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Abstract
Million-transistor processors are being manufactured today, and soon it will
be possible to put several million transistors on one integrated circuit. While
memory applications of this technology are clear, it is not obvious how best to
use it for computation purposes. One possibility is the architecture of the
Message-Driven Processor (MDP), which consists of a 32+4-bit CPU, memory,
and a network interface together on one chip. MDPs can be connected di-
rectly to each other to form a 65536-processor, message-passing, MEMD, par-
allel computer, the J-Machine. The MDP's architecture is unusual in that it
provides a very high processing power to memory ratio.

Concurrent Smalltalk is the primary language used for programming the J-
Machine. Concurrent Smalltalk is the the language of choice because it fits
the J-Machine's fine-grain, message-passing model well. This thesis de-
scribes Concurrent Smalltalk and its implementation on the J-Machine, in-
cluding the Optimist II compiler and Cosmos operating system. Optimist II
can perform global optimization of programs, including inline function expan-
sion, type inference, and global evaluation of constant expressions. Next,
Cosmos and the Concurrent Smalltalk runtime environment are described.
Finally, some quantitative and qualitative results are presented. The grain
size (the average amount of time a method executes before suspending) was
found to be about 60 instructions, and the MDP was found to execute one in-
struction every two or four cycles, depending on whether external DRAM is
used. A number of qualitative issues are described, along with a few prelimi-
nary results for addressing difficult problems such as controlling parallelism.
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Chapter 1. Introduction

Goals

This thesis describes the Concurrent Smalltalk language and its implementation on the Mes-
sage-Driven Processor. Concurrent Smalltalk, also known as CST, is a concurrent version of
the object-oriented programming language Smalltalk [20]. The implementation consists of a
global, optimizing compiler and a streamlined operating system for the J-Machine.

This thesis covers quite a broad scope of the implementation of Concurrent Smalltalk, includ-
ing subjects ranging from issues in parallel programming in general and the design of Con-
current Smalltalk itself to some of the fine points of the design and optimization of the MDP
architecture. The goal of the thesis is to demonstrate a working implementation of Concur-
rent Smalltalk on the Message-Driven processor. Although the implementation is not yet
complete, it does provide hooks for all of the advertised functionality of Concurrent Smalltalk
and is based on solid ground. Versions of the implementation are running on recently manu-
factured MDP chips, and I hope that the programs described herein will survive and evolve
for the next five years.

Another goal of this thesis was to discover and, whenever possible, fix design flaws in the
MDP architecture and language specification so as to make an implementation of Concurrent
Smalltalk practical. Several errors in the MDP architecture and Concurrent Smalltalk were
found, as well as numerous bugs in the simulation tools used to verify the hardware.

The next section gives a brief overview of the J-Machine hardware and the Concurrent
Smalltalk language. It is followed by an outline of the software bridging the gap between
Concurrent Smalltalk and the MDP hardware-the Optimist II compiler and the Cosmos op-
erating system. The relationship of this work to others' in fine grain concurrent computation
is then described.

Second Edition

This work was originally a Master's thesis completed in May 1989. It has been updated for
the state of Optimist I compiler, Cosmos operating system, and MDPSim 7.0 simulator as of
the end of May 1991. The Optimist II compiler now produces better code, and several Cos-
mos routines, especially the CFUT fault handler, have been sped up. Furthermore, Cosmos
has been updated for a few minor architectural revisions.

The compiler and operating system have been evolving rapidly in the past few months due to
the recent availability of MDP chips. This document does not include these newest changes,
which include support for hardware I/O, debugging aids, and workarounds for first-silicon
chip bugs, as they have little effect on the ideas in this work. Other members of the Concur-
rent VLSI Architecture group, including Scott Furman, Rich Lethin, Todd Dampier, Shaun
Kaneshiro, John Keen, and Mike Noakes, are now working on CST applications and Cosmos
enhancements such as floating-point arithmetic, queue overflow handling, and garbage
collection. These will be published in separate documents as they are completed.
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1.1. Hardware and Software Architecture

The J-Machine

Million-transistor processors being manufactured today, and soon it will be possible to put
several million transistors on one integrated circuit. While memory applications of this
technology are clear, it is not obvious how best to use it for computation purposes. One pos-
sibility is the architecture of the Message-Driven Processor (MDP), which consists of a 32+4-
bit' CPU, memory, and a network interface together on one chip. MDPs can be connected
directly to each other to form a 65536-processor, message-passing, MIMD, parallel computer,
the J-Machine [141. The network is a three-dimensional mesh fast enough to provide com-
munication between the farthest pair of processors on a 65536-processor J-Machine in a few
microseconds-on an unloaded network an 8-word message can be transmitted from one
corner of the J-Machine to the other in just 4 microseconds. The processors are optimized for
sending and receiving messages; a processor can be working on a message even before the
entire message has arrived. The MDP's architecture is unusual in that it provides a very
high processing power to memory ratio.

The Message-Driven Processor

The MDP has a register-based architecture and operates on 32-bit data words with 4-bit tags.
Tags are essential in efficiently supporting late binding for object-oriented languages such as
Concurrent Smalltalk. In addition, tags are necessary for garbage collection and valuable for
debugging programs.

The MDP is message-based. In its normal mode of operation, the MDP listens on the net-
work for messages. When it receives a message from the network, it stores the message in a
FIFO input message queue and dispatches on the address given in the first word of the mes-
sage. Messages are used for all communication tasks, including function and method calls,
replies, object transfers, and other synchronization facilities.

A detailed but slightly obsolete description of the MDP architecture is in [161; a updatt~d
summary is presented in Appendix D. MDPSim [241 [25] is an instruction level simula- )r,
assembler, and debugger used to run MDP assembly language programs and test the operat-
ing system.

Concurrent Smalltalk

Concurrent Smalltalk is the primary language used to program the J-Machine. One of the
main goals of designing Concurrent Smalltalk was to take advantage of the J-Machine's
unique features. A new software architecture was needed that would efficiently support fine-
grain, message-passing computation. Whereas some existing parallel computers have mes-
sage routing times measured in milliseconds, the routing time for a message sent from one
end of even a large J-Machine to another is on the order of several microseconds. Operating
system overhead on processing and dispatching that message of more than a few microsec-
onds is not acceptable.

Concurrent Smalitalk introduces concurrency to standard Smalltalk by evaluating argu-
ments to method calls in parallel as well as allowing the computation of the value of a vari-
able to proceed in parallel with the other computations of a method until the variable's value
is actually needed. Furthermore, Concurrent Smalltalk adds distributed objects to Smalltalk.
A distributed object is an object that can process many methods at the same time without
any serialization bottlenecks other than those required by the algorithm in use. Although

'Each word consists of 32 bits of data and a 4-bit tag.
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standard objects can also process several methods simultaneously, they can only dispatch on
one method at a time1 .

Concurrent Smalltalk is an ideal language for programming the J-Machine because it is easy
to parallelize and yields small, fine-grain methods as well as a considerable amount of flexi-
bility in the system software implementation. The methods dealing with a particular class
can travel to the data object as opposed to the data traveling to the code. Concurrent
Smalltalk also provides excellent facilities for creating data abstractions; the Optimist II
compiler amplifies this power by providing global optimizations so performance does not suf-
fer because abstractions are used.

Another advantage of Concurrent Smalltalk is that it is low-level enough to be useful in im-
plementing parts of the J-Machine runtime system, while being at a level high enough that
the programmer does not have to worry about the infamous problems of parallel process syn-
chronization and deadlocks. In fact, once the data structures are defined properly, pro-
gramming in Concurrent Smalltalk feels much like programming in a standard sequential
language.

IThis restriction is relaxed for immutable standard objects because they may be copied at the operating system's

discretion. Nevertheless, a distributed object can be mutable and still have no synchronization bottlenecks.
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1.2. Overview

Foundations

Some of the pieces comprising the Concurrent Smalltalk environment were available before
this thesis was done. A primitive compiler was available [21], as were a description of the
operating system kernel [381, several descriptions of the language [131 (211 [171, and an MDP
assembly language simulator (MDPSim 5.2) [24]. Unfortunately, none of the pieces really fit
together-the various versions of the language were inconsistent, the output of the compiler
was incompatible with the untested operating system kernel, which itself was written for an
obsolete version of the MDP architecture [231.

It became clear that it would be easier to design the language, the compiler, and the operat-
ing system from scratch than to try to fit the existing pieces together. Nevertheless, the ex-
isting code and ideas were useful as guides to which approaches would likely yield good re-
sults and which techniques should be abandoned. I took advantage of this opportunity to
extend Concurrent Smalltalk to support several programming styles and add functions, clo-
sures, continuations, arrays, nested local variables, and inline classes to produce a language
with a compact implementation yet powerful libraries. The new features did not complicate
implementation; in fact, by providing a small set of fundamental primitives, the new features
often simplified the implementation of existing functionality, a phenomenon noticed in the
design of the Scheme language [311 [1].

The contributions of this thesis include:

"* A redesign of the Concurrent SmalItalk language.

"* Optimist II, a new Concurrent Smalltalk compiler and interpreter.

"* Cosmos (Concurrent Smalltalk Operating System), an operating system that supports
Concurrent Smalltalk on the MDP.

"* Runtime libraries for Concurrent Smalltalk.

"• Modifications to MDPSim, the MDP assembler/simulator, to facilitate downloading pro-
grams, simplify debugging, and collect performance measurements.

• Modifications to the MDP architecture that make it more suitable for Concurrent
Smalltalk.

I am indebted to Scott Wills and Andrew Chien for helping with the redesign of the Concur-
rent Smalltalk language, and Richard Lethin, John Keen, and Stuart Fiske for helping with
the MDP architecture changes. Professor William Dally supervised the project.

System Overview

The Optimist II Compiler

The Optimist II compiler continues in the tradition of the Optimist compiler by compiling
Concurrent Smalltalk to assembly code that is as small as possible without sacrificing speed.
In addition, Optimist II contains an interactive Concurrent Smalltalk interpreter that is
useful for prototyping and debugging Concurrent Smalltalk programs at the source level.
Optimist II is also a platform for experimenting with compiler optimizations. Global opti-
mizations such as function inlining and the reduction of method calls to function calls were
added and found to be highly successful.
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The compiler itself is divided into several phases, which are described in more detail in
Chapter 3. It produces an MDPSim command file which can be downloaded into MDPSim
and run on a simulated J-Machine.

Cosmos

Cosmos is the operating system used on the Message-Driven Processor to support code out-
put by Optimist II. Many of the ideas in Cosmos are borrowed from JOSS [38] written by
Brian Totty-JOSS introduced the concept of a Birth/Residence Address Table (BRAT) and
the protocol for migrating object between processors. Nevertheless, Cosmos's code bears lit-
tle resemblance to JOSS.

Concurrent
Smalltalk

OpiitI Interpreted
Opt mis I Results

MDP Assembly
Codet Ase yosmos._

MVDL-PSim

Compiled
Results

Figure 1-1. Software Environment Organization
A Concurrent Smalltalk program can be either compiled or interpreted by the Optimist II compiler. Interpretation is
useful to debug Concurrent Smalltalk programs and interactively experiment with language features. When a
Concurrent Smalltalk program is compiled, it is loaded into MDPSim, a J-Machine simulator, together with the
Cosmos operating system. MDPSim will then run the program to obtain its results as well as program perfor-
mance statistics.

The main goals of Cosmos were to make a working operating system, make it as efficient as
possible, and make it simple, all subject to the time constraints of a Master's thesis. Those
three goals have been achieved to a large extent, in that the operating system does work, and
simple programs have been run on it. Unfortunately, controlling a large parallel comptiter is
a difficult task, and Cosmos still falls short in many ways which are described in Chapter 8.
In particular, higher-level resource management and load balancing issues are yet to be ade-
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quately addressed. Nevertheless, Cosmos is a good start and a platform for experimenting
with the more difficult problems.

Example

A very simple example of the use of the system to compile and run a factorial program is
listed below. Please refer to chapter 5 for a more detailed example of the transformations in
the compiler and Appendices B and C for information about using the compiler and the oper-
ating system.

CST: (defuun fact (n)

(* n (factorial (- n 1)))))
#<Cst-Lambda 5090060 FACT>
CST: (fact 3)

When interpreting: (FACT 3)
Error: Unbound global FACTORIAL
"> Break:
"> Type Command-/ to continue, Command-. to abort.
I > Continuing.. .Fatal error: Can't apply #<Nil>
"> Break:
"> Type Command-/ to continue, Command-. to abort.
1 > Continuing...
CS.2 (dafun a£ct (n)

(if (<-n i)
1
(* n (fact (- n 1)))))

#<Cst-Lambda 4920924 FACT>
CST: (fact 4)
#<Integer 24>
CST: (compile fact "NewFact. mdp" )

Figure 1-2. Compiling Fact
The user entered a factorial function, corrected an error in it, tested it on a sample input, and then compiled it into
MDP assembly code in the NewFact.mdp file. The user's input is shown in bold.

First the user starts the compiler and enters the compiler's interactive mode (see Appendix
B) as shown in Figure 1-2. He enters the fact function and runs it only to find an error-4act's
recursive call should be to fact, not factorial. The user corrects the error and then uses the
compiler's interpreter to successfully compute the factorial of 4.

Afterwards the user compiles fact to MDP assembly code, quits Optimist II, and launches
MDPSim, where he loads the object file, and calls fact on 4 to get the correct answer-24
(Figure 1-3). The stats command can then be used to determine some running statistics,
such as the frequencies of instructions executed, the amount of parallelism used, and the to-
tal time taken to run the program. Starting from a cold start, fact takes 725 steps on a 2x2x1
J-Machine to compute its answer.

Implementation

The Optimist II compiler is written in CLOS 127], the Common Lisp Object System. Except
for the use of the LOOP iteration macro [7], Optimist II adheres to standard Common Lisp as
specified in [351 and amended in [61 and in the amendments specified by the Common Lisp
Cleanup Committee that were available at the time of this writing. The LOOP macro is itself
written in standard Common Lisp, so Optimist should run on any machine with a faithful
implementation of Common Lisp. A slightly modified version of the 12/7/88 version of Xe-
rox's PCL was used to implement a subset of CLOS before Apple Common Lisp 2.0 became
available.
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NDPSim -x 2 -y 2 -maize Ox1O00 ::Coamoa:Coamoa.m NewFact.mdp

Message-Driven Processor Simulator
Version 7.0 Rev B
Accompanies MDP Architecture Document 11B
Written by Waldemar Horwat
Architecture Updates by Brian Totty and Jerry Larivee
UROPs for Bill Dally

4 MDPs present.

@0..3)}MESSAGE fact4
Message )MSG:m&gApplyFunction 15
Message} {fFact)
Message }4
Message) IONODE
Message} 0
Message )END
@0..3}inject fact4@3
@0._.31resetstats
@0..3)run
Tick 724 Received priority 0 message:

OBJ:$80!Br'04 4=1 f=0 offset=$006EC=Reply length=S0004
INT:$OOOOFCOO - 64512
INT:$00000000 - 0
INT:$00000018 = 24

@0..3)atata
725 ticks executed.
... More statistics ...

Figure 1-3. Running Fact
The user loaded the fact object code and typed a few magic incantations that invoked the fact function on the input
4 (the third word in the injected message). The result 24 (the fourth word in the ejected message) was returned
after 725 steps on a 4-node J-Machine. Most of the time was spent distributing the fact code throughout the J-Ma-
chine; the second time it only takes 498 steps to compute the answer (some code is still being distributed), the
third time takes 289 steps, and afterwards the execution time is about 265 steps.

Optimist II was developed on a Macintosh using Apple Common Lisp 1.2.2 and 2.0 written by
Coral Software Corp (now merged with Apple Computer, Inc.). It runs on a 5-megabyte Mac-
intosh II, although 8 megabytes are recommended and at least 16 are needed to run Optimist
II and MDPSim simultaneously.

Cosmos is written in MDP assembly language [16]. MDPSim [24] [25] was used as an
assembler and simulator for a small J-Machine.

All of the software needed to compile and run Concurrent Smalltalk programs exists on both
a Macintosh II platform and on Sun workstations.

Results

The primary result of this work is a demonstration of a working implementation of Concur-
rent Smalltalk on a J-Machine. In addition, a number of secondary results were obtained.
These include the qualitative and quantitative benefits of optimizations in the Optimist II
compiler, data on the expected grain size (the number of instructions executed in response to
a message), and a number of qualitative observations about the shortcomings of the current
system. The results did not always come out as expected. For example, the finding that the
grain size is about 60 instructions was surprising; it was expected to be much lower. Code
statistics indicate that the MDP will take about 1.9 cycles per instruction, although most in-
structions execute in 1 cycle; if slow external DRAM is used to hold user programs and data,
the MDP could take as many as 3.5 cycles per instruction. Network loading calculations indi-
cate that network congestion will become a concern when the size of the J-Machine exceeds

7



Concurrent Smalitalk on the Message-Driven Processor

343 nodes; either a faster network or some means of exploiting locality will be needed for
larger J-Machines.

The quantitative results are listed in Chapter 7, while the qualitative ones are in Chapter 8.
Chapter 8 may seem a little pessimistic, but many of the current shortcomings listed there
would not have been found had this work not been done; furthermore, the current implemen-
tation of Cosmos provides a great, highly accurate platform for research into the issues pre-
sented there.

Caveats
Due to the availability of only a finite amount of time for writing this thesis, which could po-
tentially involve an infinite amount of work, some features could not be included in the cur-
rent implementation of Concurrent Smalltalk. The biggest omission is the lack of garbage
collection-if enough storage isn't reclaimed, the machine will fail. Garbage collection,
although interesting, was omitted to keep this project to a reasonable size-a good garbage
collector and load manager would require more effort than is desirable for a Master's thesis.

Full futures were also not implemented. They were omitted from the interpreter in the com-
piler because simulating them is difficult on a sequential machine in a sequential language
(Common Lisp). Futures were omitted from the run-time system because of the considerable
amount of work needed to implement all the fault handlers and special cases involved. Ne-
vertheless, almost all Concurrent Smalltalk programs still attain reasonable parallelism
through the use of cfutures1 , which are fully operational.

Other features that were not implemented are I/O facilities at both the Optimist II and Cos-
mos levels and runtime support for local (non-distributed) arrays and floating point numbers.
1/0 facilities, while useful, do not contribute much to the project and are easy to add later.
Local arrays and floating point numbers are supported by the Optimist II compiler but not
the runtime system; supporting them at the runtime level will require writing MDP assem-
bly language; no major surprises are expected there.

Some of the optional features of Concurrent Smalltalk were not included due to a lack of
time. All class inline declarations are currently ignored; I anticipate that it will be possible
to inline objects inside other objects sometime in the future, but that is not a high priority at
this time. The omission of class inlining does not change the semantics of Concurrent
Smalltalk programs. Function inlining is more useful, and it does work now.

Reading Guide

The remainder of this chapter describes related work in fine-grain concurrent computation.
The succeeding chapters delve into various aspects of the system, starting from the top-
Chapter 2, Concurrent Smalltalk, provides an introduction to the Concurrent Smalltalk
language in general. Chapter 3, The Optimist II Compiler, describes the Concurrent
Smalltalk compiler and interpreter. Chapter 4, The Cosmos Operating System, describes
the operating system. To avoid overlap, the compiler features documented in [21) are not
documented here; thus, it might be helpful to consult [211 when reading Chapter 3.

Chapter 5, Sample Program, traces the progress of a sample program from the Concurrent
Smalltalk source level down to object code. Chapter 6, Debugging, provides some debugging
techniques for Concurrent Smalltalk and MDP programs. Chapters 7, Performance Mea-
surements, and 8, Future Evolution, present the results of this work. Chapter 7 contains
quantitative measurements of the performance of Cosmos and the compiled code, while
Chapter 8 describes some of the less tangible, qualitative shortcomings of the current system
and ideas for correcting them. Chapter 9, Conclusion, concludes the main body of the the-
sis.

JA cfuture, also called a context future, is a local future which cannot be passed outside the function without being

touched (i.e. replaced by its value).
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The appendices parallel the main chapters with more detailed information. Appendix A,
Concurrent Smalltalk Reference, is the most important, for it contains the specification
of Concurrent Sinalltalk. Appendix B, Using Optimist 11, provides a detailed description of
the Optimist II features not listed in Appendix A. Similarly, Appendix C, Using Cosmos, is
a guide to running Cosmos on MDPSim; the latest MDPSim reference manual [25] should
also be consulted when running Cosmos. Appendix D, MDP Architecture Summary,
summarizes the current version of the MDP architecture. Finally, Appendix F, Cosmos
Listing, contains a listing of the entire operating system.

Since this thesis also serves as a reference manual for Concurrent Smalltalk, Chapter 2 and
Appendices A and B have been indexed. The index appears at the end of the thesis.
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1.3. Related Work

The ideas of optimizing Smalltalk and running object-oriented software on concurrent, fine-
grain systems are not new, but they have not been integrated previously to the extent found
on the J-Machine. While most of the efforts concentrated on either optimizing Smalltalk for
conventional computers or developing radically new programming methodologies, Concurrent
Smalltalk presents a somewhat conventional Smalltalk environment to the programmer
(with a few new features such as futures and distributed objects), which is at the same time
efficiently implemented on a fine-grain parallel computer.

A major contribution of this work is the actual optimized implementation of Concurrent
Smalltalk on an assembly language architecture. While theoretical studies and simulations
in higher-level languages can yield asymptotic and qualitative results, an implementation
yields the constant factors determining a system's performance. These performance mea-
surements are an important part of this work, as they indicate the relative costs of the primi-
tive operations and can be used to gauge the true performance of a concurrent computer.

Smalltalk Systems

Smalltalk-80

Early Smalltalk-80 optimization efforts such as [181 concentrated on optimizing Smalltalk
within the constraints of the byte code interpreter. In addition, the work was limited by the
Smalltalk-80 constraints of making contexts and methods program-visible data structures,
which required some effort to convert between the optimized and standardized versions of
the structures. Several context optimizations are also presented in [181, including determin-
ing which contexts which can be referred to as first-class data objects and which contexts can
be pointed by blocks. Most contexts do not fall into either category, and they can be placed
on the stack. Such optimizations are now also commonly done in Lisp compilers [361.

Whereas early Smalltalk-80 implementations were constrained to compatibility with byte
codes and were run on stack machines, Concurrent Smalltalk is bound by neither constraint.
The formats of contexts and method code are not defined in the language, and there are no
portable means to store a pointer to a context in a programmer-visible variable. Thus, Opti-
mist 11 and Cosmos can use the most efficient format for a context or even several different
formats if they so desire. Furthermore, the MDP is not a stack-based machine, so there are
no clear advantages to determining which contexts will be live for a long time. Also, contexts
are fully self-contained, so a closure cannot refer to a context. Finally, several techniques are
used to optimize closures. As will be seen in Chapter 3, when a closure is created, either the
lexical variables are copied into the closure, or a common object is made to which both the
context and the closure refer.

Optimized Sequential Smalltalk

A few years later it became clear that global analysis and optimization were necessary to op-
timize Smalltalk programs further. Optimizing Smalltalk well required an ability to convert
method dispatches into more efficient function calls, which led rise to several type systems
for Smalltalk 151 [261. When a type system could be applied to a Smalltalk program, the
compiler could optimize it by a factor of 5 to 10 over interpreted Smalitalk. The main com-
piler optimizations of TS [261 are similar to those of Optimist II: Both TS and Optimist II
can convert a message send into a case statement of procedure calls, substitute functions in-
line, and optimize tail recursion. In addition, TS can beta-reduce blocks, which Optimist II
currently cannot do. On the other hand, Optimist II contains a number of other powerful
dataflow optimizations (see Chapter 3 and 1211) commonly found in C compilers, which make
its assembly language output close to optimal. Moreover, Optimist II can evaluate large con-
stant expressions at compile time, and it can infer types of variables, allowing it to produce
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good code even though type declarations in Concurrent Smalltalk are completely optional.
TS, on the other hand, has difficulties combining typed code with untyped code.

The MDP hardware also plays an important role in making Optimist II efficient. By provid-
ing tags and checking them on primitive operations, the MDP architecture frees Optimist II
from the difficult and often unrewarding process of analyzing programs trying to determine
information such as whether an integer variable could contain a large-integer (an integer
which does not fit into a single 32-bit word) or whether the arguments to + are known to be
numbers. Although this information is generally difficult to determine, in most cases
integers are small and the arguments to arithmetic primitives are usually numbers, so
hardware tag-checking is the right approach to this problem. Thanks to the MDP hardware,
even if Optimist II cannot determine the type of some expression, performance does not
suffer too much.

CONCURRENTSMALLTALK

A recent language close to Concurrent Smalltalk and having an almost identical name is
CONCURRENTSMALLTALK [39] [40] independently developed by Yasuhiko Yokote and Mario
Tokoro. CONCURRENTSMALLTALK shares with Concurrent Smalltalk the cfuture facility
(called a CBox in CONCURRENTSMALLTALK) and the ability to process messages asyn-
chronously. In addition, CONCURRENTSMALLTALK defines atomic objects, which Concur-
rent Smalltalk does not have but can easily emulate using locks. On the other hand, Concur-
rent Smalltalk includes distributed objects, which CONCURRENTSMALLTALK does not pro-
vide. Furthermore, the implementation of Concurrent Smalltalk is more optimized.
Whereas CONCURRENTSMALLTALK is implemented as a byte code interpreter, Concurrent
Smalltalk compiles to assembly language.

The two languages have somewhat different flavors. CONCURRENTSMALLTALK is very close
to Smalltalk-80, and most of the concurrent features are add-ons that have to be explicitly
requested by the programmer. Concurrent Smalltalk makes concurrency the default, and
the programmer has to explicitly request sequential processing if he wants it. At the same
time, the MDP hardware assists Concurrent Smalltalk by making the use of concurrency
very cheap. For example, a hardware tag is provided that implements cfutures in Concur-
rent Smalltalk using much less overhead than cboxes in CONCURRENTSMALLTALK.

In [40] several changes to the original CONCURRENTSMALLTALK are discussed. Blocks are
treated differently depending on whether they were created by atomic objects' contexts or not.
Concurrent Smalitalk's model of only having one kind of object and using locks where neces-
sary to make atomic transactions does not lead to these difficulties. Finally, secretary objects
were introduced to CONCURRENTSMALLTALK to keep track of which threads are waiting for
a resource. An equivalent facility is used internally in locks in Concurrent Smalitalk.

Actor Systems

Another recent development in object oriented programming was the rise in actor systems
[2]. An actor system is a programming paradigm in which simple self-contained entities
called actors communicate with each other to run a program. Much of the program's content
is held in the interconnections among the actors. From the implementation standpoint, Con-
current Smalitalk shares many of the ideas with actor systems, but the language itself is not
designed exclusively as an actor language. Instead, Concurrent Smalltalk is as a language
closer to Smalltalk and Lisp, but it is possible to write actor-like programs in Concurrent
Smalltalk without too much trouble.

Cantor

Cantor [41 is both a programming language and a formalism for reasoning about the prob-
lems that arise in fine-grain, message-passing parallel computers. In Cantor each object (the
Cantor equivalent of a Concurrent Smalitalk context) can only perform a bounded amount of
computation on receiving a message, and that computation is atomic. Also, messages sent
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from one object to another are guaranteed to arrive in the original order. Concurrent
Smalitalk is similar to Cantor at the implementation level-when a message is sent to a con-
text, it performs a bounded amount of computation1 , perhaps sends a few more messages,
and then either suspends or waits for the next message. The state of a compu, .ion is com-
posed mostly of idle objects and messages traveling between objects, with only a few objects
executing. Hence, at a superficial level, a Concurrent Smalltalk object code program is a
Cantor program. Nevertheless, the Concurrent Smalltalk object code program is more com-
plicated because it might fault while performing the computation of the next state. One can
view this possibility as either computation being non-atomic or treating faults as if they were
message sends and suspends, preserving the Cantor model. Another distinction is that Con-
current Smalltalk does not guarantee that messages between a pair of objects will arrive in
the order in which they were sent.

Probably the best relationship between Concurrent Smalltalk and Cantor is that Concurrent
Smalltalk is a high-level language that compiles to Cantor-like object code. At the source
level, Concurrent Smalltalk frees the programmer from the myriad of error-prone synchro-
nization details found in Cantor. Concurrent Smalltalk encapsulates the Cantor concept of
future flow into a few easy-to-use primitives such as touch and nconcurrently. At the
same time, Concurrent Smalltalk presents the appearance of global and nested data struc-
tures (such as lexical scoping of local variables) which are compiled into interacting objects.

Nevertheless, Cantor is a good theoretical model for computation on the J-Machine. For ex-
ample, the load balancing and management results in [4] are expected to also apply to the J-
Machine. However, the J-Machine can also suffer from problems not discusses in [4], such as
having too much parallelism. Some of the load balancing issues are presented in Chapter 8.

Acore

Acore [30], an "actor core language," is another recent actor language. Like Cantor, it pro-
vides an environment in which a computation is done by interacting actors with limited abili-
ties; however, actors in Acore can compute arbitrary functions to determine state, and Acore
has a notion of a transaction (a message send and a reply), which greatly simplifies pro-
gramming.

Acore and Concurrent Smalltalk are similar in many ways. Both languages implement mes-
sage sends, replies, concurrent evaluation of subexpressions, local variables, static scoping,
and instance objects (called actors in Acore). However, there are also a few differences. Due
to its Smalltalk-80 heritage, Concurrent Smalltalk permits local variables to be altered,
while Acore does not; both languages allow muLv-tion of instance variables. In addition,
Acore implements a sponsorship mechanism for higher-order control of the course of a com-
putation and a complaint mechanism for handling exceptions. It remains to be seen whether
these mechanisms will be necessary in Concurrent Smalltalk 2.

Acore is compiled into Pract, which is a form of an actor assembly language, whereas Con-
current Smalltalk is compiled into MDP assembly language. As a result of this difference,
some actions which are cheap in one language are expensive in the other, which affects the
language design. Actor creation is very cheap in Acore, while instance object creation, mod-
erately expensive in Concurrent Smalltalk, is avoided whenever possible. On the other hand,
futures are fairly expensive in Acore, while they are very cheap in Concurrent Smalltalk;
thus, Concurrent Smalltalk creates a future (or a cheaper cfuture) as a result of every non-
primitive function call, achieving maximum concurrency within a method in most cases.
Acore, on the other hand, often has to do a relatively expensive join operation. For the same

lAs will be discussed in Chapters 5 and 10, the amount of computation done by a Concurrent Smalltalk process on
receiving a message truly is bounded, but it is done for a more prosaic reason than keeping a clean model-user
Concurrent Smalltalk methods are not allowed to loop without a message send somewhere to break the loop to pre-
vent the incoming message queues on an MDP from overflowing if the loop lasts for a long time. Also, long, indivis-
ible loops would degrate latency for other messages that are waiting in an MDP's incoming message queue.
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reason, futures are transparent in Concurrent Smalltalk, while they are programmer-visible
in AcoreI.

The two languages use the same mechanism for calling messages. When a Concurrent
Smalltalk process or an Acore actor makes a function or method call, it passes a continuation
to which results should be sent. The continuation includes both a process and a slot within
that process in which the result should be stored.

J-Machine References

[13] and [14] are good descriptions of the philosophy of the J-Machine project and the early
Concurrent Smalltalk language; [15] is a recent status report on the MDP from the hardware
perspective. [22] describes some of the experiences gained from designing the previous ver-
sion of Concurrent Smalltalk and implementing the first-generation Optimist compiler. [10]
contains a nontrivial program written in an older dialect of Concurrent Smalltalk. [8] and
[91 describe Concurrent Aggregates, a higher-level language than Concurrent Smalltalk for
programming the J-Machine. [33] and [34] describe a parallel project to implement dataflow
on the J-Machine. Finally, [41] and [42] analyze the desirability of supporting the more
common existing parallel programming paradigms on the J-Machine.

2 A complaint mechanism could be built on top of Concurrent Smalltalk by using the multiple-value return feature-
one of the values could denote a continuation to which exceptions should be routed. Acore uses a similar iun
?lementation to handle exceptions.
Nevertheless, a language that hides futures could be built on top of Acore.
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Introduction

A Concurrent Smalltalk program is a sequence of top-level definitions. Figure 2-1 shows a
sample program that calculates Fibonacci numbers using double recursion.

(Defmethod fib Integer ()
(if (<- self 2)

1
(+ (fib (- self 1)) (fib (- self 2)))))

Figure 2-1. A simple Fibonacci program
This program calculates Fibonacci numbers using double recursion. Although it does not use the most efficient al-
gorithm to calculate Fibonacci numbers, it does illustrate Concurrent Sma~ltalk's implicit concurrency.

The program is a single method associated with the selector fib and class integer. The fact
that the method takes no arguments other than the integer receiver is indicated by the empty
list, (), on the first line. Tne following three lines contain the body of the method. Self rep-
resents the receiver object, which is the number to which fib was applied. The if statement
checks whether that number is less than or equal to 2. If so, fib returns 1. Otherwise, fib
returns the sum of (fib (- self 1)) and (fib (- self 2)), which are computed con-
currently. This concurrent evaluation of arguments is one of the important differences be-
tween Concurrent Smalltalk and sequential Smailtalk.

Fib can be invoked by calling it on an integer (the receiver object):
(fib 30)

Fib would then calculate and return the answer 832 040. If f'b had any more arguments,
they would be included after the receiver object, as in:

(fib 30 x y z)

Functions

The Fibonacci program was defined as a method. It is also possible to define it as a function,
as in Figure 2-2. A function is a method not associated with any class or selector. Although
in this example methods and functions are equivalent, in other cases, such as in iterators,
functions may be more useful than methods.

(Defun ffib (n)
(if (<- n 2)

1
(+ (ffib (- n 1)) (ffib (- n 2)))))

Figure 2-2. A simple Fibonacci program as a function
Functions have no receiver object, so the parameter n has to be specified explicitly.

The syntax for a method and a function call is the same, so f fib would also be called by:
(ffib 30)

The meaning of applying f fib to arguments (30 in this case) depends on whether f fib is a
selector or a function. If f fib were a selector, a method lookup would be done to determine
the class of the first argument and then call the method corresponding to the selector and
that class, while if f fib is a function, it is called directly.

14
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Extracting Methods

A manual method lookup can be done using the method primitive. Method takes two pa-
rameters, a selector and a class, and returns a function which performs the same action as
the method. For example, the method shown in Figure 2-1 can be extracted using

(method fib integer)
The result behaves just like the f fib function in Figure 2-2. It can be called using

((method fib integer) 30)

A method extracted in this way does not have to be a direct method of the class; it can be an
inherited method.

Classes

A Concurrent Smalltalk class is a type; the two words are used interchangeably in the lan-
guage definition'. A few built-in classes are predefined; these include symbols, booleans, in-
tegers, floating point numbers, characters, functions, and other classes. A complete list is
given in table A-2. All classes are subclasses of the class object.

The defclass primitive can be used to add user-defined classes. A class definition consists
of a list of superclasses and zero or more new instance variables. Each instance object of that
class contains those instance variables. The user may also define a number of methods for
that class. A simple class that implements Lisp-like lists is shown in Figure 2-3.

(Defclass pair (object) car cdr)

;(Defmethod car pair () car)
;(Defmethod cdr pair () cdr)
;(Defmethod get-car pair () car)
;(Defmethod get-cdr pair ) cdr)
;(Defmethod put-car pair (value) :pair (set car value) self)
;(Defmethod put-cdr pair (value) :pair (set cdr value) self)

(Defun cons (first second):pair
(put-car-cdr (new pair) first second))

(Defmethod put-car-cdr pair (first second):pair
(cset car first)
(cset cdr second)
self)

Figure 2-3. The pair class
The six methods that are commented out by semicolons are defined automatically by defclass (in addition to a
few others described in Section A4). Car and get-car do the same thing; both are defined because car is
more convenient, but it cannot be used in the body of a method of class pai r because static scoping shadows the
method car by the instance variable car.

The : pai r constructs define the result types of the methods. They are unnecessary, but they do improve effi-
ciency and allow rudimentary type checking.

The class pair is defined on the first line of Figure 2-3. The defclass primitive specifies
the class name (pair), the superclasses ((object)), and the instance variables (car and
cdr).

Whenever a class c is defined, a class predicate and reader and writer methods are defined
automatically, as well other, less-used methods described in Section A.4. The class predicate
is a function named C? that accepts one argument a and returns true if a is a member of
class C (or one of its subclasses) and false otherwise. Also, for each instance variable x of c,

INonetheless, the words type andclass have slightly different meanings in the discussion of the compiler in Chapter

3.
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the methods x, get-x, and put-x are defined. The first two methods take an instance object
o as an argument and return the value of x in o, while put -x takes two arguments, an in-
stance object o and a new value v of x, and assigns v to x in o. The methods x and get-x are
known as reader methods, while put-x is called a writer method. The writer methods return
o, the object to which the value is written.

After a class is defined, additional methods may be defined for it. In the above example, a
method put-car-cdr is defined for the class pair. Put-car-cdr sets the value of a pair's
car and cdr variables and returns the pair. Inside a method, the receiver's instance vari-
ables can be accessed by their names.

Overriding Methods

Consider a class c2 which is a subclass of cl. When a class c2 defines a method m2 with the
same selector s as a method ml of ci, the class c2 is said to be overriding the method ml.
When selector s is applied to an object of class c2 or one of its descendants, method m2 will be
used instead of ml.

Nevertheless, sometimes it is desirable to call ml on an object of class c2. For example,
method m2 might want to call the method it is overriding. An overridden method ml can be
called by performing a manual method lookup using the form (method S Cl). The resulting
method can be called normally.

Type Restriction

The type of an overriding method must be a subtype of the type of the overridden method.
For instance, in the above example the type of m2 must be a subtype of the type of ml. This
means that both methods must have the same number of arguments, the types of the argu-
ments of the overriding method must be supertypes (superclasses) of the types of the argu-
ments of the overridden method, and the result type of the overriding method must be a sub-
type (subclass) of the result type of the overridden method. If any argument of the overrid-
den method is declared inline or using any other declaration, either explicitly or by default,
the corresponding argument of the overriding method must have the same type and declara-
tions. The results of violating the above rules are undefined. The compiler may issue errors
if the above rule is violated, but it is not guaranteed to do so.

The above restrictions apply only to methods being overridden. There are no restrictions on
methods with the same name declared for disjoint classes (i.e. classes which are not sub-
classes of each other).

The Class Object

Methods of class object are very similar to functions. There are two main differences be-
tween functions and methods of class object:

* A method of class object can be overridden by a method of a more specific class. For ex-
ample, if cons in Figure 2-3 is defined as a function, no other function or method may be
called cons. On the other hand, if it is defined as a method of class object, it may be over-
ridden by a method cons defined for integers. However, a method may not be overridden by
a function.

* A function that takes no parameters can be defined, while a method must always take at
least one parameter-the instance object.

In the interest of code maintenance and readability, it is recommended that functions be used
in cases when overriding makes no sense; parameter functions to iterators fall into this cate-
gory. On the other han-i, if overriding a function might be desirable, that function should be
defined as a method of type object. It is not clear whether overriding cons (Figure 2-3)
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would be useful, so it might be defined either as a function or a method, depending on one's
taste.

Local Variables

A method or a function can declare local variables using the clet or let statements or their
derivatives. For example, the function fib from Figure 2-1 could be rewritten using two lo-
cal variables as in Figure 2-4.

(Defmethod Integer 1fib ()
(if (<- self 2)

1
(clet

((a (lfib (- self 1)))
(b (Ifib (- self 2))))

(+ a b)))

Figure 2-4. Fibonacci program with local variables
The above program is equivalent to the one in Figure 2-1 and actually compiles into the same code.

Local variables declared with a clet or a let statement have a scope which is the body of
the clet or let statement (except for the bindings themselves). CLet and let statements
can be nested. Local variables can be altered using a cset or a set statement; the difference
between the two will be explained in the Concurrency section below.

Types

The types (i.e. classes) of various values can be declared explicitly. Such declarations serve
three purposes:

* Types allow the compiler to generate faster code by allowing it to perform operations
such as method lookup at compile time.

* The compiler can perform type checking to find simple errors such as passing a value of
one type to a function that is expecting a value of a different type.

* Declaring types of function parameters and results serves to document the code.

For the purposes of type inclusion, a type is its own supertype and subtype.

Due to the common use of generic types, the compiler's type checking is necessarily limited.
In particular, when an expression of type tl is assigned to a variable of type t2 or passed as a
parameter to a function that expects type t2, the compiler usually will give an error or a
warning if tl is not t2, tl is not a superclass of t2, and t2 is not a superclass of t1. This does
not mean, however, that the semantics of function parameter and return type declarations
are any different from their standard interpretations-when a function parameter is declared
type t, every value passed as that parameter must be a member of type t, and when a func-
tion result is declared type t, the function must return a value that is a member of type t as
that result-the only difficulty is that the compiler is not able to do full type checking, so it
usually follows the rules outlined above.

For example, integer and boolean are both subclasses of the object and magnitude
classes (see Figure A-2), but they are otherwise unrelated to each other. Thus an integer
can be passed to a function that expects an object, an object can be passed to a function
that expects an integer, but a boolean cannot be passed to a function that expects an in-
teger. The second possibility, passing a more general type to a function that expects a less
general one, is included to handle the common case of extracting values from general storage
class. One could, for example, keep a pair of integers and desire to add the pair's car and
cdr together. Since a pair is a generic data structure, it can contain values of type object;

17



Concurrent Smalltalk on the Message-Driven Processor

a compiler has no simple way of knowing at compile time that the pair will contain inte-
gers, so the best it can deduce is that the pair's car and cdr are objects.

Types can be declared as follows:

* To specify the type of a local or an instance variable, follow the variable name with a
colon and its type. Several locals can be declared using the same type by separating their
names with commas.

* To specify the type of a function or method formal, follow the formal name with a colon
and its type. Several formals can be declared using the same type by separating their names
with commas.

* To specify the result type of a function or method, follow the list of formals with a colon

and the result type'.

* A type of an intermediate result can be specified using a type-assertion statement 2.

The three kinds of declarations are illustrated in Figure 2-5, yet another copy of the Fi-
bonacci program. All untyped variables, parameters, and functions and methods are typed
object by default.

(Defun tfib (n:integer) :integer
(if (<- n 2)

1
(clet

((a:integer (tfib (- self 1)))
(b:integer (tfib (- self 2))))

(+ a b)))

Figure 2-5. Fibonacci program with types
There are three type declarations here. In order, they are a declaration of the parameter type of n, a declaration of
tfib's result type, and declarations of the types of the local variables a and b.

Concurrency

Concurrency is expressed in Concurrent Smalltalk in several ways:

* Concurrent argument evaluation. In
(+ "big-computation 3) (time-sink 738))

the expressions big-computation and time-sink can be evaluated in parallel.

• Expressions in concurrently statements may be evaluated concurrently. The expres-
sions in parallel statements are always evaluated concurrently.

• The variable bindings in clet and let statements can also be evaluated concurrently.
For example, the expressions big-computation and time-sink can be evaluated concur-
rently in

(cset a (big-computation 3))
(cset b (time-sink 738))
(+ a b)

as well as in
(let ((a (big-computation 3))

(b (time-sink 738))
(+ a b))

* The computations in assignments using cset and in function calls whose result values
are unused can be done concurrently with neighboring statements.

'See also return values in section A.5 for a description of specifying types of multiple results.
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0 The computations done for futures are always evaluated in parallel.

The action of a cset can be thought of as storing a promise (known as a cfuture) to calculate
the value of a variable. For example, after

(ceet a (big-computation 3))
is executed, a will contain either the value of (big-computation 3) or a cfuture promising
to deliver that value when it is needed. If a contains a cfuture, (big-computation 3) is
evaluated in parallel by a different task. At the same time, execution of the method can pro-
ceed and the method can perform another time-consuming task. It will not have to wait for
(big-computation 3) to complete until the value of a is needed.

Sometimes it is desirable to explicitly wait until the value of an expression is available before
continuing. This is called either touching or forcing the expression. Touching or forcing an
expression that evaluates to a normal value does nothing. Touching or forcing an expression
that evaluates to a cfuture causes evaluation to wait until the value of the cfuture is avail-
able. Finally, touching an expression that evaluates to a future does nothing, while forcing it
causes evaluation to wait until the value of the future is available. The resulting value is
then touched or forced again until the touch or force operation does not change it.

An expression can be touched using the touch statement and forced using the force state-
ment. Since built-in methods and functions usually touch or force their arguments, touching
and forcing are rarely done explicitly.

The reference manual in Appendix A defines more precise semantics for what expressions
may or may not be evaluated in parallel.

Locks

(defclass resource (object)
1:lock
... other fields)

(defmethod init resource ()
(cset 1 (new-simple-lock)) ;Creates an initially available lock
... other initialization code)

(defun new-resource ()
(init (new resource)))

(defmethod access resource (parameters
(acquire 1)
... code to perform the access using parameters ...
(release 1))

(defmethod access2 resource (parametors
(with-locks (1)

... code to perform the access using parameters ... ))

Figure 2-6. Lock Example
This example defines a class resource that contains a lock. Every call to access acquires the lock when it
starts and releases it when done, so the code in the middle of the access method cannot be interrupted by an-
other access method. The with-1 ocks macro is a convenient shorthand for acquiring and releasing locks; the
access method could have been rewritten as access2.

Locks are used to synchronize computation by Concurrent Smalltalk programs. Locks are
especially useful around critical sections of code where only one process may access a re-
source; a process that wants the resource acquires a lock before accessing the resource and
releases it when it is done. Two variants of locks are provided. Simple-locks are fast locks
which, hbwever, perform poorly when many processes are waiting for a resource; simple-

2See section A.6.
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locks should be used in situations in which the probability of contention for a resource is
small. Queueing-locks are slower locks designed to handle a large amount of contention.

As an example of the use of locks, suppose one wants to restrict the use of a resource so that
only one process can access it at a time. To accomplish this exclusion, a lock can be associ-
ated with the resource, in which case every process should acquire the lock before using the
resource and release it when done. Figure 2-6 shows sample code used to access the resource.

Distributed Objects

(defclass distarray (distobj)
value)

(defun new-distarray (size: integer)
(new distarray size)

(defmethod get distarray (index:integer)
(get-value (co group index)))

(defmethod put distarray (index:integer new-value)
(set (get-value (co group index)) new-value))

(defmethod size distarray ()
(logical-limit self))

Figure 2-7. Distributed Object Example
This example defines a class di sta rray used for distributed arrays. The get method returns the element at
position index in the array; since each constituent contains only one element of the array, the get method returns
the value in the constituent specified by the given index. Similarly, the put method routes the message to the
constituent specified by index, where it stores new-value. The si ze method simply returns the array's size.

Whereas standard objects serialize messages sent to them', distributed objects can accept
and process many messages at a time. A distributed object is comprised of an array of con-
stituent objects and a common, group name. When a message is sent to the group name, the
operating system routes it to a constituent of its choosing. The constituent can then process
the message or send it to another constituent; constituents know how to address each other.
The co primitive is used to find a particular constituent of a distributed object, while the
group instance variable can be read to determine the group name of a distributed object
given one of its constituents.

For example, a large array might be implemented as a distributed object. When a get mes-
sage is sent to the array to read a value of a particular element, the message is routed to one
of the constituents. That constituent examines the given index and forwards the message to
the constituent containing the element, which reads and returns the value.

Figure 2-7 shows a simple example of the use of distributed objects to create a distributed ar-
ray. Each constituent contains only one element of the array to keep this example short; a
better implementation would use a simple-array at each constituent to reduce the number
of constituents needed.

The advantages of using a distarray class like the one in Figure 2-7 is that many accesses
can be made to the array simultaneously; they do not have to pass through a common bottle-
neck to access the array. In addition, as will be clarified in Section 3.3, the get and put
methods do not access any instance variables of distarray themselves, so they could be in-
lined wherever they are called 2; thus, reading or writing the distarray in Figure 2-7 could

'Except for a few special cases such as immutable objects and messages which do not need to access an object's data
to execute, only one message may be processing on a standard object at a time.2The compiler's handling of group would have to change a little to permit this optimization; the compiler currently
treats group solely as an instance variable, but there is no intrinsic reason why the compiler could not provide a by-
pass path that checks whether a method was called on a group ID (as opposed to a constituent ID) and just uses the
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involve only two message aiends, which is no less efficient than reading or writing a simple-
array.

Macros

Concurrent Smalltalk provides a macro facility which can be used to extend the language. A
macro consists of a pattern and a replacement. The pattern can contain variables or key-
words. If it matches with an expression, that expression is replaced by the replacement,
which can be either another pattern or a Common Lisp function1. Much of the language it-
self has been implemented in terms of macros. Figure 2-8 contains a sample macro which de-
fines a when form that is the equivalent of a Common Lisp when.

(defmacro (when ?test . ?body)
(if ?test

(begin . ?body))

Figure 2-8. When macro
The when form defined by this macro takes a test and a number of statements comprising the body. If the test is
true, the statements are executed one after another, as in begin. If the test is false, when returns nil. This
macro takes advantage of the fact that if returns nil if there is no else-clause and the condition is false. The
Lisp dot notation is used to indicate that the body forms the rest of the given list.

group ID if it was provided instead of always using the group instance variable. When this optimization is imple-
mented, distributed arrays such as the one above will be as efficient as simple arrays.
lConcurrent Smalltalk functions may be added as replacements later, when the entire compiler and development
system is rewritten in Concurrent Smalltalk.
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Optimist Il is an optimizing compiler for the Concurrent Smalltalk language described in
Appendix A. The compiler generates assembly language code for the Message-Driven Pro-
cessor.

Optimist II is based on the Optimist compiler described in [21). Optimist included many
standard optimizations such as register variable assignment, dataflow analysis, copy propa-
gation, and dead code elimination [3] [43] that are used in compilers for conventional proces-
sors. In addition, Optimist included fork and join mergers that try to merge similar (not nec-
essarily identical) statements on both sides of conditionals, a powerful move eliminator, and
numerous code generator optimizations to accommodate various idiosyncrasies of the MDP.

Optimist II is a substantial improvement over the Optimist compiler. While Optimist sup-
ported only a small subset of an early Concurrent Smalltalk language, Optimist 11 imple-
ments almost the entire new Concurrent Smalltalk language. Some language features sup-
ported by Optimist II that were not present in the original Optimist include:

* Method lookup (Optimist could compile method code but could not associate a method

with a selector)

"* Global variables

"* Class and variable declarations

"• Macros

"* Lambdas and closures

"* Multiple inheritance of classes

"* Distributed objects

"* Multiple return values

"* Nonlocal exits

"* Functions

"* Methods referencing more than one object at a time

"* Synchronization primitives

"• Arrays

"* Methods overriding primitive selectors such as +

"* Compile-time evaluation of expressions

Furthermore, Optimist II contains an interactive language environment, including a Concur-
rent Smalltalk interpreter and facilities to view code in various stages of compilation. Opti-
mist II gives helpful warnings and errors when it encounters questionable language con-
structs. It also includes entire new categories of optimization, including type inference and
global program optimizations. Finally, Optimist Ir's code generator has been updated to con-
form to and optimize for MDP Architecture version 11B 116]' instead of Optimist's Architec-
ture 10 [23].

IThis reference is to MDP Architecture version 11. Version 11B has not been published yet.
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The only language features listed in Appendix A missing from Optimist 11 are full futures
and 1/0 facilities. It is expected that they will be added later, when the operating system is
updated to support them. In addition, some optional features of the language such as inline
objects and first-class continuations have not been implemented, although facilities have
been provided that will simplify their implementation in the future.

Structure

Figure 3-1 shows the overall structure of the compiler. Concurrent Smal!talk code is read
and parsed by the reader and parser, transformed by the preoptimizer, and saved in the
global environment. It can be either interpreted using the global environment or optimized
further by the optimizer and then compiled into MDP assembly code by the compiler and
assembler. The treewalker controls the compilation process and prevents unused modules
and objects from being compiled and assembled.

Reading Guide

The Data Structures section introduces the common data structures used in the Optimist II
compiler. A few data structures such as digraphs and hcode appear throughout the compiler,
and familiarity with them is assumed in the later sections.

The next three sections discuss the three main components of the compiler environment: The
Initial Phase includes facilities to read Concurrent Smalltalk expressions and compile them
into hcode (an intermediate code format), interpret that hcode, and maintain the global Con-
current Smalltalk environment. This phase executes until the user requests a compilation of
the program to MDP assembly code, at which time the other two phases are invoked. Most of
the optimizations in Optimist II are done in the Optimization phase, although a few appro-
priate optimizations are scattered in the other phases. The Code Generation phase com-
piles the optimized hcode into MDP assembly language and outputs that assembly language,
together with immediate objects, class descriptors, and method tables, after performing a few
final optimizations. The output of the Code Generation phase can be read directly into
MDPSim. The code generator and MDPSim share the task of linking programs. Finally, the
Summary section summarizes the important ideas in the compiler.

Chapter 5, Sample Program, shows the progress of a sample program through various
phases of the compiler, and it may be helpful to illustrate some of the optimizations.
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Concurrent Smailtalk Source Code Phitase

4 Phase_
Reader Runtime
ParserLbry

Pre-optimidzer and
Intial Transformer

Interpreter ]

Optimizater

I Data Objects

Hcode

Code
Compiler Generation

---__F__ I_ I Phase

Assembly Language Module

LAssembly
Optimizer

I Assembler

MDPSim Executable File

Figure 3-1. Optimist II Organization
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3.1. Data Structures

Utilities

Optimist II uses a number of supporting data structures throughout the compilation process.
These include abstractions such as environments, queues, ordered sets, bit sets, and exten-
sions to CLOS. The supporting data structures are defined in the System Utilities, Utilities,
and Digraph files'.

An environment associates keys with values. Environments can be atomic, linked to each
other, and either simple or based on hash tables. Atomic environments allow a series of
changes to be cancelled, which is a useful operation if a syntax error is found in the input
Concurrent Smalltalk expression. See the System Utilities file for more information about the
internal Optimist II environment formats.

The implementation of digraphs (directed graphs) is discussed in [21]. The digraphs in Op-
timist II extend that implementation by taking advantage of CLOS's class inheritance mech-
anism and by automatically marking a digraph altered when any change to it is made, elimi-
nating some hard-to-find consistency errors. For example, using the dfs function to ask for a
listing of the nodes of a digraph will always yield an up-to-date list. Furthermore, an Opti-
mist II digraph has a root dinode that is attached to both the digraph's starting nodes and
the ending nodes, allowing easy identification of the digraph's exit points. Including the root
node generalizes some algorithms; for example, the join merger can now join statements at
the end of the digraph.

The traversal returned by dfs is not quite a depth-first search-the search order is depth-first
modified to avoid listing a node ahead of its predecessors whenever possible. If the graph is
acyclic, no node (except the root) is listed before its predecessors. The digraph dataflow prob-
lem solver [21] [3] has been updated to detect this condition and solve a dataflow problem on
a digraph in one pass if the digraph is acyclic; otherwise, the dataflow solver makes two or
more passes until no node changes. Moreover, dfs automatically detects and removes dead
dinodes from a digraph; dead dinodes are dinodes which cannot be reached by following the
edges in the digraph in the forward direction starting at the root, but which can be reached
from the root by following edges in the undirected digraph.

The other structures based on digraphs such as modules are similar to those in Optimist.
See the Digraph file for more details, including the dataflow problem solver and a directed
graph mapper utility.

Hcodes

Hcode is the primary intermediate code format of the Optimist II compiler. It is loosely
based on I-code found in Optimist. Hcodes 2 are represented by instance objects of CLOS
classes, and there is no uniform syntax for reading and writing programs in hcode form,
although the show utility prints hcodes fairly well. In addition, the usage of hcodes is not
uniform throughout the compiler. The sets of hcodes nllowed in different stages of the com-
piler differ-some hcodes are used early and then banned, while others are introduced just
before assembly code is generated. The number of hcodes used in the compiler is small and
fixed-there are only thirteen hcodes, and nine of them are limited to certain phases the
compiler. Since there are few hcodes, most operations can be expressed in only one way in
hcode, and the optimization algorithms have to handle only a few cases instead of many syn-
onymous I-codes, as used in Optimist.

'See Appendix E for information on getting copies of the files.
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Table 3-1. Hcodes

HCode Arguments Usage* Action
Directive Directive I, Pre Evaluate top-level directive such as add-method

Directive-args on the directive-args.
Application Targets I, Pre, 0, Apply funct to args and put the result values in

Funct Post, C the targets.
Aros

Assert-Type Argument I, Pre, 0, Assert that the argument value's type is a sub-
Type Post type of type.

Move Target I, Pre, 0, Move value from source to target.
Source Post, C

Make-Closure The-Lambda I, Pre, 0, Make a closure out of the-lambda using sources
Sources Post as the values of the display arguments.

Nconcurrently Threads I, Pre Execute threads concurrently.
If Condition I, Pre, 0, Branch if argument satisfies condition. Table 3-2

Argument Post, C lists the allowed conditions.
"Touch Argument I, Pre, 0, Touch the argument

Post, C
Force Argument I, Pre, 0, Force the argument

Post
Make-Future Target I, Pre, 0, Make a future which will evaluate the lambda

Argument Post passed as an argument. Store the future in tar-
Lazy _ get. The future is lazy if lazy is true.

Enter 1_ C Commence function or method execution.
Exit C Terminate function or method execution.
Grab Argument C Temporarily dereference an instance object.

*The Usage column specifies the stages of the compiler in which the hcode is valid. The stages are:
I Hcode before initial transformations.
Pre Pre-optimized hcode. This hcode is stored in the global environment.
O Hcode during most of the main optimization phase.
Post Hcode during the MDP-specific post-optimization phase.
C Hcode just before it is compiled into MDP assembly language.

Table 3-1 lists the hcodes. Most hcodes contain fields such as arguments and targets. An ar-
gument field can contain any rvaluel, while a target field can contain any lvalue. Also, a type
field can contain any type, while a class field requires a class. The formats of those fields are
listed in Table 3-3.

There is no hcode that returns a value from a function or a method. Instead, a special Ivalue
is used to represent a continuation to the caller. A value is returned by storing it using a ref-
erence to the continuation as a target. Thus, a move hcode with a reference to a continuation
as a target is really a return statement, while an application hcode with a reference to a con-
tinuation as a target is a tail-forwarded application. More complicated combinations are also
permitted-an application hcode that returns two values can forward one to a continuation
and store the other in a local variable, or continuations to several different callers within
whose static scopes a function resides could be used. The benefits of not including a return
hcode are a more orthogonal set of hcodes and a simplification in the tail forwarder, which
now becomes a somewhat specialized move eliminator.

Every hcode has exactly one successor in the digraph except the if hcode, which has two, cor-
responding to evaluating the conditional as true or false. The nconcurrently hcode has only
one successor, but it also contains a set of nested digraphs, which may be evaluated concur-

2Sometimes the word statement will also be used to refer to an hcode.

1Rvalues are defined below.
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Table 3-2. Conditions

CondlUon Expression
.true Branch if the argument is true. The argument must be a boolean.
lalse Branch if the argument is false. The argument must be a boolean.
:nil Branch if the argument is eq to nil. The argument can be any object.
:non-nil Branch if the argument is not eq to nil. The argument can be any object.
:zero Branch if the argument is equal to 0 using the = predicate.
:non-zero Branch if the argument is not equal to 0 using the = predicate.

rently, sequentially, or interleaved in any fashion. There is no restriction on the number of
predecessors an hcode can have.

Hcodes are rarely processed alone; usually hcodes are embedded in a code-lambda or cst-
lambda, which represent digraphs of hcodes with header information. A code-lambda con-
tains a digraph of hcode statements together with a database of local variables used by those
statements. Each local variable has an optional name, a type, and some declarations such as
whether it can hold inline objects. Furthermore, the locals in a code-lambda are consecu-
tively numbered to allow the efficient use of bitmaps to keep track of variable data while
solving dataflow problems. In addition, a code-lambda shares with cst-functions (another in-
ternal Optimist II class that describes all functions, including primitives) the interface fields
which consist of a list of parameters, return values, and display variables used by closures.

Hcodes are documented in the HCode file.

Values

An Optimist II value is a representation of a Concurrent Smalltalk object-it can be, say, an
integer, a character, a distributed object, a function, a class, or any other valid Concurrent
Smalltalk object. On the other hand, a variable or a parameter is not a value, but it may con-
tain a value. In addition, values of a few hidden types such as continuations and continua-
tion displacements are also used. Many different representations are used for values, and
these representations will not be described further here; please refer to the Types file for
more details on this subject.

An rvalue can be either a value or a location that can be read to obtain a value. Thus, a local
or a global variable is an rvalue, and so is the Concurrent Smalitalk integer 7. An instance
variable in general is not an rvalue, but a reference to an instance variable in a particular in-
stance object is. The common rvalue kinds are listed in Table 3-3.

Table 3-3. Rvalues

Rvalue Speclallzers Notes
Value Any value is also an rvalue.
Local Name, scope, etc. A local variable.
Global Name A global variable.
Option Name A Concurrent Smalitalk option.
Ivar-ref Instance variable, An instance variable of an instance object. The

Instance object instance object must also be an rvalue.

An Ivalue is a location into which a value can be written. Examples of rvalues include local
variables, references to instance variables in instance objects, and references to continua-
tions. A continuation by itself is not an Ivalue, but a reference to one is. The common Ivalue
kinds are listed in Table 3-4.
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Table 3-4. Lvalues

Lvalue Speclalizers Notes
Local Name, scope, etc. A local variable.
Global Name A global variable.
Continuation-ref Continuation or A reference to a continuation specified either as

Context and a continuation rvalue or as a pair of context and
Displacement displacement rvalues (See Section 3.3).

All rvalues are instances of the rvalue CLOS class, all ivalues are instances of the Ivalue
CLOS class, and all values are instances of the value and rvalue CLOS classes. CLOS's mul-
tiple inheritance is used to define objects that are both rvalues and ]values or other combina-
tions of the above.

Types and Classes

Table 3-5. Types

Type Speclalizers Notes

Class Any class is also a type.
Continuation-type Continuation-type A type based on the continuation class that

represents a continuation that will return a
value of the continuation-type type.

Displacement-type Continuation-type A type based on the displacement class that
represents a displacement field of a continua-
tion that will return a value of the continua-
tion-type type.

A Concurrent Smalltalk class is a Concurrent Smalltalk value that is an instance of the
class class. Classes are implemented in Optimist II as instances of the cst-class CLOS
class. In addition to itself being a value, a class also represents a set of values. For example,
the class integer represents the set of all integers, which includes, among others, the values
4 and -17. The class null represents the singleton set (nil). The class class represents
the set of all Concurrent Smalltalk classes, including itself

In addition to classes, Optimist II includes types which provide finer discrimination than
classes for describing sets of values. Types are listed in Table 3-5. Currently a type is either
a class or a continuation that returns an object of some type. A type can be always projected
to a class; the base-class Lisp generic function performs this conversion. A type that is also a
class projects to itself, while a continuation type projects to the class continuation.
Although a class is always a value, a type is not necessarily a value.

Multitypes

When describing the possible contents of variables, Optimist II uses the concept of a multi-
type. A multitype is a list of zero or more types; a value is a member of a multitype (satisfies
that multitype) if it is a member of one of its types. No value satisfies a null multitype, while
every value satisfies a multitype that has object as one of its types. Routines are provided
to calculate unions (least upper bound) and intersections (greatest lower bound) of multi-
types and simplify representations of multitypes. Since multitypes are not necessarily closed
under those operations, the lub and glb routines may conservatively enlarge their multitype
results.
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Global Data Structures

Two atomic environments, the global environment and the class environment, contain most
of the state of the Concurrent Smalltalk interpreter. The global environment contains all
Concurrent Smalltalk globals, parameters, and constants, while the class environment con-
tains all known Concurrent Smalltalk classes. The global environment is linked to the class
environment, so the latter is searched if an identifier is not found in the global environment

The classes are themselves heavily linked together. Each class object has lists of its immedi-
ate superclasses and subclasses and all of its superclasses and subclasses, as well as a meta-
class, a description of its instance variables, and sundry options such as whether the class is
immutable. To allow typed recursive data structures, an "undefined" class structure is cre-
ated when a class name is encountered in a program without being defined. An "undefined"
class can turn into a normal class when the class is defined; CLOS's change-class construct is
very valuable here. A substantial number of classes have to be updated whenever a new
Concurrent Smalltalk class is defined, but compilation speed does not seem to suffer because
of this. The heavy linking of classes made defining a bootstrapping subset of Concurrent
Smalltalk classes challenging; some CLOS objects had to be created with the wrong classes
and then transformed to the right classes. Once the bootstrapping subset of Concurrent
Classes was defined, defining the remaining classes on top of it was easy.

A method is associated with both a class and a selector. There is no single method table in
Optimist II; instead, whenever a method is added, it is added to the selector's list of methods
hashed by class and the class's list of methods hashed by selector. Thus, a selector knows all
of the methods defined for it, as does a class. Methods are not replicated in these hash tables
unless a method is added more than once; instead, the lookup-method function, which returns
a method associated with a class and a selector, searches the superclasses when a method is
not defined for a selector and a class; an ambiguous selector error is signalled if there is more
than one superclass and they are associated with differing methods.

Current settings of the options are also kept in a global data structure. Each option is de-
clared as a dynamic Lisp variable, and a list of all options and their default values is kept in
an object. The #&name reader macro expands into a reference of the option named name.

Concurrent Smalltalk symbols are not accumulated in any data structure; however, when a
Lisp symbol is used as a Concurrent Smalltalk symbol, its cst-symbol property is set to the
Concurrent Smalltalk symbol object to ensure that that object is reused if the symbol is ref-
erenced again; otherwise, (eq ' sym ' sym) would be false according to the interpreter.
Number objects are not reused, so (eq 13 13) is false according to the interpreter1 , but
(clet ((x 13)) (eq x x)) is true.

1Nevertheless, compiled code will currently return t rue if eq is used to compare two equal integers. The action of
eq on numbers is purposely not defined in Concurrent Smalltalk to allow an implementation of a bignum package.
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3.2. Initial Phase

The initial phase of the compiler reads the Concurrent Smalltalk input and converts it into a
rough hcode form. Several early transformations have to be done on the resulting hcode be-
fore it becomes suitable for optimizations.

The most complicated early transformations create statically scoped functions. The initial
phase determines parameter interfaces for lexical variable displays [3] used by closures, and
it does a considerable amount of work to pick those interfaces well. Delaying this decision
would have made manipulation of functions in that stage very difficult; the advantages of
splitting nested functions into components early are that every function is self-contained and
completely owns its local variables--no other function can alter or examine the local vari-
ables.

Reader

A customized Common Lisp reader is used to read the Concurrent Smalltalk programs. The
customizations consist of using a special readtable and reading all Concurrent Smalltalk
names into the CST package. The readtable is used to implement the special characters in
the Concurrent Smalltalk syntax. Most special characters expand into lists; for example, ! a
expands into (! a). Some character tokens such as :, :, and , (comma) expand into sym-
bols with the same names.

The CST package is used to prevent conflicts between Concurrent Smalltalk symbols and any
symbols the compiler or the Common Lisp environment might be using. For instance, nil is
just the name of a constant (which happens to have the value ' nil) in Concurrent Smalltalk;
nil is not confused with the Lisp nil, which also represents an empty Lisp list. Since the
colon has a special readtable meaning in Concurrent Smalltalk mode, Concurrent Smalltalk
symbols are restricted to the CST package.

Read macros have been inserted into both the Common Lisp readtable and the Concurrent
Smalltalk one to facilitate easy switching between the two tables. The # $ macro in standard
Lisp input reads the next token in Concurrent Smalltalk mode, while #'^ can be used inside a
#S-expression to switch back to Lisp mode. In addition, the #L macro in Concurrent
Smalltalk mode reads a list expression and returns a two-element list with the symbol lisp as
its first element and the expression read as the second.

Parser

The parser parses the input expressions into a prototypical hcode form. The parser is a re-
cursive descent macro evaluator. Each primitive in Concurrent Smalltalk is implemented as
a macro. There are three main kinds of macros: normal macros substitute Concurrent
Smalltalk text with other literal Concurrent SmaIltalk text as described in Section A. 14, non-
terminal macros substitute Concurrent Smalltalk text with Concurrent Smalltalk text pro-
duced by a Lisp function, and terminal macros read Concurrent Smalltalk text and perform
an action such as emitting hcodes. Furthermore, macros can be restricted to evaluate at the
top level only.

