
AD-A259 407

DTIC
itELECTE

JANI2 6 1993
C

DOMAIN ENGINEERING VALIDATION
CASE STUDY:

SYNTHESIS FOR THE AIR TRAFFIC
DISPLAY/COLLISION WARNING

MONITOR DOMAIN

SPC-92050-CMC

VERSION 01.00.03

NOVEMBER 1992

BEST
AVAILABLE COPY

Apprv'v q~

,Z 004'93-01254.9 1 25 004!iIIi l

St-A per telecon, Dr. Kramer, DARPA/
SISTO, Arl., VA 22203

1-26-93 JK

DOMAIN ENGINEERING VALIDATION
CASE STUDY:

SYNTHESIS FOR THE AIR TRAFFIC
DISPLAY/COLLISION WARNING

MONITOR DOMAIN

SPC-92050-CMC .. .

VERSION 01.00.03 Dist , .c ..

NOVEMBER 1992

Produced by the - -- '
SOFTWARE PRODUCTIVITY CONSORTIUM SERVICES CORPORATION

under contract to the
VIRGINIA CENTER OF EXCELLENCE

FOR SOFTWARE REUSE AND TECHNOLOGY TRANSFER

SPC Building
2214 Rock Hill Road

Herndon, Virginia 22070

Copyright © 1992 Software Productivity Consortium Services Corporation. Herndon, Virginia. This material may be
reproduced by or for the U. S. Government pursuant to the copyright license under the clause at DFARS 252.227-7013 (Oct.
1988)ý This material is based in part upon work sponsored by the Defense Advanced Research Projects Agency under Grant
IMDA972-92-J-1018. The content does not necessarily reflect the position or the policy of the U. S. Government, and no
official endorsement should be inferred. The name Software Productivity Consortium shall not be used in advertising or
publicity pertaining to this material or otherwise without the prior written permission of Software Productivity Consortium,
Inc. Permission to use. copy, modify, and distribute this material for any purpose and without fee is hereby granted, provided
that the above copyright notice appears in all copies and that both this copyright notice and this permission notice appear in
supporting documentation. SOFTWARE PRODUCTIVITY CONSORTIUM, INC AND SOFTWARE PRODUCTIVITY
CONSORTIUM SERVICES CORPORATION MAKE NO REPRESENTATIONS OR WARRANTIES ABOUT THE
SUITABILITY OF THIS MATERIAL FOR ANY PURPOSE OR ABOUT ANY OTHER MATTER, AND THIS
MATERIAL IS PROVIDED WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.

Apollo is a registered trademark of Apollo Computer, Inc-, a subsidiary of Hewlett-Packard Company.

ADARTS V is a service mark of the Software Productivity Consortium Limited Partnership.

MetaTool is a trademark of AT&T.

MetaToolTM Specification-Driven-Tool Builder is a trademark of AT&T

The X Window System is a trademark of Massachusetts Institute of Technology.

UNIX is a registered trademark of UNIX Systems Laboratories, Inc

VAX and VMS are rc .iteiwu ti &r.~rkN of Digital Eqxuipment Corporation.

CONTENTS

ACKNOWLEDGEMENTS .. xi

1. INTRODUCTION ... 1-1

1.1 Document Purpose, Scope, and Audience 1-2

1.2 D ocum ent Structure ... 1-2

1.3 R elated Publications ... 1-3

1.4 Typographic Conventions ... 1-4

2. ATD/CWM DOMAIN DEFINITION 2-1

3. ATD/CWM DECISION MODEL .. 3-1

4. ATD/CWM PRODUCT REQUIREMENTS 4-1

5. ATD/CWM PROCESS REQUIREMENTS 5-1

6. ATD/CINM PRODUCT DESIGN .. 6-1

7. ATD/CWM PRODUCT IMPLEMENTATION 7-1

8. ATD/CWM PROCESS SUPPORT 8-1

9. ATD/CWM APPLICATION MODEL 9-1

10. ATD/CWM APPLICATION SOFTWARE 10-1

APPENDIX A. A SEMI-FORMAL REQUIREMENTS METHOD A-1

A .1 Introduction A -1

A .2 Term inology A -1

A .3 M ethod Contrasts .. A -2

A.4 Structure of a Requirements Specification A-2

A .4.1 T heory .. A -3

iii

Conlents

A .4.2 E nvironm ent .. A -3

A .4.3 B ehavior .. A -3

A.5 Detailed Content of a Requirements Specification A-4

A .5.1 Theory - Static M odel .. A -4

A.5.2 Theory - Dynamic M odel ... A-4

A.5.3 Environment - Platform .. A-5

A.5.4 Environment - Devices ... A-6

A .5.5 Behavior - Presentation .. A -7

A .5.6 Behavior - Activitice ... A -S

A.6 Mapping a Specification into an ADARTS Design A-10

A .6.1 Process Structuring .. A -10

A .6.2 C lass Structuring .. A -11

APPENDIX B. PRESENTATION PARADIGMS B-1

B .1 Introduction .. B -1

B .2 M ap Presentation ... B-1

B .3 Text Presentation .. B-2

B.4 Audible Alarm Presentation .. B-3

B.5 Binary Presentation ... B-3

APPENDIX C. AIR TRAFFIC DISPLAY/COLLISION WARNING
MONITOR CASE STUDY WITH AUTOMATION C-1

C .1 Introduction .. C -1

C.1.1 MetaTool Specification-Driven-Tool Builder Overview C-1

C.1.2 Using MetaTool Specification-Driven-Tool Builder to Support
the Air Traffic Display/Collision Warning Monitor Domain C-2

C.2 Generation Procedures Automation ... C-5

C.3 G enerated Products ... C-6

C.4 MetaTool Specification-Driven-Tool Builder Description Files C-9

C.4.1 Source D escription File C-9

iv

Contents

C.4.2 Product Description File - aa.ada C-11

C.4.3 Product Description File - cwss.ada C-12

C.5 Air Traffic Display/Collision Warning Monitor Application Model C-14

C.6 G enerated Products ... C-17

C.6.1 Product - aa.ada .. C -17

C.6.2 Product - cwss.ada .. C-18

APPENDIX D. AIR TRAFFIC DISPLAY/COLLISION WARNING
MONITOR CUSTOMER REQUIREMENTS D-1

REFERENCES .. Ref-1

FIGURES

Figure 5-1. Air Traffic Display/Collision Warning Monitor Application
Engineering Process .. 5-2

Figure 6-1. Top-Level of the Air Traffic Display/Collision Warning Monitor

Inform ation Hiding Structure ... 6-2

Figure 6-2. Decomposition of the BehaviorHiding Module 6-3

Figure 6-3. Decomposition of the EnvironmentHiding Module 6-4

Figure 6-4. Decomposition of the SoftwareDecision Module 6-4

Figure 6-5. Adaptable Task Architecture Diagram for the Air Traffic
Display/Collision Warning Monitor Domain 6-13

Figure 6-6. Adaptable Dependency Structure .. 6-15

Figure 7-1. Air Traffic Display/Collision Warning Monitor External Interface Diagram . 7-117

Figure 7-2. Air Traffic Display/Collision Warning Monitor External Interface Diagram 7-127

Figure B-1. Icon Display Orientation ... B-2

Figure B-2. M ap Presentation ... B-2

Figure C-1. SDTool Development Using MetaTool Specification-Driven-Tool Builder C-1

Figure C-2. Internal Structure of an SDTool ... C-2

Figure C-3. Air Traffic Display/Collision Warning Monitor SDTool Development
Using MetaTool Specification-Driven-Tool Builder C-3

Figure C-4. Internal Structure of Air Traffic Display/Collision Warning Monitor SDTool . C-3

Figure C-5. Partial Automation of Air Traffic Display/Collision Warning Monitor
Application Engineering Process .. C-4

Figure C-6. Generation Procedures Source Specification (Excerpt) C-5

Figure C-7. Product Description File - aa.ada (Excerpt) C-6

Figure C-8. Air Traffic Display/Collision Warning Monitor Application Model (Excerpt). C-7

Vi

Figures

Figure C-9. Generated Product - aa.ada (Excerpt) C-7

Figure C-10. Generated Product - cwss.ada (Excerpt) C-8

vii

TABLES

Table 3-1. Dependency Constraints ... 3-6

Table 6-1. Software Architecture and Component Mappings 6-72

Table 6-2. Software Component Decision Mapping 6-73

Table 6-3. Documentation Architecture and Component Mappings 6-80

Table 6-4. Documentation Component Decision Mapping 6-S0

Table 6-5. Verification and \',tlidation Support Architecture and Component Mappings 6-82

Table 6-6. Verification and Validation Support Component Decision Mapping 6-82

Table 7-1. Interface Relationships .. 7-126

Table 7-2. ATC toATD/CWM Data Elements 7-12?

Table 7-3. ATD/CWM toAA Data Elements 7-129

Table 7-4. ATD/CWM toATD Data Elements 7-129

Table 7-5. ATD/CWM toATD Data Elements 7-130

Table 7-6. ATD/CWM toCOMM Data Elements 7-131

Table 7-7. NAV toATD/CWM Data Elements 7-132

Table 7-8. RADAR toATD/CWM Data Elements 7-132

Table 7-9. SurveillanceA rea .. 7-154

Table 7-10. CollisionWarningSituation .. 7-154

Table 7-11. CollisionWarningSituationResponse 7-155

Table 7-12. ATCM essage ... 7-155

Table 7-13. AircraftStatusDisplay .. 7-156

Table 7-14. HostAircraftStatusDisplay .. 7-157

Table 7-15. AircraftDisplaySymbol ... 7-157

viii

Tables

Table 7-16. Com ponent Selection Criteria ... 7-15S

Table S-1. A pplication M odel N am e .. 8-2

Table 8-2. H ost A ircraft Characteristics .. 8-2

Table 8-3. Potential Threat Characteristics .. 8-3

Table 8-4. Collision W arning Situation .. 8-S

ix

Tables

This page intentionally left blank.

x

ACKNOWLEDGEMENTS

Neil Burkhard was t',e .'. -iarv author '-f this case study. Jeff Facemirn, wrote, reviewed, or otherwise
made major contributions to particular sections. Grady Campbell wrote the requirements method
in Appendix A. Jim O'Connor, Steve Wartik. Joc Valent, Fred Hills, Eric Marshall, and Rizh McCabe
also provided valuable comments.

Special thanks to Grady Campbell. Siri Koorapaty. and Wil Spencer for reviewing this document and
providing mailt' helpful comments and suggestions. Special ti.anks also go to the Environment and
Support Services group of thle Software Productivity Consortium for the superb help in producing this
document.

X1

Acknowedgemen Is

Thi. pagqc intentionally left blank.

'U'

1. INTRODUCTION

In 1991, the Consortium began a case study applying the Synthesis reuse-driven software development
process to the Air Traffic Display/Collision Warning Monitor (ATD/CWM) domain. This case study
had the following goals:

"* Gain experience in the application of a Synthesis reuse process.

"* Refine and validate the activity descriptions of the Synthesis guidebook.

"• Illustrate the practice of a Synthesis process using specific methods.

"* Provide examples of Synthesis work products.

A domain of ATD/CWM systems was chosen with concern for the following criteria:

"* Be relevant to member company problems.

"* Be a realistic problem.

"* Have both behavioral and informational variations.

"• Have real-time constraints.

"* Represent an embedded system.

"• Require domain knowledge that is readily available.

The ATD/CWM domain satisfies these criteria as follows (Home 1989: Nordwall 1991, Connes 1992):

" Commercial systems in this domain are being built today. B.F. Goodrich FlightSystems
(formerly known as Foster AirData) is building a collision warning system called CWS691.
This system was borne out of a U.S. Navy contract in which Foster AirData developed a NA-
VAL Aircraft Collision Warning System (NACWS). Bendix/King Air Transport Avionics Divi-
sion of Allied-Signal Aerospace Company, Honeywell, and Collins are building a Traffic Alert
and Collision Avoidance System (TCAS).

" Variations exist within these systems. For example, there are three types of TCAS: 1, II, and
III. TCAS I depicts locations of transponder-equipped aircraft that may pose a collision
threat. TCAS II goes further showing the intruding aircraft's altitude and whether it is flying
level, climbing, or descending. It also issues voice and visual commands telling the pilot to
climb, descend. or fly level to avoid intruders. TCAS II does everything TCAS II does plus
it issues commands to turn left or right.

1-1

1. Introduction

• These are embedded systems. They reside completely within the aircraft and are subject to
weight and size constraints.

• These are real-time systems. They must detect potential collisions and respond to these
potential collisions in real time.

• Systems are customized for different customers. For example, United Airlines had the scan
heights for its systems customized for the climb, descent, and cruise flight phases.

This domain gives the Consortium the basis for exploring many of the issues that could reduce the
effectiveness or acceptability of Synthesis if their implications are not sufficiently considered. However,
the case study, being limited in effort and based on limited in-house domain knowledge, does not necessar-
ily represent a commercially viable formalization of the domain. In particular, the case study currently
treats real-time issues and environmental constraints superficially. As such, this case study should be
viewed as "representative only" of how the Synthesis approach organics and applies available expertise.

The definition of the ATD!CWM domain started with an existing description of customer
requirements for an ATD/CWM system. (See the Statement of Requirements in On-Board Embedded
Air Traffic Display/Collision Warning Monitor System ATD/CWM [P.P. Texel & Co. 1987]). This specifi-
cation was also the subject of an Ada-based Design Approach for Real-Time Systems (ADARTS) case
study (Software Productivity Consortium 1991b). The Consortium modified the specification, some-
what. to be more reflective of actual systems, which resulted in the description shown in Appendix
D. By considering possible variations in this description, a concept of a family of ATD/CWM systems
arises of which the original system is one instance.

1.1 DOCUMENT PURPOSE, SCOPE, AND AUDIENCE

This case study exemplifies Synthesis guidance, as provided in the 1991 Synthesis Guidebook (SPC
1991c), and its application to the ATD/CWM domain. The Synthesis guidance will be one volume of
the 1992 guidebook for reuse-driven software development processes. This document covers both do-
main engineering and application engineering work products. Even though the Synthesis reuse pro-
cess is an iterative process, this case study will present only the work products of the final (to date)
iteration. (The previous iterations are documented in Volume 2 of the 1991 Synthesis Guidebook [SPC
1991d]). This casc study will provide some discussion of how these work products were refined or
evolved from previous work product versions.

The case study will help line engineers and technologists understand the application of the Synthesis
reuse-driven software development process by providing examples of the work products created by
applying Synthesis to a particular domain constituting a business area focus. In this context, a domain
is a set of applications.

1.2 DOCUMENT STRUCTURE

Sections 2 through 8 contain the ATD/CWM domain engineering work products.

Section 2, the ATD/CWM Domain Definition, establishes the scope of the ATD/CWM domain and
a justification of its economic viability. The Domain Definition provides a basis for informally deter-
mining whether a system is properly within that scope. A Domain Definition consists of a Domain
Synopsis, Domain Glossary, Domain Assumptions, and Domain Status.

1-2

1. Inlroduction

Section 3, the ATD/CWM Decision Model, specifies the decisions that the Application Modeling
Notation must allow an application engineer to make in describing an instance of the ATD/CWM
domain. The Decision Model consists of decision specifications, decision groups, and decision
constraints.

Section 4, the ATD,!CWM Product Requirements, specifies the software requirements of members
of the ATD/CWM product family. The Product Requirements also ascribe the meaning to Application
Models created in accordance with the corresponding Decision Model. The Product Requirements
are a parameterized description of software for a product in the domain: including implicit
requirements and derived requirements.

Section 5, the ATD/CWM Process Requirements, defines a standard process that the Application
Engineers follow to develop and evolve systems in the ATD/CWN .M domain. The Process Requirements
work product consists of the Process Specification and Application Modeling Notation.

Section 6. the ATD/CWM Product Design. specifies the design of members of the ATD/CWM product
family. The Product Design consists of a Product Architecture. Component Design. and Generation
Design.

Section 7. the ATD/CWM Product Implementation. is an adaptable implementation of the
ATD/CWM product family. The Product Implementation consists of Adaptable Components and a
Generation Procedure.

Section 8. the ATD/CWM Process Support, describes the procedures and standards by which
application engineers develop ATD/CWM applications (application engineering process). the auto-
mated environment which supports the effective and correct performance of the application engineer-
ing process, and documentation supporting the use of the procedures, standards. and environment.

Sections 9 and 10 describe examples of ATD/CWM application engineering products. Section 9. the
ATD/CWM Application Model, captures the requirements for the ATD/CWM system described in
Appendix D. An Application Model describes a deliverable system in terms of requirements and
engineering decisions.

Section 10. the ATD/CWM Application Software, gives fragments of the ATD/CWM Application
Software derived from the ATD/CWM Application Model described in Section 9. Application Soft-
ware (both code and documentation) is derived mechanically from the Application Model to provide
a capability specified by customer requirements.

Four appendixes follow the ATD/CWM work products. Appendix A describes the requirements
method used to specify the Product Requirements for the ATD/CWM domain. Appendix B describes
presentation paradigms required by that method for describing the form of output data. Appendix
C shows, for the ATD/CWM domain, how a commercially available tool can be used in support of
Domain and Application Engineering. Appendix D presents customer requirements for one
ATD/CWM system.

1.3 RELATED PUBLICATIONS

The reader must be familiar with the activities, work products, and terminology of the Synthesis
reuse-driven software development process as described in Synthesis Guidebook Volume 1

1-3

1. InIroduciion

Methodology Definition (Software Productivity Consortium 1991c) b•,frc attempting to read this
document. In addition to this document, the reader may want to refer to the following publications
that describe certain methods used in the case study.

* TRF2 Metaprogramming Tool User Guide (Software Productivity Consortium 1991a) describes
a metaprogramming notation and tool for creation and use of abstract components.

ADARTS Guidebook (Software Productivity Consortium 1991b) describes the software
design method used for systematically structuring a real-time system into concurrent tasks
and packages to achieve a modifiable system.

1.4 TYPOGRAPHIC CONVENTIONS

This case study uses the following typographic conventions:

Serif font General presentation of information.

Capitalized Serif font Names of Synthesis work products.

Italicized serif font Publication titles.

Boldfaced serif font Section headings and emphasis.

Typewriter font Syntax of code.

I Separator for a list of alternatives.

Additional information to aid in understanding and using the case study work products is presented
as AOTES.

Domain Engineering work products require use of a metaprogramming notation to represent
variability in a product. Variability in a product means that a product will have different content de-
pending on certain critical decisions. A metaprogramming notation allows you to describe how a prod-
uct's content is determined by those decisions. A simple example of this is the use of a macroprocessor
to defer a decision about the size of a data structure. Instead of making the decision on the size of
the structure when the code is written (by embedding a constant), you can defer the decision by para-
meterizing the code and supplying the required value at compile time. A metaprogramming notation
is an extension of this idea.

Boldfaced, bracketed text is used for metaprogramming notation in this document.

"< boldfaced-identifier > A deferred decision (e.g., < size >). Such identifiers can be
separated by dots to indicate elements of composite deci-
sions (e.g., < stack.type > and < stack.size >). This identi-
fier is replaced with the actual value of the decision
whenever an instance of the containing work product is
created.

"< if predicate then > bodyl [< else > body2] < endif>
A conditional inclusion. A predicate is an informal

1-4

1. Introduclion

truth-valued expression (i.e., one that only takes on the
values true or false) defined in terms of decisions. If the
predicate evaluates to true, then bodyl is included in the
work product. If an else clause is included and the predi-
cate evaluates to false, then body2 is included in the work
product.

< forall X in list > body < endfor > An iterative (repeating) inclusion. The list is an identifier
for a decision that is multi-valued. This construct includes
one copy of body in the work product for each value of the
decision. For each copy of body included, the correspond-
ing decision value replaces all occurrences of identifier X
in that copy.

A predicate can take on different forms depending upon the nature of the truth-valued expression.
The meaning of the forms commonly used in this document are explained below.

X The value of identifier X is the value of the predicate.
Furthermore, the value of X can only be true or false.

X = I The predicate value is determined by comparing the value
of X with Y. If they are equal, then the predicate value is
true. Otherwise, it is false.

X = {Y} X is an identifier for a composite decision. One or more
elements (xj. xi, ... xn) of identifier X can have a value. The
absence of a value for any xi is considered a "don't care."
Y is a list containing one or more elements xi. The value of
the predicate is true when the set of elements of X having
a value equals the list of elements contained in Y.
Otherwise, the value of the predicate is false.

X ORY The predicate value is false if both X and Y are false.
Otherwise, the value of the predicate is true.

there exists X in Y Y is an identifier for a decision that is multi-valued. The
value of the predicate is true when the value of X equals
at least one of the values for Y. Otherwise, the value of the
predicate is false.

there exists X e Y Y is an identifier for a decision that is multi-valued. The
value of the predicate is true when Y has at least one value.
Otherwise, the value of the predicate is false.

there exists X E Y such that Z Y is an identifier for a composite decision that is
multi-valued. The truth-valued expression Z uses one or
more elements of identifier X. The value of the predicate
is true when there is at least one composite decision X in
Y such that Z is true. Otherwise, the predicate value is false.

1-5

1. Introduction

A body is any text that may be a part of some work product. A body may also contain nested
metaprogramming constructs: if so. those constructs have to be evaluated to determine the content
of the body.

TRF2 metaprogramming notation, which has a similar use but a different form, is used in some case
study work products. See the TRF2 Metaprogramming Tool User Guide (Software Productivity
Consortium 1991a) for more information on the form and use of the TRF2 metaprogramming
notation.

1-6

2. ATD/CWM DOMAIN DEFINITION

1. DOMAIN SYNOPSIS

The ATD/CWM domain is a family of embedded computer systems, installed in an aircraft, to
monitor air traffic within a surrounding surveillance area and to detect potential collision situations.
Systems in the ATD/CWM domain monitor flight characteristics (e.g., altitude, groundtrack, range)
of potential threats and display the flight characteristics within the host aircraft's cockpit. Flight char-
acteristics are obtained from messages transmitted by either potential threats or air traffic control
centers. These computer systems may also identify collision situations and take actions such as dis-
playing collision warning characteristics (e.g., location and airspeed of potential threat) and corrective

action advisory messages within the host aircraft's cockpit, transmitting interair messages to
potential threats, and transmitting advisory messages to an air traffic control center.

2. DOMAIN GLOSSARY

Many of the definitions in this glossary originate from the AOPA's Aviation USA (Aircraft Owners
and Pilots Association 1990). The AOPA manual is derived from terms and definitions compiled by
the Federal Aviation Administration (FAA) in both the Pilot/Controller Glossary section of the Air-
man's Information Manual and in Federal Aviation Regulation Part 1 (ASA Publications 19S9). In
this glossary, all terms marked with a superscript 1 appear in the AOPA; those marked with a
superscript 2 are taken from Webster's H1 New Riverside University Dictionary (Webster 1984).

Advisory message A message transmitted from a host aircraft to an air
traffic control center when the ATD/CWM system
detects a collision warning situation.

Aircraft1 Device(s) that are used or intended to be used for
flight in the air and, when used in air traffic control
terminology, may include the flight crew.

Aircraft-identification Any unique aircraft identifier (e.g., transponder code
or tail number).

Airspeed' The speed of an aircraft relative to its surrounding
air mass. The unqualified term "airspeed" means one
of the following: (1) Indicated Airspeed--The speed
shown on the aircraft airspeed indicator. This is the
speed used in pilot/controller communications under
the general term "airspeed." (2) True Airspeed--The
airspeed of an aircraft relative to undisturbed air.
This is the speed used primarily in flight planning
and the enroute portion of a flight. When used in pi-
lot/controller communications. it is referred to as
"true airspeed" and not shortened to "airspeed."

2-1

ATD/CW?6M Domain Definition

Air traffic control1 A service operated by appropriate authority to
promote the safe, orderly, and expeditious flow of air
traffic.

Air traffic control device To be defined.

Altitude1 The vertical distance height of a level, point, or object
considered as a point, measured from mean sea level.

Bearing1 The horizontal direction to or from any point, usually
measured clockwise from true north, magnetic north,

or some other reference point through 360 degrees.

Climb rate An aircraft's change in altitude per time unit.

Cockpit 2 The space in the fuselage of an aircraft with seats for
the pilot and crew.

