AD-A259 407
AR

DOMAIN ENGINEERING VALIDATION
CASE STUDY:
SYNTHESIS FOR THE AIR TRAFFIC
DISPLAY/COLLISION WARNING
MONITOR DOMAIN

SPC-92050-CMC

VERSION 01.00.03

NOVEMBER 1992
S BEST
T OR AT R, AVAILABLE COPY
| Ap; i pusile (eieCE:
| Disoucen dnimited
L2585 /28
98 93-0125

1 25 004 Hll'llllﬂﬂﬂllfliﬂl'lﬁﬂ‘l&ﬂltllﬂﬁ

St-A per telecon, Dr. Kramer, DARPA/

SISTO, Arl., VA 22203
1-26-93 JK

DOMAIN ENGINEERING VALIDATION
CASE STUDY:
SYNTHESIS FOR THE AIR TRAFFIC
DISPLAY/COLLISION WARNING

MONITOR DOMAIN |, ... |

le:i ' t‘;eig ?
SPC-92050-CMC I~ -
EIRR
VERSION 01.00.03 e (T il
NOVEMBER 1992 ;Q.«\ | J I
]

Produced by the
SOFTWARE PRODUCTIVITY CONSORTIUM SERVICES CORPORATION
under contract to the
VIRGINIA CENTER OF EXCELLENCE
FOR SOFTWARE REUSE AND TECHNOLOGY TRANSFER

SPC Building
2214 Rock Hill Road
Hemndon, Virginia 22070

Copyright © 1992 Software Productivity Consortium Services Corporation, Herndon, Virginia This material may be
reproduced by or for the U. 8. Government pursuant to the copyright license under the clause at DFARS 252.227-7013 (Oct.
1988). This material is based in part upon work sponsored by the Defense Advanced Research Projects Agency under Grant
fMDA972-92-J-1018. The content does not necessarily reflect the position or the policy of the U. S. Government, and no
official endorsement should be inferred. The name Software Productivity Consortium shall not be used in advertising or
publicity pertaining to this material or otherwise without the prior written permission of Software Productivity Consortium,
Inc. Permission to use. copy, modify, and distribute this material for any purpose and without fee is hereby granted, provided
that the above copyright notice appears in all copies and that both this copyright notice and this permission notice appear in
supporting documentation. SOFTWARE PRODUCTIVITY CONSORTIUM. INC. AND SOFTWARE PRODUCTIVITY
CONSORTIUM SERVICES CORPORATION MAKE NO REPRESENTATIONS OR WARRANTIES ABOUT THE
SUITABILITY OF THIS MATERIAL FOR ANY PURPOSE OR ABOUT ANY OTHER MATTER, AND THIS
MATERIAL IS PROVIDED WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.

Apolio is a registered trademark of Apollo Computer, Inc., a subsidiary of Hewlett-Packard Company.
ADARTS ® is a service mark of the Software Productivity Consortium Limited Partnership.
MetaTool is a trademark of AT&T.

MetaTool™ Specification-Driven-Tool Builder is a trademark of AT&T.

The X Window System is a trademark of Massachusetts Institute of Technology.

UNIX is a registered trademark of UNIX Systems Laboratories. Inc.

VAX and VMS are re sisicicd tradcruarks of Digital Equipment Corporation.

CONTENTS

ACKNOWLEDGEMENTS ... iiiiiiiiiiiiiiiiitiitiitrntntetsearonsonens xi
1. INTRODUCTION ..t iiiiitiiiiieiiinaesecesasaccnsesnessnssssnsonsnns 1-1
1.1 Document Purpose. Scope, and Audiencecooiiiiiiiiiiiia.. 1-2
1.2 Document SITUCTUTIEottt ettt et 1-2
1.3 Related Publications e 1-3
1.4 Typographic CONVENTIONS\ttt ittt ettt e ae e 1-4
2. ATD/CWM DOMAIN DEFINITION ... iiiiiiiiiiiiiiiiintencnennnnens 2-1
3. ATD/CWM DECISION MODEL . .ciiiiiiiiiitiiiiritenectensenncnsness 31
4. ATD/CWM PRODUCT REQUIREMENTS ..t itiiriiiineiennnesnnnnnnas 4-1
5. ATD/CWM PROCESS REQUIREMENTS .. .iiiiiiiiiiiiiiiiiiiiennnnnns 5-1
6. ATD/CWM PRODUCT DESIGN ...t iiiiitiiiiiieieirteeessosonnsssnanns 6-1
7. ATD/CWM PRODUCT IMPLEMENTATIONiiiiiiiiiiiiiiieiinnnes 7-1
8. ATD/CWM PROCESS SUPPORT ... itiiiiiiiiiiiiiiiiirennecnennennens 8-1
9. ATD/CWM APPLICATION MODELt tiiiiiietieeieernnesnceennenns 9-1
10. ATD/CWM APPLICATION SOFTWAREc.utiiiiiiiieirinienennnnnns 10-1
APPENDIX A. A SEMI-FORMAL REQUIREMENTS METHOD A-1
A.1 Introduction ... A-1
A2 Terminology e e e A-1
A3 Method Contrastst iiini A-2
A4 Structure of a Requirements Specificationo L A-2

Contents

Ad2 EnvitOnmeNnt e e A-3
A3 Behavior A-3
A5 Detailed Content of a Requirements Specification A-4
AS5.1 Theory - StaticModelo i A-4
AS52 Theory - Dynamic Model A-4
AS53 Environment - Platform o A-5
AS5.4 Environment - Devices ...t e A-6
A.5.5 Behavior - Presentationc.oiiiiiiii e A-7
A.5.6 Behavior = ACHUVITICS ...ttt it A-8
A.6 Mapping a Specification into an ADARTS Design.......... e A-10
A.6.1 Process StTUCTUIINGttt e et e A-10
A6.2 Class SITUCIUTING .. oottt e e e ettt e e A-11
APPENDIX B. PRESENTATION PARADIGMS ... iiiiiiiiiiiiiiiieiaennnns B-1
Bl Introductioncooi i e B-1
B.2 Map Presentationoiiiiiiiiit i et B-1
B.3 Text Presentation it e e -2
B.4 Audible Alarm Presentation e B-3
B.5 Binary Presentationiiiutii i e B-3
APPENDIX C. AIR TRAFFIC DISPLAY/COLLISION WARNING
MONITOR CASE STUDY WITH AUTOMATION C-1
Cl INtroductionttt e i C-1
C.1.1 MetaTool Specification-Driven-Tool Builder Overview e C-1
C.1.2 Using MetaTool Specification-Driven-Tool Builder to Support
the Air Traffic Display/Collision Warning Monitor Domain C-2
C.2 Generation Procedures Automationcoiiiiiinntinineiana... C-5
C.3 Generated Productsottt e C-¢
C.4 MetaTool Specification-Driven-Tool Builder Description Files C-9
C.4.1 Source Description File C9

Contents

C.4.2 Product Description File — aa.ada L. C-11

C.4.3 Product Description File — cwss.ada C-12

C.5 Air Traffic Display/Collision Warning Monitor Application Model C-14

C.6 Generated Productso e C-17

C.6.1 Product —aaadaoooiiniii e C-17

C.6.2 Product — cwss.adauiitt i e C-18
APPENDIX D. AIR TRAFFIC DISPLAY/COLLISION WARNING

MONITOR CUSTOMER REQUIREMENTScvnails. D-1

REFERENCES | .. iiiiiiiiiiiiiiiiiiitietinteteticenecssennnsnnnnnnsnes Ref-1

FIGURES

Figure 5-1. Air Traffic Display/Collision Warning Monitor Application
Engineering Process 5-2

Figure 6-1. Top-Level of the Air Traffic Display/Collision Warning Monitor

Information Hiding Structure 6-2
Figure 6-2. Decomposition of the Behavior_Hiding Module 6-3
Figure 6-3. Decomposition of the Environment_Hiding Module 6-4
Figure 6-4. Decomposition of the Software_Decision Module 6-4
Figure 6-5. Adaptable Task Architecture Diagram for the Air Traffic

Display/Collision Warning Monitor Domain 6-13
Figure 6-6. Adaptable Dependency Structureo i 6-15
Figure 7-1. Air Traffic Display/Collision Warning Monitor External Interface Diagram .. 7-117
Figure 7-2. Air Traffic Display/Collision Warning Monitor External Interface Diagram .. 7-127
Figure B-1. Icon Display Orientationo, e B-2
Figure B-2. Map Presentation ittt B-2
Figure C-1. SDTool Development Using MetaTool Specification-Driven-Tool Builder C-1
Figure C-2. Internal Structure of an SDTool i i, C-2
Figure C-3. Air Traffic Display/Collision Warning Monitor SDTool Development

Using MetaTool Specification-Driven-Tool Builder C-3
Figure C-4. Internal Structure of Air Traffic Display/Collision Warning Monitor SDTool . C-3
Figure C-5. Partial Automation of Air Traffic Display/Collision Warning Monitor

Application Engineering Process ool C-4
Figure C-6. Generation Procedures Source Specification (Excerpt) C-5
Figure C-7. Product Description File — aa.ada (Excerpt) C-6

Figure C-8. Air Traffic Display/Collision Warning Monitor Application Model (Excerpt) . C.7

vi

Figures

Figure C-9. Generated Product — aa.ada (Excerpt)

Figure C-10. Generated Product — cwss.ada (Excerpt)

vii

Table 3-1.
Table 6-1.
Table 6-2.
Table 6-3.
Table 6-4.
Table 6-5.
Table 6-6.
Table 7-1.
Table 7-2.
Table 7-3.
Table 7-4.
Table 7-5.
Table 7-6.
Table 7-7.
Table 7-8.
Table 7-9.

Table 7-10.
Table 7-11.
Table 7-12.
Table 7-13.
Table 7-14.
Table 7-15.

Dependency Constraintsttt it it e e
Software Architecture and Component Mappings
Software Component Decision Mappingl
Documentation Architecture and Component Mappings e
Documentation Component Decision Mapping
Verification and Validation Support Architecture and Component Mappings ..
Verification and Validation Support Component Decision Mapping
Interface Relationships i e
ATC_to_ ATD/CWM Data Elementso ...
ATD/CWM _to_AA DataElenients,
ATD/CWM_to ATD Data Elements i,
ATD/CWM to ATD Data Elements
ATD/CWM _to COMM Data Elements
NAV_to_ATD/CWM Data Elements
RADAR_to_ ATD/CWM Data Elementscooiiiiiiiin...
Surveillance_Area e

Collision_Warning_SIUationcoiiiiiiiiiieiininnennnan.. ..

Collision_Warning_Situation_Responsecooiiiiiiiii..

ATC MESSAZE - . .. v vttt ettt e e e

Aircraft_Status_Display

Host_Aircraft_Status_Display e

Aircraft_Display_Symbol

6-80
6-80
6-82
6-82
7-126
7-127
7-129

7-129

vili

Tables

Table 7-16. Component Selection Criteria i 7-158
Table 8-1. Application Model Name 8-2
Table 8-2. Host Aircraft Characteristics it e 8-2
Table 8-3. Potential Threat Characteristics it 8-3
Table 8-4. Collision Warning Situation it 8-8

Tables

This page intentionallv left blank.

ACKNOWLEDGEMENTS

Neil Burkhard was the p “mary author »f this case study. Jeff Facemir. wrote, reviewed. or otherwise
made major contributions to particular sections. Grady Campbell wrote the requirements method
in Appendix A. Jim O’Connor. Steve Wartik. Joc Valent, Fred Hills. Eric Marshall, and Rich McCabe
also provided valuable comments.

Special thanks to Grady Campbell. Siri Koorapaty. and Wil Spencer for reviewing thic Zocument and
providing maiiy helpful comments and suggestions. Special t.:anks also go to the Environment and
Support Services group of the Software Productivity Consortium for the superb help in producing this
document.

Xi

Acknowledgements

This page intentionally left blank.

1. INTRODUCTION

In 1991, the Consortium began a case study applying the Synthesis reuse-driven software development
process to the Air Traffic Display/Collision Warning Monitor (ATD/CWM) domain. This case study
had the following goals:

Gain experience in the application of a Synthesis reuse process.
Refine and validate the activity descriptions of the Synthesis guidebook.
Illustrate the practice of a Synthesis process using specific methods.

Provide examples of Synthesis work products.

A domain of ATD/CWM systems was chosen with concern for the following criteria:

Be relevant to member company problems.

Be a realistic probiem.

Have both behavioral and informational variations.
Have real-time constraints.

Represent an embedded system.

Require domain knowledge that is readily available.

The ATD/CWM domain satisfies these criteria as follows (Horne 1989: Nordwall 1991, Connes 1992):

Commercial systems in this domain are being built today. B.F. Goodrich FlightSystems
(formerly known as Foster AirData) is building a collision warning system called CWS691.
This system was borne out of a U.S. Navy contract in which Foster AirData developed a NA-
VAL Aircraft Collision Warning System (NACWS). Bendix/King Air Transport Avionics Divi-
sion of Allied-Signal Aerospace Company, Honeywell, and Collins are building a Traffic Alert
and Collision Avoidance System (TCAS).

Variations exist within these systems. For example, there are three types of TCAS: 1. 11, and
III. TCAS 1 depicts locations of transponder-equipped aircraft that may pose a collision
threat. TCAS II goes further showing the intruding aircraft’s altitude and whether it is flving
level, climbing. or descending. It also issues voice and visual commands telling the pilot to
climb, descend. or fly level to avoid intruders. TCAS III does everything TCAS II does plus
it issues commands to turn left or right.

1-1

1. Introduction

* These are embedded systems. They reside completely within the aircrati and are subject to
weight and size constraints.

* These are real-time systems. They must detect potential collisions and respond to these
potential collisions in real time.

* Systems are customized for different customers. For example, United Airlines had the scan
heights for its systems customized for the climb, descent, and cruise flight phases.

This domain gives the Consortium the basis for exploring many of the issues that could reduce the
effectiveness or acceptability of Synthesis if their implications are not sufficiently considered. However,
the case study, being limited in effort and based on limited in-house domain knowledge, does not necessar-
ily represent a commercially viable formalization of the domain. In particular. the case studv currently
treats real-time issues and environmental constraints superficially. As such, this case study should be
viewed as “representative only” of how the Synthesis approach organizcs and applies available expertise.

The definition of the ATD/CWM domain started with an existing description of customer
requirements for an ATD/CWM system. (See the Statement of Requirements in On-Board Embedded
Air Traffic Display/Collision Warning Monitor System ATD/CWM [PP. Texel & Co. 1987]). This specifi-
cation was also the subject of an Ada-based Design Approach for Real-Time Systems (ADARTS) case
study (Software Productivity Consortium 1991b). The Consortium modified the specification, some-
what. to be more reflective of actual svstems. which resulted in the description shown in Appendix
D. By considering possible variations in this description. a concept of a family of ATD/CWM systems
arises of which the original system is one instance.

1.1 DOCUMENT PURPOSE, SCOPE, AND AUDIENCE

This case study exemplifies Synthesis guidance, as provided in the 1991 Synthesis Guidebook (SPC
1991c). and its application to the ATD/CWM domain. The Synthesis guidance will be one volume of
the 1992 guidebook for reuse-driven software development processes. This document covers both do-
main engineering and application engineering work products. Even though the Synthesis reuse pro-
cess 1s an iterative process. this case study will present only the work products of the final (to date)
iteration. (The previous iterations are documented in Volume 2 of the 1991 Synthesis Guidebook [SPC
1991d]}). This casc study will provide some discussion of how these work products were refined or
evolved from previous work product versions.

The case study will help line engineers and technologists understand the application of the Synthesis
reuse-driven software development process by providing examples of the work products created by
applying Synthesis to a particular domain constituting a business area focus. In this context, a domain
is a set of applications.

1.2 DOCUMENT STRUCTURE
Sections 2 through 8 contain the ATD/CWM domain engineering work products.

Section 2, the ATD/CWM Domain Definition, establishes the scope of the ATD/CWM domain and
a justification of its economic viability. The Domain Definition provides a basis for informally deter-
mining whether a system is properly within that scope. A Domain Definition consists of a Domain
Synopsis, Domain Glossary, Domain Assumptions, and Domain Status.

1. Introduction

Section 3, the ATD/CWM Decision Model, specifies the decisions that the Application Modeling
Notation must allow an application engineer to make in describing an instance of the ATD/CWM
domain. The Decision Model consists of decision specifications, decision groups, and decision
constraints.

Section 4, the ATD/CWM Product Requirements, specifies the software requirements of members
of the ATD/CWM product family. The Product Requirements also ascribe the meaning to Application
Models created in accordance with the corresponding Decision Model. The Product Requirements
are a parameterized description of software for a product in the domain: including implicit
requirements and derived requirements.

Section 5, the ATD/CWM Process Requirements, defines a standard process that the Application
Engineers follow to develop and evolve systems in the ATD/CWM domain. The Process Requirements
work product consists of the Process Specification and Application Modeling Notation.

Section 6. the ATD/CWM Product Design. specifies the design of members of the ATD/CWM product
family. The Product Design consists of a Product Architecture. Component Design. and Generation
Design.

Section 7. the ATD/CWM Product Implementation. is an adaptable implementation of the
ATD/CWM product family. The Product Implementation consists of Adaptable Components and a
Generation Procedure.

Section 8. the ATD/CWM Process Support. describes the procedures and standards by which
application engineers develop ATD/CWM applications (application engineering process). the auto-
mated environment which supports the effective and correct performance of the application engineer-
ing process, and documentation supporting the use of the procedures. standards. and environment.

Sections 9 and 10 describe examples of ATD/CWM application engineering products. Section 9. the
ATD/CWM Application Model. captures the requirements for the ATD/CWM system described in
Appendix D. An Application Model describes a deliverable system in terms of requirements and
engineering decisions.

Section 10. the ATD/CWM Application Software, gives fragments of the ATD/CWM Application
Software derived from the ATD/CWM Application Model described in Section 9. Application Soft-
ware (both code and documentation) is derived mechanically from the Application Model 1o provide
a capability specified by customer requirements.

Four appendixes follow the ATD/CWM work products. Appendix A describes the requirements
method used to specify the Product Requirements for the ATD/CWM domain. Appendix B describes
presentation paradigms required by that method for describing the form of output data. Appendix
C shows, for the ATD/CWM domain, how a commercially available tool can be used in support of
Domain and Application Engineering. Appendix D presents customer requirements for one
ATD/CWM system.

1.3 RELATED PUBLICATIONS

The reader must be familiar with the activities, work products, and terminology of the Synthesis
reuse-driven software development process as described in Synthesis Guidebook Volume 1

1-3

1. Introduciion

Methodology Definition (Software Productivity Consortium 1991¢) belore atiempting to read this
document. In addition to this document, the reader may want to refer to the following publications
that describe certain methods used in the case study.

e TRF2 Metaprogramming Tool User Guide (Software Productivity Consortium 1991a) describes
a metaprogramming notation and tool for creation and use of abstract components.

e ADARTS Guidebook (Software Productivity Consortium 1991b) describes the software
design method used for systematically structuring a real-time system into concurrent tasks
and packages to achieve a modifiable system.

1.4 TYPOGRAPHIC CONVENTIONS

This case study uses the following typographic conventions:

Seriffont....... General presentation of information.
Capitalized Serif font Names of Synthesis work products.
Italicized seriffont Publication titles.

Boldfaced serif font Section headings and emphasis.
Typewriter font Syntax of code.

Do Separator for a list of alternatives.

Additional information to aid in understanding and using the case study work products is presented
as Nores.

Domain Engineering work products require use of a metaprogramming notation to represent
variability in a product. Variability in a product means that a product will have different content de-
pending on certain critical decisions. A metaprogramming notation allows you to describe how a prod-
uct’s content is determined by those decisions. A simple example of this is the use of a macroprocessor
to defer a decision about the size of a data structure. Instead of making the decision on the size of
the structure when the code is written (by embedding a constant). you can defer the decision by para-
meterizing the code and supplving the required value at compile time. A metaprogramming notation
is an extension of this idea.

Boldfaced, bracketed text is used for metaprogramming notation in this document.

< boldfaced_identifier> A deferred decision (e.g., < size >). Such identifiers can be
separated by dots to indicate elements of composite deci-
sions (e.g., <stack.type > and <stack.size >). This identi-
fier is replaced with the actual value of the decision
whenever an instance of the containing work product is
created.

<if predicate then > bodyl [<else> body2] <endif>
A conditional inclusion. A predicate is an informal

1-4

1. Introduction

< forall X in list > body <endfor >

truth-valued expression (i.e., one that only takes on the
values true or false) defined in terms of decisions. If the
predicate evaluates to true. then bodyl1 is included in the
work product. If an else clause is included and the predi-
cate evaluates to false, then body2 is included in the work
product.

An iterative (repeating) inclusion. The list is an identifier
for a decision that is multi-valued. This construct includes
one copy of body in the work product for each value of the
decision. For each copy of body included, the correspond-
ing decision value replaces all cccurrences of identifier X
in that copy.

A predicate can take on different forms depending upon the nature of the truth-valued expression.
The meaning of the forms commonly used in this document are explained below.

X
X =Yoo
X =Y}
XORY ...,

thereexists XY

there exists X € Y such that Z

The value of identifier X is the value of the predicate.
Furthermore, the value of X can only be true or false.

The predicate value is determined by comparing the value
of X with Y. If they are equal, then the predicate value is
true. Otherwise, it is false.

X is an identifier for a composite decision. One or more
elements (x7. Xo. ... Xp) of identifier X can have a value. The
absence of a value for any x; is considered a “don’t care.”
Y is a list containing one or more elements X;. The value of
the predicate is true when the set of elements of X having
a value equals the list of elements contained in Y.
Otherwise, the value of the predicate is false.

The predicate value is false if both X and Y are false.
Otherwise, the value of the predicate is true.

Y is an identifier for a decision that is multi-valued. The
value of the predicate is true when the value of X equals
at least one of the values for Y. Otherwise, the value of the
predicate is false.

Y is an identifier for a decision that is multi-valued. The
value of the predicate is true when Y has at least one value.
Otherwise, the value of the predicate is false.

Y is an identifier for a composite decision that is
multi-valued. The truth-valued expression Z uses one or
more elements of identifier X. The value of the predicate
is true when there is at least one composite decision X in
Y such that Z is true. Otherwise, the predicate value is false.

1-5

1. Introduction

A body is any text that may be a part of some work product. A body may also contain nested

metaprogramming constructs: if so. those constructs have to be evaluated to determine the content
of the body.

TRF2 metaprogramming notation, which has a similar use but a different form, is used in some case
study work products. See the TRF2 Metaprogrammming Tool User Guide (Software Productivity
Consortium 1991a) for more information on the form and use of the TRF2 metaprogramming
notation.

1-6

2. ATD/CWM DOMAIN DEFINITION

1. DOMAIN SYNOPSIS

The ATD/CWM domain is a family of embedded computer systems, installed in an aircraft, to
monitor air traffic within a surrounding surveillance area and to detect potential collision situations.
Systems in the ATD/CWM domain monitor flight characteristics (e.g., altitude, ground_track. range)
of potential threats and display the flight characteristics within the host aircraft's cockpit. Flight char-
acteristics are obtained from messages transmitted by either potential threats or air traffic control
centers. These computer systems may also identify collision situations and take actions such as dis-
playing collision warning characteristics (e.g., location and airspeed of potential threat) and corrective
action advisory messages within the host aircraft’s cockpit, transmitting inter_air messages 1o
potential threats, and transmitting advisory messages to an air traffic control center.

2. DOMAIN GLOSSARY

Many of the definitions in this glossary originate from the AOPA’s Aviation USA (Aircraft Owners
and Pilots Association 1990). The AOPA manual is derived from terms and definitions compiled by
the Federal Aviation Administration (FAA) in both the Pilot/Controller Glossary section of the Air-
man’s Information Manual and in Federal Aviation Regulation Part 1 (ASA Publications 1989). In
this glossary, all terms marked with a superscript 1 appear in the AOPA; those marked with a
superscript 2 are taken from Webster’s 11 New Riverside University Dictionary (Webster 1984).

Advisory message A message transmitted from a host aircraft to an air
traffic control center when the ATD/CWM system
detects a collision warning situation.

Aircraft! Device(s) that are used or intended to be used for
flight in the air and, when used in air traftic control
terminology, may include the flight crew.

Aircraft_identification Any unique aircraft identifier (e.g.. transponder code
or tail number).

Airspeed! The speed of an aircraft relative to its surrounding
air mass. The unqualified term “airspeed” means one
of the following: (1) Indicated Airspeed—The speed
shown on the aircraft airspeed indicator. This is the
speed used in pilot/controller communications under
the general term “airspeed.” (2) True Airspeed—The
airspeed of an aircraft relative to undisturbed air.
This is the speed used primarily in flight planning
and the enroute portion of a flight. When used in pi-
lot/controller communications. it is referred to as
“true airspeed” and not shortened to “airspeed.”

2-1

ATD/CWM Domain Definition

Air traffic control!

Air traffic control device

Altitude!

Bearing!

Climb rate

Cockpit?

Collision warning characteristic

Collision warning situation

Corrective action advisory message

Course!

Display device

Flight characteristics
Flight path!

Ground speed!

. A service operated by appropriate authority to

promote the safe, orderly, and expeditious fiow of air
traffic.

To be defined.

The vertical distance height of a level. point. or object
considered as a point, measured from mean sea level.

The horizontal direction to or from any point, usually
measured clockwise from true north, magnetic north,
or some other reference point through 360 degrees.

An aircraft’s change in altitude per time unit.

The space in the fuselage of an aircraft with seats for
the pilot and crew.

A characteristic of the relationship between a host
aircraft and a potential threat (e.g., time_to_intersect.
range, ground_track).

A situation that arises when a potential threat has
certain values of its collision warning characteristics
relative to the host aircraft. A given potential threat
can progress through different collision warning
situations relative to the host aircraft.

A message displaved on the host aircraft’'s display
describing what actions the host aircraft should take
to avoid a collision warning situation.

The intended direction of flight in the horizontal
plane measured in degrees from north.

To be defined.

Characteristics of an aircraft’s flight (e.g., airspeed.
ground_track, range, aircraft_identification).

A line, course, or track along which an aircraft is
flying or is intended to be flown.

The speed of an aircraft relative to the surface of the
earth.

2-2

ATD/CWM Domain Definition

Ground_track

Heading!

Host aircraft

Icon

Inter_air message

Interrogator!

Intersection

Mode!

Navigation device
Normal situation

Potential threat

Radar device

Ground_track is measured from the line of the
aircraft to magnetic north to the horizontal compo-
nent of the aircraft’s track. Ground_track is
measured in degrees with a resolution of one degree.

Informs the pilot of the heading he should fly. The
pilot may have to turn to, or continue on, a specific
compass direction to comply with the instructions.
The pilot is expected to turn in the shorter direction
to the heading unless otherwise instructed by air
traffic control.

The aircraft that is monitoring other aircraft in its
surveillance area.

A pgraphical presentation of an aircraft.
Characteristics of an icon include 2-dimensional
shape, color. and shading (i.e., filled in).

A message transmitted from the host aircraft to a
potential threat when a collision warning situation
has been detected by the host aircraft.

The ground-based surveillance radar beacon
transmitter/receiver which normally scans in syn-
chronism with a primary radar, transmitting discrete
radio signals which repetitiously request all
transponders, on the mode being used, to reply.

A 3-dimensional region where two flight paths cross
within a separation minima.

The letter or number assigned to a specific pulse
spacing of radio signals transmitted or received by
ground interrogator or airborne transponder compo-
nents of the air traffic control radar beacon system.
Mode A (number), Mode C (number and altitude re-
porting), and Mode S (number, altitude reporting
and a data link) are used in air traffic control.

To be defined.
A situation that is not a collision warning situation.

An aircraft within the host aircraft’'s surveillance
area.

To be defined.

ATD/CWM Domain Definition

Range

Relative_bearing

Separation minimal

Surveillance area

Time group!

Time_to_intersect

Track!

Transponder!

The distance measured from the host aircraft to
another point (e.g.. potential threat. air traffic control
center).

Bearing of the potential threat relative to the host
aircraft. Relative_bearing is measured from the
ground_track of the host aircraft to the line from the
host aircraft to the potential threat in the clockwise
direction looking down.

The minimum longitudinal. lateral, or vertical
distances by which aircraft are spaced through the
application of air traffic control procedures.

The 3-dimensional area around a host aircraft that
must be monitored.

Four digits representing the hours and minutes from
the 24-hour clock. Time groups without time zone in-
dicators are understood to be UTC (Coordinated
Universal Time): e.g.. 0205. The term Zulu is used
when air traffic control procedures require a refer-
ence 10 UTC. A time zone designator is used to indi-
cate local time: e.g., 0205M. The end and beginning
of the day are shown by 2400 and 0000, respectively.

Describes the elapsed time in which two aircraft
flight paths could possibly intersect.

The actual flight path of an aircraft over the surface
of the earth.

The airborne radar beacon transmitter/receiver
portion of the air traffic control radar beacon system
which automatically receives radio signals from in-
terrogators on the ground and selectively replies with
a specific reply pulse or pulse grouped only to those
interrogations being received on the mode to which
it is set to respond.

24

ATD/CWM Domain Definition

Specialization Taxonomy

Aircraft
Host aircraft
Potential threat

Air traffic control center
Cockpit

Collision warning characteristic
Intersection
Range
Relative_bearing
Time_to_intersect

Situation
Collision warning situation
Normal situation

Message
Advisory message
Corrective action advisory message
Inter_air message

Flight characteristics
Aircraft_identification
Airspeed

Ground speed
Altitude
Climb rate
Course
Flight path
Ground_track
Heading
Track

Icon

Interrogator

Mode

Separation minima
Surveillance area

Transponder

ATD/CWM Domain Definition

Struciural Taxonomy
Advisory message
Aircraft

Cockpit

Flight characteristics

Air traffic control center

Collision warning situation
Collision warning characteristics

Corrective actions advisorv message
Icon

Inter_air message

Interrogator

Mode

Normal situation

Separation minima

Situation
Relative_bearing
Rarnge
Time_to_intersect
Intersection

Surveillance area

Transponder

3. DOMAIN ASSUMPTIONS
COMMONALITY ASSUMPTIONS

This section lists the assumptions of commonality for the ATD/CWM domain. Justification is
provided for each commonality.

The ATD/CWM assumptions of commonality are:
1. An ATD/CWM system maintains the notion of host aircraft.

JusrtiFication: An ATD/CWM system is an embedded computer system installed in an
aircraft to monitor air traffic in a surveillance area. A given ATD/CWM sys-
tem detects collision warning situations relative to the aircraft on which it is
installed. This aircraft is called the host aircraft.

2-6

ATD/CWM Domain Definition

An ATD/CWM system monitors a surveillance area.

JustiFication: The purpose of an ATD/CWM system is to detect collision warning situations
and take app-opriate actons. To detect these situations, the ATD/CWM
system must monitor air tratti- in a given region called the surveillance area.

An ATD/CWM system monitors the potential threat flight characteristics ground_track.
relative_bearing, range, altitude, airspeed. vertical rate of change, and aircraft_identification
within the host aircraft’s suiveillance area.

JustiFication: The flight characteristics ground_track, relative_pearing, range, and altitude
determine an aircraft’s location. The flight characteristics airspeed and verti-
cal rate of change determine how the aircraft’s location will change over time.
The aircraft_identification is used to correlate information obtained at
different times.

An ATD/CWM system predicts the aircraft flight path bascd on known ground_track.
airspeed. and climb rate.

Justiricarion: The flight path of an aircraft must be determined so that the ATD/CWM can
issue appropriate commands to avoid a zallision. The flight path direction is
determined by the aircraft’s bearing. Predicting the aircraft’s location on the
flight path is determined by airspeed and vertical rate of change.

An ATD/, WM system monitors the probable intersection of all aircraft with the host aircraft
to ensure that a separation minima is maintained.

JusrtiFication: The separation minima is fixed by the FAA and probably will not change in
the foreseeable future.

An ATD/CWM system detects collision warning situations with respect to each potential
threat based on its predicted flight path and the separation minima.

JusrtiFication: This is the purpose of an ATD/CWM system.

An ATD/CW) sysiem must detect the occurrence of a collision warning situation within a
prescribed time period.

JustiFication: The safety of the host aircraft depends upon the ATD/C WM system detecting
collision warning situations in a timely manner.

An ATD/CWM system takes some action for recognized collision warning situations.

Justiricarion: Once a collision warning situation has been detected, it is necessary to notify the
host aircraft pilot so that he can take appropriate steps to avoid a collision.

An ATD/CWM system must perform the appropriate actions for recognized collision warning
situations within a prescribed time period.

JustiFication: Notifying the host aircraft within this time period allows the pilot time to avo:d
the collision.

~
~)

ATD/CWM Domain Definition

10.

11.

13.

14.

16.

An ATD/CWM system will exhibit a corrective action advisory message on the host aircraft’s
display when the system detects a collision warning situation. This message describes
maneuvers the host aircraft should perform to avoid a collision. This message only occurs for
specific collision warning situations.

Justirication: Since the pilot is responsible for flying the aircraft, he must be told what
specific maneuvers to perform to avoid a collision.

An ATD/CWM system determines the minimal range separating a potential threat and host
aircratt using their respective predicted flight paths.

JustiFicationr: The minimal range separation determines the content of the corrective action
advisory message.

An aircraft can progress through different collision warning situations relative to the host aircraft.

Jusnipicanion: All aircraft. including the host aircraft, have flight characteristics. Collision
warning situations are based on these flight characteristics. As these charac-
teristics change over time, a given aircraft could be in different collision
warning situations, relative to the host aircraft, at ditferent points in time.

No single aircraft can be in more than one collision warning situation, relative to the host
aircraft, at any given time.

JustiFicarion: Tt is useful for an ATD/CWM system to maintain the notion of differing severity
levels of collision warning situations. The situations are disjointed to allow for
partitioning of evasive actions based on the collision warning situation.

An ATD/CWM system has interfaces with radar and ATC devices that enable it to receive
flight characteristic information on a potential threat.

JustiFication: The ATD/CWM system must receive information on potential threats to
detect collision warning situations. Onboard svstems are insufficient for
determining all necessary aircraft flight characteristics.

An ATD/CWM system has an intcrfacc with a navigation device that enables the ATD/CWM
system™ to receive flight characteristic information on the host aircraft.

JustiFication: An ATD/CWM system detects collision warning situations relative to the host
aircraft. Host aircraft flight characteristics. which are necessary to detect
these situations, are obtained from the onboard navigation device.

An ATD/CWM system has an interface to a display device (ATD) that enables the ATD/CWM
system to represent aircraft, potential threat flight characteristics. and display advisory
messages in the host aircraft’'s cockpit.

JusrtiFication: The pilot needs to know what situations have been detected and the locations
of the corresponding potential threats so that he can perform the appropriate
evasive actions.

2-8

ATD/CWM Domain Definition

17.

18.

19.

20.

21.

24.

An ATD/CWM system must execute within a fixed memory size.

JustiFicarion: Since an ATD/CWM system is embedded within the host aircraft, there are
physical size constraints which limit the amount of memory associated with
the processing unit. Consequently, the ATD/CWM system must perform its
functions within this limit.

An ATD/CWM svstem performs CPU-intensive numerical calculations that require hardware
support for floating point operations.

Justirication: It is doubtful that software-emulated floating point arithmetic will allow an
ATD/CWM system to meet its performance requirements.

An ATD/CWM system executes on a single processor hardware platform.

JustiFicarion: Processing speeds of commercially available processors are sufficient to allow
an ATD/CWM system to meet its requirements. Furthermore. there is sub-
stantial cost savings of a single processor system compared to a
multi-processor configuration.

An air traffic display supports at least ten colors. displays text, and provides capabilities for
displaying graphical shapes and manipulating their color, location. and blinking attributes.

JustiFicarion: The display is used to convey aircraft, their location. and collision warning
situations between the host aircraft and potential threats. This type of infor-
mation is easily conveyed to the pilot through the use of color. geometric
shape. and blinking capabilities. '

An ATD/CWM system represents aircraft on the display as icons.

JustiFicarion: Human factors studies have determined the pilot can easily recognize and
understand aircraft displayed as icons.

An audible alarm is characterized by a frequency, duration, and volume. The volume of the
audible alarm is fixed.

JustiFicarion: The quantities that characterize the sound made by an audible alarm are: how
long it was rung (duration). how loud it is (volume), and the pitch (frequency).
It is anticipated that audible alarm devices will not permit the volume of the
alarm to be controlled by software.

An ATD/CWM system receives range information on potential threats from the onboard
radar device.

JustiFicarioN. Onboard radars currently found on aircraft provide range information. It is
anticipated that all future radar devices will continue to provide at least this
information.

An ATD/CWM system receives the host aircraft altitude. airspeed, ground_track. and
location from the onboard navigation device.

Jusrtiricarion: Navigation devices currently provide this informztion and it is anticipated that
all future navigation devices will continue to provide at least this information.

29

ATD/CWM Domain Definition

25.

An ATD/CWM system receives range. altitude, airspeed. ground_track. and relative_bearing
from the ATC device for aircraft.

JustiFicarion: Air traffic control centers currently provide this information, and it is
anticipated that this information will continue to be provided in the future.

VARIABILITY ASSUMPTIONS

This section lists the assumptions of variability for the ATD/CWM domain. Justification is provided
for each varnability.

The ATD/CWM assumptions of variability are:

1.

)

The definitions and severity of collision warning situations recognized by the ATD/CWM system

Justiricarion: Different members of the ATD/CWM domain can have different (and
possibly multiple) collision warning situations. There must be a way of
defining what they are.

Actions performed by the ATD/CWM system for each coilision warning situation

JustiFrcarion: It is anticipated that the set of actions performed for each collision warning
situation will differ as a function of the probability of a collision occurring.

The flight characteristics displaved for each aircraft maintained by the ATD system

Justirication: The information displaved on the ATD is a function of determining what
information is important to see and how much a human can comprehend.

Format used to display flight characteristics for each aircraft maintained by the ATD system

JusrtiFication: Formatting information for easy comprehension by a human is subject to
human factors issues.

The geometry of the surveillance area covered by the ATD/CWM system in the host aircraft

JustiFication: A surveillance area has a cylindrical shaps. The bounds can be changed
depending upon the current flight mode (e.g., enroute, terminal, departure,
and arrival). The size differs tor these flight modes because the needs of the
surveillance area coverage are different.

Format of the message received from the navigation device

JustiFicarion. Hardware changes due to advances in technology or cost reduction may cause
the navigation device to be replaced. Its replacement may have a different
message format.

Format of the message received from the radar device

Jusrirication: Hardware changes due to advances in technology or cost reduction may cause
the radar device to be replaced. Its replacement may have a different message
tormat.

2-10

ATD/CWM Domain Definition

10.

11.

12.

13.

14.

The computer system used including processing speed. primary memory size, and availability
of secondary memory

JustiFication: Technical advancements in hardware may improve processor speed. lower the
cost of a processor, and lower the cost of memory. Consequently, the comput-
er system configuration may change (e.g., more memory, faster central
processing unit).

Format of inter_air messages transmitted to potential threats

Justiricarion: Hardware changes due to advances in technology or cost reduction may cause
the communication device to be replaced. Its replacement may havc a
different message format.

Format of advisory messages transmitted to air traffic control centers

JustiFication: Hardware changes due to advances in technologv or cost reduction may cause
the communication dewice to be replaced. Its replacement may have a
different messagc {ormat.

Format of messages containing flight characteristics received from air traffic control centers

JustiFic41ion; Hardware changes due to advances in technology or cost reduction may cause
the navigation device to be replaced. Its replacement may have a different
message format.

Type of radar, navigation, ATC, communication, audible alarm, or display device

JustiFicaTion: Advances in hardware technology may make current devices obsolete in terms
of speed, capabilities, or cost. These advances may consequently cause
replacement of a device with another one.

The maximum number of aircraft monitored by the ATD/CWM system at any given instant

JustiFication: An ATD/CWM system must be able to handle a defined number of aircraft
per time unit.

The presence of an audible alarm ard the frequency and duration of the audible sound

Justirication: Ringing an audible alarm is one action an ATD/CWM system can perform
to notify the host aircraft of a particular collision warning situation. However,
ringing the audible alarm to signify different collision warning situations re-
quires a distinct frequency and duration for each so that the pilot (or other
flightcrew member) can uniquely identify the corresponding collision warning
situation. Furthermore, the set of actions performed by an ATD/CWM sys-
tem in response to a collision warning situation is variable. If ringing the audi-
ble alarm is not one of them, then the generated system does not need to
include the audible alarm. There could be a resulting cost savings.

4. DOMAIN STATUS

The variabilities referenced in parentheses are listed in the Variabilities Assumptions section on pages
2-10 and 2-11.

2-11

ATD/CWM Domain Definition

These variabilities are not accommodated by the remaining ATD/CWM domain engineering
work products.

-~ Maximum number of aircraft monitored at any given instant (Variability 13).

- The flight characteristics displayed for each aircraft maintained by the ATD system
(Variability 3).

- Format of message received from the navigation device (Variability 6).
- Format of message received from the radar device (Variability 7).

- Computer system, including memory size, availability of secondary memory.
processor (Variability 8).

- Format of inter_air message transmitted to potential threats (Variability 9).
- Format of messages received from air traffic control centers (Variability 11).

- Type of devices for radar, navigation, ATC, communication, audible alarm. and
display (Variability 12).

These variabilities are accommodated in a restricted manner by the remaining ATD/CWM
domain engineering work products.

- Format used to display flight characteristics for each aircraft maintained by the ATD
system (Variability 4).

- Surveillance area geometry (Variability 5).

- Format of advisory message transmitted to the air traffic control center (Variability 10).
Y g

3. ATD/CWM DECISION MODEL

Note: The Decision Model is written in a mechanically processable syntax shown below. In this form.
mnemonics for the decisions (i.e., requirements variations) are introduced because the deci-
sions are needed in writing the adaptable product requirements. The description of a decision
in the Decision Model is characterized by the following information:

Mnemonic - Name for the decision.

Repetition factor - An optional symbol which is one of “?” (zero or one), “+" (one
or more), or “*" (zero or more). This indicates how many times the decision
represented by the mnemonic can be repeated.

Description - An optional textual description delimited by enclosing parentheses.

Domain - Describes the value space for the mnemonic. The value space can be simple
(e.g.. integer, identifier, natural) or composite. A composite value space is indicated
by the keywords “and” or “or” followed by another decision. The keyword “and”
means that all of the decisions must be made for the composite. The keyword “or”
means that only one of the following decisions can be made for the composite for a
given instance of the decision group.

The following BNF notation is used to describe the decision model.

DECISION ::= MNEMONIC [“+" | “*” | “?"][(DESCRIPTION)] *:" DOMAIN

DOMAIN := SIMPLE_DOMAIN

| “and” DECISION_SET
| “or” DECISION SET

DECISION_SET ::= DECISION [DECISION_SET]

Nore: Definitions for terms bracketed by exclamation points (e.g.. 'xxx!) are found on page 4-21.

DECISION GROUPS AND SPECIFICATION

The Decision Model consists of the following groups.

Project_Information

The Project_Information (PI) describes the specific information for the project. The decisions that
must be made for this decision class are:

31

ATD/CWM Decision Model

Project_Information : and
Contract (Contract information for the specific project.) : and
Agency (Name of the contracting agency.) : identifier(1..64)

Number (Contract number (can be an alphanumeric thereby excluding a
numeric value space) : identifier(1..64)

CDRL (Contract data requirements list number.) : identifier(1..64)
System (System information for the specific project.) : and
Name (System name.) : identifier(1..64)
Mnemonic (System mnemonic.) : identifier(1..16)
Id (Svstem identification number.) : identifier(1..64)
Surveillance_Area

The Surveillance_Area (SA) is the area around an aircraft that an ATD/CWM system monitors. The
decision that must be made for this decision class is:

Surveillance_Area : and

Range (Radius. in nautical_miles. of the surveillance area around an aircraft that is
monitored by the ATD/CWM system. The surveillance area is a sphere whose
origin is the host aircraft’s position.) : nautical _miles(10..300)

Nore: To simplify the domain implementation, the geometry of the surveillance area is assumed to
be spherical. The radius of this sphere is fixed at system generation time. It is assumed that
the onboard radar device has a range of at least 300 nautical_miles.

Collision_Warning_Situation

The Collision_Warning_Situation (CWS) is a situation that the ATD/CWM system detects between
a potential threat and the host aircraft. A given potential threat can progress through different colli-
sion warning situations relative to the host aircraft as the potential threat navigates through the host
aircraft’s surveillance area. The decisions that must be made for this decision class are:

Collision_Warning_Situation+ : and

CWS_Name (Name of this collision warning situation. There is a predefined instance of this
class called normal.) : identifier(1..64)

CWS_Def (Boolean-valued expression that defines the criteria for this collision warning
situation. Either Time. Range. or both can be specified. However. at least one
of these must be specified. If both are specified, then the expression is
interpreted as a logical OR of both components [i.e., Time OR Range]) : or

32

ATD/CWM Decision Maodel

Partition

Severity

Response

Collision_Warning_Situation_Response

Time

Range

(Time 1s the time_to_intersect measured in seconds with the
potential threat maintaining its current airspeed, course, and
climb rate. If the airspeed is unknown, then 1,000 nautical_miles
per hour is assumed. The time_to_intersect lies in the range
Time.Min < time_to_intersect < Time.Max) : and

Min

(Minimum allowed elapsed time before the
flight path’s of the potential threat and host
aircraft intersect.) : seconds(1..300)

(Upper bound on the allowed elapsed time before
the flight path’s of the potential threat and host
aircraft intersect.) : seconds (1..300)

(Range is the distance the potential threat is from the host aircraft
measured in nautical_miles. The range value lies in the range
Range.Min < range < Range.Max) : and

Min

(Minimum distance the potential_threat is from
the host aircraft. The upper limit is determined
by the Surveillance_Area

range.) : nautical_miles(0.. < SA.Range >)

(Upper bound on the distance the potential threat is from the
host aircraft. The upper limit is determined

by the Surveillance_Area

range.) : nautical_miles(0.. < SA Range >)

(Indicates the potential threat partition for which this collision warning situation
applies. ID is identified: UID is unidentified; ALL is both.) : enumerated (ID,

UID. ALL)

(Relative probability that a collision is likely to occur. The higher the severity

is, the more likely a collision will occur. By definition. the predefined normal
situation has the lowest severity.) : severity(0.00 .. 1.00, 0.01)

(Prescribed response to the collision warning situation.) : CWSR

The Collision_Warning_Situation_Response (CWSR) is the actions that an ATD/CWM system can
perform in response to a detected collision warning situation. The decisions that must be made for

this decision class are:

Collision_Warning_Situation_Response + : and

ATC_Msg

(Designates whether a message is sent to the nearest air traffic control
center. “true” means to send the message.) : enumerated (true, false)

Inter_Air_Msg(Designates whether a message is sent to the appropriate potential

threat. “true” means to send the message.) : enumerated (true. false)

33

ATD/CWM Decision Model

Corrective_Msg (Designates whether a corrective action advisory message is displayed on the
host aircraft’s display. “true” means to
send the message.) : enumerated (true, false)

Alarm (Designates whether the audible alarm should be rung when a potential threat
migrates into this collision warning situation from a lower priority
situation.) : or

No_Ring (Do not ring the alarm.) : true

Ring (Ring the alarm. In this case, a frequency and duration must be
specified as well.) : and

Pitch (What frequency, in hertz, to ring the audible
alarm.) : hertz(1.000..10,000)

Duration (How long. in seconds, to ring the audible
alarm.) : seconds(0.01 .. 10.0, 0.01)

Code (Transponder code used in the message sent to the appropriate potential threat
[Inter_Air_Msg] air traffic control center [ATC_Msg].) : Itransponder_code!

ATC_Message

The ATC_Message describes the message format used when sending messages from the host aircraft
to an air traffic control center. The decision that must be made for this decision class is:

ATC_Message : and

Mode (Designates the format for ATC_Msg messages sent from the host aircraft to an
air traffic control center. Mode A is a 4-digit !transponder_code!: Mode C is a
4-digit 'transponder_code! and host aircraft altitude.) : enumerated (A, C)

Aircraft_Status_Display

The Aircraft_Status_Display (ASD) describes how to display the information status for a potential
threat when the potential threat is in a specific aircraft partition and collision warning situation
relative to the host aircraft. The decisions that must be made for this decision class are:

Aircraft_Status_Display + : and

Situation (Indicated collision warning situation.) : CWS

Partition (Indicated aircraft partition. ID is identified; UID is unidentified.) : enumerated
(ID, UID)

PT Color (Icon color for the potential threat.) : enumerated (red. orange. green, yellow,

white, blue, black, pink, purple, indigo, violet)

PT_Blink (Designates whether the potential threat icon should blink for this collision
warning situation. True means blink, false means do not blink.) : enumerated
(true, false)

3-4

ATD/CWM Decision Model

PT Fill (Icon filling for the potential threat involved in this collision warning situation.
True means to fill the icon [i.e., color the icon interior}; false means do not fill
in the icon.) : enumerated (true, false)

Norte: The icon interior is colored the same as the icon color.
Host_Aircraft_Status_Display

The Host_Aircraft_Status_Display (HASD) describes how to display the information status for the
host aircraft when it is involved in a specific collision warning situation. The decisions that must be
made for this decision class are:

Host_Aircraft_Status_Display+ : and
Situation (Indicated collision warning situation.) : CWS

Color (Icon color for the host aircraft.) : enumerated (red, orange. green, vellow,
white. blue, black, pink, purple, indigo, violet)

Note: The host aircraft color is independent of whether the potential threat is identified or unidentified.
Aircraft_Display_Symbol

The Aircraft_Display_Symbol (ADS) describes the two-dimensional icon shape for displaving
aircraft on the ATD. The decisions that must be made for this decision class are:

Aircraft_Display_Svmbol : and
Host_Shape (Icon shape for the host aircraft.) : enumerated (circle, square, triangle)
ID_Shape (Icon shape for identified potential threats.) : and

Partition (Boolean-vaiued expression that defines the criteria for an
identified potential threat.) : !id_definition!

Shape (Icon shape for identified potential threats.) : enumerated (circle.
square, triangle)

UID Shape (Icon shape for unidentified potential threats.) : enumerated (circle, square,
triangle)

Note: A potential threat whose flight characteristics do not satisfy the !id_definition! is considered
to be unidentified. The icon shape is solely dependent upon whether the aircraft is the host
aircraft, an identified potential threat, or unidentified potential threat.

3-5

ATD/CWM Decision Model

DEPENDENCY CONSTRAINTS

Table 3-1 shows the dependency constraints for decision classes in the ATD/CWM domain.

Table 3-1. Dependency Constraints

Decision Class Condition Dependency Constraint

CWSR True At least one Collision_Warning_Situation_Responsc
must have the Corrective_Msg decision true.

ATC_Format True A decision must be made for the ATC_Msg message
format only when at least one Collision_Warning_
Situation_Response has the ATC_Msg decision true.

CWS Range.Min < <SA.Range> |The minimum or maximum distance for a collision

Range.Max < <SA.Range > |warning situation definition cannot be larger than the
range specified for the surveillance area. i
CWS Range.Min < Range.Max The minimum range value must be less than or equal 101
the maximum range value for a given collision warning }
situation.
CWS Time.Min < Time.Max The minimum time value must be less than or equal to the
maximum time value for a given collision warning
situation.
CWS Time Either Time, Range, or both must be specified for a
Range collision warning situation definition.

ADS Host_Shape The symbols for the icon shape must be mutually exclusive.
ID_Shape.Shape
UID_Shape

3-6

4. ATD/CWM PRODUCT REQUIREMENTS

Nore: The requirements method used to capture the ATD/CWM Product Requirements is described
in Appendix A.

1. THEORY

This section defines a model of the underlying theory of the ATD/CWM system. This model provides
the basis for the description of system behavior in Section 3. The components of the model are
concept/entity classes and derivation relations. Entities in the model correspond to real world entities
that are of concern to the ATD/CWM application.

1.1. StaTic MoODEL

This section describes the classes of entities that model the information about aircraft and collision
warning situations embedded in ATD/CWM applications.

1.1.1. Aircraft

Each aircraft has the following properties.

Property Type Description
Altitude feet(-200 .. 50,000) Aircraft altitude measured in feet.
Aircraft_ID string(8) Aircraft identifier.
Velocity speed(l .. 1.500) Aircrait airspeed measured in knots.
Climb Rate rate(-3,000 ... 3.000) Aircraft’s rate of change in altitude '

measured in feet pcr minute.

Location location! Latitude and longitude location of the
aircraft given as a tuple (latitude,
longitude). Latitude hasa permitted range
of -90.0 ... 90.0 degrees. A negative value
indicates latitude south of the equator; a
positive value is north of the equator.
Longitude has a permitted range of -360.0
... 360.0 degrees. A positive value signifies
longitude west of the prime meridian at
Greenwich, England. A negative value
indicates longitude east of the prime
meridian. Resolution for latitude and
longitude is one-tenth degree.

Ground_Track degrees Ground_track is measured from the line
of the aircraft to magnetic north to the
horizontal component of the aircraft's
actual flight path over the surface of the
earth. Ground_track is measured in
degrees with a resolution of one degree.

41

ATD/CWM Product Requirements

1.1.2. Host_Aircraft : Aircraft
Host Aircraft is a singleton class representing the aircraft on which the ATD/CWM system is installed.
1.1.3. Potential_Threat : Aircraft

Potential_Threat is a class of aircraft that represents all aircraft within the host aircraft’s surveillance
area (except the host aircraft itself). Potential threats have the following additional properties.

Property Domain Description

Range nautical miles Range of the potential threat from the
host aircraft. Range is measured in
nautical_miles with a resolution of one
nautical_mile.

Relative_Bearing | degrees Bearing of the potential threat relative to
the host aircraft. Relative_bearing is
measured from the ground_track of the
host aircraft to the line from the host
aircraft to the potential threat in the
clockwise direction looking down.

1.2. Dynamic MoODEL
1.2.1. Time to Intersect

The ATD/CWM system determines how much time elapses (time_to_intersect) until the flight paths
of the host aircraft and potential threat cross within a separation minima. The separation minima
is the minimal range that the two aircraft will be apart assuming constant velocity, ground_track. and
climb rate for both aircraft. The following equation gives range between the host aircraft and a poten-
tial threat at a given point in time as a func.ion of their respective locations in space. The terms (xy.
YH, zH) and (zpT, YpT. ZpT) are the rectangular coordinates of the host aircraft (H) and potential threat
(PT), respectively.

range = y/&}vr -xn)* + (ypr-yu)* + (zpr- zH’)2

The following equations give the location of the host aircraft over time (assuming a constant velocity,
ground_track, and climb rate) where (xoH. YoH, Zoy) denote an initial location of the host aircraft.

Xy = Xon + host_aircraft.velocityxy * cos(host_aircraft.ground_track) * t
YH = You + host_aircraft.velocityxy * sin(host_aircraft.ground_track) * t

Zy = Zoy + host_aircraft.climb_rate * t

Similarly, the following equations give the location of the potential threat (assuming a constant
velocity, ground_track, and climb rate) where (XopT. YoPT. ZopT) denote an initial location of the
potential threat.

42

ATD/CWM Product Requirements

XpT = XopT *+ potential_threat.velocityxy * cos(potential_threat.ground_track) * 1
YPT = Yopr + potential_threat.velocitvxy * sin(potential_threat.ground_track) * t

ZpT = Zopr + potential_threat.climb_rate * t
The potential threat location is always relative to the host aircraft. By assuming that the host aircraft
location gives the origin of the rectangular coordinate system, the following equations give an initial
location of the potential threat relative to the host aircraft.
XopT = rangexy * cos(potential_threat.relative_bearing)
YopT = Tangexy * sin(potential_threat.relative_bearing)

ZopT = potential_threat.altitude - host_aircraft.altitude

The following equation gives the horizontal component of the velocity (i.e., the component ot velocity
that lies in the X-Y plane - velocityyy).

. T :
velocityxy = yvelocity? - climb_rate?

Similarly, the following equation gives the horizontal component of the range (i.e.. the component of
range that lies in the X-Y plane - rangeyy).

2

rangexy = \/ range? - (host_aircraft.altitude - potential_threat.altitude)

By making appropriate substitutions, the range between the host aircraft and a potential threat is a
function of their initial locations and time.

range = f(t.XoH. YoH: ZoH. XoPT; YoPT- ZoPT)

The time_to_intersect is computed by taking the first derivative of the range equation expressed as
a function of time, setting it equal to zero, and solving for “t” (assuming (XoH. You. Zon) is (0.0.0)).

f'(t. XoH. YoH. Zot, XoPT; YoPT; ZorT) = 0
This yields a time_to_intersect value - tpin.
1.2.2. Minimal Separation Distance

The ATD/CWM system determines the minimal separation distance (i.e., minimal range —the closest
range of these two aircraft with respect to each other) between the host aircraft and potential threat
assuming constant velocity, ground_track, and climb rate for each. This minimal range (rangemin) is
determined by solving the following equation with t = tpj, (assuming (X,H. YoH. ZoH) is (0.0,0)).

rangemin = f(t, XoH, YoH. ZoH: XoPT> YoPT: ZoPT)

4-3

ATD/CWM Product Reguirements

1.2.3. Climb Rate

The following equation is used to compute the climb_rate of an aircraft.

aircraft.altitude, - aircraft.altitude,,

climb rate =
- -t

Terms ty, and t, denote time and t, > t,. At system startup (t, = 0), altitude = 0. 5000 feet per minute
(fpm) is used if the climb rate exceeds 5000 fpm.
1.2.4. Relative Bearing

The ATD/CWM system obtains range for a potential threat from two sources: the radar and ATC. When
the radar range for a specific potential threat is newer than the range obtained in the ATC_Message for
the same potential threat. it is necessary to predict the location of the potential threat. The location is
computed in terms of its relative_bearing based on the time difference between the most recent radar
range and ATC range values assuming constant velocity, climb rate, and ground_track for both the host
aircraft and potential threat. In the following discussion. t, and ty, denote time and ty, > t,.

The following equations give the x and y rectangular coordinates of the potential threat at ty, (xpT. VpT)
where (xopT. VopT) is its x and v coordinates at time t,,

“nPT = XopT + potential_threat.velocityxy * cos(potential_threat.ground track) * (t, - t,)
YnPT = YopT + potential_threat.velocitvxy * sin(potential_threat.ground track) * (1, - t,)

Similarly, the following equation gives the x rectangular coordinate of the host aircraft at time t,
(assuming that the initial location x,y is 0).

xpH = host_aircraft.velocityxy * cos(host_aircraft.ground_track) * (t, - t,)

The following equations give the initial x and y rectangular coordinates at time t, (XopT. YopT) assuming
that the host aircraft gives the origin of the rectangular coordinate system.

XopT = rangexy * cos(potential_threat.relative_bearing)

YopT = rangexy * sin(potential_threat.relative_bearing)

Since the range, relative_bearing, velocity. ground_track. and climb rate are known for time t,. a value
for xnpt can be computed. The new relative bearing of the potential threat is a function of the new
XnpT, the new location of the host aircraft x,y. and the new range as shown below.

XppT = Tangexy * cos(potential_threat.relative_bearing) + X,y
Rewriting the equation to solve for relative_bearing yields the following equation.

XnPT — XnH

potential_threat.relative_bearing = arccos
rangexy

4-4

ATD/CWM Product Requirements

The horizontal component of the range at time ty, is given by the following equation.

rangexy = \ﬁangez ~ (host_aircraft.altitude,, - potential_threat.altitude,)’

The altitude of the host aircraft and potential threat at time t is predicted using their respective
altitudes at time t, assuming a constant climb rate as shown below.

host_aircraft.altitude,, = host_aircraft.altitude,, + (t, —t,) * host_aircraft.climb_rate

tential_threat.altitude, = potential_threat.altitude, + (t,-t,) * potential threat.climb rate
po _ » = P — a P _)

The sign of the y rectangular coordinate at time tp, (YnH) is used to determine whether the potential
threat relative bearing must be adjusted. If the sign of y is negative, then

potential_threat.relative_bearing = 360 - potential_threat.relative_bearing

1.2.5. Potential Threat Collision Warning Situation Status

The ATD/CWM system monitors potential threats within the host aircraft’s surveillance area and
determines when thev make the transition from one collision warning situation to another. The colli-
sion warning situation the potential threat is in. relative to the host aircraft, determines the collision
warning situation status (cws_status) of a potential threat as follows. The following abbreviations are
used in this algorithm.

ptr potential_threat.range
ptr time_to_intersect between the potential threat and host aircraft.

<forall C in Collision_Warning_Situation >
<if C.CWS_Def = {Time, Range} then >
@T((<C.CWS_Def.Time.Min> < ptt < <C.CWS_Def.Time.Max >) OR
(<C.CWS_Def.Range.Min > < ptg < <C.CWS_Def.Range.Max >))
when partition = < C.Partition >
cws_status = <C.CWS_Name >
<else if C.CWS_Def = {Time} then >
@T(< C.CWS_Def.Time.Min > < ptt < <C.CWS_Def.Time.Max>)
when partition = < C.Partition >
cws_status = <C.CWS_Name >
<else if C.CWS_Def = {Range} then>
@T(< C.CWS_Def.Range.Min> < ptg < <C.CWS_Def.Range.Max >)
when partition = < C.Partition >
cws_status = <C.CWS_Name >
<endif>
< endfor >
@T(ptr < <Surveillance_Area.Range >) when partition = ALL
cws_status = Normal

If more than one condition is true for a given potential threat, then the condition having the highest
severity level gives the collision warning situation status (cws_status).

45

ATD/CWM Product Requirements

1.2.6. Potential Threat Partition

The ATD/CWM system monitors potential threats within the host aircraft’s surveillance area to
determine when they make the transition from being identified to unidentified and vice-versa. The
partition of a potential threat is defined as follows:

if <Aircraft_Display_Symbol.ID_Shape.Partition >
partition = identified

else
partition = unidentified

endif

1.2.7. Host Aircraft Collision Warning Situation Status

The potential threats in the host aircraft’s surveillance area determine the host aircraft’s collision
warning situation status (cws_status). The host aircraft’s cws_status is equal to the potential threat
cws_status that has the highest severity from all known potential threats. The host aircraft’s icon color
on the air traffic display will display the following colors for the corresponding collision warning
situation status:

Collision Warning Situation Status Color
<forall S in Host_Aircraft_Status_Display >
< Host_Aircraft_Status_Display.Situation > <Host_Aircraft_Status_Display.Color >
<endfor >
Normal White

2. ENVIRONMENT

This section describes the external environment within which the ATD/CWM svstem operates.
2.1. INpuT COMMUNICATION PATHS

2.1.1. Navigation

The navigation device communicates host aircraft flight characteristics (i.e.. alitude. velocity.
ground_track. latitude, and longitude) to the host aircraft.

Input Data Item: Navigation_Msg (5 data items)

Name Value Space Description / Data Representation
altitude Unit: feet Vertical distance height of the host_aircraft measured
Range: 0 to 60,000 from mean sea level.
Accuracy: 1 foot
Resolution: 1 foot 32-bit natural number
scale: 1
offset: 0
velocity Unit: knots Indicated velocity of the host_aircraft.
Range: 01to 700
Accuracy: 1knot 16-bit natural number
Resolution: 1 knot scale: 1
offset: 0]

4-6

ATD/CWM Product Requirements

ground_track | Unit: degrees Ground_track is measured from the line of the aircraft to
Range: 0to 360 magnetic north to the horizontal component of the
Accuracy: 0.1 degree aircraft’s actual flight path over the surface of the earth.

Resolution: 0.1 degree

16-bit unsigned number

scale: 10
offset: 0
latitude Unit: degrees Latitude component of the location. Negative values
| Range: -90t0 90 represent latitude south of the equator.
Accuracy: 0.1 degree
Resolution: 0.1 degree 16-bit two’s complement number
scale: 10
offset: 0
longitude Unit: degrees Longitude component of the location. A positive value
Range: -360 to 360 signifies longitude west of the prime meridian at
Accuracy: 0.1 degree Greenwich, England. A negative value indicates

Resolution: 0.1 degree

longitude east of the prime meridian.

16-bit two’s complement number
scale: 10
offset: 0

Timing Characteristics:

Input Mapping:

TBD seconds

context: (host_aircraft, true)
host_aircraft.altitude = altitude
host_aircraft.velocity = velocity

host_aircraft.ground_track = ground_track
host_aircraft.location = (latitude, longitude)

2.1.2. Radar

The radar device provides information (i.e., flight characteristics) about external aircraft. The radar
sweep rate is 0.25 seconds.

Input Data Item: Radar_Msg (4 data items)

Name Value Space Description / Data Representation
aircraft_id string(8) Aircraft identification.
64-bit string
sweep Unit: sweep_count Radar sweep number modulo 32.

Range: modulo 32
Accuracy: 1
Resolution: 1

5-bit positive number
scale: 1
offset: 0

ATD/CWM Product Requirements

range Unit: nautical miles Distance in nautical miles from this aircraft 10 the
Range: 0 to 300 host_aircraft.
Accuracy: 0.1 nautical mile
Resolution: 0.00001525 27-bit natural number
nautical mile |scale: 65.536
offse.. 0
relative Unit: degrees Bearing to this aircraft relative to the host_aircraft.
bearing Range: 0to 360
Accuracy: 0.1 degree 16-bit unsigned number
Resolution: 0.1 degree scale: 10
offset: 0

Timing Characteristics: TBD

Input Mapping: context: (potential_threat, potential_threat.aircraft_id = aircraft_id)
potential_threat.range = range
potential_threat.relative_bearing = relative_bearing

2.1.3. ATC

The ATC device provides information (i.e.. flight characteristics) about external aircraft. The device
interrupts the ATD/CWM system for every message received. The message received from this device
has the following components.

Input Data Item: ATC_Message

Name Value Space Description / Data Representation |
aircraft_id string(8) Aircraft identification.
64-bit string
altitude Unit: feet Vertical distance height of the potential threat measured
Range: 0 to 60.000 from mean sea level.
Accuracy: 1 1{oot
Resolution: 1 foot 32-bit natural number
scale: 1
offset: 0
velocity Unit: knots Indicated airspeed of the host aircraft.
Range: 0to 700
Accuracy: 1 knot 16-bit natural number
Resolution: 1 knot scale: 1
offset: 0
relative_ Unit: degrees Bearing of the potential threat relative to the host
bearing Range: 0to 360 aircraft. Relative_bearing is measured from the
Accuracy: 0.1 degree ground_track of the host aircraft to the line from the host
Resolution: 0.1 degree aircraft to the potential threat in the clockwise direction
looking down.
16-bit unsigned number
scale: 10
offset: 0

48

ATD/CWM Product Requirements

range

Unit: nautical miles
Range: 0to 300

Accuracy: 0.1 nautical mile
Rcsolution: 0.1 nautical mile

Distance in nautical miles from this aircraft to the host
aircraft.

16-bit unsigned number
scale: 10
offset: 0

ground_track

Unit: degrees
Range: 01to 360
Accuracy: 0.1 degree
Resolution: 0.1 degree

Ground_track is measured from the line of the aircraft to
magnetic north to the horizontal component of the
aircraft’s actual flight path over the surface of the earth.

16-bit unsigned number
scale: 10
offset: 0

timestamp

Range: 0000 .. 2400

The leftmost two digits are the
hours: the rightmost two digits
are the minutes.

Timestamp of when the data was valid. The timestamp is
four digits representing the hours and minutes from the
24-hour clock.

16-bit unsigned number

Timing Characteristics: TBD

Input Mapping:

context: (potential threat, potential threat.aircraft_id = aircraft_id)
potential threat.altitude = altitude

potential threat.velocity = velocity

potential threat.ground_track = ground_track

potential threat.relative_bearing = relative_bearing

potential threat.range = range

2.2. Ourretr COMMUNICATION PATHS

<if there exists A € CWS such that A.Response.Alarm then >

2.2.1. Audible Alarm

The audible alarm is an audio cockpit signal characterized by frequency, duration, and a fixed volume

level.

Output Data Item: Audible_Alarm_Msg (2 data items)

Name Value Space Description / Data Representation
frequency Unit: hertz Pitch of the audible_alarm in hertz.
Range: 1,000 to 10,000
Accuracy: 1hertz 16-bit positive number
Resolution: 1 hertz scale: 1
offset: 0
duration Unit: seconds How long to ring the audible_alarm.
Range: 0.01 to 10.0
Accuracy: 0.01 seconds 16-bit unsigned number
Resolution: 0.01 seconds scale: 100
offset: 0

4.9

ATD/CWM Product Requirements

< endif >
2.2.2. ATD

The ATD is a color display accessible by the ATD/CWM system. The ATD manipulates pixels on
a bitmap display and manipulates icon color, shape, shade, and blink characteristics. This display
can also position, move, or delete an icon and display text. The upper left-hand corner is pixel (0,0).
The x axis is across the display to the right; the y axis is down the display towards the bottom.