The parser, when asked to parse an expression, compares it against macros in its macro list
in reverse chronological order until it finds a match; when a match occurs, the macro is ex-
panded as above. If the macro was not a terminal one, the resulting text is expanded again
until either no macro matches the text or a terminal macro is expanded. If no macro applies,
the text must be a symbol, which is looked up in the current lexical environment. If the sym-
bol is not found in the current environment, it is assumed to be an undefined global unless it
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happens to be one of the Concurrent Smalltalk primitive names or the warn-free-refer-
ences1 declaration is in effect, in which case an error or a warning is given.

Macro Implementation
Since the parser is an intensive user of macros, a fast implementation of macros is used to
make the parser in the compiler fast. Macros are stored in linked lists hashed by the first
non-variable symbol in the macro pattern; macros with no such symbols are stored in a sepa-
rate list. Thus, relatively few macros have to be examined for a given piece of Concurrent
Smalltalk text. Furthermore, the macros themselves are compiled Lisp functions that check
that their patterns are satisfied and, if so, compute the text replacement or perform their
terminal actions. Compiling macros avoids the costly interpreted unification step during pat-
tern matching. The make-macro-text function in the Environment file compiles a macro into a
Lisp function.

If a macro contains an @ directive in its pattern, the macro expander calls itself recursively
on the text matching the @ directive. In this case it does not allow terminal macro expansion
on that text.

Environments

While the parser is generating code, it frequently needs to determine the meanings of identi-
fiers. It uses linked environments to keep track of statically scoped identifiers such as the
names of local variables and continuations. The last local environment is linked to the global
environment to cause a search of the global and class environments when an identifier is not
defined locally. Optimist II distinguishes local variables according to whether they are eq to
each other or not. Thus, no alpha-renaming is necessary anywhere in the parser. Also, a
lambda may reference local variables it captured from an enclosing lambda. Since most of
the optimizations cannot handle externally visible local variables, such local variables are
"unshared" before the optimization pass is invoked.

Concurrent Smalltalk Runtime

Most of the Concurrent Smalltalk directives described in Appendix A are macros which ex-
pand into either other Concurrent Smalltalk primitives or hidden primitives. The Runtime
file contains a listing of all macros used by Concurrent Smalltalk.

Top-Level Primitives

Most Concurrent Smalltalk top-level primitives listed in Appendix A expand into the directive
hcodes and are evaluated at expression interpretation time. Directive hcodes may be inter-
preted but not compiled; to ensure that no directive will be compiled, directives are prohibited
inside lambdas (and, of course, any constructs which expand into lambdas). A few directives
such as include, top-level set, and def class 2 are evaluated by the reader; those directives
must be placed at the top level-they may not be nested in any expression except a top-level
begin, which evaluates its arguments sequentially at the top level.

Method-Lambdas

A method-lambda of a class c expands into a lambda with a formal seff of type c prepended to
the method-lambda's formals and a (_with-object (self:c) ...) form surrounding the body of the
lambda. The _with-object form establishes bindings in the parser's environment that associ-

'See Appendix B.2 Defcl ass isn't really evaluated by the reader; nevertheless, it must be a top-level form because it expands into a
top-level begin containing the internal class definition followed by definitions of accessor and predicate methods.
The internal class definition has to have been interpreted before the accessor method definitions are read; otherwise,
the reader will complain about an undefined class. Grouped forms not at the top level and not in a top-level beqi n
are read as a group and then interpreted as a group.
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ate names of c's instance variables to ivar-refs of the corresponding instance variables pointed
by the self object. The action of with-object is analogous to that of the symbol-macrolet con-
struct in CLOS [6].

Optimist II does not restrict a lambda to referencing only one instance object; in fact, through
inlining of method-lambdas or accessor methods, a lambda can reference many objects at the
same time. Objects may also be referenced through the use ofwith-object directly in Con-
current Smail!talk code, but this nractice is discouraged, as it uses a nonstandard feature of
the language and gains no real functionality.

Loops
Although Optimist II can optimize and output code with loops in it, loops are currently not
implemented this way. The problem is that a Concurrent Smalltalk function with a loop in it
might execute for a long time and not allow any other messages to be processed at its node.
To prevent this problem, loops are implemented as closures which pass themselves as argu-
ments---(while (< i 10) (set i (+ i 1)) expandsinto:

(clet ((_loop
(lambda ((_loop-arg:function &no-leak)):: (_while)

(if (< i 10)
(set i (+ i 1))
(return _while 'nil))

(_loop-arg))))
(-loop _loop))

The _loop function is called and passed itself as an argument. If i is less than 10, _loop
increments i and calls its argument tail-recursively; otherwise, it returns nil to the caller.
The tail-recursive call breaks the long invocation of the function.

The compiler is not yet sophisticated enough to detect that the value of the loop variable
never changes, so the _loop-arg argument to the internal function can be eliminated and
the function could call itself recursively directly.

Initial Transformations

Immediately after the hcode is created by the parser, a transformation and an optimization
are done on it. The first transformation flattens all exit hcodes out of every newly created
lambda. Exit hcodes are generated by the exit Concurrent Smalltalk primitive, which may
also be a result of the expansion of a return statement. Each exit hcode in the lambda is
removed and the preceding statement linked to the digraph's root dinode to indicate that the
execution of the lambda should terminate at that point. Sometimes exit hcodes can be found
nested inside nconcurrently hcodes; if that is the case, the exit flattener moves as many of the
nconcurrently's threads outside as it needs to remove all exit hcodes from the nconcurrently.
Then it flattens the exits as usual. An example is shown in Figure 3-2.

Simple structural optimizations are done immediately after the exits are flattened. These
optimizations do not depend on dataflow analysis and can, therefore, be done before lexical
variables are untangled. The optimizations consist of the following transformations:

"* If statements with identical consequents and alternatives are deleted.

"* If statements conditioned on constants are deleted, and resulting dead code, if any, elimi-
nated.

"* Move statements with identical sources and destinations are deleted.

"• Assert-type statements on constants are checked and deleted. The compiler generates an
error if an assertion fails.
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Root Move if

RootRMove AppAppl

(a) Exit

Figure 3-2. Exit Flattening Example
Exit statements are inserted by the parser in all places in which the execution of a lambda should terminate. As
the first transformation, those exit statements are removed and replaced with links back to the root of a digraph.
For example, part (a) shows the main body of a lambda with two sub-digraphs that are the threads of a nconcur-
rently. After exit removal (b), all exit paths are linked back to the root of the main body of the lambda, whidh also
required the inliing of one of the nconcurrently's threads.

* Touch and force statements on constants are deleted.

* Empty nconcurrently statements are deleted.

* One-thread nconcurrently statements are replaced by their threads.

The structural optimizations are done for two reasons: First, structural optimizations
shorten the hcode, using less memory in the later compiler stages and making them run
faster. Second, structural optimizations may remove some variable references, improving the
quality of the code produced by lambda-collapsing and] the nconcurrently flattener in the op-
timization phase.
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Lambda-Collapsing

Lambda-collapsing is the process of unnesting nested lambdas. After lambda-collapsing,
each lambda has exclusive access to its local variables. Lambda-collapsing becomes difficult
when the inner lambdas reference the outer lambdas' local variables and continuations.
Since continuations are restricted local variables, they will not be discussed here further.
14imbda-collapsing occupies nmost of the Preoptimizer file. Since lambda-collapsing is a com-
plex process, an illustrative example is provided at the end of this section.

The lambda-collapser (the assign-lexicals Lisp function) examines each outermost lambda in
the hcode produced by the initial transformations. For each outermost lambda L it looks at
the lambdas N1, N2, ..., Nk nested in L and their free variables. Each nested lambda Ni is
considered to also include any lambdas nested in it. Thus, if, say, N2 contains a lambda N2, 1
that references a variable x that is not defined in N2.1 or N2, then x is a free variable of both
N2,1 and N2. If a nested lambda Ni does not reference any free variables, it is a self-contained
lambda and a first-class data object and does not present any difficulties here. Otherwise, Ni
is the code portion of a closure.

The lambda-collapser first calculates the sets of free variables read and written by Ni. Next,
the lambda-collapser considers each local variable xj of L. A local xj is called a mutable lexical
if it is either (1) written by any Ni or (2) read by any closure Ni and written by L after the clo-
sure Ni has been created by L and before the closure was called for the last time. Mutable
lexicals of the first kind are easy to determine by scanning every Ni and checking which free
variables are written in any hcode in it. To determine mutable lexicals of the second kind,
the lambda-collapser solves a few dataflow problems on L. In effect, to each variable xi in L,
it assigns a state machine Si (Figure 3-3) and uses the dataflow problem solver to run Si
through all possible control paths in L. IfSi ever enters state 4, xi is a mutable lexical of the
second kind. The state machine assumes that any local variable xj that is modified after the
creation of a live' closure which reads xj is a mutable lexical. Since the compiler cannot cur-
rently determine when a lambda finishes executing, it cannot optimize local variables that
are modified by L only after the closures have completed execution.

Initial State Variable Modified
0

Closure Made

Closure Exists Closure Called p Closure Called

1 2

Variable Modified Variable Modified

Variable Closure Called ariable must Closure Called or
Modified3 L Mutable Variable Modified

3 4Q

Figure 3-3. Lexical Variable State Machine
Each local variable starts in state 0 at the beginning of the lambda. For each local variable every possible path of
control flow is traversed and a state updated as above. If the variable ever enters state 4, it must be a mutable
lexical of the second kind-the variable's value cannot be saved with the closure when the closure is made.

'If the closure is not called, it is not a live closure, and the variable is not necessarily a mutable lexical.
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Any variable that is free in one of the lambdas Ni and is not a mutable lexical is an im-
mutable lexical. Once all of the free variables in the sublambdas of L have been classified,
the lambdas are separated.

Each sublambda Ni of L that has free variables is assigned a number of display parameters in
addition to the normal parameters it has. The values of the display parameters are deter-
mined at the time a closure of Ni is created. Immutable lexicals are stored directly in the dis-
play, while mutable lexicais are stored in an vbject whose pointer is passed in the display.
More than one such object may be present if Ni uses mutable lexicals from several levels of
enclosing lambdas.

Once the display parameters are assigned to the sublambdas, the code of L is modified to
store the display parameters into a closure whenever one is created, and the Ni's are modified
to use the display parameters instead of referencing L's locals directly. If L has any mutable
lexicals, it creates an object containing them upon entry and treats mutable lexicals as if they
were instance variables of that object; any mutable lexicals that are also parameters of L are
copied into that object as soon as it is created. The object containing m'intable lexicals is itself
mutable, so only one copy of it per invocation of L can be present on the J-Machine. The ob-
ject is not disposed because Optimist II cannot determine the temporal lifetime of a closure;
the object and the closures have to be garbage-collected.

After the above transformation, L has exclusive access to its locals. Since some of the Ni's
could themselves have locals used by their sublambdas, the lambda-collapser calls itself re-
cursively on every lambda and closure -ontained in L, even if that lambda did not have any
external free variables.

Efficiency Considerations

There are several advantages for using immutable lexicals instead of mutable lexicals:

* Immutable lexicals are stored directly in a closure's display, so the closure has immediate
access to their values.

* Closures are immutable objects. If many closures are executing simultaneously, many
copies of the closures and their immutable lexicals can be made. On the other hand, if many
copies of a closure with a mutable lexical are executing, the copies will be contending for the
single object containing that lexical's current value.

0 The outer lambda can store immutable lexicals in its context or in registers, while it has
to allocate an object for mutable lexicals and keep their values there.

In order to ensure that lexically scoped variables are immutable lexicals, the programmer
should check that their values are not altered after any closures which might reference them
are created.

Example

Consider the following code:
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(defun outer (x)
(clet ((y 3)

(z 4)
(t M))

(clet ((innerl
(lambda ()

((lambda () (cset x z))) ;innerll
(write x y)))

(inner2
(lambda ()

(write y)))
(inner3

(lambda (a)
(write a))))

(if (zero? x)
(innerl)
(cset x 5))

(cset z 3)
(inner 2)
(write x y z t))))

The lambda-collapser first determines that the outer lambda has no free variables, so it is
made into a normal function instead of a closure. Next it examines the three sublambdas
within outer: inneri, inner2, and inner3. Innerl will become a closure because it has three free
variables, x, y and z. It writes to x, so x becomes a mutable lexical; although innerl does not
write to y and z, another lambda might, so y's and z's statuses are unknown. Inner2 will also
become a closure because it has one free variable, y, whose status is still unknown. Since in-
ner3 has no free variables, it becomes a normal function.

Next the lambda-collapser runs the state machines on the x, y, and z locals in outer; outer
also has other locals such as t, inner1, inner2, and inner3, but those are not referenced by any
inner lambdas. X is already known to be a mutable lexical of the first kind. Y is not written
anywhere after innerl and inner2 are created, so it is an immutable lexical. Z is written after
the inner1 closure is created, and the compiler makes it a mutable lexical of the second kind.
Unfortunately, the compiler does not realize that z is altered only after innerl finishes c e-
cuting; if it were smarter, it could have made z an immutable lexical. Finally, the lambda-
collapser creates the displays and alters the code of the lambdas to produce a parameter-
passing pattern shown in Table 3-6.

Table 3-6. Lambda-Collapser Example Results

Name Outer j Inner1 Inner 1 Inner2 lnner3
Parameters x (copied into a

lexical-object)
Returns continuation-O continuation-1 continuation-2 continuation-3 continuation-4
Display lexical-object lexical-object y

Y
Locals y a

t
inner1
inner2
inner3

__________ lexical-object I_______ I _______ ________ ______

lexical-obeect

Instance Variables 
xZ
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Top-Level Evaluator

Lambda-collapsing was the last preliminary hcode transformation. At this point the hcode is
in a format understood by the interpreter. If it found no syntax errors, Optimist II now eval-
uates the Concurrent Smalltalk expression it just read by running the expression's hcodes
through the hcode interpreter. If the expression contained any directives, the interpreter ex-
ecutes them at this time.

Interpreter

The interpreter is a simple hcode interpreter for executing Concurrent Smalltalk programs.
The interpreter is completely sequential. Except for full futures and some unimplemented
input/output facilities, the interpreter is a valid Concurrent Smalltalk implementation-the
Concurrent Smalltalk definition allows cfutures to be touched at the implementation's dis-
cretion, so a completely sequential Concurrent Smalltalk interpreter trivially "touches" each
cfuture as soon as it is created. While the interpreter never achieves any parallelism, it
couldn't use parallelism if it had any because it is running on a sequential computer.

The interpreter in Optimist II was provided for three reasons:

* It is a powerful constant expression evaluator for expressions encountered while compil-
ing Concurrent Smalltalk programs.

* It is the most interactive Concurrent Smalltalk environment, allowing methods and func-
tions to be changed almost instantly.

* It permits debugging of Concurrent Smalltalk programs before they are compiled into
MDP assembly language.

* It maintains the Concurrent Smalltalk global environment and permits interactive exam-
ination of that environment.

Currently the interpreter can only interpret unoptimized hcode; however, a bypass hcode
path could be added to transfer optimized hcode back to the interpreter. This bypass is not
quite as simple as it sounds because the format of continuations changes during optimiza-
tion.
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3.3. Optimization

As long as no MDP code output is desired, Optimist II does not leave its first phase. Only
when a compile command is issued does Optimist II enter its second phase, its first goal be-
ing to determine just what it should compile. Every compile command requires a root set of
objects that should be compiled. The compiler uses the treewalker to automatically deter-
mine the minimum amount of code that has to be compiled and loaded in order to permit
running the functions in the root set on the J-Machine.

Treewalker

The root set specified in the compile command is passed to the treewalker, which appends it
to its own permanent root set of objects which must always be compiled (Table 3-7). The
treewalker then calls the optimizer on each code object in its set and scans the optimized
hcode (if the object is not code, the treewalker scans it directly). If, while scanning, it en-
counters an object not in its current set of objects, it adds that object to its set, optimizes it if
necessary, and scans it. The process continues until every object referenced by any object in
the treewalker's set is also in that set. At that point the second phase of the compiler has
completed and the treewalker calls the compiler's third stage to compile and assemble each
object in the set and print the resulting MDPSim code into a text file.

Table 3-7. Permanent Root Objects

closure boolean character #:class context
-i:continuation displacement distobj distributed-class #:false
float funct function global integer
magnitude null number object primitive-class
real selector standard-class symbol #:true

These objects are emitted in the output assembly file regardless of which objects were compiled. _closure,
context, displacement, #:continuation, and global are internal Optimist l classes.

Calling the Optimizer

The optimizer is called simply by requesting the value of the hcode or mdp-hcode CLOS slot
in a Concurrent Smalltalk lambda (cst-ambda). If the lambda has already been optimized,
these slots contain the optimized hcode and hcode optimized for the MDP, respectively. If
not, those slots are unbound, and CLOS calls the optimizer to calculate their values. Thus, a
lambda's optimized hcode can be requested repeatedly by the treewalker or the optimizer
without a performance penalty. To prevent infinite loops, a semaphore keeps a function op-
timizing a lambda from requesting that lambda's optimized hcode. One of the consequences
of this rule is that a function may not be inlined inside itself.

Guide to Optimizations

The transformations done by the optimizer are summarized in Figure 3-4. The transforma-
tions can be divided roughly into two classes: general hcode optimizations and MDP-specific
optimizations and transformations. The general optimizations occupying the first half of the
optimizer produce optimized hcode. If MDP assembly code output is desired, the second half
of the optimizer is invoked to convert a number of hcode constructs into simpler, MDP-spe-
cific ones. For example, the second half of the optimizer converts globals into references to
global objects, CAS built-ins into code that explicitly compares and sets values, and three-ar-
gument sums into two two-argument sums. The order of optimization is critical; expansion
of CASes into compare-and-set code could not have been done in the first half of the optimizer
because there was no way to assure its atomicity.
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Figure 3-4. Optimizer Organization
The first few filters convert the hcode produced by the initial phase into a format usable by the optimizer. The it-
erative optimizer and function inliner perform the major optimizations. The remaining filters implement some Con-
current Smalltalk features out of more basic ones and fix a lew quirks in the Cosmos and MDP architectures.
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The transformations new in Optimist II will be described in the order in which they are per-
formed. The following optimizations will not be described here because they were present in
Optimist and their concepts have not changed significantly:

"* Dead Definition Eliminator

"* Move eliminator

"* Touch eliminator

"• Tail forwarder

"* Fork merger

"• Join merger

Also, the structural optimizer was used in the first phase of the compiler and is described
there.

Preparatory Transformations

Lambda Copier and Structural Optimizer

Before optimizing a lambda, the optimizer first makes a copy of it to avoid destroying the
copy used by the global environment and the interpreter. While copying the lambda, the op-
timizer assigns consecutive indices to the lambda's local variables. These indices will allow
the use of fast bitmaps to represent local variable data during later dataflow analysis rou-
tines.

At this stage the optimizer replaces all references to parameters' with their values. Once the
compilation process has begun, values of parameters cannot change, and replacing pa-
rameters with constants as early as possible enables early constant folding and dead code
elimination. Parameters are usually used to hold global functions and compiler conditionals
such as a debugging flag. Debugging code can be compiled conditionally by enclosing it
within an if statement conditioned on a debug parameter. If debug is false, the code and the
if statement are removed by the structural optimizer immediately following the copier; the
remaining optimizations don't even see that code. Dead code is best removed early because
removing it enlarges basic blocks, permits additional function inlining, and improves the per-
formance of the dataflow optimizer and tail forwarder. It is unfortunate that conditional de-
bugging code cannot be removed before lambda collapsing, but doing that would prevent
changes in the debug parameter from having any effect un existing code.

The structural optimizer cleans the code to give the nconcurrently flattener maximum lati-
tude in scheduling nconcurrently hcodes.

Nconcurrently Flattener

The nconcurrently flattener remoes nconcurrently hcodes from the lambda being optimized.
Later optimizations run many dftaflow calculations on the lambda, and the presence of
nconcurrentlys would complicate dataflow analysis and make some optimizations less effec-
tive. In the interest of compiler simplicity I decided to remove nconcurrentlys at this stage.

The nconcurrently flattener uses a heuristic to interleave the nconcurrentlys it is flattening.
If it finds a nconcurrently statement with more than one thread, it first calls itself recursively
on each thread and then separates each thread into a leading and a trailing set of state-
ments. A thread's trailing set of statements contains the longest string of consecutive hcodes
at the end of the thread which are not considered worth advancing relative to other hcodes in
the lambda. The trailing set cannot contain any forks or joins of flow-of-control paths. All

'In this paragraph parameters means parameter globals defined in Section A.3, not function parameters.
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other statements in the thread are placed in the thread's leading set. Once the nconcurrently
flattener separates each thread into the two sets, it replaces the nconcurrently hcode with all
leading sets concatenated together followed by all trailing sets concatenated together.

Hcodes worth advancing are non-built-in function and method calls and any hcodes which re-
turn values through continuations; all other hcodes are not considered worth advancing.
Hcodes not worth advancing are pushed as far back as possible by the nconcurrently flat-
tener, which displaces hcodes worth advancing forward.

The nconcurrently flattener could use more complicated heuristics to increase parallelism.
For example, it could realize that no matter how it orders function calls in statements such
as (f (a (b 1)) (c (d 2) ) ), there would remain a possibility of a loss of concurrency
caused by touching the intermediate results (b 1) and (d 2) in the wrong order. Hence, it
could split the calculation of, say, (a (b 1) ) into a separate function call to avoid a poten-
tial loss of concurrency. Nevertheless, the nconcurrently flattener's current heuristic seems
adequate.

Continuation Expander
The continuation expander is the one MDP-specific transformation that is done early. So far
in the compiler, continuations have been represented as single words, while on an MDP a
continuation is two words-the context to which the continuation is pointing and an offset of
a slot within the context where the return value should be stored. I originally planned to
implement continuations as a special case of inline objects, but writing a general implemen-
tation of inlined objects would have been too time-consuming and inappropriate for an initial
version of the compiler. Hence, I included a partial implementation of inline objects that
only inlines continuations.

The continuation expander expands each local variable of type continuation into two vari-
ables, one of type context and the other of type displacement. Similarly, each formal and
dis;.ay parameter typed continuation is made to correspond to two local variables. A
move hcode moving a continuation is changed into two moves, while an application hcode calls
its function with both new locals as arguments.

Changing structures of instance objects and global variables containing continuations is hard
at this stage of compilation, so to avoid this problem continuations have not been made first-
class objects-there is no way to store ý4 continuation in an instance variable of an object;
disallowing programmer-visible continuation local variables ensures that no continuation be-
comes a mutable lexical which would get stored in an instance object.

Iterative Optimizations

The iterative optimizations perform general dataflow and constant propagation optimiza-
tions. They are called in a loop until none of them changes the lambda. All of the optimiza-
tions were altered in some way since Optimist; most had to be updated to handle multiple re-
turn values and typed variables, and some were changed because reply is no longer an ex-
plicit hccde. However, only the new features will be described below.

Type Specializer

Local variables in Optimist II are associated with types in two ways:

1. The variable itself has a type supplied by the programmer when the variable is declared.
This type applies throughout the variable's lifetime.

2. The programmer can declare types through the use of the type assertion primitive
(Section A.6), or the compiler can infer from its knowledge about the types of function and
method arguments and results that a variable has a particular type at a given point in the
lambda. These type assertions apply only to a particular point in the variable's lifetime.
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Each type asserted in this manner must have a non-null intersection with the variable's type;
otherwise, no legal value could be stored in the variable and Optimist II generates an error.

The type specializer examines each variable and calculates the lub of the types it can assume
throughout its lifetime, combining all the knowledge it has from assertions of the second
kind. It then intersects the variable's type with the lub and makes that the variable's new,
more restricted type.

Type specialization is done to improve the quality of the move elimination optimization and
to permit inlining of values in the future. When the move eliminator merges two variables, it
sets the new variable's type to the lub of the variables' types. The temporaries created by
other optimizations often have type object even though they can contain only more re-
stricted values, and if one of them were merged into an existing variable, that variable's type
would also become object unless the temporary's type were specialized first by the type spe-
cializer. When Optimist II supports inline classes in the future, type specialization of a vari-
able to an inlineable class will permit some objects such as double-precision floating point
numbers and locks to be inlined in local variables.

Dataflow Optimizer

The dataflow optimizer has an extra optimization in addition to those mentioned in [21]. The
dataflow optimizer always checked whether an if statement would always branch one way
and eliminated the if statement and the dead branch if that is the case. In addition to that
check, if the if statement has several predecessors, the dataflow optimizer now checks each
one separately whether it would cause the if statement to always branch one way; if so, that
predecessor is connected directly to one of the if statement's branches. This situation arises
often when sc-and and sc-or are used. A code fragment like the one below is generated for
(if (sc-and a b) (f)):

(IF :FALSE (LOCAL CST::A) 2246)
(MOVE (LOCAL 387) (LOCAL CST::B))
(JUMP 2248)
(LABEL 2246)
(MOVE (LOCAL 387) #<False>)
(LABEL 2248)
(IF :FALSE (LOCAL 387) 2252)
(APPLY NIL (#<Lambda CST::F>))
(LABEL 2252)

It is optimized to:

(IF :FALSE (LOCAL CST::A) 2252)
(IF :FALSE (LOCAL CST::B) 2252)
(APPLY NIL (#<Lambda CST::F>))
(LABEL 2252)

Constant Folder

The constant folder performs two duties: it evaluates constant expressions and replaces
method calls with function calls. The constant folder examines each application statement in
the lambda. If the arguments are all values, the function or method to be invoked is side-ef-
fect-free, and the precise mode is off', the constant folder calls the interpreter to evaluate the
function or method call and replace it with move statements of the results to the application's
targets. If the interpreter generates an error, the compiler aborts the compilation; the error
is not hidden until runtime. The call could potentially invoke many functions and methods.

One has to be a little careful with this optimization-if all inputs to a program are specified,
Optimist II is perfectly willing to precalculate the program's results and compile the entire
program to a single function that returns the answer. This will happen often on benchmarks,

'See Appendix B.
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especially when Optimist II learns how to automatically determine which functions are side-
effect-free; currently it assumes that a function is not side-effect-free unless explicitly de-
clared so by the programmer.

In addition to evaluating applications with all arguments specified, the constant folder also
simplifies built-in operations such as arithmetic and logical primitives according to the iden-
tity rules listed in Table A-4.

When the constant folder encounters a method call, it looks in the selector's table of methods
and selects all methods which match the number and types of arguments provided. The ar-
guments' types are determined by dataflow analysis of the same information as is used by
the type specializer. If no methods match, the constant folder signals an error. If exactly one
method matches, the constant folder replaces the method dispatch with a direct call of the
method's code, which may even be inlined later. If two methods match, the constant folder
uses a heuristic to determine whether it is better to do a standard method dispatch or to get
the type of the first argument and call one of the two methods depending on that type.

The heuristic is as follows: The classes of the first arguments accepted by the two methods
are determined. If the two classes are disjoint, the constant folder picks the class that is
easier to check'. If one is a subclass of the other, the constant folder picks the subclass;
otherwise, the constant folder gives up and does not optimize. If the picked class is easier to
check than doing a method dispatch, the constant folder replaces the application with a call
to the class's predicate followed by an if statement with direct calls to the two methods on the
two sides of the conditional.

Function Inlining

Functions are inlined after all iterative optimizations have been performed and can yield no
more improvements. To inline functions, the function inliner considers each function call2 in
the lambda. If the function is not a built-in and is declared inlineable, the function inliner
attempts to inline it; however, there is no a priori guarantee that it will succeed. A function
is considered inlineable if it is either declared inline by the user or heuristically inlineable
and not declared not-inline by the user. To be heuristically inlineable, a function has to be
small-its optimized hcode can contain no more than two full-fledged function or method
calls and no more than twelve built-in calls. A point system is used to determine a function's
"size;" the threshold can be varied by adjusting the inline-size-cutoff option.

Furthermore, to prevent object thrashing on the J-Machine, a function is heuristically unin-
lineable if it references an instance variable of an object passed as its first argument if the
caller of that function does not pass its first argument through as the first argument of the
function. To see an example of this rule, consider the function sum4 in:

(defclass pair () car cdr)
(defun sum4 (p:pair q:pair) (+ (car p) (car q) (cdr p) (cdr q))

The car and cdr accessor methods are well under the size threshold. However, only the
(car p) and (cdr p) calls are inlined- (car q) and (cdr q) are not because the calling

function sum4 does not pass its first argument p as car's or cdr's first argument. There is
no problem with inlining (car p) and (cdr p) into direct accesses of p's instance variables
because sum4 is executed on the same node on which p resides. However, if sum4 were to
reference q's instance variables directly, it would force q to travel to the same node on which
p resides, thrashing q. Instead, sum4 calls (car q) and (cdr q) in the usual manner, and

'Each class has an integer that specifies how easy it is to test an arbitrary object for membership in that class. If
that integer is zero, doing this check is no easier than doing a method dispatch; if that integer is a high positive
value such as six or seven, this test can be done in one or two assembly language instructions. Built-in classes such
as boolean or nul I allow easy membership checking, while user-defined classes do not.
2Method calls cannot be inlined unless they were previously converted into function calls by the Constant Folder.
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the car and cdr methods are executed on q's node and return their results to sum4 running
on p's node.

The function inliner tries to avoid forcing objects to migrate whenever possible. This is not
necessarily the optimal strategy-in some cases it might be better to migrate an object to a
method that accesses it frequently-but the desirability of migrating the object is difficult to
determine by the compiler because it depends on the frequency of the object's use by other
processes in the system. Thus, the simple solution of minimizing object migration was taken;
in the cases outlined above, a method that makes numerous distant object accesses can usu-
ally be rewritten as several communicating methods which only access local objects.

Once the function inliner decides whether it would like to inline a function, it attempts to in-
line the function's optimized hcode. Nevertheless, it might still encounter difficulties if the
inlined function performs nontrivial processing after it returns its result. For example, con-
sider the functions silly-add, shelll, and shell2:

(defun silly-add (x y)
(reply (+ x y))
(prove-fermat s-last-theorem)
(exit))

(defun shelli (x y)
(cset ((z (silly-add x y)))

(+ z 5)))

(defun shell2 (x y)
(silly-add (+ x 5) y))

If the function inliner were to inline silly-add in shelll, it might convert a terminating
program into a nonterminating one (assuming prove-fermats-last-theorem does not
terminate in any reasonable amount of time in this example) because shelll would try to
execute all of silly-add before continuing with the addition of 5 to z. Thus, the function
inliner should not inline any function that performs nontrivial processing after it replies to
its caller. On the other hand, there is nothing wrong with inlining silly-add in shell2 as
long as shell2 is tail-forwarded because shell2 would still return the sum to its caller be-
fore trying to prove Fermat's last theorem. Other interesting scenarios with callers and
callees accessing the same lock are also possible.

The general rule for determining whether it is safe to inline a function is as follows: inlining
is safe unless the inlined function performs nontrivial processing after replying to the caller
all return values that the caller is not tail-forwarding. It does not matter if or when the in-
lined function replies to any other functions in whose lexical environment it might be; i.e.
non-local lexical returns by the inlined function are fine as long as they don't transfer control
to the caller1 .

After copying the inlined function, the function inliner implements the above rule. It runs a
dataflow analysis on the continuation local variables in the inlined function to determine
where each continuation reference can return its value; if it has any problems with perform-
ing this analysis, it does not inline the function. Next, the function inminer uses the dataflow
problem solver again to verify that no statement that returns a value to the caller is followed
by any statement that might not terminate.

Once all of these conditions are satisfied, the function inliner splices the inlined function's
code and local variables into the caller. Then it introduces move statements to move the
caller's arguments to the appropriate locals in the callee. If the callee wasn't non-strict, each
argument is touched as it is moved. Also, the statements returning values from the callee to
the caller are modified to store the values in more temporaries, which are moved to their
proper destinations after the spliced callee's code. Needless to say, the move eliminator will

'However, for simplicity Optimist II does not inline closure calls.
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have a lot of work cleaning up the extra moves just introduced, but they are necessary to
make sure that functions are inlined correctly in all cases.

To make sure that the compiler terminates, it does only one pass of function inlining for each
lambda; otherwise, it could peel invocations of recursive functions forever. However, the sin-
gle pass of inlining does not mean that functions are only inlined one level deep; on the con-
trary, the callees are themselves fully optimized before being considered for inlining, and in
the process of being optimized they may let other functions be inlined into them. It is true,
though, that the treewalker's antirecursion rules prevent a function from being inlined into
itself.

Once all potential functions are inlined, Optimist II performs another pass of iterative opti-
mizations to clean up and optimize the code introduced by the inlining process.

Cleanup Transformations

Just one final cleanup transformation is done on hcode. The preceding optimizations gener-
ated a number of local variables in the lambda, many of which are no longer used. The local
eliminator removes all unused locals and renumbers the remaining locals to fill the gaps.
This simple transformation has no effect on the code generated by the compiler because Op-
timist II's third phase will compact the locals anyway. The local eliminator is present solely
for aesthetic and compilation speed reasons-hcode is less readable if it has many unused lo-
cal variables. Also, since variable bitmaps are represented as integers, the dataflow code
runs much faster if no more than about thirty variables are present so Lisp can use fixnums
instead of bignums.

MDP-Specific Transformations

A number of MDP-specific transformations have to be done on hcode before MDP assembly
code can be generated. These transformations and optimizations are sketched below and are
listed in the Postoptimizer file.

Global Expander

The global expander implements global variables as instances of the global class. Each ref-
erence to a global variable is replaced with a reference to a global instance object's
global-value slot'. The global instance object itself is a mutable immediate object; its ID
and initial value are known to the compiler, so the instance object can be referenced by any
lambda without having to access another global.

Addressing Mode Flattener

The addressing mode flattener flattens nested hcode Ivalue and rvalue expressions 2 because
the assembly language compiler can only compile one-level expressions. Whenever the ad-
dressing mode flattener finds a nested Ivalue or rvalue expression, it unnests it and precedes
the hcode containing it with other hcodes that calculate the expression's components and
store them in local variables.

Statement Splitter
The statement splitter is the first of two MDP built-in optimization filters. This filer con-
verts associative built-ins such as + and and with more than two arguments into chains of
two-argument built-in calls, removes type-assertion statements which are no longer needed,

'The global class name and accessors to its g lIcba I-va. Lie slot are all undef'd just after they are created, so they
cannot be referenced by user Concurrent Smalltalk programs, and no name conflicts can result.
2See Tables 5-3 and 5-4.
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and expands many primitives and hcodes such as cas, make-closure and force into their
components.

Built-in Optimizer

The second MDP built-in optimization filter is the built-in optimizer. This optimizer reduces
the strength of some built-in operations such as multiplication and division by converting
them into logical shifts using the identities in Table A-4.

The built-in optimizer is followed by another call to the touch eliminator, which is able to
eliminate more touches than it could previously. At this point the touch eliminator can de-
pend on built-ins not being optimized out, so it can remove touches of values which are sub-
sequently used by built-ins. For example, if a touch of a is immediately followed by an appli-
cation of + to a and b, the touch can be eliminated; it could not have been eliminated before
because the + might have been eliminated or another statement inserted between the touch
and +.

Instance Variable Target Transformer

This transformation and the following two correct quirks in the MDP and Cosmos architec-
tures. One restriction of the Cosmos design is that the targets of full-fledged applications can
only be local variables in the context; applications other than built-ins cannot store their re-
sults directly into instance variables or into locals in places other than the context. The in-
stance variable target transformer scans for application statements that store their results in
instance variables and modifies them to store the results in local variables and then move
them into the instance variables.

Grab Introducer
The grab introducer generalizes the instance object access mechanism in Optimist. While
Optimist could access at most one instance object in a lambda, Optimist II can access many.
Unfortunately, there is only one MDP address register, ID2, assigned to holding pointers to
instance objects. Hence, before every statement s that might access an instance object, the
grab introducer checks the value of ID2 left from the previous statement; if that value is in-
correct, the grab introducer inserts a grab statement just before S to put the right object into
ID2. If s accesses many instance objects, the grab introducer inserts moves and uses other
statement-specific techniques to make s access only one instance object; doing this well can
become quite an involved process for some hcodes.

The grab introducer also generalizes the instance object part of the Context Optimization
transformation found in Optimist-if an instance object is not referenced, there is no need to
point ID2 to it and possibly force it to migrate.

Cfuture Parameter Eliminator

The cfuture parameter eliminator complements the instance variable target transformer by
eliminating application statements that store their results back in a lambda's parameters.
Unlike Optimist, Optimist II allows function and methods to use their parameters just like
any other local variables, and, in particular, write into them. However, the operating system
does not support cfutures in a function's parameter area. Hence, if the cfuture parameter
eliminator finds a parameter p used as a target of a full-fledged application, it creates a new
local variable I, emits a move to copy p into I upon entry to the function, and substitutes I for
every use of p in the function.

Enter/Exit Introducer

The last two filters are another call to the local eliminator and the introduction of enter and
exit hcodes at the beginning and end of the lambda, respectively. The compiler will compile
these hcodes to the entry and cleanup code for the lambda.
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3.4. Code Generation
The third phase of Optimist II contains the hcode compiler, assembly optimizer, and assem-
bler. The hcode compiler compiles hcode into an assembly language module, which is a di-
graph of assembly language statements. The assembler and the assembly optimizer then in-
sert branches into the module and perform peep-hole optimizations on it. Since the hcode
compiler, assembly optimizer, and assembler were all present in Optimist, only the differ-
ences will be described here.

New Hcode Compiler Features

The hcode compiler has been updated for CLOS, the new Concurrent Smalltalk, and the new
Architecture version 11B. Major Concurrent Smalltalk changes affecting the compiler in-
clude introduction of multiple values to application statements and the introduction of many
built-ins which compile into MDP system calls or sequences of MDP instructions. Built-ins
for even such low-level facilities such as reading or checking tags were provided, and are ac-
cessed by the Concurrent Smalltalk runtime system.

The context and variable allocation schemes have changed somewhat. Optimist's graph-col-
orer for allocating context local variables worked well and has been extended to also allow
slots in the message to be reused as local variables; thus the slots in the incoming message
and the slots in the context form a pool of slots to which the compiler can allocate local vari-
ables at will. The only restriction imposed by Cosmos is that local variables which might
contain cfutures cannot be assigned to incoming message slots.

Unlike JOSS, Cosmos fixes the locations of the saved registers in the context. If a function
would need more slots than the fourteen provided in a standard context, Optimist II assigns
the extra locals to slots after the saved register area in the context', up to a limit of 53 total
slots; the MDP cannot readily address more than 64 words in an object, and 11 are used for
overhead. If a large context is needed, Optimist II emits code to create it when the function
starts execution and dispose it when it is done.

One architectural change had considerable impact on all stages in the third phase. Architec-
ture 11B allows long immediate constants and long displacement into objects on most two-
operand instructions but not three-operand ones. Optimist II takes advantage of these oper-
ations whenever possible, but handling the worst case possibilities is now more complicated.
For example, it is no longer true that an ADD instruction allows the same addressing modes
as a NEG.

New Assembler Features

The assembler has been upgraded to output many kinds of objects instead ofjust code. When
it encounters the use of a pointer to an object inside another object, it outputs an MDPSim
reference to the pointed object. MDPSim resolves all of these references when it downloads
the objects to its simulated J-Machine.

Global Compilation
Unlike Optimist, which compiled isolated modules, Optimist II compiles entire programs.
Hence, it has the additional duty of emitting the "glue" that holds programs together. In par-
ticular, it emits class definitions, method tables, data objects, and code objects. It emits all
class definitions first because they are needed to load other objects. The order of the other

'See Figure 4-9.
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objects does not matter because MDPSim can resolve references in any order. .After emitting
objects, Optimist II emits code that automatically downloads the objects into the J-Machine.

Identifiers

Since MDPSim currently allows only alphanumeric characters and underscores in its identi-
fiers, Optimist II converts any identifier characters outside that set into strings of characters
in that set. Next, Optimist II prepends the kind of identifier to each identifier it emits. The
kinds are listed in Table 3-8. Finally, Optimist II checks whether another identifier with the
same name has been emitted. If so, and if the other identifier is not eq to the current one,
Optimist II disambiguates the current identifier by appending two underscores and a num-
ber to it. This transformation is necessary because sometimes many anonymous functions
are generated.

Table 3-8. Identifier Prefixes

Kind Prefix

Class c
Selector sel
Symbol sym
Function f
Other Object o

IDs

To allow downloading of circular data structures, Optimist II assigns IDs to all objects it
emits. In order to do this assignment, it has to know how many nodes there are in the J-Ma-
chine for which it is compiling. This number is provided in the n-nodes Optimist II option.

Optimist II uses increasing positive integers to generate serial numbers for classes, selectors,
and symbols. Functiors and other objects are assigned IDs starting with the serial number
$7FFF and decreasing to avoid conflicts with serial numbers generated by Cosmos, which
start at $0000 and increase. Optimist II tries to distribute the objects it creates evenly
throughout the MDPs in the J-Machine.

Method Tables

The Optimist Ir's assembler generates a method table which associate methods with classes
and selectors. The method table is distributed among the class and selector objects loaded
into MDPSim. Each selector (Figure 4-17) contains a list of class/method pairs that describe
all methods defined for that selector. In addition, each class object (Figure 4-13) contains an
ordered list of the class's ancestors.

Together, the two objects contain enough information to deduce the method associated with a
class and selector: first the class is looked up in the selector's list of class/method pairs; if it
is not found, the ancestor classes are looked up, one by one, in that list. Either a binding is
found, in which case the binding contains the desired method, or no binding is found, in
which case there is no method associated with the given class and selector.

Data Formats

The formats of built-in objects emitted by Optimist II are described in more detail in the next
chapter. Primitive objects are listed in Figure 4-2, instance objects of user-defined classes
are shown in Figure 4-4, and functions are shown in Figure 4-20 and closures in Figure 4-22.
Optimist II cannot emit immediate distributed objects, but they can be created at runtime.
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3.5. Conclusion
The main goal of writing Optimist II was to bridge the gap between Concurrent Smalltalk
and the J-Machine. Optimist II is the first compiler that can compile a Concurrent Smalltalk
program into code that can be run on a J-Machine without any changes. Unlike Optimist,
which compiled only modules, Optimist II compiles entire programs, including the class hier-
archy, method tables, functions, and immediate objects. Furthermore, Optimist II supports a
much larger subset of Concurrent Smalltalk than Optimist. Optimist II supports the entire
language except for full futures and I/O facilities.

Observations

The global optimizations included in Optimist II are very useful, as they free programmers
from having to break abstraction barriers in order to achieve reasonable performance. This
consideration alone was a great help in writing the runtime system. Many of the built-in
functions such as zero? and instance variable accessors are candidates for inlining, and, in
fact, they are often inlined into user programs. Without global optimizations writing an effi-
cient runtime system would have been difficult and error-prone. Zero? could perhaps have
been implemented as a macro, but then it would not be possible for a user program to over-
ride it for its own classes. Moreover, zero? would then suffer from the classic Lisp problem
of a macro not being a first-class data object and interchangeable with functions. Also, inlin-
ing of functions may be controlled by fairly sophisticated heuristics, while macros would al-
ways be expanded.

The substitution of function calls for method calls is also a useful optimization. In simple
programs almost all method calls are replaced with function calls and then often inlined. In
fact, in all the simple and non-contrived examples I have compiled, Optimist II was able to
remove all method dispatches and replace them with function calls. Even in applications us-
ing Lisp-style lists, there are usually at most two methods defined on an object-one method
handles the nil case, while the other handles the nontrivial case-and Optimist II turns the
method call into a comparison of the argument against nil followed by one of two function
calls, often inlined.

Generality or Simplicity?

One recurring issue was whether Optimist II should be a compiler for a general target or a
compiler specifically tailored to the J-Machine. Ideally, Optimist II should have a back end
that could be replaced to compile code for a different architecture. Unfortunately, this ideal
was not achieved. Although many MDP-specific transformations are collected near the end
of the Optimizer, some, such as the continuation expander had to be placed earlier in the
compilation process. Worse, much of the runtime system at the very front of the compiler is
heavily dependent on the MDP architecture.

The two issues at odds here are generality and simplicity. Due to the limited scope and ex-
perimental nature of this project, I resolved conflicts in favor of simplicity. For example,
Concurrent Smalltalk is a useful systems programming language, and it was desirable to
implement some features of Concurrent Smalltalk in Concurrent Smalltalk. While this ap-
proach would make the Optimist II front end nonportable, I decided to use this approach
anyway because it made the runtime system simple to write, understand, and modify.

Future Plans

Optimist II is still an evolving compiler, and it will surely change in the future. In addition
to implementing the remaining language features and fixing bugs, Optimist 11 could be ex-
tended to implement inline objects and the load balancing ideas discussed in Chapter 8. In
addition, a number of minor tweaks mentioned in [21] are still possible. Now that branches
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have a longer range, Optimist II could be more liberal with the use of MDP register RO to
hold values between statements'. A smarter register allocator could assign a variable to a
register for part of its lifetime. The peephole optimizer could replace branches to SUSPEND
instructions with SUSPEND instructions themselves. The implementation of closures could be
made faster. The compiler could automatically detect side-effect-free and no-leak functions;
this information might permit it to explicitly deallocate some objects such as closures if it
could prove that they could not be referenced again. Overall, though, it seems that, except
for loops which are deliberately broken to avoid hogging processors, no more than a few per-
cent more performance can be squeezed out of the code generated by Optimist I1; however,
since the operating system overhead time overwhelms the execution time in Concurrent
Smalltalk methods, there might be room for improvement through coordinated compiler and
operating system changes.

tln Architecture 10, all but the shortest branches required the value of R. to be altered, rendering that register
practically useless for holding values between statements.
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Design Goals

The Cosmos operating system was designed primarily as a support kernel for running Con-
current Smalltalk programs on the J-Machine. Nevertheless, Cosmos is not specialized to
Concurrent Smalltalk, and many of the operating system's components could be used to sup-
port a general message-passing environment.

The goals in designing the operating system were, in order:

1. To make a working operating system.

2. To make the operating system as efficient as possible.

3. To make the operating system as simple and flexible as possible.

The design of the operating system also had to be small enough to allow both it and most of
the Optimist II compiler to be written in one semester; for this reason garbage collection and
load management facilities were not included in the operating system. Several steps were
taken to achieve goal (1), including the criticality system and the debugging techniques de-
scribed later. The criticality system is an organized accounting method used to ensure that
no re-entrancy problems occur when operating system routines call each other. Features
were added to MDPSim to detect and signal race conditions known as hazards. To achieve
goal (2), the entire operating system kernel was written in hand-optimized assembly lan-
guage. Poor J-Machine performance can no longer be blamed solely on the operating system.

Goal (3) was achieved by providing general data structures that are reused in many compo-
nents of the system.

Functionality

The operating system assists Concurrent Smalltalk programs by providing the following ser-
vices:

"* Initialization and setup of the J-Machine.

"* Providing fault handlers for faults needed to keep the J-Machine running.

"* Global function calls and returns.

"* Looking up methods corresponding to class/selector or object/selector pairs.

"* Context allocation and deallocation facilities and conventions.

"* Local and global object allocation, deallocation, lookup, and migration facilities. Mutable
objects exist on only one node at a time, while immutable objects can exist on many nodes at
a time; all but the primary copy can be purged when extra memory is needed.

"• Support for distributed objects as defined in Concurrent Smalitalk.

"* Support for Concurrent Smalltalk primitives such as determining the type of an object.

"* Calls assisting in the creation and evaluation of closures.

"* An integer division routine.

"* Debugging and consistency-checking facilities.
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Figure 4-1. Operating System Organization
The arrows represent calling patterns in the Cosmos operating system. Every module uses the fault handlers;
those dependencies were omitted for clarity. The modules in bold boxes are roots-they are invoked by the user.

The modules in the top section of the figure are written in Concurrent Smalltalk; however, the CST Runtime mod-
ule may not necessarily be portable to other Concurrent Smalltalk implementations because it references some
MDP data structures. The modules in the middle section are written in MOP assembly code because they imple-
ment functionality that cannot be easily expressed in Concurrent Smalltalk. From the point of view of the rest of
the operating system, though, these modules are indistinguishable from compiled Concurrent Smalltalk code. The
modules in the bottom section are fixed in the memory of every MOP either because they are critical to the MoP's
operation or because calling them as functions would be inefficient.

After Cosmos initializes the J-Machine, a Concurrent Smalltalk program can be loaded using
Cosmos's downloading facilities. Once the program is loaded, a single call to Cosmos's Apply
handler can start the execution of one function in the program. Whenever a function needs
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to invoke another function or method, it first calls the Cosmos ObjectNode routine, to de-
termine a good node for that invocation and then sends an Apply message or one of its vari-
ants to that node. The target node, upon receiving that message, executes the Cosmos Apply
handler that fetches the function or method code and calls it.

Many functions need to store local state in memory, either because they need more variables
than will fit in the MDP's registers or because they make function or method calls and need a
place in which to save state for the duration of the call. Cosmos uses contexts to save state
and provides routines to allocate and deallocate them.

In addition, Cosmos manages objects globally, migrating objects and code to the nodes that
need them. Cosmos keeps only one instance of immutable objects, but it can make copies of
immutable objects and code. Also, Cosmos provides routines to determine the type of an ob-
ject and to create and address distributed objects. Finally, Cosmos provides primitives such
as division that would be hard to implement in Concurrent Smalltalk.

Structure

The operating system is composed of interacting modules shown in Figure 4-1. The high-
level modules are built in layers out of lower-level ones; however, the low-level modules are
deeply interrelated because of the hardware restrictions of the MDP. Furthermore, due to
efficiency considerations and hardware restrictions on faulting, much of the code in some of
the managers is inlined inside other managers. This is especially common at the lowest
levels such as the heap and context managers.

Reading Guide

This chapter describes the handlers in the two lower sections of Figure 4-1; the Concurrent
Smalltalk code is described in Chapter 3. After a brief overview, the handlers will be de-
scribed in this chapter from the bottom level up.

Heap Manager

The heap manager manages the heap on each MDP. The heap allows allocation, dealloca-
tion, and purging of arbitrary objects in the local memory on the MDP. All object references
are bounds-checked, and primitive compaction facilities are provided.

BRAT Manager

The BRAT manager keeps track of the BRAT-Birth/Residence Address Table [38]. The
BRAT is an associative table used mainly for translating virtual addresses to physical ad-
dresses, although it is also used for some housekeeping tasks in object migration.

Object Manager

The object manager combines the facilities of the heap manager and the BRAT manager to
provide a virtual name space for the objects allocated by the heap manager. The object man-
ager is capable of allocating objects on the local node and giving them unique names. It can
also determine that an object does not reside on the local node, but it cannot access nonlocal
objects.

Context Manager

The context manager keeps track of contexts. A context is the MDP equivalent of an invoca-
tion descriptor on a conventional computer. The context contains values of the local variables

'Sometimes that call is optimized by Optimist II to a single movE fmM NNR instruction.
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of a process, saved data and ID register values, and the instruction pointer (IP) when a pro-
cess suspends.

Global Object Manager

The global object manager is an extension of the object manager to the global virtual address
space of the J-Machine. The global object manager can access nonlocal objects, and it can
migrate objects between nodes. It can distinguish mutable objects from immutable ones and
maintain copies of the latter on many nodes.

The global object manager also can determine the class of an arbitrary object. and it is the
lowest level in the operating system that implements distributed objects.

Method Manager

The method manager implements an association between classes, selectors, and methods on
top of the global object manager. The method manager can, given a class and a selector,
quickly determine the appropriate method that represents applying the selector to an object
of that class.

Control Manager
Function and method calls and replies are dispatched by the control manager. Every func-
tion or method call is actually a message send to an entry point in the control manager,
which interprets the incoming message, makes sure it ;& valid, fetches the called code, and
runs it. The control manager also handles suspending aftcr cfuture faults and resuming
when a called function or method returns a value.

Utilities
The operating system kernel includes commonly-used utilities that would suffer too much
overhead if they had to be called via thc standard function call mechanism. The current util-
ities include a divide system call and calls that create and evdluate closures.

MDP Runtime

The MDP runtime system contains other utilities that have to be coded in MDP assembly
language. Currently MDP runtime utilities include a method table lookup routine and func-
tions that create distributed objects. When arrays are implemented, they will also be imple-
mented as MDP runtime utilities.

CST Runtime
The CST runtime system contains atilities which could be coded in Concurrent Smalltalk.
These utilities implement most of the functions and macros listed in the Concurrent
Smalltalk reference maiual (Appendix A), including locks, some array code, and object-han-
dling functions such as copiers and destructors, as well as lower-level functionality such as
global variables.

Data R( 2resentation

Figure 4-2 shows an overview of the representations of various Concurrent Smalltalk objects.
The representations of the complex Concurrent Smalltalk object such as functions, selectors,
and classes will be explained in more detail in the following sections.
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NIL TAGO SYM 0

Symbol TAGO SYM Symbol Number

Class TAGO CLASS 0 Class Number

Selector TAGO SEL 0 Selector Number

Character TAGO CHAR 0 ASCII Code

FALSE BOOL 0 0

TRUE BOOL 0

Integer INT Two's Complement Value

Float FLOAT IEEE Single-Precision Float Value
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Figure 4-2. Concurrent Smal]talk Object Representations
Primitive objects are represented as above using the MDP's 32-bit words with 4-bit tags. Objects not shown
above are represented as standard objects using the ID tag. Due to a shortage of tags, NIL, symbols, classes,
selectors, and characters share the same MDP tag, TAGO (also known as SYM), and are distinguished by the up-
per four bits of the data word. One MDP tag, TAGA, has been retained for future expansion.

With the current bit layouts, Cosmos is limited to representing 268435456 symbols, 65536 classes, 65536 selec-
tors, 65536 futures, 32678 objects per node, and 32768 distributed objects in the entire system. The last three
limitations are especially severe and will be considered in Chapter 8.
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4.1. Hardware Building Blocks

Memory Organization
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Figure 4-3. MDP Memory Organization
The data structures above are replicated on every MDP in the J-Machine. All of the data structures except the
heap reside in fast RAM. The top of the heap resides in fast RAM, but most of it is in slow RAM.

Figure 4-3 maps the structures addressable in the physical address space of every MDP. The
heap occupies most of memory and is used for storing and keeping track of Concurrent
Smalltalk objects and contexts. The BRAT root table is a separate hash table that points to
the BRAT entries in the heap. The XLATE table is a table used for hardware-assisted asso-
ciative lookups. In addition, every MDP contains a copy of the Cosmos code and fault vector
assignments and a small set of globals used by Cosmos and some of the runtime routines.
Finally, every MDP contains two hardware-managed incoming message queues.
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Priorities

Each MDP provides three levels of execution priority-background, priority 0, and priority 1.
The network allows messages to be sent at priority 0 or 1; when a message of a given priority
arrives at a destination node, it is queued in the appropriate priority's queue. The queues
are constantly monitored by the CPU, and if a queue contains a higher-priority message than
the task currently running, the current task is pre-empted to handle the message.

Cosmos currently only uses the background and priority 0 levels. It is anticipated that prior-
ity 1 will be used in the future for garbage collection and resolving emergencies such as
queue or memory overflow. In addition, on a real J-Machine (as opposed to MDPSim), prior-
ity 1 will make a good debugging channel. Cosmos's use of the background priority is cur-
rently limited to initialization; it would be nice if background mode could be used for incre-
mental heap compaction, but that may be difficult-because of flaws in the MDP architec-
ture, the background priority and priority 0 share the same sets of globals, ID and fault reg-
isters, and fault vectors, meaning that execution of a priority 0 message is likely to clobber
the state of a background process.
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4.2. The Cosmos Kernel

Criticalities

Cosmos was fairly difficult to write because almost all of its routines are non-reentrant; thus,
locations of faults inside Cosmos code have to be carefully controlled. The MDP does not in-
clude any stacks, which means that each routine and fault handler must save its state in a
different set of global variables. Furthermore, the low-level routines have to be very careful
not to alter the same global or register through some combination of system calls and faults.
Another class of problems consists of critical sections of code in which physical addresses are
manipulated in data registers or objects are referenced assuming they are present in the lo-
cal memory. No heap compaction or object migration is allowed in those sections. If a heap
compaction or object migration were to occur in such a section, the physical address or object
reference would become invalid.

To make these problems tractable (but, nevertheless, still difficult), the concept of a critical-
ity was introduced. The criticality of a system call is a number which reflects what actions
that system call is allowed to perform. The criticalities are listed in Table 4-1.

A routine with a given criticality may not call another routine with a lower one. For exam-
ple, if a routine is sending a message, it may not make a system call or allow a fault of criti-
cality less than 4 while it is sending the message. Thus, the routine has to force any poten-
tial cfutures before sending the message, because a cfuture fault has criticality 1. If a routine
stores a physical address of a heap block in a data register, it must have criticality at least 5
as long as the address can be read out of the data register. If a routine runs with the MDP's
fault bit set, it must have criticality at least 6 to prevent a catastrophic double fault. There
will be no re-entrancy problems as long as each routine's criticality is correct, the criticality
rules are obeyed, and all possible faults are anticipated.

Heap Manager

The heap manager manages the heap on each MDP, allowing allocation, deallocation, and
purging of arbitrary objects in the local memory on the MDP. The heap manager does not
use the network, so most of its routines run at criticality 5.

Heap Structure

The heap, shown in Figure 4-3, is organized as a contiguous block of memory. Objects are
allocated from the bottom (lower addresses) up, while BRAT entries are allocated from the

Table 4-1. Criticalities

Value Actions Allowed

0 All actions are allowed. Caller's registers do not have to be preserved.
1 Caller's registers must be preserved. May suspend, so MDP's globals are not pre-

served.
2 No suspending faults, no modification of context state.
3 No suspending faults, no modification of context state, no object migration.
4 No message sends, no object migration.
5 No heap compaction, no message sends.
6 No faults or system calls, no heap compaction, no message sends.
7 No priority 1 interrupts, no faults or system calls, no heap compaction, no message

sends.
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Figure 4-4. A Heap Block
Each MDP heap block consists of a header and ID words followed by user-defined data.

top down by the BRAT manager. The objects in the heap between FixedHeapStart and
HeapStart are nonrelocatable-once allocated, they are never moved. Currently that area
is used for storing a few fast contexts. The rest of the heap is dynamically divided between
relocatable objects and BRAT entries. The FirstFree pointer points to the first unused
word of heap memory, while the LastFree pointer points to the first word used for BRAT en-
tries.

Heap Blocks

Each heap block has the structure shown in Figure 4-4. The presence of the length of the
block in the first word and its virtual ID in the second word allows the heap to be scanned
and compacted quickly.

The heap manager uses only the free, purgeabie, and marked flags, which have the following
meanings:

* Free. The heap manager will reclaim storage from those blocks when it needs extra
memory.

"* Purgeable. The heap manager can purge those blocks when it needs extra memory.

"* Marked. A purgeable block is marked if it has not been accessed for a while. It will be
purged at the next opportunity.

The copyable and locked flags are managed by the global object manager, while the context
manager uses the fast context flag to distinguish fast contexts from standard ones.
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Object Allocation
Allocating an object on the heap is usually quite fast, taking about twenty instructions.
Given the object ID and header word, the AllocObject heap manager routine checks
whether there is enough room in the heap for the object'. If so, it creates and returns a relo-
eatable ADDR-tagged word pointing to the physical memory that will be occupied by the ob-
ject, after initializing the object's first two words and advancing the FirstFree pointer. If
there is not enough free memory, AllocObject calls the heap compactor to try to free
enough memory for the object.

Heap Compaction

The heap compactor is called whenever a memory request cannot be satisfied. First it invali-
dates all relocatable addresses cached in the address registers and the XLATE table2. Then
it scans through the heap starting from HeapStart, moving each block as far to the front of
the heap as possible. As each block is moved, its physical address is updated in the BRAT,
but not the XLATE table3 . Deleted blocks are not copied, nor are marked purgeable blocks 4.
If a purgeable block was unmarked, it is copied and then marked. The next time the block is
referenced, that block's marked bit will be cleared by the XLATE fault handler.

A heap compaction increases the amount of contiguous available memory between
FirstFree and LastFree. However, if the compaction did not free enough memory to sat-
isfy the allocation request, another compaction is immediately done. The second compaction
purges the remaining purgeable blocks from the heap. If the second compaction does not free
enough memory, the system halts.

Utility Routines

The heap manager contains a couple of general-purpose utility routines which illustrate cre-
ative use of the MDP's fault mechanism. One, BlockMove, quickly moves a block of memory
from one address to another. The routine uses straightline code followed by an infinite loop
to copy data. The loop is terminated by a LIMIT fault when a copy is attempted of the first
word out of bounds of the source block. Similarly, BlockSend quickly sends words of an ob-
ject until terminated by a LIMIT fault. Without using LIMIT faults these routines would be
two to four times slower.

BRAT Manager

The BRAT manager maintains the BRAT-Birth/Residence Address Table [381 and the
XLATE table. The BRAT is a general-purpose associative table used mainly for translating
virtual addresses to physical addresses. The XLATE table is used mostly as a cache for the
BRAT table. Table 4-2 lists the associations currently maintained by the BRAT manager.
Like the heap manager, the BRAT manager does not use the network and runs mostly at
criticality 5.

The format of the XLATE table is dictated by the MDP hardware. The table is a two-way set-
associative cache whose location and position are specified by the MDP TBM register. Each

'Actually, A! locObject makes sure that there are three more free words in the heap than necessary to hold the
object in case a BRAT entry will also be allocated for the object. This avoids the difficult situation of being able to
allocate a heap object but not its BRAT entry; a heap compaction in the BRAT manager would violate criticality
rules.
2 just re-entering each association between a virtual ID and the new physical address would not work because sev-
eral virtual IDs may alias to the same physical object; the copying code would find only one such association in the
XLATE table.
3 Physical addresses are not updated in the XLATE table because if they were, there would be no easy way of de-
termining which blocks were referenced between heap compactions. The XLATE fault handler clears the marked bit
of every block it encounters without a binding in the XLATE table.
4 Nevertheless, if an object's locked flag is set, the object is preserved, even if it is also indicated as deleted or
purgeable and marked. This action is required to maintain consistency in the global object manager.
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binding in the XLATE table consists of a key word and a data word. Invalid bindings have a
NIL data word. The XLATE and PROBE instructions hash the key they receive into the
XLATE table and check the two possible bindings whether they contain the right key; if so,
the corresponding data word is returned. The ENTER instruction enters a new binding into
the XLATE table; that binding might overwrite an existing binding of a different key, so the
XLATE table is only a cache-bindings are not guaranteed to remain in the table. The hash
function used is the exclusive-or of the four bytes that constitute the data portion of the key
word; the tag of the key word does not participate in the hashing. Thus, the XLATE table is
limited by hardware to 512 bindings, which may not be enough if there are many small ob-
jects on a node.

Table 4-2. XLATE and BRAT Associations

"Virtual" Tag "Physical" Tag Tables Association
ID ADDR XLATE, BRAT Physical object location
ID INT BRAT Node number of node containing object
ID context ID BRAT Context waiting for object
DID ADDR XLATE Physical location of nearest constituent
TAGO:SEL ADDR XLATE, BRAT Physical location of selector object
TAGO:CLASS ADDR XLATE, BRAT Physical location of class object
TAGO:CLASS INT BRAT Node number of node containing class object
TAGO:CLASS context ID BRAT Context waiting for class object
TAGO:SYM none XLATE Symbols are primitive objects
TAGO:CHAR none XLATE Characters are primitive objects
INT none XLATE Integers are primitive objects
BOOL none XLATE Booleans are primitive objects
FLOAT none XLATE Floating point numbers are primitive objects
CS (INST1) ID XLATE Class/selector lookup

The above table contains the current associations kept in the virtual tables. A general object (tagged ID or
TAGO:CLASS) can associate either to a physical address, the node number of the node thought to contain the
object, or a context waiting for the object. In the last case, if the object is being accessed, the current process
suspends and puts itself onto the list of contexts waiting for the object Selector objects are just like general ob-
jects except that they do not migrate. The DID--ADDR association is used for quickly getting to constituents of
distributed objects from the group ID. The results of the DID--ADDR must be consistent through time-looking up
a DID on the same node must always yield the same constituent. Looking up a primitive object other than the
ones just mentioned in the XLATE table must always miss. Finally, due to a shortage of virtual tags, words tagged
INSTI are used as class/selector keys to the method manager's method cache.

XLATE and BRAT Table Formats
Unlike the XLATE cache, entries in the BRAT table are guaranteed to remain in the table
until they are deleted. As shown in Figure 4-7, the BRAT table is rooted by a small root hash
table. Each entry in the root table points to a linked list of BRAT bindings with keys that
hash to the same value. In addition, there is a linked list of free BRAT entries. There are
several advantages to keeping the BRAT table organized this way instead of the flat hash
table in [38]:

* Deleting entries from the BRAT is easy, while at the same time searching the BRAT for a
missing key is fast. Such searches are common because they occur almost every time an ob-
ject not present in local memory is referenced.

* The boundary between BRAT memory and the memory used for objects in the heap is ad-
justed dynamically. Thus, accurate predictions of the average size of an object needed in 138]
become unnecessary.

I No memory is WasLd keeping the flat hash table no more than 70% full. On the other
hand, linked lists require one additional word per BRAT entry for the links; however, it is
conceivable that BRAT entries could be stored contiguously with their objects, eliminating
this waste.
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TBM

XLATE Table

ID ADDR

NIL

DID ADDR

NIL

Class/Selector ID

ID INT

NIL

NIL

Figure 4-5. XLATE Table Format
The XLATE table's position and length are specified by the MDP TBM register. The XLATE table is a two-way set-
associative cache composed of key/data pairs of words. A NIL data value specifies an invalid entry. The XLATE
and PROBE instructions provide hardware support for quickly looking up keys in the cache.

36 32 0

0Key
1 Data

2 Address of next entry or NIL

Figure 4-6. BRAT Entry Format
Each BRAT entry is a linked list entry associating a key word to a data word.

BRAT Routines

There are three main routines for managing the BRAT table. They are:

* EnterBinding, which enters a new binding of a key to a data word. This routine uses a
binding from the BRATFree linked list whenever possible. However, if that list is empty,
memory is allocated from the back of the heap, moving LastFree forward by three words,
which might force a heap compaction.

* LookupBinding, which returns the data word associated with a key or NIL if there is
none.

* DeleteBinding and PurgeBinding, which remove a binding from the BRAT. The
binding must have been present in the BRAT. In addition, PurgeBinding removes the bind-
ing from the XLATE table.

Heap Compaction

The current heap compactor in the Heap Manager does not attempt to compact free BRAT
entries linked on the BRATFree list. Thus, once memory is used for a BRAT entry, it can
only be used for another BRAT entry. Nevertheless, performing such compaction by moving
BRAT entries up in memory would not present any special difficulties.
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BRAT Hash Table

BRATStart-8 ADDR -Key Key

NIL Data Data

NIL ADDR NIL

NIL

NIL

ADDR - Key

NIL Data

NIL NIL

BRATFree-* Key Key

Data DataA O NIL .. . .

Figure 4-7. BRAT Table Format
The BRAT entries are kept in linked lists rooted in the BRAT hash table. Free BRAT entries are linked in a sepa-
rate linked list.

Object Manager

The local object manager combines the facility of the heap manager and the BRAT manager
to provide a virtual name space for the objects allocated by the heap manager. The local ob-
ject manager can allocate objects on the local node and give them unique names. The local
object manager is tightly interwoven with the global object manager, so the distinction be-
tween the two managers is only conceptual-their code is inlined together in common rou-
tines.

3 333 22 11 1

5 210 87 65 09 54 0

Class TAGO CLAS 0 Class Number

Selector TAGO SEL 0 Selector Number
Home Node NumberFuture FUT Serial Number Z Y xHome Node Number

Standard Object ID 0 Serial Number z N Y u x
Home Node NumberDist. Obj. Constituent D 1 Serial Number z I Y I x

Figure 4-8. Object ID Formats
Words with the above formats are virtual addresses of objects on the heap. Special care must be taken when
handling virtual addresses which are also futures to avoid forcing them prematurely.

Object IDs

The Object Manager recognizes several formats of object IDs and virtual addresses, as shown
in Figure 4-8. In addition, the Object Manager can generate unique new standard object IDs
by incrementing a local serial number counter and adding it to the local node number. Since
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no mechanism exists currently for reclaiming IDs, the system will fail after 32768 local ob-
jects have been allocated at one node. See Chapter 8 for a discussion of what could be done
about this problem.

