ADD 3) (TNE-HT-INSERT 3))) (INPUT7F-ORT-NAMEc (DOC-BP')ASSOCIATIVE-SET-LOOKUP 1)))

:Output-Embedding (INPUff-PORT-NAI4E>)DOC-BP>)ASSOCIATIVE-SET-LOOKUP 2)))
)(ASSOCIATIVE-SETr-ADD 4))TNE-HT-INSERT 4))) (FUNCTrION-NAM4E (FUNCTION-TYPE

:L-R-Link IMPLEMENJTATION (KEY -COMPARATOR -INFO (N>' THE-H'T-LO)OKUPI)W

:Doc (FUNCTION-NAME) FUNCTION-1'YPE
('inserts -A (associated iu/ key -A) in the associative set -A.-)KEY-EQtIALITY-INVO (N> THE-HT-LoOOKUP))))
An element X occurs before anotherY if X's key -A V~s key.-)INPUT-PORT-NAME>.)DOC-BP>)ASSoCIATIVE-SET-LODOKUP Ifl)))
An element X replaces another Y if X's key -A Y's key.-
(INPUTf-PORT-NANE> (DOC-SP')ASSOCIATIVE-SET-ADD 1))))Oefru] e PAOPERTY-LIST-LOOKUP
)INP)7T-PORT-NAMdE>)DOC-BP>)ASSOCIATIVE-SET-ADD 2))) -Property List Lookup-
JINP(Yr-PORT-NAME>)DOC-BP>)ASSOCIATIVE-SET-ADD 3))) :RHS-Node-Typ*S
(FUNCTIxON-NAME (FUNCTrION-TlYPE))GET-AT-INDICATOR . GET))

(KEY-COKPARATOR-INFO (N> THE-Mr-INSERT))) :Input-Embedding
(FUNC1'ION-NAME (FUNC'TION-TYPE) I PROPERTY-LIST-LOOittP 1))GET-AT-INDICATOR 1))

)KEY-EQUALITY-INFO (N> ThE-NT-INSERT))))))PROPERTY-LIST-LOOKUP 2))GETr-AT-INDICATOR 2)))
:Output-Embedding

(Def rule ASSOCIATIVE-SET-REMOVE)) PROPERTY-LZS'r-LOOKVP 3))GET-AT-INDICA'IVR 3))

*Associative set Remove, L-R-Link IMPLEMENTATION
:RNS-Node -Types :Doc
()THE-ALIST-DELETlE . ASSOCIATIVE-LIST-DELETE)) (*looks up the value associated w/ the indicator -A in the-
:input-FEibedding property-list of the symbol -A.-
I)ASSOCIATIVE-SET-RUIOVE 1))THE-ALIST-DELE'TE 1)) (INPUTr-PORT-NAME> (DOC-BP> (PROPERTY-LIST-LOOIWP 2))
)(ASSOCIATIV-SET-REMOVE 2) (THE-ALISr-DELETE 2))))INPtyr-PORT-NAiEE>)DOC-BP>)PROPERTY-LIST-I.DOKUP 1)))))

:Output-Embedding
)(ASSOCIATMV-SCT-REMOVE 3))THE-ALIST-DELETE 3))))Defrule, HASH-LOCKUP

:L-R-Link IMPLEMENTATION -mash Table Lockup'
:Doc :RNs-lode-Types
(Ideletes an element associated w/ key -A in the associative -)CHT-LOOrUP . CHANINIM-h-r-LOOKUPJ)
set -A. An element X occurs before another Y if X's key -A - :Input-Embeddinig
YVs key. Keys are compared using -A.' (((HASH-LOOKtJP 1) (CHT-L4OOKUP 1))
(INPUTf-PORT-NAME> (DOC-BP> (ASSOCIATIVE-SE'r-REIOVE 1))) 1(HKASH-LOCKUP 2))CHT-LOOKUP 2)))
)INPU'r-PORT-NAME>)DOC-BP>)ASSOCIATIVE-SET-REMOVE 2)) :Output-Embedding
(FUNCTION-NAME)FUNCTIOH-TYPE)))ASH-LOOKV? 3))CHT-LOOKUP 3)))

)ItEY-COMPARATOR-IHTO (N> THE-ALIST-DELETEM)) :L-R-Link IMPLEMEN3TATION
(FUNCTION-NAME (FUNCTrION-TYPE :Doc

)KEY-ECUALIrY.-INFO (N> THE-ALXS'r-DELETEMM)) (*looks up an element with key -A from the Hash-Table -A.'
)INPUT-POST-NANE,. (oOC-BP> (HASH-LOOKUIP IM)

(Defru 1. ASS CZATZVE-SET-REWOVS (U4PUT-PORT-NAME>)ALL-BP, (HASH-L.OOKUP 2)))))
*Associative Set Remove'
:RHS-Nod&-Types (Defraile HASH-DELETE
)(THE-HT-DELETE . HASH-DELETE)) 'Hash Table Delete*
:Input-Embedding -RHS-Node-Types

)IASSOCIATIVE-SET-REMOVE 1))TNE-NT-DELETE 1))))CH'r-DELETE . CHAINING-HT-DELETE))
()ASSoCIATIVE-SErT-RUEDVE 2) (THE-HT-DELEITE 2))) :Input-zmbeding

ioutput-Eibedding,)))HASH-DELETE 1))CNT-DELETE M)
(((ASSOCZATIV8-SETr-R3MOVZ 3))ThE-HT-DELETE 3))) (NASH-DELETE 2))CH'P-DELETE 21))
:L-R-Link IMPLEMENTATION :Output-Embedding

.Doc)I)HASH-DELETE 3))CNT-DELETE 3))
'-deletes an element associated w/ key -A in the associative - L-R-Link IMPLEMENTATION
met -A. An element X occurs before another Y if X's key -A : Doc
Y's key. Keys are compared for equality using -A. * '-deletes an element with key -A from the Hash-Table -A.-
XINPU7r-PORT-NAM1E> (DOC-DP> (ASSOCIATIVE-SET-REDOVE IM)) INPU`T-PORT-HANE>)DOC-OP>)HSH-DELETE IJ))
(INPUr-PORT-NAME> (DOC-BP>, (ASSOCIATIVE-SET-REMOVE 2)))INPUrr-PORT-NANEL>)ALL-UP> (HASH-DELETE 2)))))
(FUNCTION-HAMS (FUNrION-TYPE
(XZY-COMPARATOR-INfFO)N> THE-NT-DELETE)))) IDefrule HASN-INSZRT

IFUNcTION-HNAE (FUNTITON-TYPE *Hash Table Insert'
)KEY-EQUALITY-INTD (Ni' THE-NI'-DELMTE))))) :RHS-Node-Types

((CNT-INSERT . CHAINING-NT-INSERT))
)Defrule ASSOCIATIVE-SET-LOOKUP -Input-ambadding

-Associative Set Lockup'))(HASH-INSERT 1))CHT-IHSERT 1))
:RNS-Node-'1ypes))HASN-INSERT 2))CNT-INSERT 2))
((THE-ALIST-LOOKUP . ASSOCIATIVE-LIST-WORKUP))))HASH-INSERT 3) (CNT-INSELRT 3)))
:input-Embedding :output -2sbeddi ng
((ASSOCIATIVE-SET-LOOKUP 1) (THE-ALIST-LOOKUP M)) (It(ASH-INSERT 4))CNT-IHSERT 4)))
(ASSOCIATIVE-SET- LOOKUP 2) (TNE-ALIST-LoOoKU 2))) :L-R-Link IMPLEmINTATZON

:output-tflbedding :Doc
)ASSBOCIATXVE-SeT-WOOKUP 3) (THE-ALIST-LOOKUP 3))) (*inserts -A with key -A into the hash-Table -A.*

t.-R-tLink IMPLEMENTATION (IHPUT-PORT-HANE, ICOC-BPi. (HASH-INSERT 1)))
:Doc (INWV'-PORT-MuANE.)DOC-DF>)HASH-IN5ERtT 2)))
(-locks up an eleiment associated w/ key -A In the associative - JINPUfl-POKT-HNE,'> (ALL-BP> (HASH-INSERT 3)))))

set -A. An elemient X occurs before another Y if X's key -A -
Y's key. Keys are compared using -A.')Defrule CHAINING-NT-LOCKUP
)INPUT-PORT-NAME> (DOe-9P>)ASSOCIATIVE-SET-LOOEUP M)) -Chaining Nash Table Lockup'

302

:RHS-Node-Types
((RETR IEV-AND-SEARCH . FETCH.LOOKUP)) :Input -Ebeddi ng
:Input -Embedding M(FETCH.DELEITE 1) (REMOVE 1))
()CHAINING-HT-LOCKUP 1) (RET IEVE-AND-SEARCH 1) 3 (FETCH-DELEITE 1) (HASH-THE-KEY 1))
((CHAINING-HT-LOOKUP 2) (RETRIEVE-AND-S&ARCH 2))) ((FETCN.DELETE 2) (HASH-THE-KEY 2)

:Output-Embedding INIUMER-BUCKETS)
)(CHAINING-HT-LOOKP 3) (RETRIEVE-AND-SEARCH 3))) U(FETH.DELETE 2) (UPDATE-BUCKETrS 3)

:L-R-Link IMPLEMENTATION BUCKETS)
:Doc ()FEICH.DELETE 2) (FETCH-BUCKET 1)
'-looks up an element with key -A from the chaining - BUCKETS))
hash-tabl* -A.' :Output-Embedding

)INPUT-PORT-NAME>)DOC-BP> (CHAINING-NT-LAOCKUP 1)))) MFETCH*DELETE 3) (UPDATE-BUCKEITS 4)
(INPUT-PORT-NAME>)ALL-BP> (CHAINING-H'r-LOOKUP 2))))) BUCKETS))

:St-Thrus
(Defrule CHAINING-NT-DELETE)(FETCH.DELETE 2) (FETCH.DELETK 3)

-Chaining Hash Table Delete' NUMBER-BUCKETS))
:RHS-Node-Typos ;L-R-Link COKPOSITION
HRETRIEVE-AND-DELETE . CHAINING-HT-FILL-COtUT-DELETE)) :Doc
:Input-Embedding 1'deletes an element with key -A from the hash-table, -A. which is-
((CHAINING-NT-DELETE 1) (RETRIEVE-AND-DELETrE M) implemented as a sequence -A of buckets. The bucket is fetched by-
)ICHAINING-HT-DELETE 2) (RETRIEVE-AND-DELETE 2))) indexing into the sequence using an index computed by applying a

:Output-2mbedding hash function to the key -A and the number of buckets in the hash
)(CHAINING-NTr-DELETE 3) (RETRIEVE-AND-DELETE 3))) table -A.-4-

:L-R-Link IMPLEMENTATION teach bucket is implemented as an associative list.-I-
:Doc Collision resolution is performed using a chaining strategy,-
'-deletes an element with key -A from the chaining - (INPiUr-PORT-NANE> (DOC-BP> (FETCH.DELETE W))
hash-table -A. * (INPUT-PORT--NANE> (ALL-BP>)FETCH.DELETE 2))

(rNPUTr-PORT-NAME> (DOC-BP> (CHAINING-HT-DELETE 1))) (INPUTr-PORT-NANE>)SOC-BP>)FETCH.DELETE 2) BUCKETS))
(INPUT-PORT-NAME> (ALL-UP> (CHAINING-HT-DELETE 2))))) (INPUT-PORT-NAME> (DOC-BP> (FETCH.DELETE M))

(INPUTr-FORT-NANE> (DOC-BP> (FETCH.DELETE 2) NtUMER-BUCKETS))))
)Defrule, CHAINING-NT-INSERT

'Chaining Nash Table Insert* (Defrule FETCH+INSERT
miHs-Node-Types *Fetch Bucket and Insert Element'
((RETRIEVE-AND- INSERT . CHAINING-HT-FILL-COCNT-INSERT)) ARHS-Node-Types
:Input-Embedding ((COMPUTE-HASH . HASH-FUNCTION)

((CHAINING-NT-INSERT 1) (RETRIEVE-AND-INSERT 1)) (FETCH .SELECT-TERN)

((CHAINING-NT-INSERT 2) (RmTIEVE-AND-INSERT 2)) (INSERT ASSOCIATIVE-LIST-INSERT)
(ICHAINING-NT-INSERT 3) !RETRIEVE-AND-INSERT 3))) (UPDATE .NEW-TERN))

:Output-Embedding :edge-List
((CHAINING-NT-INSERT 4) (RETR IEVE-AND- INSERT 4))) (((CCJIPUrE-HASH 3) .(UPDATE 2))

:L-R-Link IMPLEMNiTATION ((COiKijrE-HASH 3) .(FETCH 2))
:Doc ((FETCH 3) (INSERT 3))
('inserts -A with key -A into the chaining Hash-Table -A., ((INSERT 4) .(UPDATE 1)))

(INPUT-PORT-NAME> (DOC-BP> (CHAINING-NT-INSERT IM) -Input-Embodding
(INPUT-PORT-NAME> (DOC-BP> (CHAINING-NT-INSERT 2))) (((FETCH+INSERT 1) (INSERT M)
(INPUT-PORT-NAME> (ALL-UP> (CHAINING-NT-INSERT 3))))) ((FETCH+INSERT 2) (INSERT 2))

((FETCN.INSERT 2) (COKPUTlE-HASH 13))
(Defrule FETCHLOOKUP ((FETCH+INSERT 3) (COMPU`TE-HASH 2)
-Fetch Bucket and L~ookup Element- NWMER-BUCKETS)
:RHS-Node-Types ((FETCN+INSERT 3) (UPDATE 3)
ý(HASH-KEY-AND-SIZE . HASH-FUx4CTION) BUCKETS)
(GET-BUCKET . SELECT-TERM) ((FETCN+INSERT 3) (FETCH 1)
(LOOKUP . ASSoCIATIVE-LIST-LOOKUP)) BUCKETS))

SEdge-List :Output-Embedding
(((HASH-KEY-AND-SIZE 3) . (GET-BUCKET 2)) ((FETCH+INSERT 4) (UPDATE 4)

((GET-BUCKET 3) . (LOOKUP 2))) BUCKETS))
:Input-Embedding :St-Thrus
(((FETCH+LOOKUP 1) (LOCKUP M) ((FETCN.INS&RT 3) (FETCN.INSEWI' 43

((FETCH+LODOKUP 1) (HASN-KEY-AND-SIZE M) EUMBER-BUCKETS))
((FETCH+LOOKUP 2) (HASH-KEY-AND-SIZE 2) :1.-R-Link COMPOSITION
NUMBER-BUCKETS) :Doc
((FETCN.LOOKUP 2) (GET-BUCKET 1) (linserts -A into the hash-table, -A. which is implemented as a-
BUCKETS)) sequence -A of buckets. The bucket is fetched by indexing into-

:Output-Ombodding the sequence using an index computed by applying a hash function-
(3(FETCN+tLOOKUP 3) (LOOKUP 3)) to the key -A and the number of buckets in the hash table -A.-I-
:L-R-Link COMPOSITION Each bucket is implemetnted as an associative list.-&I-
:Doc Collision resolution is performed using a chaining strategy.-
('looks up an elemnt with key -A from the hash-table -A. - (INPUT-PORT-NAMEZ> (DOC-BP> (FETCH.INSER 1I)

which is implermeted as an sequence, -A of buckets. The - (INPUT-PORT-NAME> (ALL-B?> (FETCH+INSERT 3))
bucket is fetched indexing into the sequence using an - (INPUT-PORT-NAMZ> (DOC-OFP> (?fECN+INSERT 3) BUCKETS))
index computed by applying a hash function to the key - (INPU1T-PORT-NA1ME> (DOC-UP> (FETCH.INS~T 23)
-A end the number of buckets in the hash table -A.-I- (INPUT-PORT-MNAM> (DOC-BP> (FETCH.INSERtT 3) fNOWER-SUCKETSM))
Each bucket is implemented as an associative list.-4-
Collision resolution is performe using a chaining strategy. * (Defrule, CHAINING-HT-FILL-COIMI'-DELET

(INPUr-PORT-NANE> (DOC-UP> (FZTCMCLOOKUP 1))) 'Hash Table with Fill Count Delete-
(INPUTr-PORtT-NAME> (ALL-UP> (FETCN+LOOgUP, 2))) :RHS-Node-Types

(INPUT-FORT-NAME> (DOC-UP> (FZTCN.LOOKDP 2) BUCKETS)) t(lDELITE-BENUIU . FETCHDELETE)
(INPUT-PORTI-NAME> (SOC-UP> (FETCM+LOCKUP IM) (DECROONfl-ELT-COUNT . DSCRIWT))
(INPt7I-FORT-NAME> (SOC-UP> (FETCN+LOOKUP 2) kEUEBR-BUICKETS))) :Input-Ombedding

(((CHA1N!NG-HT-FILL-COUWr-DELZTE 1) (DELETE-ZELUIDT I1I)
(Defrule, FETCH+DELZTZ ((CHAINING-HT-FILL-cOU1?r-DELZTZ 2) (DELETE-ELUWZMT 2)

'Fetch Bucket and Delete Element' HASH-TABLE)
:RHS-Node-Types ((CHAINING-MT-FIL.L-COUMl'-DZL,5TK 2) (DECREIDP-ELT-CO(RET 1)
((HASH-THE9-KEY .HASH-FUNCTION) FILL-CO(MT()

(FETCH-BUCKET SELECT-1 R) :output-Imbedding
(RUMOVE . AOSOCIATIVZ-LIST-DELZTZ) (((CHAINING-NT-FILL-COCUT-DELWETS 3) (DELETE-ELDIDIT 3)
(UPDATE-B1UCKETS . NW-TERN) HASH-TAOLE)

:Edge-List ((C~hINIMG-Wl'-FILL-COUM1-DSLETZ 3) (D8CRUI3If-ELT-C~trT 2)
(((HASH-THE-KEY 3) .(UFDATE-SUKETS 2)) FILL-COUNT))

((HASH-THE-KEBY 3) . 3E'EH-SUCKET 2)) :St-Thrus
((FETCH-BUCKET 3) .(R]OWE 2)) (((CHAINIM0-Wl'-FILL-COUNT-DELZTE 2) (CHAINING-MT-FILL-COUNIT-DELETS 3)
f((PUVV 3) . (UPDATE-BUCKETS 13) FILI.-C~tTj)

:L-R-Link CXXMPITION

303

iDoc :Doc
)Ideletes an element With key -A from the chaining - (*looks up the element associated w/ key -A -A in the associative-
Hash-TableFill-Count -A. This is a hash-table which - list -A.'
contain* a fill count -A. keeping track of the number of - (FtI0CTZON-NANE (FUNCTION-TYPE
elements in the hash tabl*. * (KEY-EQUALITY-INTO (Ni ASSOCIATIVE-LISI'-LOOIWP))))

(IMP~7r-PORT-NANE>)DOC-BP> (CI4AININO-HT-FILL-COUNT-DELETE 1))) (INPiUT-PORT-NANE> (DOC-BPi (Ass CIATIVE-LIST-LCOICUP 1)))
(INPUrr-PORT-NAME. (ALL-SP> (CKAININO-MT-FILL-COUNT-DELETE 2))) (INPUr-PORT-NAME,. (DOC-BPi (ASSOCIATIVE-LMS-LOOKtIF 2))JJ
(INPUTf-PORT-NANE>)DOC-BP> (CHAININO-WT-FILL-COUNT-DELETE 2)

FILL-COUNT)))) (Defrule ASSOCIATIVE-LIST-LOOKI3?
-Associative Linked List Lookup-

(De frule CHAINING-NT-FILL-COUNT- INSERT :RJ4S-Node-Types
'Hash Table with Fill Count Insert* ((THE-OAL- LOOKUP . ORDER ED-ASSOC- L IST- LODOKUF))J
:RI4S-Node-Types :Input-Embedding
((ADD-ELEIENtT . FETCH.XNSERT) I))ASSOCIATIVE-LIST-LOOKUP 1) (THE-OAL-LOOKUP W)
(INCREMENT-ELT-COUNT . INCRERNEST)))ASSOCIATIVE-LIST-LOOKIIP 2) (THE-OAL-L4flOKUP 2)))
I nput -Embedd Ing :output-bibedding
((CKAININa-HT-FILL-COUONr-INSERT 1))ADD-ELD4FJ4T 1)) (() ASSOCIATIVE-LIST-WooKIP 3))ThE-OAL-LooIW? 3)))

)(CHAZNING-HT-FILL-COUt4T-INSERT 2) (ADD-ELEMENT 2)) :L-R-Link IMPLEMNDTATION
))CHAININO-NT-FILL-COUNT-INSERT 3)) ADD-ELFJEDIT 3) :Doc
HASH-TABLE) (-looks up the element associated w/ key -A -A in the associative
)(CHAINING-HT-FILL-COUNT-INSERT 3) (INCREM~rr-ELT-COUNT 1) list -A,-
FILL-COUNT)) (FUNCTION-NAMES) FUNCTION-TYPE

:Output-Embedding (KEY-EQUALITY-INFO (N> ASSOCIATIVE-LIST-LOOKtW))))
)(CHAININO-HT-FILL-COUNT-INSERT 4) (ADD-ELDIF3FP 4) (INPUT-PORT-NAIE>i)DOC'BP> (ASSOCIATIVE-LIST-LOOKUP 1)))

HASH-TABLE))INPUTf-PORT-NANE>)DOC-BP> (AssociATIVS-LIST-LDOKup 2))))) j
)(CHAINING-HT-FILL-COUNT-INSERT 4) (II4CREMD4T-ELT-COUINT 2)
FILL-COUNT)) (Ilefrul. ASSOCIAT IVE -LIST-DELETE

:St-Thrus 'Associative Linked List Delete*
)(CKAININO-HT-FILL-COUNT-INSERT 3) ENHS-Node-Types
)CHAINING-HT-FILL-CCUNT- INSERT 4)) (THE-UOAL-DELETE . UNORDERED-ASSOC-LIST-DELETE))
FILL-COUNT)) :Input-Embedding

:L-R-Link COMAPOSITION (I ASSOCIATIVE-LIST-DELETE 1))THE-UOAL-DELETE 1))
:Doc U(ASSOCIAkTIVE-LIST-DELETE 2))THE-UOAL-DELETE 2)))
(*inserts -A with key -A into the chaining - :Output-Embedding
Hash-Table.Fill-Count -A. This is a hash-table which -))(ASSOCIATIVE-LIST-DELETE 3) (THE-UGAL-DELETE 3)))
contains a fill count -A. keeping track of the number of - :L-R-Link IMPLEMENTATION
elements in the hash table.,* :Doc
(INPUr-PORT-HAKE> (DOC-SPi)CHAINING-)tT-FXLL-COUNT-INSERT M)))-deletes the element associated w/ key -A -A in the associative-
(INPUT?-PORT-NANE> (DOC-BP>)CAHAININ-MT-FILL-COMUN-INSERT 2)) list -A.-
(INPU7r-PORT-NAJKE>)ALL-BP>)CKAINING-HT-FI LL-COUNT- INSERT 3)) (FUNCTION-NANE (FUNCTZON-TYPE
IINPUrr-PORT-MANE>)DOC-BP>)CHAININO-MT-FILL-COUNT-INSERT 3) (XEY-EQUALITY-INFO (N> ASSOCIATIVE-LIST-DELETE))))

FILL-COUNT)))) (INPUTr-PORT-NA.NE> (DOC-BP> (ASSOCIATIVE-LIST-DELETrE 1)))
(INPUT-PORT-NANE,)DOC-BP>)ASSOCIATIVE-LIST-DELETE 2))j)))

Figure 4-24.
(Vef rule ASSOCIATZVE-LIST-DELETE

(De fru le LOOKU?-DZSTINATION 'Associative Linked List Delete-
-Lookup Destination Node- :RS-Node-Types
:RHS-Nod*-Types))THE-OAL-DELETE . ORDEREO-ASSOC-LIST-DELETEg))
((COMPUT1E-DEST . SELECT-TERN)) :Input-Embedding
:Input-EMbedding (I) ASSOCIATIVE-LIST-DELETE 1))THE-OAL-DELETE 1))
((L40OKtIP-DESrINATION 1))COMP(7FE-DEST 1)) 1 (ASSOCIATIVE-LIST-DELETE 2))THE-OAL-DELETE 2)))
)(LOOKUP-DE.STINATION 2) (CONMt?1E-DEST 2) :Output-Embedding
DEST-ADOR)) (I (ASSOCIATIVE-LIST-DELETE 3))TNE-OAL-DELETE 3)))

:Output-Cmbedding :L-R-Link IMPLEMENTATION
)(LOOKUP-DESTINATION 3) 1CO4PUTrE..DEST 3))) :Doc

:L-R-Lirik COMPOSITION (-deletes the element associated w/ key -A -A in the associative-
:DOC list -A.*
(*looks up the node whose address is in the Deat-Addr pert of - FUNCTION-NAHE (FUNCTION-TYPE

message -A.-* (KEY-EQUALITY-INFO (N> ASSOCIATIVE-LIST-DELETE))))
(INPE7F-PORT-NANE, (DOC-BF>)LOOKUP-DESTINATION 2))))) (INP(7r-PORT-NAME> (DOC-BP> (ASSOCIATIVE-LIST-DF.LETE I)))

(INPU7r-PORT-NANE>)DOC-DP>)ASSOCIATIVE-LIST-DELETE 2)))))
Figure 4-24.