Collision warning characteristic A characteristic of the relationship between a host
aircraft and a potential threat (e.g., time to-intersect.
range, ground-track).

Collision warning situation A situation that arises when a potential threat has
certain values of its collision warning characteristics
relative to the host aircraft. A given potential threat
can progress through different collision warning
situations relative to the host aircraft.

Corrective action advisory message A message displayed on the host aircraft's display
describing what actions the host aircraft should take
to avoid a collision warning situation.

Course' The intended direction of flight in the horizontal
plane measured in degrees from north.

Display device To be defined.

Flight characteristics Characteristics of an aircraft's flight (e.g., airspeed,
groundtrack, range, aircraftidentification).

Flight path' A line, course, or track along which an aircraft is
flying or is intended to be flown.

Ground speed' The speed of an aircraft relative to the surface of the
earth.

2-2

ATDICWM Domain Definition

Ground-track Ground-track is measured from the line of the
aircraft to magnetic north to the horizontal compo-
nent of the aircraft's track. Ground track is
measured in degrees with a resolution of one degree.

HeadingI Informs the pilot of the heading he should fly. The
pilot may have to turn to, or continue on, a specific
compass direction to comply with the instructions.
The pilot is expected to turn in the shorter direction
to the heading unless otherwise instructed by air
traffic control.

Host aircraft The aircraft that is monitoring other aircraft in its
surveillance area.

Icon A graphical presentation of an aircraft.
Characteristics of an icon include 2-dimensional
shape, color, and shading (i.e., filled in).

Inter-air message A message transmitted from the host aircraft to a
potential threat when a collision warning situation
has been detected by the host aircraft.

Interrogator' The ground-based surveillance radar beacon
transmitter/receiver which normally scans in syn-
chronism with a primary radar, transmitting discrete
radio signals which repetitiously request all
transponders, on the mode being used, to reply.

Intersection A 3-dimensional region where two flight paths cross
within a separation minima.

Mode1 The letter or number assigned to a specific pulse
spacing of radio signals transmitted or received by
ground interrogator or airborne transponder compo-
nents of the air traffic control radar beacon system.
Mode A (number), Mode C (number and altitude re-
porting), and Mode S (number, altitude reporting
and a data link) are used in air traffic control.

Navigation device To be defined.

Normal situation A situation that is not a collision warning situation.

Potential threat An aircraft within the host aircraft's surveillance
area.

Radar device To be defined.

2-3

ATD/CWM Domain DefiniTion

Range The distance measured from the host aircraft to
another point (e.g., potential threat, air traffic control
center).

Relative-bearing Bearing of the potential threat relative to the host

aircraft. Relativebearing is measured from the
ground track of the host aircraft to the line from the
host aircraft to the potential threat in the clockwise
direction looking down.

Separation minima1 The minimum longitudinal, lateral, or vertical
distances by which aircraft are spaced through the
application of air traffic control procedures.

Surveillance area The 3-dimensional area around a host aircraft that
must be monitored.

Time group1 Four digits representing the hours and minutes from
the 24-hour clock. Time groups without time zone in-
dicators are understood to be UTC (Coordinated
Universal Time), e.g.. 0205. The term Zulu is used
when air traffic control procedures require a refer-
ence to UTC. A time zone designator is used to indi-
cate local time: e.g., 0205M. The end and beginning
of the day are shown by 2400 and 0000, respectively.

Time to intersect Describes the elapsed time in which two aircraft
flight paths could possibly intersect.

Track1 The actual flight path of an aircraft over the surface
of the earth.

Transponder 1 The airborne radar beacon transmitter/receiver
portion of the air traffic control radar beacon system
which automatically receives radio signals from in-
terrogators on the ground and selectively replies with
a specific reply pulse or pulse grouped only to those
interrogations being received on the mode to which
it is set to respond.

2-4

ATD/CWM Domain Definition

Specialization Taxonomy

Aircraft
Host aircraft
Potential threat

Air traffic control center

Cockpit

Collision warning characteristic
Intersection
Range
Relative_bearing
Time to intersect

Situation
Collision warning situation
Normal situation

Message
Advisory message
Corrective action advisory message
Interair message

Flight characteristics
Aircraft identification
Airspeed

Ground speed
Altitude
Climb rate
Course
Flight path
Ground track
Heading
Track

Icon

Interrogator

Mode

Separation minima

Surveillance area

Transponder

2-5

ATD1CWM Domain Definilion

Struciural Taxonomy

Advisory message

Aircraft
Cockpit
Flight characteristics

Air traffic control center

Collision warning situation
Collision warning characteristics

Corrective actions advisory message

Icon

Interair message

Interrogator

Mode

Normal situation

Separation minima

Situation
Relativebearing
Range
Time to intersect
Intersection

Surveillance area

Transponder

3. DOMAIN ASSUMPTIONS

COMMONALITY AssuMPTIONS

This section lists the assumptions of commonality for the ATD/CWM domain. Justification is
provided for each commonality.

The ATD/CWM assumptions of commonality are:

1. An ATD/CWM system maintains the notion of host aircraft.

JUsTiFiCArTON: An ATD/CWM system is an embedded computer system installed in an
aircraft to monitor air traffic in a surveillance area. A given ATD/CWM sys-
tem detects collision warning situations relative to the aircraft on which it is
installed. This aircraft is called the host aircraft.

2-6

ATD/CWM Domain Definition

2. An ATD/CWM syftem monitors a surveillance area.

JusTiFcIATIo,: The purpose of an ATD/CWM system is to detect collision warning situations
and take app:.opriate actions. To detect these situations, the ATD/CWM
system must monitor air traffic in a given region called the surveillance area.

3. An ATD/CWM system monitors the potential threat flight characteristics groundtrack.
relative_bearing, range, altitude, airspeed, vertical rate of change, and aircraftidentification
within the host aircraft's suiveillance area.

JvsTlFcA Tio.. The flight characteristics ground track, relativeoearing, range, and altitude
determine an aircraft's location. The flight characteristics airspeed and verti-
cal rate of change determine how the aircraft's location will change over time.
The aircraft identification is used to correlate information obtained at
different times.

4. An ATD/CWM system predicts the aircraft flight path basWd on known ground_track,
airspeed, and climb rate.

JUSTI17cA4TON: The flight path of an aircraft must be determined so that the ATD/CWM can
issue appropriate commands to avoid a zollisi-n. The flight path direction is
determined by the aircraft's bearing. Predicting the aircraft's location on the
flight path is determined by airspeed and vertical rate of change.

5. An ATDi(CWM system monitors the probable intersection of all aircraft with the host aircraft
to ensure that a separation minima is maintained.
JusrTwc4rTo.v: The separation minima is fixed by the FAA and probably will not change in

the foreseeable future.

6. An ATD/CWM system detects collision warning situations with respect to each potential
threat based on its predicted flight path and the separation minima.

JUsTwicArToN: This is the purpose of an ATD/CWM system.

7. An ATD/CWM cxs.em must detect the occurrence of a collision warning situation within a
prescribed time period.

JusTiFicATioN: The safety of the host aircraft depends upon the ATD/C WVM system detecting
collision warning situations in a timely manner.

8. An ATD/CWM system takes some action for recognized collision warning situations.

JusTifcATio!v. Once a collision warning situation has been detected, it is necessary to notify the
host aircraft pilot so that he can take appropriate steps to avoid a collision.

9. An ATD/CWM system must perform the appropriate actions for recognized collision warning
situations within a prescribed time period.

JusTiFcATito4: Notifying the host aircraft within this time period allows the pilot time to avoid
the collision.

2-7

ATDtCWM Domain Definitiot

10. An ATD/CWM system will exhibit a corrective action advisory message on the host aircraft's
display when the system detects a collision warning situation. This message describes
maneuvers the host aircraft should perform to avoid a collision. This message only occurs for
specific collision warning situations.

JusrTiCrATio••. Since the pilot is responsible for flying the aircraft, he must be told what
specific maneuvers to perform to avoid a collision.

11. An ATD/CWM system determines the minimal range separating a potential threat and host
aircraft using their respective predicted flight paths.

JusitcICATIoN. The minimal range separation determines the content of the corrective action
advisory message.

12. An aircraft can progress through different collision warning situations relative to the host aircraft.

JLsTlsFWATlON: All aircraft. including the host aircraft, have flight characteristics. Collision
warning situations are based on these flight characteristics. As these charac-
teristics change over time, a given aircraft could be in different collision
warning situations, relative to the host aircraft, at different points in time.

13. No single aircraft can be in more than one collision warning situation, relative to the host
aircraft. at any given time.

JL'sTjFjcAnjo.v: It is useful for an ATD/CWM system to maintain the notion of differing severity
levels of collision warning situations. The situations are disjointed to allow for
partitioning of evasive actions based on the collision warning situation.

14. An ATD/CWM system has interfaces with radar and ATC devices that enable it to receive
flight characteristic information on a potential threat.

JLSTJFicATiOX: The ATD/CWM system must receive information on potential threats to
detect collision warning situations. Onboard systems are insufficient for
determining all necessarv aircraft flight characteristics.

15. An ATD/CWM system has an intcrfacc with a navigation device that enables the ATD/CWM
syste-i to receive flight characteristic information on the host aircraft.

JusTlFiCATio.A". An ATD/CWM system detects collision warning situations relative to the host
aircraft. Host aircraft flight characteristics, which are necessary to detect
these situations, are obtained from the onboard navigation device.

16. An ATD/CWM system has an interface to a display device (ATD) that enables the ATD/CWM
system to represent aircraft, potential threat flight characteristics, and display advisory
messages in the host aircraft's cockpit.

JUSTIFICATION: The pilot needs to know what situations have been detected and the locations
of the corresponding potential threats so that he can perform the appropriate
evasive actions.

2-8

ATD'CWM Domain Definition

17. An ATD/CWM system must execute within a fixed memory size.

JUSTIFICATION: Since an ATD/CWM system is embedded within the host aircraft, there are
physical size constraints which limit the amount of memory associated with
the processing unit. Consequently, the ATD/CWM system must perform its
functions within this limit.

18. An ATD/CWM system performs CPU-intensive numerical calculations that require hardware
support for floating point operations.

JusTF•ICATIo-o It is doubtful that software-emulated floating point arithmetic will allow an
ATD/CWM system to meet its performance requirements.

19. An ATD/CWM system executes on a single processor hardware platform.

JUSTIFICATION: Processing speeds of commercially available processors are sufficient to allow
an ATD/CWM system to meet its requirements. Furthermore. there is sub-
stantial cost savings of a single processor system compared to a
multi-processor configuration.

20. An air traffic display supports at least ten colors, displays text, and provides capabilities for
displaying graphical shapes and manipulating their color, location, and blinking attributes.

JUSTIFICATIo.N: The display is used to convey aircraft, their location, and collision warning
situations between the host aircraft and potential threats. This type of infor-
mation is easily conveyed to the pilot through the use of color, geometric
shape, and blinking capabilities.

21. An ATD/CWM system represents aircraft on the display as icons.

JUSTIFIcATIoN: Human factors studies have determined the pilot can easily recognize and
understand aircraft displayed as icons.

22. An audible alarm is characterized by a frequency, duration. and volume. The volume of the
audible alarm is fixed.

JUSTIFIcATION: The quantities that characterize the sound made by an audible alarm are: how
long it was rung (duration), how loud it is (volume), and the pitch (frequency).
It is anticipated that audible alarm devices will not permit the volume of the
alarm to be controlled by software.

23. An ATD/CWM system receives range information on potential threats from the onboard
radar device.

JusTimcATIoN'. Onboard radars currently found on aircraft provide range information. It is
anticipated that all future radar devices will continue to provide at least this
information.

24. An ATD/CWM system receives the host aircraft altitude, airspeed, ground_track, and
location from the onboard navigation device.

JUSTIFICATION: Navigation devices currently provide this information and it is anticipated that
all future navigation devices will continue to provide at least this information.

2-9

ATD,'CWM Domain Definition

25. An ATD/CWM system receives range, altitude, airspeed. groundtrack, and relativebearing
from the ATC device for aircraft.

JUsTIFICATI•N: Air traffic control centers currently provide this information, and it is
anticipated that this information will continue to be provided in the future.

VARABILITY AssuMPTIONS

This section lists the assumptions of variability for the ATD/CWM domain. Justification is provided
for each variability.

The ATD/CWM assumptions of variability are:

1. The definitions and severity of collision warning situations recognized by the ATD/CWM system

JusTiFicATioN- Different members of the ATD/CWM domain can have different (and
possibly multiple) collision warning situations. There must be a way of
defining what they are.

2. Actions performed by the ATD/CWM system for each collision warning situation

JusTJFICATroAý It is anticipated that the set of actions performed for each collision warning
situation will differ as a function of the probability of a collision occurring.

3. The flight characteristics displayed for each aircraft maintained by the ATD system

JusTItFicATioA. The information displayed on the ATD is a function of determining what
information is important to see and how much a human can comprehend.

4. Format used to display flight characteristics for each aircraft maintained by the ATD system

JusTiFICAT•OrN: Formatting information for easy comprehension by a human is subject to
human factors issues.

5. The geometry of the surveillance area covered by the ATD/CWM system in the host aircraft

JusTjiFcATioA-: A surveillance area has a cylindrical shape. The bounds can be changed
depending upon the current flight mode (e.g., enroute, terminal, departure,
and arrival). The size differs tor these flight modes because the needs of the
surveillance area coverage are different.

6. Format of the message received from the navigation device

JusTiFIcATio. Hardware changes due to advances in technology or cost reduction may cause
the navigation device to be replaced. Its replacement may have a different
message format.

7. Format of the message received from the radar device

JusTFicATIoN: Hardware changes due to advances in technology or cost reduction may cause
the radar device to be replaced. Its replacement may have a different message
tormat.

2-1D

ATD/CWM Domain Definition

8. The computer system used including processing speed. primary memory size, and availability
of secondary memory

JusTrFicATioN: Technical advancements in hardware may improve processor speed. lower the
cost of a processor, and lower the cost of memory. Consequently, the comput-
er system configuration may change (e.g., more memory, faster central
processing unit).

9. Format of interair messages transmitted to potential threats

JUsTIFicAT•oN: Hardware changes due to advances in technology or cost reduction may cause
the communication device to be replaced. Its replacement may hav'ý a
different message format.

10. Format of advisory messages transmitted to air traffic control centers

JUSTIFIcATION: Hardware changes due to advances in technology or cost reduction may cause
the communication de;,ice to be replaced. Its replacement may have a
different messaoc lormat.

11. Format of messages containing flight characteristics received from air traffic control centers

JUsTIFIc4 jo.y: Hardware changes due to advances in technology or cost reduction may cause
the navigation device to be replaced. Its replacement may have a different
message format.

12. Type of radar, navigation, ATC, communication, audible alarm, or display device

JuSTIFtCATIo.v: Advances in hardware technology may make current devices obsolete in terms
of speed, capabilities, or cost. These advances may consequently cause
replacement of a device with another one.

13. The maximum number of aircraft monitored by the ATD/CWM system at any given instant

JUSTIFICATION: An ATD/CWM system must be able to handle a defined number of aircraft
per time unit.

14. The presence of an audible alarm ar'd the frequency and duration of the audible sound

JUsTiFtcATIoN- Ringing an audible alarm is one action an ATD/CWM system can perform
to notify the host aircraft of a particular collision warning situation. However,
ringing the audible alarm to signify different collision warning situations re-

quires a distinct frequency and duration for each so that the pilot (or other
flightcrew member) can uniquely identify the corresponding collision warning
situation. Furthermore, the set of actions performed by an ATD/CWM sys-
tem in response to a collision warning situation is variable. If ringing the audi-
ble alarm is not one of them, then the generated system does not need to
include the audible alarm. There could be a resulting cost savings.

4. DOMAIN STATUS

The variabilities referenced in parentheses are listed in the Variabilities Assumptions section on pages
2-10 and 2-11.

2-11

ATD.'CWM Domain Definition

"* These variabilities are not accommodated by the remaining ATD/CWM domain engineering
work products.

- Maximum number of aircraft monitored at any given instant (Variability 13).

- The flight characteristics displayed for each aircraft maintained by the ATD system
(Variability 3).

- Format of message received from the navigation device (Variability 6).

- Format of message received from the radar device (Variability 7).

- Computer system, including memory size, availability of secondary memory.
processor (Variability 8).

- Format of interair message transmitted to potential threats (Variability 9).

- Format of messages received from air traffic control centers (Variability 11).

- Type of devices for radar, navigation, ATC, communication, audible alarm. and
display (Variability 12).

"* These variabilities are accommodated in a restricted manner by the remaining ATD/CWM
domain engineering work products.

- Format used to display flight characteristics for each aircraft maintained by the ATD
system (Variability 4).

- Surveillance area geometry (Variability 5).

- Format of advisory message transmitted to the air traffic control center (Variability 10).

2-12

3. ATD/CWM DECISION MODEL

NOTE: The Decision Model is written in a mechanically processable syntax shown below. In this form.
mnemonics for the decisions (i.e., requirements variations) are introduced because the deci-
sions are needed in writing the adaptable product requirements. The description of a decision
in the Decision Model is characterized by the following information:

"* Mnemonic - Name for the decision.

" Repetition factor - An optional symbol which is one of "?" (zero or one), "±+ " (one
or more), or "'" (zero or more). This indicates how many times the decision
represented by the mnemonic can be repeated.

"* Description - An optional textual description delimited by enclosing parentheses.

" Domain - Describes the value space for the mnemonic. The value space can be simple
(e.g.. integer, identifier, natural) or composite. A composite value space is indicated
by the keywords "and" or "or" followed by another decision. The keyword "and"
means that all of the decisions must be made for the composite. The keyword "or"
means that only one of the following decisions can be made for the composite for a
given instance of the decision group.

The following BNF notation is used to describe the decision model.

DECISION:: = MNEMONIC ["+" I "*" I "?"] [(DESCRIPTION)] ":" DOMAIN

DOMAIN :: = SIMPLE DOMAIN
"I "and" DECISIONSET

"or" DECISIONSET

DECISIONSET:: = DECISION [DECISION-SET]

NoTE: Definitions for terms bracketed by exclamation points (e.g., !xxx!) are found on page 4-21.

DECISION GROUPS AND SPECIFICATION

The Decision Model consists of the following groups.

ProjectInformation

The Project Information (PI) describes the specific information for the project. The decisions that
must be made for this decision class are:

3-1

ATD/CWM Decision Model

ProjectInformation "and

Contract (Contract information for the specific project.) : and

Agency (Name of the contracting agency.) : identifier(1..64)

Number (Contract number (can be an alphanumeric thereby excluding a
numeric value space) : identifier(1..64)

CDRL (Contract data requirements list number.) : identifier(1..64)

System (System information for the specific project.) : and

Name (System name.) : identifier(1..64)

Mnemonic (System mnemonic.) : identifier(1..16)

Id (System identification number.): identifier(l..64)

Surveillance Area

The Surveillance Area (SA) is the area around an aircraft that an ATD/CWM system monitors. The
decision that must be made for this decision class is:

SurveillanceArea: and

Range (Radius. in nauticalmiles. of the surveillance area around an aircraft that is
monitored by the ATD/CWM system. The surveillance area is a sphere whose
origin is the host aircraft's position.): nauticalmiles(10..300)

NOTE: To simplify the domain implementation, the geometry of the surveillance area is assumed to
be spherical. The radius of this sphere is fixed at system generation time. It is assumed that
the onboard radar device has a range of at least 300 nauticalmiles.

CollisionWarningSituation

The CollisionWarning Situation (CWS) is a situation that the ATD/CWM system detects between
a potential threat and the host aircraft. A given potential threat can progress through different colli-
sion warning situations relative to the host aircraft as the potential threat navigates through the host
aircraft's surveillance area. The decisions that must be made for this decision class are:

CollisionWarningSituation + : and

CWSName (Name of this collision warning situation. There is a predefined instance of this
class called normal.) : identifier(1..64)

CWSDef (Boolean-valued expression that defines the criteria for this collision warning
situation. Either Time, Range. or both can be specified. However, at least one
of these must be specified. If both are specified, then the expression is
interpreted as a logical OR of both components [i.e.. Time OR Range]) : or

3-2

ATD/CWM Decision MWKel

Time (Time is the time to intersect measured in seconds with the
potential threat maintaining its current airspeed, course, and
climb rate. If the airspeed is unknown, then 1,000 nauticalmiles
per hour is assumed. The time to intersect lies in the range
Time.Min < time to intersect < Time.Max): and

Min (Minimum allowed elapsed time before the
flight path's of the potential threat and host

aircraft intersect.) : seconds(1..300)

Max (Upper bound on the allowed elapsed time before
the flight path's of the potential threat and host

aircraft intersect.) : seconds (1..300)

Range (Range is the distance the potential threat is from the host aircraft
measured in nauticalmiles. The range value lies in the range
Range.Min < range < Range.Max)• and

Min (Minimum distance the potential threat is from
the host aircraft. The upper limit is determined
by the SurveillanceArea
range.): nautical miles(0.. < SA.Range >)

Max (Upper bound on the distance the potential threat is from the
host aircraft. The upper limit is determined
by the SurveillanceArea
range.): nautical miles(0.. < SA.Range >)

Partition (Indicates the potential threat partition for which this collision warning situation
applies. ID is identified: UID is unidentified; ALL is both.): enumerated (ID,
UTD. ALL)

Severity (Relative probability that a collision is likely to occur. The higher the severitv
is, the more likely a collision will occur. By definition, the predefined normal
situation has the lowest severity.): severity(0.00 .. 1.00, 0.01)

Response (Prescribed response to the collision warning situation.): CWSR

CollisionWarningSituationResponse

The CollisionWarningSituationResponse (CWSR) is the actions that an ATD/CWM system can
perform in response to a detected collision warning situation. The decisions that must be made for
this decision class are:

Collision_WarningSituation_Response + : and

ATC_Msg (Designates whether a message is sent to the nearest air traffic control
center. "true" means to send the message.) : enumerated (true, false)

Inter_AirMsg (Designates whether a message is sent to the appropriate potential
threat. "true" means to send the message.) : enumerated (true. false)

3-3

ATD/CWM Decision Model

CorrectiveMsg (Designates whether a corrective action advisory message is displayed on the
host aircraft's display. "true" means to
send the message.) : enumerated (true, false)

Alarm (Designates whether the audible alarm should be rung when a potential threat
migrates into this collision warning situation from a lower priority
situation.) : or

NoRing (Do not ring the alarm.): true

Ring (Ring the alarm. In this case, a frequency and duration must be
specified as well.) : and

Pitch (What frequency, in hertz, to ring the audible
alarm.): hertz(1.000..10,000)

Duration (How long, in seconds, to ring the audible
alarm.): seconds(0.01 .. 10.0, 0.01)

Code (Transponder code used in the message sent to the appropriate potential threat

[InterAirMsg] air traffic control center [ATCMsg].): !transponder-code!

ATCMessage

The ATCMessage describes the message format used when sending messages from the host aircraft
to an air traffic control center. The decision that must be made for this decision class is:

ATCMessage : and

Mode (Designates the format for ATCMsg messages sent from the host aircraft to an
air traffic control center. Mode A is a 4-digit !transponder code!: Mode C is a
4-digit !transpondercode! and host aircraft altitude.): enumerated (A, C)

AircraftStatusDisplay

The AircraftStatus Display (ASD) describes how to display the information status for a potential
threat when the potential threat is in a specific aircraft partition and collision warning situation
relative to the host aircraft. The decisions that must be made for this decision class are:

AircraftStatusDisplay + : and

Situation (Indicated collision warning situation.) : CWS

Partition (Indicated aircraft partition. ID is identified; UID is unidentified.) : enumerated
(ID, UID)

PTColor (Icon color for the potential threat.): enumerated (red. orange. green, yellow.
white, blue, black, pink, purple, indigo, violet)

PTBlink (Designates whether the potential threat icon should blink for this collision
warning situation. True means blink, false means do not blink.) : enumerated

(true, false)

3-4

ATD/CWM Decision Mode!

PTFill (Icon filling for the potential threat involved in this collision warning situation.
True means to fill the icon [i.e., color the icon interior]; false means do not fill
in the icon.) : enumerated (true, false)

NOTE: The icon interior is colored the same as the icon color.