Output Data Item: ATD_Msg

Name Value Space Description / Data Representation

id Virtual memory address. Handle for the displayed object.

16-bit natural number
scale: 1

offset: 0

shape Value Encoding: Icon shape.

square: 1)
circle:) 16-bit positive number.
triangle: 3

size Range: 1 .. 1,000 Size in pixels of the icon.

16-bit positive number
scale: 1
offset: 0

fill Value_Encoding: Color for the icon interior.
none: (1)
yellow: (2) 16-bit positive number.
pink: (3)
orange: (4)
red: 5)
green: (6)
blue: (7)
indigo: (8)
purple: (9)
violet: (10)
black: (11)
white: (12)
color Value_Encoding: Color for the icon.
none: (1)
yellow: (2) 16-bit positive number.
pink: (3)
orange: (4)
red: (5)
green: (6)
blue: (7)
indigo: (8)
purple: (9)
violet: (10)
black: (11)
white: (12)

4-10

ATD/CWM Product Requirements

Name

Value Space

Description / Data Representation

fill_blink_rate

Unit: seconds
Range: 0.0..10.0
Accuracy: 0.1 second
Resolution: 0.1 second

Blinking rate for the icon interior.

16-bit unsigned number
scale: 10
offset: 0

obj_blink_rate

Unit: seconds
Range: 0.0..10.0
Accuracy: 0.1 second
Resolution: 0.1 second

Blinking rate for the icon.

16-bit unsigned number
scale: 10
offset: 0

x_location

Range: 0.. 1100

Horizontal pixel location for icon center.

16-bit natural number
scale: 1
offset: 0

v_location

Range: 0.. 1100

Vertical pixel location for the icon center.

16-bit natural number
scale: 1

Output Data Item:Corrective_Action_Msg

offset: 0

Name

Value Space

T Description / Data Representation

ext

string(N)

| A variable length message describing what actions the
pilot should perform to avoid a potential collision. “N™ is
the number of characters in the message.

8*N-bit string

x_location

Range: 0.. 1,100

Horizontal pixel location for the first character of the
text.

16-bit natural number
scale: 1
offset: 0

y_location

Range: 0.. 1,100

Vertical pixel location for the first character of the text.

16-bit natural number
scale: 1
offset: 0

< if there exists M € CWS such that
(M.Response. ATC_Msg OR M.Response.Inter_Air_Msg) then >

2.2.3. Communication

This device can send messages to either the nearest air traffic control center or to a specific potential

threat.

ATD/CWM Product Requirements

<if there exists M € CWS such that M.Response.ATC_Msg then >

Output Data Item: ATC_Msg

Name Value Space Description / Data Representation
destination Value Encoding: 1 Destination code.
16-bit positive number
code Range: 0000 to 7777 The !transponder_code! indicating the specific collision

with each digit only having the
range 0.. 7.

warning situation the host_aircraft is in.

16-bit natural number
scale: 1
offset: 0

<if ATC_Message.Mode = C then>

altitude Unit: fect Vertical distance height of the host_aircraft measured

Range: 0 1o 60.000 from mean sea level.

Accuracy: 1 foot ;

Resolution: 1 foot 32-bit natural number f
scale: 1 |
offset: 0 j

<endif >
<endif >

<if there exists M € CWS such that M.Response.Inter_Air_Msg then >

Output Data Item:Inter_Air_Msg

Name —(

Value Space

Description / Data Representation

destination Value Encoding: 0 Destination code.
16-bit positive number
code Range: 000010 7777 The !transponder_code! indicating the specific collision
warning situation the host_aircraft is in.
with each digit only having the
range 0.. 7. 16-bit natural number
scale: 1
offset: 0
altitude Unit: feet Vertical distance height of the hosi_aircraft measured
Range: 0 to 60.000 from mean sea level.
Accuracy: 1 foot

Resolution: 1 foot

32-bit natural number
scale: 1
offset: 0

4-12

ATD/CWM Product Requirements

latitude Unit: degrees Latitude component of the location. Negative values
Range: -90 10 90 represent latitude south of the equator.
Accuracy: 0.1 degree
Resolution: 0.1 degree 16-bit two’s complement number
scale: 10
offset: 0
longitude Unit: degrees Longitude component of the location. A positive value
Range: -360 to 360 signifies longitude west of the prime meridian at
Accuracy: 0.1 degree Greenwich, England. A negative value indicates
Resolution: 0.1 degree longitude east of the prime meridian.
16-bit two’s complement number
scale: 10
offset: 0
<endif>
< endif >

3. EXTERNAL BEHAVIOR

3.1. PRESENTATION

<if there exists A € CW> such that A.Response.Alarm then >

3.1.1. Audible Alarm

Paradigm: Audible_Alarm
Context: potential_threat
Pitch_and_Duration: (

< endif >

<forall A in Collision_Warning_Situation >
<if A.Response.Alarm then >
(<A.CWS_Def>, <A.Response.Alarm.Pitch>,
<A.Response.Alarm.Duration >)
<endif >
<endfor >)

<if there exists M € CWS such that

(M.Response.ATC_Msg OR M.Response.Inter_Air_Msg) then >

3.1.2. Communication

<if there exists M € CWS such that M.Response.ATC_Msg then >

3.1.2.1. ATC_Msg

Paradigm: Binary
Context: potential_threat
Template: (

ATD/CWM Product Requirements

<forall M in Collision_Warning_Situation >
<if M.Response.ATC_Msg then >
<if ATC_Message.Mode = A then>
(<M.CWS_Def>. “<M.Response.Code > ")
<endif >
<if ATC_Message.Mode = C then>
(<M.CWS_Def>, “<M.Response.Code > @host_aircraft.altitude”)

< endif >
< endif >
< endfor >
)
< endif >

<if there exists M € CWS such that M.Response.Inter_Air_Msg then >
3.1.2.2. Inter_Air_Msg

Paradigm: binary
Context: potential_threat
Template: (
<forall M in Collision_Warning_Situation >
<if M.Inter_Air_Msg then>
(<M.CWS_Def>, “<M.Response.Code> @host_aircraft.altitude@host_air-
craft.latitude@host_aircraft.longitude™)

< endif >
< endfor >
)
< endii >
< endif >
3.1.3. ATD

3.1.3.1. ATD_Msg

Paradigm: map
Context: (potential threat, potential threat.range < < Surveillance_Area.Range >)
Position_Attribute: (potential threat.relative bearing, potential threat.range)
Focus: (host aircraft, true)
Image:
<forall instance S in Aircraft_Status_Display >
(< S.situation.CWS_Def AND S.Partition >,
(Shape: <S.Partition.Shape >
Color: <S.PT_Color >
Blink: <S.PT_Blink >
Fill: <S.PT_Fill>

ATD/CWM Product Requirements

< endfor >
Labels: aircraft.altitude, aircraft.velocity, aircraft.aircraft_id
Coordinate_System: (2 * <Surveillance_Area.Range >, 2 * <Surveillance_Area.Range >)

3.1.3.2. Corrective_Action_Msg

The following table defines the content of the corrective_action message based upon initial conditions
(given in the topmost row of the table) and conditions that hold when the host atrcraft and potential
threat are closest together (leftmost column). The following abbreviations are used in the table.

alty host aircraft.altitude
altpt potential threat.altitude
ratey host aircraft.climb_rate

ratepr potential threat.climb_rate

Paradigm: text
Context: potential threat
Template: (

ATD/CWM Product Requirements

alty > altpy AND alty > altpy AND]
alty - altpy = 500 feet alty - altpy < 500 feet

msd > 500 feet maintain current heading and rate maintain current headmng and rate
msd < 500 feet AND climb at > ft/min
ratey = 0 AND
ratepr = 0
msd < 500 feet AND |climb at X ft/min climb at X {t/min
ratey = 0 AND
ratept > 0
msd < 500 feet AND climb at X {t/min
ratey = 0 AND
ratept < 0

msd < 500 feet AND | maintain current heading and rate climb at X ft/min
rateyg > 0 AND
ratepr = 0
msd < 500 feet AND | {ly level climb at X {t/min
ratey < 0 AND |
ratepr = 0
msd < 500 feet AND | climb at X ft/min climb at X ft/min
ratey > 0 AND
ratept > 0
msd < 500 feet AND | climb at X ft/min
ratey, > 0 AND
ratepy < 0 !
msd < 500 feet AND | climb at X {i/min climb at X {t/min
ratey < 0 AND
ratepy > 0
med < 500 feet AND | flv level climb at X {t/min
ratey < 0 AND
ratept < 0

SO, D

4-16

ATD/CWM Product Requirements

alty < altpy AND ’ alty < altpr AND
altpy - alty > 500 feet altpy - alty < 500 feet

msd > 500 feet maintain current heading and rate maintain current heading and rate
“msd < 500 feet AND dive at X ft/min

rateg = 0 AND
ratepy = 0

" msd < 500 feet AND dive at X ft/min

ratey = 0 AND
ratepr > 0

msd < 500 feet AND |dive at X ft/mir. dive at X ft/min
ratey = 0 AND
ratepy < 0
msd < 500 feet AND | {ly level dive at X ft/min
rateyy > 0 AND
ratepy = 0

msd < 500 feet AND | maintain current heading and rate dive at X ft/min
ratey < 0 AND
ratepr = 0
msd < 500 feet AND |{ly level dive at X ft/min
ratey > 0 AND
ratept > 0
msd < 500 feet AN | fly level dive at X {t/min
ratey > 0 AND
ratepy < 0
msd < 500 feet AND dive at X ft/min
ratey < 0 AND
ratepr > 0
msd < 500 feet AND | dive at X ft/min dive at X ft/min
ratey < 0 AND
ratepy < 0

)

Quantity “X"” appearing in the preceding text messages is computed as:

_ (500 -msd)

{msd

X

Entries marked with dashed lines denote conditions that are not physically possible.
3.2. ACTIVITIES
3.2.1. Update_ATD

This activity invokes the Display presentation to display changes in potential threat collision
attributes.

demand activity
name: Update_ATD

ATD/CWM Product Requirements

context: (potential_threat. true)
starting event: @ T('radar_msg!)
presentation: ATD(potential_threat)

3.2.2. Update_Aircraft_Display_Symbol

This activity invokes the Display presentation to display partition changes in potential threat aircraft

demand activity
name: Update_Aircraft_Display_Syvmbol
context: (potential_threat, true)
starting event: @ T(<ADS.ID_Shape.Partition > [potential_threat])

@F(<ADS.ID_Shape.Partition > [potential_threat))
presentation: ATD(potential_threat)

<if there exists A € CWS such that A.Response.Alarm then >

3.2.3. Ring_Audible_Alarm

This activity invokes the Audible_Alarm presentation to initiate the audible alarm.

<forall A in Collision_Warning_Situation >
<if A.Response.Alarm then >
demand activity

name: Ring_Audible_Alarm. <A.CWS_Name>
context: (potential_threat. true)
<if A.Partition = ALL then>

starting event: @T(<A.CWS_Def> [potential_threat])
<else>

starting event: @T(<A.CWS_Def> [potential_threat])

when partition = <A.Partition >
<endif>

presentation: Audible_Alarm(potential_threat)
<endif >

< endfor >
The Audible_Alarm presentation is activated only when the potential threat transitions from a lower
severity collision warning situation to one of higher severity.

< endif >

<if there exists A € CWS such that A.Response. ATC_Msyg then >
3.2.4. Send_ATC_Msg

This activity invokes the ATC_Msg presentation to send a message to the nearest air traffic control center.

<forall A in Collision_Warning_Situation >
<if A.Response.ATC_Msg then >
demand activity

4-18

ATD/CWM Product Requirements

name: Send_ ATC_Msg. <A.CWS_Name >
context: (potential_threat. true)
<if A.Partition = ALL then>
starting event: @T(<A.CWS_Def> [potential_threat})
<else>
starting event: @T(<A.CWS_Def > [potential_threat])
when partition = <A.Partition>
<endif >
presentation: ATC_Msg(potential_threat)
<endif >
< endfor >

< endif >
<if there exists A € CWS such that A.Response.Inter_Air_Msg then >
3.2.5. Send_Inter_Air_Msg

This activity invokes the Inter_Air_Msg presentation to send a message to the appropriate potential
threat.

<foreach A in Collision_Warning_Situation >
<if A.Response.Inter_Air_Msg then >
demand activity
name: Send_Inter_Air Msg. <A.CWS_Name >
context: (potential_threat, true)
<if A.Partition = ALL then>
starting event: @ T(<A.CWS_Def > [potential_threat])
<else>
starting event: @T(<A.CWS_Def > [potential_threat})
when partition = <A.Partition >
<endif>
presentation: Inter-Air_Msg(potential_threat)
<endif >
< endfor >

<endif >
3.2.6. Send_Corrective_Message

This activity invokes the Corrective_Action_Msg presentation to display a corrective action advisory
message on the host aircraft’s ATD.

<forall A in Collision_Warning_Situation >
<if A.Response.Corrective_Msg then >
demand activity
name: Send_Corrective_Msg. <A.CWS_Name >
context: (potential_threat. true)
<if A.Partition = ALL then>

4-19

ATD/CWM Product Requirements

starting event: @ T(<A.CWS_Def > [potential_threat])

<else>
starting event: @T(<A.CWS_Def > [potential_threat])
when partition = <A.Partition >

<endif >
presentation: Corrective_Action_Msg
<endif >
<endfor >

4. TIMING REQUIREMENTS

Periodic and demand functions are separated because the relevant timing information is different.
4.1. TiIMING REQUIREMENTS FOR PERI10DIC FUNCTIONS

None

4.2. TiMING REQUIREMENTS FOR DEMAND FUNCTIONS

Function Name Maximum Delay to Completion
Update_Aircraft_Display_Symbol 250 ms
Update_ATD 250 ms

<forall A in Collision_Warning_Situation >
<if A.Response.Alarm then >

| Ring_Audible_Alarm. <A.CWS_Name > 1250 ms

<endif >
<if A.Response.ATC_Msg then >

| Send_ATC_Msg. <A.CWS_Name > 250 ms B

<endif >
<if A.Response.Inter_Air_Msg then >

Send_Inter_ Air Msg. <A.CWS_Name > | 250 ms

<endif >
<if A.Response.Corrective_Msg then >

[Send_Corrective_Msg. <A.CWS_Name > [250 ms]

< endif >
< endfor >

4-20

ATD/CWM Product Requirements

Local Dictionary

'id_definition!

radar_msg!'

!transponder_code!

A predicate that defines the criteria for an identified
potential threat. The predicate is written in terms of
values of flight characteristics.

The event that occurs when the ATD/CWM system
receives another Radar_Msg from the radar device.

A four-digit integer code in the range 0000 ... 7777
excluding the following reserved codes.

7500

7600-7677
7700-7777

The last two digits should alwavs read 00.

4-21]

ATD/CWM Product Requirements

This page intentionally left blank.

5. ATD/CWM PROCESS REQUIREMENTS

1. PROCESS SPECIFICATION

This section describes the work products, activities, and process of application engineering for the
ATD/CWM domain. The activities and process describe the requirements for an application engi-
neering environment that supports the application engineer’s decision-making process. The
ATD/CWM Application Engineering Process produces a product that is comprised of one or more
work products (both deliverable and intermediate).

Worxk ProbucTs
The work products produced by the ATD/CWM application engineering process are:
¢ Application Model.
¢ Executable software written in Ada and C.
* DOD-STD-2167A Software Requirements Specification (SRS).
* DOD-STD-2167A Interface Requirements Specification (IRS).
* DOD-STD-2167A Software Design Document (SDD).
APPLICATION ENGINEERING PROCESS AND ACTIVITIES

Figure 5-1 (on the following page) shows the ATD/CWM Application Engineering Process. The dashed
boundary delineates the specification portion of this process. The bullet symbols (®) represent choices
where the application engineer can perform any of the activities indicated by the arrows.

The following paragraphs describe the activities of the Application Engineering Process. A
representation of the forms used by the application engineer follows each activity.

Step 1. Define Application Model Name

The application engineer must first specify a name for his Application Model. The name is entered
in the following form under the Value column.

Decision Mnemonic Value

Application Model Name Model_Name alphanumeric
(case-sensitive; maximum 64
characters in length)

5-1

ATD/CWM Process Requirements

Specification

...

Define Application Model Name

Define Host Aircraft
Characteristics

Define Potential Threat
Characteristics

y

Define Collision
Warning Situation

7 —@

Define Collision
Warning Situation

1

Define Situation Response

Characteristics
v A
v
. i Define Alarm
Define Situation Display Characteristics

I T T T T e I I e i e L

- —LVah'date the Application Model] L Assess the Application Model]— -

Key:
Product Flow
Information
——————————— >

Specification Activity Boundry

Generate the Application from
the Application Model

m:mime Validation

Figure 5-1. Air Traffic Display/Collision Warning Monitor Application Engineering Process

ATD/CWM Process Requirements

The name must uniquely identify this Application Model.

Having entered the Application Model name, the application engineer performs any one of the

following steps. However. he must perform all of them before he has completed the Application
Model.

* Define Host Aircraft Characteristics

¢ Define Potential Threat Characteristics

¢ Define Collision Warning Situation
Step 2. Define Host Aircraft Characteristics

The application engineer specifies the surveillance area radius, the icon shape for the host aircraft, and
the ATC_Msg message format. These values are entered in the following form.

Decision | Mnemonic Value

Host_Aircraft Characteristics |

Surveillance Area Surveillance Area numeric (range 10 to 300)
Host Aircraft Shape | Host_Aircraft_Shape enumeration

(circle, square, triangle)
ATC_Message Mode Message Mode enumeration (A. C)

Step 3. Define Potential Threat Characteristics

The application engineer specifies characteristics unique to potential threats. These characteristics
are the criteria for distinguishing between identified and unidentified aircraft and the icon shape for
identified and unidentified aircraft.

Decision Mnemonic Value

Potential Threat Characteristics

Identification Requirements | ID_Req set (airspeed. altitude)

Snape of Identified Aircrait | iD_Liape enumeration
(circle, square, triangle)

Shape of Unidentified Aircraft | UID_Shape enumeration
(circle, square, triangle)

A potential threat is considered identified when all of its attributes selected in the Identification
Requirements field are known.

Step 4. Define Collision Warning Situation

The application engineer specifies the name of a collision warning situation. He then performs four
more individual steps. in any order. to specify the characteristics of this situation, the response that
the ATD/CWM system performs when this situation is recognized, audible alarm characteristics (if
necessary), and how this situation is displayed to the pilot in the host aircraft on the ATD. These four
steps are listed below.

1. Define Collision Warning Situation Definition. The application engineer performs this step
to specify the characteristics (e.g., distance, severity) of this collision warning situation.

ATD/CWM Process Requirements

2. Define Situation Response. The application engineer performs this step to specify the actions
the ATD/CWM system performs when it recognizes this collision warning situation.

3. Define Situation Display. The application engineer performs this step to specify the icon color.
fill, and blink characteristics of the host aircraft, identified potential threats, and unidentified
potential threats.

4. Define Alarm Characteristics. The application engineer performs this step to specify the
audible alarm characteristics. This step is not performed if the application engineer does not
select the Alarm response for this collision warning situation.

Decision Mnemonic Value

Collision Warning Situation

Collision Warning Situation Name CWS_Name alphanumeric
(case-insensitive with a maximum
length of 64 characters)

Situation Definition

Situation Aircraft Partition Partition enumeration (ID, UID. ALL)

Situation Severity Severity numeric (range 0.00 to 1.00.
resolution 0.01)

Situation Flight Characteristics

Time
Min Time Min numeric (range 1.0 to 300.0,
resolution 0.1)
Max Time Max numeric (range 1.0 1o 300.0,
resolution 0.1)
Range
Min Range_Min numeric (range 0.0 to X where X is
the value chosen for the
surveillance area)
Max Range_Max numeric (range 0.0 to X where X is

the wvalue chosen for the
surveillance area)

Situation Response

Response to ATC ATC Msg enumeration of (True, False)
Response to other Aircraft Inter_Air Msg | enumeration of (True, False)
Corrective Action Response Corrective_Msg | enumeration of (True, False)
Alarm Alarm enumeration of (True, False)
Code Code numeric (exactly 4-digit integer;
range 0000-7777 excluding codes

7500

7600 through 7677

7700 through 7777

Last two digits must be 00.

Alarm Characteristics

5.4

ATD/CWM Process Requirements

Decision [Mnemonic Value i
Pitch Alarm_Pitch numeric (range 1000 through
10,000)
Duration Alarra_Duration |numeric (range 0.01 to 10.00;

resolution 0.01)

Situation Display

Color of Host Aircraft Host_Color enumeration (red, yellow, pink,
orange, blue, green, white, biack,
purple, indigo, violet)

Color of Identified Potential Threats ID_Color enumeration (red, yellow, pink,
orange, blue, green, white, black,
purple, indigo, violet)

Blinking Identified Potential Threats ID_Blink enumeration (True, False)
Fill Identified Potential Threats ID _Fill enumeration (True, False)
Color of Unidentified Potential Threats UID_Color enumeration (red, yellow, pink,

orange, blue, green, white, black,
purple, indigo, violet)

Blinking Unidentified Potential Threats UID_Bilink enumeration (True, False)
Fill Unidentified Potential Threats UID_Fill enumeration (True, False)

If the named collision warning situation does not exist. it is created. The collision warning situation
name NORMAL is reserved and cannot be specified by the application engineer, including all upper-
and lower-case variations.

If the named collision warning situation exists, the reminder of this form will contain previously
entered values.

If the application engineer choses true for Alarm, he must also specify the alarm characteristics pitch
and duration. Otherwise, he can ignore these characteristics.

If the application engineer choses true for Response to ATC, he must chose a value for the Code decision.

Step 4 is repeated as often as there are collision warning situations to specify. A separate form is
completed for each collision warning situation.

Step 5. Validate the Application Model

The application engineer uses this activity to validate the Application Model. This step can only be
performed after the application engineer completes his Application Model. Furthermore, he must val-
idate it before he can use it to generate the application (see Generate the Application from the
Application Model). The following checks are applied during validation:

¢ The application engineer has defined at least one collision warning situation.
» The application engineer has defined values for all fields for every collision warning situation.

e The application engineer has marked the Corrective_Msg decision as true for at least one
collision warning situation.

5-5

ATD/CWM Process Requirements

The application engineer has specified a value for the surveillance area range.

The application engineer has specified a value for the ATC_Message format if, and only if.
there is at least one collision warning situation response which has the Response to ATC
decision marked true.

The value space constraints for time and range are enforced when used in the collision warning
situation characteristics. For each collision warning situation in which Time is specified,
Time_Min < Time_Max. For each coliision warning situation in which Range is specified, the
following checks are done:

- Range_Min < Range Max
- Range_Min < Surveillance Area
- Range_Max < Surveillance Area

The application engineer has specified mutually exclusive icon shapes for the host aircraft,
identified potential threats, and unidentified potential threats.

The collision warning situations cover the entire surveillance area and none of them overlap.

Step 6. Assess the Application Model

The application engineer uses this activity to assess the Application Model. The following check is
performed during this activity:

How quickly would the ATD,/CWM system respond to a detected collision warning situation?

Step 7. Generate the Application from the Application Model

The application engineer uses this activity to generate an application from a validated Application Model.

Step 8. Runtime Validation

The application engineer uses this activity to validate other characteristics of his ATD/CWM system
by performing the following checks while his ATD/CWM system is executing:

The ATD/CWM system performs the desired actions in response to detected collision warning
situations. :

Each aircraft in the surveillance area is displayed with the desired identifying icon.

The ATD/CWM system recognizes each collision warning situation.

2. APPLICATION MODELING NOTATION SPECIFICATION

Form

The form presentation paradigm is a region consisting of a set of label/field pairs. The labels are text
describing the field content and nature. The individual fields are typed. They specify constraints that

5.6

ATD/CWM Process Requirements

exist for the given field. The application engineer is notified if any of the individual field constraints
are violated. He is allowed to create, modify. or delete information associated with any one of the
individual fields. There is also a paradigm for moving between the individual fields of the form.

Decision

Mnemonic Value

The form name identifies a particular application engineering form. The paradigm for forms is fixed
as Form. The form is made up of one or more fields which have the following parameters: Decision,
Mnemonic, and Value. The parameters of this form specification table are:

* Decision. The Decision identifies a particular field in the form. This is a text string that will
be used to label the associated field.

¢ Mnemonics. The Mnemonic identifies a shorthand abbreviation of the Decision.

* Value. Each Value has a specific type (described in the form itself) which is one of the following:

Alphanumeric. An alphanumeric field allows the application engineer to specify text
consisting of alphabetic and numeric characters. An alphanumeric field must begin
with an alphabetic character. Constraints on the number of allowed characters are de-
fined in the Decision Model. Additional constraints such as case-sensitivity and
variable-length may also be included for this field type.

Enumeration. An enumeration field consists of a discrete set of choices. The
application engineer can select individual choices from the legal list of choices (i.e.,
true and false as examples of a boolean decision).

Numeric. A numeric field allows the application engineer to specify a numeric value.
Value constraints for numeric fields are obtained from the Decision Model. Typical
constraints include restricted ranges of numbers, integer-only, and real numbers with
an established number of significant digits.

Set. An enumeration field consists of a discrete set of choices that are presented to
the application engineer. He can select multiple choices from the legal list of choices.

Text. A text field allows the application engineer to specify arbitrary free-form text (i.e.,
any printable character). Additional constraints such as case-sensitivity may also be
included for this field type. There are no predefined maximum number of characters
specified for a text field.

¢ Eachfield has an associated decision from the Decision Model. When the application engineer
enters information in a field, it is associated with the corresponding Decision Model decision.

ATD/CWM Process Requirements

This page intentionally left blank.

6. ATD/CWM PRODUCT DESIGN

Note: The ADARTS (Software Productivity Consortium 1991b) method. as modified in Section A.6
to fit the requirements method, was used to develop the ATD/CWM Product Design.

Product Design consists of three subproducts: Product Architecture, Component Design, and Generation
Design.

1. PRODUCT ARCHITECTURE

The Product Architecture for the ATD/CWM domeain is described by three structures: an adaptable
information hiding structure, an adaptable process structure, and an adaptable dependency structure.
The description of each structure consists of two parts: an interface and a textual/graphical form of
the structure. The interface consists of three parts: instantiation parameters. instantiation constraints,
and a local dictionatry The instantiation parameters describe what adaptations are possible for the
given structure. The value space and a definition are provided for each instantiation parameter. The
instantiation constraints describe any relations that exist among the instantiation parameters that
must be satisfied to obtain a valid structure for a particular family member. The local dictionary
defines terms used in the instantiation parameters or constraints.

ADAPTABLE INFORMATION HIDING STRUCTURE

Instantiation Parameters

Parameter Value Space Definition
Name

alarm boolean A true value means that the components to support the
Audible_Alarm must be included in the information hiding
structure. Otherwise, this parameter’s value is false.

atc_msg boolean A true value means that the components supporting
transmission of an ATC_Msg to air traffic control must be
included in the information hiding structure. Otherwise, this
parameter’s value is false.

inter_air insg boolean A true value means that the components supporting
transmission of an Inter_Air_Msg to a potential threat must
be included in the information hiding structure. Otherwise,
this parameter's vaiue is false.

temp_buffer list of !buffer! Each record in this list contains the name, mnemonic, and
description of an instance of the Temporary_Data_Buffers
module.

Instantiation Constraints - none

6-1

ATD/CWM Product Design/Product Architecture

Local Dictionary

'buffer! record of (
name : identifier,
mnemonic : identifier,
description : text

The graphical form of the adaptable information hiding structure is represented in Figures 6-1
through 6-4. Descriptions of the modules follow the figures.

ATD/CWM

Environment_Hiding Behavior_Hiding Software_Decision

Figure 6-1. Top-Level of the Air Traffic Display/Collision Warning Monitor Information Hiding Structure

ATD/CWM Product Design/Product Architecture

Behavior_Hiding

/\

Function_Drivers

Audible_Alarm

Communication

Air_Traffic_Display

Shared_Functions

I | Static Model

Potential_Threat

Host_Aircraft

L | Dynamic_Model

Potential_Threat_Partition

Collision_Warning_Situation_Status

L | Initialization_and_Termination

Figure 6-2. Decomposition of the Bchavior_Hiding Module

6-3

ATD/CWM Product Design Product Architecture

Environment_Hiding

\

Device_Interface Extended_Computer System_Clock

Audible_Alarm_Device

Air_Traffic_Display_Device

Communication_Device

Navigation

Radar

Ajr_Traffic_Control

Figure 6-3. Decomposition of the Environment_Hiding Module

Software_Decision

Data_Abstraction Logic_Abstraction

Temporary_Data_ Buffers

Situation_Dynamics

Application_Data_Types

Physical_Models

L—— Physical_Quantities L
Aircraft_Motion

Software_Utility

L Numerical_Algorithms

Figure 6-4. Decomposition of the Software_Decision Module

6-4

ATD/CWM Product Design/Product Architecture

Textual description of the adaptable information hiding structure.
1. Environment_Hiding (EH)

The Environment_Hiding module includes the programs that need to be changed if any part of the
hardware and software operating environment of the ATD/CWM system changes or is replaced by
another part that presents a different interface but has the same general capabilities. This module
implements a virtual environment that the rest of the ATD/CWM system uses. The primary hidden
decisions of this module are the interfaces provided by the actual devices and software svstems in the
ATD/CWM environment. The secondary hidden decisions are the algorithms and data structures
used to implement the virtual environment.

1.1. Extended_Computer (EC)

The Extended_Computer module hides the characteristics of the processing environment that are
considered likely to change if the product set is moved to another computer, operating system. or a
different language or language compiler. This module provides an integrated abstraction of processor.
operating system, and language capabilities.

1.2. Device_Interface (DI)

The Device_Interface module contains the programs that need to change if one or more of the devices
with which the ATD/CWM software must interact are replaced with a device having a different
hardware/software interface but the same general capabilities.

1.2.1. System_Clock (CLK)

The System_Clock module encapsulates how software determines the current time and date. The
primary hidden decision is the hardware/software interface to the hardware clock.

<if alarm then >
1.2.2. Audible_Alarm_Device (AAD)

The Audible_Alarm_Device module encapsulates the hardware/software interface to the audible
alarm. Its primary hidden decisions are the value encoding of the frequency and duration to the device.

<endif >
1.2.3. Air_Traffic_Display_Device (ATDD)

The Air_Traffic_Display_Device module encapsulates the hardware/software interface to the display.
Its primary hidden decisions are the particular sequence of operations necessary to enable and posi-
tion various icon symbols; the methods for manipulating icon color, shape, shade, and blink character-
istics; the method for removing an icon from the display: and the method for writing text to the display.

<if atc_msg OR inter_air_msg then >
1.2.4. Communication_Device (CD)

The Communication_Device module encapsulates the hardware/software interface to the
communication device. Its primary hidden decision is how to transmit a string of characters to either
the nearest air traffic control center or specified potential threat.

ATD/CWM Product Design/Product Architecture

<endif>
1.2.5. Navigation (NAV)

The Navigation module encapsulates the hardware/software interface to the host aircraft navigation
device. The primary hidden decisions are how to obtain host aircraft raw data for altitude, airspeed,
ground_track, latitude, and longitude; the scale and format of these input data items; and the de-
vice-dependent operations that must be applied to convert the raw data to the internal format of the
ATD/CWM system.

1.2.6. Radar (RADAR)

The Radar module encapsulates the hardware/software interface to the radar. The primary hidden
decisions are how to obtain raw data for the aircraft_identification, sweep, relative bearing, range,
and timestamp:; the scale and format of these input data items; and the device-dependent operations
that must be applied to convert the raw data to the internal format of the ATD/CWM system.

1.2.7. Air_Traffic_Control (ATC)

The Air_Traffic_Control module encapsulates the hardware/software interface to the ATC device. Its
primary hidden decisions are how to obtain raw data for the aircraft_identification. altitude, airspeed,
ground_track, and range; the scale and format of these input data items: and the device-dependent
operations that must be applied to convert the raw data to the internal format of the ATD/CWM
system.

2. Behavior_Hiding (BH)

The Behavior_Hiding module contains all the software that would need to be changed if the externally
visible, required behavior of the system were to change without an attending change in the hardware.
The primary hidden decision of the module is the rules for producing the required system outputs.
The secondary hidden decision is the algorithms and internal data structures used to implement the
required behavior.

2.1. Function_Drivers (FD)

The Function_Drivers module consists of a set of modules called function drivers. Each function
driver is the sole controller of a set of closely related outputs. The primary hidden decisions of this
module are the rules determining the values of these outputs and the rules determining when these
values are computed.

<if alarm then >
21.1. Audhle_Alarm (AA)

The hidden decisions of the Audible_Alarm module are to determine the frequency and duration at
which to initiate the audible alarm for a specific collision warning situation.

<endif >

<if atc_msg OR inter_air_msg then >

6-6

ATD/CWM Product Design/Product Architecture

2.1.2. Communication (COMM)

The hidden decision of the Communication module is how the content of the Communication
messages are determined for a specific collision warning situation.

<endif >
2.1.3. Air_Traffic_Display (ATD)

The hidden decisions of the Air_Traffic_Display module are when to display aircraft status, where to place
aircraft symbols, what information to display. and the content of the corrective action message.

2.2. Shared_Functions (SF)

Because some behavior is common to several behavior modeling modules, it is expected that if there
is a change in that aspect of the behavior, it will affect all of the functions that share it. Consequently,
a set of modules have been identified each of which hides an aspect of the behavior that may be shared
by two or more other behavior hiding modules.

221, Static_Model (5M)

The hidden decision of the Static_Model module is how to represent and manipulate the static model
of ATD/CWM systems.

2.2.1.1. Potential_Threat (PT)

The Potential_Threat module models potential threats in an ATD/CWM system. Potential threats have
properties of altitude. aircraft_identification. airspeed, ground_track. range. relative_bearing. rate. and
cws_status. The hidden decisions of this module are the internal representation of the properties,
algorithms for manipulating thein, and how to determine the values for potential threat properties.

2.2.1.2. Host_Aircraft (HA)

The Host_Aircraft module models the host aircraft in an ATD/CWM svstem. The host aircraft has
properties of altitude, aircraft_identification, airspeed. location, ground track, rate. and cws_status.
The hidden decisions of this module are the internal representation of these properties, algorithms
for manipulating them, and how to determine the values for these properties.

2.2.2. Dynamic_Model (DM)

The Dynamic_Model module hides a model of how a collision warning situation changes as aircraft
move on predicted flight paths.

2.2.2.1. Collision_Warning_Situation_Status (CWSS)

The hidden decisions of the Collision_Warning_Situation_Status module are how to determine the
collision warning situation status of potential threats and the host aircraft.

2.2.2.2. Potential_Threat_Partition (PTP)

The hidden decision of the Potential_Threat_Partition module is how to determine the potential threat
partition.

6-7

ATD/CWM Product Design/Product Architecture

2.2.3. Initialization_and_Termination (I1T)

The hidden decision of the Initialization_and_Termination module is how system operation is
initiated and terminated.

3. Software_Decision (SD)

The Software_Decision module hides software design decisions that are based on mathematical
theorems, physical facts, and programming considerations such as algorithmic efficiency and
accuracy. The hidden decisions of this module are not described in the product specification. This
module differs from the other modules in that both the hidden decisions and the interfaces are deter-
mined by software designers. Changes in these modules are more likely to be motivated by a desire
to improve performance than by externally imposed changes.

3.1. Data_Abstraction (DA)

The Data_Abstraction module provides data types, including persistent data object collections, that
are useful in the ATD/CWM domain. The primary hidden decisions of the module are the representa-
tion of the data and the representation of the algorithms used to implement the data types. Units of
measure are part of the representation and are hidden. Where necessary, the modules provide
conversion operations which deliver or accept values in specified units.

3.1.1. Temporary_Data_Buffers (TDB)

The Temporary_Data_Buffers module encapsulates details about buffers used to communicate
information between programs. The primary hidden decisions are the size of the buffers, are they
fixed or vary in size. are they stored contiguously in memory or not, what to do when a buffer is full
or empty, are they loosely- or tightlv-coupled. and are the regimes for temporary storage first-in/
first-out, last-in/first-out.

<forall B in temp_buffer >
< B.name > (<B.mnemonic>)
< B.description >

< endfor >

3.1.2. Application_Data_Tvpes (ADT)

The Application_Data_Types module provides abstract data types useful for the ATD/CWM domain.
The primary hidden decisions are the representation of the data type and the representation of the
algorithms used to manipulate them. Where necessary, conversion operations are also provided.

3.1.2.1. Physical_Quantities (PQ)

The Physical_Quantities module encapsulates details about data types used to represent physical
quantities such as distance and velocity. The hidden decisions of this module are the representation
of these data types; the use of range and resolution t» determine representation; algorithms for per-
forming operations; and conversions required when two quantities of the same data type are not
represented in the same way.

3.2. Logic_Abstraction (LA)

The Logic_Abstraction module implements models that derive values based on relationships among
other values. The primary hidden decision of this module are the algorithms used to derive the values.

6-8

ATD/CWM Product Design/Product Architecture

3.2.1. Situation_Dynamics (SD)

The hidden decisions of the Situation_Dynamics module are how physical models can be put together
to predict a future situation starting from a known state history.

3.2.2. Physical_Models (PM)

The software requires estimates of quantities that cannot be measured directly but can be computed
from observables using mathematical models. The primary hidden decisions of the Physical Models
module are the models and the implementation of those models.

3.22.1. Aircraft Motion (AM)

The Aircraft_Motion module encapsulates details of the model of an aircraft’s motion which are used
to calculate aircraft position and altitude from observable inputs. The primary hidden decision of this
module is the equation of motion.

3.2.3. Software_Utility (SU)

The Software_Utility module contains those uatility routines that would otherwise have to be written
by more than one other module. T'ne hidden decisions of this module are the data structures and
algorithms used to implement the programs.

3.2.3.1. Numerical_Algorithms (NA)

The Numerical_Algorithms module provides maihematical service routines needed by more than one
module within the system. These functions include services for data manipulations such as square
root and trigonometric functions. The hidden decisions of this module are the algorithms
implementing the functions.

ADAPTABLE PROCESS STRUCTURE

Instantiation Parameters

Parameter Value Definition
Name
cws list of !cws_info! Each record defines the set of responses performed by the
ATD/CWM system for the specified collision warning
situation.

Instantiation Constraints ~ none
Local Dictionary

cws_info! record of (
cws_name : identifier,
alarm : boolean,
atc_msg : boolean,
inter_air_msg : boolean.
corrective_msg : boolean

ATD/CWM Product Design/Product Architecture

The adaptable process structure is described in two parts. First, the atomic entities used to derive
the adaptable process structure are listed. Second, the adaptable process structure is described in
terms of atomic entity groupings and rationale.

¢ Starting Point

The initial set of atomic entities (i.e., they cannot be subdivided) were identified from the Product
Requirements using the heuristics discussed below.

One atomic entity for each entity of each primary static model class.

Atomic Entity How Many
Host_Aircraft 1
Potential_Threat 1

One atomic entity for each device.

Atomic Entity How Many

Navigation

Radar

Air_Traffic_Control
Audible_Alarm_Device
Air_Traffic_Display Device

Communication_Device

[l RIS RTINS U Y N

One atomic entity for each device input mapping.

Atomic Entity How Many
Process_Navigation 1
Process_Radar 1
Process ATC 1

One atomic entity for each activity.

Atomic Entity How Many
Update_ATD 1
Update_Aircraft_Display_Symbol |1
Ring_Audible_Alarm 0 or more
Send_ATC Msg 0 or more
Send_Inter Air Msg 0 or more
Send_Corrective_Msg 1 or more

6-10

ATD/CWM Product Design/Product Architecture

One atomic entity for each Dynamic Model process.

Atomic Entity

How Many

Time_To_Impact

Minimal_Separation_Distance

Potential_Threat_CWS

Potential_Threat_Partition

Host_Aircraft CWS

Update_Relative_Bearing

] bt] | | = | -

¢ Task Structuring

Update_Host_Aircraft_Information

Composed Of

Criteria

Navigation
Host_Aircraft
Process_Navigation

Synchronous 1/0 device (The navigation device periodically updates
the data and transmits it to the ATD/CWM system).

Periodic event (need for up-to-date host aircraft location within the
resolution specified by the aircraft position algorithm).

Update_Potential_Threat_Information

Composed Of

Criteria

Potential_Threat

Potential Threat CWS
Update_Relative_Bearing
Potential Threat_Partition
Time_To_Impact
Minimal_Separation_Distance

Entity modeling (for each potential threat, updating the information
must be accomplished).

Sequential cohesion (when new information is received for each
potential threat, its collision warning situation status must be
recomputed).

Get_Radar_Information

Composed Of

Criteria

Radar
Process_Radar

Sequential cohesion.

Get_ATC_Information

Composed Of

Criteria

Air_Traffic_Control
Process_ATC

Sequential cohesion.

Update_ATD

Composed Of

Criteria

Air_Traffic_Display_Device

Passive 1/0 device.

ATD/CWM Product Design/Product Architecture

Update_Aircraft_Display_Symbol

Composed Of Criteria
Update_Aircraft_Display_Symbol |To be determined

< if there exists C € cws such that C.alarm then >

Output_Alarm

Composed Of Criteria

Audible_Alarm_Device Asynchronous 1/0 device.
Buffer the ATD/CWM system from the Audible Alarm device driver.

< endif >

<if there exists C € cws such that (C.atc_msg OR C.inter_air_msg) then >

Output_Communication

Composed Of Criteria
Communication_Device Asynchronous I/0 device.
Buffer the ATD/CWM system from the Communication device
driver.

< endif >
< forall C in cws >

Collision_Warning_Situation_ < C.cws_name >

Composed Of Criteria i

<if C.alarm then > Sequential cohesion.
Ring_Audible Alarm

<endif > Functional cohesion (all responses are involved in the response due
<if C.atc_msg then > to a transition into this collision warning situation).
Send_ATC_Msg

<endif > Separation from other tasks which perform the same functionality
<if C.inter_air_msg then > because of prioritization.

Send_Inter_Air Msg

< endif >

<if C.corrective_msg then >
Send_Corrective_Msg
<endif >

Update_CWS

< endfor >

Figure 6-5 shows a graphical representation of the adaptable process structure for the ATD/CWM
domain.

6-12

ATD/CWM Product Design/Product Architecture

External Event

AN

External Event

Timer Event

/ Get ATC
Upda!e

Information
Get Radar ¢
Information Host Aircraft
Information
v
Update
Potential Threat Host Aircraft
Information Information
(x)

Collision Warning
Situation < cws_name >
(x)

—

Update ATD Display Updates

Output Alarm %——) Audible Alarm Data
Output / 3
Commutxgxcano Communication Data

Loosely coupled message communication
buffer or group of x-related loosely
coupled message communication buffers

Process or group of x-related processes

Datastore

Event

Figure 6-5. Adaptable Task Architecture Diagram for the Air Traffic Display/Collision Warning Monitor Domamn

6-13

ATD/CWM Product Design/Product Architecture

* Code Component - Task Integration

The following table shows which adaptable code components in the adaptable information hiding
structure contain the tasks.

Adaptable Code Component Task
Air_Traffic_Display Update_ATD
Host_ Aircraft Update_Host_Aircraft_Information
Potential_Threat Gei_Radar_Information

Get_ATC _Information
<forall C in cws >
Collision_Warning_Situation. < C.cws_name >
< endfor >
Update_Potential Threat Information

< if there exists C € cws such that C.alarm then >

FAildible_Alarm_Device T Output_Alarm

< endif >

<if there exists C € cws such that (C.atc_msg OR C.inter_air_msg) then >

Communication_Device i Output_Communication

<endif >
Adaptable Dependency Structure

Figure 6-6 depicts the dependency structure for the ATD/CWM domain. fhe dependency
assumptions and Interface Requirements for all leaf adaptable code components are captured in the
adaptable code component interface specifications.

ATD/CWM Product Design/Product Architecture

‘Juawaiinbas wpSLL 10
uondwnssy Huapuadap 31 jo 1qunu
JYi st u pus () wawannbal el
ue 0 () uondwasswe Asuspuadap
¥4I siudisep A fuduodwiod
Jyuidepy UB 10) JMBUWIUW Iy T X

“uawannbas asejiaus uv Aq
paljsiivs 238 suondwinssy Kouapuadap
ny uoneRr Aq-paysues 8 spidagg

[woa |}

[IEETI

A

anpnug Luspuada(] sjquidepy 9-9 aundr{

(va 0

{1AVN _

7

[9iaaw |

[Czassma] [1assmo]

_

1 .:,,m [uvava
[

1 SSM0)

TLSSmL

Havv

watd | [wod]
[

A

[Ceanv]

[eanmy]

[unv]

[taas | [raas]

[Craas] [[Taas]

[zaa][1aia |}

ld e -

_ VI _

SOV ‘

U WY

£ LIV

SV

U1 rawy
v WV

_ LI (LY _
A 4Ly

naalv

[Cerawv]

[oawwon] [rowmon]

(LY

WALy

_ S WWOD _ _ Y WWNOD _ _ o :7_39_

Faaaw

LU ALV /_ uaaw | [woaaw] [Cslaav]

[caawv 11 wavw]

6-15

ATD/CWM Product Design‘Component Design

2. COMPONENT DESIGN
Adaptable components are described by an interface which may consists of the following parts:

* Instantiation Parameters. Describe what adaptations are possible for the given adaptable
component. A parameter name. type, and description are provided for each instantiation
parameter.

¢ Instantiation Constraints. Describe any relationships that must be satisfied to obtain a valid
component.

* Assumptions. Contain a concise statement of unchangeable aspects of the component. The
assumptions describe what needs to be true for any implementation to work. The assumptions
describe both dependency and interface assumptions.

* Concrete Operations. Describes programs that can be called by programs in other components.
For each operation, the parameters are described (e.g.. name, type, whether it is read only [1].
update only [O], or both read and update {IO] and undesired events are listed).

* Effects. Describe the externally visible effects of each concrete operation.

* Events Signalled. Describe the signals from this component to users. Indicates the occurrence
of some state change within this component.

* Types. Contain types defined by this component that can be referenced by other components.
* Local Dictionary. Defines anv terms used in the overall interface description.

* Undesired Event Dictionary. Contains definitions of the undesired events that are referred to
in the concrete operations.

The interface description for each adaptable code component contains all of these parts. However.
the interface description for adaptable documentation components contains only the Instantiation
Parameters and Local Dictionary. Adaptable verification and validation components contain only the
Instantiation Parameters, Instantiation Constraints. and Local Dictionary.

ADAPTABLE CODE COMPONENTS
1. Aircraft_Motion (AM)

This module contains programs that model aircraft motion. Aircraft location. velocity. and altitude
with respect to the earth and airmass are derived from measures of aircraft motion from devices and
other physical models modules.

Instantiation Parameters

Parameter Type w Description j}

msd positive { Minimal separation distance as dictated by the FAA such that !
if two arrcraft pass each other within this limit, then a collision |
" has occurred ‘

|
1)

h-16

ATD/CWM Product Design‘Component Design

Instantiation Constraints - non.

Assumptions

Dependency Assumption

D1
D2.
D3.
D4.
Ds5.
D6.
D7.
DS.

D9.

There is a way to obtain the aircraft’s altitude.

There is a way to obtain the aircraft’s velocity.

There is a way to obtain the range for a potential threat.

There is a way to obtain the relative bearing for a potential threat.

There is a way to obtain the ground track of the host aircraft.

There is a way to perform arithmetic operations on velocity, altitude, and rate.
There is a way to compute the square root of a numeric quantity.

There is a way to determine how much time has elapsed between successive readings
for an aircraft’s altitude.

There is a way to compute trigonometric functions.

Interface Requirement

I1.
12.
13.
14.

I5.
16.

This module must determine the current velocity of an aircraft in the vertical axis.
This module must determine the current velocity of an aircraft’s velocity in the X-Y plane.
This module must predict the relative bearing of an aircraft with respect to another one.
This module must allow users to determine the FAA allowed minimal separation distance.
This module must determine the range component that lies in the X-Y plane.

This module must determine the climb_rate of an aircraft.

Concrete Operations

Operation | Parameter Description ; Undesired Events [
get_msd distance:Physical_Quantties.feet:0) !msd! | None |
get_range_xy distance: range_AB! None

Physical_Quantities.nautical_mile:l
altitude_A:Physical Quantities.feet:] lalt_A!
altitude_B:Physical_Quantities.feet;] 'alt_B!
range:
Physical_Quantities.nautical_mile;O
get_climb_rate altitude_Y:Physical_Quantities.feet;I lalt_Y! climb_rate_is_infinite
time_Y:Physical Quantities.seconds:I time_Y!
altitude_X:Physical_Quantities.feet:] lalt_X!
time_X:Physical_Quantities.seconds:] "time_ X! |
climb_rate:Physicai_Quantities.fpm:O 'rate! [
get_velocity_xy velocity:Physical_Quantities.knots:1 Ivelocity! None
rate:Physical_Quantiues.fpm: 'rate! i

| xvvel:Physical_Quantities.knots:O .

ATD/CWM Product Design/Component Design

Effects
get_msd

get_range_xy

get_climb_rate

get_velocity_xy

Events Signalled - none
Types — none

Local Dictionary

falt_A!, lait_B!
falt_X!, lalt_Y!
'msd!
'range_AB!
'rate!

ltime_X!, !time_Y'!

Ivelocity!

Returns the FAA minimal separation distance.

Returns the component of range in the X-Y plane via
the following equation.

range = (distance? - (altitude_A - altitude_B)?)05

Returns the velocity of the specified aircraft in the
vertical axis (i.e., climb_rate). The climb_rate is com-
puted as:

(altitude_Y - altitude_X) / (time_Y - time_X)
where time_Y > time_X.

Returns the current velocity of the specified aircraft
in the X-Y plane via the following equation.

xyvel = (velocity? - rate2)0-5

Most recently measured altitude readings for aircraft
A and aircraft B, respectively.

Altitude readings for the aircraft at times !time_X!
and 'ime_Y!, respectively.

Minimal separation distance dictated by the FAA
(i.e., aircraft whose flight paths that intersect each
other within this distance are considered to have col-
lided).

Distance between the aircraft A and B.
Vertical rate of change (i.e., climb rate).

Times at which !alt_X!' and 'alt_Y! were measured.
respectively.

Most recently measured aircraft velocity.

6-1%

ATD/CWM Product Design/Component Design

Undesired Event Dictionary

climb_rate_is_infinite This undesired event occurs when time_Y equals
time_X in the “get_climb_rate” operation.

2. Air_Traffic_Control (ATC)
Instantiation Parameters - none
Instantiation Constraints - none
Assumptions
Dependency Assumption
None
Interface Requirement

I1. This module must provide altitude, aircraft_identification. velocity, ground_track, range,
and relative_bearing for a potential threat. It must also provide the timestamp defining
when this data was received.

Concrete Operations

Operation Parameter Description Undesired Events

get_atc_message | aircraft_id:string(8):0 None
altitude:Physical_Quantities.feet;O
airspeed:Physical_Quantities.knots;0
ground_track:
Physical_Quantities.degrees:O
range:
Physical_Quantities.nautical_mile;O
relative_bearing:
Physical_Quantities.degrees:O
timestamp:Physical_Quantities.seconds:()

Effects

Events Signalled - none

Types - none
Local Dictionary

Undesired Event Dictionary — none

6-19

ATD/CWM Product Design/Component Design

3. Air_Traffic_Display (ATD)

Instantiation Parameters
Parameter Type Description

icon_shape licon_shape! A record that defines the icon shape 10 use for potential
threats and the host aircraft

display list of !pt_display’ Each record defines the shape, color. blinking. and fill
characteristics for the icon representing a potential threat in
the specified collision warmning situation.

color list of 'host_color! A list of records each defining the color of the host aircrafi
icon for different collision warning situations.

area identifier Diameter of the surveillance area.

Instantiation Constraints

1. Adaptable component Air_Traffic_Display_Device must be instantiated as well.

Assumptions

Dependency Assumption

D1.

D2.

D3.

D4.
Ds5.
D6.
D7.
D8.
D9.
D10.

D11

D12.

There is a way to determine which aircraft needs to be updated on the display.

There is a way to determine what collision warning situation an aircraft is in relative
to the host aircraft.

There is a way to determine which aircraft has triggered the event requiring the need
to have a Corrective_Action_Msg generated.

There is a way to determine the identification number for a potential threat.
There is a way to determine the altitude of the host aircraft and potential threat.
There is a way to determine the rate of the host aircraft and potential threat.
There is a way to determine the potential threat’s partition.

There is a way to determine the ground track of the potential threat.

There is a way to determine the ground track of the host aircraft.

There is a way to determine the distance between the host aircraft and any potential
threat.

There is a way to determine the minimal separation distance between a potential threat
and the host aircraft.

There is a way to compare aircraft rates.

6-20

ATD/CWM Product Design/Component Design

D13.

D14. There is a way to compare aircraft altitudes.

D1s.
D1é.
D17.
Dis.

reach a separation minima.

D19. There is a way to initialize the display.

Interface Requirements

I
I2.

I3.

14.

There is a way to compare aircraft ground tracks.

There is a way to display aircraft status on the ATD.

There is a way to convert an integer number to a character string.

This module must allow users to initialize the display.

There is a way to determine the FAA-aliowed minimal separation distance.

There is a way to determine how much time elapses (time to intersect) before two aircraft

This module must allow users to format and transmit a corrective action advisory message.

This module must allow users the capability to update the display when an aircraft changes

partition.

This module must allow users to update the display when a potential threat transitions

into a collision warning situation.

Local Dictionary

!color_type!

lcws_id!

enumerated (red, orange, green, yellow, white, blue.

black, pink, purple. indigo, violet)

Enumerated name of the collision warning situation.

'host_color! record of (
cws_name : lews_id!,
color : !color_type'

)

3.1. Corrective_Action_Message
Concrete Operations

Operation Parameter Description Undesired Events
corrective_action_msg threat:Potential_threat.pt_handle;l None
Output Produced

Item Type Operation
msg string Air_Traffic_Display_Device.write_text
xloc Air Traffic_Display_Device.position_type
yloc Air_Traffic_Display_Device.position_type

6-21

ATD/CWM Product Design/Component Design

Effects

corrective_action_msg Determines the content of the Corrective_Action_Msg and
sends it to the Air_Traffic_Display_Device.

Function Definition

xloc : 370
vloc: 980

Output Values: msg: !corrective_message!

Local Dictionary

lcorrective_message!

The following table defines the content of the
corrective_action message based upon initial condi-
tions (given in the topmost row of the table) and con-
ditions that hold when the host aircraft and potential
threat are closest together (leftmost column). The
following abbreviations are used in the table.

alty host aircraft.altitude

altpt potential threat.altitude
ratey host aircraft.climb_rate
ratepT potential threat.climb_rate

6.22

ATD/CWM Product Design/Component Design

alty = altpy AND
alty - altpt = 500 feet

alty > altpt AND
alty - altpy < 500 feet

msd > 500 feet

maintain current heading and rate

maintain current heading and rate

msd < 500 feet AND
ratey = (0 AND
ratepr = 0

climb at X ft/min

msd < 500 feet AND
ratey = 0 AND
ratepy < 0

climb at X ft/min

msd < 500 feet AND
ratey = 0 AND
ratepy > 0

climb at X ft/min

climb at X ft/min

msd < 500 feet AND
rategy < 0 AND
ratepy = 0

fly levei

climb at X ft/min

msd < 500 feet AND
ratey < 0 AND
ratepy < 0

fly level

climb at X ft/min

msd < 500 feet AND
ratey < 0 AND
ratepr > 0

climb at X ft/min

climb at X ft/min

msd < 500 feet AND
ratey > 0 AND
ratepr = 0

maintain current heading and rate

climb at X {t/min

msd < 500 feet AND
ratey > 0 AND
ratepy < 0

climb at X ft/min

msd < 500 feet AND
ratey > 0 AND
ratepy > 0

climb at X ft/min

climb at X fv/min

[

ATD/CWM Product Design/Component Design

alty < altpy AND alty < altpt AND
altpy - alty > 500 feet altpr - alty < 500 feet

msd = 500 feet maintain current heading and rate maintain current heading and rate
msd < 500 feet AND dive at X {1/min
ratey = 0 AND
ratepy = 0
msd < 500 feet AND {dive at X ft/min dive at X ft/min
ratey = 0 AND
ratepr < 0
msd < 500 feet AND dive at X ft/min
ratey = 0 AND
ratepy > 0

msd < 500 feet AND |maintain current heading and rate dive at X ft/min
ratey < 0 AND
ratepy = 0
msd < 500 feet AND |dive at X ft/min dive at X ft/min
rateg < 0 AND
ratepy < 0
msd < 500 feet AND dive at X ft/min
ratey < 0 AND
ratept > 0
msd < 500 feet AND |{ly level dive at X ft/min
ratey > 0 AND
ratepr = 0
msd < 500 feet AND | fly level dive at X ft/min
ratey > 0 AND
ratept < 0
msd < 500 feet AND | fly level dive at X {t/min
ratey > 0 AND
ratept > 0

where the quantity “X” appearing in the preceding
text messages is computed as

X = (500 - msd) / tyeg
Item tyqq is the time to intersect. Entries marked with

dashed lines denote conditions not physically
possible.:

6-24

ATD/CWM Product Design/Component Design

3.2. Update_Aircraft_Display_Symbol

Concrete Operations

Operation Parameter Description [Undesired Events |
update_ads threat:Potential_Threat.pt_handle;l l None ’
Output Produced

Item Type Operation

id Air_Traffic_Display_Device.display_handle | Air_Traffic_Display Device.shape_object
shape Air_Traffic_Display Device.shape type
Effects
update_ads Updates the icon shape for the specified potential

Function Definition

threat when its partition changes.

Condition |

partition_threat.partition =

ID

Output Value:

id
shape : id_shape

partition_threat.parution = UlD
id i
shape = uid_shapce J

Local Dictionary

licon_shape!

record of (

host_shape : identifier,
id_shape : identifier.
uid_shape : identifier

)
3.3. Update_ATD
Concrete Operations
Operation Parameter Description Undesired Events
update_cws threat:Potential_Threat.pt_handie;l None

display_status:
Potential_Threat.target_display;l

Output Produced

Nore: The output produced varies as a function of the value of parameter display_status and whether
the target designated by parameter threat has been displayed. There are three cases described
below. Only one of these outputs is produced per invocation of routine “update_cws™.

6-25

ATD/CWM Product Design/Component Design

Case 1: display_status = delete
Item Type Operation i
handle Air_Traffic_Display_Device.display_handle | Air_Traffic_Displayv_Device.delete_object !'

Case 2: threat has not been displayed yet

fill blink_rate
obj_blink_rate
xloc
vloc

Air_Traffic_Display_Device.blink
Air_Traffic_Display_Device.blink
Air_Traffic_Display_Device.position
Air_Traffic_Displav_Device.position
string

string

string

string

string

Item Type Operation
icon_shape Air_Traffic_Display_Device.shape Air_Traffic_Display_Device.create_object
icon_size Air_Traffic_Display_Device.size
icon_fill Air_Traffic_Display_Device. fill
icon_color Air_Traffic_Display_Device.color

Case 3: default case

fill_blink_rate
obj_blink_rate
xloc

Air_Traffic_Display_Device.blink
Air_Traffic_Display_Device.blink
Air_Traffic_Displav_Device.position

Item] Type | Operation
shape Air_Traffic_Display_Device.shape { Air_Traffic_Display_Device.move_object
size Air_Traffic_Display_Device.size {
fill + Air_Traffic_Display_Device fill
color Air_Traffic_Display_Device.color

IR Air_Traffic_Display_Device.position
label 1 string
label 2 string
label_3 string
label 4 string
label_5 string
endif

Function Definition

6-26

ATD/CWM Product Design/Component Design

Event

@T{(!radar_msg!)
Output Value(s): potential_threat:
< forall X in display >
<if X.CWS_Def]potential_threat] then >
1d:
<if X.Partition = ID then>
shape: <icon_shape.id >
<else>
shape : <icon_shape.uid >
<endif >
size: 16
<if X.PT_Fill then >
fill: < X.PT_Color >
<else>
fill: none
<endif >
color: <X.PT_Color>
<if X.PT_Blink then >
fill_blink_rate: 0.125
obj_blink_rate: 0.123
<else>
fill_blink_rate: 0
obj_blink _rate : 0
<endif >
(xloc, vloc) : HMocation!!
iabel 1:+ID: ™ + !potenual_threat ID!
label 2: “Altitude: ” + !potential_threat_altitude!
label 3: “Airspced: ” + !potential_threat_airspeed!
label 4: “Coursc: ™ + !potential_threat_course!
label 5: *“Range: © + !potential_threat_range!
<endif >
< endfor >

| host:

id:

shape: <icon_shape.host_shape >
size: 16

fill: none

color: 'host_color!!
fill blink_rate: 0
obj_blink_rate : 0
xloc: (1270 /2-16/2)
yloc: (1000 /2 -16/2)
label_1:"”

label_2: 7"

label_3: "™

label 4: 7"

label_S5: "™

Local Dictionary

ATD/CWM Product Design/Component Design

""host_color!!

Hlocation''

!arithmetic_opr!

!constant!
lews_id!

lews_predicate!

'potential_threat_airspeed!

Ipotential_threat_altitude!

!potential_threat_coursc!

'potential_threat_ID!

'potential_threat_range!

The value returned by an internal program
get_host_color.

The (x.y) location value returned by an internal
program calculate location.

enumerated (lt, le) which are arithmetic operators
less than and less than or equal to, respectively.

numeric quantity
Enumerated name of the collision warning situation.

union of (

expr: record of (opl:'cws predicate!,
op2 : lews_predicate!.
opr : OR).

time : record of (opl: !constant!
opr : larithmetic_opr!),

range : record of (opl: !constant!,
opr : larithmetic_opr!)

)

An ASCII representation of the airspeed of a given
potential threat.

An ASCII representation of the altitude ot a given po-
tential threat.

An ASCII representation of the ground track
(course) of a given potential threat.

An ASCII representation of the identification num-
ber of a given potential threat.

An ASCII representation of the range between the
host aircraft and a given potential threat.

6-28

ATD/CWM Product Design/Component Design

'pt_display!

radar_msg!

record of (

cws_name : !cws_id!.

cws_def : 'cws_predicate!.

partition : enumerated (ID, UID, ALL)
color : identifier,

blink : boolean,

fill : boolean

)

The event that occurs when another Radar_Msg has
been received from the radar device.

3.4. Initialize_Display

Concrete Operations

icon_color

i AIr_Traffic_Display_Device.color

Operation ! Parameter , Description Undesired Events |
initialize_display None |
Output Produced
Item Type Operation

xloc_c Air_Traffic_Display_Device.position Air_Trafhc_Display_Device.create_display
vloc_¢ Air_Traffic_Display_Device.position
width Air_Traffic_Display_Device.position |
height Air_Traffic_Display_Devicc.position 1 ;
icon_shape Air_Traffic_Display_Device.shape | Air_Traffic_Display_Device.create_object
icon_size Air_Traffic_Display_Device.size i
icon_fill Air_Traffic_Display_Device.fill l

i

|

fill_blink_rate
obj_blink_rate
xloc

vioc

label 1
label_2
label 3
label 4
label S

Air_Traffic_Displax_Device.blink
Air_Traffic_Display_Device.blink
Air_Traffic_Display_Device.position
Air_Traffic_Display_Device.position
string

string

string

string

string

6 2v

ATD/CWM Product Design/Component Design

Effects

initialize_display

Function Definition

A window is created on the display. The window
location is given by (xloc, yloc) and its size is specified
by width (horizontal length) and height (vertical
length). In addition, an icon for the host aircraft is
created and positioned in the center of the window.
The host aircraft icon has the following initial

characteristics:
icon_shape: <icon_shape.host_shape >
icon_size: 16
icon_fill : black
icon_color: color for normal cws_status

fill_blink_rate: 0.0
obj_blink_rate: 0.0
xloc:

yloc:

label_1: nr
label_2: nT
label_3: D
label_4: e
label_5: v

Output Values:

xloc_c: 0
yloc ¢: 0
width : 1270
height : 1000

icon_shape : <icon_shape.host_shape >
icon_size : 16
icon_fill : black
icon_color : white
fill_blink _rate : 0.0
obj_blink rate : 0.0
xloc : 1270/2 - 16/2
vloc : 1000/2 - 16/2
label 1:7”
label 2:7”
label 3:7”
label 4:7”
label 5:""

4. Air_Traffic_Display_Device (ATDD)

Instantiation Parameters - none

Instantiation Constraints - none

6-30

ATD/CWM Product Design/Component Design

Assumptions

Interface Requirement

I1. This module must allow aircraft status information to be displayed on the ATD.

12. This module must allow users to initialize the display.

Concrete Operations

Operation

Parameter

Description

Undesired Events

write_text

msg:string:]
xloc:position;1
yloc:position;1

None

create_object

icon_shape:shape:l
icon_size:size:l
icon_fill:fill:l
icon_color:color:1
fili_blink_rate:blink:I
obj_blink_rate:blink;]
xloc:position;]
yloc:position:I
label_1:string:l
label_2:string:I
label_3:string:]
label_4:string;I
label_S:string:l
id:display_handle;O

None

delete_object

id:display_handle:]

None

move_object

id:display_handle:l
xloc:position;1
yloc:position:1
label_1:string:l
label_2:string:]
label_3:string:]
label_4:string:1
label_S:string:l

None

chg_object_blink

id:display_handle:l
fill_blink_rate:blink:I
obj_blink_rate:blink:I

None

chg_object_fill

id:display_handle:l
icon_filL:fill;]

None

chg_object_color

id:display_handle;l
icon_color:color;1

None

6-31

ATD/CWM Product Design/Component Design

yloc:position;I
width:position;I
height:position:]

Operation Parameter Description Undesired Events
chg_object_shape id:display_handle:l None
icon_shape:shape:l
create_display xloc:position;l None

Effects

chg_object_blink

chg_object_color

chg_object_{fill

chg_object_shape

create_display

create_object

delete_object

move_object

write_text

Events Signalled — none

Types

The specified object is made to blink at the specified
rate.

The color of the object is changed.

Causes the icon interic. to be filled in with the
specified color.

Changes the icon shape of the specified object.

Creates a display window having origin (xloc, yloc)
with the specified height and width. Only one display
window can be opened at a time.

Creates a new object on the display with the specified
attributes and labels. A unique identifier for the
object is returned to the calling program.

The specified object is removed from the display.

Moves the specified object to the new (xloc. yloc)
location.

The text message msg is displayed on the ATD at
location (xtoc. vloc). The previous message displaved
message is overwritten.

6-32

ATD/CWM Product Design’‘Component Design

blink The blinking rate for a displayed icon. Data
representation:
Minimum value: 0.0
Maximum value: 10.0
Units: seconds
Resolution: 0.1 second

Value 0.0 means do not blink.

color enumerated (none, red, orange, green, vellow, white.
blue, black, pink, purple, indigo, violet)

fill Same as color.
display handle A unique identifier for a particular displav object.
position Pixel number. Data representation:
Minimum value: 0
Maximum value: 1,100
Units: pixels
Resolution: 1 pixel
shape enumerated (square, circle, triangle)
size Size of icon in pixels. Data representation:
Minimum value: 1
Maximum value: 100
Units: pixels
Resolution: 1 pixel

Local Dictionary
Undesired Event Dictionarv - none
5. Audible_Alarm (AA)

Instantiation Parameters

Parameter Type Description

ring list of !ring_info! Each record dcfines the frequency and duration to initiate
the audible alarm for an aircraft in a specified collision
warning situation.

Instantiation Constraints
1. Adaptable component Audible_Alarm_Device must be instantiated as well.
Assumptions

Dependency Assumption

ATD/CWM Product Design/Component Design

D1. There is a way to initiate the audible alarm at a specific frequency and time duration.
Interface Requirement

I1. This module must allow users to determine what frequency and duration to ring the
audible alarm. This module must allow users to ring the audible alarm.

Concrete Operations

Operation Parameter Description Undesired Events
ring_alarm cws:Potential_Threat.cws_id;l ews_id! None

Output Produced

Item Type Operation
frequency Audible_Alarm_Device.frequency | Audible Alarm_Device.ring_alarm
duration Audible_Alarm_Device.duration

Events Signalled - none
Types - none
Local Dictionary
lews_id! Enumerated name of the collision warning situation.
'ring_info! record of (
cws_name : lews_id!.

frequency : integer.
duration : real

6. Audible_Alarm_Device (AAD)
The audible alarm device generates a tone that can be heard within the host aircraft cockpit.