Each of the IDs in Figure 4-8 contains a home node number in the lowest 16 bits. For fu-
tures, standard objects, and distributed object constituents, the home node number is merely
the network number of the MDP that serves as the object's home; any unused bits must be
zero. However, for classes and selectors, any of the lowest 16 bits not used for storing the
network number are used to distinguish among several class or selector objects sharing the
same home. For example, on a 1024-node J-Machine arranged as 16x16x4, bits 0-3, 5-8, and
10-11 hold the home's x, y, and z coordinates, respectively, while bits 4, 9, and 12-15 disam-
biguate among classes or selectors living on the same node. For this configuration, the class
object's home node number can be obtained by logically ANDing the class number with
%0000110111101111. See Figure 5-12 for more on this.

Why not use bits 16-27 to disambiguate classes and selectors living on the same node, as is
done for objects? The reason is that several parts of Cosmos require class and selector num-
bers to be no greater than 16 bits. For instance, a class number is stored in every heap ob-
ject's header, and the class and selector numbers are concatenated to make a 32-bit word
during method lookup.

Routines

The local object manager provides routines to allocate and deallocate objects. The object-allo-
cating routine has two variants-AllocNewObject allocates an object given its ID and
header word, while AllocNextObject takes a header word and generates a new ID for the
object. Both variants then allocate local memory for the object and enter the binding of the
ID to the physical address in the BRAT and the XLATE tables. AllocNextObject is used
for most of the general object-allocating needs, while AllocNewObject is used in special
cases-downloading of objects or allocation of distributed object constituents-where an ob-
ject's ID is predetermined.

DeallocateObject, the local object deallocator, deletes an object's bindings from the BRAT
and the XLATE tables and sets the object's deleted flag. Thus, the object will be compacted
during the next heap compaction. If the object was a distributed object constituent, it might
have had more than one binding in the XLATE table; only one such binding is deleted, so it
might still be possible to access a deleted constituent object through the other bindings until
the second heap compaction. This is not an error because the consequences of accessing a
deleted object in Concurrent Smalltalk are undefined.

The object manager also provides a handler for XLATE faults. When an XLATE instruction
that searches for a local object misses, the object manager searches the BRAT for the binding.
If it finds such a binding, it returns the object's physical address and enters the object's
binding back in the XLATE table. This is also the point at which the heap manager unmarks
the object if it was previously marked. If the object's binding was not found in the BRAT,
further action depends on the value of the XLATE action code--the XLATE fault handler
might use the global object manager to bring the object onto this node, return NIL, or fail.

Context Manager

The context manager maintains contexts which contain local variables and saved register
values and messages of processes. The structure of a context is shown in Figure 4-9. MDP's
register IDI contains a virtual address of the current context at all times when a context
switch is possible, while Al contains the physical address and length of the context. Contexts
are used for the following purposes:

'The XLATE action code tells the XLATF handler what the user of the XLATE instruction wanted to accomplish.
The action code conveys information such as whether the caller really needed to reference an object (and the object
should be brought locally if it isn't present) or the caller only wanted to tell if the object exists.
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36 32 26 10 0

0 OBJ FlagsI 0 Context Length.r

1 ID Context ID

2

Saved Message
m-1 ...
rni

Local Variables

15 ...

16 Saved RO

17 Saved R1

18 Saved R2

19 Saved R3

20 Saved IDO

21 Saved ID2___

22 Saved ID3

23 Saved IP

24 Link

25 More Local Variables
(Long Contexts Only)

n-1 ...

Figure 4-9. Context Format
Standard and fast contexts have the above format except that they are only 25 words long, while long contexts can
be up to 64 words long (the MDP only allows convenient addressing of the first 64 words of an object).
There is no saved ID1 field because ID1 points to the context itself, so it has to be known by whatever routine is
resuming the context.
The link field is used for several purposes. Contexts on the FastContextQueue are linked together by their link
fields. When a process suspends execution, the resumption condition is stored in the link field: if the process
suspended because it read a cfuture from a local variable in the context, the offset (tagged CFUT) of that local
variable is stored in the link field. It the process suspended because it referenced a non-local object, the context is
put on a linked list of contexts waiting for the object rooted at the object's BRAT binding. The old data value of the
BRAT binding is placed in the link field of the last context waiting for the object. Since the data value of a BRAT
entry can be an integer, the INT tag cannot be used to represent contexts waiting for cfutures.

* When a function calls another function, it stores a cfuture in a local variable in its con-
text and then proceeds to fault on that cfuture. The reply from the called function will store
its value into the designated local variable, overwriting the cfuture.

* When evaluation of a function needs to be suspended for any reason, including a cfuture
fault, the function's registers are saved in a context.

* When evaluation of a function is suspended, the message that invoked that function is
copied into the beginning of the context (except for the first two words of the message, which
are then lost). When the function resumes, A3, the register which originally pointed to the
message, is aliased to point to the context to allow the function to use A3 to refer to the in-
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coming message regardless of whether the message has been copied into the context yet or
not.

Context Availability

There are four fundamental approaches to allocating contexts:

1. Always allocate a context at the beginning of every function and deallocate it at the end.

2. Allocate a context at the beginning of a function that needs a context and deallocate it at
the end.

3. Lazily allocate contexts only when necessary.

4. Always keep a context allocated, even when no message is being processed.

Approaches 1 and 2 are commonly used for stack frames on stack-based computers. Initially
I chose approach 3 for the context allocation strategy. Approaches 1 and 2 are simpler but
have the disadvantage of often allocating unnecessary contexts-most of the leaf nodes of
computations do not require contexts, and allocating contexts unnecessarily is a considerable
overhead. Approach 3 worked by storing an invalid address in Al, the MDP's context ad-
dress register. When a context was needed, the access through Al would fault, and a context
would be allocated. However, I ran into two difficulties with approach 3: allocating contexts
through faulting on Al was slow because determining the cause of an INVADR fault on the
MDP is quite involved, and there were some difficult code sections in the object manager
where a fault might allocate a context, violating criticality rules.

Due to the above difficulties, I switched to approach 4, which combines the advantages of
lazy context allocation with the advantages of always allocating a context. In approach 4,
when a function finishes executing, it does not deallocate its context'; thus, the next message
that arrives does not have to allocate a context. There are two places where approach 4
involves a little extra work than approach 3: when a function suspends on a cfuture or object
migration wait, it must allocate a new context to avoid having its own context overwritten;
and when the value of a cfuture is returned or an object arrives, the currently allocated con-
text must be deallocated and replaced with the suspended function's context. The additional
context allocation on a cfuture or object migration wait is not a significant penalty because it
occurs on the tail end of message processing-it does not affect the latency of message pro-
cessing until the J-Machine is fully loaded. The context deallocation on the reception of a
cfuture value or an object does add to the latency, but context deallocation is always fast-it
takes only four instructions.

To avoid reentrancy and criticality problems, the value in register Al is required to be always
valid; therefore, any routine, such as the heap compactor, which might invalidate Al must
recalculate the value of Al when it is done.

Kinds of Contexts

There are three kinds of contexts: fast contexts, standard contexts, and long contexts. A
fixed number of fast contexts is preallocated when an MDP is initialized. Each fast context is
25 words long. The fast contexts are nonrelocatable heap objects between FixedHeapStart
and HeapStart. The physical addresses of these contexts never need to be invalidated, so
these contexts are especially fast. Fast contexts are never deallocated. Enough of these con-
texts should be allocated to serve a normal computation load on an MDP; the current operat-
ing system allocates eight per MDP, which is probably too few.

St indard contexts are like fast contexts in that they are 25 words long, but they are relocat-
able objects allocated from the main heap area; thus a heap compaction invalidates their

'This only applies to functions which use 25-word contcxts; functions which use long contexts must deallocate their
contexts and allocate 25-word contexts upon exiting.
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physical addresses. Unlike fast contexts, the storage occupied by standard contexts can be
reclaimed.

Fast contexts and standard contexts are eligible to be queued on a linked list of free contexts
rooted by the global variable FastContextQueue. Whenever a 25-word context is desired,
FastContextQueue is checked first; if it contains a context, that context is unlinked from
the queue and used. Otherwise, a standard context is allocated. When a fast context is dis-
posed, it is linked back on the queue. When a standard context is disposed, it is either liked
back on the queue or deallocated, at the caller's discretion. These queue operations are
fast-allocating a context from the queue takes five instructions, while deallocating one oitAn
the queue takes four.

Long contexts are contexts for functions which require extra space for local variables. Long
contexts are identical to standard contexts except that they are longer and ineligible for
queueing on the FastContextQueue. When a function that might need a long context starts
executing, it calls the NewContext routine, which replaces the present context with a newly
created long context. NewContext also copies any relevant state such as the message from
the fast context to the new, long context. A function which allocates a long context must
terminate with a call to Suspend, which disposes the long context and allocates a new fast or
standard context. DisposeContext can be used to dispose a context without allocating a
new one.

Allocation and Deallocation Calls

The routines to allocate and deallocate 25-word contexts are short enough that they are in-
lined whenever they are needed. The following calls are available for handling long contexts
and the case in which the FastContextQueue is empty:

"* AllocFastContext creates a new fast context when the queue is empty.

"* Suspend checks whether a fast context was used by the routine. If so, it links it into the
fast context queue; otherwise, the context is disposed by the heap manager, and a new 25-
word context allocated.

* NewContext allocates a new long context. If a context is currently in use, it is deallo-
cated after the message has been copied from it to the new context.

0 DisposeContext is like Suspend except that it does not allocate a new 25-word context.

Suspending and Resuming Processes

When a process must be suspended because it tried to read a cfuture, perform an operation
on a future, add two user-defined objects together, or reference a nonlocal object, the process's
state must be saved in its context. In particular, the values of registers that need to be pre-
served must be stored in the context along with the IP at which execution should resume.
Furthermore, the reason for suspending must be stored in the link field of the context; other-
wise, the context might be restarted prematurely, which would lead to a disaster if the con-
text was waiting for an object'. Finally, a new 25-word context is allocated in Al and ID1 to
prevent the suspended context from being reused.

When a process is to be resumed, the resuming event is checked against the context's link
field to make sure that the context should, in fact, be resumed. If it should, the existing con-
text in Al and ID1 is deallocated, and the values of the registers and iP read from the con-

'The reason why restarting a context early would crash the computer is not obvious. The problem is not that the
process would access a bad object or value-the process would fault and suspend again because it still cannot refer.
ence the nonlocal object. Instead, the system crash would occur because if a context that had been waiting for mi-
gration of a nonlocal object were restarted early, the context would not be unlinked from the list ofcontexts waiting
for the object. The Rep !y handler would not even be aware that the context had been present on the linked list.
Then, when the context's process faulted again on the missing object, it would be added to the list of contexts wait-
ing for the object a second time, corrupting that list.
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text. If a resource for which several processes were waiting arrives, one of these processes is
resumed immediately, while the other ones are resumed later by Restartcontext messages
(Figure 4-10) which the node sends it itself. A RestartContext message deallocates the
existing context in Al and IDI and then restarts the specified context.

0 MSG RestartContext 2

1 ID Context ID

Figure 4-10. RestartContext Message
The RestartContext message restart- the context specified by the ID. The context must be present on the tar-
get node.

Reclaiming Contexts

The current strategy for reclaiming free contexts by the heap compactor is somewhat hap-
hazard. Fast contexts are never reclaimed. Long contexts are always reclaimed because
they are required to be deallocated before their processes can exit. On the other hand, stan-
dard contexts are reclaimed only if enough processes call Suspend when they are done;
otherwise, once a standard context is allocated, it is never deallocated. This may be an ad-
vantage because once a working set of fast and standard contexts is allocated on an MDP, al-
location of 25-word contexts will always be fast. If the lack of regular deallocation of stan-
dard contexts turns out to be a problem, it would only be a simple modification to the heap
compactor to have it scan the FastContextQueue and deallocate any standard contexts it
finds there.

Global Object Manager

The primary means of invoking the global object manager is through the local object manager
when the latter cannot find a local object. The global object manager extends the local object
manager to the global virtual address space of the J-Machine. Together, the two managers
provide an integrated facility for efficiently managing objects globally on the J-Machine. The
managers can distinguish mutable objects from immutable ones and cache copies of the im-
mutable objects on many nodes.

Data Structures

Every object on the J-Machine has a home node. The home node most likely created the ob-
ject, and that node has the responsibility of keeping track of the object's location throughout
the object's life. Objects may migrate from node to node, but the object must inform the home
node of every such move. If a node needs an object and does not know where it is, it asks the
home node. Certain objects such as contexts, selectors, and immutable objects do not mi-
grate, so such objects can always be found at their home nodes. The address of the home
node is usually encoded in the lowest 16 bits of an objecL's ID (see "' jure 4-8). This is a con-
venient format because the network ignores the upper 16 bits of a routing address, so mes-
sages may be sent to an object's home node simply by transmitting the object's ID as the
routing word.

In addition to the flags used by the local object manager, each object has three additional
flops: copyable, purgeable, and locked. An object is copyable if it is immutable. Many primi-
tive objects are immutable, as are objects belonging to classes declared immutable by the
Concurrent Smalltalk programmer. Furthermore, the compiler might be able to determine
that objects of a particular .;ass cannot be mutated and mark then copyable, although the
compiler does not perform this optimization at this time. When a copy' of a copyable object is
made, the copy is marked purgeable. Thus, many copies of immutable objects can be made,
and the heap compactor can reclaim storage used by copies that are no longer needed. Set-
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ting the locked flag prevents an object from migrating or being deleted during critical proto-
col sections.

XLATE Entry BRAT Entry Contexts

(1) None None

II AD) I ADDR

Next

ID

(III) None INT
Next

(IV) None Context ID ID ID
Next..

Link Context ID Link NIL

ID Header Header

(V) None Context ID ID ID
SNext..

Link Context ID Link INT

Figure 4-11. Object XLATE Table and BRAT Entries
There are five possible BRAT table states for a particular object Each object must have a BRAT entry on its
home node The XLATE table entry, where specified, is optional The states are as follows-

I The object does not exist on this node, and its whereabouts are unknown

II. The object exists on this node Its physical address is given

III The object does not exist on this node, but it is believed to reside on the node specified by the integer

IV The object does not exist on this node, but the contexts linked to its BRAT entry are waitng for its arrival

V The object does not exist on this node, but the context- linked to its BRAT entry are waiting for its arnvaJ, and
the object is believed to reside on the node specified by the integer

Only states Il, I11, and V are aliowed on an objects home node, while only states I. II. and IV are allowed on the
other nodes
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Every object must always have a BRAT entry on its home node. The BRAT entry can be in
one of the states shown in Figure 4-11. When an object is initially allocated, its BRAT entry
is in state II. If an object is in state I on its home node, that object does not exist, and any at-
tempt to access it halts the system.

Object Migration
The object migration protocol is a slightly simplified version of the protocol in [38]. When a
node requests an object because it does not have the object in local memory, it sends a
RequestObject message (Figure 4-12c) to the object's home node. If the home node does not
currently have the object (its BRAT table entry is in states III or V), it forwards the
RequestObject message to the node thought to contain the object. If the home node does
not know about the object (BRAT state I), it halts the system. This halt is deliberate, for it
detects accesses to deleted objects. If the RequestObject message was forwarded to a node
that has the object, the message is processed there; otherwise, that node forwards the
RequestObject message back to the home node, and the two nodes keep forwarding the
message to each other. Nevertheless, since the home node is required to know an object's
whereabouts most of the time, the home node will eventually learn of the object's true loca-
tion and forward the RequestObject message to the right place.

o MSG AcceptObject Isg. Length=n+2 0 1 S cnwledgeObject 2

1 INT Reply Node Number 1 Object ID

2 OBJ Flags Class Object Length=n

3 Object ID (b) AcknowledgeObject Message

4

Object Data

n+1 .. i
0 MSG MigrateObject Msg. Length-n+1

(a) AcceptObject Message 1 OBJ Flags Class Object Length=n

2 Object ID

0 MSGJ RequestObject 3 3

1 Object ID Object Data

2 INT Reply Node Number

(C) RequestObject. Message (d) MigrateObject Message

o MSGJ UpdateHome 1 3 _______________

1 Object ID 0 MSGI Unlock 2

2 INT Node Now Containing Object 1 Object ID

(e) UpdateHome Message (f) Unlock Message

Figure 4-12. Object Migration Messages
The Acccep. 0r and At' :W•, ý messages are used only for downloading objects into the J-Ma-
chine and for debugging The other tour messages are used for successive steps of object migration

70



Chapter 4 The Cosmos Operating System

Home Node Object's Node Requesting Node

Suspend Context

RequestObject

Lookup BRAT
'Recq t b

Copy Object

Install Copy
(a) Copying a Copyable Object Restart Contexts

Home Node Object's Node Requesting Node

Suspend Context

RequestObject

Lookup BRAT
'Rec

Move Object

Lock Object

updateHome

Update Object's
Location

Unlock Object
(b) Migrating a Mutable Object Restart Contexts

Figure 4-13. Object Migration Protocol
When a copy of an immutable object is made, the copy is simply sent to the requester as in part (a). It a mutable
object has to be moved, the protocol is more complicated because the objects home node has to be kept informed
about the object's location.

What happens when the RequestObject message finds the object depends on whether the
object is copyable or locked. If the object is locked, the node forwards the message back to it-
self; the message will be handled once the object is unlocked. If the object is copyable, the
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node simply mails a purgeable, copyable copy of the object in a MigrateObject message to
the requesting node, which then installs the copy in its memory (Figure 4-13a). If not, the
protocol becomes more complicated (Figure 4-13b). The node on which the object is residing
deletes the object from its memory and BRAT and sends the object to the requesting node in
a MigrateObject message. The requesting node installs the object in its memory, locks it,
and sends an UpdateHome message to the birthnode, telling it about the object's new where-
abouts. Finally, the birthnode sends an Unlock message to acknowledge receipt of the
UpdateHome message and allow the object to be moved again. Since a locked object might
have been deleted, the Unlock message checks the object's deleted flag and deletes it and its
BRAT entry if it was set. The last two messages are optimized out if the requesting node
happens to be the object's home node.

The object is locked in the last phase of the protocol to prevent the home node from receiving
the UpdateHome messages from two successive migrations out of order; if that were to hap-
pen, the home node would lose track of the object's location. Alternatively, counters could be
uscd to achieve the same synchronization, but that solution would require an extra word in
the BRAT and in the object.

Object Allocation and Deletion

An object can be allocated either at the local node or on a remote node. The NewLocalob-
ject system call allocates an object locally. Unlike the AllocNextObject call,
NewLocalObject takes a class as a parameter and extracts the appropriate header word
from the class object (Figure 4-14) to use for the object. Reading the class object may involve
another call to the global object manager if a copy of the class object is not present in local
memory.

0 OBJ Flagsl Metaclass 4-in

1 TAG0 CLASSI 0 1 Class

2 OBJ Insiance Object Header Word

3 INT n=Number of Ancestors

4 TAG0 CLASS 0 Class

5 TAG0 CLASS 0 Ancestor

3+n TAG( CLASS 0 Object Class

Figure 4-14. Class Object Format
The instance object header word is the word that is stored as the header of every object of this class. That word is
nil if the metaclass is primitive-class.
In addition, each class object contains an ordered list of the class's ancestors from the most specific to the least
specific. The class's ancestors consist of the class itself, its superclasses, its superclasses' superclasses, and so
on; each class is listed at most once. The ancestors are ordered according to a partial order which always places
a class before any of its superclasses; thus the class itself is always the first ancestor and On-,ec. is always the
last ancestor.

The DisposeObject system call is used to dispose objects, both locally and globally. Dis-
poseObject first tries to dispose the object locally; if the object is locked, it is marked as
deleted but not disposed; it will be disposed when it is unlocked. If the object does not reside
on this node, a Dispose message is sent to the object's home node, which follows a route
analogous to the RequestObject message above and will not be discussed further. If the ob-
ject is present on this node but this is not the object's home node, a DisposeBRAT message is
sent to the home node to dispose the object's BRAT entry there. If the DisposeBRAT mes-
sage happens to find another instance of the object on its home node, it deletes that instance
too.

72



Chapter 4 The Cosmos Operating System

0 MSGJ NewObject 1 4 0 MSGJ Dispose 1 2

1 TAGC CLASSI 0 1 Class 1 Object ID j
2 ID Reply Context ID

3 =NT Reply Slot Number (b) Dispose Message

(a) NewObject Message 0 MSGJ DisposeBRAT 2

1 Object ID

(c) DisposeBRAT Message

Figure 4-15. Object Creation and Disposal Messages
The NewObject message creates an object of the given class on the remote node and returns its ID in a Reply
message. The Dispose message disposes an object on the remote node, while the Di sposeBRAT message
disposes an object's home BRAT entry.

This protocol successfully deletes the single instance of a mutable object and the unpurgeable
original of an immutable object along with, perhaps, one copy. Other copies, if any exist, of
an immutable object are not disposed; however, they will simply be purged out if they are not
referenced for a while.

Other Services

The global object manager provides two routines, Classof and TypeOf, that can determine
the class of any of the objects listed in Figure 4-2. If the object is a primitive object, the
global object manager returns it class directly. Otherwise, the global object manager extracts
the class from the object's header and returns. In addition, the global object manager pro-
vides the ObjectNode routine which returns the node number of a node likely to contain the
object. If the object is primitive, ObjectNode returns a random node number. This system
call is frequently used in Concurrent Smalltalk to determine the node to which an applica-
tion message should be sent.

The global object manager actively participates in the process of downloading a Concurrent
Smalltalk program to the J-Machine. It provides support for installing objects on nodes
without migrating them from anywhere. If a node receives an AcceptObject message
(Figure 4-12a), it instaliv +he object and its ID in its memory and the BRAT and responds
with an AcknowledgeObject message (Figure 4-12b) containing the object's ID.

To avoid difficulties with downloading objects recursively referencing each other, object IDs
are assigned by MDPSim (see the section about late-binding references in [25]) before the
objects are downloaded into the J-Machine; hence, an MDP accepting an object must also ac-
cept the object's ID instead of generating a new one. The IDs assigned by MDPSim use serial
numbers in the upper range of the allowed numbers, thus preventing ID conflicts with ob-
jects generated at runtime.

Finally, the global object manager provides support for distributed objects. This support is
documented in the distributed object section later.

Initialization

Upon powerup each MDP performs the following actions:

* Clear the address and ID registers at all priorities.
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0 Clear the globals to CFUT-tagged words. If an uninitialized global is accidentally refer-
enced, the MDP will halt because the cfuture handler can distinguish a valid cfuture from a
CFUT-tagged word that just indicates an uninitialized value.

"* Clear the XLATE table and the BRAT root table to NIL.

"* Initialize and enable the network queues, but block network message dispatching until
initialization is done.

"* Clear the heap to CFUT-tagged words.

"• Initialize the global variables that need initializing.

"• Create eight nonrelocatable fast contexts, link them onto FastContextQueue, and ini-
tialize HeapStart to the first word after those contexts.

"* Unlink one fast context and point priority O's Al and ID1 to it.

"• Enable message dispatching and fall into an infinite loop in background mode.

The version of Cosmos for running on a real J-Machine instead of MDPSim has a startup se-
quence that also includes a self-test of the CPU, a memory test, a network test, debugging
utilities, and a protocol to let each MDP determine its location on the network.

Downloading Programs

In the MDPSim emulation of the J-Machine, a special non-MDP network node called the I/O
Node acts as the bridge between the compiler and the J-Machine. The compiler outputs an
MDPSim script which queues a series of objects in the 1/0 Node. The 1/0 Node then sends
AcceptObject messages to the appropriate nodes, waits for the AcknowledgeObject
replies, and sends more objects until all objects have been downloaded.

On the real J-Machine, Concurrent Smalltalk programs are also downloaded through a MDP
that includes special software to communicate with the outside world. Each MDP contains a
diagnostic port that lets the user halt the MDP and directly examine and change its memory
and state. The Cosmos kernel is loaded onto the MDPs through these diagnostic ports.
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4.3. The Cosmos Higher-Level Facilities

Method Manager

The method manager associates class/selector pairs with methods, although it could also be
used for keeping general immutable associations. It provides only one routine, Lookup-
Method, with a variant, LookupMethodU, which performs less processing of its arguments to
make it more efficient. LookupMethod takes a class word and a selector word and attempts
to find the method associated with them; it is the equivalent of the Concurrept Snialltalk
method primitive.

3 33 22 11
5 21 87 65 0

Class TAGO CLASS 0 Class Number

3 33 2 2 1 1
5 2 1 87Z 65 0

Selector ITAGO ISEL 10 Selector Number

3 33 Z1
5 2 Y6 0

[ CS I Class Number Selector Number

Figure 4-16. Class/Selector Word Format
The Class/Selector word is formed by combining a 16-bit class number with a 16-bit selector number. The word is
tagged CS (which is also the INST1 tag) to avoid conflicts with other kinds of bindings stored in the XLATE table.

Lookupmethod first attempts to look up the association in the local XLATE cache. It com-
bines the 16-bit class and selector numbers into a single word, tags that word CS (Figure 4-
16), and looks for a binding in the XLATE table. If it finds a binding, the binding's data word
is immediately returned as the desired method. If no such binding exists, Lookupmethod
sends a Lookupmethod message (Figure 4-18a) to the selector's home node. The message
will invoke the LookupMethod runtime function on the selector and the class.

The LookupMethod runtime function executes on the same node as the selector object
(Figure 4-17). Each selector has a list of methods defined for it together with their classes.
LookupMethod first tries to find the given class in the selector object; if it finds it, it returns
the corresponding method. If LookupMethod cannot find a method for the given class, it gets
the class object (Figure 4-14) and searches the selector's method list for the class's ancestors
until it either finds a method or runs out of ancestors. In the latter case the method lookup
fails and LookupMethod returns nil. In either case LookupMethod returns the result in a
MethodReply message (Figure 4-18b). The requesting node then associates the
class/selector pair with the result in its XLATE table.

The method lookup strategy is conservative in the use of space, taking space roughly propor-
tional to the number of methods defined in the program. However, the method lookup time
suffers somewhat, especially when a method is requested corresponding to a deeply nested
class and a selector with many methods defined; in the worst case the method lookup time is
the product of the number of ancestors of a class and the number of methods defined for the
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selector. A binary search could have been used for searching the method table, but it would
have much worse constant factors, result'lag in slower lookup for most methods, because the
MDP does not have enough registers to support the inner loop of a binary search.

The methods are stored in selector objects indexed by the class instead of storing them in
class objects indexed by the selector because the number of selectors is usually much larger
than the number of classes, and selectors tend to be accessed more uniformly than classes;
thus, the method lookup table can be distributed more evenly on the J-Machine.

0 *OBJ FlagsI classSelector I 3+2n ....

1 TAGO SEL 0 Selector

2 INT n-Number of Methods

3 TAG0 CLASSI 0 I Class 1

4 ID Metlhod 1

1+2n TAG CLASSI 0 1 Class n

2+2n ID Method n

Figure 4-17. Selector Object Format
Each selector object contains a table associating classes to methods.

0 MSG ApplyFunction 5 0 MSG MethodReply 3

1 ID LookupMethod 1 ID Context ID

2 TAG( SEL 0 Selector 2 NIL or ID of method

3 TAGC CLASS 0 Class :

4 ID Reply Context ID (b) MethodReply Message

(a) LookupMethod Message

Figure 4-18. Method Manager Messages
The LookupMethod message requests a lookup of the class and selector to get NIL or a method ID; the method-
Reply message replies to the lookup.

Control Manager

The control manager dispatches function and method calls and handles replying from func-
tions, a task shared with the context and global object managers. The control manager's code
is relatively short because so much groundwork has been laid by the previous managers.

Function and Method Dispatch

The control manager handles three types of messages for calling functions and methods:
Apply, ApplyFunction, and ApplySelector (Figure 4-19). The first message can be used
for applying an arbitrary object-a function or a selector, while the other two messages can
only be used for applying functions or selectors, respectively. The Apply handler checks the
type of its argument and jumps into either the ApplyFunct ion or ApplySelector handler,
as appropriate; the check takes three to five instructions.
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0 MSGI Apply... Message Length

1 Function or Selector

2 Argument 0

3 Argument 1

1+n Argument n-1

2+n Context ID for first reply value or NIL

3+n Context slot for first reply value or NIL

2m+n Context ID for last reply value or NIL

1+2m+n Context slot for last reply value or NIL

Figure 4-19. Application Messages
The Appl y, ApplyFunction, and ApplySelector messages have identical formats except for the address
stored in the header word. Each value returned by the called function corresponds to one two-word continuation
passed to the function. The continuation specifies either the context ID and slot to which that value should be
replied or two NILS if that value is ignored by the caller. The context IDs passed to the function are not necessar-
ily the same due to tail forwarding.

ApplyFunction reads the ID of the function from the message, stores it in MDP's registers
IDO and AO (the code segment registers), and jumps into the fourth word of the function ob-
ject (Figure 4-20). The entire process takes only 4 instructions.

ApplySelector reads the selector and the first argument (the receiver object) from the
message, uses inline code to quickly determine the class of the receiver, and calls Lookup-
MethodU to determine the ID of the method that should be called. If the ID is NIL, Apply-
Selector halts; otherwise, ApplySelector initializes IDO and A0 and jumps into the
fourth word of the function object. ApplySelector takes 23 instructions in the best case,
and considerably more if the class of the receiver is hard to determine or if LookupMethodU
misses in the XLATE cache.

Either of the above handlers can suspend even before the first instruction of the function is
executed if the function code or, in the case of ApplySelector, the receiver object is not pre-
sent locally. Hence, it is important that a valid context be always present in ID1 and Al. In
fact, a valid context is present in those registers as explained in the context manager section.

Function Calls and Replies

The control manager's other task is handling CFUT faults. There are two primary causes for
a CFUT fault: a function accesses the result of a computation that has not finished yet, or
any routine accesses some uninitialized variable. The control manager distinguishes these
two cases by the data in the CFUT-tagged word that caused the fault, which is conveniently
stored in MDP's FOP0 register.

If the data is positive, the fault was a cfuture fault, and the control manager stores that
CFUT word in the current context's link field and suspends the context. The Optimist II
compiler arranges for the data portion of the CFUT word to contain the offset of the context
variable that was accessed; this way the cfuture handler does not have to disassemble the
faulted instruction to determine the offset. The offset is needed later by the Reply handler
to determine whether the context should be restarted.
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If the data in the CFUT-tagged word was zero or negative, the control manager halts the
computer because an uninitialized variable was accessed. On startup, all memory in the
MDP's heap is cleared to CFUT:-I.

0 OBJ FlagsI classFunction Length

1 ID Object ID

2 INT Incoming message size or NIL

3

Function Code

n-1

Figure 4-20. Function Object Format
The function object contains the code for a function. Registers AO and IDO point to the function while it is execut-
ing. The third word contains the size of the message expected by the function or NIL it the size is not known or the
function expects a variable number of arguments. The compiler initializes that word, but the operating system
does not check it against the size of tne message that invoked the function; that check would add at least five in-
structions to the function dispatch time.

0 MSG Reply 4

1 ID Context ID for reply

2 INT Context slot for reply

3 Reply Value

Figure 4-21. Reply Message Format
The Reply message carries the reply value to the specified slot in the specified context. The context ID and reply
slot may not be N IL---if they were NI L in the App l y message, no Rep! y message is sent.

Functions return results to their callers via Reply messages (Figure 4-21). If a function re-
turns multiple values, it sends one Reply message for each value returned. The Reply han-
dler on the caller's node performs the following processinz when it receives the message:

1. The value from the message is stored over the cfuture in the caller's context. However, if
the slot indicated in the Reply message did not originally contain a cfuture, the Reply han-
dler halts because some function replied twice to the same slot or the compiler generated in-
correct code.

2. The CFUT-tagged link field in the caller's context is checked against the slot number of
the newly updated slot. If the numbers match, the context is resumed; otherwise, the Reply
handler exits because the context is waiting for some other event.

Actually, for reasons of efficiency the check in (1) is done only if the slot number in (2) doesn't
match.

Utilities

The operating system kernel currently contains three utilities: a divide routine, a closure
maker, and a closure evaluator. The Divide system call divides one integer by another and
returns the quotient and remainder using the sign conventions described in Appendix A. The
divide routine includes considerable overhead to evaluate all signed 32-bit results correctly,
including special cases such as dividing -$80000000 by I or -1 because a large-integer
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package might be implemented on top of the normal integer arithmetic routines sometime in
the future.

NewClosure, the closure maker, allocates and returns a new closure object (Figure 4-22) on
the local heap. The caller should then initialize the closure's display arguments before using
the closure.

CallClosure is the function called by a closure when it is invoked as a function. CallClo-
sure calls the function specified in the closure with the additional display arguments in the
closure.

It is true that Divide and NewClosure could have been implemented as functions instead of
system calls; however, these routines are used frequently enough and are short enough that
it was decided that it would be best to make them readily available whenever they are
needed. The additional overhead that would be required in making a function call is compa-
rable to the time it takes to divide two numbers or allocate e new closure object.

0 OBJ Flagsl classFunction Length

1 ID Closure ID

2 INT Incoming message size or NIL

3 INST CALL callClosure

4 ID Function ID

5 Display Argument 0

6 Display Argument 1

n+4 Display Argument n-1

Figure 4-22. Closure Format
Closures are treated just like functions by Concurrent Smalltalk and the control manager. When !he contro! ran-
ager calls a closure, it executes the instruction at offset 3, which is a calicl osure system call. That system call
forwards the message appended with the display arguments included in the closure to the function with the ID
specified in the word with offset 4 in the closure.

MDP Runtime

The MDP runtime system contains utilities for which it is not important that they reside on
every node. Currently the MDP runtime system includes a method lookup routine and two
routines that allocate distributed objects and are described below.

Distributed Objects

A distributed object is an object composed of many constituents. A message sent to the group
name of a distributed object arrives at a constituent chosen by the operating system; the
hope is that the operating system chooses the constituents evenly enough so as not to over-
load some constituents and underutilize others. In addition, each constituent of a distributed
object is itself a Concurrent Smalltalk object.

Distributed objects are supported by the global object manager and the MDP runtime sys-
tem. The MDP runtime system handles allocation of distributed objects, while the global ob-
ject manager handles accessing constituents of distributed objects.
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Implementation
Each distributed object is implemented solely as a set of constituent objects; there is no
"group" data for a distributed object anywhere in the system. The group name of a dis-
tributed object contains enough information to permit quickly finding the ID of any of its
constituents as well as a convenient way to find a nearby constituent. The structure of the
group name is shown in Figure 4-23.

3 333 11 11
5 210 65 10 0

DID Ill Serial Number Lg(St ride) ILinear Home Node Number

Figure 4-23. Distributed Object Group ID
The group ID (DID) cortains the distributed object's serial number, linear *home' node number (explained in
Figure 4-24), and a signed base-2 logarithm of the distributed object's stride, which is the ratio S of the number of
nodes in the J-Machine to the physical number of constituents. Both the physical number of constituents and the
number of nodes in the J-Machine must be powers of two. The Lg(S) field is signed and 5 bits long, ranging from
-16 (S=1/65536; 65536N constituents on an N-node J-Machine) to 15 (S=32768; 1 constituent for every 32768
nodes) by powers of two. The linear home node number H must be less than S. The kth constituent, counting
from k=O, is located on the node with the linear number H+LkSJ.
If the stride S is 1 or greater, each constituent object has the same serial number as the group object. If S is less
than 1, several constituents reside on every node in the J-Machine, and more than one serial number is required
to distinguish them. Hence, the distributed object reserves 1/S consecutive constituent serial numbers, and the
kth constituent has serial number N+(k mod 1/S) and resides on the node with the linear number LkSJ. where N is
the group name's serial number. H should be zero in this case.

The linear home node number is used to distributed sparse distributed objects evenly
throughout the J-Machine. The linear home node number is always zero for dense dis-
tributed objects (ones with stride 1 or less).

The physical size of a distributed object has been constrained to be a power of two for two
reasons. First, it is desirable to be able to find any constituent from just the information con-
tained in the DID, and encoding an arbitrary distributed object size in the DID would require
too many bits; recording the logarithm of the size requires only five bits for any potential
size. Second, unless some radically different addressing scheme were used, distributing the
constituent objects evenly throughout the J-Machine would require a division operation ei-
ther in the Co routine or in the PreferredConstituentl routine.

A variant of the current scheme has been considered in which the constituents above the
logical size of the distributed object are not created. The Co system call would work fine in
such a scheme (except that its range checking would no longer be valid), but the Preferred-
Constituent routine might return a nonexistent constituent of the distributed object, and
since it does not know the logical size of the distributed object, it would not know that the
constituent does not exist. It could, howevwr, inquire at the constituent's home node, at the
expense of complicating and slowing down the implementation of distributed objects in Cos-
mos. This variant may be adopted if the loss of memory caused by rounding the sizes of dis-
tributed objects up to powers of two becomes too large.

Another consequence of rounding the sizes of distributed objects up to powers of two is that
the MDPs with high node numbers contain mostly unused constituents. This difficulty could
be alleviated by always allocating a 11-bit random "home" node number, and adding that
number to the node number of the constituent modulo the size of the J-Machine, at the ex-
pense of complicating the Prefer redConstituent routine somewhat. If a J-Machine has
more than 2048 nodes, bits could be stolen from the serial number field and added to the
home node number field. To avoid placing too severe a restriction on the number of dis-

'1PreferredCorstA ituent returns the ID of a constituent near to the current node.
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3 333 11 11
5 210 65 10 0

DID 11 $1328 7 $49

ICnstituent 5 (5<<7)+$49 = $2C9

SLinear Node Number $2C9i

3 33 3
5 210 0 5 0:

ID 1 $1328 00 0 ...0 . .. 0 0 ...... ... 0

Figure 4-24. Looking up a Constituent in a Sparse Distributed Object
This figure illustrates the cc system call looking up constituent 5 in a 16-constituent distributed object on a 2048-
node J-Machine organized as 16x16xS. The stride is 2048/16=128, so lg(stride) is 7. Constituent 0 is located on
the node with the linear number $49. The distributed object's serial number is $1328.
Since the stride is greater than 1, the constituent number 5 is multiplied by the stride 128 and added to $49 to get
constituent 5's linear node number, $2C9. The dimensions in the linear node number are packed together to
simplify arithmetic operations; the co system call unpacks them to get the constituent's ID.

tributed objects in the system, NewDistobj could use both the home node number and the
serial node number fields to distinguish distributed objects.

Locating Constituents

The Co system call implements Concurrent Smalltalk's co primitive. To find the kth con-
stituent ID of a distributed object, the global object manager shifts k by lg(stride) bits to the
left and adds the linear home node number to obtain the constituent's linear node number
and ANDs k with a right-justified mask of max(-lg(Stride),O) ones and adds it to the serial
number from the group object to obtain the constituent's serial number (see Figures 4-24 and
4-25).

When a message is sent to the group name, the translatioi. from the group name to a con-
stituent object happens transparently in the global object manager. The PreferredCon-
stituent system call also performs this translation. Just like any ID-to-physical-address
translation, the object manager first checks the XLATE table. If it finds a match for the DID
there, it immediately returns the physical address from the XLATE table. If not, it con-
structs the ID of a nearby constituent by appending the group serial number to the local lin-
ear node number with the lowest max(lg(Stride),O) bits replaced with the lowest bits from the
group linear home node number. Then the resulting constituent ID is looked up in the usual
object manager manner. If a physical address of the constituent is found, it is entered into
the XLATE table bound with the DID to accelerate the lookup next time.

The above algorithm deterministically maps every node in the J-Machine to exactly one con-
stituent of the distributed object. Having such a deterministic mapping is important because
a method running on a distributed object may reference the distributed object several times
during its execution, and it is very important that it get the same constituent every time.
For example, the method might be suspended while accessing fields of a constituent. When
the method restarts and references the constituent again, it is important that it refer to the
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3 333 11 11
5 210 65 10 0

DID 1 $1328 -6 0

Constituent 25000 (25000>6)+O = $186

1328 + 25000 MOD 26 =$135 ii-""W'i"

ID 1 $1350 0 0 0 0 1 0.0 00: 0 1 1 0

z ...... . X.

Figure 4-25. Looking up a Constituent in a Dense Distributed Object
This figure illustrates the co system call looking up constituent 25000 in a 131072-constituent distributed object on
a 2048-node J-Machine organized as 16<16x8. The stride is 2048/131072=1/64, so lg(stride) is -6. The home
node number should be zero in a dense object. The distributed object has a block of 64 reserved serial numbers
starting with $1328.
The constituent number 25000 is multiplied by the stride 1/64 and added to 0 to get constituent 25000's linear
node number, $186. The constituent's serial number is determined by calculating 25000 MOD 64 and adding it to
the base serial number. As before, the dimensions in the linear node number are unpacked to get the con-
stituents ID.

same one. Since processes can't migrate across nodes, the function will, in fact, refer to the
same constituent every time it translates the DID to a physical address.

The above mapping will utilize the distributed object's constituents uniformly if calls to the
distributed object come from a uniform distribution of nodes, unless the stride is less than
one, in which case only one distributed object representative is chosen per node. If the MDPs
were arranged in a linear array, the above mapping would always yield either the closest or
the second-closest constituent to a given node. Since the MDPs are actually arranged in a
two or three-dimensional mesh, the mapping will tend to cluster the constituents in lines or
planes of the mesh, which may or may not produce favorable communication patterns. Over-
all, though, the current mapping approach does have the advantage of simplicity, and it is
useful for small-scale J-Machines.

Allocating Distributed Objects

(NewDistobj class:class size:integer) :distobj Function

Distributed objects are allocated by calling the NewDistobj function in the MDP runtime
system. That function first checks whether it was called on node 0; if not, it forwards its
message to node 0, and the function is invoked there. If invoked on node 0, the function cal-
culates the physical size of the distributed object by rounding the given logical size size to the
nearest higher p-wer of two. Then the stride is computed by dividing the number of MDPs in
the J-Machine by the physical size; since the relevant numbers are all powers of two, the
computations are done using base-2 logarithms. Max(]/stride, 1) consecutive distributed ob-
ject serial numbers are allocated for this distributed object, and a random home node is cho-
sen between 0 and Fstrideýl, inclusive. A global variable is used to maintain the next free
DID number. Finally, a DID is constructed from the above information, and a NewDistobj-
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Tree message is sent to the zeroth constituent of the distributed object (which does not exist
yet, but the Co function can calculate its ID anyway). When that message returns, the DID
is returned to the caller.

(NewDistobjTree class:Class size:integer ID:distobj start ,logDelta:integer) :null
Function

NewDistobjTree creates constituents numbered start through (start+2i°gI1a_1) of the dis-
tributed object with the DID ID and then returns. Each constituent has group, index, and
logical size instance variables, which are initialized to the appropriate values; size is the logi-
cal size. NewDistobjTree works by creating the constituent start if logDeha is zero or by re-
cursing itself on the two halves of its range if logDeha is positive.

The current implementation will have to be extended on a larger system so as not to bottle-
neck node 0, but it is adequate for small and medium-range systems.
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4.4. Summary

The Cosmos operating system provides the software extension to the MDP architecture
needed to run Concurrent Smalltalk programs. The operating system is comprised of a ker-
nel resident on each MDP and a set of Concurrent Smalltalk functions written in either MDP
assembly language or Concurrent Smalltalk.

The operating system is built in layers which include the heap manager, BRAT manager,
object manager, context manager, global object manager, method manager, control manager,
utilities, and MDP and CST runtime systems. Efficiency and re-entrancy problems were re-
curring issues in the design of the operating system kernel. The criticality system was de-
veloped to deal with the re-entrancy and double faulting problems. In addition, many rou-
tines are inlined in other routines to make the efficiency reasonable and avoid double faults
and re-entrancy problems (in some cases a system call cannot call another system call but
can use it inlined because there are no more free data registers on the MDP; global variables
cannot be used as temporaries in routines running at criticality less than 2).

The operating system facilities were streamlined and simplified compared with those pro-
posed in [381. The emphasis was on making resource allocation decisions as late as possible.
Thus, the size of the BRAT is varied dynamically at run time instead of being fixed at operat-
ing system compile time as in [38]. The object migration protocol has been streamlined com-
pared with the one in [381. The resource wait table in [38] has been eliminated entirely; the
BRAT manager is a general-purpose mechanism that can perform the same task better.

Finally, a scheme for quickly addressing constituents of distributed objects was designed.
The scheme is very fast and requires only knowledge of a group ID to find either some nearby
constituent or any given constituent. Disadvantages of the scheme include the necessity of
rounding the size of a distributed object up to the nearest power of two and a resulting de-
creased load on the higher-numbered MDPs in the J-Machine. Means of circumventing these
disadvantages were explored.
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Chapter 5. Sample Program

This chapter presents the progress of a simple program through the various stages of compi-
lation. Unfortunately, it is difficult to write a simple sample program that exercises all of the
features of a compiler. Instead of trying to write a contrived sample program that exercised
as many features as possible, I decided that a simpler program that exercised the major op-
timizations would make a better example. If an illustration of a more esoteric optimization is
desired, one can write an appropriate Concurrent Smalltalk program, compile it with Opti-
mist II, and watch the intermediate output.

The source program, listed in Figure 5-1, returns the sum of the integers from 0 to n. Figure
5-2 shows a transcript of the interactive Optimist II session in which the program was en-
tered, tested on a few inputs, and then compiled.

(defmethod average integer (b:integer)
(U/ (+ self b) 2))

(defmethod average boolean (b:boolean)
false)

(defmethod rangesum integer (high)
(if (- self high)

self
(let ((middle (average self high)))

(+ (rangesum self middle)
(rangesum (+ middle 1) high)))))

(defun sum (n)
(rangesum 0 n))

Figure 5-1. The Rangesum Program
The sum function adds the integers from 0 to n, inclusive. The rangesum method adds the integers from self to
high, inclusive. The average method returns the average of two integers; the definition of average for booleans
was included just to confuse the compiler a bit.

CST: (+ 2 2)
*<Integer 4>
CST: (include)
#<Cst-Lambda 5024988 SUM>
CST: (mum 0)"*<Integer 0>
CST: (muM 1)
*I(nteger I>
CST: (sum 2)
*<Integer 3>
CST: (mum 10)
I<Integer 55>
CST: (average 3 5)
*<Integer 4>
CST: (average true false)
"* False>
CST: (mum 100)
#<Integer 5050>
CST:(rangeesin 10 13)
$<Integer 46>
CST: (compile mum "::fact:Rangemua.mdp")

Optimizinz *<Cst-Lamnda 4713968 CST::SUM>
Expanded continuations
Folded constants
Forwarded replies

Optrimizing #<Cst-Lambda 471:636 CST::RANGESU'M>
','ilapsed nconcurrentlys
Expanded cont -uat• ions
Specialized local type.
Deleted moves
Deleted touches
Folded constants

Optimizing #<Cst-Lambda 4709940 CST::AVERAGE>
Expanded continuations
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Specialized local types
Deleted locals

Back to #<Cst-Lambda 4711636 CST::RANGESUM>
Substituted Inlmnes
Specialized local types
Deleted moves
Deleted touches
Propagated values
Deleted dead definitions
Deleted locals

Back to #<Cst-Lambda 4713968 CST::SUM>
Deleted locals
Inserted ENTER and EXIT
Split statements
Optimized built-ins
Inserted ENTER and EXIT

Generating code

Assembling
Initialized vlocs

Printing
Assigned labels

Generating code

Assembli ing
Inserted branches
Initialized vlocs
Compacted SENDs

Printing
Assigned labels
#<Cst-Lambda 4713968 SUM>

Figure 5-2. Rangesum Interactive Session
The Rangesum file was read in the (include) directive, at which time the user interactively chose the file namet us-
ing a Macintosh dialog. A few functions were then tested, after which point the file was compiled.

The following sections will illustrate the actions of some of the compiler's optimizations on
the program in Figure 5-1. Please refer to Chapter 3 and [211 for explanations of the trans-
formations.

Initial Phase

The initial phase of the compiler first performs a few macro expansions on the input pro-
gram, compiles the program into hcode, and then performs some transformations on that
hcode to get it into a form that the rest of the compiler can use. Figure 5-3 shows the
macroexpansions which are done by the Optimist II parser, and Figure 5-4 shows the hcode
produced by the parser. To save space, only the transformations on the rangesum method
will be shown from this point on.

Optimization Phase

The Optimist II optimization phase performs local and global optimizations on the program.
The order of the optimizations can be seen in the transcript in Figure 5-2; the compiler often
interrupts the optimization of one function to optimize another because it wants to inline the
second function in the first.

The first transformation done by the optimization phase is the collapsing of nconcurrentlys
and the expansion of continuations to the two-variable format, yielding the hcode in Figure 5-
5. The threads of the nconcurrently are inlined in the function's main body, and the nconcur-
rently statement is removed. Then, since an MDP continuation is actually two words (a con-
text ID and an offset within that context where the return value should be stored), each con-
tinuation variable is replaced by two variables.
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(defmethod rangesum integer (high)
(if (- self high)

self
(let ((middle (average self high)))

(+ (rangesum self middle)
(rangesum (+ middle 1) high)))))

(DEFMETHOD RANGESUM INTEGER (HIGH):§:OBJECT
(IF (- SELF HIGH)

SELF
(LET ((MIDDLE (AVERAGE SELF HIGH)))

(+ (RANGESUM SELF MIDDLE) (RANGESUM (+ MIDDLE I) HIGH)))))

(DEFMETHOD RANGESUM INTEGER (HIGH)::(CONTINUATION:I:OBJECT)
(IF (- SELF HIGH)

SELF
(LET ((MIDDLE (AVERAGE SELF HIGH)))

(+ (RANGESUM SELF MIDDLE) (RANGESUM (+ MIDDLE 1) HIGH)))))

(BEGIN
(DEFSELECTOR RANGESUM)
(ADD-METHOD RANGESUM INTEGER

(METHOD-LAMBDA INTEGER (HIGH)::(CONTINUATION:#:OBJECT) &NAME RANGESUM
(IF (- SELF HIGH)

SELF
(LET ((MIDDLE (AVERAGE SELF HIGH)))

(+ (RANGESUM SELF MIDDLE) (RANGESUM (+ MIDDLE I) HIGH)))))))

(LAMBDA (SELF:INTEGER HIGH)::(CONTINUATION:f:OBJECT) &NAME RANGESUM
(_WITH-OBJECT (SELF:INTEGER)

(IF (- SELF HIGH)
SELF
(LET ((MIDDLE (AVERAGE SELF HIGH)))

(+ (RANGESUM SELF MIDDLE) (RANGESUM (+ MIDDLE 1) HIGH))))))

Figure 5-3. Rangesum Macroexpansion
The rangesum function is first macroexpanded through two macros that add the class of the continuation to the
defmethod syntax (see Section A.5). Then the defmethod itself is expanded into a combination of a defse-

lector and an add-method ofa method-lambda. Later the method-lambda is expanded into a lambda.

(LAMBDA CST::RANGESUM
(#<Parameter CST::SELF *<P-Class CST::INTEGER>
#<Parameter CST::HIGH #<S-Class CST::OBJECT-)

(#<Parameter CST::CONTINUATION #<Cont-Type #<S-Class CST::OBJECT>>>)

(((LOCAL 435) *<S-Class CST::OBJECT>(
((LOCAL 434) *<S-Class CST::OBJECT>)
((LOCAL 433) O<S-Class CST::OBJECT>)
((LOCAL 432) #<S-Class CST::OBJECT>(
((LOCAL CST::MIDDLE) *<S-Ciass CST::OBJECT>)
((LOCAL 431) * <S-Class CST::OBJECT) )
((LOCAL 430) I<S-Class CST::OBJECT>)
((LOCAL 429) #<S-Class CST::OBJECT>)
((LOCAL CST::SELF) #<P-Class CST::INTEGER>)
((LOCAL CST::HIGH) #<S-Class CST::OBJECT>)
((LOCAL CST::CONTINUATION( I<Cont-Type #<S-Class CST::OBJECT>))

(ASSERT-TYPE *<P-Class CST::INTEGER> (LOCAL CST::5ELF))
(APPLY ((LOCAL 429))

(f<Built-In-Selector CST::-> (LOCAL CST::SELF) (LOCAL CST::HIGH))(
(IF :FALSE (LOCAL 429) 2587)
(MOVE (LOCAL 430) (LOCAL CST::SELF))
(JUMP 2611)
(LABEL 2587)
(APPLY ((LOCAL 431)) ((GLOBAL CST::AVERACE) (LOCAL CST::SELF) (LOCAL CST::HIGH)
(MOVE (LOCAL CST::MIDDLE) (LOCAL 431))
(TOUCH (LOCAL CST::MIDDLE))
(NCONCURRENTLY

(((APPLY ((LOCAL 433))
(W<Built-In-Selector CST::-> (LOCAL CST::M:DDLE) #<Integer 1>))

(APPLY ((LOCAL 434)) ((GLOBAL CST::RANGESUM) (LOCAL 433) (LOCAL CST::HIGH)))
((APPLY ((LOCAL 432))

((GLOBAL CST::RANGESUM) (LOCAL CST::SELF) (LOCAL CST::MIDDLE))))))
(APPLY ((LOCAL 435)) (*<Built-In-Selector CST::-> (LOCAL 432) (LOCAL 434)))
(MOVE (LOCAL 430) (LOCAL 435))
(LABEL 2611)
(MOVE (CONT-REF LOCAL CST::CONTINUATION) (LOCAL 430)))

Figure 5-4. Initial Rangesum Hcode
This hcode is the final output of the initial phase. The lambda is comprised of the two parameters (self and high),
a return (continuation), no display parameters, a list of local variables, and a representation of the hcode digraph

Next, the compiler starts the iterative optimizations. The first successful one is local type
specialization, which uses type dataflow analysis to detect the fact that local 429 always
holds a boolean value, so it changes local 429's type to boolean.
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(LAMBDA CST::RANGESUM
(DPa ramet er CST: :SELF #<P-Class CST: :INTEGER>
#<Parameter CST: :HIGH #<S-Class CST: :OBJECT>)
(#Parameter CST: :CONTINUATION *<Cont-Type I<S-Class CST: :OBJECT>>>)

(((OA 3)#SCls S:OJC>
(((LOCAL 435) i<S-Class CST::OBJECT>)
((LOCAL 434) #<S-Class CST::OBJECT>)
((LOCAL 433) *<S-Class CST::OBJECT>)
((OCAL 432) IDLE #<S-Class CST::OBJECT>)
((LOCAL 431)::MIDOlE( *<S-Class CST:BEC>
((OCAL 431) *<S-Class CST::OBJECT>z)
((LOCAL 430) #<S-Class CST::OBJEC?>)

((OCAL CST::SELF) *<P-Class CST::INTEGER>)
((OCAL CST::(4IGH) #<S-Class CST: :OBJECT>)
((OCAL CST::CONTINUATION) #<Cont-Type #<S-Class CS?: :OBJECT>(
((OCAL CST::CONTINUATION) I<P-Class CS?: :CONTEXT>(
((OCAL CST: :CONTINUATION) O<Dlsp-Type *<S-Class CST: :OBJECT)i)
(ASSERT-TYPE #<P-Class CST::INTEGER> (LOCAL CST: :SELF)(
(APPLY ((LOCAL 429))

(#<Built-Iri-Selector CST::-> (LOCAL CST::SELF) (LOCAL CST::HIGH)))
(IF :FALSE (LOCAL 429) 2581)
(MOVE (LOCAL 430) (LOCAL CST::SELF)(
(JUMP 2611)
(LAB41L 2587)
(APPLY ((LOCAL 431)) (#<Selector CST::AVERAGE> (LOCAL CST::SELF) (LOCAL CST::HIGH)))
(MOVE (LOCAL CST::MIDDLE) (LOCAL 431))
(TOUCH (LOCAL CS?::MIDDLE))
(APPLY ((LOCAL 433)) (@BUilt-In-Selector CST::-> (LOCAL CST::MIDOLE) *<Integer l>))
(APPLY ((LOCAL 434)) W@Selector CS?::RANGESUM> (LOCAL 433) (LOCAL CST::HIGH)l(
(APPLY ((LOCAL 432)) (I<Selector CST::RANGESUM> (LOCAL CS?::SELF( (LOCAL CST::MIOOLIE)))
(APPLY ((LOCAL 435)) )9<Built-In-Selector CST::-> (LOCAL 432) (LOCAL 434)))
(MOVE (LOCAL 430) (LOCAL 435))
(LABEL 2611)
(MOVE (CONT-REF (LOCAL CST::CONINUAION) (LOCAL CST::CONINUA'FION)( (LOCAL 431)))

Figure 5-5. Hcode afrter Intitial Transformations
The nconcurrently statement has been broken into its threads, and two variables assigned to hold (he continuation.
The two new continuation variables have the same name as the single old continuation variable, which is still pre-
sent, but the compiler does not get confused over variable name conflicts.

(LAMBDA CST::RANGESUM
(#<Parameter CST::SELF #<P-Class CST::INTEGER>
W<aranmeter CS?::HIGH *<S-Class CST::OBJEC?>(

(#<Parameter CS?::CONTINUAION OcCont-Type ICS-Class CST::OsjEC?»>(>

(((LOCAL 435) #<S-Class CS?: :OBJECT>(
((LOCAL 434) 0<5-Class CS?::OBJEC?>)
((LOCAL 433) #<S-Class CST::OBJECT>)
((LOCAL 432) *<S-Class CS?::OBJEC?>(
((LOCAL CST::MIODLE) *<S-Class CS?::OBJEC?>)
((LOCAL 431) 0<S-Class CST::OBJEC?>(
((LOCAL 430) I<5-Class CS?: :OBJECT>)
((LOCAL 429) *<P-Class CS?::BOOLEAN>(
((LOCAL CS?::SELF( #<S-Class CS?: :OBJEC?>(
((OCAL CST::HIGH) *<S-Class CS?: :OBJEC?>)
((OCAL CS?::CONINUAION( *<Cont-?ype 0<S-Class CS?: :OBJECT>(
((OCAL CS?: :CONTINUATION) *<P-Class CST: :CONTEX?>)
((OCAL CST::CONTINUATION) #<Disp-Type 0<S-Class CST: :OBjECT>)(
(ASSERT-TYPE *<P-Class CST::INTEGER> (LOCAL 435))
(APPLY ((LOCAL 429)) (5<Built-In-Selector CST::-> (LO(1AL 435) (LOCAL CST::HIGH)()
(IF' :FALSE (LOCAL 429) 2587)
(JUMP 2611)
(LABEL 2587)
(APPLY ((LOCAL 431)) (#<Selector CS?::AVERAGE> (LOCAL 435) (LOCAL CST::HIGH)))
(APPLY ((LOCAL 433)) (#<Built-In-Selector CST::-> (LOCAL 431) $<Integer 1>))
(APPLY ((LOCAL 434)) W0Selector CS?::RANCESUM> (LOCAL 4331 (LOCAL CST:J.'iGH)))
(APPLY ((LOCAL 432)) (#<Selector CS7::RANGESUM> (LOCAL 435) (LOCAL 431)))
(APPLY ((LOCAL 435)) )0<Built-In-Selector CST::-> (LOCAL 432) (LOCAL 434)))
(LABEL 2611)
(MOVE (CONT-REF' (LOCAL CS?::CONINUATION) (LOCAL CST::CONTINUATION)) (LOCAL 435)))

Figure 5-6. Locally Optimized Hcode
This hcode has been fully optimized using the optimizations in the original Optimist compiler. Note that due to
move elimination the self parameter is no longer stored in the old self local; instead, a new local numbered 435 is
now used to hold the self value.

Afterwards, the standard data flow optimizations described in 121] remove a few moves and a
touch to yield the hcode in Figure 5-6. Then the constant folder realizes through type infer-
ence that only one possible method of the rangesum and average selectors could be called, so
it replaces the method calls with direct function calls (Figure 5-7).
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(LAMBDA CST::RANGESUM
(:<Parameter CST::SELF I<P-Class CST::INTECER>

<Pararmeter CST::HIGH " S-Ciass CST::OBJECT>)
(W<Parameter CST::CONTINUATION *<Cont-Type *<S-Class CST::OBJECT>>>)
()

(((LOCAL 435) #<S-Class CST::OBJECT>)
((LOCAL 434) #<S-Class CST::OBJECT>)
((LOCAL 433) #<S-Class CST::OBJECT>)
((LOCAL 432) #<S-Class CST::OBJECT>)
((LOCAL CST::MIDDLE) I<S-Class CST::OBJECT>)
((LOCAL 431) #<S-Class CST::OBJECT>)
((LOCAL 430) #<S-Class CST::OBJECT>)
((LOCAL 429) #<P-Class CST::BOOLEAN>)
((LOCAL CST::SELF) #<S-Class CST::OBJECT>)
((LOCAL CST::HIGH) #<S-Class CST::OBJECT>)
((LOCAL CST::CONTINUATION) #<Cont-Type #<S-Class CST::OBJECT>)
((LOCAL CST::CONTINUATION) #<P-Class CST::CONTEXT>)
((LOCAL CST::CONTINUATION) $<Disp-Type #<S-Class CST::OBJECT>))

(ASSERT-TYPE #<P-Class CST::INTEGER> (LOCAL 435))
(APPLY ((LOCAL 429)) (#<Built-In-Selector CST::-> (LOCAL 435) (LOCAL CST::HIGH)))
(IF :FALSE (LOCAL 429) 2587)
(JUMP 2611)
(LABEL 2587)
(APPLY ((LOCAL 431)) ((LAMBDA CST::AVERAGE) (LOCAL 435) (LOCAL CST::HIGH))]
(APPLY ((LOCAL 433)) (#<Built-In-Selector CST::+> (LOCAL 431) #<Integer 1>))
(APPLY ((LOCAL 434)) ((LAMBDA CST::RANGESUM) (LOCAL 433) (LOCAL CST::HIGH)))
(APPLY ((LOCAL 432)) ((LAMBDA CST::RANGESUM) (LOCAL 435) (LOCAL 431)))
(APPLY ((LOCAL 435)) (#<Built-In-Selector CST::+> (LOCAL 432) (LOCAL 434)))
(LABEL 2611)
(MOVE (CONT-REF (LOCAL CST::CONTINUATION) (LOCAL CST::CONTINUATION)) (LOCAL 435)))

Figure 5-7. Hcode after Global Constant Propagation
The constant propagator found that the average and rangesum method calls would always invoke the same meth-
ods, so it replaced them with function calls.

(LAMBDA CST: :AVERAGE
(#<Parameter CST::SELF *<P-Class CST::INTEGER>
#<Parameter CST::B O<P-Class CST::INTEGER>'

(W<Parameter CST::CONTINUATION #<Cont-Type #<S-Class CST::OBJECT>>>)

((LOCAL 424) -Class CST::INTECER>)
((LOCAL 423) #<P-Class CST::INTECER>)
((LOCAL CST::SELF43 -Class CST::INTEGER>)
((LOCAL CST::B) #<P-Class CST::INTEGER>)
((LOCAL CST::CONTINUATION) *<P-Class CST::CONTEXT>)
((LOCAL CST::CONTINUATION) #<Disp-Type #<S-Class CST::OBJECT>))

(ASSERT-TYPE *<P-Class CST::INTEGER> (LOCAL CST::SELF))
(APPLY ((LOCAL 423)) (#<Built-In-Selector CST::,> (LOCAL CST::SELF) (LOCAL CST::BU))
(APPLY ((LOCAL 424)) (I<Built-ln-Selector CST:://> (LOCAL 423) l<Integer 2>))
(MOVE (CONT-REF (LCZAL CST::CONTINUATION) (LOCAL CST::CONTINUATION)( (LOCAL 424)))

Figure 5-8. Optimized Average Hcode
The average method for integers has been optimized in an attempt to inline it inside rangesum..

Next, the optimizer attempts to inline the average and rangesum functions. Due to the an-
tirecursion restrictions, it cannot inline rangesum inside itself, but it is more successful with
average. In order to inline average, it first optimizes it, yielding the hcode in Figure 5-8.
Then it checks that the inlining heuristics are satisfied-they are because the optimized av-
erage contains only two primitive calls. Average does not perform any computation after it
replies, so all of the requirements for inlining have been satisfied. Therefore, the optimizer
inlines average inside rangesum to produce the hcode in Figure 5-9, which is optimized to the
hcode in Figure 5-10 at end of the general optimizations.
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(LAMBDA CST::RANCESUM
(#<Parameter CST*::SEL)F I*P-Ciass CST:.:INTEGER>
#<Parameter CST::HIGH #<S-Class CST::OBJECT>)
(#<Parameter CST::CONTINUATION *<Cont-Type *<S-Class CST::OBJECT»>>(

((LCL45)C)CasCS:OJC>
(((OCAL 435) #<S-Class CST::OBJECT>)
((OCAL 434) #<S-Class CST::OBJECT>)
((LOCAL 433) *'<S-Class CST,:OBJECT>)
((LOCAL 432) #<S-Class CST::OBJECT>)

((LOCAL 429) *<P-Class CST::BOOLEAN>)
((OCAL CS?::HIGH) *<S-Class CST::OBJEC?>(
M(C~rAL C:T::CONTINUATION) #<P-Class CST: :CONTEXT>)
((OCAL CST::CONTINUATTON) #<Oisp-Type f<S-Class CS?: :OBJECT>)
((OCAL 424) *<P-Class CST::INTEGER>)
((OCAL 423) *(P-Class CST::INTEGER>)
((OCAL CST::SELF) *<P-Class CST::INTEGER>)
((LOCAL CST::B) *1P-Class CST::INTEGER>(
((LOCAL 455) #<S-Class CST::OBJECT>))

(ASSERT-TYPE #<P-Class CST::INTEGER> (LOCAL 435))
(APPLY ((LOCAL 429)) (#<Built-ln-Selector CST::-) (LOCAL 435) (LOCAL CST::HIGH)))
(IF :FALSE (LOCAL 429) 2979)
(JUMP 2611)
(LABEL 2979)
(MOVE (LOCAL CST::B) (LOCAL CST::HIGH))
(MOVE (LOCAL CST::SELF( (LOCAL 435))
(TOUCH (LOCAL CST::B()
(TOUCH (LOCAL CST::SELF))
(ASSERT-TYPE #<P-Class CST.:TNTEGER> (LOCAL CST::SELF()
(APPLY ((LOCAL 423(( (#<Built-In-Selector CS?::'> (LOCAL CST::SELF) (LOCAL CS?::Bfl(
(APPLY ((LOCAL 424)) )(#Built-In-Selector CST:://> (LOCAL 423) #<Integer 2>))
(MOVE (LOCAL 455) (LOCAL 424))
(MOVE (LOCAL 431) (LOCAL 455))
(APPLY ((OCAL 433)) (#<Built-In-Selector CST*:,> (LOCAL 431; #<Integer 1>)))
(APPLY ((LOCAL 434)) ((LAMBDA CS?::RANGESUM( (LOCAL 433) (LOCAL CST::HIGH())
(APPLY ((LOCAL 432(( ((LAMBDA CST:.:RANCESUM( (LOCAL 435) (LOCAL 431(((
(APPLY ((LOCAL 435)) (1<Built-In-Selector CST::,> (LOCAL 432( (LOCAL 434)))
(LABEL 2611)
(MOVE (CONT-REE' (LOCAL CS?::CONTINUATION) (LOCAL CST::CONT:NUA-ION)) (LOCAL 435)))

Figure 5-9. Rangesum with Average Inlined
The integer average method has just been infined into rangesum.