Host AircraftStatusDisplay

The HostAircraftStatusDisplay (HASD) describes how to display the information status for the
host aircraft when it is involved in a specific collision warning situation. The decisions that must be
made for this decision class are:

HostAircraftStatusDisplay+ : and

Situation (Indicated collision warning situation.): CWS

Color (Icon color for the host aircraft.) : enumerated (red, orange. green, yellow,
white. blue, black, pink, purple, indigo, violet)

NoTE: The host aircraft color is independent of whether the potential threat is identified or unidentified.

AircraftDisplaySymbol

The Aircraft_Display Symbol (ADS) describes the two-dimensional icon shape for displaying
aircraft on the ATD. The decisions that must be made for this decision class are:

AircraftDisplaySymbol : and

HostShape (Icon shape for the host aircraft.) : enumerated (circle, square, triangle)

ID Shape (Icon shape for identified potential threats.) : and

Partition (Boolean-valued expression that defines the criteria for an
identified potential threat.): !id definition!

Shape (Icon shape for identified potential threats.): enumerated (circle,
square, triangle)

UID_Shape (Icon shape for unidentified potential threats.) : enumerated (circle, square,
triangle)

NoTE: A potential threat whose flight characteristics do not satisfy the !iddefinition! is considered
to be unidentified. The icon shape is solely dependent upon whether the aircraft is the host
aircraft, an identified potential threat, or unidentified potential threat.

3-5

ATD/CWM Decision Model

DEPENDENCY CONSTRAINTS

Table 3-1 shows the dependency constraints for decision classes in the ATD/CWM domain.

Table 3-1. Dependency Constraints

Decision Class Condition Dependency Constraint

CWSR True At least one CollisionWarningSituation Response
must have the CorrectiveMsg decision true.

ATCFormat True A decision must be made for the ATC_Msg message
format only when at least one CollisionWarning_
Situation_Response has the ATCMsg decision true.

CWS Range.Min < <SA.Range> The minimum or maximum distance for a collision1
Range.Max < < SA.Range > warning situation definition cannot be larger than the

range specified for the surveillance area.

CWS Range.Min < Range.Max The minimum range value must be less than or equal to
the maximum range value for a given collision warning
situation.

CWS Time.Min < Time.Max The minimum time value must be less than or equal to the
maximum time value for a given collision warning
situation.

CWS Time Either Timc, Range, or both must be specified for a
Range collision warning situation definition.

ADS HostShape The symbols for the icon shape must be mutually exclusive.
ID Shape.Shape
UIDShape

3-6

4. ATD/CWM PRODUCT REQUIREMENTS

NOTE: The requirements method used to capture the ATD/CWM Product Requirements is described
in Appendix A.

1. THEORY

This section defines a model of the underlying theory of the ATD/CWM system. This model provides
the basis for the description of system behavior in Section 3. The components of the model are
concept/entity classes and derivation relations. Entities in the model correspond to real world entities
that are of concern to the ATD/CWM application.

1.1. STATIC MODEL

This section describes the classes of entities that model the information about aircraft and collision
warning situations embedded in ATD/CWM applications.

1.1.1. Aircraft

Each aircraft has the following properties.

Property Type Description

Altitude feet(-200 .. 50,000) Aircraft altitude measured in feet.

AircraftID stnng(8) Aircraft identifier.

Velocity speed(1 .. 1,500) Aircraft airspeed measured in knots.

Climb Rate rate(-3,000 ... 3.000) Aircraft's rate of change in altitude
measured in feet per minute.

Location !location! Latitude and longitude location of the
aircraft given as a tuple (latitude,
longitude). Latitude has a permitted range
of -90.0 ... 90.0 degrees. A negative value
indicates latitude south of the equator; a

positive value is north of the equator.
Longitude has a permitted range of -360.0
... 360.0 degrees. A positive value signifies
longitude west of the prime meridian at
Greenwich, England. A negative value
indicates longitude east of the prime
meridian. Resolution for latitude and
longitude is one-tenth degree.

GroundTrack degrees Groundtrack is measured from the line
of the aircraft to magnetic north to the
horizontal component of the aircraft's
actual flight path over the surface of the
earth. Ground track is measured in
degrees with a resolution of one degree.

4-1

ATD/CWM Product Requirements

1.1.2. HostAircraft : Aircraft

Host Aircraft is a singleton class representing the aircraft on which the ATD/CWM system is installed.

1.1.3. Potential Threat :Aircraft

PotentialThreat is a class of aircraft that represents all aircraft within the host aircraft's surveillance
area (except the host aircraft itself). Potential threats have the following additional properties.

Property Domain Description

Range nautical miles Range of the potential threat from the
host aircraft. Range is measured in
nautical miles with a resolution of one
nautical-mile.

Relative_Bearing degrees Bearing of the potential threat relative to
the host aircraft. Relative bearing is
measured from the ground track of the
host aircraft to the line from the host
aircraft to the potential threat in the
clbckwise direction looking down.

1.2. DYNAMIC MODEL

1.2.1. Time to Intersect

The ATD/CWM system determines how much time elapses (time to intersect) until the flight paths
of the host aircraft and potential threat cross within a separation minima. The separation minima
is the minimal range that the two aircraft will be apart assuming constant velocity, groundtrack. and
climb rate for both aircraft. The following equation gives range between the host aircraft and a poten-
tial threat at a given point in time as a func-ion of their respective locations in space. The terms (XH,
YH, ZH) and (ZpT, YPT, ZPT) are the rectangular coordinates of the host aircraft (H) and potential threat
(PT), respectively.

range = V/(XpT - XH) 2 + (ype - YH) 2 + (Zp'r - ZH) 2

The following equations give the location of the host aircraft over time (assuming a constant velocity,
ground_track, and climb rate) where (XoH, YoH, zoH) denote an initial location of the host aircraft.

XH = XoH + hostaircraft.velocityxy * cos(host_aircraft.ground track) * t

YH = YoH + hostaircraft.velocityx-y * sin(host_aircraft.ground_track) * t

ZH = ZoH + host_aircraft.climbrate * t

Similarly, the following equations give the location of the potential threat (assuming a constant
velocity, groundtrack, and climb rate) where (XoPT, YoPT' zopT) denote an initial location of the
potential threat.

4-2

ATD'CWM Product Requirements

xrp- XOPT + jotential_threat.velocirvx, cos(potential threat.ground track) * t

YrT = YoPT + potential_threat.velocityxy sin(potential-threat.groundtrack) * t

ZpT = zopT + potential threat.climbrate * t

The potential threat location is always relative to the host aircraft. By assuming that the host aircraft
location gives the origin of the rectangular coordinate system, the following equations give an initial
location of the potential threat relative to the host aircraft.

XoPr = rangexy * cos(potential_threat.relative bearing)

YoPT = rangexy * sin(potentialthreat.relative bearing)

zopT = potential_threat.altitude-host_aircraft.altitude

The following equation gives the horizontal component of the velocity (i.e., the component ot velocity
that lies in the X-Y plane - velocityxy).

velocityxy = N/velocity 2- climbrate2

Similarly, the following equation gives the horizontal component of the range (i.e.. the component of
range that lies in the X-Y plane - rangexy).

rangexy = range2 - (host_aircraft.altitude - potential_threat.altitude)2

By making appropriate substitutions, the range between the host aircraft and a potential threat is a
function of their initial locations and time.

range = f(t. XoH. YoH0 ZOH. XoPT, YoPT. ZoPr)

The timetointersect is computed by taking the first derivative of the range equation expressed as
a function of time, setting it equal to zero, and solving for "t" (assuming (XOH, YOH, ZoH) is (0.0.0)).

f(t, XoH, YoHu ZoH, XoPT, YoTr, ZoPr) = 0

This yields a timetointersect value - twin.

1.2.2. Minimal Separation Distance

The ATD/CWM system determines the minimal separation distance (i.e., minimal range-the closest
range of these two aircraft with respect to each other) between the host aircraft and potential threat
assuming constant velocity, ground_track, and climb rate for each. This minimal range (rangem in) is
determined by solving the following equation with t = tmin (assuming (XOH, YoH, ZoH) is (0,0,0)).

rangemin = f(t, XoH, yoU, ZoH, XoT, YoPT, ZoTr)

4-3

ATD!CWM Produci Requirements

1.2.3. Climb Rate

The following equation is used to compute the climbrate of an aircraft.

climb-rate = (aircraft.altitudelb - aircraft.altitudet,
tb - ta

Terms tb and ta denote time and tb > ta. At system startup (ta = 0), altitude 0. 5000 feet per minute

(fpm) is used if the climb rate exceeds 5000 fpm.

1.2.4. Relative Bearing

The ATD/CWM system obtains range for a potential threat from two sources: the radar and ATC. When
the radar range for a specific potential threat is newer than the range obtained in the ATCMessage for
the same potential threat. it is necessary to predict the location of the potential threat. The location is
computed in terms of its relativebearing based on the time difference between the most recent radar
range and ATC range values assuming constant velocity, climb rate, and gound_track for both the host

aircraft and potential threat. In the following discussion. ta and tb denote time and tb > ta.

The following equations give the x and y rectangular coordinates of the potential threat at tb (xpT, YP-1)
where (xop-I, YoPT) is its x and y coordinates at time ta.

nyr'T= xorr + potentialthreat.velocityxy * cos(potential_threat.groundtrack) * (tb - t,)

YnPT = YopT + potentialthreat.velocityx* sin(potentialthreat.ground track) * (tb- t,)

Similarly, the following equation gives the x rectangular coordinate of the host aircraft at time tb

(assuming that the initial location xo-H is 0).

XnH = hostaircraft.velocityxy * cos(hostaircraft.ground track) * (tb - t0)

The following equations give the initial x and y rectangular coordinates at time ta (XoPT, YoPT) assuming
that the host aircraft gives the origin of the rectangular coordinate svstem.

xoprT = rangexy * cos(potential-threat.relativebearing)

YorpT = rangexy * sin(potential-threat.relative bearing)

Since the range, relative_bearing, velocity, groundtrack, and climb rate are known for time ta. a value
for xnpT can be computed. The new relative bearing of the potential threat is a function of the new
xnprT, the new location of the host aircraft XnH, and the new range as shown below.

XnPrT = rangexy * cos(potentialthreat.relative_bearing) + XnH

Rewriting the equation to solve for relative_bearing yields the following equation.

potentialthreat.relative bearing = arccos (xnlPT -rxnH)

4-4

ATD/CWM Product Requirements

The horizontal component of the range at time tb is given by the following equation.

rangexy = V range2 - (host_aircraft.altitude,, - potential threat.altitude ") 2

The altitude of the host aircraft and potential threat at time tb is predicted using their respective
altitudes at time ta assuming a constant climb rate as shown below.

hostaircraft.altitudetb = host aircraft.altitudet1 + (tb - ta) * host_aircraft.climb rate

potentialthreat.altitudet, = potentialthreat.altitudet. + (tb-ta) * potentialthreat.climb-rate

The sign of the y rectangular coordinate at time tb (YnH) is used to determine whether the potential
threat relative bearing must be adjusted. If the sign of y is negative, then

potential threat.relative_bearing = 360 - potentialthreat.relativebearing

1.2.5. Potential Threat Collision Warning Situation Status

The ATD/CWM system monitors potential threats within the host aircraft's surveillance area and
determines when they make the transition from one collision warning situation to another. The colli-
sion warning situation the potential threat is in. relative to the host aircraft, determines the collision
warning situation status (cws_status) of a potential threat as follows. The following abbreviations are
used in this algorithm.

ptR potentialthreat.range
ptT timeto intersect between the potential threat and host aircraft.

"< forall C in CollisionWarning_Situation>
<if C.CWS_Def = (Time, Range} then>

@T((< C.CWSDef.Time.Min > < pttT < < C.CWSDef.Time.Max >) OR
(< C.CWSDef.Range.Min > < pttR < < C.CWSDef.Range.Max >))

when partition = < C.Partition >
cws status = <C.CWSName>

<else if C.CWSDef = {Time} then>
@T(< C.CWSDef.Time.Min > < ptT < < C.CWSDef.Time.Max >)

when partition = < C.Partition >
cws status = <C.CWSName>

<else if C.CWSDef = {RangeI then >
@T(< C.CWSDef.Range.Min > < ptR < < C.CWSDef.Range.Max >)

when partition = < C.Partition >
cws status = <C.CWSName>

< endif>
"< endfor >
@T(ptR < < Surveillance Area.Range >) when partition = ALL

cws status = Normal

If more than one condition is true for a given potential threat, then the condition having the highest
severity level gives the collision warning situation status (cwsstatus).

4-5

ATD/CWM Product Requirements

1.2.6. Potential Threat Partition

The ATD/CWM system monitors potential threats within the host aircraft's surveillance area to
determine when they make the transition from being identified to unidentified and vice-versa. The
partition of a potential threat is defined as follows:

if <AircraftDisplaySymbol.IDShape.Partition>
partition = identified

else
partition = unidentified

endif

1.2.7. Host Aircraft Collision Warning Situation Status

The potential threats in the host aircraft's surveillance area determine the host aircraft's collision
warning situation status (cwsstatus). The host aircraft's cws_status is equal to the potential threat
cwsstatus that has the highest severity from all known potential threats. The host aircraft's icon color
on the air traffic display will display the following colors for the corresponding collision warning
situation status:

Collision Warning Situation Status Color

"< forall S in HostAircraftStatus-Display >
< HostAircraftStatus Display.Situation > < HostAircraftStatusDisplay.Color >

"< endfor >
Normal White

2. ENVIRONMENT

This section describes the external environment within which the ATD/CWM system operates.

2.1. INPUT COMMUNICATION PATHS

2.1.1. Navigation

The navigation device communicates host aircraft flight characteristics (i.e., altitude. velocity.
ground_track. latitude, and longitude) to the host aircraft.

Input Data Item: NavigationMsg (5 data items)

Name Value Space Description / Data Representation

altitude Unit: feet Vertical distance height of the hostaircraft measured
Range: 0 to 60,000 from mean sea level.
Accuracy: 1 foot
Resolution: 1 foot 32-bit natural number

scale: 1
offset: 0

velocity Unit: knots Indicated velocity of the hostaircraft.
Range: 0 to 700
Accuracy: I knot 16-bit natural number
Resolution: 1 knot scale: 1

offset: 0

4-6

ATD/CWM Product Requirements

ground_track Unit: degrees Groundtrack is measured from the line of the aircraft to
Range: 0 to 360 magnetic north to the horizontal component of the
Accuracy: 0.1 degree aircraft's actual flight path over the surface of the earth.
Resolution: 0.1 degree

16-bit unsigned number
scale: 10
offset: 0

latitude Unit: degrees Latitude component of the location. Negative values
Range: -90 to 90 represent latitude south of the equator.
Accuracy: 0.1 degree
Resolution: 0.1 degree 16-bit two's complement number

scale: 10
offset: 0

longitude Unit: degrees Longitude component of the location. A positive value
Range: -360 to 360 signifies longitude west of the prime meridian at
Accuracy: 0.1 degree Greenwich, England. A negative value indicates
Resolution: 0.1 degree longitude east of the prime meridian.

16-bit two's complement number
scale: 10
offset: 0

Timing Characteristics: TBD seconds

Input Mapping: context: (host_aircraft, true)
host aircraft.altitude = altitude
hostaircraft.velocity = velocity
hostaircraft.ground track = groundtrack
hostaircraft.location = (latitude, longitude)

2.1.2. Radar

The radar device provides information (i.e., flight characteristics) about external aircraft. The radar
sweep rate is 0.25 seconds.

Input Data Item: RadarMsg (4 data items)

Name Value Space Description / Data Representation

aircraftid string(8) Aircraft identification.

64-bit string

sweep Unit: sweep count Radar sweep number modulo 32.
Range: modulo 32
Accu-acy: 1 5-bit positive number
Resolution: I scale: I

offset: 0

4-7

ATD/CWM Product Requirenments

range Unit: nautical miles Distance in nautical miles from this aircraft to the
Range: 0 to 300 host-aircraft.
Accuracy': 0.1 nautical mile
Resolution: 0.00001525 27-bit natural number

nautical mile scale: 65.536
offse,. 0

relative- Unit: degrees Bearing to this aircraft relative to the hostaircraft.
bearing Range: 0 to 360

Accuracy: 0.1 degree 16-bit unsigned number
Resolution: 0.1 degree scale: 10

offset: 0

Timing Characteristics: TBD

Input Mapping: context: (potential_threat, potentialthreat.aircraft id aircraft id)
potentialthreat.range = range
potentialthreat.relative_bearing, = relativebearing

2.1.3. ATC

The ATC device provides information (i.e.. flight characteristics) about external aircraft. The device
interrupts the ATD/CWM system for every message received. The message received from this device

has the following components.

Input Data Item: ATCMessage

Name Value Space Description / Data Representation

aircraftid string(S) Aircraft identification.

64-bit string

altitude Unit: feet Vertical distance height of the potential threat measured
Range: 0 to 60,000 from mean sea level.
Accuracy: 1 foot
Resolution: 1 foot 32-bit natural number

scale: 1
offset: 0

velocity Unit: knots Indicated airspeed of the host aircraft.
Range: 0 to 700
Accuracy: 1 knot 16-bit natural number
Resolution: 1 knot scale: 1

offset: 0

relative_ Unit: degrees Bearing of the potential threat relative to the host
bearing Range: 0 to 360 aircraft. Relative._bearing is measured from the

Accuracy: 0.1 degree ground-track of the host aircraft to the line from the host
Resolution: 0.1 degree aircraft to the potential threat in the clockwise direction

looking down.

16-bit unsigned number
scale: 10
offset: 0

4-8

ATD/CWM Product Requirements

range Unit: nautical miles Distance in nautical miles from this aircraft to the host
Range: 0 to 300 aircraft.
Accuracy: 0.1 nautical mile
Rcsolution: 0.1 nautical mile 16-bit unsigned number

scale: 10
offset: 0

ground_track Unit: degrees Groundtrack is measured from the line of the aircraft to
Range: 0 to 360 magnetic north to the horizontal component of the
Accuracy: 0.1 degree aircraft's actual flight path over the surface of the earth.
Resolution: 0.1 degree

16-bit unsigned number
scale: 10
offset: 0

timestamp Range: 0000 .. 2400 Timestamp of when the data was valid. The timestamp is
four digits representing the hours and minutes from the

The leftmost two digits are the 24-hour clock.
hours: the rightmost two digits
are the minutes. 16-bit unsigned number

Timing Characteristics: TBD

Input Mapping: context: (potential threat, potential threat.aircraft id = aircraft-id)
potential threat.altitude = altitude
potential threat.velocity = velocity

potential threat.groundtrack = ground_track
potential threat.relativebearing = relativebearing
potential threat.range = range

2.2. OUTPUT COMMUNICATION PATHS

<if there exists A E CWS such that A.Response.Alarm then >

2.2.1. Audible Alarm

The audible alarm is an audio cockpit signal characterized by frequency, duration, and a fixed volume
level.

Output Data Item:AudibleAlarmMsg (2 data items)

Name Value Space Description / Data Representation

frequency Unit: hertz Pitch of the audiblealarm in hertz.
Range: 1,000 to 10,000
Accuracy: 1 hertz 16-bit positive number
Resolution: 1 hertz scale: 1

offset: 0

duration Unit: seconds How long to ring the audiblealarm.
Range: 0.01 to 10.0
Accuracy: 0.01 seconds 16-bit unsigned number
Resolution: 0.01 seconds scale: 100

offset: 0

4-9

ATD/CWM Product Requirements

< endif >

2.2.2. ATD

The ATD is a color display accessible by the ATD/CWM system. The ATD manipulates pixels on
a bitmap display and manipulates icon color, shape, shade, and blink characteristics. This display
can also position, move, or delete an icon and display text. The upper left-hand corner is pixel (0,0).
The x axis is across the display to the right; the y axis is down the display towards the bottom.

Output Data Item:ATD_Msg

Name Value Space Description / Data Representation

id Virtual memory address. Handle for the displayed object.

16-bit natural number
scale: 1
offset: 0

shape Value Encoding: Icon shape.
square: (1)
circle: (2) 16-bit positive number.
triangle: (3)

size Range: 1 .. 1,000 Size in pixels of the icon.

16-bit positive number
scale: I
offset: 0

fill Value-Encoding: Color for the icon interior.
none: (1)
yellow: (2) 16-bit positive number.
pink: (3)
orange: (4)
red: (5)
green: (6)
blue: (7)
indigo: (8)
purple: (9)
violet: (10)
black: (11)
white: (12)

color ValueEncoding: Color for the icon.
none: (1)
yellow: (2) 16-bit positive number.
pink: (3)
orange: (4)
red: (5)
green: (6)
blue: (7)
indigo: (8)
purple: (9)
violet: (10)
black: (11)
white: (12)

4-10

ATDI'CWM Produci Requirements

Name Value Space Description / Data Representation

fill blink rate Unit: seconds Blinking rate for the icon interior.
Range: 0.0 .. 10.0
Accuracy: 0.1 second 16-bit unsigned number
Resolution: 0.1 second scale: 10

offset: 0

objblinkrate Unit: seconds Blinking rate for the icon.
Range: 0.0 .. 10.0
Accuracý: 0.1 second 16-bit unsigned number
Resolution: 0.1 second scale: 10

offset: 0

x_location Range: 0.. 1100 Horizontal pixel location for icon center.

16-bit natural number
scale: 1
offset: 0

v location Range: 0.. 1100 1 Vertical pixel location for the icon center.

16-bit natural number
scale: I
offset: 0

Output Data Item:CorrectiveAction_Msg

Name T Value Space Description / Data Representation

text string(N) A variable length message describing what actions the
pilot should perform to avoid a potential collision. "N'" is
the number of characters in the message.

8*N-bit string

x_location Range: 0 .. 1,100 Horizontal pixel location for the first character of the
text.

16-bit natural number

scale: 1
offset: 0

y_location Range: 0.. 1,100 Vertical pixel location for the first character of the text.

16-bit natural number

scale: 1
offset: 0

<'f there exists M E CWS such that

(M.Response.ATCMsg OR M.Response.InterAir Msg) then >

2.2.3. Communication

This device can send messages to either the nearest air traffic control center or to a specific potential
threat.

4-11

ATD/CWM Product Requirements

<if there exists M E CWS such that M.ResponseATCMsg then>

Output Data Item:ATCMsg

Name Value Space r Description / Data Representation

destination Value Encoding: 1 Destination code.

16-bit positive number

code Range: 0000 to 7777 The !transpondercode! indicating the specific collision
warning situation the host-aircraft is in.

with each digit only having the
range 0 .. 7. 16-bit natural number

scale: I
offset: 0

<if ATCMessage.Mode = C then>

altitude Unit: feet Vertical distance height of the host-aircraft measured
Range: 0 to 60.000 from mean sea level.
Accuracv: 1 foot
Resolution: 1 foot 32-bit natural number

scale: 1
offset: 0

< endif >
"< endif >

"< if there exists M e CWS such that M.Response.InterAir_Msg then >

Output Data Item:Inter_Air Msg

Name Value Space Description / Data Representation

destination Value Encodinv: 0 Destination code.

16-bit positive number

code Range: 0000 to 7777 The !transponder code! indicating the specific collision
warning situation the hostaircraft is in.

with each digit only having the

range 0 .. 7. 16-bit natural number
scale: 1
offset: 0

altitude Unit: feet Vertical distance height of the hostaircraft measured
Range: 0 to 60.000 from mean sea level.
Accuracy: 1 foot
Resolution: 1 foot 32-bit natural number

scale: 1
offset: 0

4-12

ATD/CWM Product Requirements

latitude Unit: degrees Latitude component of the location. Negative values
Range: -90 to 90 represent latitude south of the equator.
Accuracy: 0.1 degree
Resolution: 0.1 degree 16-bit two's complement number

scale: 10
offset: 0

longitude Unit: degrees Longitude component of the location. A positive value
Range: -360 to 360 signifies longitude west of the prime meridian at
Accuracy: 0.1 degree Greenwich, England. A negative value indicates
Resolution: 0.1 degree longitude east of the prime meridian.