Instantiation Parameters

Parameter Type Description

loosely-coupled | boolean A value of true indicates that the communication between
the ring_alarm and the calling operation should be
loosely-coupled; false means thev should be tightly coupled.

Instantiation Constraints

1. If loosely-coupled is true, then adaptable component module Temporary_Data_Buffer must
be instantiated as well.

6-34

ATD 'CWM Product Design‘Component Design

Assumptions

Interface Requirement

I1. This module must allow the audible alarm to be rung at a specified frequency and time

duration.

Concrete Qperations

Operation Parameter

Description Undesired Events

ring_alarm f:frequency:l
d:duration;]

!alarm_frequency! None
lalarm_duration!

Effects

ring_alarm

Events Signalled - none
Types

duration

frequency

Local Dictionary

lalarm_duration!

lalarm_frequency!

Undesired Event Dictionary — none

The audible alarm is rung at frequency f for a time
duration d.

Length of time that the audible alarm is rung. Data

representation:
Minimum value: 0.01
Maximum value: 10.00
Units: seconds
Resolution: 0.01 seconds

Pitch of the tone made by the audible_alarm. Data

representation:
Minimum value: 1,000
Maximum value: 10,000
Units: hertz
Resolution: 1 hertz

Specifies the number of seconds to ring the audible
alarm.

Specifies the frequency, in hertz. at which to ring the
audible alarm.

6-35

ATD/CWM Product Design/Component Desicn

7. Collision_Warning_Situation_Status (CWSS)

This module determines the coliision warning situation status for potential threats and the host
aircraft.

Instantiation Parameters

Parameter Type Description

CWS list of !cws_info! Each record in this list contains the name of the collision
warning situation and a boolean-valued expression that
defines the criteria for the named situation.

Instantiation Constraints
1. The cws parameter cannot be empty.

2. The records in cws must be ordered in decreasing severity levels before instantiating this
module.

Assumptions
Dependency Assumption

D1. There is a way to predict how much time elapses before two aircraft reach a separation
minima.

D2. There is a way to determine the potential threat range.

D3, There is a way to determine what the previous collision warning situation status was
for the specified potential threat.

Interface Requirement

I1. This module must allow users to determine the collision warning situation status of a
potential threat.

I2. This module must allow users to determine the collision warning situation status of the
host aircraft.

Concrete Operations

Operation Parameter Description Undesired
Events
determine_cws_status threat:Potential_Threat.pt_handle;l None
cws:Potential_Threat.cws_id;O
determine_host_cws_status | cws:Potential_Threat.cws_id:O None
Effects
determine_cws_status Determines the collision warning situation status for

the specified potential threat.

determine_host_cws_status Determines the collision warning situation status for
the host aircraft.

6-36

ATD/CWM Product Design/Component Design

Events Signalled - none
Types - none

Local Dictionary

!constant! integer numeric quantity

'cws_info! record of (
cws_name : identifier,
severity : integer,
predicate : !cws_predicate!,
partition : enumerated (ID, UID, ALL)

!cws_predicate! union of (
time : record of (min: !constant!,
max : lconstant!).
range : record of (min: constant!,
max : !constant),
time_and_range : record of (
(t_min: !constant!,
t_max : constant!,
r_min : !constant!,
r_max : !constant!
)
Undesired Event Dictionary - none
8. Communication (COMM)
Parameter Type Description
atc_msg list of !atc_info! Each record indicates the transponder code for the

ATC_Msg sent to the air traffic control center in response
to a specific collision wamning situation.

inter_air_msg list of linter_air_info! Each record indicates the transponder code for the
Inter_Air Msg sent to the air traffic control center in
response to a specific collision warning situation.

mode !mode! Message content for the ATC Msg.

ATD/CWM Product Design/Component Design

Instantiation Constraints

1. If atc_msg is nonempty, then paramecier atc_msg of adaptable component
Communication_Device must be true.

2. If inter_air_msg is nonempty, then parameter inter_air_msg of adaptable component
Communication_Device must be true.

3. Adaptable component Communication_Device must be instantiated as well.
Assumptions
Dependency Assumption

D1. There is a way to determine which aircraft has triggered the event requiring the need
to generate an ATC_Msg.

D2, There is a way to determine which aircraft has triggered the event requiring the need
to generate an Inter_Air_Msg.

D3. There is a way to determine the collision warning situation the potential threat is in
relative to the host aircraft.

D4. There is a way of obtaining the altitude of the host aircraft.

D5. There is a way of obtaining the latitude and longitude of the host aircraft.

D6. There is a way tn send the ATC_Msg tn the air traffic control center.

D7. There is a way to send the Inter_Air_Msg to the appropriate potential threat.

Interface Requirement

I1. This module must allow users to format and transinit an ATC_Msg or Tnter_Air_Mso,
<if there exists C € atc_msg then>
8.1. ATC_Msg

Concrete Operations

Operation Parameter Description Undesired Events
send_atc_msg cws:Potential_Threat.cws_id;I lews_id! None
Output Produced

<if mode = Mode_A then>

Item r Type Operation L
atc_msg: code positive Communication_Dewice.send_atc_msg

ATD/CWM Produrt Design/Component Design

<else >
Item Type Tl Operation |
atc_msg: codc positive i Communication_Device.send_atc_msg |
altitude | Physical Quantities.feet |
< endif >
Local Dictionary
latc_info! record of (cws_name : 'cws_id!,

code : positive)

lews_id! Enumerated name of the collision warning situation.
'mode! enumerated (Mode_A. Mode_C)
<endif >

<if there exists X € inter_air_msg then>
8.2. Inter_Air_Msg

Concrete Operations

Operation Parameter Description Undesired Evenis '

send_ia_msg | ews:Potenuial_Threat.cws_id:l fews_id! None g

Output Produced

[Item i Tvpe l Operation i

'

inter_air msg: code positive Communication_Device send_inter_air_msg
altitude Physical_Quantities.feet
latitude Physical_Quantities.degrees
longitude | Physical Quantities.degrees

Local Dictionary

lews_id! Enumerated name of the collision warning situation.
linter_air_info! record of (

cws_name : !cws_id!,
code : positive

< endif >

6-39

ATD/CWM Product Design‘Component Design

9. Communication_Device (CD)

Instantiation Farameters

—

Parameter | Tvpe Description

i
atc_msg boolean A value of true indicates that functionality must be included !
to enable transmission of an ATC Msg 10 an air traffxcl
control center. Otherwise. this parameter’s value is false. |
f
|

Inter_air_msg boolean A value of true indicates that functionality must be included
to enable transmission of an Inter-Air_Msg to a potential
threat. Otherwise, this parameter’s value is false.

mode 'mode! Message type for the ATC_Msg. This parameter is omitted 1
when atc_msg is false. ;
(

loosely-coupled | boolean A value of true indicates that the communication between

! either send_atc_msg or send_inter_air msg and the calling
1 opcration should be loosely-coupled: false mecans they !
should be tightly coupled.

Instantiation Constraints

1. If parameter looselv-coupled is true. then adaptable component Temporary_Data Buffer
must be instantiated as well.

Assumptions
Interface Requirement

I1. This module must allow the messages to be sent to either the nearest air traffic control
center or to the appropriate potential threat.

Concrete Operations

{ Operation ! Parameter | Description | Undesired Events |

<if atc_msg then >

send_atc_msg code: natural;l None
<if mode = C then>
altitude:Physical_Quantities.feet;l
<endif >

I |

<endif >

<if inter_air_msg then >

send_inter_air_msg | code: natural:] None
altitude:Physical_Quantities.feet;l
latitude:Physical_Quantities.degrees:]
longitude:Physical_Quantiues.degrees;]

6-44)

ATD/CWM Product Design/Component Design

<endif >
Effects
<if atc_msg then >

send atc msg The ATC Msg is sent to nearest air traffic control
_aic_msg _Msg
center.

<endif >
<if inter_air_msg then >

send_inter_air_msg The Inter_Air_Msg is sent to the appropriate
potential threat.

<endif >

Events Signalled - none
Tyvpes - none

Local Dictionary

'mode’ enumerated (A. C)

Undesired Event Dictionary - none
10. Extended_Computer (EC)

This module provides an integrated abstraction of processor. operating system. and language
capabilities. The Reference Manual for the Adu Programrmung Lunguage (United States Department
of Defense 1983) provides the abstract interface for this module.

Instantiation Parameters'— none
Instantiation Constraints - none
Assumptions

Interface Requirement

I1. This module must allow users to convert an integer quantity into its equivalent string
image.

11. Host_Aircraft (HA)

This module models the host aircraft for an ATD/CWM system. The host aircraft has properties of
altitude, airspeed, location, bearing, and climb rate.

6-41

ATD/CWM Product Design/Component Design

Instantiation Parameters — none

Instantiation Constraints - none

Assumptions

Dependency Assumption

D1. Thereis a way to obtain altitude, velocity, location, and ground_track for the host aircraft.

D2. There is a way to determine the collision warning situation status of the host aircraft.

D3. There is a way to determine the climb rate of the host aircraft.

Interface Requirement

I1. This module must allow users to reference properties of the host aircraft.

Concrete Operations

Operation Parameter Description Undesired Events |
get_altitude altitude:Physical_Quantities.feet:O laltitude! None
get_climb_rate rate:Physical_Quantities.fpm:O !rate! None
get_cws_status status:Potential Threat.cws_id:O None i
cet_ground_track |ground_track: !ground_track! None

Physical_Quantities.degrees:O
get_host_data altitude:Physical Quantities.feet:O !altitude! None
ground_track: !ground_track!
Physical_Quantities.degrees;:O
rate:Physical_Quantities.fps;O 'rate!
airspeed:Physical_Quantities.knots;:O lairspeed!
latitude:Physical_Quantities.latitude;O 'location!
longitude:Physical_Quantities.longitude:O
status:Potential_Threat.cws_id:O
get_location latitude:Physical Quantities.latitude;:O location! None
longitude:Physical Quantities.longitude:O
get_velocity | airspeed:Physical_Quantities.knots;0 velocity! None

Effects

get_aititude

get_climb_rate

get_cws_status

Returns the most recently measured altitude of the

host aircraft.

Returns the most recently measured climb rate of the

host aircraft.

Returns the collision warning situation status of the

host aircraft.

6-42

ATD/CWM Product Design/Component Design

get_ground_track

get_host_data

get_location

get_velocity

Events Signalled - none

Types - none

Local Dictionary

laltitude!

'ground_track!

llocation'
'rate!

'velocity!

Undesired Event Dictionary - none

12. Initialization_and_Termination (IT)

Returns the miost recentlv measured ground_track of
the host aircraft.

This function returns the values for all properties of
the host aircraft.

Returns the most recently measured position of the
host aircraft.

Returns the most recently measured velocity of the
host aircraft.

The vertical distance height of the host aircraft
measured from mean sea level.

Ground_track of the host aircraft measured from the
line of the host aircraft to magnetic north to the hori-
zontal component of the host aircraft’s x axis in the
clockwise direction looking down.

Location given in terms of latitude and longitude.
Climb rate of the host aircraft.

Velocity of the host aircraft.

The hidden decision of this module is how ATD/CWM system operation is initiated and terminated.

Instantiation Parameters - none
Instantiation Constraints — none
Assumptions

Dependency Assumption

D1. There is a way to initialize the air traffic display.

Concrete Operations - none

6-43

ATD/CWM Product Design/Component Design

Effects

Events Signalled - none

Types - none

Local Dictionary

Undesired Event Dictionary - none
13. Navigation (NAV)

The navigation device reports host aircraft flight characteristics altitude, velocity, ground_track,
latitude, and longitude to the host aircratt.

Instantiation Parameters - none
Instantiation Constraints
Assumptions

Interface Requirement

I1. This module must provide altitude. velocity, latitude. longitude, and ground_track for the
host aircraft.

Concrete Operations

Operation Parameter [Description Undesired Events

get_nav_data altitude:Physical Quantities.feet:O None
timestamp : Physical_Quantities.seconds;O
airspeed:Physical_Quantities.knots:O
ground_track:

Physical Quantities.degrees;O
latitude:Fuysical_Quantities.latitude;O
longitude:Physical Quantities.longitude;O

Effects

Events Signalled — none

Types - none

Local Dictionary

Undesired Event Dictionary - none
14. Numerical_Algorithms (NA)

This module provides the mathematical service routines that are required by more than one module
in the system. Most values are a predefined arithmetic function of the input parameters.

6-44

ATD/CWM Product Design/Component Design

Instantiation Parameters — none

Instantiation Constraints

Assumptions

Interface Requirement

I1. This module must provide an operation for computing the square root of an real quantity.

12. This module must provide trignometric operations.

Concrete Operations

Operation Parameter Description Undesired Events
arccos plireal:] domain_error
p2ireal:O
cos plireal:l i None
p2:real;O
sin plireal;l None
pZ:real:O
sqrt | plireal;l root_negative
p2:real:O 'sqrt!
Effects
arccos Inverse trignometric cosine function. Produces in p2
the angle whose cosine is pl.
cos Produces in p2 the cosine of angle p1.
sin Produces in p2 the sine of angle p1.
sqrt Returns the square root of pl in p2, if pl is

Evencs Signalled - none

Types - none

Local Dictionary

Isqrt!

Undesired Event Dictionary

non-negative.

The square root of pl. if pl is non-negative.

6-45

ATD/CWM Product Design Component Design

domain_error

root_negative

15. Physical_Quantities (PQ)

This module implements data types needed for representing and calculating physical quantities.

Instantiation Parameters - none

Instantiation Constraints

Assumptions

Dependency Assumption

D1. There is a way to obtain the current time of day.

Interface Requirement

The magnitude of argument p1is greater than 1.

Argument pl of operation sqrt is negative.

I1. This module must provide an operation to convert degrees to radians.

12, This module must provide an operation to convert radians to degrees.

I3, This module must provide operations for comparing values of the same data tvpe.

14, This module must provide operations for assigning values of the same data type.

into difterent representations.

15 This module must provide operations for converting two values of the same data tvpe

16. This module must provide an operation to return the current time of day expressed as

elapsed seconds since midnight.

Concrete Operations

Operation ‘(Parameter Description Undesired Events]
get_umge J current_time:seconds:O 'ume! Nonc %
Effects
Events Signalled - none
Tvpes
degrees Angles measured in degrees. Data representation:
Minimum value: -360.0
Maximum value: 360.0
Units: degrees
Resolution: 0.1 degrees
feet Distance measured in feet. Data representation:

Minimum value: -200.0
Maximum value: 350,000.0

Units: foot
Resolution:1 foot

6-46

ATD/CWM Product Design/Component Design

fpm

fps

knots

latitude

longitude

Velocity measured in feet per minute. Data
representation:

Minimum value: -76.000

Maximum value: 76.000

Units: feet per minute

Resolution: 1 foot per minute

Velocity measured in feet per second. Data
representation:

Minimum value: -1,250

Maximum value: 1.250

Units: feet per second

Resolution: 1 foot per second

Velocity measured in nautical miles per hour. Data

representation:
Minimum value: 0
Maximum value: 750

Units: nautical miles per hour
Resolution: 1 nautical mile per hour

The angular distance north or south of the equator
measured in degrees. A negative value indicates lati-
tude south of the equator: a positive value is latitude
north of the equator. Data representation:

Minimum value : -90.0

Maximum value : 90.0

Units : degrees

Resolution : 0.1 degree

The angular distance on the earth east or west of the
prime meridian at Greenwich, England, to the point
on the earth’s surface for which the longitude is being
determined, expressed in degrees. A negative value is
longitude east of the prime meridian; a positive value
is longitude west of the prime meridian. Data

representation:
Minimum value : -180.0
Maximum value : 180.0

Units : degrees
Resolution : 0.1 degree

6-47

ATD/CWM Product Design/Component Design

nautical_mile

radians

seconds

Local Dictionary

'time!

Undesired Event Dictionary - none
16. Potential_Threat (PT)

Instantiation Parameters

Distance measured in nautical miles. Data
representation:

Minimum value: -3,000.0

Maximum value: 3,000.0

Units: nautical_mile

Resolution:0.1 nautical_mile

Angles measured in radians. Data representation:
Minimum value: -10.000
Maximum value: 10.000
Units: radians
Resolution: 0.001 radian

Time measured in seconds. Data representation:
Minimum value: 0
Maximum value: 20,000,000
Resolution: (.1 second

Current time in seconds on a 24-hour clock. Values
returned are in the range 0.0 to 86.400.0 seconds. in-
clusive, where 0.0 represents midnight.

Parameter Tvpe

Description ;

cws hist of !cws_info!

Each record defines a collision warning situation and its
corresponding responses.

Instantiation Constraints — none
Assumptions

Dependency Assumption

D1. There is a way to obtain altitude. aircraft_identification, velocity, range, ground_track.
and relative_bearing for a potential threat.

D2. There is a way to determine which partition a potential threat belongs to.

D3. Thereis a way to determine the collision warning situation status of the potential threat.

6-48

ATD/CWM Product Design/Compenent Design

D4. There is a way to format and transmit a corrective_action advisory message.

D5. There is a way to determine what frequency and duration to ring the audible alarm.

D6. There is a way to format and transmit an ATC_Msg or Inter_Air_Msg.

D7. There is a way to updatc tiie display when the collision warning situation status of a

potential threat changes.

Interface Requirement

I1. This module must allow users to reference properties of a potential threat.

12. This module must allow users to determine the potential threat partition.

Concrete Operations

status:boolean:O

Operation Parameter Description Undesired Events
altitude_valid threat:pt_handle;1 None
altitude_status:boolean;O
get_aircraft_id threat:pt_handle;1 None
aircraft_id:string(8):0
get_altitude threat:pt_handle;l None
altitude:Physical_Quantities.feet;O laltitude!
get_climb_rate threat:pt_handle;l None
rate:Physical_Quantities.fpm:O Irate!
get_cws_status threat:pt_handie;I None
cws_status:cws_id;O
get_ground_track threat:pt_handie;l None
ground_track: lground_track!
Physical _Quantities.degrees:O
get_partition threat:pt_handle:I None
partition:partition;O
get_range threat:pt_handle;l None
range: 'range!
Physical_Quantities.nautical_mile;O
get_relative_bearing | threat:pt_handle:] None
relative_bearing: !relative_bearing!
Physical_Quantities.degrees;O
get_velocity threat:pt_handle;I None
velocity:Physical_Quantities.knots;O Ivelocity!
velocity_valid threat:pt_handle;l None

Effects

6-49

ATD/CWM Product Design/Component Design

altitude_valid

get_aircraft_id

get_altitude

get_climb_rate

get_cws_status

get_ground_track

get_partition

get_range

get_relative_bearing

get_velocity

velocity_valid

Function Definition

<forall C in cws>

Returns a status indicating whether the most recent
altitude value for the specified aircraft is valid. True
means the altitude is valid: false means that it is
invalid.

Returns the aircratt_identification of the specified
potential threat.

Returns the current altitude of the specified potential
threat.

Returns the most recently measured vertica! rate of
change of the specified potential threat.

Returns the most recent collision warning situation
status of the specified potential threat.

Returns the current ground_track of the specified
potential threat.

Returns which partition the potential threat is a
member of.

Returns the most recently measured range of the
specified potential threat.

Returns the most recently measured relative_bearing
of the specified potential threat.

Returns the most recently measured velocity of the
specified potential threat. Undesired event
velocity_invalid is raised if the velocity value for the
specified potential threat is invalid.

Returns a status indicating whether the velocity value
for the specified aircraft is valid. True means the
velocity is valid; false means that it is invalid.

6-50

ATD/CWM Product Design/Component Design

Event

<if C.partition = ALL then>

@T(< C.cws_def > [potential_threat])
<else>

@T(<C.cws_def > [potential_threat]) when partition = <C.partition>
<endif >

Output Value(s): <if C.alarm then >

Audible_Alarm.ring_alarm(< C.cws_name >)

<endif >

<if C.atc_msg then >
Communication.send_atc_msg(< C.cws_name >)

<endif >

<if C.inter_air_msg then>
Communication.send_ia_msg(< C.cws_pame >)

<endif >

<if C.corrective then >
Air_Traffic_Display.corrective_action_msg(potential_threat)

<endif >

Air_Traffic_Display.update_cws(potential_threat)

< endfor >

Event

@T(<ADS.ID_Shape.Partition > [potential_threat])

Output Valuc:

Air_Traffic_Displav.update_ads(potential_threat)

Event

@F(<ADS.ID_Shape.Partition > [potential_threat])

QOutput Value:

Air_Traffic_Display.update_ads(potential_threat) !

Events Signalled - none
Types

cws_id

partition

pt_handle

Local Dictionary

enumerated (
<forall C in cws >
<C.cws_name >,
<endfor >
NORMAL

)
enumerated (ID, UID)

A unique identifier for a particular potential threat.

ATD/CWM Product Design/Component Design

laltitude!

!constant!

lews_info!

lcws_predicate!

'ground_track!

'range!

'rate!

'relative_bearing!

tvelocity!

The vertical distance height of the potential threat
measured from mean sea level.

numeric quantity

record of (
cws_name : identifier,
severity : integer,
predicate : !cws_predicate!,
partition : enumerated (ID, UID. ALL).
alarm : boolean,
atc_msg : boolean,
inter_air_msg : boolean,
corrective : boolean

)
union of (
uime : record of (min: !constant..
max : !constant!),
range : record of (min: !constant.
max : 'constant!).
time_and_range : record of (
(t_min : lconstant!.
t_max : !constant!,
r_min : lconstant’.
r_max : !constant!
)
)

Ground_track of the potential threat measured tfrom
the line of the potential threat to magnetic north to
the horizontal component of the potential threat's x
axis in the clockwise direction looking down.

Distance from the potential threat to the host
aircraft.

Climb rate of the potential threat.

Bearing of the potential threat relative to the host
aircraft. Relative_bearing is measured from the
ground track of the host aircraft to the line from the
host aircraft to the potential threat in the clockwise
direction looking down.

Velocity of the potential threat.

6-52

ATD/CWM Product Design/Component Design

Undesired Event Dictionary - none
17. Potential_Threat_Partition (PTP)
This module knows how to determine the potential threat partition.

Instantiation Parameters

Parameter Type Description

altitude enumerated (True, False) | A value of True means that the altitude must be known in
order for the potential threat to be considered identified.
Otherwise, this parameter is False.

airspeed enumerated (True, False) | A vaiue of True means that the airspeed must be known in
order for the potential threat to be considered identified.
Otherwise. this parameter is False.

Instantiation Constraints
1. Either parameter altitude. airspeed. or both must be True.
Assumptions
Dependency Assumption
D1. There is a way to determine the availability of a potential threat’s altitude or airspeed.
Interface Requirement
I1. This module must determine the partition of which a potential threat is a member.

Concrete Operations

Operation Parameter Description Undesired Events l

get_partition threat:Potential_Threai.pt_handle:l None
partition:Potential_Threat.partition:O

Effects

get_partition Returns the partition of which the potential threat is
a member.

Events Signalled - none
Types — none
Local Dictionary

Undesired Event Dictionary - none

6-53

ATD/CWM Product Design/Component Design

18. Radar (RADAR)
Instantiation Parameters - none
Instantiation Constraints — none
Assumptions

Interface Requirement

I1. This module must provide aircraft_identification. range. and relative_bearing for a
potential threat.

Concrete Operations

. T . . . - ~ X
Operation : Parameter Description | Undesired Events !

get_radar_data awrcraft_id:stnng().0

] | Nonce
i sweepiinteger:(0)

l Physical_Quantities.degrees:()

I range:

. Physical_Quantities.nautica!l_mile:O

| timestamp:Phvsical_Quanuties.scconds:G : !

|
i i
| relative_bearing: | 1! i
1
: 4 ‘
| |
|

Effects
Events Signalled - none
Types - none
Local Dictionary
Undesired Event Dictionary — none
19. Situation_Dynamics (SD)
Instantiation Parameters - none
Instantiation Constraints - none
Assumptions

Dependency Assumption

D1. There is a way to determine velocity, climb rate. altitude. and ground_track of the host
aircraft.

D2. There is a way to compute trigonometric functions.
D3. There is a way to compute the square root.

D4. There is a way to determine the horizontal component of an aircraft’s velocity.

6-54

ATD/CWM Product Design’/Component Desien

D5. There is a way 1o determine the range component that lies in the X-Y plane.

D6. There is a wav to determine the velocity, climb rate. altitude. ground track.
relative_bearing. and range of the potential threat.

Interface Requirement

I11. This module must determine how much time elapses before two aircraft reach a
separation minima.

12, This module must determine the separation minima two aircraft will pass within each
other.

Concrete Operations

Operation T Parameter | Description | Undesired Events !
get_elapsed_time | threat:Potential_Threat.pt_handlc:l i None
| ime:Physical_Quanuties.second~:() | lelapsed_time! |
get_msd { threat:Potential_Threat.pt_handic:1 !
| distance:Phvsical_Quanuues.feet:O) 'minimal! ‘
Effects
get_elapsed_time Returns the predicted elapsed time betore the host
aircraft and specified potential threat reach the pre-
dicted closest range.
get_msd Returns the predicted closest range between the host

aircraft and specified potental threat assuming no
changes in their respective flight characteristics.

Events Signalled - none
Types — none
Local Dictionary

'elapsed_time! The amount of time that elapsed before the host
aircraft and potential threat reach the minimal sepa-
ration distance assuming no changes in their
respective flight characteristics.

'minimal’ The closet distance (range) between the host aircraft
and potential threat assuming no changes in their
flight characteristics.

Undesired Event Dictionary - none

6-55

ATD/CWM Product Design/Component Design

20. Temporary_Data_Buffers (TDB)
This module provides communication mechanisms between programs for generic message types.

Instantiation Parameters

Parameter Type Description
name identifier Name for the concrete module.
length positive Number of messages of “message_type"” the buffer can hold
before it is full.
message_type !message_type! Message type for the buffer.
consumer list of !consumer! List of the names of the consumers and their relative priority.

Instantiation Constraints

1. The !consumer! records for instantiation parameter consumer must be ordered in decreasing
probability.

Assumptions
Dependency Assumption
D1. Assignment must be defined on the data type stored in the buffer.
Interface I.equirement

11. This module must permit data to be read from and written into a buffer in a
first-in/first-out (FIFO) order.

Concrete Operations

L Operation J Parameter ' Description T Undesired Events ~1|

< if there exists at least one consumer then >

send msg:message_tvpe:] 'in_message! <forall C in consumer >
probability:!probability!:1 <name>_<C.name >_Overflow
| < cndfor >

< forall C in consumer >

b:ceive_ <C.name > [msg:message_type:O !out_message! Flone -{
< endfor >
<else>
send msg:message_type: | } 'in_messagc! <name > _ Overflow
receive msg:message_type:O | lout_message! None

6-56

ATD’/CWM Product Design/Component Design

<endif >
Effects
< if there exists at least one consumer then >

send Adds a message to the FIFO buffer having the
specified priority. An exception is raised if the
designated priority buffer overflows.

<forall C in consumer >

receive_ < C.name > Removes the oldest message from the FIFO buffer.
The calling program is suspended until a message is
available. The service priority of this request is
< C.probability > . The request is processed only af-
ter all higher priority requests have been processed

first.
< endfor >
<else>
send Adds a message to the FIFO buffer.
receive Removes the oldest message from the FIFO buffer.
The calling program is suspended until a message is
available.
<endif >
Events Signalled - none
Types
message_priority enumerated (
<foreach C in consumer >
< C.name >
< endfor >
)

Local Dictionary

6-57

ATD/CWM Product Design/Component Design

!consumer!

fews_id!
'in_message'

'message_type!

'out_message!

Undesired Event Dictionary
< if there exists at least one consumer then >
< forall C in consumer >

<name >_<C.name>_Overflow

< endfor >
<else>

<name>_Overflow

<endif >

record of (
name : !cws_id!,
priority : integer

Consumer A has higher probability than consumer
B when A probability > B.probability.

Enumerated name of the collision warning situation.
The value stored in the buffer.

record of (
module : identifier,
type : identifier

)

The value read from the buffer.

The named buffer will overflow resulting in loss of
data. The message that would cause the overflow is
tossed away.

The buffer will overflow resulting in loss of data. The
message that would cause the overflow is tossed
away.

6-58

ATD/CWM Product Design/Component Design

ADAPTABLE DOCUMENTATION COMPONENTS
1. ATD/CWM Software Requirements Specification (SRS)

Instantiation Parameters

Parameter Type Description

system Isystem_info! The record contains the project-specific system
information.

contract !contract_info! The record contains project-specific contract
information.

revision !revision_info! The record contains document-specific revision
information.

alarm boolean A true value means that the SRS must include

engincering requirements describing the audible alarm
capability of the ATD/CWM system. A false value means
that the SRS must omit these requirements.

atc_msg boolean A true value means that the SRS must include
engineering requirements describing the capability of the
ATD/CWM system to send an ATC_Msg to the nearest
air traffic control center when a collision warning
situation has been detected. A false value means that the
SRS must omit these requirements.

inter_air_msg boolean A true value means that the SRS must include
engineering requirements describing the capability of the
ATD/CWM system to send an Inter Air_Msg to the
appropriate potential threat involved in a collision
warning situation. A false value means that the SRS must
omit these requirements.

higher_ SRS_spec |identifier Higher level SRS specification from which the software
requirements allocated in this SRS have been derived.

Local Dictionary

6-59

ATD/CWM Product Design/Component Design

'contract_info!

Irevision_info!

Isystem_info!

record of (
CDRL_number: identifier,
agency:identifier.
contract_number: identifier

)

record of (
indicator: identifier,
date: identifier

)

record of (
name: identifier,
mnemonic: identifier,
id: identifier

)

2. ATD/CWM Interface Requirements Specification (IRS)

Instantiation Parameters

Description T

The record contains the project-specific system information.

The record contains project-specific contract information.

The record contains document-specific revision information.

A true value means that the IRS must include interface
requirements describing the role. interface relationships,
message formats, and other necessary requirements of the
Audible Alarm device interface in the ATD/CWM system. A
false means that the IRS must omit these requirements.

A true value means that the IRS must include interface
requirements describing the role, interface relationships,
ATC Msg message format, and other necessary
requirements of the Communication device interface in the
ATD/CWM system. A false value means that the IRS must
omit these requirements.

A true value means that the IRS must include interface
requirements describing the role, interface relationships,
Inter_Air Msg message format, and other necessary
requirements of the Communication device interface in the
ATD/CWM system. A false means that the IRS must omit
these requirements.

Parameter Type
system 'system_info!
contract !contract_info!
revision Irevision_info!
alarm boolean
atc_msg boolean
inter_air_msg boolean
mode enum of (A, C)

A C value means that the IRS requirements for the
ATC_Msg describe the format of an additional word in the
message which contains altitude information. An A value
means that the IRS must omit these requirements.

6-60

ATD/CWM Product Design/Component Design

Local Dictionary

Icontract_info!

'revision_info!

Isystem_info!

record of (
CDRL_number: identifier,
agency:identifier,
contract_number: identifier

)

record of (
indicator; identifier,
date: identifier

)

record of (
name: identifier,
mnemonic: identifier,
id; identifier

)

6-61

ATD/CWM Product Design/Component Design

3. ATD/CWM Software Design Document (SDD)

Instantiation Parameters

Description

The record contains the project-specific system information.

The record contains project-specific contract information.

The record contains document-specific revision information.

A true value means that the SDD must include software
design information describing how the ATD/CWM system
causes the audible alarm to ring (e.g., how, when). A false
value means the SDD must omit this design information.

A true value means that the SDD must include sofiware
design information describing how the ATD/CWM system
sends the ATC_Msg to the communication device (e.g., how.,
when). A false value means the SDD must omit this design
information.

A true value means that the SDD must include software
design information describing how the ATD/CWM system
sends the Inter_Air_Msg to the communication device (e.g.,
how. when). A false values means the SDD must omit his
design information.

Parameter l Type
system Fsystem_info!
contract !contract_info!
revision !revision_info!
alarm boolean
atc_msg boolean
inter_air_msg boolean
temp_bufter list of 'butfer!

Each record in this list describes the name. mnemonic, and
hidden decisions of an instance of the Temporary_Data_Buffers
module in the ATD/CWM system.

Local Dictionary

buffer!

'contract_info!

record of (
name : identifier,
mnemonic : identifier.
description : text

)

record of (
CDRL_number: identifier,
agency:identifier,
contract_number: identifier

6-62

ATD/CWM Product Design/Component Design

'revision_info! record of (
indicator: identifier,
date: identifier

)
Isystem_info! record of (
name: identifier,
mnemonic: identifier,
id: identifier
)

Adaptable Verification and Validation Support
Adaptable CSU Test Specifications
1. Audible_Alarm (AA)

Instantiation Parameters

ring list of !ring_info! Each record defines the pitch and duration at which 1o ring
the audible alarm for a specified collision warning situation.

Parameter] Type Description 1
|
1
|
|
cws list of lcws id! Names of the collision warning situations. l

Instantiation Constraints

1. The duration value for each !ring_info! must have a floating accuracy of exactly two decimal
digits. For example. 12.92 is legal: 12.9 and 8 are not legal values.

Local Dictionary
fews_id! identifier
'ring_info! record of (
cws_name : identifier,

frequency : integer,
duration : real

2. Collision_Warning_Situation_Status (CWSS)

Instantiation Parameters

Parameter Type Description
cws list of 'cws_info! Each record in this list contains the name and criteria of a
collision warning situation.
cws_id list of identit.er A list of the names of the collision warmning situations
specified in the application model.
area positive Diameter of the surveillance area
partition identfier Name of the concrete module that determines a potential

threat partition.

6-63

ATD/CWM Product Design/Component Design

Instantiation Constraints

1. The range value in the !cws_predicate! record must have a floating accuracy of exactly one
decimal digit. For example, 12.9 is legal: 12.98 and 8 are not legal.

2. The time value in the !cws_predicate! record must have a floating accuracy of exactly one
decimal digit. For example, 30.2 is legal; 30.23 and 30 are not legal.

3. The cws parameter cannot be empty.
4. The records in cws must be ordered in decreasing severity level before instantiating this module.
Local Dictionary

'ews_info! record of (
cws_name : identifier,
severity : real,
predicate : lcws_predicate!,
partition : enum of (ID, UID. ALL)

)
lews_predicate! union of (
time : record of (
time_min : !time_value!.
time_max : 'time_value!),
range : record of (
range_min : !range value!,
range_max : 'range_value'),
time_and_range : record of (
(time_min : 'time_value!,
time_max : 'time_value!,
range_min : 'range_value!,
range_max : !range_value!
)
)
'range_value! Distance from the potential threat to the host
aircraft.
!time_value! How much time elapses before the potential threat

and host aircraft reach a separation minima assum-
ing a constant velocity, climb rate, and ground_track.

6-64

ATD/CWM Product Design/Component Design

This page intentionally left blank.

6-65

ATD/CWM Product Design/Generation Design

3. GENERATION DESIGN
SOFTWARE GENERATION DESIGN
Decision Model Extensions

This section contains extensions to the Decision Model. An extension is included in this section for
one of the following reasons:

* The extension reflects a future variation planned for the Decision Model that is currently
defaulted to a value that will remain fixed for this iteration of the Domain Model.

* The extension reflects additional variations on the Adaptable Components that were
discovered during the designing and implementing of those components. These extensions
may form the basis for Decision Model extensions in future iterations.

Producer_Consumer_Coupling

The Producer_Consumer_Coupling (PCC) describes whether the communication between a message
producer and corresponding consumer is tightly- or loosely-coupled. The decision that must be made
for this decision class is:

Producer_Consumer_Coupling : and

Looselv-coupled (A true value means that the message communication between the
producer should be loosely-coupled from the consumer. False means
tightlv-coupled.) : enumerated (true, false)

6-66

ATD/CWM Product Design/Generaton Design

Message_Buffering

The Message Buffering (MB) describes what kind of message buffering exists between the message
producer and message consumer. It also describes the characteristics of the code component that im-
plements the desired message buffering. The decisions that must be made for this decision class are:

Message Buffering + : and
Buffer Name (Name of the buffering code component.) : identifier(1..64)
Mnemonic (Mnemonic for the buffering code component.) : identifier(1..64)

Length (Maximum number of messages that can be stored in the message
buffer.) : integer(1..100)

Message_tvpe (Data type of message stored in the buffer.) : and

Module (Name of the module providing the definition of the message data
type.) : identifier(1..64)

Type (Data type for the messages stored in the buffer.) : identifier(1..64)
Consumer (Description of the consumers of messages stored in the buffer.)+ : and
Name (Consumer name.) : identifier(1..64)

Prioritv (Consumer priority. Higher priority is denoted by a target priority
value.) : integer

Desc (A textual description what the code component (i.e.. the component that
implements the desired message buffering) encapsulates and its correspond-
ing hidden decisions.) : text

Minimal_Separation_Distance

The Minimal_Separation_Distance (MSD) describes the minimal separation distance dictated by the
FAA. If two inflight aircraft pass each other within this distance, a collision has occurred. The decision
that must be made for this decision class is:

Minimal_Separation_Distance : and

distance (Minimal separation distance in feet as dictated by the FAA such that
if two aircraft pass each other within this limit, a collision has
occurred.) : feet(100..500)

Resolution of Decision Model Extensions
These values must be used exactly as shown for the values for adaptation parameters.

Nore: The [x] notation used in the following resolutions differentiates between the multiple instances
of the named decision class. The “()” notation designates an empty list.

6-67

ATD/CWM Product Design ‘Generation Design

MSD (distance: 500.0)

MB[1] (Buffer_Name: Audible_Alarm_Buffer.
Mnemonic: AAB.

Length: 10.
Message_type: (Module: Audible_Alarm_Device,
Type: Alarm_Message Type).
Consumer: 0.
Desc: “This module encapsulates details about a first-in/first-out buffer to

facilitate loosely-coupled information communication between the audible alarm message producer
and the audible alarm device driver. The hidden decisions of this module are how many entries the
buffer can hold, whether the buffer is of a fixed or varying size, whether the buffer is stored
contiguously in memory or not. and what to do when the buffer is full or empty.”

)

MB|2] (Buffer Name: Communication_Butfer,
Mnemonic: CB.

Length: 10,
Message_type: (Module: Communication_Device,
Type: Communication_Msg_Type).
Consumer: 0.
Desc: “This module encapsulates details about a first-in/first-out buffer to

facilitate loosely-coupled information communication between the communication message producer
and the communication device driver. The hidden decisions of this module are how many entries the
buffer can hold, whether the buffer is of a fixed or varying size, whether the buffer is stored contiguous-
ly in memory or not, and what to do when the buffer is full or empty.”

)

MBJ3] (Buffer_Name: Radar_Target_Priority_Buffer.
Mnemonic: RTPB.

Length: 20,
Message_type: (Module: Potential_Threat.
Type: pt_handle).
Consumer: Q.
Desc: “This module encapsulates details about a butfering scheme to facilitate

loosely-coupled information communication between a single producer and multiple consumers. The
hidden decisions are how many entries the buffers can hold. whether the buffers are of fixed or varving
size, whether the buffer is stored contiguously in memory or not, and what to do when a buffer is full
or empty.”

)

MB[4] (Buffer_Name: Target_Buffer,
Mnemonic: TB,

Length: 20,
Message type: (Module: Potential Threat,
Type: target_info).
Consumer: ().
Desc: “This module encapsulates details about a first-in/first-out buffer to

6-68

ATD/CWM Product Design/Generation Desizn

tacilitate loosely-coupled information communication between the radar and ATC devices and the
target processor. The hidden decisions of this module are how many entries the buffer can hold. wheth-
er the buffer is of a fixed or varying size. whether the buffer is stored contiguously in memory or not,
and what to do when the buffer is full or empty.”

)

PCC[1] (Loosely_coupled: True)
PCCJ2] (Loosely_coupled: True)
1. ARCHITECTURE AND COMPONENT MAPPINGS

Table 6-1 collectively presents the Architecture and Component mappings of the software Product
Design. The first column of the table names the concrete components that can potentially be included
in a generated system. The second column of the table (the Architecture Mapping) describes condi-
tions that must hold for the concrete component to be included in the generated system. Reterences
in these conditions (indicated below in boldface tvpe) correspond directly to resolutions of either the
decision model or the decision model extensions. It a component is to be included in a generated sys-
tem, then the third column (the Component Mapping) describes which Adaptable Component is to
be used to implement the concrete component.

Table 6-1. Softwarce Architecture and Component Mappings

[Concrete Component Name | Include this Concrete Adaptable Component Namc |
| Component... ‘
| Audible Alarm_Device {1t there 1sa Colliston Warning Situation, C. | Audible_Alarm_Device

|
|
| Audible_Alarm_Buffer ‘ If there is (1) a Collision Warning Situation. | Temporary_Data_Buffers
‘ ' C.suchthat C.Response.Alarm is True. and]
¥ (2y PCC|1}].Loosely_coupled 1s True. _ ‘

| such that C.Response.Alarm is Truc. f

!
|
|
I Communication_Device i If there is a Collision Warning Situation. C, | Communication_Device
t such that either C.Response ATC_Msg OR

C.Response.Inter_Air_Msg is True.

r

Communication_Buffer If there is (1) a Collision Warning Situation, | Temporary_Data_Buffers
C, such that either C.Response ATC_Msg
OR C.Response.Inter_Air_Msg is True,
and

(2) PCC[2].Loosely_coupled is True.

Audible_Alarm If there is a Collision Warning Situation, C, | Audible_Alarm
such that C.Response.Alarm is Tiue.

Communication If there is a Coilision Warning Situation, C, | Communication
such that either C.Response ATC_Msg OR
C.Response.Inter_Air_Msg is True.

Radar_Target_Prioritv_Buffer | Always Temporary_Data_Buffers

Potential_Threat Always Potenuial_Threat J

6-06%

ATD/CWM Product Design/Generation Design

Tabie 6-1. continued

Concrete Component Name

Include this Concrete

Adaptable Component Name

Component...

Target_Butfer Alwayvs Temporary_Data_Buiters ;
Host_Aircraft Always Host_Aircraft i
Initialization_and_Termination | Always Initalization_and_Termination
Navigation Always Navigation

Radar Always Radar

Air_Traffic_Control Always Air_Traffic_Control
Air_Traffic_Display_Device Always Air_Traffic_Display_Device
Colhision_Warning_Situation_ | Always Collision_Warning _

Status Situation_Status |
Physical Quantities Always Physical Quantites ;
| Numerical_Algorithms WAlways | Numenical_Algorithms |
Air_Traffic_Display Always | Air_Traffic_Display

Potential_Threat_Parution

If there is a Collision Warning Situation
such that CWS.Partition is not ALL.

Potenual_Threat_rartition

Situation_Dynamics Always i Situation_Dvnamics |
Aircraft_Motion Always Aircraft_Motion

IHS Always THS

Process_Structure Always Process_Structure

2. DECISION MAPPING

Table 6-2 presents the Decision mapping of the software Product Design. The first column of the tabic
names the Concrete Components that can potentially be included in a generated svstem. The second
column of the table lists the adaptation parameters for the Adaptable Component used to implement
the Concrete Component (per the Component mapping from Table 6-1). The third column (the Deci-
sion Mapping) describes where values for the adaptation parameters are to be obtained. References
(indicated below in boldface type) correspond directly to resolutions of either the Decision Mode!l or
the Decision Model Extensions.

Table 6-2. Software Component Decision Mapping

Concrete Component Name Parameter Value is obtained from...
Audible_Alarm_Device 1 {Loosely_coupled PCCi1}.Loosely_coupled
Audible_Alarm_Buffer 1 {Name MB|1]).Buffer_Name

2 |Length MBJ[1].Length
3 |Message_type.Module | MB{1}.Message_type.Module

6-70

ATD/CWM Product Design/Generation Design

Table 6-2, continued

Concrete Component Name Parameter Value is obtained from...
Audible_Alarm_Buffer 4 | Message_type.Type MBJ1]).Message_type.Type
(continued)

forall X in MB[1].Consumer, aggregate parameters 5 and 6.

5 | Consumer.Name X.Name
6 | Consumer.Priority X.Priority
Communication_Device 1 {Atc_msg True if there is a Collision Warning Situation,

C. such that C.Response ATC_Msg is Truc.
Otherwise. False.

2 l Inter_air_msg Tiuveif there is a Collision Warning Situation.
C, such that C.Response.lnter_Air Msg is |
; True. Otherwise, False.

3 |Mode ATC_Message.Mode

4 |Looselv_coupled PCC|2].Loosely_coupled
Communication_Bufter 1 |[Namec MB|2].Buffer_Name

2 |Length MB{2}.Length

3 | Message_typc. MB[2].Message_type.Module

Module
4 | Message_type.Type | MB[2].Message_type.Type
:

foral! X in MB{2].Consumer, aggregate parameters 5 and 6.

5 | Consumer.Namc X.Name

6 | Consumer.Priority X.Priority
Audible_Alarm forall C in CWS such that C.ResponseAlarm = True, aggregate

parameters 1, 2, and 3.

1 |Ring.cws_name C.CWS_Name

2 | Ring.frequency C.Response.Alarm.Pitch

3 | Ring.duration C.Response.Alarm.Duration
Communication forall C in CWS such that C.Response ATC_Msg = True, aggregate

parameters 1 and 2.

1 | Atc_msg.cws_name C.CWS_Name

2 | Atc_msg.code C.Response.Code

forall C in CWS such that C.Response.Inter_Air_Msg = Truc. aggregate
parameters 3 and 4.

6-71

ATD/CWM Product Design‘Generation Design

Table 6-2. continued

Concrete Component Name Parameter Value is obtained from...
Communication (continued) 3 |Inter_air_msg. C.CWS_Name
CWws_name

4 |Inter_air_msg.code C.Response.Code

5 | Mode ATC_Message.Mode
Radar_Target_Priority_Buffer 1 {Name MBJ3].Buffer_Name

2 |Length MBi[3].Length

3

Message_type.Module

MB|3].Message_type.Module

ﬂ Message_type. Type

MBJ[3].Message_type.Type

forall C in CWS, aggregate parameters 5 and 6.

5 | Consumer.Name

C.CWS_Name

6 | Consumer.Priority

C.Severity

Potential_Threat

torall C in CWS. aggregate parameters 1 through 10.

1 | Cws name

C.CWS_Name

2 | Severity

C.Severity

Parameters 3.1 and 3.2 are onl
1s used:

y used when a “time only”-based predicate

3.1 | Predicate.time.min

32 }

Predicate.time.max

C.CWS_Def.Time.Min
C.CWS_Def.Time.Max

Parameters 4.1 and 4.2 are only used when a “range only”-based predicate

1S used:

4.1 | Predicate.range.min

C.CWS_Def.Range.Min

4.2 | Predicate.range.max C.CWS_Def.Range Max

Parameters 5.1 - 5.4 are used when both a “time and range™-based predicate
is used:

5.1 | Predicate. C.CWS_Def.Time.Min

t_and_r.t_min

5.2 | Predicate. C.CWS_Def.Time.Max
t_and_r.t_max

5.3 | Predicate. C.CWS_Def.Range.Min
t_and_r.r_min

5.4 | Predicate. C.CWS_Def.Range Max
t_and_r.r_max

6 | Partition C.Response.Partition

6-72

ATD/CWM Product Design/Generation Design

Table 6-2, continued

Concrete Component Name Parameter Value is obtained from...
Potential_Threat (continued) 7 | Alarm C.Response Alarm
8 | Atc_msg C.Response ATC_Msg

9 |Inter_air_msg

C.Response.Inter_Air_Msg

10 | Corrective C.Response.Corrective_Msg
Target_Buffer 1 |Name MB|4).Buffer_Name
2 |Length MB[4].Length

3 {Message_type.Module

MB[4].Message_type.Module

4 | Message tvpe.Type

MB|4).Message_type.Type

forall X in MB{4].Consumer, aggregate parameters 5 and 6.

5 | Consumer.Name X.Name
6 | Consumer.Priority X.Priority
Host_Aircraft None.
Initialization_and_Termination | None.
Navigation None.
Radar None.
Air_Traffic_Control None.
Air_Traffic_Display_Device None.

Collision_Warning_Situation_
Status

forall C in CWS, aggregate pa

rameters 1 through 6.

1 | CWS Name

C.CWS_Name

2 | Severity

C.Severity

Parameters 3.1 and 3.2 are onl
is used:

y used when a “time only™-based predicate

3.1 | Predicate.time.min C.CWS_Def.Time.Min

3.2 | Predicate.time.max C.CWS_Def.Time Max

Parameters 4.1 and 4.2 are only used when a “range only”-based predicate
is used:

4.1 | Predicate.range.min C.CWS_Def.Range.Min

4.2 | Predicate.range.max C.CWS_Def.Range.Max

Parameters 5.1 - 5.4 are used when both a “time and range™-based predicate
is used:

5.1 | Predicate. C.CWS_Def.Time. Min

t_and_r.t_min

ATD/CWM Product Design/Generation Design

Table 6-2. continued

Concrete Component Name Parameter Value is obtained from...
Collision_Warning_Situation_ 5.2 | Predicate. C.CWS_Def.Time.Max
Status (continucd) t_and_r.t_max
5.3 | Predicate. C.CWS_Def.Range Min
t_and_r.r_min
5.4 | Predicate. C.CWS_Def.Range.Max
t_and_r.r_max
6 | Partition C.CWS.Partition
Physical_Quantities None.
Numerical_Algorithms None.

Air_Traffic_Display

1 .[Icon_shape.host_shape

ADS. Host_Shape

2

Icon_shape.id_shape

ADS.ID_Shape.Shape

3

Icon_shape.uid_shape

ADS.UID_Shape

forall X in ASD, aggregate parameters 4 through 11.

4 {Cws_name X.Situation.CWS_Name
Parameters 5.1 and 2.2 are only used when a “time only”-based predicate
is used:
5.1 | Predicate.time.min X.Situation.CWS_Def.Time.Min
5.2 | Predicate.time.max X.Situation.CWS_Def.Time . Max
Parameters 6.1 and 6.2 are only used when a “range only”-based predicate
is used:
6.1 | Predicate.range.min X.Situation.CWS_Def.Range.Min
6.2 | Predicate.range.max X.Situation.CWS_Def.Range. Max
Parameters 7.1- 7.4 are used when both a “time and range”-based predicate
is used:
7.1 | Predicate. X.Situation.CWS_Def.Time.Min
t_and_r.t_min
7.2 | Predicate. X.Situation.CWS_Def.Time.Max
t_and_r.t_max
7.3 | Predicate. X.Situation.CWS_Def.Range.Min
t_and_r.r_min
7.4 | Predicate. X.Situation.CWS_Def Range Max
t_and_r.r_max
8 [Partition X.Partition
9 | Color X.PT_Color
10) Blink X.PT_Blink

6-74

ATD/CWM Product Design/Generation Design

Table 6-2, continued

Concrete Component Name

Parameter

Value is obtained from... .

Air_Traffic_Display (continued)

11 ‘rFill

X.PT_Fill

forall X in HASD, aggregate parameters 12 and 13.

12 | Color.cws_name X.Situation.CWS_Name
13 | Color.color X.Color
14 | Area Surveillance_Area.Range
Potential_Threat_Partition 1 | Altitude True if “altitude” is one of the criteria for
identification listed in ADS.ID_Shape.
Partition. Otherwise, Faise.
2 | Airspced True if “airspeed” isone of the criteria for
identification listed in ADS.ID_Shape.
Partition. Otherwise. False.
Situation_Dynamics None. |
Aircraft_Motion 1 [Msd MSD.distance
IHS 41 | Alarm True if there is a Collision Warning |
Sitwation. C, such that C.Response.Alarm |
is True. Otherwise, False.
2 |ATC _Msg True if there is a Collision Warning Situation.
, C. such that C.Response ATC_Msg is True.
% Otherwise, False.
30 Inter_Air_Msg True if there is a Collision Warning Situation, ‘
C, such that C.Response.Inter_Air_Msg is |
True. Otherwise, False.

ATD/CWM Product Design/Generation Design

Table 6-2, continued

Concrete Component Name Parameter Value is obtained from...
IHS (continued) B Construct a hist of iemp_bulicr. There is a temp_ovuller tor every MB[x]
contained in the “Resolutions to the Decision Model” given the following
restrictions:

e MB]|1] used only if PCC[1].Loosely_coupled is True and
there is a Collision Warning Situation, C, such that
C.Response.Alarm is True.

e MB[2] used only if PCC[2].Loosely_coupled is True and
there is a Collision Warning Situation, C, such that either
C.Response.ATC_Msg or C.Response.Inter_Air_Msg is
True.

* MB[3] always used.

* MBJ4] always used.

4.1 | Temp_buffer.Name MBix].Buffer_Name
4.2 | Temp_Buffer. MBi[x].Mnemonic
Mnemonic

4.3 {Temp_Buffer.Desc MB{x].Desc
Process_Structure forall C in CWS, aggregate parameters 1 through 5.

1 [cws.CWS_Name C.CWS_Name

2 Jcws.Alarm C.Response.Alarm

3 |cws.ATC_Msg C.Response. ATC_Msg

4 lcws.Inter_Air Msg C.Response.Inter_Air_Msg

5 |cws.Corrective_Msg C.Response.Corrective_Msg

DoOCUMENTATION GENERATION DESIGN
Decision Model Extensions
Revision_Information

The Revision_Information (RI) describes the revision date and document set for all document
components of the ATD/CWM domain. The decisions that must be made for this decision class are:

Revision_Information : and
date (Date when the documentation set was generated.) : TBD
indicator (Document set indicator.) : identifier(1..64)

Resolution of Decision Model Extensions

TBD

6-760

ATD/CWM Product Design/Generation Design

1. ARCHITECTURE AND COMPONENT MAPPINGS

Table 6-3 collectively presents the Architecture and Component mappings of the documentation
Pre Juct Desipi,. This table has thic come organization as Table €-1.

Table 6-3. Documentation Architecture and Component Mappings

Concrete Document Name

Incivde this Concrete
Component...

Adaptable Document Name

IRS

always

IRS

SRS

always

SRS

2. DECISION MAPPING

Table 6-4 presents the Decision mapping of the documentation Product Design. This table has the
same organization as Table 6-2.

Table 6-4. Documentation Component Decision Mapping

Concrete Document Name i Parameter Value is obtained from... E
IRS 1.1 | Svstem.Name P1.Svstem.Name T
1.2 | System.Mnemonic P1.System.Mnemonic [
1.3 Svstem.1d PlL.System.ID !
2.1 | Contract. PI.Contract.CDRL N
CDRL_Number
2.2 | Contract.Agency PlL.Contract.Agency
| 2.3 | Contract. PL.Contract.Number
1 i Contract_Number i
3.1 | Reviston.Indicator TBD
3.2 | Revision.Date TBD
4 | Alarm True if there is a Collision Warning
Situation, C, such that C.Response.Alarm
is True. Otherwise, False.
5 | ATC_Msg True if there is a Collision Warning Situation,
C, such that C.Response ATC_Msg is True.
Otherwise, False.
6 [Inter Air Msg True if there is a Collision Warning Situation,
' C, such that C.Response.Inter_Air_Msg is
l True. Otherwise, Faise.
7 | Mode ATC_Message . Mode
SRS 1.1 | System.Name Pl.System.Name

677

ATD 'CWM Product Design/Generation Design

Table 6-4. continued

Concrete Document Name Parameter Value is obtained from...
SK> (continueq) l.zi)'stem.Mnemonlc ' PL.System.Mnemonic

1.3 | System.Id PL.System.ID

2.1 | Contract. PL.Contract.CDRL
CDRL_Number

2.2 | Contract.Agency Pl.Contract.Agency

2.3 | Contract. PIL.Contract.Number
Contract_Number

3.1 | Revision.Indicator TBD

3.2 | Revision.Date TBD

4 ! Alarm True if therc is a Collision Warning

Situauon. C. such that C.Response.Alarm
is True. Otherwise, False.

5 | ATC Msg True if there is a Collision Waming Situation.
C, such that C.Response ATC_Msg is True.
Otherwise, False.

6 |Inter_Air Msg True if there isa Collision Warning Situation,
C. such that C.Response.Inter_Air_Msg is
True. Otherwisc. False.

VERIFICATION AND VALIDATION SUPPORT GENERATION DESIGN
Decision Model Extensions
Threat_Partition

The Threat_Partition (TP) describes the name of the concrete code component that determines a
potential threat’s partition.

Threat_Partition : and

Partition_Module (Name of the concrete module that determines a potential threat's
partition.) : identifier(1..64)

Resolution of Decision Model Extensions
TP (Partition_Module:Potential_Threat)
1. ARCHITECTURE AND COMPONENT MAPPINGS

Table 6-5 collectively presents the Architecture and Component mappings of the verification and
validation support Product Design. This table contains the architecture and component mappings
for CSU test components. The table has the same organization as Table 6-1.

6-78

ATD/CWM Product Design/Generation Design

Table 6-5. Verification and Validation Support Architecture and Component Mappings

I Concrete CSU Test L Include thic Concrete Adap:able CSU Test
Component Name Component... Component Name
Audible_Alarm always AA CSU
CWSS always CWSS_CSU

2. DECISION MAPPING

Table 6-6 presents the Decision mapping of the verification and validation support Product Design.
This table has the same organization as Table 6-2.

Table 6-6. Verification and Validation Support Component Decision Mapping

Concrete Component Name

Parameter

Value is obtained from...

Audible_Alarm

parameters 1, 2, and 3.

forall C in CWS such that C.ResponseAlarm

True. aggregate

1 |Ring.cws_name C.CWS_Name

2 |Ring.frequency C.ResponseAlarm.Pitch

3 | Ring.duration C.Response.Alarm.Duration
forall C in CWS, aggregate parameter 4.
4 |CWS Id C.CWS_Name

Collision_Warning_Situation_
Status

forall C in CWS, aggregate pa

rameters 1 through 6.

4.2 | Predicate.range.max

1 | CWS_Name C.CWS_Name
2 | Severity C.Severity
Parameters 3.1 and 3.2 are only used when a “time only”-based predicate
is used:
3.1 | Predicate.time.min C.CWS_Def.Time.Min
3.2 | Predicate.time.max C.CWS_Def.Time Max
Parameters 4.1 and 4.2 are only used when a “range only”-based predicate
is used:
4.1 | Predicate.range.min C.CWS_Def.Range Min

C.CWS_Def.Range.Max

is used:

Parameters 5.1 - 5.4 are used when both a “ume and range”-based predicate

6-79

ATD/CWM Product Design/Generation Design

Table 6-6. continued

Concrete Component Name

Parameter

Value is obtained from...

Collision_Waming_Suuation_
Status (continued)

3

5.2

53

5.4

T N
.1 | Pred.caic.

t and_r.t_min

Predicate.
t_and_r.t_max
Predicate.
t_and_r.r_min

Predicate.
t_and_r.r_max

C.CWS_Def.Time.Min

C.CWS_Def.Time.Max

C.CWS_Def.Range.Min

C.CWS_Def Range.Max

6

Partition

C.CWS.Partition

forall C in CWS, aggregate parameter 7.

7 JCWS_Id C.CWS_Name
& | Partition TP.Partition_Module
‘ 9 |Area Surveillance_Area.Range

6-80

7. ATD/CWM PRODUCT IMPLEMENTATION

1. ADAPTABLE COMPONENTS
ADAPTABLE CObE COMPONENTS
1. Aircraft_Motion (AM)

Spec

-- Aircraft Motion (AM)

~- This module contains programs that model aircraft motion. Aircraft
-- location, velocity, and altitude with respect to the earth and

-- airmass are derived from measures of aircraft motion from devices
-- and other physical modules. The primary hidden decision is the

-- equation of motion.

with Physical Quantities;
generic
msd : Physical Quantities.feet;

package Aircraft Motion is

-- Return the FAA dictated minimal separation distance. If two aircraft
-- pass each other within this limit, then a collision has occurred.

function get_msd return Physical_Quantities.feet;

-- In three dimensional space, the range between two aircraft

—-- can be decomposed into two components: range_xy which is

-- the range component that lies in the X-Y plane; and range z which

-- is the component lying in the Z plane. This function computes range_xy.

function get range xy(distance : in Physical_Quantities.nautical mile;
altitude_A : in Physical_Quantities.feet;
altitude B : in Physical_Quantities.feet)
return
Physical Quantities.nautical mile;

-~ Returns the aircraft’s climb _rate (i.e., its vertical velocity).

7-1

ATD/CWM Product Implementation/Adaptable Code Components

-- Exception Climb_Rate_Is Infinite is raised when time_Y equals time X.

Climb Rate_Is_Infinite : exception;

function get_climb_rate(altitude Y
time Y
altitude_X
time_X

Physical_Quantities.fpm;

in Physical Quantities.feet;

in Physical Quantities.seconds;

in Physical Quantities.feet;

in Physical_Quantities.seconds)
return

—~ In three dimensional space, the velocity of an aircraft can be
-- decomposed into two components: velocity_zy which is the
-- component occurring in the X-Y plane; and velocity_z which

-- 1is the velocity occurring in the Z

plane (i.e., vertical velocity also

-- referred to as climb_rate). This function computes velocity xy.

function get_velocity xy(velocity
rate : in

end Alrcraft_Motion;

Body

-- Aircraft_Motion (AM) package body

-- This module contains programs that

in Physical_Quantities.knots;
Physical Quantities.fpm)
return Physical Quantities.knots;

model aircraft motion. Aircraft

-- location, velocity, and altitude with respect to the earth and
-~ airmass are derived from measures of aircraft motion from devices
-- and other physical modules. The primary hidden decision is the

-- equation of motion.

with Physical Quantities: use Physical_Quantities;

with Numerical_Algorithms;
package body Aircraft Motion is

-- Maximum permissible climb_rate value. Used to smooth
-- out gyrations in the get_climb_rate computation.

Max_Climb_Rate : constant Physical Quantities.fpm := 5000.0;

-- Return the FAA dictated minimal separation distance. If two aircraft

-- pass each other within this limit,

then a collision has occurred.

function get_msd return Physical Quantities.feet

is
begin

return msd;
end get_msd;

7-2

ATD/CWM Product Implementation/Adaptable Code Components

-- In three dimensional space, the range between two aircraft

-- can be decomposed into two components: range xy which is

-- the range component that lizs in the X-Y plane; and range_z which

-- is the component lying in the Z plane. This function computes range xy.

function get_range_xy(distance : in Physical Quantities.nautical_mile;
altitude_A : in Physical Quantities.feet;
altitude B : in Physical Quantities.feet)
return
Physical Quantities.nautical_mile
is
begin
return Physical Quantities.nautical_mile(
Numerical_Algorithms.sqrt(distance * distance -
((altitude A -
altitude B)/Physical_ Quantities.nautical_mile_to_feet *
(altitude_A -
altitude_B)/Physical Quantities.nautical_mile_to_feet)));
end get_range_xy;

-- In three dimensional space, the velocity of an aircraft can be

-- decomposed into two components: velocity_zy which is the

-- component occurring in the X-Y plane: and velocity_z which

—-— is the velocity occurring in the Z plane (i.e., vertical velocity also
-- referred to as climbt_rate). This function computes velocity_xy.

function get_velocity_xy(velocity : in Physical_Quantities.knots;
rate : in Phyvsical Quantities.fpm)
return Physical Quantities.knots
is
begin
return Physical Quantities.knots(
Numerical_ Algorithms.sqgrtivelocity * velocity -
(rate/Physical_Quantities.knot_to_fpm) *
(rate/Physical_Quantities.knot_to_fpm)));

end get_velocity_xy,;

-- Compute the climb_rate (velocity in the vertical direction) give
-- two altitude readings and the time stamp of each.

~-- 1f the time stamps are equal, then we have a division by zero

-- problem. Thus, we raise exception Climb_Rate_Is_Infinite.

function get_climb rate(altitude Y : in Physical Quantities.feet;

time_Y : in Physical_Quantities.seconds;

altitude X : in Physical_Quantities.feet;

time X - in Physical Quantities.seconds)
return

Physical_Quantities.fpm
is
climb_rate : float;

~J
v
»)

ATD/CWM Product Implementation/Adaptable Code Components

begin
-- By definition, time_Y is always greater than time X. If
-- time_Y < time_X, then we need to handle a time stamp rollover.
if time_Y < time_X then
climb_rate := Physical_Quantities.fpm(
((altitude_Y ~ altitude_X) /
float((time_Y - time X +
Physical Quantities.seconds”last))) *
Physical_Quantities.fps_to_fpm);
elsif time_ Y = time_X then
raise Climb_Rate Is_Infinite;
else
-- altitude/time gives us dimensions of fps (feet per second). So
-- we must convert 1t to fpm.
climb_rate := Physical Quantities.fpm(
((altitude_Y - altitude X) / float((time Y - time X))) *
Physical Quantities.fps_to_fpm);
end if;
—-— Adjust rate if necessary.
if climb_rate > Max Climb_Rate then
return Max_Climb_Rate;
else
return climb_rate:
end if;
end get_climb_rate:

end Aircraft_Motion:

2. Air_Traffic_Control (ATC)

Spec

-- Air_Traffic_Control (ATC) package spec

-- This module encapsulates the hardware / software interface

-~ to the Air_Traffic_Control device. Its primary hidden decisions

-- are how to obtain raw data for the aircraft_identification, altitude
-- airspeed, ground track, and range; the scale and format of these

-- input data items; and the device-dependent operations that must be
-- applied to convert the raw data to the internal format of the

~~ ATD/CWM system.

*

with Physical_Quantities;
package Air_Traffic Control is

-- Returns informaticn status for a specific aircraft.

7-4

ATD/CWM Product Implementation/Adaptable Code Components

procedure get_atc_message(aircraft_id : out string,

altitude : out Physical Quantities.feet;
airspeed : out Physical Quantities.knots;
ground_track : out Physical Quantities.degrees;
target range : out

Physical_Quantities.nautical_mile;
relative_bearing : out

Physical Quantities.degrees;
timestamp : out Physicael Quantities.seconds);

end Air_Traffic_Control;

Body

-~ Air Traffic_Control (ATC) package body

-~ This module encapsulates the hardware / software interface

-~ to the Air_Traffic_Control device. Its primary hidden decisions

-~ are how to obtain raw data for the aircraft_identification, altitude,
-~ airspeed, ground track, and range; the scale and format of these

-~ input data items; and the device-dependent operations that must be
-~ applied to convert the raw data to the internal format of the

-~ ATD/CWM system.

with Physical Quantities;
with Simulation_bData;
package body Air_Traffic_Control is

-- Returns information status for a specified aircraft.
procedure get_atc_message(aircraft_id : out string;
altitude : out Physical Quantities.feet;
airspeed : out Physical Quantities.knots;
ground_track : out Physical Quantities.degrees;
target_range : out
Physical_ Quantities.nautical mile;
relative_bearing : out
Physical_Quantities.degrees;
timestamp : out Physical_Quantities.seconds)
is
begin
-- Get information from ATC.
Simulation_Data.get_sim data(aircraft_id, altitude, airspeed,
ground_track, target_range,
relative_bearing,;
timestamp := Physical_Quantities.get_ time;
end get_atc_message;

7-5

ATD/CWM Product Implementation/Adaptable Code Components

end Air_Traffic_Control;
3. Air_Traffic_Display_Device (ATDD)
Nore: The body of this module is implemented Ada and C.