(LAMBDA CST::RANGESLJM
(@<Parameter CST::SELF #<P-Class CS?::INTEGER>
#<Parameter CST::HIGH G<S-Class CST::OBJEC?>(
(I(Parameter CST::CONTINUATION OcCont-Type I<S-Class CST::OBJECT»>(>

(((LOCAL 435) I<5-Class CLS.:0BJECT>(
((LOCAL 434) *<S-Class CS?: :OBJECT>(
((LOCAL 433) #<P-Class CST::INEGER>)
((OCAL 432) *<S-Class CS?: :OBJEC?>(
((LOCAL 429) #<P-Class CS?::BOOLEAN>(
((LOCAL CST::HIGH) #<S-Class CS?: :OBJEC?>(
((LOCAL CST::CONTINUATION( #-ýP-Class CS?: :CONTEXT>(
((OCAL CST::CONrINUATION) *<Oisp-?ype §<5-Class CST::OBJECT>(
((LOCAL 424) #<P-Class CST::INEGER>)
((LOCAL 423) *<P-Class CS?::INEGER>()
(ASSERT-TYPE f(P-Class CS?::INEC;ER> (LOCAL 435))
(APPLY ((LOCAL 429)) (#<Built-In-Selector CST::-> (LOCAL 435) (LOCAL CS?::HID-H((
(IF :FALSE (LOCAL 429) 2541)
(JUMP 2611)
(LABEL 2541)
(ASSERT-TYPE *<P-Class CS?::INTEGER> (LOCAL 435))
(APPLY ((LOCAL 423)) (#<Built-1n-Selector CS?::.> (LOCAL 435) (LOCAL CS?::HIGH(((
(APPLY ((LOCAL 424)) (I<Bullt-In-Selector CS?::!!> (LOCAL 423) #<In~teger 2>))(
(APPLY ((LOCAL 433)) (6<Built-Iri-Selector CS?::+> (LOCAL 424) #dInteger 1>))
(APPLY ((LOCAL 434)) ((LAMBDA CST::RANGESU)M( (LOCAL 433) (LOCAL CS?::HIGH(((
(APPLY ((LOCAL 432)) ((LAMBDA CS?::RANGESUM) (LOCAL 435) (LOCAL 424)))
(APPLY ((LJCAL 435)) )IBuBilt-ln-Selector CS?::'> (LOCAL 432) (LOCAL 434)()
(LABEL 2611)
(MOVE (CONT-REF (LOCAL CS?::CONINUATION) (LOCAL CST::CONT:NUA2 ON)) (LOCAL 435))

Figure 5-10. Rangesum after General Optimizations
The rangesum hcode is now at the 'Optimized Hcode" stage in Figure 3-4.

The MDP-specific optimizations remove the assert-type hcode, reduce the division to a shift,
and insert entcr and exit hcodes to yield the final hcode in Figure 5-11.
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(LAMBDA CST: :RANGESUM
(#<Para meter CST::SELF *P-Class CST::INTEGER>
W~arameter CST::HIGH I<S-Class CST::OBJECT>)

(W<arameter CST: :CONTINUATION #<Cont-Type #<S-Class CST: :OBJECT>>>)

(((LOCAL 435) *<S-Class CST::OBJECT>(
((LOCAL 434) *<S-Class CS'r;:OBJECT>)
((LOCAL 433) *P-Class CS'. ::INTEGER>)
((LOCAL 432) #<S-Class CS.::OBJECT>)
((LOCAL 429) I<P-Class CST::BOOLEAN>)
((LOCAL CST::HIGH) i(S-Class CST::OBJECT()
((OCAL CST::CONTINUATION) W<-Class CST::CONTEXT>)
((OCAL CST::CONTINUATION) *<Disp-Type §<S-Class CST::OBJECT>(
((OCAL 424) W<-Class CST::INTEGER()
((LOCAL 423) *<P-Class CST::INTECER>((

(ENTER)
(APPLY ((LOCAL 429)) (1B'uilt-ln-Selector CST::.> (LOCAL 435) (LOCAL CST::HIGH)((
(IF :FALSE (LOCAL 429) 2547)
(JUMP 2611)
(LABEL 2547)
(APPLY ((LOCAL 423)) (#<Built-In-Selector CST::+> (LOCAL 435) (LOCAL CST::HIGHfl(
(APPLY ((LOCAL 424)) (9<Built-ln-Selector CST::ASH> (LOCAL 423) #<Integer -1>))
(APPLY ((LOCAL 433)) (#<Built-In-Selector CST::+> (LOCAL 424) @<Integer 1>))
(APPLY 11LOCAL 434)) ((LAMBDA CST::R.ANGESUM) (LOCAL 433) (LOCAL CST::I4IGH)((
(APPLY ((LOCAL 432)) ((LAMBDA CST::R.ANGESUM( (LOCAL 435) (LOCAL 424)))
(APPLY ((LOCAL 435)) (#<Builtl-n-Selector CST::+> (LOCAL 432) (LOCAL 434)))
(LABEL 2611)
(MOVE (CONT-REF (LOCAL CST::CONTiNUATION) (LOCAL CST::CONTINUATION)( (LOCAL 435))
(EXIT))

Figure 5-11. Final Hcode
This is the final hcode produced before itis compiled into MDP assembly language.

Compilation Phase

The compilation phase compiles each hcode in Figure 5-11 into MDP assembly instructions
and then peephole-optimizes and emits the resulting code to produce the MDPSim file in
Figure 5-12. There is no need to describe the transformations here, as an appropriate exam-
ple is in [21].

The definitions of the label numbers in Figure 5-12 contain expressions of the form LABEL
cabject=(5&mX)«<sXj (5&rnY)«<sYI (5&mZ)<<sZl (5&rn3)«s31 (5&m4)«<s41 (5&rn5)«<
s5. This expression means that cob ject is class with serial number 5. Nevertheless, since
objects should be distributed throughout the J-Machine, the bits in the class serial number 5
are permuted to map the low-order bits onto the bits denoting the x, y, and z network coordi-
nates of an object. This is done by the first half of the expression,
(5&mX)«<sX I (5&mY)«<sY I (5&mZ)«<sZ;rinx, IY,miZ, sx, sy, and sz are constants defined

by the operating system and depend on the dimensions of the J-Machine. The second half of
the expression, (5&m3)«<s3 I (5&m4)«<s41 (5&mn5)«<s5, maps the rest of the class serial
number bits onto the remaining bits. A similar expression, REF REV f Surn=ID: (-
2&mX)«<sX I (-2&mY)«<sY I (-2&rnZ)«<sz I (-2&mS)«<ss, is used to map objects onto nodes.

LABEL cObject-(5&rnX)<sXj (5&m~Y)<sY) (5&mZ(<<sZp (5inm3(cs3, (5&mi4)<<s4I (5&m5(<<s5
LABEL cClass-(8&mX)<'<sXI (B~mY(«sYI (BnZ(((sZI )B&rn.3(<s3i (8&rr'4((s4i (8fm5(<s5
LABEL cStandard-Class- (3&mX('(sXi (3&mY(<<sYi (3fmZ( <sZi(36irn3(<s3i (3&m4(c4s4i (3&m5(C'<s5
LABEL cPrlmltive-Class-(2&rnX((sX, (26nmY("sY!(2&mZ)<<sZI (2&rs3)<s3I (2&sm4ý<<s4l (21m5(C<s5
I-ABEL coistributedClass-(46rnX((CsXJ (4&rnY)<sYi (46rTZ)<<sZ. (4&m.3)<s31 (4&rn,4(<<s4I(4&m5)<s5
.BEL cSymbol- (7&mX) <sX I (7&mrYI <sY I (7&rnZ) <<sZ I ('7&m3) <<s3P (7&i'4) <<s4I (76ms5("<s5

LABEL cNull1(6&mX(('sXI (6&s'Y(<<sYI (6&isýZ(<sZI (6&,73)<<s3l(6&rn4((s41 (6&m5)<<s5
LABEL cFunct-(17&rmX(<<sXI(17&rmY)<sYi(17&*,sZ)<sZ, 1'7&m3)<s3p(V7Lm4)<«s4:(17&mf5(<s5
LABEL cSelector- (9LmX( ((sX (96r¶nY)<sY (9&ri'Z( CsZ (9&~rr3)<<s3 (9&r54) ((54i)9&m5( (s5
LABEL cMagnitude-(l8&mTX)<<sXI (1BrnY)<<sY (1B&mZ)ccsZ[ (B.8r1,3(<<s3, (I85rm4)<s4i (18I,5S("s5
LABEL cCharacter- (1O&mX) <<sX; (10&mY("<sY I (10&mZ(«<sZ 1(1O&rrt3) <<0 (1C0&m4)<<s4 i (11O&m5) <s5
LABEL cNulsber-(195rnX)<<sX! (.96rY)<<sY! (19&mZ)<<sZ, ('9&mi3((s3l(19&n,'(<<s4i (Ilgrn5(((s5
LABEL cReal=(20&rnX(C<sXI (2OrTY)((sYi (20O.2('<sZa (2C&rn,3(<s3I (2O&rm4(cs4l (2C~m5)<<s5
LABEL cltgr(lm)<~(I~n)<Y( m)<~~',m)<3(1,n)<~ (11&rT5(<<s5
LABEL cBoolean-(125mTX(«<sX[(I2&rT.Y((csYUI2(.2(cZ)<sZI(12&rn3)cs3I(l26M4(c<s41(12&fl5<<(S5
LABEL cFaise=(13&nr.X(<sXi(13&mY(<<sYi(13 mZ)<<sZ:r(3&yi.3)<s3.)l3&rs4)<<s4V(.36,!'.5(s5
LABEL cTrue-(14&mX(<<sXI(14&rnY)<sYI('4&n'.Z(<<sz!(I4&3(<s3I(14&m4(ccs4!(1ý4&rn,5)<s5
LABEL cFloat- (15&mX) <<sX I(15InmY) csY 1 05ri~Z <,sZ (' 5&ms3(<<s3 i(15&mA4((Cs4. (15fim5(C<<s5
LABEL c~nto-14X<sI1&~<sI16r)<s!1&r3<sý1&4<si1&5<s
LABEL c Closure-(2,&mX)<<sX (1&Y<si2&r)<s:2&,)<3(1&4<si~~5<s
LABEL c~ontext -(22&ymX) <<sX (22&iTmY) -sY, (22&rnZ) <sZ (22&m3) <(S31 (224m4)(<<s4: (22&rr.5) <s5
LABEL cDlsplacement -(231&mX("<sX (23&rrnY) csY (23&srZ('<sZ I (234m~3) <s3l (23&rr4) <<s4I (23&mT5) <<s5
LABEL cCorntinuat ion- (24&mX) <sX i (24&mY( <sY (24.&-.Z) <sZ (244,0)3(<<01 (24&rm4)<S41 (244r,5) <S5
LABEL cGlobal-(25&mX(((sX:(25&riYh<<sY )25&rmZ)-<sZ )256m3)<s3,(25&rs4(<S4 (251m5("<sS
LABEL cDistobj')26&r7nX(((sX' 26IerY(((sY) (26&m2)<<sZý(26Li,3)(cs3; (26Ls'4)<s4, (26&im5(Cs5
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REF REV ::IlPLUS -TACO: subSEL<<subtagN I (D~mx) <sX I (O~mY) <,sY i (O~mZ) <sZ I (O~m3) <s31 (O~n,4) <S4 I (O4rm5) <S5
REF REV 1eEQUAL-TAGO:subSEL<<subtagNl (l~mX)<<sXI (l&mY)<<sYI (l&mZ)<<sZI (1~m3)<<s3i (lrn4)<«s4l C1fm5)<s55
REF REV selAsh-TACO:subSEL((SubtagN; (26mX)<<sXI (2&mY)<SYI (2&mZ)<(sZI (2&m3)<<s3I (2&m4K<s4I (2&m5)<cs5
REF REV :Rangesum-ID: (-lfrnX)<<sXI -I-&MY)<CsYi (-ILmZ)"sZI (-lfmS)"<SS
RE REV tSumID0:(-2&mX)<<sXl (-2SmY?<<sYi (-2&mZ)"<sZl (-2&ZSS)(<sS

MODULE cObject
DC MSG:hdrCopyable IcStandard Class<<offsetN 15
DC TAGO~ subCLASS<<subtagN cOF)Ject
DC MSG:cObject<<offsetNi2
DC 1
DC TAGO:subCLASS<<subtagNI cObject
END

MODULE cClass
DC MSG:hdrCopyableicPrimistiveClass<<offsetNl6
DC TAGO:sUbCLASS<<subtagNl CClass
PC NIL
DC 2
DC TAGO,.subCLASS<<subtagNl cC lass
DC TACO: subCLASS<<subtagN I cot))ect
END

MODULE cStandard Class
DC MSG:hdrCopyablelcPrimitive_Class<<offfsetNl7
DC TAGO:subCLASS<<subtagNlcStandard_Class
DC NIL
DC 3
DC TAGO: subC LASS<< sumta gN:cSt and a rd _CI ass
DC TACC: subCLASS<<sucOta qN cC Iass
DCI TAGO: subC LASS<c<sum aqN, cob ýect
END

MODU LES for the rest or the classes deleted..

MODUýLE selPLUS
DC MSC:hdrCopyaole~cSeiector'cofl.se:N 3
DC iselPLUSi
DC C
END

MODULE selEQUAL.
DC MSG:hdrCopyablelcSelectorc~offsetNi3
DC i se 1EQUAL I
DC C
END

MODULE selAsh
DC MSG:hdrCopyableicSelector<<ofsetNI3
DC IselAsh)
DC C
END

MODULE ffRangesum
DC MSG:hdrCopyableicFunction<<offsetN128
DC tfRangesumj~
DC 6
MOVE J2,A3],RO 3
MOVE [2,A31,R3 3.5
EQUAL R3,(3,A3),R,
BT RI, ^LOOI .
ADD R3, 13,A3j,R-5
ASH R:,-1,R3 .
ADD R3,2,R2 6
MOVE R2,RO 6.
CALL objectNode7
DC MSG:msgApp~yFunctior. 6 8
SEND2O R!,R0
DC I f1angesum) C
SEND20 R0,R2
SFNDO [3,A31
MOVE 6,R0 12
SEN:'2 ED 2
wiTAG R0,6,RC 1
MOVE RC, :6,A,: 13.
MOVE ý2,A3;,RC,:
CALL obiectNode 14.5
DC MSG:msqApplylfunct'ont6 :
SENC?2C R1,RC :
DC i fRanqes.A' :

SENDO RD '.8
SEND2C :2,A3',R3 1.
MOVE 7,RO 19
SEND2EC :I,AII,RC 19.S
WTAG RC, 6,R RD'
MOVE RE, 17,AiI E.
MOVE [7,AlI,R? 2
ADP R2, '6,A1:.R" :'
MOVE Rl, f2,A31 22
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L001: MOVE [4,A31,R2 23
BN:L R2,-L002 23.5
DC MSG:msqRep~yI4 24
SEND20 R2,RO ; 25
SENDO R2 25.
SENDO 15,A3) 26
SENDE0 12,A31 ; 26.5

L002: SUSPEND ; 27
END

MODULE fSum
DC MSG:hdrCopyableicFunctlon<<offsetN 10
DC (fSuml
DC 5
MOVE 0,R0 3
CALL objectNode 3.5
DC MSG:msgApplyFunction[6 4
SEND20 RI,RO ; 5
DC (fRangesum} 6
SENDO RD 7
SENDO 0 7.5
SENT7O :2,A31 8
SENDO [3,A31 8.5
SEND.J (4,A31 9
SUSPEND 9.5
END

DOWNLOAD cObject
DOWNLOAD cClass
DOWNLOAD cStandard Class
DOWNLOA) cPrimitive Class
DOWNLOAD cDistributed Class
DOWNLOAD cSymbol
DOWNLOAD cNull
DOWNLOAD cFanct
DOWNLOA2 cSelector
DOWNLOAD cMagnituoe
DOWNLOAD -Character
DOWNLOAD cNumber
DOWNLOAD cReal
DOWNLOAD ctnteger
DOWNLOAD cBoolean
DOWNLOAD cFalse
DOWNLOAD cTrue
DOWNLOAD cFloat
DOWNLOAD cFunction
DOWNLOAD c Closure
DOWL.LOAD cContext
DOWNLOAD cDisplacement
DOWNLOAD cContinuatlor
DOWNLOAD cGlobal
DOWNLOAD cDistobj
DOWNLOAD selPLUS
DOWNLOAD seIEQUAL
DOWNLOAD selAsh
DOWNLOAD fRangesum
DOWNLOAD fSum

RUN

Figure 5-12 MDPSim Output File
Except for Cosmos, this file contains all code and data necessary to run sum on a J-Machine. The file starts with
class number definitions, which are followed b) definihons of the classes themselves, including the class hierarchy.
Thu selectors are defined next, followed by code and MDPSim statements that download all of the code, selector,
and class modules to the simulated J-Machine. T'.q RUN command runs the J-Machine until all modules have
been loaded.

Only the functions and selectors necessary to run the program have been compiled. For example, neither average
method has be, ' included because, after optimizaton, neither is necessary to run sum. Similarly, all method dis-
patches have been optimized out, so there is no need to include the definition of the rangesum selector.

Running Rangesum

Before rangesum can be run on MDPSim, a file holding the calls that will be done needs to be
defined; the file that was used is shown in Figure 5-13. Each MESSAGE directive defines an
ApplyFunction message that can be used to call the sum function. The argument is the
third word of the message, while the fourth and fifth v. crds contain a magic continuation that
cause the Reply message to be printed by MDPSim in the listener window. The MESSAGE
definitions can also be entered into MDPSim manually.
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Once the calls file is written, MDPSim can be started and used to run sum on a sample input.
An example session is shown in Figure 5-14, in which the input 10 is tried on sum, and the
statistics observed. The results will be discussed in more detail in Chapter 7.

MESSAGE suml
MSG:msgApplyFunctionl5

ffSum}
1

IONODE
0
END

MESSAGE sumlO
MSG:rnsgApplyFunctionl5

f Sum)
10
IONODE
0
END

MESSAGE sum50
MSG:rnsgApplyFunctionl5
{fSum)
50
IONODE
0
END

Figure 5-13. Rangesum Call File
Three messages have been defined for calling the sum function with the arguments 1, 10, and 50. IONODE is an
integer constant predefined by MDPSim and denotes the address of the MDP serving as the I/0 node between the
J-Machine and the outside world. In MDPSim, the I/0 node simply prints every message it receives.

NDPsin -a 2 -y 2 -msixo 0zl000 ::Coxmos:Cosaoa.m Ranq*Sum.mdp RangeSwm.calle

Message-Driven Processor Simulator
Version 7.0 Rev B
Accompanies MDP Aruhltecture Document lIB
Written by Waldemar Horwat
Architecture Updates by Brian Totty and Jerry Larivee
UROPs for Bill Daily

4 MDPs present.

@0..31watch fault all
@0..3jromettata
@0..31inject aunl0@l
@0..3)rua
Fault: @ 1: (faultxlatec)
Fault: @ 1: ISBBW} $008B - DC !itXLATi ;XLATE
Fault: @ 2: (lookupBlnding)
Fault: @ 2: 1BBBW) $00C6 - DC fltLookupBinaing ;$06
Fault: @ 1: (enterBinding)
Fault: @ 1: IBBBW) S0OC5 - DC fltEnterBindlng ;S05
Fault: @ 2: {blockSend)
Fault: @ 2: BBBWi SOOC2 - DC ;It02ockSend ;S02
Fault: @ 2: (faultLimit0)
Fault: @ 2: BBBWt S0088 - DC fltLirmit ;LIMIT
Fault: @ 1: (allocObject)
Fault: @ 1: BBBW) SCOC4 - D1C fltA.,oc~b-ect ;SC4
Fault: @ 1: (lOokupBind 4 r )
Fault: @ 2: BBBW! $00C6 - DC fltLookupBlnoinq ;S06
Fault: @ 1: (blockMove)
Fault: @ 1: BBBW) $SOCI - DC fttB.uckMove ;S01
Fault: @ 1: (fauitLlmltC)
Fault: @ I: IBBBW) 50088 - DC I :'-M'7
Fault: R :: (otjec:Node)
Fault: @ 1: iBBbW $0CD3 - DC flt1e'ec:No~e ;S:3
Fault: @ 2: ffaultXateCe )
Fault: @ 2: iB4BWý $008B -C ftXLA':E XLATE
Fault: 82: (1ookupB nd nrQ)
Fault: 8 2: 8BW, $COC6 - DC .. ccp;l..inq ;SC6
Fault: @ 2: (enterBI ndlr. )
Fault: @ 2: BBBWI S00C - DC fýtr!terBindinq ;$C5
Fault: @ 3: (Dboc Ser.a)
Eault: @ 3: IBBW- $CCC2 - C _tzSB,ocKS o :$C2
Fault: @ 3: (fa' iL l tUC
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Fault: @ 3: 4888W) $0088 - DC ffltLirnlt ;LIMIT

Fault: @ 2: (alloc~bject)
Fault: @ 2: 488BWi $00C4 - DC fltAllocObject ;S04

Fault: @ 2:. (lookupBlnding)
Fault: @ 2: (8BBWI $00C6 - DC fltLookup~inding ;$06
Fault: @ 2: (blockMove)
Fault: @ 2: JBBBW! cnnCi - DC flt~lockMove ;Sol
Fault: 0 2: tfaultLimit0)
Fault: @ 2: (BBBWI $0088 - DC fitLImit ;LIMIT
Fault: @ 2: (faultXlate0)
Fault: @ 2 : JBB8W) $0088 - DC !ltX!A'IE ;XLATE
Fault: @ 2: (lookup~indincg)
Fault: @ 2: iBBBWI SCuC6 - Dc fltLookup~inding ;$06
Fault: @ 2: (faultXlate0)
Fault: @ 2: (888W) $0088 - DC fltXLATE ;XLATE

Fault: @ 2: (objecrNode)
Fault: @ 2: (888W) $0003 - DC fitObjectNode ;S13
Fault: @ 1: (faultXlateO)
Fault: @ 1: 4BBBW4 $008B - DC fltXLATE ;XLATE
Fault: @ 2: (objectNode)
Fault: @ 2: 48BW) SOOD3 - DC flt~bjectNode ;$13
Fault: @ 1: (lookup~inding)
Fault: @ 1: )B8BW4 S00C6 - DC fltLookupBlrnding ;S06

Fault: @ 0: (faultXlate0)
Fault: @ 0: J88BW) $008B - DC fltXLATE ;XLATE
Fault: @ 2: (faultCFutO)
Fault: @ 2: )8BBW) $0080 - DC fltCFtJT ;CFUT
Fault: @ 0: (lookup~inding)
Fault: @ 0: IBBBWI SOOC6 -Dc fltLookupBlinding ;S06
Fault: @ 2: (faultXlatel4
Fault: @ 2: 48BW) $0088 DC f~tXLATE ;XIATE
Fault: @ 1: (enterainding)
Fault: @ 1: iBBBW) $00C5 =Dc flttnter~inding :S05
Fa~ilt: @ 3: (blockSeno)
Fault: @ 3: fBB8W) $0002 -DC fltBlocKSend ;0

Fault: @ 2: (lookupBindlng)
Fault: @ 2: IBBBW) SCOC6- DC fltL1OOkupBindir.g ;S06
Fault: @ 0: (enterBinding)
Fault: @ 0: 48BWI $00C5 -DC fltEnter~inding ;SOS
Fault: 8 3: (faultLlinitD)
Fault: @ 3: 4BBWJ $0088 - DC fltLimit ;LIMIT
Fault: @ 3: (blockSend)
Fault: @ 3: (BBBWI SODC2 =Dc flt~lockSend ;S02
Fault: @ 1: fallocObject)
Fault: @ 1: 4888W) $00C4 - DC fltAllocObject ;$04
Fault: 8 3: (faultLiritO)
Fault: @ 3: 4888W) $0088 - DC fltLimiL ;LIMIT
Fault: @ 0: (allocObject)
Fault: @ 0: JBBBW) $00C4 - DC fltAllocObject ;$04
Fault: @ 1: (lookup~lnding)
Fault: @ 1: 4888W) $00C6 -DrC fltLookup~inding ;S06

Fault: 8 0: (lookup~inding)
Fault: @ 0: )88BW) $00C6 - DC fitLookupBinding ;S06
Fault: @ 1: (blockMove4
Fault: @ 2: 4888W) SOOCI = 0DC flt~lockMove ;Sol

Fault: @ 0: (blockMovel
Fault: @ 0: 4BB8W) $00C' - D-1 flt81OCKMOVe ;Sol

Fault:. 8 1: (fault LJrn4t

Fault: @ 2: (888WJ $0088 DC fltLi~n~t ;LIMNIT
Fault: @80: (faultLimnitC)
Fault: @ 0: 4 888W) $0088 -Dc fllLimit ;IAM',-
Fault: @ 1: (faultXlateC4
Fault: @ 2: 4888W) $0088 - Dc fltX!ATE ;XIATE
Fault: @ 0: (objectNode)
Fault: @ 0: 4888W) $0003 -Dc fltlOjectNode ;S13

Fault: @ 2: (objectNode)
Fault: @ 1: 4888W) SOOD3 - DC flt~bjectNodle ;S13
Fault: @ 0: (objectNodie)
Fault: @ 0: 4888W) $101,3 - Dc flt0rJectNode ;S13

Fault: 8 2: (objectNode)
Fault: @ 1: (888W) $0003 - Dc fltlbjectNode ;S13
Fault: @ 3: (ObjectNode)
Fault: @ 3: 888BW) $0013 -Dc flt~bjectNode ;S13
Fault: @ 2: ;faultXlaleD)
Fault: @ 2: 4888Wý $1188 DC ffltXLATE ;XLATE
Fault: 8 0: (faultC~utl4
Fault: @ 0: 4 888W) $3181 = DC f.CFZ ;CF-
Fault: @ 2: (faauItCF uzo)
Fault: @ 1: IB88W) $0081 - DC f~tCFUC ;CFUT
Fault: @ 3: (objectNoae)
Fault: @ 3: 4888W) $0013 -DC fltObiec-tNode ;S$23
Fault: @ 2: )lookup8ind.ng)
Fault: @ 2: IBBBW) $0016 DC '..tLOOKUP~irdzn9 ;S1,6
Fault: 8 3: (faulLCFutL)
Fault: @ 3: 4888W) SC08D - Dc LltCFUT ;CFUT
Fault: @ 0: (objectNode)
Fault: @ 0: !BS8W) SO0D3 . 1 flt0o)ýectNode ;Sl3

Fault: @ 1: (objectNodc)
Fault: @ ',: 4888W) $001)3 - Dc fitCbjectNode ;:
Fault: @ 0: (oblectNode)
Fault: G : 4888W) $011D3 I c !11ODbectNOae
Fault: 1 : (otlectNodp)
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Fault: @ I: (BBBWI SOOD3 - DC fiLtObjectNode ;S13
Fault: 8 2: (objectNoae)
Fault: @ 2: {BBBWJ $00D3 - DC fltObjectNode :$13
Fault: @ 0: (faultCFut0)
Fault: @ 0: {BBBW1 $008D - DC fltCFUT ;CFUT
Fault: @ 1: (faultCFut0)
Fault: @ 1: {BBBWI $0080 - DC fltCFUT ;CFUT
Fault: @ 3: (objectNode)
Fault: @ 3: (BBBW) $0003 - DC fltObjectNode ;$13
Fault: @ 2: (objectNode)
Fault: @ 2: (BBBW) $0003 - DC fltObjectNode ;S13
Fault: @ 3: (objectNode)
Fault: @ 3: (BBBW) S0003 - DC fltODJectNode ;S13
Fault: @ 2: (faultCFut0)
Fault: @ 2: {BBBW} $008D - DC fltCFUT ;CFUT
Fault: @ 3: (faultCFut0)
Fault: @ 3: (BBBW) $0080 - DC fltCFUT ;CFUT
Fault: @ 0: (objectNode)
Fault: @ 0: (BBBW) $0003 - DC fitObjectNode ;S13
Fault: @ 0: (objectNode)
Fault: @ 0: (BBBW) $0003 - DC fltObjectNode ;S23
Fault: @ 1: (faultXlate0)
Fault: @ 1: iBBBW} $008B - DC fltXLATE ;XLATE
Fault: @ 0: (faultCFut0)
Fault: @ 0: (BBBW1 $008D - DC fltCFUT ;CFUT
Fault: @ 2: (objectNode)
Fault: @ 2: fBBBW) $00D3 - DC fltObjectNode ;$13
Fault: @ 2: (objectNode)
Fault: @ 2: fBBBW1 SOOD3 - DC fltObjectNode ;$13
Fault: @ 2: (faultCF to)
Fault: @ 2: iBBBW' $0080 ý DC fltCFUT ;CFUT
Fault: @ 2: (fault~late0)
Fault: @ 2: (BBBW S008B - DC fltXLATE ;XLATE
Fault: @ 2: (faultXlateO)
Fault: @ 2: BBBW) S008B - DC fltXLATE :XLATE
Fault: @ 1: (faultXlateD)
Fault: @ 1: BBBW) 5008B - r11 fitXLATE ;XLATE
Fault: @ 2: (faultXlateC)
Fault: @ 2: iBBBW) $008B - D- fltXLATE ;XLATE
Tick 1543 Received priority 0 message:

OBJ:$801D9804 u-1 f-0 offset-S00766-Reply length=SC004
INT:$000OFC00 - 64512
INT:$00000000 - C
INT:$00000037 - 55

@0..3)atats
1544 ticks executed.
Dynamic Instruction Usage:

STOP: 2887 47.13%
READ: 737 12.03%

WRITE: 500 8.16%
READR: 163 2.66%

SEND: 160 2.61%
DC: 143 2.33%
BR: 130 2.12%

XLATE: 123 2.01%
ROT: 117 1.91%
ADD: 104 1.70%
AND: 98 1.60%

WRITER: 88 1.44%
BT: 71 1.16%

SEND2: 70 1.141
BNIL: 69 1.13%

NOP: 64 1.04%
BF: 57 0.93%

LDIP: 54 0.88%
SUB: 52 0.85%

SUSPEND: 50 0.82%
XOR: 48 0.78%

CALL: 48 0.78%
WTAG: 44 0.72%

LDIPR: 40 0.65%
EQ: 37 0.60%

SENDE: 26 0.42%
EQUAL: 25 0.41%

SEND2E: 24 0.39%
CHECK: 22 0.36%

RTAG: 21 0.34%
OR: 15 1.24%
GT: 14 0.23%

ASH: :0 0.16%
ENTER: 7 0.11%

GE: 4 0.07%
BNNIL: 4 0.07%

NEG: 0 0.00%
NOT: 0 0.00%
FFB: 0 0.00%

INVAL: 0 0.00%
PROBE: 0 0.00%

LSH: 0 0.00%
NEQ: 0 0.00%
MUL: 0 0.00%
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MULH: 0 0.00%
NEQUAL: 0 0.00%
CARRY: 0 0.00%

HALT: 0 0.00%
BZ: 0 0.00%
LE: 0 0.00%

BNZ: 0 0.00%
LT: 0 0.00%

STOP: 2887 47.13%
Move: 1488 24.29%

ALU: 407 6.64%
Branch: 331 5.40%

Network: 330 5.39%
Field: 204 3.33%

DC: 143 2.33%
Fault: 142 2.32%
Assoc: 130 2.12%

NOP: 64 1.04%
Other: 0 0.00%

Foregnd: 3239 52.87%
Total: 6126

Fault Usage:
objectNode: 21 26.25%

faultXlateO: 14 17.50%
lookupBinding: 11 13.75%

faultCFut0: 10 12.50%
faultLimitO: 8 10.00%

blockSend: 4 5.00%
allocObject: 4 5.00%

enterBinding: 4 5.00%
blockMove: 4 5.00%

Total: 80

The xlate hit ratio is 109 out of 123 (88.62%).

376 words sent in 51 messages on priority 0.
Average message size: 7.37.
16.29 instructlons/word (8.61 foreground Instructions/word)
120.12 instructions/message (63.51 foreground Instructions/message)

No priority 1 words sent.

@0..3)

Figure 5-14. MDPSim Transcript
This transcript shows a MDPSim session in which the user loads the rangesum assembly code and calls the sum
function with the argument 10 on a 2x2xl-node J-Machine with COSMOS using only internal memory (-msize
Ox000). Since watching faults was enabled, MDPSim prints each fault encountered at each MDP as it is run-
ning. The fault message gives the number of the MDP on which the fault occurred, the number of the fault vector,
and the name of the fault; the (BBBW) is additional MDPSim breakpoint and watchpoint information. Finally, after
1544 steps the answer 55 is produced and displayed.

The dynamic instruction statistics for the run are also shown. About half of the time is spent distributing the func-
tions to all of the nodes; the second time sum is called with the argumeni 10, it only takes 893 ticks to produce the
answer (a tick is the time it takes every node to execute one instrucbon; MDPSim assumes that every instruction
runs in the same amount of time).
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Optimist II, Cosmos, and the Concurrent Smalltalk applicationb are large programs, and de-
bugging them is an important consideration. I will not discuss the process of debugging Op-
timist 11 itself; standard Common Lisp and CLOS techniques such as building firewalls and
providing print routines for important data structures were used.

The primary approach to debugging MDP code I took is prevention. I made sure that the
Cosmos design was sound before running it. The criticality criteria were very helpful in
avoiding re-entrancy and double fault problems. Nevertheless, while the prevention ap-
proach was successful on Cosmos itself, it cannot be the sole debugging method used on the
Concurrent Smalltalk programs. Instead, a combination of debugging means at various
levels has been provided.

Debugging Concurrent Smalltalk Code

The first line of defense is the Optimist II compiler itself. The compiler will complain when it
detects errors such as incorrect function argument counts or bad types, if types are declared.

The second line of defense is the interpreter in the Optimist II compiler. The interpreter can
be used to run Concurrent Smalltalk programs before they are downloaded into MDPSim or
onto a J-Machine. The interpreter provides nearly complete checking of Concurrent
Smalltalk programs, so it should catch most of the remaining bugs. However, the interpreter
will not catch bugs which occur only on large data sets, nor will it find Cosmos's or the Opti-
mist II code generator's bugs.

Debugging MDP Code on MDPSim

Debugging becomes considerably more difficult once the code is in assembly language form.
Fortunately, Cosmos does include some facilities for debugging Concurrent Smalltalk pro-
grams.

The third line of defense is comprised of the safety features built into the MDP architecture.
Type and bounds checking were extremely valuable when debugging Cosmos, as they catch
most common type errors when they happen and prevent runaway programs from doing too
much damage to the machine state. Without these facilities debugging Cosmos and Concur-
rent Smalltalk programs could have been intractable.

The fourth line of defense consists of safety checks built into a number of critical places in
Cosmos. These checks include:

* A check in the CFUT handler that distinguishes real cfutures from uninitialized vari-
ables, together with the initialization of memory and globals to values that will cause CFUT
faults.

0 Checks in the XLATE and INVADR handlers for references to primitive, nonexistent, or
deleted objects. Without these checks, such references would generate messages that wander
about the J-Machine forever.

* A check in the Return handler to make sure that the context was expecting the value
that was returned. This check catches the extremely elusive bug of replying to the same con-
tinuation twice, as the second reply message may overwrite a variable in the context after it
has been reallocated to a completely unrelated function. The bug will be caught eventually,
even if the second function stores a cfuture into the same context location, because then there
will still be two replies to the same context location, and the cycle will repeat itself. Of
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course, by the time the bug will be caught, the original evidence may be gone, but at least
there will be some indication of a problem.

* A check in the Co routine for a reference to a nonexistent constituent of a distributed ob-
ject.

* A HALT on any reference out of bounds of any object except in BlockMove and Block-
Send.

0 HALT instructions on any type or overflow faults that occur in the course of execution of
Concurrent Smalltalk programs.

Furthermore, MDPSim does its part to make debugging easier. Once the operating system is
loaded, memory used by the operating system code is read and write-protected (it may only
be executed) to catch any runaway references to it. Since dereferencing NIL is a common
mistake in the MDP's unchecked mode, physical memory locations 0 through 3 have been
protected from all accesses to catch any routines that dereference nonexistent objects. More-
over, MDPSim immediately halts if a message is sent to a nonexistent node.

MDPSim includes the HALT instruction which is not present on the MDP. The HALT instruc-
tion immediately halts the simulated J-Machine without altering any state. However, the
HALT instruction can almost be emulated on the J-Machine-executing HALT will cause ei-
ther an INVINST or a CATASTROPHE fault, which can be intercepted.

Moreover, the newest MDPSim [25] includes hazard detection-MDPSim 7.0 will complain
and optionally stop the program if it detects an unsafe programming construct such as refer-
encing the FIR register if it could have been altered by an asynchronous interrupt or sending
a message when the F bit is set (a network send fault could be catastrophic in this case).
Clearly MDPSim cannot discover all such possible bugs, but it can provide considerable as-
sistance in uncovering sporadic asynchronous bugs.

Finally, MDPSim is deterministic-running the same program twice will always yield identi-
cal results. Thus, if an inexplicable bug occurs, it can always be reproduced. Moreover, ear-
lier snapshots in time can be examined by running the same session again in MDPSim. On
the Macintosh version of MDPSim, the entire session is automatically saved, making repro-
ducing it easy.

Debugging MDP Code on a J-Machine

Debugging code on a real J-Machine is still harder than debugging it with MDPSim. Cosmos
currently does not include any facilities specifically designed for such debugging other than
the ones described above, but such facilities are being added in the true J-Machine version of
it. The primary facilities consist of a set of mousetraps to catch weird conditions such as
hardware errors and a set of fault handlers that interact with the host through the diagnostic
port. Unfortunately, it is impossible to examine an MDP's state without destroying some
register values, so debugging on the hardware is much harder.

Assuming one can stop the computation at a safe point, it is possible to get a dump of all
memory and most registers on each MDP in a J-Machine. What does one do with a huge
dump of the state of a J-Machine? One possible course of action would be to examine it using
MDPSim's debugging facilities. Another possibility is periodically checkpointing the compu-
tation on the J-Machine by saving images. If a crash occurs, earlier images can be examined
or restarted to determine the cause of the crash.

Summary

Debugging Concurrent Smalltalk code, while not especially easy, is not impossible. Several
lines of defense against bugs in Concurrent Smalltalk programs are provided. It is highly
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recommended to try to find bugs in the earlier steps of the compilation process because the
tools at those levels are more robust and informative (but not as faithful to the J-Machine).

Although Cosmos includes many checks for the common Concurrent Smalltalk programming
errors, Cosmos does not protect itself from itself-it does not detect corruption in its data
structures. Fortunately, segmentation by the MDP ensures that those data structures could
only be corrupted by Cosmos itself, as well-compiled Concurrent Smalltalk programs cannot
reference data outside their segments. Cosmos was mainly debugged by design, with only
minor debugging necessary once the operating system was written.

MDPSim also helps in debugging MDP code by providing watchpoints, breakpoints, the HALT
instruction, hazard detection, and determinism, which allows any bug to be reproduced.
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Both Cosmos and the code output by Optimist II were optimized for speed. This chapter pre-
sents some measurements that determine just how fast compiled Concurrent Smalltalk runs
on a J-Machine. Both theoretical derivations and real measurements are presented and
compared. Both calculations indicate that the average grain size (the ratio of useful instruc-
tions executed to messages sent) for running Concurrent Smalltalk on a J-Machine is be-
tween 50 and 70 instructions, and the average number of instructions executed per method is
about 100 instructions. This is a pity if the average method only performs a few instructions'
worth of real computation, yet, since Cosmos and the code output by Optimist II are already
heavily optimized, it does not seem likely that incremental changes will reduce these num-
bers much further.

In addition to the above figures, various other statistics are presented. The static and dy-
namic instruction use frequencies were collected to identify areas in which the MDP's hard-
ware performance could be improved; no major surprises were found there. These frequen-
cies indicate that the MDP spends an average of about 2 cycles per instruction; this number
increases to 4 if slow external DRAM is used to hold the user program and data.

Finally, the network load is analyzed. The network should not become saturated until more
than 343 MDPs are put together; if a larger J-Machine is to be built, either the network will
have to be made faster, the operating system slower, or considerable attention will have to be
paid to locality.
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7.1. Derived Times

This section presents some rough estimates of the overhead on the J-Machine. A number of
assumptions are made when making these estimates; the results of actual measurements
will be reported in the next section to verify those assumptions.

Cosmos Estimates

The instruction counts needed for various important Cosmos services are shown in Table 7-1.
The counts are approximate, but usually accurate to within a few instructions. The counts
listed may not be completely correct due to approximations in some routines.

Table 7.1. Selected Cosmos Routine Instruction Counts

Routine I Instruction Count Description
Method and Control Managers
Apply 3+ApplySelector or Dispatch a general Apply message.

5+ApplyFunction
ApplyFunction 4 Dispatch an ApplyFunction message.
ApplySelector >23 (>15+LookupMethodU) Dispatch an ApplySelector message.
LookupMethod 8+LookupMethodU Lookup a method given a class and a

selector.
LookupMethodU 8 on cache hit, Internal core of LookupMethod.

40+SaveStatelDO23+message la-
tency on cache miss.

CFUT Fault =30+2msize if context available Save state when a cfuture was read
I on queue (14+SaveStatelDO23) from the context.

Reply 27 if process is restarted; Process a reply message.
1 12 if not.

RestartContext 20 Unconditionally restart a context.
Context Manager
SaveStatelD023 14 if message already saved in Save the ID registers and the mes-

context and new context avail- sage in the context, save the context,
able in queue and suspend.
16+2msize if context available on
queue;
17+2msize+AllocNextObject
otherwise.

Global Object Manager
NewObject -37+2msize+ Reply Allocate a remote object.

(21+ SaveStatelD023+Reply)
ClassOf 15 to 25 (10+TypeOf) Return the class of an object.
TypeOf 5 to 15, depending on tag Internal core of ClassOf.

(5 for integers, 11 for ordinary
user objects, varies for others)

ObjectNode 9 for primitive objects; Return the node most likely to con-
4 for ordinary user objects; tain the object or a random node if
32 for distributed objects. the object is primitive.

Co 38 (49 when the object has more Return the ID of the nth constituent
constituents than there are of a distributed object.

1 nodes)
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PreferredConsi 27 (12 when the object has more Return the ID of a nearby con-
constituents than there are stituent of a distributed object.

______________nodes)

MigrateObject =-62+AllocObject+LookupBinding+ Receive and install an object and
2size (may vary if more or fewer restart a context waiting for it.

____________I contexts are restarted)
UpdateHome 2:11+LookupBinding Update a migrated object's home

_________ ________________BRAT entry.
Unlock 9 Unlock an object.
Local Object Ma agrer_____ _________

Newt-ocalObject 3+AllocNextObject Allocate a local object of the given
_______________ ____________________________ class.

AllocNextObject 12+AllocObject+EnterBinding Allocate a local object using the next
_____________ID and the given header word.

Deal locate~biect 11+PurcjeBindinp Deallocate a local, unlocked obiect.
BRAT Managrer_______ _____

EnterBinding 26 (35 if no free BRAT entries Allocate a new BRAT binding.
were available; may also compact

_____________heap)

LookupBinding 14+5n, where ni is the number of Lookup a binding in the BRAT.
______________links traversed in linked list.

PurgeBinding 2+ DeleteBinding Delete a binding from the BRAT and
___________ _____________________the XLATE table.

DeleteBinding 23+5n, where n is the number of Delete a binding from the BRAT.
______________I links traversed in linked list. ___________________

Heap Manager _____________________________

AllocObiect 120; may also compact heap IAllocate an object on the heap,
Compact~reap 1varies from 2N to iON or more, ICompact the heap.

___________ I where N is the size of the heap. ______________

Utilities _________________ __________________

Divide 1from 40 for small numbers to 4001 Divie two 32-bit numbers and re-
___________I for large numbers. jturn the quotient and remainder.

Faults _______________________

Early Fault 8 1Penalty for reading data from mes-
_____________ ______________________ Jsage queue too fast.

Send Fault 8 1Penalty for sending data into net-
______________ _________________________ jwork too fast.

Some Definitions:
size is the size of the object.
msize is the size of the message in the queue. If the message has already been saved and the 0 flag is false,
msize is defined to be -1 for the purposes of the above timings. If msize is mentioned in a time expression, the
current process is suspended and later restarted: the time does not include the time between the suspension and
the resumption because other processes are assumed to execute then.

User Program Estimates

In contrast to the counts in Table 7-1, an examination of the rangesum method in Figure 5-12
shows that it takes about 13 instructions' to execute a function or method call and about 8
instructions to return a reply and suspend (see Table 7-2). Thus, the typical time the MDPs
spend in user code to execute a function call and return is about 21 instructions; perhaps a
few more instructions are used for primitives, but the user code execution time is seldom
more than 30 instructions per function invocation. Hence, estimating conservatively, any

'There are several NaPs not shown in the listing caused by alignment around DCs.
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Table 7-2. Selected User Action Instruction Counts

Action Instruction Count [Description

Function or .11+nargs. May be higher if ar- Call a function or a method. The
Method Call guments must be touched or time does not include the CFUT fault

lower if many SEND2s are used. or reply time.
Reply with 8-10 Return a reply to the caller.
Suspend - I
Primitive 1-4 for instructions and up to Perform a primitive operation such

1 400 or more for system calls. as an addition or a conditional.

Nargs is the number of arguments sent in the application message.

time above 30 instructions per function or method invocation is spent in the operating sys-
teml.

Analysis

A juxtaposition of the main figures from Tables 7-1 and 7-2 reveals that a typical program
will spend about 70% of its active time in the operating system and 30% of the time in user
code. Furthermore, the program will take about 100 instructions per function invoked, ex-
cept for tail-forwarded functions which will only take about 25 instructions each. About 20
extra instructions should be added for each method dispatch that the compiler is unable to
optimize out. To derive these estimates the following system of accounting is used: the work
ascribed to a function invocation consists of all work needed to call the function on the origi-
nating node plus all work needed to dispatch the function on the called node, but not includ-
ing the work done by the called function to call other functions.

Standard Invocations
Each non-tail-forwarded function invocation requires the processing of an ObjectNode call,
a function message send, a reply message, and optionally a cfuture fault on the originating
node, and a function dispatch and a reply on the called node. Assuming that the average
function call has two arguments, the total operating system work for the above activity is:

ObjectNode + ApplyFunction
+ c(CFUT fault + restarting Reply) + (1-c)(non-restarting Reply)

= 9 + 4 + 69c + 12(1-c)
= 25 + 57c instructions.

c is the probability that a cfuture will be referenced before being replaced by the returned
value. This probability can vary over a wide range depending on the branching factor of the
program call graph. c is 1.0 for a recursive factorial program and 0.5 for a recursive fibonacci
or rangesum program. If a branching factor between 1 and 2 is assumed, c will be somewhere
between 0.5 and 1.0; suppose it is 0.75, which results in 68 instructions executed in the oper-
ating system per function invocation.

The total user code work is
Function call + Primitives called by function + Reply with Suspend.

The time spent executing primitives will vary greatly depending on the application; 10 in-
struction seems reasonable for most cases, although it will be higher if the user program calls
Divide or allocates objects. Substituting this number and the average number of arguments
yields a total user code work of

'Tail-forwarded calls are cheaper because the net cost or a tail.forwarded call is one call and no return, which is

about 15 user code instructions.
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13 + 10 + 9 = 32 instructions.

Thus, the total amount of work taken to process one function invocation is 100 instructions,
out of which about 10 instructions (the primitives) could be construed as being "useful" work
and the rest overhead. This figure does not include any object migration or XLATE miss
overhead. These results should not be interpreted as implying that an MDP running Cosmos
has a performance 10 times slower than a comparable processor in a sequential computer be-
cause sequential computers also have a considerable function calling and parameter passing
overhead.

Tail-Forwarded Invocations

Tail-forwarded applications are considerably more efficient. Using the accounting method
outlined above results in ascribing

ObjectNode

9 instructions

Begin
Message Send
11 instructions [ esg

S Finish Travel TimeI
Message Send 10 instructionsI
2 instructions

ApplyFunction

ad sCalledu
FuFunction

n instructionti os

8 Send

Reply Messagem
8 instructions9nu

Message 1
STravel TimeSupn

10 intucin 1 instruction
Receive Reply

and Resume
(27 instructions

Figure 7-1. Function Invocation Latency
The latency of the network is estimated at about 10 instruction times (20 cycles) to send a message between two
randomly chosen nodes on a 4096-node machine.

It n is the time taken by the called function, the latency of invoking a function is 9+11 +10+4+8+10+27+n = 79+n
instructions unless the called function takes fewer than 12 instructions, in which case the latency is 9+11 +2+42+27
=91 instructions.
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ObjectNode + ApplyFunction = 13 instructions

operating system overhead and

Function call + Primitives called by function = 23 instructions

user code work. The total work done is 36 instructions, out of which again 10 instructions is
"useful" work.

Latency
The preceding analysis calculated the total amount of work needed per function invocation in
a program, which determines throughput on a fully loaded system in which each processor is
busy; however, another important component of performance is latency. It turns out that the
latency of a function .nvocation can be lower than the amount of work done by the function
invocation because two processors (the caller and the callee) can execute much of the functien
invocation in parallel.

Assuming no other activity in the system, a non-tail-forwarded function invocation will con-
sist of the caller sending a message to the callee. Then the callee evaluates the function,
while the caller takes a cfuture fault (or calls another function, but this won't matter). Un-
less the called function is very short, the caller will finish the cfuture fault processing and
then idle before it gets the reply message from the callee. Finally, the callee replies to the
caller, which restarts the calling process.

As can be seen in Figure 7-1, the latency of a function call is 79 instructions in addition to the
time taken to execute the function; if the function takes fewer than 12 instructions to exe-
cute, the overall latency is 91 instructions. These numbers are less than the total amount of
work done by the system (104 instructions).

Summary

The results above indicate that the number of instructions needed to process a function invo-
cation for Cosmos running on a J-Machine should be about 100 instructions, with the notable
exception of tail-forwarded functions, which require only about 36 instructions. The instruc-
tion counts may be higher if many primitive calls are made or if the operating system faults
often.
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7.2. Measurements

Grain Size and Machine Load

To attempt to measure the J-Machine's performance and grain size, I ran several programs,
including factorial (Figure 7-2); rangesum as listed in Chapter 5; rangesum2 (Figure 7-3),
which is a version of rangesum which builds and traverses a data structure; and sort (Figure
7-4), which generate ; and sorts an array of n pseudo-random numbers using the Batcher
parallel sort technique described on page 112 of [281.

(defun fact (n)
(if (zero? n)

1
(* n (fact (- n 1)))))

Figure 7-2. Factorial Program

(defclass pair (object)
car
cdr)

(defun cons (x y):pair
(put-car-cdr (new pair) x y))

(dcfmethod put-car-cdr pair (x y):pair
(cset car x)
(cset cdr y)
self)

(defun make-countlist (low:integer high:integer)
(if (> low high) (halt))
(if (- low high)

low
(let ((middle (// (+ low high) 2)))

(cons (make-countlist low middle)
(make-countlist (+ middle 1) high)))))

(defmethod reduce pair (op:funct)
(op (reduce car op) (reduce cdr op)))

(defmethod reduce integer (op:funct)
self)

! efun add (x y)
(+ x y))

(defun reduce-add (tree)
(reduce tree add))

(defmethod ramp integer ()
(make-countlist 0 self))

(defmethod iigezum2 integer ()
(reduce-add ,:timp self)))

Figure 7-3. Rangesum2 Program
This program exercises several Concurrent Smalltalk object facilities such as allocating objects and traversing
trees
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(defclass distarray (distobj)
value)

(defmethod initialize distarray (low,high:integer f:funct)
(if (- low high)

(cset (get-value (co group low)' (f low))
(clet ((middle (U/ (+ low high) 2)))

(concurrently
(initialize group low middle f)
(initialize group (+ middle 1) high f)))))

(defun make-distarray In modulus)
(clet ((da (new distarray n)))

(initialize da 0 (- n 1) (lambda Wx) (mod (* x x x) modulus)))
da))

(defmethod sort-exchanges distarray (low,high,pr,d:integer)
(if (<= low high)

(if (- low high)
(clet ((low2 (4 low d)))

(clet ((vl (get-value (co group low)))
(v2 (get-value (co group low2)))

(if (> vl v2)
(concurrently
(cset (get-value (co group low)) v2)
(cset (qet-value (cc group low2)) vl)))))

(clet C(middle (// (+ low high) 2)))
(concurrently
(sort-exchanges group low middle p r d)
(sort-exchanges group (4 middle i) high p r d))))))

(defmethod sort-q d'starray (p,q,r,d:integer)
(sort-exchanges group 0 (- (logical-limit self) (+ d 1)) p r d)
(if (<> p q)

(sort-q group p U// q 2) p (- q p))))

(defmethod sort-p distarray (half,p:integer)
(sort-q group p half 0 p)
(if (> p 1)

(sort-p group half (U/ p 2))
group))

(defmethoo sort distarray C)
(clet C ((half (ash I (- (integer-lenath C- (iogicai-limit self) 1)) CI)]

(sort-p group half half)))

(defun sort-distarray (n modulus)
(sort ()rake-distarray n modulus)))

Figure 7-4. Sort Program
Sort-distarray, given the values of n and modulus, sorts an array of n pseudo-random numbers. The th pseudo-

random number is equal to A
3
mod modulus. The Batcher sort algorithm is used, as presented on page 112 of (28].

Measurements were done on a 4-node and a 16-node simulated J-Machine. The results of the
trials are summarized in Table 7-3.

The grain size is the third number in the working instructions executed column. The time to
process one function invocation is approximately twice the grain size unless tail-forwarding
is used extensively. Except for sorting 4 numbers and the trivial factorial case, the results
indicate function invocation times of between 81 and 162 instructions, which means that the
estimate of 100 in the previous section was about right. Many of the functions in the sort
sample program are tail-forwarded, so the average function invocation time for that example
is less than twice the grain size. In addition, the sort program has a grain size higher than
predicted in the previous section. This is probably due to frequent calls to the multiplication,
division', and co primitives as well as to distribution of large code objects; the grain size does
decrease for larger input values.

'A division by 2 is just a single ASH instruction, but the division in make-distarray requires a complete i v i de call.
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Table 7-3. Performance Measurements

Program # Input invo tart- rotal Instructions lWorking Instructions r Bu et JtJAvg
D ,ati up Executed Executed sy :ds ngs gs zsg

Ps nsl F nt ntPIze'
actorial 4 0 1 Id 95 8.64 47.50 17 1.55 8.50 18 11 2 5.50

22 10 11 old 5949 30.82 212.46 2001 10.37 71.46 34 193 28 6.89
Narm 3407 28.16 154.86 1078 8.91 49.00 32 121 22 5.50

rangesum 4 10 21 old 6985 18.43 134.33 3364 8.88 64.69 48 379 52 7.29
<2 "arm 3122 12.10 72.60 1737 6.73 40.40 56 258 43 6.00

50 101 I-old 17017 12.71 80.27 11585 8.65 54.65 68 1339 212 6.32
Narm 11998 9.85 59.10 9395 7.71 46.28 78 1218 203 6.00
_ot 10982 9.02 54.10 8841 7.26 43.55 81 1218 203 6.00

rangesum2 4 10 21 ld 15365 24.08 174.60 6194 9.71 70.39 40 638 88 7.25
22 arm 5470 14.47 86.83 3067 8.11 48.68 56 378 63 6.00

50 101 old 27971 13.40 84.76 19559 9.37 59.27 70 2088 330 6.33
arm 23232 12.57 75.18 16401 8.88 53.08 71 1848 309 5.98

Iot 21418 11.78 70.69 15767 8.67 52.04 74 1818 303 6.00
sort 4 4 old 57939 30.27 298.65 23982 12.53 123.62 41 1914 194 9.87

22 _arm 35168 36.79 256.70 14655 15.33 106.97 42 956 137 6.98
29 old 351144 14.85 101.22 269019 11.38 77.55 77 ?3647 3469 6.82

arm 289336 12.94 86.55 232974 10.42 69.69 81 2361 343 6.69
16 4 old 201681 95.90 979.03 24026 11.42116.63 12 2103 206 10.21
x4 29 Id 868586 32.56 238.56 295483 11.08 81.15 34 26679 641 7.33

100 old 2612981 18.61 126.35 1469377 10.46 71.05 56 140436 0680 6.79

"*The average message length includes the address word sent at the beginning of each message. That word is
kept as the message is routed through the network but removed before the message is inserted into the queue on
the destination node.

The working instruction counts are instruction counts with all s~oP instructions executed in background loops re-
moved; they represent the useful work done in the system.

The three numbers in the total instructions executed and working instructions executed columns give the absolute
numbers of instructions executed, the numbers of instructions per word of network traffic, and the number of in-
structions per network message, in that order.

A cold startup indicates that the program was executed just after it was loaded; a considerable portion of the run-
ning time is spent on distributing the functions to all nodes that need them.

A warm startup indicates that the program was executed after the functions it needed were already installed on
every node.

A hot startup indicates the third trial of the program on the particular input. This time may be less than the warm
startup time because the previous trials have preallocated enough standard contexts on the MDPs to let the pro-
gram run without the need to allocate any more contexts. Warm and hot startup times are probably the most rep-
resentative of the J-Machine's performance on larger problems.

The geometry of the J-Machine does not have much of an effect on a program simulated under MDPSim. It is
unimportant anyway for the small sizes simulated above.

Using inputs much larger than 50 for the range sums or 100 for the sort generated too much concurrency and
caused the message queues to overflow. See Chapter 8 for a possible solution to this problem.

Another pattern in Table 7-3 is that the percentage of the J-Machine that is busy is higher
for the larger problems, which was to be expected. Also, the warm and hot start programs
tended to exhibit more concurrency than the cold start ones'; apparently there is some
wasted time during the initial code distribution phase.

IThis was not the case in a slightly earlier version or Cosmos, possibly because it was less efficient and therefore had

more work to do.
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Comparison with Dataflow

Ellen Spertus made a few performance numbers available for her implementation of dataflow
on the J-Machine [34). 1 compared her timings with those obtained by Optimist II/Cosmos on
the same examples. The program used was the factorial function listed in Figure 7-5.

The dataflow interpreter took 431 steps to compute the factorial of 4. The Concurrent
Smalltalk version of the factorial program took 725 steps to execute from a cold start but only
265 steps from a hot start. The dataflow interpreter allocates code statically and references
absolute addresses, so every timing is effectively a hot start. The dataflow interpreter took
628 steps to compute three factorials of 4 in parallel, while the Concurrent Smalltalk code
took 399 steps to complete the task. Thus, for this simple example the Concurrent
Smalltalk/Optimist II/Cosmos combination is faster than dataflow, but not by much. How-
ever, Concurrent Smalltalk is more dynamic than the current dataflow system in [341.

(defun fact (n)
(if (<- n 1)

1
(* n (fact (- n 1)))))

Figure 7-5. Factorial Program used in Dataflow

Network Load

As seen in Table 7-3, the network loading is usually between one word every 8 instructions
and one word every 20 instructions, with the earlier figure dominating as the J-Machine uti-
lization approaches 100%. If an average MDP instruction length is taken to be 2.0 cycles,
this implies that a program could inject words into the network as fast as one word every 16
cycles on every MDP.

Suppose that we run one of the above programs on a J-Machine organized as a kxkxk mesh.
Let N=kxkxk be the number of nodes. To a first-order approximation, the capacity of the
network is 3N half-word-hops/cycle1 , or 1.5N word-hops/cycle. Assuming random sources and
destinations, a message will have to travel an average of k/3 nodes on each of the three
dimensions, so the expected distance the message has to travel is 3k/3 = k nodes. Hence, the
network's theoretical capacity is the delivery of 1.5N/k = 1.5k 2 words per cycle. On the other
hand, the program offers N/16 words/cycle to the network, which means that unless locality
is exploited or the program slowed down, there will be an upper bound on the size of the J-
Machine which can run Cosmos.

A mesh loaded at about 30% of its theoretical capacity should be able to route messages

without excessive delays [32]. To calculate the maximum k, set

0.3xl.5k2 = k 3/16

k = 7.2.

Thus, the network should not become a critical resource until a J-Machine with over 73 = 343
nodes is built. If the network routing speed is doubled, network loading should not be prob-
lematic until the J-Machine exceeds 143 = 2744 nodes. On the other hand, should the Cos-
mos operating system be sped up somehow, the critical size might fall below 343 nodes. Seri-
ous attention to locality will have to be paid if a J-Machine larger than a few hundred nodes
is built; conversely, if only a small J-Machine is built, it may not be adequate for testing al-
gorithms for exploiting locality because almost any algorithm will work.

'The J-Machine network can transmit half a word between every pair of adjacent MDPs on every cycle.
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Table 7-4. Static Instruction Frequencies

Instruction Count Freg. Instruction Count Fre.
DC 440 19.33% XOR 13 0.57%
READ 324 14.24% EQUAL 11 0.48%
WRITE 210 9.23% ENTER 10 0.44%
NOP 173 7.60% SENDE 10 0.44%
WRITER 104 4.57% SEND2E 10 0.44%
READR 88 3.87% NEG 9 0.40%
BR 86 3.78% BZ 9 0.40%
SEND 80 3.51% BNZ 9 0.40%
ROT 64 2.81% PROBE 7 0.31%
HALT 64 2.81% EQ 7 0.31%
ADD 59 2.59% LT 5 0.22%/o
AND 50 2.20% GT 5 0.22%
BT 46 2.02% NOT 4 0.18%
CALL 46 2.02% GE 4 0.18%
BF 42 1.85% BNNIL 4 0.18%
SUB 39 1.71% FFB 4 0.18%
CHECK 32 1.41% LSH 3 0.13%
OR 29 1.27% RTAG 3 0.13%
XLATE 29 1.27% NEQUAL 1 0.04%
BNIL 25 1.10% STOP 1 0.04%
LDIPR 23 1.01% INVAL 1 0.04%
SEND2 22 0.97% LE 1 0.04%
LDIP 21 0.92% MUL 0 0.00%
SUSPEND 20 0.88% MULH 0 0.00%
ASH 15 0.66% CARRY 0 0.00%
WTAG 14 0.62% NEQ 0 0.00%

Instruction Count Freg.__1 Instruction Count FreQ.
Move 726 31.90% Bit Field 116 5.10%
DC 440 19.33% Fault 90 3.95%
ALU 256 11.25% Other 64 2.81%
Branch 221 9.71% Assoc. Table 47 2.07%
NOP 173 7.60% STOP 1 0.04%
Network 142 6.24%

Total 2276

The above table includes the static instruction frequencies in the Cosmos kernel and the MDP runtime system.
The second table categorizes the instructions according to their kinds. Each DC is counted twice because it oc-
cupies as much space as two normal instructions. 173 NOPs had to be inserted to align instructions to word
boundaries around DCs and at branch entry points.

Instruction Frequencies

I collected data on the frequencies of various MDP instructions to provide another estimate of
what the MDP is doing most of the time. Table 7-4 shows a histogram of the static instruc-
tion use in Cosmos and the MDP runtime routines, while Table 7-5 shows dynamic instruc-
tion use in the cold-start sort trial running on 16 MDPs on an input value of 100. Combined
with the results from Table 7-6, which show the memory reference frequencies, these tables
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contain enough information to deduce the approximate' number of cycles taken per MDP in-
struction.

As shown in Table 7-6, a 16-MDP J-Machine will achieve somewhere between 1.87 and 3.48
cycles per working instruction when running the sort program on an input of 100. The inter-
ral-memory-only cycles-per-working-instruction number varied between 1.8 and 2.0 for other
trials, while the external-memory cycles-per-working-instruction number varied between 3.0
and 3.9.

Table 7-5. Dynamic Instruction Frequencies

Instruction Count Freg. Instruction Count Freq.
STOP 1143604 43.77% CHECK 14401 0.55%
READ 309073 11.83% EQ 14293 0.55%
WRITE 169577 6.49% LT 11816 0.45%
ROT 78272 3.00% SEND2E 11220 0.43%
READR 76641 2.93% NEG 10886 0.42%
AND 71150 2.72% RTAG 9859 0.38%
XLATE 67230 2.57% SENDE 9594 0.37%
DC 63981 2.45% XOR 5637 0.22%
BF 53595 2.05% FFB 5624 0.22%
SEND 47474 1.82% NOT 5444 0.21%
ASH 43161 1.65% EQUAL 4725 0.18%
OR 41948 1.61% LE 4296 0.16%
BR 40800 1.56% ENTER 1117 0.04%
WRITER 39085 1.50% BNZ 886 0.03%
SEND2 30783 1.18% LSH 786 0.03%
ADD 26468 1.01% GE 502 0.02%
NOP 23633 0.90% BZ 475 0.02%
SUB 21840 0.84% BNNIL 420 0.02%
BNIL 20786 0.80% MUL 200 0.01%
SUSPEND 20679 0.79% PROBE 74 0.00%
WTAG 20406 0.78% NEQUAL 28 0.00%
BT 19497 0.75% NEQ 0 0.00%
LDIP 19032 0.73% MULH 0 0.00%
CALL 18557 0.71% CARRY 0 0.00%
LDIPR 17712 0.68% HALT 0 0.00%
GT 15714 0.60% INVAL 0 0.00%

Instruction Count Freg. Instruction Count Freq.
STOP 1143604 43.77% Assoc. Table 68421 2.62%
Move 594376 22.75% DC 63981 2.45%
ALU 283732 10.86% Fault 55301 2.12%
Branch 136459 5.22% NOP 23633 0.90%
Bit Field 123724 4.73% Other 0 0.00%
Network 119750 4.58%

Foreground 1469377 56.23%
Total 2612981

This particular problem (Sort creating and sorting an array of 100 numbers on 16 MDPs) only kept an average of
56% of the MDPs busy at a time-about 44% of the instructions executed are STOP. Although the frequency of
the STOP instruction varies widely, the relative frequencies of the other instructions are typical for an MDP pro-
gram.

lSome of the instruction row buffer dynamics were simplified and all branches were assumed to take 3 cycles, even
though sometimes they may take fewer cycles.
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Table 7-6. Memory Access Frequencies

Operating System memory usage:
Reads: 394430 (0.15/instruction, 0.27/working instruction)
Writes: 152756 (0.06/instruction, 0.10/working instruction)

Fetches: 2295682 (0.88/instruction, 1.56/working instruction)

Heap memory usage:
Reads: 152262 (0.06/instruction, 0.1 0/working instruction)
Writes: 138807 (0.05/instruction, 0.09/working instruction)

Fetches: 317299 (0.12/instruction, 0.22/working instruction)

Total memory usage:
Reads: 546692 (0 21/instruction, 0 37/working instruction)
Writes: 291563 (0.11/instruction, 0.20/working instruction)

Fetches: 2612981 (1.00/instruction, 1.78/working instruction)

3.48 cycles/working instruction
1.87 cycles/working instruction without external RAM

The numbers above indicate the number of memory references (reads, writes, and fetches) done to the operating
system (everything except the heap) and heap areas of memory by Sort running on 16 MDPs with an input of 100.
The numbers for the other sample programs are similar. The cycles per instruction figures were calculated by
adding the instruction frequencies from Table 7-5 weighted by the instruction times together with the memory
usage frequencies weighted by memory access times.

The 4096-word internal memory contains all of the operating system data and code and a small portion of the
heap (about 2100 words). The rest of the heap (65536 words) lies in slow external memory. When running on a
real J-Machine, the sort program will achieve somewhere between 1.87 and 3.48 cycles per working instruction
depending on how much of the program and data resides in the internal memory portion of the heap.

Considering that internal memory read, write, and fetch times average 1, 0, and 118 cycles',
respectively, while external memory read, write, and fetch times are 6, 5, and 3 cycles 2, re-
spectively, a loss of only a factor of two in performance by placing the user program and data
in external memory is surprisingly low. The reason for such a low cycles-per-working-in-
struction figure when the user program and data are in external memory is the high Cosmos
overhead. The MDP spends most of its time executing Cosmos code, which decreases the cy-
cles-per-working-instruction number from what it would otherwise have been. For the same
reason, changes that would reduce Cosmos overhead at the expense of user program size are
undesirable in most cases.

1The write time is 0 because it is absorbed by the execution of the wR, TE instruction---wR: TE does not require any
extra cycles when writing to memory as opposed to a register. Eight instructions can be fctched in one cycle for an
effective fetch time of 1/8 cycle per instruction; the branch instruction cycle counts already include the overhead for
fetching the next set of instructions.
2Two instructions are fetched at a time from external memory in 6 cycles, for an effective fetch time of 3 cycles per
instruction.
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7.3. Conclusion

Context Switching Performance

A large component of the current operating system overhead time is the time taken to save
and restore contexts, especially in the CFUT fault handler. One possibility to increase the
speed of the CFUT fault handler is to not save data registers and not copy the message upon
a CFUT fault [11]. Not saving data registers would reduce the fault handler's time by 4 in-
structions', while not copying the message would reduce it by 6 more instructions. However,
these gains would come at a price-the size of the object code would increase because the
compiler could not effectively allocate variables to registers; it is not clear whether the
savings in the operating system overhead would outweigh the increased time spent executing
user code, especially if the user code lies in external DRAM, while the operating system lies
in fast internal SRAM.

Summary

Both the derived and measured data indicate that the grain size for running Concurrent
Smalltalk on the J-Machine is 50 to 70 instructions. Since most functions involve two mes-
sages (one apply message and one return message), the average number of instructions needed
to process a function call is between 100 and 140; actually, it is probably closer to 100 be-
cause of tail forwarding.