16-bit two's complement number
scale: 10
offset: 0

< endif>
< endif >

3. EXTERNAL BEHAVIOR

3.1. PRESENTATION

<if there exists A E CW,•S such that A.Response.Alarm then>

3.1.1. Audible Alarm

Paradigm: AudibleAlarm
Context: potentialthreat
PitchandDuration: (

"< forall A in Collision WarningSituation >
"< if A.Response.Alarm then >

(<A.CWS Def>, < A.Response.Alarm.Pitch>,
< A.Response.Alarm.Duration >)

"< endif >
"< endfor >)

< endif>

<if there exists M e CWS such that

(M.Response.ATC_Msg OR M.Response.InterAirMsg) then >

3.1.2. Communication

< if there exists M e CWS such that M.ResponseATCMsg then >

3.1.2.1. ATCMsg

Paradigm: Binary
Context: potentialthreat
Template: (

4-13

ATD!CWM Product Requirements

" forall M in Collision_-WarningSituation >
<if M.Response.ATC -Msg then >

"<if ATCMessage.Mode = A then >
(< M.CWSDef >, " <M.Response.Code >

"<endif >
"<if ATCMessage.Mode = C then >

(< M.CWSDef >, "'<M.Response.Code > @ahost-aircraft.altitude")
"<endif >

< endif >
"<endfor >

"<endif >

"<if there exists M E: CWS such that M.Response.InterAir_Msg then >

3.1.2.2. Inter Air Msg

Paradigm: binary
Context: potential-threat
Template: (

< forall M in Collision_-WarningSituation >
< if M.InterAirMsg then >

(< M.CWS_-Def >, "<M.Response.Code > Cahost_aircraft.altitude@host_air-
craft.latitude@host_aircraft.Jongitude")

< endif >
< endfor >

< endii >

< endif >

3.1.3. ATD

3.1.3.1. ATD_Msg

Paradigm: map
Context: (potential threat, potential threat.range < <Surveillance_-Area.Range >)
Position_-Attribute: (potential threat.relative bearing, potential threat.range)
Focus: (host aircraft, true)
Image:

< forall instance S in Aircraft -StatusDisplay >
(< S.situation.CWSDef AND S.Partition >,

(Shape: < S.Partition.Shape >
Color: < S.PTColor >
Blink: < S.PTBlink >
Fill: < S.T Fill >

4-14

ATD/CWM Product Requirements

< endfor >
Labels: aircraft.altitude, aircraft.velocity. aircraft.aircraft_id
CoordinateSystem: (2 * <SurveillanceArea.Range >, 2 * < SurveillanceArea.Range >)

3.1.3.2. CorrectiveAction Msg

The following table defines the content of the correctiveaction message based upon initial conditions
(given in the topmost row of the table) and conditions that hold when the host aircraft and potential
threat are closest together (leftmost column). The following abbreviations are used in the table.

altH host aircraft.altitude
altpT potential threat.altitude
rateH host aircraft.climb rate
ratepT potential threat.climbrate

Paradigm: text
Context: potential threat
Template: (

4-15

ATD/CWM Product Requirements

aitH _Ž alIPT AND aitH 2! altPT AND

altH - aItPT ;: 500 feet altH - alItpT < 500 feet

msd > 500 feet [maintain current heading and rate maintain current heading ani rate

msd < 500 feet AND climb at : ft/min
rateH = 0 AND

ratepT = 0

msd < 500 feet AND climb at X ft/min climb at X ft/min
rate11 = 0 AND

ratePT > 0

msd < 500 feet AND climb at X ft/mm
rateH = 0 AND

ratepT < 0

msd < 500 feet AND maintain current heading and rate climb at X ft/min
rateH > 0 AND

ratepT = 0

msd < 500 feet AND fly level climb at X ft/min
rateH < 0 AND

ratepT = 0

msd < 500 feet AND climb at X ft/min climb at X ft/min
rate1 1 > 0 AND

ratepT > 0

msd < 500 feet AIND - - - - - - - ------------ climb at X ft/min
rateh > 0 AND

ratepT < 0

msd < 500 feet AND climb at X ft/min climb at X ft/min
rateH < 0AND

ratepT > 0

mrd < 500 feet AND fly levcl climb at X ft/min
rateH < 0AND

ratepT < 0

4-16

ttTD/CWM Product Requiremenis

altH < altpT AND alt11 < altpT AND
altpT - al!H > 500 feet altpT - aitH < 500 feet

msd Ž 500 feet maintain current heading and rate maintain current heading and rate

msd < 500 feet AND ---- ----- dive at X ft/min
rate11 = 0 AND

ratepT = 0

msd < 500 feet AND dive at X ft/min
rateH = 0 AND

ratepr > 0

msd < 500 feet AND dive at X ft/mir dive at X ft/min
rateH = 0 AND

ratepT < 0

msd < 500 feet AND fly level dive at X ft/mm
rate,, > 0 AND

ratepT = 0

msd < 500 feet AND maintain current heading and rate dive at X ft/min
rate11 < 0 AND

ratepT = 0

msd < 500 feet AND fly level dive at X ft/min
rate11 > 0 AND

ratepT > 0

msd < 500 feet AN" fly level dive at X ft/min
rate11 > 0 AND

ratep, < 0

msd < 500 feet AND ---------------- dive at X ft/min

rateH < 0 AND
ratepT > 0

I msd < 500 feet AND dive at X ft/min dive at X ft/min
rateff < 0 AND

ratepT < 0

)

Quantity "X" appearing in the preceding text messages is computed as:

X (500- msd)
tm.d

Entries marked with dashed lines denote conditions that are not physically possible.

3.2. ACTVThES

3.2.1. UpdateATD

This activity invokes the Display presentation to display changes in potential threat collision
attributes.

demand activity
name: Update ATD

4-17

ATD/CWM Product Requirements

context: (potential threat. true)
starting event: C T(!radar_msg!)
presentation: ATD(potentialthreat)

3.2.2. UpdateAircraftDisplay -Symbol

This activity invokes the Display presentation to display partition changes in potential threat aircraft.

demand activity
name: UpdateAircraftDisplay Symbol
context: (potentialthreat, true)
starting event: @ T(<ADS.I D_Shape.Partition > [potential threat])

@F(< ADS.ID_Shape.Partition > [potential-threat])
presentation: ATD(potential threat)

<if there exists A e CWS such that A.Response.Alarm then>

3.2.3. RingAudibleAlarm

This activity invokes the AudibleAlarm presentation to initiate the audible alarm.

<forall A in Collision WarningSituation >
"< if A.Response.Alarm then >

demand activity
name: RingAudibleAlarm. < A.CWSName >
context: (potential threat. true)
<if A.Partition = ALL then>

starting event: C T(< A.CWS Def> [potential threat])
< else >

starting event: @aT(< A.CWSDef> [potentialthreat])
when partition = <A.Partition >

< endif>
presentation: Audible_Alarm(potentialthreat)

"< endif>
< endfor >

The AudibleAlarm presentation is activated only when the potential threat transitions from a lower
severity collision warning situation to one of higher severity.

< endif>

< if there exists A E CWS such that A.ResponseATCMsg then >

3.2.4. SendATCMsg

This activity invokes the ATCMsg presentation to send a message to the nearest air traffic control center.

-forall A in CollisionWarningSituation >
<if A.Response.ATCMsg then >

demand activity

4-18

ATD/CWM Product Requirements

name: SendATCMsg. < A.CWSName >
context: (potentialthreat. true)
"< if A.Partition = ALL then >

starting event: @T(<A.CWSDef > [potential_threat])
"< else >

starting event: @T(< A.CWSDef> [potential_threat])
when partition = <A.Partition >

"< endif>
presentation: ATCMsg(potentialthreat)

< endif>
< endfor >

"< endif>

"< if there exists A e CWS such that A.Response.lnterAir Msg then >

3.2.5. SendlnterAirMsg

This activity invokes the InterAir_Msg presentation to send a message to the appropriate potential
threat.

"< foreach A in CollisionWarningSituation >
"< if A.Response.InterAirMsg then >

demand activity
name: SendInterAirMsg. < A.CWSName >
context: (potential threat, true)
"< if A.Partition = ALL then >

starting event: @C T(<A.CWSDef> [potential_threat])
"< else >

starting event: CT(< A.CWSDef> [potential_threat])
when partition = <A.Partition>

"< endif >
presentation: Inter-Air_Msg(potential_threat)

"< endif >
"< endfor >

< endif>

3.2.6. SendCorrective Message

This activity invokes the CorrectiveActionMsg presentation to display a corrective action advisory
message on the host aircraft's ATD.

< forall A in Collision Warning_Situation >
< if A.Response.CorrectiveMsg then >

demand activity
name: SendCorrectiveMsg. < A.CWSName >
context: (potential threat, true)
< if A.Partition = ALL then >

4-19

ATD/C'WM Product Requirements

starting event: C T(< A.C WSDef> [potential threat])
"< else >

starting event: @T(< A.CWSDef> [potential threat])
when partition = <A.Partition >

"< endif >
presentation: CorrectiveActionMsg

< endif >
< endfor >

4. TIMING REQUIREMENTS

Periodic and demand functions are separated because the relevant timing information is different.

4.1. TIMING REQUIREMENTS FOR PERIODIC FUNCTIONS

None

4.2. TIMING REQUIREMENTS FOR DEMAND FUNCTIONS

Function Name Maximum Delay to Completion
UpdateAircraftDisplaySymbol 250 ms

Update_ATD 1250 ms

< forall A in CollisionWarningSituation >
<if A.Response.Alarm then >

RingAudibleAlarm. < A.CWSName > 250 ms

<endif>
< if A.Response.ATC_Msg then >

SendATCMsg. < A.CWSName > 250 ms

< endif >
<if A.Response.InterAirMsg then>

SendInterAir_Msg. <A.CWSName > 250 ms

< endif >
<if A.Response.Corrective Msg then >

SendCorrective_Msg. <A.CWS Name> 1250 ms

< endif >
< endfor >

4-20

ATD/CWM Product Requirements

Local Dictionary

!id definition! A predicate that defines the criteria for an identified
potential threat. The predicate is written in terms of
values of flight characteristics.

!radar msg! The event that occurs when the ATD/CWM system
receives another Radar_Msg from the radar device.

!transponder code! A four-digit integer code in the range 0000 ... 7777
excluding the following reserved codes.

7500
7600-7677
7700-7777

The last two digits should always read 00.

4-21

ATD,'C-WM Product Requirements

This page intentionally left blank.

4-22

5. ATD/CWM PROCESS REQUIREMENTS

1. PROCESS SPECIFICATION

This section describes the work products, activities, and process of application engineering for the
ATD/CWM domain. The activities and process describe the requirements for an application engi-
neering environment that supports the application engineer's decision-making process. The
ATD/CWM Application Engineering Process produces a product that is comprised of one or more
work products (both deliverable and intermediate).

WORK PRODUCTs

The work products produced by the ATD/CWM application engineering process are:

"* Application Model.

"* Executable software written in Ada and C.

"* DOD-STD-2167A Software Requirements Specification (SRS).

"* DOD-STD-2167A Interface Requirements Specification (IRS).

"* DOD-STD-2167A Software Design Document (SDD).

APPLICATION ENGINEERING PROCESS AND ACTIVITIES

Figure 5-1 (on the following page) shows the ATD/CWM Application Engineering Process. The dashed
boundary delineates the specification portion of this process. The bullet symbols (*) represent choices
where the application engineer can perform any of the activities indicated by the arrows.

The following paragraphs describe the activities of the Application Engineering Process. A

representation of the forms used by the application engineer follows each activity.

Step 1. Define Application Model Name

The application engineer must first specify a name for his Application Model. The name is entered
in the following form under the Value column.

Decision Mnemonic Value
Application Model Name ModelName alphanumeric

(case-sensitive; maximum 64
characters in length)

5-1

ATD/CWM Process Requirements

Specification

Define Application Model Name

Define Host Aircraft Define Potential Threat

Characteristics Characteristics

Define Collision
Warning Situation

Define Collision [iDefine Situto \ :posWarning Situation

Characteristics

DeinDefine AlarC_
Define Situation Display Characteristics

I I

'- -IValidate the Application Model Assess tshe Applicaton Model -.... -

ertthe Application Model

Key: Runtime 7Validation

SActivit~y [

Product Flow

Information

Decficneo Alarmit Bonr

Figure 5-1. Air Traffic Display/Collision Warning Monitor Application Engineering Process

5-2

ATD/CWM Process Requirements

The name must uniquely identify this Application Model.

Having entered the Application Model name, the application engineer performs any one of the
following steps. However. he must perform all of them before he has completed the Application
Model.

"• Define Host Aircraft Characteristics

"* Define Potential Threat Characteristics

"* Define Collision Warning Situation

Step 2. Define Host Aircraft Characteristics

The application engineer specifies the surveillance area radius, the icon shape for the host aircraft, and
the ATCMsg message format. These values are entered in the following form.

Decision i Mnemonic TValue
HostAircraft Characteristics I -

Surveillance Area SurveillanceArea numeric (range 10 to 300)

Host Aircraft Shape HostAircraftShape enumeration

(circle, square, triangle)

ATC MessageMode MessageMode enumeration (A. C)

Step 3. Define Potential Threat Characteristics

The application engineer specifies characteristics unique to potential threats. These characteristics
are the criteria for distinguishing between identified and unidentified aircraft and the icon shape for
identified and unidentified aircraft.

Decision Mnemonic Value
Potential Threat Characteristics ----------

Identification Requirements IDReq set (airspeed. altitude.

Siiape of Identified Aircrait I0_L...,pe enumeration
(circle, square. triangle)

Shape of Unidentified Aircraft UID Shape enumeration
I (circle, square, triangle)

A potential threat is considered identified when all of its attributes selected in the Identification
Requirements field are known.

Step 4. Define Collision Warning Situation

The application engineer specifies the name of a collision warning situation. He then performs four
more individual steps, in any order, to specify the characteristics of this situation, the response that
the ATD/CWM system performs when this situation is recognized, audible alarm characteristics (if
necessary), and how this situation is displayed to the pilot in the host aircraft on the ATD. These four
steps are listed below.

1. Define Collision Warning Situation Definition. The application engineer performs this step
to specify the characteristics (e.g., distance, severity) of this collision warning situation.

5-3

ATD/CWM Process Requirements

2. Define Situation Response. The application engineer performs this step to specify the actions
the ATD/CWM system performs when it recognizes this collision warning situation.

3. Define Situation Display. The application engineer performs this step to specify the icon color.
fill, and blink characteristics of the host aircraft, identified potential threats, and unidentified
potential threats.

4. Define Alarm Characteristics. The application engineer performs this step to specify the
audible alarm characteristics. This step is not performed if the application engineer does not
select the Alarm response for this collision warning situation.

Decision Mnemonic Value 1
Collision Warning Situation Ti

Collision Warning Situation Name CWSName alphanumeric 1
(case-insensitive with a maximum
length of 64 characters)

Situation Definition T 1
Situation Aircraft Partition TParition enumeration (ID, UID. ALL) 1
Situation Severity T Severity numeric (range 0.00 to 1.00.

resolution 0.01)

Situation Flight Characteristics 1 - - ----

Time

Min TimeMin numeric (range 1.0 to 300.0,
resolution 0.1)

Max TimeMax numeric (range 1.0 to 300.0,
resolution 0.1)

Range

Min Range_Min numeric (range 0.0 to X where X is
the value chosen for the
surveillance area)

Max RangeMax numeric (range 0.0 to X where X is
the value chosen for the
surveillance area)

Situation Response

Response to ATC ATC_Msg enumeration of (True, False)

Response to other Aircraft InterAir Msg enumeration of (True, False)

Corrective Action Response Corrective Msg enumeration of (True, False)

Alarm Alarm enumeration of (True, False)

Code Code numeric (exactly 4-digit integer;
range 0000-7777 excluding codes

7500
7600 through 7677
7700 through 7777

Last two digits must be 00.

Alarm Characteristics

5-4

ATD/CWM Process Requiremenis

Decision !Mnemonic Value

Pitch Alarm-Pitch numeric (range 1000 through
10,000)

Duration AlarraDuration numeric (range 0.01 to 10.00;
resolution 0.01)

Situation Display

Color of Host Aircraft HostColor enumeration (red, yellow, pink,
orange, blue, green, white, black,
purple, indigo, violet)

Color of Identified Potential Threats IDColor enumeration (red, yellow, pink,
orange, blue, green, white, black,
purple, indigo, violet)

Blinking Identified Potential Threats ID Blink enumeration (True, False)

Fill Identified Potential Threats IDFill enumeration (True, False)

Color of Unidentified Potential Threats FUID Color enumeration (red, yellow, pink,
orange, blue, green, white, black,
purple, indigo, violet)

Blinking Unidentified Potential Threats UIDBlink enumeration (True, False)

Fill Unidentified Potential Threats UID Fill enumeration (True, False)

If the named collision warning situation does not exist, it is created. The collision warning situation
name NORMAL is reserved and cannot be specified by the application engineer, including all upper-
and lower-case variations.

If the named collision warning situation exists, the reminder of this form will contain previously
entered values.

If the application engineer choses true for Alarm, he must also specify the alarm characteristics pitch
and duration. Otherwise, he can ignore these characteristics.

If the application engineer choses true for Response to ATC, he must chose a value for the Code decision.

Step 4 is repeated as often as there are collision warning situations to specify. A separate form is
completed for each collision warning situation.

Step 5. Validate the Application Model

The application engineer uses this activity to validate the Application Model. This step can only be
performed after the application engineer completes his Application Model. Furthermore, he must val-
idate it before he can use it to generate the application (see Generate the Application from the
Application Model). The following checks are applied during validation:

"* The application engineer has defined at least one collision warning situation.

"* The application engineer has defined values for all fields for every collision warning situation.

"* The application engineer has marked the CorrectiveMsg decision as true for at least one
collision warning situation.

5-5

ATD/CWM Process Requirements

"* The application engineer has specified a value for the surveillance area range.

"* The application engineer has specified a value for the ATCMessage format if, and only if,
there is at least one collision warning situation response which has the Response to ATC
dcision marked true.

"* The value space constraints for time and range are enforced when used in the collision warning
situation characteristics. For each collision warning situation in which Time is specified,
Time_Min < TimeMax. For each collision warning situation in which Range is specified, the
following checks are done:

- Range-Min < Range_Max

- Range-Min < Surveillance Area

- RangeMax < Surveillance Area

"* The application engineer has specified mutually exclusive icon shapes for the host aircraft,
identified potential threats, and unidentified potential threats.

"* The collision warning situations cover the entire surveillance area and none of them overlap.

Step 6. Assess the Application Model

The application engineer uses this activity to assess the Application Model. The following check is
performed during this activity:

* How quickly would the ATD,'CWM system respond to a detected collision warning situation?

Step 7. Generate the Application from the Application Model

The application engineer uses this activity to generate an application from a validated Application Model.

Step 8. Runtime Validation

The application engineer uses this activity to validate other characteristics of his ATD/CWM system
by performing the following checks while his ATD/CWM system is executing:

"* The ATD/CWM system performs the desired actions in response to detected collision warning
situations.

"* Each aircraft in the surveillance area is displayed with the desired identifying icon.

"* The ATD/CWM system recognizes each collision warning situation.

2. APPLICATION MODELING NOTATION SPECIFICATION

FoRM

The form presentation paradigm is a region consisting of a set of label/field pairs. The labels are text
describing the field content and nature. The individual fields are typed. They specify constraints that

5-6

ATD/CWM Process Requirements

exist for the given field. The application engineer is notified if any of the individual field constraints
are violated. He is allowed to create, modifN, or delete information associated with any one of the
individual fields. There is also a paradigm for moving between the individual fields of the form.

Decision Mnemonic Value

The form name identifies a particular application engineering form. The paradigm for forms is fixed
as Form. The form is made up of one or more fields which have the following parameters: Decision,
Mnemonic, and Value. The parameters of this form specification table are:

"* Decision. The Decision identifies a particular field in the form. This is a text string that will
be used to label the associated field.

"* Mnemonics. The Mnemonic identifies a shorthand abbreviation of the Decision.

"* Value. Each Value has a specific type (described in the form itself) which is one of the following:

- Alphanumeric. An alphanumeric field allows the application engineer to specify text
consisting of alphabetic and numeric characters. An alphanumeric field must begin
with an alphabetic character. Constraints on the number of allowed characters are de-
fined in the Decision Model. Additional constraints such as case-sensitivity and
variable-length may also be included for this field type.

- Enumeration. An enumeration field consists of a discrete set of choices. The
application engineer can select individual choices from the legal list of choices (i.e.,
true and false as exampleS of a boolean decision).

- Numeric. A numeric field allows the application engineer to specify a numeric value.
Value constraints for numeric fields are obtained from the Decision Model. Typical
constraints include restricted ranges of numbers, integer-only, and real numbers with
an established number of significant digits.

- Set. An enumeration field consists of a discrete set of choices that are presented to
the application engineer. He can select multiple choices from the legal list of choices.

- Text. A text field allows the application engineer to specify arbitrary free-form text (i.e.,
any printable character). Additional constraints such as case-sensitivity may also be
included for this field type. There are no predefined maximum number of characters
specified for a text field.

* Each field has an associated decision from the Decision Model. When the application engineer
enters information in a field, it is associated with the corresponding Decision Model dccision.

5-7

ATD/CWM Process RequiremenIs

This page intentionally left blank.

6. ATD/CWM PRODUCT DESIGN

NoTE: The ADARTS (Software Productivity Consortium 1991b) method. as modified in Section A.6
to fit the requirements method, was used to develop the ATD/CWM Product Design.

Product Design consists of three subproducts: Product Architecture, Component Design, and Generation
Design.

1. PRODUCT ARCHITECTURE

The Product Architecture for the ATD/CWM domain is described by three structures: an adaptable
information hiding structure, an adaptable process structure, and an adaptable dependency structure.
The description of each structure consists of two parts: an interface and a textual/graphical form of
thcb structure. The interface consists of three parts: instantiation parameters. instantiation constraints,
and a local dictionary The instantiation parameters describe what adaptations are possible for the
given structure. The value space and a definition are provided for each instantiation parameter. The

instantiation constraints describe any relations that exist among the instantiation parameters that
must be satisfied to obtain a valid structure for a particular family member. The local dictionary
defines terms used in the instantiation parameters or constraints.

ADAPTABLE INFORMATION HIDING STRUCTURE

Instantiation Parameters

Parameter Value Space Definition
Name

alarm boolean A true value means that the components to support the
AudibleAlarm must be included in the information hiding
structure. Otherwise, this parameter's value is false.

atcmsg boolean A true value means that the components supporting
transmission of an ATC_Msg to air traffic control must be
included in the informa~ion hiding structure. Otherwise, this
parameter's value is false.

inter air insg boolean A true value means that the components supporting
transmission of an Inter Air Msg to a potential threat must
be included in the information hiding structure. Otherwise,
this parameters value is false.

tempbuffer list of !buffer! Each record in this list contains the name, mnemonic, and
description of an instance of the TemporaryDataBuffers
module.

Instantiation Constraints - none

6-1

ATD/CWM Product Design TProduct Architecture

Local Dictionary

!buffer! record of (
name :identifier,
mnemonic identifier,
description text

)

The graphical form of the adaptable information hiding structure is represented in Figures 6-1
through 6-4. Descriptions of the modules follow the figures.

IATD/CWM]

Environment_Hiding Behavior Hiding SoftwareDecision

Figure 6-1. "lop-Level of the Air Traffic Display/Collision Warning Monitor Information Hiding Structure

6-2

ATD/CWM Product Design/Product Architecture

[BehaviorHiding[

Communication PotentialThreat

.___• AiTr ffic._isplay Host-Aircraft

.• Dynamic-Model,

- PotentialThreatPartition

CollisionWarningSituationStatus

Figure 6-2. Decomposition of the BchaviorHiding Module

6-3

ATD/CWM Product Design Product Archilecture

SEnvironment-Hiding

]Device-Interface FExtended-Computer Systemok

- Audible_-Alarm_Device I

Communication-Device

-• Navigation

----] Radar

A.__ T-irTra fficCon t to]

Figure 6-3. Decomposition of the EnvironmentHiding Module

SSoftware-DecisionI

Temporary-_Dat_ Buffers _ iti°o-Dyn•am'•s

Application Data Types

_• Physical-Models

PhysicalQuantities

L Numerical Algorithms

Figure 6-4. Decomposition of the Software Decision Module

6-4

ATD/CW'M Produci Design/Product Architeciure

Textual description of the adaptable information hiding structure.