(Detrule AS90CIATZVE-LIST-ZNSEftT
(Defrule RECORD-AT-DESTINATION -Associative Linked List Insert*

-Record Node at Message Destination' ENS-Node-Types
:RHS-Node-Types U(THE-IRIORERED-AL-INSKRT . (A4ORDERELD-ASSOC-LIST-INSERT))
((RECORD . 1431-TERN)) : Input-Rabedding
:Input-ftbedding)) ASSOCIATIVE-LIST-INSZRT 1))THE-IR4ORDERED-AL-IMSERT 1))
(I (RECORD-AT-DESTIMATION 1) (RECORD 2)) 1)ASSOCIATIVE-LIST-INSERT 2))THE-UNORDERED-AL-INSERT 2))

(ORECORD-AT-DESTINATION 2) (RECORD 2)))ASSOCIATIVIE-LIST-INSERT 3) (THE-UNORDKEZD-AL-INSERT 3)))
DEST-ADDR) :Output-Embedding
)(RECORID-AT-DESTIMATION 3) (RECORD 3))))) ASSOCIATIV-LIST-INSERT 4) (THE-UNiRDERED-AL-INSERT 4)))

:output -09bedding :L-R-Link IMPLEMENTATION
)H(RECORD-AT-DESTINATION 4) (RECORD 4))) :Dcc
:L-R-Link COMPOSITION (*inserts -A (associated w/ key -A) in the associative list -A.-&-
:Doc An element X replaces another Y if X's key -A Yes key.*
('records node -A at the address in the Dest-Addr pert of -(INP(7T-PORT-NANE> (DOC-BP> (ASSOCIATIVE-LIST-INSERT 1)))

message -A in the address map -A.-* (INPIUr-PORT-NANZi.)DOC-DP>)ASSOCIATIVE-LIST-INSERT 2)))
(IMPUTr-PORT-NMAN> (DOC-SP> (RECORD-AT-DESTINATION M)) (INPUT-PORT-NMAN> (DOC-EP, (ASSOCIATIVE-LIST-INSERT 3)))
(INPUT-PORT-NMAIZ> (DOC-EP, (WEORD-AT-OESTINATION 2))) (FUNCTION-NANE (FUNCTION-TYPE
(IMPUT-PORT-MAME. (DOC-EP, (RECORD-AT-DESTINATION 3))))) (KEY-EQUALITY-INFO (Ni. ThE-UNORDERZD-AL-INS2RT))))))

IDef rule ASDOCIATIVE-LI ST-LOOKUP) Defrul a ASSOCIATIVE-LIST- INSERT
'Associative Linked List Lookup- -Associative Linked List Insert-
.RHS-Node-Types :RNS-Node-Types
()TME-UOAL-LOOKUP . UNORDERED-ASSOC-LIST-LOOKUPI) ((THE-OAL- INSERT . ORDSR&D-ASSOC-LIST-INSERTJ)
iInput-2mbedding :Input-8mbedding
M)ASSOCIATIVE-LIST-LOOKUP 1) (TME-(JOAL-LOOKt3P 1)) (((ASSOCIATIVE-LIST-INSERT 1) (THE-OAL-INSERT M)
((ASSOCIATIVE-LIET-LoOKUP 2) (THE-UOAL-LOOKUP 2))) ((ASEOCIATIVEt-LIET-INSERT 2) (THIL-OhL-INSEERT 2))
:Output-2mbedding ((AS9OCIATIV&-LI2T-IMSERtT 3) (THIE-OAL- INSERT 3)))
(((9SSOCIATIvz-LIsT-L~oEuP 3) (TME-U0AL-L0OKUP 3))) :Output -Ambeddi ng
:L-R-Llnk INPLOUMWATION (((ASSOCIATIVEt-LIST-INSERT 4))THE-OAL-INSIRT 4)))

:L-R-Link IMPLUID1TrATIOM

304

:Doc -A whose key is -A -A.,
(*inserts -A (associated w/ key -A) in the esso-lative (INPfl-PORT-NAME> (0CC-BP>)IR4ORDERED-ASSOC-LIST-DELETE 2)))

list -A.-tA- (FUNCTION-NAME (FUNCTION-TYPE
An element X replaces another Y if X's key -A Y's key.* (KEY-EQUALITY-INFO (N> tSIORDERED-ASSOC-LIST-DELETE))fl

(INPUTr-PORT-NAME> (DCC-BP" (ASSOCIATIVE-LIST-INSERT W)) (INPUT-PORT-NAME' (0CC-BP> (tREORDERED-ASSOC-LIST-DELETE 1)1)
(INPff-PORT-HAME> (DCC-UP> (AsSOCIATIVE-LIsT-INSERT 2))
(INPUT-PORT-NANE> (DOC-DP> (ASsoCIATIVE-LIST-INSERT 3)) (Defrule PQ-DENEERATION
FuNCTION-NAmE (FuNCTION-TYPE -Priority Queue Enumeration-

IRBY-EQUALITY-INFO (N> ASSOCIATIVE-LIST-INSERT)))))) :RHS-Nods -Types
((P0-ZNUH-FINISHED? . P9-DIRTY)

(Oaf rule UNIORDERED-ASSOC-LIST-LO4OKUP (PG-EJXTRACT-NEXT .PO-EXTRACT))
*Unordered Associative Linked List Lookup- : Input-Embedding
ANMS-Node-Types (((PQ-ENUKERATION 1) (PO-EXTRAC'r-NEXT 1))
((UOAL-ENUk LE) ((PO-ENUMERATION 1) (PQ-ENUM-FINISHED7 1))
(FIND-ELT EARLIEST-EQUAL-PRIORITYI) ;Output-Embedding

:Edge-List ((UPQ-EWJWERATION 2) (PO-EXTRACT-NEXT 2)))
())UOAL-ENUM 2) .(FIND-ELT 1)) :L-R-Link COMPOSITION
:Input-Embedding : Doc
))(tNORDERED-ASSOC-LIST-LOOKUP 1) (FIND-ELT 2)) ('enumerates all of the elements in the Priority-Queue -A,-&-

((UNORDERED-ASSOC-LIST-LOOKUP 2) (UOAL-DENU 1))) by destructively extracting them from the queue.'
:output -Embedding (INPUT7-PORT-NAME> (0CC-BP> (PO-DRUMERATION 1))
j(U1NORDERED-ASSOC-LIST-LOOKUP 3) (FIND-EL? 3)))

:L-R-Link COMPOSITION (Defrule PQ-EKPTY
:Doc -Priority Queue Emty-
('#*arches the elements of the unordered associative list -A - :XMS-Node-Types

for an element with key -A -A. If no such element is - ((DIRTY-LIST7 . TEST-PREDICATE))
found, NIL is returned.. : Input-m-eding

(INFMTf-PORT-NAME> (0CC-BP> (UNORDERED-ASSOC-LIsT-LOOKUP 2))) U ((P9-DIPTY 1) (DIPTY-LIST? 1)))
(FUNCTION-NAME (FUNCTrION-TYPE :L-R-Link IMPLDMENTATION

(KEY-EQUALITY-INFO (N> UNORDERED-ASSOC-LIST-LOOKUP)))) :Doc
)INPVT-POAT-NAME> (DCC-BP> (UNORDERED-ASSOC-LIST-LCODKIP MM)) (*tests whether the Priority Queue -A is empty A

(INPUT-PORT-NAME> (0CC-BP> (PQ-DIPTY 1))))
)Defrul. LWORDERED-ASSCC-LIST-INSERT

Unordered Associative Linked List Insert (Defrule P0-EXTRACT
:RHS-Node-Types -Priority Queue Extract-
((UOAL-PUSH . LIST-PUSH)) :AMS-Node-Types
:Input-Embedding ((EXTRACT-FROM-CAL . ORDERED-ASSOC-LIST-EXTRACT))

)(UNORDERED-ASSOC-LIST-INSERT 1) (UOAL-PUSH M) : Input-ambedding
)(UNORDERED-ASSOC-LIST-INSERT 2) (UOPAL-PUSH 2))) (((PO-EXTRACT 1) (EXTRACT-FROM-OAL M))

:Output-Embedding :Output-Embedding
)(UNORDERED-ASSOC-LIST-INSERtT 3) (UOALL-PUSH 3))) (((P0-EXTRACT 2) (EXTRACT-FROM-OAL 2))

:L-R-Link IMPLEMENTATION ((P9-EXTRACT 3) (EXTRACT-FROM-OAL 3)))
:Doc :L-R-Link IMPLEMENT'ATION
(-inserts -A into the unordered associative list -A. * :Doc
(INPUT-PORT-NAME> (DOC-BP> (UNORDERED-ASSOC-LIST-INSERT IM) ('extracts the highest priority element in the Priority Queue -A.-4-
(INPUT-PORT-NAME> (0CC-UP> (UNORDERED-ASSOC-LIST-INSERT 2))))) The priority queue is implemented as an ordered associative list.-

(INPUT-PORT-NAIIE> (DCC-UP> (EXTR.ACT-PROM-OAL 1))))
(Defrule UNOROERRD-ASSOC-LXST-DIPTY?

*Ulnordered Associative List Emty' (Defrule P0-INSERT
:RNS-Node-TYpes 'Priority Queue Insert'
((UOAL-D~rTY? . LIST-DIPTY)) -RHS-Noft-Types
:Input-Embedding ((ORDERED-SPLICE-IN . ORDERED-ASSOC-LIBT-INsERT))
)((UNORDERED-ASSOC-LIST-DIPTY? 1) (UOAL-DIPPY? 1)) :Input-Embedding
:L-R-Link IMPLEMENTATION (((P0-XNSERtT 1) (ORDERED-SPLICE-IN M)
:Doc U(PQ-INSERT 2) (ORDERED-SPLICE-IN 2))
(*tests whether the unordered associative list -A is smpty.* ((P0-INSERT 3) (ORDERED-SPLICE-IN 3)))
(INPUT-PORT-NAME> (0CC-UP> (UNORDERED-ASSOC-LIST-DIPT? 1))))) :Output-Embedding

(((P0-INSERT 4) (ORDERED-SPLICE-IN 4)))
(Defrul e PITERMEDIATE-UOAL-DELETE : L-R-Li nk IMPLUIDITATION
'Unordered Associative Linked List Delete (Intermediate) * :Doc
:RHS-Node-Types (linserts -A in the priority queue -A.-4-
((GDENRATE-C'URRENT+NKJT-SUBLIST . TRAILING-ODENRATB) An element's priority P is higher than another's Q, if P -A Q.-%-

(LIST-EXtAUSTEtD .TRUNCATE) if an element already exists in the priority queue with the same-
(ELTS-UEFORE-P .TRIMCATE-EQUAL-PRIORITY-READ) priority, then the new element is inserted into the queue after-
(COLLECT-RUIAININD . CONS-ACCUMULATE-UP-FROM-SUSLIST)) the existing element.-

:Edge-Liot (INPTI'-PORT-NANE> (0CC-UP> (ORDERED-SPLICE-IN 1)))
(((QZuERATE-CURRD1TNEI=-SUBLIST 3) .(COLLECT-RDIAININV 2)) (INPUT-PORT-NAME> (0CC-UP> (ORDERED-SPLICE-IN 3)))

((QDIERATE-CURRDPP>N=X-SUBLIST 2) .(LIST-EXHAUSTED) M) (F!RCTION-NMEM (P)3CTION-TYPE
((LIST-EDIAUSTED 2) .(ELTS-SUEOR-P 1)) (PRIORITY-COMPARATOR-INFO (Ni' ORDERED-SPLICE-IN))))))

UEZLTS-BEPORE-P 3) .(COLLECT-RDIAIMNII 1)))
:Input-mabadding (Defrule ORDERED-ASSOC-LIST-INSART
(((INTEAIIEDIATE-U0AL-OELXTE 1) (ELLTS-UEFORZ-P 2)) *Ordered Associative List Insert-

(INTERMEDIATE-UOAL-OELETE 2) :RNS-Node-Types
)CDIERATZ-CURRDIPNT+NT-SU&IIST M) ((¶¶IE-WISAFE-IN62RT . GRDZR6D-A2SSC-LIGT-IM8ERT-UN9AIE))

j(INFMT1RZIATE-U0AL-DELZTr 3) (COLLECT-RDIAINING 2))) :Input-8mbedding
:output -mbedding U (ORDERED-ASSOC-LIST-INSERT 1) (THE-UNSAFE-INSERT 1))
)(j(INTEUMZIATE-UOAL-DELETE 4) (COLLECT-RUIAININr 3))) ((ORDERED-ASSOC-LIST-INSERT 2) (ThE-UNSAFE-INSERT 2))
:L-R-Link COMPOSITION ((ORDERED-ASSOC-LIS-INSZR 3) (ThE-UNSAFE-INSERT 3U))
:Doc :Output -Zmedi ng
(Iintermediate nonterminal: Unordmred-Assoc-List-Delete.1)) (((ORDERED-ASSOC-LIST-INSERT 4) (THE-UNSAFE-INSERT 4)))

:L-R-Link IMPLUIDITATION
(Defrule UM0@DERD-ASSOC-LIS)'-DELPrZ :Doc

'Unordered Associative Linked List Delete' ('inserts -A in the ordered associative list -A, associated with
:RMS-Node-Types priority -A. An element X occurs before another Y if X's priority
((SPLICB-OUT-EZLr . INTREAIDIATZ-UOAL-DELET)) -A Y's priority.*
:Input-anbedding (IMPUfl-PORT-MAIIE> (0CC-UP> (ORDERED-AS90C-LIST-INSERT 1))l
f(UUORDERED-A8S0C-LIVT-DELETE 1) (SPLICE-OW-ELT I)) (INPUT-PORT-MAME> (Doe-UP>- (ORERED-ASSOC-LIST-INSERT 31)))

)IUMORDERED-ASSOC-LIST-DELMT 2) (SPLICE-OW-ELT 2))) (IIIP!7-PORT-NAIIE> (DOIC-UP>- (ORDERSD-ABSOC-LIST-INSERT 2)1))
:Output-Omboddlng (F(RE'IION-NAME WFUNOTION-TYPS
U)UN1ORDERZD-ASS0C!-LIST-DEL=T 3) 4SPLICE-OU7-ELT 4))) (PRIOR ITY-COMPARATOR- INTO (Ni' THE-~USAFE-INSERT1)))))
:L-R-Link COMPOSITION
:Doc (Defrule ORDERED-ASSOC-LIST-INSCRT
('splices out the element of the unordered associative list -ordered Associative List Insert'

305

:RKS-Nod*-Types (DOtrial. ENUM-0AL-FR(XNr-UNSAPE
((THE-SAFE-INSERT .ORDERED-ASSO)C-LIST-INSERT-SAPE)('Unsafe Enumerate Ordered Associative List Front-
:Input-Embedding :RHS-Nod.-'!ypes
I (ORDERED-ASSOC-LIST-INSERT 1) (THE-SAFE-INSERT 1)) 1 (CDR-DOMN-FROM . GENERATE)
((ORDERED-ASSOC-LI ST-INSERT 2) (THE-SAFE- INSERT 2)) (HEAD-BELONG- IN-FRONT? .TRURCATE-OAL-POSITION-UNSAFE)
HORDERED-ASSOC-LIST-INSERT 3) (THE-SAFE-INSERT 3))) (EXTRACT-HEAD . CAR-MAP))

:Output-Embedding :Edge-List
(((ORDERED-ASSOC-LIST-INSERT 4) (THE-SAFE-INSERT 4))) I))CDR-DO~ffi-FRONT 2) .(EXTRACT-HEAD 1))
:L-R-Link IMPLEMENTATION (()CDR -DOWN- FRONT 2))HEALD-BELONG-IN-FRCMT? 1)))
:Doc :Input-Embedding
('inserts -A in the ordered associative list -A. associated - (((ENUM-OAL-FRONT-UNSAFE 1))CDR-DOWN-FRONT 1))
with priority -A. An element X occurs before another Y if - ((ENRJN-OPAL-FRONT-UNSAFE 2) (NEAD-BELflNG-IN-FRONT? 2)))
X's priority -A Yf's priority.- :Output-Embedding
(INPUT-PORT-NAME> (DOC-DP>)ORDERED-ASSOC-LIST-INSERT 1))) I((D4NUM-OAL-FRONT-UNSAFE 3) (EXTRACT-HEAD 2)))
(INPUT?-PORT-NAI4E> (OOC-BP>)ORDERED-ASSOC-LIST-INSERT 3))) :L-R-Link COMPOSITION
(INPUT-PORT-NAME> (DOC-BP> (ORDEREO-ASSOC-LIST-INSERT 2))) 'Doc
(FUNCTION-NAME (FUNCTION-TYPE 'e~numnerates the elements of the Ordered Associative list -A up to. -I-
(PRIORITY-COMPARATOR-INFO (N> TNE-sAPE-INSERT)))))) but not including, the element (if any) that has equal or lower -

priority than -A. If 'rhere is no such element, all elements of the-
(Defrule ORDERED-ASSOC-LIST-INSERT-SAFE list are enumerated. Priority equality is tested using -A and the-

'Ordered Associative List Insert Safe' priorities ore ordered by -A.-
.RHS-Node-Types (INP(7T-PORT-NAXE> (DOC-BP> (COR-DOON-FRONT 1)1))
HENUNERATE-FRONT , F2IUM-OAL-FRONT) (INPUT1-PORT-NANE> (DOC-5P> (HEAD-BELONG-IN-FRONT? 2)))
(FIND-TAIL .FIND-OAL-TAIL) (FUNCTION-NAME (FUNCTION-TYPE
(DO-INSERT .OAL-SPLICE-IN))) PRIORITY-EOUALITY-INFO (N> EN4UH-OAL-FRONT-UNSAFE)(((

:Edge-List (FUNCTION-NAME (FUNCTION-TYPE
(((ENUMERATE-FRONT 3) . (DO-INSERT 1)) (PRIORITY-COMPARATOR-INFO (N> ENU14-OAL-FRONT-UNSAFE))))

((FIND-TAIL 3) . (DO-INSERT 3)))
Input-Ebedding(Df rule FIND-OAL-TAI L-UNSAFE

(((ORDERED-ASSOC-LIST-INSE.RT-SAFE I) (DO-INSERT 2)) 'Unsafe Find ordered Associative List Tail'
)(ORDERED-ASSOC-LIST-INSERT-SAFE 2) (FIND-TAIL 2)) zRNS-Node-Types
((ORDEREO-ASSOC-LIST-INSERT-SAFE 2) (ENUMERATE-FROMT 2))))PREV-CURRENT-SUBLISTS . TRAILING-GENERATE)
((ORIiERED-ASSOC-LIST-INSERT-SAFE 3) (FIND-TAIL 1)) (THE-SAFE-EARLIEST . EARLIEST-OAL-POSITION(
((ORDERED-ASSOC-LIST-INSERT-SAFE 3))fl~uMERATE-FRONT 1))) (THE-UNSAFE-EARLIEST . EARLIESTl-EO3AL-PRIORITY-NEAD(