Spec

-- Air_Traffic_Display Device (ATDD) package spec

—- This module encapsulates the hardware/software interface to

-- the display. Its primary hidden decisions are the particular sequence
-~ of operations necessary to enable and position various icon

—- symbols; the methods for manipulating icon color, shape, shade,

—- and blink characteristics; the method for removing an icon from

-- the display; and the method for writing text to the display.

package Air Traffic Display_Device is

-- Icon shape

type shape is (square, circle, triangle);

-- Positioning type

subtype position is integer range -1270 .. 1270;

—- Identifier for a created object.
type display handle is private;
null_display_handle : constant display_handle;
—-- Color and Fill type

type colors is (none, red, orange, green, yellow, white, blue,
black, pink, purple, indigo, violet);

type fill is new colors;
type color is new colors;

—-— Icon size in pixels

subtype size is integer range 1..100;

-- Blink type

subtype blink is float digits 1 range 0.0 .. 10.0;

7-6

ATD/CWM Product Implementation/Adaptable Code Components

Create object. Creates an icon
and labels,

with the given attributes

and returns a handle to it.

function create_object(icon_shape in shape;
icon_size in size;
icon_fill in fill;
icon_color in color;

fi1ll blink_rate in blink;
obj_blink_rate in blink;
xloc in position;
yloc in position;
label 1 in string;
label 2 in string;
label 3 in string;
label 4 in string;
label_ 5 in string) return display_handle;
-- Write text to the given location
procedure write_text (msg in string; xloc in position; yloc in
position);
—— Set the colcr of an icon
procedure chg_object_color(id : in display_handle; icon_color : in color);
~- Fill an icon
procedure chg_otject_fill(id in display_handle; icon_fill in fill);
-— Blink an icon at the specified rate.
procedure chg_object_blink(id in display_handle;
fill blink_rate in blink; obj_blink_rate in blink);
-—- Set the geometric shape of the icon.
procedure chg object_shape (id in display_handle; icon_shape in shape);

Move an icon to a new location

procedure move_object (id
xloc
yloc
label_ 1
label_2
label_3

and update its labels

in display handle;
in position;
in position;

in string;
in string;
in string;

77

ATD/CWM Product Implementation/Adaptable Code Components

label 4 : in string;
label 5 : in string);

-- Delete an object from the display.

procedure delete_object(id : in display_handle);

-- Create a display window of a given size at the specified location.
procedure create_display(xloc : in position; yloc : in position;
width : in position; height : in position);

private

type icon_record;
type display_handle is access icor_~ecord;
null display_handle : constant display_handle := null;

end Air_Traffic_Display_Device;

Body (Ada code part)

-- Air_Traffic_Display_Device (ATDD) package body

-- This module encapsulates the hardware/software interface to

-- the display. Its primary hidden decisions arve the particular sequence
-- of operations necessary to enable and position various icon

-- symbols; the methods for manipulating icon color, shape, shade,

-- and blink characteristics; the method for removing an icon from

-- the display; and the method for writing text to the display.

with System;

with Unchecked_Deallocation;

with Text_IO;

package body Air_Traffic_Display_Device is

-- Label storage and a constant "clear" label. This will be used to
-- package the five labels for sending to the C routines. The string
-~ lengths are currently bounded to 25 characters.

subtype label is string (1..26);
clear_label : constant label := label”(1..25 => - “, others => ASCII.NUL);
-- Message text storage. Used to store the previous written text message.

old msg_text : string(l..35);
previous_message : boolean := false;

7-8

ATD/CWM Product Implementation/Adaptable Code Components

Icon information.

is created, a handle is returned to the calling program.

Record used to store information
about an icon displaved on the screen. When an icon

The icon record stores the following information.

icon_shape
icon_size
icon_fill
icon_color
f£fill blink_rate
obj_blink_rate

- icon shape

- icon size (in pixels)

- icon fill color
- icon border color

- how fast the filled interior should blink
- how fast the icon itself should blink

- "x" axis location of the upper left corner of the icon
- "y" axis location of the upper left corner of the icon

xloc
yloc
label 1 -~ First icon label
label 2 ~ Second icon label
label 3 -~ Third icon label
label 4 - Fourth icon label
label 5§ -~ Fifth icon label
type icon_record is

record

icon_shape shape;

icon_size : size;

icon_fill : fill;

icon_color color;

fill blink_rate : blink;

obj_blink_rate : blink;

xloc : position;

vloc : position;

label 1 : label;

label 2 label;

label 3 label;

label 4 label;

label 5 label;

end record;

Unchecked deallocation routine for icon_records.

procedure free is new unchecked_deallocation(icon_record, display_handle);

Interface declarations to the Xlibrary stuff.

procedure C_Create_Window (X_Location

pragma Interface (

pragma Import_Procedure (internal => C_Create_Window,

Y Location
width
Height

C, C_Create Window) ;

in
in
in
in

Integer
Integer
Positive
Positive

]
)
[

)

7-9

ATD/CWM Product Implementation/Adaptable Code Components

external => CreateWindow,

parameter_types => (integer,
integer,
positive,
positive),

mechanism => value);

procedure C_Create_Square (X_Location : in Integer :
Y Location : in Integer ;

Side_Size : in Positive ;
Fill : in Natural :
Border : in Natural ;
Label_ 1 : in System.Address ;
Label_2 : in System.Address ;
Label 3 : in System.Address ;
Label 4 : in System.Address ;
Label 5 : in System.Address);

pragma Interface (C, C_Create_Square) ;
pragma Import_ Procedure (internal => C_Create_Sguare,
external => CreateSqguarc,
parameter_types => (integer,
integer,
positive,
natural,
natural,
system.address,
system.address,
system.address,
system.address,
system.address),
mechanism => value);

procedure C_Create_Circle (X Location : in Integer ;
Y Location : in Integer ;

Diameter : in Positive ;
Fill : in Natural ;
Border : in Natural ;
Label 1 : in System.Address ;
Label_2 : in System.Address ;
Label 3 : in System.Address ;
Label 4 : in System.Address ;
Label_5 : in System.Address);

pragma Interface (C, C_Create_Circle) ;
pragma Import_ Procedure(internal => C_Create_Circle,
external => CreateCircle,
parameter_types => (Integer,
Integer,
Positive,
Natural,
Natural,

7-10

ATD/CWM Product Implemeniation/Adaptable Code Components

procedure C_Create_Triangle (X_Location : in Integer

System.Address,

System.Address,

System. Address,

System.Address,

System.Address),
mechanism => value);

Y Location : in Integer

Height : in Positive :
Fill : in Natural ;
Border : in Natural ;
Label_1 : in System.Address ;
Label 2 : in Systcm.Address ;
Label_3 : in System.Address ;
Label 4 : in System.Address ;
Label_5 : in System.Address);

pragma Interface (C, C_Create_Triangle) ;
pragma Import_Procedure(internzl => C_Create Triangle,

external => CreateTriangle,

parameter_types => (integer,
integer,
positive,
natural,
natural,
system.address,
system.address,
system.address,
system.address,
system.address),

mechanism => value);

procedure C_Draw_Square (X_Location : in Integer ;

Y Location : in Integer ;
Side_Size : in Positive) ;

pragma Interface (C, C_Draw_Square) ;
pragma Import_Procedure(internal => C_Draw_Square,

external => DrawSquare,
parameter_types => (integer, integer, positive),
mechanism => value);

procedure C_Draw_Circle (X_Location : in Integer ;

Y Location : in Integer ;
Diameter : in Positive)

pragma Interface (C, C_Draw Circle) ;
pragma Import_Procedure(internal => C_Draw_Circle,

external => DrawCircle,
parameter_types => (integer, integer, positive),
mechanism => value);

ATD/CWM Product Implementation/Adaptable Code Components

procedure C_Draw_Triangle (X_Location : in Integer ;
Y Location : in Integer ;
Height : in Positive) ;

pragma Interface (C, C_Draw_Triangle) ;

pragma Import_Procedure(internal => C_Draw_Triangle,
external => DrawTriangle,
parameter_types => (integer, integer, positive),
mechanism => value);

procedure C_Draw _Line (From_Location_X : in Integer ;
From_Location_Y : in Integer ;
To_Location_X : in Integer ;
To_Location_Y : in Integer) ;

pragma Interface (C, C_Draw_Line) ;
pragma Import_Procedure(internal => C_Draw_Line,
external => DrawlLine,
paramerer_types => (integer, intege., integer,
integer),
mechanism => value);

procedure C_Draw_String ¢ X _Location : in Integer ;
Y Locacion : in Integer :
The_String : in System.Address) ;

pragma Interface (C, C_DPraw_String) ;
pragma Import_Procedure(internal => C_Draw_String,
external => DrawString,
parameter_types => (integer, integer,
system.address),
mechanism => value);

procedure C_Move_Triangle (Height : in Positive
From_X Location : in Integer ;
From_Y_Location : in Integer ;

To_X_Location : in Integer ;
To_Y_Location : in Integer ;
Fill : in Natural ;
Border : in Natural ;
0ld_Label_1 : in System.Address ;
0ld_Label 2 : in System.Address ;
0ld_Label_ 3 : in System.Address ;
01d_Label_4 : in System.Address ;
0ld_Label_5 : in System.Address ;
New_Label 1 : in System.Address ;
New_Label_2 : in System.Address ;
New Label_3 : in System.Address ;
New Label_ 4 . in System.Address ;
New Label 5 . in System.Address);

7-12

ATD/CWM Product Implementation/Adaptable Code Components

pragma Interface (C, C_Move_Triangle) ;
pragma Import_ Procedure(internal => C_Move_Triangle,
external => MoveTriangle,
parameter_types => (positive, integer, integer,
integer,
integer, natural, natural,
system.address,
system.address,
system.address,
system.address,
system.address,
system.address,
system.address,
system.address,
system,.address,
system.address),
mechanism => value);

procedure C_Move_Circle (Diameter : in Positive ;
From_X_Location : in Integer ;
From_Y Location : in Integer ;

To_¥_ Location . in Integer :
To_Y_Location : in Integer ;
Fill : in Natural ;
Border : in Natural ;
0ld Label_1 : in System.Address ;
0ld_Label_2 : in System.Address ;
0ld_Label_3 : in System.Address ;
0ld_Label_4 : in System.Address ;
0l1d Label 5 : in System.Address ;
New_Label_1 : in System.Address ;
New_Label 2 : in System.Address ;
New_Label_3 : in System.Address ;
New Label 4 1 in System.Address ;
New_Label 5 : in System.Address);

pragma Interface (C, C_Move_Circle) ;
pragma Import_Procedure(internal => C_Move_Circle,
external => MoveCircle,
parameter types => (positive, integer, integer,
integer,
integer, natural, natural,
system.address,
system.address,
system.address,
system.address,
system.address,
system.address,
system.address,
system.address,
system.address,

~J
v

—
]

ATD/CWM Product Implementation/Adaptable Code Components

system.address),
mechanism => value);

procedure C_Move_Square (Size : in Positive ;
From_X Location : in Integer ;
From_Y Location : in Integer ;

To_X_Location : in Integer ;
To_Y_Location : in Integer ;
Fill : in Natural :
Border : in Natural ;
0ld_Label 1 : in System.Address ;
0ld_Label_2 : in System.Address ;
0ld_Label 3 : in System.Address ;
0ld_Label 4 : in System.Address ;
0ld_Label_5 : in System.Address ;
New_Label 1 : in System.Address ;
New_Label 2 : in System.Address ;
New_Label_3 : in System.Address ;
New_Label 4 : in System.Address ;
New_Label 5 : in System.Address);

pragma Interface (C, C_Move_Square) ;
pragma Import Procedure(internal => C_Move_Square,
external => MoveSquare,
parameter_types => (positive, integer, integer,
integer,
integer, natural, natural,
system.address,
system.address,
system.address,
system.address,
system.address,
system.address,
system.address,
system.address,
system.address,
system.address),
mechanism => value);

~-- Local internal routines to simply eliminate the need for duplicate
-- code. Three routines here: creating a circle, square, or triangle.
procedure create_circle(handle : in display_handle)
is
begin
c_create_circle(x_location => integer(handle.xloc),
¥_location => integer (handle.yloc),

diameter => positive(handle.icon size).
fill => fill’pos(handle.icon_fill),
border => color’pos(handle.icon_color),

ATD/CWM Product Implementation/Adaptable Code Components

label_1 => handle.label_1-address,
label_2 => handle.label_2-address,
label_3 => handle.label_ 3 address,
label 4 => handle.label_4-address,
label_5 => handie.label_5-"address);

end create_circle;

procedure create_square(handle : in display_handle)
is
begin
c_create_square(x_location integer (handle.xloc),
y_location integer (handle.yloc),
side_size => positive(handle.icon size),

U]
vV Vv

fill => fill“pos(handle.icon_fill),
border => color’pos(handle. icon_color),
label_1 => handle.label_1-address,

label 2 => handle.label 2-address,
label_3 => handle.label_3-address,

label 4 => handle.label 4~ address,

label 5 => handle.label 5 address);

end create_square;

procedure create_triangle(handle : in display_handle)

is

begin
¢c_create_triangle(x_location

ft
\%

integer (handle.xloc),

v_location => integer (handle.yloc),

height => positive(handle.icon_size),
fill => fill’pos(handle.icon_fill),
border => color’pos(handle.icon_color),
label 1 => handle.label 1-address,

label 2 => handle.label_2-address,

label 3 => handle.label 3“address,

label 4 => handle.label_4-address,

label 5 => handle.label_5’address);

end create_triangle;

Create object. Creates an icon with the given attributes

and returns a handle to it.

function create object(icon_shape

icon_size :

icon_fill
icon_color

in shape;
in size;
in fill;
in color;

fill_blink_rate : in blink;
obj_blink rate : in blink;
xloc : in position;
yloc : in position;

label_1
label 2
label 3
label 4

in
in
in
in

string;
string;
string;
string;

ATD/CWM Product Implementation/Adaptable Code Components

label 5 in string) return display_handle
is
handle display_handle;
begin
handle := new icon_record;
handle.icon_shape := icon_shape;
handle.icon_size := icon_size;
handle.icon_fill := icon fill;
handle.icon_color := icon_color;
handle.fill blink_rate := fill blink rate;
handle.obj_blink_rate := obj_blink_rate;
handle.xloc := xloc;
handle.yloc := yloc;
handle.label_1 := clear_label;
handle.label 2 := clear_label;
handle.label 3 := clear_ label:
handle.label_4 := clear_label:
handle.label_5 := clear_label;
handle.label 1(1..label_1"length) := label_1;
handle.label_2(1..label 2°length) := label 2;
handle.label 3(1..label_3“length) := label_3;
handle.label 4(1..label 4“length) := label 4;
handle.label 5(1..label_5"length) := label_5;

case handle.icon_shape is
when circle => create circle(handle);
when square => create_square(handle);
when triangle => create_triangle(handle);
end case;
return handilie;
exception
when constraint_error =>
text_io.put_line("create_otject CE');
return null display_handle;
when numeric_error =>
text_jo.put_line("create object NE").
return null_display_ handle;
when others =>
text_io.put_line("create_object Bozo errc.s”);
return null_display_handle;
end create_object;)

Write text to the given location. The previously written message
is erased before writing the new message on the display. Assume that
the xloc and yiloc positions of the previous message are exactly
the same as xloc and yloc for the new message.
procedure write_text (msg in string; xloc in position; yloc in
position)
is
begin
if previous_message then

C Draw_String(x_location => xloc,

7-16

ATD/CWM Product Implementation/Adaptable Code Components

y_location
the string
end if;
old msg_text(l..msg’length)

=> yloc,
=> 0ld_msg_text address);

‘= msg;

:= AScii.Nul;

old msg_text(msg length+l)

C_Draw _String(x_location

y_location

the_string

previous_message := true;
end write_text;

> xloc,
> yloc,
=> old_msg text-address) ;

Set the color of an icon. Don“t do anything if the color
is the same.

procedure chg_object_color(id

is

begin

if id.icon_color /= icon_color then
case id.icon_shape 1is
when square =>

create_square(id);
id.icon_coler := icon_color;
create_square(id);

in display _handle; icon_color in color)

when circle =>
create_circle(id);
id.icon_color := icon_color,;
create_circle(id);

when triangle =>
create_triangle(id);
id.icon_color := icon_color;
create triangle(id);

end case;
end if,
end chg_object_color;

-- Fill an icon. Don‘t do anything if the fill color is the same.

procedure chg_object_fill(id

is

begin

if id.icon fill /= icon_fill then
case id.icon_shape is
when square =>

create_square(id);
id.icon_fill := icon_fill;
create_square(id);

in display_handle; icon_fill in fill)

when circle =>
create_circle(id);

ATD/CWM Product implementation/Adaptable Code Components

id.icon_fill := icon_fill;
create circle(id);

when triangle =>
create triangle(id);
id.icon_f1ll := icon_fill;
create_triangle(id);

end case;
end if;
end chg_object fill;

-- Blink an icon at the specifiec rate.

procedure chg object blink(id : in display_handle;
fill blink_rate : in blink; obj_blink _rate : in blink)
is
begin
null;
end chg object blink:

~- Set the geometric shape of the icon.

procedure chg object shape(id : in display_handle; icon_shape : in shape)
is
begin
null;
end chg_object shape;

-- Move an icon to a new location.

procedure move object(id : in display_hand.e:
xloc : in position;
vyloc : in position;
label 1 * in string;
label 2 : in string;
label 3 : in string;
label 4 : in string;
label 5 : in string)
is
temp_label 1, temp_label 2, temp_label 3, temp_label 4, temp_label 5
label;
begin
temp_label 1
temp_label 2
temp_label 3 clear_label;
temp_label 4 clear label;
temp_lavel 5 := clear_lebel:

i

clear_label,
clear_label;

N

]

fi

temp_label 1(1..label 1-length) := labei_1;
temp_label 2(1..label_2"length) := label_ 2,
temp_label 3(1..label_3°length) := label_3;

ATD/CWM Product Implementation/Adaptable Code Components

temp label 4¢(1..label 4’length)
temp_label 5(1..label 5”length)

See if the location is actually different.

nothing to do.

if id.xloc /= xloc or else

label 4;
label 5;

If not, then we have

id.yloc /= yloc

or else id.label_1 /= temp_label 1
or else id.label_2 /= temp_label 2
or else id.label_3 /= temp_label_3
or else id.label_4 /= temp_label 4
or else id.label_5 /= temp_label 5 then
case id.icon_shape is
when circle =>
C_Move_Circle (Diameter => positive(id.icon_size),

From_X_Location
From Y Location
To_X_Location
To_Y_Location

integer(id.xloc),
integer(id.yloc),
integer (xloc),
integer(yvloc),

Fill => fill’pos(id.icon_fill),
Border => color’pos(id.icon_color),
0ld_Label_1 => id.label_1-address,
0l1d_Label 2 => id.label_2-address,
0ld_Label_3 => id.label 3-7address,
01d_Label 4 => id.label 4’address,
0ld_Label 5 => 'id.label 5-address,

New_Label 1

temp_label 1-address,

New_Label 2 => temp_label 2-address,
New_Label 3 => temp_label 3-“address.
New_Label 4 => temp_label_ 4-address.
New_Label 5 => temp_label 5’address);

when square =>
C_Move_Square (Size
From_X_Location
From_Y_Location
To X_Location

positive(id.icon_size),
integer(id.xloc},
integer(id.yloc),
integer(xloc}.,

To_Y Location => integer(yloc),

Fill => fill“pos(id.icon_fill),
Border => color’pos(id.icon_color),
0ld_Label 1 => id.label 1-“address,
0ld_Label 2 => id.label 2-address,
0ld_Label 3 => id.label_ 3‘address,
Old_Label 4 => id.label_4-address,
0l1d_Label 5 => id.label 5-address,
New_Label 1 => temp_label 1-address,
New_Label 2 => temp_label 2-address,
New_Label 3 => temp_label 3-address,
New_Label 4 => temp_label 4°address,
New_Label 5 => temp_label 5’address):

when triangle =>
C_Move Triangle (Height

=> positive(id.icon_size),

7-19

ATD/CWM Product Implementation/Adaptable Code Components

From_X_Location => integer(id.xloc),
From_Y_Location => integer(id.yloc),

To_X_Location => integer(xloc),
To_Y_Location => integer(yloc),
Fill => fill’pos(id.icon_fill),
Border => color’pos(id.icon_color),
Old_Label_ 1 => id.label_l-address,
0ld_Label 2 => id.label_2‘address,
0l1d_Label_3 => id.label_3‘address,
Old_Label 4 => id.label_4-address,
0ld_Label 5 => id.label_5-address,
New_Label 1 => temp_label_1’‘address,
New_Label 2 => temp_label 2‘address,
New_Label 3 => temp_label_3“address,
New_Label 4 => temp_label_4’address,
New_Label 5 => temp_label 5‘address);

end case;

id.xloc := xloc;

id.yloc

= yloc;
id.label_1 := temp_label 1;

id.label_2 := temp_label_ 2;
id.label_3 := temp_label_ 3;
id.label_4 := temp_label 4;
id.label_5 := temp_label 5;
end if;
exception

when constraint_error =>
text_io.put_line("move_object CE");

when numeric_error =>
text_io.put_line("move_object NE");

when others =>
text_io.put_line("move_object Bozo error");

end move_object;

-- Delete an object from the display.

procedure delete_object(id : in display_handle)
is
x : display_handle := id;
begin
case x.icon_shape is
when circle => create_circle(x);
when square => create_square(x);
when triangle => create_triangle(x);
end case;
free(x);
end delete_object;

~~ Create a display window of a given size at the specified location.

7-20

ATD/CWM Product Implementation/Adaptable Code Components

procedure create_display(xloc : in position; yloc : in position;
width : in position; height : in position)
is
begin
C_Create_Window(X_Location => integer(xloc),
Y Location => integer(yloc),
width => positive(width),
Height => positivetheight)) ;
end create display;

end Air_ Traffic_Display Device;
Body (C code part)

#include <stdio.h>
#include <types.h>
#include <time.h>
#include <stat.h>
#include <signal.h>
#include <X11/X1lib.h>

#ifdef FOOFQO

#define DEBUG(x) fprintf(stderr, x); return;
#else

#define DEBUG(x)

#endif

Display *display;

wWindow window;

GC grid_gc;

GC icon_gc;

GC text_gc;

Pixmap tile([11], greyscale [12];

void CreateWindow(xspot, yspot, width, height)

int xspot, yspot;
unsigned int width, height;

XGCValues grid gev;
XGCValues icon_gcv;

/* define pixmaps for fill tiles (created using "bitmap" utility) */

/* tile0 is all white (zeros) */

static char tile0_bits([] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Ox00, 0x00, 0x00,
0x00, 0x00, 0Ox00, 0Ox00, O0x00, Ox00, Ox00, Ox00, 0x00, Ox00, 0Ox00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Ox00};

static char tilel_bits{] = {
0x00, 0x00, 0x80, Ox01, OxcO, Ox01, Oxe0, Ox01, Oxe0, 0Ox01, Ox80, 0Ox01,
0x80, 0x01, 0Ox80, 0x01, Ox80, Ox01, Ox80, 0x01, Ox80, Ox01, 0Ox80, Ox01,
0x80, 0x01, Oxe0, 0Ox07, 0Oxe0, 0Ox07, 0x00, OxOO};

static char tile2_bits[] = {

ATD/CWM Product Implementation/Adaptable Code Components

0x00, 0x00, OxeO,
0x00, 0x38, 0x00,
Oxic, Ox00, Oxfc,

0x0f,
Oxlc,
0x3f,

static char tile3 bits{] =

0x00, 0x00, OxeO,
0x00, Ox1lc, 0x00,
0x70, Oxle, OxfO,

0x07,
0ox0f,
ox0f,

static char tile4 bits{[] =

0x00, 0x00,
0x30, Ox0c,
0x00, 0xOc,

0x00, OxO0f,
0x38, 0x0c,
0x00, 0OxOc,

static char tile5 _bits[] =

0x00, 0Ox00,
oxf8, 0Ox07,
0x18, OxOe,

Ooxf8, Ox1f,
0x00, Ox0Oe,
O0xf8, 0x07,

static char tile6 bits[] =

0x00, 0x00,
0x38, 0x00,
0x70, 0Ox18,

0x00, 0x0c,
Oxlc, 0Ox00,
Oxe0, Ox1f,

static char tile7 bits[] =

0x00, 0Ox00,
0x80, 0x03,
0x70, 0x00,

oxf8, Ox1if,
0xc0O, 0x01,
0x70, 0Ox00,

static char tile8 bits[]) =

0x00, Ox00,
0x70, Ox0e,
0x70, OxOe,

Oxc0O, 0x03,
OxeC, Ox0T7,
0Oxe0. 0x07,

static char tile9 bits[] =

0x00, 0Ox00,
0x18, 0x37,
0x00, Ox0Oe,

/* tilel0 is all black (ones)

0xc0O, 0x07,
O0xf§, 0x33,
0x00, 0x07,

static char tilel0_bits[]

Oxff, Oxff, Oxff, Oxff,
Ooxff. Oxff, Oxff, oxff,
oxff, Oxff, Oxff, oOxff,
static char greyl bits[} =
0x04, Ox41, 0x00, 0x00,
0x08, 0x82, 0x00, 0x00,
0x04, Ox41, 0x00, 0x00,
static char grey2_bits{] =
0x04, Ox41, 0Ox41, 0Ox10,
0x08, 0x82, 0x82, 0x20,
0x04, Ox41, 0x41, 0x10,
static char grey3 bits[] =
Ox14, 0x45, Ox41, 0x90,
0x0c, Ox86, 0Oxa2, 0x20,
0Ox14, Ox45, Ox41, 0x90,
static char grey4 bits{] =
0x54, 0x45, 0x49, 0x92,
Ox4c, Ox86, 0xb2, 0x60,
0x14, Ox4d, Ox45, 0x91,

0x£f0.
0x80,
oxfc,
{

oxf0,
0x00,
0xe0,
{

0x80,
0x18,
0x00,
{

0ox£f8,
0x00,
oxfo,
{

0x00,
0x0c,
0xc0,
{

0xf8,
0xe0,
0x70,
{

Oxe0,
0xe0,
0xcO,
{

0xe0,
oxfo0,
0x00,

{
Oxff,
oxff,
Oxff,
{
0x20,
0x41,
0x20,
{
0x20,
Ox41,
0x20,
{
0x24,
Ox41,
0x28,
{
0x24,
0x45,
0x28,

*/

ox1f,
ox0f,
0x3f,

0ox0f,
0ox0f,
0x07,

0ox0f,
0x0c,
0x0c,

ox1f,
Oxlc,
0x03,

ox1f,
0x0f,
0x07,

ox1f,

0x00,,

0x00,

0x07,
0x07,
0x03,

0x0f,
0x39,
0x07,

Oxff,
oxff,
oxff,

0x08,
0x10,
0x08,

0x08,
0x10,
0x08,

0x09,
0x19,
0x0a,

0x29,
0x19,
Ox4a,

0x38,
0xe0,
0x00,

0x70,
0x00,
0x00,

0xcO0,
ox£f8,
0x00,

0x18,
0x00,
0x00,

0xcO0,
oxcc,
0x00,

0Ox18,
0x60,
0x00,

0x70,
0x70,
0x00,

0x70,
0x00,
0x00,

Oxff,
Oxff,
oxff,

0x00,
0x00,
0x00,

0x08,
0x08,
0x82,

0x09,
0x8§8,
0x82,

0x19,
0xa8,
0oxa2,

0x38,
0x07,
0x00};

Oxle,
Ox1lc,

0x38,
0xfo,

0x30,
0x00,

0x00};

0x0d, Oxe0,
0x3f, Oxfs8,
0x00};

0x00, 0x18,
0x18, 0x00,
0x00};

0x13, OxeO0,
0x1f, 0Oxfs,
0x00};

Oxlc, 0x00,
0x00, 0x70,
0x00};

0x0e,
0x0e,
0x00};

0x38,
0x3§,

0x0e,
0x38,
0x00};

0x38,
0x00,

Oxff, Oxff,
oxff, Oxff,
Oxff});

0x00, 0x82,
0x00, 0x10,
0x00};

0x82,
0x82,
0x20};

0x82,
0x10,

0x82, Oxc2,
0x82, 0Ox1l4,
0x24};

0x92, Oxc2,
Ox8a, 0x94,
Oxa4};

0x30,
0x00,

Oxlc,
Ox1lc,

0x0c,
Ox3f,

0x00,
0x18,

0x00,
0x38.

0x0e,
0x00,

Ox1lc,
Ox1lc,

Oxlc,
Oxlc.

Oxff,
oxff,

0x20,
0x04,

0x20,
0x04,

0x24,
0x24,

Ox2c,
0x24,

0x18,
0x38,

0x00,
0x30,

0x70,
0x00,

oxf8,
0x00,

0x30,
0x78,

0x00,
0x70,

0x38,
0x38,

0x18,
0x00,

oxff,
oxff,

0x00.,
0x00,

0x20,
0x82,

0x20,
Ox82,

0x21,
Oxa?2,

0x30,
0x00,

0x1lc
Oxlc,

0x0c,
0x0c,

0x03,
Oxlc,

0x00,
0x30,

0x07,
0x00,

Ox1lc,
O0xlc,

0x3c,
Oxlc,

oxff,
oxff,

0x00,
0x00,

0x08,
0x20,

0x48,
0x28,

0x49,
Oxa8,

7-22

ATD/CWM Product Implementation/Adaptable Code Components

static char grey5_bits([] = {
0x56, Ox4d, 0xc9, Ox92, 0x34, 0x69, 0x19, 0x93, 0xd2, Oxac, 0Ox25, 0x49,
Oxcec, Oxa6, Oxb2, 0Ox64, O0x65, 0x59, Oxaa, Ox8a, O0x9c, 0x25, Oxa2, 0xbsg,
0x9c, Ox4d, Ox65, 0x91, 0x28, Ox5b, Oxa6, Oxad};

static char grey6_bits[] = {
0x56, Ox6d, Oxe9, 0x96, 0x36, 0x69, 0x59, 0xb3, Oxda, Oxac, Oxa5, O0x59,
Oxcc, Oxb6, 0xb3, 0x65, 0x6d, Ox59, Oxaa, Oxda, Oxdc, 0x25, Oxb2, Oxba,
0x9d, Ox4d, Ox6d, 0x95, Oxa8, Ox5b, Oxb6, Oxa6};

static char grey7_bits[] = {
0Oxd6, Oxed, Oxe9, Ox8e, 0x3e, 0Ox6b, 0xd8, Oxb3, Oxdb, Oxae, 0xb5, 0x59,
Oxce, 0xb7, Oxb3, 0x75, 0x6d, Oxdb, Oxea, Oxda, Oxde, Oxa5, Oxb2, Oxbb,
Oxdd, 0Ox8d, 0x6d, 0x97, Oxaa, 0x7b, Oxb6, Oxbs};

static char grey8 bits(] = {
Oxde, Oxed, Oxeb, Oxde, Oxbe, 0x6b, Oxdb, 0Oxbb, 0Oxfb, Oxae, 0Oxb5, 0xdd,
Oxcf, Oxb7, Oxbb, 0x7d, Ox6d, Oxdf, Oxfa, Oxfa, Oxdf, Oxa5, Oxba, 0xfb,
Oxdd, Ox6f, Ox6f, Oxb7. Oxba, 0x7b, 0xb7, 0xb7};

static char grey9_bits[] = {
Oxdf, Oxef, Oxfb, Oxde, Oxbe, Oxef, Oxdf, Oxbb, Oxfb, Oxef, Oxbd, 0xdd,
Oxef, Oxf7, Oxbb, 0x7f, Oxef, Oxdf, Oxfa, Oxfe, Oxff, Oxad, Oxbb, 0xfb,
Oxfd, Ox7f, Ox6f, Oxf7, Oxfa, Ox7f, Oxbf, Oxb7};

static char greylO_bits[] = {
oxdf. Oxff, Oxff, Oxfe, Oxfe, Oxef, Oxdf, Oxff, Oxff, Oxef, Oxfd, Oxfd,
Oxef, Oxff, Oxff, Ox7f, Oxef, Oxff, Oxfb, Oxff, Oxff, Oxbd, Oxbf, Oxff,
0xfd, Oxff, Ox7f, Oxff, Oxfb, Ox7f, Oxff, Oxdf};

DEBUG("Opened display\n");
/* open a connection to the X server */
if ¢ (display = XOpenDisplay(0) == NULL) {
fprintf(stderr, "Cannot connect to X server %s.\n", getenv("DISPLAY")
)3

exit(1);

}

window = XCreateSimpleWindow(
display, DefaultRootWindow(display),
xspot, yspot, width, height, 3,
BlackPixel(display, DefaultScreen(display)),
WhitePixel(display, DefaultScreen(display)));

XSelectInput(display, window, ExposureMask);
XMapWindow(display, window);
XFlush(display);

BlackPixel(display, DefaultScreen(display));
WhitePixel (display, DefaultScreen(display));

grid _gecv.foreground
grid_gcv.background

]

grid _gc = XCreateGC(display, window, GCForeground | GCBackground, &grid_gcv
)

/* see p-61,62 for definition of the XGCvValues data type */
icon_gcv.foreground = BlackPixel(display, DefaultScreen(display));

ATD/CWM Product Implementation/Adaptable Code Components

icon_gcv.background = WhitePixel (display, DefaultScreen(display));
icon_gcv.function = GXxor;
icon_gcv.graphics_exposures = False;

icon_gc = XCreateGC(display, window,
GCForeground | GCBackground | GCFunction |
GCGraphicsExposures,
&icon_gcv);

/* text_gc uses same initial values as icon_gc */
text_gc = XCreateGC(display, window,
GCForeground | GCBackground | GCFunction |
GCGraphicsExposures,
&icon_gev) ;

XClearwWindow(display, window);

tile[0) = XCreateBitmapFromData(display, window, tileO_bits, 16, 16);
tile[1l] = XCreateBitmapFromData(display, window, tilel_bits, 16, 16);
tile[2) = XCreateBitmapFromData(display, window, tile2_bits, 16, 16);
tile{3] = XCreateBitmapFromData(display, window, tile3_bits, 16, 16);
tile[4] = XCreateBitmapFromData(display, window, tile4 bits, 16, 16);
tile{5] = XCreateBitmapFromData(display, window, tile5_bits, 16, 16);
tile[6] = XCreateBitmapFromData(display, window, tile6_bits, 16, 16);
tile[7] = XCreateBitmapFromData(display, window, tile7_bits, 16, 16);
tile[8)] = XCreateBitmapFromData(display, window, tile8 bits, 16, 16);
tile[9] = XCreateBitmapFromData(display, window, tile9 bits, 16, 16);
tile[10} = XCreateBitmapFrombata(display, window, tilelO_bits, 16, 16):

greyscale[0]
).

0

XCreateBitmapFromData(display, window, tileO bits, 16, 16

greyscale[1l] = XCreateBitmapFromData(display, window, greyl bits, 16, 16
):greyscale[Z] = XCreateBitmapFromData(display, window, grey2 bits, 16, 16
):greyscale[s] = XCreateBitmapFromData(display, window, grey3 bits. 16, 16
);greyscale[4] = XCreateBitmapFromData(display, window, grey4 bits, 16, 16
);greyscale[S] = XCreateBitmapFromData(display, window, grey5_bits, 16, 16
):greyscale[S] = XCreateBitmapFromData(display, window, grey6_bits, 16, 16
);greyscale[7] = XCreateBitmapFromData(display, window, grey7_bits, 16, 16
);greyscale[S] = XCreateBitmapFromData(display, window, grey8_bits, 16, 16
);greyscale[Q] = XCreateBitmapFromData(display, window, grey9 bits, 16, 16
);greyscale[IO] = XCreateBitmapFromData(display, window, greylO_bits, 16, 16
a = XCreateBitmapFromData(display, window, tilel0O bits, 16, 16

greyscale{11)
).

7-24

ATD/CWM Product Implementation/Adaptable Code Components

XFlush(display);

}

void CreateCircle (xspot, yspot, diameter, fill, border, sl, s2, s3, s4, s5)

int xspot, yspot;

unsigned int diameter;

int fill, border;

char *sl, *s2, *s3, *s4, *s5;

{

extern Display *display;

extern Window window;
DEBUG("Created circle\n");

XSetFillStyle(display, icon_gc, FillTiled);

XSetTile(display, icon_gc, greyscale({fill));

XFillArc (display, window, icon_gc, xspot, yspot, diameter, diameter, O,
23040) ;

XSetLineAttributes (display, icon_gc, 2, border, CapRound, JoinRound) ;

XSetTile(display, icon_gc, greyscale(11l]); :

XDrawArc (display, window, icon_gc, xspot, yspot, diameter, diameter, O,
23040) ;

XDrawString(display, window, text_gc, Xspot+diameter+l0, yspot, sl1,
strlen(sl));

XDrawString (display, window, text_gc, xspot+diameter+10, yspot+l2, s2,
strien(s2));

XDrawString (display, window, text_gc, xspot+diameter+l0, yspot+24, s3,
strlen(s3));

XDrawString(display, window, text_gc, xspot+diameter+10, yspot+36, s4,
strlen(s4))

XDrawString (display, window, text_gc, xXspot+diameter+l0, yspot+48, s5.
strlen(s5)),

XFlush(display); /* causes requests to be processed by X server */

}
/* ___ #/
void CreateSquare (xspot, yspot, size, fill, border, sl1, s2, s3, s4, s5)

int xspot, yspot;
unsigned int size;
int fill, border;
char *sl, #s2, *s3, *s4, *s55;

{

extern Display *display;
extern Window window;
DEBUG ("Created square\n");
XSetFillStyle(display, icon_gc, FillTiled);

7-25

ATD/CWM Product Implementation/Adaptable Code Components

XSetTile(display, icon_gc, greyscale[fill});
XFillRectangle(display, window, icon_gc, xspot, yspot, size, size)

XSetlineAttributes (display, icon_gec, 2, border, CapRound, JoinRound)

XSetTile(display, icon_gc, greyscale([1ll] };
XDrawRectangle(display, window, icon_gc, xspot, yspot, size, size)

’

XDrawString(display, window, text_gc, xspot+size+l0, yspot, sl, strlen(sl)

)

XDrawString(display, window, text_gc, xspot+size+10, yspot+1l2, s2,
strlen(s2));

XDrawString(display, window, text_gc, xspot+size+10, yspot+24, s3,
strlen(s3));

XDrawString(display, window, text_gc, xXxspot+size+lO, yspot+36, s4,
strlen(s4));

XDrawString(display, window, text _gc, xspot+size+10, yspot+48, s5,
strlen(ss));

XFlush(display); /* causes requests to be processed by X server */

}

void CreateTriangle (xspot, yspot, height, fill, border, s1, s2, s3, s4,

int xspot, yspot;

unsigned int height;

int fill, border;

char *sl, *s2, *s3, *s4, *s5;

XPoint points([4];

extern Display *display:
extern Window window;
DEBUG("Created triangle\n");
XSetFillStyle(display, icon_gc, FillTiled);
XSetTile(display, icon_gc, greyscale[fill]);

/* points[0] = upper tip of triangle */
points({0].x xspot + (height/2);
points(0].y yspot;

L1

#

/* points[1l] = lower left corner of triangle */
points(1l).x xspot;
points[1l].y yspot + height;

/* points[2] = lower right corner of triangle */
points[2]).x xspot + height;
points[2].y yspot + height;

/* points[3] = upper tip of triangle */
points[3].Xx = xspot + (height/2);
points[3).y = yspot;

s5)

7-26

ATD/CWM Product Implementation/Adaptable Code Components

XFillPolygon (display, window, icon_gc, points, 4, Convex,
)

XSetLineAttributes (display, icon_gc, 2, border, CapRound,

XSetTile(display, icon_gc, greyscale[1ll] };

XDrawlLine(display, window, icon_gc, points([0].x, points[0]
points{l].y);

XDrawLine(display, window, icon_gc, points[l].x, points[1]
points[2].y);

XDrawLine (display, window, icon_gc, points[2].x, points[2].
points([0].y);

CoordModeOrigin

JoinRound) ;

.y, points{l].x,

.Y, points{2].x,

Yy, points[0].x,

XDrawString(display, window, text_gc, xspot+height+10, yspot, si,

strlen(sl));

XDrawString(display, window, text_gc, xspot+height+10, yspot+l2, s2,

strlen(s2));

XDrawString(display, window, text_gc, xspot+height+10, yspot+24, s3,

strlen(s3));

XDrawString(display, window, text gc, xspot+height+10, yspot+36, s4,

strlen(s4));

XDrawString(display, window, text gc, xspot+height+10, yspot+48, s3,

strlen(s5));

XFlush(display): /* causes requests to be processed by X

}

void DrawLine (xspotl, yspotl, Xxspot2, yspot2)
int xspotl, yspotl, xspot2, yspot2;

{

extern Display *display;
extern Window window;
DEBUG("Draw line\n");
XDrawLine(display, window, grid gc, xspotl, yspotl. xspot2,

XFlush(display); /* causes requests to be processed by X

}

void DrawCircle (xspot, yspot, diameter)

int xspot, yspot;
unsigned int diameter;

{

extern Display *display;
extern Window window;
DEBUG("Draw circle\n");

XDrawArc (display, window, grid_gc, xspot, yspot, diameter,
23040);

server */

vspot2):

server */

diameter, 0,

41

ATD/CWM Product Implementation/Adaptable Code Components

XFlush(display); /* causes requests to be processed by X server */

}

void DrawSquare (xspot, yspot, size)

int xspot, yspot;
unsigned int size;

{
extern Display *display;
extern Window window;
DEBUG("Draw square\n");

XDrawRectangle(display, window, grid_gc, xspot, yspot, size, size);

XFlush(display); /* causes requests to be processed by X server */

void DrawTriangle (xspot, yspot, height)

int xspot, yspot;
unsigned int height;

{

extern Display *display:
extern Window window;
DEBUG("Draw triangle\n");

/* draw line from top to botiom left */
XDrawLine(display, window, grid gc, xspot+(height/2), yspot, xspot,
yspot+height);

/* draw line from bottom left to bottom right */
XDrawLine(display, window, grid gc, xspot, yspot+height, xspot+height,
yspot+height);

/* draw line from bottom right to top */
XDrawLine(display, window, gric _gc, xspot+height, yspot+height,
xspot+(height/2), yspot);

XFlush(display); /* causes requests to be processed by X server */

}

void DrawString (xspot, yspot, s)

int xspot, yspot:
char *s;

{

extern Display *display:

7-28

ATD/CWM Product Implementation/Adaptable Code Components

extern Window window;
DEBUG ("Draw string\n");

XDrawString (display, window, text gc, xspot, yspot, s, strlen(s));

XFlush(display); /* causes requests to be processed by X server */

}

void MoveSquare (size, fromxspot, fromyspot, toxspot, toyspot, fill, border,
oldsl, olds2, olds3, olds4, olds5, sl, s2, s3, s4, s5)

int size, fromxspot, fromyspot, toxspot, toyspot, fill, border;
char *oldsl, *olds2, *olds3, *olds4, *olds5, *sl, *s2, *s3, *s4, *s5;

{
extern Display *display;
extern Window window;
DEBUG("Move square\n");
XSetFillStyle(display, icon gc, FillTiled);
XSetLineAttributes (display, icon_gc, 2, border, CapRound, JoinRourd) ;

/* erase old square */
XSetTile(display, icon_gc, greyscale[fill});
XFillRectangle(display, window, icon_gc, fromxspot, fromyspot, size, size)

XSetTile(display, icon_gc, greyscale[ll] };
XDrawRectangle(display, window, icon_gc, fromxspot, fromyspot, size, size)

/* erase old label */

XDrawString(display, window, text_gc, fromxspot+size+l0, fromyspot, oldsl.
strlen(oldsl));

XDrawString(display, window, text_gc, fromxspot+size+l0, fromyspot-+12,
olds2, strlen(olds2));

XDrawString(display, window, text gc, fromxspot+size+10, fromyspot+24,
0lds3, strlen(olds3));

XDrawString(display, window, text_gc, fromxspot+size+10, fromyspot+36,
olds4, strlen(olds4));

XDrawString(display, window, text gc, fromxspot+size+10, fromyspot+48,
olds5, strlen(olds5));

/* draw new square */
XSetTile(display, icon_gc, greyscale[fill]);
XFillRectangle(display, window, icon_gc, toxspot, toyspot, size, size) ;

XSetTile(display, icon_gc, greyscale[ll]);
XDrawRectangle(display, window, icon_gc, toxspot, toyspot, size, size) ;

XDrawString (display, window, text_gc, toxspot+size+l0, toyspot, sl,
strlen(sl));

XDrawString(display, window, text gc, toxspot+size+l0, toyspot+l2, s2,
strlen(s2));

7-29

ATD/CWM Product Implementation/Adaptable Code Components

XDrawString(display, window, text_gc, toxspot+size+10, toyspot+24, s3,
strlen(s3));

XDrawString(display, window, text_gc, toxspot+size+l0, toyspot+36, s4
strlen(s4));

XDrawString(display, window, text_gc, toxspot+size+l0, toyspot+48, s5,
strlen(s5));

XFlush(display);

void MoveCircle (diameter, fromxspot, fromyspot, toxspot, toyspot, fill,
border, oldsl, olds2, olds3, olds4, olds5, sl, s2, s3, s4, s5)

int diameter, fromxspot, fromyspot, toxspot, toyspot, fill, border;
char *oldsl, *olds2, *olds3, *olds4, *olds5, *sl, *s2, *s3, *s4, *s5;

{
extern Display *display;
extern Window window;
DEBUG("Move circle\n");

XSetFillStyle(display, icon_gc, FillTiled);
XSetLineAttributes (display, icon_gc, 2, border, CapRound, JoinRound) ;

/* erase old circle */

XSetTile(display, icon_gc, greyscale(fill});

XFillArc (display, window, icon_gc, fromxspot, fromyspot, diameter,
diameter, 0, 23040) ;

XSetTile(display, icon_gc, greyscale[ll]):
XDrawArc (display, window, icon_gc, fromxspot, fromyspot, diameter,
diameter, 0, 23040) ;

/* erase old label */

XDrawString(display, window, text gc, fromxspot+diameter+10, fromyspot,
oldsl, strlen(oldsl));

XDrawString(display, window, text_gc, fromxspot+diameter+10, fromyspot+i2,
olds2, strlen(olds2));

XDrawString(display, window, text_gc, fromxspot+diameter+10, fromyspot+24,
olds3, strlen(olds3));

XDrawString(display, window, text_gc, fromxspot+diameter+10, fromyspot+36,
olds4, strlen(olds4));

XDrawString(display, window, text_gc, fromxspot+diameter+10, fromyspot+48§,
olds5, strlen(olds5));

/* draw new circle */

XSetTile(display, icon_gc, greyscale[fill]);

XFillArc (display, window, icon_gc, toxspot, toyspot, diameter, diameter,
0, 23040) ;

XSetTile(display, icon_gc, greyscale(ll] };
XDrawArc (display, window, icon_gc, toxspot, toyspot, diameter, diameter,
0, 23040) ;

7-30

ATD/CWM Product Implementation/Adaptable Code Components

/* draw new label */

XDrawString(display, window, text_gc, toxspot+diameter+10, toyspot, si,
strlen(sl)).

XDrawString(display, window, text_gc, toxspot+diameter+10, toyspot+12, s2,
strlen(s2) };

XDrawString (display, window, text_gc, toxspot+diameter+10, toyspot+24, s3,
strlen(s3));

XDrawString(display, window, text gc, toxspot+diameter+10, toyspot+36, s4,
strlen(s4));

XDrawString(display, window, text_gc, toxspot+diameter+10, toyspot+48, s5,
strlen(s3));

XFlush(display);

void MoveTriangle (height, fromxspot, fromyspot, toxspot, toyspot, fill.
border, oldsl, olds2, olds3, olds4, olds5, sl, s2, s3, s4, s5)

int height, fromxspot, fromyspot, toxspot, toyspot, fill, border;
char *oldsl. *o0lds2, *olds3, *olds4, *olds5, *sl, *s2, *s3, *s4, *s3;

extern Display *display;
extern Window window;

XPoint points[4];
DEBUG("Move triangle\n");

/* points{[0] = upper tip of triangle */
points[0] .x fromxspot + (height/2);

It

points{0].y = fromyspot;
/* points(l] = lower left corner of triangle */
points{l}.x = fromxspot;

points{1].y fromyspot + height;

/* points{[2) = lower right corner of triangle */
points([2].x fromxspot + height;
points{2].y fromyspot + height;

I

/* points[3]
points[3].x
points(3].y

upper tip of triangle */
fromxspot + (height/2);
fromyspot;

]

/* ecase old icon */
XSetLineAttributes (display, icon_gc, 2, border, CapRound, JoinRound) ;
XSetFillStyle(display, icon_gc, FillTiled);

XSetTile(display, icon_gc, greyscale[fill]');
XFillPolygon (display, window, icon_gc, points, 4, Convex, CoordModeOrigin
)

XSetTile(display, icon_gc, greyscale[ll] };
XDrawLine(display., window, icon_gc, points[0].x, points(0].y, points[l]}.x,

E¥

ATD/CWM Product Implementatinn ‘Adaptable Code Compuunents

points{1].y)

1

XDrawLine{ display, window, icon_gc, points{l}.x,

points(2].y)

’

XDrawLine(display, window, icon_gc, points[2].x,

points[3].y)

[}

points{l].y, points[2]

points{2}.y, points[3].

XDrawString(display, window, text_gc, fromxspot+height+10, fromyspot,
oldsl, strlen(oldsl));
XDrawString(display, window, text gc, fromxspot+height+10, fromyspot+12,
olds2, strlen(olds2));
XDrawString(display, window, text_gc, fromxspot+height+10, fromyspot+24,
olde3, strlen(olds3) };
XDrawString(display, window, text_gc, fromxspot+height+10, fromyspot+36,
olds4, strlen(olds4));
XDrawString(display, window, text_gc, fromxspot+height+10, fromyspot+48§,
olds5, strlen(olds3));

/* points{0]
points{C].x
points{0] .y

/¥ points|[l]
points{1l}.x
points([1l].y¥

/¥ points(2]
points([2] .x
points{2. .y

/* points?3]
points{3].x
points(3].¥

= upper tip of triangle =*/
= toxspot + (height/2);
= toyspot;

= lower left corner of triangle */
= toXxsSpot:
tovspot + heigh+:

= lower right corner of triangle */

. = toxspotir = height;

= toyspot + height;

= upper tip of triangle */
= toxspct + (height/2::

]
o+
o}
e
n

ho)
<
p

/* draw new icon */
XSetTile(dispiay. icon_gc,

)

XSetTile(display., icon_gc,

XDrawLine(display. window,
points(1l].y)

XDrawlLine(display, window,
points[2].y)

XDrawLine(display, window,

points(3].y) .

XDrawString(display, window
strlen(sl)

XDrawStringi display, window,
strlen(s2)).

XDrawString(display, window,
strlen(s3) 1

XDrawString(dispiay, window,

strlen(s4))

grevscale[fill]l);

greyscale({11])
iccn_gc, pointsf0].x,

icon_gc, points[l].x,

icon_gc, points(2].x,

, text_gc, toxspot+height+10,

text_gc, toxspot+height+10,
text_gc., tc - spot+height+10.

text gc, toxspot+height+10,

pointsfO].y¥. points’l]
points{l].y, poinis{2’

points[2] .y,

toyspot., sl.

~

toyvspot+12, s2,

th
[#8)

tovepnt+24,

tovspotr+30. sS4,

points (3.

X,

XFillPolygon display, window, icon_gc, points, 4, Convex, CoocrdModedrigin

X

X

X

7.32

ATD/CWM Product Implementation/Adaptable Code Components

XDrawString(display, window, text gc, toxspot+height+10, toyspot+48, s5,
strlen(s5));

XFlush(display).

/*
void SetDisplayType (iscolor)

int iscolor;
extern Display *display;
extern window window;

XSetWindowColormap (display, window,
DefaultColormap (display, window)) ;

XFlush(display);
}ox/

4. Air_Traffic_Display (ATD)

Spec

-- Air_Traffic Display (ATD) package spec

-~ This module knows how to determine the content of the

-- corrective action advisory message. what aircraft status

-- information to display, anc¢ where to position aircraft

-- symbols on the Air Traffic Display device.

with Potential Threat;

package Air Traffic_Display is

-- Determine the content of the corrective action advisory message

-- (Corrective Msg) and have it shown on the air traffic display.
procedure corrective action msg(threat : in Potential Threat.pt_handle);

-— Update an aircraft’s display symbol when the aircraft partition

-- changes.

procedure update_ads(threat : in Potential_Threat.pt_nandle);

-~ Initialize the air traffic display

procedure initialize display:

ATD/CWM Product Implementation/Adaptable Code Components

-- Update the displayed information for the specified potential threat.
procedure update_cws(threat : in Potential_Threat.pt handle;
display_status : in Potential Threat.target display);

end Air_Traffic_Display;

Body

-— Air_Traffic Display (ATD) package body

~— This module knows how to determine the content of the

-- corrective action advisory message, what aircraft status
~- information to display, and where to position aircraft
-- symbols on the Air Traffic_Display device.

with Air_Traffic_Display_Device; use Air_Traffic_Display_Device;
with Potential Threat; use Potential Threat;

with Host Aircraft;

with Situation_Dynamics;

with Air Craft_Motion;

with Physical_Quantities;

with Numerical_Algorithms;

with Text IO;

package body Air_ Traffic_Display is

package float_io is new text_io.float_io(float); use float io;

-- Screen dimensions given in the following terms:

-- x_origin - "X" axis location of the display.

-- y_origin - "Y" axis location of the display.

-- x_size - Horizontal length across the screen of the display.
-- y_size - Vertical length down the screen of the display.

-- x_center - "X" axis location cf the center of the screen.

-- y_center - "Y" axis location of the center of the screen.

R

~-- (0, 0) is the upper left hand corner.

-- Start location of corrective action advisory message in the display.

-~ X_mSg - "X" axis location
-- y_msg - "Y" axis location
x_origin : constant Air_Traffic_Display_Device.position := O;
y_origin : constant Air_Traffic Display_Device.position := 0;
x_size : constant Air Traffic_Display Device.position := 1270;
y_size : constant Air Traffic_Display_Device.position := 1000;
x_center : constant Air_Traffic Display Device.position := 635; --
x_size / 2;
y_center : constant Air Traffic Display Device.position := 500; ~--

~}
s
T

ATD/CWM Product Implementation/Adaptable Code Components

y_size / 2;

x_msg : constant Air Traffic_Display Device.position := 610; -
x_center - 25;

y_msg : constant Air Traffic_Display_Device.position := 980; -
v_size - 20;

icon_size : constant Air_Traffic_Display Device.size := 16;

-- Host aircraft display handle.

host_aircraft_handle : Air Traffic_Display Device.display_handle;

-- Determine the contents of the Corrective_Action_Msg and send
-- it to the Air_Traffic_Display Device (ATDD).

msg_1 : constant string := "Maintain current heading and rate";
msg_2 : constant string := "Fly level";

msg_3 : constant string := "Climb at ";

msg_4 : constant string := "Dive at ";

msg_suffix : constant string := " ft/min";

subtype message_index is integer range 0..8§;

package Nautical Mile IO is new Text_IO.Float IO(num =>
Physical Quantities.nautical mile);

-- Local formatting routine for the corrective action advisory message.

procedure concatenate(textl : in string;

text2 : in string; value : in

Physical_Quantities.fpm)

is

begin

Air_Traffic_Display_Device.write_text(textl &
integer’image(integer(value)) & text2, x_msg, y_msg);
end concatenate;

-- Local formatting routine for outputting the range label (in [ivating pt.
format) .

function nautical_mile_to_string(value : 1n
Physical_Quantities.nautical_mile) return string

is
temp_string : string (1..10);
out_string : string(l..11);
begin
Nautical Mile_IO.Put(To => temp_string,
Item => value, aft => 1, exp => 0);
out string(l..10) := temp_string:
out_string(ll) := ASCII.NUL:

return (out_string)j;
end nautical _mile to_string:

ATD/CWM Product Implementation/Adaptable Code Components

-- Function to determine whether a quantity is less than zero, equal to zero,
-- or greater than zero. The following values are returned.

- =0=>0
-— <0 =>1
- >0 =>2

function zero_test(value : in Physical Quantities.fpm) return integer
is
begin
if value = 0.0 then
return O;
elsif value < 0.0 then
return 1;
else
return 2;
end if;
end zero_test;

~- Format a message informing the pilot of the host aircraft
-— how to avoid a collision warning situation.

procedure corrective_action_msg(threat : in Potential_Threat.pt_handle)

is
msd : Physical_Quantities.feet; -- minimal separation distance
FAA_msd : Physical Quantities.feet; -- FAA approved minimal
separation distance
pt_rate : Physical Quantities.fpm; -- ¢limb rate for
potential_ threat
pt_altitude : Physical_Quantities.feet;-- altitude for potential threat
ha_rate : Physical Quantities.fpm; -- climb rate for host _aircraft
ha_altitude : Physical Quantities.feet;-- altitude for host_aircraft
change_rate : Physical_Quantities.fpm; -- climb/descend rate
begin
begin
msd := Situation_Dynamics.get_msd(threat);
exception

when numeric error => text_io.put_line("cam 0 - NE");
when constraint_error => text_io.put line("cam 0 - CE");
when others => text_io.put_line("cam 0 - Bozo error");
end;
FAA_msd := Air_Craft_Motion.get_msd;
~-- If the predicted minimal separation distance is no less than the
-~ minimal distance dictated by the FAA, then no change in heading
-- or climb rate is necessary.
if msd >= FAA_msd then
Air_Traffic_Display Device.write_text(msg_1l, x _msg, ¥ msg);
return;
end if;

~1

s

ATD/CWM Product Implementation/Adaptable Code Components

-- If minimal separation distance will be less than the FAA dictated
-- distance, then the appropriate corrective advisory message is
-- a function of the climb_rate and altitude of the
-- potential threat and host aircraft.
begin
ha_altitude := Host_Aircraft.get_altitude;
ha_rate := Host_Aircraft.get_climb_rate;
pt_altitude := Potential Threat.get_altitude(threat);
pt_rate := Potential Threat.get_climb_rate(threat);
exception
when numeric_error => text_io.put_line("cam 1 - NE");
when constraint_error => text_jo.put line("cam 1 - CE");
when others => text_io.put_line("cam 1 - Bozo error");
end;

-- Determine what message to send based on the current altitudes
-- and climb_rates of the potential threat and host aircraft.
if ha_altitude >= pt_altitude then
if ha_altitude - pt_altitude >= FAA msd then
case 3 * zero_test(ha_rate) + zero_test(pt_rate) is
when 2 | 5 | 8 =>
begin
change_rate := 60.0 * (FAA_msd - msd) /

float(Situation_Dynamics.get elapsed time(threat));
concatenate(msg_3, msg_suffix, change_rate);
exception
when rnimeric_error => text io.put_line("cam 2 - NE");
when constraint_error => text_io.put_line("cam 2 - CE");
when others => text_io.put_line("cam 2 -~ Bozo error");

end;
when 3 | 4 =>
Air_Traffic_Display Device.write_text(msg_2, x_msg, y msg):
when 6 =>
Air _Traffic_Display_Device.write_text(msg_l, x_msg, y_msg);
when others =>
null;
end case;
else
begin
change_rate := 60.0 * (FAA msd - msd) /

float(Situation_Dynamics.get_elapsed time(threat));
concatenate(msg_3. msg_suffix, change_rate);
exception
when numeric_error => text ic.put line("cam 3 - NE"),
when constraint_error => text _io.put line("cam 3 - CE");
when others => text 1o0.put_line("cam 3 - Bozo error").

ATD/CWM Product Implementation/Adaptable Code Components

end;
end if;
else
if pt_altitude - ha_altitude >= FAA msd then
case 3 * zero_test(ha_rate) + zero_test(pt rate) is
when 1 | 4 =>
begin

change_rate := 60.0 * (FAA msd - msd) /

float (Situation_Dynamics.get_elapsed_time(threat));
concatenate(msg_4, msg_suffix, change_rate);

exception

when numeric_error => text_io.put_line("cam 4 - NE");

when constraint_error => text_io.put_line("cam 4 - CE");

when others => text_io.put_line("cam 4 - Bozo error");
end;

when 3 =>

Air_Traffic_Display_Device.write_text(msg_1, x_msg, y_msg);

when 6 [7 | 8 =>

Air_Traffic_Display_Device.write_text(msg_2, x_msg, y_msg);

when others =>
null;
end case;
else
begin
change_rate := 60.0 * (FAA msd - msd) /

float(Situation_Dynamics.get_elapsed time(threat));
concatenate (msg_4, msg_suffix, change_rate);
exception
when numeric_error => text_io.put_line("cam 5 - NE");
when constraint_error => text_io.put_line("cam 5 - CE");
when others => text_io.put_line("cam 5 - Bozo error");
end;
end if:
end if;
exception
when numeric_error => text_io.put_line("cam - NE"):
when constraint_error => text_io.put line("cam - CE");
when others => text_io.put_line("cam - Bozo error");
end corrective_actiocn_msg;

-- Update the icon shepe for a potential_threat when its
-- partition changes.

procedure update ads(threat : in Potential Threat.pt_handle)
is
begin
- TBD
null;
end update_ads;

7-38

ATD/CWM Product Implementation/Adaptable Code Components

—— Initialize the air traffic display. Also position the host
-- aircraft icon in the center of the display as well. For
-- now, the icon shape is fixed to be a square.

procedure initialize_display
is
begin
Air Traffic_Display_Device.create_display(xloc => x_origin,
yloc => y origin,
width => x_size,
height => y size);

host_aircraft_handle := Air_Traffic_Display Device.create_object(
icon_shape =>
Air_Traffic_Display_Device.square,
icon_size => icon_size,
icon_fill =>
Air_Traffic_Display Device.black,
icon_color =>
Air_Traffic_Display_Device.white,
fill blink_rate => 0.0,
obj_blink _rate => 0.0,
xloc => X_center - icon_size / 2,
vloc => y center - icon_size / 2,
label 1 => " "
label 2 = " ",
label 3 => " ",
label 4 = " ",
label 5 => " "),

end initialize_display:

-- Update the information shown on the display for the
-- specified potential threat.

procedure update_cws (threat : in Potential Threat.pt_handle:
display status : in Potential_Threat.target_cisplay)

is

new_xloc : Air Traffic_Display_Device.position;

new yloc : Air_Traffic_Display_Device.position;

x_location, y_location : Physical_Quantities.nautical_mile;

handle : Air_Traffic_Display Device.display_handle;
begin

-- 1f the display status indicates that the target should be
-- removed from the display, then do 1it.

if display_status = Potential Threat.delete then
air Traffic_Display Device.delete_object(
Potential Threat.get_display_handle(threat));
return;
end if;

7-39

ATD/CWM Product Implementation/Adaptable Code Components

-- Otherwise, we need to update the display. So, compute

-- the location on display (in terms of pixels) for

-- the potential threat. The new pixel location is determined by
-- converting the range from the potential threat to the host

—-- aircraft into equivalent pixels. One pixel equals:

-— y_size / 300.0
-- where 300.0 is the canned surveillance area and “y_size’ is defined above.
x_location := Potential Threat.get_range(threat) *

Numerical Algorithms.sin(Potential Threat.get relative bearing(threat));
y_location := Potential_ Threat.get_range(threat) *

Numerical Algorithms.cos(Potential_Threat.get_relative_bearing(threat));
new_xloc := x_center + Air_Traffic_Display Device.position(x_location *
(float(y_size) /

300.0));
new_yloc := y_center - Air_Traffic_Display Device.position(y location *
(float(y_size) /

300.0));

-- Adjust these locations to the center of the icon.

new_xloc new xloc - icon_size / 2;
new yloc := new_yloc - icon_size / 2;

~- Having the new position, determine whether we need to create an
-- icon for this potential threat or to simply move an existing

~- one. In either case, we must also update the host aircraft

~- attribute information.

handle := Potential Threat.get_displayv_handle(threat);
if handle /= Air Traffic Display Device.null display handle then
Air_Traffic Display Device.move_object(

id => handle,

xloc => new_xloc,

yloc => new_yloc,

label 1 => "ID: " & Potential Threat.get_aircraft_id(threat}),
label 2 => "Altitude: " &

integer-image(integer (Potential Threat.get_altitude(threat))),
label 3 => "Airspeed: " &

integer” image(integer(Potential Threat.get_velocity(threat))),
label 4 => "Ccurse: " &

integer’image(integer(Potential_Threat.get_ground_track(threat))),
label 5 => "Range: " &

nautical_mile_to_string(Potential Threat.get_range(threat)));

else
handle := Air_Traffic Display_Device.create_object(
icon_shape => Air_Traffic_Display Device.triangle,
icon_size => icon_size,

7-40

ATD/CWM Product Implementation/Adaptable Code Components

icon_fill => Air_Traffic_Display Device.black,
icon_color |, => Air_Traffic_Display Device.white,
£ill_blink_rate => 0.0,
obj_blink_rate => 0.0,

xloc => new_xloc,
yloc => new_yloc,
label 1 => "ID: " &

Potential Threat.get_aircraft_id(threat),
label_2 => "Altitude: " &

integerimage (integer (Potential Threat.get_altitude(threat))),
label_3 => "Airspeed: " &

integer image(integer (Potential Threat.get_velocity(threat))),
label 4 => "Course: " &

integer-image (integer (Potential Threat.get_ground track(threat))),
label 5 => "Range: " &

nautical _mile_to_string(Potential Threat.get_range(threat)));
Potential Threat.set_display_handle(threat, handle);
end if;

-~ Update host aircraft information

Air_Traffic Display Device.move object(

id => host_aircraft_handle,
xloc => x_center - icon_size / 2,
yloc => y center - icon_size / 2,
label_ 1 => " ",

label_2 => "Altitude: " &

integer’image(integer (Host_Aircraft.get_altitude)),
label_3 => "Airspeed: " &
integer’image(integer (Host_Aircraft.get_velocity)),
label 4 => "Course: " &
integer’image(integer (Host_Aircraft.get_ground_track)),
label 5 => " ");
exception
when constraint _error =>
text_io.put_line("update cws CE");
text_io.put_line("Target info: " &
Potential Threat.get_aircraft _id(threat));
text_io.put("R: "),; put(float(Potential_Threat.get_range(threat)), aft
=> 1,
exp => 0);
text_io.new_line;
text_io.put ("RB: ");
put (float (Potential_ Threat.get_relative_bearing(threat)),
aft => 1, exp => 0);
text_io.new_line;
when numeric_error =>
text_jo.put_line("update_cws NE");
text_io.put_line("Target info: " &
Potential Threat.get_aircraft_id(threat)):
text_io.put("R: "); put(float(Potential_Threat.get range(threat)), aft
=> 1,

7-41

ATD/CWM Product Implementation/Adapiable Code Components

exp => 0);
text_io.new_line;
text_io.put ("RB: ");
put (float (Potential Threat.get _relative_bearing(threat)),
aft => 1, exp => 0);
text_io.new_line;
when others =>
text_io.put_line("update_cws BOZO error");
end update_cws:

end Air_Traffic_Display;
5. Audible_Alarm (AA)

Spec

-- Audible_Alarm (AA)

-~ This module determines the frequency and duration at which
-— to ring the audible alarm for a specified collision warning
-- situation.

with Potential_Threat;
package Audible Alarm is

procedure ring alarm(cws : in Potential Threat.cws_id);
end Audible_alarm;
Body

“module'external (aa_body)

“type(ring_info, (cws_name : target,
frequency : targe:.
duration : target))

“program(aa, (ring : list of ring info))
"module!internal (aa_body)

“prog_impl(aa, body., (}

-- Audible_Alarm (AA) body

-- The audible_alarm device generates a tone that can be heard
-- within the host_aircraft cockpit.

with Potential_ Threat:

with Audible_Alarm_Device;

package body Audible_aAlarm is

procedure ring_alarm(cws : in Potential Threat.cws_id)
is

7.42

ATD/CWM Product Implementation/Adaptable Code Components

begin
case cws is
{"forall(r, ring, (}
when Potential Threat.{r.cws_name} =>
Audible_Alarm Device.ring_alarm(f => {r.frequency}, d =>
{r.duration});
{1}
when others =>
return;
end case;
end ring_alarm;

end Audible_Alarm;

{»M}
6. Audible_Alarm_Device (AAD)

Spec
{

“program(aad, (loosely coupled : target))

“prog_impl(aad, v, (}

-- Audible Alarm Device (AAD) spec
-- The audible_alarm device generates a tone that can be heard
-- within the host_aircraft cockpit.

package Audible_Alarm Device is

type Duration is delta 0.01 range 0.01 .. 10.00; -- seconds
type Frequency is range 1000 .. 10_000; -~ hertz

procedure ring_alarm(f : in Frequency;
d : in Duration),;

{"select(
“equal(loosely_coupled, {True}) -> (}

type Alarm_Message_Type 1is private;

private
type Alarm Message Type is
record
Frequency : Frequency,;
Duration : Duration;
end record;

{1}

end Audible_Alarm Device;

{»}
Body
TBD

7.43

ATD/CWM Product Implementation/Adaptable Code Components

7. Collision_Warning_Situation_Status (CWSS)
Spec

-- Collision Warning Situation Status (CWSS) spec

-- This module determines the collision warning situation status

-- for the given potential threat and host aircraft.

with Potential Threat;

package Collision_Warning_Situation_Status is

function determine_cws_status(threat

function determine_host_cws_status return Potential Threat.cws_id:

end Collision Warning_Situation_Status;

Body

{

"modulet!external (cwss_body)

“type(time type, (min : target,
max : target))

“type(range_type. (min : target,
max : target))

“type(t_and_r_type. (t_min : target,
t_max : target,
r_min : target,
r_max : target))

“type{cws_def, (time ?: time_type.
range ?: range_type,

t_and r ?: t_and_r_type))

“type(cws_type, (cws_name : target,
severity : target,
predicate : cws_def,
partition : target))

“program(cwss, (cws : list of cws_type))

“module'!internal (cwss_body)

“prog_impl(cwss, body, (}

-—- Collision Warning Situation Status (CWSS)

-- This module determines the collision warning situation status

in Potential_Threat.pt handle)
return Potential Threat.cws_id;

package body

-- for the given potential threat and host_aircraft.