1. Environment-Hiding (EH)

The Environment-Hiding module includes the programs that need to be changed if any part of the
hardware and software operating environment of the ATD/CWM system changes or is replaced by
another part that presents a different interface but has the same general capabilities. This module
implements a virtual environment that the rest of the ATD/CWM system uses. The primary hidden
decisions of this module are the interfaces provided by the actual devices and software systems in the
ATD/CWM environment. The secondary hidden decisions are the algorithms and data structures
used to implement the virtual environment.

1.1. Extended_Computer (EC)

The ExtendedComputer module hides the characteristics of the processing environment that are
considered likely to change if the product set is moved to another computer, operating system, or a
different language or language compiler. This module provides an integrated abstraction of processor.
operating system, and language capabilities.

1.2. DeviceInterface (DI)

The DeviceInterface module contains the programs that need to change if one or more of the devices
with which the ATD/CWM software must interact are replaced with a device having a different
hardware/software interface but the same general capabilities.

1.2.1. SystemClock (CLK)

The SystemClock module encapsulates how software determines the current time and date. The
primary hidden decision is the hardware/software interface to the hardware clock.

< if alarm then >

1.2.2. AudibleAlarmDevice (AAD)

The AudibleAlarmDevice module encapsulates the hardware/software interface to the audible
alarm. Its primary hidden decisions are the value encoding of the frequency and duration to the device.

< endif >

1.2.3. AirTraffic DisplayDevice (ATDD)

The AirTrafficDisplayDevice module encapsulates the hardware/software interface to the display.
Its primary hidden decisions are the particular sequence of operations necessary to enable and posi-
tion various icon symbols; the methods for manipulating icon color, shape, shade, and blink character-
istics; the method for removing an icon from the display: and the method for writing text to the display.

<if atc msg OR inter air msg then >

1.2.4. CommunicationDevice (CD)

The CommunicationDevice module encapsulates the hardware/software interface to the
communication device. Its primary hidden decision is how to transmit a string of characters to either
the nearest air traffic control center or specified potential threat.

t_-,

ATD/CWM Product Design/Product Architecture

< endif>

1.2.5. Navigation (NAV)

The Navigation module encapsulates the hardware/software interface to the host aircraft navigation
device. The primary hidden decisions are how to obtain host aircraft raw data for altitude, airspeed,
ground-track, latitude, and longitude; the scale and format of these input data items; and the de-
vice-dependent operations that must be applied to convert the raw data to the internal format of the
ATD/CWM system.

1.2.6. Radar (RADAR)

The Radar module encapsulates the hardware/software interface to the radar. The primary hidden
decisions are how to obtain raw data for the aircraft identification, sweep, relative bearing, range,
and timestamp: the scale and format of these input data items; and the device-dependent operations
that must be applied to convert the raw data to the internal format of the ATD/CWM system.

1.2.7. AirTrafficControl (ATC)

The AirTrafficControl module encapsulates the hardware/software interface to the ATC device. Its
primary hidden decisions are how to obtain raw data for the aircraftidentification. altitude, airspeed,
ground_track, and range; the scale and format of these input data items, and the device-dependent
operations that must be applied to convert the raw data to the internal format of the ATD/CWM
system.

2. BehaviorHiding (BH)

The Behavior Hiding module contains all the software that would need to be changed if the externally
visible, required behavior of the system were to change without an attending change in the hardware.
The primary hidden decision of the module is the rules for producing the required system outputs.
The secondary hidden decision is the algorithms and internal data structures used to implement the
required behavior.

2.1. FunctionDrivers (FD)

The FunctionDrivers module consists of a set of modules called function drivers. Each function
driver is the sole controller of a set of closely related outputs. The primary hidden decisions of this
module are the rules determining the values of these outputs and the rules determining when these
values are computed.

<if alarm then>

2.1.1. Aud'bleAlarm (AA)

The hidden decisions of the AudibleAlarm module are to determine the frequency and duration at
which to initiate the audible alarm for a specific collision warning situation.

"< endif>

"< if atcmsg OR inter air msg then >

646

ATD/CWM Product Design/Product Architecture

2.1.2. Communication (COMM)

The hidden decision of the Communication module is how the content of the Communication
messages are determined for a specific collision warning situation.

< endif >

2.1.3. AirTrafficDisplay (ATD)

The hidden decisions of the AirTraffic Display module are when to display aircraft status, where to place
aircraft symbols, what information to display. and the content of the corrective action message.

2.2. SharedFunctions (SF)

Because some behavior is common to several behavior modeling modules, it is expected that if there
is a change in that aspect of the behavior, it will affect all of the functions that share it. Consequently.
a set of modules have been identified each of which hides an aspect of the behavior that may be shared
by two or more other behavior hiding modules.

2.2.1. Static_ Model (SM)

The hidden decision of the Static-Model module is how to represent and manipulate the static model
of ATD/CWM systems.

2.2.1.1. PotentialThreat (PT)

The PotentialThreat module models potential threats in an ATD/CWM system. Potential threats have
properties of altitude. aircraftidentification. airspeed, groundtrack. range. relative_bearing. rate. and
cwsstatus. The hidden decisions of this module are the internal representation of the properties,
algorithms for manipulating them, and how to determine the values for potential threat properties.

2.2.1.2. HostAircraft (HA)

The HostAircraft module models the host aircraft in an ATD/CWM system. The host aircraft has
properties of altitude, aircraftidentification, airspeed, location, ground track, rate. and cwsstatus.
The hidden decisions of this module are the internal representation of these properties, algorithms
for manipulating them, and how to determine the values for these properties.

2.2.2. Dynamic-Model (DM)

The Dynamic Model module hides a model of how a collision warning situation changes as aircraft
move on predicted flight paths.

2.2.2.1. CollisionWarning_SituationStatus (CWSS)

The hidden decisions of the CollisionWarning_Situation_Status module are how to determine the
collision warning situation status of potential threats and the host aircraft.

2.2.2.2. PotentialThreatPartition (PTP)

The hidden decision of the Potential ThreatPartition module is how to determine the potential threat
partition.

6-7

ATD/CWM Product Design/Product Architecture

2.2.3. InitializationandTermination (IT)

The hidden decision of the InitializationandTermination module is how system operation is
initiated and terminated.

3. SoftwareDecision (SD)

The Software Decision module hides software design decisions that are based on mathematical
theorems, physical facts, and programming considerations such as algorithmic efficiency and
accuracy. The hidden decisions of this module are not described in the product specification. This
module differs from the other modules in that both the hidden decisions and the interfaces are deter-
mined by software designers. Changes in these modules are more likely to be motivated by a desire
to improve performance than by externally imposed changes.

3.1. DataAbstraction (DA)

The DataAbstraction module provides data types, including persistent data object collections, that
are useful in the ATD/CWM domain. The primary hidden decisions of the module are the representa-
tion of the data and the representation of the algorithms used to implement the data types. Units of
measure are part of the representation and are hidden. Where necessary, the modules provide
conversion operations which deliver or accept values in specified units.

3.1.1. TemporaryDataBuffers (TDB)

The Temporary_DataBuffers module encapsulates details about buffers used to communicate
information between programs. The primary hidden decisions are the size of the buffers, are they
fixed or vary in size. are they stored contiguously in memory or not, what to do when a buffer is full
or empty, are they loosely- or tightly-coupled, and are the regimes for temporary storage first-in/
first-out, last-in/first-out.

"< forall B in tempbuffer >
<B.name> (<B.mnemonic>)
< B.description >

"< endfor >

3.1.2. Application_DataTypes (ADT)

The Application_DataTypes module provides abstract data types useful for the ATD/CWM domain.
The primary hidden decisions are the representation of the data type and the representation of the
algorithms used to manipulate them. Where necessary, conversion operations are also provided.

3.1.2.1. PhysicalQuantities (PQ)

The Physical Quantities module encapsulates details about data types used to represent physical
quantities such as distance and velocity. The hidden decisions of this module are the representation
of these data types; the use of range and resolution tt, determine representation; algorithms for per-
forming operations, and conversions required when two quantities of the same data type are not
represented in the same way.

3.2. Logic-Abstraction (LA)

The Logic Abstraction module implements models that derive values based on relationships among
other values. The primary hidden decision of this module are the algorithms used to derive the values.

6-8

ATDI/CWM Producl Design/Producl Archilecture

3.2.1. SituationDynamics (SD)

The hidden decisions of the SituationDynamics module are how physical models can be put together
to predict a future situation starting from a known state history.

3.2.2. Physical-Models (PM)

The software requires estimates of quantities that cannot be measured directly but can be computed
from observables using mathematical models. The primary hidden decisions of the PhysicalModels
module are the models and the implementation of those models.

3.2.2.1. Aircraft-Motion (AM)

The AircraftMotion module encapsulates details of the model of an aircraft's motion which are used
to calculate aircraft position and altitude from observable inputs. The primary hidden decision of this
module is the equation of motion.

3.2.3. SoftwareUtility (SU)

The SoftwareUtility module contains those utility routines that would otherwise have to be written
by more than one other module. the hidden decisions of this module are the data structures and
algorithms used to implement the programs.

3.2.3.1. Numerical_Algorithms (NA)

The NumericalAlgorithms module provides maLhematical service routines needed by more than one
module within the system. These functions include services for data manipulations such as square
root and trigonometric functions. The hidden decisions of this module are the algorithms
implementing the functions.

ADAPTABLE PROCESS STRUCTURE

Instantiation Parameters

Parameter Value Definition
Name

cws list of !cws info'. Each record defines the set of responses performed by the
ATD/CWM system for the specified collision warning
situation.

Instantiation Constraints - none

Local Dictionary

!cws info! record of (
cws name "identifier,
alarm boolean,
atcmsg : boolean,
interair msg: boolean.
corrective msg : boolean

)

6-9

ATD/CWM Product Design/Product Architecture

The adaptable process structure is described in two parts. First, the atomic entities used to derive
the adaptable process structure are listed. Second, the adaptable process structure is described in
terms of atomic entity groupings and rationale.

* Starting Point

The initial set of atomic entities (i.e., they cannot be subdivided) were identified from the Product
Requirements using the heuristics discussed below.

One atomic entity for each entity of each primary static model class.

Atomic Entity How Many

HostAircraft 1

Potential Threat 1

One atomic entity for each device.

Atomic Entity How Man%

Navigation 1

Radar 1

AirTraffic Control 1
AudibleAlarm Device 1
AirTrafficDisplay_Device I

CommunicationDevice 1

One atomic entity for each device input mapping.

Atomic Entity =How Many

Process-Navigation I1
ProcessRadar I
Process-ATC III

One atomic entity for each activity.

Atomic Entity How Many

UpdateATD I

Update AircraftDisplaySymbol 1

Ring_AudibleAlarm 0 or more

SendATCMsg 0 or more

SendInterAir Msg 0 or more

Send CorrectiveMsg 1 or more

6-10

ATD/CWrM Product DesignTProduct Architecture

One atomic entity fbr each Dynamic Model process.

Atomic Entity H 1ow Many

Time To Impact IX

MinimalSeparationDistance 1

PotentialThreat CWS 1
Potential Threat Partition I
HostAircraft CWS 1

Update RelativeBearing I

* Task Structuring

Update HostAircraftInformation

Composed Of Criteria
Navi2ation Synchronous I/O device (The navigation device periodically updates
HostAircraft the data and transmits it to the ATD/CWM system).
Process_Navigation

Periodic event (need for up-to-date host aircraft location within the
resolution specified by the aircraft position algorithm).

UpdatePotential_ThreatInformation

Composed Of Criteria
PotentialThreat Entity modeling (for each potential threat, updating the information
PotentialThreatCWS must be accomplished).
Update RelativeBearing
Potential ThreatPartition Sequential cohesion (when new information is received for each
TimeToImpact potential threat, its collision warning situation status must be
MinimalSeparationDistance recomputed).

GetRadar Information

Composed Of Criteria

Radar Sequential cohesion.
ProcessRadar

GetATCInformation

Composed Of Criteria
Air Traffic-Control Sequential cohesion.
ProcessATC

UpdateATD

Composed Of Criteria
AirTrafficDisplayDevice Passive I/O device.

6-11

ATD/CWM Product Design/Product Architecture

UpdateAircraftDisplaySymbol

Composed Of Criteria
UpdateAircraftDisplaySymbol To be determined

<if there exists C E cws such that C.alarm then>

Output-Alarm

Composed Of Criteria

AudibleAlarmDevice Asynchronous i/o device.
Buffer the ATD/CWM system from the Audible Alarm device driver.

"< endif>

"< if there exists C E ews such that (C.atc_msg OR C.inter airmsg) then >

Output-Communication

Composed Of Criteria

Communication-Device Asynchronous I/O devrice.
Buffer the ATD/CWM system from the Communication device
driver.

"< endif>

"< forall C in cws >

Collision_WarningSituation_ < C.cws name >

Composed Of Criteria

< if C.alarm then > Sequential cohesion.
RingAudibleAlarm
< endif> Functional cohesion (all responses are involved in the response due
<if C.atc_msg then> to a transition into this collision warning situation).
Send ATC_Msg
"< endif> Separation from other tasks which perform the same functionality
"< if C.inter airmsg then > because of prioritization.
Send_Inter AirMsg
< endif >
<if C.correctivemsg then >
SendCorrectiveMsg
< endif>
UpdateCWS

"< endfor >

Figure 6-5 shows a graphical representation of the adaptable process structure for the ATD/CWM
domain.

6-12

ATD/CWM Product Design/Product Architecture

External Event External Event Timer Event

., Get ATC

Information

SPotntil TheatHost Aircraft
Informationnrmaio

Update:ATD Display Updates

ituation< sOutput Alarm Audible Alarm Data

(x) 7 1 ~Output Aa-

Soutput /l Communication Data

Communication

KEY:

Loosely coupled message communication
(x) buffer or group of x-related loosely

coupled message communication buffers

Process or group of x-related processes

I IDatastore

Event

Figure 6-5. Adaptable Task Architecture Diagram for the Air Traffic Display/Collision Warning Monitor Domain

6-13

ATD/CWM Product Design/Product Architecture

• Code Component - Task Integration

The following table shows which adaptable code components in the adaptable information hiding
structure contain the tasks.

Adaptable Code Component Task

AirTraffic_Display UpdateATD

HostAircraft UpdateHost AircraftlInformation

Potential Threat GetRadarInformation
Get ATCInformation
< forall C in cws >

CollisionWarningSituation. C.cwsname >
< endfor >
UpdatePotentialThreatInformation

<if there exists C e cws such that C.alarm then>

AudibleAlarmDevice OutputAlarm

"< endif >

"< if there exists C e cws such that (C.atcmsg OR C.inter airmsg) then >

I Communication Device Output_Communication

"< endif>

Adaptable Dependency Structure

Figure 6-6 depicts the dependency structure for the ATD/CWM domain. The dependency
assumptions and Interface Requirements for all leaf adaptable code components are captured in the
adaptable code component interface specifications.

6-14

ATD ICW.M Product Design/fProduct Architecture

<~-

-S E

<0 t

z C.

C C.0

<C

__ _ _ _ _ _ _ __ _ _ _ _ _C

----- ip C
<J

LI <f
_______________:<

Fa6-IS

ATD/CWM Produci Design:Component Design

2. COMPONENT DESIGN

Adaptable components are described by an interface which maxy consists of the following parts:

"* Instantiation Parameters. Describe what adaptations are possible for the given adaptable
component. A parameter name, type, and description are provided for each instantiation
parameter.

"* Instantiation Constraints. Describe any relationships that must be satisfied to obtain a valid
component.

" Assumptions. Contain a concise statement of unchangeable aspects of the component. The
assumptions describe what needs to be true for any implementation to work. The assumptions
describe both dependency and interface assumptions.

"• Concrete Operations. Describes programs that can be called by programs in other components.
For each operation, the parameters are described (e.g., name, type, whether it is read only [1],
update only [O], or both read and update [101 and undesired events are listed).

"* Effects. Describe the externally visible effects of each concrete operation.

"* Events Signalled. Describe the signals from this component to users. Indicates the occurrence
of some state change within this component.

"• Types. Contain types defined by this component that can be referenced by other components.

"* Local Dictionary. Defines anx" terms used in the overall interface description.

"* Undesired Event Dictionary. Contains definitions of the undesired events that are referred to
in the concrete operations.

The interface description for each adaptable code component contains all of these parts. However.
the interface description for adaptable documentation components contains only the Instantiation
Parameters and Local Dictionary. Adaptable verification and validation components contain only the
Instantiation Parameters, Instantiation Constraints, and Local Dictionary.

ADAFTABLE CODE COMPONENrTS

1. AircraftMotion (AM)

This module contains programs that model aircraft motion. Aircraft location, velocity. and altitude
with respect to the earth and airmass are derived from measures of aircraft motion from devices and
other physical models modules.

Instantiation Parameters

Parameter Type Description

msd positive Minimal separation distance as dictated by the FAA such that
Siftwoaircraft pass each other within this limit, then a collision
has occurrcd

6-16

ATD/CW'M Product Design 'Component Design

Instantiation Constraints - nor.,,

Assumptions

Dependency Assumption

D1. There is a way to obtain the aircraft's altitude.

D2. There is a way to obtain the aircraft's velocity.

D3. There is a way to obtain the range for a potential threat.

D4. There is a way to obtain the relative bearing for a potential threat.

D5. There is a way to obtain the ground track of the host aircraft.

D6. There is a way to perform arithmetic operations on velocity, altitude, and rate.

D7. There is a way to compute the square root of a numeric quantity.

D8. There is a way to determine how much time has elapsed between successive readings
for an aircraft's altitude.

D9. There is a way to compute trigonometric functions.

Interface Requirement

II. This module must determine the current velocity of an aircraft in the vertical axis.

12. This module must determine the current velocity of an aircraft's velocity in the X-Y plane.

13. This module must predict the relative bearing of an aircraft with respect to another one.

14. This module must allow users to determine the FAA allowed minimal separation distance.

15. This module must determine the range component that lies in the X-Y plane.

16. This module must determine the climb rate of an aircraft.

Concrete Operations

Operation Parameter Description Undesired Events

getmsd distance:Physica]_Quanti ies.feet:O !msd. 1 None

getrange_ x distance: !rangeAB! None
Physical Quantities.nautical_mile:I

altitude_A:PhysicalQuantities.feet:I !alt_A!
altitudeB:PhysicalQuantities.feet;I !alt_B!
range:

Physical Quantities.nautical_mile;O

getclimb rate altitude Y:PhysicalQuantities.feet;I !alt Y! climb-rate-isinfinite
tnme_Y:Physical_Quantities.seconds:l !timeY?
altitudeX:PhysicalQuantities.feet:l !alt_Xl.
time_X:PhysicalQuantities.seconds:I !time X.
climb rate:PhvsicalQuantities.fpm:O !rate'

get-velocity-x) velocity:PhvsicalQuantities.knots:l !velocity' None
rate:Phvsical _Quantities.fpmr: !rate!
_-_vel:Physical_Quantities.knots:O

r•-1T

ATD/CWM Product Design/Component Design

Effects

getmsd Returns the FAA minimal separation distance.

get rangexy Returns the component of range in the X-Y plane via
the following equation.
range = (distance 2 - (altitude A - altitude_B)2)0-

get-climb rate Returns the velocity of the specified aircraft in the
vertical axis (i.e., climbrate). The climbrate is com-
puted as:

(altitudeY - altitudeX) / (timeY - timeX)

where timeY > timeX.

get velocity_xv Returns the current velocity of the specified aircraft
in the X-Y plane via the following equation.

xyvel = (velocity2 _ rate2)0 -5

Events Signalled - none

Types - none

Local Dictionary

!altA!, !alt_B! Most recently measured altitude readings for aircraft
A and aircraft B, respectively.

!altX!, !altY! Altitude readings for the aircraft at times !timeX'
and !time_Y!, respectively.

!msd! Minimal separation distance dictated by the FAA
(i.e., aircraft whose flight paths that intersect each
other within this distance are considered to have col-
lided).

!rangeAB! Distance between the aircraft A and B.

!rate! Vertical rate of change (i.e., climb rate).

!timeX!, !timeY! Times at which !altX! and !altY! were measured.
respectively.

!velocity! Most recently measured aircraft velocity.

6-18

ATD,'CWM Product Design/Component Design

Undesired Event Dictionary

climb rate is infinite This undesired event occurs when timeY equals
timeX in the "get climb_rate" operation.

2. AirTrafficControl (ATC)

Instantiation Parameters - none

Instantiation Constraints - none

Assumptions

Dependency Assumption

None

Interface Requirement

I1. This module must provide altitude, aircraft-identification. velocity, ground_track, range,
and relativebearing for a potential threat. It must also provide the timestamp defining
when this data was received.

Concrete Operations

Operation Parameter Description Undesired Events

getatcmessage aircraft id:string(8),O None
altitude:PhysicalQuantities.feet;O
airspeed:PhysicalQuantities.kno. I" 3
groundtrack:

PhysicalQuantities.degrees:O
range:

PhysicalQuantities.nauticalmile;O
relative bearing:

Physical_Quantities.degrees:O
timestamp:Physical Quantities.seconds:()

Effects

Events Signalled - none

"Types - none

Local Dictionary

Undesired Event Dictionary - none

6-19

ATD/CWM Product Design/Component Design

3. Air_Traffic_Display (ATD)

Instantiation Parameters

Parameter Type Description
iconshape !iconshape! A record that defines the icon shape to use for potential

threats and the host aircraft

display list of !ptdisplay! Each record defines the shape, color. blinking, and fill
characteristics for the icon representing a potential threat in
the specified collision warning situation.

color list of !host-color! A list of records each defining the color of the host aircraft
icon for different collision warning situations.

area identifier Diameter of the surveillance area.

Instantiation Constraints

1. Adaptable component AirTrafficDisplayDevice must be instantiated as well.

Assumptions

Dependency Assumption

DI. There is a way to determine which aircraft needs to be updated on the display.

D2. There is a way to determine what collision warning situation an aircraft is in relative
to the host aircraft.

D3. There is a wav to determine which aircraft has triggered the event requiring the need
to have a CorrectiveAction_Msg generated.

D4. There is a wax' to determine the identification number for a potential threat.

D5. There is a way to determine the altitude of the host aircraft and potential threat.

D6. There is a way to determine the rate of the host aircraft and potential threat.

D7. There is a way to determine the potential threat's partition.

D8. There is a way to determine the ground track of the potential threat.

D9. There is a way to determine -the ground track of the host aircraft.

D10. There is a way to determine the distance between the host aircraft and any potential
threat.

Dli. There is a way to determine the minimal separation distance between a potential threat
and the host aircraft.

D12. There is a way to compare aircraft rates.

6-20

ATD/CWM Product Design/Component Design

D13. There is a way to compare aircraft ground tracks.

D14. There is a way to compare aircraft altitudes.

D15. There is a way to display aircraft status on the ATD.

D16. There is a way to determine the FAA-allowed minimal separation distance.

D17. There is a way to convert an integer number to a character string.

D18. There is a way to determine how much time elapses (time to intersect) before two aircraft
reach a separation minima.

D19. There is a way to initialize the display.

Interface Requirements

11. This module must allow users to initialize the display.

12. This module must allow users to format and transmit a corrective action advisory message.

13. This module must allow users the capability to update the display when an aircraft changes
partition.

14. This module must allow users to update the display when a potential threat transitions
into a collision warning situation.

Local Dictionary

!colortype! enumerated (red, orange, green, yellow, white, blue.
black, pink, purple, indigo, violet)

!cwsid! Enumerated name of the collision warning situation.

!hostcolor! record of (
cws name: !cws id!,
color : !color_type!

)

3.1. Corrective ActionMessage

Concrete Operations

Operation Parameter Description Undesired Events

corrective actionmsg threat:Potential_threat.pt_handle;I None

Output Produced

Item Type Operation

msg string AirTrafficDisplayDevtce.wrtue text
xloc Air_Traffic Display_Device.position type
yloc AirTrafficDisplay_Devicc.positiontype

6-21

ATD/CWM Product Design/Component Design

Effects

correctiveaction-msg Determines the content of the CorrectiveAction Msg and
sends it to the AirTrafficDisplay-Device.