:Output-Embedding ~Edge-List
((IORDERED-ASSoC-LIST-INSERT-SAFE 4) (DO-INSERT 4))) ((UPREV-CURREmT-SUBLISTS 2) .(THE-UNSAFE-EARLIEST 1))
:L-R-Link COMPOSITION ((PREV-CURRENT-SUBLISTS 2) .(THE-SAFE-EARLIEST I))
:Doc :Input-Embedding
('inserts -A (associated w/ priority -A) in the ordered -)((FIND-OAL-TAIL-UNSAPE 1) (PREV-CURRD(T-SUBLISTS 1))

associative list -A. An element X occurs before another Y - ((FIND-OAL-TAIL-UNSAFE 2) (THE-UNSAFE-EARLIEST 2))
if X's priority -A Yf's priority.-4- ((FIND-OAL-TAIL-UNSAFE 2) (THE-SAFE-EARLIEST 2f))
If an element already exists in the list with priority -A. - :output-ambedding
then the new element is inserted into the list after the - (((FIND-OAL-TAIL-UNSAFE 3) (PREV-CURRENT-SUBLISTS 3))
existing element.-) (FIND-OAL-TAIL-UNSAFE 3) (THE-SAFE-EARLIEST 3)))
IrNPUT-PORT-NANE> (DOC-RP> (DO-INSERT 2)) :L-R-Link COMPOSITION
(INPUT-PORT-NAME> (DOC-BP> (ERUNERATE-FRONT 2)) :Doe
)INPUT-PORT-NAiEE, jDOC-BP> EN4UNERTE-FROMF 1))) (*finds the tail of -A (if any) whose head has equal or lower priority-
(FUNCTION-NAME (FUNCTION-TYPE than -A. Priority equality is tested using -A and the priorities-

(PR IORITY-COMPAJ(ATOR-INFO are ordered by -A.'
(N> ORDERED-ASSOC-LIST-INSERT-SAFE)))) (INPUT-PORT-NAME>- (DOC-BP> (PRzV-CURRMT-SuBLISTS I)))

(INF7F-PORT-NAME> (DOC-BP> (ENUMERATE-FRONT 2))))) (INPUT-PORT-NAWE>- (DOC-BP> (THE-SAFE-EARLIEST 2))
(FrUNTION-NAME (FUNCTION-TYPE

(O f rule DlUM-OAL-FRONT (PRIORITY-EQUALITY-INPO (N> FIND-OAL-TAIL-UNSAFEU)))
'Enumerate Ordered Associative List Front' (FUNCTION-NAME (FUNCTION-TYPE
:RHS-Node-TypeS (PRIORITY-COMPARATOR-INFO (N> FIND-OAL-TAIL-UNSAFE)))))
((CDR-DOWN . GENERATE)
(HEAD-IN-FROFr? . TRUNCATE-OAL-POSITION) (Defrule ORDERED-ASSOC-LIST-DELETE
(THE-HEAD-MAP .CAR-MAP)) 'Ordered Associative List Delete'
E&dge-List :RHS-Nodo-Types
((COR-DOWN 2) .(HEAD-IN-FRONT? 1)) ((UNSAFE-FRONT-INJMERATION . EUMU-OAL-FRONT-UNSAFE)
((HEAD-IN-FRONT? 3) . (THE-HEAD-MAP 1))) (UNSAFE-TAIL-SEARCH .FIND-OAL-TAIL-UNSAFE)
:Input-Embedding (CONS-UP-RDIAININCI CONS-ACCtDEULATE-UP-FRON-SUBLIST))
())DIUM-OAL-FRONT 1) (CDR-DOWN 1)) :Edge-List
((DEUM-OAL-FRONT 2) (HEAD-IN-FRONT? 2))) (((UNSAFE-FRONT-OMUNERATION 3) . (CONS-UP-RUEAINING 1))

:Output-Effbedding ((UNSAFX-TAIL-SZARCH 3) . (CONS-UP-REMAINING 2)))
(((IUM-OAL-FRONT 3) (THE-HEAD-MALP 2))) :Input-Embedding
:L-R-Linlc COMPOSITION (IHORDERED-ASSOC-LIST-DELETE 2) (UNSAFE-TAIL-SEARCN 1))
:DOC ((ORDERED-ASSOC-LIST-DELETE 2) (UNSAFE-FROWr-MWYEATION 1))
('enumerates the elements of the Ordered Associative list -A - ((ORDERED-ASSOC-LIST-DELITE 1) (UNSAFE-TAIL-SEARCH 2))
up to. but not including, the element (if any) that has - ((ORDERED-ASSOC-LIST-DELETE 1) (UNSAFE-FRONT-DUNERATION 2)))
lower priority than -A. if there is no such element, all - :Output-Imbedding
elements of the list are enumerated.' (((ORDERED-ASSOC-LIST-DELETE 3) (CONS-tIP-REmAINING 3)))
(INPUT-PORT-MANE> (DOC-BDF> (CDR-DOWN 1))) :L-R-Link COMPOSITION
(INPU7r-PORT-MAME> (DOC-BPI. (HEAD-IN-FRONT? 2))))) :Doc

('deletes the element associated w/ priority -A from the ordered-
(Defrule FIHD-OAL-TAIL associative list -A.-4-

'Find ordered Associative List Toil* The predicate used to test for priority equality is -A.-%-
:RHS-Hodo-ITvpes if there is more than 1 element with this priority, only the first
((CDR-DOMN2 . GENERATE) is removed. An element X occurs before another Y if X's priority-
(HEAD-OF-TAIL? .EARLZSST-OAL-POSITION)) -A Yf's priority.'

:Idge-List (INPUT-PORT-NANE> (DOC-BP> (UNSAFE-FRONT-DiUMERATION 2)))
(11CDR-DOU2 2) .(HEAD-OF-TAIL? IM))INPUT-PORT-NAME> (DOC-BP> (IUNSAFE-FRONT-DENUERATION 1)))
:Input-Embedding (FUNCTION-NMEM (FUNCTION-TYPE
(((FIND-GALL-TAIL 1) (CDR-DOMN2 1)) (PRIORITY-BOUALITY-INFO (N> ORDERED-ASSOC-LIST-DELETE()
((FIND-OAL-TAIL 2) (HEAD-OF-TAIL? 2Ml (FUNCTION-NAME (FUNCTION-TYPE

:Output-ftbedding (PRIORITT-COMPARATOR-INFO (N> ORDERED-ASSOC-LIST-DELEITE)))))
((FIND-OAL-TAIL 3) (HEAD-OP-TAIL? 3)1))
:L-R-Link COMPOSITION (Ibefrule ORDURSD-ASSOC-LIST-INSELRT-UNSAFE
:Doc 'Unsafe Ordered Associative List Insert'
('finds the teil of -A (if eny) whose head has lower priority - :RNS-Node-Typeo
than -A.' jf)IWEERATE-FRGPI'-UNSAFELY . ENUMl-OAL-PRONT-UNSAPT)
(INPUtr-FORT-NAME> (DOC-BP>- (CDR-DOU2 1))) (FIND-TAIL-UNSAFELY . FIND-OAL-TAIL-UNSAFE)
1INPUTP'-ORT-MAMZE, fDOe-BF> (HEAD-OF-TAIL? 2))))) (THE-INSERTION . OALL-SPLICE-IN))

306

;Edge-List :Doc

((ETE-OTUSPL) (H-NETO) 1enumeratee the elements of -A. up to. but not including.-4-
(FIND-TAIL-UNSAFELY 3) .(THE-INSERTION 3))) the element that has lower priority than -A.-

:Input-mbibdding (INPUTr-PORT-NAME> (0CC-BUP> (ORDERE0-ASSOC-LE 1)))

U (ORDERED-ASSOC-LISr-INSERT-UNSAFE 1) (THE-INSERTION 2)) (INPUT-PORT-NAME> (0CC-BP> (ORDEREO-ASSOC-LE 2)))))
((ORDERED-ASSOC-LI ST-INSERT-UNSAFE 2) (FIND-TAIL-UNSAFELY 2))
((ORDERED-ASSOC-LIS-INSERT-U)NSAPE 2) Ilefrule ORDERED-ASSOC-SLE
(ENUMERATE-FRONT-tINSAFELY 2)) 'Ordered Associative Sublifft Enumeration'

((ORDERED-ASSOC-LIST-INSERT-U)NEAFE 3) :RHS-Node-Types
(FIND-TAIL-UNSAFELY 1) ((OAL-CENERATE GENDERATE)

((ORDERED-ASSOC-LIST-INSERT-UNSAIE 3) (OAL-TRUNCATE .TRUNCATE-OAL-POSITION))

tENUMERATE-FRONT-UNEAF&LY 1)) :Edge-List
:Output -Esbsdding)((OAL-G&HERATE 2) . (CALL-TRUNCATE 1)))
((ORDERED-ASSOC-LIST-INSERT-uNsAFE 4) (THE-INSERTION 4))) :Input-Embedding

:L-R-Link COMPOSITION) (ORDERED-ASSOC-SLE 1) (OAL-GEMERATE 1))

:Doc ((ORDERED-ASSOC-SLE 2) (OAL-TRUNCATE 2)))
(-inserts -A (associated w/ priority -A) in the ordered - :Output-Embedding

ae49ccitive list -A. The insertion is unsafe in that if - (((ORDERED-ASSOC-SLE 3) (OAL-TRUNCATE 3)))

thre is an existing element in the list that has priority - :L-R-Link COMPOSITION
-A -A. then that existing element is replaced by -A.-&- :Doc
An element X occurs before another Y if X'2 priority -A Y's - ('enumerates the successive sublists of -A, up to. but not includxng.-4-
priority. * the subliat with a head that has lower priority than -A.'

(INPUT-PORT-NAME> (DOC-BP> (THE-INSERTION 2))) (INPUT-PORT-NAME> (DOC-BP> (ORDERED-ASSOC-SLE 1M)
(INPUT-PORT-NAME> (DOC-BP> (ENUMERATE-PRONT-UNSAFELY 2))) (INPUT-PORT-NAME.> (DOC-BP> (ORDERED-ASSOC-SLE 2)))))
(INPUT-PORT-NAME> (DOC-BP> (ENUMERATE-FRONT-UNSAPELY M)
(FUNCTION-NAME (FUNCTION-TYPE (Defrule LIST-PUSH

(PRlOR lTY-EOUALITY-INFO *List Push,
(N> ORDER ED-ASSOC-LIST-INSERT-UNSAPE)))) :RHS-Node-Types

(INPUT-PORT-NAMEZ> (DOC-BP> (EMUMERATE-FRONr-UNSAFELY 2))) ((THE-CONS . CONS))
(INPUT-PORT-NAME> (DOC-BP> (THE-INSERTION 2))) :Input-bibedding
(FUNCTION-NAME (FUNCTION-TYPE (((LIST-PUSH 1) (THE-CONS 1))

(PRIORITY-COMPARATOR-INFO ((LIST-PUSH 2) (THE-CONS 2)))
(N> ORDERED-ASSOC-LIST-INSERT-UNSAFE)))) ((:Output-Embedding

(((LIST-PUSH 3) (THE-CONS 3)))
(Def rule OAL-RETRIEVE-IP-EXISTS :L-R-Link IMPLEMENTATION

-ordered-Associative List Retrieve (If Exists)- :Doc
:RNS-Node-Types (-pushes -A onto the list -A.-
((ENUN-OAL . ORDERED-ASSOC-LE) (INPUT-PORT-NAME> (DOC-BP> (LIST-POSH 1U))
(EARLIEST-ELE(D(T . EARLIEST-EQUAL-PRIORITY() (INPUT-PORT-NAME> (DOC-UP> (LIST-PUSH 2(()

:Edge-List
(((F2)U-OAL 3) . (EARLIEST-ELENEr 1))) (Defrule OAL-SPLICE-OUT
:Input-Embedding -Splice out 4Jf Ordered Associative List'

(((OAL-RETRIEVE-IF-EXISTS 1) (EARLIEST-ELDEDI 2)) :RHS-Node-Types
((OAL-RETRIEVE-IF-EXISTS 1) (ENUN-OAL 2)) ((POP-TAIL .CDR)

((OAL-RETRIEVE-IF-EXISTS 2) (MIU-OAl, 1))) (ADD-PRONl' CONS-ACCKMJLATE-UP-FRON-SUULIST()
:output-Embedding :Zdge-List
(((OAL-11ETRIEVE-IF-EXISTS 4) EALETLD4T3))) (((POP-TAIL 2) . (ADD-FRONT 2))
:st-Thrus : Input-Embedding
(((OAL-RETIEVE-IF-EXISTS 3) (OAL-RETRIEVE-IF-EXISTS 4))) (((OAL-SPLICE-OUT 1) (ADO-FRONT 1))
:L-R-Link COMPOSITION ((OAL-SPLICE-OUT 2) (POP-TAIL 1)))
:Doc :Output-Ebabdding
(*intermediate non-terminal: ordered-A2soc-List-Lookup.-)) (((OAL-SPLICE-OUT 3) (ADD-FRONT 3)))

:L-R-Link COMPOSITION
(Defrule ORDERED-ASSOC-LIST-LOOKtUP :Doc

-ordered Associative List Lookup- (*vplices the head of the -A out of the ordered associative list-4-
:RHS-Node-TypeS that contains it as a tail.,
((THE-RETRIEVAL . OAL-RETRIEVE-IF-EXISTS)) (INPUTr-PORT-NAME> (DOC-UP> (POP-TAIL I)))))
:input-Embedding

(((ORDERED-ASSOC-LIS-LOOKUP 1) (THE-RETRIEVAL 1)) (Oefrule, OAL-SPLICE-IN
((ORDERED-ASSOC-LIST-LOOKUP 2) (THE-RmTIEVAL 2))) *Ordered Associative List Splice In-

:output-Embedding :RHIS-Node-Types
(((ORDEREO-ASSOC-LIST-LOOKUP 3) (THE-RETRIEVAL 4))) ((PUSH-GITO-TAIL .LIST-PUSH)

:L-R-Link IUPLEWM1ATION (CONS-UP-FRONT CONS-ACCtNSJLATE-1UP-FROM-SUULIST))
:Doc : Edge-List
(-finds and returns the element associated w/ priority -A in - (((PUSH-ONTO-TAIL 3) . (CONS-UP-FRONT 2)))

the ordered associative list -A.-*- : input-aibedding
if no element with priority -A is found. NIL is returned.-t- (((OAL-SPLICE-IN 1) (CONS-UP-FRONT 1))
T'he predicate used to test for priority equality is -A.~4- ((OAL-SPLICE-IH 21 (POSH-ONTO-TAIL 1))
if there is more than I element with this priority, only - ((OAL-SPLICE-IN 3) (PUSH-GWTO-TAIL 21))

the first is retrieved. An element X occurs before another - :Output-ambedding
Y if X's priority -A Y's priority.* (((OAL-SPLICE-IN 4) (CONS-UP-PROWl' 3H))

(INPUT-PORT-NAME> (0CC-UP> (ORDERED-ASSOC-LIST-LOOKCUP IM) :L-R-Link COMPOSITION
(INPUT-PORT-NAME> (DOC-BP> (ORDERED-ASSOC-LIST-LOO)KUP 2))) :Doc
(INP(7r-PORT-NANE> (DOC-UP> (ORDERED-ASSOC-LIST-LOOtUP 1))) (*splices -A in between the front of the list -A and the tail -A.*
(FUNCTION-NAME (FUNCTION-TYPE (IMP!7r-PORT-NMME> (hOC-UP> (POSfH-ONI'O-TAIL I)))

(PRIORITY-SCUALITY-INFO (N,> ORDZREO-ASSOC-LIST-LOOKUP)))) (INPUT-PORT-NAME> (DCC-UP> (CONS-UP-FRONT 1)))
(FtUNTIOM-NAME (FUNCTION-TYPE (INPUT-PORtT-NAME> (OCc-UP> (PUSH-ONTO-TAIL 2)))))

(PRIOR ITf-CONPARATOR-INFO
(N>. ORDERED-ASSOC-LIST-WOOKUP)))))) (Defrule TRUNCATE-OAL-POSITION-UNSA1E

Unoaf e Truncate at Priority Position
(Ostrule ORDERED-ASSOC'LE : RHS-Node-Types

-Ordered Associative List Enumeration- (THE-SAPE-TRtUNATE . TRtUNATE-GAL-POSITION)
:RHS-Node-Types (THE-UNUAFE-TRUNCATE . ¶ UNCATE&-BDUAL-PRIORITT-HEAD))
((THE-ORDEREO-ASSOC-SLE . ORDERED-ASSOC-SLE) :Zdge-List

(EACH-ELDMEDT . CAR-NAP)) (((THE-SAPE-TRtUNATS 3) . (THE-UNSAFE-THRI~cATE I))

Ezdge-List : Input-9mbedding
(UU'HE-ORDERED-ASSOC-SLE 3) . IRACH-ELUEDrIT))) (((fRUNICATE-O&L-POSITION-UNSAFE 1) (THE-SAFE-TRUNCATE 1))
:input-Embedding ((TRtRWATZ-OAL-POSITION-UNSA1E 2) (THE-UNSAF-TRUNCATE 2))
(((ORIMERD-ASSOC-LE 1) (THE-O1RDERED-ASSOC-SLE 1)) ((TRUNCATE-OAL-POSITION-UNSAIE 2) (THE-SAFE-TRUNCATE 2)))
((OPDRED-ASSCC-LE 2) (THE-ORDERZD-ASSOC-SLE 2))) :Output-ambedding
:output-ambedding (((¶'RUNCATE-OAL-POSITION-UNSAFE 3) (THE-UNSAFE-TWi)CATZ 3)))
(((ORDERtED-ASSOC-LE 3) (ZACH-ELUIDT 2))) iL-R-Link C01POSITION
:L-R-Link COMPOSITION :Doc

307

(outputs the elements of the input series (each *lt, is an - (Defruls, EARLIEST-EQUAL-PRIORITY
ordered associative list), - -Earliest Equal Priority*
up to but not including the one that is empty or has a head - :RHS-Node-Types
with priority loes than or equal to -A.- ((EQUAL-P-SEARCH . EQUAL-PRIORITY-TEST))
"A priority P is less than another 0 if P -A Q.- ;Input-Embedding
"A priority P is equal to. another Q if P -A Q.- ((EARLIEST-EQUAL-PRIORITY 1) (E0UAL-P-sEARcH 2))
(INPUT-PORT-NANE> (DOC-BP> (THE-SAFE-TRUNCATE 2))) ((EARLIEST-EQUAL-PRIORITY 2) (EQUAL-p-SEARCH 1)))
(FUNCTION-NAMEE (FUNCTION-TYPE :St -Thrum

(PRIORITY-COKPARATOR-INPO (N> THE.-SAFE-TRUmCATE)() ((EARLIEST-EQUAL-PRIORITY 1) (EARLIESr-EQUAL-PRIORITY 3)))
(FUNCTION-NAME (FUNCTION-TYPE :L-R -Link TEMPORAL-ABSTRACTION

(PRIORITY-EQUALITY-INFO (N> THE-UNSAJE-TRUNCATE) M() :DOC
)-outputm the first element of the input series-

(Del rule *rRUNCATE-EQUAL-PRIORITY-HEAD -&ithat has priority -A.,
-Truncate Equal Priority Head, (INPUT-PORT-NAME> (DOC-BP> (EQUAL-P-SEARCH l)1)l)
:RHS-Node-Types
((PH-EQUALITY-TEST . EQUAL-PRIORITY-HEAD)) (Defrule EARLIEST-EQUAL-PRIORITY
:Input-Embedding 'Earliest Equal Priority-

((TRUNCATE-EQUAL-PRIORITY-HEAD 1) (PH-EQUALITY-TEST 1)) :RHS-Node-Types
((TRUNCATE-EQUAL-PRIORITY-HEAD 2) (pH-EQUALITY-TEST 2))) ((EQUAL-P-SEARCH . EQUAL-PRIORITY-TEST))

:St-Thrus :Input-Embedding
(((TRUNCATE-EQUAL-PRIORITY-HEAD 1) (((EARLIEST-EQAXLL-PRIORITY 1) (EQUAL-P-SEARCH 1))

(TRUNICATE-EQUAL-PRIORITY-HEAD 3))) ((EARLIEST-EQUAL-PRIORITY 2) (EQUAL-P-SEARCH 2)))
:L-R-Link TENPORAL-ABSTRACTICN :St -Thrus
:DOC (((EARLIEST-EQUAL-PRIORITY 1) (EARLIEST-EQUAL-PRIORITY 3)))
(-outputs the elements of the input series (each alt. is an - :L-R-Link TEMPORAL-ABSTRACTION
associative list), up to but not including the one that is - 0Cc
empty or has a head with lower priority than -A.* (outputs the first element of the input series-
(INPUTI-PORT-NAI4E> (DCC-BP> (PH-EQUALITY-TEST 2))))) -rthat has priority -A.'