7-44

—

ATD/CWM Product Implementation/Adaptable Code Components

with Potential Threat;
{"select(

“member(~filter(x, cws, "not(“equal(x.partition, {ALL})))) -> (}
with PT_Partition; use PT_Partition;
{M}
with Physical Quantities; use Physical Quantities;
{"select(

“member(“filter(x, cws,

“or(“defined(x.predicate.time), “defined(x.predicate.t_and r))))

-> (}
with Situation_Dynamics;
with Text_I0;
{N}

package body Collision Warning Situation Status is

-- This routine keeps track of the number of potential

-- threats in each collision situation. This enables us te
—- guickly determine the host aircraft status when

-- requested to provide it.

target _count : arrav(Potential Threat.cws_id first
Potential Threat.cws _id’last) of integer := (others
=> 0);

—-- Determine the collision warning situation status of the specified
—-- potential threat.

function determine_cws_status{(threat : in Potential Threat.pt handle)
return Potential_Threat.cws_id
is
airspeed_and_altitude_valid : boolean;
{"select(
"member("filter(x, cws, °not("equal(x.partition. {ALL})))) -> (}
partition : Potential_Threat.partition;
M
“select(
“member(“filter(x, cws,
“or("defined(x.predicate.time), “defined(x.predicate.t_and_r))})
-> (}
time_to_intersect : Physical Quantities.seconds;
18D
“select (
“member (“filter(x, cws,
“or(“defined(x.predicate.range),
“defined(x.predicate.t_and_r)))) -> (}
target_range : Physical_Quantities.nautical _mile;
O}
old_cws_status, new_cws_status : Potential Threat.cws_id:
begin
airspeed and altitude_valid := Potential Threat.altitude valid(threat)

ATD/CWM Product Implementation/Adaptable Code Components

and then

Potential Threat.velocity_valid(threat);

{"select(
“member (~“filter(x, cws, °not(-equalix.partition, {ALL})))) -> (}
partition := PT_Partition.get_partition(threat);
M
“select(

“member(“filter(x, cws,
“or(“defined(x.predicate.range),
~defined(x.predicate.t_and_r)))) -> (}

target range := Potential Threat.get range(threat);
{"
“select(
“member (“filter(x, cws,
“or(“defined(x.predicate.time), “defined(x.predicate.i_and_r))))
N (}
if (airspeed and_altitude_valid) then
time_to_intersect := Situation Dynamics.get elapsed time(threat);
end if;
{»}
old_cws_status := Potential_Threat.get_cws_status(threat};
if |
{"forall(c, cws, (
"select(
“not(“equal(c.partition, {ALL})) -> (}
partition = Potential Threat.{c.partition} and then
{M
“select(

“defined(c.predicate.range) -> (}
({c.predicate.range.min} <= target_range and then target_range <
{c.predicate.range.max})) then
new_cws_status := Potential Threat.{c.cws _name};
{)

“defined(c.predicate.time) -> ()}
(airspeed_and_altitude _valid) and then
({c.predicate.time.min} <= time_to_intersect and then

time_to_intersect < {c.predicate.time.max})) then
new_cws_status := Potential Threat.{c.cws name};
{)

“defined(c.predicate.t_and_r) -> (}
(airspeed_and _altitude) and then
(({c.predicate.t_and_r.r_min} <= target_range and then target range <

{c.predicate.t_and_r.r_max})
or else
({c.predicate.t_and_r.t_min} <= time_to_intersect and then
time_to_intersect < {c.predicate.t_and_r.t_max}))) then
new_cws_status := Potential Threat.{c.cws_name};

)
~“select(

7-46

ATD/CWM Product Implementation/Adaptable Code Components

‘not (*last(c)) -> (}

elsif (
{)
)
)}
else
new_cws_status := Potential_ Threat.normal;
end if;
if (target_count(old_cws_status) /= 0) then
target_count (old_cws_status) := target_count(old_cws_status) - 1;
end if;
target_count (new_cws_status) := target_count(new_cws_status) + 1;
return new_cws_status;
exception

when constraint_error => text_io.put_line("determine cws CE"); return
Potential Threat.normal;

when numeric_error => text_io.put_line("determine cws NE"); return
Potential Threat.normal;

winen others => text_io.put_line("determine cws Bozo error"); return
Potential Threat.normal;

end determine_cws_status;

-- Determine the collision warning situation status of

-- the host aircraft. Each the number of potential threats

-- in each situation category starting with the most severe
-- situation and progressing to the least severe. The

-- first collision warning situation encountered which has

~-- a non-zero target count is the status of the host aircraf+.
-- If all situations have zero potential threats, then the

-- status of the host aircraft is "normal".

function determine_host_cws_status return Potential_ Threat.cws_id
is
begin
if ¢
{~forall(c, cws, (}
target_count (Potential Threat.{c.cws_name}) /= 0) then
return Potential_Threat.{c.cws_name};
{ ~select(
“not(-last(c)) -> (}

elsif (
{)
)
N}
else
return Potential_Threat.normal;
end if;

end determine_host_cws_status;

end Collision _Warning_Situatiorn_Status;

)}

7-47

ATD/CWM Product Implementation/Adaptable Code Components

8. Communication (COMM)
Spec

{

“module!external (comm_spec)

“type(atc_info, (cws_name : target,
code : target))

“type(inter_air_info, (cws_name : target,
code : target))

“program(comm, (atc_msg : list of atc_info,
inter_air_msg : list of inter_air_info,
mode : target))

}
{

“module!internal(comm_spec)

“prog_impl (comm, spec, (}
-- Communication (COMM) package spec
-- This module determines the content of the ATC_Msg and
-- Inter_Air_ Msg messages that are transmitted to the
-- air traffic control center and potential threat, respectively for
-- a specified collision warning situation.
with Potential_Threat;
package Communication is
{"select(
“member (atc_msg) -> (}

procedure send_atc_msg(cws : in Potential Threat.cws_id);

{M
“select(
“member (inter_air_msg) -> (}

procedure send_ia_msg(cws : in Potential_Threat.cws_id);

M}

end Communication;

{3)
Body

{

“module!external (comm_body)

“type(atc_info, (cws_name : target,
code : target))

7-48

ATD/CWM Product Implementation/Adaptable Code Components

“type(inter_air_info, (cws_name : target,
code : target))

“program(comm, (atc_msg : list of atc_info,
inter_air_msg : list of inter_air_info.
mode : target))

}
{

"module!internal (comm_body)

“prog_impl(comm, body, (

{

-- Communication (COMM) package body
with Potential Threat;
with Communication Device;}
“select(
“or(“member(inter_air_msg), “equal(mode, {C})) -> ({
with Host_Aircraft;}
)
)
“select(
“member (inter_air_msg) -> ({
with Physical_Quantities;]
)
)
{
package body Communication is}
“select(
“member (atc_msg) -> ({

procedure send_atc_msg(cws : in Potential Threat.cws_id)
is
begin
case cws is)
~forall(c, atc_msg. ({

when Potential Threat.{c.cws_name} =>
Communication_Device.send_atc_msg(code => {c.code}}
“select(
“equal (mode, {C}) -> ({
, altitude => Host_Aircraft.get_altitude}

-~

{

)i
}
))
{

when others =»
return;
end case;

7-49

ATD/CWM Product Implementation/Adaptable Code Components

end send_atc_msg: }
)

)
“select(
“member (inter_air_msg) -> ({

procedure send_ia_msg(cws : in Potential Threat.cws_id)
is
latitude : Physical_Quantities.degrees;
longitude : Physical Quantities.degrees;
begin
Host_Aircraft.get_location(latitude => latitude,
longitude => longitude);
case cws is}
~forall(i, inter_air_msg, ({

when Potential_Threat.{i.cws_rame} =>
Communication_Device.send_ia_msg(code => {i.code},

altitude =>

Host_Aircraft.get_altitude,
latitude => latitude,
longitude => longitude);}

))

{

when otheors =>
return;
end case;
end send_ia_msg; }
)
)
{

end Communication;

}
))

}

9. Communication_Device (CD)
Spec
{

“module'!external (cd_spec)

“program(variant, (atc_msg: target,
inter_air_msg : target))

“prog_impl(variant, vl, (
“select(
"and(“equal(ate_mez. {True}), “equal(inter_air_mse, {True};, -> ¢ {{]
(msg : Msg_Type){}
)
))

7-50

ATD/CWM Product Implementation/Adaptable Code Components

“program(inter_air_msg_part, ())

“prog_impl (inter_air_msg_part, vl, ({
altitude : Physical Quantities.feet;
latitude : Physical_Quantities.degrees:
longitude : Physical Quantities.degrees;

m

“program(cd, (atc_msg : target,
inter_air_msg : target,
mode : target,
loosely coupled : target))

}
{

“module!internal(cd_spec)

“prog_impl(cd, spec, (

{

-- Communication_Device (CD) package spec

-- This module encapsulates the hardware / software

-— interface to the communication device. It knows how
-- to transmit a message to either an air traffic

-- control center or to a specified potential threat.
with Physical_Quantities;

package Communication Device is

}
“select(
“equal(atc_msg, {True}) -> ({
-- Send the ATC_Msg to the nearest air traffic control center.
procedure send_atc msg(code : in natural {}
}
“select (
“equal (mode, {C}) -> ({
altitude : in Physical_Quantities.feet
3D
{
)i
130
“select(

“equal(inter_air _msg, {True}) -> ({

-- Send an Inter-Air_Msg to the specified potential_ threat.
procedure senu_:uter_air_msg(code : in natural;
altitude : in Physical_Quantities. feet;
latitude : in Physical Quantities.degrees;

7-51

ATD/CWM Product Implementation/Adaptable Code Components

longitude : in Physical Quantities.degrees);

120

“select(
“equal (loosely_coupled, {True}) -> (
“select(
"and(“equal(atc_msg, {True}), “equal(inter_air msg, {True})) -> ({
type Msg_Type is private;
)
{

type Communication_Msg_Type}“variant(atc_msg, inter_air_msg){ is private;

private
}
“select (
*and(“equal(atc_msg, {True}), “equal(inter_air_msg, {True})) -> ({
type Msg Type is (ATC, Inter_Air);
13D
{
type Communication_Msg~Type}“variant(atc_msg, inter_air_msg){ is
record
code : natural;

}
“select(
"and("equal(atc_msg, {True}), “equal(inter_ air_msg, {Trge})) ->
{
case msg is
when ATC =>
!
“select(
*equal(mode, {C}) -> ({
altitude : Physical Quantities.feet;
)
true -> ({
null,
|2D)
{ when Inter_Air => }
“inter_air_msg_part()
{
end case;
b

"equal (atc_msg, {True}) -> ¢
“select (
“equal(mode, {C}) -> ({
altitude : Physical Quantities.feet;
M)

"equal(inter_air_msg, {True}) -> (
"inter_air_msg _part()

end record;

7-52

ATD/CWM Product Implementation/Adaptable Code Components

1)
{

end Communication_Device;
13
}

Body
{

“module'external (cd_body)

“program(variant, (atc_msg: target,
inter_air_msg : target))

“prog_impl(variant, vi1, (
“select(
“and(“equal(atc_msg, {True}), “equal(inter_air_msg. {True})) -> ({{}
(msg : Msg Type){}
j3);
)

“program(inter_air_msg_part, ())

“prog_impl(inter_air_msg_part, vi, ({
altitude : Physical Quantities.feet;
latitude : Physical Quantities.degrees:
longitude : Physical_Quantities.degrees;

|3

"program(cd, (atc_msg : target,
inter_air_msg : target,
mode : target,
loosely coupled : target))

}
{

“moduletinternal (cd_body)

“prog_impl(cd, body, (

{

-- Communication Device (CD) package body

}

“select (
“equal (loosely_coupled, {True}) -> ({
with Communication_ Buffer;
}2D)
{with Physical_Quantities;
with System;
package body Communication_Device is
}
“select(
“equal (loosely_coupled, {True}) -> ({

7-53

ATD/CWM Product Implementation/Adaptable Code Components

task output_communication is
pragma Priority(10);
end output_communication;

task body output_communication is
message : Communication_Msg_Type;
begin
loop
Communication_Buffer.Receive(message) ;
- write_to_physical_device(?7);
end loop;
end output_communication;
13D
“select(
“equal (atc_msg, {True}) -> ({

-- Send the ATC Msg to the nearest air traffic control center.

procedure send_atc_msg{(code : in natural

}
“select(
“equal (mode, {C}) -> « {
altitude : in Physical Quantities.feet
3]
{
)
is
1
“select(
"equal (loosely coupled, {True}) -> ¢ {
message : Communication Msg Type}
“select(
“and("equal(atc_msg. {True}), “equal(inter_air_msg, {True})) -> ({
(msg => ATC) {}
133!
{:
13D
{ begin
}
“select(
“equal (loosely_coupled, {True}) -> ({
message.code := code;}
“select (
*equal (mode, {C}) -> ({
message.altitude := altitude;
)
{
Communication_Buffer.send(message) ;
H
true -> ({
- write to_physical_device();
7-54

ATD/CWM Product Implementation/Adaptable Code Components

|98
{
end send_atc_msg;
|AD
“select (
“equal (inter_air_msg, {True}) -> ({
-- Send an Inter-Air_Msg to the specified potential_ threat.
procedure send_inter_air_msgi(code : in natural;
altitude : in Physical Quantities.feet;
latitude : in Physical Quantities.degrees;
longitude : in Physical Quantities.degrees)
is
}
“select(
“equal (loosely coupled, {True}) -> ({
message : Communication Msg Type}
“select(
"and(“equal(atc_msg. {True}), “equal(inter air_msg, {True})) -> ({
(msg => Inter Air) {}
1)
{:
)
{ begin
}
“select(
“equal(loosely coupled, {True}) -> ({
message.code := code;
message.altitude := altitude;
message.latitude := latitude;
message.longitude := longitude;
Communication_Buffer.send(message);
b
true -> ({
- write to_physical_device();
j3)

{

end send_inter_air msg;

M .
{end Communication_Device; }

))
}

10. Host_Aircraft (HA)

Spec

-~ Host_Aircraft (HA) package spec

ATD/CWM Product Implementation/Adaptable Code Components

This module models the host aircraft in an ATD/CWM system. The
host aircraft has properties of altitude, aircraft identification,
airspeed, location, ground_track, climb rate, and cws_status. The
hidden decisions of this module are the internal representation
of these properties, algorithms for manipulating them, and how to
determine the values for these properties.

with Physical Quantities;
with Potential_Threat;
package Host_Aircraft is

Returns the most recently measured altitude of the host aircraft.

function get_altitude return Physical Quantities.feet;

Returns the most recently measured climb rate of the host aircraft.

function get _climb_rate return Physical Quantities.fpm;

Returns the collision warning situation status of the host aircraft.

function get_cws_status return Potential_Threat.cws_ia;

Returns the most recently measured ground track of the host aircraft.

function get_ground track return Physical Quantities.degrees;

Returns the most recent values for all properties of the host aircraft.

procedure get_host_data(altitude : out Physical Quantities.feet:
ground_track : out Physical Quantities.degrees;
rate : out Physical Quantities.fps:
airspeed : out Physical Quantities.knots;
latitude : out Physical Quantities.latitude:
longitude : out Physical Quantities.longitude;
status : out Potential Threat.cws_id);

Returns the most recently measured position of the host aircraft

procedure get_location(latitude : out Physical Quantities.latitude;
longitude : out Physical Quantities.longitude);

Returns the most recently measured airspeed of the host aircraft.

function get_velocity return Physical_ Quantities.knots;

end Host_Aircraft;

7-56

ATD/CWM Product Implementation/Adaptable Code Components

-- Host_Aircraft (HA) package body

-— This mcdule models the host aircraft in an ATD/CWM system. The

-- host aircraft has properties of altitude, aircraft_identification,
-- airspeed, location, ground_track, climb rate, and cws_status. The
—-- hidden decisions of this module are the internal representation
-- of thes«< properties, algorithms for manipulating them, and how to
-- determine i.e values for these properties.

with
with
with
with
with
with

Physicnl Quantities;

Potential_ Threat;

Navigation;

Collision Warning_Situation_Status;
Air Craft_Motion;

System;

package body Host_Aircraft is

-- Constants

Host_Aircraft_Update_Frequency : constant := 1.0;

-- Information block for the host_aircraft

type host_aircraft_info is

record
altitude_¥ : Physical_ Quantities.feet; -- most recent altitude

reading

time Y : Physical Quantities.seconds;
altitude_X : Physical Quantitie- feet; -- previous altitude reading
time_X : Physical Quantities.sec.nds:
velocity : Physical Quantities.knots;
climb_ra.e : Physical Quantities.fpm;
latituce : Physical Quanti<ies.latitud:;
longitude : Physical Quant..ies.longitude;
ground_track : Physical_Quantities.degrees;
cws_status : Potential Threat.cws_id,
end record;

host_aircraft : host_aircraft_info := (

altitude_Y => 0.0,
time Y => 0.0,
altitude X => 0.0,
time X => 0.0,
velocity => 0.0,
climb_rate => 0.0,
latitude => 0.0,
longitude => 0.0,
ground_track => 0.0,

ATD/CWM Product Implementation/Adapiable Code Components

cws_status => Potential Threat.normal
),

Returns the most recently measured altitude of the host aircraft.

function get_altitude return Physical Quantities.feet
is
begin
return host_aircraft.altitude_Y;
end get_altitude;

Returns the most recently measured climb rate of the host_aircraft.

function get_climb_rate return Physical Quantities.fpm
is
begin
return host _aircraft.climb_rate;
end get_climb_rate:

Returns the collision warning situation status of the host_aircraft.

function get_cws_status return Potential Threat.cws_id
is
begin
return host_aircraft.cws_status;:
end get_cws_status;

Returns the most recently measured ground track of the host aircraft.

function get_ground_track return Physical Quantities.degrees
is
begin
return host_aircraft.ground_track;
end get ground_track:

Returns the most recent values for all properties of the host aircraft.

procedure get_host_data(altitude : out Physical_Quantities.feet;
ground_track : out Physical_Quantities.degrees;
rate : out Physical Quantities.fps;
airspeed : out Physical Quantities.knots;
latitude : out Physical Quantities.latitude;
longitude : out Physical Quantities.longitude;
status : out Potential Threat.cws_id)
is
begin
altitude := host_aircraft.altitude Y;
ground_track := host_aircraft.ground_ track;
rate := host_aircraft.climb_rate;

7-58

ATD/CWM Product Impiementation/Adaptable Code Componeants

airspeed := host_aircraft.velocity;
latitude := host_aircraft.latitude;
longitude := host_aircraft.longitude;
status := host_aircraft.cws_status;

end get_host_data;

Returns the most recently measured position of the host_aircraft.

procedure get_location(latitude : out Physical Quantities.latitude;
longitude : out Physical Quantities.longitude)

is

begin
latitude := host_aircraft.latitude;
longitude := host_aircraft.longitude;

end get_ location;

Returns the most recently measured airspeed of the host _aircraft.

function get_velocity return Physical Quantities.knots
is
begin
return host_aircraft.velocity;
end get_velocity;

Task to retrieve navigation data on the host aircraft from
the navigation device on a periodic basis since this device
is passive. The periodicity is given by Host Aircraft Update Frequency.

task update_host_aircraft_information is
pragma Priority(6);
end update_host_aircraft_information;

task body update_host aircraft_information
is
begin
delay 7.0; -- For simulation PURPOSES only to allow X interface setup
loop
delay Host_Aircraft Update_Frequency;
host_aircraft.altitude X := host_aircraft.altitude_Y;
host_aircraft.time_X := host_aircraft.time_%;
Navigation.get_nav_data(host_aircraft.altitude_Y,
host_aircraft.time_ Y,
host_aircraft.velocity,
host_aircraft.ground_track,
host_aircraft.latitude,
host_aircraft.longitude);

-~ Compute the cws_status and climb rate as well.

host_aircraft.cws_status :=

7-59

ATD/CWM Product Implementation/Adaptable Code Components

11.

Collision_Warning_Situation_Status.determine_host_cws_status;
host_aircraft.climb_rate :=

Air_Craft_Motion.get_climb_rate(host_aircraft.altitude_v,
host_aircraft.time_ Y,
host_aircraft.altitude_X,
host_aircraft.time.X);

end loop;
end update_host_aircraft_information;

end Host_Aircraft;

Initialization_and_Termination (IT)

Body

12.

-— The "main" procedure for the ATD’'CWM system. It
-— starts all the tasks in the system and causes the
-- air traffic display to be initialized.
with Air_Traffic_Display;
with System;
pragma Elaborate(Air_Traffic_Display);
procedure Atd_Cwm
is

pragma Priority(15);
begin
-— Initialize the air traffic display.

Air Traffic_Display.initialize display;

loop

delay 86_400.0;

end loop;

end Atd_Cwm;

Navigation (NAV)

Spec

-- Navigation (NAV) package spec

-- This module encapsulates the hardware / software interface to the
-- host aircraft navigation device. The primary hidden decisions are
-- how to obtain host aircraft raw data for altitude, airspeed, ground
-- track, latitude, and longitude; the scale and format of these input
-~ data items; and the device-dependent operations that must be

-~ applied to convert the raw data to the internal format of the

-- ATD/CWM system.

with Physical_Quantities;
package Navigation is

7-60)

ATD/CWM Product Implementation/Adaptable Code Components

procedure get_nav_data(altitude : out Physical_Quantities.feet;
timestamp : out Physical Quantities.seconds;
airspeed : out Physical Quantities.knots;
ground_track : out Physical Quantities.degrees;
latitude : out Physical Quantities.latitude;
longitude : out Physical Quantities.longitude);

end Navigation:

Body

13.

—-- Navigation (NAV) package body

-- This module encapsulates the hardware / software interface to the
-- host aircraft navigation device. The primary hidden decisions are
-- how to obtain host aircraft raw data for altitude, airspeed, ground
-- track, latitude, and longitude; the scale and format of these input
-- data items; and the device-dependent operations that must be

-- applied to convert the raw data to the internal format of the

-- ATD/CWM system.

with Physical Quantities;
with Simulation_Data:
package body Navigation is

~- Read the host aircraft navigation data ad return the converted
-- information to the calling program.

procedure get_nav_data(altitude : out Physical Quantities.feet;
timestamp : out Physical Quantities.seconds;
airspeed : out Physical_Quantities.knots;
ground_track : out Physical_Quantities.degrees;
latitude : out Physical Quantities.latitude;
longitude : out Physical Quantities.longitude)
is
begin
-- Get information from navigation "device®.
Simulation Data.get_sim _data(altitude, airspeed, ground_track,
latitude, longitude);
timestamp := Physical_Quantities.get_time;
end get_nav_data;

end Navigation;

Numerical _Algorithms (NA)

Nore: The package Spec and Body for this component have been purposely omitted to reduce the

14.

size of the ATD/CWM case studv documentation.

Physical_Quantities (PQ)

7-61

ATD/CWM Product Implementation/Adaptable Code Components

Nore: The package Spec and Body for this component have heen purposely omitted to reduce the
size of the ATD/CWM case study documentation.

15. Potential_Threat (PT)

Spec
“moduletexternal (pt_spec)
“type(time_type, (min target,
max target))
“type(range_type, (min target,
max target))
“type(t_and_r_type, (t_min target,
t_max target,
r_min target,
r_max target}))

“type(cws_def,
range 7:

(time ?: time_type,
range_type.

t_and_r ?: t_and_r_type))

“type(cws_info, (cws_name target,
severity target,
predicate cws_def,
partition target,
alarm : target,
atc_msg target,
inter_air_msg : target,
corrective target))

“program(pt, (cws list of cws_info))

“module!internal (pt_spec)

“prog_impl(pt, spec, (}

-~ Potential Threat (PT)
-~ This module models potential threats in an ATD/CWM system. Potential
-~ threats have properties of altitude, airspeed, aircraft_identification,
-- ground_track, range, relative_bearing, climb_rate, and collision

-~ warning situation status. This module knows how to

-~ determine values for these properties.

package spec

with Physical Quantities;
with Air Traffic_Display_Device;
package Potential Threat is

type pt_handle is private;

7-62

ATD/CWM Product Impiementation/Adaptable Code Components

type target_source is (RADAR SOURCE, ATC_SOURCE);
type target_info(from : target_source := RADAR_SOURCE) is private;

type target_display is (add_modify, delete);

type partition is (ID, UID); -- ID is identified
—- UID is unidentified

type cws_id is (

{~forall(c, cws, (}
{c.cws_name},
{N}

)

normal

~~ Returns whether the altitude value for the specified
~-- potential threat is valid.

function altitude_valid(threat : in pt_handle) return boolean;

-~ Returns the aircraft identification of the specified potential threat.

function get_aircraft_id(threat : in pt_handle) return string;

-- Returns the current altitude of the specified potential threat.

function get_altitude(threat : in pt_handle) return
‘ Physical_Quantities. feet;

-- Returns the most recent collision warning situation status of
-- the specified potential threat.

function get_cws_status(threat : in pt_handle) return cws_id:

-~ Returns the current ground track of the specified potential threat.

function get_ground_track(threat : in pt_handle) return
Physical_Quantities.degrees;

-- Returns the value of the display handle for the specified potential threat.

function get_display_handle(threat : in pt_handle)
return Air_Traffic_Display_Device.display_handle;

-- Sets the display handle for the specified potential threat.

procedure set_display_handle(threat : in pt_handle;

7-63

ATD/CWM Product Implementation/Adaptable Code Components

handle : in
Air Traffic_Display Device.display handle);

-- Returns which partition the potential threat is-a member of.

function get_partition(threat : in pt_handle) return partition;

-- Returns the most recently measured range between the specified
-- potential threat and the host_aircraft.

function get_range(threat : in pt _handle) return
Physical_Quantities.nautical mile;

-- Returns the most recently measured climb rate for the
-- potential_ threat.

function get_climb_rate(threat : in pt_handle) return
Physical Quantities.fpm;

-- Returns the most recently measured relative_bearing of the
-- specified potential_threat.
function get_relative_bearing(threat : in pt_handle)
return Physical Quantities.degrees;

-- Returns the most recently measured velocity of the specified
~- potential_threat.

function get_velocity(threat : in pt_handle) return
Physical Quantities.knots;

~- Returns a status which indicates whether the velocity of the
~- specified potential threat is valid.

function velocity_valid(threat : in pt_handle) return boolean;
private

tvpe pt_info;
type pt_handle is access pt_info;

type target_info(from : target_source := RADAR_SOURCE) is
record
aircraft_id : string(l..8};
relative_bearing : Physical Quantities.degrees;
target_range : Physical_Quantities.nautical mile;
timestamp : Physical_Quantities.seconds;
case from is

7-64

ATD/CWM Product Implementation/Adaptable Code Components

when RADAR_SOURCE =>

sweep

integer;

when ATC_SOURCE =>

altitude
airspeed

ground_track

end case;
end record;

end Potential Threat;

"M}

Physical_Quantities.feet;
Physical Quantities.knots;

Physical Quantities.degrees;

Body
{
“moduletlexternal (pt_body)
“type(time_type, (min target,
max target))
“type(range_type, (min target,
max target))
“type(t_and_r_type, (t_min target,
t_max target,
r_min target,
r_max target))

“type(cws_def,
range ?7: T
t_and_r ?:

“type(cws_info, (cws_name

severity

predicate
partition

alarm t

atc_msg

inter_air
correctiv

“program(pt, (cws

“module!internal(pt_body)

“prog_impl(pt, body, (

Potential Threat (PT)

(time ?: time type,

ange_type,
t_and r_type))

target,
target,
cws_def,
target,
arget,
target,
_msg target,
e target))

list of cws_info))

package body

This module models potential threats in an ATD/CWM system. Potential
threats have properties of altitude, airspeed, aircraft identification,

-~ ground_track, range, relative_bearing, climb_rate, and collision

warning situation status.

This module knows how to

765

ATD/CWM Product Implementation/Adaptable Code Components

-- determine values for these properties.
with Physical Quantities;
} “select(
“member (“filter(x, cws, “equal(x.alarm, {True}))) -> ({
with Audible_Alarm;
I
with Air Traffic_Display;
} “select(
“or("member("filter(x, cws, “equal(x.atc_msg, {True}))),
“member (“filter(c, cws, “equal(x.inter_air_msg, {True})))) -> ({
with Communication;
I3R!
with Air Traffic_Control;
with Air Traffic_Display_Device;
with Air_Craft_Motion;
with System;
with Target Buffer;
with Collision_Warning_Situation_Status;
with Radar_Target_Priority_Buffer;
with Radar;:
with Unchecked_Deallocation;
with Text_IO;
pragma Elaborate(Air_Traffic_Control, Target_Buffer):
pragma Elaborate(Radar_Target_Priority_ Ruffer, Radar);
package body Potential_Threat is

-- Information block for potential threats.

type data_validity is (valid, invalid);
type pt_info is

record
aircraft_id : string(l..8);
altitude_ Y : Physical Quantities.feet; -- most recent altitude
reading

altitude_Y_valid : data_validity;
time_Y : Physical_Quantities.seconds;
altitude X : Physical_Quantities.feet; -- previous altitude reading
time_X : Physical_Quantities.seconds;
velocity : Physical_Quantities.knots;
velocity valid : data_validity;
climb_rate : Physical_Quantities.fpm;
ground track : Physical_Quantities.degrees;
cws_status : Potential_Threat.cws_id;
target range : Physical_Quantities.nautical_mile;
relative_bearing : Physical Quantities.degrees;
handle : Air_Traffic_Display_Device.display_handle;
sweep : integer;

end record;

-- Various constants.

7-66

ATD/CWM Product Implementation/Adaptable Code Components

Purge_Time : constant := 5.0;
Startup_Delay : constant := 10.0: -- for SIMULATION purposes only

-- Symbol table entries and symbol table. Size of symbol table
-~ given by HASHSIZE.

HASHSIZE : constant natural := 128;

type table_entry;
type next is access table_entry;

type table_entry is

record
target : pt_handle; —- potential threat
link : next; -- pointer to next entry on hash chain

end record;

buckets : array(0..HASHSIZE-1) of next := (others => null);

~- Mapping of collision warning situations to priorities
~-- for the radar target priority buffer.

cws_to_priority : array(cws_id range cws_id first ..}
~forall(c, cws, (
"select(
"last(c) -> ({ {c.cws name}) })
)
14

of Radar_Target_Priority Buffer.message priority :=
(}
“forall(c, cws, ({
{c.cws_name} => Radar_ Target_Priority_Buffer.{c.cws_name}}
"select(
‘not("last(c)) -> ({,}
))
1
)

-- Procedures to deallocate storage previously allocated
-- for the symbol table entries.

procedure free_table_entry is new Unchecked_Deallocation(table_entry,
next);
procedure free_target is new Unchecked_Deallocation(pt_info, pt_handle):

-- Potential threat lookup routine. Lookup is based on the potential
-- threat name. The potential threat information block is returned.

7-67

ATD/CWM Product Implementation/Adaptable Code Components

function lookup(name : in string) return pt_handle
is

hash_value : natural;

ptr : next;
begin

First, compute the hashing value for this target name.

hash_value := 0;
for n in name’first .. name’last loop

hash_value := hash_value * 2 + character’pos(name(n));
end loop;

hash_value := hash_value rem HASHSIZE;
ptr := buckets(hash_value);
while ptr /= null loop
if ptr.target.aircraft_id = name then
return pir.target;
end if:
pir := ptr.link;
end loop;
return null;
end lookup;

Install potential threat in the symbol table and return a
pointer to the target information block.

function install(name : in string) return pt_handle
is
ptr : next;
hash_value : natural:
begin
hash_value := 0;
for n in name’first .. name-”last loop
hash_value := hash_value * 2 + character’pos(name(n));
end loop;
hash_value := hash_value rem HASHSIZE;
ptr := new table_entry;
ptr.target := new pt_info;
ptr.target.aircraft_id := name;
ptr.link := buckets(hash_value);
buckets(hash_value) := ptr;
return ptr.target;
end install;

Background task to periodically purge old out-of-date
target information blocks. An ‘0ld” information block
is any block that has not been updated within the
last Purge Time seconds.

task purge_target_information_blocks
is

7-68

ATD/CWM Product Implementation/Adaptable Code Components

pragma Priority(11l);
end purge target_information_blocks;

task body purge_target_information_blocks
is
ptrl, ptr2, ptr3 : next;
current_time : Physical_Quantities.seconds;

begin
loop

delay Purge Time;

current_time := Fhysical Quantities.get_tin

for n in buckets’first .. buckets‘last loop
ptrl := null;
ptr2 := buckets(n);
while ptr2 /= null loop

if current_time - ptr2.target.time_Y > Purge Time then

ptr3 := ptr2.link:
if ptrl = null then
buckets(nj := ptr3;
else
ptrl.link := ptr3:
end if;

Air _Traffic_Display.update_cws(threat => ptr2.target,
display_status => deleve);

free target(ptr2.target);
free_table_entry(ptr2);
ptr2 := ptr3;
else
ptrl
ptr2
end if;
end loop;
end loop;
end loop;
exception
when constraint_error => text_io.put_line("ptib CE");
when numeric_error => text_io.put_line("ptib NE");
when others => text_io.put_line("ptib Bozo error");
end purge_target_information_blocks;

ptr2;
ptr2.link;

]

-— Tasks to process potential threats in a specified
-- collision warning situation.

“stream!int (priority, (
“forall(c, cws, ({
task collision_warning_situation_{c.cws_name}
is
pragma Priority(6-{priority});
end collision_warning s.tuation_{c.cws_name};

ATD/CWM Product Implementation/Adaptable Code Components

task body collision_warning_situation_{c.cws_name}
is

msg : pt_handle;
begin

loop

-- Receive the next target and perform the desired processing

-- with it.

Radar _Target_Priority_Buffer.receive_{c.cws_name} (msg);

}
“select(
~equal(c.alarm, {True}) -> ({
Audible_Alarm.ring_alarm({c.cws_name});
}
)
)
“select(
“equal(c.atc_msg. {True}) -> ({
Communication.send_atc_msg({c.cws_name});
}
)
)
“select(
‘equal(c.inter_air_msg. {True}) -> ({
Communication.send_ia msg({c.cws_naue});
}
)
)
“select(
“equal(c.corrective, {True}) -> ({
Air Traffic_Display.corrective_action_msg(threat
}
)
)
{ Air_Traffic_Displayv.update_cws(threat => msg,
display_status
end loop;
exception

=> msg);

=> add_modify};

when constraint_error
when numeric_error
when others

end collision_warning_

=> text_io.put_line("cwss_{c.cws_name} CE");

=> text_io.put_line("cwss_{c.cws_name} NE");

=> text_io.put_line("cwss_{c.cwvs_name} Bozo error");
situation_{c.cws_zeme}:}

Task to obtain radar information

How long to wait before accessing the next radar data record. This

is only used for the s

imulation. When we have a real

7-70

ATD/CWM Product Implementation/Adaptable Code Components

~- radar device, the delay statement in the monitor_radar task body MUSI k&
-- removed.
task get_radar_information is
pragma Priority(9);
end get_radar_infor.aation;

task body get_radar_information is
aircraft_id : string(l..8);
sweep : integer;
relative_bearirg : Physical Quantities.degrees;
target_range : “hysical_Quantities.nautical_mile;
timestamp : Physical_Quantities.seconds;
target : target_info(from => RADAR_SOURCE);
begin
delay Startup_Delay:
loop
Radar.get_radar_data(aircraft_id, sweep. relztive bearing,
target_range, timestamp),

-- Save the information and forward it to the processing task.

target.aircraft_id := aircraft_id;
target.target_range := target_rangc,
target.relative_bearing := relative bearing:
target.timestamp := timestamp.
target.sweep : = Sweep,;
Target_Buffer.send(target);

end loop:

exception
when constraint_error => text_io.put_line("gri CE"):
when numeric_error => text_io.put_line("gri NE");
when others => text_io.put_line("gri Bozo error"):
end get_radar_information;

-- Task to obtain potential threat information from
-~ the air traffic control device.

-- How long to wait before accessing the next atc data record. This is only
-- used during the simulation. When we have a real ATC device,

-- then the delay statement in the monitor_atc task bod. MUST

-~ be removed.

task get_atc_information is
pragma Priority(9);
end get_atc_information;

task body get_atc_information is
aircraft_id : string(l..8);
altitude : Physical Quantities.feet;
airspeed : Physical Quantities.knots;

ATD/CWM Product Implementation/Adaptable Code Components

ground_track : Physical Quantities.degrees;

target _range : Physical_Quantities.nautical_mile;

relative_bearing : Physical_Quantities.degrees;

timestamp : Physical Quantities.seconds;

target : target_info(from => ATC_SOURCE);

begin
delay Startup_Delay;
lcop
Air_Traffic_Control.get_atc_message(aircraft_id, altitude, airspeed,
ground_track, target_ range,
relative bearing,

timestamp) ;

—- Send the target information to the processing task.

target.aircraft_id := aircraft_id;
target.altitude := altitude;
target.airspeed := airspeed:
target.ground_track := ground_track;
target.target_range := target_range;
target.relative_bearing := relative_bearing;
target.timestamp := timestamp;
Target_Buffer.send(target);
end loop;
exception

when constraint _error => text_io.put line("gai CE");
when numeric _error => text_io.put_line("gai NE");
when others => text_io.put_line("gai Bozo error");
end get_atc_information;

-- Task to process the potential threat target information received
-- from the radar and ATC devices.

task update_potential threat_information is
pragma Priorityv(8;:
end update potential threa:_information;

task body update_potential_ threat_information
is

target : pt_handle;

info_block : target_info;

new_status : cws_id;
begin

loop

-- Get next potential threat information block.
Target Buffer.receive(info_block);
-- Process the target information. If this is a new target,

-- then we must add it to the symbol table and set the appropriate
-- fields.

ATD/CWM Product Implementation/Adaptable Code Components

target := lookup(info_block.aircraft_id);
if target = null then

target := install(info_block.aircraft_id);
if info_block.from = RADAR_SOURCE then
target.altitude_Y valid := invalid;
target.altitude X := 0.0;
target.altitude Y := 0.0;
target.time_Y := info_block.timestamp;
target.time_X := nfo_block.timestamp;
target.velocity_valid := invalid;
target.climb_rate := 0.0;
target.ground_track := 0.0;
target.cws_status := normal;
target.target_range := info_block.target_range;
target.relative_bearing := info_block.relative bearing;
target.handle :=

Air_Traffic_Display Device.null_display_handle;

target.sweep := info_block.sweep;

else
target.altitude_ Y := info_block.altitude;
target.altitude Y valid := valid;
target.time Y := info_block.timestamp;
target.altitude_X := info_block.altitude;
target.time_X := info_block.timestamp;
target.velocity := info block.airspeed;
target.velocity_valid valid;
target.climb_rate := 0.0;
target.ground_track := info_block.ground track;
target.cws_status := normal;
target.target_range := info block.target range;
target.relative_bearing := info_block.relative bearing;
target.handle :=

o

Air_Traffic_Display_Device.null_display_handle;

target . sweep = O;
end if;

else

—-- Update information for an existing target.

if info_block.from = RADAR_SOURCE then
target.sweep := info_block.sweep;
target.target_range := info_block.target_range;
target.relative_bearing := info_block.relative bearing;
target.time_X target.time_Y,;
target.time_Y := info_block.timestamp;

else
if target.altitude_Y valid = invalid then
target.altitude X := into_block.altitude;
else
target.altitude X := target.altitude Y;
end if;

7-73

Xy —

ATD/CWM Product Implementation/Adaptable Code Components

target.time_X := target.time_ Y;

target.altitude_Y := info_block.altitude;

target.altitude_Y_valid := valid;

target.time_Y := info block.timestamp;

target.velocity := info_block.airspeed;

target.velocity_valid := valid,

target.ground_track info_block.ground_track;

target.target_range info_block.target_range;

target.relative_bearing := info_block.relative bearing;
end if;

-— Compute the climb rate for the target using the new information

begin
target.climb_rate := Air_Craft_Motion.get _climb_rate(
altitude_Y => target.altitude Y,
time_Y => target.time_Y,
altitude_X => target.altitude_X,
time_X => target.time X);
exception

when constraint_error => text_io.put_line("upti -1- CE");
when numeric_error => text_io.put line("upti -1- NE");
when others => text_io.put_line("upti -1- Bozo error");
end;
end if;
-- Determine the situation this target is in relative to the host
-- aircraft and pass the target information along to the
-- appropriate task for further processing.
new_status :=
Collision_Warning_Situation_Status.determine_cws_status(target):
if new_status /= target.cws_status and new_status /= normal then
target.cws_status := new_status;
Radar_Target_ Priority_Buffer.send(target,
cws_to_priority(target.cws_status));
else
Air_Traffic_Display.update_cws(threat => target,
display_status => add_modify);
end if;
end loop;
exception
when constraint_error => text _io.put_line("upti CE");
when numeric_error => text_io.put _line("upti NE");
when others => text_io.put_line("upti Bozo error");
end update_potential_ threat_information;

-~ Returns whether the altitude value for the specified
-~ potential threat is valid.

ATD/CWM Product Implementation/Adaptable Code Components

function altitude_valid(threat : in pt_handle) return boolean
is
begin
return threat.altitude_Y_valid = valid;
end altitude_valid,

Return the identification of the specified potential threat.

function get_aircraft_id(threat : in pt_handle) return string
is
begin
return threat.aircraft_id;
end get_aircraft_id;

Return the current altitude of the specified potential threat. Exception
Altitude_Invalid is raised if the altitude valid is invalid.

function get altitude(threat : in pt_handle) return

Physical_Quantities.feet

is
begin

return threat.altitude_Y;
end get_altitude;

Returns the most recently measured climb rate for the
potential threat.

function get_climb_rate(threat : in pt_handle) return

Physical Quantities.fpm

is
begin

return threat.climb_rate;
end get _climb_rate;

Return the collision warning situation status of the specified potential
threat.

function get_cws_status(threat : in pt_handle) return cws_id
is
begin
return threat.cws_status;
end get_cws_status;

Return the display handle for the specified potential threat.

function get_display_handle(threat : in pt_handle)
return Air Traffic_Display Device.display_handle
is

7-75

ATD/CWM Product Implementation/Adaptable Code Components

begin
return threat.handle;
end get_display_ handle;

-- Set the display handle for the specified potential threat.

procedure set_display_handle(threat : in pt_handle;
handle : in
Air_Traffic_Display Device.display_handle)
is
begin
threat.handle := handle;
end set_display handle;

-- Return the ground track for the specified potential threat.
function get_ground_track(threat : in pt_handle) return
Physical_Quantities.degrees
is
begin
return threat.ground_track;
end get_ground_Track,

-- Return the potential threat partition.

function get_partition(threat : in pt handle) return partition
is
begin
return ID;
end get_partition;

-- Returns the most recently measured range between the specified
-- potential threat and the host aircraft.

function get_range(threat : in pt_handle) return
Physical_Quantities.nautical_mile
is
begin
return threat.target_range;
end get_range;

~- Returns the most recently measured relative_bearing of the
-- specified potential threat.

function get_relative_bearing(threat . in pt_handle)

return Physical Quantities.degrees
is
begin

7-7¢

ATD/CWM Product Implementation/Adaptable Code Components

16.

return threat.relative bearing;
end get_relative_bearing;

-- Returns the most recently measured velocity of the specified
-- potential threat. Exception Velocity_ Invalid is raised when
-- the velocity of the potential threat is invalid.

function get_ velocity(threat : in pt_handle) return
Physical Quantities.knots
is
begin
return threat.velocity;
end get_velocity;

-- Returns a status which indicates whether the velocity of the
-- specified potential threat is valid.

function velocity_valid(threat : in pt_handle) return boolean
is
begin
return threat.velocity valid = valid;
end velocity_valid;

end Potential_Threat:

M}
Potential_Threat_Partition (PTP)

Spec

-- Potential Threat_ Partition (PTP)

-- This module determines which partition a potential_ threat
-- is a member of.

-- Either generic parameter altitude, airspeed, or both MUST be TRUE
-- to have a legal instantiation.

with Potential_Threat;
generic
altitude : boolean;
airspeed : boolean;

package Potential_Threat_Partition is

function get_partition(threat : Potential_ Threat.pt_handle)
return Potential Threat.partition;

end Potential Threat_Partition;

Body

7-77

ATD/CWM Product Implementation/Adaptable Code Components

-- Potential Threat_Partition (PTP) package body
with Potential Threat;
package body Potential Threat_Partition is

function get_partition(threat : Potential_ Threat.pt_handle)
return Potential Threat.partition
is
begin
if (altitude = TRUE and then airspeed = TRUE) then
if Potential_ Threat.altitude_valid(threat) and then
Potential_Threat.velocity_valid(threat) then
return Potential Threat.ID;
else
return Potential_ Threat .UID;
end if;
elsif (altitude = TRUE) then
if Potential Threat.altitude_valid(threat) then
return Potential Threat.ID;
else
return Potential Threat.UID;
end if;
elsif (airspeed = TRUE) then
if Potential Threat.velocity_valid(threat) then
return Potential Threat.ID,
else)
return Potential Threat.UID;
end if;
end if;
end get_partition;

end Potential Threat_ Partition;

17. Radar (RADAR)

Spec

~-- Radar (RADAR) package spec

-~ This module encapsulates the hardware / software interface to

-- the radar device. The primary hidden decisions are how to

-- obtain ran data for the aircraft_identification, sweep, relative

-- bearing, range, and timestamp; the scale and format

-~ of these input da‘a imtes; and the device-dependent operations

-- that must be applied to convert the raw data to the internal format
-- of the ATD/CWM system.

with Physical Quantities;
package Radar is

procedure get_radar_data(aircraft_id : out string;
sweep : out integer;

7-78

ATD/CWM Product Implementation/Adaptable Code Components

relative_bearing : out
Physical Quantities.degrees;

target_range : out
Physical_Quantities.nautical_mile;

timestamp : out Physical Quantities.seconds):

end Radar;

-- ¥ollowing peckage only for providing simulation data for
-- the Radar and ATC.

with Physical_Quantities;
package Simulation_Data is

-- Miscellaneous exceptions
Out_Of Host_Data : exception;
Out_Of Radar_Data : exception;

-— Procedure for providing information for a simulated
-—- radar return.

procedure get_sim_data(aircraft_id : out string;
sweep : out integer;
relative_bearing : out Physical Quantities.degrees;
target_range :@: out
Physical_Quantities.nautical_mile);

-- Procedure for providing information for a simulated ATC input.
procedure get_sim data(aircraft_id : out string;

altitude : out Physical Quantities.feet;
airspeed : out Physical Quantities.knots;
ground_track : out Physical_Quantities.degrees;
target_range : out

Physical Quantities.nautical mile;
relative_bearing : out Physical Quantities.degrees);

-- Procedure for providing information for a simulated navigation input.
procedure get_sim_data(altitude : out Physical _Quantities.feet;
airspeed : out Physical_Quantities.knots;
ground_track : out Physical_Quantities.degrees;
latitude : out Physical Quantities.latitude;
longitude : out Physical_Quantities.longitude);

end Simulation_Data;

Body

7-79

ATD/CWM Product Implementation/Adaptable Code Components

-- Radar (RADAR) package body

-- This module encapsulates the hardware / software interface to

-- the radar device. The primary hidden decisions are how to

-- obtain ran data for the aircraft_identification, sweep, relative

- - hearing, range, and timestamp; the scale and format

-- of these input data imtes; and the device-dependent operations

-- that must be applied to convert the raw data to the internal format
-- of the ATD/CWM system.

with Physical_Quantities;
with Simulation_Data;
with Text I0;

package body Radar is

-- Get next radar return.

procedure get radar_data(aircraft_id : out string;
sweep : out integer;
relative_bearing : out
Physical Quantities.degrees;
target_range : out
Physical_Quantities.nautical_mile;
timestamp : out Physical Quantities.seconds)
is
begin
Simulation_Data.get_sim data(aircraft_id, sweep, relative bearing.
target_range),

timestamp := Physical_ Quantities.get_time:
exception
when constraint_error => text_io.put_line("radar CE");
when numeric_error => text_io.put_line("”radar NE"};
when Simulation_Data.Out_Of Radar_Data => text_ioc.put line("radar OUT
RADAR") ;

when others => text_io.put_line("radar B0Z0");
end get radar_data;

end Radar;

-- Simulation_Data package
with Physical Quantities;

with Radar;

with Air_Craft_Motion;

with Numerical_Algorithms;

with Text_IO;

package body Simulation_Data is

package float_io is new text_io.float_io(float); use float_io;

7-80

ATD/CWM Product Implementation/Adaptable Code Components

Various Constants

Tracked_Targets : constant 5;

(]
&}
<

Radar_Delay : constant
ATC_Delay : constant

/ Tracked Targets;
/ Tracked_Targets;

(]
[\V]
(o]

Current radar sweep.

sweep_counter : integer := O;
number_of_calls : integer := 1;

NAVIGATION DEVICE INPUT SIMULATION

Because we don‘t have a real navigation device, we are

going to use canned data. The data will describe a
hypothetical flight path for the host aircraft. To do this,
we will construct navigation data algorithmically

based on a given starting point. The algorithm

utilizes the following information to compute the navigation
records:

initial altitude
initial airspeed
initial ground_track
delta altitude

delta airspeed

delta ground_track

The algorithm computes an altitude, airspeed, and ground_track
per invocation. The “delta” values represent the rate of change per

invocation

of the algorithm for the respective quantity.

Each starting point is considered the beginning of a different
scenario. We also need to specify how long to simulate a given scenario
in terms of the number of records (i.e., how many times to invoke

the algorithm).

The following Ada declarations are used to store
the information described above for each scenario.

type scenario_info is
record
initial_altitude : Physical_Quantities.feet;
initial _airspeed : Physical_Quantities.knots;
initial_ground_track : Physical_Quantities.degrees;
records : integer;
delta_altitude : float;

7-81

ATD/CWM Product Implementation/Adaptable Code Components

delta_airspeed : float;
delta_ground_track : float;
end record;

scenario : array(l..16) of scenario_info := (

-- Scenario #1

1 => (initial_altitude => 1000.0,
initial_airspeed => 700.0,
initial_ground_track => 0.0,
records => 600,
delta_altitude => 0.0,
delta_airspeed => 0.0,
delta_ground_track => 0.0),

U

--~ Scenario #2

2 => (initial_altitude => 1000.0,
initial_airspeed => 700.0,
initial ground_track => 0.0,
records => 300,
delta_altitude => 10.0.
delta_airspeed => 0.0,
delta_ground_track => 0.0),

-~ Scenario #3

3 => (initial_altitude => 31000.0,
initial airspeed => 700.0,
initial_ground_track => 0.0,
records => 300,
delta_altitude => -10.0,
delta_airspeed => 0.0.
delta_ground track => 0.0),

—- Scenario #4

4 => (initial_altitude => 1000.0,
initial_airspeed => 500.0,
initial_ground_track => 0.0,
records => 150,
delta_altitude => 0.0,
delta_airspeed => 0.1,
delta_ground_track => 0.0),

-- Scenario #5

5 => (initial_altitude => 1000.0,
initial_airspeed => 700.0,
initial_ground_track => 0.0,
records => 150,

7-82

ATD/CWM Product Implementation/Adaptable Code Components

-- Scenario

delta_altitude => 0.0,
delta_airspeed => -0.1,
delta_ground_track => 0.0),

#6

6 => (initial_altitude => 1000.0,

-- Scenario

-- Scenario

initial_ airspeed => 500.0,
initial_ground_track => 0.0,
records => 150,
delta_altitude => 10.0,
delta_airspeed => 0.1,
delta_ground_track => 0.0),

#7

7 => (initial_altitude => 31000.0,

initial airspeed => 700.0,
initial_ground_track => 0.0,
records => 150,
delta_altitude => -10.0,
delta_airspeed => -0.1,
delta_ground_track => 0.0),

#8

=> (initial_altitude => 1000.0,

—- Scenario

initial airspeed => 500.0,
initial ground_track => 0.0,
records => 150,
delta_altitude => 10.0,
delta_airspeed => 0.1,
delta_ground track => 0.0),

#9

9 => (initial_altitude => 31000.0,

-- Scenario

10 =>

initial_airspeed => 700.0,
initial_ground_track => 0.0,
records => 150,
delta_altitude => -10.0,
delta_airspeed => -0.1,
delta_ground_track => 0.0),

#10

(initial altitude => 1000.0,
initial_airspeed => 700.0,
initial ground_track => 0.0,
records => 300,
delta_altitude => 0.0,
delta_airspeed => 0.0,

7-83

ATD/CWM Product Implementation/Adaptable Code Components

delta ground_track => 0.1),

-- Scenario #11

11 => (initial_altitude => 1000.0,
initial_airspeed => 500.0,
initial_ground_track => 0.0,
records => 150,
delta_altitude => 10.0,
delta_airspeed => 0.1,
delta_ground_track => 0.1),

-~ Scenario #12

12 => (initial _altitude => 31000.0,
initial_airspeed => 700.0,
initial ground_track => 0.0,
records => 150,
delta_altitude => -10.0,
delta_ajirspeed => -0.1,
delta ground_track => 0.1),

-- Scenario #13

13 => (initial_altitude => 1000.0,
initial_airspeed => 500.0,
initial ground_track => 0.0,
records => 150,
delta_altitude => 10.0,
delta_airspeed => 0.1,
delta_ground_track => 0.1),

-- Scenario #14

14 => (initial_altitude => 31000.0,
initial_airspeed => 700.0,
initial_ground_track => 0.0,
records => 150,
delta_altitude => -10.0,
delta_airspeed => -0.1,
delta_ground_track => 0.1),

-~ Scenario #15

15 => (initial_altitude => 1000.0,
initial_airspeed => 500.0,
initial ground track => 0.0,
records => 150,
delta_altitude => 10.0,
delta airspeed => 0.1,
delta_ground_track => 0.1),

7-84

ATD/CWM Product Implementation/Adaptable Code Components

-~ Scenario #16

16 => (initial _altitude => 31000.0,
initial airspeed => 700.0,
initial_ground_track => 0.0,
records => 150,
delta_altitude => -10.0,
delta_airspeed => -0.1,
delta_ground_track => 0.1));

-~ Pointers to current host aircraft navigation data.

host_record_count
host_data_index

integer
integer :=

1= 1;
scenario’first;

host_current _altitude : Physical Quantities.feet

scenario(host_data_index).initial_altitude;
host current_airspeed : Physical_Quantities.knots

scenario(host_data_index).initial_ airspeed;
host_current_ground_trac

scenario(host_data_index).irnitial_ground track;

host_climb_rate Physical Quantities.fpm := 0.0;

-- Previous host aircraft information so that we can
-- compute climb_rate for the host.

previous_host_altitude Physical_Quantities.feet
previous_host_altitude_time

-- RADAR and ATC INPUT SIMULATION

Physical Quantities.degrees :=

:= 0.0
Physical_Quantities.seconds;

-— Each target has a scenario specified by an initial starting
-- condition. From this, we predict the new range and relative

-- bearing as well as updating the altitude. We are

-- assuming constant airspeed and grounc_track for the targets.

-- The target scenarios arc defined by the following record.

type target_scenario is
record
id : string(l..8);
initial_altitude
initial_airspeed
initial_ground_track

Physical_Quantities.feet;
Physical Quantities.knot:;
Physical Quantities.degrees;

7-85

ATD/CWM Product Implementation/Adaptable Code Components

initial_target_range : Physical_Quantities.nautical_mile;
initial_relative_bearing : Physical Quantities.degrees;
initial climb_rate : Physical_Quantities.fpm;

end record;

-- Target scenarios
targets : array(l..12) of target_scenario := (

1 => (id => "PT_00034",
initial altitude => 1000.0,
initial airspeed => 700.0,
initial ground_track => 180.0,
initial target range => 60.0,
initial _relative bearing => 0.0,
initial_climb_rate => 0.0),

2 => (id => "PT_06789",
initial _altitude => 1000.0,
initial_airspeed => 700.0,
initial ground_track => 30.0,
initial target_range => 60.0,
initial_relative_bearing => 225.0,
initial climb_rate => 0.0},

3 => (id => "BlueBomb",
initial_altitude => 1000.0,
initial_airspeed => 700.0.
initial ground_track => 210.0,
initial target_range => 60.0,
initial_relative_bearing => 45.0,
initial climb_rate => 0.0),

4 => (id => "Stealth ",
initial_altitude => 1000.0,
initial airspeed => 700.0,
initial_ground_track => 90.0,
initial_target_range => 60.0,
initial_relative_bearing => 300.0,
initial_climb_rate => 0.0),

5 => (id => "SynThsis",
initial_altitude => 1000.0,
initial _airspeed => 700.0,
initial_ground_track => 270.0,
initial_target_range => 60.0,
initial_relative_bearing => 75.0,
initial climb_rate => 0.0),

6 => (id => "Snoopy ",
initial_altitude => 5000.0,
initial airspeed => 700.0,
initial_ground_track => 70.0,
initial target_range => 45.0,
initial relative_bearing => 325.0,
initial climb_rate => 0.0),

7 => (id => "F-111 ",
initial_altitude => 3000.0,

7'8'!

ATD/CWM Product Implemeniation/Adaptable Code Components

initial_airspeed => 700.0,
initial_ground_track => 180.0,
initial_target_range => 60.0,
initial_relative_bearing => 340.0,
initial climb_rate => 0.0),

8 => (id => "UA-12345",
initial_altitude => 1500.0,
initial_airspeed => 700.0,
initial_ground_track => 135.0,
initial_target_range => 50.0,
initial_relative_bearing => 270.0,
initial_climb_rate => 0.0),

9 => (id => "ZeePlane",
initial _altitude => 5000.0,
initial_airspeed => 700.0,
initial_ground_track => 190.0,
initial_target_range => 60.0.
initial_relative_bearing => 0.0,
initial_climb_rate => 0.0),

10 => (id => "Mt .Reuse",
initial_altitude => 3500.0,
initial_airspeed => 700.0,
initial_ground_track => 270.0,
initial_target_range => 60.0.
initial_relative bearing => 45.0,
initial_climb_rate => 0.0;,

11 => (id => "UFO #001",
initial_altitude => 25000.0,
initial_airspeed => 700.0,
initial_ground_track => 80.0,
initial_target_range => 55.0.
initial_relative bearing => 315.0,
initial_climb_rate => 0.0),

12 => (id => "Blimp 99",
initial_altitude => 24000.0,
initial_airspeed => 700.0,
initial_ground_track => 80.0,
initial target_range => 60.0,
initial_relative_bearing => 350.0,
initial_climb_rate => 0.0)

),

-- We only track a certain number of targets at any one time. The following
-- record is used to keep track of a target while it is being tracked.
type tracked_target is
record
tracked : boolean;
id : string(l..8);
altitude : Physical Quantities.feet;
airspeed : Physical Quantities.knots:
ground_track : Physical Quantities.degrees;

7-87

ATD/CWM Product Implementation/Adaptable Code Components

end record;

pt : array(l..Tracked_Targets) of tracked_target

1 => (tracked => false,
id => " ",
altitude => 0.
airspeed => 0.
ground_track => 0.0,
target_range => 0.0
relative_bearing => 0.0,
climb_rate => 0.0,
timestamp => 0.0),

2 => (tracked => false.

o O

’
1

U

id => " ",
altitude => 0.0,
airspeed => 0.0,
ground_track => 0.0.
target_range => 0.0,

relative_bearing => 0.0,
climb_rate => 0.0,
timestamp => 0.0},

3 => (tracked => false,
id = " ",
altitude => 0.0,
airspeed => 0.0,
ground_track => 0.0,
target_range => 0.0,
relative_bearing => 0.0,
climb_rate => 0.0,
timestamp => 0.0),

=> (tracked => false,

i

1d = n u’
altitude => 0.0,
airspeed => 0.0,

ground_track => 0.0,
target_range => 0.0,
relative_bearing => 0.0,
climb_rate => 0.0,
timestamp => 0.0),

5 => (tracked => false,

id => " "
altitude => 0.0,
airspeed => 0.0,

ground_track => 0.0,
target_range => 0.0,
relative_bearing => 0.0,
climb_rate => 0.0,

target_range : Physical_Quantities.nautical mile;
relative_bearing : Physical Quantities.degrees;
climb_rate : Physical_Quantities.fpm;

timestamp : Physical_Quantities.seconds;

=

7-88

ATD/CWM Product Implementation/Adaptable Code Components

timestamp => 0.0)
)i

-~ Radar target index. Indicates what target to fetch next
-- when get_sim _data is invoked.

target_index : integer := 1;
next_target : integer := 1;

-— ATC target index. Indicates what target to fetch next
-- when get_sim_data is invoked for an ATC input.

atc_target_index : integer := 1;

-—- Simulated navigation device input.