Function Definition

Output Values: msg: !correctivemessage!
xloc: 370
yloc: 980

Local Dictionary

!corrective_message! The following table defines the content of the
correctiveaction message based upon initial condi-
tions (given in the topmost row of the table) and con-

ditions that hold when the host aircraft and potential
threat are closest together (leftmost column). The
following abbreviations are used in the table.

aitH host aircraft.altitude
altPT potential threat.altitude
rateH host aircraft.climb rate
ratepT potential threat.climbrate

6-22

ATD/CWM Product Design/Component Design

aliH Ž altpT AND alt1 Ž_ altpT AND
altH - altPT ý 500 feet altH - altpT < 500 feet

msd > 500 feet maintain current heading and rate maintain current heading and rate

msd < 500 feet AND climb at X ft/mm
rateH = 0 AND

ratepT = 0

msd < 500 feet AND ---- climb at X ft/min

rate1 1 = 0 AND
ratepT < 0

msd < 500 feet AND climb at X ft/min climb at X ftimm
rate11 = 0 AND

ratepT > 0

msd < 500 feet AND fly level climb at X ft/min
rateH1 < 0 AND

ratepT = 0

msd < 500 feet AND fly level climb at X ft/min

rateH < 0 AND
ratepT < 0

msd < 500 feet AND climb at X ft/min climb at X ft/min
rate1 < 0 AND

ratepT > 0

msd < 500 feet AND maintain current heading and rate climb at X ft/min

rateH > 0AND
ratepT = 0

msd < 500 feet AND climb at X ft/min
rateH > 0 AND

ratep-l < 0
msd < 500 feet AND climb at X ft/min climb at X fi/min

rateHi > 0 AND

ratepT > 0

6-23

ATD!CWM Product Design!Component Design

altH < altpT AND altH < altpT AND
altPT - altH > 500 feet altiT - alt11 < 500 feet

msd > 500 feet maintain current heading and rate maintain current heading and rate

msd < 500 feet AND dive at X ft/min
rateH = 0 AND

ratepT - 0

msd < 500 feet AND dive at X ft/min dive at X ft/min
rateH = 0 AND

ratepT < 0

msd < 500 feet AND dive at X ft/min
rateH = 0 AND

ratepT > 0

msd < 500 feet AND maintain current heading and rate dive at X ft/min
rateH < 0 AND

ratepT = 0

msd < 500 feet AND dive at X ft/min dive at X ft/min
rateH < 0 AND

ratepT < 0

msd < 500 feet AND -- ----- dive at X ft/min
rateH < 0AND

ratepT > 0

msd < 500 feet AND fly level dive at X ft/min
rateH > 0 AND

ratepT = 0

msd < 500 feet AND fly level dive at X ft/min
rateH > 0 AND

ratepT < 0

msd < 500 feet AND fly level dive at X ftimin
rateH > 0 AND

ratepT > 0

where the quantity "X" appearing in the preceding

text messages is computed as

X = (500 - msd) / tmsd

Item tmsd is the time to intersect. Entries marked with

dashed lines denote conditions not physically
possible.:

6-24

ATD/CWM Product Design/Component Design

3.2. UpdateAircraftDisplaySymbol

Concrete Operations

Operation Parameter Description Undesired Events

I update ads threat:PotentialThreat.pt_handle;I None

Output Produced

Item Type Operation

id Air TrafficDisplayDevice.displayhandle AirTrafficDisplay Device.shapeobject
shape AirTrafficDisplayDevice.shapetype

Effects

update_ads Updates the icon shape for the specified potential
threat when its partition changes.

Function Definition

I Condition

Spartition_threat.partition = ID partition_threat -partition =UID

Output Value: !id lid
Sshape •id_shapet shape = uid shape

Local Dictionary

!icon-shape' record of (
host_shape : identifier.
id_shape :identifier.
uid_shape :identifier

)

3.3. UpdateATD

Concrete Operations

Operation Parameter Description Undesired Events

updatecws threat:Potential-Threat.pt handle;I None
displaystatus:

Potential_Threat.target display;I

Output Produced

NoTE: The output produced varies as a function of the value of parameter displaystatus and whether
the target designated by parameter threat has been displayed. There are three cases described
below. Only one of these outputs is produced per invocation of routine "updaeicws".

6-2i

ATD/CWM Product Design/Component Design

Case 1: display status = delete

handle Air Traffic Display _Device~display -hand] e IAir TrafficDslý-ec~eeeojc

Case 2: threat has not been displayed yet

Item TyVpe Operation
icon shape Air Traffic Display -Device.shape AirTraffic Display -Device. crea t eobj ect
icon size AirTraffic Disp~lay -Device.size
icon -fill Air_Traffic DisplayDe~ice.ffll
icon -color AirTrafficDisplayDevice~color
fill-blink-rate AirTraffic-Disp~lav-Device.blink
obj_.blink_rate Air_-TrafficDisplay Device.blink
xloc AirTraffic -Displaxy Device -position
yloc AirTraffic Display -Device posit ion
label I strnn,
label 2 string
label 3 string
label_4 string
label-5 string

Case 3: default case

Item Iyt Operation

shape Air -Traffic Disp~la%' Dev-ice shape AirTraffic Displa\y Dev~ice~move obiject
size AirTrafficDispla\' Dcv-ice.si7C
fill1 AirTraffic Display Device~fill
color AirTraffic Displa\y De\vice~color
fill blink rate AirTrafficDispla\y Dcviý-ce.blinkI
obj blink-rate AirTrafficDisplay Device~btink
xloc Air Traffic DisplayDevice~position

,-:,)c AirTraffic Display _Deicc.posi tion
label_ 1 string
label_2 stri Ing(

label_3 string,
label_4 string

label_5 string ____________________

endif

Function Definition

6-26

ATD/CWM Product Design/Component Design

Event

@T(!radar-msg!)

Output Value(s): potentialthreat:
< forall X in display>

<if X.CWS Defipotential-threat] then>
id:
< if X.Partition = ID then >
shape: < icon shape.id >
< else >
shape : < iconshape.uid >
<endif>
size: 16
<if X.PT Fill then >
fill: < X.PTColor >
< else >
fill: none
<endif>
color: < X.PT Color >
< if X.PT Blink then >
fill blink rate: 0.125
objblinkrate: 0.125
< else >
fill blink-rate: 0
objblinkrate : 0
<endif>
(xloc, vloc) : !•ocation I,
label_1: "ID: " !pot ential threat ID!
label_2: "Altitude: + !potential_threataltitude!
label_3: "Airspeed: " + !potentialthreatairspeed!
label_4: "Course:" + !potential threatcourse!
label_5: "Range: + !potentialthreat range!

<endif>
< endfor >

host:

id:
shape: < iconshape.host shape >
size: 16
fill: none
color: !!host color!!
fill blink ratc: 0

objblinkrate : 0
xloc: (1270 / 2 - 16 / 2)
yloc: (1000 / 2 - 16 / 2)
label 1:
label_2: "

label 3:
label 4:

label 5:

Local Dictionary

6-27

ATD/CWM Product Design/CornponenI Design

!!hostcolor'. The value returned by an internal program
get-hostcolor.

!!location!! The (xy) location value returned by an internal
program calculatelocation.

!arithmeticopr! enumerated (It, le) which are arithmetic operators

less than and less than or equal to, respectively.

!constant! numeric quantity

!cws id! Enumerated name of the collision warning situation.

!cwsjpredicate! union of (
expr record of opl !cws_predicate!.

op2 • !cws_predicate'.
opr OR).

time record of (opl !constant'.
opr !arithmetic_opr'),

range record of (opl !constant'.
opr !arithmetic opr!)

!potential threat airspeed'. An ASCII representation of the airspeed of a given
potential threat.

!potentialthreat-altitude' An ASCII representation of the altitude of a given po-
tential threat.

!potentialthreat course' An ASCII representation of the ground track
(course) of a given potential threat.

!potentialthreatID! An ASCII representation of the identification nuin-
ber of a given potential threat.

!potential threatranue'. An ASCII representation of the range between the
host aircraft and a given potential threat.

6-28

ATD/CWM Product Design/Component Design

!pt_display! record of (
cws name !cws id!.
cwsdef !cwsjpredicate!,

partition enumerated (ID, UID, ALL)
color identifier,
blink boolean,
fill : boolean

)

!radar-msg! The event that occurs when another RadarMsg has
been received from the radar device.

3.4. Initialize_Display

Concrete Operations

Operation Parameter Description Undesired Events

initialize display - - - None

Output Produced

Item Type Operation

xloc c Air Traffic Display Device.position Air Traffic Display Device.create display
vloc-c Air TrafficDisplayDevice.position
width AirTrafficDisplay Device.position
height Air Traffic Display Devicc.position

iconshape Air TrafficDisplayDevice.shape Air Traffic Display Device.createobject
icon size Air Traffic Display Device .size
icon fill AirTrafficDisplay Device .fill
icon color Air Traffic Display Device.color
fillblinkrate AirTraffic Display Device.blink

obj blink_rate Air TrafficDisplay Device.blink
xloc AirTrafficDisplay Devicc.position

vloc Air TrafficDisplayDevice.position
label_1 string
label_2 string
label_3 string
label_4 string
label_5 string

ATD/CWM Product Design/Component Design

Effects

initializedisplay A window is created on the display. The window
location is given by (xloc, yloc) and its size is specified
by width (horizontal length) and height (vertical
length). In addition, an icon for the host aircraft is
created and positioned in the center of the window.
The host aircraft icon has the following initial
characteristics:

iconshape: < iconshape.host shape >
icon size: 16
icon fill: black
iconcolor: color for normal cws-status
fill blink rate: 0.0
objblinkrate: 0.0
xloc:
yloc:
label 1:
label 2:
label 3:
label 4:
label_5:

Function Definition

Output Values: xlocc " 0
Vlocc • 0
width : 1270
height 1000

iconshape : < iconshape.host shape >
icon size :16
icon fill : black
icon color: white
fill-blink rate : 0.0
objblinkrate : 0.0
xloc 1270/2 - 16/2
yloc: 1000/2 - 16/2

label 1:
label 2:""
label 3:""
label 4:""
label 5 :

4. AirTraffic_DisplayDevice (ATDD)

Instantiation Parameters - none

Instantiation Constraints - none

6-30

ATD/CWM Product Design/Component Design

Assumptions

Interface Requirement

Il. This module must allow aircraft status information to be displayed on the ATD).

12. This module must allow users to initialize the display.

Concrete Operations

Operation Parameter Description Undesired Events

write-text msg:stringJl None
xloc:position;I

_______________yloc:position;I__________

create object icon_shape:shape-,I None
icon-size:size~l
icon-fill: fill;d
icon color:color;I
fill-blink-rate:blink:l
obj blink -raie:blink;l
>doc:position:I
yloc:position:I
label_1:stning.1
label-2:string.I
label_3:string:I
label_4:string;I
label_5:stringJl
id:display_handle;O ________ _________

delete object id:display handle.l None

move object id:display~handle:l None
>Joc:position;I
yloc:position.l
label 1:string:l
label_2:strin-:I
label_3:string:l
label_4:string.l
label_5:stning~l

chg object blink id:display_handle.1 None
fill-blink-rate:blink.I
obj blink-rate:blink:I___________

chg object fill id:display handle:l None
icon fillffill;I

chg__object color id:display_handle;! None
icon color:color;I

6-31

ATD/CWM Product Design/Component Design

Operation Parameter Description Undesired Events

chgobjectshape id:displayhandle:I None
iconshape:shapeJI

create display xloc:position;I Nonc
yloc:position;I
width:position;I
height:position:I

Effects

chgobject blink The specified object is made to blink at the specified
rate.

chgobject color The color of the object is changed.

chgobject fill Causes the icon interic, to be filled in with the
specified color.

chgobjectshape Changes the icon shape of the specified object.

createdisplay Creates a display window having origin (xloc, yloc)
,xith the specified height and width. Only one display
window can be opened at a time.

create-object Creates a new object on the display with the specified
attributes and labels. A unique identifier for the
object is returned to the calling program.

delete object The specified object is removed from the display.

move object Moves the specified object to the new (xloc. yloc)
location.

write-text The text message msg is displayed on the ATD at
location (xloc. yloc). The previous message displayed
message is overwritten.

Events Signalled - none

Types

6-32

ATD/CWM Product Design Component Design

blink The blinking rate for a displayed icon. Data
representation:

Minimum value: 0.0
Maximum value: 10.0
Units: seconds
Resolution: 0.1 second

Value 0.0 means do not blink.

color enumerated (none, red, orange. green, yellow, white.
blue, black, pink, purple, indigo, violet)

fill Same as color.

displayhandle A unique identifier for a particular display object.

position Pixel number. Data representation:
Minimum value: 0
Maximum value: 1,100
Units: pixels
Resolution: 1 pixel

shape enumerated (square, circle, triangle)

size Size of icon in pixels. Data representation:
Minimum value: I
Maximum value: 100
Units: pixels
Resolution: 1 pixel

Local Dictionary'

Undesired Event Dictionary - none

5. Audible_Alarm (AA)

Instantiation Parameters

Parameter Type Description

ring list of !ring_info! Each record defines the frequency and duration to initiate
the audible alarm for an aircraft in a specified collision
warning situation.

Instantiation Constraints

1. Adaptable component AudibleAlarm Device must be instantiated as well.

Assumptions

Dependency Asumption

6-3

ATD/CWM Produci Desien/Componeni Design

D1. There is a way to initiate the audible alarm at a specific frequency and time duration.

Interface Requirement

I1. This module must allow users to determine what frequency and duration to ring the
audible alarm. This module must allow users to ring the audible alarm.

Concrete Operations

Operation Parameter Description Undesired Events

ring_alarm cws:Potential_Threat.cws id;I !cwsid! None

Output Produced

Item Type Operation

frequency AudibleAlarmDevice.frequency IAudibleAlarmDevice.ring_alarm
duration AudibleAlarm Devrice.duration

Events Signalled - none

Types - none

Local Dictionary

!cws id! Enumerated name of the collision warning situation.

!ringinfo! record of (
cws name: !cwsid!.
frequency : integer.

duration : real
)

6. AudibleAlarmDevice (AAD)

The audible alarm device generates a tone that can be heard within the host aircraft cockpit.

Instantiation Parameters

Parameter Type Description

loosely-coupled I boolean A value of true indicates that the communication between
the ringalarm and the calling operation should be
loosely-coupled; false means they should be tightly coupled.

Instantiation Constraints

1. If loosely-coupled is true, then adaptable component module TemporaryData Buffer must
be instantiated as well.

6-34

ATD 'CWM Product Design 'Component Design

Assumptions

Interface Requirement

I1. This module must allow the audible alarm to be rung at a specified frequency and time
duration.

Concrete Operations

Operation Parameter Description Undesired Events

ringalarm f:frequency:l !alarmfrequency! None
d:duration;I !alarm duration!

Effects

rin2-_alarm The audible alarm is rung at frequency f for a time
duration d.

Events Signalled - none

Tlypes

duration Length of time that the audible alarm is rung. Data
representation:

Minimum value: 0.01
Maximum value: 10.00
Units: seconds
Resolution: 0.01 seconds

frequency Pitch of the tone made by the audiblealarm. Data
representation:

Minimum value: 1,000
Maximum value: 10,000
Units: hertz
Resolution: 1 hertz

Local Dictionary

!alarmduration! Specifies the number of seconds to ring the audible
alarm.

!alarm-frequency! Specifies the frequency, in hertz, at which to ring the
audible alarm.

Undesired Event Dictionary - none

6-35

ATD/CWM Produci Design/Componeni Design

7. CollisionWarningSituation_Status (CWSS)

This module determines the coflision warning situation status for potential threats and the host
aircraft.

Instantiation Parameters

Parameter Type Description

cws list of !cws info! Each record in this list contains the name of the collision
warning situation and a boolean-valued expression that
defines the criteria for the named situation.

Instantiation Constraints

1. The cws parameter cannot be empty.

2. The records in cws must be ordered in decreasing severity levels before instantiating this
module.

Assumptions

Dependency Assumption

Dl. There is a way to predict how much time elapses before two aircraft reach a separation
minima.

D2. There is a way to determine the potential threat range.

D3. There is a way to determine what the previous collision warning situation status was
for the specified potential threat.

Interface Requirement

I1. This module must allow users to determine the collision warning situation status of a
potential threat.

12. This module must allow users to determine the collision warning situation status of the
host aircraft.

Concrete Operations

Operation Parameter Description Undesired
Events

determine cws status threat:PotentialThreat.pthandle;I None
cws:Potential Threat.cws id;O

determine host cws status cws:PotentialThreat.cwsid;O None

Effects

determinecwsstatus Determines the collision warning situation status for
the specified potential threat.

determine hostcwsstatus Determines the collision warning situation status for
the host aircraft.

6-36

ATD/CWM Product Design/Component Design

Events Signalled - none

Types - none

Local Dictionary

!constant! integer numeric quantity

!cws info! record of (
cws name : identifier,
severity: integer,
predicate: !cws_predicate!,
partition : enumerated (ID, UID, ALL)

)

!cws_predicate! union of (
time: record of (min !constant,

max: !constant'),
range : record of (min !constant',

max: !constant!),
time-and range : record of (

(t_min ! constant!,
t-max !constant",
rmrin ! constant!,

r max !constant!

Undesired Event Dictionary - none

8. Communication (COMM)

Parameter Type Description

atcmsg list of !atc info! Each record indicates the transponder code for the
ATCMsg sent to the air traffic control center in response
to a specific collision warning situation.

inter air msg list of !inter air info! Each record indicates the transponder code for the
InterAirMsg sent to the air traffic control center in
response to a specific collision warning situation.

mode !mode! Message content for the ATCMsg.

6-37

ATD/CWM Product Design'Component Design

Instantiation Constraints

1. If atc_msg is nonemptv, then paramcaer atcmsg of adaptable component
CommunicationDevice must be true.

2. If interairmsg is nonempty, then parameter inter air msg of adaptable component
Communication Device must be true.

3. Adaptable component CommunicationDevice must be instantiated as well.

Assumptions

Dependency Assumption

D1. There is a way to determine which aircraft has triggered the event requiring the need
to generate an ATCMsg.

D2. There is a way to determine which aircraft has triggered the event requiring the need
to generate an InterAirMsg.

D3. There is a way to determine the collision warning situation the potential threat is in
relative to the host aircraft.

D4. There is a way of obtaining the altitude of the host aircraft.

D5. There is a way of obtaining the latitude and longitude of the host aircraft.

D6. There is a way to send th, ATCMse to the air traffic control center.

D7. There is a way to send the InterAir Msg to the appropriate potential threat.

Interface Requirement

I1. This module must allow users to format and transmit an ATC_Msg or InterAirAMsn.

<if there exists C e atc_msg then>

8.1. ATCMsg

Concrete Operations

Operation Parameter Description Undesired Events
send atc msg cws:Potential_Threat.cws_id;I !cws id! None

Output Produced

< if mode = Mode A then >

Item Type Operation

atc_msg: code positive CommunicationDevice.send atcmsg

6-38

ATD/CW•M Produrt Design.'Componenl Design

< else >

Ite TV Operation

atc msg: code Postit tve CommunicationDevice.send atc mso
altitude Physical Quantities.fect

< endif >

Local Dictionary

!atc info! record of (cws name : !cwsid!,
code 'positive)

!cwsid! Enumerated name of the collision warning situation.

!mode! enumerated (ModeA. ModeC)

"< endif >

"< if there exists X E inter air msg then >

8.2. InterAir_Msg

Concrete Operations

Operation Parameter Description Undesired EL cni.
send ia msg cws:Potential Threat.cws id:I !cwslid None

Output Produced

Item 1 Type 1 Operation

inm:r air msg: code positive CommunicationDevice send inter air msg
altitude PhysicalQuantities.feet
latitude PhysicalQuantities.degrees
longitude Physical Quantities.degrees

Local Dictionary

!cwsid! Enumerated name of the collision warning situation.

!inter air info! record of (
cwsname: !cwsid!,

code : positive
)

<endif>

6-39

ATD/CWIM Product Design'ComponenI Design

9. CommunicationDevice (CD)

Instantiation P-irameters

Parameter lype Description

ate msg boolean A value of true indicates that functionality must be included
to enable transmission of an ATCMsg to an air traffic
control center. Otherwise. this parameter's value is false.

inter air msg boolean A value of true indicates that functionality must be included
to enable transmission of an Inter-AirMsg to a potential
threat. Otherwise, this parameter's value is false.

mode !model Message type for the ATCMsg. This parameter is omitted
when atc msg is false.

loosely-coupled boolean A value of true indicates that the communication between
either sendatcms2 or sendinter air msg and the callinL
operation should be loosely-coupled: false means the\
should be tightly coupled.

Instantiation Constraints

1. If parameter loosely-coupled is true, then adaptable component TemporaryDataBuffer
must be instantiated as well.

Assumptions

Interface Requirement

I1. This module must allow the messages to be sent to either the nearest air traffic control
center or to the appropriate potential threat.

Concrete Operations

Operation Parameter Description Undesired Events

<if atc msg then >

send atc msg code: natural:I None 7
<if mode = C then >
altitude:PhvsicalQuantities.feet;I
< endif>

<endif>

<if inter airmsg then>

sendinter air msg code: naturall None
altitude:PhysicalQuantities.feet;l
latitude:PhysicalQuantities.degrees:l
longitude:Physical_Quantities.degrees;I

6-40

ATD/CWM Product Design/Component Design

< endif >

Effects

< if atc msg then >

send atc msg The ATCMsg is sent to nearest air traffic control
center.

"< endif >

"< if inter airmsg then >

sendinter air msg The Inter A;._Msg is sent to the appropriate
potential threat.

< endif >

Events Signalled - none

Types - none

Local Dictionary

.mode'. enumerated (A. C)

Undesired Event Dictionary - none

10. Extended_Computer (EC)

This module provides an integrated abstraction of processor. operating system, and language
capabilities. The Reference Manual for the Ada Programming Language (United States Department
of Defense 1983) provides the abstract interface for this module.

Instantiation Parameters - none

Instantiation Constraints - none

Assumptions

Interface Requirement

11. This module must allow users to convert an integer quantity into its equivalent string
image.

11. HostAircraft (HA)

This module models the host aircraft for an ATD/CWM system. The host aircraft has properties of
altitude, airspeed, location, bearing, and climb rate.

6-41

ATD/CWM Product Design/Component Design

Instantiation Parameters - none

Instantiation Constraints - none

Assumptions

Dependency Assumption

D1. There is a way to obtain altitude, velocity, location, and groundtrack for the host aircraft.

D2. There is a way to determine the collision warning situation status of the host aircraft.

D3. There is a way to determine the climb rate of the host aircraft.

Interface Requirement

I1. This module must allow users to reference properties of the host aircraft.

Concrete Operations

Operation Parameter Description Undesired Events

get_altitude 1 altitude:PhysicalQuantities.feet:O !altitude! None

get climb_rate ' rate:PhysicalQuantities.fpm:O !rate! None

getcwsstatus 1 status:PotentialThreat.cws id:O None

Setground_track groundtrack: !groundtrack! None
Physical_Quantities.degrees:O

get host_data altitude:Physical_Quaniities.feet:O !altitude! None
ground-track: !ground_track!

Physical_Quantities.degrees:O

rate:Physical_Quantities.fps;O !rate!
airspeed:PhysicalQuantities.knots:O !airspeed!
latitude:Physical_Quantities.latitude;O !location!
longitude:PhysicalQuantities.longitude:O
status:Potential_Threat.cwsid:O

getjlocation latitude:PhysicalQuantities.latitude:O !location! None
longitude:PhysicalQuantities.longitude:O

get velocity airspeed:PhysicalQuantities.knots;O j !velocity! None

Effects

get-altitude Returns the most recently measured altitude of the
host aircraft.

get climbrate Returns the most recently measured climb rate of the
host aircraft.

getcws_status Returns the collision warning situation status of the
host aircraft.

6-42

AXD/CWM Product Design /Component Design

get~groundtrack Returns the most recently measured groundtrack of
the host aircraft.

get hostdata This function returns the values for all properties of
the host aircraft.

get location Returns the most recently measured position of the
host aircraft.

get-velocity Returns the most recently measured velocity of the
host aircraft.

Events Signalled - none

Types - none

Local Dictionary

!altitude! The vertical distance height of the host aircraft
measured from mean sea level.

!ground_track! Groundtrack of the host aircraft measured from the
line of the host aircraft to magnetic north to the hori-
zontal component of the host aircraft's x axis in the
clockwise direction looking down.