(INPUT-PORT-NAME> (DOC-RP> (EQUAL-P-SEARCH 2)))))
(Defrule EARLI EST- EQUAL-PR IOR ITY-HEAOL

-Earliest Equal Priority Head, (Detrule EQUAL-PRIORITY-TEST
:RHS-Node-Types 'Equal Priority Test-

U (EQUAL- PH-SEARCH . EQUAL-PRIORITY-HEALD)) :RHS-Nod*-Types
:Input -Embedding) (EQUAL-PRIORITIES . CONHUTATIVE-BIHARY-FUNCTION)

(E(ARLIEST-EQUAL-PRIORITY-HEAD 1) (EQUAL-PH-SEARCH 1)) (THE-TEST . NULL-TEST))
((EARLIEST-EQUAL-PRIORITY-HEAD 2) (EQUAL-PH-SEARCH 2))) :Edg*-Lint

:St-Thrus (((EQUAL-PRIORITIES 3) . (THE-TEST I)))

U)EARLIEST-EQUAL-PRIORITY-HEAD 1) :Input-Embedding
(EARLIEST-EQUAL-PRIORITY-HEAD 3))))UE(tFAL-PRIORITY-TEST 1) (EQUAL-PRIORITIES 1))

:L-R-Link TEMPORAL-ABSTRACTION ((EQUAL-PRIORITY-TEST 2) (EQUAL-PRIORITIES 2)))
:DOC :L-R-Link COMPOSITION
(-outputs the first element of the input series (each elt. is - :DOC

an ordered associative list), that has a head with - (-tests whether -A and -A have -A priorities.*
priority -A.-* (INPUT-PORT-NAME>)tIOC-BP> (EQUAL-PRIORITY-TEST IM)

(INPUT-PORT-NAME> (DOC-BP> (E.ARLIEST-EQUAL-PRIORITY-NEAD 2))))) (INPUT-PORT-NAME> (DOC-UP>)EQUAL-PRIORIT-TEST 2)))
(EQUALITY-PREDICATE? (N> EQUAL-PRIORITY-TEST)))

(Defrule EQUAL-PRIORITY-HEAD
*Equal Priority Head')Defrule TRUNCATE-OAL-POSII'ION
:RHS-Node-Types 'Truncate at Priority Position*

((ACCESS-HEAD . CAR) :RHS-Node-Types
(CHECK-PRIORITIES .EQUAL-PRIORITY-TES)) ((POSITION-TEST . EHPTY-OR-UWV-PRIORITY-HEAD))

:Edge-List :Input-9mbedding
(((ACCESS-HEAD 2) .(CHECK-PRIORITIES 2))) (((TRUNCATE-OAL-POSITION 1) (POSITION-TEST 1))
:Input-Embedding (UTRUNCATE-OAL-POSITION 2) (POSITION-TEST 2)))

U((EQUAL-PRIORITY-HEAD 1) (ACCESS-HEAD 1)) :St-Thrus
(tEQUAL-PRIORITY-HEAD 21 (CHECK-PRIORITIES 1))))(((TRUNCATE-OAL-POSITICN 1) (TRUNCATE-CAL-POSITION 3))

:L-R-Link COMPOSITION :L-R-Link TEMPORAL-ABSTRACTION
:DOCc :DOCc
('tests whether the heed of the input associative list -A has - (*outputs the elements of the input series (each elt. is an
priority -A.-* ordered associative list), -
(INPUT-PORT-NAME> (DOC-OP> (ACCESS-HEAD IM) -&up to but not including the one that is empty or has a head-
(INPUT-PORT-NAME>)OOC-BP> (CHECK-PRIORITIES 1)))) -Eiwith lower priority than -A.*

(INPUT-PORT-NAME> (DOC-BP> (POSITION-TEST 2)))))
(De frule TRUNCATE-EQUA.L- PRIORITY

'Truncate Equal Priority* (Defrule EARLIEST-OAL-POSITION
:RHS-Node-Types 'Earliest Priority Position*
((PRIORITY-EQUALITY-TEST , EQUAL-PRIORITY-TEST)) : RHS-Node-Types
:Input-Embedding ((OAL-POSITION-SEARCH . UEPTY-OR-LOW-PRIORITY-HEADI)
(((TRUNCATE-EQUAL-PRIORITY 1) (PRIORITY-EQUALITY-TEST 2)) :input-Embedding

((TRUNCATE-E.QUAL-PRIORITY 2) (PRIORITY-EQUALITY-TEST 1))) U(E(ARLrZST-OAL-POsITION I1) (OAL-FOSITION-SEARCH 1))
:St-Thrus ((EARLIEST-OAL-POSITION 2) (OAL-POSITION-SEARCH 2)))

(((TRUNCATE-EQUAL-PRIORITY 1) (TRUNICATE-EQUAL- RIORIT 3))) ,St-Thrus
:L-R-Link TUEPORAL-ABSTRACTION ((EARLIEST-OAL-POSITION 1) (EARLIEST-OAL-POSITION 3())
:Doe : L-R-Li nk TEMPORAL-ABSTRACTION
(-outputs the elements of the input series,- !DOCc
up to but not including the one that has lower priority - (-outputs the first element of the input series (each alt, is an-
than -A. * ordered associative list),-
(INPUT-PORT-NAME> (DOC-BP> (PRIORITY-EQUALITY-TEST 1)))) -&that is either empty or has a head with lower priority than -A.*

(INPUT-PORT-NAME> (DOC-BP> (EARLIEST-OAL-POSITION 2))JI
(Oaf rule TRUNCATE-EQUAL-PRIORITY
-Truncate Equal Priority- (Defrule i(P`TY-CR-LOV-PRIoRITY-HFAD
:RHS-Hode-Types -Emty or Low Priority Heead-
((PRIORITY-EQUJALITY-TEST . EQUAL-PRIORITY-TEST) RN-o.-ye
:Input-embedding ((EMPTY? . NULL)

(((TRUNCATE-EQUAL-PRIORITY 1) (PRIORITY-EQUALITY-TEST 2)) (CONTROL-CONPARISON .NULL-TEST)

((TRUNCATE-EQUAL-PRIORITY 2) (PRIORITY-EQUALITY-TEST 2))) (GET-HEAD . CAR)
:at-Thrum (COMPARE-PRIORITIES AllY-COMPARATOR)
(((TRUNCATE-EQUAL-PRIORITY 1) (TRUNCATE-EQUAL-PRIORITY 3)))((OR-TEST - NULL-TES))
:L-R-Lmnk TDEPORAL-ABSTRACTIONEdeLt
:DOC (((DEPTI'? 2) .(OR-TEST 1))
(,outputs the elements of the input series, up to but not - ((DEITY? 2) .(CCNTOL-CCNPARISON M)
including the one that has lower priority than -A.* ((GET-HEAD 2) . (CONPARE-PRIORtITIES 21)

(INPUT-PORT-NAME> (0CC-BP> (PRIORITY-EQUALITY-TEST 2))))) ((COMPARE-PRIORITIES 3) . (OR-TEST 1))

309

* Input-Embedding ((THE-UP-ACCUN . ACCUMULATE-UP))
(C)f.HPY-OR-LOW-PRIORITY-HEAD 1) ;Input-Embedding

(GET-HEAD W) (((CONS-ACCUflULATE-UP -FROM- SUBLI ST 1) (THE-UP-ACCUM 2))
))EMPTY-OR-LOW-PRIORITY-HEAD 1) (EMPTY? 1) ((CONS-ACCUMULATE-UP-FROM-SUBLIST 2) (THE-UP-ACCUM 1))
)(DEPrY-OR-LOW-PRIORITY-HEAD 2) (COMPARE-PRIORITIES WC) :Output-Embedding

.L-R-Lxflk COMPOSITION U((CONS-ACCUMULATE-UP-FRGM-SUBLIST 3) (THE-UP-ACCUM 31))

.DOC :L-R-Link IMPLEMENTATION
(*tests whether the list -A is either empty or has a first - :DOC
element that has a lower priority than -A.' * accusiulates the elements of -A into a list whose tail is -A.
(IHPU7r-PORT-HANE> (DCC-BF> (EMPT-OR-LO0W-PRIORITY-HEALD 1))) (INPUT-PORT--HAMS> (DCC-SP> (CONS-ACCUHULATE-UP-FRGM-SUSLIST 1)))
(INPUT-PORT-HAKE>)DOC-BP> (DEPTY-OR-LOW-PRIORITY-HEAD 2))))) (INPUT-PORT-HAKE> (0CC-BP> (CONS-ACCUMULATE-UP-PRGM-S'UBLIST 2)))))

C~etrule ORDERED-ASSOC-LIST-EXTRACT)Oefrule LIST-E4PTY
-Ordered Associative List Extract* -List Empty-
* RHS-Node-Types :RHS-Node-Types
((THE-POP . LIST-FOP)) ((THE-HULL . TEST-PREDICATE))

* Input-Embedding :Input-Embedding
)(ORDERED-ASSOC-LIST-EXTRACT 1) (THE-POP 1))))) LIST-DEPTrY 1) (THE-HULL 1)))

* Output -bibedding :L-R-Link IMPLEMENTATION
)(ORDERED-ASSOC-LMS-EXTRACT 2) (THE-POP 2)) ..Doc

((ORDERED-ASSOC-LIST-EXTRACT 3) (THE-POP 3))) (*checks whether the list -A is empty.'
* L-R-Link IMPLEMENT~ATION (INPUT-PORT-HAKE> (DCC-BP> (LIST-EMPTY 1())))
.Doc
(-extracts the highest priority element from the ordered -Figure 4-14.
associative list -A by popping the first element.,
(INPUTr-PORT-HAKE> (DOC'-BP> (THE-POP 1))))) (Defrule GENERATION

0.neration*
(Defrule LIST-POP :RHS-Node-Types

'List Pop'C (ODEN-FUNCTION . ANY-GDE-F))
:RHS-Node-Types :Input-Embedding
((POLL-OFF-HEAD . CAR) (((GENERATION 1) (GEN-FUNCTION 1)))
(GET-TAIL . CDR)) :St-Thrus
:Input-Embedding (((GENKERATION 1) (GENERATION 2)))

(((LIST-POP 1) (GET-TAIL 1)) :L-R-L.ink COMPOSITION
((LIST-POP 1) (PULL-oFF-HEAD 1))) :Doc

:Output-ombodding (-generates the successive elements of -A by repeatedly applying the-
(((LIST-POP 2) (POLL-OFF-HEAD 2)) function -A to the result of its preceding application.*

((LIST-POP 3) (GET-TAIL 2))) (INPUT-PORT-NANE> (DOC-BP> (GDENERATION 1))
:L-R-Link COMPOSITION (FUNCTION-TYPE (FUNCTION-INFO (H> ODE-FUNCTION))))
:Doc
(,pops the first element off of the list -A., (Defrule G~EN RA TE
1INPU7r-PORT-NANE> (DOC-Bp> (GET-TAIL MM)) 'Genlerate*

:RHS-Node-Types
(Defrule ACCUMULATION-UP ((THE-COUNT . COUNT))

'Accumulation Up* Input-Embedding
:RHS-Node-Types (((GENERATE 1) (THE-COUNT 1)))
((ACCUM-FUNCTION . ANY-SIN-F)) :Output-Embedding
:Input-Embedding (((GENERATE 2) (THE-COUNT 2))
(((ACCUMULATION-U? 2) (ACCUM-FUNCTION 1))) :L-R-Link IMPLEMENTATION
:Output-Embedding :Doc
(((ACCUMULATION-UP 3) (ACCUM-FUNCTION 3))) (*generates the elements of -A by counting them.*
:St-Thrus (INPYTr-PORT-NANE> (DbC-SF> (GENERATE 1)))))
(((ACCUMULATION-UP 1) (ACCUMULATION-UP I)))
.L-R-Link COMPOSITION (Defrule GENERATE
:Doc *Oeneratel
(,iteratively applies the function -A to the result of the : RHS-Node-Typen

recursive call and a new value. The result of the application ((ITER-DEN . GENERATION))
:Input -Embedding

is returned as the result of the recursive call.* (((GSNERTE 1) (ITER-DEN 1)))
(FUNCTION-TYPE (FUNCTION-INFO IN> ACCUM-FUNCTION))) () :Output-Embedding

(((GODERATE 2) (ITER-DEM 2)))
(Defrule ACCUMULATE-UP :L-R-Link TEMPORAL-ABSTRACTION
'Accumnulate on the way up- :Doc
:RHS-Node-Types (*generates a series of elements of -A by repeatedly applying the-
((ITER-ACCUM-UP . ACCUMULATION-UP)) function -A.*
* Input-Eabedding (INPUT-FORT-NAME> (DbC-SF> (GENERATE 1)))
(((ACCUMULATE-UP 1) (ITER-ACCUM-UP 1)) (FUNCTION-TYPE (FUNCTION-INFO (N> ITER-GD4)))))

((ACCUMULATE-UP 2) (ITER-ACCUM-UP 2)))
:Output-Embedding (Defrule CONUTrATIVE-BINARY-FtUlCTION
(((ACCUMULATE-UP 3) (ITER-ACCUM-UP 3))) 'Commutat~ve Binary Function'
:L-R-Link TEMPORAL-ABSTRACTION :RHS-Node-Types
.Doc ((CONM-SIN-FUNCTION . ANY-COMU-BIH-F))
(accumulates the values of the input series 'on the way up, :Input-Embedding

using the function -A. The initial value of the accumulation - (((COm ?rATIVE-BINARY-FUNCTION 1) (CaMM-SIN-FUNCTION 2))
is -A.* ((CckUUTATIVE-SINARY-FUNCTION 2) (COMU-SIN-FUNCTION 1)))

(PtRCTION-TYPR (FUNCTION-INFO (H> ITER-ACCUM-UP))) :Output-aibedding
(IHIT-VALUE (N> ITER-ACCUM-UP)))) (((COMSWATIVE-BINARY-FWRCTION 3) (COMM-SIN-FUNCTION 3)))

:L-R-Link IMPLEMENTATION
(Defrule CONS-ACCLUMUATE-UP :Doc

'Cons Accumulate on the way up- (*applies the comu tative binary function -A.*
:RH5-Mode-Types (FUNCTION-TYPE (FUNCTION-INFO (N> COM-SIN-FUNTION)))))
((THE-UP-ACCUM . ACCUMULATE-UP))

:Input-ambedding (Defrule COMMUTATIVE-BIHARY-FUNCTION
(((CONS-ACCUMULATE-UP 1) (THE-UP-ACCUM 2))) -Commutative Binary Function-
:Output-Embedding :RHS-Node-Types
((CONS-ACCUMULATE-UP 2) (THE-UP-ACCUM 3))) ((COWf-DIN-FUNCTION . AlEY-CcSE-SIN-F))
.L-R-Link IMPLEMENTATION Input-ambedding
.Doc (((COSIBUrATIVE-BIMARY-FUNCTION 1) (COMM-BIN-FUNCTION 1))
(amccumulates the elements of -A into a list using cons. * ((COME3TATIVE-SINART-FUNCTION 2) (COMM-BIN-FUNCTION 2)))
(INP(7r-PORT-MANZ> (0CC-SF> (CONS-ACCWAJLATE-UP 1)))) :Output-gmbodding

ti(COSUUTATIVS-SINARR-FUNCTION 3) (COMM-BIN-FUNCTION 3)))
(Defrule COMS-ACCUMULATZ-UP-FROM-SUDLIST :L-R-Link IMPLUEMENATION

'Cons Accumulate on the way up from Sublimt* :Doc
.RHO-Nodo-Types

309

('applies the commutative binary function -A.- : Input-Embodding
(FUNCTION-TYPE (FUNCTION-INFO (N> COMM-BIN-FuNcTION))))j M INCREN1'PT-OR-DECRDEKET 1) (COUNTER I)))

. output - Ebeddl ng
toef rule INCRDEMENT M)INcRUEDPP-OR-DECRFJ4DIT 2) (COUNTER 2))

*Incremont, -L-R-Link IMPLEMEN~TATION
:RNS-Node-Types :Doc
))COMO-INC . COIOE1VTATIVE-BINARY-FUNCTrION)) ('Increments or decrements -A.-
:Input-Embedding (INPU7r-PORT-NAME (DOC-BP> (COUNTER 1flfl)
)))INCRDEMEr 1) (COMM-INC 1)))
:Output-Ebibeding (Detrule DOUBLE
M)INCRE4MET 2) (COMM-INC 3))) 'Double-
:L-R-Link 114PLUEWENATION :RHS-Node-Types
:Doc))COOO-TIMES . CO9OUTATIVE-BINARY-FUNCTION H
0increments -A by I.- :Input-Embedding
(INPUT-PORT-NAIME> (DOC-BP>)INCRFJ4E 1)))))))DOUBLE 1))COMM-TIKES 1)))

:OutPut-Embedding
Figure 4-5. M)DOUBLE 2) (COWk-TINS 3)))

:L-R-Link IMPLEMENTATION
(Defrule COUNTING-UP :Doc

'Counting Up- ('multiplies -A by 2.-
:RHS-Node-Types (INPUT-PORT-NAXE>)DOC-BP> (DOUBLE 1))f))

)(COUNTER .INCREMNI2T))
:Input-Esbedding)Def rule CAR-M4AP

)))COUNTING-UP 1) (COUNTER I))) -Car Map-
.St-Thrus :RHS-Node-Types
))COUNTING-UP 1))COUNTING 2)))))MAP-HEAD .CAR))
:L-R-Link COMPOSITION :Input-Embedding
:Doc)))CAR-MAP 1) (MAP-HEAD 1)))
(*repeatedly increments -A by 1. * ;Output-Embedding

(INPUT-PORT-NAME>)DOC-BP> (COUNTING-UP 1))))) (()CAR-NAP 2) (MAP-HEAD 2)))
:L-R-Link COMPOSITION

)Defrule COUNT :Dec
'Count- O applies the function CAR to each element of the input series.-))
:RNS-Node -Types
(ITER-COUNTING .COUNTING-UP)) (Def rule SELECT-TERM

:Input-Embedding *select Term*
(((COUNT 1))ITER-COUNTINO 1))) :RNS-Node-Types
:Output-FEmbeddinig) ACCESS-ARRAY .AREF))
(((COUNT 2) (ITER-COUNTINO 2))) :Input-Embadding
:L-R-Link TEMPORAL-ABSTRACTION (((SELECT-TERM 1) (ACCESS-ARRAY 1)

.Doc ARRAY>SEQUEMCE)
('generates a series of successive integers starting with -A.-))SELECT-TERM 2) (ACCESS-ARRAY 2)))

(INPUT-PORT-NAME> (DOC-BP> (COUNT IUM)) ~Output-Embedding
)()SELECT-TERN4 3) (ACCESS-ARRAY 3)))

)Oefrule BOUNDED-COUNT :L-R-Link IMPLEMENTATION
'Bounded Count' :Doc
:RHS-Node-Types (*selects the element at index -A from the sequence -A."
(tTHE-COUNTER . COUNT))INPUT-PORT-NAME>)DOC-BP> (SELECT-TERM 2)))
(STOP-AT-LIMIT . BINARY-TRUNCATE)))INPUT-PORT-NANE> (DOC-BP> (SELECT-TERM 1))

:Edge-List
)) TNE-COUNTER 2) .)STOP-AT-LIMIT 1))))Def rule SELECT-TERN-MAP
:Input-Embedding *select-Term Map*

)(BOUNDED-COUNT 1))THE-COUNTER 1)) :RHS-Rod*-Types
)BOUNDED-COUNT 2) (SIVP-AT-LIMIT 2))))(NMAP-SEQUEI4CE-REF . SELECT-TERN))

:Output-Embedding :Input-Embedding
)(BOUNDEO-COUNT 3) (STOP-AT-LIMIT 3))) ())SELECT-TERN-MAP 1))MAP-SEQUI24CE-REF 1))

:L-R-Link COMPOSITION U(SELECT-TERN-NAP 2) (XAP-SEQUFI4CE-REF 2)))
:Dec :Output-Fzbedding
fPgenerates a series of succ'ssive integers from -A up to, but -)(SELECT-TERN-MAP 3) (MAP-SEQUENCE-REF 3)))

not including -A. , L.-R-Link COMPOSITION
iINPUT-PORT-NAME>)DOC-BP> (SOUNDED-COUNT 1))) :DOC
)INPUT-PORT-NAME>)DOC-BP> (BOUNDED-COUNTr 2))))))Ireferences the Sequence -A at each index in the input series -A.'

(INPUJT-PORT-NAME>)DOC-BP>) SELECT-TERM-NAP 1)))
)Oefrule DECREMENT)INPUTr-PORT-NAJME>)DOC-BP> (SELECT-TERM-MAP 2)))))

'Decrement-
:RHS-Node-Types (Daf rule FILTERING
)(SUBTRACT . MINUS)) 'filtering,
:Input-Embedding :RHS-14ode-Types
(((DECREMENT I) (SUBTRACT I))) ((FILTER-PREDICATE . TEST-PREDICATE))
:Output-Embedding :Input-Fzbedding
))(DECRD04NT 2) (SUBTRACT 3))) (((FILTERING 1) (FILTER-PREDICATE 1)))
:L-R-Link IMPLEMENTATION :St-Thrus
:Doc (((ILTERING. 1) (FILTERING 2)))
)*decremerts -A by l.* :L-R-Link COMPOSITION

)INPOTr-PORT-NANE> (DOC-BP> (DECREMENT 1M)) :Doc
)*repatedly applies the predicAte -A to -A.-

(Oaf rule INCRDEDIE-OR-DECRUEMIT) FUNCTION-TYPP (PREDICATE- INFO (N> FILTER-PREDICATE)))
*lncreuent or Decrement. (INFUT-PORT-NMXI> (DOC-BP, (FILTER-PREDICATE 1)))))
:RR-NRode-Types
WDECRDEMETER . DECREMENT)) (Defrule FILTER
:Input-FEibedding -Filter-
((INCREDWNr-OR-DECRUIEFMT 1) (DECREMDITER 1))) :RHS-Node-Types

:Output -Ebibddi ng ((FILTER-ELTS . FILTERING))
)UINCRDEWET-OR-DECROOMI 2) (DECRD4D4TER 2))) :Input-mbikedding
:L-R-Li nk IMPLEMENTATION (((FILTER 1) (FILTER-ELTS 1)))
:Doc :output-Embedding
(*Increments or decrements -A., (((FILTER 2) (FILT&R-ELTS 2)))
(INPUT-PORT-NAME (DOC-BP> (DECRDEMENER I))))) :L-R-Link TEMPRAL-ABSTRACTION

.Doc
(Defrule INCRUE~zT-OR-DECRU4DNT 1pfiltere the elements of the input series using the predicate -A."

'Increment or Decrement- WF¶CTION-TYPt (PREDICATE-INFO (N> FILTER-ELTSM)
:RMS-Node-Typea
((COUNTER . INCRUIEDT))

310

IDe frule ACCUMULATION-DOWN (THE-TRUNCATE .TRUNCATE))
-Accumulation Down* :Edge-List
:RHS-Node-Types (((THE-GENERATE 2) .(THE-TRUNCATE M))
((ACCUM-F .AllY-BIN-F)) :Input-Fmbedding
:Input-Fzmbedding ((USLE 1) (THE-GENERATE if)
((ACCUMULATION-DOWN 1) (ACCUM-F 1)) :Output-Ebebdding

((ACCUMULATION-DOWN 2) (ACCUM-F 2))) (USLE 2) (THE-TRUNCATE 2)))
:St-Thrus :L-R-Link COMPOSITION
(t(ACCUMULATION-DOWN 2) (ACCUM4ULATION-DOWN 3(1) :Doc
:L-R-Link COMPOSITION tPenumerates the successive sublists of -A.*
:DOC (INPUTr-PORT-NANE> (DOC-BP> ISLE 1)M))
(-repeatedly applies the function -A to the result of its-
previous application and a new value. When the iteration - (Defrule LE
terminates, the result of the last application is returned.- -List Enumeration'

(FUNCTION-TYPE (FUNCTION-INFO (N> ACCIJN-F)MI) :RNS-Node-Types
((THE-SLE .SLE)

(De fru le ACCUMULATE-DOWN (THE-CAR-NAP CAR-MAP))
'Accumulate Down* :Edge-List
:RHS-Node-Types (((THE-SLE 2) .(THE-CAR-MAP 1)))
((ITER-ACCUM . ACCUMULATION-DOWN)) :Input-Fzbsdding
:Input-Embedding (((LE 1) (THE-SLE If))
(((ACCUMULATE-DOWN 1) (ITER-ACCUK 1)) :Output-Embedding
((ACCUMULATE-DOWN 2) (ITER-ACCUK 2))) ((oLE 2) (THE-CAR-MAP 2)))
:Output-ERmbedding :L-R-Link COMPOSITION
((ACCUMULATE-DOWN 3) (ITER-ACCUI4 3))) :Doc
:L-R-Link TEMPORAL-ABSTRACTION (-enumerates the elements of -A.,
:Doc (INPUT-PORT-NAME> (DOC-BP> (LE MMf)
('accumulates the values of the input series 'on the way down'

using the function -A.'* Figure 4-16.
(FUNCTION-TYPE (FUNCTION-INFO (N> ITER-ACCUKM))

(Defrule ITERATIVE-SEARCH
(Defrule TRUNCATION -Iterative Search.