-~ Read the host aircraft navigation data ad return the converted
—— information to the calling program.

procedure get sim data(altitude : out Physical Quantities.feet;
airspeed : out Physical Quantities.knots;
ground track : out Physical Quantities.degrees;
latitude : out Physical_Quantities.latitude;
longitude : out Physical Quantities.longitude)

is

current_time : Physical Quantities.seconds;
begin

—- If already at the end of the simulation data, then punt with the
-- appropriate exception. Otherwise, generate the next navigation
-- data record for the current scenario.

if host_record_count > scenario(host_data_index).records then
host_data_index := host_data_index + 1;
if host_data_index > scenario’last then
raise Out_Of Host_Data;

end if;
host_current_altitude := scenario(host_data_index).initial_altitude;
host_current _airspeed := scenario(host_data_index).initial_airspeed;

host_current_ground_track :=
scenario(host_data_index).initial_ground_track;
host_record_count := 1;
end if;
-- Compute climb rate before we assign the current values of altitude,
-- airspeed, and ground_track to the “out’ parameters.

current_time := Physical Quantities.get_time;
if previous_host_altitude /= 0.0 then
host_climb_rate := Air_Craft_Motion.get_climb_rate(

7-89

ATD/CWM Product Implementation/Adaptable Code Components

host_current_altitude,
current_time,
previous_host_altitude,
previous_host_altitude_time);

end if;
previous_host_altitude := host_current_altitude;
previous_host_altitude_time := current_time;

-- Now that we have the climb rate, we can update the “out’ parameters
~-- and adjust the altitude, airspeed, and ground_track values
-- for the next time this routine is called.

altitude host_current_altitude;
airspeed := host_current_airspeed;
ground_track := host_current_ground_track;
latitude := 0.0;
longitude := 0.0;

host_current_altitude := host_current _altitude +

scenario(host_data_index).delta_altitude;
host_current_airspeed := host_current_airspeed +

scenario(host_data_index).delta_airspeed;
host_current_ground_track := host_current_ground_track +

scenario(thost_data_index).delta_ground track;
host_record_count := host_record count + 1;
end get_sim _data;

~- Simulated Radar and ATC input

-- The current altitude, airspeed, ground_track, relative_bearing,
-- and range is updated only when we need to provide new

-- information for the radar. A target is considered "tracked”

-- as long as its range is within the surveillance area. After

-- that, we exclude that target and begin tracking a "new"

-- target (i.e., that is, we start a new scenario).

procedure get_sim_data(aircraft_id : out string;
sweep : out integer;
relative_bearing : out Physical Quantities.degrees;
target_range : out
Physical_Quantities.nautical_mile)

is
range_xy : Physical_Quantities.nautical_mile;
pt_velocity _xy : Physical_Quantities.knots; -- X-Y velocity of
potential_threat
ha_velocity_xy : Physical Quantities.knots; ~-- X-Y velocity of

host_aircraft
current_time : Physical_Quantities.seconds;
elapsed_time : Physical_Quantities.seconds;
new_range : Physical_Quantities.nautical_mile;

7-90

—

ATD/CWM Product Implementation/Adaptable Code Components

xh, yh, zh : float;

xpt, ypt, zpt : float;

temp_1, temp_2, temp_3 : float;
new_relative_bearing : Physical_Quantities.degrees;

begin
delay Radar_Delay;
current_time := Physical Quantities.get_time;

-— Reference target indicated by target_index. If this slot indicates
-- that we are not tracking a target, then get the next
-- target. If none exist, then raise Out_Of Radar_Data and punt.

if pt(target_index).tracked = false then
if next_target > targets’last then
raise Out_Of_Radar_Data;

end if;

pt(target_index).id := targets(next_target).id;
pt(target_index).altitude := targets(next_target).initial altitude;
pt(target_index).airspeed := targets(next_target).initial airspeed;

pt(target_index).ground track :=
targets (next_target).initial_ground track;
pt(target_index).target_range :=
targets(next_target).initial_target_range;
pt(target_index).relative_bearing :=
targets(next_target).initial relative_bearing;
pt(target_index).climb_rate :=
targets(next_target).initial climb_rate;

pt(target index).tracked := true;
next_target := next_target + 1;
else

~- Compute new range for this target
begin
range Xy := Air_Craft_Motion.get_range_xy(
pt(target_index).target_range,
pt(target_index).altitude,
host_current_altitude);

1

pt_velocity xy Air_Craft_Motion.get_velocity_ xy(
pt(target_index).airspeed,

pt(target_index).climb_rate);

ha_velocity xy
Air_Craft_Motion.get_velocity xy(host_current_airspeed,

host_climb_rate);
exception
when constraint_error =>
text_io.put_line("get sim data radar - 42 CE");
when numeric_error =>
text_io.put_line("get sim data radar - 42 NE");
when others =>

7-91

ATD/CWM Product Implementation/Adaptable Code Components

text_io.put_line("get sim data radar - 42 Bozo error");
end;

-- Elapsed time is the difference between the value of the timestamp
-- in the threat(target_index) and the current time.

elapsed_time := current_time - pt(target_index).timestamp;
pt(target_index).timestamp := current_time;

-- First, compute the new location of the host aircraft.

begin
xh := ha_velocity xy *
Numerical_Algorithms.cos(host_current_ground_track) *
(float(elapsed_time) / 3600.0);
yh := ha_velocity_xy *
Numerical_ Algorithms.sin(host_current_ground_track) *
(float (elapsed_time} / 3600.0);
zh := host_climb_rate * (float(elapsed_time) / 60.0);
exception
when constraint_error =>
text_io.put_line("get sim data radar - 43 CE");
when numeric_error =>
text_io.put_line("get sim data radar - 43 NE");
when others =>
text_io.put_line("get sim data radar - 43 Bozo error");
end;
-- Next, compute the new location of the threat.
begin
Xpt := range_xy *
Numerical_ Algorithms.cos(pt(target_index).relative_bearing) +
pt_velocity_xy *
Numerical Algorithms.cos(pt(target_index).ground track) *
(float(elapsed _time) / 3600.0);
ypt := range_xy *
Numerical Algorithms.sin(pt(target_index).relative_bearing) +
pt_velocity_xy *
Numerical Algorithms.sin(pt(target_index).ground track) *
(float (elapsed_time) / 3600.0);
zpt := (pt(target_index).altitude - host_current_altitude) +
(pt(target_index).climb_rate * (float(elapsed_time)
60.0) - zh);
exception
when constraint_error =>
text_io.put_line("get sim data radar - 44 CE");
when numeric_error =>
text_io.put_line(”get sim data radar - 44 NE");
when others =>
text_io.put_line("get sim data radar - 44 Bozo error");
end;

7-92

e

ATD/CWM Product Implementation/Adaptable Code Components

-- We can now compute the distance is then computed using

- range = ((xpt-xh)**2 + (ypt-yh)**2 + (zpt-zh)**2) ** (0.5

begin

temp_1 := xpt - xh;

temp_2 := ypt - yh;

temp_3 := (zpt - zh) / Physical_Quantities.nautical _mile to_feet;

new_range := Numerical_Algorithms.sqrt(temp_l1 * temp_1l + temp_2 *
temp_2 +

temp_3 *

temp_3);
exception

when constraint_error =>
text_io.put_line("get sim data radar - 45 CE");
when numeric_error =>
text_io.put_line("get sim data radar - 45 NE"):
when others =>
text_io.put_line("get sim data radar - 45 Bozo error");
end;
~- Boundary check. If the predicted range is outside the surveillance area,
~- then move on to the next target. If no more targets exist, then raise
~- Out_Of_Radar_Data exception and punt.
if new_range > 61.0 then
if next_target > targets”last then
raise Out_Of_Radar_Data;

end if;
pt(target_index).tracked := true;
pt(target_index).id := targets(next_target).id;

pt(target_index).altitude :=
targets(next_target).initial altitude;
pt(target_index).airspeed :=
targets(next_target).initial_airspeed;
pt(target_index).ground_track :
targets(next_target).initial ground_track;
pt(target_index).target_range
targets(next_target).initial_target_range;
pt(target_index).relative_bearing :=
targets(next_target).initial_relative_bearing;
pt(target_index).climb_rate :=
targets(next_target).initial climb_rate;
next_target := next_target + 1,
else

n

[

-~ Store the new range and altitude. Next, we compute the
-- predicted relative bearing for this target.
begin

pt(target_index).target range := new_range;

7-93

ATD/CWM Product Implementation/Adaptable Code Components

pt(target_index).altitude := pt(target_index).altitude +
pt(target_index).climb_rate *
(float(elapsed_time) / 60.0);
exception
when constraint_error =>
text_io.put_line("get sim data radar - 46 CE");
when numeric_error =>
text_io.put_line("get sim data radar - 46 NE");
when others =>
text_io.put_line("get sim data radar - 46 Bozo error");

end;
begin
range_xXy := Air_Craft_Motion.get_range_xy(new_range,

pt(target_index).altitude,

host_current_altitude);
exception
when constraint_error =>
text_io.put_line("get sim data radar - 47 CE");
when numeric_error =>
text_io.put_line("get sim data radar - 47 NE");
when others =>
text_io.put_line("get sim data radar - 47 Bozo error");
end;
begin
new_relative_bearing := Physical_Quantities.degrees(
Numerical Algorithms.arccos(
float ((xpt - xh) / range_xv)) *

Physical Quantities.radian_to_degree) ;
exception
when constraint_error =>
text _io.put_line("get sim data radar - 48 CE");
when numeric_error =>
text_io.put_line("get sim data radar - 48 NE");
when others =>
text_io.put_line("get sim data radar - 48 Bozo error");
text_io.put("ID: "); text_io.put_line(pt(target_index).id);

text_io.put("Alt: "); put(float(pt(target_index).altitude), aft=>1,
exp=>0); text_io.new_line;

text_io.put("vel: "); put (float (pt(target_index).airspeed), aft=>1,
exp=>0); text_io.new_line;

text_io.put ("GT: "); put (float (pt(target_index).ground_track), aft=>1,
exp=>0); text_io.new_line;

text_io.put("TR: "); put (float (pt(target_index).target_range) ,aft=>1,

exp=>0); text_io.new_line;
text_io.put("RB: ");

put (float(pt(target_index).relative_bearing),aft=>1,exp=>0); text_io.new_line;
text_io.put("CR: "):

put (float(pt(target_index).climb_rate),aft=>1,exp=>0); text_io.new_line:
text _io.put("xh: "),; put(float(xh)). text_io.new_line;

7-94

rIIIIIIIIIl-I--IllIIlIlllIlIIIlIIlIIIlllllllIlIllllIl..III.IIIIIIIII--I--“*

ATD/CWM Product Implementation/Adaptable Code Components

text_io.put("yh: "); put(float(yh)); text_io.new_line;
text_io.put(®“zh: "); put(float(zh)); text_io.new_line;
text_io.put(“"xpt: "); put(float(xpt)); text_io.new_line;
text_io.put("ypt: "),; put(float(ypt)); text_io.new_line;
text_io.put("zpt: "); put(float(zpt)); text_io.new_line;
text_io.put("range_xy: "), put(range_xy, aft=>2, exp=>0);
text_io.new_line;
text_io.put("temp_l: "); put(temp_1, aft=>2, exp=>0); text_io.new_line;
text_io.put("temp_2: "); put(temp_2, aft=>2, exp=>0); text_io.new_line;
text_jo.put{"temp_3: "); put(temp_ 3, aft=>2, exp=>0); text_io.new_line;
text_io.put("HA alt: “); put(float(host_current_altitude), aft=>2,
exp=>0); text_io.new_line;

end;
if ypt < 0.0 then
new_relative_bearing := 360.0 - new_relative_bearing;
end if;
pt(target_index).relative_bearing := new_relative_bearing;
end if;

end if;

-- Assign the aircraft_id, relative_bearing, and range to the

-~ “out’ parameters before returning.
begin
aircraft_id := pt(target_index).id;
relative_bearing := pt(target_index).relative_bearing;
target_range := pt(target_index).target_range;
if number_of_calls = Tracked Targets then
sweep_counter := sweep_counter + 1;
number_of calls := 1;
else
number_of_calls := number_of_calls + 1;
end if;
sweep := sweep_counter;
exception

when constraint_error =>
text_io.put_line("get sim data radar - 49 CE");
when numeric_error =>
text_io.put_line("get sim data radar - 49 NE");
when others =>
text_io.put_line("get sim data radar - 49 Bozo error");
end;
-- Update fields for this target before returning.
pt(target_index).timestamp := current_time;
-- Update target_index so that it will reference the next target
-- when get_sim_data is called again.
target_index := target_index mod Tracked Targets + 1;
exception

7-95

RS

ATD/CWM Product Implementation/Adaptable Code Components

when constraint_error =>
text_io.put_line("get_sim _data radar CE");
text_io.put_line("Target information");
text_io.put ("ID: "); text_io.put_line(pt(target_index).id);

text_io.put ("Alt: "); put(float(pt(target_index).altitude), aft=>1,
exp=>0); text_io.new_line;

text_io.put("vel: "); put (float (pt(target_index).airspeed), aft=>1,
exp=>0); text_io.new_line;

text_io.put ("GT: "); put(float(pt(target_index).ground_track), aft=>1,
exp=>0); text_io.new_line;

text_io.put("TR: "); put (float (pt(target_index).target_range),aft=>1,

exp=>0); text_io.new_line;
text_io.put("RB: ");
put(float(pt(target_index).relative_bearing),aft=>1,exp=>0); text_io.new_line;
text_io.put("CR: ");
put (float (pt(target_index).climb_race),aft=>1,exp=>0); text_io.new_line;

text_io.put("range xy: ")}; put(float(range_xy)); text_io.new_line;

text_io.put("pt_velocity_xy: "); put(float(pt_velocity xy));
text_io.new_line;

text_io.put("ha_velocity_xy: "): put(float(ha_velocity_xy)):
text_io.new_line;

text_io.put("xh: "); put(float(xh)); text_io.new_line;

text_io.put("yh: "); put(float(yh)); text_io.new_line;

text_io.put("zh: "); put(float(zh)); text_io.new_line;

text_io.put("xpt: "); put(float(xpt)); text_io.new_line;

text_io.put("ypt: "); put(float(ypt)); text_io.new_line;

text_io.put("zpt: "); put(float(zpt)); text_io.new_line;

when numeric_error => text_io.put_line("get_sim_data radar NE");
when Out_Of Radar Data => text_io.put_line("get_sim data radar OUT RADAR");
when Numerical_Algorithms.root_negative =>
text_io.put_line("get_sim data radar SQRT negative");
text_io.put("temp_1: "), put(temp_ 1, aft=>2, exp=>0);
text_io.put("temp_2: "); put(temp_2, aft=>2, exp=>0);
text_io.put("temp_3: "); put(temp_ 3, aft=>2, exp=>0);
when others =>
text_io.put_line("get_sim_data radar BOZO");
text_io.put_line("Host data index: " & integer’image(host_data_index));
text_io.put("range xy: "); put(float(range_xy), aft=>1, exp=>0);
text_io.new_line;
text_io.put("temp_1: "); put(temp_1, aft=>2, exp=>0); text_io.new_line;
text_jo.put("temp_2: "); put(temp_2, aft=>2, exp=>0); text_io.new_line;
text_io.put("temp_3: "); put(temp_3, aft=>2, exp=>0); text_io.new_line;
end get_sim data;

-- Return current information to simulate an ATC input.
procedure get_sim_data(aircraft_id : out string;
altitude : out Physical Quantities.feet;
airspeed : out Physical Quantities.knots;
ground_track : out Physical_ Quantities.degrees;

7-96

ATD/CWM Product Implementation/Adaptable Code Components

target_range : out
Physical_Quantities.nautical_mile:
relative_bearing : out Physical Quantities.degrees)

is
begin
loop
delay ATC_Delay;
if pt(atc_target_index).tracked = true then
aircraft_id := pt(atc_target_index).id;
altitude := pt(atc_target_index).altitude;
airspeed := pt(atc_target_index).airspeed;
ground_track := pt(atc_target_index).ground_track;
target_range := pt(atc_target_index).target_range;
relative_bearing := pt(atc_target_index).relative_bearing;
atc_target_index := atc_target_index mod Tracked_Targets + 1;
return;
end if;
end loop;

end get_sim _data;
end Simulation_Data;
18. Situation_Dynamics (SD)
Spec

—-- Situation Dynamics (SD) package spec

-- The hidden decisions of this module are how physical models ran
-- be put together to predict a future situation starting from

—-- a known state history.

with Physical_Quantities;

with Potential Threat;

package Situation_Dynamics is

-- Returns the predicted elapsed time before the host_aircraft
-~ and specified potential_threat reach their closest range.

function get_elapsed_time(threat : in Potential Threat.pt_handle)
) return Physical Quantities.seconds;

-- Returns the predicted closest range between the host_aircraft
-- and specified potential threat assuming constant velocity,

-- climb rate, and ground track for both aircraft.

function get_msd(threat : in Potential Threat.pt_handle)
return Physical Quantities.feet;

end Situation_Dvnamics;

7-97

ATD/CWM Product Implementation/Adaptable Code Components

-- Situation_Dynamics (SD) package body

-- The hidden decisions of this module are how physical models can
-- be put together to predict a future situation starting from
-- a known state history.

with Physical_Quantities;

with Air_Craft_Motion;

with Potential Threat;

with Host_Aircraft;

with Numerical Algorithms;

with Text_IO;

package body Situation Dynamics is

package float_io is new text_io.float_io(float); use float_io;

-- The time_to_intersect (elapsed time) computation assumes
-- constant velocity, ground_track, and climb_rate for both
-- the potential threat and host aircraft.

-- The range between the host aircraft (ha) and a potential threat (pt)
-- at a given point in time is a function of their respective
-- locations in space.

- range = \ / (pt_X - ha_x)**2 + (pt_y - ha_y)**2 + (pt_z - ha_z)**C
-- N/

-~ The location of an aircraft over time (assuming constant velocity,
-- ground track, and climb_rate) is

- X = x0 + velucity_xy * cos(ground_track) * time
-— y ¥0 + velocity _xy * sin(ground_track) * time
-~ 2z =20 + climb_rate * time

-~ Quantity (x0, y0, z0) denote the aircraft’s initial location
-~ in space. "cos" and "sin" are the trigonometric functions

-~ sine and cosine, and velocity_xy is the horizontal component
-~ of the velocity (i.e., the velocity component that lies in
-~ the X-Y plane).

-~ The potential threat location is always relative to the

-~ host aircraft. By assuming that the origin of the

-~ rectangular coordinate system is given by the host aircraft
-~ location, an initial position of the potential threat

-- relative to the host aircraft is given by:

- pt_x0 = range_xy * cos(pt_relative_bearing)

7-98

ATD/CWM Product Implementation/Adaptable Code Components

range_Xy * sin(pt_relative_bearing)
pt_altitude -~ ha_altitude

#

pt_y0
pt_z0

)

range_xy is the range component that lies in the X-Y plane. Furthermore,
pt_altitude is the altitude of the potential threat (ha_altitude
is the ultitude of the host aircraft).

Using these equations, the range between the host aircraft and
potential threat can be expressed as a function of time.
Taking the first derivative, setting it equal to zero, and
solving for time yields the time_to_intersect (i.e., how much
time elapses).

function get_elapsed_time(threat : in Potential_Threat.pt_handle)
return Physical Quantities.seconds
is
range_xy : Physical Quantities.nautical mile; -- X-Y range component
pt_velocity xy : Physical Quantities.knots; -- X-Y velocity of

potential_ threat

ha_velocity_xy : Physical_Quantities.knots; -- X-Y velocity of

host_aircraft

temp_ 1, temp_2, temp_3, temg. 4 : float;

begin
begin
range_xy := Air_Craft_Motion.get_range_xy(
Potential Threat.get range(threat),
Potential Threat.get altitude(threat),
Host_Aircraft.get_altitude);
exception

when constraint_Error =>
text_io.put_line("sd 1 - CE ** " &

Potential_Threat.get_aircraft_id(threat));

when numeric_error =>
text io.put_line("sd 1 -~ NE ** " &

Potential Threat.get_aircraft_id(threat));

when others =>
text_io.put_line("sd 1 - Bozo error®);

end ;
begin

"

pt_velocity xy Air_Craft_Motion.get_velocity_xy(
Potential Threat.get_velocity(threat),

Potential _Threat.get_climb_rate(threat)):

ha_velocity xy :=

Air_Craft_Motion.get_velocity xy(Host_Aircraft.get_velocity,

Host_Aircraft.get_climb_rate);
exception

when constraint_Error =>
text_jo.put_line("sd 2 - CE ** " &

Potential Threat.get_aircraft_id(threat));

when numeric_error =>
text_io.put_line(”sd 2 - NE ** " &

7-99

ATD/CWM Product Implementation/Adaptable Code Components

Potential_Threat.get_aircraft_id(threat));
when others => text_io.put_line("sd 2 - Bozo error");
enc ;
begin
temp_1 := pt_velocity_xy *
Numerical_ Algorithms.cos(Potential_Threat.get_ground_track(threat))

ha_velocity_xy *
Numerical_Algorithms.cos(Host_Aircraft.get_ground track);

exception
when constraint_Error =>
text_io.put_line("sd 3 - CE ** " &
Potential Threat.get_aircraft_id(threat));
when numeric_error =>
text_io.put_line("sd 3 - KE ** " &
Potential Threat.get aircraft_id(threat)):
when others => text_io.put_line("sd 3 - Bozo error");
end ;
begin
temp_2 := pt_velocity_xy *
Numerical_Algorithms.sin(Potential_Threat.get_ground track(threat))

ha velocity_xy *
Numerical Algorithms.sin(Host Aircraft.gei_ground_track);

exception
when constraint_Error =>
text_io.put_line("sd 4 - CE ** " &
Potential_Threat.get_aircraft_id(threat)):
when numeric_error =>
text_io.put_line("sd 4 - NE **x " &
Potential Threat.get_aircraft_id(threat));
when others => text_io.put_line("sd 4 - Bozo error"j;
end
begin
temp_3 := (Potential Threat.get_climb_rate(threat) -
Host_Aircraft.get_climb_rate) /
Physical_Quantities.knot_to_fpm;

exception
when constraint Error =>
text_io.put_line("sd 5 - CE *x " &
Potential Threat.get_aircraft_id(threat));
when numeric_error =>
text_io.put_line("sd 5 - NE ** " &
Potential Threat.get_aircraf:i_id(threat));
when others => text_io.put_line("sd 5 - Bozo error");
end ;
begin
temp 4 := -((

7-100

ATD/CWM Product Implementation/Adapiable Code Components

range_xy *

temp_1 +
range_xy *

temp_2 +
(Potential Threat.get_altitude(threat) -

exception
when constraint_Error =>
text_io.put_line("sd 6 - CE ** " &
Potential Threat.get_aircraft_id(threat));
when numeric_error =>
text_io.put_line("sd & - NE ** " &
Potential Threat.get_aircraft_id(threat));

when others => text_io.put_line("sd 6 - Bozo error");

end ;

-- Since time must be positive, adjust result accordingly.

begin
if temp_4 < 0.0 then

return Physical Quantities.seconds(-temp_4);

else
return Physical Quantities.seconds(temp_4);
end if:
exception
when constraint_Error =>
text_io.put_line("sd 7 - CE ** " &
Potential Threat.get_aircraft_id(threat)):
when numeric_error =>
text_io.put_line("sd 7 - NE ** " &
Potential Threat.get_aircraft_id(threat));

when others => text_io.put_line("sd 7 - Bozo error");

end ;
end get_elapsed_time;

Numerical Algorithms.cos(Potential Threat.get_relative_bearing(threat)) *

Numerical Algorithms.sin(Potential_ Threat.get_relative_bearing(threat)) *

Host_Aircraft.get_altitude) * temp_3) /
(temp_l*temp_ 1 + temp_2*temp_2 + temp_3*temp_3)) * 3600.0;

-- Determine the minimal separation distance for a specified potential threat

-- and the host aircraft assuming constant velocity, ground_track, and

-- climb_rate for each.

-- This is computed by first determining how much

-- time elapses before the specified potential threat and host aircraft
-- are closest to each other. From this, we predict their locations

-~ in 3-dimensional space assuming constant velocity, ground_track, and
-- climb_rate for each. From their respective predicted locations. we

-~ can then compute the range between each other.

7-101

i ——

ATD/CWM Product Implementation/Adaptable Code Components

function get_msd(threat : in Potential Threat.pt_handle)
return Physical Quantities.feet

is
range_xy : Physical_ Quantities.nautical_mile; -- X-Y range component
pt_velocity_xy : Physical_Quantities.knots; -~ X-Y velocity of
potential threat
ha_velocity_xy : Physical_ Quantities.knots; -~ X-Y velocity of

host_aircraft
time : float;
temp_1 : float;
temp_2 : float;
temp_3 : float;
begin
begin
time := float(get_elapsed_time(threat)});
exception
when constraint_error =>
text_io.put_line("sd ~ 21 CE ** " &
Potential Threat.get_aircraft_id(threat));
when numeric_error =>
text_io.put_line("sd - 21 NE ** " &
Potential Threat.get_aircraft_id(threat));
when others =>
text_io.put_line("sd - 21 Bozo error ** " &
Potential Threat.get_aircraft_id(threat));
end ;
begin
range_Xy := Air Craft_Motion.get_range_xy(
Potential_ Threat.get_range(threat),
Potential Threat.get_altitude(threat),
Host_Aircraft.get_altitude):

exception
when constraint_error =>
text _io.put_line("sd - 22 CE ** " &
Potential Threat.get_aircraft_id(threat));
when numeric_error =>
text_io.put_line("sd - 22 NE ** " &
Potential Threat.get_aircraft_id(threat));
when others =>
text_io.put_line("sd - 22 Bozo error ** " &
Potential Threat.get_aircraft_id(threat));

end ;
begin
pt_velocity xy := Air_Craft_Motion.get_velocity xy(
Potential Threat.get_velocity(threat),
Potential Threat.get_climb_rate(threat));
exception

wher, constraint_error =>
text_io.put_line("sd - 23 CE ** " &
Potential Threat.get_aircraft_id(threat));
when numeric_error =>

7-102

L ——_—

ATD/CWM Product Implementation/Adaptable Code Components

text_io.put_line("sd - 23 NE ** " &
Potential Threat.get_aircraft_id(threat));
when others =>
text_io.put_line("sd - 23 Bozo error ** " &
Potential Threat.get_aircraft_id(threat));
end ;
begin
ha_velocity_xy :=
Air_Craft_Motion.get_velocity_xy(Host_Aircraft.get_velocity,

Host_Aircraft.get climb_rate);
exception
when constraint_error =>
text_io.put_line("sd - 24 CE ** " &
Potential_Threat.get_aircraft_id(threat));
when numeric_error =>
text_io.put_line("sd - 24 NE ** » &
Potential Threat.get_aircraft_id(threat));
when others =>
text _io.put_line("sd - 24 Bozo error ** " &
Potential_ Threat.get_aircraft_id(threat));
end ;

-- temp_1 holds the relative difference between the
-~ host aircraft and potential threat at the elapsed time in the "X’
-~ component of our three-dimensional space. We must
-~ convert the nautical mile difference to feet to have the
--~ same units for later calculations.
begin
temp_l := range_xy *

Numerical_ Algorithms.cos(Potential_Threat.get_relative_bearing(threat)) +
(pt_velocity xy *

Numerical_Algorithms.cos(Potential_ Threat.get_ground track(threat)) -
ha_velocity xy *
Numerical Algorithms.cos(Host_Aircraft.get_ground_track)) *
(time / 3600.0);
exception
when constraint_error =>
text_io.put_line("sd - 25 CE ** " &
Potential_Threat.get _aircraft_id(threat)),
when numeric_error =>
text_io.put_line("sd - 25 NE ** » &
Potential Threat.get_aircraft_id(threat));
when others =>
text_io.put_line("sd - 25 Bozo error ** " &
Potential Threat.get_aircraft_id(threat));
end ;
temp_1 := temp_l * Physical_Quantities.nautical mile_to_feet;

7-103

ATD/CWM Product Implementation/Adaptable Code Components

-- temp_2 holds the relative difference between the

-— host aircraft and potential threat at the elapsed time in the ‘Y~
~- coumponent of our three-dimensional space. We must

-- convert the nautical mile difference to feet to have the

-- same units for later calculations.

begin
temp_2 .= range_Xxy *

Numerical Algorithms.sin(Potential Threat.get_relative_bearing(threat)) +
(pt_velocity xy *

Numerical Algorithms.sin(Potential_Threat.get_ground_track(threat)) -
ha_velocity xy *
Numerical Algorithms.sin(Host_Aircraft.get_ ground track)) *
(time / 3600.0};
exception
when constraint_error =>
text_io.put_line("sd - 26 CE ** " &
Potential Threat.get_aircraft_id(threat));
when numeric_error =>
text_io.put_line("sd - 26 NE ** " &
Potential Threat.get_aircraft_id(threat));
when others =>
text_io.put_line("sd - 26 Bozo error ** " &
Potential Threat.get_aircraft_id(threat));
end ;
temp_2 := temp_2 * Physical_Quantities.nautical_mile to_feet;
-- temp_3 holds the relative altitude difference (in feet) between the host
aircraft
-- and potential threat at the elapsed time. In our three-dimensional space,
-—- it is the “Z’ component.
begin
temp_3 := (Potential Threat.get_altitude(threat) -
Host_Aircraft.get_altitude) +
(Potential_Threat.get_climb_rate(threat) -
Host Aircraft.get_climb_rate) * (time / 60.0);
exception
when constraint_error =>
text_io.put_line("sd - 27 CE ** " &
Potential_Threat.get_aircraft_id(threat));
when numeric_error =>
text_io.put_line("sd - 27 NE ** " &
Potential Threat.get_aircraft_id(threat));
when others =>
text_io.put_line("sd - 27 Bozo error ** " &
Potential Threat.get_aircraft_id(threat));
end ;

-- The distance is then computed using

7-104

rlIllIllllI-IIIIIIlIlllII-lIIlIlIIIIIIIIlIIIIIIIIIIlIIIIIIIIIIIIIII-----r

ATD/CWM Product Implementation/Adaptable Code Compouicnis

~ range = (temp_1**2 + temp_2**2 + temp 3**2) ** 0.5

begin
return Numerical_ Algorithms.sqrt(temp_l * temp_l + temp 2 * tcmp_2 +
teng 3 *
temp_3);
exception

when constraint_error =>
text_io.put_line("sd - 28 CE ** " &
Potential_ Threat.get_aircraft_id(threat));
text_io.put ("Alt: ");
put (float (Potential Threat.get_altitude(threat)), aft=>1, exp=>0);
text_io.new_line;
text_io.put("CR: ");
put (float(Potential Threat.get_climb rate(threat)), aft=>1, exp=>0):
text_io.new_line;
text_io.put("TR: ");
put (float (Potential Threat.get range(threat)), aft=>1, exp=>0);
text_io.new_line;
text_io.put ("RB: ");
put (float (Potential Threat.get_relative bearing(threat)), aft=>1,
exp=>0) ;
text_io.new_line;
text_io.put ("GT: ");
put(float(Potential Threat.get_ground_track(threat)), aft=>1,
exp=>0);
text_ioc.new_line;
text_io.put("Vel: ");
put (float (Potential Threat.get_velocity(threat)), aft=>1, exp=>0);
text_io.new_line;
text_io.put("pt_velocity xyv: ");
put (float(pt_velocity xy), aft=>1. exp=>0);
text_io.new_line;
text_jo.put("temp_ 1: ");
put(temp_1, aft=>2, exp=>0);
text_io.new_line;
text_io.put("temp_2: ");
put(temp_2, aft=>2, exp=>0);
text_io.new_line;
text_io.put("temp_3: ");
put (temp_3, aft=>2, exp=>0);
text_io.new_line;
return 0.0;
when numeric_error =>
text_io.put_line("sd - 28 NE ** " &
Potential Threat.get_aircraft_id(threat));
return 0.0;
when Numerical Algorithms.root_negative =>
text_io.put_line("sd - 28 sqrt error ** " &
Potential Threat.get_aircraft_id(threat)):
return 0.0;

7-105

ATD/CWM Product Implementation/Adaptable Code Components

when others =>
text_io.put_line("sd - 28 Bozo error ** " &
Potential Threat.get_aircraft_id(threat));
return 0.0;
end ;

end get_msd;
end Situation_Dynamics;
19. Temporary_Data_Buffers (TDB)
Spec
{

“module!external (tdb_spec)

“type(message_type, (module name : target,
data_type : target))

“type(consumer_type, (consumer_name : target,
priority : target))

“program(tdb, (name : target.
length : target,
message : message_type,
consumer : list of consumer_type
))

"module!internal(tdb_spec)

“prog_impl(tdb, spec, (

{

with {message.module_name};
package {name} is

}
“select(
“not (“member (consumer)) -> ({
-- Add a message to the buffer in a first-in/first-out (FIFQO) fashion. An
-- exception is raised if the message buffer would overflow resulting
-~ in loss of data.
procedure send(msg : in {message.module_name}.{message.data_type}):
{name} Overflow : exception;
-- Remove the oldest message from the buffer (FIFO principle). The calling
-~ program is suspended until a message is available.
procedure receive(msg : out {message.module_name}.{message.data_type});)
)
"“member (consumer) -> ({
7-106

ATD/CWM Product Implementation/Adaptable Code Components

-~ Message priority. These are listed in descending priority (high to low).

type message priority is (}
“forall(c, consumer, ({
{c.consumer_name}}
“select(
“not(~last(c)) -> ({.,}
)

))
),

-- Add a message to the buffer (first-in/first-out principle) having
—-—- the specified priority. Different exceptions can be raised depending
—— on which buffer would overflow resulting in loss of data.

procedure send(msg : in {message.module name}.{message.data type};:
priority : in message_priority);}

“forall(c, consumer, ({

{name} {c.consumer_name}_ Overflow : exception;

“forall(c, consumer, ({

-- Removes the oldest message from the buffer (FIFO principle) having

-- the priority {c.consumer name}. The calling program is suspended until a
-- message is available. The request is processed only after

-- all higher priority requests have been processed first.

procedure receive_{c.consumer_name}(msg : out
{message.module name}.{message.data_type});)
))

)
{

end {name};
|2))
}

Body

{

“module!external (tdb_body)

“type(message_type, (module name : target,
data_type : target))

“type(consumer_type, (consumer_name :@ target,
priority : target))

7-107

1y

ATD/CWM Product Implementation/Adaptable Code Components

“program(restfoo, (length : target,
message : message_type,
pl : list of consumer_type))

“prog_impl(restfoo, v1, (
“select(
“member (pl) -> ({
or
when}
“forall(x, pl, (
“select(
~last(x) -> ({
count_{x.consumer_name} > 0 =>
accept receive_{x.consumer_name} (msg : out
{message.module_name}.{message.data_type}) do

msg := data_buffer({x.consumer_name},
out_index_{x.consumer_name});
end;
out_index_{x.consumer_name} := out_index_{x.consumer_name} mod
{length} + 1;
count {x.consumer_name} := count_{x.consumer_name} - 1;}

)

true -> { {

count_{x.consumer_name} = O and then}
)

})

“restfoo(length, message, “filter(x, pl, "not(-last(x)))}

)
»)

“program(tdb, (name : target,
length : target,
message :@ message_type,
consumer : list of consumer_type
))

“module!internal(tdb_body)

“prog_impl (tdb, body, (

{

with {message.module_name};
with System;

package body {name} is

-- Buffering task. Entries in the buffer are stored in a
—- first-in/first-out (FIFO) principle. The is a task entry
-- for sending a message to be buffered.}
“select(
“not (“member (consumer)) -> ({ There is also an
~- entry for receiving a message from the buffer.}
)

7-108

ATD/CWM Product Implementation/Adaptable Code Components

“member (consumer) -> ({ There are also multiple
-- entries for receiving messages; one for each message
-- priority.}

task buffer is
}
“select (
“not (“member (consumer)) -> ({
entry send(msg : in {message.module name}.{message.data_type});
entry receive(msg : out {message.module name}.{message.data_type});
pragma Priority(12);}

)
“member (consumer) -> ({
entry send(msg : in {message.module_name}.{message.data type};
priority : in message_priority);}
~forall(c, consumer, ({
entry receive_{c.consumer_name}(msg : out
{message.module name}.{message.data_type});}
))

{ pragma Priority(7);
}
)
)
{
end buffer;
}
“select (

“not (“member (consumer)) -> ({

—— Add a message to the buffer in a first-in/first-out (FIFO) fashion.
procedure send(msg : in {message.module_name}.{message.data_type})
is
begin

buffer.send(msg);
end send;)
)
“member (consumer) -> ({

-- Add a message to the buffer (first-in/first-out principle) having
-- the specified priority.

procedure send(msg : in {message.module name}.{message.data_type};
priority : in message_priority)
is
begin
buffer.send(msg, priority);
end send;}

7-109

ATD/CWM Product Implementation/Adaptable Code Components

)

“select(
“not (“member (consumer)) -> ({
-— Remove the oldest message in the buffer. The calling program
~-- is suspended until a message is available.
procedure receive(msg : out {message.module_name}.{message.data_type})
is
begin
buffer.receive(msg);
end receive;}
)
“member (consumer) -> (
“forall(c, consumer, ({

-- Removes the oldest message from the buffer (FIFO principle) having

-- the priority {c.consumer name}. The calling program is suspended until a
-- message is available. The request is processed only after

-- all higher priority requests have been processed first.

procedure receive_{c.consumer name}(msg : out
{message.module_name}.{message.data_type})
is
begin
buffer.receive_{c.consumer_name}(msg);
end receive_{c.consumer_name};}
)

{
-- Task body.
}
“select(
“not ("member (consumer)) -> ({-- Messages are stored in a
-- data_buffer having a fixed length.}
)
“member (consumer) -> ({
-~ Messages are stored in
-- data_buffers; each buffer used for storing messages
-~ of a specified priority.}
)
)
{

task body buffer is

}

“select(
"not (“member (consumer)) -> ({

7-110

ATD/CWM Product Implementation/Adaptable Code Components

data_buffer : array(l..{length}) of
{message.module_name}.{message.data_type}:
count : integer range O .. {length} := 0;
in_index, out_index : integer range 1 .. {length} :=1;}
)
“member (consumer) -> ({
data_buffer : array(message_priority, 1..{length}) of
{message.module_name}.{message.data_type};}
“forall(c, consumer, ({

count_{c.consumer_name} : integer range O .. {length} := 0;
in_index_{c.consumer_name} : integer range 1 .. {length} := 1;
out_index_{c.consumer_name} : integer range 1 .. {length} := 1;

))

{
temp_message : {message.module_name}.{message.data_type};
)
“select (
“member (consumer) -> ({
temp_priority : message_priority;}
)
)
{
begin
loop
select

}

“select(
‘not (“member (consumer)) -> ({

accept send(msg : in {message.module_name}.{message.data_type}) do
temp message := msSg;

end;

if count < {length} then
data_buffer(in_index) := temp_message;
in_index := in_index mod {length} + 1;
count := count + 1;

else
raise {name} Overflow;

end if;}

)
“member (consumer) -> ({
accept send(msg : in {message.module name}.{message.data type};
priority : in message_priority) do

temp_message := msg;
temp_priority := priority;
end;
if)

“forall(c, consumer, ({
temp_priority = {c.consumer_name} then
if count_{c.consumer_name} < {length} then

7-111

ATD/CWM Product Implementation/Adapiable Code Components

data_buffe. .temp_priority, in_index_{c.consumer_name)) :=
temp_message;

in_index_{c.consumer_name} := in_index_{c.consumer name} mod
{length} + 1;
count_{c.consumer_name} := count_{c.consumer_name} + 1;
else
raise {name}_{c.consumer name} Overflow;
end if;}
“select(
"not (“last(c)) ~> ({
elsif }
)
)
))
{
end if;
}
)
)
“select(
“not (“meuper (consumer)) -> ({
or

when count > 0 =>
accept receive(msg : out
{message.module_name}.{message.data_type}) do

msg := data_buffer(out_index);
end;
out_index := out_index mod {length} + 1;
count := count - 1;}

)
“member (consumer) -> (
"restfoo(length, message, consumer)

end select;
end loop;
end buffer:
end {name};

))

7-112

ATD/CWM Product Implementation/Adaptable Documentation Components

ADAPTABLE DOCUMENTATION COMPONENTS
1. Software Requirements Specification (SRS)

The parameterized implementation of the Software Requirements Specification (SRS) for the
ATD/CWM domain is presented on the following pages.

7-113

ATD/CWM Product Implementation/Adaptable Documentation Components

Air Traffic Control / Collision Warning Monitor Software Requirements Specification
ATD/CWM-SRS-1.0: Volume 1 of 1

<revision.indicator> : <revision.date>

SOFTWARE REQUIREMENTS SPECIFICATION

FOR THE

ATD/CWM COMPUTER SOFTWARE CONFIGURATION ITEM
OF
THE AIR TRAFFIC CONTROL / COLLISION WARNING MONITOR SYSTEM
CONTRACT NO. <contract.contract_number>
CDRL SEQUENCE NO. <contract.CDRL_number>
Prepared for:
<contract.agency>
Prepared by:
Software Productivity Consortium
SPC Building

2214 Rock Hill Rd.
Herndon, VA 22070

Authenticated by ; Approved by ‘
(Contracting agency) (Contractor)

Date Date

7-114

ATD’'CWM Product Implementation/Adaptable Documentation Components

1. SCOPE

This section identifies the computer software configuration item (CSCI). which briefly states the
purpose of the system. describes the role of the CSCI within the system, and summarizes the purpose
and content of this software requirements specification (SRS).

1.1. Identification
This SRS establishes the require nents for the CSCI identified as:
¢ System title: <system.name >
+ System mnemonic: < system.mnemonic >
¢ System Identification number: <svstem.id >
* CSCI title: Air-Traffic-Display / Collision-Warning-Monitor
¢ CSCI mnemonic: ATD/CWM
* CSCI number: XXXX
1.2. CSCI Overview

The <system.mnemonic > system monitors air traffic to detect collision warning situations within
a surrounding surveillance area. The ATD/CWM CSCI will provide the following capabilities:

* Potential_Threat monitoring. Monitors potential threat flight characteristics ground track,
relative bearing. range altitude. airspeed. and climb rate within the surveillance area.

* Intersection monitoring. Mon..ors the probable intersection of all aircraft with the host
aircraft.

* Collision warning situation detection. Detects collision warning situations with respect to each
potential threat based upon its predicted flight path and the separation minima.

* Displays a corrective action advisorv message on the host aircraft's display which describes
what maneuvers the host aircraft should perform to avoid a collision.

<if alarm then >

* Sounds an audible alarm within the host aircraft’'s cockpit for a detected collision warning
situation.

<endif >
<if inter_air_msg then >

* Transmits messages to the nearby potential threat for a detected collision warning situation.

< endif >

7-115

ATD/CWM Product Implementation/Adaptable Documentation Components

<if atc_msg then >

* Transmits a message to a nearby air traffic control center for a detected collision warning
situation.

<endif >
1.3. Document Overview

This specification establishes engineering and qualifications requirements for the ATD/CWM CSC1
and provides the software requirements allocated from the @@ for the CSCI. The engineering re-
quirements include external interface and capability requirements, internal interface descriptions.
and other CSCl requirements. The external interface requirements identify all interfaces between this
CSCI and other CSClIs and between this CSCI and hardware configuration items (HWCI) or critical
items. The capability requirements state inputs, processing. and outputs for each CSCI capability.
The internal interface descriptions identify and briefly describe each of the interfaces between CSCI
capabilities. The other requirements include requirements for data elements. adaptation. sizing and
timing, safety. security, design constraints, software quality factors, and human performance/human
engineering. Requirements traceability matrices map these requirements to corresponding
requirements in the @@ and vice versa.

The qualification requirements describe the qualification methods to be performed 1o verify the CSCl
special qualification requirements. The method will be used to verify each requirement is shown in
a verification traceability matrix.

The notes section lists abbreviations and acronyms used in this specification.

2. APPLICABLE DOCUMENTS

This section states document precedence and lists all documents referenced in this specification.
2.1. Government Documents

The following documents of the exact issue shown form a part of this specification to the extent
specified herein. In the event of conflict between the documents referenced herein and the contents
of this specification. the contents of this specification shall be considered a superseding requirement.

MIL-STD-1815A-1983 Reference Manual For the Ada Programming Language

Copies of specifications. standards, drawings, and publications required by suppliers in connection
with specified procurement functions should be obtained from the contracting agency or as directed
by the contracting ofticer.

2.2. Non-Government Documents

The following documents of the exact issue shown form a part of this specification to the extent
specified herein. In the event of conflict between the documents referenced herein and the contents
of this specification. the contents of this specification shall be considered a superseding requirement.

3. ENGINEERING REQUIREMENTS

This section contains the external interface and capability requirements for the ATD/CWM CSCI.
and it identifie< internal CSCI interfaces. It also contains requirements for CSCI data elements,

7-116

—“

“‘

ATD/CWM Product implementation/Adaptable Documentation Components

adaptation, sizing and timing, safety. security, design constraints, software quality factors, and human
performance/human engineering.

Each requirement is identified uniquely by an {#} symbol at the end of the requirements. The
mappings of these requirements to corresponding requirements in the @@ and vice versa are shown
in paragraph 3.12.

3.1. CSCI External Interface Requirements

The ATD/CWM CSCI will input and output data to the following external components:
¢ Navigation (NAV)
¢ Radar (RADAR)

<if alarm then >
* Audible_Alarm (AA)

<endif >
<if atc_msg OR inter_air_msg then>

¢ Communication (COMM)
<endif >

* Air_Traffic_Display (ATD)

¢ Air_Traffic_Control (ATC)

Figure 7-1 shows the ATD/CWM external interfaces. Each external interface shown in the diagram
is described in the subsequent subparagraphs.

Radar (RADARJ‘ [Na\iganon (NAV)

RADAR _to_ATD/CWM)
- - NAV_to_ATD/CWM

L Air Traffic Display (ATD)

ATD/CWM_to_ATD
ATD/CWM_to_AA

ATC_to_ATD/CWM

[Air_Traffic_Control (ATC) .

Communication (COMM)

PR LI -
' '
L e et e cncrae e mea=d

Nore: Parameterization in this diagram is indicated by dashed lines (e.g.. Audible Alarm).

Figure 7-1. Air Traffic Display/Collision Warning Monitor External Interface Diagram
3.1.1. RADAR_to_ATD/CWM Interface

The RADAR_to_ATD/CWM interface shall provide potential threat data from the RADAR to the
ATD/CWM CSCL. This interface is specified in the Interface Requirements Specification {#}.

7-117

»

ATD/CWM Product Implementation/Adaptable Documentation Components

3.1.2. NAV_to_ATD/CWM Interface

The NAV_to_ ATD/CWM interface shall provide host_aircraft data from the NAV to the ATD/CWM
CSCLI. This interface is specified in the Interface Requirements Specification {#}.

<if alarm then >

3.1.3. ATD/CWM_to_AA Interface

The ATD/CWM_to_AA interface shall provide a pitch and duration at which to ring an audible alarm.
This interface is specified in the Interface Requirements Specification {#}.

<endif>
<if atc_msg OR inter_air_msg then >
3.14. ATD/CWM_to_COMM Interface

The ATD/CWM_to_COMM interface shall provide collision warning situation status from the
ATD/CWM CSCI to the COMM. This interface is specified in the Interface Requirements
Specification {#}.

< endif >
3.1.5. ATD/CWM_to_ATD Interface

The ATD/CWM_to_ATD interface shall provide collision warning situation status from the
ATD/CWM CSCI to the ATD. This interface is specified in the Interface Requirements Specification

{#}.
3.1.6. ATC_to_ATD/CWNM Interface

The ATC_to_ ATD/CWM interface shall provide potential_threat data from the ATC to the
ATD/CWM CSCIl. This interface is specified in the Interface Requirements Specification {#}.

3.2. CSCI Capability Requirements

The ATD/CWM CSCI will provide the following capabilities:
e Potential_Threat monitoring.
¢ Intersection monitoring.
* (Collision warning situation detection.

33. CSCI Internal Interfaces

3.4. CSCI Data Element Requirements

3.5. Adaptation Requirements

This paragraph specifies the requirements for adapting the ATD/CWM CSCI to site-unique
conditions and to changes in the system environment.

7-118

ATD/CWM Product Implementation/Adaptable Documentation Components

3.5.1. Installation-dependent Data
None.
3.5.2. Operational Parameters

3.6. Sizing and Timing Requirements

The ATD/CWM CSCI1 program storage shall not exceed 70 percent of the available memory {#}. The
program storage capacity of the target computer is XXX.

3.7. Safety Requirements

3.8. Security Requirements

The ATD/CWM executable code shall be unclassified {#}.

3.9. Design Constraints

This paragraph specifies other requirements that constrain the CSCI design.
3.9.1. Programming Language.

The ATD/CWM CSCI shall be code in Ada and C. The Ada compiler is specified in
MIL-STD-1815A-1983. The ATD/CWM CSCI Ada source code shall be compiled via the Ada
compiler.

3.10. Software Quality Factors

This paragraph identifies the software quality factor requirements for the ATD/CWM CSCI.
3.11. Human Performance/Human Engineering Requirements

3.12. Requirements Traceability

4. QUALIFICATION REQUIREMENTS

This section specifies the qualification methods and any special qualification requirements necessary
to establish that the ATD/CWM CSCI satisfies the requirements contained in Sections 3 and 5 of this
specification.

4.1, Qualification Methods

To be determined.

4.2. Special Qualification Requirements
None

5. Preparation for Delivery

The source code shall be delivered on 8-track magnetic tape.

7-119

—j

ATD/CWM Product Implementation/Adapiable Documentation Components

6. NOTES
This section contains information only and is not contractually binding.

6.1. Abbreviations and Acronyms

ATD Air traffic display

CSC1 Computer software configuration item
CWM Collision warning monitor

HWC(CI Hardware configuration item

7-120

ATD/CWM Product Implementation/Adaptable Documentation Components

2. Interface_Requirements_Specification (IRS)

The parameterized implementation of the Interface Requirements Specification (IRS) for the
ATD/CWM domain is presented on the following pages.

|

ATD/CWM Product Implementation/Adaptable Documentation Components

Air Traffic Control / Collision Warning Monitor Interface Requirements Specification
ATD/CWM-IRS-1.0: Volume 1 of 1

<revision.indicator> : <revision.date>

INTERFACE REQUIREMENTS SPECIFICATION
FOR THE
THE AIR TRAFFIC CONTROL / COLLISION WARNING MONITOR SYSTEM
CONTRACT NO. <contract.contract_number>
CDRL SEQUENCE NO. <contract.CDRL_number>
Prepared for:
<contract.agency>
Prepared by:
Software Productivity Consortium
SPC Building

2214 Rock Hill Rd.
Herndon. VA 22070

Authenticated by Approved by

(Contracting agency) (Contractor)
Date Date
7122

_‘

ATD/CWM Product Implementation/Adaptable Documentation Components

1. SCOPE

This section identifies the interfaces, which briefly states the purpose of the system . describes the
role of the interfaces within the system and summarizes the purpose and contents of this interface
requirements specification (1RS).

1.1. Identification

This IRS establishes the requirements for the following interfaces:

¢ NAV_to ATD/CWM
¢ RADAR_to ATD/CWM
<if alarm then >
* ATD/CWM_to_AA
<endif >
<if atc_msg or inter_air_msg then >
e ATD/CWM_to_ COMM
< endif >
* ATD/CWM_to_ ATD
e ATC_to ATD/CWM

These are the interfaces of <system.name > (<system.mnemonic>), <system.id> svstem. The
subsequent subparagraphs list the computer software configuration items (CSCI) and hardware
configuration items (HWCI) and critical items to which this IRS applies.

1.1.1. Applicable CSClIs
This IRS applies to the following CSCls:
e ATD/CWM
1.1.2. Applicable HWClIs and Critical Items

This IRS applies to the interfaces between the CSClIs listed in the preceding subparagraph and the
following HWClIs and critical items:

¢ Radar (RADAR)
* Navigation (NAV)
* Air_Traffic_Display (ATD)

e Air_Traffic_Control (ATC)

ATD/CWM Product Implementation/Adaptable Documentation Components

<if alarm then >
¢ Audible_Alarm (AA)
<endif >
<if atc_msg or inter_air_msg then>

¢ Communication (COMM)

<endif >
1.2. System Overview

The <system.mnemonic> system monitors air traffic within a surrounding surveillance area to
detect collision warning situations. The following lists the role of each interface within the system:

* RADAR to ATD/CWM. Provides potential_threat data from the RADAR to the
ATD/CWM CSCIL.

* NAV_to ATD/CWM. Provides host_aircraft data from the NAV to the ATD/CWM CSCI.
<if alarm then >

e ATD/CWM_to_AA. Provides a pitch and duration at which to ring an audible alarm from
the ATD/CWM CSClI to the AA.

<endif >
<if atc_msg or inter_air_msg then>

= ATD/CWM_to_COMM. Provides collision warning situation status from the ATD/CWM
CSCI to the COMM.

<endif >

e ATD/CWM_to_ATD. Provides collision warning situation status from the ATD/CWM CSCI
to the ATD.

e ATC_to_ATD/CWM. Provides potential_threat data from the ATC to the ATD/CWM CSCI.

1.3. Document Overview

This specification establishes the detailed requirements for the interfaces between the applicable
CSCls and other configuration items. These detailed interface requirements have been aliocated from
the @@ and are referenced in software requirements specifications (SRS) of the applicable CSCls.

The interface requirements describe interfaces between CSCIs and other CSCls and between CSCls
and HWCIs and critical items. Requirements traceability matrices contained in the SRSs of the
applicable CSCIs map these requirements to corresponding requirements in the @(@.

The notes section lists abbreviations and acronyms used in this specification.

7-124

ATD/CWM Product Implementation/Adaptable Documeniation Components

2. APPLICABLE DOCUMENTS

This section states document precedence and lists all documents referenced in this specification.

2.1. Government Documents

The following documents of the exact issue shown form a part of this specification to the extent
specified herein. In the event of conflict between the documents referenced herein and the contents
of this specification, the contents of this specification shall be considered a superseding requirement.

MIL-STD-1815A~1983 Reference Manual For the Ada Programming Language

Copies of specifications. standards. drawings, and publications required by suppliers in connection
with specified procurement functions should be obtained from the contracting agency or as directed
by the contracting officer.

2.2. Non-Government Documents

The following documents of the exact issue shown form a part of this specification to the extent
specified herein. In the event of conflict between the documents referenced herein and the contents
of this specification, the contents of this specification shall be considered a superseding requirement.

ATD/CWM Product Implementation/Adaptable Documentaticn Components

3. INTERFACE SPECIFICATION

This section specifies the interface requirements among CSCls, HWCls, and critical items to which this
specification applies. The CSCI requirements to use the interfaces are specified in the SRS for each CSCL
The project-unique identifiers for the interfaces link the requirements in the SRSs to this IRS.

Table 7-1 shows the interfaces specified in this IRS by interfacing CSCI, HWCI. and critical item.

Table 7-1. Interface Relationships

CSCI, HWC(I, or critical item Interfaces with CSCI, Interface identifier
HWCI, or critical item

< if alarm then>

[aA [ATD/ICWM [ATD/CWM_to_AA]
<endif >

ATC |ATD/CWM [ATC_to_ATD/CWM |
ATD [ATD/CWM [ATD/CWM _to_ATD il

< if alarm then >

ATD/CWM AA | ATD/CWM_to_AA B
<endif >
ATC ATC_to_ATD/CWM ;
ATD ATD/CWM _to_ATD]

<if atc_msg or inter_air_msg then >

j | COMM ATD/CWM _to COMM ;
<endif >

NAV NAV to ATD/CWM

RADAR RADAR to ATD/CWM

<if atc_insg or inter_air_msg then >

| COMM | ATD/CWM TATD/CWM _to_COMM

< endif >

NAV | ATD/CWM NAV_to ATD/CWM |
RADAR | ATD/CWM RADAR tn ATD/CWM

7-126

_7

ATD/CWM Product Implementation/Adaptable Documentation Components

3.1. Interface Diagrams

Figure 7-2 shows the intertaces for each applicable CSCI. Each interface specmed in this IRS is
described in tiie subsequent subparagraphs.

Radar (RADAR) Navigation (NAV)

RADAR to ATD/CWM NAV.to ATD/CWM

A

Air Traffic Display (ATD)

J

ATD/CWM _to_ATD

ATD/CWM_to_AA

ATC _to ATD'CWM

Air_Traffic_Control (ATC)

Nore: Parameterization in this diagram is indicated by dashed lines (e.g.. Audible Alarm).

Figure 7-2. Air Traftic Display’Collision Waining Monitor External Interface Diagram

3.2. ATC_to_ATD/CWM Interface

The ATC_to_ATD/CwWM mierface provides potential_threat data from the ATC to «he ATD/CWM
CSCL

3.2.1. Interface Requirements
The ATC_to_ATD/CWM data are transmitted via the serial data bus.
3.2.2. Data Requirements

Table 7-Z specifies an applicable information for the data elements transmitted across this interface.
The source of these data elements is the ATC: their destination is th. - ATD/CWM CSCL

Table 7-2. ATC to ATD/CWM Data Elements

Identifier { Description P Unit 7 Range [Accuracy | Precision

aircraft_id | Aurcraft identification ; I N/A I N/A [N/A

ATD/CWNI Product Implementation/Adaptable Documentation Components

Table 7-2, continued

Identifier Description } Unit f Range | Accuracy Precision |

—

!

altitude Verucal distance height of the | ft 0 1o 60.000 i
potential threat measured ; 1
from mean sea level ! |

velocity Indicated airspeed of the host | knots 0to 700 1 1
aircraft.

relative bearing | Bearing of the potential threat | degrees 0 to 360 0.1 0.1
relative to the host aircraft.
Relative bearing is measured
from the ground track of the
host aircraft to the line from
ithe host aircraft to the 1
| potential threat in the “
i clockwise direction looking
i down. | , |

range il)isumcc in nautical miles | nm 010 300
|{from this aircraft 1o the |
| host_aircraft.

ground track 1 Ground track is measured | degrees |
| from the line of the aircraft 1o ! |
;magnetic north to the ‘
“horizontal component of the |
jaircraft’s actwal flight path '
) l'over the surface of the earth. ’ i
umestamp tTimestamp o1 when the data | HHMM 10000 10 2400 |N A NA
i was valid. The tumestamp is; : | :
“four digns represenuing the | Q
‘;hours and minutes from the |
| 24-hour clock. {

<if alarm then >
3.3. ATD/CWM _to_AA Interface

The ATD/CWM _to_AA mterface pre.ides pitch and duration from the ATD/CWM CSCI to the
audible alarm.

3.3.1. Interface Requirements
The ATD/CWM _to_AA data are transmitted via the serial data bus.
3.3.2. Data Requirements

Table 7-3 specifies all applicable information for the data elements transmutted across this interface.
The source of these data elements is the ATD/CWM CSCI: their destination 1s the AA.

7-12%

ATD/CWM Product Implementation/Adaptable Documentation Components

Table 7-3. ATD/CWM_to_AA Data Elements

3.4. ATD/CWM_to_ATD Interface

Identifier Description Unit Range Accuracy | Precision
pitch Pitch of the audible_alarm in { Hz 1,000 1o 10,000 [1 Il
hertz. !
duration How long to ring the |sec 0.01t0 100 {0.01 10.01
audible_alarm.
<endif>

The ATD/CWM to_ATD interface provides collision warmming situation status

ATD/CWM CSCI 1o the ATD.

3.4.1. Interface Requirements

The ATD/CWM_to_ATD data are transmitted via the serial data bus.

3.4.2. Data Requirements

data from the

Tables 7-4 and 7-5 specifv all applicable information for the data elements transmitted across this
interface. The source of these data elements is the ATD/CWM CSCI: their destination is the ATD.

Table 7-4. ATD/CWM_to_ATD Data Elements

Identifier

| Description

Unit

Range

TAccurac_\‘ ! Precision |

id

N’A

0 to 32767

. Handle for the displayed object.

IN/A

iN/A]

shape

I lcon shape.

N/A square:

circle:

(1) |N/A
(2 l

triangle:(3)

INA

size

" Size in pineds of the won.

N/A

1 to 1000

IN/A

IN'A

fill

{ Color for the icon interior.
|
|

|
i

N/A nonc:
yellow:
pink:
orange:
red:
green:
blue:
indigo:
purpile:
violet:
black:
white:

(N IN/A
{2)
(3)
(4)
(5)
(6)
()
(8)
)
(10)
03))
(12)

:‘ N/A
|
\

S

ATD/CWM Product Implementation/Adapiable Documentation Components

Table 7-4, continued

<if atc_msg or inter_air_msg then>

3.5. ATD/CWM_to_COMM Interface

Identifier Description i Unit Range Accuracy 11 Precision—f
color Color for the icon. N/A jnone: (1) N/A N/A
yellow: (2)
| pink: 3)
| orange: (4)
ired: (5)
green: (6)
blue: (7)
indigo: (8)
purple: (9)
violet: (10)
black: (11)
white: (12)
fill_blink_rate ! Blinking rate for the icon interior. [sec 10.010 10.0 0.1 [0.1
obj_blink_rate | Blinking rate for the icon. Isec »0.010 10.0 0.1 (0.1
x_location Horizontal pixel wcation for icon center. {N/A {0 to 1100 1 (1
y_location Vertical pixel location for the icon center. | N/A '0to 1100 1 |1
Tablc 7-5. ATD/CWM_to_ATD Data Elements
Identifier Description { Unit ! Range {Accuracy | Precision Y
text Avariable length message describing what | N/A N/A IN/A IN/A !
actions the pilot should perform to avoid \ ‘ ;
a potential collision. | | !
x_location Horizontal pixel location for icon center. ‘N»\ 0 10 1100 i1 ' |
v_location Vertical pixel location for the icon center. | N/A \() to 1100 Ji ll |

The ATD/CWM_to_COMM interface provides ATC_Msg or Inter_Air_Msg messages from the
ATD/CWM CSCI to the COMM.

35.1.

Interface Requirements

The ATD/CWM_to_COMM data are transmitted via the serial data bus.

3.5.2. Data Requirements

Table 7-6 specifies all applicable information for the data elements transmitted across this interface.
The source of these data elements is the ATD/CWM CSCI: their destination is the COMM.

7-130

ATD/CWM Product Implementation/Adaptable Documentation Components

Table 7-6. ATD/CWM_to_COMM Data Elements

<if atc_msg then >

| Identifier Description Unit Range Accuracy ! Precision
destination Destination code. N/A 1 N/A N/A
code The transponder coce indicating the |tc 0000 to 7777 |N/A N/A
specific collision warning situation the
host aircraft is in.
<if mode = C then>
Identifier Description Unit Range Accuracy {Precisionjt
altitude Vertical distance height of the host |ft 0 to 60,000 1 11 |
aircraft measured from mean sea level. \
<endif >
<endif >
<if inter_air_msg then>
Identifier Description [Unit Range Accuracy | Precision -
destination Destination code. |N/A 0 N/A | N/A !
code The transponder codc indicating the;1C 0000 t0 7777 IN/A IN/A i
specific collision warning sitaation the 1
host aircrafl is in. 1 |
altitude Vertical distance height of the host - fi 0 t0 60,000 1 'l ;
aircraft measured from mean sea level. | | J
! : !
latitude Latitude component of the location. | degrees |~90 to 90 0.1 0.1 |
Negative values represent latitude south f f
of the equator. i
longitude Longitude component of the location. A | degrees |~360 to 360 0.1 (0.1 |
positive value significs longitude west of . { ‘
the prime meridian at Greenwich, | l
England. A negative valuc indicates { ,
longitude east of the prime meridian. ! |
<endif >
< endif >

3.6. NAV_to_ATD/CWM Interface

The NAV_to ATD/CWM interface provides host aircraft status data from the NAV to the
ATD/CWM CSCI.

3.6.1.

Interface Requirements

The NAV_to_ ATD/CWM data are transmitted via the serial data bus.

ATD/CWM Product Implementation’Adaptable Documentation Components

3.6.2. Data Requirements

Table 7-7 specifies all applicable intormation for the data elements transmitted across this interface.
The source of these data elements is the NAV/ their destination is the ATD/CWM CSCl.

Table 7-7. NAV _to_ATD/CWM Data Elements

Identifier

Description

Unit

Range

!T\ccuracy I Precision

altitude

Vertical distance height of the host
aircraft measured from mean sea level.

fi

0 10 60,000

1

1

velocity

Indicated velocity of the host aircraft.

knots

0 to 700

ground_track

Ground_track is measured from the line of
the aircraft to magnetic north to the
horizontal component of the aircraft’s
actual flight path over the surface of the
earth.

degrees

0 to 360

latitude

Latitude component of the location.
Negative values represent latitude south
of the equator.

degrees

-90 10 90

|

0.1

0.1

longitude

Longitude component of the location. A
positive value signifies longitude west of
the prime meridian at Greenwich.
England. A negauve value indicates
longitude east of the prime meridian.

degrees

12360 10 360

b

0.1

3.7. RADAR_to_ATD/CWM Interface

The RADAR to ATD/CWM interface provides potential_threat data from the RADAR to the
ATD/CWM CSCL

3.7.1.

Interface Requirements

The RADAR_to_ATD/CWM data are transmitted via the serial data bus.

3.7.2. Data Requirements

Table 7-8 specifies all applicable information for the data elements transmitted across this interface.
The source of these data elements is the RADAR:; their destination is the ATD/CWM CSCI.

Table 7-8. RADAR_to_ATD/CWM Data Elements

Identifier Description Unit Range Accuracy | Precision
aircraft_id Aircraft identification. N/A N/A N’/A N/A
sweep Radar sweep number module 32. N/A 010 31 1 1

(modulo 32)
range Distance 1n nautical miles from this | nm 010 300 0.1 0.00001523
aircraft to the host aircrafi. ‘
relative Aircraft bearing relauve to the host ! degrees 10 to 360 0.1 | 0.1
bearing aircraft. :
7132

ATD/CWM Product Implementation/Adaptable Documentation Components

4. QUALITY ASSURANCE

None.

None.

6. NOTES

5. PREPARATION FOR DELIVERY

This section contains information only and is not contractually binding.

6.1. Abbreviations and Acronyms

<if alarm then >
AA
<endif >

ATC

ATD

<if inter_air_msg OR atc_msg >
COMM

<endif >

CSCI

CWM

ft

HHMM

HWC(C]
Hz
N/A
NAV
nm
sec

tc

Audible alarm

Air traffic control

Ailr traffic display

Communication

Computer software configuration item
Collision warning monitor
Feet

Four digit time (24-hour clock). Leftmost two digits
(HH) are hours: the rightmost two digits (MM) are
minutes.

Hardware contiguration item
Hertz

Not applicable

Navigation

Nautical_miles

Seconds

Transponder code. Each of the four digits only having
the range 0 .. 7.

7-133

“

ATD/CWM Product Implementation/Adaptable Documentation Components

This page tnientionally left blank.

7-134

ATD/CWM Product Implementation/Adaptable Documentation Component

3. Software Design Document (SDD)

Nore: The adaptable Software Design Document for the ATD/CWM domain has been purposely
omitted to reduce the size of the ATD/CWM case study documentation. Refer to the adaptable
SRS and adaptable IRS documents for other examples of adaptable documentation.

7-138

ATD/CWM Product Implementation/Adaptable Documentation Component

This page intentionally left blank.

7-136

ATD/CWM Product Implemenitation’/Adaptable Verification and Validation Support Components

ADAPTABLE VERIFICATION AND VALIDATION SUPPORT COMPONENTS
Adaptable CSU Tests

1. Audible_Alarm (AA)

1.1. Test Procedure and Results

The test suite for the unit test of Audible_Alarm consists of six modules of which four were written
specifically for this unit test:

* aa_csu.trf - Abstract driver program

* aad_.a - Modified Ada package spec for the Audible_Alarm_Device module
¢ aad.a - Modified Ada package body for the Audible_Alarm_Device module
» pt_.tf - Abstract Potential_Threat package spec

The other two modules (aa.a and aa_.a) are the modules being tested. The test data for this unit test
is comprised of the pitch and duration at which to ring the audible alarm for a specified collision
warning situation as shown below.

Test Data

Collision Warning Situation Frequency Duration
~forall(c, ring. ({

{rcws_name} {r.frequency} {r.duration}}
)

For each collision warning situation defined above. the test driver program writes the name of the
collision warning situation to the screen. This program then gives the Audible_Alarm module a colli-
sion warning situation name. Audible_Alarm. in turn, gives the Audible_Alarm_Device (AAD) mod-
ule the pitch and duration at which to ring the audible_alarm. Module AAD will write out to the screen
these values. For each test case. the following outputs are expected.

~forall(c, ring. ({ .
{r.cws_name} {r.frequency} {r.duration}}

)

The test passes if the values produced by running the test exactly match these values for each collision
warning situation.

7-137

ATD/CWM Product Implementation’Adaptable Verification and Validation Support Components

1.2. Source Code
Source code written specifically to perform unit testing of module AA is shown below.
Audible_Alarm Driver

{

"module'!external(aa_csu)

“type(ring_info, (cws_name : target,
frequency : target,
duration : target))

“program(aa_csu, (ring : list of ring_info))

}
{

“module!internal(aa_csu)

“prog_impl(aa_csu. v1. |

{

-- Driver for the Audible &larm module

with Potential Threat:

with Text I0; use Tex:_ I0:

with Audible_alarm:

procedure AA_CSU

is

begin
put_line("CSU unit testing for module Audible Alarm (AA) ")
new_line:
put_line("This module will call mcdule Audible Alarm to see if"):
put_line("it correctly callis module Audible flarm Device with the"):
put_line("proper frequency and duration for each corresponding'):
put_line("collision warning situation"):

new_line;

put_line("The following frequency and duration are expected:");

new_lin :

put_line(" Collision Warning Situation Frequency Duration");}
~forall(r, ring, ¢ {

put_line(" {r.cws_name} {r.frequency}

{r.duration}"):}
»)
{

new_line;

put_line("These expected values must match those passed to
Audible_Alarm Device");
put_line("for each collision warning situation, respectively");

new_line;

put_line("Start of test"):

new_line;

put_line(" Collision Warning Situation Frequency Duration");

7-138

ATD/CWM Product Implementation/Adaptable Verification and Validation Support Components

}
“forall(r, ring, ({
put (" {r.cws_name}");
Audible_Alarm.ring_alarm(Potential_Threat.{r.cws_name}) ;)
)
new_line(2);
put_line("End of test");
end AA_CSU;
}
))
}

Audible_Alarm_Device (spec)

-- Audible_Alarm Device (AAD) spec
-~ This module is solely for the unit test of
-~ module Audible_alarm.

package Audible_Alarm_Device is

type Duration is delta 0.01 range 0.01 .. 10.00: -- seconds
type Frequency 1is range 1000 .. 10_000; -- hertz

procedure ring_alarm(f : in Frequency;
d : in Duraiion):
end Audible Alarm Device:

)

Audible_Alarm_Device (body)

—-- Audible_Alarm_Device (AAD) bocy

-- This module is used solely for the unit test
-- of the Audible_Alarm module.

with Text_IO;

package body Audible Alarm Device is

package Duration_IO is new Text_IO.Fixed_IO(Duration); use Duration_IO;
package Frequency_IO is new Text_IQ.Integer_IO(Frequency); use
Frequency_1I0;

procedure ring_alarm(f : in Frequency;
d : in Duration)
is
begin
text_io.put(” "),
put(f);
text_io.put(” "),
put (d);

7-139

ATD/CWM Product Implementation/Adaptable Verification and Validation Support Components

text_io.new_line;
end ring alarm;

end Audible_Alarm_Device;

Potential_Threat (TRF spec)

{

"module!external (pt_spec)

“type(cws_info, (cws_name : target))

“program(pt, (cws : list of cws_info))

}
{

"module!internal (pt_spec)

“prog_impl(pt, spec. (

{

-- Potential_Threat (PT) package spec
-— This module is used solely for the unit test
-- of the Audible Alarm module.

package Potential Threat is

type cws_id is ¢
}
“forall(c., cws, ({
{c.cws _name}. }
))

normal
)

end Potential Threat;

}
))

}

7-140

ATD/CWM Product Implementation/Adapiable Verification and Vahidation Suppc:: Components

2. Collision_Warning_Situation_Status (CWSS)
2.1. Test Procedure and Results

The test suite for the unit test of Collision_Warning_Situation_Status consists of nine modules of
which four were written specifically for this unit test:

* cwss_csu.trf - Abstract driver program

* sd.a - Modified Ada package body for the Situation_Dynamics module

* pt_.trf - Abstract Potential_Threat package spec

* pta - Modified Ada package body for the Potential_Threat module
The following three modules needed for this test are used without any changes:

* sd_.a - Ada package spec for the Situation_Dynamics module

* pqg_.a ~ Ada package spec for the Physical_Quantities module

* pg.a - Ada package body for the Physical_Quantities module

The remaining two modules (cwss_.a and cwss.a) are the modules being tested. The test data for this
unit test is generated automatically by the test driver program (cwss_csu.trf) from the collision warn-
ing situation definitions provided as instantiation parameters to this module. The tests check the
following scenarios:

* Boundary conditions in terms of time. range. or both (as appropriate) for each collision
warning situation

* The correct collision warning situation detected as a function of the aircraft’s partition
The following data is output for each test:
* ‘fest number - Means for identifying the test

e Time - Predicted elapsed time before the host aircraft and this potential threat reach the
predicted closest range

* Range - Distance the potential threat is from the hest aircraft
¢ Partition - Potential threat aircraft partition

» Expected status - Predicted collision warning situation status for the pctential threat based
upon the time, range, and partition specified above

¢ Actualstatus - Collision warning situation status computed by module CWSS for the potential
threat

If the “Expected status™ and “Actual status’™ agree. then the following message 1s printed.

7141

ATD/CWM Product Implementation/Adaptable Verification and Validation Support Components

xx* Correct status : Test <Test Number> passed ***
If they disagree, then the following message is printed.

#* Wrong status : Test <Test Number > failed **

After all tests have been run, a test summary is printed describing the total number of tests that failed.
2.2. Source Code
Source code written specifically to perform unit testing of module CWSS is shown below.