When running entirely from internal memory, the MDP executes one instruction about every
two cycles; if user programs and data have to be accessed from external memory, that count
increases to about four cycles per instruction. The network load was calculated assuming a
fast program (two cycles per instruction) injecting messages into the network at the fastest
observed rate (one word every eight instructions) and utilizing 100% of the J-Machine's pro-
cessors. If the messages are sent randomly under the above conditions, the J-Machine net-
work will saturate when a J-Machine with over 343 MDPs is built. Of course, most programs
will not be as fast, but some crafted library routines could impose network loads as high as
indicated above To prevent network saturation, either the network will have to be made
faster, the program slower, or some means of exploiting locality invented.

IThe reduction would be 8 instructions if the data registers did not have to be restored by the reply handler; how-
ever, it is difficult for the reply handler to distinguish the cases in which it has to restore registers because some
unanticipated fault like overflow happened from the cases in which it doesn't; the extra instructions needed to make
this decision would make this optimization not worthwhile.
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Although working Concurrent Smalltalk programs have been demonstrated, the Concurrent
Smalltalk programming system is by no means complete. Some suggestions for improve-
ments were discussed throughout the previous chapters-more optimizations could be added
to the compiler, distributed objects could be distributed more uniformly, and storage used by
free BRAT entries and free standard contexts could be placed back into the heap's free stor-
age pool.

Nevertheless, the possible modifications are by no means limited to the minor ones listed
there. The Concurrent Smalltalk programming system is still an evolving research and
demonstration vehicle, and many issues still have to be addressed before it becomes a truly
general-purpose system. This chapter lists these issues together with potential approaches
for addressing them.

The first section lists features that were left out of the Concurrent Smalltalk implementation
that are desirable in a full system. These features are useful in many specialized applica-
tions, but the system can work without them.

The second section lists the resource management concerns raised by the implementation of
Cosmos. These concerns include load balancing, garbage collection, name space reuse, fanout
bottlenecks, and parallelism control. A few ideas are suggested about handling the fanout
bottleneck and parallelism control problems, but many of these issues are still in the re-
search stage.

The third section outlines a few changes that could be made to the MDP architecture that
would improve the performance of Cosmos and compiled Concurrent Smalltalk programs.
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8.1. Features
This section lists additional features that would be desirable in the Concurrent Smalltalk
environment. The most obvious ones are the current omissions from Cosmos: futures, ar-
rays, floating point numbers, and overriding primitive methods. In addition, the perfor-
mance of Concurrent Smalltalk loops could be improved.

Arrays

Arrays are already fully implemented in Optimist II-Optimist II can interpret and compile
code containing arrays. Cosmos, however, does not currently support arrays. When imple-
mented, they will be added in the form of MDP runtime code in the Runtime.m Cosmos file.
Ideally four different kinds of arrays will be provided: strings, bit arrays, integer arrays, and
general object arrays. Strings can pack four characters per word, bit arrays can pack thirty-
two booleans per word, while integer arrays can, depending on the range of integers supplied,
pack 1, 2, 4, 8, 16, or 32 integers per word.

I expect arrays to be placed in self-contained objects fitting on single nodes rather than trees.
This will limit arrays to about 200 words each because larger objects will overflow message
queues when migrated. If large arrays are desired, distributed array classes should be de-
fined, and perhaps new-simple-array, new-integer-array, new-string, and new-
boolean-array could automatically allocate distributed arrays if their size arguments are
large enough.

Enough primitives have been provided in Concurrent Smalltalk to support almost all com-
mon array operations efficiently. The map and init methods treat arrays dataflow-style, al-
lowing elements of arrays to be defined in terms of other elements of the arrays. Cfutures
could be used in unpacked arrays to prevent elements of arrays from being read before writ-
ten; if an array is packed, a bitmap of valid elements, perhaps stored in a context, could be
attached to it.

Although implementing arrays well on the J-Machine is not particularly difficult, it is quite
time-consuming and was omitted from this thesis for this reason.

Overriding Primitive Selectors

Concurrent Smalltalk allows user programs to override primitive selectors such as + and <,
thereby allowing the implementation of additional number types such as complex numbers
and matrices which respond to the traditional numeric operations. While Optimist II permits
selectors to be overridden in its interpreter, Cosmos does not support this facility, again be-
cause this feature would be too time-consuming to implement.

Adding the ability to override primitive selectors will not be as easy as adding arrays, but,
fortunately, all the hardware building blocks needed are present in Architecture llB. When
an instruction is executed on a word with a type not supported by the hardware for that in-
struction, the MDP faults. When a system call such as Divide is done on words with unsup-
ported types, the operating system halts. All of the type-related fault handlers and halts will
have to be implemented; they will have to decode the operation which caused the fault and
emulate it by performing a standard message send. This emulation will require a lot of at-
tention to little details and will be error-prone. Also, the context will have to be enlarged.

For an example of the complexity involved, suppose the user overrides the = method to sup-
port complex numbers. One of the consequences might be that a BNZ instruction somewhere
in the program faults ID because it was called on a complex number instead of an integer.
The fault handler will have to call the = method to compare the complex number against
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zero. In order to make this call, it has to save the entire state of computation in the context
plus two more words: a return IP back to the fault handler and a slot into which the result
(true or false) should be written. When the fault handler regains control, it will examine
the slot and either take the branch in the user program or let execution continue with the
next instruction. Due to CFUT-handling in the MDP's architecture (specifically, because
WRITE does not fault on efutures), primitive selectors can never return cfutures.

Another issue is what to do with commutative operations such as +. One might add an inte-
ger to a complex number or a complex number to an integer, and it would be nice not to have
to override the integer method for + to implement complex numbers. To implement this
cleanly, the fault handler for ADD would have to try adding the arguments in one order, and,
if no method matched, reverse the arguments and try again. If no method matched a second
time, it would halt.

Finally, a few minor modifications may have to be done to Optimist II's back end to support
overriding primitive selectors.

Long Integers

Once overriding primitive selectors is supported, it will not be particularly difficult to imple-
ment a bignum package for the MDPs and watch how many microseconds it takes a J-Ma-
chine to compute the factorial of 1000.

Futures

Optimist II currently provides most of the support needed for full futures, although some
modifications would still be necessary. The major changes would be to the operating system.
The changes would be similar to those needed to implement primitive selector overriding-
FUT fault vectors would have to be defined and emulate all possible cases.

Floating Point Numbers

There are four different ways to implement floating point facilities on the J-Machine. Rang-
ing from the easiest to the hardest and most exotic, they are:

1. Emulate operations on the FLOAT data type through software fault handlers. This ap-
proach would provide IEEE-compatible1 , single-precision floating point number capability.
Unfortunately, this approach would be very slow because of the large instruction decoding
and floating point packing and unpacking overheads. The advantages of this approach are
simplicity, transparency, and IEEE compatibility, if desired.

2. Store floating point numbers as two words each. One word would be the exponent and
the other the mantissa. The precision would be intermediate between single precision and
double precision. Floating point operations could be inlined, and micro-optimization tech-
niques [121 could be applied. The advantage of this approach is speed without the need for
extra hardware. The disadvantages are that this approach would need object inlining to be
implemented by Concurrent Smalltalk (otherwise this technique would be even slower than
technique 1), the floating point number format is nonstandard, and the use of floating point
numbers would be cumbersome. Since floating point variables would take two words instead
of one, they would have to be declared as such to avoid losing efficiency, and a variable could
not efficiently support both floating-point and non-floating-point values. The last restriction
is a major problem because floating-point versions of all of the methods operating on general
objects might have to be written and used to achieve good performance.

3. The third possibility would be the inclusion of a floating-point unit on the MDP. The unit
would require no significant software-visible architectural changes; the arithmetic instruc-

1ANSI-IEEE standard 754.
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tions would simply start working on words tagged FLOAT, and maybe a DIV instruction and a
few control registers would appear. The disadvantage of this approach would be the inclu-
sion of a hardware floating point unit on the MDP, which would increase the hardware's
complexity. The advantages would be speed, simplicity, transparency, and IEEE compatibil-
ity, if desired.

4. The last possibility would be addition of RAP [19] chips to the J-Machine network. RAP
chips are custom chips that contain a large number of serial floating point units, achieving
estimated peak performance of 300 MFLOPS per chip. Under this approach, an MDP would
send floating point calculations to a friendly neighborhood RAP, which would do the calcula-
tions and respond to the continuation it was given. This approach would work well if the
floating point calculations were grouped and did not have to be mixed with symbolic process-
ing. If the MDPs were to perform mainly symbolic processing with occasional floating point
instructions, the message overheads would make this approach inefficient. This approach
would require a large investment in operating system and runtime software, and it is not
immediately clear that it would be faster than approach 3, although the potential payoff is
large.

True Loops

Loops are currently not implemented particularly efficiently in Concurrent Smalltalk. It is
not clear whether this inefficient implementation will hurt program performance; it does, of
course, depend on how often loops are used. Using iterators and similar abstractions to step
through arrays and other data structure is usually preferred to using loops because iterators
might execute in parallel, while loops are inherently sequential. Nevertheless, there might
be some situations where sequential loops are needed.

The primary reason for the current, inefficient implementation of loops is the need to ensure
that a loop does not execute for a long time uninterrupted, preventing other messages from
being executed at the node and maybe even causing a message queue overflow. Currently
Optimist II compiles a loop into a function which calls itself tail-recursively, which is a fairly
large penalty to pay for tight loops. The implementation could be improved to a true loop in-
side a lambda if the code inside the loop either made at least one full-fledged function call per
iteration or tail-recursed every few iterations; either case takes care of the message problem.
Some experimentation is needed in this area to determine the best course of action.

Inline Objects

The largest feature change to the Optimist II compiler would be the addition of inline objects.
This would be a difficult and error-prone process because all cases have to be handled well;
these cases include passing an inline object to a function that does not expect one, storing in-
line objects in contexts, creating pointers to inline objects, and altering inline objects. It is
likely that if inline objects were implemented, several versions of each function would be
compiled. One version would be unoptimized, while the others would support inline objects
as arguments and results. The constant folder would then try to convert unoptimized func-
tion calls to optimized function calls in the same way it currently converts method calls to
function calls.
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8.2. Resource Management
Concurrent Smalltalk presents the programmer with an ideal model of a machine with an
unlimited number of processors and an unlimited amount of memory; unfortunately, real
computers are limited in both the number of processors and the size of memory. Several re-
source management problems result from the discrepancy between the Concurrent Smalltalk
ideal and the hardware reality. These problems include reusing memory that can no longer
be accessed and simulating an unlimited number of processors with a fixed, finite number.
Additionally, there are a few bottlenecks in the current system that can be ignored in small
implementations but will become important in large-scale systems.

Heap Compaction

The current design of the Cosmos heap compactor compacts the entire MDP heap when a
storage allocation request exceeds available free memory. This approach works, but it has
two significant disadvantages, both related to the long time it takes to compact the memory:

1. On a small J-Machine, the MDP will effectively stop responding until the heap com-
paction is done. In the few tens of thousands of instruction it takes the MDP to do the heap
compaction, the other MDPs may run out of things to do and all wait for the stopped MDP.
The heap compaction will effectively stop the entire computer. Soon after the first MDP fin-
ishes its heap compaction, another MDP may starts its own compaction, and the process will
repeat.

2. On a large J-Machine, a heap compaction on one MDP will not be enough to stop the
other MDPs from running; instead, they will continue to run longer and are likely to send
enough messages to the compacting MDP that its incoming message queue overflows. The
poor MDP now does not know what to do because it has no free memory into which to put the
extra messages.

Finally, the current heap compactor does not compact BRAT entries or standard contexts,
but it could compact them with a little additional effort.

An incremental heap compactor would address both of the serious disadvantages of the cur-
rent heap compactor. It might even be possible to run the incremental heap compactor in the
MDP's background mode, although the lack of a separate set of fault vectors aad a full set of
registers would pose serious detriments.

Fanout Bottlenecks

Cosmos currently assigns one node as a "home" of an object; with few exceptions, if a differ-
ent node needs a copy of that object, it turns to the home node to get it, and the home node
takes care of supplying the object. Unfortunately, sometimes many nodes want to use the
same object simultaneously. Accesses to mutable objects are serialized anyway, so having a
home node for a mutable object is not such a bad idea; however, there is no reason why ac-
cesses to immutable objects should be unnecessarily serialized. On the contrary, functions
are immutable objects, and it would be nice if a function's home node did not have to send a
copy of the code to every other node on a 65536-MDP computer.

One solution to this bottleneck would be to assign several home nodes to each immutable ob-
ject; perhaps the more popular the object would be, the more home nodes it would have.
When another node needed a copy of that object, it could ask the closest home node. If one
home node were made special and all the others allowed to purge their copies of the object
because they could get it from the special home node, this scheme would become a distribu-
tion tree. Brian Totty presents an analysis of distribution trees in 1381.
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Cosmos also serializes the allocation of distributed objects at one node because of the need to
give each distributed object a unique ID. The allocation process could be parallelized by
splitting the ID space and making several nodes responsible for allocating distributed ob-
jects, one for each chunk of addressing space.

Garbage Collection

Garbage collection on the J-Machine is currently an open research problem. Parallel garbage
collection algorithms exist, but they may not work well on the J-Machine. For example, the
parallel garbage collection algorithm in [29] requires a node to keep track of all of the local
IDs it sends to other nodes, which would be unfeasible for two reasons. First, each MDP
spends a considerable amount of its time sending data onto the network, and its performance
would suffer if it had to record every ID sent. Second, most local IDs become known to other
nodes in the J-Machine, degenerating the algorithm's performance.

Perhaps the best solution is a simple mark-and-sweep algorithm run on all MDPs in parallel;
after all, the combined MDPs have a considerable amount of processing power. Unfortu-
nately, this approach has three potential problems:

1. The mark-and-sweep garbage collector has to stop the J-Machine, and it might be diffi-
cult to stop all processors and allow the messages in the network to land somewhere, espe-
cially if the messages in the network are blocked because some node is out of memory and
queue space.

2. The J-Machine network bandwidth may be insufficient for a mark-and-sweep garbage
collection.

3. There may not be enough room on the MDPs for the intermediate storage needed by the
algorithm. In particular, if all the MDPs immediately start marking their root sets, all mes-
sage queues will quickly overflow with mark messages. This is a parallelism control prob-
lem.

Load Management

The purpose of load management on the J-Machine is to distribute a parallel computation
evenly throughout the processors while keeping network congestion low. Load management
is a very broad current research area. Cosmos and Optimist II include limited attempts to
balance the load-Optimist II distributes the objects it compiles evenly among the nodes of
the J-Machine, and Cosmos allocates new objects on random nodes and evaluates applica-
tions on primitive objects on random nodes to prevent the entire computation from taking
place on one node. Nevertheless, these are only initial steps to addressing the load manage-
ment issues. The following are at least some of the load management concerns that should
be addressed on a large J-Machine:

* The current system for allocating objects may have to be reevaluated. At least theoreti-
cally, the current system should perform quite well if all objects are about the same size. If
the nodes on which objects are allocated are always picked randomly, memory usage on all
nodes will remain within a few standard deviations of the average memory usage, so even on
a large J-Machine the probability that a single node's memory overflows can be made expo-
nentially small. On the other hand, real programs may allocate objects with a large variation
of sizes, and they may wish to allocate objects on specific nodes to take advantage of locality.
Both of these conditions may overflow memory on some nodes while other nodes still have a
considerable amount of free memory.

* An analogous issue to the one above is handling message queue overflows. Due to the
queues' small sizes and the large variance in the sizes of messages, it is difficult to make
queue overflows statistically unlikely. Instead, mechanisms have to be introduced to handle
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them. These mechanisms should not allocate extra local memory because a queue overflow is
most likely to happen when little or no memory is available beca-ase it is being compacted.

* MDPSim assumes that the MDPs are connected by a crossbar network, so all MDPs are
equally far apart from each other. This is a good approximation on a small J-Machine--on a
64-node J-Machine organized as 4x4x4 MDPs, no two processors are more than 9 links apart,
while the expected distance between two random nodes is only 3 links. On the other hand,
on a 65536-node J-Machine organized as 64x32x32, locality becomes an important issue; if
objects continue to be allocated randomly, the network will become hopelessly congested.

There are two general approaches to distributing the load evenly. One approach is to make
objects very mobile and hope that they will redistribute themselves to exploit locality. When
a portion of the J-Machine becomes congested, it could simply throw objects at the rest of the
J-Machine. JOSS hints [38] were an example of a technique that could be used by this ap-
proach. While this approach is simple, it does suffer from sorre disadvantages. In particular,
if load management decisions are made often, they cannot be too time-consuming to prevent
excessive overhead. Also, when an object migrates often, it is difficult for a node to send a
message to it. In JOSS, if a node does not know where an object is, it sends the message to
the object's home node instead, which forwards it to the object. If an object is not at the home
node, then both the home node and the object's current node are congested with messages
addressed to the object. JOSS attempted to correct this problem through the use of hints, but
JOSS-style hints may be ineffective because all first-time users of an object must still first
reference the home node to get to the object.

The other approach is making objects on the J-Machine relatively static and redistributing
them to balance the load only occasionally. This is the approach taken in Cosmos. Objects
are free to move around the J-Machine for short periods of time, but an object's home node
asks the object to return to it when it another node sends a message to the object via the
home node. Hence, objects tend to remain where they were first created. As long as the ob-
ject allocator allocates objects well, the load will remain roughly balanced. Any small dy-
namic imbalances that arise can be handled by the garbage collector, which could have the
power to truly change an object's home node by renaming all of the IDs in the entire J-Ma-
chine pointing to the object.

Controlling Parallelism

In addition to load balancing, which distributes a fixed amount of work among the MDPs, it
will also be necessary to throttle the amount of work being done by the J-Machine as a whole.
A simple example illustrates this point.

(Defmethod fib Integer ()
(if (<= self 2)

1
(+ (fib (- self 1)) (fib (- self 2)))))

Figure 8-1. A Doubly-Recursive Fibonacci Program

Consider the doubly-recursive Fibonacci program in Figure 8-1. When run on a sequential
computer, the program traverses the computation tree of the Fibonacci function in a depth-
first order (Figure 8-2), taking only 0(n) space but exponential time to compute Fib(n). On
the other hand, when run on the J-Machine, each invocation of fib except the tail ones at-
tempts to evaluate the two recursive calls in parallel. In effect, the computer traverses the
computation tree in breadth-first order (Figure 8-3). This is good if there are many proces-
sors, because then the function is computed in only 0(n) time. Unfortunately, this manner of
computation requires an exponential amount of both main memory and message queue
space. Thus, a parallel computer can fail if a program exhibiting too much parallelism is run
on it.
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Figure 8-2. Progress of a Sequential Computation
Although the computation consists of a large number N of function invocations, a sequential computer traverses
the computation tree in depth-first order, so only 0(Jog N) functions are active at any particular time (bold gray).
and the 'wavefront" of computation consists of only a single invocation (bold black) OC/og N~space is required to
run the program and constant-size message queues suffice because the wavefront is at most one invocation.
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Figure 8-3. Progress of a Parallel Computation
A parallel computation tends to evaluate the computation tree in breadth-first order, which requires the storage of
most of the function invocations in the computation tree at about the half-way point. Thus. the computation re-
quires 0(N) space, and, moreover, the 'wavefronr" can also become as large as 0(N). Hence, the computation
also requires 0(N) message queue space. The computation will exceed the parallel computer's memory if N is
large compared with the number of processors.
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When the compiled code for Fibonacci is run on a simulated 4-node J-Machine, Fib(11) is the
largest value that can be computed. An attempt to compute Fib(12) results in queue over-
flows; enlarging the message queues or spilling them into main memory would not help much
because the storage needs grow exponentially.

Fortunately, it appears that a solution to this problem does exist. Why not change from
evaluating the computation tree in a breadth-first fashion to a depth-first fashion when all of
the processors on the J-Machine are busy? A seven-instruction change to the compiled code
for Fib (Figure 8-4) accomplishes just what is needed. The change forces sequential evalua-
tion of Fib's two recursive calls if the local message queue is more than a quarter full. Thus,
the computation grows exponentially until all MDPs are saturated. From then on until the
answer is ready, all MDPs are busy computing the problem without increasing the space re-
quirements. After the change was made, the Fib program could calculate answers for much
larger inputs.

The simple change in Figure 8-4 is not a panacea, though. The change allows enough paral-
lelism for the message queues to be a quarter full on the average throughout the J-Machine.
Unfortunately, in practical simulations the sizes of the queues vary widely-the queues on
some processors might be empty, while other MDPs may have queues that are more than
half full. It is easy to see why this might happen-an MDP with a nearly empty queue is not
throttled down and will happily send messages to an MDP with a nearly full queue. Due to
this variance, the queues overflowed anyway if the threshold for inhibiting parallelism was
set to half of the queue size. To summarize, it seems that this approach for controlling paral-
lelism will work, but it may have to be combined with load balancing to keep the variance in
queue sizes low.

Name Spaces

The scarcity of IDs in the 32-bit name space is also an important consideration on the J-Ma-
chine. After allowing for flags and nonuniform usage of the name space, 32 bits allow only
about a billion objects to be named on the J-Machine. Furthermore, if the name space is not
reused, a J-Machine could run out of names in less than a second-each node is limited to
creating only about 32000 objects before exhausting its name space.

To solve this problem, object IDs could be collected and reused by the garbage collector'. The
garbage collector could compact the ID space, which would also permit an ID-renaming load
balancer almost for free. However, even this approach might not be enough. If the J-
Machine is implemented using technology of the 1990's, it may well have enough physical
memory to overflow the 32-bit name space even with garbage collection. At that point the
only reasonable solution will be to increase the word size, perhaps to 64 bits.

'An approach that almost works and does not require a garbage collector is to test each candidate ID in the ID-
generation routine. If the ED names an existing object, the ID.gencrator simply chooses another ID. Unfortunately,
this approach does not work for immutable objects because some copies of such objects could exist with the home
node not knowing about them. Keeping the home node informed about copies of its immutable objects would cause
bottlenecks of its own, not the least of which arm the space needed to store such information and the network band-
width used to maintain it.
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MODULE fFib
DC MSG : hdrCopyable l cFunction<<offsetN 132
DC {fFib)
DC 5
MOVE [2,A3],R3
LT R3,2,R1
BF R1,^L001
MOVE 1,R1
BR ^L002

L001: SUB R3,2,R2
MOVE .2, RO
CALL objectNode
DC MSG:msgApplyFunction 15
SEND20 R1,RO
DC {fFib)
SEND20 RO,R2
MOVE 5,RO
SEND2EO (1,A1],RO
WTAG RO,6,RO
MOVE R0, (5,A1]
MOVE QHL,R1
WTAG R1,INT,R1
DC 63
AND Rl,$3F7,Rl
LE R1,R0,R1
ET R1, AEmpty
MOVE [5,A1],RO

Empty: SUB R3,1,R2
MOVE R2,RO
CALL objectNode
DC MSG:msgApplyFunction I5
SEND20 R1,R0
DC (fFib}
SEND20 RO,R2
MOVE 6,RO
SEND2EO [1,A1],R0
WTAG RO,6,RO
MOVE R0,(6,AI]
MOVE [6,A1J,R2
ADD R2, [5,AI],Rl

L002: MOVE [3,A3],R2
BNIL R2,FLOO3
DC MSG:msgReplyl4
SEND20 R2,RO
SENDO R2
SEND2EO (4,A3],RI

L003: SUSPEND
END

Figure 8-4. Modified Fib Assembly Language Function
When the incoming message queue is at least a quarter full, the modified Fib function throttles down the paral-
lelism by waiting until the result of the first recursive call has been received before starting the second one. The
modification is shown in bold. No parallelism penalty other than the execution of six extra instructions is paid when
the J-Machine is not saturated.
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8.3. Architectural Considerations

Some architectural modifications could be made that would streamline execution of MDP
code in critical sections in the operating system.

Minor Instruction Set Cbanges

One set of optimizations with a relatively large payoff would be allowing MOVE instructions
from the ID registers directly to memory and XLATE instructions directly from memory into
address and ID register pairs. Introducing these instructions would cut the number of in-
structions needed to save and restore ID registers on context switches by half, and it would
accelerate allocation and deallocation of fast contexts.

A large part of the operating system is still spent saving and restoring state in fault han-
dlers. Also, most faults point the FIP register to the instruction after the one that faulted,
while most fault handlers (with the notable exception of CALL) would rather resume the in-
struction that faulted, requiring the FIP to point to the instruction that faulted. Backing up
the FIP by one instruction takes five or seven instructions depending on whether a free regis-
ter is available. Pointing the FIP to the instruction that faulted (except for CALL faults) or
making an extra shadow FIP register that points to the instruction that faulted would reduce
the number of instructions needed in important fault handlers such as CFUT, EARLY, and
SEND-the EARLY and SEND fault handlers would be reduced from eight instructions to
one!

Other critical resources which are near the limits of their capacities are the message queues
and the XLATE table. The message queues can only be made to hold 1024 words, and the
XLATE table cannot hold more than 512 bindings. If a MDP has 65536 words of memory, it
might be beneficial to have a 2048-binding XLATE table or a message queue that could hold
4096 words, especially if large objects are frequently transmitted over the network.

Another critical resource in the XLATE table is the key space. The XLATE table is a popular
associative cache in the operating system, and it is used for a variety of purposes. Unfortu-
nately, there are only 16 tags on the MDP, and tag conflicts exist among the keys XLATEd by
the users of the XLATE table. For example, class/selector pairs had to be tagged INSTI be-
cause all of the "normal" tags were already taken. A future version of the operating system
might run out of key tags for the XLATE table. Possible solutions to this problem include,
but are not limited to, providing several XLATE tables or using more than one word as a key.

Finally, one instruction is seldom used and could be removed. The INVAL instruction is used
only once in Cosmos in the heap compactor, and since a heap compaction takes a long time
anyway, emulating INVAL in software would neither be difficult nor harm performance.

Fast Context Saves and Restores

Perhaps a more ambitious prciect would be to attempt to improve the MDP's context-switch-
ing time by supporting in hardware a shadow image of the registers in memory. In other
words, the registers would act as a cache for a context in memory. When a context switch oc-
curred, the modified registers would be written back into memory and a new register set
loaded from the new context. Quick register saving and restoring for fault handling is even
more important than fast context switching, and this approach might be generalized to sup-
port fault handling as well by allocating a context to each fault handler that wanted one.
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8.4. Conclusion
A number of desirable features for future inclusion in Cosmos or Optimist II were described,
including arrays, full futures, overriding primitive selectors, floating point numbers, and
large integers. Implementing arrays and primitive selector override facilities should not pre-
sent major difficulties, although it will be time-consuming. Several approaches for imple-
menting floating point numbers were discussed, including two software approaches-a fast
and dirty one and a clean but slow one-as well as two hardware approaches--including a
floating point unit on every MDP and including RAP chips in the J-Machine network.

In addition, a number of resource management issues were discussed, ranging from heap
compaction, garbage collection, load management, and ID reuse to fanout bottlenecks and
parallelism control. New methods may have to be developed to support efficient garbage col-
lection on the J-Machine, but once garbage collection is done, ID reuse and load management
may be obtained for free. Parallelism control is a serious issue in many applications. An ap-
plication that tries to operate on a large data set in parallel or explore a large search tree will
quickly overflow the entire J-Machine's queue capacity. One approach to solving this prob-
lem was explored-if Concurrent Smalltalk code switches to evaluating itself sequentially
when the local queue size exceeds a threshold, the total queue size on the J-Machine appears
to remain bounded, although individual queues may still overflow. This approach shows
some promise for solving the parallelism control problem.

Finally, a few changes to the MDP architecture were proposed. Allowing direct MOVEs to and
from ID registers and providing the right FIP value after a fault would save instructions in
many critical Cosmos code sections.

While Cosmos and Optimist form a workable system as they are now, much fine-tuning re-
mains to be done. Due to a lack of time, a few features of Concurrent Smalltalk have not
been fully implemented. The door is now open for experimenting with the difficult problems
of load management, concurrency control, and garbage collection. These areas have not been
studied very much in the context of fine-grain parallel computers, and there is room for both
practical and theoretical results.
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Optimist II

Optimist II is a second-generation optimizing compiler for Concurrent Smalltalk, and the
first to implement nearly the entire revised Concurrent Smalltalk language. Optimist II
builds upon Optimist by adding an interactive prototyping and debugging environment and a
few new classes of optimizations. The introduction of global optimizations was especially
valuable in making Concurrent Smalltalk easy to use efficiently and the runtime system easy
to write. The greatest advantage of global optimizations is that they permit the programmer
to divide a system into self-contained abstractions without suffering a performance penalty
for doing so. There is a trend in modern programming languages towards global optimiza-
tionsi, and Optimist II shows that they are both feasible and desirable for a language like
Concurrent Smalltalk.

Cosmos

Cosmos is an optimized operating system for the J-Machine. In addition to performing the
necessary services to keep the J-Machine running, it includes facilities for function and
method calls; local and global object allocation, disposal, and migration; method lookup ta-
bles; distributed object creation and addressing; and various utilities. A few interesting pro-
gramming techniques were used: an infinite loop broken by a fault is used for block moves
and sends, and an addressing scheme was developed for distributed objects that allows easy
addressing of constituents while at the same time distributing them throughout the J-Ma-
chine and allowing efficient implementation of an operation that returns a nearby con-
stituent.

Cosmos was fairly difficult to write due to the constant specter of re-entrancy problems and
double faults. These errors were the most common problems in JOSS [381. Nevertheless,
with the aid of the criticality system those difficulties were overcome. Unfortunately, the ca-
sualty of this battle with re-entrancy is ease of modification of the Cosmos kernel-the kernel
is now one compact piece of code. Nevertheless, it should not be necessary to make extensive
modifications to that kernel in order to add the features mentioned in Chapter 8.

Debugging

An important consideration when designing a complicated computer system today is ensuring
that it is debuggable. The hardware world has been buzzing with ideas such as design-for-
test for a few years now; yet, these ideas are just as applicable to software. Thus, Cosmos in-
cludes consistency checks in strategic locations which detect common errors that may be com-
mitted by Concurrent Smalltalk programs. However, even with those checks debugging a
Concurrent Smalltalk in assembly language is unpleasant and not as interactive as it could
be; for this reason, Optimist II includes an interpreter which can be used to get a Concurrent
Smalltalk program working before it is run on a J-Machine.

Performance Measurements

Performance measurements on a simulated J-Machine indicate that the grain size (the num-
ber of instructions executed in response to a message) averages about 60 instructions. Since
most functions invocations involve two messages (tail-forwarded invocations being an impor-

lFor example, C++ [37] allows functions to be declared inline, recommending that the compiler inline them in other

functions.
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tant exception), the average number of instructions needed to process a function call is about
100 to 120; the number is lower if many tail-forwarded invocations are made.

The MDP executes one instruction about every two cycles when running entirely from inter-
nal memory; when the user program and data are located in external memory, that count
only doubles to about four cycles per instruction even though the external memory is 5 times
slower for writing, 3 times slower for reading, and about 24 times slower for fetching instruc-
tions. The reason for the unusually low cycles-per-instruction number when the user pro-
gram and data are located in external memory is the high operating system overhead; since
the operating system is always in internal memory, running operating system code out of in-
ternal memory tends to pull the cycles-per-instruction number down.

Under good conditions the MDPs can saturate the network on J-Machines larger than 343
nodes, although most programs will not execute fast enough for the network to saturate until
significantly larger J-Machines are used. To prevent network saturation, either the network
will have to be made faster, the program slower, or some means of exploiting locality in-
vented.

Future Work

Many ideas for future work and research were outlined in Chapter 8. The short-term goals
are twofold: first, to fill the remaining holes in the implementation of Concurrent Smalltalk;
in particular, arrays will be useful for running real Concurrent Smalltalk applications; sec-
ond, to write some nontrivial Concurrent Smalltalk programs and see how well they can uti-
lize the J-Machine's power. In addition, the load management and parallelism control issues
in Chapter 8 should be explored. So far development of the Concurrent Smalltalk environ-
ment has i een done without much feedback from applications because until very recently it
was not possible to run any applications on even a simulated J-Machine. Now that the com-
piler and the operating system are operative, it will be possible to close the loop and provide
concrete measures of the J-Machine's performance on real problems.

Hopes

Optimist II and Cosmos are but an early step in an evolving base of software for the J-Ma-
chine. My hopes are that the J-Machine will evolve into a computer competitive with today's
fastest computers on numerical codes and surpassing them on less-structured but nonethe-
less computation-intensive Artificial Intelligence applications.

When I originally wrote this thesis in early 1989, I wrote that I was hoping to be able to run
a Concurrent Smalltalk program on a set of real MDPs. Two years later, during the summer
of 1991, this wish came true.
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A.1. Introduction
Concurrent Smalitalk (CST) is a concurrent descendant of Smalltalk. It is an object-oriented
programming language developed for multiple instruction/multiple data concurrent comput-
ers such as the J-Machine. It is an interesting language for a message-passing concurrent
computer because it encourages locality and disciplines the use of message-passing.

Goals

Concurrent Smalltalk is a high-level language intended for general-purpose programming of
the J-Machine. It was created and revised with the following goals in mind:

* Expressiveness. Concurrent Smalltalk must be expressive enough to support the paral-
lel programming paradigms we desire to research on the J-Machine. In particular, it must
support object-oriented programming and fine-grained parallelism. Also, since a large part of
the Concurrent Smalltalk runtime system is written in itself, Concurrent Smalltalk must
support higher-order features such as reasoning about classes of objects.

* Consistency. Features which would interact destructively with other features were left
out. For example, become, although a useful Smalltalk-80 construct, would confuse the type
semantics so it was left out.

"* Simplicity. Concurrent Smalltalk should be as simple as possible. In order to reach the
goal of simplicity, Concurrent Smailtalk should consist of a few orthogonal concepts. It is
very important that Concurrent Smalltalk contain no surprises-one should be able to tell
what a program should do by reading it. Features involving action at a distance (i.e. having
a statement invisibly affect another statement far away) were intentionally excluded.

0 Familiarity. Programmers familiar with existing languages should be able to carry over
their experience to Concurrent Smalltalk. Also, corresponding features should act in the
same ways, which reinforces the "no surprises" philosophy. On the other hand, Concurrent
Smalltalk is most similar to Smalltalk-80, Common Lisp, and Scheme in this respect. Hence,
static scoping is used for variables.

* Efficiency. It is important to be able to compile Concurrent Smalltalk programs into ef-
ficient machine code. An efficient implementation allows a programmer to concern himself
primarily with algorithms and implementation rather than performance tuning. Concurrent
Smalltalk is not a tightly bound low-level language in order to give the compiler latitude in
optimizing code.

* Commonality. The sets of built-in classes and methods presented in this language spec-
ification are by no means minimal. However, the built-in classes are frequently used and
were included in order to provide a common base for Concurrent SmalItalk programs. The
inclusion of frequently used classes has three advantages:

"* The built-ins are implemented only once, saving time and effort.
"* The built-ins provide a consistent functional and naming specification.
"* The built-ins can be optimized for efficiency.
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Format

BNF

The syntax of commands is presented in BNF. Literals are presented in bold, while non-ter-
minals and metasymbols are plain. There are two enhancements to the BNF syntax:

The (exprl I expr2 I ... I exprn) form specifies that each expr can appear at most once, but they
can appear in any order. The symbol a expr form is a macro used for readability. It specifies
that whenever symbol appears, it should be replaced by expr before any productions are done.

Methods and Functions
The declarations of methods and functions are presented in a syntax similar to that used by
defmethod. To give an example,

(move what:robot x, y, z:integer theta:float) :result Method

declares a method called move of class robot that takes a receiver argument what of class
robot, three integer arguments, x, y, and z, and a float argument, theta. That method
returns an object of class result.

Sometimes an abstract class like number is declared that has no direct instance objects; in-
stead, every object of class number is also an object of one of number's subclasses. Methods
of an abstract class may or may not have definitions for that class. A method that does not
have a definition for the abstract class is called an abstract method. For example, + is an ab-
stract method of class number; there exists no generic method to add two arbitrary numbers.
Instead, when + is called on two numbers, the definition of+ for either the class integer or
the class float is used. Were a third number subclass, complex-number, defined, it wouldhave to define its own + method. On the other hand, the zero? method of class number is

not abstract because it uses the = method (a method defined on all numbers). Thus, com-
plex-number does not have to define its own zero? method.

Abstract methods are indicated by the words Abstract Method on the right side of the dec-
laration line.

Optional statements are extensions to the basic Concurrent Smalltalk language. They are
not guaranteed to be present in all implementations of Concurrent Smalltalk, but if an im-
plementation supports the capabilities described by optional statements, it should use the de-
scribed syntax.
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A.2. Syntax

Tokens

A Concurrent Smalltalk token is an arbitrarily long string composed of the characters A-Z, a-
z, 0-9, , !, ?, %, +, -1 *P /, ., <,=, >, &, @, and -. The characters ', ?, &, and @ may not be
used at the beginning of a token, and a token may not be composed entirely of periods (.) or
underscores (_). Also, tokens beginning with an underscore ( ) or a percent sign (%) are re-
served for sys'tem purposes and macros and should not be used by user programs. Case is
not significant.

A token is considered to be a number if it consists entirely of the characters 0-9, _, +, -,/,

E, or I; it contains at least one digit; it begins with +, -, or a digit; and it does not end with a
digit. These rules are borrowed from Common Lisp. E introduces an exponent, while I can
be used for complex numbers if they are implemented. Any token that is not a number is an
identifier.

Identifiers

Concurrent Smalltalk uses static scoping of identifiers. Local identifiers shadow identical
global identifiers, and the meaning of an identifier can be determined by its location in the
text of the program. Global identifiers are introduced by the following top-level statements
and their derivatives:

* Defconstant, to define a constant;
* Defglobal, to define a global variable;
* Defclass, to define a class;
* Defselector, to define a method selector;
* Define, to define one global identifier in terms of another.

The syntactic sugar def method expands into, among other statements, a def selector, de-
fining a global identifier. Similarly, defun expands into a defconstant statement that de-
fines the function.

Except for classes, the above categories share a single name space. Redefining a global iden-
tifier causes an error or a warning unless the new definition is identical to the old one. Class
names have lower precedence than other global identifiers, so a global constant can shadow a
class name.

All macros are global; however, macros are also in a name space separate from the one
shared by the above categories. Since macros match patterns instead of just names, two
macros may share the same name. If more than one pattern is applicable, one is chosen at
the implementation's discretion. Whenever a macro is applicable, it is expanded, unless one
of the literals specified in the macro pattern is shadowed by a local identifier.

Local identifiers are introduced by the following statements and their derivatives:

• Lambda and defun introduce the names of formal parameters.
* Method-Lambda and defmethod introduce self, group, names of the instance vari-
ables, and names of the formals. If a name conflict occurs between the formals, instance
variables, self, and group, the results are unspecified.
* Let, clet, mv-clet, and mv-let introduce names of the locals.
* Lambda, method-lambda, defun, defmethod, block, and loop introduce the names of
continuations.

All of the shadowing rules are summarized in Figure A-1.
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Language Global Local Local

True ISymbols 'identifier
False

Classes Predefined #==tiClasses Iefidentifierr
der# IdentifierS..... •----identi-ie

Constants Predefined Instance Instance
Constants Variables Variables

Predefined Functions - I I
Predefined Selectors Self Self

I I I1[Parameters Functi:on~s Group Group

ISelectorsI
rFormals Formals

EGlobals I 1
Continuations Continuations
Continuation Continuation

Primitives Top-Level Local Local11 Forms F~ le L LVariables

[Macros Predefined Continuations Continuations

Keywords identifier IMacro Variables I--,identifier in macro

Cm p r I Macro Variables _4_ ?identifier in macro

Figure A-1. Scopes of Identifiers
The scopes of various kinds of identifiers are shown above. Except for macros, sets of identifiers connected by
thick lines are mutually exclusive and may not contain duplicate names. To find the meaning attributed to an iden-
tifier, follow the arrows from the bold pattern indicating the identifier's usage to the first box that contains the identi-
fier. For example, if i is encountered in a program, it is first checked to be a local in the innermost scope, then a
local in the next innermost scope, and so on until the global scope is reached. If i is not a valid macro pattern, it is
checked against the globals, parameters, and constants, and finally classes. On the other hand, if N : i is encoun-
tered, i is checked against the names of classes only. searches only globals, parameters, and constants,
both user and predefined.
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Identifiers that are not defined globally' or in any enclosing scope are defined as globals.
They must be defined before they are used. The exceptions to this rule are identifiers en-
closed in quote or class statements listed below.

(global identifier) Primitive
# identifier

Global returns the global identifier identifier, which, if already defined, must be a global (not
a class). If identifier is not already defined globally, it is defined as a global.

(class identifier) Primitive
# identifier

Class returns the global class class. Since classes are in a separate name space from other
globals, no error occurs if there is already a global identifier defined with the same name as
identifier.

Symbols

(quote (nil I true I false I identifier I number I character I string)) Primitive
'(nil I true I false I identifier I number I character I string)

Symbols can be specified by preceding including them in a quote form as above, which can
be abbreviated by a quote mark ('). When presented with an identifier, the quote expres-
sion evaluates to a symbol. Any valid identifier except nil, true, and false can be used-
symbols cannot be captured by any scope, nor can they be globally redefined. Ni1, t rue, and
false are treated specially- (quote nil) returns the null object nil, while
(quote true) returns the boolean true and (quote false) returns the boolean false.
(quote number), (quote character), and (quote string) just returns the number number,
character, or string.

Constants

A few constants are predefined. These are listed in Table A-1 below. In addition, any num-
ber can be specified by just including the number. Characters can be specified by preceding
them with #\. Strings can be specified by enclosing them in double quotes (",). Double
quotes can be included inside strings by preceding them with \.

Table A-1. Predefined Constants

Constant Value Class
TRUE True True 2

FALSE False False 3

NIL Nil Null
End-of-file An end-of file object Object

11t is op to the implementation to define the meaning of a global definition here. When a file is compiled, an im-
plementation might choose to read all of the definitions in the file and then compile the code, or it could compile the
file incrementally. In the latter case forward.referenced identifiers will be considered undefined.2Since t rue is a global constant, #:,- rue has to be used to refer to class t r-e. Also, class t rue is a subclass of class
boolean.3Sinoe fa I se is a global constant, : a. se has to be used to refer to class fa i se. Also, class fa l se is a subclass of
class bool ear.
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Comments

Comments may be placed anywhere in source files. A comment starts with a semicolon (;)
and is terminated by the end of the line. Comments are treated as if they were line breaks
by the reader.
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A.3. Programs

program ::= (top-level I statement)*

A Concurrent Smalltalk program is a sequence of top-level forms. Additionally, an imple-
mentation may allow begin and if as top-level forms if test is a constant expression and
statements in body, consequent, and alternative are top-level forms. Other statements may
also be allowed at the top level by extended implementations. Statements at the top level are
executed sequentially as if they were enclosed in a begin.

Constant Expressions

Constant expressions are expressions that have to be evaluated at compile time. A constant
expression can include any expression or function call, except that constant expressions may
not produce distributed objects as values and may not call functions that use futures.

Global Definitions

All constants, parameters, and globals reside in a single name space; in general, redefining
an identifier with a different meaning causes an error. Macros reside in a separate name
space and do not conflict with each other or any other global objects (although they may be
shadowed by local static scoping).

(defconstant name[:typel value) Top-level Primitive

Defconstant defines a constant named name. The constant can be any valid Concurrent
Smalltalk type. If type is specified, the value must have that type. Once a constant is de-
fined, it may not be changed (another constant is accepted, though, if it has the same value).
Constants encountered in methods are replaced by their values at compile time. Value must
be a constant expression. Predefined constants are listed in Table A-1.

Language primitives and built-in functions and selectors are defined as global constants.

(defparameter name[: type] value) Top-level Primitive

Defparameter defines a parameter named name. The parameter can have any valid Con-
current Smalltalk type. If type is specified, the value, if present, must have that type. If no
type is specified, type is assumed to be object, the most general type. Parameters encoun-
tered in methods are replazed by their values at compile time. Value must be a constant ex-
pression. Unlike constants, parameters may be redefined at the top level, but their types
may not be changed. The value of a parameter may not be changed by a running program.

User functions and selectors defined using defun, defmethod, and def selector are de-
fined as parameters. Hence, they may be redefined.

(defglobal name[ :type] [value]) Top-level Primitive

Defglobal defines a global named name. The global can have any valid Concurrent
Smalltalk type. If type is specified, the value, if present, must have that type. If no type is
specified, type is assumed to be object, the most generai type. Value must be a constant ex-
pression.

A global may be defined several times, but only the value from the first definition is used,
Nevertheless, all definitions of a global must have the same type.
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(define name name) Top-level Primitive

This primitive defines the first name as an alias for the object specified by the second name.
For example, if the second name refers to a global, after this primitive is executed, both
names will refer to the same global.

(undef name) Top-level Primitive

This primitive removes the top-level definition of name, if any. It should be used with cau-
tion, as it is possible to bring the system into an inconsistent state using undef.
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A.4. Classes

Built-in Classes

A few classes are predefined. These are listed in Table A-2, and their hierarchy is shown in
Figure A-2. The defclass primitive can be used to define other classes, which may be based
on the built-in ones shown in bold in Figure A-2.

Defining New Classes

(defclass class {class-declaration) superclasses Top-level Primitive
instance-var-spec°)

class ::= name
superclasses ::= (class+)
instance-var-spec ::= typed-names I (typed-names {instance-var-declaration))
typed-names ::= name (, name)* [: type]
instance-var-declaration =- &inline I &not-inline I

&reader names I
&writer names I &cwriter names
&cas-er names

names ::= name I (name*)

Defclass defines a new Concurrent Smalltalk class. A class is a template for specifying ob-
jects and methods. Each object belonging to the class contains the instance variables defined
in the class definition as well as the instance variables inherited from its superclasses, if any.

In the class definition, class is the new class name. It is followed by an optional declaration,
described later, the class's superclass list, and finally the additional instance variables de-
clared by the class.

Class Inheritance
Each user-defined class must have at least one superclass, but it may have more than one. A
class inherits the instance variable and method definitions from its superclasses. It may add
its own instance variables and methods, and it may attempt to override existing methods. If
a class is overriding a method, the new method must be a subtype of the existing one.

A simple form of multiple inheritance is allowed. Two or more superclasses may be specified
for a class under the following conditions:

* There must be no instance variable conflicts among the superclasses. Formally, this re-
quirement is satisfied if and only if out of the superclasses sl, S2, ... s, provided there is one s,
such that if v is an instance variable of sJ, 1<_j_<n, then v is an instance variable of si or one of
its superclasses.

* There must be no inherited method conflicts among the superclasses. Formally, this
means that if selector s is associated with method m, for superclass s, and method mi for sj,
then mi and mj are the same method (Textual equivalence of the method code is not enough;
mi and mj must "point" to the same method).

The class then inherits all of the instance variables and all methods from all of its super-
classes.
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Instance Variables

After the superclasses in the class declaration is a list of new or redefined instance variables.
Instance variables without any type are given the type object. An instance variable may be
specified to have the same name as an instance variable of one of the superclasses. If so, the
specified type must be a subtype of the original instance variable's type, and either both or
neither must be inline.

An instance variable may be declared &inline or &not-inline. These are hints to the
compiler that the variable's object should be placed inline or on the heap (not inline). These
hints only apply if the variable's type is an inline class. The compiler is free to ignore these
declarations.

Reader and Writer Methods

A few methods are automatically defined when a class c is defined. For each instance vari-
able x of c, two functionally identical methods are defined, named x and get-x, that, when
called on an object o of class c, return the value of x in o. These methods are called reader
methods; two are defined in order to avoid name conflicts with instance variables. Similarly,
a writer method put-x is defined that, when called on an instance object o of c and a new
value v of x, and assigns v to x in o and returns 0. Furthermore, a cwriter method cput-x is
defined that behaves just like the writer method put-x except that it is not strict-it does
not necessarily touch its second argument v. Finally, a cas-er method cap-x is defined that
performs an atomic compare-and-put operation: (cap-X o comparison replacement) checks
whether the value of instance variable x in 0 is eq to the value of comparison. If so, it stores
the value of replacement in x and returns true; otherwise, it returns false.

If it is desirable to produce reader, writer, cwriter, or cas-er methods with names different
from the defaults, the &reader, &writer, &cwriter, and &cas-er options can be used to
specify the new names. More than one method name may be specified for an instance vari-
able. If &reader, &writer, &cwriter, or &cas-er is used, the corresponding default
method name is not defined. For example, if &writer is used with an empty list of names,
the corresponding writer method name is not defined.

Class Definition Options

class-declaration = &inline I &not-inline-default
&immutablel
&predicate names

"A class definition allows several options which are described in more detail below.

"A class may be declared inline, which means that, whenever possible, objects of that class are
allocated inside other objects or in local variables instead of on the heap. &not-inline-de-
fault is an option for inline classes.

Objects of an immutable class declared with the &immutable option may be shallow-copied
at any time at the system's discretion, which can lead to significanc performance improve-
ments. They are also often passed by value to methods and functions. It is not necessary
that no methods ever write to instance variables, but only that the effects of such writes not
be visible outside the class data abstraction. The compiler is free to ignore &immutable dec-
larations.

The &predicate option defines the name or names of the class predicate. A class predicate
is a function that returns true when called on an object of the specified class or its sub-
classes and false on all other objects. The default name of a class predicate is obtained by
concatenating a question mark (?) to the end of the class name, so (integer? x) tests
whether x is an integer.
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Inline Classes

When a class is declared &inline, instance objects of that class are often inlined-allocated
inside other objects or local variables. No method dispatching takes place on inlined objects
because the compiler knows the exact types of inlined objects--inline class methods are con-
verted to functions. Declaring a class &inline does not alter its semantics except for a few
additional restrictions on its usage. The compiler is free to ignore & inline declarations.

Subclasses of inline classes can be declared under the following restrictions: A subclass of an
inline class may not declare any additional instance variables, and it may not override any
methods. The only superclasses allowed for inline classes are classes with no instance vari-
ables.

Normally all formals, locals, and instance variables declared with inline classes are inlined
by default. However, that default can be overridden for individual variables by declaring
them &not-inlinel. The default can be overridden for all variables by declaring the class
&not-inline-default, in which case individual variables can be inlined by declaring them
&inline and giving them the proper type.

Inline classes are useful for representing small objects such as floats and locks which re-
quire more than one word but for which ordinary object overhead is prohibitive. In general, it
is pointless to declare a class inline unless it is immutable or its instance objects are rarely
passed to methods other than the inline class's.

'Another way to override this derault is to declare the variable's type as ob lect.
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A.5. Methods and Functions

Introduction

Methods and functions are the basic blocks of computation in Concurrent Smalltalk. Each
method and function can accept a number of arguments, which are assigned to the formals
for the duration of the execution of the body of the method or function. Furthermore, a
method has a special first argument, called the receiver, which contains an object of the
method's class on which the method was called. In general, methods and functions execute
concurrently unless explicitly synchronized. This is true even if they are accessing shared
objects.

Formals

formal-spec ::= typed-opt-names I (typed-opt-names {formal-declaration))
typed-opt-names ::= opt-name (, opt-name)" [: type)
opt-name ::= name I _
formal-declaration =_ &value I &inline I &not-inline I &no-leak I &nam name

A method's or function's formals are listed when the method or function is declared. Each
name specifies the name of a formal. Typed-opt-names specifies one or more names sepa-
rated by commas followed by an optional type. The character _ can be used to indicate an
unnamed formal; unnamed formals accept arguments but cannot be referenced from within
the method or function. If type is not present, it defaults to object. If the long form of a
formal-spec is used, the formals in typed-opt-names can be declared using declarations.

Arguments are passed by value, just as in Smalltalk-80, Scheme, and Common Lisp. The
types of the arguments to the method or function must be subtypes of the types of the corre-
sponding formals. A method or a function may assign a value to a formal, which only
changes the method's or function's local value. Of course, a method or a function is also free
to mutate a formal using some other method; such changes are visible to the outside. This
kind of mutation corresponds to communication via shared objects.

A formal may be declared &value, which means that, at the implementation's discretion, the
method or function may be passed a shallow copy of the argument when it is called. Thus,
not only is the formal passed by value, but its first-level structure may also be passed by
value. All formals declared using an &immutable class are automatically declared &value.
&value declarations are especially useful to improve efficiency of inline classes.

A formal may also be declared &inline or &not-inline. These are hints to the compiler
that the formal's object should be placed inline or on the heap. These hints only apply if the
formal's type is an inline class. The compiler is free to ignore these declarations.

Declaring a formal &no-leak is a hint to the compiler that the value of the formal is not
passed out of the method or function, and it will not be referenced after the method or func-
tion returns. Thus, the implementation is free to perform a shallow deallocate on the value
of the formal when the function returns. This declaration is especially helpful for arguments
of type funct. The compiler is free to ignore this declaration.

&name can be used to name an anonymous function or method. The name is saved for de-
bugging purposes. &name is only allowed in a lambda or a method-lambda.
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Return Values

return-specs ::= : type I (return-spec*)
return-spec ::= typed-names I (typed-names {return-declaration))
typed-names ::= name (, name)* [: type]
return-declaration a &value

A method's or function's return specification may be listed when the method or function is
declared. Most methods and functions return only one value. For these functions, the short
form, consisting of a colon (:) followed by the return type, is adequate. If the return type is
object, the entire return specification can be omitted altogether.

The long form of declaring a method's or function's return types uses the double colon (: :)
notation and allows explicit naming of the return continuation. The name is called a contin-
uation name. Continuation names are lexically scoped and may be referenced in the body of
the method or function. The syntax and semantics of continuation declarations are analo-
gous to those of formals, and the continuation names reside in the same namespace as formal
and variable names. The only declaration allowed is &value. If the short form is used, a de-
fault continuation name continuation is used. Some implementations may also allow re-
turning multiple values. Multiple values do not all have to be returned at the same time, but
all have to be returned at most once by the time the method or function finishes.

Since the implicit return statement at the end of a method's or function's body returns its
value to continuation, it is an error to allow execution to "fall through" the method or
function to the implicit return statement unless one of the continuations is named contin-
uation.

Method and Function Declarations

funct-declaration &non-strict I
(&inline I &not-inline) I
&side-effect-free

The following declarations are allowed for methods and functions:

; The &non-strict declaration specifies that the arguments do not have to be touched be-
fore the body of the method or function begins executing. Thus, the method or function may
at the compiler's discretion receive cfutures in the formals. This declaration is useful mainly
for inline functions.

* The &inline and &not-inline declarations specify that the method or function should
or should not be included inline at the points where it is called. This declaration is only a
hint, and the compiler does not have to obey it.

"* The &side-effect-free declaration is a hint to the compiler that the method or func-
tion does not perform any visible side effects on its arguments or on the global environment.
This information lets the compiler better schedule calls to the method or function. This di-
rective is also useful on methods and functions that do perform side effects; it tells the com-
piler that those side effects are not essential. One example of a method that falls into this
category is a method operating on an immutable class of complex numbers that allows redun-
dant representations in rectangular or polar form. The method could side effect a complex
number to calculate its polar representation from its rectangular one, but that side effect is
not essential for the program to work correctly.

The Calling Process

When a function or a method is called, the values of the arguments are computed and as-
signed to the formals. The formals are touched unless the function is declared
&non-strict. After all formal values are evaluated, execution of the method's expressions
proceeds as if the expressions were enclosed in an implicit block-initially the first expres-
sion is evaluated, then the second one, and so forth. The value of the implicit block, which is
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the value of the last expression, is returned to the caller unless an exit or return state-
ment is encountered first.

Scoping of Local Variables
Local variables are statically scoped. Any lambda, method-lambda, future, or lazy-fu-
tute created within a method or a function is a full closure and may reference and alter the
method's or function's local variables. Similarly, the method or function may alter its locals,
and such changes will be visible to any lambda, method-lambda, future, or lazy-future
nested within it.

If concurrency and efficiency are desired, however, such sharing should be avoided whenever
possible. A lambda, method-lambda, future, or lazy-future should declare its own tem-
poraries for local computations instead of using ones belonging to an outer static scope. If a
method or function wants to pass values into a closure, it should initialize the appropriate
temporaries before the closure is created and not change those temporaries afterwards. The
closure should not change those temporaries either, unless it wants to pass a result back to
the method or function that created it.

Functions

(lambda (formal-spec*) [return-specs] {funct-declaration} Primitive
body)

Lambda defines and returns an anonymous function. Formal-spec* is a list of the function's
formals and their types. Return-specs specifies the function's return type, or, if it returns
multiple values, the number of return values and their types. The function may also have
declarations, as explained above. Body is a list of statements that form the body of the func-
tion.

(defun name (formal-spec*) [return-specs] {funct-declaration} Top-level Macro
body)

Defun defines a global function with name name, formals as specified in tormal-spec*, return
values defined by return-specs, optional declarations funct-declaration, and body body.

Methods

(method-lambda class (formal-spec*) [return-specs] (funct-declaration) Macro
body)

Method-lambda returns a method of class class. The resulting method does not have a se-
lector. Nevertheless, it can be called as a function if the first argument is an instance object
of class. The other parameters are as in lambda.

Method-lambda also introduces into the scope of body the names of the instance variables of
an object of class class as well as two special variables: self and group. Self refers to the
first argument of the method call, also known as the receiver object. If class is a subclass of
distobj, group refers to the group name of the distributed object of which self is a con-
stituent.

(def selector selector) Top-level Primitive
selector ::= name
Defselector defines name as a selector. This primitive is rarely used explicitly, as all un-
defined names are assumed to be selectors by default.
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(add-method selector class value) Top-level Primitive

Add-method associates a method with its class and selector. When selector is called with a
receiver object that belongs to class, value is called. Value should be a function or a method.

(method selector class) Primitive

Method performs the inverse of the add-method operation-it returns the method associ-
ated with selector and class. If no method is associated with selector and class, method re-
turns nil.

(defmethod selector class (formal-spec*) [return-specs] Top-level Macro
{lunct-declaration)
body)

Defmethod defines a global method with the given selector and class. The rest of the syntax
is analogous to defun.

When a method is called, the values of the selector and arguments are computed, and the
method associated with the selector and the class of the receiver object is found. Of course,
this method may have been defined for a superclass of the class of the receiver object (i.e. it
may be inherited). It is an error occurs if no such method exists. Otherwise, the process of
calling a method is the same as that of calling a function.
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A.6. Statements

value ::= statement
expression ::= statement
body ::= statement*

In the definitions below, the non-terminals value, expression, and statement all refer to
statements, although value usually denotes a side-effect-free statement that is executed for
its return value, expression denotes a statement that may have side effects but is executed
mainly for its return value, and statement denotes a statement that is executed mainly for its
side effects. A body is a sequence of statements executed one after another just like in be-
gin; the value of a body is the value of its last statement.

Futures and CFutures

Futures and cfutures (context futures) are the main means of achieving concurrency in Con-
current Smalltalk. Both futures and cfutures are promises to produce some value at a later
time. Forcing a future means forcing the future to fulfill its promise and return its value.
Analogously, touching a cfuture forces it to calculate and return its value. A force implies a
touch, so a force never returns a cfuture.

There are two main differences between futures and cfutures. These are outlined below:

* Futures are guaranteed not to be forced unless they are explicitly forced, while cfutures
are not guaranteed not to be touched-they may be touched at any time at the compiler's and
operating system's discretion. In an extreme case, cfutures may be touched as soon as they
are created, leading to a sequential implementation of Concurrent Smalltalk (except for fu-
tures).

* CFutures are generated by almost all primitive operations, while futures are generated
only by the future and lazy-future primitives and their derivatives.

* CFutures are always eager-if left alone, they will tend to evaluate to their values. Nor-
mal futures, on the other hand, may be eager or lazy. A lazy future may not begin to evalu-
ate to its value until it is forced; if it is never forced, it may never be evaluated.

The rationale behind creating two kinds of futures is to allow the use of cfutures for most
tasks where parallelism is desirable but guaranteed parallelism is not necessary for the cor-
rect operation of the program. CFutures are intended to be very cheap-they can be created
and touched in a few assembly language instructions. Futures, on the other hand, are re-
served for the cases like normal-order evaluation where the semantics of delayed evaluation
are necessary for the program to run correctly. Futures are much more expensive than cfu-
tures in terms of space and time.

Both futures and cfutures may have values of complicated expressions as their promises. For
example, if (f 3) =30, (g 7) =49, and (h 30 49) =79, during the execution of the state-
ment

(cset a (h (f 3) (9 7)))
a may be computed in arbitrary order, and f and g need not have returned values by the
time the next statement is executed. If a is later touched, it will assume the value 79.

The semantics become more complicated if the functions f, g, and h have side effects. The
order of evaluation of arguments of function calls is undefined and may be parallel, so f and
g may be evaluated in parallel. Furthermore, if h is declared &non-strict (as many built-
ins are), the evaluation of h may overlap with the evaluation of its arguments. If, say, h does
not use the value of its second argument until late in its execution, h may already be execut-
ing while (g 7) is still being calculated. Finally, if h can return without ever requesting the
value of its second argument, (g 7) may never be completely evaluated (since cfutures are
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eager, it will keep evaluating, but the entire program may finish before it is done). A good
example of this phenomenon is (and b false), where the program can proceed without
ever determining the value of b.

Argument Evaluation

Unless a method or a function is declared &non-strict, method and function calls are strict
with respect to cfutures but not futures-the arguments of a method or function are guaran-
teed not to be cfutures when the method or function begins evaluation. For example, assum-
ing no futures are used, in

(cset a (h (f 3) (g 7)))
(cset b (k 10))
(touch a)
(cset c (1 10))

f 3) and (g 7) are guaranteed to be done evaluating before (h 30 49) begins evaluating. Also,
(f 3), (g 7), and (h 30 49) are guaranteed to be done evaluating before the evaluation of (0 10)
is started. However, (k 10) can be evaluated concurrently with any of (f 3), (g 7), (h 30 49), or
(1 10).

The arguments of functions are evaluated concurrently. This means they may be evaluated
sequentially, in parallel, or any combination of the two. Using side effects can sometimes
lead to deadlock. For example, suppose that the function release-lock releases a global
lock and acquire-lock waits until the lock is released and then acquires it. Further, sup-
pose that global-lock is originally acquired. Then, the expression

(h (release-lock global-lock) (acquire-lock global-lock))
can lead to deadlock because the implementation might choose to evaluate acquire-lock
sequentially before release-lock.

Concurrent evaluation order is also distinct from an arbitrary sequential order. For example,
suppose that c is a local variable with an initial value of 0 and consider the value of the ex-
pression

(cset a (+ (cset c (+ 1 c)) (cset c (+ 1 c))))
(touch a)
(touch c)

Under sequential evaluation of arguments, the final value of a would always be 3 and the fi-
nal value of c would always be 2 when this expres.ion completes. Under concurrent evalua-
tion of arguments, the final value of c could be 1 if, say, both increments were done before ei-
ther assignment to c. In this case, a would get the value 2.

(touch expression) Primitive
(touch expression*) Macro

If expression is not a cfuture, touch does nothing. Otherwise, touch waits until the value of
the cfuture is available and then returns that value. It should be kept in mind that if touch
is used in a subexpression, other subexpressions may or may not continue evaluating while
this touch is waiting. Also, a touch in a subexpression does not guarantee that the entire
expression will not yield a cfuture, as is demonstrated in one of the examples above.

If more than one expression is specified, touch touches them all and returns the value of the
last one. If no expressions are specified, touch returns nil.

Touch does not have any effect on futures.
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(force expression) Primitive
i expression Macro
(force expression') Macro

If expression is not a future or a cfuture, force does nothing. Otherwise, force waits until
the value of the future or cfuture is available and then returns that value. That value is
guaranteed not to be a future or a cfuture.

If more than one expression is specified, force forces them all and returns the value of the
last one. If no expressions are specified, force returns nil. The ! expression form is a
shorthand for (force expression).

(future expression) Primitive
(lazy-future expression) Primitive

Future and lazy-future both return futures that promise to evaluate expression when
forced. The futures are guaranteed to evaluate in parallel with all other processes unless
explicitly synchronized. Future and lazy-future differ in that future begins evaluating
its expression immediately, while lazy-future waits until it is forced before it starts
evaluating its expression. In any case, expression is evaluated at most once, no matter how
many times it is forced.

Caveats: The actual time when a future is forced is sometimes rather fuzzy, especially in
the presence of inlined primitives and side-effect-free functions, so the guarantee in the pre-
vious paragraph may not apply in the code just before a future is forced (the extent of this
fuzzy section of code is still to be determined). Also, futures should not return objects of
classes that can be inlined--doing this may force the future immediately at any point. These
caveats should not present problems unless futures have intricate side effect dependencies.

Application Statement

(funct arg*) Primitive
funct ::- expressio',
arg ::= expression
The first item of an application statement is either a method selector or a function. If it is a
selector, the method corresponding to the selector and the class of the first argument is called
using the arguments provided. If it is a function, it is applied to the specified arguments.
The first item can also be any expression that evaluates to an object of type funct. The
value of the application statement is either the return value or a cfuture promising that
value.

The order of evaluation of arguments is not specified; in fact, some of them may be (but are
not guaranteed to be) evaluated concurrently. The arguments are not guaranteed to be
touched before being passed to the funct-some of them may be passed to the funct as futures
or even cfutures (However, all user-defined methods and functions not explicitly declared
: non-strict will touch their arguments before their code begins executing). For example,
(cset a (+ 0 a) ) does not touch a, and (and b false) does not touch b.

Type Assertion

(:type expression) Primitive

The type assertion statement asserts that the type of expression's value is a subtype of type.
It returns expression's value. The compiler is not required to generate an error if expression
evaluates to a value that is not a subtype of type, but it may do so.
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Variable Bindings

(clet (binding-spec*) body) Primitive
binding-spec ::= typed-opt-names I (typed-opt-names {variable-declarationj [value])
typed-opt-names ::= opt-name (, opt-name)" [: type]
opt-name ::= name I_
variable-declaration = &inline I &not-inline

Clet creates local variable bindings and evaluates body within the scopes of those bindings.
Each name specifies the name of a new variable. Typed-opt-names specifies one or more
names separated by commas followed by an optional type. The character _ can be used to in-
dicate an unnamed local variable; unnamed local variables can be used to evaluate the initial
value expression without binding a name in the static scope. If type is not present, it de-
faults to object. If the long form of a binding-' pec is used, the variables in typed-opt-names
can be declared using declarations and can be given an initial value. Value, the initial value
is an expression evaluated outside the scope of the clet. Each initial value is evaluated only
once, even if it is assigned to more than one variable. The new variables are bound concur-
rently. Their initial values may be evaluated concurrently, and they are not guaranteed to
be touched by the time body begins executing-in body the new variables may still contain
cfuturea.

A variable may be declared &inline or &not-inline. These are hints to the compiler that
the variable's object should be placed inline or on the heap. These hints only apply if the
variable's type is an inline class. The compiler is free to ignore these declarations.

The value returned by a clet is the value returned by the last statement in body.

(let (binding-spec*) body) Macro

Let is the same as clet except that all newly-bound variables are touched before body be-
gins executing. As with clet, the initial values are evaluated concurrently.

(cset name expression) Primitive

Cset sets the variable name to expression. The variable gets either the touched value of ex-
pression or a cfuture promising to evaluate expression. The value returned by a cset is the
value of expression.

(set name expression) Maczo

Set sets the variable name to the value of expression. The value is touched before it is as-
signed to the variable, so the variable will not contain a cfuture or a future after this state-
ment. The value returned by a set is the touched value of expression.

(cas name comparison replacement) Primitive
comparison expression
replacement expression

CAS (compare-and-set) is an atomic' operation that checks whether the value of variable
name is eq to the value of comparison. If so, the value of replacement is stored in variable
name and cas returns true; otherwise, cas returns false. The value of variable name is
never a cfuture when cas completes.

'In the current implementation, in order for cas to be atomic, neither name nor replacement can be a future. If

replacement could be a future, it should be forced before a cas is done. There is no easy solution if name could be a
future. Fortunately, there is usually little reason to store a future in a semaphore.
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Multiple Values

The constructs below are used for receiving multiple values from methods and functions.
Multiple values may not be supported by all implementations of Concurrent Smalltalk.

(mv-cset (name*) (funct arg°n ) optional Primitive

MV-cset sets the variables name* to the multiple values returned by (funct arg*). The vari-
ables get either the touched return values of expression or cfutures promising to evaluate
them. Some of the return values may be available before others. Mv-cset returns nil.