'Truncation- :RHS-Node-Types
:RNS-Node-Types ((SEARCH-P . TEST-PREDICATE))
((STOP? .TEST-PREDICATE)) :Input-Embeddilig
:Input-FEsbedding (((ITERATIVE-SEALRCH 1) (SEARCH-P I)))
(((TRUNCATION 1) (STOP? I))) ;St-Thrus
:St-Thrum (((ITERATIVE-SEARCH 1) (ITERATIVE-SEARCH 2)))
(((TRUNCATION 1) (TRUNCATION 2))) :L-R-Link COMPOSITION
:L-R-Link COMPOSITION :Doc
:Doc ('repeatedly mopiies the search predicate -A to a value.,
(-repeatedly applies the exit test -A to a value, terminating .- terminating ýf an element is found that satisfies it.*
the iteration if the test succeeds.,* (FMi'2'ION-TYPE (PREDICATE-INFO (N> SEARCH-P)))((

(FUNCTION-TYPE (PREDICATE-INFO (N> STOP?)))))
Figure 4-17.

(Defrule TRUNCATE
'Trunate *(riefrule EARLIEST

:RHS-Node-Types -Earli est-
((ITER'-TRUNCATION . TRUNCATION)) :RMS-Node-Types
tInput-Esbedding ((EARLIEST? . ITERATIVE-SEARCH))
(((TRUNCATE 1) (ITER-TRUNCATION 1))) :input-Embedding
:Output-Embedding (((EARLIEST 1) (EARLIESTI? 1)))
(((TRUNCATE 2) lITER-TRUNCATION 2))) :Output-Embedding
:L-R-Link TEMPORAL-ABSTRACTION (((EARLIEST 2) (EARLIEST? 2)))
:Doc :L-R-Link TEMPORAL-ABSTRACTION
(-outputs the elements of the input series up to but not - :Doc
including the one that passes the predicate -A. * (-outputs the first element of the input series which passes the-
(FUNCTION-TYPE (PREDICATE-INFO (N> ITER-TRUNCATION)M())(predicate -A.'

(FUNCTIONl-TYPE (PREDICATE-INFO (N> EARLIESTMM((
(De frule BINARY-TRUNCATION

'Binary Truncation' (De frule SEQUENTIAL-SEARCH
.RHS-Node-Types -Sequential Search-
((BINARY-STIOP? . BINARY-TEST-PREDICATE)) :RHS-Node-Types
:Input-Embedding ((EXIT . TEST-PREDICATE)
(((BINARY-TRUNCATION 1) (BINARY-STOP? 1)) (SEARCH . EARLIEST))
((BINARY-TRUNCATION 2) (BINARY-STOP? 2))) :Input-Embedding

;St-Thrus -(((SEQUENTIAL-SEARCH 1) (SEARCH 1f))
(((BINARY-TRUNCATION 1) (BINARY-TRUNCATION 3))) :Output-ambedding
.L-R-Link COMPOSITION (((SEOUENTIAL-SEARCH 2) (SEARCH 2)))
:DOC ;L-R-Link COMPOSITION
('repeatedly applies the binary exit test -A to a value, : Doc

terminating the iteration if the test succeeds.', (-finds the first element of -A satisfying the predicate -A,-
(FUNCTION-TYPE (PREDICATE-INFO (N> BINARY-TRUNCATION((() unless -A is satisfied first.'

(INPUT-PORT-NAME> (DOC-BPi' (SBOURNTIAL-SEARCH 1))
(Defru is BINARY-TRUNCATE (FUNCTION-TYPE (PREDICATE-INFO (N> SEARCH))

'Binary Truncate' (FUNCTION-TYPE (PREDICATE-INFO (N> 5LX1T((I)I
.RNS-Node-Types
((ITER-DIN-TRUNCATION . BINARY-TRUNCATION) ((Defrule SEQ-LIST-SEARCH
:Input-Embedding 'Sequential List Search'

((BINARY-TRUNCATE 1) (ITER-BIN-TRUNCATION 1)) :RHS-Node-Iypes
((BINARY-TRUNCATE 2) (ITER-BIN-TRUNCATION 2))) ((LIST-ZENU. LE)

:Output -Embedding (SEQ-SEARCH SEQUDINTIAL-SEARCH)
(((BIHARY--RUNCATE 3) (ITER-BIN-TRUNCATION 3))) EZdge-List
:L-R-Link TEMPORAL-ABSTRACTION (((LIST-REIN 2) . (SEO-SEARCH 1)))
:Doc :Input-Embedding
(-outputs the el eme nts of the input series up to but not -(((SEQ-LIST-SEARCH 1) (LIST-RENU I)))
including the one that passes the binary predicate -A.' :Ou1tpUt-80bedding
(FUNCTION-TYPE (PREDICATE-INFO (N> BINARY-TRUNCATE) II)) (((SIG-LIST-SEARCH 2) (SEQ-SEARCH 2)))

:L-R-Link COMPOSITION
(Defrule SLE :Doc

'Sublist Enumeration' ('sequentially searches the elements of the list -A until either the-
RHEM-Node-Types list is exhausted or an element is found that satisfies the test -A.'
I(ThE-ODIERATE GENEIRATE) (INPUT-PORT-NAME> (DOC-BP> (SEQ-LIST-SEARCH IM1

311

(FUNCTION-TYPE)PREDICATE-INPO0 IN> SEQ-S&ARCH))))) H NEW-SEQUENCE 1) (MAKE-SEQ I1)
:Output-Embedding

(Defru I. CONS-ACCUMUILATE-DOWN I))NEW-SEQUmNCE 2) (HARE-SEQ 2)
'Cons Accumulate on the way down- ARRAY>SZgUEMCE))
-RXS-Node-Typos :L-R-Link IMPLEMENTATION
((TiIE-ACCUM . ACCUMULATE-DOWN)) :t'oc
.Input-Embedding)1creates a new sequence of size-A

(I (CONS -ACCUMULATE-DOWN 1) (THE-ACCUM 1)) (INPU7P-PORT-NAME> (DO)C-BP> (NEW-SEQUJENCE 1))))
toutput-mbobdding
)))CONS-ACCUMULATE-DOWN 2) (THE-ACCUN 3))) (Detrule SE47JENCE-SIZE
:L-R-Link IMPLEMEN~TATION *Sequence Size-
:Doc :"S-Node -Types
(-accumulates the elements of the input series -A into a list - ((EASURE-SEOUENCE . ARRAY-TOTAL-SIZE))
using Cons., :Input-Embedding
)INPUT-PORT-NANE>)DOC-BP>)CONS-ACCUMULATE-DOWN 1))))))))SEQUENCE-SIZE 1) (NEASURE-SEQUtJI2CE 1)

ARRAY>SSQDUECE))
)Defrule REVERSE-LIST :Output-Esibedding

*Reverse List')))SEQUENCE-SIZE 2) (MEASURE-SEQUENCE 2)))
:RHS-Node-Types :L-R-Link IMPLEMENTATION
f(ENUMERATE-LIST . LE) :D0c
(ACCUM-LIST . CONS-ACCUNULATE-DOWN)) (*computes the Size of the sequence -A.-

:Edge-List (INPUT-PORT-NM(E-)DOC-BP> (SEQUENCE-SIZE 1)))))
)))DlUMERATE-LIST 2) .)ACCUN-LIST 1)1))
:Input-Embedding)Defrule NEW-TERMd

)(REVERSE-LIST 1) (ENUMNERATE-LIST 1))) *New Term-
.Output-Embedding :MS-Node-Types
)))REVERSE-LIsT 2))ACCUM-LIST 2)))))TNE-CR . COPY-REPLACE-ELTJ)
:L-R-Link COMPOSITION -Input-Embedding
:Doc)))f4EW-TERN 1))TWE-CR 3)
(-constructs a list containing the elements of -A in reverse.'* ARRAY>SEOUEi4CE)
)INPUT-PORT-NANE>)DOC-BP> (REVERSE-LIST IUM))))NEW-TERM 2) T)TNE-CR 2))

((NEW-TERM 3))THE-CR 1)))
)Defrule TRAILING-GENERATION :Output-Embedding

-Trailing Generation- (()NEW-TERN 4))THE-CR 4)
:RHS-Node-Types ARRAY>SE0f3DICEJ))
((TR-GEN-FUNCTION . ANY-GEN-F)) :L-R-Link lIMPLEMENTATION
:Input-Eibedding :Doc

)(TRAILIf4O-OSHERATION 1) (TR-GEN-FUNCTION 1))))creates a new sequence with the same elements as the input sequence-
:Output-Fasbedding -A at the same locations, except that the element -A is at the

)(TRAILING-GENERATION 3))TR-GEN-FUNCTION 2))) index -A.,
:St-Thrus (INP3T-PORT-NAKE>)DOC-BP> (NEW-TERM IM)

)(TRAILING-GENERATION 1) (TRAILING-GENERATION 2)) (INPUIT-PORT-NAM4E>)DOC-BP>)NEW-TERN 3))
:L-R-Link COMPOSITION)INPUT-PORT-NAXE>)DOC-BP> (NEW-TERM 2)))))
:Doc
(-generates the successive previous and current elements of -A - Defrule SEQUENCE-ACCUMULATION
by repeatedly applying the function -A to the result of -'Sequence Accumulation-
the preceding application of that function.- :PES-Node-'1ypes
)INPUT-PORT-NANE>)DOC-BP> (TRAILING-GENiERATION IM) ((THE-NT . NEW-TERN))
)FUNCTION-TYPE (FIINCTION-INPO (N> TR-GEN-FUNCTION)))) :Input-Embedding

)))SEOCJENCE-ACCUHJL.ATION 1))THE-)fr 3))
)Defrule TRAILING-GENERATE ()SEOUENCE-ACCUMVLATION 2) (THE-NT 2))

-Trailing Generate* ((SEQUENCE-ACCUMULATION 3))THE-NT 1)))
:RHS-Node-Types :St-Thrum
)(ITER-TRAILZNG-GEN . TRAILING-OSHERATION)) () SEQUEidCE-ACCUHULATION 3) (SEOUSZ4CE-ACCUMULATION 4)))

:Input-Embedding :L-R-Link COMPOSITION
)))TRAILING-GENEIZATE 1))ITER-TRAILING-GEN 1))) :Doc
:Output-Embedding (-repeatedly inserts an element -A)a new element on each iteration)-
((TRAILINO-OPIIERATE 2))ITER-TRAILING-GF2I 2)) in tti sequence -A at the location -A (which is a different index on-
((TRAILING-GENERATE 3) (ITER-TRAILING-GEN 3))) each iteration). When the iteration terminates, the sequence-

-L-R-Link TEMPORAL-ABSTRACTION resulting from the last insertion is returned.,
:Doc) INPUTI-FORT-NANE> (DOC-BP> (SEQUEM4E-ACCUMULATICN 1)))
(-generates a series of the elements of -A and a series of the - INPUT-PORT-NAME> (DOC-BP> (SEQUEiICE-ACCUMUItATION 3M)
elements immediately preceding each of the elements in that - INFtIT-PORT-NA3EE>)OOC-BP> (SEQWJENE-ACCUWUIATION 2)))))
series.-
(INPUPT-PORT-NANE>)DOC-BP> (TRAILING-GENERATE 1))))))Defrule SEQ43ENCE-ACCtJtILATE

-Sequence Accumulate*
(Defrule TRAILING-PTR-LE zRHS-Node-Types

'Trailing Pointer List Enumeration' ((ARRAY-ACCUR . SEOUDICE-ACCUMtJLATION))
:RHS-Node-Types Zinput-Embedding
((TR-GEN . TRAILING-OIRMATE))))SXQIUENCE-ACCUMULATE, 1))ARRAY-ACCUM 1))
(PREVIOUS-CAR-MAP .CAR-MAP)))SEQUVDCE-ACCUUILATE 2) (ARRAY-ACCII(2))
(CURRENT-CAR-KAP .CAR-MAP)))SEQL;EMCE-ACCUWULATE 3) (ARRAY-ACCUM 3)))
)NULL-TRUNC .TRUNCATE)) :Output-2bobdding

:Edge-List)))SEQUENCE-ACCUMULATE 4) (ARRAY-ACCUR 4)))
(((R-0F24 3) . CURRENT-CAR-MAP 1)) :L-R-Link TEMPORAL-ABSTRACTION

)I'R-0Ri4 3) . NULL-TRUNC 1)) :Doc
((TR-GIN 2) . PREVIOi3S-CAR-MAP 1))))-accumulates the values of the input series -A into a sequence -A at the-
:Input-mmbedding series of indices -A.-
)T(RAILING-PrR-LE 1) (TR-GEN 1))) (INPU7r-PORT-NAMX>)DOC-BP> (SEOUI2ICE-ACCUMULATE 1))

:Output-Embedding)INPUT-PORT-NANE> (DOC-BP> (SEQUENCE-ACCUMULATE 3))
)(TRAILINO-PYR-LE 2))PREVIOUS-CAR-MAP 2)) (XNPU71-PORT-NAME>)OOC-BP> (SECUENCE-ACCUMULATE 2)))))
)(TRAILING-PTR-LE 3))CURRENT-CAR-MAP 2)))

:L-Rk-Link COMPOSITION)De frule SEQUENCE-DIUMERATION
:Doc -Sequence Enumeration-
(enumerates the elements of the list -A. along with their - RHS-Node-Types
immediately preceding elements. * (OGEMERAT9-INDIC1S . BOUNDED-COUNT)

(INPUTr-PORT-NAME>)OOC-DP.)TRAILINO-PrR-LE 1))))COMP'.TS-INDEX-LIMIT . SEQUENCE-SIZE)
(ACC869-SBOVENCE . SELECT-TERNM-NAP))

)flef rule NNW-SEQUENCE ERdge-List
.141M Sequence-)))DIERATE-INDICSS 3) . (ACCESS-SEQUENCE 2))
:RHS-Node-Types))COMPUfTE-IN0EX-LINIT 2) .)OENERATE-INDIC&S 2)))
)(MAKE-*EQ . MARE-ARRAY)) :Input-Embodding

:Input-2mbedding (I)SEQUflCE-IN3MILRATION 1) (ACCESS-SEQUENCE 1))
tUSEQUDNCZ-104YNRATION 1))COMPUTIE-INDEX-LlNIT 1)))

312

Doc
:Output-Embedding)*applies the binary predicate -A to -A and -A."
I) SEQUENCE-ENLIMERATION 2) (ACCEsSS-SEQUENCE 3))) (FUNCTION-TYPE (FtB5ZTIO-INFo (N> ANY-BIN-PRED) U
:L-R-Lxnk COMPOSITION) INP~r-PORT-NAME> (DOC-BPI> (ANY-BIN-FRED 1)))
:Doc (INPUT-PORT-NAME>)DOC-BP> (AmY-BIN-FRED 2)))))
i*enumerates the elements of the sequence -A.-

(INPUTI-PORT-NAME> (DOC-SF> (SEOUDJNCE-INUMERATION 1)))) (Defrule BINARY-TEST-PREDICATE

-Binary Test Predicate'
(Do fru le SEQUENCE-AND-INDEX-ENUI(ERATION -RHS-Node-Types

-Sequence and index Enumeration,)(TF-BINARY-P .BINARY-PREDICATE)

:RHS-Node-Types (NULL-CHECK .NULL-TEST))

((GENERATE-INDICES . BOUNDED-COUNT) :Edge-Liat
(COMPUTE-INDEX-LIMIT . SECUVNCE-SIZE))) TP-BINARY-P 3) . (NULL-CHECK 1)))
(ACCESS-SEQUENCE . SELECT-TERM-MAP)) :Input-Fabodding

:Edge-List)(()BINARY-TEST-PREDICATE 1))TP-BINARY-F 1))
(()GENERATE-INDICES 3) . (ACCESS-SEQUENCE 2)) U(BINAAY-TEST-PREDICATE 2))TP-BINARY-P 2)))

((COMPUTE-INDEX-LIMIT 2) . (GENERATE-INDICES 2))) -.L-R-Link COMPOSITION
Input -Embedding :Doc
((SEQUENCE-AND-INDEX-D4tBEERATION 1) (ACCESS-SEQUEN4CE 1) (*tests -A and -A using the binary predicate -A.*
HSEQJFJICE-AND-INDEX-ENUMERATION 1))COMPUTE-IHDEX-LIHIT 1))) (INPUTr-PORT-NAME>)DOC-BP>)BINARY-TEST-PREDICATE 1)))

:Output-Ebobdding)IHPUT-PORT-NANE>)DOC-BP>)BINARY-TEST-PREDICATE 2)))
(((SEQUEWCE-AND-INDEX-EWUMERATION 2))ACCESS-SEQUENCE 3)) (FUNCTION-TYPE (FUNCTION-INFO (N> NULL-CHECK))))
()SECUE4CE-AND-INDEX-ENUMERATION 3))OEWERTE-INDIC9S 3)))

:L-R-Link COMPOSITION (Defrule SUMMING
:Doc 'Summiing"
('enumerates the elements of the sequence -A and their indices. * :RHS-Node-Types

(INPUT-PORT-NAME> ((THE-TALLY . COIUUATIVE-BINARY-FUNCTION))
)DOC-BP> (SEQUEW4CE-AND-INDEX-ENRUMEMTION 1))) :Input-Embedding

(((SUMEING 1) (THE-TALLY 1))
(Defrule LIST-TO-SEQUtENCE ((SUMMING 2) (THE-TALLY 2)))

'Transfer List to Sequence* St -Thrus
:RHS-Node-Types (((SUIWING 2) (SUMMING 3)))
))ENUMERATE-LIST-ELTS . LE) :L-R-Link COMPOSITION
(NEW-BASE . NEW-SEOUENCE) :Doc
(COUNT-INDICES . COUNT) (*keeps a running total of the numbers -A.*
(AccumnULT-sEOuzICE . SEOUENCE-ACCUMULATE)) (INPUT-FORT-NAME> (DOC-BP> (SUMMING 1)))))
:Edge-List
(((ENWUMERATE-LIST-ELTS 2) . (ACCUMULATE-SEQUENCE W) (Defrule SUM

(NEW-BASE 2) . (ACCUMULATE-SEQUEN4CE 3)) S5um*
(COUNT- INDICES 2) . (ACCUNULATE-SEQUF2ICE 2))) :RHS-Node-Types

:Input-Fmbadding ((TALLYING . SUMMING))
(((LIST-TIO-SEQUENCE 1) (ENUMERATE-LIST-ELTS 1)) :Input-Embedding
((LIST-TO-SEOUENCE 2) (HEW-BASE 1)) (((SUM 1) (TALLYING 1))

:Output-Pjsbedding :Output-Fzibedding
(((LIST-TO-SEQUflICE 3) (ACCUNULATE-SEQUENCE 4))) (((SUM 2) (TALLYING 3)))
:L-R-Link COMPOSITION :L-R-Link TUIPORAL-ABSTRACTION
:Doc :Doc
(-transfers the elements in the liat -A into a sequence-I- (-returns the sum of the numbers in the input series .-A.'
of size -A. by enumerating the elements of the list -4- (INPUT-PORT-NAME>)DOC-BP> (SUM 1)1)11)
and accumulating them in the sequence at successive indices,.-I-
starting with index -A.' (Defrule MAX
(INPUT-PORT-NAME> (DOC-BP> (LIST-TO-SEQUDJCE 1)) *Kaximum,
(INPUT-PORT-NAME> (DOC-BP> (LIST-TO-SEQUENCE 2))) :RNS-Node-Types
(INPUT-PORT-NAME>)DOC-BP> (COUNT-INDICES 1))))) ((COMPUTE-MAX . BINARY-TEST-PREDICATE))

.Input-Embedding
(Defrule UNARY-PREDICATE (((MAX 1) (COMPUTE-MAX M)

-Unary Predicate- ((MAX 2) (COMPUTE-MAX 2)))
:MS-Node-Types :St -Thrus
((ANY-PRED . ANY-P)) (((MAX 2) (MAX 3))
:Input-Embedding ((MAX 1) (MAX 3)))
(((UHARY-PREDICATE 1) (ANY-FRED IM) :L-R-Link IMPLEMENTATION

:Output-Fzbedding :Doc
(((UNARY-FREDICATE 2) (ANY-FRED 2))))-computes the maximum of -A and -A.-
:L-R-Link IMPLDEMENATION (INPUT-PORT-NAME> (0CC-SF> (MAX 1)))
:Doe (INPUT-FORT-NAME> (DOC-BP> (MAX 2)))))
()applies the unary predicate -A to -A.-

(FUNCTION-TYFE (FUJNCTION-INFO (N> ANY-FREDM) (Defrule WNI
(INPUT-PORT-NAME> (DOC-BF> (ANY-FRED 1))))) *Minimum*

:RHS-Hode-Types
(Defrule TES-PREDICATE ((COMPUTE-MIN . BIMARY-TEST-PREDICATE))

'Test Predicate" Input-Zmbedding
:RHS-Node-Types (((MNI I) (COMP7I'E-MIN 1))
()TF-UNARY-P . UNARY-FREDICATE) ((KIN 2) (COMPUTEZ-WIN 2)))
(CHECK-IT . NULL-TEST)) :St-Thrus

:Edge-List (((MIN 2) (MIN 3))
(((TP-U~hRY-F 2) . (CHECK-IT 1))) ((WIN 1) (MNI 3j)))
:Input-Embedding :L-R-Link IMPLEMENTATION
(((TEST-PREDICATE 1) (TP-UNARY-F 1))) :Doc
:L-R-Link COMPOSITION)Icoqiutes the minimumo of -A and -A.-
:Doe) INPUT-FORT-NAME> (DCC-BP> (MAX I)))
('tests -A using the unary predicate -A., (INPUT-PORT-NAME> (DOC-SF> (MAX 2)))))

(INPUT-FORT-NAME> (DOC-BF> (TEST-PREDICATE 1)))
(FUNCTION-TYPE (FUNCTION-INFO (H> CHECK-IT))))) Figure 3-9.