Collision_Warning_Situation_Status Driver

{

“module!external (cwss_csu)

“type(time_type, (min : target,
max : target))

“type(range_type, (min : target,
max : target))

“type(t_and_r_type, (t_min : target,
t_max : target,
r_min : target,
r _max : target))

“type(cws_def, (time ?: time_type,
range ?: range_type,
t_and r ?: t_and_r_type))

“type(cws_type. (cws_name : target,
severity : target,
predicate : cws_def,
partition : target))

“program(cwss_csu, (cws : list of cws_type,
area : target))
}

{

“module!internal(cwss_csu)
“program(array_length, (cws : list of cws_type))

“prog_impl(array_length, vil. (
“stream!int (s, (
“forall(x, “filter(y, “transpose((a:cws, b:s)), “last(y)), (x.b
))
))
))

7-142

ATD/CWM Product Implementation/Adaptable Verification and Validation Support Components

“prog_impl (cwss_csu, body, (

{

-- Test driver for CWSS unit testing.

with Potential Threat; use Potential_Threat;

with Collision_Warning_Situation_Status;

with Text_IO; use Text_IO;

with Physical_Quantities; use Physical_Quantities;
procedure CWSS_CSU

is

status : Potentia
errors : natural
test_number : natural := O;

type

type
type

type

local_partit

test_case;
test_case_pt

test_case is

record
test_number : natural:

expected_cws : Potential Threat.cws_id;

elapsed_time : Physical Quantities.seconds;
target_distance : Physical_Quantities.nautical_mile;

partition
next : test

end record;

test_case_list

1 _Threat.cws_id;
1= 0;

ion is (L_ALL. L_UID, L_ID);

T is access test_case;

local_partition;
_case _ptr;

test_case_ptr;

type cws_criteria is (time_only, range_only, time_and_range);

type raw_data is
record
cws : Potential_Threat.cws_id;

severity
partition
predicate
time_min
time_max
range_min
range_max

end record;

pt

test

float;
local_partition;
cws_criteria;
Physical Quantities.seconds;
Physical_Quantities.seconds;
Physical_Quantities.nautical mile;
Physical Quantities.nautical mile;

Potential_Threat.pt_handle;
test_case_ptr;

package seconds_io is new float io(seconds); use seconds_io;
package nautical_mile io is new float_jo(nautical_mile); use
nautical_mile_io;

-- Construct the test data based upon the collision warning

7-143

ATD/CWM Product Implementation/Adaptable Verification and Validation Support Components

-- situation predicates and their respective partitions.
procedure construct_data
is
maximum_time : Physical_Quantities.seconds;
maximum_range : Physical_Quantities.nautical_mile;

other_partition : local_partition;

rd : array(l..{-array_length(cws)}) of raw_data := (}
~forall(c, cws, ({
({c.cws_name}, {c.severity}, }
“select(
"equal(c.partition, {ALL}) -> ({L_ALL, })
“equal (c.partition, {UID}) -> ({L_UID, })
“equal (c.partition, {ID}) -> ({L_ID, })
)
“select(
"defined(c.predicate.time) ~- ({
time_only, {c.predicate.time.min}, {c.predicate.time.max}, 0.0,
0.0)}
)
“defined(c.predicate.range) -> ({
range _only, 0.0, 0.0, {c.predicate.range.min},
{c.predicate.range.m2x}) }
)
true -> ({
time_and_range, {c.predicate.t_and_r.t_min},
{c.predicate.t_and_r.t_max},
{c.predicate.t_and_r.r_min}, {c.predicate.t_and _r.r_max})}

)

“select(
*not (“last(c)) -> ({.})
*last(c) —> ({H:})

))

-- Make a test. If the test applies to all aircraft
-~ partitions, then add duplicate copies of the test; one for
-~ each partition.
procedure make_test(cws : in Potential_Threat.cws_id;
time : in Physical_Quantities.seconds;
distance : in Physical Quantities.nautical mile;
partition : in local partition)
is
p, 01, g2 : test_case ptr;
begin
test_number := test_number + 1;
p := new test_case’ (test_number, cws, time, distance, partition,

7-144

ATD/CWM Product Implementation/Adaptable Verification and Validation Support Components

null):
if test_case_list = null then
test_case_list := p;
else
qQl := null;
q2 := test_case_list;
while Q2 /= null loop
ql := Q2;
Q2 := g2.next;
end loop;
ql.next := p;
end if;

end make_test;

-- Make a test for both partitions using the supplied data
procedure make_both_tests(cws : in Potential_ Threat.cws_id;
time : in Physical_Quantities.seconds;
distance : in
Physical_Quantities.nautical_mile)
is
begin
make_test (cws, time, distance, L_ID);
make_test (cws, time, distance, L_UID);
end make_both_tests;

-- Determine which collision warning situation will apply
-- to the partition given the specified time. If no other
-- time predicate applies, then generate tests for all
-- comparable range predicates.
procedure scan_time_cws(time : in Physical_Quantities.seconds;
partition : in local_partition)
is
flag : boolean;
begin
flag := false;
for x in rd’range loop
if rd(x) .predicate = time_only then
if rd(x).partition = partition and then
rd(x).time_min <= time and then time < rd(x).time_max
then
flag := true;
make test(rd(x).cws, time, 0.0, partition);
exit when flag = true;
end if;
end if;
end loop;
if flag = false then
for x in rd’range loop
if rd(x).predicate = range_only and then
(rd(x).partition = partition or else rd(x).partition =

7-145

ATD/CWM Product Implementation/Adaptable Verification and Validation Support Components

L_ALL) then
make_test(rd(x).cws, time, rd(x).range_min, partition);
make_test(rd(x).cws, time, rd(x).range max - 0.1,

partition);
make_test(rd(x).cws, time, (rd(x).range_max +

rd(x) .range_min) / 2.0, partition);
flag := true;

end if;

end loop;

if flag = false and then maximum range < {area} then
make_test(normal, time, maximum_range, partition);
make_test(normal, time, {area} - 0.1, partition);
make_test (normal, time, ({area} + maximum_range) / 2.0,

partition);
end if;
end if;
end scan_time_cws;

—- Determine which collision warning situaticn will apply
—-- to the partition given the specified range. If no other
-- range predicate applies, then generate tests for all
comparable range predicates.

procedure scan_range_cws(distance : in
Physical Quantities.nautical_mile;
partition : in local partition)
is
flag : boolean;
begin
flag := false;
for x in rd’'range loop
if rd(x).predicate = range_only then
if rd(x).partition = partition and then
rd(x).range_min <= distance and then distance <
rd(x).range_max then
flag := true;
make test(rd(x).cws, maximum_time, distance, partition);
exit when flag = true;
end if;
end if;
end loop;
if flag = false then
for x in rd’range loop
if rd(x).predicate = time_only and then
(rd(x).partition = partition or else rd(x).partition =
L_ALL) then
make_test(rd(x).cws, rd(x).time_min, distance, partition);
make test(rd(x).cws, rd(x).time_max - 0.1, distance,
partition);
make_test(rd(x).cws, (rd(x).time_max + rd(x).time_min) /
2.0, distance, partition);
flag := true;

7-146

ATD/CWM Product Implementation/Adaptable Verification and Validation Support Components

end if;
end loop;
end if;
end scan_range_cws;

begin
test_case_list := null;

-- Find the largest range and largest time specifying
-- a collision warning situation.

maximum_range := 0.0;
maximum_time := 0.0;
for x in rd’range loop
if rd(x).predicate = range_only and then rd(x).range max >
maximum_range then
maximum_range := rd(x).range_max;
elsif rd(x).predicate = time_only and then rd(x).time_max >
maximum_time then
maximum_time := rd(x).time_max;
end if;
end loop;
~— Cycle through all partitions from highest severity to lowest severity
-— generating appropriate test data for each.
for x in rd’range loop
if rd(x).predicate = time_only then
if rd(x).partition = L_ALL then
make_both_tests(rd(x).cws, rd(x).time_min, 0.0);
make_both_tests(rd(x).cws, rd(x).time_max - 0.1, 0.0);
make_both_tests(rd(x).cws, (rd(x).time_max + rd(x).time_min) /
2.0, 0.0);
else
-~-— Collision warning situation does not apply to both partitions. Thus, we
need .
-- to generate test data to ensure that this predicate does not apply to
~- the other partition.
make_test(rd(x).cws, rd(x).time_min, 0.0, rd(x).partition);
make test(rd(x).cws, rd(x).time_max - 0.1, 0.0,
rd(x).partition);
make_test (rd(x).cws, (rd(x).time_max + rd(x).time_min) / 2.0,
0.0, rd(x).partition);
other_partition := L_ID;
if rd(x).partition = L_ID then
other_partition := L_UID,
end if;
-~ Scan through all the predicates (from highest severity to lowest severity)
~-~ to see if any other applicable predicates are true. If so, then
-- generate a test for it.

7-147

ATD/CWM Product Implementation/Adaptable Verification and Validation Support Components

scan_time_cws(rd(x).time_min, other_partition);
scan_time_cws(rd(x).time_max - 0.1, other_partition);
scan_time_cws((rd(x).time_max + rd(x).time_min) / 2.0,
other_partition);
end if;
elsif rd(x).predicate = range_only then

if rd(x).partition L_ALL then
make_both_tests(rd(x).cws, maximum_time, rd(x).range_min);
make_both_tests(rd(x).cws, maximum_time, rd(x).range_max -

]

0.1);
make_both_tests(rd(x).cws, maximum_time, (rd(x).range_max +
rd(x).range_min) / 2.0);
else
-~ Collision warning situation does not apply to both partitions. Thus, we
need
-~ to generate test data to ensure that this predicate does not apply to
-~ the other partition.
make_test(rd(x).cws, maximum_time, rd(x).range_min,
rd(x).partition);
make_test(rd(x).cws, maximum_time, rd(x).range_max - 0.1,
rd(x) .partition);
make_test(rd(x).cws, maximum_time, (rd(x).range_max +
rd(x).range_min) / 2.0, rd(x).partition);
other_partition := L_ID;
if rd(x).partition = L_ID then
other partition := L_UID;
end if;
scan_range_cws(rd(x) .range_min, other_partition);
scan_range_cws(rd(x).range max - 0.1, other_partition);
scan_range_cws((rd(x).range_max + rd(x).range_min) / 2.0,
other_partition);
end if;
end if;
end loop;
end construct_data;

begin

put_line("CSU unit test for module Collision_Warning Situation_Status
(CWsS) ") ;

new_line;

put_line("Module CWSS is called repeatedly to determine the collision
warning");

put_line("situation status of a potential threat. The value returned by
this");

put_line("module is compared against the expected status value.");

new_line(2);

construct_data;

put_line("Start of tests");

new_line; '

test := test_case_list;

7-148

ATD/CWM Product Implementation/Adaptable Verification and Validation Support Components

while test /= null loop

new_line;
put_line("Test number " & natural’image(test.test_number));
put (" Time: ");

put (test.elapsed_time, exp => 0);
put_line(" seconds");
put(" Range: ");
put (test.target_distance, exp => 0);
put_line(" nautical_miles");
pt.time := test.elapsed_time;
pt.target_range := test.target_distance;
if test.partition = L_UID then
pt.par := UID;
put_line(" Partition: UID");
elsif test.partition = L_ID then
pt.par := ID;

put_line (" Partition: ID");
else
put_line (" Partition: ALL");
end if;
put_line(" Expected status: " &
Potential Threat.cws_id’image(test.expected_cws));
status := Collision_Warning_Situation_Status.get_cws_status(pt);
put_line(" Actual status: " & Potential Threat.cws_id‘image(status));
if (status /= test.expected_cws) then
put_line(" **k*kk*x Wrong status : Test " &
natural’image(test.test_number) & " failed *****7j);
errors .= errors + 1;
else
put_line(" **xx* Correct status : Test " &
natural’image(test.test_number) & " passed **¥*x");
end if;
test := test.next;
end loop;

new_line(2);
if (errors /= 0) then

put line("Test Summary : " & integer”image(errors) & " case(s) failed"):
else
put_line("Test Summary: All test cases passed");
end if;
end CWSS_CSU;
}
M)
}

Potential_Threat (TRF spec)

{

“module'!external (pt_spec)

“type(cws_info, (cws_name : target))

7-149

ATD/CWM Product Implementation/Adaptable Verification and Validation Support Components

“program(pt, (cws : list of cws_info))

}
{

"module!internal (pt_spec)

“prog_impl(pt, spec, (

-- Potential Threat (PT) package spec

—- This module is used solely for the unit test
-- of the Collision_Warning_Situation_Status module.

with Physical Quantities;
package Potential Threat is

type partition is (ID, UID);

type pt_handle is
record
time : Physical Quantities.seconds;
target_range : Physical_Quantities.nautical_mile;
par : partition;
end record;

type cws_id is ¢
}
~forall(c, cws, ({
{c.cws name}, }
))

normal
),

function get_range(pt : in pt_handle) return
Physical_Quantities.nautical_mile;

function get_partition(pt : in pt_handle) return partition;

end Potential Threat;
}
))
}

Potential_Threat (body)

with Physical Quantities;
package body Potential Threat is

function get_range(pt : in pt_handle) return
Physical_Quantities.nautical_mile

is

begin

7-150

ATD/CWM Product Impiementation/Adaptable Verification and Validation Support Components

return pt.target range;
end get_range;

function get_partition(pt : in pt_handle) return partition
is
begin
return pt.par;
end get_partition;

end Potential_Threat;
Situation_Dynamics (body)

-- Situation_Dynamics (SD) package body
with Physical_ Quantities;

with Potertial_Threat;

package body Situation_Dynamics is

function get elapsed_time(threat : in Potential_ Threat.pt_handle)
return Physical_Quantities.seconds
is
begin
return threat.time;
end get_elapsed_time;

function get_msd(threat : in Potential Threat.pt_handle)
return Physical Quantities.feet
is
begin
return 0.0;
end get_msd;

end Situation_Dynamics;

7-151

ATD/CWM Product Implemer-at.on/Adaptable Verification and Validation Support Components

This page intentionally left blank.

7-152

ATD/CWM Product Implementation/Generation Procedure

2. GENERATION PROCEDURE

Nore: This Generation Procedure was written with the Consortium’s computer environment in mind.

There is a network consisting of Apollo and VAX/VMS computers. The adaptable code com-
ponents used in this procedure reside on an Apollo; adapting these components also takes
place on an Apollo. After the components have been adapted, they are transferred to an VAX
running VMS. One mechanism for transferring the components is by using a Consortium-mo-
dified UNIX transfer program called rep. Compiling, linking, and execution subsequently
takes place on the VAX/VMS. An X-terminal client uses an Apollo node to simulate the ATD
display for the ATD/CWM system.

The Generation Procedure describes how to generate a working system from the Product
Implementation using the decision resolutions of the Application Model and the Decision Model
Extensions. This Generation Procedure consists of four major steps:

1.

2.
3.
4.

Transforming the ATD/CWM Application Model into the canonic decision model form for
ATD/CWM

Selecting Adaptable Components
Adapting the components

Composing a system from the Adapted Components

Each of these steps will be described in greater detail in the following sections.

Step 1. Application Model Transformation

You must first transform vour validated ATD/CWM Application Model (from its external form) into
an equivalent internal form expressed in terms of the ATD/CWM decision model before vou proceed
with the remaining activities of the Generation Procedure. The ATD/CWM decision model consists
of the following decision classes:

Aircraft_Status_Display
Host_Aircraft_Status_Display
Aircraft_Display_Svmbol
Collision_Warning_Situation_Response
ATC_Message
Collision_Warning_Situation

Surveillance_Area

To do this transformation, vou will need to fill in forms that are provided with each step. Each form
has the following organization.

' Form Name Value

Decision Name

7153

ATD/CWM Product Implementation/Generation Procedure

The first column identifies the name of the form (boldface) and its related decisions. You use the
second column to record values for the decisions. You derive these values from your external form
of the ATD/CWM Application Model.

The transformation steps you must follow are listed below. You can perform these steps in any order.
However, you must perform all of them before you have completed the internal form of the Application
Model.

1. Fill in a Surveillance_Area form (Table 7-9). This form appears exactly once. Get the value
for range from the Host_Aircraft Characteristics Surveillance_Area.

Table 7-9. Surveillance_Area

Surveillance_Area Value

Range

2. Fillin the Collision_Warning_Situation form (Table 7-10). This form is repeated once for every
collision warning situation defined in your ATD/CWM Application Model. For example, if
you have three collision warning situations, there will be three instances of this decision class.
The values for each instance of this decision class are obtained using the following steps.

Table 7-10. Collision_Warning_Situation

Collision_Warning_Situation Value —)
CWS_Name
CWS_Def. Time.Min
CWS_Def. Time.Max
CWS_Dcf.Range Min
CWS_Def.Range.Max
CWS.Partition

Severity

Response

2.1. Get the value for CWS_Name from Collision Warning Situation CWS_Name.

2.2. Get the value for CWS_Def.Time.Min from Collision Warning Situation Time_Min. If no
value for Time_Min is specified, leave CWS_Def.Time.Min blank.

2.3. Get the value for CWS_Def.Time.Max from Collision Warning Situation Time_Max. If no
value for Time_Max is specified, leave CWS_Def.Time.Max blank.

24.. -+ the value for CWS_Def.Range Min from Collision Warning Situation Range_Min. If
no value for Range_Min is specified, leave CWS_Def Range. Min blank.

2.5. Get the value for CWS_Def.Range.Max from Collision Warning Situation Range_Max. If
no value for Range_Max is specified, leave CWS_Def.Range.Max blank.

7-154

ATD/CWM Product Implementation/Generation Procedure

2.6. Get the value for CWS.Partition from Collision Warning Situation Partition.
2.7. Get the value for Severity from Collision Warning Situation Severity.

2.8. Get the value for Response by concatenating Collision Warning Situation CWS_Name
with the text “_Response.” For example, if the value for CWS_Name is Possible, the value
for Response would be Possible_Response.

3. Fillin the Collision_Warning_Situation_Response form (Table 7-11). Repeat this form once
for every collision warning situation defined in your ATD/CWM Application Model. For ex-
ample, if you have three collision warning situations, there will be three instances of this deci-
sion class. Use the following steps to obtain the values for each instance of this decision class.

Table 7-11. Collision_Warning_Situation_Response

Collision_Warning_Situation_Response Value

CWSR_Name

ATC Msg

Inter_Air Msg

Corrective_Msg

Alarm

Alarm.Pitch

Alarm.Duration

Code

3.1. Get the value for CWSR_Name by concatenating the value for Collision Warning Situation
CWS_Name with the text “_Response”™. For example, if the value for CWS_Name is
Possible, the value for Response would be Possible_Response.

3.2. Get the value for ATC_Msg from Collision Warning Situation ATC_Msg.

3.3. Get the value for Inter_Air_Msg from Collision Warning Situation Inter_Air_Msg.
3.4. Get the value for Corrective_Msg from Collision Warning Situation Corrective_Msg.
3.5. Get the value for Alarm from Collision Warning Situation Alarm.

3.6. Get the value for Alarm.Pitch from Collision Warning Situation Alarm_Pitch.

3.7. Get the value for Alarm.Duration from Collision Warning Situation Alarm_Duration.
3.8. Get the value for Code from Code.

4. Fillin the ATC_Message form (Table 7-'2). This form appears exactly once. Get the value for
Mode from Collision Warning Situation Message_Mode.

Table 7-12. ATC_Message

ATC_Message Value

Mode

7-155

ATD/CWM Product Implementation/Generation Procedure

5. Fillinthe Aircraft_Status_Display form (Table 7-13). Repeat this form once for every collision
warning situation that applies to a specific aircraft partition. For example, assume that your
Application Model defines collision warning situations S1, S2, and S3. Furthermore, assume
that S1 applies to all aircraft, S2 only applies to identified aircraft, and S3 only applies to un-
identified aircraft. This would result in four instances of this decision class: two for S1, one
for S2, and one for S3. Use the following steps to obtain the values of each instance of this
decision class.

Table 7-13. Aircraft_Status_Display

Aircraft_Status_Display Value

Situation

Partition

PT _Color

PT_Blink

PT_Fill

5.1. Examine the value for Collision Warning Situation Partition for the current collision
warning situation. If the value for mnemonic Partition is ID or ALL. you provide an addi-
tional Aircraft_Status_Display form to fill in. Then you must perform the following steps
to obtain values for its related decisions.

511

515

Get the value for Situation from Collision Warning Situation CWS_Name.
The value for Partition is ID.

Get the value for PT_Color from Collision Warning Situation ID_Color.
Get the value for PT_Blink from Collision Warning Situation ID_Blink.

Get the value for PT_Fill from Collision Warning Situation ID_Fill.

5.2.1f the value for Collision Warning Situation Partition is UID or ALL. you provide an
additional Aircraft_Status_Display form to fill in. Then you must perform the following
steps to obtain values for its related decisions.

5.2.1.
522
5.2.3.
5.24.
5.25.

Get the value for Situation from Collision Warning Situation CWS_Name.
The value for Partition is UID. '

Get the value for PT_Color from Collision Warning Situation UID_Color.
Get the value for PT_Blink from Collision Warning Situation UID_Blink.
Get the value for PT_Fill from Collision Warning Situation UID_Fill.

6. Fill in the Host_Aircraft_Status_Display form (Table 7-14). Repeat this form once for every
collision warning situation defined in your ATD/CWM Application Model. For example. if
you have three collision warning situations, there will be three instances of this decision class.
Use the following steps to obtain the values for each instance of this decision class.

7-156

ATD/CWM Product Implementation/Generation Procedure

Table 7-14. Host_Aircraft_Status_Display

Host_Aircraft_Status_Display Value

Situation

Color

6.1. Get the value for Situation from Collision Warning Situation CWS_Name.

6.2. Get the value for Color from Collision Warning Situation Host_Color. The Host_Color
must correspond to the named collision warning situation.

7. Fill in the Aircraft_Display_Symbol form (Table 7-15). This form appears exactly once.

Table 7-15. Aircraft_Display Symbol

Aircraft_Display_Symbol Value

Host_Shape
ID_Shape.Shape
ID_Shape.Partition
UID_Shape

7.1. Get the value for Host_Shape from Host_Aircraft_Characteristics Host_Shape.
7.2. Get the value for ID_Shape.Shape fro.:n Potential_Threat Characteristics ID_Shape.
7.3. Get the value for ID_Shape.Partition from Potential_Threat Characteristics ID_Req.
7.4. Get the value for UID_Shape from Potential_Threat Characteristics UID_Shape.
Step 2. Select the Adaptable Components
You will use the information vou captured in Step 1 to select adaptable components.

Table 7-16 describes selection criteria for each adaptable component. The first column of the table
names the concrete components that can potentially be included in a generated system. The second
column describes the selection criteria for each component. You select the concrete component only
vhen the criteria is True. An Always condition means that the component is always selected. Refer-
ences in the criteria correspond to decisions captured in Step 1. You select the concrete component
only when the conditions are True. A third column has been added so that you can use Table 7-16 as
a worksheet to indicate which components you have selected.

Below the selection criteria for each concrete component is a description of how the component is
implemented. The first item is the names (can be more than one) of the text files that implement the
concrete component followed by the implementation language in parentheses. Ada designates an Ada
language component (these require no adaptation); Ada_Generic designates an Ada generic; TRF2
designates that the text file is written in a combination of TRF2 and Ada; C designates a C language
component; Interleaf designates that the text file is written using Interleaf (i.e., a text processing tool).
The text files (except those implemented in Interleaf) listed in the “Implemented By” column are
located in the following Apollo directory.

7-187

ATD/CWM Product Implementation/Generation Procedure

/Ivenus/local/public/atd_cwm_adaptable_components/code_components
The Interleaf documents are located in following directory.
/Ivenus/local/public/atd_cwm_adaptable_components/doc_components

To select the adaptable component, you must evaluate the selection criteria for each concrete
component. Record the names of the concrete components you selected so that you can adapt them
where necessary in the next step.

As an example, you would select the concrete component named Audible_Alarm_Buffer only if at
least one of the Collision Warning Situations from the Application Model internal form had a C.Re-
sponse.Alarm value of True. On the other hand, the Concrete Component named Host_Aircraft
would always be included in a generated system.

Table 7-16. Component Selection Criteria

Concrete Component Name Include this Concrete %4
Component...
Audible_Alarm_Device If there is a Collision Warning Situation, C, such that

C.Response.Alarm is True.

Implemented By: aad_.trf (TRF2)

Audible_Alarm_Buffer If there is (1) a Collision Warning Situation, C, such that
C.Response.Alarm is True.

Implemented By: tdb_.tref (TRF2)
tdb.trf (TRF2)

Communication_Device If there is a Collision Warning Situation, C, such that either
C.Response.ATC_Msg OR C.Response.Inter_Air Msg is True.

Implemented By: cd_.trf (TRF2)
cd.trf (TRF2)

Communication_Buffer If there is (1) a Collision Warning Situation, C, such that either
C.Response.ATC_Msg OR C.Response.Inter_Air_Msg is True.

Implemented By: tdb_.tref (TRF2)
tdb.trf (TRF2)

Audible_Alarm I there is a Collision Warning Situation, C, such that
C.Response.Alarm is True.

Implemented By: aa_.a (Ada)
aa.trf (TRF2)

Communication If there is a Collision Warning Situation, C, such that either
C.Response.ATC_Msg OR C.Response.Inter_Air Msg is True.

Implemented By: comm_.trf (TRF2)
comm.trf (TRF2)

7-158

ATD/CWM Product Implementation/Generation Procedure

Table 7-16, continued

Concrete Component Name Include this Concrete v
Component...
Radar_Target_Priority Buffer Always v
Implemented By: tdb_.trf (TRF2)
tdb.tref (TRF2)
Potential_Threat Always v
Implemented By: pt_.trf (TRF2)
pt.tf (TRF2)
Target_Buffer Always v
Implemented By: tdb_.trf (TRF2)
tdb.trf (TRF2)
Host_Aircraft Always v
Implemented By: ha_.a (Ada)
ha.a (Ada)
Initialization_and_Termination Always 174
Implemented By: it.a (Ada)
Navigation Always v
Implemented By: nav_.a (Ada)
nav.a (Ada)
Radar Always vV
Implemented By: radar_.a (Ada)
radar.a (Ada)
Air_Traffic_Control Always v
Implemented By: atc_.a (Ada)
atc.a (Ada)
Air_Traffic_Display_Device Always Vv
Implemented By: atdd_.a (Ada)
atdd.a (Ada)
xlibrary.c (C)
Collision_Warning_Situation_Status | Always 4
Implemented By: cwss_.a (Ada)
cwss.trf (TRF2)

7-159

ATD/CWM Product Implementation/Generation Procedure

Table 7-16, continued

Concrete Component Name Include this Concrete v
Component...

Physical_Quantities Always v

Implemented By: pq_.a (Ada)
pq.a (Ada)

Numerical_Algorithms Always 4

Implemented By: na_.a (Ada)

na.a (Ada)
Air_Traffic_Display Always v
Implemented By: atd_.a (Ada)
atd.a (Ada)
Potential_Threat_Partition If there is a Collision Warning Situation such that

CWS.Partition is not ALL.

Implemented By: ptp_.a (Ada_Generic)
ptp.a (Ada_Generic)

Situation_Dynamics Always v

Implemented By: sd_.a (Ada)
sd.a (Ada)

Aircraft_Motion Always v

Implemented By: am_.a (Ada_Generic)
am.a (Ada_Generic)

SRS Always 4
Implemented By: SRS.doc (Interleaf)

IRS Always Vv
Implemented By: IRS.doc (Interleaf)

Step 3. Adapt the Components

Each of the adaptable code components is normally implemented by two parts: a specification and
a body. You adapt either the specification, body, or both for a given adaptable code component as
described in Table 7-16.

The form of the values for the adaptation parameters is subject to constraints imposed by the
component implementation language. Examples of constraints include numeric precision and gram-
matical rules (e.g., capitalization). You must ensure that the constraints for the adaptable components
are met; otherwise, you will not be able to produce the desired ATD/CWM system. You can assume

7-160

ATD/CWM Product Implementation/Generation Procedure

that the form of a value for a particular parameter has no constraints unless otherwise specifically
expressed.

You adapt only those adaptable components you selected in Step 2. Thus, you will not necessarily
follow all of the steps listed below.

neri

* Toadapt Aircraft_Motion, you create a text file named am_gen.a which contains the following
text verbatim.

with Aircraft_Motion;
package Air_Craft_Motion is new Aircraft_Motion(msd = > 500.0);

* To adapt Potential_Threat_Partition, you create a text file named pt_partition.a which
contains the following text verbatim.

with Potential_Threat;
package PT_Partition is new Potential_Threat_Partition(altitude = > Alfitude,
airspeed = > Airspeed);

You determine the values for Alfitude and Airspeed by examining your Application Model
internal form. Altitude has the value true if, and only if, the value for Aircraft_Display_Symbol
ID_Shape Partition contains the value of altitude. Otherwise, the value for Altitude is false.

Similarly. Airspeed has the value true if, and only if, the value for Aircraft_Display_Symbol
ID_Shape.Partition contains the value of airspeed. Otherwise, the value for Airspeed is false.

TRF2 Component

You mechanically adapt components written in TRF2 by using the TRF2 translator. The exact form
and use of the TRF2 metaprogramming notation is described in the TRF2 Metaprogramming Tool User
Guide (Software Productivity Consortium 1991b). For convenience, a csh script (named adapt.csh)
has been provided which contains all of the translations possible in constructing a system. This script
file is located in the following Apollo directory:

/Ivenus/local/public/atd_cwm_adaptable_components/code_components

You must remove from this file all lines referencing components that are not to be included in your
ATD/CWM system. The csh script file contains hardcoded file names that will be used in naming the
resulting concrete components. These hardcoded names will be used in later scripts for controlling
compilation. However, if so desired, you can rename the files contained in these scripts to any name
as long as the names do not conflict with any implementation names listed in Table 7-16 nor conflict
with any names chosen for the text files describing the adaptations of Ada generics. The TRF2
translator is located in the following Apollo file:

~ spectrum/TRF/apollo.trft

You must create a single text file, called a metafile, for each part of an adaptable component to be
adapted using TRF2 (e.g., Communication_Device requires two text files; Audible_Alarm only

7-161

ATD/CWM Product Implementation/Generation Procedure

requires one). This metafile contains the adaptation parameter values used by TRF2 in modifying the
adaptable component. Templates for these metafiles (denoted by the suffix “.meta”) are found in the
following Apollo directory:

/Ivenus/local/public/atd_cwm_adaptable_components/code_components

You should modify these templates according to the directions provided below. The names of the
metafiles are hardcoded into the adapt.csh script. However, if so desired, you can change the names
of these metafiles, and likewise the names in the script, to any name as long as the names do not conflict
with any implementation names listed in Table 7-16 nor conflict with any names chosen for the text
files describing the adaptations of Ada generics.

The contents of each TRF2 metafile is described below. You must modify each metafile according
to the directions given to guarantee a valid adaptation of the component. You must replace the boldface
italicized identifiers with the corresponding values from the internal form of the Application Model
you developed in Step 1.

e AA.TRF—To adapt aa.trf for Audible_Alarm, you create a metafile called aa.meta which
contains the following statements:

{” modulelinclude(aa_spec, "aa.trf”)}
{ " aa_spec.aa!spec(
ring : ((cws_name : {CWS_Name},
frequency : {dlarm.Pitch [see note 1]},
duration : {4larm.Duration {see note 2]}),
. . See note 3

)
}

Note 1: The value for Alarm.Pitch must be an integer (i.e., have no decimal point).
Note 2: The value for Alarm.Duration must have exactly two digits after the decimal point.

Note 3: The triple (cws_name, frequency, duration) is repeated once for every collision
warning situation that has a “true” value for its Alarm mnemonic. Each triple is enclosed in
parentheses and has a trailing comma except for the last triple in the list.

e AAB_.TRF and AAB.TRF—To adapt tdb_.trf for Audible_Alarm_Buffer, you create a
metafile called aab_.meta which contains the following statements:

{” modulelinclude(tdb_spec, "tdb_.trf™)}
{ " tdb_spec.tdb!spec(
name : {Audible_Alarm_Buffer},
length : {10},
message : (module_name : {Audible_Alarm_Device},
data_type : {Alarm_Message_Type}),
consumer : ()

7-162

ATD/CWM Product Implementation/Generation Procedure

To adapt tdb.trf for Audible_Alarm_Buffer, you create a metafile called aab.meta which
contains the following statements:

{ ~ module!include(tdb_body, "tdb.trf”)}

{ ~ tdb_body.tdb!body(
name : {Audible_Alarm_Buffer},
length : {10},
message : (module_name : {Audible_Alarm_Device},

data_type : {Alarm_Message Type}),
consumer : ()
)
}

e AAD_.TRF—To adapt aad_.trf for Audible_Alarm Device, you create a metafile called
aad_.meta which contains the following statements:

{” module!include(aad_spec, “aad_.trf")}
{ " aad_spec.aad!spec({True})

}

e CB_.TRF and CB.TRF—To adapt tdb_.trf for Communication_Buffer, you create a metafile
called cb_.meta which contains the following statements:

{ ~ module!include(tdb_spec, "tdb_.trf”)}

{”~tdb_spec.tdb!spec(
name : {Communication_Buffer},
length : {10},
message : (module_name : {Communication_Devicz},

data_type : {Communication_Msg_Type})
consumer : ()
)
}

To adapt tdb.trf for Communication_Buffer, you create a metafile called cb.meta which
contains the following statements:

{” modulelinclude(tdb_body, "tdb.trf”)}

{ ~ tdb_body.tdb!body(
name : {Communication_Buffer},
length : {10},
message : (module_name : {Communication_Device},

data_type : {Communication_Msg_Type}),
consumer : ()
)
}

e CD_.TRF and CD.TRF—To adapt cd.trf for Communication_Device, you create a metafile
called cd.meta which contains the following statements:

7-163

ATD/CWM Product Implementation/Generation Procedure

{” module!include(cd_body, "cd.trf”)}
{” cd_body.cd!body({see note 4}.
{see note 5},
{Mode [see note 6]},
{True})

}

To adapt cd_.trf for Communication_Device, you create a metafile called cd_.meta which
contains the following statements:

{” module!include(cd_spec, "cd_.trf”)}

{ " cd_spec.cd!spec({see note 4},
{see note 5},
{Mode [see note 6]},
{True})

}

Note 4: If you have at least one collision warning situation which contains a “true” value for
the ATC_Msg mnemonic, then this parameter’s value is True; otherwise it is False. The
capitalization, as indicated, must be used.

Note 5:If you have at least one collision warning situation which contains a “true” value for
the Inter_Air_Msg mnemonic, then this parameter’s value is True; otherwise it is False. The
capitalization, as indicated, must be used.

Note 6: The value for Mode must be upper-case.

¢ COMM_.TRF and COMM.TRF—To adapt comm_.trf for Communication, you create a
metafile called comm_.meta which contains the following statements:

{” module!include(comm_spec, "comm_.trf")}
{” comm_spec.comm!spec(
((cws_name : {CWS_Name}, code : {Response.Code [see note 7]}).
...seenote 8
)
0.
{Mode [see note 9}})
}

To adapt comm.trf for Communication, you create a metafile called comm.meta which
contains the following statements:

{” modulelinclude(comm_body, "comm.trf”)}
{” comm_body.comm!body(
((cws_name : {CWS_Name}, code : {Response.Code [see note 7]}),

... see note 8
)
0.
{Mode [see note 9]})

7-164

ATD/CWM Product Implementation/Generation Procedure

Note 7: The value for Response.Code must be an integer (i.€., have no decimal point).

Note 8: Repeat the pair (cws_name, code) once for every collision warning situation you have
defined in Step 1 that also has a true value for either ATC_Msg or Inter_Air_Msg. Each or-
dered pair is enclosed in parentheses and has a trailing comma except for the last ordered
pair in the list.

Note 9: The value for Mode must be all upper-case.

CWSS. TRF—To adapt cwss.trf for Collision_Warning_Situation_Status, you create a metafile
called cwss.meta which contains the following statements:

{~ module'include(cwss_body. "cwss.trf")}
{ ~ cwss_body.cwss!body(
((cws_name: {CWS_Name}.
severity : {Severity}.
predicate : see note 10,
partition : {CWS.Partition}),
. see note 11

)
}

Note 10: The predicate component of the ordered quadruple (cws_name. severity,
predicate, partition) has one of the following forms depending on the situation flight
characteristics for the named collision warning situation.

(time : (min : {CWS_Def.Time.Min}. max : {CWS_Def.Time.Max}))
(range : (min : {CWS_Def.Range.Min}, max: {CWS_Def.Range.Max}))

(t_and_r: (t_min : {CWS_Def.Time.Min},
t_max: {CWS_Def Time.Max}.
r_min: {CWS_Def.Range.Min},
r_max: {CWS_Def Range.Max}))

Use the first form when the situation flight characteristics for the named collision warning
situation are specified by time only. Use the second form when the situation flight characteris-
tics for the named collision warning situation are specified by range only. Use the third form
when the situation flight characteristics for the named collision warning situation are specified
by both time and range. In all cases, the values for CWS_Def.Time.Min, CWS_Def.Time.Max,
CWS_Def-Range.Min, and CWS_Def.Range.Max must have exactly one digit after the decimal
point (e.g., 44.0).

Note 11: Repeat the quadruple (cws_name, severity, predicate, partition) once for every
collision warning situation you have defined in Step 1. Each ordered quadruple is enclosed
in parentheses and has a trailing comma except for the last ordered quadruple in the list.
Furthermore, each quadruple must be ordered in decreasing severity level.

7-165

ATD/CWM Product Implementation/Generation Procedure

* PT_TRF and PT.TRF—To adapt pt_.trf for Potential_Threat, you create a metafile called
pt_.meta which contains the following statements:

{~ module'include(pt_spec. "pt_.trf")}
{ "~ pt_spec.pt!spec(
((cws_name : {CWS_Name},
severity : {Severity},
predicate : see note 12,
partition : {CWS.Partition},
alarm : {ResponseAlarm [see note 13]},
atc_msg : {Response ATC_Msg [see note 13}},
inter_air_msg : {Response.Inter_Air_Msg [see note 13]},
corrective : {Response.Corrective_Msg [see note 13]}).
. see note 14

)
}

To adapt pt.trf for Potential_Threat, vou create a metafile called pt.meta which contains the
following statements:

{”~ module'include(pt_body. "pt.trf")}
{” pt_body.pt!body(
((cws_name : {CWS_Name},
severity : {Severity }.
predicate : see note 12,
partition : {CWS.Partition},
alarm : {Response.Alarm [see note 13]}.
atc_msg : {Response ATC_Msg |see note 13]}.
inter_air_msg : {Response.Inter_Air_Msg [see note 13]}.
corrective : {Response.Corrective_Msg [see note 13]}).
. see note 14

)
}

Note 12: The predicate component of the ordered tuple (cws_name. severity, predicate,
partition, alarm, atc_msg, inter_air_msg, corrective) has one of the following forms depending
on the situation flight characteristics for the named collision warning situation.

(time : (min : {CWS_Def.Time.Min}, max : {CWS_Def.Time.Max}))
(range : (min : {CWS_Def.Range.Min}, max: {CWS_Def.Range.Max}))
(t_and_r : (t_min : {CWS_Def.Time.Min},

t_max: {CWS_Def.Time_Max},

r_min: {CWS_Def Range.Min},
r_max: {CWS_Def.Range.Max}))

7-166

ATD/CWM Product Implementation/Generation Procedure

Use the tirst form when the situation flight characteristics for the named collision warning
situation are specified by time only. Use the second form when the situation flight characteris-
tics for the named collision warning situation are specified by range onlv. Use the third form
when the situation flight characteristics for the named collision warning situation are specified
bv both time and range. In all cases. the values for CWS_Def.Time.Min, CWS_Def.Time.Max,
CWS_Def.Range.Min, and CWS_Def Range.Max must have exactly one digit after the decimal
point (e.g., 44.0).

Note 13: The value must be either True or False (using the capitalization as indicated).

Note 14: Repeat the tuple (cws_name. severity, predicate, partition, alarm, atc_msg.
inter_air_msg, corrective) once for every collision warning situation you have defined in Step
1. Each ordered tuple is enclosed in parentheses and has a trailing comma except for the last
tuple in the list. Furthermore, you must order each tuple in decreasing severity level.

RTPB_.TRF and RTPB.TRF —To adapt tdb_.trf for Radar_Target_Prioritv_Buffer, you create
a metafile called rtpb_.meta which contains the following statements:

{” module'include(tdb_spec, "tdb_.trf")}
{~tdb_spec.tdb!spec(
name : {Radar_Target_Priority_Buffer}.
length : {20},
message : (module_name : {Potential Threat}.
data_type : {pt_handle}),
consumer : ((consumer_name : {CWS_Name}. priority : {Severity}).
... seenote 15
)
)
}

To adapt tdb.trf for Radar_Target_Priority_Buffer. vou create a metafile called rtpb.meta
which contains the following statements:

{ ”~ module'include(tdb_body. "tdb.trf")}
{ ™ tdb_body.tdb!body(
name : {Radar_Target_Priority_Buffer}.
length : {20},
message : (module_name : {Potential Threat},
data_type : {pt_handie}),
consumer : ({consumer_name : {CWS_Name}, priority : {Severity}),
... see note 15

)
)
}

Note 15: Repeat the pair (consumer_name, priority) once for every collision warning
situation you have defined in Step 1. Each pair is enclosed in parentheses and has a trailing
comma except for the last ordered pair in the list. Furthermore, you must order the pairs in
decreasing priority value.

ATD/CWM Product Implementation/Generation Procedure

* TB_.TRF and TB.TRF—To adapt tdb_.trf for Target_Buffer, you ¢ -ate a metafile called
tb_.meta which contains the the following statements:

{~ modulelinc'ude(tdb_spec, "tdb_.trf")}

{~ tdb_spec.tdb!spec(
name : {Target_Buffer},
length : {20},
message : (mod.le_name : {Potential_Threat},

data_type : {target_info}),
consumer : ()
)
}

To adapt tdb.trf for Target_Buffer, you create a metafile called tb.meta which contains the
following statements:

{ ~ module'include(tdb_body, "tdb.trf”)}

{~ tdb_body.tdb'!body(
name : {Target_Buffer},
length : {20},
message : (module_name : {Potential_Threat},

Jata_type : {target_info}),
consumer : ()
)
}

Step 4. Compose the Components

You compose the adapted code components into an executable ATD/CWM system by copying the
files from the Apollo system to the target system, compiling the Ada files, compiling the one C file,
and linking them to form an executable. These steps are described in greater detail below. The target
system is defined as VAX/VMS V5.4-2. This target system must also have VAX Ada V2.2-38 and
VAX C V3.2-044 on it.

Move the files to the target

You must move the Ada and C files (i.e., files with the “.a” or “.c” suffix) over to the target system
prior to starting the compilations. If the only Ada and C files that reside in the local directory contain-
ing the adapted code components are ATD/CWM Ada and C files, the following command will copy
all Ada files over to the target machine:

rcp *.a vax_host:’[home_dir...}’

The syntax for the target machine and directory is host:path where host is the name of the remote
target machine and path is a single quoted pathname on the target machine. If needed, a csh script
has been created that will only copy the exact ATD/CWM Ada files over to the target system. This
copy script. entitled transport.csh, is located in the following Apollo directory:

/Ivenus/local/public/atd_cwm_adaptable_components/code_components

7-168

ATD/CWM Product Implementation/Generation Procedure

This copy script accepts one command line parameter which is the remote node and directory where
the Ada files are to be copied. The syntax for the command line parameter is identical to the one de-
scribed above for the rep command. You will need to edit this copy script to remove any Ada files
that are not to be copied (i.e., those components not selected in Step 2). An example usage of this copy
script, assuming a VAX target, is illustrated as follows:

transport.csh <vax_host > [<home_dir>. <some_subdir>]’
da fil

It is assumed that you have some knowledge of how to establish and use a suitable Ada environment
on VAX/VMS and that you have some knowledge of the VAX/VMS command language before you
attempt this step. It is assumed that all necessary adaptations have been performed in creating the
needed Ada files prior to attempting compilation.

Each adapted Ada code component, each Ada code components that did not require any adaptation,
and those text files created to instantiate Ada generics must be compiled in a specific compilation
order. The following list reflects the proper compilation order where components enclosed by square
brackets ([]) are compiled only if they were selected in Step 2 and italicized “names” are substituted
with the names you selected for those components:

pq_.a

na_.a

am_.a

atdd_.a

file containing adapted pt_.trf for Potential_Threat

sd_.a

CWSS_.a

atd_.a

atc_.a

nav_.a

[file containing adapted cd_.trf for Communication_Device]
[fiie containing adapted tdb_.trf for Communication_Buffer]
(file containing adapted comm__trf for Communication)
file containing adapted tdb_.trf for Radar_Target_Prio-ity_Buffer
file containing adapted tdb_.trf for Target_Buffer

ha_.a

radar_.a

am.a

file containing text to adapt Aircraft_Motion

atc.a

atd.a

atdd.a

[file containing adapted cd.trf for Communication_Device)
{file containing adapted comm.trf for Communication)

[file containing adapted tdb.trf for Communication_Buffer)
file containing adapted cwss.trf for Collision_Warning_Situation_Status
ha.a

7-169

ATD/CWM Product Implementation/Generation Procedure

it.a

na.a

nav.a

pq.a

file containing adapted pt.trf for Potential_Threat

radar.a

file containing adapted tdb.trf for Radar_Target_Priority_Buffer
sd.a

file containing adapted tdb.trf for Target_Buffer

A predefined VAX compilation script, entitled vax_compile.com, reflects this compilation order and
is available for compiling these Ada files. This compilation script is available in the following Apollo
directory and should be copied over to the VAX:

/fvenus/local/public/atd_cwm_adaptable_components/code_components

If the adapted Ada components were created using the predefined Ada filenames contained in the
csh script, adapt.csh, vou will only need to edit out any Ada files from this compile script that were
not copied over to the VAX (i.e., because they were not selected in Step 2). However, if the predefined
names were not used, you will need to substitute the new names for the italicized items as described
in the above list.

The VAX/VMS Ada compiler generates a series of extraneous warning messages for the following
components:

atd.a

atdd.a

file containing adapted cwss.trf for Collision_Warning_Situation_Status
file containing adapted pt.trf for Potential_Threat

radar.a

sd.a

You can ignore these. Any other messages shoi'd be reported to the ATD/CWM domain engineers.
Compile the C file

It is assumed that you have some knowledge of how to use the VAX/VMS C compiler on VAX/VMS
and that you have some knowledge of the VAX/VMS command language before you attempt this step.
Before compiling component xlibrary.c, you must define a VAX/VMS logical name X11to be thename
of the VAX/VMS directory that contains the C include file X.h. This equivalence name is defined on
the VAX as foliows:

$ define X11 decwSinclude

Once you have defined this logical name, you can compile xlibrary.c using the C compiler. Any
messages reported by the C compiler should be reported to the ATD/CWM domain engineers.

7-170

ATD/CWM Product Implementation/Generation Procedure

Creating an executable

Once you have compiled these components, they are linked together to form the desired executable
ATD/CWM system. The entry point for your system is named Atd_Cwm. You must also link in the
following VAX/VMS libraries:

* decwSxlibshr.exe
¢ vaxcrtlolb
A linking script file, entitled link.com, can be found in the following Apollo directory:
/Ivenus/local/public/atd_cwm_adaptable_components/code_components

The linker generates a series of extraneous warning messages for components.

atda

atdd.a

file containing adapted cwss.trf for Collision_Warning_Situation_Status
file containing adapted pt.trf for Potential_Threat

radar.a

sd.a

These are caused by the extraneous messages generated by the VAX/VMS Ada compiler. You can
ignore these. Any other messages should be reported to the ATD/CWM domain engineers.

Step 5. Executing Your System

Your ATD/CWM system is intended to execute on VAX/VMS using your Apollo terminal as an
X-terminal client. Before you can execute your ATD/CWM system, you must perform the following steps:

* Type the following command at the VAX/VMS DCL prompt:
- set disp/create/node = XX/trans = wintcp
where XX is the name of the Apollo node that you wish to use as an X-terminal.

* On the Apollo node called XX, ensure that the X-server is running. It must be running before
you can perform the next step.

* Type the following command at the Apollo prompt on the Apollo node called XX:
- /usr/bin/X11/xhost +
You can now start your ATD/CWM system on the VAX by issuing the following command:
- $ run/nodebug atd_cwm

Your ATD/CWM system will execute using simulated radar and ATC data.

7-1M

ATD/CWM Product Implementation/Generation Procedure

This page intentionally left blank.

7-172

8. ATD/CWM PROCESS SUPPORT

1. APPLICATION ENGINEERING USER’S GUIDE

The application engineering process for the ATD/CWM domain consists of two activities: Application
Modeling and Application Production. You must complete the Application Modeling activity before
the Application Production activity is started.

1. APPLICATION MODELING

Application Modeling consists of two activities: specification and validation. Specification analyzes
a customer’s statement of needs to produce an Application Model. The Application Model expresses
requirements and engineering decisions that describe an instance of a family of systems intended to
satisfv those needs.

In this activity, you will be describing an ATD_CWM system which when installed in an aircraft will
monitor air traffic in a surveillance area and detect collision warning situations. This system will moni-
tor flight characteristics (e.g., altitude, bearing, range) of potential threats and show the flight charac-
teristics on a display within the host aircraft’s cockpit. The ATD/CWM system obtains flight
characteristics from either messages transmitted by potential threats or air traffic control centers.
This system will also detect collision warning situations and take appropriate actions such as display-
ing collision warning characteristics and corrective action advisory messages on a display within the
host aircraft’s cockpit, transmitting inter-air messages to potential threats, and transmitting advisory
messages to an air traffic control center.

The following sections describe the sequence of steps you. the application engineer, perform to
develop an ATD/CWM application.

1.1. SPECIFICATION

You must specify the ATD/CWM Application Model before generation activities can be done. The
steps that you follow are listed below. The forms you will need to fill in are provided with each step.
Each form has the following organization.

Decision Mnemonic Value

The first column identifies the decisions (i.e.. the requirements variations); the second column
contains a mnemonic which is a shorthand identifier for the decision; and the third column records
your decisions. You can repeat the form pertaining to decisions you must make for collision warning
situations as often as necessary. This allows you to capture your decisions for each collision warning
situation. The steps describe what decisions you must make and permissible values for each decision.

8-1

ATD/CWM Process Support

1. Define the Application Model name. This name is a case-sensitive alphanumeric text string.
The length of this string must be between 1 and 64 characters. You enter this name in the form
shown in Table 8-1.

Table 8-1. Application Model Name

Decision Mnemonic Value
Application Model Name Model_Name

2. You can perform the following steps in any order. However, you must perform all of them
before you have completed an Application Model.

2.1. Define the host aircraft characteristics. There are three decisions that you must make: the
surveillance area radius, the icon shape for the host aircraft, and the ATC_Msg message
format. You enter your decisions for these requirements variations in the form shown in
Table 8-2 opposite labels marked “Surveillance_Area,” “Host_Aircraft_Shape,” and
“ATC_Message_Mode,” respectively. A brief description of these decisions and their
associated value space follows.

Surveillance_Area Radius (in nautical miles) of the surveillance area that
the ATD/CWM monitors. The surveillance area is a
sphere whose origin is the host aircraft’s position. You
must chose an integer in the range 10 to 300, inclusive.

Host_Aircraft_Shape Icon shape for the host aircraft when it is displaved.
You can select only one of circle, square, or triangle.

ATC_Message_Mode Designates the format for the ATC_Msg messages sent
from the host aircraft to an air traffic control center.
You can select only one of the following values:
A - Transponder code only
C - Transponder code plus altitude

Table 8-2. Host Aircraft Characteristics

Decision Mnemonic Value
Host_Aircraft Characteristics

Surveillance Area Surveillance_Area
Host Aircraft Shape Host_Aircraft_Shape
ATC_ Message_Mode Message_Mode

You only need to select a value for “ATC_Message_Mode” when you have at least one
collision warning situation response which has the “Response to ATC” decision marked
true.

2.2. Define potential threat characteristics. These are the characteristics unique to potential
threats. There are three decisions that you must make: the criteria for distinguishing be-
tween “identified” and “unidentified” aircraft, the icon shape for “identified” aircraft, and

§-2

ATD/CWM Process Support

the icon shape for “unidentified” aircraft. You enter your decisions for these requirements
variations in the form shown in Table 8-3 opposite labels marked “Identification Require-
ments,” “Shape of Identified Aircraft,” and “Shape of Unidentified Aircraft,” respectively.
A brief description of these decisions and their permitted value space follows.

Identification Requirements A set that defines criteria for a potential threat to be
considered “identified.” You can select one or more of
airspeed or altitude. To select element, say airspeed,
means that the value for airspeed must be known for
a potential threat to be designated as “identified.” Se-
lecting both elements means that both values must be
known.

Shape of Identified Aircraft Icon shape for an “identified” potential threat when it
is displayed. You can select only one of circle. square,
or triangle.

Shape of Unidentified Aircraft
Icon shape for an “unidentified” potential threat when
itis displayed. You can select only one of circle, square,
or triangle.

Table 8-3. Potential Threat Characteristics

Decision

Mnemonic . Value

Potential Threat Characteristics

Identification Requirements | ID_Req

Shape of Identified Aircraft |ID_Shape

Shape of Unidentified Aircraft | UID_Shape

2.3. Define Collision Warning Situation. You enter the name of a specific collision warning

situation in the form shown in Table 8-4 opposite label “Collision Warning Situation
Name."” This name is a case-insensitive alphanumeric identifier (no spaces allowed) having
a maximum length ot 64 characters. The name “normal” is reserved and cannot be speci-
fied by the application engineer, including all upper- and lower-case variations. Steps 2.3.
2.3.1,23.2,2.3.3. and 2.3.4 are repeated as often as there are collision warning situations
to specify. You will need to complete Table 8-4 (shown on Page 8-8) once for every collision
warning situation in your ATD/CWM system.

A collision warning situation consists of three portions: the defining characteristics, the
appropriate response performed by the system, and the desired display characteristics.
You must specify these for each collision warning situation using the following steps.

2.3.1. Define the collision warning situation characteristics. There are two required
decisions: the aircraft partition to which this situation applies and the severity of
this collision warning situation. You enter your decisions for these requirements
variations in the form shown in Table 8-4 opposite labels marked “Situation Air-
craft Partition™ and “Situation Severity,” respectively. A brief description of these
decisions and their permitted value space follows.

ATD/CWM Process Support

Situation Aircraft Partition

Situation Severity

Indicates the potential threat partition for which this
collision warning situation applies. You can select only
one of ID. UID, or ALL. ID is “identified”; UID is
“unidentified”; ALL is both.

Relative probability that a collision is likely to occur.
The higher the severity, the more likely a collision will
occur. By definition, the predefined normal situation
has the lowest severity. You can select a severity level
in the range 0.00 to 1.00 having a resolution of 0.01.

There are also four optional decisions: the minimum and maximum allowed time
before the flight paths of a potential threat and the host aircraft intersect, and the
minimum and maximum distance a potential threat is from the host aircraft. You
can specify the minimum and maximum time or the minimum and maximum range
or both. However, you must specify at least one of these pairs. If both are specified.
it is interpreted as a logical “OR?” (i.e., time OR range). You enter your decision
for these requirements variations in the form shown in Table 8-4 opposite labels
marked “Time_Min,” “Time_Max,” “Range_Min,” and “Range_Max," respective-
ly. If airspeed is unknown, then 1000 nautical miles per hour is assumed. A brief
description of these decisions and their permitted value space follows.

Time Minimum

Time Maximum

Range Minimum

Range Maximum

Minimum allowed elapsed time before the flight path’s
of the potential threat and host aircraft intersect. You
can select a minimum time value in the range 1 to 300
seconds.

Upper bound on the allowed elapsed time before the
flight paths of the potential threat and host aircraft in-
tersect. You can select a maximum time value in the
range 1 to 300 seconds.

Minimum distance the potential threat is from the host
aircraft. The upper limit is determined by the value
chosen for the Surveillance_Area decision. You can se-
lect a minimum range value in the range 0 to X nautical
miles, inclusive. X denotes the value chosen for the
Surveillance_Area decision.

Upper bound on the potential threat is from the host
aircraft. The upper limit is determined by the value
chosen for the Surveillance_Area decision. You can se-
lect a maximum range value in the range 0 to X nautical
miles, inclusive. X denotes the value chosen for the
Surveillance_Area decision.

2.3.2. Define the situation response. There are five decisions that you must make: should
the ATD/CWM system send notification to the air traffic control center; should
the system send notification to the intruding potential threat: should the system

&-4

ATD/CWM Process Support

display a corrective action message; should the system ring the audible alarm; and
what transponder code the ATD/CWM should use in the ATC Msg or
Inter_Air_Msg. You enter your decisions for these requirements variations in the
form shown in Table 8-4 opposite labels marked “Response to ATC,” “Response

"

to other Aircraft,

Corrective Action Response,” “Alarm,” and “Code,” respec-

tively. A brief description of these decisions and their permitted value space

follows.

Response to ATC

Response to other Aircraft

Corrective Action Response

Alarm

Code

Designates whether a message is sent to the nearest air
traffic control center. You can select either True or
False. True means to send the message; false means do
not send the message.

Designates whether a message is sent to the
appropriate potential threat. You can select either
True or False. True means to send the message; false
means do not send the message.

Designates whether a corrective action advisory
message is displayed on the ATD. You can select cither
True or False. True means the message is displayed;
false means that the message is not displayed.

Designates whether the audible alarm should be rung
when a potential threat migrates into this collision
warning situation from a lower severity. You can select
either True or False. A value of false means to not ring
the alarm. A value of true means to ring the alarm. In
this case. a pitch and duration must be specified as
well.

Designates the four-digit transponder code to usc in
the ATC_Msg and Inter_Air_Msg. You must chose a
4-digit integer in the range 0000 to 7777, inclusive.
excluding the following reserved codes:

7500
7600 through 7677, inclusive
7700 through 7777, inclusive

The last two digits of your code must always read 00.
Furthermore. each digit is restricted to values in the
range 0to 7, inclusive. You do not need to make a selec-
tion for this decision when your choices for “Response
to ATC” and “Response to other Aircraft™ decisions
are both false.

If “Response to ATC™ is marked true, you must chose a value for the
“ATC_Message_Mode” decision found in Table 8-2.

8-5

ATD/CWM Process Support

233. 1If you chose true value for the “Alarm” decision, you must specify the alarm

characteristics by specifying a pitch and a duration for the audible alarm. You enter
your decisions for these requirements variations in the form shown in Table 84 oppo-
site labels marked “Pitch” and “Duration,” respectively. A brief description of these
decisions and their permitted value space follows.

Pitch What frequency, in hertz, at which the audible alarm
is rung. You can select an integer-valued frequency in
the range 1,000 to 10,000, inclusive.

Duration How long to ring the audible alarm. You can select a
time duration in the range 0.01 to 10.0 seconds,
inclusive, having a resolution of 0.01 seconds.

2.34. Define the situation display characteristics. There are seven decisions that you

must make: icon color of host aircraft, icon color of identified potential threats,
whether the icons for identified potential threats should blink, whether the icons
for identified potential threats should be filled in. icon color of unidentiiied poten-
tial threats, whether the icon for unidentified potential threats should blink, and
whether the icons for unidentified potential threats should be filled in. You enter
your decisions for these requirements variations in the form shown in Table 8-4
opposite labels marked “Color of Host Aircraft,” “Color of Identified Potential
Threats,” “Blinking Identified Potential Threats,” “Fill Identified Potential
Threats.” “Color of Unidentified Potential Threats,” “Blinking Unidentified Po-
tential Threats,” and “Fill Unidentified Potential Threats,” respectively. A brief
description of these decisions and their permitted value space follows.

Color of Host Aircraft Icon color for the host aircraft. You can select only one
color: red, yellow. pink. orange. blue, green, white,
black, purple. indigo, or violet.

Color of 1dentified Potential Threat
Icon color for the identified potential threat. You can
select only one color: red, yellow, pink, orange. blue,
green. white, black. purple, indigo, or violet.

Blinking Identified Potential Threat
You can select either True or False. True means that
the icon for the identified potential threat should blink
in this collision warning situation. False means that it
should not blink. '

Fill Identified Potential Threat
You can select either True or False. True means that
the icon for the identified potential threat should be
filled in (i.e., color the icon interior). False means do
not fill the icon.

Color of Unidentified Potential Threat
Icon color for the unidentified potential threat. You

8-6

ATD/CWM Process Support

can select only one color: recd, yellow, pink, orange,
blue, green, white, black, purple, indigo, or violet.

Blinking Unidentified Potential Threat
You can select either True or False. True means that
the icon for the unidentified potential threat should
blink in this collision warning situation. False means
that it should not blink.

Fill Unidentified Potential Threat
You can select either True or False. True means that
the icon for the unidentified potential threat should be
filled in (i.e., color the icon interior). False means do
not fill the icon.

8-7

ATD/CWM Process Support

Table 8-4. Collision Warning Situation

Decision ' Mnemonic Value

Collision Warning Situation

Collision Warning Situation Name CWS_Name
Situation Definition
Situation Aircraft Partition Partition
Situation Severity Severity

Situation Flight Characteristics

Time
Min Time_Min
Max Time_Max
Range
Min Range_Min
Max Range_Max
Situation Response
Response to ATC ATC Msg
Response to other Aircraft Inter_Air_Msg
Corrective Action Response Corrective_Msg
Alarm Alarm
Code Code __00
Alarm Characteristics
Pitch Alarm_Pitch
Duration Alarm_Duration

Situation Display —

Color of Host Aircraft Host_Color
Color of Identified Potential Threats 1D_Color
Blinking Identified Potential Threats ID Blink
Fill Identified Potential Threats ID_Fill

Color of Unidentified Potential Threats | UID_Color
Blinking Unidentified Potential Threats | UID_Blink
Fill Unidentified Potential Threats UID_Fill

1.2. VALIDATION

Having completed the specification, you can validate the Application Model by performing the
following checks shown below. All checks must pass to have a validated Application Model. If any
of the checks fail, you must correct the necessary portions of the Application Model and subsequently
validate it again.

1. Your Application Model contains at least one collision warning situation.

2. Every collision warning situation contains values for all required fields.

8-8

ATD 'CWM Process Support

3. You have marked the “Corrective Action Response” decision true for at least one collision
warning situation. :

4. You have specified a value for the ATC_Message_Mode if, and only if. there is at least one
collision warning situation response which has the “Response to ATC” decision marked true.

5. For each collision warning situation in which Time is specified, the minimum time value
(“Time_Min”) must be less than or equal to the maximum time (“Time_Max").

6. For each collision warning situation in which Range is specified. the following checks are done.

a) The minimum range value (“*Range_Min”) must be less than or equal to the maximum
range (“Range_Max").

b) The minimum range value (“Range_Min”) must be less than or equal to the
Surveillance_Area range specified in your Application Model and greater than or equal
to zero.

¢) The maximum range value (“Range_Max”) must be less than or equal to the
Surveillance_Area range specified in your Application Model and greater than or equal
to zero.

7. You have specified mutually exclusive icon shapes for the host aircraft, identified potential
threats, and unidentified potential threats.

8. The set of collision warning situations do not overiap. It is likely that all of the collision warning
situations will be specified either in terms of time or in terms of range but not a mixture of
both. Thus, these time-based or range-based situations should not overlap.

2. APPLICATION PRODUCTION

You must have successfully validated your Application Model before you can generate the Application
Products. If vour Application Model has been validated, vou follow the following steps to produce
the desired application.

1. Application Model Transformation.

You must transform vour validated ATD/CWM Application Model (from its external form)
into an equivalent internal form expressed in terms of the ATD/CWM Decision Model before
you proceed with the remaining activities of the Generation Procedure. To do this transforma-
tion, you fill in forms that correspond to decision classes in the ATD/CWM Decision Model.
You derive the values for these forms from your ATD/CWM Application Model. Page 7-153
describes how to do this step in more detail.

2. Select the Adaptable Components.

You use the information you captured in the preceding step to select adaptabie components.
You are provided a group of adaptable components and selection criteria for each component.
To select the adaptable component, you must evaluate the selection criteria for each adaptable
component. Page 7-157 describes in more detail how you perform this step.

8-9

ATD/CWM Process Suppart

3.

Adapt the Components.

Each of the adaptable code components is normally implemented by two parts: a specification
and a body. You adapt either the specification. body. or both for a given adaptable code com-
ponent. You adapt only those components you selected in the preceding step. Page 7-160
describes in greater detail how vou adapt the components.

Compose the Components.

You compose the adapted code components into an executable ATD/CWM system by
compiling the source code files and linking them to form an executable. The basic steps are
moving the components to the target system (i.e., the system on which the ATD/CWM system
executes), compiling the Ada and C code components, and finally linking the compiled code
components together to form your ATD/CWM system. Page 7-168 describes in greater detail
how you compose the selected components for your ATD/CWM system.

Once you have successfully built the desired application, you can execute your ATD/CWM svstem
on the target hardware by following the steps described on page 7-171 .

3. RUNTIME VALIDATION

You and vour customer can evaluate vour ATD/CWM system by performing the following checks as
the system executes.

1.

2.

The ATD/CWM system recognizes each collision warning situation.

The ATD/CWM system performs the desired actions in response to detected collision warning
situations.

Each aircraft in the surveillance area is displaved with the desired identifying icon.

&-10

9. ATD/CWM APPLICATION MODEL

Nore: The requirements for the ATD/CWM system captured in the following Application Model
are shown in Appendix D. This Application Model was developed by manually following the
ATD/CWM Application Engineering User’s Guide contained in the ATD/CWM Process
Support work product (Section 8§).

Decision Mnemonic Value
Application Model Name Model_Name ATD/CWM System_1
Decision Mnemonic Value
Host_Aircraft Characteristics -
Surveillance Area Surveillance_Area 125
Host Aircraft Shape Host_Aircraft_Shape circle
ATC_Message_Mode Message_Mode A
Decision Mnemonic Value
Potential Threat Characteristics
Identification Requirements |ID Req (airspeed)
Shape of Identified Aircraft |ID_Shape triangle
Shape of Unidentified Aircraft | UID_Shape square
Decision Mpemonic Value
Collision Warning Situation
Collision Warning Situation Name CWS_Name Monitored
Situation Definition
Situation Aircraft Partition Partition ALL
Situation Seveuity Severity 0.10
Situation Flight Characteristics
Time
Min Time_Min
Max Time_Max
Range
-
Min Range_Min 0
Max Range_Max 125

9-1

ATD/CWM Application Model

Decision Mnemonic Value
Situation Response
Response to ATC ATC Msg false
Response to other Aircraft Inter_Air Msg | false
Corrective Action Response Corrective_Msg | false
Alarm Alarm false
Code Code 7400
Alarm Characteristics
Pitch Alarm_Pitch
Duration Alarm_Duration
Situation Display
Color of Host Aircraft Host_Color white
Color of Identified Potential Threats 1D_Color orange
Blinking Identified Potential Threats ID_Blink false
Fill Identified Potential Threats ID_Fill false
Color of Unidentified Potential Threats | UID_Color green
Blinking Unidentified Potential Threats UID_Blink false
Fill Unidentified Potential Threats UID_Fill false
Decision Mnemonic Value
Collision Warning Situation
Collision Warning Situation Name CWS_Name Possible
Situation Definition
Situation Aircraft Partition Partition AlL
Situation Severity Severity 0.20
Situation Flight Characteristics
Time
Min Time_Min 60
Max Time_Max 90
Range
Min Range_Min
Max Range_Max
Situation Response
Response to ATC ATC Msg true
Response to other Aircraft Inter_Air Msg |false
Corrective Action Response Corrective_Msg | false
Alarm Alarm true
Code Code 7200
Alarm Characteristics
Pitch Alarm_Pitch 2500

9-2

ATD/CWM Application Model

Decision Mnemonic Value
Duration Alarm_Duration |5.00
Situation Display
Color of Host Aircraft Host_Color white
Color of Identified Potential Threats ID_Color orange
Blinking Identified Potential Threats ID_Blink false
Fill Identified Potential Threats ID_Fill false
Color of Unidentified Potential Threats | UID_Color green
Blinking Unidentified Potential Threats UID_Blink false
Fill Unidentified Potential Threats UID_Fill false
Decision Mnemonic Value
Collision Warning Situation
Collision Warning Situation Name CWS_Name Potential
Situation Definition
Situation Aircraft Partition Partition AlL
Situation Severity Severity 0.30
Situation Flight Characteristics
Time
Min Time_Min 30
Max Time_ Max 60
Range
Min Range_Min
Max Range Max
Situation Response
Response to ATC ATC _Msg true
Response to other Aircraft Inter_Air_Msg |true
Corrective Action Response Corrective_Msg | true
Alarm Alarm true
Code Code 7300
Alarm Characteristics
Pitch Alarm_Pitch 4000
Duration Alarm_Duration |5.00
Situation Display
Color of Host Aircraft Host_Color white
Color of Identified Potential Threats ID_Color pink
Blinking Identified Potential Threats ID_Blink true
Fill 1dentified Potential Threats 1D_Fill true
Color of Unidentified Potential Threats | UID_Color blue

9-3

ATD/CWM Appilication Model

Decision Mnemonic Value
Blinking Unidentified Potential Threats UID_Blink true
Fill Unidentified Potential Threats UID_Fill true
Decision Mnemonic Value
Collision Warning Situation
Collision Warning Situation Name CWS_Name Imminent
Situation Definition
Situation Aircraft Partition Partition ALL
Situation Severity Severity 0.50
Situation Flight Characteristics
Time
Min Time_Min 0
Max Time_Max 30
Range
Min Range Min
Max Range Max
Situation Response
Response to ATC ATC Msg true
Response to other Aircraft Inter_Air Msg |true
Corrective Action Response Corrective_Msg | true
Alarm Alarm true
Code Code 7100
Alarm Characteristics
Pitch Alarm_Pitch 8000
Duration Alarm_Duration | 5.00
Situation Display
Color of Host Aircraft Host_Color red
Color of Identified Potential Threats ID_Color yellow
Blinking Identified Potential Threats ID_Blink true
Fill Identified Potential Threats ID_Fill true
Color of Unidentified Potential Threats | UID_Color purple
Blinking Unidentified Potential Threats | UID_Blink true
Fill Unidentified Potential Threats UID _Fill true

9-4

10. ATD/CWM APPLICATION SOFTWARE

Note: The components shown in this section were produced by manually following the Application
Production portion of the ATD/CWM Application User’s Guide (Section 8) for the Applica-
tion Model shown on page 9-1. For clarity and illustrative purposes, only some of the code
components and documentation components are shown below.