(mv-set (name*) (funct arg*)) Optional Macro

mV-set is just like mv-cset except that it touches all variables in name' before continuing.

(mv-clet (mv-binding-spec*) (funct arg') body) Optional Macro
mv-binding-spec ::= typed-opt-names I (typed-opt-names {variable-declaration))
typed-opt-names ::= opt-name (, opt-name)* [: type]
opt-name ::= name I _
variable-declaration a &inline I &not-inline

(mv-let (mv-binding-spec*) (funct arg') body) Optional Macro
MV-clet and mv-let are just like clet and let except that they initialize the new vari-
ables to the values returned by (funct arg*).

Syntactic Sugar

[arg*] Macro

This form is equivalent to (get arg*).

(cset (tunct arg-) expression) Macro

When the first argument of a cset is a function or a method call, cset is desugared into an-
other function or a method call. The above forms are converted to (funct' arg* expression),
where the identifier funcr is obtained by appending the characters cput - to the beginning of
the identifier funct, unless:

funct is get, in which case funcd is cput;
funct is get -x, in which case funct' is cput-x (x is any sequence of characters);
funct is put, put-x, cput, cput-x, cap, or cap-x, in which case an error occurs.

Funct must be a function name or a method selector. It may not be an expression or a vari-
able reference. (funct arg*) may, however, b'e a macro or contain macros; these macros are
expanded before the above conversion takes place.
Forexample, (cset (first sequence) 3) isconvertedto (cput-first sequence 3),
while (cset (big-array 7] 12) is convertedto (cput big-array 7 ±2).

(set (funct arg*) expression) Macro

When the first argument of a set is a function or a method call, set is desugared into an-
other function or a method cal. The above forms are converted to (functr arg" expression),
where the identifier iunc' is obtained by appending the characters put- to the beginning of
the identifier [,anct, unless:

funct is get, in which case funct' is put;
funct is get-x, in which case funct' is put-x (x is any sequence of characters);
funct is put, put-x, cput, cput-x, cap, or cap-x, in which case an error occurs.

Funct must be a function name or a method selector. It may not be an expression or a vari-
able reference. (funct arg*) may, however, be a macro or contain macros; these macros are
expanded before the above conversion takes place.
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For example, (set (first sequence) 3) is converted to (put-first sequence 3),
while (set [big-array 7] 12) is converted to (put big-array 7 12).

(cas (funct arg') comparison replacement) Macro

When the first argument of a cas is a function or a method call, cas is desugared into an-
other function or a method call. The above form is converted to
(tunct arg* comparison replacement), where the identifier funct' is obtained by appending
the characters cap- (compare-and-put) to the beginning of the identifier tunct, unless:

funct is get, in which case funct is cap;
funct is get-x, in which case funcr is cap-.. (x is any sequence of characters);
funct is put, put-x, cput, cput-x, cap, or cap-x, in which case an error occurs.

Funct must be a function name or a method selector. It may not be an expression or a vari-
able reference. (funct arg*) may, however, be a macro or contain macros; these macros are
expanded before the above conversion takes place.

Flow of Cvntrol

(begin body) Primitive

Begin evaluates the statements in body sequentially, touching each one except the last be-
fore it begins the next, and returns the untouched value returned by the last one. If there
are no statements in body, begin returns nil.

(nconcurrently statement*) Macro
(concurrently statement*) Macro
?statement Macro

These macros evaluate the statements in statement* concurrently and return nil.
Concurrently waits until all btatements have finished executing before returning, while
nconcurrently does not. ?statement is an abbreviation for (nconcurrently statement).

(nparallel statement*) Macro

(parallel statement*) Macro

These macros evaluate the statements in statement* in parallel and return nil. Parallel
waits until all statements have finished executing belre returning, while nparallel does
not. The parallelism is guaranteed, which makes parallel a much more expensive state-
ment than concurrently. In most cases concurrently should be used instead unless par-
allel semantics are explicitly required.

(if test consequent [alternative]) Primitive
test ::= expression
consequent ::= expression
alternative ::= expression

If evaluates the test expression, which must return either true or false. If it returns
true, the consequent expression is evaluated and its value returned; otherwise, the alterna-
tive expression, if any, is evaluated and its value returned. If is not guaranteed to touch the
test value. However, it is guaranteed to evaluate only the appropriate arm of the condi-
tional.

Loops

(while test body) Macro
test ::= expression

While evaluates the test expression, which must return either true or false. As long as it
returns t rue, body is evaluated and test reevaluated. When test evaluates to false, while
returns nil.
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(repeat body until test) Macro
test ::= expression

Repeat first evaluates body and then the test expression, which must return either true or
false. As long as it returns false, repeat goes back to evaluating body. When test evalu-
ates to true, repeat returns nil.

Primitive Control

(block continuation body) Macro

Block is just like begin except that it allows the use of return and reply statements to
leave it. The statements in body are evaluated as in a begin. Continuation specifies the
block's continuation for use in return and reply statements.

(loop continuation body) Macro

Loop defines a loop body. The statements in body are evaluated as in a begin, except that
after the last statement in body has been evaluated, the first statement is evaluated again,
and so on. The loop does not terminate unless an explicit return or reply statement is en-
countered. Continuation specifies the loop's continuation for use in return and reply state-
ments.

Returning Values

Since the last expression in the method code is implicitly returned to continuation, the
statements below are necessary only if it is desired to return a value from the middle of a
method or function, if a block or loop should be terminated, if multiple values are being re-
turned, or if a value is returned to a continuation with a name other than continuation.
Reply and exit should be used with caution, as exit may cause the caller to hang, while
reply may cause the caller to crash if two replies are inadvertently sent. Care must be taken
to reply to each continuation at most once-sending a second reply to a continuation will al-
most certainly cause a system crash, and it is quite difficult to protect the system against
this type of error. When using reply it is important to remember that there is an implicit
reply of the last expression in the method code to continuation.

Continuations

Continuations are introduced by lambda, method-lambda, defun, defmethod, block,
loop, future, lazy-future, parallel, and nparallel. The continuations defined by
future, lazy-future, parallel, and nparallel are not externally accessible. Lambda,
method-lambda, defun, and defmethod define the default continuation continuation un-
less told otherwise. They also reply to continuation if allowed to complete executing with-
out an intervening exit. Thus, care must be taken when using nested function and method
definitions to make sure that reply and return reply to the right continuation.

Continuation manipulation can become quite complicated, and not all features have to be
supported by all implementations. A minimal implementation only has to allow replying to
the innermost construct that defines continuations; hence, an implementation may restrict
non-local replies. Furthermore, an implementation does not have to support replying out of a
future, lazy-future, parallel, or nparallel statement, since these also introduce con-
tinuations. A more sophisticated implementation may allow replies to all continuations ac-
cessible in the current lexical scope. Finally, an advanced implementation may choose to
make continuations first-class values of class # :continuation and allow them to be stored
in variables.

(exit) Primitive

Exit is a statement that hangs, never returning a value. In most cases exit can be thought
of as exiting the current method or function, but it does not necessarily do so if used in a
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cset, concurrently, nconcurrently, parallel, nparallel, block, loop, future, or
lazy-future statement, let or clet bindings, or some other statement that permits paral-
lel execution without synchronization.

(reply expression) Macro
(reply (continuation expression)*) Primitive

The first variant of reply evaluates expression and sends its value to continuation. Exe-
cution then proceeds with the next statement of the current method, if any. Reply is not
strict-it may reply a future or a cfuture. The value of a reply statement is nil.

The second variant of reply is used to return values to named continuations. The reply
takes an even nu nber of arguments; within each pair, the first argument is the continuation
name and the secrnd one its value.

(return expression) Macro
(return (continuation expression)*) Macro

Return is equivalent to a reply followed by an exit-the values of the expressions are sent
to the caller, and the execution of the method or function terminates subject to the caveats in
the exit statement description.

(return-value-expected?) :boolean Function

(return-value-expected? continuation) :boolean Function

Return-value-expected? returns true if the caller of the method or function is expecting
a reply for continuation (or continuation if continuation is not specified). It is not guaran-
teed to return false otherwise, so an implementation that always returns true is accept-
able.
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A.7. Built-in Methods and Functions

Built-in Classes

Built-in classes are provided for reasons of efficiency and convenience. Many methods on
built-in classes are compiled into single assembly language instructions instead of method
calls, improving their speed greatly. Other built-in classes may be defined by methods writ-
ten in assembly language and linked with the programs generated by the compiler. Arrays
may be defined this way. The built-in classes are listed in Table A-2, and their hierarchy is
shown in Figure A-2.

Table A-2. Built-in Classes

Class Metaclass Values
Nullt Primitive-Class Nil
Symbol Primitive-Class Symbols, including nil, but not true and false
Truet Primitive-Class The boolean true
Falset Primitive-Class The boolean false
Boolean Primitive-Class The booleans true and false
Character Primitive-Class ASCII characters
Small-Integer Primitive-Class Integers representable in a machine word'
Large-Integer Primitive-Class Integers not representable as Small-Integers
Integer Primitive-Class Arbitrary-sized integers
Float Primitive-Class Floating-point numbers 2

Real Standard-Class Real numbers
Number Standard-Class Arbitrary numbers
Magnitude Standard-Class Numbers, characters, and booleans
Primitive-Class Primitive-Class Primitive classes defined by Concurrent Smalltalk
Standard-Class Primitive-Class Standard (non-distributed) classes
Distributed-Class Primitive-Class Distributed classes
Classt Primitive-Class General classes
Function Primitive-Class Functions, methods, and closures
Funct Primitive-Class Functions, methods, closures, and method selectors
System-stream Primitive-Class System-defined streams
Stream Standard-Class Sources of input or destnatons for output
Simple-Lock Primitive-Class Very cheap and simple locks
Queueing-Lock Primitive-Class More expensive locks that queue pending tasks
Lock Standard-Class General locks
Integer-Array Primitive-Class Small arrays of integers
String Primitive-Class Small arrays of characters
Boolean-Array Primitive-Class Small arrays of booleans
Simple-Array Primitive-Class Small arrays of arbitrary objects
Array Standard-Class Arrays of arbitrary objects
Collection Standard-Class Indexed collections of objects
Distobj Distributed-Class All distributed objects
Object Standard-Class All first-class values

The metaclass of a class is the class of the class object itself. Metaclasses govern certain
aspects of class behavior such as inheritance and the action of new. Only classes having
standard-class or distributed-class as a metaclass permit user-defined subclasses.
At the implementation's discretion some classes with primitive-class as a metaclass may

tThis class name conflicts with another global name, so it has to be preceded with 0 : whenever it is used.

lCurrently a machine word is 32 bits, so the s-a I- i r--,, e-e r range is .2147483648 to 2147483647.
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Symbol------B- Null jFalse
Boolean < True

Magnitude Character Ingr< Small-Integer

Number-4Real < Float Large-Integer

CPrlitive-Class

Distributed-Class

Object Function
unct -= Selector

Stream ------4w- System- Stream

.- ' Simple-LockQueuing-Lock 
Integer-Array

Collection -- Array - Simple-Array< String

DistObj 
Boolean-Array

Figure A-2. Hierarchy of built-in classes
The superclasses are shown to the left of their subclasses. All classes are subclasses of object. Classes
with metaclass primit ive-cl ass are shown in bold, classes with metaclass standard-class are shown in
standard type, and the one class with metaclass di st ributed-cl ass is shown in italic. User-defined classes
may be defined as subclasses of any of the classes having standard-class or di st ributed-cl ass as a
metaclass.

actually be instances of standard-class or distributed-class, but portable programs
should not rely on this.

Built-in Methods

Built-in methods are provided for the basic arithmetic and logical operations. The methods
are explained in the following sections. Since some built-in method calls compile into assem-
bly language instructions, some restrictions are necessary on the use of their selectors.
Specifically, if any other methods are defined using the selectors in Table A-3, they must
obey the identities listed in Table A-4.

Redefining Restricted Selectors

If a reF'tricted selector is called with an argument that is not one of the built-in classes it rec-
ognizes, the actual method for the class is found and executed, possibly after some of the iden-
tities in Table A.4 have been applied. Thus, it is possible to define a class of type, say, com-
plex, and define a method * for numbers of that type. That method will be called whenever
* is used on a number of type complex, regardless of whether that number is the first or sec-
ond argument. If both complex numbers and quaternions are defined, the complex * method
should be prepared to handle a quaternion as the second argument, while the quaternion *
method should be prepared to handle a complex number as the second argument. The re-
verse methods have been added to handle the case of a non-built-in object being the second
argument of a noncommutative operation. The <>, <=, and >= methods should never be rede-
fined, as they are never called. Redefine =, >, and < instead.

2 Floating point numbers may not be implemented in all Concurrent Smalltalk implementations.
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The associative restricted selectors allow an arbitrary number of arguments; they compile
into pairwise invocations of the corresponding methods. The grouping order is not specified.

Methods declared with restricted selectors should not have side effects.

The identities in Table A-3 have been carefully selected to allow efficient implementation of
primitive operations without sacrificing functionality. Some identities have been omitted on
purpose. For example, * does not have to be commutative in general, nor does (* a 0) have
to equal 0. Not requiring these identities allows * to be used to multiply quaternions and
matrices.

The restricted selectors not, and, or, and xor may not be distinguishable from lognot, lo-
gand, logor, and logxor on all implementations. Redefining these should be avoided; if
they must be redefined, only one set should be redefined.

Table A-3. Restricted Selectors

not and or xor lognot logand logor logxor
< <= > >= - <

neg + - reverse-- * // reverse-// mod reverse-mod
ash reverse-ash integer-length
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Table A-4. Identities among Primitive Methods

• + is associative and commutative.
a 0 is an identity for +.
* (- a b) - (reverse-- b a).
* (- a b) - (+ a (neg b)).
* (neg (neg a)) = a.
• * is commutative with scalar constants and associative.
• 1 is an identity for *.
* (* a -1) - (neg a).
* (* a 2 e) = (ash a e).

U (// a (neg b)) = (neg (// a b)).
U (// a 2 e) = (ash a -e).
U (// a b) = (reverse-// b a).

• (mod a (neg b)) = (neg (mod a b)).
• (mod a b) = (reverse-mod b a).
* (ash a b) = (reverse-ash b a).
* (ash 0 a) = 0.
• (ash a 0) = a.
* (not (not a)) = a.
* and, or, and xor are associative and commutative.
* (and a false) = false.
* (and a true) = a.
"* (or a false) = a.
"• (or a true) = true.
* (xor a false) = a.
* (xor a true) = (not a).
* (lognot (lognot a)) = a.
* logand, logor, and logxor are associative and commutative.
* (logand a 0) = 0.
* (logand a -1) = a.
• (logor a 0) = a.
• (logor a -1) = -1.
* (logxor a 0) = a.
* (logxor a -1) = (lognot a).
* (< a b) = (not (>=a b)).
* (> a b) = (not (<=a b)).
* (= a b) = (not (<> a b)).

(< a b) = (> b a).
* (<= a b) = (>= b a).
• (= a b) = (= b a).
* (<> a b) = (<> b a).
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A.8. System and Object Operations

Objects

(new c:standard-class) :object Method

New, when applied to a standard class, creates and returns a new instance object of the speci-
fied class. The object is not initialized. Some implementations may restrict the new argu-
ment to be a constant expression.

Copiers

(deep-copy o:object) :object Method

Deep-copy returns a copy of the object. Any of the object's instance variables are also recur-
sively copied using deep-copy. If the class of the object is immutable, deep-copy may just
return the object it received. Deep-copy may fail to terminate on circular object references.

(shallow-copy o:object) :object Method

Shallow-copy returns a copy of the object without copying any of the object's instance vari-
ables. If the class of the object is immutable, shallow-copy may just return the object it re-
ceived.

(copy o:object) :object Method

Copy is the most appropriate copying routine for a given object. It defaults to shailow-
copy.

Deallocators

In addition to waiting for garbage collection, the following methods can be used to explicitly
deallocate the storage for an object. Accessing an object after it has been deallocated causes
an error.

(deep-dispose o:object) :null Method

Deep-dispose deallocates the object's storage. Any of the object's instance variables are
also recursively disposed using deep-dispose. Deep-dispose should not be used on circu-
lar or multiple object references.

(shallow-dispose o:object) :nuil Method

Shallow-dispose deallocates the object's storage without disposing any of the object's in-
stance variables.

(dispose o:object) :null Method

Dispose is the most appropriate deallocating routine for a given object. It defaults to shal-
low-dispose.

Class Inquiries

(class-of o:object):ctass Method

Class-of, when applied to an object, returns its class.
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(class -kind? o:object c:class):boolean Method
(class-me rber? o:object c:class):boolean Method

Class-kind? returns a boolean value that specifies whether the given object is an instance
of the given class or one of its subclasses. Class-member? is just like class-kind? except
that it returns true only if the object is a direct instance of the given class.

(subclass? cl, c2:class) :boolean Method

Subclass? returns true if cl is a subclass of c2 and false otherwise.
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A.9. Distributed Objects

distobj Class

Distobj is the distributed object class.

Group and Constituents

A distributed object consists of a group name and one or more constituent objects. The con-
stituent objects act just like normal objects except that they inherit methods and instance
variables from the class distobj and they respond to the group and get-group messages.
A group name indicates the entire collection of distributed objects. When a method is called
on the group name, it is processed by one of the distobj's constituent objects, as though the
method were called on that constituent object. The identity of the constituent object receiv-
ing the message is left unspecified; implementations are encouraged to heuristically pick dif-
ferent constituent objects for different calls to the group, thereby facilitating concurrency for
distributed object operations. When a constituent object is processing a method, self is the
constituent object, not the group name.

Creation

(new c:distributed-class n-constituents:integer):distobj Method
New, when applied to a distributed class, creates and returns a new distributed object of the
specified class with the given logical number of constituents. The constituents are not initial-
ized.

The distributed object that is created may contain more constituents than n-constituents. The
runtime system determines an appropriate physical number of constituents for the dis-
tributed object that is at least as large as n-constituents. The additional constituents should
be prepared to respond to messages sent to the distributed object.

Operations

(co o:distobj n:integer) :distobj Method

Co returns the nth constituent object of the distributed object. o can be either the group ob-
ject or any of its constituents. N must be between 0 and the physical number of constituent
objects in the distobj minus one.

(logical-limit o:distobj) :integer Method

Logical-limit is the logical number of constituent objects in the distributed object.

(physical-limit o:distobj) :integer Method
Physical-limit is the physical number of constituent objects in the distributed object. The
constituent objects are numbered between 0 and physical-limit minus one, inclusive.
Physical-limit is never less than logical-limit.

(index o:distobj) :integer Method

Index is the number of a particular constituent object in a distributed object. Index ranges
between 0 and physical-limit minus one, inclusive.
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group:distobj Instance Variable
(group o:diStobj) :distobj Method
(get-group o:distobj):distobj

Group is the inverse of co-it returns the group object of the given distributed object. o can
be either the group object or any of its constituents; if o is already a group object, group just
returns it. Get-group is functionally equivalent to group; it is provided to avoid name con-
flicts with the group variable inside distributed object methods.
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A.1O. Logical and Arithmetic Operations

Comparisons

(eq ol, o2:object) :boolean Function
(neq ol, o2:object) :boolean Function

Eq returns true if the two objects are indistinguishable-there is no legal way of distin-
guishing ol from o2. For mutable objects this means that ol and o2 are the same object.
For immutable objects, eq may in addition return true if ol and o2 are different objects that
contain the same data.

Eq may return unusual results for inline classes-an instance object of an inline class is not
necessarily eq to itself, but eq will never return true on distinguishable objects.

Neq is the logical negation of eq.

(= ol, o2:object) :boolean Method
(<> ol, o2:object):boolean Method

These comparisons return true if ol is equal to or not equal to o2, respectively. Equality
means numeric equality for numbers. It defaults to eq or neq for other objects, but the
method can be overridden to specify a different criterion for a particular class.

(< ml, =2:magnitude) :boolean Abstract Method
(<= =I, =2:magnitude) :boolean Abstract Method
(> ml, m2:magnitude) :boolean Abstract Method
(>= mi, m2:magnitude) :boolean Abstract Method

These comparisons return true if ml is less than m2, ml is less than or equal to m2, ml is
greater than m2, or ml is greater than or equal to m2, respectively. For the purposes of com-
parison, false is considered to be less than true. It is an error to use <, <=, >, or >= to com-
pare an object from one direct subclass of magnitude with one of another direct subclass of
magnitude-a boolean cannot be compared with an integer.

(ma- ml, m2:magnitude) :magnitude Method
(min ml, m2:magnitude) :magnitude Method

Max returns the greater of ml and m2, while min returns the lesser one. Both max and mn
use one of the comparison operations above to decide which is the greater or lesser, and the
same caveats as above apply.

Logical Operations

(not b:boolean) :boolean Method

Not returns the logical negation of b.

(and (b:boolean)*):boolean Method

And returns the logical AND of its arguments. If no arguments are specified, and returns
true.

(or (b:boolean)*) :boolean Method

Or returns the logical inclusive OR of its arguments. If no arguments are specified, or re-
turns false.
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(xor (h:boolean)*) :boolean Method

Xor returns the logical exclusive OR of its arguments. If no arguments are specified, xor
returns false.

(sc-and (b:boolean)*):boolean Macro
(sc-or (b:boolean)*):boolean Macro

These are short-circuit versions of and and or. They evaluate arguments sequentially from
left to right only as far as necessary for the answer to be unambiguously determined.

Arithmetic Operations

For most binary arithmetic operations, the class of the result is the class of the most general
argument. For example, if two integers are added, the result is an integer, but if an in-
teger and a float are added, the result is a float. User-defined classes may define other
numeric subclasses, in which case they have to handle appropriate coercions themselves-if a
number is added to a member of a user-defined subclass of number, the + method for the
user-defined subclass will have to dispatch on the type of its second argument.

(zero? n:number) :boolean Method

Zero? returns true if n is zero and false otherwise.

(neg n:number) number Abstract Method

Neg returns the negation of n. The class of the result value is the same as the class of n.

(+ (n:number)*) :number Abstract Method

+ returns the sum of its arguments. If no arguments are specified, + returns 0.

(- ni, n2:number) :number Abstract Method

- returns the difference of its arguments, nl-n2.

(* (n:number)*) :number Abstract Method
* returns the product of its arguments. If no arguments are specified, * returns 1.

(U ni, n2:number) :number Abstract Method

/ returns the quotient of its arguments, nl/n2. If ni and n2 are both integers and ni is
not exactly divisible by n2, the result is a float. If n2 is zero, either an error occurs or some
representation of infinity is substituted as an answer.

(// ni, n2:integer) :integer Method

// returns the integer quotient of its arguments rounded towards -- , Lnl/n2j. If n2 is zero,
either an error occurs or some representation of infinity is substituted as an answer. Having
// round towards -- allows the use of ash to divide when the divisor is an integral power of
two.

(mod nl, n2:integer) :integer Method

mod returns the nonnegative remainder of dividing ni by n2, nl-n2*Lnl/n2j. If n2 is zero, ei-
ther an error occurs or some representation of an indeterminate number is substituted as an
answer. Having mod return the nonnegative remainder allows the use of logand to find the
remainder when the divisor is an integral power of two. When the remainder is nonzero, its
sign is always the same as the sign of the divisor n2. Also, (+ (mod n1 n2) (* n2 (//
n1 n2))) - nl.
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(ash ni:integer nr2:intger) :integer ;ethod
(ash nl:float n2:integer) .Iloat Method

Ash returns ni multiplied by two raised to the n2th power, nl*2n2. Ifr. 1 is a float, no
rounding takes place; however, if ni is an integer and n2 is negative, the result is rounded
towards -•.

(integer-length n:integer) :integer Method

Integer-length returns the bit "size" of ni. For positive n this is flog2 (n+1)1, while for
negative n it is equal to Flog2 (-n)l

Bitwise Logical Operations

(lognot b:boolean) :boolean Method
(logand (b:boolearI)+):boolean Method
(logor (b:boolean) 4 ) :boolean Method
(logzor (b:boolean)+):boolean Method

(lognot b:integer) :integer Method
(logand (b:integer)*) :integer Method
(logor (b:integer)*) :integer Method
(logxor (b:integer)*) integer Method

These methods perform bitwise logical operations. When called on booleans, they perform
the same operations as not, and, or, and xor, respectively. When called on integers, they
perform the corresponding operations bitwise on semi-infinite two s complement representa-
tions of the integers, treating 0 as false and 1 as true. The integers do not have to be in-
ternally stored in the two's complement form; all that is necessary is that these operations
act as if they were. When supplied with no arguments, logand returns -1, while logor and
logxor return 0.
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A.11. Locks

Locks are used to synchronize processes. A lock can be acquired by only one process at a
time, and the acquiring operation is atomic. After a process has acquired a lock, it can pro-
ceed to perform whatever exclusive operations it wants to do. When it is done, it should re-
lease the lock to make it available again. If a process attempts to acquire a lock that is busy
(acquired), it will wait until the lock is available.

Two built-in lock classes are provided: simple-lock and queueing-lock. Simple-lock
is a very cheap and fast implementation intended for situations in which a lock is not ac-
quired for long periods of time and there is little contention for the lock. Simple-locks are
adequate for most purposes. QGeueing-locks are heavy-duty locks for use in situations
where ther- may be significant contention for a lock.

Lock Operations

(new-simple-lock) :simple-Iock Function
(new-queueing-lock) :queueing-lock Function

New-simple-lock creates a new simple lock, while new-queueing-lock creates a new
queueing lock. The lock is initially available.

(init l:simple-lock) :null Method
(init l:queueing-lock) :null Method

Init reinitializes the lock, making it available regardless of its previous state.

(acquire l:lOCk) :null Abstract Method

Acquire acquires the lock. If the lock is busy, acquire waits until the lock is available be-
fore acquiring it and returning.

(release l:lOCk):null Abstract Method

Release releases the lock. If the lock is already available, release signals an error.

(busy? 1:lock) :boolean Abstract Method

Busy? returns true if the lock is busy and false otherwise.

(with-locks ((l:lock)*) body) Macro

Wit h-locks first acquires all of the locks listed, in the order in which they are listed, then
evaluates body, and finally releases all of the locks. It returns the value of body.
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A.12. Strings and Arrays

Strings and arrays are the primitive data structures for keeping track of indexed collections
of data. All primitive strings and arrays are subclasses of the class array. The subclasses of
class array can be implemented as arrays, but implementations are encouraged to pack in-
teger-arrays, strings, and boolean-arrays to conserve space and time.

Creating Arrays

(new-simple-array size:integer) :simple-array Method

New-simple-array creates a new simple array of arbitrary objects. Size specifies the
number of elements in the array; the elements are numbered 0 through size-1. The array's
elements are not initialized.

(new-integer-array size:integer low, high:integer) :integer-array Method

New-integer-array creates a new array of integers in the range between low and high,
inclusive. Low must be less than or equal to high. Size specifies the number of elements in
the array; the elements are numbered 0 through si ze-1. The array's elements are not ini-
tialized.

(new-string size:integer) :string Method

New-string creates a new array of characters, also called a string. Size specifies the num-
ber of elements in the array; the elements are numbered 0 through si ze-1. The array's ele-
ments are not initialized.

(new-boolean-array size:integer) :boolean-array Method

New-boolean-array creates a new array of booleans. Size specifies the number of ele-
ments in the array; the elements are numbered 0 through size-1. The array's elements are
not initialized.

Operations on Entire Arrays

(fill a:array value) :array Abstract Method

Fill destructively writes value to every element of the given array. If the array is an in-
teger-array, a string, or a boolean-array, the value must have the correct type and, in
the case of integer-array, it must be in the range specified when the array was created;
otherwise, the results are unspecified. Fill returns the updated array.

(init a:array f:funct) :array Abstract Method

Init concurrently calls f c., integers between 0 and the size of a minus one, inclusive, and
stores the results in the corresponding elements of a. If f or any other function tries to read
an element of a, it will wait until the value is available. It is an error for f or any other func-
tion to try to alter the values of elements of a before init returns. Init returns the a array
after all calls to f have returned.

(map src:array dst:array f:funct) :array Abstract Method

Map concurrently calls f on each element of the src array and stores the results in the corre-
sponding elements of the dst array. The sizes of the two arrays must be equal. If src is a
simple-array, so must be dst. Sr,_ and 2st may be the same array. Iff or any other
function tries to read an element of the Ist, array, it will wait until the value is available. It
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is an error for f or any other function to try to alter the values of elements of the dst array
before map returns. Map returns the dst array after all calls to f have returned.

(for-each a:array f:funct):array Abstract Method
(nfor-each a:array f:funct) :array Abstract Method

Both of the above methods concurrently call f on each element of the array and then return
the array without modifying it. Nfor-each does not wait until any of the calls to f return,
while for-each does.

Accessing Arrays

[a:array pos:integer] :object Abstract Method
(get a:array pos:integer) :object

Get returns the element at position pos of the given array. Get signals an error if pos is
outside the bounds of the array. The results of accessing an uninitialized element are un-
specified.

(set Ia:array pos:integer] value:object) :array Abstract Method
(put a:array pos:integer value:object) :array

Put destructively writes value at position pos of the given array. value is not touched.
Put signals an error if pos is outside the bounds of the array. If the array is an integer-
array, a string, or a boolean-array, the value must have the correct type and, in the
case of integer-array, it must be in the range specified when the array was created; oth-
erwise, the results are unspecified. Put returns the updated a-ray.

(size a:array) :integer Abstract Method

Size returns the size of the array, as specified when the array was created.
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A.13. Input and Output

Streams

Streams are sources and sinks of data. A stream is usually a connection to a terminal or to a
file, but other uses of streams are possible. Concurrent Smalltalk defines a general class
stream as well as a specific implementation of streams, system-stream. Other user-de-
fined stream classes may be defined as subclasses of stream.

Operations on General Streams

Reading

(read-stream-char s:stream) :object Abstract Method

Read-stream-char reads a character from stream s and returns it. If there is no more in-
put available on the stream, read-stream-char returns nil.

(read-stream-line s:stream) :object Abstract Method

Read-stream-line atomically reads a line from stream s and returns it in the form of a
string (without the trailing line terminator). If there is no more input available on the
stream, read-stream-line returns nil.

(read-stream s:stream) :object Abstract Method

Read-stream reads some representation of a Concurrent Smalltalk object from stream s
and returns it. If there is no more input available on the stream, read-stream returns the
constant end-of-file.

end-of -file :object Constant

This unique constant is returned when read-st ream-ob ject encounters an end of file.

(stream-char-ready? s:stream) :boolean Abstract Method

Stream-char-ready? returns true if a character is ready to be read from stream S. It is
not guaranteed to return false otherwise, so an implementation that always returns true
is acceptable.

Writing

(write-stream-char s:stream ch:character) :null Abstract Method

Write-stream-char writes character ch onto stream s.

(write-stream-string s:stream string:string) :null Method

Write-stream-string writes string string onto stream s. Write-stream-string is
equivalent to calling write-stream-char on each character in string except that string
is written atomically.

(write-stream s:stream (o:object)') null Method

Write-stream writes some representation of the given Concurrent Smalltalk objects onto
stream s. It uses print to format objects it does not know about. Care should be taken
when writing circular structures to make sure that write-st ream terminates.
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(display-stream s:stream (o:object)) :null Method

Display-stream writes some representation of the given Concurrent Smalltalk objects onto
stream s. Strings and characters are written literally, without escape characters. Care
should be taken when writing circular structures to make sure that display-stream termi-
nates.

Atomicity

(split s:stream) :stream Abstract Method

Split returns a new stream that can be used for atomic writing to s. Anything written to
the returned stream is atomically written onto s when join is called on the returned stream.

(join s:stream) :null Abstract Method

Join joins s back to a stream from which it was split. It is an error to call join on a stream
not returned by split or to call it more than once on such a stream.

Input and Output Streams

terminal- st ream:system-stream Global

Terminal-stream is the system-stream used for interaction with the terminal.

(read-char) :object Function
(read-line) :object Function
(read) :object Function
(char-ready?) :boolean Function

(write-char ch:character) :null Function
(write-string string:string) :null Function
(write (o:object)*) :null Function
(display (o:object)*) :null Function

(split -terminal) :stream Function

These functions are the terminal equivalents of the general stream methods above.

Formatting

(print o:object s:stream):null Abstract Method

Print is used for formatting arbitrary objects for the purposes of write-stream. Print
should output some readable representation of object o onto stream s.

(display-print o:object s:stream):null Method

Display-print is used for formatting arbitrary objects for the purposes of display-
st ream. Display-print should output some readable representation of object o onto
stream s, avoiding escape characters where possible.
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A.14. Macros

Concurrent Smalltalk provides a macro facility which can be used to extend the language. A
macro consists of a pattern, an optional guard, and a replacement. The pattern can contain
variables or literals (a literal is an identifier). If it matches with an expression and the guard
is satisfied, that expression is replaced by the replacement, which can be either another pat-
tern or a Common Lisp function.

(definacro pattern [guard] replacement) Top-level macro
pattern::= literal I ?name I! name I (pattern* [pattern. pattern]) I @pattern
replacement ::= r-pattern I lisp-statement
r-pattem ::= literal I ?name J !name I (r-pattem* [r-pattern. r-pattemr)
guard ::.&guard lisp-statement
lisp-statement ::= #L lisp

The macro pattern is a nested list of literals and macro variables. Variables are preceded by
question marks 0?) or exclamation points (!). Question-mark variables can match identifiers,
numbers, and lists, while exclamation-point variables can only match identifiers. The dotted
notation at the end of a list indicates that the rest of the list should match the pattern after
the dot. When a pattern is matched to a candidate statement, all instances of the same vari-
able have to match identical forms. The pattern can be as simple as ?x, which will match
any statement.

If an @ symbol precedes a pattern, the form to which the pattern would match is macro-ex-
panded before it is matched to the pattern. To avoid infinite loops, @ should not be the first
symbol in a macro pattern.

The guard, if present, is a Common Lisp statement that returns a boolean value. If the value
returned is true, the macro replacement is substituted for the pattern; if not, the macro is
not expanded. The values of the ? and ! variables are bound in a Common Lisp scope just
outside the statement, so the Common Lisp statements can refer to the matched values of the
variables just by referring to the correct variable names (including the leading ? or !).

Replacement can be either another pattern or another block of Common Lisp statements. If
replacement is a pattern, the values of the macro variables are substituted in it, and the re-
placement pattern replaces the original pattern in the code. If replacement is a Common Lisp
statement, it is expected to return a list which replaces the original pattern in the code. As
in the case of a guard, the Common Lisp statement has access to the matched values of the
macro variables.

The macro replacement pattern can be another macro. Macros are expanded until the result-
ing form does not satisfy any of the existing macro patterns and guards. When several
macros match a form, the form is expanded using the macro that was most recently defined.

168



Appendix A Concurrent Smalltalk Reference

A.15. Environment

Errors

(error (msg:object)*) Function

Error signals a run-time error. The arguments, if any, should contain descriptive informa-
tion about the error. The interpretation of the arguments' values is implementation-depen-
dent.

(halt) Function

Halt halts execution of the current program due to a run-time error. Debugging information
about the function or method in which the halt took place may be printed.

Utilities

(include "file-name") Top-level Primitive

Include reads the definitions in the file named file-name, as if that file were included in
place of the include primitive.

Options

(pragma ... ) Top-level Primitive

Pragma is a general compiler declaration and can contain any implementation-dependent in-
formation.

(declare option value) Top-level Primitive

Declare sets the compiler option named option to the value specified. Value must be a legal
value for the option; most compiler options are booleans, and for these value must evaluate to
either true or false. Value must be a constant expression.

(option option) Primitive

Option returns the compile-time value of the specified compiler option.
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This appendix describes the procedure for using the Optimist It compiler on a Macintosh II to
compile Concurrent Smalltalk programs. In addition, a few helpful non-standard Concurrent
Smalltalk features implemented by Optimist I1 are described.

Starting the Compiler

To start the compiler, load the image containing the compiler and the Common Lisp envi-
ronment. If such an image is not available, load Common Lisp, PCL, the Loop macro, and
the Optimist.Usp file. Execute the (optimist: compile-optimist) command to compile
and load the compiler, or, if it was already compiled, use (optimist: load-optimist) to
load the compiler.

The compiler provides only one useful external Lisp function. It is (interactive-cst).
Typing (interactive-cst) will enter an interactive Concurrent Smalltalk listener loop.

Top-Level Commands

Utility Commands

(begin body) Top-Level Primitive

Due to constraints in the compiler, a select few forms such as include and defclass (but
not all of the top-level primitives; most of the primitives listed as top level really only re-
quire that they not be included in any function or method) must be present at the top level.
However, sometimes it is desirable to emit sequences of those directives as results of macros;
to allow this, a special form of begin was provided. If begin appears at the top level, every
form inside it is also evaluated at the top level.

(set name expression) Top-Level Macro

Set normally sets the variable name to the value of expression. However, if it is placed at
the top level, it is also allowed to create a new global variable name if one does not exist al-
ready. Thus, at the top level, set acts as either set or defglobal, depending on whether
the global variable name already exists.

(include) Top-Level Primitive

Include, when passed no file argument, will let the user interactively choose a text file and
then include it. This feature is only available on the Macintosh version of Optimist II.

Viewing Objects

While the listener loop is active, any Concurrent Smalltalk command will be immediately
evaluated, and the results displayed in the listener window. The resulting object may be
displayed in a somewhat strange syntax; for example, integers may be displayed as
#<Integer 5>, and booleans as #<True> or #<False>. The following commands may be
used to show the internal structure of objects:

(show o:object) :object Top-Level Primitive

Show shows as a side effect the Optimist II internal representation of an object. If the object
is a function, its hcodes are shown; if the object is a complex object, some of its structure may
be shown. The output is controlled by the CLOS show generic function. The value of the
show directive is the object itself, so the object is usually printed normally after it is shown.
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Please note that the hcodes shown for a function are only an approximation of the actual
hcode data structure used internally to represent the function. Some of the more esoteric
fields are not shown, and sometimes a function may have two variables with the same name,
which leads to confusing output. Variable names were included for human readability only;
Optimist II does not use them internally. It is able to keep the variables distinct regardless
of their names. Also, since a digraph is a nonlinear structure, pseudo-hcodes such as jump
labels in conditionals and jump, label, and break hcodes are inserted into the output to make
it readable.

(describe o:object) :object Top-Level Primitive

Describe describes as a side effect the Optimist I1 internal representation of an object. It is
just like show except that the information displayed is longer and more detailed.

(show-hcode f:function [#Llisp-fufnction-fname]) :function Top-Level Primitive

Show-hcode calls the Optimizer's non-MDP-specific optimizations to optimize the function
and shows the resulting hcode. Show-hcode may invoke global optimizations and try to in-
line the functions called by I, so this directive may take some time to execute. When the
progress option is true (the default), progress information is displayed in the listener win-
dow while this directive is executing. Detailed progress can be obtained by setting the de-
tailed-progress option. Show-hcode performs no side effects on the Concurrent
Smalltalk environment, and it does not do a treewalk of the Concurrent Smalltalk program.
Show-hcode returns f as its result.

If lisp-function-name is provided, instead of showing the optimized hcode, show-hcode calls
the Lisp function lisp-function-name with the optimized hcode as an argument. Describe-din-
odes is a useful Lisp function that will describe the compiled hcode in a little more detail.

Show-hcode will not optimize a selector. If viewing optimized method code is desired, the
method must be extracted explicitly using the Concurrent Smalltalk method primitive.

(show-mdp-hcode f:function [#Llisp-function-name]) :function Top-Level Primitive

Show-mdp-hcode is just like show-hcode except that it also performs the MDP-specific
hcode optimizations.

(show-asm f:function [#Llisp-function-name]) function Top-Level Primitive

Show-asm compiles the function f all the way to assembly code and prints the resulting
MDPSim-compatible text. If lisp-function-name is supplied, it is assumed to be a lisp function
and called with the assembly language module as its only argument.

Compiling Programs

(compile f:object ["output-f le-name"]) .object Top-Level Primitive

Compile compiles and treewalks the Concurrent Smalltalk data structures starting with f as
a root. Normally f is a function, in which case it is compiled to assembly language along with
any other functions that it might need. If output-file-name is specified, the MDPSim file is
written to a new file named output-tile-name; otherwise, the output is sent to the listener.
When the progress option is true (the default), progress information is displayed in the lis-
tener window while this directive is executing. Detailed progress can be obtained by setting
the detailed-progress option.

Options

As described in Section A.15, Concurrent Smalltalk options can be set using the declare
Concurrent Smalltalk primitive and examined using the option primitive. The options cur-
rently provided by Optimist II are listed in Table B-1.
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Table B-1. Options

Option Default Action
n-nodes 4 Define the number of nodes of a simulated J-Machine. This

option only affects Optimist's internal interpreter; the com-
piled code is generic and will work on a J-Machine of any
size (as long as the dimensions are powers of two).

precise false Inhibit optimizations that would affect the semantics of fu-
tures and lazy-futures in a few esoteric cases. If following
precise Concurrent Smalltalk semantics is not important,
disabling this option can produce significant performance
improvements.

delete-dead-defs true Remove assignments to variables that will not be used
again.

delete-moves t rue Try to remove unnecessary move statements.
delete-touches t rue Try to remove unnecessary touch statements.
vflow-optimizations true Calculate dataflow information and use it to perform a vari-

ety of optimizations such as changing x4-y=O, branch if x
false sequences to BNE instructions.

fold-constants true Fold constants. For example, replace 1+2 by 3. Also remove
conditional branches when it can be determined that the
condition is always true or always false.

fold-global- t rue Fold constants globally. For example, replace a call through
constants a selector with a call of the method when the method can be

determined using type analysis. This option is relevant only
when fold-constants is true.

forward-tails true Enable the altering of application hcodes immediately fol-
lowed by returns into tail-forwarded applications which al-
low the process to be deallocated and the answer directly
forwarded to the caller. This is the equivalent of tail recur-
sion.

merge-code true Merge common pieces of code wherever possible.
inline t rue Inline small functions.
inline-size-cutoff 12 Set the size cutoff for automatically deciding whether to in-

line a function. Increasing this number causes larger func-
tions to be inlined.

optimize-built-ins true Perform local built-in optimizations such as changing mul-
tiplications to shifts.

compact-vars true Compact variables in the context to use as few slots as pos-
sible.

reg-variables t rue Assign variables to registers whenever possible.
lru-register- t rue Use the least-recently-used algorithm to allocate temporary
allocation registers during code generation.
frame-touches true Accumulate information about which variables are touched

and optimize touches when the variables are known to be
touched.

frame-regs t rue Keep track of variables in the registers during code genera-
tion and use values from the registers instead of from mem-
ory whenever possible.

frame-migrate true Keep track of whether it is possible for the instance object to
have migrated away. Don't force it if it could not have mi-
grated away.

lazy-ivar-access true Don't XLATE the instance object if there are no references
to it.

lazy-contexts t rue Don't allocate a context unless it is actually used.
fast-contexts true Use fast contexts whenever possible.

172



Appendix B Using Optimist 11

optimize-send-self true Send message to the current node if the receiver is self and
it is not atomic.

fast-apply true Use ApplyFunction and ApplySelector instead of Apply
whenever possible.

compact-sends true Try to combine SENDS and SENDES into SEND2s and
SEND2ES.

compact-DCs true Try to align DCs on word boundaries whenever possible.
delete-locals true Delete local variables in an intermediate stage of the compi-

lation. This makes no difference in the final output, but
makes the hcode look prettier and may speed up code gen-
eration.

warn-free-refer- false Emit a warning every time a free reference is found in a
ences method or function.
progress t rue Print progress reports.
detailed-progress false Print very long progress reports.
permanent- false Use defconstant instead ofdefparameter when compil-
definitions ing function and method definitions. When this option is set,

a warning is emitted every time a free reference is found in
a method or function regardless of the setting of warn-free-
references.

print-pc true Print program counter values as comments in output.
lisp-break true Enter a Lisp break loop upon a Concurrent Smalltalk warn-

ing or error.
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Loading Cosmos

To use Cosmos, launch MDPSim using the Cosmos.m file as an argument. You may also
wish to specify the J-Machine's dimensions as arguments to MDPSim. Use -x x -y y -z
z, where x,y, and z are integers; they should be powers of two. To avoid using too much
memory, you may wish to allocate less memory per MDP with the -msize mem option.

When Cosmos.m is assembled by MDPSim, it will automatically load the operating system
onto the MDPs and initialize the MDPs. This process may take anywhere from a few seconds
to a few minutes depending on how many MDPs are present and the speed of the host com-
puter.

Loading User Programs

Once Cosmos is ready, a user program compiled by Optimist II can be loaded. Use the
MDPSim INCLUDE command to load the program generated by Optimist II. Keep in mind
that Cosmos puts MDPSim into the case-sensitive mode, so the case of identifiers and com-
mands matters; MDPSim recognizes commands which are either all upper case or all lower
case characters.

MESSAGE fib4
MSG:msgApply 15

fFibb)
4
IONODE
0
END

Figure C-1. An Injected Application Message
This message calls the fFib function with the argument 4. The message itself can be injected by executing the
command INJECT fib4. The 5 is the length of the message, ( fFib} is Optimist I's output name for the func-
tion to be called (see the Optimist II output file if you are unsure about the name), 4 is the argument, and :cNiEE
and 0 are magic numbers that cause the Reply message to be printed by MDPSim. More than one one argument
can be specified, as long as the length of the message (the 5) is increased appropriately.

Once the user program has been loaded, it is a good idea to build a few templates for mes-
sages to be injected into the program. An application message should have the format shown
in Figure C-i. If the messages will be used for several sessions, it might be appropriate to
put them into a file and INCLUDE that file. Application messages should never be injected
before the program is installed.

Instead of issuing the INCLUDE commands manually, you can also specify the files on
MDPSim's command line, as was done in the example in Figure 5-14.

Running Programs

To run a program, execute the INJECT command on the message on which the program
should be called and then RUN the program. Remember to specify the processor onto which
INJECT should inject the application message; otherwise, INJECT will inject a copy of the
message to every processor, and as many copies of the program will execute simultaneously
as there are processors in the simulated system.
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MDPSim allows statistics to be gathered about programs which are executed on it. If the
statistics should only include data about the running program, they should be reset after the
program is downloaded and before it is run. See the current MDPSim manual [251 and
Figure 5-14 of this document for more details.

When you finish the desired program runs, use the QUIT command to exit the simulator and
the quit menu item to exit MPW. In an emergency, command-shitt-period can be used to
abort MDPSim; command-period aborts the running MDP program and returns to MDPSim's
command line (use control-C on UNIX machines).
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This appendix is a summary of the current version of the MDP architecture. A slightly obso-
lete full version of the architecture can be found in [16). Many details have been simplified
in order to keep this Appendix to a reasonable length.

Introduction

The Message-Driven Processor is a processing node for the J-Machine, a message-passing
concurrent computer. The MDP is designed to provide support for fine-grained concurrent
computation. Towards this goal the processor includes hardware for message queueing, low-
latency message dispatching, and message sending. The same chip also contains a network
interface and a router to allow the routing of messages throughout the network without any
processor intervention.

The size of the MDP's register set is limited to minimize context-switching time. Much of the
memory is on the chip to improve performance and reduce the chip's pin count and the chip
count for the concurrent computer. Having memory on chip allows more flexibility in the use
of memory than in designs with off-chip memory. For example, a portion of memory may be
designated as a two-way set-associative cache to be used by the XLATE instruction. Never-
theless, since current technological limitations restrict the size of the on-chip memory to
about 4096 words, an external memory interface has been provided to allow access to slow,
off-chip DRAM.

The MDP is also designed to efficiently support object-oriented programming. Every MDP
word consists of 32 data bits and a 4 bit tag that classifies the word as an integer, boolean,
address, instruction, pointer, or other data. The MDP's four address registers include both
base addresses and lengths, so all memory accesses are bounds checked. Normally the ad-
dress registers point to objects, so, since absolute memory addressing is not allowed except by
the operating system, memory references can only be made to objects relative to their begin-
nings. Having tags and no absolute references permits the use of garbage collection and
transparent migration of objects to other MDP nodes on the network.

The MDP is almost completely message-driven. It is controlled by the messagas arriving
from the network that are automatically queued and processed. There are two priority levels
to allow urgent messages to interrupt normal processing. There is also limited support for a
background mode of execution when no messages are waiting in the queues.

Processor State

The processor state of the MDP is kept in a set of registers shown in Figure D-1. There are
three independent copies of most registers for each of the two priorities of the MDP, allowing
easy priority switches while keeping the integrity of the registers. The registers are symboli-
cally represented as follows:

RO-R3 general-purpose data registers
AO-A3 address registers
IDO-ID3 ID registers
Q, M, U, F, I, P, B flags
I p instruction pointer register
FIR faulted instruction register
FIP faulted instruction pointer register
FOPO, FOP1 faulted operand registers
QBM queue base/limit register
QHL queue head/tail register
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TBM translation bas,--masK register
NNR node number register
MAR memory address register

The Q flag controls message queue access through register A3, while the M flag guards against
inter-priority message deadlocks. Setting the u (unchecked mode) flag disables type and
,verflow faults. Setting the F (faulted) flag vectors all faults to the CATASTROPHE vector; this
flag is often set in critical sections of fault handlers. Setting the I (interrupt) flag prevents
higher-priority interrupts. The B and p flags encode the current priority level.

4doity Lev~el

3532 31 03 10 8

tag RO I

tag R1
tag R2

31 29 10 8
tag R3 U [P1

31 29 10 9 0 3532 31 16 0

ri base AO length -t -ag] i

r l i base A l length - I... .. .......

r base A2 length "
3532 31

i base A3 lengthtT1, I-:':''tag FOPO

tag FOP1

3532 31 0

tag IDO 2829 10 9 0
tag ID1 ____________
tag Ig2 H~d base QBM mask
tag ID2 head OHL length

ItagI ID3 .~-~

20 0 15 0 29 10 9 0

MAR NNR base TBM Imask

Figure D-1. The MDP Register Set.
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Data Types

The data types that may be used in a word are shown in Figure D-2. All data types except
FUT and CFUT may be moved, compared with EQ and NEQ, XLATEd and ENTERed, RTAGged,
WTAGged, CHECKed, and executed. Executing a non-INST word causes it to be loaded into RO.
Some data types allow additional operations, which are listed in detail in the description of
the instruction set.

3 3332 11 1

5 2109 76 09 0

0 0 0 0 value (0=NIL) SYM

0 00 1 two's complement value INT
0 0 1 0 0 ... Ob BOOL

0011 r i base length ADDR

01 00u f offset plalo ... 0 IP

0101 u f offset length MSG
0 1 1 0 user-defined CFUT

0 1 1 1 user-defined FUT

1 0 0 0 user-defined TAG8
1 0 0 1 user-defined TAG9

1 0 1 0 user-defined TAGA

1 0 1 1 user-defined TAGB
1 1 0 0 first instruction second instruction INSTO
1 1 0 1 first instruction second instiuction INST1

1 1 1 0 first instruction second instruction INST2
11 1 1 first instruction second instruction INST3

Figure D-2. The MDP Data Types.
SYM contains an atomic symbol. EQUAL and NEQUAL are allowed on SYMbols. If the data
portion of a symbol contains all zeroes, the word takes on the value of NI L. Cosmos re-
names SYM as TAGo and inserts a subtag in bits 28 through 31 to distinguish between a
few more types.

* INT contains a two's complement integer between -231 and 231-1, inclusive. All arith-
metic, logical, and comparison operations are allowed on INTS.

* BOOL contains a boolean value, which is either true (b=l) or false (b=O). All logical and
comparison operations are allowed on BOOLS; false is considered to be less than true.

• ADDR contains a base/length pair that may be loaded into either one of the address regis-
ters or QBM, QHL, or TBM. The uses of bits 30 and 31 vary among these registers.

* IP contains a value appropriate for loading into the IP.
* MSG is the header of a message. It is similar to an IP. Due to a shortage of tags, Cos-

mos also uses this tag under the name OBJ as an object header.
* CFUT contains a context future. Almost all operations fault on context futures. They are

not meant to be MOVEable. CFUTS are used as placeholders for unavailable values to be
computed in parallel by other processes; an attempt to read a CFUT before its value is
available will fault, and the operating system will suspend the current process until the
value is available.
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FUT is a standard future. FUTS may be moved, and their tags may be read and written,
but they may not participate in any primitive operations such as addition or checking for
equality. As with CFUTS, an attempt to use a FUT in a primitive operation will cause a
fault, and the operating system will have to provide the appropriate value for the FUT.

* TAG8 through TAGB are tags for operating system-defined words. They cause faults on
all primitive operations except EQ, NEQ, BNIL, and BNNIL. Cosmos renames these tags
as ID, DID, TAGA, and FLOAT, respectively.

* INSTO through INST3 are tags for instructions. The two instructions in a word occupy a
total of 34 bits, so two tag bits are also used to encode them.

Network Interface

Incoming messages are queued in message queues before being dispatched and processed.
There are two message queues, one for each priority level. When a message arrives, register
A3 is set up to point to it in the message queue, and execution begins at the address specified
by the message header. A message may be processed as soon as its first word arrives; the
processor does not wait until the entire message is present before processing it. Memory ac-
cesses to the message are checked to make sure that the processor does not try to access a
word in the message before it arrives; if the processor tries to access a word too early, it waits
until the word has arrived.

The SUSPEND instruction informs the hardware that the processing of the current message is
done and that it should fetch the next message.

Message Transmission

The SEND, SEND2, SENDE, and SEND2E instructions are used to send messages. The first
word sent specifies the node number of the destination node (i.e. the destination node's NNR
value) in the low 16 bits. The SEND instruction will use the current node's NNR and the desti-
nation node number to find the relative offsets in the X and Y dimensions that the network
controllers will use in routing the messages through the network. There are actually two fla-
vors of each SEND instruction: SENDO, SEND20, SENDEO, and SEND2EO send words of priority
0 messages, while SEND1, SEND21, SENDE1, and SEND2E1 send words of priority 1 messages.
The priority of the message is independent of the priority of the process that is sending it.

The initial routing word is followed by a number of words which the network delivers verba-
tim to the destination node. The network does not examine the contents of these words. The
message is terminated by a SENDE or SEND2E instruction, which send the last one or two, re-
spectively, words of it and inform the network to actually transmit the message. The first
word that arrives at the destination node (the second word actually sent since the routing
word is only used by the network and doesn't arrive at the destination node) must be tagged
MSG. It contains the length of that message including that word but not including the routing
word preceding it. It also contains the initial value of the Ip at which execution is supposed
to start. The destination node will fault MSG if this word is incorrect.

The total time between the first SEND and the SENDE should be as short as possible to avoid
blocking the network. For the same reason, faults should be avoided while sending.

Fault Processing

When a fault occurs, the instruction that caused the fault is saved in the FIR register, the
current IP (which points one instruction beyond the faulting instruction) is saved in the FIP
register, and the values of the instruction operands, if any, are saved in the FOPO and FOPI
registers. If the fault occurred while fetching an instruction, the FIR is set to NIL and the
FIP points to the instruction. The ip is then fetched from the memory location whose ad-
dress is equal to the fault number plus the base of the fault vector table of the current prior-
ity. If the F bit was, the IP is loaded from the CATASTROPHE vector instead. The U, A, and F
flags receive their new values from the loaded Ip. The faults are listed in Table D-1.
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Table D-1. MDP Faults

Name Fault Description
Number

CATASTROPHE $00 Double fault,bad vector, or other catastrophe.
INTERRUPT $01 Interrupt pin has gone active.
QUEUE $02 Message queue about to overflow.
SEND $03 Send buffer full.
ILGINST $04 Illegal instruction.
DRAMERR $05 Double bit error in the external RAM.
INVADR $06 Attempt to access data through address register with I bit

set.
LIMIT $07 Attempt to access object data past limit.
ADRTYPE $08 Index in indexed addressing mode not tagged INT.
EARLY $09 Attempt to access data in message queue before it arrived.
MSG $OA Bad message header.
XLATE $OB XLATE missed.
OVERFLOW $0C Integer arithmetic overflow.
CFUT $OD Attempted operation on a word tagged CFUT.
FUT $OE Attempted operation on a word tagged FUT.
TAG8 $OF Attempted operation on a word tagged TAGS.
TAG9 $10 Attempted operation on N ,vord tagged TAG9.
TAGA $11 Attempted operation on a word tagged TAGA.
TAGB $12 Attempted operation on a word tagged TAGB.
TYPE $13 An operand or a combination of operands with a bad tag

type used in an instruction.
$14-$1F Reserved for future faults.

If multiple faults occur simultaneou--;y the fault vector chosen is the one that has the highest precedence. Each
fault is assigned a precedence by its fault number; lower fault numbers correspond to higher precedence.

Instruction Encoding

The program executed by the MDP consists of instructions and constants. A constant is any
word not tagged INST0 through INST3 that is encountered in the instruction stream. When
a constant word is encountered, that word is loaded into RO and execution proceeds with the
next word (the assembler syntax for including a word in the code stream is DC).

Every instruction is 17 bits long. Two 17-bit instructions are packed into a word. Since a
word has only 32 data bits, two tag bits are also used to specify the instructions. The in-
struction in the high part of the word is executed first, followed by the instruction in the low
part of the word. As a matter of convention, if only one instruction is present in a word, it
should be placed in the high part, and the low part of the word set to all zeros.

The format of an instruction is as follows:

16 11 10 9 8 7 6 0

2nd 1st
Opcode reg reg Addressing mode

S# I # I
op2 op;

The opcode field specifies one of 64 possible instructions. The other fields specify three
operands: instructions that don't require three operands ignore some of the operand fields.
Operands 1 and 2 must be data registers; their numbers (0 through 3) are encoded in the 1st
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reg # and 2nd reg # fields. Operand 2, if used, is always the destination of an operation and
operand 1, if used, is always a source.

6 0

Normal
Addressing Mode Syntax Addressing Mode

I I I I I

0 0 0 0 0 Rn Rn Data registerRn
0 0 0 0 1 An An Address register An

0 0 0 1 0 0 0 NIL Immediate constant NIL (SYM:O)
0 0 0 1 0 0 1 FALSE Immediate constant FALSE (BOOL:0)

0 0 0 1 0 1 0 TRUE Immediate constant TRUE (BOOL:1)

0 0 0 1 0 1 1 $80000000 Immediate constant INT$800000 00

0 0 0 1 1 0 0 $FF Immediate constant INT:$OOOOOOFF

0 0 0 1 1 0 1 $3FF Immediate constant INT:$O00OO3FF

0 0 0 1 1 1 0 $FFFF Immediate constant INT:$OOOOFFFF

0 0 0 1 1 1 1 $FFFFF Immediate constant INT:$OOOFFFFF

0 0 11 Rx An [Rx, An] Offset Rx in object An
0 1 imm imm Immediate imm (signed)

1 imm An [imm,An] Offset imm (unsigned) in object An

Figure D-3. The MDP Normal Addressing Modes.
The immediate constants are eight immediate values outside the range IINT: -: 6..I NT: 15. They are provided for
convenience and code density improvement. The $FF and $FFFF constants are useful for masking bytes and
words, while the $3FF and $FFFFF constants may be used for masking lengths and addresses.

Operand 0 can be used as a source or a destination in an instruction. It can hold two possible
encodings. A normal instruction has opO address mode encodings as shown in Figure D-3.
The register-oriented opO mode is used only by three variants of the MOVE instruction. If an
instruction uses the register-oriented opo, the encodings are as in Figure D-4.

Instruction Set Summary

The instructions supported by the MDP are summarized in Table D-2. The Types column
specifies the types on which the instruction operates; if the arguments have different types,
the instruction faults. Except for a MOVE to memory, all instructions fault when any of their
operands are tagged CFUT. Also, except for MOVES and SENDs, all instructions fault when any
of their operands are tagged FUT.
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6 0

Register-Oriented
Addressing Mode Syntax Addressing Mode

B P 0 0 0 Rn Rn Data register Rn
B P 0 0 1 An An Address register An
- P 0 1 0 IDn IDn ID register IDn
B P 0 1 1 0 0 FIP Trapped Instruction pointer
- P 0 1 1 0 1 FIR Trapped Instruction register

- I P 0 z 1 1 0 FOP'O Trapped OPO register

- P 0 1 1 1 1 FOP1 Trapped OPI register

- P 1 0 0 0 0 QBM Queue Base/Mask register
- P 1 0 0 0 1 QHL Queue Head/Length register
B P 1 0 0 1 0 IP Instruction Pointer register

1 0 0 1 1 TBM Translation Base/Mask register

- - 1 0 1 0 0 NNR Node Number register
- - 1 0 1 0 1 MAR Memory Address Bus register
- - 1 0 1 1 0 Unused (ILGINST fault)

- 1 0 1 1 1 Unused (ILGINST fault)

- - 1 1 0 0 0 P Priority Level flag

- - 1 1 0 0 1 B Background Execution flag
- - 1 1 0 1 0 I Interrupt flag

B P 1 1 0 1 1 F Fault flag
B P 1 1 1 0 0 U Unchecked flag
- P 1 1 1 0 1 Q A3 Queue flag

1 1 1 1 0 Unused (ILGINST fault)

- - 1 1 1 1 1 Unused (ILGINST fault)

Figure D-4. The MDP Register Oriented Addressing Modes.
8 and P represent the priority of the register being accessed XORed with the current priority For example, 00
indicates the current priority, while 01 would let priority 1 access priority O's registers, and 11 would let priority 1
access the background registers. The assembler syntax for specifying a register belonging to the other priority is
the register name followed by a B to flip the B bit and/or a backquote () to flip the P bit

Table D-2. MDP Instructions

Instruction Brief Description Types

General Movement and Type Instructions
MOVE Src, Rd Rd *-- Src. Src may be a register addressing mode. All
MOVE Rs,Dst Dst *-- Rs. Dst may be a register addressing mode. All
MOVE Src, IP IP <-- Src. Src may be a register addressing mode. All
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RTAG Src, Rd Rd+- INT:tag(Src) All
WTAG Rs, Src, Rd Rd -Src:Rs All
CHECK RS, Src, Rd Rd -- BOOL:tag(Rs)=Src All

Arithmetic and Logical Instructions
NEG Src, Rd Rd4--Src INT
ADD Rs,SrcRd Rd+--Rs+Src INT
SUB Rs,Src,Rd Rd -Rs-Src INT
CARRY Rs, Src, Rd Rd4- Carry from the addition of Rs and S rc INT
MUL Rs,Src,Rd Rd -Rs'Src INT
MULH Rs, S rc, Rd Rd - High 32 bits of 64-bit unsigned product of Rs and s rc INT
ASH Rs, S rc, Rd Rd 4- Rs shifted left arithmetically by S rc bits INT
LSH Rs, Src, Rd Rd4- Rs shifted left logically by Src bits INT
ROT Rs, Src, Rd Rd -- Rs rotated left by S r c (mod 32) bits INT
FFB Src, Rd Rd -- 31-position of leftmost bit of Rs differing from bit 31. INT
NOT Src,Rd Rd4-NOTSrc INT, BOOL
AND Rs,Src,Rd Rd -Rs AND Src INT, BOOL
OR Rs,Src,Rd Rd-Rs OR Src INT, BOOL
XOR RsSrc,Rd Rd -Rs XOR Src INT, BOOL
LT Rs,SrcRd Rd -BOOL:Rs<Src INT, BOOL
LE RsSrc,Rd Rd -BOOL:Rs<Src INT, BOOL
GT Rs,Src,Rd Rd -BOOL:Rs>Src INT, BOOL
GE Rs,SrcRd Rd+--BOOL:Rs>Src INT, BOOL
EQUAL Rs,Src,Rd Rd+-BOOL:Rs=Src SYM, INT, BOOL
NEQUAL Rs,Src,Rd Rd +- BOOL:RS*SSrc SYM, INT, BOOL
EQ Rs, Src, Rd Rd -- BOOL:Rs =S rc (Pointer comparison only) All
NEQ Rs, Src, Rd Rd 4- BCOL:Rs*Src (Pointer comparison only) All

Network Instructions
SEND Src Send S rc onto the network All
SENDE Src Send Src onto the network and terminate message All
SEND2 Rs, Src Send Rs and Src onto the network All
SEND2E Rs, S rc Send Rs and S rc onto the network and terminate message All

Associative Lookup Table Instructions
XLATE Rs, Dst, C Dst +- associative lookup in the associative lookup table of Rs All
ENTER Src, Rs Enter (Src, Dst) into the associative lookup table All
PROBE Src, Rd Rd -- BOOL:S rc is in the associative lookup table All

Special Instructions
NOP No operation
INVAL Invalidate all relocatable address registers
SUSPEND Terminate current process and fetch another message
CALL Src Call system routine numbered Src

Branches
BR Src Branch forward S rc words
BNIL Rs, Src Branch forward S rc words if Rs is NI L All
BNNIL Rs, Src Branch forward S rc words if Rs is not NI L All
BF Rs, Src Branch forward Src words if Rs is false BOOL
BT Rs, S rc Branch forward S rc words if Rs is true BOOL
BZ Rs, Src Branch forward S rc words if Rs is zero INT
BNZ Rs, Src Branch forward S rc words if Rs is non-zero INT
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Appendix E. Optimist II Listing

This listing has been removed due to space constraints. For a copy of the source, please send
mail to waldemar@ai .mit .edu or billd@ai .mit.edu. A slightly older, printed copy of the
source can also be found in the original Master's thesis version of this document.
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Cosmos.i

MOP Operating System

veraion 2.3

written by
Waldemar Horwat

Master's thesis under Prof. William Dally

March 26, 1989
:: May 1991

Send problems and comments to
waldemar@hx.lcs.mit.edu.

::; Copyright 1989, 1990, 1991 Waldemar Horwat

CASE ON

: Parameters I

;Thes parameters are used to customize Cosmos. You can override the default settings of
;these parameters by using -d REALMODE-l, etc. command line options.

;REALMODE is true if the code should be compiled for a real J-Mactine instead of MDPSim.
:This turns off the STOP instruction (this means you cant use R).
IF bDefined(REALMODE)

LABEL REALMODE - 0
END

;FASTSIM is true if the loop that clears memory to CFUTs snoulo be skipped.
IF !Defined(FASTSIM)

LABEL FASTSIM - 1
END

:DEBUG is true if extra debugging code should be run.
IF !DefinediDEBUG)

LABEL DEBUG - I
END

;Equates

LABEL LogNNodes - LONNODES
LABEL NNodes - 1<<LogNNodes

LABEL nFastContexts - 8 ;NsmOer of fast context to allocate.

;IMemoryMapI

LABEL GlobalsOStart - 0
LABEL GlobalsOEnd - $40
LABEL GlobalsiStart - S40
LABEL Globa1slEnd - $80
LABEL AIR FaultsOStart - S.D
LABEL ADA FauitslEnd - SAD
LABEL ADR FaultslStart - SAO
LABEL ADR FaultslEnd - SC0
LABEL ADR CallsStart - $CO
LABEL ADR CallsEnd - $'00
LABEL ADR Queue'Start - Dill

LABEL ADR QueuelEnd - $100
LABEL ADR OueueuStart - $10
LABEL ADR Queueitnd - £200
LABEL ADR XlateStart - $200
LABEL ADR XlateEnd - $400
LABEL BRATLenLog - 6
LABEL BRATfenqth - 1<<BRATLenL;c
LABEL ADR BRATStart - $400
LABEL ADR BRATEnOd - BRATStart-BRATLength
LABEL ADR HeapEnd - MEMSIZE

Tags

LABEL TAG TACO - 0 :fln.eoiate otect tag.
LABEL TAG OBJ - MSG :Obtects and nessagqs have te same tag.
LABEL TAG CS " INSTl :Class/selectur
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;Subtags of TAO0:
LABEL .ubtaqN - 21 :Subtag offset.
LABEL eubtaqL - 4 ;Bubtaq length.
LABEL subtagH - (1<tsubtagLl-I ;Subtag mask.
LABEL subsym - 0 :Symbol.
LABEL SubCLASS - 1 Class.
LABEL subSEL - 2 ;Selector.
LABEL subCHAA - 3 :Character.