!location! Location given in terms of latitude and longitude.

!rate! Climb rate of the host aircraft.

!velocity' Velocity of the host aircraft.

Undesired Event Dictionary - none

12. InitializationandTermination (IT)

The hidden decision of this module is how ATD/CWM system operation is initiated and terminated.

Instantiation Parameters - none

Instantiation Constraints - none

Assumptions

Dependency Assumption

D1. There is a way to initialize the air traffic display.

Concrete Operations - none

6-43

ATD/CWM Product Design/Component Design

Effects

Events Signalled - none

Types - none

Local Dictionary

Undesired Event Dictionary - none

13. Navigation (NAV)

The navigation device reports host aircraft flight characteristics altitude, velocity, ground-track,
latitude, and longitude to the host aircraft.

Instantiation Parameters - none

Instantiation Constraints

Assumptions

Interface Requirement

I1. This module must provide altitude, velocity. latitude, longitude, and groundtrack for the
host aircraft.

Concrete Operations

Operation Parameter Description Undesired Events

getnay data altitude:Physica]_Quantities.feet:O None
timestamp : PhysicalQuantities.seconds;O
airspeed:PhysicalQuantities.knots:O
groundtrack:

PhysicalQuantities.degrees;O
latitude:FPiysicalQuantities.latitude;O
longitude:PhysicalQuantities.longitude;O

Effects

Events Signalled - none

Types - none

Local Dictionary

Undesired Event Dictionary - none

14. Numerical-Algorithms (NA)

This module provides the mathematical service routines that are required by more than one module
in the system. Most values are a predefined arithmetic function of the input parameters.

6-44

ATD/CWM Product Design /Componeni Design

Instantiation Parameters - none

Instantiation Constraints

Assumptions

Interface Requirement

I1. This module must provide an operation for computing the square root of an real quantity.

12. This module must provide trignometric operations.

Concrete Operations

Operation T Parameter Description Undesired Events

arccos pl:real:I domain-error
p2:realO

cos pl:real:I None
p2:real;O

sin pl:real;I None
p2:real:O

sqrt pl:real;l rootnegative
p2:real:O !sqr-t

Effects

arccos Inverse trignometric cosine function. Produces in p2
the angle whose cosine is pl.

cos Produces in p2 the cosine of angle pl.

sin Produces in p2 the sine of angle pl.

sqrt Returns the square root of pl in p2, if pl is
non-negative.

Events Signalled - none

Types - none

Local Dictionary

!sqrt! The square root of pl, if pl is non-negative.

Undesired Event Dictionary

6-45

ATD/CWM Product Design Component Design

domainerror The magnitude of argument pl is greater than 1.

root_negative Argument pl of operation sqrt is negative.

15. PhysicalQuantities (PQ)

This module implements data types needed for representing and calculating physical quantities.

Instantiation Parameters - none

Instantiation Constraints

Assumptions

Dependency Assumption

DL. There is a way to obtain the current time of day.

Interface Requirement

11. This module must provide an operation to convert degrees to radians.

12. This module must provide an operation to convert radians to degrees.

13. This module must provide operations for comparing values of the same data type.

14. This module must provide operations for assigning values of the same data type.

15. This module must provide operations for converting two values of the same data type
into different representations.

16. This module must provide an operation to return the current time of day expressed as
elapsed seconds since midnight.

Concrete Operations

Operation Parameter Description Undesired Events

get time Icurrent time:seconds:O !time! None

Effects

Events Signalled - none

Types

degrees Angles measured in degrees. Data representation:
Minimum value: -360.0
Maximum value: 360.0
Units: degrees
Resolution:0.1 degrees

feet Distance measured in feet. Data representation:
Minimum value: -200.0
Maximum value: 350,000.0
Units: foot
Resolution: 1 foot

6-46

ATD.'CWM Producl Dcsign/Componeni Design

fpm Velocity measured in feet per minute. Data
representation:

Minimum value: -76,000
Maximum value: 76.000
Units: feet per minute
Resolution: I foot per minute

fps Velocity measured in feet per second. Data
representation:

Minimum value: -1,250
Maximum value: 1.250
Units: feet per second
Resolution: 1 foot per second

knots Velocity measured in nautical miles per hour. Data
representation:

Minimum value: 0
Maximum value: 750
Units: nautical miles per hour
Resolution: 1 nautical mile per hour

latitude The angular distance north or south of the equator
measured in degrees. A negative value indicates lati-
tude south of the equator: a positive value is latitude
north of the equator. Data representation:

Minimum value : -90.0
Maximum value : 90.0
Units : degrees
Resolution : 0.1 degree

longitude The angular distance on the earth east or west of the
prime meridian at Greenwich, England, to the point
on the earth's surface for which the longitude is being
determined, expressed in degrees. A negative value is
longitude east of the prime meridian: a positive value
is longitude west of the prime meridian. Data
representation:

Minimum value: -180.0
Maximum value.: 180.0
Units : degrees
Resolution : 0.1 degree

6-47

ATD/CWM Product Design /Component Design

nautical mile Distance measured in nautical miles. Data
representation:

Minimum value: -3,000.0
Maximum value: 3,000.0
Units: nautical mile
Resolution:0.1 nautical-mile

radians Angles measured in radians. Data representation:
Minimum value: -10.000
Maximum value: 10.000
Units: radians
Resolution: 0.001 radian

seconds Time measured in seconds. Data representation:
Minimum value: 0
Maximum value: 20,000,000
Resolution:0.1 second

Local Dictionary

!time! Current time in seconds on a 24-hour clock. Values
returned are in the range 0.0 to 86,400.0 seconds, in-
clusive, where 0.0 represents midnight.

Undesired Event Dictionary - none

16. PotentialThreat (PT)

Instantiation Parameters

Parameter Type j Description

cWS list of !cws info! Each record defines a collision warning situation and its!corresponding responses.

Instantiation Constraints - none

Assumptions

Dependency Assumption

D1. There is a way to obtain altitude, aircraftidentification, velocity, range, ground_track.
and relative-bearing for a potential threat.

D2. There is a way to determine which partition a potential threat belongs to.

D3. There is a way to determine the collision warning situation status of the potential threat.

6-48

ATD/C3ArM Product Design/Component Design

D4. There is a way to format and transmit a correctiveaction advisory message.

D5. There is a way to determine what frequency and duration to ring the audible alarm.

D6. There is a way to format and transmit an ATCMsg or InterAirMsg.

D7. There is a way to update ti•e display when the collision warning situation status of a
potential threat changes.

Interface Requirement

I1. This module must allow users to reference properties of a potential threat.

I2. This module must allow users to determine the potential threat partition.

Concrete Operations

Operation Parameter Description Undesired Events
altitudevalid threat:pthandle;I I None

altitudestatus:boolean;O !
getaircraftid threat:pthandle;I None

aircraftid:string(8):O

getaltitude threat:pthandle;I None
altitude:PhysicalQuantities.feet;O !altitude!

getclimbrate threat:pthandle;I None
rate:PhysicalQuantities.fpm:O !rate!

getcwsstatus threat:pthandle;I None
cws status:cws id;O

i

getgroundtrack threat:pthandle;I None
groundtrack: !groundtrack!

PhysicalQuantities.degrees:O

get__partition threat:pthandle:I None
partition:partition;O

getrange threat:pthandle;I None
range: !range!

PhysicalQuantities.nauticalmile;O

getrelativebearing threat:pthandle:I None
relativebearing: !relativebearing!

PhysicalQuantities.degrees;O
get__velocity threat:pthandle;I None

velocity:PhysicalQuantities.knot s:O !velocity!

velocityvalid threat:pthandle;I None
status:boolean;O

Effects

6-49

ATD/CWM Product Design/Componen Design

altitudevalid Returns a status indicating whether the most recent
altitude value for the specified aircraft is valid. True
means the altitude is valid: false means that it is
invalid.

getaircraftid Returns the aircraft-identification of the specified
potential threat.

get-altitude Returns the current altitude of the specified potential
threat.

get climbrate Returns the most recently measured vertic•i! rate of
change of the specified potential threat.

get cwsstatus Returns the most recent collision warning situation
status of the specified potential threat.

getground track Returns the current ground track of the specified
potential threat.

getpartition Returns which partition the potential threat is a
member of.

getrange Returns the most recently measured range of the
specified potential threat.

get relative_bearing Returns the most recently measured relativebearing
of the specified potential threat.

get-velocity Returns the most recently measured velocity of the
specified potential threat. Undesired event
velocity invalid is raised if the velocity value for thc
specified potential threat is invalid.

velocity-valid Returns a status indicating whether the velocity value
for the specified aircraft is valid. True means the
velocity is valid; false means that it is invalid.

Function Definition

< forall C in cws >

6-50

ATD/CWM Product Design /Component Design

Event

"<if C~partition = ALL then >
@aT(< C.cws_def > [potential-threat])

"<else >
Ca T(< C.cws-def > [potential threat]) when partition < <Cpartition >

" endif >

Output Value(s): <if C~alarm then>
AudibleAlarmn.ringalarmn(< C.cws_name >)

<endif>
<if C~atc - msg then >

Commrunication.send-atc_mnsg(< C.cws_name>)
< endif >
<if C~inter -air -msg then >

Communication.sendjia mso(<C.cws name>)
"<endif >
"<if C.corrective then >

AirTraff icD Displ ay. correct ive-act ion-rmsg(pot e ntial th reat)
"<endif >
Air Traf'fic Display.update cws(pot ential threat)

< endfor >

Event

CT< ADS.IDShape.Partition > [potential threat])

Output Valuc: Air _TrafficDisplav.update ads(potential threat)

Event

@a:F. < ADS.IDShape.Partition > [potential threat])

Output Value: [Air Traffic Disp~lav.up~date ads(potential threat)

Events Signalled - none

Types

cws id enumerated(
" forall C in cws >

<Cxcws_ name>,
" endfor >

NORMAL

partition enumerated (ID, ULD)

pt~handle A unique identifier for a particular potential threat.

Local Dictionary

6-51

ATD;CWM Product Design 'Component Design

!altitude! The vertical distance height of the potential threat
measured from mean sea level.

!constant! numeric quantity

!cws info! record of (
cws name : identifier.
severity "integer,

predicate : !cwspredicate!,
partition: enumerated (ID. UID. ALL).
alarm : boolean,
atc_msg • boolean,
inter air msg: boolean,
corrective : boolean

!cwsjpredicate: union of (
time: record of (mi constant'.

max" !constant').
range : record of (min !constant'..

max: !constant!).
time-and range : record of (

(tmin • !constant'.
t max !constant'.
rmmin "!constant'.
r max !constant'

)

!groundtrack' Ground track of the potential threat measured from
the line of the potential threat to magnetic north to
the horizontal component of the potential threat's x
axis in the clockwise direction looking down.

!range! Distance from the potential threat to the host

aircraft.

!rate! Climb rate of the potential threat.

!relativebearing! Bearing of the potential threat relative to the host
aircraft. Relative_bearing is measured from the
ground track of the host aircraft to the line from the
host aircraft to the potential threat in the clockwise
direction looking down.

!velocity! Velocity of the potential threat.

6-52

ATD/CWM Product Desien/Componenw Design

Undesired Event Dictionary - none

17. PotentialThreatPartition (PTP)

This module knows how to determine the potential threat partition.

Instantiation Parameters

Parameter Type Description
altitude enumerated (True, False) A value of True means that the altitude must be known in

order for the potential threat to be considered identified.
Otherwise, this parameter is False.

airspeed enumerated (True, False) A value of True means that the airspeed must be known in
order for the potential threat to be considered identified.
Otherwise, this parameter is False.

Instantiation Constraints

1. Either parameter altitude. airspeed. or both must be True.

Assumptions

Dependency Assumption

D1. There is a way to determine the availability of a potential threat's altitude or airspeed.

Interface Requirement

I1. This module must determine the partition of which a potential threat is a member.

Concrete Operations

Operation Parameter Description Undesired Events

getpartition threat:Potential Threai.pthandle:I None
partition:Potential_Threat.partition:O

Effects

get_partition Returns the partition of which the potential threat is
a member.

Events Signalled - none

Types - none

Local Dictionary

Undesired Event Dictionary - ibone

6-53

ATD/CWM Product Design 'Component Design

18. Radar (RADAR)

Instantiation Parameters - none

Instantiation Constraints - none

Assumptions

Interface Requirement

I1. This module must provide aircraft-identification. range, and relativebearing for a
potential threat.

Concrete Operations

Operation Parameter Description Undesired Events

getradardata aircrah _id:string(8):O Nonc
sweep:integcr:(
relative bearing:

PhvsicalQuantit ies.dev rees:O
range:

Phvsical Quantities.nautica!_mile:O
timestamp:Phy'sicalQuantities.s•conds:(O

Effects

Events Signalled - none

Types - none

Local Dictionary

Undesired Event Dictionary - none

19. SituationDynamics (SD)

Instantiation Parameters - none

Instantiation Constraints - none

Assumptions

Dependency Assumption

D1. There is a way to determine velocity, climb rate. altitude, and groundtrack of the host
aircraft.

D2. There is a way to compute trigonometric functions.

D3. There is a way to compute the square root.

D4. There is a wav to determine the horizontal component of an aircraft's velocity.

6-54

ATD'CWM Product Design'Componenl Design~

D5. There is a way to determine the range• component that lies in the X-Y plane.

D6. There is a way to determine the velocity, climb rate. altitude. ground track,
relative bearing., and ran,,e of the potential threat.

Interface Requirement

I1. This module must determine how much time elapses before two aircraft reach a
separation minima.

12. This module must determine the separation minima two aircraft will pass within each
other.

Concrete Operations

Operation •iParamezter I Description Undesired Events

Iget elapsed_ time threat:Potentia~lhreat.pi handk :A j None
i !timec:Physical _Quantities.sewund.,:() !elapsed_ time'.

,get msd threat:Potentia!_TIhreat.pt handlc'I
[I distance:PhysicalQuantities.fcet:() !minimal!]

Effects

get_elapsed time Returns the predicted elapsed time before the host
aircraft and specified potential threat reach the prc-
dicted closest range.

get~msd Returns the predicted closest ran,,e, between the host
aircraft and specified potential threat assuminc no
changes in their respective flight characteristics.

Events Signalled - none

Types - none

Local Dictionary

!elapsed time! The amount of time that elapsed before the host
aircraft and potential threat reach the minimal sepa-
ration distance assuming no changes in their
respective flight characteristics.

!minimal! The closet distance (range) between the host aircraft
and potential threat assuming no changes in their
flight characteristics.

Undesired Event Dictionary - none

•-55S

ATD/CWM Product Design.'Componeni Design

20. TemporaryData_Buffers (TDB)

This module provides communication mechanisms between programs for generic message types.

Instantiation Parameters

Parameter 1 Type Description

name identifier Name for the concrete module.

length positive Number of messages of "message_type" the buffer can hold
___before it is full.

message-type !messagetype! Message type for the buffer.

consumer list of !consumer' List of the names of the consumers and their relative priority.

Instantiation Constraints

1. The 'consumer' records for instantiation parameter consumer must be ordered in decreasing
probability.

Assumptions

Dependency Assumption

D1. Assignment must be defined on the data type stored in the buffer.

Interface Lequirement

11. This module must permit data to be read from and written into a buffer in a
first-in/first-out (FIFO) order.

Concrete Operations

Operation Parameter Description Undesired Events

<if there exists at least one consumer then>

Isend mswmessage ty•pe.1 ?in_message! < forall C in consumer >

probability:!probability!;I < name > _ < C.name > _Overflow
<,-udfor >

< forall C in consumer>

receive_ < C.name > msg:message_type:O !out-message! none

< endfor >

< else >

send msg:message tvpe: I !in message! < name > Overflow

receive msg:messagectype;O !outmessage! None

6-56

ATD'CWM Product Design/Component Design

< endif>

Effects

<if there exists at least one consumer then >

send Adds a message to the FIFO buffer having the
specified priority. An exception is raised if the
designated priority buffer overflows.

< forall C in consumer>

receive- < C.name > Removes the oldest message from the FIFO buffer.
The calling program is suspended until a message is
available. The service priority of this request is
< C.probability >. The request is processed only af-
ter all higher priority requests have been processed
first.

< endfor >

< else >

send Adds a message to the FIFO buffer.

receive Removes the oldest message from the FIFO buffer.
The calling program is suspended until a message is
available.

< endif >

Events Signalled - none

Types

message_priority enumerated (
"< foreach C in consumer>

< C.name >
"< endfor >

)

Local Dictionary

6-57

ATD/CWM Product Design/Component Design

!consumer! record of (
name: !cws id!,
priority - integer

)

Consumer A has higher probability than consumer

B when A.probability > B.probability.

!cws id! Enumerated name of the collision warning situation.

!n-message' The value stored in the buffer.

!messagetype! record of (
module : identifier,
type : identifier

)

!out-message! The value read from the buffer.

Undesired Event Dictionary

< if there exists at least one consumer then >

< forall C in consumer>

< name >_ < C.name > _Overflow The named buffer will overflow resulting in loss of
data. The message that would cause the overflow is
tossed away.

< endfor >
< else >

< name > _Overflow The buffer will overflow resulting in loss of data. The
message that would cause the overflow is tossed
away.

< endif>

6-58

ATD/CWM Product Design/Component Design

ADAPTABLE DOCUMENTATION COMPONENTS

1. ATD/CWM Software Requirements Specification (SRS)

Instantiation Parameters

Parameter Type Description

system !systeminfo! The record contains the project-specific system
information.

contract !contractinfo! The record contains project-specific contract
information.

revision !revision-info! The record contains document-specific revision
information.

alarm boolean A true value means that the SRS must include
engineering requirements describing the audible alarm
capability of the ATD/CWM system. A false value means
that the SRS must omit these requirements.

atcmsg boolean A true value means that the SRS must include
engineering requirements describing the capability of the
ATD)/CWM system to send an ATCMsg to the nearest
air traffic control center when a collision warning
situation has been detected. A false value means that the
SRS must omit these requirements.

inter air msg boolean A true value means that the SRS must include
engineering requirements describing the capability of the
ATD/CWM system to send an Inter Air Msg to the
appropriate potential threat involved in a collision
warning situation. A false value means that the SRS must
omit these requirements.

higherSRS spec identifier Higher level SRS specification from which the software
requirements allocated in this SRS have been derived.

Local Dictionary

6-59

ATD/CWM Produci Design/Component Design

!contract-info! record of (
CDRL number: identifier,
agency: identifier.
contract-number: identifier

)

!revisioninfo! record of (
indicator: identifier,
date: identifier

)

!system_info! record of (
name: identifier,
mnemonic: identifier,
id: identifier

)

2. ATD/CWM Interface Requirements Specification (IRS)

Instantiation Parameters

Parameter Type Description

S\stem !svstem info! The record contains the project-specific system information.

contract !contractinfo! The record contains project-specific contract information.

revision !revision info! The record contains document-specific revision information.

alarm boolean A true value means that the IRS must include interface
requirements describing the role. interface relationships,
message formats, and other necessary requirements of the
Audible Alarm device interface in the ATD/CWM system. A
false means that the IRS must omit these requirements.

atc_msg boolean A true value means that the IRS must include interface
requirements describing the role, interface relationships,
ATCMsg message format, and other necessary
requirements of the Communication device interface in the
ATD/CWM system. A false value means that the IRS must
omit these requirements.

inter air msg boolean A true value means that the IRS must include interface
requirements describing the role, interface relationships,
Inter Air Msg message format, and other necessary
requirements of the Communication device interface in the
ATD/CWM system. A false means that the IRS must omit

these requirements.

mode enum of (A, C) A C value means that the IRS requirements for the
ATCMsg describe the format of an additional word in the
message which contains altitude information. An A value
means that the IRS must omit these requirements.

6-601

ATD/CWM Product Design,/Component Design

Local Dictionary

!contract-info! record of (
CDRL number: identifier,
agency: identifier,
contract-number: identifier

)I

!revisioninfo! record of (
indicator: identifier,
date: identifier

)

!systeminfo! record of (
name: identifier,
mnemonic: identifier,

id: identifier

)

6-61

ATDICWM Product Design/Component Design

3. ATD/CWM Software Design Document (SDD)

Instantiation Parameters

Parameter Type Description

system !system-info! The record contains the project-specific system information.

contract !contractinfo! The record contains project-specific contract information.

revision !revision-info! The record contains document-specific revision information.

alarm boolean A true value means that the SDD must include software
design information describing how the ATD/CWM system
causes the audible alarm to ring (e.g., how, when). A false
value means the SDD must omit this design information.

atc_msg boolean A true value means that the SDD must include software
design information describing how the ATD/CWM system
sends the ATCMsg to the communication device (e.g., how,
when). A false value means the SDD must omit this design
information.

inter air msp boolean A true value means that the SDD must include software
design information describing how the ATD/CWM system
sends the InterAir Mso to the communication device (e.g.,
how. w;'hen). A false values means the SDD must omit his
design information.

tempbuffer list of 'buffer' Each record in this list describes the.name. mnemonic, and
hidden decisions of an instance of the Temporary DataBuffers
module in the ATD/CWM sstem.

Local Dictionary

!buffer' record of (
name: identifier,
mnemonic "identifier.
description • text

)

!contract info! record of (
CDRL number: identifier,
agency: identifier,
contract-number: identifier

)

642

ATD/CWM Product Design/Component Design

!revision info! record of (
indicator: identifier,

date: identifier
)

!system info! record of (
name: identifier,
mnemonic: identifier,
id: identifier

)

Adaptable Verification and Validation Support

Adaptable CSU Test Specifications

1. AudibleAlarm (AA)

Instantiation Parameters

Parameter Type Description

ring list of !ring info! Each record defines the pitch and duration at which to ring
the audible alarm for a specified collision warning situation.

cws list of 'cws id! Names of the collision warning situations.

Instantiation Constraints

1. The duration value for each !rinoinfo! must have a floating accuracy of exactly two decimal
digits. For example. 12.92 is legal. 12.9 and 8 are not legal values.

Local Dictionary

!cws id! identifier

!ring info! record of (
cws name : identifier,
frequency : integer,
duration • real

)

2. CollisionWarning!_SituationStatus (CWSS)

Instantiation Parameters

Parameter Type Description

cws list of !cws info! Each record in this list contains the name and criteria of a
collision warning situation.

cwsid list of identit.er A list of the names of the collision warning situations
specified in the application model.

area positive Diameter of the surveillance area

partition identifier [Name of the concrete module that determines a potentialtThreat partition.

6-63

ATD/CWM Produci Design/Component Design

Instantiation Constraints

1. The range value in the !cws-predicate! record must have a floating accuracy of exactly one
decimal digit. For example, 12.9 is legal, 12.98 and 8 are not legal.

2. The time value in the !cwspredicate! record must have a floating accuracy of exactly one
decimal digit. For example, 30.2 is legal; 30.23 and 30 are not legal.

3. The cws parameter cannot be empty.

4. The records in cws must be ordered in decreasing severity level before instantiating this module.

Local Dictionary

!cws info! record of (
cws name: identifier,
severity : real,
predicate • !cws_predicate!,
partition •enum of (ID, UID, ALL)

)

!cws_predicate! union of (
time : record of (

time rmin: !time-value.
time-max • !timevalue!),

range : record of (
range_min !range value!,
range_max : !range value!),

timeand-range : record of (
(time_min : !timevalue!,

timemax !timevalue!,
range_min !range-value!,
range_max !rangevalue!

)

!rangevalue! Distance from the potential threat to the host
aircraft.

!timevalue! How much time elapses before the potential threat
and host aircraft reach a separation minima assum-
ing a constant velocity, climb rate, and groundtrack.

6-64

ATD/CWM Product Design/Component Design

This page intentionally left blank,

6-65

ATD/CWM Product Design/Generation Design

3. GENERATION DESIGN

SOFTWARE GENERATION DESIGN

Decision Model Extensions

This section contains extensions to the Decision Model. An extension is included in this section for
one of the following reasons:

"* The extension reflects a future variation planned for the Decision Model that is currently
defaulted to a value that will remain fixed for this iteration of the Domain Model.

"* The extension reflects additional variations on the Adaptable Components that were
discovered during the designing and implementing of those components. These extensions
may form the basis for Decision Model extensions in future iterations.