Code Components
1. Audible_Alarm

Spec

—- Audible_Alarm (AA)

—- This module determines the frequency and duration at which
-- to ring the audible alarm for a specified collision warning
—-- situation.

with Potential_Threat;

package Audible_Alarm is

procedure ring _alarm(cws : in Potential_ Threat.cws_id);
end Audible_Alarm;

Body

-- Audible_Alarm (AA) body

—-- The audible_alarm device generates a tone that can be heard
-- within the host_aircraft cockpit.

with Potential Threat;
with Audible_Alarm Device;
package body Audible_Alarm is

procedure ring_alarm(cws : in Potential_Threat.cws_id)
is
begin
case cws is
when Potential Threat.Possible =>
Audible_Alarm Device.ring_alarm(f => 2500, 4 => §5.00);

10-1

ATD/CWM Application Software

when Potential Threat.Potential =>
Audible_Alarm Device.ring_alarm(f => 4000, d => 5.00);
when Potential_ Threat.Imminent =>
Audible_Alarm Device.ring_alarm(f => 8000, d => 5.00);
when others =>
return;
end case;
end ring_alarm;
end Audible_Alarm;

2. Collision_Warning_Situation_Status

Spec

——- Collision Warning Situation Status (CWSS) spec

-- This module determines the collision warning situation status
—- for the given potential threat and host aircraft.

with Potential_Threat;

package Collision_Warning Situation_Status is

function determine_cws_status(threat : in Potential Threat.pt_handle)
return Potential Threat.cws_id;

function determine_host_status return Potential_ Threat.cws_id;

end Collision_Warning_Situation_Status;

Body (excerpt)

-- Collision Warning Situation Status (CWSS) package body

-~ This module determines the collision warning situation status
-- for the given potential_threat and host_aircraft.

with Potential Threat;
with Physical Quantities; use Physical_Quantities;

with Situation Dynamics;
with Text_IO;

package body Collision_Warning Situation_Status is

-- This routine keeps track of the number of potential

-- threats in each collision situation. This enables us to
-~ quickly determine the host aircraft status when

-- requested to provide it.

target_count : array(Potential_ Threat.cws_id first
Potential_Threat.cws_id’last) of integer
=> 0);

(others

10-2

ATD/CWM Application Software

—-- Determine the collision warning situation status of the specified
-- potential threat.

function determine_cws_status(threat : in Potential_Threat.pt_handle)

is

return Potentjal Threat.cws_id
airspeed_and_altitude_valid : boolear:
time_to_intersect : Physical_Quantities.seconds;
target_range : Physical_Quantities.nautical_mile;

old_cws_status, new_cws_status : Potential Threat.cws_id;

begin

airspeed_and_altitude_valid := Potential_Threat.altitude_valid(threat)

and then

Potential_Threat.velocity_valid(threat);

target_range := Potential Threat.get_range(threat);

if (airspeed_and altitude_valid) then

time_to_intersect := Situation_Dynamics.get_elapsed_time(threat);
end if;
old_cws_status := Potential_Threat.get_cws_status(threat);
if

(airspeed_and_altitude_valid) and then
(0.0 <= time_to_intersect and then
time_to_intersect < 30.0)) then
new_cws_status := Potential Threat.Imminent;

elsif ¢(

(airspeed_and altitude_valid) and then
(30.0 <= time_to_intersect and then
time_to_intersect < 60.0)) then
new_cws_status := Potential_ Threat.Potential;

elsif ¢

(airspeed_and_altitude _valid) and then
(60.0 <= time_to_intersect and then
time_to_intersect < 90.0)) then
new_cws_status := Potential_Threat.Possible;

elsif ¢

(0.0 <= target_range and then target_range < 125.0)) then
new_cws_status := Potential_ Threat.Monitor;

else
new_cws_status := Potential_ Threat.normal;

10-3

ATD/CWM Application Software

end if;
if (target_count(old_cws_status) /= 0) then
target_count (old_cws_status) := target_count(old_cws_status) - 1;
end if;
target_count (new_cws_status) := target_count(new_cws_status) + 1;

return new cws status;

exception

when constraint_error => text_io.put_line("determine cws CE"); return

Potential Threat.normal:

when numeric_error => text_io.put_line("determine cws NE"); return

Potential Threat.normal;

when others => text_io.put_line("determine cws Bozo error"); return

Potential_ Threat.normal;

end determine_cws_status;

Determine the collision warning situation status of

the host aircraft. Each the number of potential threats

in each situation category starting with the most severe
situation and progressing to the least severe. The

first collision warning situation encountered which has

a non-zero target count is the status of the host aircraft.
If all situations have zero potential threats, then the
status of the host aircraft is "normal".

function determine_host_cws_status return Potential_ Threat.cws_id
is
begin

if (

target_count(Potential Threat.Imminent) /= 0) then
return Potential_Threat.Imminent;

elsif (

target_count(Potential_Threat.Potential) /= 0) then
return Potential Threat.Potential;

elsif (

target_count (Potential_Threat.Possible) /= 0) then
return Potential Threat.Possible;

elsif (

target_count(Potential_ Threat.Monitor) /= 0) then
return Potential_ Threat.Monitor;

else
return Potential_ Threat.normal;
end if;
end determine_host_cws_status;

end Collision_Warning_Situation_Status;

10-4

ATD/CWM Application Software

3. Audible_Alarm_Device

Spec

-- Audible Alarm Device (AAD) spec

-- The audible_alarm device generates a tone that can be heard
within the host_aircraft cockpit.

package Audible_Alarm Device is

type Duration is delta 0.01 range 0.01 .. 10.00; -~ seconds
type Frequency is range 1000 .. 10_000; -- hertz

procedure ring_alarm(f : in Frequency;
d : in Duration);

type Alarm Message_Type is private;

private
type Alarm_Message_Type is
record
Frequency : Frequency;
Duration : Duration;
end record;

end Audible_Alarm Device;
Deocumentation Components
1. ATD/CWM Software Requirements Specification (SRS)

Nore: Only a portion of the ATD/CWM Software Requirements Specification document is shown
here to reduce the size of the ATD/CWM case study documentation. The “...” indicates
portions purposely omitted within sections of this document.

10-5

ATD/CWM Application Software

Air Traffic Control / Collision Warning Monitor Software Requirements Specification
ATD/CWM-SRS-1.0: Volume 1 of 1

1.0 : May 20, 1992

SOFTWARE REQUIREMENTS SPECIFICATION
FOR THE
ATD/CWM COMPUTER SOFTWARE CONFIGURATION ITEM
OF
THE AIR TRAFFIC CONTROL / COLLISION WARNING MONITOR SYSTEM
CONTRACT NO. Contract_1
CDRL SEQUENCE NO. XYZ004
Prepared for:
Government Agency - GA1
Prepared by:
Software Productivity Consortium
SPC Building

2214 Rock Hill Rd.
Herndon, VA 22070

Authenticated by Approved by

(Contracting agency) (Contractor)

Date Date

10-6

ATD/CWM Application Software

1. Scope

This section identifies the computer software configuration item (CSCI), which briefly states the
purpose of the system, describes the role of the CSCI within the system, and summarizes the purpose
and content of this software requirements specification (SRS).

1.1. ldentification

This SRS establishes the requirements for the CSCI identified as:

System title: ATD/CWM

System mnemonic: ATD/CWM

System Identification number: ATD/CWM System_1

CSCT title: Air-Traffic-Display / Collision-Warning-Monitor
CSCI mnemonic: ATD/CWM

CSCI number: XXXX

1.2. CSCI Overview

The ATD/CWM system monitors air traffic to detect collision warning situations within a surrounding
surveillance area. The ATD/CWM CSCI will provide the following capabilities:

Potential_Threat monitoring. Monitors potential threat flight characteristics ground track.
relative bearing. range altitude, airspeed, and climb rate within the surveillance area.

Intersection monitoring. Monitors the probable intersection of all aircraft with the host
aircraft.

Collision warning situation detection. Detects collision warning situations with respect toeach
potential threat based upon its predicted flight path and the separation minima.

Display a corrective action advisory message on the host aircraft’s display which describes
what maneuvers the host aircraft should perform to avoid a collision.

Sound an audible alarm within the host aircraft’s cockpit for a detected collision warning
situation.

Transmit messages to the nearby potential threat for a detected collision warning situation.

Transmit a message to a nearby air traffic control center for a detected collision warning
situation.

1.3. Document Overview

.....

10-7

ATD/CWM Application Software

2. APPLICABLE DOCUMENTS
This section states document precedence and lists all documents referenced in this specification.
2.1. Government Documents

The following documents of the exact issue shown form a part of this specification to the extent
specified herein. In the event of conflict between the documents referenced herein and the contents
of this specification, the contents of this specification shall be considered a superseding requirement.

MIL-STD-1815A-1983 Reference Manual For the Ada Programming Language

Copies of specifications, standards, drawings, and publications required by suppliers in connection
with specified procurement functions should be obtained from the contracting agency or as directed
by the contracting officer.

2.2. Non-Government Documents

The following documents of the exact issue shown form a part of this specification to the extent
specified herein. In the event of conflict between the documents referenced herein and the contents
of this specification, the contents of this specification shall be considered a superseding requirement.

3. ENGINEERING REQUIREMENTS

This section contains the external interface and capability requirements for the ATD/CWM CSCI and
identifies internal CSClI interfaces. It also contains requirements for CSCI data elements, adaptation,
sizing and timing. safety, security, design constraints, software quality factors, and human
performance/human engineering.

3.1. CSCI External Interface Requirements
The ATD/CWM CSCI will input and output data to the following external components:
* Navigation (NAV)
* Radar (RADAR)
* Audible_Alarm (A2)
* Communication (COMM)
* Air_Traffic_Display (ATD)

* Air_Traffic_Control (ATC)

10-8

APPENDIX A. A SEMI-FORMAL REQUIREMENTS
METHOD

A.1 INTRODUCTION

This appendix describes the requirements method used in the third and fourth iterations of the Air
Traffic Display/Collision Warning Monitor (ATD/CWM) domain case study of Synthesis practice.
This requirements method was designed for precise definition of the requirements of systems that
are members of the family comprising the ATD/CWM domain. This method is a variation of the meth-
od developed by the Naval Research Laboratory (NRL) Software Cost Reduction (SCR) project for
defining requirements of operational flight software for the Navy’s A-7 aircraft (Heninger et al. 1978).
Both methods are semiformal in that the structure and form of specifications are precise but content
may sometimes be informal. This method will be superseded as the Consortium requirements
engineering method (Faulk et al. 1991) matures.

A.2 TERMINOLOGY

A knowledge of the following terms is required to understand the description of this requirements
method.

Control function A description of software that coordinates the
activation of other functions.

Device A physical entity with which the software interacts to
acquire information or to effect required behavior.

Environment The physical framework in which the software operates.

Function (1) Output function (SCR); (2) Output function,

control function or input function.

Input data item A specification of an allowed transmission of data
from a device to the software.

Input function A description of software that determines the response
to an input data item.

Output data item A specification of an allowed transmission of data
from the software to a device.

Output function A description of software that is solely responsible for
determining the value of one output data item.

(the) software (system) An implementation of required behavior.

Appendix A. A Semi-Formal Requirements Method

A3 METHOD CONTRASTS
Nore: Readers not familiar with the SCR requirements methods do not have to read this section.

The SCR method was designed to address the particular problems of complex, real-time software
systems. It had six objectives (Heninger 1980) of which two are particularly relevant for the
ATD/CWM domain case study:

¢ To specify external behavior only.
¢ To specify constraints on the implementation.

The method described here was designed to adhere to these objectives and all guiding principles of
the SCR method but in a variant form that is appropriate to the ATD/CWM domain. The primary
causes for modification are:

* A need to describe modifiable device outputs (i.e., the device, such as a CRT. maintains the
state of a continuous output so that arbitrary fragments can be modified independently).

* A need to describe processing of input data items that is dependent on the output state of
the software.

* A need to describe control functions whose purpose is the explicit coordination of other functions.

* A need to define the relevant theorv upon which the system is built in a precise form (i.e., the
precise form can be used to derive code).

In addition, some features of the SCR method are omitted from this method to simplify assumptions
about the ATD/CWM problems to be described. This is possible only because this case study illus-
trates key facets of developing a domain and that objective is not ¢ pendent on total realism in
problem complexity. The features of the SCR method that are simplified here include:

* System states are assumed to be simple enough to describe which modes are not needed to
describe output functions.

* Timing and accuracy constraints are given less attention than would otherwise be necessary.
Only categories of constraint description that are essential to illustrating domain development
are covered.

e Undesired event descriptions are not considered. This is an important but simple extension
from SCR to this method.

* Required subsets and expected change are not treated within this method. These are
accommodated under the broader domain concern for all variation: both over a single system'’s
life cycle and among alternative systems.

A.4 STRUCTURE OF A REQUIREMENTS SPECIFICATION

The ATD/CWM requirements method guides the creation of an abstract requirements specification.
An abstract specification is intended as a definitive guide for developers to use in the design,

Appendix A. A Semi-Formal Requirements Method

implementation, and verification of acceptable software. It is not intended for use by end-users or
others interested in an operational view of system behavior (however, such documentation should be
derivable without undue effort from the abstract specification).

The requirements specification is organized into three major descriptions: theory, environment, and
behavior. These descriptions are defined generally in Sections A.4.1 through A.4.3. Section A.5
provides the detailed content of each description.

A.4.1 THEORY

Theory is a description of a model of the relevant theoretical system upon which the system concept
is based. This model incorporates the entities in the environment whose detectable (i.e., measurable)
features and behavior can affect the behavior of the software. It further incorporates the definition
of relationships among those entities and features that reveal additional information which cannot
be directly measured. These entities, relationships, and features are a model of the theoretical limits
within which the system must operate.

Theory is comprised of a static model and a dynamic model. The static model is a definition of the
categories of information that are directly detectable in the environment. The dynamic model is a de-
scription of theoretical relationships and processes that characterize the potential behaviors of the
environment, as indicated by device inputs.

A.4.2 ENVIRONMENT

Environment is a description of the external environment within which the system operates. It includes
descriptions of the characteristics of the computer resources upon which the software executes and
the hardware devices with which the software is required to interact. These descriptions must be suffi-
cient to communicate all assumptions that imply constraints on the software. Each hardware device
is characterized by the protocols and formats by which the software receives input data from the
device and transmits output data to the device.

Environment is comprised of platform and devices. Platform defines the characteristics and assumptions
of the hardware, run-time facilities, and execution primitives upon which software behavior is implem-
ented. Devices describe the external devices (hardware, software, or hardware/software hybrids) with
which the software interacts to acquire information or effect required behavior. Each device is
characterized by the inputs it provides to the software and the outputs it accepts from the software.

A.4.3 BEHAVIOR

Behavior is a description of the ways in which the software can affect the environment in which it
operates. This corresponds to a description of the conditions under which each possible output of
data is produced and a description of how the value of the output is determined.

Behavior is composed of presentations and activities. A presentation is an output function; it
describes the ways in which the software determines the value of each device output. An activity is
a control function; it describes the events and conditions that enable/disable and activate/deactivate
presentations and other activities for coordination among presentations and with processing of device
ingut< (i.e., input functions).

Appendix A. A Semi-Formal Requirements Method

A.5 DETAILED CONTENT OF A REQUIREMENTS SPECIFICATION

This section contains a precise description of the content and form of required information, applicable
verification criteria, and a procedure and heuristics for producing that information.

A.5.1 THEORY - STATIC MODEL

A static model is a collection of class specifications that express an essential information model of
the software. A class denotes a collection of entities that are alike in specific, important ways. Differ-
ences among the entities are expressed as a set of properties that prescribe concrete data associated
with each entity and links to other entities (of any class) that establish relationships among entities.
A class may have subclasses that denote important subsets of the membership of the class.

Content and Form
Each class description requires the following information:

e Name: an identifier that allows for explicit references, at other points in the specification, to
a particular type of entity.

¢ Ancestry: a class of which this is a subclass.
e Properties: a description of the data items that characterize members of the class.
A data item description requires the following information:

e Name: an identifier that allows for explicit references, at other points in the specification, to
a particular property of members of a class.

e Value space: the data type of properties having a concrete (i.e., printable) value or designation
of a class having members to which members of this class may refer.

» Description: a textual explanation of the meaning of the data item.
Verification Criteria
A completed class description must satisfy the following criteria:

» The class is uniquely named and all its properties are uniquely named relative to it and its
ancestry.

o All referenced classes arc defined.
Procedure and Heuristics

To be determined

A.5.2 Tueory - Dynamic MobeL

A dynamic model defines logical and mathematical relationships among the concepts of the static
model and derivations of additional information. These relationships and derivations form the basis

A4

Appendix A. A Semi-Formal Requirements Method

for predicting the current (or future) state of the physical system based on measurements of past (or
current) state. These predictions determine the need and provide the rationale for particular software
behavior.

Content and Form
A relationship or derivation description requires the following information:

e Name: an identifier that allows for explicit references, at other points in the specification, to
this relationship or derivation.

e Equation: a logical or mathematical equation that defines this relationship or derivation as
a function of properties in the static model (and a function of other intermediate relationships
and derivations).

¢ Subordinate relationships/derivations: a set of relationships/derivations that are referenced
only within the containing relationship/derivation.

The equation may define a time-variant or iterative computation process.
Verification Criteria
A completed relationship/derivation description must satisfy the following criteria:

» The relationship/derivation is uniquely named and subordinates are uniquely named relative
to it.

¢ All referenced data items, relationships, and derivations are defined.
Procedure and Heuristics

To be determined

A.5.3 ENVIRONMENT - PLATFORM

Platform is a description of the hardware/software mechanism upon which a system operates. The
characteristics of the platform determine the primitive mechanisms and capabilities by which the
required behavior of the system can be achieved.

Content and Form
A platform description requires the following information:

¢ Hardware: the nature and variety of computational equipment upon which the system is
required to operate.

e Operating software: the nature and variety of the run-time facilities available for the operation
of the system.

e Computational software: the nature and variety of implementation facilities by which the
system is realized.

A-S

Appendix A. A Semi-Formal Requirements Method

Verification Criteria
A completed platform description must satisfy the following criterion:

* All platform characteristics must be consistent with the required capabilities of the system.
Procedure and Heuristics

To be determined

A.5.4 ENVIRONMENT - DEVICES

A device defines a description of the means by which a system senses or affects the environment in
which it operates. Devices can be either hardware or software and must have a well-defined interface
with which the system can communicate.

Content and Form

A device is described by the set of input and output data items that it provides for software interaction.
Each device requires the following information:

* Name: an identifier that allows for explicit references, at other points in the specification, to
a particular device.

* Inputs: a description of the input data items that the device is able to deliver to the software.
* Outputs: a description of the output data items that the device is able to receive from the software.
An input data item description requires the following information:

* Name: an identifier that allows for explicit references, at other points in the specification, to
a particular input of a device.

* Value space: (1) A specification of the form in which input is delivered to the software. (2) A
set of name/value space/description tuples describing the structure of a composite input data
item.

* Timing characteristics: if time constrained, how long input data is available after occurrence
(for interrupt signalled data) or how often input data is to be measured to attain sufficient
accuracy (for polled data).

¢ Input mapping: a specification of the input function(s) that map input data values into entities
(and their associated properties) of the static model.

An output data item description requires the following information:

* Name: an identifier that allows for explicit references, at other points in the specification, to
a particular output of a device.

* Value space: (1) A specification of the form in which output is to be received from the software.
(2) A set of name/value space/description tuples describing the structure of a composite
output data item.

* Timing characteristics: if time constrained, the rate at which output must be produced.

A-hH

Appendix A. A Semi-Formal Requirements Method

A value space description includes the assumed units of measurement, acceptable range and assumed
accuracy or acceptable discrete values, prescribed data representation, and required instruction se-
quence or software interface. See (Heninger et al. 1978) for examples of value space descriptions.

Verification Criteria

A completed device description must satisfy the following criterion:

The device is uniquely named and all its data items are uniquely named relative to it.

Procedure and Heuristics

To be determined

A.5.5 BEHAVIOR - PRESENTATION

A presentation is a specification for an output function. Presentations are described in terms of a
standard set of paradigms characterized by the form in which information is organized for output.
One presentation is defined for each output data item of each device. This method is tailored to a
problem domain by establishing an applicable paradigm set that satisfies the particular needs of that
domain.

Content and Form

All presentations require the following information. Particular paradigms may require additional
information.

Name: an identifier that allows for explicit references, at other points in the specification, to
a particular presentation.

Paradigm: the paradigm that controls the way in which the presentation is described and how
it will behave.

Context: a class of information from the static model that indicates the type of data to be
output and a predicate that can be applied to limit the instances of the class that determines
an output value. Any data that is accessible, via references, to other information classes can
also be considered part of the context.

Mapping template: a paradigm-specific description of how context (and constant) data is
mapped into the output data item within paradigm-determined constraints. A mapping may
include an algorithmic transform of context data to satisfy the semantics or value form/units/
constraints of the output data item. Alternative mappings may be specified by identifying a
set of mappings, each designated by an associated enabling condition (described by a
predicate on the context).

Input control: any input data items whose detection and handling are enabled only within the
activation lifetime of the presentation and relative to its context. Input handling may be (1) inde-
pendent of the particular enabling output, (2) relative only to the context of its enabling output,
or (3) variable, under the control of the enabling output as determined by its particular paradigm,
by correlation of the input to the structure of the output as defined by the mapping template.

Lifetime: either invoked or activated. Invoked presentations produce an output and terminate;
activated presentations produce an output whenever context data changes until deactivated.

Appendix A. A Semi-Formal Requirements Method

Verification Criteria

A completed presentation description must satisfy the following criteria:

All presentations are uniquely named.

Context data is used consistent with its value space definition in the mapping to output.
The mapped value of context data satisfies the value space definition of the output data item.
The mapping template is completed correctly with respect to the referenced paradigm.

All additional, paradigm-required information is provided.

Any paradigm-specific constraints are satisfied.

Procedure and Heuristics

A presentation is specified through the following procedure:

1

Name and identify the context of the presentation.
The output data item to be produced usually suggests an appropriate name and context.

Determine which standard mapping paradigm and lifetime best characterize the required
output behavior.

Describe, in paradigm-specific terms, how context data (defined in the static model) is
mapped into output data form (defined in devices).

Identify which, if any, input data items are enabled by this presentation.
Revise this or other referenced specifications to satisfy the verification criterion.

When an inconsistency exists, it is necessary to determine whether the fault is in this
specification or in the one(s) with which it conflicts.

A.5.6 BEHAVIOR - ACTIVITIES

An activity is a specification for a control function. Activities are described in terms of four control
paradigms:

Sequence. A set of activities are activated in a prescribed order.
Concurrence. A set of activities are activated at the same time.
Selection. One of a set of activities are activated depending on user choice or system state.

Subordination. Activation of a controlled activity enables subsequent activation of other
activities depending on user choice or system state.

A-8

Appendix A. A Semi-Formal Requirements Method

All requirements methods for real-time systems must provide methods for representing the states and
state changes that a system must track and to which it must respond. Current state information is
expressed in terms of conditions and events. A condition is a truth-valued function (i.e., one that only
takes on the values true or false) that characterizes the state of the system for some measurable period
of time (e.g., altitude > 500 ft represents all states of the aircraft where its altitude is above 500 feet).
More complex conditions can be described in the usual way by forming boolean expressions over
simple conditions (e.g., altitude > 500 ft AND altitude < 2500 ft).

For real-time applications, the interest is not only in the current state but in those points in time
associated with state changes. These moments where the value of a condition changes is called an
event. Whereas conditions persist for measurable periods of time, events occur at single points in time.
Events are a relation between the state before and after the change. For example, the event associated
with altitude > 500 ft refers to any state change where the altitude was 500 ft or less and became
greater than 500 ft. An event is represented by the following notation:

@T(condition)

This describes any moment at which there is a state change from a state in which the condition is not
true to one in which it is. Thus, the event given above is written as @T(altitude > 500 ft). Similarly,

@F(condition)

denotes any moment the condition becomes false. Often, more information is needed about the state
to describe an event than just what conditions have changed. The when clause describes an event in
which one condition changes at a time when another holds.

@T(conditionl) when condition2
@F(condition3) when condition4

An activity may be either invoked by another activity or activated by an internal or external event.
Activation of an invoked activity may be conditional on a truth-valued expression concerning svstem
state. Activities can be defined to terminate when all subactivities have terminated, upon occurrence
of a disabling event, or when user choice dictates.

Content and Form
All activities require the following information:

* Name: an identifier that allows for explicit references, at other points in the specification. to
a particular activity.

¢ Paradigm: the paradigm that controls the way in which the activity is described and how it
will behave (one of sequence, concurrence, selection, or subordination).

* Context: a class of information from the static model that indicates the type of data to be
output and a predicate that can be applied to limit the instances of the class that determine
an output value. Any data that is accessible, via references, to other information classes can
also be considered part of the context.

* Activation: invoked or specification of an activating event. These are represented using the
@T or @F notation described above.

A9

Appendix A. A Semi-Formal Requirements Method

Control set: the set of presentations and/or activities that are to be controlled and, for each,
a specification of how its context is determined from activity context.

Deactivation criteria: either subactivity termination, disabling event, or user choice.

Verification Criteria

A completed activity description must satisfy the following criteria:

All activities are uniquely named.
All referenced activities, presentations, and data items are defined.
The activity is either event-activated or there is at least one invoking activity.

If the activity is invoked, there is at least one activity somewhere in its ancestry that is event
activated.

In addition, there must be at least one activity that is activated by system startup.

Procedure and Heuristics

An activity is specified through the following procedure:

1

Name and identify the context of the activity.
The purpose of the activity usually suggests an appropriate name and context.

Determine which standard control paradigm and lifetime best characterize the required
behavior.

Describe, in paradigm-specific terms, how context data (defined in the static model) is derived
from activity context data for each element of the control set (defined in presentations or other
activities).

Identify which, if any, input actions are enabled by this activity.
Revise this or other referenced specifications to satisfy the verification criterion.

When an inconsistency exists, it is necessary to determine whether the fault is in this
specification or in the one(s) with which it conflicts.

A.6 MAPPING A SPECIFICATION INTO AN ADARTS DESIGN

This requirements method is used in the ATD/CWM case study. Furthermore, the case study also
follows the Ada-based Design Approach for Real-Time Systems (ADARTS) guidance on creating de-
sign structures (Software Productivity Consortium 1991b). The ADARTS guidance assumes that a
Real-Time Structured Analysis (RTSA) requirements method has been used. As a result, the
ADARTS guidance must be modified so that is can accommodate this requirements method.

A.6.1 PROCESS STRUCTURING

In the process structuring activity, ADARTS first requires the derivation of a set of concurrently
executable sequential processes. Interpreting ADARTS guidance on process derivation in terms of
this requirements method, derive an initial set of processes as follows:

Appendix A. A Semi-Formal Requirements Method

* One for each possible instance of each static model class.

¢ One for each relationship/derivation of the dynamic model.
* One for each device.

* One for each device input mapping.

¢ One for each device output data item/presentation.

¢ One for each activity.

Each process in this initial set is minimal (i.e., atomic with respect to concurrency). Combine these
processes according to ADARTS clustering criteria to create a refined process structure. ADARTS
process clustering criteria is a sufficient guide to resolving the dependency relations even though this
requirement method does not create data flow/control flow and finite state machine descriptions. This
is a sufficient resolution for purposes of this case study, but fuller resolution is expected when the
Consortium requirements method is integrated with ADARTS. Create process behavior
specifications for each process consistent with ADARTS guidance.

A.6.2 CLasS STRUCTURING

The approach in the case study for class structuring is influenced by both (Parnas and Clements 1986)
and ADARTS. In this approach, derive the information hiding structure directly from the structure
of the requirements specification using the following heuristics. The term module is used below in
lieu of the ADARTS term class to avoid confusion with the concept of static model classes.

e There are three top-level modules: environment hiding, behavior hiding, and software
decision, following (Parnas, Clements, and Weiss 1985).

* Behavior hiding has two submodules: function drivers and shared functions.

* Environment hiding has two submodules: extended computer, characterized by the platform
specification, and device interface, which has one submodule for each device specification.

* There is one function driver submodule for each device (i.e., related set of presentatiohs). In
addition, there is one submodule (or more, as appropriate) for the set of activities.

* Shared functions has a submodule each for the static model and the dynamic model. Each
class of the static model becomes a submodule of the static model module.

Create the information hiding structure first even though this is contrary to ADARTS guidance on
class structuring. This change is recommended because the information hiding structure determines
the identity of all modules for which interface specifications are produced. This step combines the
ADARTS guidance of deriving abstractions and organizing them into an information hiding structure.
Synthesis subsumes the ADARTS creation of a generalization/specialization structure. This is
accomplished by allowing for adaptation in a manner independent of the design method.

Create the module specifications and an assumptions-oriented dependency structure using the
ADARTS guidance.

Appendix A. A Semi-Formal Requirements Method

This page intentionally left blank.

APPENDIX B. PRESENTATION PARADIGMS

B.1 INTRODUCTION

This appendix describes the presentation paradigms used in the ATD/CWM Product Requirements.
These paradigms characterize the form in which information is organized for output. Each paradigm
is defined by one or more components. The paradigms presented in this appendix satisfy the particular
needs of the ATD/CWM domain.

B.2 MAP PRESENTATION

The Map Presentation characterizes the form in which information is organized on a graphical
display. This presentation is defined by a Context, Focus, Position_Attribute, Image, Labels, and
Coordinate_System as described in the following table.

Component Description

Context The class of entity in the static model to display and a filter to determine a subset
of the class entities which are actually displayed. The general form is:

(class, filter)
where filter is a boolean-valued expression expressed in terms of attributes of the

class entities. Only those entities for which the filter is true are displayed. If the
filter expression is a constant true, then all class entities are displayed.

Focus A singleton class specifying the focus (i.e., central entity) in the display.

Position_Attribute The location, in terms of direction and magnitude, of the entity position on the
display. Magnitude and direction are relative to the focus. The focus is always at the
center of the display.

Image An image is composed of four attributes: shape, color, fill, and blinking. Values for
an image are determined by evaluating a conditional. The general form is:

(predicate, (shape, color, fill, blink))

where predicate is a boolean-valued expression. If the predicate is true, then the
associated values are used. Only one predicate for a given context entity can be true
at any given instant.

Entities are displayed as icons having a particular geometric shape and color. The
icon outline will be colored while its interior is black. The icon shape is portrayed
in outline form. If fill is specified, then the icon interior is also colored.

Icons are positioned relative to the focus. The display orientation for the triangle
and square will always appear as shown in Figure B-1.

The blinking rate is fixed at 0.125 seconds.

Appendix B. Presentation Paradigms

Component Description

Labels Textual attributes shown with the displayed object. These are displayed in a vertical
field as indicated by:

text_1
text_2
text_3

This field is located either immediately to the left, to the right, above, or below the
displayed entity.

Coordinate_System Maximum (x, y) range of display in nautical miles.

Figure B-1. Icon Display Orientation

Figure B-2 represents the type of display the map paradigm provides. The boxes indicate displayed
entities. The direction is given by 6 and the magnitude is the dlstance from the box to the focus. The
cross-hatch (+) marks the location of the focus.

Figure B-2. Map Presentation

B.3 TEXT PRESENTATION

The Text Presentation characterizes the form in which printable textual information is organized on
a display. This presentation is defined by a Template and Context as described in the following table.

B-2

Appendix B. Presentation Paradigms

Component Description

Template Boilerplate text having embedded placeholders that must be filled in before the
message is sent 1o the device. A value for the boilerplate text is determined by
cvaluating a conditional of the form:

(predicate, value)

where predicate is a boolean-valued expression. If the predicate is true, then the
associated value is used for the boilerplate. There is alist of these (predicate, value)
pairs for template. Only one predicate for a given context entity can be true.

Text car: be either alphanumeric or hexadecimal constants of the form OxNN (N is
a hexadecimal digit 0-9, A-F). Placeholders are designated by %attribute where
attribute indicates the source of information within the context entity. Placeholders
are filled in using the corresponding attribute value.

Context The class of entity in the static model from which to retrieve the information to fill
in the placeholders.

When activated. this presentation formats the text from the template replacing placeholders with
information retrieved from the attributes of the context class.

B.4 AUDIBLE ALARM PRESENTATION

The Audible Alarm Presentation characterizes the pitch and duration for an audible alarm. This
presentation is defined bv a Context and Freq_and_Duration as described in the following table.

Component | Description j

Context The class of entity in the static model from which to determine the frequency of the
audible alarm and how long (i.e., duration) to ring it.

Freq_and_Duration The pitch of the alarm measured in hertz (resolution of one heriz) and how long
the alarm is rung measured in seconds (resolution of 0.01 seconds). A value for
frequency and duration is determined by evaluating a conditional of the form:

(predicate. frequency, duration)

where predicate is a boolean-valued expression. If the predicate is true, then the
associated frequency and duration is used. There is a list of these (predicate.
frequency, duration) triples for frequency and duration. Only one predicate for a
given context entity can be true.

When activated, this presentation causes the audible alarm to ring at a specified frequency for a
specified time duration by accessing the context entity to determine which frequency and duration
predicates are true.

B.5 BINARY PRESENTATION

The Binary Presentation characterizes the form in which information is organized into a binary
representation. This presentation is defined by a Context and Template as described in the following table.

B-3

Appendix B. Presentation Paradigms

Component Description
Context The class of entity in the static model from which to retrieve the information o fill
in the placeholders.
Template Boilerplate having embedded placeholders that must be filled in before the

message is sent to the device. Placeholders are designated by %attribute where
attribute indicates the source of information within the context entity. Placeholders
are also designated by @class.attribute signifying where to get information from a
singleton class. The @ can only be used for a singleton class. All numeric
information in the template, including the values filled in for the placeholders, is
converted to binary. A value for the boilerplate is determined by evaluating a
conditional of the form:

(predicate, value)

where predicate is a boolean-valued expression. If the predicate is true. then the
associated value is used for the boilerplate. There is a list of (predicaie, value) pairs

l for template. Only one predicate for a given context entily can be true.

When activated, this presentation formats the information from the template replacing placeholders

with information retrieved from the attributes of the context class.

APPENDIX C. AIR TRAFFIC DISPLAY/COLLISION
WARNING MONITOR CASE STUDY WITH
AUTOMATION

C.1 INTRODUCTION

This section describes how a commercially available tool —MetaTool™ Specification-Driven-Tool Builder
(SDTB [AT&T 1990])—could be used to automate a portion of the Synthesis Domain Implementation
and Application Engineering activities for a domain. Even though effective use of Synthesis does not de-
pend on automation. the mechanical orientation of Synthesis is partially predicated on automation of the
Application Engineering process. As context for the remainder of the section, the following two subsec-
tions briefly describe MetaTool SDTB and the general strategy of the Consortium for using it for the
ATD/CWM domain. Sections C.2 through C.6 present sample work products for that domain, including
examples of the MetaTool source and product description files and examples of products built using the
ATD/CWM Specification-Driven tool (ATD/CWM SDTool) produced with MetaTool SDTB. The nota-
tion used in the MetaTool source and product description files is defined in (AT&T 1990); however, the
examples given can be understood without detailed knowledge of this notation.

C.1.1 MetaToor SreciFication-DRIVEN-TooL BUILDER OVERVIEW

MetaTool SDTB translates tool description files into specification-driven tools (SDTools). Similarly,
generated SDTools translate textual specifications into text-based products such as code and documenta-
tion. MetaTool SDTB reads a source description file and a product description file in order to automati-
cally generate an SDTool (Figure C-1). Similarly, a generated SDTool reads a specification file and
produces products according to the information contained in that specification.

Source
Jescription

Mela['mol\ ‘/S:Tool
snzy '\

Product
Description

Specification

Product

Figure C-1. SDTool Development Using MetaTool Specification-Driven-Tool Builder

C-1

Appendix C. Air Traffic Display/Collision Warning Monitor Case Study With Automation

A source description file describes the grammar for a language to be used in the corresponding SDTool
specification file. A product description file defines a template that describes how the SDTool is to
build a product depending on the information the SDTool finds in its input specification file.

Each SDTool built by MetaTool SDTB is composed of three functional parts: the front end, the middle
part, and the back end (Figure C-2 from [AT&T 1990]). The front end parses the input specification and
creates an internal parse tree. MetaTool SDTB automatically generates the front end from the source de-
scription file. The middle part executes after the front end and performs whatever operations are necessary
to prepare for generation of the products. The middle part is a customized part provided by the SDTool
developer. The back end of a SDTool generates the products. MetaTool SDTB automatically generates
the back end from the product description files.

Specification

Parse Tree and
Other Data Structures

Products

Figure C-2. Internal Structure of an SDTool

C.1.2 Usind MeraTooL SreciFication-Driveisn-Toor BuiLber 10 SupporT THE AIR TRAFFIC
Disrray/Corrision WARNING MONITOR DoMAIN

The Product Implementation activity defines a product called Generation Procedure. This product defines
a mechanical process for selecting, adapting, and composing adaptable components based on decisions
expressed in an Application Model to form an application. The Generation Procedures also define a map-
ping of decisions in the Application Model to parameters of adaptable components. The Product Imple-
mentation activity also creates adaptable components that satisfy the product design specifications. The
Consortium used MetaTool SDTB to automate only the mechanical selection and adaptation process. and
the decision mapping aspects of the ATD/CWM Generation Procedures. In addition. MetaTool SDTB
provides a means to represent adaptable components.

To realize the mechanical process. the ATD/CWM SDTool accepts an ATD/CWM Application Model
expressed in textual form and uses information contained in the model to determine which code and

Appendix C. Air Traffic Display/Collision Wamning Monitor Case Study With Automation

documentation components to generate. The grammar of the ATD/CWM Application Model
Notation is expressed in a Backus-Naur form (BNF) in a MetaTool source description file. The source
description file also defines all Adaptable Components that the ATD/CWM SDTool could select and
adapt. Implementations of the Adaptable Components are captured in product description files
(Figure C-3). The product description files contain metaprogramming constructs used for both Gener-
ation Implementation (i.e., defining a Generation Procedure for selecting and adapting a component)
and Component Implementation (i.e., defining an Adaptable Component).

BNF Description of ATD/CWM
ATD/CWM Application Model Application
Model
MetaTool ﬁ;/cw
SDTB SDTool
aa.ada cwss.ada aa.ada | eeeres d
[Product Description| ***** Product Description cwss-aca

Figure C-3. Air Traffic Display/Collision Warning Monitor SDTool Development Using MetaToo!
Specification-Driven-Tool Builder

To implement the decision mapping. the Consortium developed customized code for the middle part of
the ATD/CWM SDTool. This code calculates values for parameters of the Adaptable Components by
extracting decisions of the ATD/CWM Application Model from the internal parse tree representation
of the Application Model. Figure C-4 depicts the resulting ATD/CWM SDTool.

ATD/CWM
Application Model
e T - "
I ATD/CWM
SDTool { Front End
Parse Tree

Customized Code for
ecision Mappin

Parse Tree and
Other Data Structures

Back End

——— —— —d

Figure C-4. Internal Structure of Air Traffic Display/Collision Warming Monitor SDTool

Appendix C. Air Traffic Display/Coliision Warning Monitor Case Study With Automation

The ATD/CWM SD7Tool automates a portion of the ATD/CWM Application Engineering Process
Support—namely. a portion of the Application Production phase (partially shaded box in Figure C-5).
Application Modeling. which precedes Application Production, remains a manual process. The applica-
tion engineer must follow a mechanical process to build and assess an Application Model. Once the appli-
cation engineer is <atisfied that the Applicaiion Model describes the desired ATD/CWM system, he uses
the ATD/CWM SDTool to produce the desired components for that system. The application engineer
then manually composes these components to obtain the desired products (e.g, application,
documentation). The Consortium could have used MetaTool SDTB to compose the components as well.

Customer
Requirements

e ———— e Application Modeling

A 4
4

N

Application Production

Generation Procedure

ATD/CWM SDToo]

Compose
Components

Application Delivery
Software Support

e Delivery and Operation Suppﬂ

Deliverables
KEY:

> Product
[1 Activity

_____ > Information Flow

Product Flow

Automated Activity

Figure C-5. Partial Automation of Air Traffic Display/Collision Warning Monitor Application Engineering Process

Appendix C. Air Traffic Display/Collision Warning Monitor Case Study With Automation

C.2 GENERATION PROCEDURES AUTOMATION

The source description file describes the BNF grammar of the Application Modeling Notation that
the ATD/CWM SDTool accepts. This is the language used to write an ATD/CWM Application Model.
The source description file also identifies the products that the ATD/CWM SDTool generates. An
excerpt of the source description file is shown in Figure C-6.

%grammar
model : (model_name project_information hcst_aircraft potential threat cws+)
model name : ("Application_Model Name:" id)

project_information : ("Project_Information:" contract system_info)

host_aircraft : ("Host_Aircraft_Characteristics:" surveillance_area
host_aircraft_shape)

surveillance_area : ("Surveillance_Area:" number)

host_aircraft_shape : ("Host_Aircraft_Shape:" icon_shape)

%product aa.ada
%product cwss.ada

Figure C-6. Generation Procedures Source Specification (Excerpt)

Each %product statement (e.g.. Zproduct aa.ada) identifies a product description file which defines
a product of the ATD/CWM SDTool. Each product description file corresponds to an Adaptable
Component specified in the Product Design Activity. Figure C-6 shows a partial listing of the products
produced by the ATD/CWM SDTool.

The product description file contains a template that describes how to build the product. The template
contains target text and metaprogramming constructs. Target text (any text not escaped with the %
MetaTool SDTB meta-character) appears exactly as is in the generated product. The metaprogram-
ming constructs specify how to adapt the component. Metaprogramming constructs begin with the
% character. Figure C-7 shows an excerpt of the product description file for product aa.ada. You can
compare this implementation of aa.ada with the TRF2 implementation in the fourth iteration of the
ATD/CWM case study.

C-5

Appendix C. Air Traffic Display/Collision Warning Monitor Case Study With Automation

%template
%if _ring != NULL %then

~-- Audible_Alarm (AA) body

-- This module determines the characteristics at which
-- to ring the audible alarm for a specified collision warning
-- Situation.

with Potential_Threat;
with Audible_Alarm_Device;
package body Audible_Alarm is

procedure ring_alarm(cws : in Potential_ Threat.cws_id)

is
begin
case cws is
%for (r=_ring; r != NULL: r = r->_next) %loop
when Potential Threat.%s(r->_cws_name) =>
Audible Alarm Device.ring_alarm(f => %s(r->_frequency),
d => %s(r->_duration));
%end-1loop
when others =>
return;
end case;

end ring alarm;

end Audible_Alarm;
%end-if

Figure C-7. Product Description File — aa.ada (Excerpt)

C.3 GENERATED PRODUCTS

This section shows samples of the aa.ada and cwss.ada products produced by the ATD/CWM SDTool.
These samples are based on the ATD/CWM Application Model excerpt shown in Figure C-8. The
front end of the ATD/CWM SDTool parses this textual input producing in internal parse tree. The
middle code calculates the parameters for the adaptable components using information contained
in the Application Model. The back end generates the desired work products.

The ATD/CWM SDToo! will select and generate product aa.ada because the Application Model
contains a Situation_Response which has an Alarm of Yes (i.e., the ATD/CWM SDTool evaluates the
%if conditional at the beginning of the %template and determines that it is true). The ATD/CWM
SDTool will also adapt this component based on values of decisions expressed in the Application Mod-
el (e.g., alarm pitch and duration). An excerpt of the adapted aa.ada component is shown in Figure
C-9. The ATD/CWM SDTool will always select cwss.ada. Furthermore, this component is also adapted
based on values in the Application Model (e.g.. Min and Max time values) as shown in Figure C-10.

Appendix C. Air Traffic Display/Collision Warning Monitor Case Study With Automation

Collision_Warning_Situation:
Collision_Warning_Situation_Name: Possible

Situation_Definition:
Situation_Flight_Characteristics:
Time:
Min: 60
Max: 90
Range:
Range_Min:
Range_Max:
Situation_Aircraft_Partition: ALL
Situation_Severity: 0.20

Situation_Response:

Response_to_ATC: No
Response_to_other_Aircraft: No
Corrective_Action_Response: No
Alarm: Yes

Alarm _Characteristics:
Pitch: 2500
Duration: 5.00

Figure C-8. Air Traffic Display/Collision Warning Monitor Application Model (Excerpt)

procedure ring alarm(cws : in Potential_Threat.cws_id)
is
begin
case cws is
when Potential Threat.Possible =>
Audible_Alarm Device.ring_alarm(f => 2500, d => 5.00);
when

when

when others =>
return;
end case;
end ring_alarm;

Figure C-9. Generated Product — aa.ada (Excerpt)

Appendix C. Air Traffic Display/Collision Warning Monitor Case Study With Automation

function get_cws_status(threat : in Potential_Threat.pt_handle)
return Potential Threat.cws_id
is
time_to_intersect : Physical_Quantities.seconds;
target_range : Physical_Quantities.nautical_mile;

begin
target_range := Potential Threat.get_range(threat);

time_to_intersect := Situation_Dynamics.get_elapsed_time(threat);
if (...) then :

elsif (...) then

elsif ¢(
(60.0 <= time_to_intersect and then
time_to_intersect < 90.0)) then
return Potential_Threat.Possible;
elsif (...) then

else
return Potential_Threat.normal;
end if;
end get_cws_status;

Figure C-10. Generated Product — cwss.ada (Excerpt)

C-8

Appendix C. Air Traffic Display/Collision Warning Monitor Case Study With Automation

C.4 METATOOL SPECIFICATION-DRIVEN-TOOL BUILDER DESCRIPTION FILES

This section provides complete listings of the source description file (defining the grammar for the
ATD/CWM Application Model) and product descriptions files for aa.ada and cwss.ada.

C.4.1 Source DescriprioN FiLE
%features R
%red id number
%lex-definitions
%%e 1500
%%p 5000
%%n 1000
%%a 4000
%grammar
model : (model_name project_information host_aircraft potential_threat cws+)

model_name : ("Application_Mcdel Name:" id)

project_information : ("Project_Information:" contract system_info)

contract : ("Contract:" contract_agency contract_number contract_cdrl)
contract_agency : ("Agency:" id)
contract_number : ("Number:" id)

contract_cdrl : ("CDRL:" id)

system_info : ("System:" system_name system mnemonic system_id)
system_name : ("Name:" id)
system_mnemonic : ("Mnemonic:" id)

system_id : ("Id:" id)

host_aircraft : ("Host_Aircraft_Characteristics:" surveillance_area
host_aircraft_shape)

surveillance_area : {"Surveillance_Area:" number)
host_aircraft_shape : ("Host_Aircraft_Shape:" icon_shape)

potential threat : ("Potential Threat_Characteristics:"
idreq idshape uidshape)

idreq : ("Identification_Requirements:" id_requirement)

id_requirement : ("(" idl:id [", " id2:id] "))

Appendix C. Air Traffic Display/Collision Warning Monitor Case Study With Automation

idshape : ("Shape_of_ldentified Aircraft:" icon_shape)

uidshape : ("Shape_of_Unidentified_Aircraft:" icon_shape)

cws : ("Collision_Warning_Situation:" cws_name defn response display)
cws_name : ("Collision_Warning Situation_Name:" id)

defn : ("Situation_Definition:" predicate partition severity)

predicate : ("Situation_Flight_Characteristics:" cws_time cws_range)
cws_time : ("Time:" min_time max_time)

min_time : ("Min:" [number])

max_time : ("Max:" [number])

cws_range : ("Range:" min_range max_range)

min_range : ("Range_Min:" [number])

max_range : ("Range_Max:" [number])

partition : ("Situation_Aircraft_Partition:" id)

severity : ("Situation_Severity:" number)

response ("Situation_Response:" atc pt corrective alarm)
atc : ("Response_to_ATC:" yes_or_no)

pt : ("Response_to_other_Aircraft:" yes_or_no)

corrective : ("Corrective_Action_Response:" yes_or_no)

alarm : ("Alarm:" id alarm_info)

alarm_info : ("Alarm_Characteristics:" alarm_pitch alarm_duration)
alarm_pitch : ("Pitch:" [number])

alarm_duration : ("Duration:" {number])

display : ("Situation_Display:" host_color id_color id_blink id_f£ill
uid_color uid_blink

host_color : ("Color_of Host_Aircraft:" icon_color)

id_color : ("Color_of_Identified Potential Threats:" icon_color)
id_blink : ("Blinking_Identified_Potential Threats:" yes_or_no)
id_fill : ("Fill_Identified_Potential_Threats:" yes_or_no)

uid_color : ("Color_of Unidentified Potential Threats:" icon_color)

uid_fill)

C-10

Appendix C. Air Traffic Display/Collision Warning Monitor Case Study With Automation

uid_blink : ("Blinking_Unidentified_Potential Threats:" yes_or_no)

uid_fill : ("Fill_Unidentified_Potential_Threats:" yes_or_no)

icon_shape : ("square" | "circle" | "triangle")

icon_color : ("red"| "orange"| "green"| "yellow"| "white"| "blue"| "black"|
"pink" | "purple” | "indigo" | "violet")

yes_or_no : ("Yes" | "No")

id : <[a-2A-Z]}[_a-2zA-20-9/1*>
number : <[0-9]+("."[0-9]%*)7>

%middlecode
extract();

%files
extract.c extract.h

%makefile

dependencies

extract.o : extract.c extract.h
GEN_1.0 : extract.h

GEN_2.0 : extract.h

GEN_4.0 : extract.h

GEN_5.0 : extract.h

GEN_a.o extract.h

Use GNU C compiler (the SUN version has a bug in it)

CC= gcc

%product srs.doc -a
%product aa_.ada -1
%product aa.ada -2

%product cwss_.ada -3
%product cwss.ada -4
%product aad_.ada -5
%product na_.ada -7
%product na.ada -8

C.4.2 Prooucrt DEescrirmioN FiLE — aa.ada

%declare
#include "extract.h"

extern RING *_ring;
static RING *r;
%template

%if _ring != NULL %then

Appendix C. Air Traffic Display/Collision Warning Monitor Case Study With Aviomation

-~ Audible_Alarm (AA) body

-~ This module determines the characteristics at which
-- to ring the audible alarm for a specified collision warning
-- situation.

with Potential_Threat;
with Audible_Alarm Device;
package body Audible_Alarm is

procedure ring_alarm(cws : in Potential Threat.cws_id)
is
begin
case cws is
%for (r=_ring; r != NULL; r = r->_next) %loop
when Potential Threat.%s(r->_cws name) =>
Audible_Alarm_Device.ring_alarm(f => %s(r->_frequency),
d => %s(r->_duration));
%end-loop
when others =>
return;
end case;
end ring_alarm;

end Audible_Alarm;
%end-if

C.4.3 Provuct Descrirmiox FiLE — cwss.ada

%declare
#include "extract.h"

extern CWS_TYPE *_cws;
extern char *_partition;

static CWS_TYPE *cws_local;

static int time_form = O;

static int range_form = O;

static int id_or_uid_partition = 0;

%template

-- Collision Warning Situation Status (CWSS) package body

-- This module determines the collision warning situation status
-- for the given potential_threat and host_aircraft.

with Potential Threat;
with Physical_Quantities; use Physical Quantities;

%for (cws_local=_cws; cws_local != NULL; cws_local = cws_local-> next) %loop

%if cws_local->_predicate.cws_def type == TIME_ONLY %then
%{ time_form = 1; }
%elif cws_local->_predicate.cws_def type == RANGE_ONLY %then

C-12

Appendix C. Air Traffic Display/Collision Warning Monitor Case Study With Automation

%{ range_form = 1; }
%else
%{ time_ form = 1;
range_form = 1; }

%end-if
%if strcmp(cws_local-> partition, "ALL") != O %then
%{ id_or_uid_partition = 1; }
%end-if
%end-1loop

%if time_form %then
with Situation_Dynamics;
%end-if

package body Collision_Warning_Situation_Status is

function get_cws_status{threat : in Potential_Threat.pt_handle)
return Potential Threat.cws_id
is
%if id_or_uid_partition %then
partition : Potential_ Threat.partition;
%end-if
%if time_form %then
time_to_intersect : Physical_Quantities.seconds;
%end-if
%1f range form %then
target_range : Physical Quantilies.nautical mile;

%end~if
begin
%if id_or_uid_partition %then
partition := %s(_partition).get partition(threat);
%end~if
%if range_form %then
target_range := Potential_Threat.get_range(threat);
%end~if
%if time_form %then
time_to_intersect := Situation Dynamics.get_elapsed time(threat);
%end~if
if
%for (cws_local=_cws; cws_local != NULL; cws_local = cws_local->_next) %loop
%if strcmp(cws_local-> partition, "ALL") !'= O %then

partition = Potential_Threat.%s(cws_local->_partition) and then
%end-if
%if cws_local-> predicate.cws_def_type == RANGE_ONLY %then
(%s (cws_local-> predicate.range_min) <= target_range and then
target_range < %s(cws_local-> predicate.range max))) then
return Potential Threat.%s(cws_local->_cws_name);
%elif cws_local->_predicate.cws_def_type == TIME_ONLY %then
(%s(cws_local->_predicate.time_min) <= time_to_intersect and then
time_to_intersect < %s(cws_local->_predicate.time_max)))
then
return Potential Threat.%s(cws_local->_cws_name);
%else
((%s(cws_local->_predicate.range_min) <= target_range and then

c-13

Appendix C. Air Traffic Display/Collision Warning Monitor Case Study With Automation

target_range <
%s(cws_local->_predicate.range_max))
or else
(%s (cws_local-> predicate.time_min) <= time_to_intersect and then
timc_to_intersect <
%s (cws_local-> predicate.time_max)))) then
return Potential_Threat.%s(cws_local->_cws_name);
%end-if
%if cws_local->_next !{= NULL %then
elsif (
%end-if
%end-1oop
else
return Potential_ Threat.normal;
end if;
end get_cws_status;

-- Determine the collision warning situation status of
-- the host_aircraft.

function get _host_status return Potential Threat.cws_id
is
begin

end get_host_status;

end Collision Warning_ Situation_Status;

C.5 AIR TRAFFIC DISPLAY/COLLISION WARNING MONITOR APPLICATION
MODEL

This section shows a complete ATD/CWM Application Model that the ATD/CWM SDTootl will accept.
Application_Mocel Name: ATD/CWM_System

Project_Information:

Contract:
Agency: SPC
Number: Al23 456_789
CDRL.: AA_BB CC
System:
Name: ATD_CWM_N
Mnemonic: ATD_CWM_M
1d: ATD_CWM_I

Host_Aircraft_Characteristics:
Surveillance_Area: 125
Host_Aircraft_Shape: circle

Potential Threat Characteristics:
Identification_Requirements: (airspeed)
Shape_of Identified Aircraft: triangle
Shape_of_Unidentified_Aircraft: square

Appendix C. Air Traffic Display/Collision Warning Monitor Case Study With Automation

Collision_Warning_Situation:

Collision Warning_Situation_Name: Monitored

Situation Definition:
Situation_Flight_Characteristics:
Time:
Min:
Max:
Range:
Range Min: 0.0
Range_Max: 125.0
Situation_Aircraft_Partition: ALL
Situation_Severity: 0.10

Situation_Response:

Response_to_ATC: No
Response_to other Aircraft: No
Corrective_Action Response: No
Alarm: No

Alarm_Characteristics:
Pitch:
Duration:

Situation_Display:

Color_of_Host_Aircraft: white
Color_of_lIdentified_Potential_Threats: orange
Blinking_Identified_Potential_Threats: No
Fill_iIdentified Potential Threats: No
Color_of_Unidentified Potential_Threats: green
Blinking_Unidentified_Potential_Threats: No
Fill Unidentified Potential_Threats: No
Collision_Warning Situation:
Collision_Warning_Situation_Name: Possible

Situation Definition:
Situation_Flight_Characteristics:
Time:
Min: 60.0
Max: 80.0
Range:
Range_Min:
Range Max:
Situation_Aircraft_Partition: ALL
Situation_Severity: 0.20

Situation_Response:

Response_to_ ATC: Yes
Response_to_other_ Aircraft: No
Corrective Action_Response: No
Alarm: Yes

Alarm_Characteristics:
Pitch: 2500
Duration: 5.00

Appendix C. Air Traffic Display/Collision Warning Monitor Case Study With Automation

Situation_Display:

Color_of_Host_Aircraft: white
Color_of_ldentified Potential_Threats: orange
Blinking_Identified_Potential Threats: No
Fill Identifiec_Potential_ Threats: No

Color_of_Unidentified Potential_Threats: green
Blinking Unidentified_Potential_Threats: No
Fill Unidentified_Potential_Threats: No

Collision_Warning_Situation:
Collision_Warning Situation_Name: Potential

Situation Definition:
Situation_Flight_Characteristics:
Time:
Min: 30.0
Max: 60.0
Range:
Range_Min:
Range_Max:
Situation_Aircraft_ Partition: ALL
Situation_Severity: 0.30

Situation_Response:

Response_to_ATC: Yes
Response_to_other_ Aircraft: Yes
Corrective_Action_Response: Yes
Alarm: Yes

Alarm_Characteristics:
Pitch: 4000
Duration: 5.00

Situation_Display:

Color_of Host_Aircraft: white
Color_of_Identified Potential Threats: pink
Blinking Identified_Potential Threats: Yes
Fill_Identified_Potential_Threats: Yes

Color_of Unidentified Potential Threats: blue
Blinking Unidentified_Potential Threats: Yes
Fill Unidentified Potential_Threats: Yes

Collision_Warning_ Situation:
Collision_Warning_Situation_Name: Imminent

Situation_Definition:
Situation_Flight Characteristics:
Time:
Min: 0.0
Max: 30.0
Range:
Range_Min:
Range_Max:
Situation_Aircraft_Partition: ALL
Situation_Severity: 0.50

C-16

Appendix C. Air Traffic Display/Collision Warning Monitor Case Study With Automation

Situation_Response:

Response_to_ATC: Yes
Response_to_other_Aircraft: Yes
Corrective_Action_Response: Yes
Alarm: Yes

Alarm_Characteristics:
Pitch: 8000
Duration: 5.00

Situation_Display:

Color_of_Host_Aircraft: red
Color_of_Identified Potential Threats: yellow
Blinking Identified_Potential Threats: Yes
Fill_Identified_Potential_Threats: Yes

Color_of_Unidentified_Potential_Threats: purple
Blinking Unidentified_Potential_Threats: Yes
Fill Unidentified_Potential_Threats: Yes

C.6 GENERATED PRODUCTS

This section shows the complete products aa.ada and cwss.ada produced by the ATD/CWM SDTool
using the Application Model shown in Section C.5.

C.6.1 Prooucr — aa.ada

-- Audible Alarm (AA) body

-- This module determines the characteristics at which

-- to ring the audible alarm for a specified collision warning
-- situation.

with Potential_Threat;

with Audible_Alarm Device;

package body Audible_Alarm is

procedure ring alarm(cws : in Potential Threat.cws_id)
is
begin
case cws is
when Potential_Threat.Imminent =>
Audible_Alarm Device.ring_alarm(f => 8000, d => 5.00);
when Potential_Threat.Potential =>
Audible_Alarm Device.ring_alarm(f => 4000, d => 5.00);
when Potential Threat.Possible =>
Audible_Alarm_Device.ring_alarm(f => 2500, d => 5.00);
when others =>
return,
end case;
end ring_alarm;

end Audible_Alarm;

Appendix C. Air Traffic Display/Collision Warning Monitor Case Study With Automation

C.6.2 Probucr -~ cwss.ada

-- Collision Warning Situation Status (CWSS) package body

—-- This module determines the collision warning situation status
-- for the given potential_threat and host_aircraft.

with Potential Threat;

with Physical_Quantities; use Physical_Quantities;

with Situation_Dynamics;

package body Collision_Warning_Situation_Status is

function get_cws_status(threat : in Potential_Threat.pt_handle)
return Potential_Threat.cws_id
is
time_to_intersect : Physical Quantities.seconds;
target_range : Physical Quantities.nautical_mile;

begin
target_range := Potential_Threat.get_range(threat);
time_to_intersect := Situation_Dynamics.get_elapsed_time(threat);
if (

(0.0 <= time to_intersect and then’
time_to_intersect < 30.0)) then
return Potential Threat.Imminent;
elsif (
(30.0 <= time_to_intersect and then
time_to_intersect < 60.0)) then
return Potential Threat.Potential;
elsif ¢
(60.0 <= time_to_intersect and then
time_to_intersect < 90.0)) then
return Potential Threat.Possible;
elsif ¢
(0.0 <= target_range and then target_range < 125.0)) then
return Potential Threat.Monitored;
else
return Potential Threat.normal;
end if;
end get_cws_status;

—- Determine the collision warning situation status of
-- the host_aircraft.

function get_host_status return Potential_Threat.cws_id
is
begin

end get host_status;

end Collision_Warning Situation_Status;

C-18

APPENDIX D. AIR TRAFFIC DISPLAY/COLLISION
WARNING MONITOR CUSTOMER
REQUIREMENTS

Update 06/04/91 -- Copied with permission from P. P. Texel & Company Inc. and Adapted from:
Statement of Requirements for the On-Board Embedded Air Traffic Display/Collision Warning Monitor System
ATD/CWM
Copyright 1987 P. P. Texel & Company Inc.
1. Introduction

Create an Air Traffic Display/Collision Warning Monitor. The display should be continuously
updated (at least four (4) times per second) to show all aircraft within an 125 mile radius. In addition,
the monitor will immediately respond to warning situations with appropriate alarms and actions.

1.1 Air Traffic Display (ATD) System
The ATD will display items in three (3) uniquely determined classes:
1. Host Aircraft - This display item will show the following information:
a. Altitude (in feet)
b. Air Speed (in knots)
c. Course Bearing (degrees)
d. Aircraft ID (alphanumeric)

2. Other identifiable aircraft - These display items will show the following information for
each aircraft:

a. Altitude (in feet)
b. Air Speed (in knots)
c. Course Bearing (degrees)
d. Aircraft ID (alphanumeric)
This information shall be obtained from the following sources:
i. Target aircraft

ii. Nearby air traffic control center

D-1

Appendix D. ATD/CWM Customer Requirements

3.

Unidentifiable aircraft - These display items will show as much of the information required
in (2.) as possible. (unidentifiable is defined to mean that the airspeed of (2.) is missing.)

1.2 Collision Warning Monitor

The Collision Warning Monitor (CWM) System will evaluate the host aircraft’s course in relation
to all other air traffic within an 125 mile radius. The CWM will recognize three (3) types of warning
situations and will take the action indicated below for each.

1

+2

Possible Collision — A collision between the host aircraft and one or more target aircraft is
considered possible if the two aircraft could possibly intersect in less than 90 seconds. For
aircraft which are identified the time to collision would be based on the time to impact tak-
ing into consideration any course change to an intersection course , with the target aircraft
maintaining the current speed. For unidentified aircraft, the time to collision would be
based on the time to impact assuming a course which intersected that of the host aircraft at
a worst case target aircraft speed. In the event of a possible collision. the CWM will take the
following actions:

a. The ATD system icon representing the aircraft will be tagged as specified in Paragraph
2.1

b. An audible alarm will be sounded in the cockpit.
c. A message will be sent to the nearest air traffic control center.

Potential Collision - A collision between the host aircraft and one or more target aircraft is
considered potential if a collision could possibly intersect in less than 60 seconds. For air-
craft which are identified the time to collision would be based on the time to impact taking
into consideration any course change to an intersection course , with the target aircraft
maintaining the current speed. For unidentified aircraft, the time to collision would be
based on the time to impact assuming a course which intersected that of the host aircraft at
a worst case target aircraft speed. In the event of a potential collision. the CWM will take the
following actions:

a. The ATD system icon representing the aircraft will change color and begin to blink at
twice the update rate.

b. An audible alarm will be sounded in the cockpit.

c. A message will be sent to the nearest air traffic control center.

d. A message will sent to the other aircraft.

e. A corrective action advisory message will be displayed on the ATD.

Imminent Collision - A collision between the host aircraft and one or more target aircraftis
considered imminent if a collision could occur in less than 30 seconds. For aircraft which
are identified the time to collision would be based on the time to impact taking into consid-
eration any course change to an intersection course, with the target aircraft maintaining the
current speed. For unidentified aircraft, the time to collision would be based on the time to

D-2

Appendix D. ATD/CWM Customer Requirements

impact assuming a course which intersected that of the host aircraft at a worst case target
aircraft speed. In the event of an potential collision, the CWM will take the following actions:

a. The ATD system icon representing the aircraft will change color and begin to blink at
twice the update rate.

b. An audible alarm will be sounded in the cockpit.
¢. A message will be sent to the nearest air traffic control center.
d. A message will sent to the other aircraft.
e. A corrective action advisory message will be displayed on the ATD.
f. The ATD system icon for the host aircraft will change color.
Note that these warning situations have been listed in reverse priority order.
2. ATD Display Item Data
2.1 Identifying Icons
1. The host aircraft will be identified by a circle.
2. Identifiable aircraft will be shown as triangles.
3. Unidentifiable aircraft will be shown as squares.

4. Aircraft involved in a potential collision warning will be tagged by filling in their respective
icon. This state will be maintained until the target aircraft moves to a condition of lower
priority than that of a potential collision.

2.2 Colors

1. The host aircraft will be displayed in white under most conditions. It will be displayed in red
if an imminent collision situation occurs.

2. Identifiable aircraft will be displayed in orange under normal conditions. They will be
displayed in pink if they are involved in a potential collision situation, yellow if an imminent
collision situation occurs.

3. Unidentifiable aircraft will be displayed in green under normal conditions. They will be
displayed in blue if they are involved in a potential collision situation, and purple if an
imminent collision situation occurs.

2.3 Position of aircraft icons (other than host)

1. Icons will be positions relative to the host aircraft position on the screen based on least
cluttered location for unidentified aircraft.

2. After initial positioning of the aircraft. it will continue to move along the radius of the
concentric rings until it goes out of range.

Appendix D. ATD/CWM Customer Requirements

3. Alarms

A distinct audible alarm will be issued for each of the warning situations described in Paragraph 1.2
whenever a target aircraft goes from a state of lower priority to one of higher priority.

4. Assumptions

The ATD/CWM System currently does not have the capability to handle multiple warnings for the
host aircraft. Therefore, the system will always react to warning situations in priority order.

Aircraft Owners and
Pilots Association
1990

ASA Publications
1989

AT&T
1990

Connes, Keith
1992

Faulk, Stuart, James Kirby, Jr..
Skip Osborne,

D. Douglas Smith,

Steven Wartik, John Brackett,
and Paul T Ward

1991

Heninger, Kathryn L.
1980

Heninger, Kathryn,

J. Kallander, David L. Parnas.
and John Shore

1978

Horne, Thomas A.
1989

Nordwall, Bruce D.
1991

Parnas, David L. and Paul C.
Clements
1986

Parnas, David L., Paul C.
Clements, and David M. Weiss
1985

REFERENCES

AOPA'’s Aviation USA. Frederick, Maryland: Aircraft Owners
and Pilots Association, 1990.

FEAR-AIM. Seattle, Washington: ASA Publications, Inc., 1989.
MetaTool Specification-Driven-Tool Builder User Manual.

Black Box Watch. Plane & Pilot 28,4:27-28.

The Consortium Requirements Engineening Method,
SPC-91140-MC. Herndon, Virginia: Software Productivity
Consortium.

Specifying Software Requirements for Complex Systems: New
Techniques and Their Application. IEEE Transactions on
Software Engineering SE-6:2-13.

Software Requirements for the A-7E Aircraft. Memorandum
Report 3876. Washington, D.C.: Naval Research Laboratory.

TCAS Preview: On-Board ATC. AOPA Pilot 32, 6:36-40.

Foster Airdata Develops Low-Cost Collision Warning System
for Navy. Aviation Week & Space Technology 58-59.

A Rational Design Process: How and Why to Fake It. IEEE
Transactions on Software Engineering SE-12, 251-257.

The Modular Structure of Complex Systems. IEEE Transactions
on Software Engineering SE-11, 259-266.

Ref-1

References

PP Texel & Co.
1987

Ritter, Douglas S.
1992

Software Productivity
Consortium
1991a

1991b

1991c

1991d

United States Department of
Defense
1983

Webster
1984

On-Board Embedded Air Traffic Display/Collision Warning Monitor
System ATD/CWM. Wayside, New Jersey: PP. Texel & Co.

TCAS: Boon or Boondoggle? Aviation Safety X11,2:1-5.

TRF2 Metaprogramming Tool User Guide, SPC-91132-MC.
Herndon, Virginia: Software Productivity Consortium.

ADARTS Guidebook, SPC-91104-MC. Herndon, Virginia:
Software Productivity Consortium.

Synthesis Guidebook Volume 1 Methodology Definition,
SPC-91122-MC. Herndon, Virginia: Software Productivity
Consortium.

Svnthesis Guidebcok Volume 2 Case Studies, SPC-91122-MC.
Herndon, Virginia: Software Productivity Consortium.

Reference Manual for the Ada Programming Language.
ANSI/MIL-STD-1815A. United States Department of Defense,
Ada Joint Program Office.

Webster's 11 New Riverside University Dictionary. Bosten.
Massachusetts: The Riverside Publishing Company, 1984.

Ref-2