:1 Types

:Address bits
LABEL lenqthN - 0 ;Length field offset.
LABEL lengthL - 10 ;Length field length.
LABEL lengthM - (1<<lengthL)- ;Length field mask.
LABEL bacon - 10 ;Base field offset.
LABEL baseL - 20 ;Base field length.
LABEL bacon - (1C<baseL)-l ;Base field mask.
LABEL invalidf - 30 ;Invalid address.
LABEL invalid - l<<invalidN
LABEL rein - 31 ;Relocatable address.
LABEL tel - l<<relN
LABEL disableN - 30 ;Disable bit of QB? regs.
LABEL disable - l<<disableN

:IP bits
LABEL ab:N - * :Absolute IP.
LABEL abs - i<<absN
LABEL phaseN - 9 ;IP phase bit.
LABEL phase - l<<phaseN
LABEL offsetN - 10 :Offset fielo offset.
LABEL offsetL - 20 :Offset field length.
LABEL faultN - 30 :Fault flag.
LABEL fault - l<'faultN
LABEL uncheckedN - 31 ;Unchecsed mode flag.
LABEL unchecked - l<(uncheckedN

;fD bits
LABEL homeNodeN - 0 :home node.
LABEL homeNodeL - 16
LABEL homeNode! - (<<homeNodeL)-,
LABEL serialS - 16 ;Serial number.
LABEL seriaIL - 15
LABEL setral1 - (f<<serlalLI-l
LABEL dlstobj emberK - 31 :Distributes ovject member flag.
LABEL distobjMember - 1<<distobJnemberN

:11D bits
LABEL inltialNooeN - 0 :Initial node.
LABEL initialNodeL - 11
LABEL initialNoden - (l<<initialNodel)-l
LABEL logStrideN - 11 :2-s complement lg(Inodes/econstituents)
LABEL logStrideL -5

LABEL logStrideM - (l'<logStrideLl-l

:Class/Selector bits
LABEL csSelectorN - 0 rSelector.
LABEL csSelectorL - 16
LABEL caSelectorM - (l<<csSelectorL)-l
LABEL c Class - 16 :Class.
LABEL csClasL 1 -6

:xyz bits
LABEL xN - 0 :X field offset.
LABEL xL - LGXNODES ;X field length.
LABEL a - (1<<xL)_I ;X field mask.
LABEL xMC - (1<<5-xL)-f :X complement field mask.
LABEL yN - ; :Y field offset.
LABEL yL - LGYNODES :Y field length.
LABEL yM - (c<<yL)-l :Y field mask.
LABEL yMC - (1<<5-yL)-l .0 comp'ement field masK.
LABEL zN - 10 :Z field offset.
LABEL ZL - LGZNODES :Z field lengtn.
LABEL zM - (l<<zL)l :Z field mask.
LABEL zMC - 41<46-ZL)-I ;Z COmplement field mask.

:These constants are used to fashion serial and node n..Ders for precompiles ob'ects.
LABEL mx - xM
LABEL sX - 0
LABEL mY - yM<<xL
LABEL sY yN-xL
LABEL mZ - ZM<<Xl.,yL
LABEL 9Z - zN-xL-yL.
LABEL mS - seriaCM-xL-yL-zL.
LABEL sS - seriahN-s-yL-z-L
;The nth object is stored at in&mX)<<sx n&mYý-sY ýr4k Z<sZ inimlo-sl

;These constants are used to fashion numoers fcr preco.' 0C.asscs arc se.7:crs
so as to distribute them ever.y throughout I-e J-Macnine.

LABEL m3 - JImC<sL yLL
LABEL s3 - -yL-z.
LABEL m4 - yNC<CeN-yLzL
LABEL s4 -zL
LABEL e5 - ZMC<<xNoyN-ri
LABEL S5 - 0

:The nth object is stored at (nemxis<sxE.nkmYc,<sr rnkmYl<osZnliocsJ<s3 mayrs4,nkmS)c's5

LABEL nodeMaSk - ZM<<?NmyMH<yN M<<XN ;Mask for qe'aerating roo-,Ode h..!eLt

LABEL RandomSeedlncrement - 5<ýzN-213<<yN-1'1-ce%
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;Hardwired classes:
LABEL classPrimitiseClass-isMss~~.l'ncsios~2m"32n40s.550s
LABEL cl Sstandard11Clae - (3sexvsX )< Os1 MY)jcsyi (Ismifi) <Ce ýi M,31m.3e%3: (3M41Ca1(35e5I1<(sS,
LABEL c lauslsDt. Ibut edClahs - (4smxi<'exi (4sisY)''sY 4fmf)c'sl, 14&m3j<ýhs"t(4 m4<'4 4srS'.aS
LABEL olausObjec - SeXCsII~.(SY4( mM(sf 1(547~<< 11551sLce4(5,SI'OsSý
LABEL classul I64mxls"sXll6IMYlsssYl(6&mz cosfzi( M3l<<316m)<416m545
LABEL claseSymbol -, l18eX)C<XX!l(75fYi4CSY il&mZi(O"sf;(l7fl

3
)OOI3<l

7
6S4i«4)' 

7
655s<I13

LABEL clasClas z (O tX(sI(ItsmY,,'.sYHI1mZ)(Csi I -3)<C.3] IBmlC 4:1151m)((US
LABEL ...x :ictor X 19iXCsjB, 'ty)C(YIBSZ)(si(& "3)<sS '4m4)<o$44i9&mS),,css
LABEL cl assaCharacter - (10mx<C'sxi(lOsmY)c<sYL(lo~mzl<<sl&3OsIl~4C5.145'5
LABEL cl ass Integqer - tIlL mx<C lfi Y)(dll Z)Cli11355(i5405(lm)05
LABEL classBoolean - 12am jh:sXI(12LmY s<sY l2Am -Z(<sZ 1l2&m3)'o3 21.241<<s4:lZseSmcss

LAEL cla:sFalse - ,13smX< )'cs113sr4g<si(3501 1s,1
3
51M31%'s3 13&m4)<(4Il36m51<s5

LABEL C!a tue 4 -- t1SmL~~ 4XY)'%sYI(04Xm1)<"4sZ1453 1<(4&1.4184, 14 ,55<5
LABEL ciasslat - 4m clsm)X,(lhSm7y)"sYq (15smZiO<sli(155m31i...3 (154 m410054Ffl56,SI<
LABE Flssunctio (I X 5 45"t

I ObjectsI

LABEL ob~jectHeader -0
LABEL objc I D~l -I

tObject header, bits:
LABEL hdr Lengh -0 :Lengtt- field offIset.
LABEL hd.rLengthz I :Length field l engttr..
LABEL hdrl~engthl4 (l,,chdrLengthL)-l: :Length fieldma.
LABEL hdrt lass I 10Ctlass field offset.
LABEL hd rtiassL -106 rClass field le ngth.
LABE L h d rtCassM - Ilt1hdrClassL)-l: :C lass field miss.
LABEL hdrFastN 26 ýFast context.
LABE L hodrtast I- lO ýFr astS
LABEL hdrD:eleted N - 2 1 :Free cblect.
LABE L h d r eietea - I -noroeletedN
LABEL d hrto0py ableN . 28 :rnt clcopyatle oCet
LABE L hdrfo .pyabl1e - -chartopyaoieN
LABEL hdrf'urgeatleN 29 :.Purgeabe o"ýec--
LABEL aorurge abe - I " nnpur geat~eS
LABEL har CkeoN - 30 :LooKea dobect.
LABEL hor Lo0osede - <<hdrtoCsedN
LABE L hdrMarkedN - 3. rhurgqeacle oo~ect marsed by sweeper.
LABEL h arMaroKed _ ldhhdrMarsedN

;Class ojcs
LABL thssword - 2 :Ineaoer w'or for oaeotx of into class

LABEL oChasshAfliSupers -3 :tottnt of a.: sPerciasses for t'isc clss
LABEL otlassAIIoupers -4 Litof a.'- s~percl.asses for tnis c.aýs-

LABEL oSeNMet'-"as -2 Nuhe fmto -'nofrtn eector.
LABEL. oSe!Methods -3 -Lis ofcasme o pairs fo tis seletor

:Function~s:
LABEL oFuncotionNArgo - 2 ;Numoer of argn.eftts or N::
LABEL orunIctiontode - 3 ote of frct ion

:fios~res:
LABEL otlosureNArgo - 2 ;Number oaruesorN1:
LABEL, otlosuretoce 3 ;Fa'lt; n instuto
LABEL oti 0sosr e Funt -4 :Fn t ion to De caýe...
LABEL otlosiarebl4spiay - 5 Adto al dsp~ayaguet.

;Distobjs:
LABEL- oDistoblGroup : 2 :2ofa dsrutd0 ~
LABEL ofi:rob)jindesL -- 3, :osien.m r of a uht~r
LABEL- flinboialii -m 4 Lra ,.nc of ortt.Iits u a dSthiD~ted otject.

IContests

LABEL contestHeader -
LABEL contestlD -'
;Cante.st me ssaIge and locuis are ir. locations 2 thoqrouhi.
LABEL1 co0n textsd ! 6
LABEL co0ntestRl - 7
LABEL- contextsR2 1 18
LABEFL co0ntIextR3 1
LAB EL co0nt"ext :0" 21
LABEL co0n t estlb12 -21
LABEL co0n textID3 -22

LABEL, con test I? 23
LABEL contestNest, - 24 ;Nest, contest in a 0cr~a.

:Also used tOa store N:l cr rest contest nuner rwneri oa~tirg
f!or a r n -bet , or zeýro *e, L. al ting !cr a cfst~.re.

LABEL cortestSlze - 25 :OIze of a fast context,

oMre locals may folo ere.

I Messages

:Apply message,:
LABEL appIlyde a der C
LABEL applyFunot -

LABEL apply~ecetoer -2

:Reply message:
LABEL re p y.eader -
LABEL replIylt - 1
LABEL replyi.ot -2
LAP .L rteplyva :Im-
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;RestartContext message:
LABEL reatartflndcr -
LABEL r st artI D - 1

;NOsiObject messaqe,
LABEL nes.ObjHeader -0
LABEL newObjCaa. -o
LABEL neeDO' ::plylD -2
LABEL neslE3ei o -1 3

"'USpose message:
d 2BlPoseMeader-£

-EL diaposeID -I

;DiuposeBRAT msessage:
lABEL dlspos.BSATHeader - 0
LABEL disposeBRATID - 1

:Lo okuplethod BOsSaQO:
LABL LLookuplitto -a DU'O(~uI<Xlirlcs;D~~lsu~h)<~
SEF REV Lookup~ethod -LLookupMethod
LABEL lookiiethSelector -2

LABEL .lOOXlMthC l..s - 3
LABEL looSJ4eth~eplyfD - 4

;Method:eply~m osaqe:
LABEL sethod eplylle.ader -C
LABEL methodReplyfDI - I
LABEL IsethodkeplyVA u e -2

:ASequestObject message:
LABEL reqObjHeader -
LABEL req~bIfD - I
LABEL reqbbj~eplysose - 2

:UýpdateHohC message:
LABEL up t HomeHeaat, -C
LABE L updthomeiZ, - '
LABEL updtliomeNode - 2

LABEL nlciader - C
LABEL usiockID) -I

LABEL msqAcknow~edqecb~ent' - bnsn~ffse

clobais

LABEL aDS Tempý"io Tont - 4 :Dlvide tenpo rary.
LBEL ADS LimitQverride - 5 NhIL or lp to wnucl, a - nt 'fait snQo.c t6'p lo~ne tt !
LABE L ADS Eastton~test~jeue - 6 :VQ~ea of fast con~texts.
LABEL ADS TempChRS - 7 ;tdffhpac-tkeap temporary.
LABEL ADS FirstFree - S :Potnter to fi~rst free reap word
LABEL ADS LastFree - 9 :Pv .intler to last free he~ap word p..s one.
LABEL ADS SSAfFree - 10 ;Potter to free BRAT i:rlv.q
LABEL ADS Lstflbjevt - ;: :0. of ast. or-,Iet tt e alienated.
LABEL ADS NeXtDisLtoc:D - 12 ::D of ne:t d!.straDhýteco'.DeC, to Dx a-octed.
LABEL ADRS Srialsode'- 3 :TMhis node' serial ný moer'

LABEL ALDS Wodeass - I ;The nodeMasK constant.,
LABEL ADS HeapStart. -16 ;Pointer to the beqý.nnzq of the re-onatao heap
LABEL ADS Andomee - 17Sndtnmber s.eed.
LABEL ALDS TempXLATF. ý S a - 1XBATF fajt haadler terrpcrares
LABEL ADS TespXLA7ESI - 9
LABEL ADSR TempXLATE. 2 -2
LABEL ADS TeffpXLATIF Fl 21
LABEL ADS TempXLA1E 125 - 22
LABE L ADSR TempXLA7E T P,,,p - 23
LABEL, ADS TempD)C_ Ft - 24Dsperec tepay
LABEL ADS TempNCF:?F - 25 eC~e eprrs
LABEL ADS fesipNC_ 2 - 26
LABEL ADS TempNC_ S2 - 27
LABEL ADS TempNCA3B - 25
LABEL ADS TemPLHFl? - 29 .C-pact!,wa.r terporares.
LABEL ADS TempeHRS - 30
LABEL ADS TempCH_53 - 31
LABEL A7R TempCR 53 - 32

LABEL ADS em~pCn HI 3o . 33
LABEL ADS TempCHLocK - 34
LABEL ADS TempOCHrc - 35
LABEL ADS TerpAN FtP - 36 :Ao:N Cec ebr

1
LABEL ADS T.emptS_ hy - 37:htr'dn tepay
LABEL ADS TempLIFrP - 38 Lspetdtmor~
LABEL ADS RTep:N:TMov -.exr- 39 IIa eO xntr
L-ABEL ADS Temp'DfF2? 40CCs~ :mnay
LABEL ADS Tempofv R2 T-TepTS! F21 .D.eteP-ars
LABEL ADS TempoiwR 4)-
LABEL ADS TempDls 80001001 - 42
LABEL ADS TempNl F:P - TemTý S New .vaetc-r
LABEL ADS Tem~pfea!.nr F2? 43 2'acctK .': C
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;i Fault Numers

LABEL VECTOR suspend - $00
LABEL VECTOR blockNove - $01
LABEL VECTOR blockSend - $02
LABEL VECTOR compactmeap - $03
LABEL VECTOR aliocObject - $04
LABEL VECTOR enterBinding - $05
LABEL VECTOR looKupindilng - $06
LABEL VECTOR deleteBinding - $07
LABEL VECTOR purge~indinq - $06
LABEL VECTOR newLocalobject - $09
LABEL VECTOR alloCNextObject - S$A
LABEL VECTOR allocNe.ODject - SOB
LABEL VECTOR newContext - SOC
LABEL VECTOR cisposeC ntest - SOD
LABEL VECTOR disposeObJect - $OE
LABEL VECTOR dealilocateObject - $OF
LABEL VECTOR newODject - $10

LABEL VECTOR classOf - $11
LABEL VECTOR typeOf - 012
LABEL VECTOR objectNode - $13
LABEL VECTOR preferredConstituent - 014
LABEL VECTOR no - $15
LABEL VECTOR ioosupMethod - $16
LABEL v•CTOR .oo•pjMethoad - $17
LABEL VECTOR divide - $18
LABEL VECTOR newClosure - $19
LABEL VECTOR cal!Closure - SIA

E, XLATE Faolt Cooes

LABEL ob'ectXLATE - 0 :F-r and Dr-ng tne oDlect n:e.
LABEL internalXLATTE - i :Same as localXLATE but a!so worKS for classes and selectors.
LABEL localXLATE - 2 :Ret.rn tne obecct address, its node r-mber, or N:L it Lt is a constant.
LABEL restoreXLATt - 3 :Restore an address reg;st,,r from a saved 10 val.e.

R Halt Codes

LABEL hatia-.tl - 0Genera- priority ,
LABEL naltialt! - General prier: a
LABEL ta ItFutre - 2 :F"tures are not :mplenu:ten yet.

LABEL taltOver!low - 3 :Higfms are not imp-en:-ev yet.
LABEL haitType - 4 :Overriding D:It-In selectors is not inplenenled yet.
LABEL haltUser - : tralt by user program.
LABEL haltRange - 6 :Range e.ceeded in a primitioe operation.
LABEL haltCall - 7 :Lndefin.d system call.
LABEL naitInvalidAl -6 :Al inoald.
LABEL naitReply - 9 ;Reply to a bad s9ot.
LABEL haltUnlnitvar - 13 ;An uni-itialized variab.e was references.
LABEL haitTypeOf - 14 :Nonexistent or Incorrectly Lagged object passed to typeOf.
LABEL haltXLATE - 25 :Nonesistent or tncorrect:y taggea object is XLATEd.
LABEL ha tBRATType - ;i :An Objects BRAT entry is missing or mistyped.
LABEL haltBRATMissing - :• An object"s BRAT entry is m..ssing.
LABEL haltBRATDelete - 28 :Attempt to delete a missing BRAT entry.
LABEL haltCiassType - 19 :lncorrectly tagged word -sed as a class.
LABEL haltlnternalType - 23 ;A non-CST-tagged word -sea as an object.
LABEL naltBRATFuII - 2, eTn BRAT is ftll.
LABEL naltemoll - 22 ;Memory is ful.
LABEL haltAppoy - 23 ;Attempt to app.y an incorrect.y Lagged word.
LABEL haitHeap - 24 :Heap is in an inconsIstent scate during a compaction.
LABEL .atLimit 25 ;An obects limit Is esceeded.

LABEL ,a~toI - 26 :Iicision by zero.
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Cosmos.m

MDP Operating System

version 2.3 .

written by
Waldemar Horwat .

M Master's theuls under Prof. William Dally

* : - . .March 28, 1989 .
*: .:. May 1991 .

::.:. Send problems and comments to
waldemarlhx.lcs.mit.edu.

Copyright 2989, 1990, 1991 Waldemar Horwat

INCLUDE "Cosmos.i"

:Each routine and section of code has an attribute called criticality. A criticality is
.a number between 0 and 7 with the following meanings:

0: All operations allowed. Caller's registers not preserved.
;I; Caller's registers preserved. May suspend, so caller-s globals are not preserved.
:2: No suspending faults, no modification of context state.

No suspending faults, no mooification of context state, no object migration.
;4: No message sends, no object migration.
;5: No heap compaction, no message sends.
:6: No faults, no heap compaction, no message sends.
;7: No priority I interrupts, no faults, no heap compaction, no message sends.

:A routine's criticality is no greater than the critica-ity of any of its components, subroutines,
;or fault handlers. The criticality of a fault handler can be no greater than S.
;Each fault handler's code starts at criticality 6 unti. the state in the fault registers is saved.
:Dereferencing an adoress register (other than Al in absolute moce) has criticality at most 5 unless
;the code has criticality 5 and the address register is known to be valid.
;A routine trat uses a global must have criticality at least 2.

:Faults that save registers should start In unehecked mode because a register might contain a CFjTnre.

#0..NNodes-I

MODULE
ENTRY ALl.
ORG $4010 Reset IPS location.
DC fnitializeMDP-('.2) :Go ni.tla.Ize.
BR RO

ORG BRATEnd
OSStart:
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:*#IDDDD*DD@**##I5#*fO*
;O# #0

:.0 Fault Handlers Of
:## ##

C1 Cash or. a geneal priority Ior 1 or undefined system call fault.

CrashO: HALT haltFault0
Crashl: HALT haltFaultl
CrashCall: HALT haltCall

fltCrashO - IP:abslfaultIunheeckedlCrashl<offsetN
fltCrashl - IP:abslfaultlunch cksdlCramhl<<offsetN
fltCrashCall - IP:abslfaultluncheckedlCrashCall<offsetN

;l Crash on a general future or type fault. I
÷ - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - -

CrashFuture: HALT haltFuture
CrashType: HALT haltType

fltCrashFuture - IP:abslfauutlunchecKedlCrashFuture<<offsetN
fltCrashType - IP:abslfaultluncheckediCrashType<<DffsetN

;I Handle the early or send fault by re-tyn the operation.I

;Criticality 5.
;I

RetryHandler: MOVE R0,FOPI :Save R0. Criticality 6.
MOVE FIP, RI :Back up FIP by one instruction.
ROT RI,-phaseN,RI
SUB RO I,RO
ROT RO,phasew,P2
MOVE Ro,FIP
MOVE FOPO,RI :Restore RO.
MOVE FIP,1P?

fltEarly - IP:abstfaultlunchecked:RetryHandler<<offsetN
fItSend - IP:aoslfaultiuncheckedletryhandler<ýoffsetN

:I Handle a limit fault. Halt unless LimitOverriae was set, in which case c.ear it and I
:I jump to the overrde routine. RI and Rl are alteres wren LimitOverride is used.

ICrIticality 5.
;I

LimitHandler: MOVE [LimitOverride,A0I,RI :Criticality 6.
BNIL R0, LimitHalt ;Halt unless LimitOverride was set.
MOVE NILRI :Clear LiitOverride.
MOVE Rl, LimitOverride,A0'
MOVE R,!TP :Go to the override routine.

LimitHalt: HALT haltLimit

fltLimit - IP:absifaultlunchecked!LimitHar~dler<<offsetN

:1 Handle a CFIU~re fault.-

:Criticality 1.
:1

:ISave tne current state in the context, suspend, and allocate a t~ea fast context Icr ,
:Ithe next message. Various entry points are provided oependinq on how muon save has I

:1 to be saved. These routines do not return.

:1
;Entry: laveltatelD023 1D01, 1D2, 103, ano the message, if any, nave to be saved.)
;Entry: laveltatelD0i (IDI, 103, and the message, if any, nave to be saved.)
:Entry: laveltate (No registers have to be saved.)
:I
:Il~noheoked absolute non-fault mode requires.

CYUT Halt: HALT haltlninitVar ;An: uninitializel variable was referenced.
CYUTHandler: MOVE RI, oontextRfAI. Save HI and RI. Criticality 6.

MOVE RI, oontextRlAI:
MOVE R2, contexte2,AI]
MOVE RI,cosntex¶RJAI?
MOVE YOYC,RI
IY DEBUG
CT R3,I.RC
BY RI, CFUT Halt Halt II an .. n.:?tla.lzed varlabae was referenced.
ENO
MOVE RI, oontexthext,AI
MOVY. Y:PRI ;'a:'n ..p FlY cly tm. , .rstrrt:on.

MOVE Ri,Y s•r~tiru.•ty 2
ROT RI,-phaseN,R;
SUB RI,I, RI
ROT RI~phaseN,RI
MOVE RI, context PAll Sae ;p, RU, RI, 121, 112, and If'' a; the context.

SaveltatelD0?3: MOVE 1D2,Rt Save flU, 122, a;:d 12]3 in tte •rrent context.
MOVE RI, context C?,A]I

---- --- -- --- -- --- -- --- -- --- -- --- -- --- -- --- -- ----19 1- -- -
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SaveStateID03: MOVE 1D0,R0 ;Save 10C and :C3 in the c.rrent context.
MOVE It, (contextIOO,All
MOVE 0,60 :Check whether the message should be copied into the context.
BF RD,-SaveState_Msg :Don't copy If A3 dian't point into the queue.
MOVE 16,RO :Copy the message into the context
SUB R0,(OA31,RO :Jump into the appropriate place in the copy code.
AND RDlengthmR0
BR RU
MOVE [15,A3],RO
MOVE ROGfS,AlI
MOVE 114,A31,R0
MOVE RO,1 4,AlJ
MOVE [l3.A31,Ri
MOVE R0,[I3,AII
MOVE h12.A3I,RO
MOVE RD,(12,All
MOVE Ill.A3I,R0
MOVE RfIII,All
MOVE [ll.A3],RS
MOVE R, 11,Ali
MOVE 19,A31,R0
MOVE RO, [I,All
MOVE 10,A31,R0
MOVE R0, [S,AIj
MOVE (7,A31,RU
MOVE R0, [7,Al
MOVE 16, A31,RD
MOVE R0, [6,AI]
MOVE 15, A3.BR0
MOVE R0, fSoAlI
MOVE (4,A3],R0
MOVE R0,14,ADJ
*MOVE (3,A31,RO
MOVE RU[3 3,AIl
MOVE 12,A3],R0
MOVE RU, 12, AI
MOVE IDI,RU
MOVE R0, ID3

SaveStateMsg: MOVE :D3,RO
MOVE RU, contextID3,All

SaveState: MOVE fFastContextQueueu,AI,RO :AlIocate a new fast context.
BNIL R0.,AllocFastContext ;There are no more.
XLATE RD0 objectXLATE, Al
MOVE lcontextNext,Ai],RC ;Unlink it.
MOVE RU,(FastContextQueue, AU;
SUSPEND :Criticajity

: Allocate and initialiue a new fast context to De used by the next message. This I
routine does not return. I

;IEntry: AilocFastContext

::Unchecked absolute non-fault mode required.
:1

AllocFastContext: DC OBJ:hdrLocKedlcontextSize
CALL allocNextObject :Create the context object.
MOVE ID2,RI :Point A) and 1I1 to the new context.
XLATE RIoDbjectXLATE,A1
SUSPEND

:I Suspend: if a slow context was used, deallocate It and rep.ace it with a fast one.
:1 This routine does not return.
:÷ ------ ---- ----- -------- --- -- ------- -- -- --- -- -- -- --- --- --- ---- --- -- -- ------ --- --- -- ---- -

:ICall: suspend

l In: AID1 Context.
:I

C;criticality 0.
:I

Suspend: MOVE lcontextHeader,AII,R6 :Cr:ticality 3.
ROT R0,-hdrhastN,RC Check whether tnis was a !ast context.
ST R,: Suspend Fast :Yes.
MOVE 131,R0 :No. Dispose thns context and allocate a new one.
CALL disposeObjert
BP 'SaveState

SuspendFast: SUSPEND

fCtCFUT - IP:abslfaultiuncheceediCFUThandlern<offsetN
fIt~uspend - IP-abs:unchecked:Su;spend<<offsetN

;1 Handle an INVADR fault. If the object is on this node, store its address :ri the
address register: if It is not on this nooe, bring it here.

-----------------------------------------------------------
:1
;Criticality 1.

:1

INVADRHNndler: MOVE RI,:TempXLATERI,A) :Save PI. Criticality 6.
MOVE FIR6 R
AND Rn,3,`2 :FIR cuntalns tne correct adaress reglster number,
LS1 R I,2,: :even when VI•RNIL
BN? Rl ,6 Al tn en, uf fc,;r hutuers
MOVE 100,RI
PROBE I,RI ChecK the x.a:r, car,e f;rst.
BNI1 RI,'1NVADR Missl :Jn:lc :h~c re ubUeý'tOLA hand~er if missed.
MOVE RI,A0
MOVE FIR,RI

NI'L RI, .1NVADRRxtrt2 ;:f the FIR was h;8., don't bacn Up the FIP.
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MOV E I P Ri
BR ILN ADR Restart
HALT haltInvilidA1

INVADRMiss: MOVE ROA1TempXLATER0,A0] :Save RD, R2, and PIP.
MOVE FIP .Ro
MOV BC. [T~epXLATE_FIPAOI

OVE 2U ITempXLATE-R2,AOI
MOV RS.P ;Criticality S.

BR XLATEToobject ;Jump into the objectXLATE handler if missed.
MOVE ID2, A
PROBE RIR ;ChecR toe Xlate, caChe first.

B IL RI, IVA.RMiss? ;Jump Into the 0 jectXLATE handler if missed.
MOVE R I.A2
MOVE FiP Rl1
BR ýINVADR Restart

INVADRMIss2: MOVE I02,Rl
BR ^INVADRMiss
MOVE I03,Rl
PROE IlR ;Checkithe xlate ca:chxe first.B.IL R1 NV..RMiSS3 ;Jump Into the object LATE handler if missed.
MOVE Rl.A3
MOVE FIP,Rl

INVADRRestart: ROT Rl,-phaseN,R1 ;Restart the instruction.
SUB RlIýl.R
ROT RI 1: .....RI
MOVE Rl.PIP

INVADR_Rstrt2: MOVE ITempXLATERIAO],Rl
MOVE FIPIP

INVAORMissO: MOVE FIR,R1
BNNIL RI. -INVADR_MO 2
MOVE FIPR1 ;Advance the FIP if the FIR was NIL.
ROT RI. -phameNRl
ADO NlI.l
ROT R 1p.phs~eN.Rl
MOVE R1,FIlP

INVADRMD _2: MOVE IO.ýRl
BR 'NADR-MISS

INVADRMiss3: MOVE ID3 BI
BR -INVADR-MISS

:1 Handle an SLATE fault.I
ITwo bits of the instruction are used to determine what to do. The possible actions
Sare:I
:1 objectXLATE : OReturnian ADODR containingsthe Object-s address. If the object is not

SI on this node, brln q it here. Rs must be an ID, a DID, a class, or a selector.
:1 ocalXLATE:,,If Rstrepresentsa objec onuthIs nodereturn it %.des: if Rs is

I aconstant, r eturn NIL: otherwise, return the d.me 0 ode lsely to
contain the object. Thin mode can bedused only ohen Rd is a data register. Rs

I must be an ID, DID, a class, a s elector, or a const.ant.
intern a lLATE:, Same as locaISLATE except that treats futures an if they were I
:1 objects instea od cOnstants. t

IrestoreelLATE: Ilnvaldt Rd by storing an invalid adoress tnere. Of coirse. if
the ELATE table hits, the valu~e associatea Rs?~~ is s-oreo 'r. Rd ýnstead.

:1 LATE ,should OT madec to fault on FUTures or CFL;Tures: this can: Ve accomplished by I
:1callin XLATE in checked mode.I

:The criticalities are an follows:
:1objectXLATE: Criticality 1 (criticality 5 if the Otjc.. is Khown to revsie on. this hoodel
:1internalxL.ATE: Criticality 5.
:1 OcaIXLATE:ECriticalityt5.5
:1restoreXLATE Criticality S

XI.ATEHandler: MOVE RI, ITempXLATE _R0.AI; :Save Pt, H., B2, FIP. and FIR. Criticality 6.
MOVE RI,[TempXLATERI.Aiý
MOVE R2. TempOlATE_ R2,AO
MOVE FIP.R
MOVE RO. I TempXLATEFIPAOI
MOVE FIN.R2
MOVE FOPl.Rl
MOVEF RD .F :Criticalsty I
ROT R2. -9.Ri0
AND R2 .7 N2 :Save tne sestination addressing mode in N2.
A ND R , 3,RO
BR RD
BH XI.ATEToOb,ect :Get tne ooj ect.
B R XL.ATE-Inter na: ;Go to the r terna. code.

*BR ^XLATE-Local :Go to the .oca. rode.
DC ADDR:rel~inoai id ;RestoreSL.A7E: Inralioate the address register.

XLATE _Result: ROT R2. 1.52 :Store RD in tne csent natlor. of the ELATE. RI contains the
UR R2 :va-'e Of Rs and is stored in the ID register. R? contains the

*MOVE, TempXLATER2,AO:.R2 oaddressing mode from the XSLATE Instru ction.
MOVE ITempXLATE_91,A0I.R!
MOV E ITempXLATEFIPAt.,IP
MOVE R0.51
MOVE :Tem~pXIATER2,AiI 52
MOVE fTe~pXLATE RI.ADI .RC
MOVEF TempXl.ATFIFPAC.,IP

*MOVE RI.R2
MOVE [TmpXIATE _R1,A0:.Rý
MOVE 7empXLATER0,AC. .R,
MOVE 7TempXOLATE E(',A0.,!P
MOVE RO,R3
BR 'SLATE-R-Don,'

MOVE R0,A0
MR ^X1.ATF P Lor--

MOVt RIA:
BR ^XS.ATE ICRs

MOVE RCA2
MR SXLATE Ou'
DC
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MOVE RO,A3
MOVE AlI.D3

XLATE-K Done: H4OVE [T;RFSLATER2,AOIR2
M4OVE (Templ(LATERl.ACI 81
MOVE (TempXLATERU. AC j.A0
MOVE ITempXLATEFIPACLIP

XLATEL_ TAIIO: AND RS,subtagM,RO ;If the value is a class, pretend it is an ID.
SUB BC. sUbCLASS, BC
RU RO, SLATEISC
SUB RU, subSEL-subCLASS. RO
BZ RO, -SLATEISC
BR -XL.ATE L_NIL

SI.ATEToObject: CHECK RI,IDRO
BR ^XLATEObject

XLATE_ Internal: CHECK R1,FUT,RO :SLATE_ Internal is the same as XLATE_Local for values which
BT RU,-X)LATE_ I_SC :aren t futures .

XLATELocal: RTAG R1,55 ;Dispatch on the tag of the objc~t.
BR RU
ROT0 Rl,-subtagNRO ;TACO
BR ^XLATE L TAGO

XLATE_L_NIL; MOVE NILRO :INT
BA ^XIATEResult
M OVE NIL,RC BO
BR ^XL.ATEResult
HALT haILt)LATE :ADDR
HALT haliSLATE ;IP

*HALT haltXLATE ;MSG / 08
*HALT haltX(LATE ;CFUT
*HALT haltXLATE ;FUT.

XLATE_ I SC: MOVE KU,(TempXLATEFZR,ADI ;ID. Save the FIR.
BR ^XLATE__L ID
MOVE R2, TempXLATEFIR *AO; :D10. Save the FIR.
BR ^ LATEL_ DI D
MOVE NILRO ;TACA
BR ^XLATE_ Resuit

*MOVE NIL,RS :F LOA-
BR ^XLATEResult

* ~HALT haltXLATE RT
HALT haltXLATE ;INSTI

*HALT ha.EX(LATE :,RUT2
XLATE-Halt: HALT haltXLAIE ;I ST3
XLATE_ LDID: M4OVE R1.K2 ;Save the L20.

CALL preferredConstituent :Get an ID from the1110.
PROBE Rl,RO :Check if the constituent 1D is in the cache.
BRIL RU,-XLATE_ LID
ENTER R2,RO :If so. enter and return it.
BR ^XLATE L 2

XLATE_ L_ D: CALL lookupglnding -Look for a binding of the object On
BNIL RU, -SLATELHiss :this node.
CHECK RO,INTR2 :If an integer was found, it is the object's current
BT R2, SLATE L 2 :node niomber.
CHECK RU,ADDR.R2
BF R2, SLATE_ LCAt
HOVE RU, ITemPXLATETempA~i :Save RU.
ROT RU. -baseN.R2
AND R2,baseH,RU
HOVE [R2,AOI,RU ;Fetch the object's header and clear the macrked flag in it.
OR RU,.hdrMarkedRO
SOB BU,hdr~arked,.RU
HOVE RU, [R2,AO
HOVE (TempX[.ATETemp,AOI.RO :Restore RI.
ENTER R1.RU :Found such a binding. Enter it in the SLATE table.
BR ^XLATEL_2

SLATE_ LHiss: MOVE (NodeMaskAUI,RO :Dio not find a binding. Extract tne node number from.
AND RO,R1.RO :the 1D and go return it.
H4OVE NNR,RU ;If the node number is this node, halt because this i
EQUAL ROR2.R2 ;Supposed to be tne nome node, yet it doesn't kno. .here the

B_ R2 , -LATE-Halt ;object is.
SLATE_ L_2: HOVE [TempX!ATE_ FIR,AULR2 :Go return the result in RC..

BR KXLATE_ Result

SLATELCstt CHECK ROID,R2B :n ID is bound to a contest. bereference the contest and
BF RI, -SLATE _Halt ;read its conte~t~est field.
MOVE RI, TempXLATETemp.AU. :Save the obiect ID.
MOVE RORl
CALL lookup~lndlng
HOVE (TempXLATETempAUI.Ri. :Restore the onject ID.
CHECK RO,ADDR,R2
BF R2, SLATEHalt
ROT NO. -baseNR2
AND R2,baseH.R2
HOVE contest Nest.NI
ADD R2,RON?
M4OVE (R2,A0I,RO
BRIL RD. ýXLATE L Miss :Miss if 1, was NIL.
CHECK RO,INTR2 :I! an integer was found, it is the ob~ect's cirrent
RF R2, 'SLATEL Cst ;node nur~oer: otherwise the-re is another contest linked.
BR ^XIATE 1. 2

XLATE_0_Access: MOVE RU, ITempXLATETe~pAU ;Save ND.
ROT RU,-baseNR. B
ARC R2.baseM,R2
M4OVE IR2,AUI.RO :Fetch the onieCt's header and clear the marked flag in it.
OR RO,hdrIurheo,Rf
SOB RU,hdr~arked,RO
MOVE RU. [R2,AO!
MOVE JTempXLATFTempAU;,RI' ;Restore RU.
ENTER Al,RO :fo::hd a blnding. Lnter it In the SLATE table a.-d
HOVE ITempXLATER2,A0j.R2 Irestant the SLATE lor aaoress-faulted) instruction.

SLATE_0_Rebind: DC phase
HOVE [TempXLATEFI1PAUI.Rl
SUB Ri,RI,R,
HOVE RI, ITenpLATEFIP,A0.
MOVF. [TempXI=ATE _R--A0],N
MOVE TrempXIATF. RG,A0;,RG
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MOVE :TempXLATE_FIP.A0IIP

IF DEBUG
XLATE_0_2: CHECK RI,TAGO,RO ;Classes and selectors are also objects and are

BF RO,^XLATE Halt _2 :treated as if they ere ID's.
ROT Ri,- ubtaqN R-
AND Ro, subtagmRo
SUB RO,.SbCLASS, R0
BZ Rol'XLJTE 0_ID
SUB RD subSEL-suDCLASS,R0
Bz RD:'XLATEO_ID

END
XLATE Halt 2: HALT haltXLATE
XLATEObject: BT R0,-XLATEO_lr IDispatch on the tag of the object.

CHECK R1.DIDORO
BF R. 'XLATE_0_2
MOVE R1,R2 .Save the DID.
CALL preferredConstituent :Get an ID from the DID.
PROBE RiRt ;Check if the constituent ID is in the cache.
BNIL RI, XLATE 0_ID
ENTER R2,RI :If go, enter and return it.
MOVE [TempXLATER2, A0J,R2
BR 'XLATEO_Rebind

IF !DEBUG
XLATE_0_2:

END
XLATEOID: CALL lookupBinding ;Look for a binding of the object.

BNIL R0,-XLATE 0_Miss
MOVE R2,TempXLATETemp,AOI :Save the binding's address.
CHECK R0,ADDR,1R2 :If the object's address was found, return it.
BT R2, XLATE_ _Access
CHECK R0,1NTR2 ;If the object's current node was found, send a requestObject
BT R2, 'LATE_ 0Point ;message there.
MOVE ýTempXLATETep, A1ý,R2 :Otherwise someone is already waiting for the object.
BR 'XLATE _O Fetch :Append this context to the waiting queue.

XLATE_ _Point: MOVE ITenpKLATETemp,AC,?R2
SENDO RO :Send a message requesting the object to the object's
DC MSG:msqseqiestObject,3 :c-rren*, locatior.
SENDI R0
MOVE NNR,.RI

SEND2ES I1,R1
SR 'SLATE 0 Fetch

XLATE_0_Miss: DC MSG:msqRequestObiect'3 :Send a messaqe requesting the object to the object's
AND RI,[NodeMasK,AO:,R2 R home.
SEND20 R2,RI
MOVE NNRRI
SEND2EI Il,Ro ;However, if this node is supposed to be the object's home,
EQUAL RI,R2,R2 :halt because the object doesn't appear to exist.
BT R2,SXLATE Halt 2
MOVE NILR2 ;R2 being NIL means no one else is waiting for the object.

XLATEOFetch: MOVE [TempXLATE_RSA0I,RS ;Save state in the context.
MOVE RI,[contextRlAlI
MOVE [TempXLATER1,A0),R0
MOVE R0,[contextRl,AI;
mOVE JTempXLATER2,ADI,RC
MOVE R0,[contextR2,AI]
MOVE ITempXLATEFIP,A0],R0
ROT RI,-phaseN,RS ;Criticality 3.
SUB R0,I,Ro :Back up IP to point to the XLATE instruction.
ROT R0,phaseN,RO
MOVE RI,[contextIP,A1; :Save IP, RO-R3, 10D, 102, and .D3 in the context.
MOVE R3,[ContextR3,Al'

MOVE ID2,RS
MOVE R0,[contextlD2,AlI
MOVE ID1,R0
BNNIL R2,-XLATE_0OAppend
MOVE R2,(contextNext,AlI :MaKe a binding indicating that the context in IDl is
CALL enterBinding :waiting for the object in RI.

XLATESuspend: DC SaveStatelD03-(''2) :Save the rest of the state and suspend.
BR R0

XLATE_OAppend: MOVE [R2,AC),R3 :Append the binding to the linked list headed by R2.
MOVE R3,[contextNext,Al[

MOVE R0,1R2,AO]
BR 'XLATESuspend

fTtINVADR - IP:absifaultluncheceed:iNVA0RHandler<<offsetN
fltSLATE - IP:abs.tauItlunchec edXLATEHandler<<offsetN
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;O* Heap Manager **

;1 Copy the object pointed cy A3 into the object pointed by A2. The copy stops as soon I
; * a limit fault is reached. A2 and A3 are guaranteed not to be XLATEo, so they do I
:1 not have to correspond to the values in the ID registers..v

The objects are copied from the bottom up, so, if they overlap, the cestination must I
I start before the source.
I RD can be a number smaller than 32 indicating the offset of the first word in each

:I object which should be copied: words with indices smaller than RM are not copied. I

;;Call: blockMove

;fin: RM Offset of first word to copy.
A2 Destination object pointer.
A3 Source object pointer.

:icriticality 5.

:.Alters RD/RI.
;I

BlockMove: MOVE FIP,R1 :Criticality 6.
MOVE Rl,[LimitOverrideA0I ;Override the Limit fault for the duration of this routine.
MOVE RI,F :Criticality 5.
BR R0

MOVE J0,A31,R0
MOVE RO, O,A21
MOVE IIA3],RO
MOVE MO,1',A21
MOVE (2.A3IRO
MOVE D, 12,A21
MOVE 1,A3:0RO
MOE. RU, 13,A2)
MOVE [4,A3M,RI
MOVE RO,14,A21
MOVE [5,A31,R0
MOVE RO,[5,A2j
:MOVE [6,A31,RM
MOVE RO,(6,A2ý
MOVE [7,A3J,OR
MOVE RM ,[7A21
MOVE J8,A31,R0
MOVE RM, MA2ý
MOVE [9 A3;.RM
MOVE R0M,9 MA2
MOVE KIA31.RM

MOVE RO,[10,A2]
MOVE [11,A31,RI
MOVE RM,1[l,A2I
MOVE Jl2,A3),RD
MOVE RO, I12,A21
MOVE [13,A3 ,MR
MOVE RM,[13,A2]
MOVE 114,A31,RO
MOVE R0,414,A2)
MOVE [15,A3j,RM
MOVE RD [;bA21
MOVE II6,A3J,RO
MOVE RM, 16,A2j
MOVE [I7,A3jRM
MOVE RO, I11,A21
MOVE (18,A3],RO
MOVE RM, [1,A2,
1MOVE 119,A31.,0

MOVE RM, (19,A21
MOVE (20.A3IR0
MOVE RM [20,A2j
MOVE 12iA3),"O
MOVE RM, [21,A2]
MOVE 122.A31,MO
MOVE RM [22,A21
MOVE 123,A3,IRO
MOVE R0,123,A21
MOVE [24,A3IRM
MOVE RM, 24,A21
MOVE f25,A31,MR
MOVE R, (25,A21
MOVE [26,A3],R0
MOVE R0, (26, A21
MOVE (27,A3],MR
MOVE RM, 27,A2W
MOVE ŽM6,A31RM0
MOVE RO,!28,A2!
MOVE 129, A31,RO
MOVE RC,[29.AV2
MOVE 13OA3,GR
MOVE RMl30,A2ý
MOVE 13iA3,M
MOVE RC, 3_,A2
MOVE 32,MI

BM MoveRest: MOVE MRI,A3I,R0 :MCve the res ýOf tUr ot eCL
MOVE RO, I.iA?:
ADD A ,:R
MOVE MI,AR;,MO
MOVE RoM{RlA;2
ADD RI,HI
MOVE (M,AIIRM
MOVE RC, .RA2
AD' RI,,I

MOVE M IA3;,RD
MOVE MO, RIMA21
BR ^8M MoveRest
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fitBlockMove - IP:aoslfaultluncheckedIBlocKMoveC<offsetN

4 - ---------------------------------------------------

:, S.nd tne object pointed by A2. The .s.nd stops as s.on as limit fault is reached. I"1 AZ is guaranteed not to be XLA1TEd so it does not have to correspond to the value in I
;1 ID2. RO should be one of the following:
:1 0: Words are sent starting from offset 1 in the object. I
:1 1: words are sent starting from offset 3 in the object.
;[ 2: words are sent starting from offset 5 in the object.
-----------------------------------------------------------
:1

;ICall: blockSend
:I

;:In: RB Encoded offset of first word to send.
:1 A2 Source object pointer.

:]Criticality S.
:I
IAlters BC/RI/A2.

:I

BlockSend: MOVE FIP,RB :Criticality 6.
MOVE Ri, LimitOverride,A0] :Override the Limit fault for the duration of this routine.
MOVE RBF ;Criticaiity S.
BR RC

* SENDO [I,A2]
SENDO [2,A2]

* SEND0 13,A2]
SENDO 14:A2Z
SENDS 5,A2J
SENDS 6, A2]
SEND0 [7,A2J
SENDG B8,A2Z
SENDO 19, A2D
SENDO [10,AP)
SENDS [lA2J
SENDO [,A 2
SeUROd (12,A2!
SENDC [13,A2;
SENDO 114,A2;
SENDX II5,A21
SENDO 116,AA2
SENDS 117,A21
SENDO [lS,A2D
SFDO [I9,A2.
SENDO 2C,A2
SENDo I21,A2]
SENDO 122,AA2
SENDS [23,A2]
SENDO [24,A2j
SEND 1[25,A2i
SENDO [26,AA2
SENDN [D 2 ,A2l
SENDO I28,AA2
SENDS 129,A2]SE ND0 {30 ,A2]
SENDO !31,A2]
MOVE 32,BR

BSSendRest: SENDO fRC,A2] ;Sends more words of the object.
ADD RB,I,RC
SENDO [BRA21
ADD RC.1,0 C
SENDS IRS,A21
ADD R0,1.R0
SENDO [RC,A2'
ADD RkUlRC
BR 'BS-SendRest

fitBlockSend - CP:abslfaultlunchecKeo B-ocrSenO<<oIsetN

I1 Compact the node's heap, trying to tree at least RI words of memory, h1alt if this
;I much memory is not available.
:+

:ICall: compactHeap
:1

;tIn: RO Number of words needed.
:1
:Criticality 3.

:I
:fAlters RO/Ri/AOD2.
;I

CompactHeap: INVAI :Criticality 6. Invalidate all relocatable address registers.
MOVE R0,lTempCHRC,A0 :Save F:P, RO, R2, R3, Q, A3, and 103.
MOVE R2,[TempCHR2,AiA
MOVE R3, TempC~iR3,AI
MOVE FIP,RC
MOVE R0,1TempCH FIP,AD.
MOVE ROF :Criticulty 3.
MOVE Q, ;
BT RI, CHQ
MOVE ID3,R0

CHQ: MOVE R0, TemppC 2IS3,A
MOVE A3,RC
MOVE RB,[TempC11A3,A-
MOVE NILR3 :R3 will contain N::. for the ouration of the xlate flush.
MOVE R3, TempCHLoCK,A3 :Indicate trat t.i s the first time the heap Is compacted.
MOVE R3,Q Disable qee orapaeound.

DC IP:abslunct.ecKed Ce 2<ho!fsets

MOVE RCILimltOverrideAD' :Overr~de toe L.ýi:t fa.It for the duration of this rout;--
MOVE -,1R2
DC AnDR fplatextartc<rasesl.C.atelrd-SlaoeSoarL
MOVE R0,A2

CHRFushXlate: All R2,2,R2 :Cherc every entry ,n the XLATE table whether it contains
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MOVE [R2,A2 ",RO:a re~ocatab),e Aýt'2H. If it aces, rep.ace it with N:L.
CHECK1 RO,ADINR1R
BF Ni,^CHFiushXlate
AND RO jei.R I
BEN RI. C H FlushXlate
M4OVE RI. 1R2.A21
BR ^CHFiushXiat.

CH_2: M4OVE (HeA,-StartAEI,R2 ~ R2 is the source heap scanner.
MOVE t2 R3 ;R3 is the destination heap scanner.
SR 'Ch Compact

CHCompact2: M4OVE JR2,AEJ,R0 :Get the hext object at the source.
ROT RE. :hdrLoC CdNRI ;Let it live if it Is locked.
BT Ri, CH Lives
ROT RE. -hdioeletedN.Rl ;Kill It if it is deleted.
BT Ri. CHDie

RT R, -hdrMarkedN,Rl Prei if is is marked.
BF 1I. CH MarkLive
ADD R2.l,RY :Read the objectsa ID into RI.
M4OVE [BIAE],R1
CA LL deletaBindilsg ;No need to purge the xlate table.
M4OVE [R2,AEJ,RE

CH-Die: AND R0.hdrLehgthM,R0 ;Skip the source heap scanner past the removed object.
ADD R2. RE, K

CII C-lsCtt GE R2. FirstFree,AEJ,RE ;Check whether the entire heap wsa scanned.
BF RE,^CH Compact2
EQUAL R2,(FiistFree,AEI,R0 :If so, then R2 must match FirstFree exactly.
BF RE,^ CH AlignError
MOVE R3, FiistFreeAEI :Update FirstFree.
MOVE 1LastFree.AEJRD
SUB RE.R3,RO ;Check whether there is now enough room to satisfy the allocation
GE RE, lTempCHRd,A0),R0 ;request.
BT RE.-CH Done ;Leave if so.
MOVE JTempC~p Lock, Al ,R0
MOV E TRUER ;If not, comnpact the reap again unless it was just compacted.
MOVE Ri, eM'pCH _ LockA01
BNIL RE,-C112
HALT haitMemnFu)ll :Give up if two successive compactions don't free enough space.

CH-Done: MOVE A1.NE :Make sure that Al in valid,
ROT RI. -invalid,RE
BF RI, CH AiValid
MOVE ID1,NO :If not, rr-x~ate it.
XLAI'E RE~objectXLATE,A.

CHAlValid: MOVE (TempCHA3,A01,Nt :Restore A3, Q, and !D3.
MOVF QnhAi
MOVE ITempCHID3,AEJR0
EQ RE,TRIJERl
ST Ri, CH DoneQ
MOVE RE, 1D3
MOVE ITempCHR2,A0),R2 ;Restore R2.
SR C oe

CH_DoneO: MOVE NO,0
MOVE fTempCHR2,AEJ,R2 ;Restore R2.

CHDone2: MOVE (TempCHR3,A0!,R3 ;Restore R3 and return.
MOVE ITempCHFIP,AEJ,EP

CH_-MarkLive: ROT Rd. -hdrPurgeableN,R :If this Object is purgeab.e. mars it so that it will be purged
BF Ri, CH Live ;on the hext scan.
OR RE,hdr~arked.RO
MOVE R0, R2,A01

CH_ Live: AND RO,hdrbehgthM,RO ;Etore the lengtth of the object in RE.
ROT R3,baseN.Rtl ;Point A2 to the destination object.
ADD RIRE,RIl
MOVE RI,A2
ROT R2,baseN,Rl ;Point A3 to the source oonject.
ADD R1,RD,NI
ADD R2,RE.RŽ2 :Advance the source and aentination scanners.
ADL R3,RE,R3
EQUJAL R2,R3,RO ;There is no need to move an object if the source and destination
BT Rd. CH Compact :addresses are the same.
MOVE RE,A3
MOVE JobjectIl,A3JR1 ;Uipdate the ooject-s binning itý the BRAT.
MOVE N?, lTerhpCH Erc.AEI dSave R2.
CALL lookup~inhdlng
CHECK R.,ADZIR.Nl :Mane sure that the Cfinoinq is a: A:ttN.
BF RE, 'CHBRATError
MOVE A2,RO
OR RO~relRC
MOVE RI, IR2.A0I
MOVE E.R0
CALL biockMove :Move the onh~ent its cvstirnation location..
MOVE [TempCHlSrc.AOI.N? Restore N?.
BR ^CH-COmpaot

CHAlIqnError: HALT haltHeap
CH-BRATError: HALT haitBRATType
ftitompactHeap - Pasfal nnce:opteahfteN
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Al Alocate and initi alize a new hepobet RD contains the word to be stored as theI
I first word of the object. The length is extracted from RO, and the flags in the I
I high bits of R0 should be set to benign values. RI contains the ID for the object. I
;I The object is not entered in the XLATE and the BRAT tables I

;;Call: allocObject

;;In: Rd First word of object.
R1 10 of the object.

;IOut: AID2 -Object.
R0 ADDR pointing to object.

:iCriticality 3.

;;Alters RO/R2/R3/AID2.

AllocObject: MOVE R0,R3 ;Save RD. Criticality 6.
MOVE RIID2 ;Store the object's 10 In 0D2.

AORetry: MOVE IFirstFree,AI],Rl ;Advance the heap scanner.
AND R3,hdrLengthMR2
ADD Rl,R2,R2
MOVE [LastFree.A0J,RI ;Always leave three words on the heap in case a BRAT entry
SUB RO,3,R0 :needs to be allocated for this object.
GT R2,R0,R0 :Check whether the heap overflowed.
BF R0,.AO1
AND R3,hdrLengthMR0 :If it did, compact the heap, telling the compactor that
ADD R0,3,R0 ;at least three plus the length of the object words are needed.
MOVE FIPR2
MOVE R2,F ;Critica2lity I.

CALL compactHeap
MOVE TRUE, RC
MOVE R0,F :Criticality 6.
MOVE Rir?
BR ;AO Retry :Go try the allocation again,

AO 1: MOVE R2,TFirstFreeA0I
ROT Rl,baseNRl :Create a base/address pair [or the object.
AND R3,hdrLengthM,R0
OR R1,R0,RO
OR R0,rel,R0 :Mark the object as relocatable.
WTAG R0,ADDR,RO
MOVE R0,A2 ;Store a pointer to the object in A2.
MOVE ID2,R1
MOVE R3,objectHeaoer,A21 :write the orjects header and 10.
MOVE R1iobject2D,A2;
MOVE FIP,IP

fltAllocObject - IP:absIfaultiunchecxeadAllocOoject<<offsetN
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;IBRAT Manager *

:1Enter abinding of RI to RO in the BRAT. The BRAT should not nave ar ex'isting I
:1bindi ng of RI. It msay alIso be appropriate to enter the object into -ne Xlat. table.I

;Call: enter~inding

;;!In: RD Data.
Al R K ey.

ICriticality 3.

;;Alters RO-R3IAID2.
:1

EnterBindlinq:. MOVE RIeR3 :Criticality 6. Save data in R3.
MOVE RI. [TeepEBKey,AOI ;Save thle key.

EB-1: ROT Rl:-BRATLenLogQ4,R2 ;Calcuiate the hash code for the key.
ROR R I R ,2 :Tne hash code is the XOR of the BRATLenLog-bit fields of
ROT R2,.-BA"TLsnLog-2,RO ;the key.
XOB R2, RD,R2
ROT R2. -BRATLenLoQ,RO
XOR R2,RO,R2
MOVE DRATLength-I. RE
AND R2,RD,R2 :R2 contains a hash code between 0 end BRATLength-l.

DC BRATStart
ADD R2,RD,R R I0;9 points to the head of the BRAT chain.
ROVE IBRATFreeAOI,R2 :R2 points to a free BRAT link.
BNIL R2,-EB BRATFulI :Compact the heap if the BRAT is full.

EB_2: M4OVE [TempE5_Rey,AOJ.RI
MOVE Rl,[R2.AOI :Store the key in the link.
MOVE (RO.AOI.Rl :Save the second link In the chain In Rl.
MOVE R2. RO.AOI :Make this link be the first in the chain.
ADD R2.l,R2
M4OVE R3. "R2 AD] ~ Store the data in the link.
ADD R2,1,R2
MOVE 1R2 'AII.R0 ;Put the next free link Jn BRAT~ree.
M4OVE RI. IBRATFree. All
MOVE Ri. (R2,AOI :Lin0k with the second link in the chain.
MOVE FIP. IP

EBBRATFull: MOVE (Lasthree,AOI.R2 :Attempt to allocate three words from tne back of the heap.
SUB R2,3,R2
GE R2, lFirsthreeAII,Rl
BF Rl. 'EB heapFull :Go compact the heap If it was full.
MOVE R2. IL~trree, A0)
ADD R2,2,R2 ;Store a NIL in the line woro of the new entry and go
M4OVE NIL.Rl ;allocate this entry in the BRAT.
move RI. IR2.AOI
SUB R2, 2,R2
BR ^EB_2

EB_Heap~ull: M4OVE FIP.R2 :Save the FIP.
MOVE 3,R0 ;At least three free words are needed on the heap.
MOVE R2.F ;Criticality 3.
CALL compactHeap
MOVE TRUE, RI
MOVE RC.F :Criticality 6.
MOVE R2.FIP :Restore the FlP.
M4OVE !TempEBKey,A0),Rl :Restore the Key and go buCK to the Deginning.
BR ^ER_ I

fltEnter~indinq - IP~abslfaultruncheckediEnter~indinq<<OffsetN

I1 Lookup a binding of Rl In the BRAT. Return toie binding or NIL if there isn't any.
;IAlso return the absolute address of the bind~ing in the BRAT so that it car be I

:1 modified.

;:Call: lookup~inding

;jln: Rl Rey.

;IOut: RI Data or NIL if none.
;I 2 Absolute address of data in the BRAT' 4valid only when RUS>NIU)

:;Criticality 5.

:;Alters RIO/R2.

Lookup~indlng: ROT Rl.-BRATLeOLog-4,R2 ;Crilt.cality 6.
BOB Rl,R2,R2 ;Calculate the hash code for RI.
ROT R2.'BRATLenoI.Og2,R0 :Tne hash code is the XOR of the four bytes of Rl,
BOB R2,RIR2 ;the same as trie XLATE hash cod-.
ROT R2,-BRATi.enL~og.R0
XOB R2,RD, R2
MOVE BRATLength-1,RI
AND R2,RO,R2 :R2 contaics a h~ashý code brot-er: C and BkATLenqth-_
DC BRATStart-2
ADO R2,kORO

LB-Next: ADD RI,2,RC
MOVE [RI.A01,RI ;Follow the !irked list Of 9RAT entries starting wIth
BNII. RI. 'LB Done ;the one ir:ký RL.eave if BC is NIL.
EG RI. fRD,AII.R2 Co.mpare the seýy A~ah : B
Br B2. 'LB -Nest ;Check tn)e next ehtry if it. doesn't matchi.
ADD RIlR2 .Otherw'se returr th~s entry's dirta.
M4OVE [R2,AUI.Rf
MOVE FIPIP
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LBDone: MOVE FIPIP

fltLookupBinding - IP:abs1taultIuncheckeOILookupBinding<<offsetN

:1Delet aabinding oftRi in the. BRT. Hatif no sucn binding existd.a:I The purgeBinding entry point also purges the binding from the slate table.
------------------------- ---------------------------------------------------

::Call: deleteBinding
;lCall: purgeeinding
:1
:IIn: Ri Key.
:1

::Criticality 5.
:1

::Alters RK.

PurgeBinding: MOVE NIL,RS :Criticality 6. Purge the object-s binding from the XLATE table.
ENTER RI,RO -

DeleteBinding: MOVE R2,FOP0 :Criticality 6. Save R2 and R3.
MOVE R3,FOPI
ROT Ri,-BRATLenLog'4,R2
XOR RI,R2,R2 :Calculate the hash code for RI.
ROT R2,-BRATLenLogD2,RC :The hash code is the XOR of the four bytes of RI,
XOR R2,RD,R2 :the same as the XLATE hash code.
ROT R2,-BRATLenLog,RO
XOR R2,R0,R2
MOVE BRATLength-IRO
AND R2,RO,R2 :R2 contains a hash code between 0 and BRATLength-i.
DC BRATStart-2
ADD R2, R0, R2

DB-Next: ADD R2,2,RO
MOVE [R0,A0],R2 :Foiio. the nhKeC list of BRAT entries starting with
BNIL R2,'DB Halt :the one in. RD. Leave if RD is NIL.
EQ Ri, R2A0jR3 ;Compare te vey against RI.
HF R3,^DB Next ;Checv the next entry if it ooesn-t match.
ADD R2,2,R2 :Otherwise oelete t*his entry.
MOVE JR2,AO],R3
MOVE R3,I Rl,A0:
MOVE [BRATrree,AC:,R3
MOVE R3,1R2,ADi
SUB R2,2,R2
MOVE R2,IBRATFree,AWi
MOVE FOPI,R3
MOVE FOP0,R2
MOVE FIP,IP

DBOHalt: HALT haltBRATDelete

fItPurgeHinding - IP:absi-aultiunchecked:PurgeBindqnv<vcf!setN
fltDeleteBinding - IP:abslfaultlunchecKedlDeieteBiraingc<offsetN
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:ft Object and Context Manager 99
:99 99

-- 99999 ----------------------------9------------

I Allocate and initialize a new object on the local heap and enter it in trne XýATE ano I
SBRAT tables. Rd contains the class of the object

;I
:C!all: newLocalObject
:I

I:n: RD Object's class.
:1

:IOut: Rd Object's ID.

:]Criticality 1.

:ýAlters RO-R3/AID2.

;i Allocate and initialize a new object on the local heap and enter it in the XLATE and I
I BRAT tables. R0 contains the word to be stored as the first word of the object. I
I The length Is extracted from R0, and the flags in the hiqh oits of i 0 should be wet
1 to benign values, The object gets the next unused ID.

;Call: allocNextOcject

:;:n: RD First word of object.
:1

;!Out: AID2 ^Object.
AD Obj ct's I1.

;Criticality 3.

:rAlters R0-R3/AID2.

;1 Allocate and initialize a new object on the locoa heap and enter it i: t!te XLATL and
I BRAT tables. RC contains the word to be stored as the first word of the ob'ect.

The length is extracted Iron BC, and the floqs in the nigh bits of 91 shoo be wet

tO benign values- RI contains the ID to be used for the ctbect

Call: allocNewObject

In: RI First word of ob'ect
RI Oc'er .t

,Out: AMD2 fOblect.

RD O :ect ; .

:Alters RO-R3/AIC2.

NesLocalObject: MOVE FP,92 :CritlcaOity 6.
MOVE R2,F :Crltcality i.
XLAT R0,0ojectXLTE, A2 Get the obvect-s first -ao.
MOVE toC!assWord,A2 ;,R
MOVE JLostODectfDACJ,RB :Get the next oE'ect IC.

ADD RI,(lcuserialN)-IRl
ADD R,I,RI
MOVE 1, !LastObjectID,A0t :Advance the ovbect 1t co-nter
BR MANO 2

AllocNextOb~ect: MOVE 'L.stlb'ectlD,A0.,RB :Criticar:ty 6. Get the n Lst vrect II.
All RI,clhuwerialN)-IRI

All R, !,,R1
MOVE RI ,LastObjectnDA0i :Advanct the oc•ect :D courte:

AllocNewObject: MOVE FIPR2 :Critirol;ty 6. SAve F:P.
MOVE. RF :Criticality S.

ARN 2: MOVE R2,fTenpANCF1F,AC
CALL al.ochObect :A..ocate the oriec:
ENTER R1,RO :P, '-t i4nto the wýate cactr, o1 the BRAT table.
CAL: enterBinding
MOVE 102,Rt ;Loac the on'ectls IL in::.Mt
MOVE :TempANO_FPPA0:,1P

fltNewl~oaclObject - IP:ao'as cat uncheCredINewLooa.Ob'ect,<<ofset%
!ItAlloCrewtObject - lPaDs fa .ltunchec-eelA,.ocseotlh'entanllsvt6
fltAllocNfewODject . IP:abs fa o It'unrcecPe•dAIlocNewOrvect-.!cfsetN

Allocate and imlt,A..ze a hew ro'text. If III .s '-N:l 0' c-tr, :t:c..s toa
context that sto.,ld be de7olocated. ;owever, 2 A. ':. lo'qge: po.<; tot', esooq,'
before that cA.tet :s ceo..oc:l,, Its .ocS.n . :.o~a::o-........... ........ vo,
are copied Inth the new contest..~ ~ ~~~~~~~~~~~~~~~~e d ........ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Call: ne-ContestAIII 'c'tw ct ."1. :ft roe tled: h; it

Out: AIL: N6• r .....

,Crit~cality 2.

:Alters R01/IfA;R:I
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NewContexL: MOVE FIP,RI :Crlticality 6. Save R2, R3 and the FIP.
MOVE Rl, iTempNCFiP,Adj
MOVE RIF :Criticality 3.
MOVE R2, ITempNCR2,A0J
MOVE ID2,RI ;Save ID2 in TeMpNC ID2.
MOVE RI.,[TepNCID2,AOj
MOVE R3, [TempNCR30A0]
CALL alioc1exoObject :Create the context object.
MOVE ID1,R0
BNIL RO, NCNOOidCxt
MOVE QRS
8T R0. NC HadMesmaqe
MOVE 12AII,ARO ;If A3 lid not point to a message, copy the old context's
MOVE RO, (2,A2I :locals into the new context.
MOVE [3,AlJ,RO
MOVE R0,13,A2)
MOVE [4,AlJ,R0
MOVE RO, [4,A2]
MOVE IS,AlIRD
MOVE Rd., (5,A2!
MOVE (6, All,R0
MOVE RD, i6,A21
MOVE 7.'AIRO
MOVE R0j 17,A22
MOVE ItAi, RS
MOVE Rd,(8,A21
MOVE I9,All,R0
MOVE R0, 9,A21
MOVE [10,AI),RO
MOVE R0,[10,A21
MOVE 1I1,AlR0
MOVE R00,(II,A2J
MOVE 112,Alj,R0
MOVE RS,t12,A2?
MOVE (13,Ai:,R0
MOVE R0,[13,A2}
MOVE l14,AII,R0
MOVE R0, f14,A21
MOVE [1,AIIR0
MOVE R, (1SA21

NC_HadMessage: CALL disposeContext -Then CZsoose the Ad context.
NC NoOidCxt: MOVE !I2,R0 :Pomnt A! ano :IA to the new context.

XLATE RI,objectXL.ATE,AI
MOVE ITempNCID2,Aji,R2 :Res'ore A2 and 122.
XLATE R2, restoreXLATE, A2
MOVE ýTem.pNCR2°A0,R2 ;Restore R2 and R3.
MOVE 1TempNCR 3,A0],R3
MOVE TerpNCFIP.A0:,IP

fltNewContext - :P:abslfauoltuncnecKedýNewContext<ooftsetN

: + - - -- -- - -- -- - -- -- - -- -- - -- -- -- - -- -- -- - -- -- - -- -- -- -- - -- -- -- - -- -- -- - -- - -- -- - -- -- -- - -- -- -- - --

-] Deallocate a context, which may be either a fast co
t
teot or a neap context.

:; - -- -- - -- -- - -- - -- -- -- - -- -- -- -- - -- - -- -- -- - -- - .- .- -- - .- - - -- -- .- - .- .- - -- .- - -- -- - -- -- - -- -- - --

tCall: disposeContext

IIn: AIDI Context.

iCrit'ca lty 3.

:lAiters Rt-R2/A.Ul.
:1
----------------------------------------------------------------------------------------

I Dispose an object. If the object is loced, it is deleted as soor, as the upock
:1 message comes in.

:Call: disposeObject

IIn: RD Object.

;ICriticality 3.

•Alters R0-R2.

DisposeFastContext: MOVE :FastContextuees,AO',R :Cr6.cality
MOVE RD, IcontextNext,A:! :?jt the context Lac orx the co-rext qge.e.
MOVE ID1,R0
MOVE RD, FastContextQue.e,ACI
MOVE FIP, P

Disposecontext: MOVE CcontextHeaderAII,RO :Critica..ty b. Amos whether this was a fast context.
RUT R, -ndrFastN, RC
3T RI, oisposeFasttcr-reo :Y's.
MOVE IDI,Rc :No. Oea.Iocate a ncr'a. ooject

Disposeo•tect: MOVE FIP,R 6
MOVE R2, F trica y 3.
XSATE ,ocaIXI•TE, R 3et t. oPi . , PCt eocat;. kr Zto RI
RNIL R:l'DO ne .Fs : 're o b at a constant.
MOVE R2, 7 em'OF) , F A :P aoe e P
CHERC ,T, R 2

T k2 '0Oem tt .0 se5a d a : sp-c message I! the ouject is remote.