(Defrule BINARY-PREDICATE (Defrul* SOUAE-ROOT-OF-SQUARE
*Binary Predicate 'Square-Root of square'
:RHB-Node-Types :RHO-Node-Types
((AmY-BIN-FRED . AmY-BINARY-F)) (M9 . SQUARE)
:Input-Embedding (TAKE-ROOT . SORT))
(((BINARY-PREDICATE 1) (AmY-BIN-FRED 1)) :Edge-List

((BINARY-PREDICATE 2) (AmY-BIN-FRED 2))) ((tSo 2) . (TAKE-ROUT 1)))
:Output-Embedding -Itput-11bodding
(((BINAY-PREZDICATE 3) lAmY-BIN-FRED 3))) (((S0UAAE-ROUT-O?-SQUAAE 1) (SO 1)))
;L-R-Link IMPLDMENTATION :Output-Robw~ing

313

(((SgUARE-ROOT-OF-SOCIARE 2) (TAKE-RoOT 2)))
:L-R-Liflk COMPOSITION
-Doc
(-computes the square root of the square of -A-

(INPUT-PORT-NANE> (DOC-BP> (SQUARE-ROOT-OF-SQUARE 1)))))

Figures 3-9. 4-4.

(Defrule NEGATE-IF-NEGATIVE
-Negate if Negative'
zR34S-Node-Types
((NEGATIVE? . IT)
(CONTROL-NEGATION . NULL-TEST)
(THE-NEGATE . NEGATE))

-Edge-List
(((NEGATIVE? 3) . (CONTROL-NEGATION 1)))
:Input-Emsbedding
(((NEGATE-IF-NEGATIVE 1) (THE-NEGATE 1))

((NEGATE-IF-NEGATIVE 1) (NEGATIVE? 1f))
.output-embeddiflg
(((NEGATE-IF-NEGATIVE 2) (THE-NEGATE 2)))
.St-Thrus
(((NEGATE-IF-NEGATIV 1) (NEGATE-IF-NEGATIVE 2)))
:L-R-Link COMPOSITION
:Doc
(,negates -A if its negative.'
(INPUT-PORT-NAME> (11CC-BP> (NEGATE-IF-NEGATIVE U)))

Figure 3-9.

(Defrule ABSOLUTE-VALUE
-Absolute Value*
:RNS-Node-Types
((SORT-OF-SQ . SQUARE-ROOT-OF-SQUARE))
anput-Embedding
(((ABSOLUTE-VALUE 1) (SORT-OF-SQ 1())
:output-bnbeddiflg
((UABSOLUTE-VALUE 2) (sORT-OF-SQ 2)))
:L-R-Link IMPLEMENTATIONI
.Doc

(-computes the absolute value of -A by taking the square root of

its square.'
(INPu7r-PORT-NAMZ> (DOC-BP> (ABSOLUTE-VALUE 1)))))

Figure 3-9.

(Def rule ABOUJTE-VAI.UE
'Absolute Value'
:RHS-Node-Types
((NIH . NEGATE-IF-NEGATIVE))
:Input -Ebeddiflg
(((ABSOLUITE-VALAM 1) (NIH 1)))
:Output-anbeddiflg
(((ABSOL.UTE-VALUE 2) (NIH 2)))
:L-R-Link INPLJOEDITATION
:Doc
(-comiputes the absolute value of -A by negating it if it is-
negative.*

(INPUTr-PORT-NAME> (11CC-BP> (ABSOLUTE-VALUE 1)))))

Figure 3-9.

(Defrule EQUALITY-WITHIN-EPSILO0N
-equality Within an ~Epilon-
:RHS-Node-Types
((111FF . MINUS)

(TAKE-ADS . ABSOLUTE-VALME)
(WITHIN-EPSILON . LTE)
(TEST-EIE .NULL-TEST))

:Edg*-List
(((111FF 3) .(ABSOLUTE-VALUE 1))
((WITHIN-EPSI~iON 3) . (TEST-DIE 1)))
:Input -Embedding
)()EQUALITY -WITH IN-EPSILON 1) (111FF 1)
i(EQUALITY-VIITHIN-EPSIURN 2) (DIFF 2f))
:L-R-Liflk COMPOSITION
:Doc
)-deteruine. whether -A and -A are within an epilon -A of each-

other.-
(INP¶?r-PORT-NAME> (11CC-BF> (EQUALITY-WITHIN-19PSIL40N 1n))
(ZNPUT-PORT-NAIEE> (11CC-BF> (EQUALITY-WITHIN-EPSILO0N 2)j))

(INPUT-PORT-NADM>)OOC-BP> (BOUALITY-WITHIN-EPSILON 3)))))

314

Index of Non-Termilnal Nod* Types 299 (EVALUJATE-AND-APPLY I:SYMBOL 2:LIN'•ED-LIST 3:SEQENC
4:XEXCUTION-CONTJEXT 5:(UEE 6:ANY

314 (ABSOLUJTE-VALUZ I:INTEGER 2:INTEGER) 7:SZOUNC @:EX•'VUTION-CONTEIXT 9:0UEUE)
311 (ACC•UMULTE-DOWN I:SERIES 2:ANY 3:ANY) 298 (EVALUJATE-ARGt•]ETS I:LINKED-LIST 2:SEOUEICE 3:EXSCUTION-CONTEXTr
309 (ACCUMULATE-UP I:SLRIZS 2:ANY 3:ANY} 4:(•JEUE 5:LINYED-LIST 6:SEOUEN4CE
311 1ACCUMULATION-DOWN 1:AN 2:ANY 3:ANY) 7:EXELUTION-CONEXT 8:0UEUE)
309 (ACCUMULATION-UP I:ANY 2:ANY 3:ANY) 298 (EVALUJATE-MAP I:SERIES 2:SEQUENCE 3:EXECUTION-CONTEXT 4
293 (ADVANCE-NODZS I:SE(QUSNCZ 2:SEKOIENCE 3:OUZUE) :(QUEUE 5:SERIES 6:SEQUENICE 7:EXECUTION-CCNTEXT
304 (ASSOCIATIVE-LIST-DELSTE I :ANY 2 :ASSOCIATIVE-LIST 8 :QJUELYE

3 :ASSOCIATIVE-LIST} 291 (EVENT-DRIVEN-SIMULATION I :EVIENT 2 :PRIORITY-OUEU•E 3 :SEOUIEICE
304 (ASSOCIATMV-LIST-INSERT I :ANY 2 :ANY 3 :ASSOCIATIVF "LIST 4 :SEOUENCE)

4 :ASSOCIATIVE-LIST) 293 {EXTRACT-AND-HANDLE-FIRST-DMSSAGE I :SYNCH-NODE 2 :INTEGER 3 :SEOUEINCE
304 (ASSOCIATIVE-LIST-LOOKUP 1:ANY 2:ASSOCIATIVE-LY :ANY) 4:(•JEUE 5:SEOUENCE 6:QUEUE)
301 (ASSOCIATIVE-SET-ADD 1:ANY 2:ANY 3:ASSOCIATIVE-LIT 303 (FEITH÷DELETE. I:ANY 2:HASH-TABLE 3:HASH-TABLE}

4 :ASSOCIATIVE-SEIT) 303 (FETCH÷INSERT I :ANY 2 :ANY 3 :HASH-TABLE 4 :KASH-TABLE)
302 (ASSOCIATIVE-SET-LOOKUP I:ANY 2:ASSOCIATIVE-SrT 3:ANY) 303 [FETCH÷LOOKUP 1 :ANY 2:HASH-TABLE 3:AtY)
302 (ASSOCIATIVE-SET-RI•W)VE I:ANY 2:ASSOCIATIVE-SET 301 (FETCH+UPDATE 1:INDEXED-SEQUEN•CE 2:ANY 3:INDEXED-SEQUEINCE)

3 :ASSOCIATIVE-SET) 299 (FETCH-AND-APPLY-OPERATOR 1 :SYMBOL 2 :LINKED-LIST 3 :SEQUEN
294 (AVERAGE-IOCAL-BU'FFER-SIZE I:S8QUENCE 2:INTEGER) 4:EXECUTION-CON•TEXT 5:QUEUE 6:ANY
313 (BINARY-PREDICATE 1:ANY 2:ANY 3:ANY) 7:SEQUNE 8:EXECUTION-CONTEXT 9:QUEUE)
313 (BINARY-TEST-PREDICATE I:ANY 2:ANY) 300 (FETCH-INSTRUCTION4 1:INTEGFR 2:SEOUINCE 3:INSTRUCTION
311 (BINARY-TRUNCATE I:SZRIZS 2:ANY 3:SERIES) 4: INDEXED-SECK/YENCE}
311 (BINARY-TRUNCATION 1:ANY 2:ANY 3:ANY) 299 (FETCH-OP I:SYMBOL 2:OPERATOR}
297 1BOUNDFD-CIS-ZNUM4ERATI(XN 1 :CIRCU/LAR-INDFXFD-SZ(•UENCE 298 IFIFO-DEG(JEUE I :FIFO 2 :ANY 3 :FIFO)

2 :INTEGER 3 :INTEGER 4 :INTEGER 296 (FIFO-DESTRUCTIVE-ENUKLRATION i :FIFO 2 :SERIES)
5:SERIES) 296 (FIFO-EMPTY7 I:FIFO)

310 (BOUNDED-COUN4T I:INTZGER 2:INTEGER 3:SERIES) 299 [FIFO-ENQUEgJE I:ANY 2:FIFO 3:FIFO)
301 (BUM4P-UPDATE 1:ANY 2:INDEXED-SEQUEN•CE 3:1NDEXED-SEQUINCE) 297 (FIFO-ENUNERATION• J:FIFO 2:SERIES)
310 (CAR-MAP 1:SERIES 2:SERIES) 310 (FILTER I:SERIES 2:SERIES)
303 (CHAINING-NT-DELETE I:ANY 2:HASH-TABLE 3:HASH-TABLE) 310 (FILTERING 1:ANY 2:ANY}
303 (CHAINING-HT-FILL-COUANT-DELETZ I:ANY 2:HASH-TABLE 306 (FIND-OAL-TAIL 1:ORDERED-ASSO¢IATIVE-LIST 2:ANY

3 : ASH-TA13LE) 3 :ORDERED-ASSOCIATIVE-LIST)
304 (CHAINING-HT-FILL-COUJNT-INSERT I :ANY 2 :ANY 3 :HASH-TABLE 306 (FIND-OAL-TAIL-UNSAFE I :ORDERED-ASSOCIATMV-LIST 2 :ANY

4 :HASH-TABLE) 3 :ORDERED-ASSOCIATMV-LIST)
303 (CHAINING-HT-INSERT I:ANY 2:ANY 3:HASH-TABLE 4:HASH-TABLE) 309 (GENERATE 1:ANY 2:SERIES}
302 {CHAINING-NT-LOOKUP I :ANY 2 :HASH-TABLE- 3 :ANY) 291 (GEMIERATE-wEVNT-QuI•ES-AND-NODts l :PRIORITY-QUEUE 2 :SEQUEN•CE
297 (CIRCULAR-INDEXED-SEQU'E1qCE-EWNU•.RATION 3 :SERIES 4 :SERIES)

1 :CIRCULAR-INDEXED-SZQUINCE 2 :.SRIES) 294 (GM4MRTE-GLOBAL-BUFFERS-AND-NODES I :SEQUEMCE 2 :QU'EUE 3 :SERIES
297 (CIS-ADD i :ANY 2 :CIRCULAR-INDEXED-SEQUENCE 4 :SERIES}

3 :CIRCULAR-INDEXED-SEQUENqCE} 309 (GENRATION 1 :ANY 2 :ANY•)
296 (CIS-DESTRUCTIVE-ENUM•ERATION I :CIRCULAR-INDEXED-SEQUENCE 293 (GLOBAL-AND-LOCAL-BUFFERS-EMP•TY? I :SZQE(NCEq 2 :QUEUE}

2 :SERIES} 297 (GROW-CIS 1 :CIRCULAR-INDZXED-SEQUENCE 2 :CIRCULAR-INDEXED-SEQUENCE)
296 (CIS-EMPTY 1-:CIRCULARt-INDEXED-SEOUENCE) 299 (HANDLE-MESSAGE I:MESSAGE 2:SEQUJENE 3:QUEUE 4:SEQUINCE 5:QUEUE)
298 (CIS-LVTRACT I-CIRC--EAR-INDZXED-SEQUENCE 2:ANY 302 (MASH-DELETE 1:ANY 2:HASH-TABLE 3:XASM-TABLZ)

3 :CIR'U'LAR-INDEXED-SEQUENIE) 302 (H4ASHI-INSERT 1 :AMY 2 :ANY 3 :HASH-TABLE 4 :HASH-TABLE)
296 (CIS-FULL 1:CIRCULAR-INDEXED-SEOUENCE) 302 (HASH-LOOKUP I:ANY 2:HASH-TABLE 3:•AN)
291 (CO-EARLIMS-EDS-FINISHED I:SERIES 2:SERIES 3:SEQUENCE) 310 (INCREMENT I:INTEGElt 2:INTEn-ER]
291 [CO-ITERATIVE-EDS-FINISHED 1:PRIORITY-QUEUE 2:SS•EME 3:ANY) 310 [INCREKI•T-OR-DECREKENT I:INTEGZR 2:ZNTEGZR)
297 (COMBINATION-FUNCTION : INTEGER 2 :INTEGER 3 :INTEGER) 301 (INDEXED-S~eQUINUE-ACh-'UMULtATION : SERIES 2 :INDEXED-SE(•UENCE
309 (COM4UTATIVE-BINKRY•-FUCIOq 1:ANY 2:ANY 3:ANY) 3:INDEXED-SEOUENC£)
312 (CONS-ACCUMULATE-IDOWN I :SERIES 2 :LINKED-LIST) 301 (INDEXED-SEQUENCE-EXTRACT I :INDEXED-SEQUENCE 2 :ANY
309 (CCNS-ACCUMLTE-UP 1:SERIES 2:LINKED-LIST) 3:INDEXED-StgUENCE}
309 (CONS-ACCMLTE-UP-FRON-SUBLIST I :SERIES 2:LINKED-LIST 301 |INDEXED-SEQUENCE-INSERT I :AMY 2 :XNDEXED-SBOUIENCE

3 :LINKED-LIST) 3 :INDEXILD-SEOUIENCE)
310 (COUNT l :INTEGER 2 :SERIES) 297 (INTEaRMEDIATE-GROW-CIS i :CIRC-U'LAR-INDEXED-SZUUENCE 2 :INTEGER
310 (COUNTING-UP 1 :INTEGER 2 :INTEGER) 3 *CIRCUJLAR-INDEXED-SZOUUENCE)
310 (DECREMENTF 1:INTEGER 2:INTEGER) 305 (IN~TSN&DIATZ-U0AL-DELETFE I:ANTY 2:UNORDERED-ASSOCIATIVE-LIST
292 (D&LIVER-MESSAGE I :MESSAGE 2:SEQUENCE 3 :SE(•RENCE) 3 :LINKED-LIST 4 :UNqORDERFD-ASSOClATIVE-LIST)
292 (DELIVER-MESSAGE-ACCUMRULATE 1 :SERIES 2 :SE(•IENCE 3 :SEQUENCE) 300 (INTERPRET-INSTRUCTION 1-:INSTRtUCTION 2 :S5OUXNCE 3 :EXECUTION-t'•NTEXrT
292 (DELIVER-MESSAGES 1:QUEUE 2:SZ(•JENCE 3:SEQUENCE) 4:QUEUE 5:S$9UECl 62EXECUT•ION-CoNTEXT 7:(•UEUE)
294 (DELIVER-MESSAGES-AND-STEP-NODES I:SZ()UENC5 2:QUZUE 298 (ITZRATIVE-EVALUATION I:AMY 2:SEOUEN•CE 3:ESECUTIOMONT•x 4:QUEUE

3:SE(•VENCE 4:QUEU•E) 5:AMY 6:SEQUIMCZ 7:Z•KtCUTIOM-CON1TEXT 8:•OUElE)
291 (DE0EU-AND-PROCESS-oENERATIOH I:PRIORITY-(•JXUE 2:SEQUENCE 311 (ITZRATIVE-SEARC" 1:AMY 2:ANY)

3:PRIORITY-•JUEJE 4:SE(•RENCE)} 311 (LE I:LINKED-LIST 2:SERIES)
294 (DESTRUCTIVE-(•UEUE-SNUMERATION 1:QUEUE 2:SERIES} 309 (LIST-EMPTY I:LINKILD-LIST)
293 (DO-WORK-ACCUMULATZ I:SZRIES 2:INTEGER 3:SSQUENCZ 4:•gJEU 309 (LIST-POP I:LINKED-LIST 2:ANY 3:LINKED-LIST}

$-SEQENE 6:QUEUE) 307 (LIST-PUSH I:ANY 2:LINKED-LIST 3:LINK8D-LIST}
293 (DO-WORK-ACC.-MULAtTION I:SYNlCH-NODE 2:INTEGER 3:SEQUENCE 313 (LIST-TO-SEQUENCE I:LINKED-LIST 2:INTBtGZR 3:SEa/INCE)

4:QUEUE 5:$19•UICE- 6:(•]EJR) 300 (LO)AD-ARGUMENTS I:MZSSAGZ 2:NODE 3:NODE}
310 (DOUBLE l:INTSn-ZR 2:INTEGER) 300 (LO)AD-ARGUMENTS-INTO-AN I:MZSSAGS 2:ASYNCH-NODE 3:ASTNCH-NODE)
311 (EARLIEST 1:SERIES 2:ANF) 300 (LOAD-ARGUICETS-INTO-MEMORY I:NZSSAG£ 2:ASSOCIATIVS-SET
308 (EARLIEST-EgUAL-PRIORITY I :SERIES 2 :ANY 3 :ANY) 3 :ASSOCIATIVE-SET}
309 (EARLIEB'T-SOUAL-PRIORITY-HEAD I:8ZRI&$ 2:ANY 300 (LOAD-ARUET-INTO-SN I:NSSSAGE 2:SYC-MODE 3:SYNCH-MMOE)

3 :ORDERE&D-ASSOCIATIV-LIST) 292 (L0CAL-BUFFER-D(} I :SYNCH-NODE 2 :WESSGR 3 :SYNCH-NMME)
308 (LURLIF.ST-OAL-POSITION I:SZRIZ9 2:AtNY 292 (LoOCALJU-BUFFElt-EMPTY? I:SYNCH-NODS)

3 :ORDZRRD-ASSOC:IATIVE-LIST) 292 (LOCAL-BUeFF&R-MONEM41fY? I :SYNqCH-NOOE)
294 (EARLI&ST-$II4ULATION-FINISH&D 1 :899UEWZ 2 :QUtWE 3 :SKQURX) 292 (LOCAL-BUFFER-HO I :IMJSSAGE 2 :SYCH-NODE 3 :SYNCH-NODS)
309 (SMPTY`-OR-LOW-PRTORITY-HEAD I:ORDZRRD-AB$OWlATIVE-LIST 2:ANY) 293 (LOCAL-BUFFERS-ALWAYS-E"MPTY? l:SSRIZS)
298 (ZHUM-EVAL-COLLECT 1:LINKSD-LIRT 2:SSOEN••CZ 293 (LOC-AL-BUFFERS-SHfMI"? I:SSQI•ENCK)

3:ZXS•CUTIOW-CON4TIDCr 4:QUEUZ 5:LINKED-LIST 300 (LOOKUP-AND,-XRBCU•t-HAMqL4ZR I:MRSSAGZ 2:SSGUEMCE 3:QUTUZ 4:INTI5GER
6:SZQUZNCR 7:ZX8k'UTION-CONTZTEr S:QUI•Z) 5:SYBL 5:320USMCE 7:QUSUZ)

293 (VKA4•UM-ODES+C'HSCK-BUFFSRS 1:89OUECE) 304 (LOOKUP-DKESTIMATION I:SI80UZMCS 2:NZS8AGE 3:JATY)
306 (Z•/UM-OAL-FRONt• I:ORDZRZD-A8S0CIATIVE-LISTr 2:JANY 3:SERIES) 299 (LOOKUP-HANUDLER I:SYNBOL 2:HUAN)LZR)
306 (ISMUM-O&L-FROFIT-UNSAPS I :ORDZRZD-ASSCIATIVE-LIST 2 :ANY 299 (LO)OKUP-HANDLER-FM -IZBSAGS I :IIZSSAG1 2 :HANDLER)

3:60192R) 292 (LO09UP-NODS-NQ+UP'DATK I:MZ8SAG9 2:90SHC•E•C 3:SEQUZNCB)
292 (ZNrUWmRATZ-AND)-D1LIVIZR-NZ0SAG5S IiQUSUZ 2:22QUENCZ 313 (MA•X I:-INTZGZR 2:ITS•GSR 3:IMTSG10t)

3:81B]UZNCK) 313 (WIN 1:IN•8Z 2:INTI•R 3:INTSM~g)
294 {ENUIKOATZ-NODZS+CKt'Y(PTI-AVZRAGZ 1:250UZWZ 2:INTESGR) 314 (NzaATZt-IF-N1Ge"T1VZ I:INTSGZR 2:INTEDER)
308 (SQUAL-PRIONITY*HEAD I.:ORDMRID-ASSOCIATIVE-LIST 2:ANY) 312 (NZW-S@0•UZNCK I:INTSG9R 2-8SQUECE)
309 (SQUAL-PRIORITY-T/•ST I:ANY 2:AN•) 312 (lMw-I•XU4 1:830UX1WZ 2:1MTZGZR 3:JUNY 4:SBQUmqc£)
314 (SQUALITY-WITHIN-ItP8ILON I:IMTZGSR 2:INTEGER) 307 (OAL-MtERISVE-IF-EXIS'TS I:ANT 2:O0tDERED-ASSOCIATIVE-LIST 3:AlNY 4:ANY)