MOVE R2,u
MOVE !n2,R2
MOVE RO :D2
MWIVE R .. e -a., p.4r A:12 to It
M2VF Ate PC,.eade. A2 -. 'C t
ROT R04 -dr osCed%,
t3 04,AC LocseP
AND 01, NOCeMass.A. ,A
MOV F NN's ,. e oL ec.'s ,ome
EQIAL 3RD0R,RS
HI 01, "L nn'2e
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MOVE 1D2.R I :It not, send a message to the ob
4

ect's home to delete
DC MSG:,sgDisposeBRAT-2 :its BRAT entry.
SEND20 RI,RO
SENDEO RI

DO-Home: CALL dsallocateObject :Deallocate it.
XLATE R2 restoreXLATEA2 :Restore AID2.
MOVE LTeMpDOFIP.ADI.ZP

DO Done: MOVE R2,IP
DO Remote: MOVE RDR2 :Send a Dispose message to the object's node.

SENDO Ri
DC MSG:msgDisposet2
SEND2ED RDR2
MOVE (TempDOFIP,A0J,IP

DO-Locked: ROT Rl,hdrLockedN-hdrDeletedN,R0
OR RU,i,RO :If the object is locked, mark It 49 deleted but do not
ROT AD, hdrDkletedN,RI :delete it yet.
MOVE RI,1objectHeader,A2J
MOVE [TempDOFIP,A0I,IP

fltDisposeContext - IP:abs:faultluncheckediDisposeContext<<offsetN
fltDisposeObject - IP:absifaultIDisposeObject<<offsetN

: ---------- :----------------- .............. .............................................--
;I Execute a Dispose message.I

Dispose: MOVE oldsposeIDA3J,RS :Criticality 2.
CALL disposeobject ;Dispose the object.
SUSPEND

msgDispose - Dispose<<offsetN

----------------------------------------------------------------------------------------

:! Execute a DisposeBRAT message. If the object was present or itu home node, It is
:r disposed; otherwise, only the object's home BRAT entry is deeteo.
; ÷ . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .--

DisposeBRAT: MOVE oaisposeBRATiBA31,h :Criticality 2.
XLATE RI,localXLATE,;2 :Check if the object is here too.
CHECK R2,ADDR,R3
BT R3.DBRAT Here :If so, dispose it.
CALL porqeBindlng :Purge the object's binding from the XLATE table and
SUSPEND :fron the BRAT.

DPRATHere: MOVE RI,R0
CALL disposeOnject ;Dispose the object.
SUSPEND

msgDisposeBRAT - DisposeBRAT<<offsetN

:1 Deallocate an object residing on this node. ;"e object must not be locked.
:÷ - -- -- -- -- - -- -- - -- -- - -- -- -- - -- -- - -- - - -- -- -- -- - -- -- -- - -- -- -- - -- -- -- -- -- - -- -- -- -- - -- -- -- - --

;Call: deallocateObject
:I

flInt A-'2 Object.

,criticality 4.
:I

:'Alters RO/RI.

DeallocateObject: MOVE FP,RI :Criticality 6. Save the FIP.
MOVE RltTempDeallocFIP,AC
DC OBJ:hdrDeleted
MOVE RI,F :Criticality 4.
OR RI, objectfeader,A2,RI :Set the deleted flag in the object reaoer.
MOVE RDlobDectheader,A2S
MOVE •objectlD,A2),RI :Delete the ohbect's binding from the BRAT and the xRate table.
CALl purgeBindlng
MOVE NIL,,RD
MOVE R0,102 :C.ear :D2
MOVE 1TempDeallocFIP,A0IlP

fltDeallocateObject - :P~absrfailtluncheckedý eailocateflbiect<so(tset-
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:** Global Object Manager R
1*0 C,

-I Allocate and initialize a new object on the heap of a random node and enter it in
:1 that node's XLATE and BRAT tables. R0 contains the class of the object.

;ICall: newObject
:1
;In: RI object's class.
:I
:lout: RI Object's ID.

;Icriticality 1.
:I
;:Alters RI/Rl.
:1

NewObject: MOVE FIP,RI ;Criticality 6.
MOVE Rl,F ;Criticality 3.
MOVE RI, IcontextlPAl] ;Save the state in the context.
MOVE R2, conte tR2,A]]
MOVE R3, [contextR3,All
MOVE R0,R3 :Save the class in R3.
DC RandomSeedlncrement
MOVE [RandomSeed,A0I,R2 :Generate a random node number.
ADD R2,R0,R2 :Advance the random node counter and return its new value.
MOVE R2, IRandomSeed,AII
AND R2, RodeMask,AOR2
DC MSG:msgNewOb~ect'4 ;Send a NewUoject message to that node.
SEND20 R2,R0
MOVE IDIR2
SEND2C R3 R2
SENDRE contextRu
DC CFUT:contextRt
MOVE RI ,contextsext.AY :Te-l the context to wait for the quasi-cfuture in RI.
MOVE R, lfcontextRw,Al, :Store a cfuture in RI.
DC SaveStatefIlDl23-(21 :Go save the context ano suspend.
BR RI

fltNewCbject - IP:absifaultluncheckeo:NewObject<<o(d setN

:1Execute a NewObject message. Return thle object's IC te 0the caller.

NewObjectM: MOVE [newObjClassA3i,RC ;Criticailty C.
CALL newLocaiObject :Allocate the object ocaily.
MOVE RIR2
DC MSD:msgReply'4 :Reply withi the otject's ID.
MOVE (newObjReplylD,A31,R:
SEND20 RIRI
SENDI R,
SEND2ED InewObjReplySlotA31,R2
SUSPENR

megNewObject - NewObjeCtM<<offsetN

;1 Return the class of an object. TypeOf returns the cass as an integer, while
;n classof wraps it as a class. The argument of TypeOD must not De a future.

:I
:Call: classo!
;ICall: typeof

:In: RI Onject.

;lOut: RI The object's class.
:1
;:Criticality I
:1

;Alters RO/RI/AID2.
:1

ClassOf: MOVE FIP,Rý :Crlt~coity . hove the - F:P
MOVE RI,F :.rit:cality 1
BNN:L RC,^TO! 2 :F-:,- the a:qsfru:t

TO! 2: MOVE R*,llempOI . ItP,At ;Save -,e <:P Ih -- ,ry.
CALL typeOf .Get thýe :nteer typed 'arte its tag ano subtag.
MOVE suoDCIASSRI
ROT R .subtasN,Rt
OR RO,R1,Ro
WTAC RD TAGC,RC
MOVE ýTemptCf EIP,AG :P

EitClassof - IP:abs fault:ClassOfc<oufsetN

TypeOf: RTAG R0,Rw C-riatra. ty 6. t;.shatcn on the tag of the object.
BR R1
ROT R0,-soutagN,RN :TAGC
BR ^T0f TDGC
BR ^TOf Integer ::NT
BT RIJTOf True ILKo
x 'TO! Ealsn

HALT haltTypeO( A :;N
HALT taitTypeIf ::P
HiALT t,aItTypeOf :M5S; ;3ý
HALT halttypeOl..
HAL.T hAtTypeOt F-T

205



Concurrent Smalltalk on the Message-Driven Processor

*MOVE FIP,R1 ADL. Save the PIP.
BR ^TOfObject
N OV E FIF,R1 ;DID. Save the PIP.
BR -rot Object
H ALT haitTypeOf :TACA

*BR ^TOt Float :FLOAT
*HALT haltrypeOf :INSTI
*HALT haitTypeOf ARINTl
*HALT haitTypeOf ;INIT2
*HALT haitTypeOf :INIT3

TO! Integer: DC classlnteger :Returfl the integer class.
MOVE FIP,;!'

TO! True: DC claseTrue :Return the true class.
MOVE FIP,'IP

TO! False: DC cla~saalse ;Return the false class.
M4OVE FIR,"!?

Tot rioct: DC cl~seFloat :Return the float class.
MOVE FIR,Z?

TO!_Object: uIOVE Rl.F :Criticallty 1.
ELATE RI, ob jectXATE, A2
MOVE (objectheader,A21,RO :EXtract the class from the object header.
WTAI RI,' INT,'RO
ROT RI.- hdrClassN,RI
ARC RI. hdrCla.ssM,RI :RI now contains the class.
M4OVE Rl.IR

TO!_TACO: AND RI~subtagM.Rl ;Dispatch on the subtag.

OR RI3
BNNIL RI. TO! Symbol :5ubSYM
NR 'TO! Nit
MOVE FIR,Rl :suOCLASI. Save the FIR.
BR 'TO! Object
BR 'TO! Selector ;subSEL
BR 'TO! Character :SubCHAR
HALT haitTypeOf
HALT haltTypeOf
HALT haltTypeOl
HALT haltTypeOf
HALT haltTypeOf
HALT haitTypeof
HALT haltTypeOf
HALT haitTypeOf
HALT haltTypeOf
HALT haitTypeOf
HALT haltTypeO!
HALT hal'tTypeOf

TO! Symb~ol: DC cla~sslymol ;Return the symbo. -~ass.
MOVE FIP, IF

T~t NIL: 01- class~ull ;Return the nil? cýass.
MOVE FIP, ZR

TO! Selector: DC classlelector :Retjrrn the selector class.
M4OVE Fp'IpI

TO! Character: DC ciassCharacter :Return the character class.
M4OVE FIR, IF

flt~ypeOf - IP:abs:!aultlonchecoedlTypeOftcoflsetR

:1Return the nooe on which the object might reside. It the onject is a constant,
return a random node number. If the object Isa DID,' returna random constituent.

- - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - -

:;Call: object~ode

;:lIn: RI Object.

l;Out: RI Number of node likely to contain object. The hunter may not necessarily be
tagged INTeger, and it may contain junk vata in the high 16 bits.

iCriticalIty 5.

;Alters RI/Rl.
;1

ObjectNode: BTACA RI,Rl :Criticality k.
BR RI :Dlspatch on the tag Of the oD~ert.

*MOVE (Randomleed,AIJ,RI :TCDI
BR 'ON-Random

*MOVE (RArdomleedAIJ,R', :TNT
BR 'OR-Random
MOVE lRandomleed.AOI.RI :ROOL
BR ONRandom

*HALT haltlnternalType :ADDR
HALT haltmlnernalType :1?

*HALT halt-internallType ;MISG OBJ
-HALT haltlnternalType DELIT
*MOVE RIRI :FUT. Return the PU'T. the hove r.anher isin the low

MOVE FIR,IR ;16 bits
*MOVE RORI :D. Ret.rn the I:trie root. T;ýrber is in the low

MOVE FPIRIF :1k 'bits
*MOVE RIRl

OR 'Random,-chnI
* MOVE Had:eeAR.Aý;h

SR 'NhRanidom
*MOVE jRandonleed,AC. R FA'

BR 'ONRandon
*HALT haltlnternialType INSTS,

a HALT tsaltlInternallype :16511
*HALT haltlnternalType : INS??2
-HALT haltlhternalType ::%S:3

ON Random: It Randomleedlncreme::t
ADD) RI,ýRC, R: Ado,:r hr', r0 n'03 c., r e arid reto rrt As he, ca je.
MOVE RI, !Hanoomleecd,AC
ART R1,'ROdcMas.KAt .5.
MOVE FIP, ZR
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RandomConst: HOVE R2,FOP0
ROT RI,-IloqStrileN..oqStrideL),2 :RI nay s, the distobj initial node number, in bits 0..10
ASH R2,-16, RZ :and e, 2's complement logStride, in bite 11.-1S.
,SH R2,1og;trideL-16,R2 :R2:-e.
MOVE -1,RC
ASH RO,R2,R2 :R2:-@ zeros in LSBS with the MSBe being ones.
MOVE {RandomSeedAC),RC
ADD R0,7,RC ;Advance the ransom node counter and return its new value.
MOVE R, [RandomSeed,AC)
AND R0,R2,R2
BR bGetConst

fltObjectNode - IP:absifaultluncneckedlObjectNode<<offsetN

:! Return the ID of the preferred constituent of a distributed object with the given I
;I DID. I

:1

:Call: preferredConstituent

.:In: RI DID.

l;Out: RI ID.

:ICritlcality 5.

::Alters RO/RI.
;I

PreferredConst: MOVE R2,FOP0 :Criticality 6.
ROT Rl,-(logStrideNsiogStrideL),R2 ;RI has a, the distobj initial node number, in bits 0..10
ASH R2-16, R2 :and e, 2's complement iogStride, in bits l.-.15.
ASH R2,logStriaeL-I6,R2 :R2:-e.
LE R2,CRC :Jump to a faster routine if the distributed object is dense.
BT R0BPrefCnst Dense
MOVE -I,R0
AsH RC,R2,R2 :1R2;-e zeros in LSBs with the MSBs being ones.
MOVE ISerialNode,AA0,R0-
AND RH,R2,R2 :R2:-mashes serial node number.

GetConst: DC initialNodeM
AND RC,RI,RC
OR R0RZ,R2 :R2:-serial constituent node number.
DC ID:-homeNodeM
AND R0,RI,RI :Rl:-ID:serial number.
AND R2,xM, RC
OHR RR, RI :Store the x node number in RI.
ROT R2. -xL, R
AND RH,yM,HO
ROT RD,yN,RC
OR HI,RC,HR :Store the y nose number in RI.
ROT R2,-(vL'yL),R2
AND RZ, zMR2
ROT R2,zN, R2
OR RlRZ,R2 :Store the Z node nunoer in RH.
MOVE FOPO,R2
MOVE FIP, IP

PrefCnst_Dense: DC iD:-homeNodeM
AND R0,RI,RI :Rl:-:D:seria. number.
MOVE NNR, R :This is a dense distributed object: just use the current node.
OR R1,RORI
MOVE FOP0,R2
MOVE FIP, IP

fltPreferredConstituent - IP:abslfault-unchecneasPreferreaCounst<Co!setN

I Return the ID of the nth constituent of a distributes objent with the given DID.

;Call: Co

:;In: RD n.
RI DID.

:lOut: Rl ID.

;iCriticality 1.

:fAlters RD-R2.

Co: MOVE R2,FOPC :Critica;ity 6. Save H? and R3.
MOVE R3, FOP:
CHECK RH,INT,H 2
BF R2H, Co haType
CHECK H:,D1DR2
BF R2, Co Badlype
LT RC,C,H2
B7 R2H, o BadHanqe
ROT RH,-[IoqStr~oeN.oqntrioeý.,k2 ,RH has s, ttoe oastoci initial node number, in bits 0-10
ASH' R2,-16,-R2 ;and e, 2's oon-;.er,-I :oqStride, in bits 1.. 15.
ASH, R2,1oqStrio't-16,R2 :R2:-.

HR2, C,R3
HP R3, Cosparsr !T-vere Is at los, or:e const:tuent per nose.
NEG R2,R2 ;There are mrt;p-, rutnstitjents per nose.
MOVP -1,R3
ASH RHR2,R3
NOT HR3R3 ;HA rontan.s ,re n.;'nr of constituents per node minus one.
AND HS,R3,R3 ;Mos,.c b ny the '.Tter of constituents per node to get the
ROT R3,serialN,RH :dls;-spac'er to;(n aaoes to the CID's serral number.
A F0 Ri,R3,H:
NED H2,R2
ASH R0,R2,Rý ;HHVide n ry r'r ný.--er of constituents per node.
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MOVE l.R2 :Now assume that there suheohtfet per node.
CoSparse: F0F8 80.8R3 : 3:-3-lg~)..

S UB R3 R2,R3 ;R:R w lglno#)U.
ASH RO,R2,R2 :R2:-nodet.
MOVE 35-Logkkodes,Rf :RD:-30-lgt0sodes)
CT R3.RSRO
BF RD. -Cc SadRange
MOVE FOPI ,R1
SR lGet~onst

CoBadgange: HALT haltRange
Co_BadType: CHECK RO,FUT,R2 ;If either operand was a future, crash with the future fault;

'IT R2. 'Co Future :otherwise, crash with the type fault.
CHECK RIFUT,RŽ
ST R2: 'Co Future
HALT Iats tType

Co-Future: HALT haltputure,

fltCo - IP:sbsffaultlunicheckedlCo<<offsetw

IExecute a RequestObject message. The ID passed in the message must be a word tagged i
:1ID, a class or a selector: it cannot be a future, constant,_or distributed object. I

RequestObject: MOVE (reqObjlb.A31,R3 :Criticality 4.
XLATE R3,iocaiXL.ATE,RI :ts the object here'
CHECK RtADDRR2
ST R2 , 'RD Local ;Yes,

RDResend: DC MSD:msqReguestabjecto3 :Ro. Send a message requesting the object to the object's
SEND20 R1,RO ;iikely location.
SENDO R3
SENDED0 (regobjReplyNodeA3J
SUSPEND

RD Locked: MOVE NNN,Si :Critlcality 4. Resend the mrssage back to this node.
SR 'RD Resend

RD_ Local: MOVE R3,102 :Criticality 5. Point AID? to th.e object.
MOVE RlA2
MOVE fobjecttieaoer,A2l.R2
ROT R2,-hdrLockedNRI :Resend the messaqe Lacs to tc.s nose if the object is locked.
ST RI, 'RD Lorsed
AND 52, hdr tengthM, 83
DC MSD:msgMigrateObject'l :The length of tne message is one pius the length of the
ADD RI,R3,RI Oet
SUB R3,l,R3
MOVE R13.A2f.R3 ;Save the lust word of the object in R3.
SUB R I,lIRl :Shorten the object's limit by orne word.
MOVE Rt,A2
SENI2I (reg~bjRepiykode.A31,Ri :Send the message header.
SENOD R2 :Se~no the words of the object.
MOVE SRD
C ALL blioc klend
SEND ES 0 3 :Send the last word of the uvject-.
RO T N? -hdrCopyableN, R0 :Leae 'he ob-ject here if I: is copyaciý..
ST RI, 'RD Copyable
MOVE ID2 ,RI ;If the object is not copyab.te. purge It from the slate table
AND RI, [NodeMask,Ahi,R2 :and from the BRAT, un-ess this Is its home node, in which
MOVE RNR,R3 ;case pu~rge it from tne slate tab~le and replace its BRAT entry
EQUAL R2,53,RD :to suggest that it is present on this node: messages requesting
ST RI, 'RD Home ;the object, sill Keep cycling at this node until tihe object's
CALL deallocateObjert ;new location is Known.

RD Copyable: SUSPEND
RD_Home: DC OS~f:hdrDeleted

ON RD ýobjectHeader.A2l.RE ;Set the deleted flag in the object header.
MOVE RS, fobjectHeader.A2I
MOVE N:L,RI
E NTER Rt,RD
CALL lookup~inding
SNIt RI, -RD No8lndlng
MOVE K?, fR2.A~i :Pretend that the object is located at this node.
SUSPEND

ROD_ oinding: HALT haltBRATMisslng

msgsequestObject -ucekdegetbetcfst

Execute an Accept~bh4ect message. Make thls cone, the ot;:ect'ls home. The utert's :C
:1Must reflect Enis node as the object's home.

Acceptobject: MOVE: ý2.ojectHeaoer,A31,k. :r..r,.i 3, Ocas the cccvf 's header and ID.
MOVE ý2-objectlfl.A3i,Rf
CALL alIockNesobJect Aioaespare for tne Doboc-.
MOVE AD,Rf
DC ;:'-,a.kf:? ecease A2's base- cy tsr sards and Increase its lilmit likewise
ADD RI1,RI,RC b.cuane the object strt rtIe message two words late.
MOVE RD,A2
MOVE 4,A0 .Cc~py the cbject into the heap starting from the fifth woes
CALL biockMcue :of the. messagetf t.o sc-- f9 the ObJett).
MOVE l1,A3ý,R3
BRIL RA,^AODone :AustosVesge the se-0der if a arnuwedgement was requested.
DC Ml:s~koioebet'
StkL;2I RJRD
SERDE?0 iŽ'ob~jectll.A3

AD Done: SUSPEND

msgACCeptObject - uncnecked Accepttiotu'ect-osetN
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thi Execte aMigrate~bject mess:age. If the object is copyaolie. store A copy of it on
ths Ioe f the object in not copyable, store it on this node, lock it, and

;IIinform the home node ab~out the Object's presence here.I

MigrateObject: MOVE ln-objectHeader.A31,RS ;Criticality 3. Read the Object's header and ID.
M4OVE [lsObjectID ,A31 Rl
ROT RD -hdrCopyableN,RO
AND RO,$FFPFFFV1,RI ;Clear the purgeable. lce,andtma rked flags.
BT RDOopal Yf th objct is copyable, aethis copy purgeabie.
AND Ri, lsOdeMAskAO].R2 ;This object is noncopyabie.
MOVE NNR.R3
EQUAL R2,R3.R2 ;Check whether this nose is the object's home node.
BT R2.M Noncopyable :If 50, do nothing.
M4OVE ROR :Sv h

DC MO~ms~potekoe3 ;.Other Ase, tell tne home node about this object's location
SEND20O R1:RO ;and lock the object until the home node replies.
SEND2ES Rl.R3
OR R2, 1<<(hdrLockedH-hdrCopyablek),RS
BR MO0 Noncopyable ;Lock this object.

MOCopyaole: OR R0jTckfhdrPurgeableN-hdrCopyab~leN) .RO
MIO_Noncopyable: ROT ROhdrCopyableN.RO :Allocate storage for the object and put it into the slate table.

CALL ailocObject
ENTER Rl,RO ;Criticality S.
M4OVE RO,R3
CALL lookup~irding ;Check whether a binding for the object existed in the BRAT.
BRIL RD,-1MO Unexpected
M4OVE R3, [R2.AO) ;If one did exist, save its data in R2 and rebind the BRAT
MOVE RO.R 2 :entry to point to the object.
BR MO-Expected

MOUnexpected: MOVE R3,RO
CALL Ante0r~inding ;This obeys Criticality 5 because allocObject Allocates three
MOVE NTL,R2 :extra heap words.

MO Expected: MOVE A2,NS ;Decrease A21s base by one word and increase its limit
SUB RU, (i <baseN) -1,RU :because the Object starts in the message one word late.
MOVE RUA2
MOVE 3,RS :COPY the object into the heap starting from the rourth word
CALL bloCkMove :Or the message Ittird word of the object).
CHECK R2 , DRO
BF RO, MOSuspend ;Leave if there are no contexts to restart.
M4OVE 'FastContextbueueAD .NO
MOVE SO. IcontextNext.AIJ ;Dispose the current contest.
MOVE IDl,'RD
MOVE RU,JFastContextoueue,A0!

MO _NextRestart: XLATE R2,oojectXLATEA, :Restart contexts.

MOVE [contextNextAlIRI
C HECK RI D R 3
BrF R3. !Reply_NeStart :Restart this Context if there is only one to be restarted.
D C MSOG:msgk~estartContext.2 :Otherwise send a message bace to this node to restart this
SEND2U R2.RU :contex-z and go restart the next one sow.
S EN DEO R2
MOVE 12

R MO NextRestart
MO0 Suspend: SUSPEND

msgmigrateObjeCt - unchecked :MigrateObjecto<offsetN

;I Execute a RestartContest message.

;IExecute a Reply message.

RestartContext: MOVE iEastContextQueueAUI RU
MOVE RCU, tcontextNext.AI :Put the fast context back on. the context queue.
MOVE ID, 'RD
MOVE RI , FastContext~ueue.A01
MOVE freplyIDA31.R :Critic ait 3.
X LATE RO,objectXt.ATE.A; :Xlate thleitreply context into Al.
BR NReplyRestart

Reply_2: MOVE Rl1. R%1A21 :Store the value rep.4ed.
MOVE ,ast ntextoueue.AOI , RD
MOVE RU., i~ontextNext.AlI :Pn~t the fast context back on the context queue.
MOVE IfD1, RU
MOVE RU, i~aStCOhLextoceueA0I
XLATE R3,object)(LATE.Ai :Siate the reply contest into Al.

ReplyRestart: MOVE FALSE.RU :Turr cit A3 q..e.e wraparo~nnd.
MOVE 50,0
MOVE [contextfDlA1.]RO ;Restore the asoress and !D registers.
S LATE RU0,re AtoreXL.ATE.AO
MOVE JcontextlO2,AII.RC,
SLATE NI. restore(L.ATE. A2
MOVE Icontextil Ali RO
SLATE RC restcre'L.ATE A3
MOVE icontet3XAII R3 ;Restore the data registers.
MOVE ýc 0ntexts2: R
MOVE c r. sR A,
MOVE I cr~t.stRA! R
MOVE ýcontextlP:Aý, :Hes..n computat- c! tre message.

Reply: MOVE [rep~yID),A3_R3 3.iicit
SLA-E R3 .biectS:Ai.A :Xla*tr .Tne reply 4:rA,-t ::o A2.
MOVE !rep~y So JLA3U.'~
UTAG RC ,CEU , NU
MOVE conteslsex_2 ; :CrflQ:: stetho process was walting for -his 3;0t.
E0 R:,NU,RU
MOVE jreplyVa;.e.A),,H
BT R2. -Repiy 2 :U..spod i!n,
EQ R0, IRCA2i, ~ :T tne pr:.:-.s vaw from the0so and make
BF R2, 'Reply haF:::.snt :.InPer !tn

MOVE R:, tHC,AU 2i.'t:r

Reply Halt: HAL'T haltkeplý

msqesartotet -unChe~cned;HeStartf:ontext<hnffs.thI.
maR Il - uncheckedlReply O I s~etLh
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:1Execute an Update~ome message. Update the BRAT to contain the object's new home I
1 location and send an Unlock message to the object to allow it to move again. I

UpdateHome: MOVE (updtHomelD,A3J,R3 :Criticality 2.
SENDO lupdthomeNode,A3J ;Send an Unlock message back to the object.
DC MSG:mtgUnlock*2
SEND2EO RO,RH
CALL lookupBinding :Look the object up in the BRAT.
BNIL go,^UH Halt :The BRAT entry should be present.
CHECK RO, INTR3
BF R3,-UH Waiting
MOVE [updtHomeNode,A3J,R0 :Change the BRAT entry to reflect the
MOVE RO, [R2,AOJ :object-s new location.
SUSPEND

UHWaiting: CHECK R0,ID,R3
BF R3, UHHait
XLATE RO,objectXLATEA2
MOVE (contextNext,A2J,RO
BNIL RU, UH Halt :The BRAT entry should be present.
CHECK Ro,ONT;R3
BF R3,bUH Waiting
MOVE lupdtHomeNodeA3),RO ;Change the BRAT entry to reflert the
MOVE R0,[contextNextA2] ;object-s new location.
SUSPEND

UH-Halt: HALT haltfRATMisling

magUpdateHome - UpdateHomec<offtetN

Executewan Unlock message. Ulc the object to a.'oy it to move aga~n. if the 2
I object was marked deleted, dispose it now.

Unlock: MOVE IunlocklD,A3),RI :Criticality 2.
XLATE R1,objectXLATEA2 ;Find the object and clear its locked flag.
DC -hdrLocied
MOVE [objectHeader,A2J,R2
AND R2,RO,R2
MOVE R2,1objectHeader,A2]
ROT R2,-hdrDeletedN,R2 :If the object was marked deleted, dispose it now.
BF R2,^UnlkDone
MOVE RI,R0
CALL disposeObject

Unlk-Done: SUSPEND

msagUnlock - uncheckedlUnlock<<oftsetN
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:EMethod Manager L

--- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

:1 Return the ID of a Method associated With the given class and selector, The secondI
:1 entry point, lookupMethodf. can be used when the Class has already been type-checked I
:1 end coerced to be an integer.I

;Call: lookup~ethod
;Call: lookup~ethodU

l~: RO Class (Tagged TAGO: subCIASS if loxk.pi~eth~d is used, INT if lookupMethodU is Used) .

RI Selector (Tagged TAGOOsubSEL).

O1ut: R2 ID of method or NIL If none.

;Criticality 1.

:Alters RO-R3/AID2.

LookupMethod: CHECK R0,TAGO,R2 ;Criticality 6.
BP' R2. LM -Halt ;Make sure that RO Is tagged as a class.
WfAG R0, INT.R0
ROT R0,-subtagN,R3
AND RO~csClassMRO ;Coerce it to an integer.
EQUAL R3, subCLASS. R3
BF R3, ̂ 'U4_Halt

LoOKUpMethodl: HOl RI,CsClassNR2 ;Criticality 6. Shift the class to the high 16 bit*.
WTAO Rl,INT,R3
AND R3,csSeiectorM.R3
OR R2,R3,H3 ;Mavt. a c-ass/sC-ector pair -t R3.
WTAG R3,CS.R3
PROBE R3,R2 ;Get the cachea 1 of the methoo into RO, if there is one.
BNIL R2,^LM SendMsg
MOVE FIP,IP

L.MHalt: HALT haltCiassType

LMSendMsq: MOVE FIP,R2 :Criticality 6.
MOVE R2,E ;Critical~ty 3.
MOVE R2. (contextlP,Alj :Save Fl? in the context.
MOVE R3,AccntextR0.AiI :Save the class/selector pair in HI of the saved context.

MOE ROR3
AND RI,tNodeMasKAO;,R2
DC TAGO sabCLASSS<sobtaqN

OR R0,R3,R3 :Generate the class IDIin R3.
DC MSG~msgApply~unction'S
SEND20 R2,RO ýSenc a Look'..pMethoo message asking to lookup the method and
MOVE 1I,1R2 ;send a reply DaCK to the context.
DC LLookup~ethoo
SEND20 NO.61
SER02EO R3,R2
MOVE NIL.Rl
MOVE Rl. [contextNextAl) :The 1oov-p~etrtod nandler .wi.l return the method via a
DC SaveStatelD023--42) :Metod~epiy, nh~ch Wili reply Into the R2 Slot of the context.
BR RD :There is no need to save the data registers in the context.

fltLookup~ethod -IP~abs faulituncheokediLooKUpMethodc<oflsetH
fltLookupMethodll IP~absl fault IuncheckediLookupMethodU<uoffsetN

.1Execute a MethodReply message.

MethodReply: MOVE Lmethod~eply11D,A31.R0 :Criticality 3.
XLATE ROobjectit.ATEAi SXlate the reply context into A..
MOVE [method~eplyValue.A3!,R2 :Get the method 1:D.
MOVE [CohtextR0.A1I,NO ;Enter !t into the cache.
ENTER HI.N2
MOVE PALSE,RO :Turh off A3 que~e -rparo~nd.
MOVE RI.O
MOVE IcohtextlDl.AI.1,C :Restore ',he address ano ID registers.
XLATE RO. restoreXLATE.AO
MOVE Icontextlll,.A).RI
SLATE RO,restoreX1.ATF,fl'
MOVE :contextll3,AlIRI
SL.ATE RQ,restoreXLATE,A3
MOVE rontextIPA.AJ,iP iesec.p.tt

msqMethoohep~y -Methodeep~ys<offsetN
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:88888888888888188
:10 08

uH ntilities 88

:1 Divide Ri by RO. Return the quotient and remainder. The magnitude of the remainoer I
:1 ie aiways less than the magnitude of the divisor, and the sign of the remainder is
:1 the same as the sign of the diviLor. Halt if the divisor is zero.

:1

::Call: divide

:1 n: RI Divisor.
:1 Ri Dividend.
:1
flOut: RD Quotient.
:1 RI Remainder
:1

;!Criticality 1.
:1

Alters Rd/Ri.

Divide: MOVE R2,[TempDiv_R2,AOJ ;Criticality 6. Save R2 and R3.
MOVE R3,(TempDiv_R3,AOJ
CHECK RI, NTR2 ;Check for futures and bad types.
BF 82 'Div NonInteqer
CHECK R,INTR2
BF R2,'ODivNonlnteger
BZ RI,'DivZero :Halt if the divisor is zero.
BNZ Ri,: DivDividendNZ
MOVE 0,R0 :If the dividend was zero, return a zero quotient and
BR iDlv Done :remainder.

Div-DividendNZ: LT R ,0.R2 :R2 is true if the divisor is negative.
EQUAL Ri,$RI00 I000,R3 :TempDiv_80000000 is true if the dividend was $80000000.
MOVe R3, TempDivSOIIOOOi.,A0
BF R3,'Div Normal
EQUAL R0,-1,R3 :In this case, when the divisor is -1, the division overflows.
ST R3,'Div Overflow ;The dividend is $80000000.
ADD RIR0,. . :When the divisor is positive, add it to the dividend;
BF R2, Div Normal twhen the divisor is negative, subtract it from the dividend.
SUB R1,R0,0 :The reverse adjustment viii be made on the quotient later.
SUB RIRIR0

DivNormal: LT R1,0, R3 :R3 is true if the divioenc is negative.
BF R2,^Div DivisorPos
NEQOUAL R0,R80000000.82 :Tne divisor is -$80000000.
B? 52,'DivDivisorNeg :When toe dividend is positive, the quotient is -0.
MOVE 0,R0 ;When the dividend is negative, the quotient is 0.
BT R3, DivDonel
MOVE -IR0
ADD RI,$80000000,R.
BR 'Div Donel

DivDivisorNeg: NEG R0,RO ;If the divisor was negative, negate both it and the dividend.
NEG RO,RI
NOT 83,R3

DivDivisorPos: BF R3,'DivDividendPos
NEG RI,RI :If the dividend is now negative, neoate only it.

Div_DividendPos: MOVE R2,FOPO :Now both the divisor ano the dividend should be positive
MOVE R3,FOP0 :(and no greater than $7FFFFFFF;i
GT R0,RI,R2
MOVE R0 R3 ;Move the divisor to 83.
MOVE 0,80 ;From now on RI contains the quotient.
BT R8,'Div Done3
FFB R0,R2
MOVE R2,[TempDiv_Count,AOI
FFB R3,82 :R2 contains the number of extra bits of magnitude in the
SUB R2, TempDivCount,AOI,R2 :divideno over the divisor.
LSH R3,R2,R3 :Shift the divisor so that its most significant bit is in the
MOVE R2,_TempDivCount,AO :same position as the dividend's.
BR ^Div_Loop l

Div_Loop: SUB R2,0,R2
MOVE R2, TempDiv_Count,A~i
ADD R0, R0,RO :Shift the q~otient to the left and the divisor to the right.
LSH R3,-,IR3

DivLoop l: LT RIR3,8R :Try subtracting the shifted divisor from the dividend.
BT R2,'Div Loop_ 2
SUB R8,R3,8R
ADD R0,0,R8 ;If successful, increment the quotient.

Div_Loop_2: MOVE ITempDivCount,AO0,R2
BNZ R2,^Div-Loop

DivDone3: MOVE FOPI,R2 ;:f :te divioden was negative, negate the quotient;
BF R2,'Div Done2 ;if the remainaer was positive, subtract the remainder
NED R0,R0 :from the div.sor and subtract one from the quotient to keep the
BZ R.,'Div Done2 ýrerainder positive.
SUB R8, l,80
SUB R3,RiRi

Div DoneZ: MOVE FOP,R2
BF R2,'Div Done:
NEG R5,R5 ::f tve Oivlscr was neqative. -eqate the remaioder.

Div Donel: MOVE (empDiv N0DtlODC,AC.,3
BF R3, 'Div _Done
MOVE FOP0,R2 :Tne aividexu was DiQCQI. Perform the quotient adjustment.
SUB R8 i ,RC When tre ivliscr was positive, subtract I from the quotient:
BF R2,'Di _Done :When the nioscr was neqatve, add I to tne quotient.
ADD RG,2,RC

DivDone: MOVE !Tempoiv 2R,AOD,R2 .es4tre regsLrrs oric retryi
MOVE [TempDiv R3,A0.,R3
MOVE F:P,IP

Div Zero: HALT haltDivC
Di0 Overflow: HALT haltOverflow

DivNonlnteqer: CHECK R8,0FT, R2 eý tter operar u was a !._t .re, crash witt' the future fault;
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BT R2HDiv Future :otherwise, crash with the type fault.
CHECK RIFUTRi
BT R2,Div Future
HALT haltType

Div-Future: HALT haltFuture

fltDivide - R: absIfaultIuncheckedtDivide<<offsetN
fltCrashOverfIow - IP:abslfaulttnicheckedjDid_Overflow<<offsetN

; I Allocate and initialize a hew closure.,

:;Call; newClosure

; HIn: RO First word of object.
;I
* Out: AID2 ýObject.

NO Object's ID.

::Criticality 3.

t:Alters RO-R3/AID2.
:1

NewClosure: MOVE FIP,RS :Critkcality 6.
MOVE RI,F :Criticality 3.
MOVE Ri ,TempNCl FIP,A0I
CALL allocNextObject
MOVE RO,RX
DC ,%llSO00100000100000SS callClosurefllSOOOO5)<,4icallClosure&0lllll)<<17
WTAG R0,INST3,R0 :Install the faulter instruction.
MOVE RH, oClosureCode A2)
MOVE ITeepNCl_F]P,ASJ,IP

fItNewClosure - Ip:abslfaultluncheceeaNewCbosure<<olfsetN

:1 Call the function in a closure., This routine does not return.,

:1
::Call: callClosure
:1

::Criticality 0.
:1

CallClosure: MOVE AS,R3 ;Criticality 5.
MOVE R3,A2 :Copy Al to A2.
DC MSD:msgApplyFunctlon
MOVE [oFunctionNArgs,A2],Ri
OR R0,Rl,RS
MOVE A3,R2 ;Mask the length of the object pointed by A3
OR R2,1engthMR2 :to hArgs words.
XOR R2,lengthM,R2
OR R2,R1,R2
MOVE R2,A3
SU B R3 , IR2
AND R3,1engthM R3
SUa R3,oClosureDisplay,3 :Put the numoer of disp.ay arguments in R3.
ADD R, RN3, RO :Update the length or the message.
MOVE NNR, I
SEND20 R ,RD :Send the message' bacs to this node.
SENDS !oClosureFunctA21 Send the r:a: functior.
DC SP:abs lachecked)CaKCiosure 2<<ofiseth
MOVE R,[LilmitOverrioe,AS. :Overide the Limit !ault.
SENDS I2,A3D :Send the rest of the arguments.
SENDS J3,A3!
SENDO [4,A3:
SENDD [5,RA3
SENDS [6. A3
SENDS [7,A3]
SENDS [8,A3]
SENDS 19, A3DSENDS D I, A3]

SENDS [ilAD3
SENDS [12,A3D
SENDS (3D,A3j
SENDS !14,A3]
SENDS J15,A3S
MOVE 16, R0

CCl SendRest: SENDS0 [R,AD] :Seons more arguments.
ADD RH,,IAO
SENDS 0 !RA3:
ADD RO,*,R0
SENDS :RA3DI
ADD RO, 1,0
SENDS NRAD3!
ADD RS, 1,RS
BR -CCl SendRest

CallClosure 2: AND R2,iengthMN3 :GSet tne last csp~ay argument.
MOVE [R3,A21,R3
MOVE R2,A2 :lecremert tne enqgtr ol the display by one.
MOVE 2,NR
CALL biockSend :Se-o tune ssplay argren:ts.
SENDE RN3
CALL suspend

fltcallClosure - IP:aos unchecked Ca.,Ctos.re <<of!setN
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:55 Control Manager 65

:I Execute an Apply, ApplyFunction, or ApplySelector message.
;+ .................... ......... ................................................. ........--

Apply: MOVE [applyFunct,A31,Rl :Criticality 0. Get the funct.
CHECK RlTAGO,R2 :If it has tag 0, assume it is a selector.
BT R2.,ApplySelector
CHECK RI.ID,R2 ;If it has tag IC, assume it is a function.
BT R2,ApplyFunction
HALT haltApply ;Otherwise the message was invalid.

ApplyFunction: MOVE JapplyFunctA3],R0 :Criticality 0. Get the function.
XLATE RO,objectXLATE,AO
DC IP:oFunctionCode<hoffsetN ;Start executing at the second word of the function.
MOVE R0,IP

ApplySelector: MOVE (applyReceiver,A3i,RD :Criticality 0. Get the receiver.
PROBE RORI :Probe it, hoping it is an ID or DID.
BNIL RI, ASHiss
MOVE Rl,A2 :If so, point A2 to the instance object.
MOVE R0.ID2
MOVE (objectHeaoerA2],R0 :Extract the class from the oDject header.
WTAG RI,INT, R
ROT RI,-hdrClassN,R0
AND R0,hdrClassM,RO

AS 1: MOVE lapplyFunctA3.,Rl :Get the selector.
CALL lookupMethodU :RG now contains INT:c.ass.
DC IP:oFunctionCode<<offsetN ;Go execute the methoo.
XLATE R2,objectXLATE,AO
MOVE R0, IP

AS-miss: CALL typeOf ;Call the rea- class-extraction routine.
BR ^ASi

msgApply - Apply<<offsetN
msgApplyFunction - ApplyFunction<ooffsetN
msgApplySelector - ApplySelector<ooffsetN
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:8 initialization 8:

;I Initialize the MDP.,

InitializefllP: 0C AODR~lnvalid :Clear the ,,ser add: 23 and IDO registers.
M4OVE 8 ,00O
MOVE RI.A1
MOVE R 0, A2
M4OVE 8 0,A3
M4OVE RDADB
MOVE 80,018
MOVE 810 ,028
M4OVE 80.A38
MOVE R , ADB
MOVE Ro A18
MOVE 80,028
MOVE 8,0A38'
MOVE NI1.,RIo
MOVE RI. 10
M4OVE RD. 101

MOVE RoI, D2
MOVE RD,'ID3
MOVE RD.' 1DOB
MOVE RI, " 01
MOVE R I, 1028
MOVE R I, 1038
MOVE go , 101
MOVE 80, 1018I
MOV E 80,'I 128
MOVE 0, '10D38

MOV -181;Clear a.. qiooa.s to CEUT:-1.
8100 81.CEOT,81 :R, cortain CF.T:-I.
OtC 64

IDM08Cir~lobals: SUB P1,1.80
MO)VE R!1, 80.00C
882 80 IM08 C.'rG'oba~s

0C 0008:Queueiltartot~aseN :r:.-eteq..eues,
MOVE goDOH!L

MOVE 8o0.08
D C ADORB:QueUeiS-tartc<oaseo
MOVE 80.001.
D': ADD8:Queuetltart<CbaseN. (Oue~etEinO-QueuetStart-1J
MOVE 80 ,0884

MOVE 811,' R:8;2 C~rntains NIL.
DC AD"R:Xlateltartv-oaseo: ,{Xl'at etnd-Xl ateltart-1.)
MOVE R2 (tiMitOverriseA0 :fiiaz Lmtverr4de.
MOVE RDTBM :Initialize toe elate table.
DCV 0008: Ilateltart<«baseN
MOVE R2. FastContestoceve.A00 :Initlalize EastlontextQ-ueue.
MOVE 80,02
OC X1ate~na-Xlateltart

IMODPCir~late: SUB18 80,1,8 :Clear every entry in toetbe to NIL.
MOVE R2, A8.21
802 80, 18M0 PCirXlate
MOVE R2.IB8AT~ree'AD. ;1rnitilaize BRAT~ree.
DC AOD;N:OBAT~tartv<oaseN
MOVE 80,A2
D)C B8ATEoO-B8ATStart :Clear the BOAT.

IMDP_Clrsrat: SUB 80,1,80
MOVE R2, 180,A2;
882 80718408 Cir~rat

DC ixedloeapitart :loitialiete ep
MOVE RD. [He.aplta1rt,A00
MOVE 80, (First ree,AOI
MOVE 80,8R3
DC H eapEnd
MOVE 80, ILastFree.ACI

18408 CitHeap: MOVE Rl,(83,00. :C1ea, toe heap to 0011:-I.

GE 83,80,8
BE R2, IMPCirheap

END
MOVE 888,8'2 :rn:Wa,:Le Ranoonleec, ana Derialsode.

MVE 62, Ranooie,AL
DC nodeM'aso
MOVE 80, (NoveMasK.AU
ANC 82,xM,83 s.Car.atv ',Pis rove's serial' nunoer Irvom toe 888 valve.
ROT R2.-yN,0Cl
AND RC:yRR
ROT R"0,vLx
08 R 03 81R k3

AND 80 , M,8ý3
ROT R O,.1 -yL, PC

MOVE 83,'eillocAJ
OC ::; ;InrF'astoev-I '<SCCn
00 R g 20,82.01I :n7 /n .vo' cf ant d Nest Di9tob¼ .
MOVE RO,1. as tOD0 ctn A L
MOVE 0R,0
MOVE R0,IetI StIoI A,'
MOVE n Fst stes: s,3 !M v~vz~'t ast, ovntextS.

11840_MaKe~ast: SUB 83, 1.83
MOVE 83 , lTemp15TTMo-tent.0 :Save the?:c of fast, contents yet to te made.
NOT 83.serial,0,R
MOVE 888R,03 :Put tr.ýr'.ooe:re :to the contest D.11

opt R81,R3,81
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WTAC RI, :DRi

D C 0132 :horLocxed ,hdrhast-oroteotli ac
CALL alIlIoccDjec t
SOP RI, total ;Mnxe the fast. context ADI;Rs nonreiocatable.
ENTER RI.RO
CA LL stntsralndinq
MOVE (,FastContextQueue,ADIR0
M4OVE RD I cantoex tfezxt.A j
MOVE Ill. RoMoVE RD.0 F astContexto~uee,AC;
MOVE 1TenmpDNTMContezt.A~l ,R3
RNZ R , DaD IMakM&eFast
MOVE RD. IDIR :Initialize priority 0-s AI1DI to a fast context.
MOVE A2,RD
MOVE RI AID
MOVE IcontextNextA2;,R0
MOVE RO, IFAstto0ntextQuewe,AD;
M4OVE (Firstlree 01JR :The real heap starts after the fast contexts.
MOVE RO, [HeapltartADI
MOVE FALSE,RO ;Enable message reception.
MOV E RI 0 '

IIMDPRackground:
IF IREALJ40DE
STOP ;Do nothing in the caCrgro~no mode.

END
BR -DNDPBackground

OS End:
Fixed~eapStart:

ORG Faultalltart
;iriority 0 faults:

DC fl~tCrash0 :CATASTRCPHFI
DC fl~tCrashl : INTERRUPT
DC fltCras3hl ;QUEUE
DC filed SN
DC f tCrashDI C
DC ftI tarshO :DRAMFEOS
DC fCItIR VADR ANKVADHR

IC ,ltCrashTypeARTP
DC ftLimit L LIMIT
DC Ilttarly ;EARLY
DC fl tC r a snf mDC
DC DltELATE SXLATE
DC 'I. rastlerfMoo 'WE~t :,OW
DC ltFT
DC fltCrashFuture
DC ftC rash~p AL8
DC fltC ras IType ;ACO -

DC CtCnashypeDA
DC MLCrash 7ype TACO FLOAT
DC tltCrashType :TYPE
DC fl~tCrans(h:S1
DC f!tCras~hl S
DC MotCr 1shO,
D- fltl-rahDS
DC fltCr ash 3;S
DC fltCrashf:51
DC fl.Cr ashlG 51
DC Cl1tCr ashD10;$.
DC fltCr "shC :I
DC fltCr asnhl ;I
DC fl1tCr as hl S
Dc 1ltCr as hD ;$I

:Priority I faults:
D- tf1r as h CATAST OUPiE

DC fltrasr
DC 'lCrash:ý - '
DC tlt rah. : SDN

DC fltC ras hl ',GNVA
DC fltC ra Sh, :ýADER

DC flt~rsshl EADRTY
DC !lt~rashl ''..
DC f'lt~rashl S..A rý

DC flt rasIhlS
DC flt Cra'sh!2 :ý7
DC ft Cr as h IP - '1
0C flt~rashl TACO7
DC IltCra shl ;AlA
DC ftý:ra.M h1 TA0 - FLOAT:
DC IltCr ash 1,1TAG
DC tltCrashl .A;B-FA
DC fltcrashl YP

DC ftCrasnlS:
DC fl-C rah ;1

IC .tCrasi S:
cc f tCr astl$ý

;System calls:

I th.Sspend0C ItB Blc Moe
fltlompctrýeap

Dc D 'tA: o c ent SO

0C flteorkupt1idihg

DC flt)elqeteBlindlng
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DC !ItNew locd cj t :509
DC LtA OCNextO~ject :511A
Dc !ltAiooflwOJbject :5DB
DC f ItNewContLex t :OCC
DC tltD iuposeContext ;SOD
DC fltID iupo leooje ct :SOE
Dc EltDeal1oo..ateOt"eI :$OF
Dc f t Newo)bjec t ;SID
oc 1 ft ..S. ~ :511
DC flt TypeOf :512
Dc fltonjeotod :'!.n
DC Ifltpreferredonstitjert :S14
Dc !l tCo :S's
DC fl tbookupMethodl ;S16
DC fltLo okupMetlhodU 5S11
DC fltivll) v182 ;I
DC C~tNew'Closure S19
DC fltCaliCl oSure; I A
DC fItCra.s .a1IS1a
Dc f~tl~rashCa11; IC

DC ftCrasha L ID'

Dc fltCrash"C a!i IE
DC f~tCras"C all1; I F
Vc fltoras~h(Ial S2C
0C !ltCras5hCall 52'
DC f~tCrash nalI :22
Dc flt.Crash 1 ;523
Dc fItCrash a! ;24
DC f'tCra ShCa.1 .$25
DC CltCrash al :526
ICC fltCrash iI ;527
Dc fItCrash"ýaii ;S28

DC f~tCra ShCall ;!29

DC ftCrasnICa. . :-2A

DC f.tCrasn.Cal.2
D !ItcrasnCa.i :25,
DC fltsrasr.Cal: $2E
Dc tI as--a'. :S2

fltCrar.C~a, ;33

Dc Ctr ashCa. ;32
DC ftCras:nCa. : :33

DC ItCrash-Al: 3

Dc fitsrasCa- ;39

I~t~ratsa:.3A
I~t~rsS ~ Z 3$B

!.t.CrashCall c3-

"I~crasnCaf ;3E
f.-ICrasnC-. .$3F

BREAK HAZARDS :BreaK or. hazards.
IF. RALI4CCE
BREAK FAULT FaultSfStart.Faul1tCs:tart :$redx on catastropnic faults.
B REAK READ WRITE DSSta rt.. .DEnd-I :PtoteCt operating system, code.

BNREK FETCH 540, . 4~tr CD.~ cannot Ce executed
IDNOE FTCH 40054CTr~e .nt ýlzatict code, however, can.

BR EAK READ WRITE FauItSOhtar;,..CallsEno-. :Pv-, vec~cr are.. protected.

STEP CC :AI.Os tne operatrngIsystený to write qloraiýs.
BlR EAK FETk, S40,SCI.e : taztir Code is no gone..
BREAK P' WRITE 0. .3 .Lca.c*s. ns rU trc-qt. 3 are not used for anytning.

EllD

INCLUDE :,utme ca. r .rt 'ssCr

IF ýREAL-MODE

END
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Runtime~m

MDP Operating Systeye

version 2.3.

written by
Waldemar Horwat

* .MastersA thesis under Prof. William Daily

* . .March 28, 1989
* . . .May 1991

* .. Send problems and comments to
waldemarfh-.Ici~mit flu.

Copyright 1989, 1990, 1991 Waldemar Horsa

;The download header is appended to the beginning of every module that Is downloaded.
MODULE DOWNLOADHEADER
Dc MICI: mSgAcceptObjecti+2
DC IONODE
END

MODULE Lookup~ethod
vCurrentClass -6 ; C!a sS number of superc-ass cuziertly scannedc.

Beginl: DC OHS :hdrCopyaole class ',c,ý~ ýC!ýliassN ýEnOC-B3egint
DC iLookupMethod,
DC 5
MOVE IlookMethlelector.A3.,R0
)cLATE RI,objectXLATE.A2 :Point AID? to- tre selector object,.
MOVE ilookMethCiass.A31N3 :tr te class " R'.
MOVE Il1ookMethRepiylD.A3I.RIý ;:S~ave ,tnhe tP;i In 1: the context.
MOVE RI. IiookMeth~eplyID.,AI
MOVE FALSERI :Turr. Off A3 queue wraporo <2.

MOVE RI, Q
M4OVE RI.IvCurren1tClass.A!:
MOVE o~e IN~et ho~sA2?,N2
MOVE oICMetnods.Ri
.2 R2, Mlis

Searchl: EQ R3i, IRI.A?,Ri :Search tne c.ass/¶,ethcd associations for the
NT Ri, -FoundMethod :class in R3.
ADD Ri:2 , R
SUB1 R2 ,lRZ

89 2 R2 , ' Searchi
Miess: XLATE R3.o jeCtXLATE,A3 :If no association wan found, soar. teclass's

MOVE IRI :superclasses.
Miss2: ADD. RI,1RI

CE RI, IoClaSSNA11supers.Aij.HI
BT R1 , MssAl. :Netu4rn Nil, if an assoniatiocý sohi. wasn't found.
MOVE RD. lvCoýrrýentClass.AI)
ADD RIoClassAlllupers,RI
MOVE IRI.A31.'R3
MOVE ioleINMethods.A21,N2
MOVE olSeiMethsds 9Ri

Search?: EQ R3,, 1R1.AZI.RI learcn the nkass/methoo assoo:dt;ons for the
NT RI, FouedMethoo :cllass in. R3.
AD D Ri,2 ,RI
SU R2, R2 N
BNZ R2Z, SIearch2

MOV (vCurrentClass,A~j,NC
BR N255?2

MissAll: MOVE NIL,R2 :No method was 1o~ro, so ret..rn NIL.

BRk toundMethod?
FoundMethod: ADD R, IR ;Extract the me-tros~c IL

MOVE RIA2IN2
Foundmethod?: MOVE ilookMethleplylt),AI.R

DC MDmGhehdel~ Xtr r~ msag elt IC n.0c IC.

IENII2EU RIN?
SUIPEND

END

:NewDlstob,4 message:
LABEL. new~istobitlass -2

LABEL nwllstobjle -LABE L nesDIstob)Ret..r - ,
LABEL newDls9tsbjIR e t.. ol -
LABEL newDiLxtob"erl 6 epr 1

DC 6
MOVE NNNA:
EQUA L, A;,,
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SENDS :nes.DistobjCiasi
SENDS lneD1 tob5Siz, 3)
SENDS InewDi stobjReturnlD.A3]
SE NDE 0 new Di ,tob jReturnS1 t.A3]
SUS5PEND

OnNodeD: MOVE InewDistobjSiZe.A31,RD ;Put maxtsize~i) into RD.
CT RD 0, 81R
81 81, Pos2itiveSize
MOVE 1.80

PositiveSize: SUB RD. 1.80 ;Calculate ig(.axtsize.1)) and store it in RD.

MOVE 31,80
SUB R0,8R1,R0
ADD RD -LoqNNooes,81 ;81 containsl -stride.
NEC RI1'R3 ;R3 contains stride.
MOVE -1,K2
ASH 82,83,82
NOT R2 ,R2
DC ADO8:64 ;Point A2 to the global area.
MOVE 8 , A2 ;Criticality 2.
M4OVE IRandomSeed.A21 .83
ADD R3 ,3,R3
MOVE R3, (RandomSeedA21
AND 82,83.8 ;R2 conta-ns the offset.
MOVE IN e Xt;Fisto~bjID,A21,R3 ;Get the ID for this distributed object.
M4OVE -1 ,RD ;Advance t he ID counter by the number of constituents
ASH 80 ,81.80 ;per node.
NOT 80.80R
ADD RD0.2.80
ADD R3 ,RD.8R3
MOVE 83., [NeXtDistobjID. 821 -Cicaty1
D UB R3,8R0.8R3 Ctcaty.R0T R3.,seri&iN.83
08R R3.distoJMenber,83 :Calculate the DIE) for this distributed object and store It
OR R3 ,82, 83 ;In 83.
NEG 81,82
AS H R2 , oqStrideNR2
AND R2,i(<<Ioq~trioeN+.Soq~trideL)-l,R2
OR 83,82.83
WTAG R3,DIDR3
MOVE LoqN "odes,R2
ADD 82,81,8? .Put iqemaxslnze,,IH into newDistobjTemp.
MOVE 82. [new~istobcjTernp.Al'
MOVE 0,R0
MOVE 83,81 :Sendo a new~istoct)ýree message to the node that will contAin the
CALL co 0 fir st c ons9tituent 01 t he dist ribu te d obje ct.
DC MSG:nsqApplyFunctiohl9
SENr2S R 1,0
D C IfýevDistocJ'Ce)
SENDS RD
SENDS :newoi stotýC~aSn. 3]
SEND20 tnewDistobJS'1eA31.83
SENDO 0
SENDO :n..DistobJTemp,AlJ
SENDS Lne.DiStobJ~eturn1U.A3,
SENDES nvit&ei"ltA
SUSPEND

End:
END

REF REV f-Ne.uDi st obj-ID ICDIrXsX 1z.)sY(n2iZ(tS(9 )

:Newoistobjrree message:
LABEL ne.oistobjrnreeCiass - 2
LABEL nevDistobi~reeSize - 3
LABEL neuDistobj~reeID - 4
LABEL newoistobjIreeotart - 5
LABEL newDistobjTreeLogoelta - 6
LABEL newoistob5Tree~eturnID -
LABEL nesDistobj'Iree~eturnSio. - N

MODULE fNewDistob'.Tree
Begin2: DC OBU-hdrCopy a bie'cissfonctiOnson~drCiassNLtd2-Heqin2

DC (t!NevsintobjCr ee)
DC 9
MOVE tnewýistob7reLoq:'et"aA3;,N.-
80 83, 'Lea!f
SUB 83. 1,83
MOVE NNR.81
1)C MSG:nsqApplyf..nto,ý-9
SEND2S 81,80 :Call fNewu)4StODTree twice, each time on hal! of the range
DU 0 fNew~istob"Creel ;of constit..ents.

SE NDS 80
SENDS [newDJStoVTreeC~ass,83!
SENDO !newDistonj'IreeSize,A31
SENDS fne.D]stobýTr eeID, 83
SEN02C 'ne.DiStobj'IreeStirt.A3:,k3
MOVE 9.80
S ENC2ED lcontextt,[,A:!BC
w TAC _,CF'J T , F1 :Maee a CL_.tre in RC.
MOVE R5. 19.8
MOVE eDto're'DA.N
MOVE 'n."i 'Dt~rS*arz,AY,k:
MOVE 8,2
ASH 82,83,82

CAL, cc
DC HL.qp .'i

S, N'IS R

S e :, n:- sto h res eAj
')' e t' str<I rr': A3

S F.N P,2 L''CO Corex' " A! R9ý
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WTAG NO,CFUTNRO :Mk chuture in RO.
MOVE RU, 10.All
MOVE i9,A I R0 ;Force the cfutures.
M4OVE 1 'A 11LRo
BRa 'Return

Leaf: MOVE (ne.Distobj~re.CiassAJ).R0
XLATE RO "b cXLATEA2 :Get the header aord for ObjeCts Of this class and put it in R3.
MOVE Io~l ..... ord. AS *R3
M4OVE I(nea.ist ObjTreeID. A3 * El
MOVE jneaabistobjTreeStart,A3) ,RO
CALL co
MOVE 10 RO
CALL a iloeNewObject
M4OVE jne.Distobj~ree1DA3I ,R0
MOVE R0, lOoistobjcrOup. A?] ;Initialize the qroup. index, and logical-limit instance variables.
M4OVE [ne.oistobjTreeStart,A3 ,RtD
M4OVE RU. (ooistobjlndes. A2)
MOVE (newuistObjTreeSize.A3].RO
MOVE RO. [ooistobjLogicalLimit.A2]

Return: M4OVE InewflistobjTreeRetjrnlo.A3] .R3
SNIL Rk3,^GoSuspend
DC MSG:InsqReplyI4
SEND20 Rk3,RO
SENDO R3
SENDO lnewolstObjTr~elaeturnSiotA3]
SENDEO jne.DistobjTreeID.A3]

CoSuspend: SUSPEND
Ehd2:

END
REF REV fNewoistobjTree - ID: (I<(3OI (2SdmXI<<SXI l2aMY'<<SYI (ŽdsZI((iji 2d,,St<4aS?

DOWNLOAD) LookupMethod
DOWNLOAD fNew Distobj
DOWNLOAD fNewDjs tobýrree
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!131, 132, 146, 168 Argument 14, 140 Cons 15
#' 132, 133 Evaluation Order 145 Constant 135
" 133 Passing Convention 140 Expression 135
#: 132, 133 Array 152, 164 Predefined 133
#\ 133 Boolean 164 Constituent 158
#L 168 Integer 164 Number 158
% 131 Ash 162 Context Future 144
& 131, 132 Become 129 Continuation 141, 150, 151
&cas-er 138 Begin 17, 135, 144, 149, 170 Copy 156
&cwriter 138 Block 131, 150 Cput 148
&guard 168 BNF 130 Cset 17, 18, 147, 148
&immutable 138 Body 144 Multiple Value 148
&inline 138, 139, 140, 141, Boolean 152 Cwriter Method 138

147, 148 Boolean-Array 152, 164 Declare 169, 171
&name 140 Busy? 163 Deep-copy 156
&no-leak 140 CAP 149 Deep-dispose 156
&non-strict 141 Car 15 Defclass 15, 131, 137
&non-strict 144, 145 CAS 147, 149 Defconstant 131, 135
&not-inline 138, 140, 141, CAS-er Method 138 Defglobal 131, 135, 170

147, 148 Cdr 15 Define 131, 136
&not-inline-default 139 Cfuture 19, 144 Defmacro 21, 168
&predicate 138 Semantics 144 Defmethod 131, 135, 143, 150
&reader 138 Char-ready? 167 Defparameter 135
&side-effect-free 141 Character 133, 152 Defselector 131, 135, 142
&value 140, 141 Class 15, 133, 137, 152 Defun 14, 131, 135, 142, 150
&writer 138 Abstract 130 Delete-Dead-Defs 172
' 132 Assertion 146 Delete-Locals 173
* 161 Built-in 137, 152 Delete-Moves 172
+ 161 Hierarchy 153 Delete-Touches 172
- 161 Immutable 138 Describe 171
/ 161 Inheritance 137 Detailed-Progress 171, 173
//161 Inline 139 Display 167
:137, 140, 141, 147, 148 Inquiry 156 Display-print 167
::141 Metaclass 152 Display-stream 167
;15, 134 Predicate 15, 138 Dispose 156
< 160 Class-kind? 157 Distarray 20
<= 160 Class-of 156 Distobj 20, 152, 158
<> 160 Clet 17, 18, 131, 147 Distributed Object 20, 152,
= 160 Multiple Value 148 158
> 160 Co 158 Creation 158
>= 160 Collection 152 Distributed-Class 152
? 131, 132, 149, 168 Comments 15, 134 End-of-file 133, 166
@ 132, 168 Common Lisp 21, 129, 131, Eq 160
[1148 140, 168 Error 169
\ 133 Compact-DCs 173 Evaluation Order 145
A 131 Compact-Sends 173 Exit 150
_ 131, 140, 147 Compact-Vars 172 Expression 144
Abstract Class 130 Compile 171 Constant 135
Abstract Method 130 Compiler Option 169 False 133, 152
Acquire 163 Complex Numbers 131 Fast-Apply 173
Add-method 143 Complex-Number 130 Fast-Contexts 172
And 160 Concurrency 18 Ffib 14

Short-Circuit 161 Concurrently 18, 149 Fib 14, 121
Application 146 Conditional 149 Fill 164
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Index

Float 152 Join 167 New 156, 158
Fold-Constants 172 Lambda 131, 142, 150 New-boolean-array 164
Fold-Global-Constants 172 Large-Integer 152 New-integer-array 164
For-each 165 Lazy-Contexts 172 New-queueing-iock 163
Force 19, 144, 146 Lazy-Future 146, 150 New-simple-array 164
Formal 140 Lazy-Ivar-Access 172 New-simple-lock 163

Inline 140 Lot 17, 18, 131, 147 New-string 164
No-leak i4u Multiple Value i48 Nfor-ea'ch 165
Not-inline 140 Lfib 17 Nil 133, 152
Value 140 Lisp-Break 173 No-leak Formal 140

Format 130 Local Variable 17 Non-strict 141, 144, 145
Forward-Tails 172 Lock 19, 152, 163 Not 160
Frame-Migrate 172 Logand 162 Not-inline 141
Frame-Regs 172 Logical-Limit 158 Formal 140
Frame-Touches 172 Lognot 162 Instance Variable 138
Funct 152 Logor 162 Not-inline-default 139
Function 14, 15, 16, 140, 152 Logxor 162 Nparallel 149, 150

Calling 141, 146 Loop 131, 149, 150 Null 133, 152
Inline 141 LRU-Register-Allocation 172 Number 131, 133, 152
Non-strict 141 Macro 21, 131, 168 Object 15, 16, 18, 133, 152
Not-inline 141 Guard 168 Class 156
Predicate 15, 138 Optional 130 Constituent 158
Return Value 141, 150 Magnitude 152 Creation 156
Side-Effect-Free 141 Map 164 Distributed 20, 152, 158

Future 19, 144, 146, 150 Max 160 Creation 158
Caveats 146 Merge-Code 172 Instance 15, 156
Context 144 Metaclass 152 Optimize-Built-Ins 172
Eager 144 Method 14, 15, 140, 143, 171 Optimize-Send-Self 173
Lazy 144 Abstract 130 Option 169, 171
Semantics 144 Built-in 153 Optional 130

Get 148, 165 Calling 141, 146 Or 160
Get-group 159 CAS-er 138 Short-Circuit 161
Global 133, 135 Cwriter 138 Output 166
Goals 129 Inline 141 Overriding 16
Group 131, 142, 158, 159 Non-strict 141 Pair 15, 17
Halt 169 Not-inline 141 Parallel 18, 149, 150
Identifier 131 Overriding 16 Parameter 14, 135, 140

Undefined 133 Reader 16, 138 Passing Convention 140
If 135, 149 Return Value 141, 150 Permanent-Definitions 173
Immutable Class 138 Reverse 153 Physical-Limit 158
Include 169, 170 Side-Effect-Free 141 Pragma 169
Index 158 Writer 16, 138 Precise 172
Inheritance 15, 137 Method-Lambda 131, 142, Predicate Function 15, 138

Multiple 137 150 Primitive
Init 163, 164 Min 160 Optional 130
Inline 141, 172 Mod 161 Primitive-Class 152

Class 139 Multiple Inheritance 137 Print 167
Formal 140 Multiple Value 141, 148, 150 Print-PC 173
Instance Variable 138 MV-clet 131, 148 Program 135

Inline-Size-Cutoff 172 MV-cset 148 Progress 171, 173
Input 166 MV-let 131, 148 Put 148, 165
Instance MV-set 148 Queueing-Lock 20, 152, 163

Object 15, 156 N-Nodes 172 Quote 133
Variable 15, 138 Name 131 Read 167

Integer 152 Undefined 133 Read-char 167
Integer-Array 152, 164 Name Space 131 Read-line 167
Integer-Length 162 Nconcurrently 149 Read-stream 166
J-Machine 129 Neq 160 Read-stream-char 166
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Read-stream-line 166 Touch 19, 144, 145
Reader Method 16, 138 True 133, 152
Real 152 Type 15, 17
Receiver 14, 142 Assertion 146
Reg-Variables 172 Checking 17
Release 163 Declaration 18
Repeat 150 Undef 136
Reply 150, 151 Value 140, 144
Resource 19 Formal 140
Return 151 Multiple 141, 148, 150
Return Value 141, 150 Return 141, 150

Declaration 141 Declaration 141
Multiple 141 Variable

Return-value-expected? 151 Instance 15, 138
Reverse Method 153 Inline 138
SC-And 161 Not-inline 138
SC-Or 161 Local 17
Scheme 129, 140 Scope 142
Scope 131, 132 Vflow-Optimizations 172

Static 142 Warn-Free-References 173
Selector 14 When 21

Restricted 153, 154 While 149
Redefining 153 With-locks 163

Self 14, 131, 142, 158 Write 167
Set 17, 147, 148, 170 Write-char 167

Multiple Value 148 Write-stream 166
Shallow-copy 156 Write-stream-char 166
Shallow-dispose 156 Write-stream-string 166
Show 170 Write-string 167
Show-Asm 171 Writer Method 16, 138
Show-Hcode 171 Xor 161
Show-MDP-Hcode 171 Zero? 130, 161
Side-Effect-Free 141
Simple-Array 20, 152
Simple-Lock 19, 152, 163
Size 165
Small-Integer 152
Smalltalk-80 129, 140
Split 167
Split-terminal 167
Standard-Class 152
Statement 144

Application 146
Optional 130

Stream 152, 166
Stream-char-ready? 166
String 133, 152, 164
Subclass 17
Subclass? 157
Subtype 17
Superclass 17, 137
Supertype 17
Symbol 133, 152
System-stream 152, 166
Terminal-stream 167
Tfib 18
Token 131
Top-Level Fcrm 135
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