307 (OAL-SPLICB-IN I :8ERI&S 2:ANY 3:ORDEtED-ASSOIATIVE-LIST
4 :ORDER ED-ASSOC:I AT IVE- L IST)

31.S

307 (OAL-SPLICE-OUr 1 :SERIES 2:.ORDZRED-ASSOCIATIVX-LISTr
3 :ORDERED-ASSOCIATZVE-LIST)

307 (ORDERED-ASSOC-LE 1 :ORDERED-ASSOCIATIVE-LIST 2 :ANY 3 SERIES)
306 (ORDERED-ASSOC-LIST-DELETE 1 :ANY 2 :ORDERED-ASSOCIATIVE-LIST

3 :ORDERED-ASSOCIATIVE-LIST)
309 (ORDERED-ASSOC-LIST-EXTRACT 1 :ORDERED-ASSOCIATIVE-LIST 2 :A3IY

3 ;ORDERED-ASSOCIATIVE-LIST)
305 (ORDERED-ASSOC-LIST-INSERT 1:ANY 2 :AOIY

3 :ORDERED-ASSOCIATIVE-LIST
4 :ORDERED-ASSOCIATIVE-LIST

306 (ORDERED-ASSOC-LIST-INSERT-SAFE 1 :AMY 2 :ANY
3 :ORDERED-ASSOCIATIV-LIST
4 :ORDERED-ASSOCIATIVE-LIST)

306 (ORDERED-ASSOC-LIST-INSERT-U)NSAFE 1 :ANY 2 :ANY
3 :ORDERED-ASSOCIATI YE-LIST
4: ORDELRED-ASSOCIATIVE-LIST)

307 (ORDERI.D-ASSOC-LIST-LO)OKUP 1 ANY 2 :ORDERED-ASSOCIATIVE-LIST
3 :ANY)

307 (ORDERED-ASSO:-SLE 1 :ORDERED-ASSOCIATIV-LIST 2 :ANY
3 :SERrES)

293 (POLL-NODES-AND-DO-WORK 1 :SEQU9ICE 2:SEQUUNCE 3 :QUWUE(
305 (PO-DEPTY 1 :PRIORITY-QUEU%)
305 (PQ-M3IIIERATION 1:PRIORITY-QUEUEZ 2:AIOY)
305 (P0-EXTRACT 1:PRIORITY-QEUWE 2%AIOY 3:PRIORITY-QUEUE)
305 (P0-INSERT 1:ANY 2:ANY 3:PRIoRITY-QUEUE 4:PRIORITY-QUEUE)
291 (PROCESS-EVENT 1 :ZEVDT 2:PRIORITY-QUEK3E 3 :SEQUENCE

4 :PRIORITY-QUZUE 5 :SEQUDINCE)
302 (pROPERTY-LIST-LOOKUP 1:SY0EDOL 2:SYMBOL 3:ANY)
295 (QUEUE-EMPTY? 1 :QUEUE)
295 (QUEUE-EXTRACT l:QUEUE 2:ANY 3:QUEUZ)
295 (QUEUE-INSERT 1:ANY 2:QUEUE 3:QUEUE(
304 (RECORD-AT-DESTINATION 1 :ANY 2 :IESSAGE 3 :SEQUENCE 4 :SEQUENCE)
312 (REVERSE-LIST 1: LINKED-LIST 2: LINKED-LIST)

-297 (ROOMY-CIS-ADO 1 :AOOY 2 :CIRCULAR-INDEXED-SEQUDECE
3 :CIRCULAR-INDEXED-SEQUENCB)

299 (RUNNING-STATUS? 1: EXEClTrION-CONEWI,)
299 (R(R@4ING-TZST 1:SYMNOL)
310 (SELECT-TERM 1:SEQDUDCE 2:1INTEGER 3:AMY(
310 (SELECT-TERN-NAP 1 :SZQUENCE 2;SERIES 3 :SERIES(
311 (SEQ-LIST-SEARCH l:LINKED-LIST 2:ANY)
312 (SEQlUDECE-ACCLUNLATE 1:SERIES 2:SERIES 3 :SEQUENCE 4:SEQII33CE(
312 (SEQczlC-ACCIRS3LATION 1:ANY 2-INTEER 3:SEQUENCE 4 :SEQ(3DCE)
313 (SEQUSNCE-AND-INDEX-SNUNERATION 1 :SEQUENCE 2:SERIES 3 :SERIEsj
312 (St4FJZNE-XNUNERATION 1 :SEQUDECE 2 :SERIES)
312 (SBOUUOCE-SZZE 1:SEQUDOCE 2:INTBGER)
311 (SEQUDITIAL-SEARCH 1: SERIES 2 :ANY)
291 (SEQUDETIAL-SINUIATION-OF-NESSAGE-PASSING-SYSTDI

1:SEQUENCE 2:ANY 3:SEQU~ENE)
311 (SLE 1:LINKED-LIST 2:SERIES)
313 (SQUARS-R001-O?-SQI3AE 1: I1lIEGER 2: INYGER)
296 (STACK-EMPTY? 1.STACK)
295 (STACK-DSJNERATION 1:STACK 2:SKRIES)
296 (STACK-POP 1:STACK 2:ANY 3:STACK)
296 (STACK-PUSH 1:ANY 2:STACK 3:STACK)
313 (SUN 3:SERIES 2.INTEGER)
313 (SUMMING 1:INTEGER 2:INTEGER 3:INrEGER)
294 (SYNCHRONOUS-SINULATION 1 :SEQUZNCE 2 :NESSAGE 3 :SEQUWCE(
293 (SYNCNRONOUS-SIM3LATIoN4-FINISNED? I :SZOQUDCE 2 :QUWEE

294 (SYNCHRUOOS-SIMULATION-W-GWOBAL-NESSAGE-EUPPER
1 :SEOUNWE 2:NESSAGE 3 :SEQUUSCE)

313 (TES-PREDICATE 1:ANY)
312 (TRAILING-GOEHRATE 1:AZ4Y 2:szRrES 3:SgRrES)
312 ITRAILING-GDEN RA TION 1:ANY 2.ANY 3:AOOY)
312 ITRAILING-PIR-LE 1 :LINKED-LIST 2 :SERIES 3 :SERIES)
311 (TRUNCATE 1:SERIES 2:SERIES)
308 (TRUNCATE-S0OAL-PRIONITY 1:SERIES 2:ANY 3:SERIES(
300 (TRUWATE-EQUAL-PRrORITY-HXAD 1 :SERIES 2 :ANY 3: SZRIES)
308 (TRUNCATE-OAL-POSITIUN 1:5ER18 2:ANY 3:SIERIES)
307 (TRIMCATE-OAL-POSITION-UNSAIES 1 :SERIES 2 AHY 3 :SERIES)
311 (TRUNCATION 1:ANY 2:AMY)
313 (UNARY-PREDICATE 1:ANY 2:AMY)
J05 (UNORD9RD-ASS0C-LIST-DELWTZ

1 ANY 2 :UNRDER3D-A8SSCIATIVE-LIST
3 :UNkDZRD3D-ASSDCIATIVZ-LIST)

305 (UNORDZRZ-ASSOC-LIST-DWTT? 1 :UNMRERED-ASSOCIATIVE-LIST)
305 (UNOROWRE-ASSOC-LIST-IMSERT 1 :ANY

2 :UNORDERZD-ASSQCIATX YE-LIST
3 :UNORDRED-ASSOCIATIVE-LIST)

305 (UNDRD&RED-ASSOC-LIST-LOOEUP
1 :ANY 2 :UNORDEREG-ABSOCIATIVE-LIOT 3 :ANY)

301 (UPDATE.EIAW 1 :ANY 2: IND31EG-SB0UUEW 3 : INDEXED-SE0UENCE)
301 (UPDATE.?E2TC 1: INDNXED-S5QUDWE 2 :ANY 3: INDICZSD-SB0UDWE)
292 (UPDATIL-1GDE-TINE 1 :ASI9ICH-NGOE 2: INT&GZR 3 :ASYNCH-NODE(

316

List of Figures

1-1 A hybrid program understanding system 9

1-2 GRASPR's architecture 13

2-1 Synchronous simulation cliches 26

2-2 Aggregate data clich6s. 27

2-3 Event-driven simulation clich&s 30

2-4 Node action simulation clich6s 32

2-5 General-purpose dich6s 34

2-6 A message handler for Factorial 36

2-7 The definition of two Machine Operations 37

2-8 Design tree for Pisin 40

2-9 Some of the documentation generated for PiSim 41

2-10 Top-level portion of Pisim code 43

2-11 A syntactic variation of the portion of Pisim shown in Figure 2-10 44

2-12 An organizational variation of the top-level portion of Pisim 45

2-13 Top-level portion of CST. Question marks indicate unfamiliar code 47

2-14 A portion of design tree produced in recognizing CST. 49

2-15 A portion of the documentation generated for CST 50

2-16 Buffer queue implemented as a FIFO, which in turn is implemented as a CIS. 52

2-17 Buffer queue implemented as a stack (LIFO) 53

2-18 Design tree for implementational variation in which the buffer is a stack... 54

2-19 Portion of CST that averages node queue lengths 55

2-20 Design tree for queue length averaging computation 55

2-21 Optimization in which averaging is performed while advancing nodes. . .. 56

2-22 Design tree for optimized code, with shared sub-tree 57

2-23 Code containing a redundant CAR computation 58

2-24 Code in which the result of CAR is cached and reused 58

3-1 An example attributed flow graph 61

3-2 An example flow graph grammar 64

3-3 An example derivation sequence 66

3-4 An example derivation tree 67

317

3-5 An example attributed flow graph grammar 68

3-6 An attributed derivation tree 69

3-7 Testing whether the three input sides form a right triangle 70

3-8 Attributed flow graph for RIGHTP 71

3-9 Flow graph grammar encoding cliches found in RIGUTP 72

3-10 Clich6s recognized in RIGHTP. 74

3-11 These flow graphs should all be seen as equivalent 76

3-12 a) A grammar. b) Its core language. c) Some flow graphs in its expanded

language .. 77

3-13 a) A grammar. b) A derivation sequence. c) A derivation graph representing

the derivation .. 78

3-14 (a) A grammar. (b) Two derivations of same flow graph. (c) Two derivation

graphs representing the derivations 79

3-15 A grammar representing aggregation, using Spread and Make nodes..... .. 82

3-16 F1 is the flow graph in the language of the grammar in Figure 3-15. The rest

are flow graphs aggregation-equivalent to it 83

3-17 F3 and F, can be transformed to this flow graph by flattening nested Makes

and Spreads .. 85

3-18 Two programs each performing two consecutive Stack Pops 88

3-19 The flow graph for the programs POP-TWICE and POP-TWICE2 89

3-20 Flow graph with a node whose output port is of type Any. 89

3-21 (a) A rule which aggregates port types. (b) The same rule with aggregation

information moved to the embedding relation 91

3-22 (a) An edge connects a Spread and Make. (b) This edge becomes a st-thru

when aggregation information is moved to the embedding relation 92

3-23 Circular Indexed Sequence data structure 93

3-24 The rule for Circular Indexed Sequence Extract 93

3-25 The grammar of Figure 3-15 with aggregation encoded in the embedding

relation .. 95

3-26 A reduction sequence using the grammar of Figure 3-25 96

3-27 The reduction of a sub-flow graph using the rule for D from Figure 3-25.. . 97

3-28 (a) A flow graph only partially recognizable as the non-terminal S, whose

rule is in (b). (c) Result of reduction. (d) Breaking up residual Spreads and

Makes to facilitate partial recognition 99

3-29 Flow graph parser evolution 101

3-30 Graph chart parsing 102

3-31 (a) Adding a complete item to the chart. (b) Adding a partial item to the

chart .. 104

3-32 A bottom-up rule invocation strategy affects adding a complete item to chart. 105

3-33 Search strategy as input to parser 106

318

3-34 Additional monitors 107

3-35 Sharing a sub-derivation 109

3-36 (a) A graph grammar that maximally shares the non-terminal A. (b) An

input flow graph containing two redundant instances of A. (c) An alternative

view created by "zipping up" the input graph 111

3-37 (a) A flow graph with location pointers. (b) Items created during parsing.. 112

3-38 Simulating the break up of residual Spreads and Makes 114

3-39 Grammar containing a rule with a st-thru 115

3-40 Constraint on combination imposed by st-thrus 115

3-41 Constrained and unconstrained st-thrus 117

3-42 Propagating matches of st-thrus 118

4-1 A recursive function with multiple exits 124

4-2 Flow graph representing IT-Insert 125

4-3 Annotated partial order graph representing the relationships between the

control environments of HT-Insert 127

4-4 Flow graph grammar rule for Negate-if-Negative, with actual attribute con-

ditions .. 129

4-5 Grammar rule for counting-up clich6 130

4-6 The plan diagram for a code fragment 132

4-7 A recursively defined plan 133

4-8 Data plan for Circular Indexed Sequence 133

4-9 Plan for extracting an element from a Circular Indexed Sequence134

4-10 Implementation overlay showing how FIFO-Dequeue can be implemented by

CIS-Extract ... 135

4-11 Rule encoding plan for CIS-Extract 137

4-12 Rule encoding the CIS-Extract-as-FIFO-Dequeue overlay 138

4-13 Temporal overlay showing the view of Generation as a Generate operation. 139

4-14 Grammar rule encoding the plan for Generation 140

4-15 Temporal overlay relating the plan for Iterative Search and the operation

Earliest .. 141

4-16 Grammar rule for Iterative Search clich6 142

4-17 Grammar rule encoding the temporal overlay Iterative-Search-as-Earliest. 143

4-18 Plan definition for Event-Driven Simulation clich6 144

4-19 Overlay showing the temporal abstraction of the iteration clich6 Dequeue-

and-Process-Generation 146

4-20 Overlay showing the temporal abstraction of the iteration clich6 Co-Iterative-

EDS-Finished .. 147

4-21 Grammar rules for some Event-Driven Simulation clichs 148

4-22 Grammar rules for clich&s used by Event-Driven Simulation clich149

319

4-23 Plan definition for the Process-Event clich6 151

4-24 Rules for Process-Event clich6 152

4-25 Plan definition for the Update-Node-Time clich6 153

4-26 Grammar rule encoding the Update-Node-Time plan 154
4-27 Code that side effects the mutable data structure *Event-Queue* 156

4-28 Functional version of Insert-Queue 157

4-29 Version of Insert-Queue-Pure in which recursion is folded up 157

4-30 Flow graph representing Insert-Queue-Pure 158
4-31 Partial ordering relationships between the control environments of Insert-

Queue-Pure's flow graph 159

4-32 Documentation containing a cliched-to-user-defined name mapping162

5-1 Flow graph representing the code in Figures 2-10, 2-11, and 2-12165

5-2 Attribute values for accessor and constructor attributes annotating the flow
graphs representing the programs in Figures 2-10 (column a), 2-11 (column

b), and 2-12 (column c) 166

5-3 Flow graph representing the CST code of Figure 2-13 170

5-4 a) Average clich6. b-c) Some cases in which a program can be partially

recognized 171
5-5 Rules for Extract-Message and Local-Buffer-Dequeue clich6 172

5-6 Code containing a partially recognized data structure 172

5-7 Flow graph representation for step 173

5-8 Some valid variations of Synchronous Simulation algorithm 182

6-1 Two series of extensions resulting in duplicate items 191

6-2 Partitions of the total item set 193
6-3 Grammar and input graph leading to an illegal, cyclic reduction 199
6-4 The plan for extracting from a Circular-Indexed Sequence 201
6-5 Bushy item tree produced in recognizing CIS-Extract with weak match-

interleaved constraints 202
6-6 The restriction on legal instances imposed by the precedence relation constraint.203
6-7 Skinny item tree produced in recognizing CIS-Extract with strong match-

interleaved constraints 204

6-8 Results of running CST example with constraints parse-interleaved versus

match-interleaved 205
6-9 Relationship of the sets of successful, killed, and extendable item sets to the

sets of complete and partial items 205

6-10 Results of running PISIN example with constraints parse-interleaved versus

match-interleaved 206
6-11 The shapes of item trees having maximum maximum width 210

320

7-1 Four ways of implementing Stack-Push and Stack-Pop with the Stack imple-

mented as an Indexed-Sequence 236

A-1 Reducing fixed-UCFG recognition to flow graph recognition 257

321

Bibliography

[1] H. Abelson and G. Sussman. Structure and Interpretation of Computer Programs.

The MIT Press, Cambridge, MA, 1985.

[2] A. Adam and J. Laurent. LAURA, A system to debug student programs. Artificial

Intelligence, 15:75-122, 1980.

[3] A. Aho, J. Hopcroft, and J. Ullman. Data Structures and Algýgrithms. Addison-Wesley

Publishing Company, Inc., Reading, MA, 1983.

[4] D. Allemang. Understanding programs as devices. Technical report, Ohio State

University, 1990. PhD thesis.

[5] D. Allemang. Using functional models in automatic debugging. IEEE Expert, pages

13-18, December 1991.

[6) G. Alpern, A. Carle, B. Rosen, P. Sweeney, and K. Zadeck. Graph attribution as a

specification paradigm. In A CM SIGSOFT/SIGPLAN Software Engineering Sympo-

sium on Practical Software Development Environments, pages 121-129, Boston, MA,

November 1988.

[7] J. Ambras and V. O'Day. MicroScope: A knowledge-based programming environment.

IEEE Software, 5(3):50-58, 1988.

[8] C. Bamji. Graph-based representations and coupled verification of VLSI schematics

and layouts. Technical Report 547, MIT Research Laboratory of Electronics, October

1989. PhD thesis.

[91 C. Bamji and J. Allen. GRASP: A grammar-based schematic parser. VLSI Memo

89-515, MIT Research Laboratory of Electronics, March 1989. Also in Proc. 26th

Design Automation Conference, pp.448-453.

[10] E. Barton, R. Berwick, and Ristad E. Computational Complexity and Natural Lan-

guage. The MIT Press, Cambridge, MA, 1987.
0

[11] K. Bertels. Qualitative reasoning in novice program analysis. Technical report, Uni-

versiteit Antwerpen, June 1991. PhD thesis.

322

[12] T. Biggerstaff. Design recovery for maintenance and reuse. IEEE Computer, 22(7):36-

49, July 1989. Also published as MCC Technical Report STP-378-88.

[13] T. Biggerstaff, J. Hoskins, and D. Webster. DESIRE: A system for design recovery.

Technical Report STP-081-89, MCC, April 1989.

114] R. Boyer and J. Moore. The sharing of structure in theorem-proving programs. In

B. Meltzer and D. Michie, e 'itors, Machine Intelligence 7, pages 101-116. John Wiley

and Sons, New York, 1972.

[15] D. Brotsky. An algorithm for parsing flow graphs. Technical Report 704, MIT Arti-

ficial Intelligence Lab., March 1984. Master's thesis.

[16] H. Bunke. Attributed programmed graph grammars and their application to schematic

diagram interpretation. IEEE Trans. on Pattern Analysis and Machine Intelligence,

4(6), November 1982.

[17] H. Bunke. Graph grammars as a generative tool in image understanding. In H. Ehrig,

M. Nagl, and G. Rozenberg, editors, 2nd Int. Workshop on Graph-Grammars and

Their Application to Computer Science, pages 8-19. Springer-Verlag, October 1982.

Lecture Notes In Computer Science Series, Vol. 153.

[18] H. Bunke and B. Hailer. A parser for context free plex grammars. In M. Nagl,

editor, 15th Int. Workshop on Graph-Theoretic Concepts in Computer Science, pages

136-150. Springer-Verlag, June 1989. Lecture Notes In Computer Science Series, Vol.

411.

[19] S. Choi and W. Scacchi. Extracting and restructuring the design of large systems.

IEEE Software, pages 66-71, January 1990.

[20] L. Cleveland. An environment for understanding programs. Technical Report 12889,

IBM T.J. Watson Research Center, Yorktown Hgts., NY, June 1987.

[21] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. MIT Press,

Cambridge, MA, 1990.

[22] D. Corneil and D. Kirkpatrick. A theoretical analysis of various heuristics for the

graph isomorphism problem. SIAM Journal of Computing, 9(2):281-297, May 1980.

[23] B. Courcelle. A representation of graphs by algebraic expressions and its use for graph

rewriting systems. In H. Ehrig, M. Nagl, G. Rozenherg, and A. Rosenfeld, editors,

3rd International Workshop on Graph-Grammars and Their Application to Computer

Science, pages 112-132, 1986. Lecture Notes In Computer Science Series, Vol. 291.

[24] D. S. Cyphers. Automated program description. Working Paper 237, MIT Artificial

Intelligence Lab., August 1982.

323

[25] W. Dally and A. Chien. Object-oriented concurrent programming in CST. In The

Third Conference on: Hypercube Concurrent Computers and Applications, Volume I

- Architecture, Software, Computer Systems and General Issues. ACM, January 1988.

[26] W. Dally, A. Chien, S. Fiske, W. Horwat, J. Keene, M. Larivee, R. Lethin, P. Nuth,

S. Wills, P. Carrick, and G. Fyler. The J-Machine: A fine-grain concurrent computer.

In Int. Fed. of Info. Processing Societies, 1989.

[27] P. Della-Vigna and C. Ghezzi. Context-free graph grammars. Information and Con-

trol, 37(2):207-233, 1978.

[281 A. Demers, T. Reps, and T. Teitelbaum. Incremental evaluation for attribute gram-

mars with application to syntax-directed editors. In 8th Annual ACM Symp. on

Principles of Prog. Langs., pages 105-116, Williamsburg, VA, January 1981.

[29] G. Dueck and G. Cormack. Modular attribute grammars. The Computer Journal,

33(2):164-172, 1990.

[30] A. Duncan and J. Hutchison. Using attributed grammars to test designs and imple-

mentations. In 5th Int. Conf. on Software Engineering, pages 170-178, San Diego,

CA, March 1981.

[31] J. Earley. An Efficient Context-Free Parsing Algorithm. PhD thesis, Carnegie-Mellon

Univ. Computer Science Dept., 1968.

[32] J. Earley. An efficient context-free parsing algorithm. Comm. of the ACM, 13(2):94-

102, 1970.

[33] H. Ehrig. Tutorial introduction to the algebraic approach of graph grammars. In

H. Ehrig, M. Nagl, and G. Rozenberg, editors, Graph-Grammars and Their Appli-

cation to Computer Science, pages 3-14. Springer-Verlag, December 1986. Lecture

Notes In Computer Science Series, Vol. 291.

[34] H. Ehrig, M. Nagl, and G. Rozenberg, editors. Graph-Grammars and Their Applica-

tion to Computer Science. Springer-Verlag, Haus Ohrbeck, Germany, October 1982.

Lecture Notes In Computer Science Series, Vol. 153.

[35] H. Ehrig, M. Nagl, G. Rozenberg, and A. Rosenfeld, editors. Graph-Grammars and

Their Application to Computer Science. Springer-Verlag, December 1986. Lecture

Notes In Computer Science Series, Vol. 291.

[36] J. Engelfriet and G Rozenberg. A comparison of boundary graph grammars and

context-free hypergraph grammars. Information and Control, 84:163-206, 1990.

[37] R. Engelmore and T. Morgan, editors. Blackboard Systems. Addison-Wesley, Reading,

MA, 1988.

324

[38] G. Engels, C. Lewerentz, and W. Schafer. Graph grammar engineering: A software
specification method. In H. Ehrig, M. Nagl, and G. Rozenberg, editors, Graph-

Grammars and Their Application to Computer Science, pages 186-201. Springer-
Verlag, December 1986. Lecture Notes In Computer Science Series, Vol. 291.

[39] M.A. Eshera and K. Fu. An image understanding system using attributed symbolic

representation and inexact graph-matching. IEEE Trans. on Pattern Analysis and

Machine Intelligence, 8(5), September 1986.

[40] R. Farrow. Experience with an attribute grammar-based compiler. In 9th Annual

ACM Symp. on Principles of Prog. Langs., pages 95-107, Albuquerque, NM, January

1982.

[41] R. Farrow, K. Kennedy, and L. Zucconi. Graph grammars and global program data
flow analysis. In Proc. 17th Annual IEEE Symposium on Foundations of Computer

Science, Houston, Texas, 1976.

[42] G. Faust. Semiautomatic translation of COBOL into HIBOL. Technical Report 256,
MIT Lab. of Computer Science, March 1981. Master's thesis.

[43] S. F. Fickas and R. Brooks. Recognition in a program understanding system. In Proc.

6th Int. Joint Conf. Artificial Intelligence, pages 266-268, Tokyo, Japan, August 1979.

[44] R. Franck. A class of linearly parsable graph grammars. Acta Informatica, 10:175-201,

1978.

[45] C. Frank. A step towards automatic documentation. Working Paper 213, MIT Arti-

ficial Intelligence Lab., December 1980.

[46] K. Gallagher. Using program slicing in software maintenance. Technical Report CS-

90-05, Loyola College in Maryland, 1990.

[47] H. Ganzinger, R. Giegerich, M. Ulrich, and W. Reinhard. A truly generative

semantics-directed compiler generator. In SIGPLAN 82 Symposium on Compiler

Construction, pages 172-184, 1982.

[48] E. Gmur and H Bunke. 3-D object recognition base on subgraph matching in poly-

nomial time. In R. Mohr, T. Pavlidis, and A. Sanfeliu, editors, Structural Pattern

Analysis, pages 131-147. World Scientific, New Jersey, 1989.

[49] W.E.L. Grimson. The combinatorics of object recognition in cluttered environments

using constrained search. Memo 1019, MIT Artificial Intelligence Lab., February 1988.

[50] W.E.L. Grimson. The effect of indexing on the complexity of object recognition.

Memo 1226, MIT Artificial Intelligence Lab., April 1990.

325

[51] W. Griswold and D. Notkin. Program restructuring to aid software maintenance.

Technical Report 90-08-05, Univ. of Washington, September 1990.

[52] A. Habel and H. Kreowski. On context-free graph languages generated by edge re-

placement. In Graph-Grammars and Their Application to Computer Science, pages

143-158, 1983. Lecture Notes In Computer Science Series, Vol. 153.

[53] A. Habel and H. Kreowski. May we introduce to you: Hyperedge replacement. In

H. Ehrig, M. Nagl, and G. Rozenberg, editors, Graph-Grammars and Their Appli-

cation to Computer Science, pages 15-26. Springer-Verlag, December 1986. Lecture

Notes In Computer Science Series, Vol. 291.

[54] M. Harandi and J. Ning. Knowledge-based program analysis. IEEE Software, pages

74-81, January 1990.

[551 J. Hartman. Automatic control understanding for natural programs. Technical Report

Al 91-161, University of Texas at Austin, 1991. PhD thesis.

[56] P. Hausler, M. Pleszkoch, R. Linger, and k. Hevner. Using function abstraction to

understand program behavior. IEEE Software, pages 55-63, January 1990.

[57] J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Approach.

Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1990.

[58] R. Holt, D. Boehm-Davis, and A. Schultz. Mental representations of programs for

student and professional programmers. In G. Olson, S. Sheppard, and E. Soloway, ed-

itors, Empirical Studies of Programmers: Second Workshop. Ablex Publishing Corp.,

Norwood, N.J., 1987.

[59] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence graphs.

Technical Report 756, Univ. of Wisconsin at Madison, Computer Sciences Dept.,

March 1988.

[60] G. Huet. Confluent reductions: Abstract properties and applications to term rewriting

systems. Journal of the ACM, 27(4):797-821, October 1980.

[61] G. Huet and D. Oppen. Equations and rewrite rules: a survey. In Formal Languages:

perspectives and open problems. Applied Psycholinguistics, Boston, MA, 1980.

[62] D. Hutchens and V. Basili. System structure analysis: Clustering with data bindings.

IEEE Trans. on Software Engineering, 11(8), August 1985.

[63] V. Jagannathan, R. Dodhiawala, and L.S. Baum, editors. Blackboard Architectures

and Applications. Academic PresT, Inc., Boston, MA, 1989.

326

[64] M. Jazayeri, F. Ogden, and W. Rounds. The intrinsically exponential complexity of
the circularity problem for attribute grammars. Comm. of the A CM, 8(12), December

1975.

[65] W. L. Johnson. Intention-Based Diagnosis of Novice Programming Errors. Morgan
Kaufmann Publishers, Inc., Los Altos, CA, 1986.

[66] G. E. Kaiser, P. H. Feller, and S. S. Popovich. Intelligent assistance for software
development and maintenance. IEEE Software, 5(3), 1988.

[67] L. Karttunen and M. Kay. Structure sharing with binary trees. In Proc. 23rd Annual

Meeting of the ACL, pages 133-136, Chicago, IL, 1985.

[68] U. Kastens, B. Hutt, and E. Zimmermann. GAG: A practical compiler generator. In
Lecture Notes in Computer Science Series. Springer-Verlag, 1982.

[69] M. Kaul. Parsing of graphs in linear time. In H. Ehrig, M. Nagl, and G. Rozenberg,
editors, Graph-Grammars and Their Application to Computer Science, pages 206-218,
Haus Ohrbeck, Germany, October 1982. Springer-Verlag. Lecture Notes In Computer

Science Series, Vol. 153.

[70] M. Kaul. Practical applications of precedence graph grammars. In H. Ehrig, M. Nagl,
and G. Rozenberg, editors, Graph-Grammars and Their Application to Computer

Science, pages 326-342. Springer-Verlag, December 1986. Lecture Notes In Computer

Science Series, Vol. 291.

[71] M. Kay. The MIND system. In R. Rustin, editor, Natural Language Processing.

Prentice-Hall, Englewood-Cliffs, NJ, 1973.

[721 M. Kay. Algorithm schemata and data structures in syntactic processing. In B. Grosz,
K. Sparck-Jones, and B. Webber, editors, Readings in Natural Language Processing,

pages 35-70. Morgan Kaufmann Publishers, Inc., Los Altos, CA, 1986.

[73] K. Kennedy and S. Warren. Automatic generation of efficient evaluators for attribute

grammars. In 3rd Annual ACM Symp. on Principles of Prog. Langs., pages 32-49,

Atlanta, GA, 1976.

[74] K. Kennedy and L. Zucconi. Applications of a graph grammar for program control

flow analysis. In 4th Annual A CM Symp. on Principles of Prog. Langs., pages 72-85,

Santa Monica, CA, 1977.

[75] J. Klop. Term rewriting systems: A tutorial. Bulletin of European Assoc. for Theor.
Computer Science, (32):143--182, 1987.

[76] D. Knuth. The Art of Computer Programming. Addison-Wesley Publishing Company,

Inc., Reading, MA, 1968,1969,1973.

327

[77] D. E. Knuth. Semantics of context-free languages. Mathematical Systems Theory,

2(2):127-145, June 1968.

[78] K. Koskimies. A specification language for one-pass semantic analysis. In SIGPLAN

84 Symposium on Compiler Construction, pages 179-189, Montreal, Canada, 1984.

(79] K. Koskimies, K. Raiha, and M. Sarjakoski. Compiler construction using attribute

grammars. In SIGPLAN 82 Symposium on Compiler Construction, pages 153-159,

1982.

[80] H. Kreowski and G. Rozenberg. Note on node-rewriting graph grammars. Information

Processing Letters, 18:21-24, 1984.

[81] J. Laubsch and M. Eisenstadt. Domain specific debugging aids for novice program-

mers. In Proc. 7th Int. Joint Conf. Artificial Intelligence, pages 964-969, Vancouver,

British Columbia, Canada, August 1981.

[82] J. Laubsch and M. Eisenstadt. Using temporal abstraction to understand recursive

programs involving side effects. In Proc. 2nd National Conf. on Artificial Intelligence,

Pittsburgh, PA, August 1982.

[83] S. Letovsky. Cognitive processes in program comprehension. In G. Olson, S. Sheppard,

and E. Soloway, editors, Empirical Studies of Programmers: Second Workshop. Ablex

Publishing Corp., Norwood, N.J., 1987.

[84] S. Letovsky. Plan analysis of programs. Research Report 662, Yale University, De-

cember 1988. PhD Thesis.

[85] C.K. Looi. APROPOS2: A program analyser for a Prolog intelligent teaching system.

Research paper 377, Dept. of AI, University of Edinburgh, 1988.

[86] S. Lu and A. Wong. Synthesis of attributed hypergraphs for knowledge representation

of 3-D objects. In J. Kittler, editor, Lecture Notes in Computer Science Series No.

301, pages 546-556. Springer-Verlag, 1988.

[87] F. J. Lukey. Understanding and debugging programs. Int. Journal of Man-Machine

Studies, 12:189-202, 1980.

[88] R. Lutz. Program debugging by near-miss recognition and symbolic evaluation. Tech-
nical Report CSRP.044, Univ. of Sussex, England, 1984.

[89] R. Lutz. Diagram parsing - A new technique for artificial intelligence. Technical

Report CSRP.054, Univ. of Sussex, England, 1986.

[90] R. Lutz. Chart parsing of flowgraphs. In Proc. 11th Int. Joint Conf. Artificial Intel-
ligence, pages 116-121, Detroit, Michigan, 1989.

328

[91] M.H. MacDougall. Simulating Computer Systems: Techniques and Tools. The MIT

Press, Cambridge, MA, 1987.

[92] M. Main and G. Rozenberg. Edge-label controlled graph grammars. Journal of Com-

putation and Systems Sciences, 40:188-228, 1990.

[93] M. Minsky. Logical versus analogical or symbolic versus connectionist or neat versus

scruffy. AI Magazine, 12(2):34-51, Summer 1991.

[94] U. G. Montanari. Separable graphs, planar graphs, and web grammars. Information

and Control, 16(3):243-267, March 1970.

[95] W. Murray. Automatic Program Debugging for Intelligent Tutoring Systems. Morgan

Kaufmann Publishers, Inc., San Mateo, CA, 1988.

[96] M. Nag]. Set theoretic approaches to graph grammars. In H. Ehrig, M. Nagl, and

G. Rozenberg, editors, Graph-Grammars and Their Application to Computer Science,
pages 41-54. Springer-Verlag, December 1986. Lecture Notes In Computer Science

Series, Vol. 291.

[97] M. Nagl. A software development environment based on graph technology. In H. Ehrig,

M. Nagl, and G. Rozenberg, editors, Graph-Grammars and Their Application to Com-

puter Science, pages 458-478. Springer-Verlag, December 1986. Lecture Notes In

Computer Science Series, Vol. 291.

[98] M. Nagi, G. Engels, R. Gall, and W. Schafer. Software specification by graph gram-
mars. In H. Ehrig, M. Nagl, and G. Rozenberg, editors, 2nd International Workshop

on Graph-Grammars and Their Application to Computer Science, pages 265-287,

Haus Ohrbeck, Germany, October 1982. Springer-Verlag. Lecture Notes In Computer

Science Series, Vol. 153.

[99] H.P. Nii. Blackboard systems. In A. Barr, P. Cohen, and E. A. Feigenbaum, editors,

Handbook of Artificial Intelligence, pages 1-82. Addison-Wesley Publishing Co., 1989.

Vol.IV.

[100] J.Q. Ning. A knowledge-based approach to automatic program analysis. Technical

report, University of Illinois, Urbana-Champaign, 1989. PhD thesis.

[1011 R. Nord and F. Pfenning. The Ergo attribute system. In ACM SIGSOFT/SIGPLAN

Software Engineering Symposium on Practical Software Development Environments,

pages 110-120, Boston, MA, November 1988.

(1021 T. Pavlidis. Linear and context-free graph grammars. Journal of the ACM, 19(l):II-

23, January 1972.

329

[103] K. Peng, T. Yamamoto, and Y. Aoki. A new parsing algorithm for plex grammars.

Pattern Recognition, 23(3-4):393-402, 1990.

[104] F. Pereira. A structure-sharing representation for unification-based grammar for-

malisms. In Proc. 23rd Annual Meeting of the ACL, pages 137-144, Chicago, IL,

1985.

[105] J. L. Pfaltz and A. Rosenfeld. Web grammars. In Proc. Ist Int. Joint Conf. Artificial

Intelligence, pages 609-619, Washington, D.C., September 1969.

[1061 R. Prieto-Diaz and G. Arango, editors. Domain Analysis and Software Systems Mod-

eling. IEEE Computer Society Press, Los Alamitos, CA, 1991.

[107] K. Raiha. Bibliography on attribute grammars. ACM Sigplan Notices, 15(3):35-44,

March 1980.

[108] R. Read and D. Corneil. The graph isomorphism disease. Journal of Graph Theory,

1:339-363, 1977.

[109] T. Reps and A. Demers. Sublinear-space evaluation algorithms for attribute gram-

mars. A CM Trans. on Programming Languages and Systems, 9(3):408-440, July 1987.

[110] C. Rich. Inspection methods in programming. Technical Report 604, MIT Artificial

Intelligence Lab., June 1981. PhD thesis.

[111] C. Rich. Knowledge representation languages and predicate calculus: How to have

your cake and eat it too. In Proc. 2nd National Conf. on Artificial Intelligence,
Pittsburgh, PA, August 1982.

[112] C. Rich. Inspection methods in programming: Clich6s and plans. Memo 1005, MIT

Artificial Intelligence Lab., December 1987.

[113] C Rich, editor. Implemented Knowledge Representation and Reasoning Systems. ACM

Press, New York, NY, June 1991. SIGART Bulletin: Special Issue, Volume 2, Number

3.

[114] C. Rich and H. E. Shrobe. Initial report on a lisp programmer's apprentice. Technical

Report 354, MIT Artificial Intelligence Lab., December 1976. Master's thesis.

[115] C. Rich, H. E. Shrobe, and R. C. Waters. An overview of the Programmer's Appren-
tice. In Proc. 6th Int. Joint Conf. Artificial Intelligence, Tokyo, Japan, 1979.

[116] C. Rich and R. C. Waters. The Programmer's Apprentice: A research overview. IEEE

Computer, 21(11):10-25, November 1988. Also published as MIT Al Memo 1004.

[117] C. Rich and R. C. Waters. The Programmer's Apprentice. Addison-Wesley, Reading,

MA and ACM Press, Baltimore, MD, 1990.

330

[118] C. Rich and L. M. Wills. Recognizing a program's design: A graph-parsing approach.

IEEE Software, 7(1):82-89, January 1990. Reprinted in P. H. Winston, editor, Artifi-

cial Intelligence at MIT: Expanding Frontiers, MIT Press, Cambridge, MA, In press.

[119] A. Rosenfeld and D. Milgram. Web automata and web grammars. In B. Meltzer and

D. Michie, editors, Machine Intelligence 7, pages 307-324. John Wiley and Sons, New

York, 1972.

[120] G. Rozenberg. An introduction to the NLC way of rewriting graphs. In H. Ehrig,

M. Nagl, and G. Rozenberg, editors, Graph-Grammars and Their Application to Com-

puter Science, pages 55-66. Springer-Verlag, December 1986. Lecture Notes In Com-

puter Science Series, Vol. 291.

[121] G. Rozenberg and E. WeIzI. Boundary NLC graph grammars - basic definitions,

normal forms, and complexity. Information and Control, 69:136-167, 1986.

[122] G. R. Ruth. Analysis of algorithm implementations. Technical Report 130, MIT

Project Mac, 1974. PhD thesis.

[123] R. Schwanke. An intelligent tool for re-engineering software modularity. In IEEE

Conf. on Software Maintenance - 1991, pages 83-92, 1991.

[124] R. Schwanke, R. Altucher, and M. Platoff. Discovering, visualizing, and controlling

software structure. In Proc. 5th Int. Wrkshp on Software Specs. and Design, pages

147-150, Pittsburgh, PA, 1989.

[1251 V. Sembugamoorthy and B. Chandrasekaran. Functional representation of devices and

compilation of diagnostic problem-solving systems. In J. Kolodner and C. Riesbeck,

editors, Experience, Memory, and Reasoning, pages 47-73. Lawrence Erlbaum Assoc.,

Hillsdale, NJ, 1986.

[126] H. E. Shrobe. Common sense reasoning about side effects to complex data structures.

In Proc. 6th Int. Joint Conf. Artificial Intelligence, Tokyo, Japan, August 1979.

[127] H. E. Shrobe. Dependency directed reasoning for complex program understanding.

Technical Report 503, MIT Artificial Intelligence Lab., April 1979. PhD thesis.

[128] E. Soloway and K. Ehrlich. Empirical studies of programming knowledge. IEEE Trans.

on Software Engineering, 10(5):595-609, September 1984. Reprinted in C. Rich and

R.C. Waters, editors, Readings in Artificial Intelligence and Software Engineering,

Morgan Kaufmann, 1986.

[129] D. Soni. Maintenance of large software systems: Treating global interactions. In Proc.

of AAAI Spring Symposium, March 1989.

331

[130] D. Soni. A study of data structure cliches for software design and maintenance.

Working paper, Siemens Corporation, 1989. in preparation.

[131] L. Tan, Y. Shinoda, and T. Katayama. Coping with changes in an object management

system based on attribute grammars. In 4th A CM SIGSOFT Symposium on Sofware

Development Environments, pages 56-65, Irvine, CA, December 1990.

[132] H. Thompson. Chart parsing and rule schemata in GPSG. In Proc. 19th Annual

Meeting of the ACL, Stanford, CA, 1981.

[133] H. Thompson and G. Ritchie. Implementing natural language parsers. In T. O'Shea

and M. Eisenstadt, editors, Artificial Intelligence: Tools, Techniques, and Applica-

tions, pages 245-300. Harper and Row, New York, 1984.

[1341 G. Tinhofer and G. Schmidt, editors. Graph-Theoretic Concepts in Computer Science.

Springer-Verlag, June 1986. Lecture Notes In Computer Science Series, Vol. 246.

[135] W. Tsai and K. Fu. Attributed grammars - A tool for combining syntactic and

statistical approaches to pattern recognition. IEEE Trans. on Systems, Man and

Cybernetics, 10(12), December 1980.

[136] W. Vogler. On hyperedge replacement and BNLC graph grammars. In M. Nagl, editor,

Graph-Theoretic Concepts in Computer Science, pages 78-93. Springer-Verlag, 1989.

Lecture Notes In Computer Science Series.

[137] R. C. Waters. Automatic analysis of the logical structure of programs. Technical

Report 492, MIT Artificial Intelligence Lab., December 1978. PhD thesis.

[138] R. C. Waters. A method for analyzing loop programs. IEEE Trans. on Software

Engineering, 5(3):237-247, May 1979.

[139] R. C. Waters. KBEmacs: A step towards the Programmer's Apprentice. Technical

Report 753, MIT Artificial Intelligence Lab., May 1985.

[140] M. Weiser. Program slicing. In 5th Int. Conf. on Software Engineering, pages 439-449,

San Diego, CA, 1981.

[141] M. Weiser. Program slicing. IEEE Trans. on Software Engineering, 10:352-357,1984.

[142] S. Wiedenbeck. Novice/expert differences in programming skills. Int. Journal of

Man-Machine Studies, 23:383-390, 1985.

[143] N. Wilde, R. Huitt, and S Huitt. Dependency analysis tools: Reusable components

for software maintenance. In IEEE Conf. on Software Maintenance - 1989, pages

126-131, Miami, Florida, 1989.

332

[1441 L. Wills. Automated program recognition. Technical Report 904, MIT Artificial

Intelligence Lab., January 1987. Master's thesis.

[145] L. Wills. Automated program recognition: A feasibility demonstration. Artificial

Intelligence, 45(1-2):113-172, 1990.

[1461 S. Wills. Pi: A parallel architecture interface for multi-model execution. Technical

Report 1245, MIT Artificial Intelligence Lab., June 1990. PhD Thesis.

[147] S. Wills and W. Daily. Pi: A parallel architecture interface. In FRONTIERS '92:

The 4th Symposium on the Frontiers of Massively Parallel Computation, McLean,

VA, October 1992.

[1481 P. H. Winston and B. K. P. Horn. LISP. Addison-Wesley Publishing Company,

Reading, MA, 1981.

[149] M. Wiren. Interactive incremental chart parsing. In 4th Conf. of the European Chapter

of the ACL, pages 241-248, Manchester, England, 1989.

[150] K. Wittenburg, L. Weitzman, and J. Talley. Unification-based grammars and tabular

parsing for graphical languages. Technical Report ACT-OODS-208-91, MCC, June

1991.

[151) B.P. Zeigler. Theory of Modeling and Simulation. John Wiley and Sons, New York,

1976.

333