ProducerConsumerCoupling

The Producer Consumer Coupling (PCC) describes whether the communication between a message
producer and corresponding consumer is tightly- or loosely-coupled. The decision that must be made
for this decision class is:

ProducerConsumerCoupling : and

Loosely-coupled (A true value means that the message communication between the
producer should be loosely-coupled from the consumer. False means
tightly-coupled.) : enumerated (true, false)

6-66

ATDYCCWM Prod icl Design 'Generation Design

MessageBuffering

The Message_Buffering (MB) describes what kind of message bufferini. exists between the messaee

producer and message consumer. It also describes the characteristics of the code component that im-

plements the desired message buffering. The decisions that must be made for this decision class are:

MessageBuffering + • and

Buffer_Name (Name of the buffering code component.) " identifier(1..64)

Mnemonic (Mnemonic for the buffering code component.) • identifier(1..64)

Length (Maximum number of messages that can be stored in the message

buffer.) • integer(1..100)

Message~type (Data type of message stored in the buffer.):• and

Module (Name of the module providing the definition of the message data

type.) • identifier(1..64)

Ty pe (Data type for the messages stored in the buffer.)": identifier(1..64)

Consumer (Description of the consumers of messages stored in the buffer.)+ " and

Name (Consumer name.) • identifier(1..64)

Priority (Consumer priority,. Higher priority is denoted by a target priority

value.):• integer

Desc (A textual description what the code component ('i.e., the component that

implements the desired message buffering) encapsulates and its correspond-

ing hidden decisions.) " text

MinimalSeparation_Dlistance

The Minimal_SeparationDistance (MSD) describes the minimal separation distance dictated by the

FAA. If two inflight aircraft pass each other within this distance, a collision has occurred. The decision

that must be made for this decision class is:

Minimal_SeparationDistance " and

distance (Minimal separation distance in feet as dictated by the FAA such that

if two aircraft pass each other within this limit, a collision has

occurred.) • feet(100..500)

Resolution of Decision Model Extensions

These values must be used exactly as shown for the values for adaptation parameters.

NotE: The [x] notation used in the following resolutions differentiates between the multiple instances

of the named decision class. The "()" notation designates an empty list.

6-67

ATD/C'WM Produci Design 'Generation Design

MSD (distance: 500.0)

MB[1] (BufferName: AudibleAlarm_Bufter.
Mnemonic: AAB.
Length: 10,
Message type: (Module: Audible_AlarmDevice,

Type: AlarmMessageType),
Consumer: 0.
Desc: "This module encapsulates details about a first-in/first-out buffer to

facilitate loosely-coupled information communication between the audible alarm message producer
and the audible alarm device driver. The hidden decisions of this module are how many entries the
buffer can hold, whether the buffer is of a fixed or varying size, whether the buffer is stored
contiguously in memory or not, and what to do when the buffer is full or empty."

)

MB[2] (BufferName: CommunicationBufter,
Mnemonic: CB,
Length: 10,
Messagetype: (Module: CommunicationDevice,

Type: Commu nicationMsg Type),
Consumer: 0.
Desc: "This module encapsulates details about a first-in/first-out buffer to

facilitate loosely-coupled information communication between the communication message producer
and the communication device driver. The hidden decisions of this module are how many entries the
buffer can hold, whether the buffer is of a fixed or varving size, whether the buffer is stored contiguous-
ly in memory or not, and what to do when the buffer is full or empty."

)

MB[3] (BufferName: Radar Tareit_PriorityBuffer.
Mnemonic: RTPB.
Length: 20,
Messagetype: (Module: PotentialThreat.

Type: pthandle).
Consumer: 0.
Desc: "This module encapsulates details about a buffering scheme to facilitate

loosely-coupled information communication between a single producer and multiple consumers. The
hidden decisions are how many entries the buffers can hold. whether the buffers are of fixed or varving
size, whether the buffer is stored contiguously in memory or not, and what to do when a buffer is full
or empty."

)

MB[4] (BufferName: TargetBuffer,
Mnemonic: TB,
Length: 20,
Messagetype: (Module: PotentialThreat,

Type: target_info).
Consumer: 0,
Desc: "This module encapsulates details about a first-in/first-out buffer to

6-68

ATD,':CW'M Produci Design lGeneraImn l)esL:n

facilitate loosely-coupled information communication between the radar and ATC devices and the
target processor. The hidden decisions of this module are how many entries the buffer can hold. wheth-
er the buffer is of a fixed or varintz size, whether tile buffer is stored contiguously in memory or not,
and what to do when the buffer is full or empty."

)

PCC[1] (Loosely_coupled: True)

PCC[2] (Loosely coupled: True)

1. ARCHITECTURE AND COMPONENT MAPPINGS

Table 6-1 collectively presents the Architecture and Component mappings of the software Product
Design. The first column of the table names the concrete components that can potentially be included
in a generated system. The second column of the table (the Architecture Mapping) describes condi-
tions that must hold for the concrete component to be included in the generated system. References
in these conditions (indicated below in boldface type) correspond directly to resolutions of either the
decision model or the decision model extensions. It a component is to be included in a geneiated sys-
tem, then the third column (the Component Mapping) describes which Adaptable Component is to
be used to implement the concrete component.

"Table 6-1. Software A-chitecture and Component Mappings

Concrete Component Name p Include this Concrete Adaptable Component Name
Component...

Audible AlarmDevice It there is a Collision Warning Situation, C. AudibleAlarmDevice
such that C.ResponseAlarm is True.

AudibleAlarm Buffer If there is (1) a Collision Warning Situation. TemporaryDataBuffers
C. such that C.ResponseAlarm is True. and I

(2) PCCI I .Loosely _coupled is True.

CommunicationDevice If there is a Collision Warning Situation, C. CommunicationDevice
such that either C.ResponseATCMsg OR
C.Response.lnter Air Msg is True.

CommunicationBuffer If there is (1) a Collision Warning Situation, TemporaryDataBuffers
C, such that either C.ResponseATCMsg

OR C.Response.lnterAirMsg is True,
and
(2) PCCI2I.Loosely coupled is True.

AudibleAlarm If there is a Collision Warning Situation, C, AudibleAlarm
such that C.ResposiseAlarm is True.

Communication If there is a Collision Warning Situation, C, Communication
such that either C.ResponseATCMsg OR
C.Response.inter Air Msg is True.

RadarTarget_ Priori tyB u ffe r Always TemporaryData Buffers

PotentialThreat Always PotentialThreat

ATD/CWM Product Design.Generation Design

Table 6-1, continued

Concrete Component Name Include this Concrete Adaptable Component Name
Component...

"Ilrgct_Buffer Always TemporarDataBuffers

HostAircraft Always Host-Aircraft

Initializationand 'Iermination Always f Initialization andTermination

Navigation Always Navigation

Radar Always Radar

AirTrafficControl Always AirTrafficControl

Air Traffic Display Device Always Air_'IrafficDisplay Device

Collision WarnineSituation_ Always I Collision_Warning_
Status SituationStatus

Physical Quantities Alwavs Physical Quantitics

Numerical Al2orithms Always NumericalAlvorithms

Air Traffic Display Alwavs Air Traffic Display

PotentialThreatPartition If there is a Collision WarninE Situation PotentialThreat,_Partition
such that CWS.Partition is not ALL.

Situation Dynamics Always Situation_Dynamics

Aircraft-Motion Always Aircraft-Motion

I-IS Always [THS

Process Structure Aiwa\'s ProcessStructu 2

2. DECISION MAPPING

Table 6-2 presents the Decision mapping of the software Product Design. The first column of the tabie

names the Concrete Components that can potentially be included in a generated system. The second
column of the table lists the adaptation parameters for the Adaptable Component used to implement
the Concrete Component (per the Component mapping from Table 6-1). The third column (the Deci-
sion Mapping) describes where values for the idaptation parameters are to be obtained. References
(indicated below in boldface type) correspond directly to resolutions of either the Decision Model or
the Decision Model Extensions.

Table 6-2. Software Component Decision Mapping

Concrete Component Name Parameter Value is obtained from...

AudibleAlarmDevice 1i Looselycoupled PCCI I l.Loosel_coupled

AudibleAlarm Buffer I Name jMB1ll.BufterName
2 Length MBlll.Length

3 Messagetype.Module MB(l .Messagetype.Moduh•

6-711

ATD!'CWM Produci Deswin!Generafion Des~ien

Table 6-2. continued

Concrete Component Name Parameter Value is obtained from...

AudibleAlarmBuffer 4 Message yeTp MBI IJ.Messgey.Tp

(continued)

forall X in MB[1].Consumer, aggregate parameters 5 and 6.

5~ Consumer.Name X.Name

6 Consumer.Priority X.Priority

Communication-Device 1 Atc -msg True if there is a Collision Warning Situation,
C, such that C.ResponseATC Msg is True.

2 Intr~airmsg Otherwise. False.

2 Interair msoI ue if there is;a Collision Warning Situation.
C, such that C.Response.inter Air Msg Is

I True. Otherwise, False.

[3 Mode 1ATCMessage.Mode
4 Loosely_coupled PCCI2 I.Loosely coupled

Communication Bufler I Name MIB121.Buffer-Name

2 Length MB121.Length

3 Message_type. MBI21.Nlessage~tvpe.Module
K-Module

4 Message type.lype MBI12I.Message type.Tipe

forall X in MBI12I.Consumner, aggregate parameters 5 and 6.

5 osumer.Namc: X.Name

6 1Consumer.Priority X.Priority

Audible-Alarm forall C in CWS such that C.ResponseAlarm = True, aggregate
parameters 1, 2, and 3.

1 Ring.cws-name C.CWSName

2 Ring.frequency C.ResponseAlarm.Pitch

3 Ring.duration C.ResponseAlarm.Duration

Communi(.ation forall C in CWS such that C.ResponseATC_Msg = True, aggregate
parameters 1 and 2.

1 Atc-msg. ews name]C.CWSName
2 Atc~msg.code C. Response.Code

forall C in CWS such that C.Response.InterAirMsg =True. aggregate
parameters 3 and 4.

64 1

ATD/CWM Product Design 'Generation Design

Table 6-2. continued

Concrete Component Name T Parameter Value is obtained from...
Communication (continued) 3 'Interairmsg. C.CWSNaie

cws-name

4 Inter air msg.code C.Response.Code

5 Mode ATCMessage.Mode

RadarTargetPriority_Buffer T Name MB[3J.BufferName

2 Length MB[3J.Length

3 Messagetype.Module MB[3I.Message-type.Module

4 Message-type.Type MB[3J.Messagetype.Type

forall C in CWS. aggregate parameters 5 and 6.

[5 Consumer.Name C.CWS_Name

6 Consumer.Priority C.Severity

PotentialThreat forall C in CWS. aggregate parameters 1 through 10.

1 Cwsname C.CWSName

2 Severity C.Severity

Parameters 3.1 and 3.2 are only used when a "time only"-based predicate
is used:

3.1 Predicate.time.min C.CWSDef.Time.Min

3.2 Predicate.time.max C.CWSDef.Time.Max

Parameters 4.1 and 4.2 are only used when a "range only"-based predicate
is used:

4.1 Prcdicate.range.min C.CWS-Def'.Range.Min

4.2 Predicate.range.max C.CWSDe.Range.Max

Parameters 5.1 - 5.4 are used when both a "time and range"-based predicate
is used:

5.1 Predicate. C.CWSDef.Time.Min
t and r.tmrin

5.2 Predicate. C.CWSDef.Time.Max
t and r.timax

5.3 Predicate. C.CWSDefRange.Min
t and r.rmrin

5.4 Predicate. C.CWSDef.Range.Max
t and r.r max

67 Partition C.Response.Partition

6-72

ATD/CWM Product Design/Generation Design

Table 6-2, continued

Concrete Component Name Parameter Value is obtained from...

PotentialThreat (continued) 7 Alarm C.ResponseAlarm

8 Atc-msg C.ResponseATC_Msg

9 Inter air msg C.Response.InterAir Msg

10 Corrective C.Response.CorrectiveMsg

Target_Buffer 1 Name MBI4l.BufferName

2 Length MB[4].Length

3 Message type.Module MB[4].Messagetype.Module

4 Messagejt-pe.Type MB14].Message type.Tpe

forall X in MB14I.Consumer, aggregate parameters 5 and 6.

5 Consumer.Name X.Name

6 Consumer.Priority X.Priority

HostAircraft None.

Initialization and-Termination None.

Navigation None.

Radar [None.
AirTrafficControl None.

Air Traffic Display Device None.

CollisionWarningSituation_ forall C in CWS, aggregate parameters 1 through 6.
Status

I CWSName C.CWSName

2 Severity C.Severity

Parameters 3.1 and 3.2 are only used when a "time only"-based predicate
is used:

3.1 Predicate.time.min C.CWSDef.Time.Min

3.2 Predicate.time.max C.CWS Def.Time.Max

Parameters 4.1 and 4.2 are only used when a "range only"-based predicate
is used:

4.1 Predicate.range.min C.CWSDef.Range.Min

4.2 Predicate.range.max C.CWS Def.Range.Max

Parameters 5.1 - 5.4 are used when both a "time and range"-based predicate
is used:

5.1 Predicate. C.CWS_Def.Time.Min
t and r.t min

6-73

ATD/CWM Product Design /Generation Design

Table 6-2, continued

Concrete Component Name } Parameter Value is obtained from...

CollisionWarrnngSituation_ 5.2 Predicate. C.CWS Def.Time.Max
Status (continucd) t-and-r.t-max

5.3 Predicate. C.CWSDef.Range.Min

t-and-r.r-min

5.4 Predicate. C.CWSDef.Range.Max

t -and -r.r-max

6 iPartition C.CWS.Partition

PhysicalQuantities None.

Numerical-Algorithms None.

Air TrafficDisplay 1 Icon_shape.host_shape ADS.HostShape

2 fIcon shape.id-shape ADS.ID-Shape.Sbape

3 jIcon shape.uid_shape ADS.UID Shape

forall X in ASID. aggregate parameters 4 through 11.

4 1Cws-name IX.Situation.CWSName

Parameters 5.1 and 5,'.2 are only used when a "time only"-based predicate
is used:

5.1. Predicate.time.min IX.Situation.CWSDef.Time.Min
52Predicate.time.max X.Situation.CWSDef.Time.Max

Parameters 6.1 and 6.2 are only used when a "range only"-based predicate
is used:

6.1 Predicate.rangc.min X.Situation.CWSDef.Range.Nlin

6.2 Predicate.range.max 1X.Situafion.CWS_Def.Range.Max
Parameters 7.1 - 7.4 are used when both a "time and range"-based predicate
is used:

7.1 Predicate. IX.Situation.CWS Def.Time.Min
t-and-r.t-mmn

7.2 Predicate. X.Situation.CWS_Def.Time.Max
t-and-r.t-max

7.3 Predicate. X.Situation.CWSDef.Range.Min
t-and-r.r-mmn

7.4 Predicate. X.Situafion.CWS_Def.Range.Max
t-and-r.r-max

8 Partition X.Partition

9 Color X.PTColor

10 Blink jX.PT-Blink

6-74

ATD/CWM Product Design/Generation Design

"Table 6-2, continued

Concrete Component Name Parameter Value is obtained from...

AirTrafficDisplay (continued) 11 Fill X.PTFilI

forall X in HASD, aggregate parameters 12 and 13.

12 Color.cws name IFX.Situation.CWSName

13 Color.color X.Color

141 Area SurveillanceArea.Range

PotentialThreatPartition 1 Altitude TIrue if "altitude" is one of the criteria for
identification listed in ADS.IDShape.
Partition. Otherwise, False.

I Airspeed True if "airspeed" is one of the criteria for
identification listed in ADS.IDShape.
Partition. Otherwise. False.

Situation-Dynamics iNone.

AircraftMotion i Msd MSD.distance

IHS 1 Alarm True if there is a Collision Warning
Situation. C, such that C.ResponseAlarm

is True. Otherwise. False.

12 ATC_M s True if there is a Collision Warning Situation,
C, such that C.ResponseATCMsg is True.
Otherwise, False.

3 InterAirMso True if there is a Collision Warning Situation,
C, such that C.Response.Inter Air Msg is

True. Otherwise. False.

6-75

ATD/CWM Product Design /Generation Design

Table 6-2, continued

fConcrete Component Name [Parameter Value is obtained from...

IHS (continued) Construct a list of temp btifes. l-mic is a tenip oufler ior every MBIx]
contained in the "Resolutions to the Decision Model" given the following
restrictions:

"* MB[11 used only if PCC[1J.Looseiy coupled is Tr~ue and
there is a Collision Warning Situation, C, such that
C.Response-larm is True.

"* MB[21 used only if PCCI21.Loosely coupled is True and
there is a Collision Warning Situation, C, such that either
C.Response.ATQMsg or C.Response.lnter AirMsg is
True.

"* MB[3] always used.

"* MB[4] always used.

4.1 Temp buffer.Name MB~x].BufferName

4.2 TempBuffer. MB~x].Mnemonic
Mnemonic

4.3 TekmpBuffer.Desc ~MBlx].Desc

ProcessStructure Fforall C in CWS. aggregate parameters 1 through 5.

1 lcws.CWS Name FC.CWS Name

2 cwsAlar C.ResponseAlarm
3 cws.ATC-Msgc C.ResponseATCNlsg

4]cws.Inter Air MsgI C.Response.lnterAir-Msg

5 cws.Corrective-Mso C.Response.Corrective-Msg

DOCUMENTATION GENERATION DESIGN

Decision Model Extensions

Revision-Information

The Revision Information (RI) describes the revision date and document set for all document

components of the ATD/CWM domain. The decisions that must be made for this decision class are:

RevisionInformation : and
date (Date when the documentation set was generated.) : TBD
indicator (Document set indicator.) : identifier(l..64)

Resolution of Decision Model Extensions

TBD

6-70

ATD/CWM Produci Design/Generation Dcsien

1. ARCHITECTURE AND COMPONENT MAPPINGS

Table 6-3 collectively presents the Architecture and Component mappings of the documentation
Prc-Juct Desig.. This table has :,!c : rg.e nrgani-!*-!on as Table 6-1.

Table 6-3. Documentation Architecture and Component Mappings

Concrete Document Name Include this Concrete Adaptable Document Name
Component...

IRS always IRS

SRS always SRS

2. DECISION MAPPING

Table 6-4 presents the Decision mapping of the documentation Product Design. This table has the

same organization as Table 6-2.

'Fable 6-4. Documentation Component Decision Mapping

Concrete Document Name Parameter Value is obtained from...

IRS 1.1 System.Name PI.System.Name

12 System.Mnemonic PI.System.Mnemonic

1.3 Svstem.ld J PI.System.ID

2.1 Contract. PI.Contract.CDRL

CDRLNumber

F.2 i Contract.Agency PI.Contract.Agency

1 2.3 Contract. PI.Contract.Number
SContract Number

3.1 Revision.Indicator TBD

3.2 Revision.Date TBD

4 Alarm True if there is a Collision Warning
Situation, C, such that C.ResponseAlarm
is True. Otherwise, False.

5 ATCMsg True if there is a Collision Warning Situation,
C, such that C.ResponseATCMsg is True.
Otherwise, False.

6 InterAirMsg True if there is a Collision Warning Situation,
C, such that C.Response.Inter Air Msg is
True. Otherhise. Failse.

7 Mode ATCMessage.Mode

SRS 1.1 System.Name PI.System.Name

6-77

ATD'CWM Product Desizn/Generation Design

Table 6-4. continued

Concrete Document Name Parameter Value is obtained from...

SRs (continueO) 1."2, System.Mnemonic PI.System.Nlnemonic

1.3 System.Id PI.System.ID

2.1 Contract. PI.Contract.CDRL
CDRLNumber

2.2 1 Contract.Agency PI.Contract.Agency

2.3 Contract. PI.Contract.Number
ContractNumber

3.1 Revision.Indicator TBD

3.2 I Revision.Date TBD

4 Alarm True if ther, is a Collision Warning
Situation. C. such that C.Response.Alarm
is True. Otherwise, False.

5 1 ATCMsg True if there is a Collision Warning Situation.
C, such that C.ResponseATC Msg is True.

- Otherwise, False.

6 Inter_Air.-_so True if there is a Collision Warning Situation,
C. such that C.Response.lnterAirMsg is
True. Otherwise. False.

VERIFICATION AND VALIDATION SUPPORT GENERATION DESIGN

Decision Model Extensions

Threat Partition

The ThreatPartition (TP) describes the name of the concrete code component that determines a

potential threat's partition.

ThreatPartition : and

PartitionModule (Name of the concrete module that determines a potential threat's

partition.) : identifier(1..64)

Resolution of Decision Model Extensions

TP (PartitionModule:PotentialThreat)

1. ARCHITECTURE AND COMPONENT MAPPINGS

Table 6-5 collectively presents the Architecture and Component mappings of the verification and
validation support Product Design. This table contains the architecture and component mappings

for CSU test components. The table has the same organization as Table 6-1.

6,-78

ATD/CWM Product Design/Generation Design

Tible 6-5. Verification and Validation Support Architecture and Component Mappings

c oncrct ,-.t Tn•.ii t,,,,th;c (nr,•r.,t, Adap-ahle CSU Te,;t
Component Name Component... Component Name

Audible-Alarmn always AA_CSU

CWSS always CWSS CSU

2. DECISION MAPPING

Table 6-6 presents the Decision mapping of the verification and validation support Product Design.
This table has the same organization as Table 6-2.

Table 6-6. Verification and Validation Support Component Decision Mapping

Concrete Component Name Parameter Value is obtained from...

AudibleAlarm forall C in CWS such that C.ResponseAlarm = True. aggregate
parameters 1, 2, and 3.

1 Ring.cws name C.CWSName

2 Ring.frequency C.ResponseAlarm.Pitch

3 Ring.duration C.ResponseAlarm.Duration

forall C in CWS, aggregate parameter 4.

4T CWSId C.CWS Name

Collision WarningSituation_ forall C in CWS, aggregate parameters 1 through 6.
Status

1 CWSName C.CWS Name

2 Severity, C.Severity

Parameters 3.1 and 3.2 are only used when a "time only"-based predicate
is used:

3.1 Predicate.time.min C.CWSDef.Time.Min

3.2 Predicate.time.max C.CWS Def.Time.Max

Parameters 4.1 and 4.2 are only used when a "range only"-based predicate
is used:

4.1 Predicate.range.min C.CWS Def.Range.Min

4.2 Predicate.range.max C.CWS Def.Range.Max

Parameters 5.1 - 5.4 are used when both a "time and range"-based predicate
is used:

6-79

ATD/CWM Product Design/Generation Design

Table 6-6. continued

Concrete Component Name Parameter Value is obtained from...

CollisionWarmng_,Stuation_ 5.1 Pred,cat. C.CWS-Def.Time.Min
Status (continued) t _and r.t mm

5.2 Predicate. C.CWSDef.Time.Max

t and r.t max

5.3 Predicate. C.CWSDef.Range.Min

t-and-r.r-mmn

5.4 Predicate. C.CWSDef.Range.Max
t and r.r max

6 Partition C.CWS.Partition

forall C in CWS, aggregate parameter 7.

7 CWS Id C.CWS Name

8 Partition TP.Partit ion-Module

9 Area SurveillanceArea.Range

6-80

7. ATD/CWM PRODUCT IMPLEMENTATION

1. ADAPTABLE COMPONENTS

ADAPTABLE CODE COMPONENTS

1. Aircraft_Motion (AM)

Spec

-- Aircraft Motion (AM)

-- This module contains programs that model aircraft motion. Aircraft
-- location, velocity, and altitude with respect to the earth and
-- airmass are derived from measures of aircraft motion from devices
-- and other physical modules. The primary hidden decision is the

-- equation of motion.

with PhysicalQuantities;
generic

msd : PhysicalQuantities.feet;

package AircraftMotion is

-- Return the FAA dictated minimal separation distance. If two aircraft
-- pass each other within this limit, then a collision has occurred.

function getmsd return PhysicalQuantities.feet;

-- In three dimensional space, the range between two aircraft
-- can be decomposed into two components: rangexy which is
-- the range component that lies in the X-Y plane; and rangez which

-- is the component lying in the Z plane. This function computes range_xy.

function get_range_xy(distance : in PhysicalQuantities.nauticalmile;

altitudeA : in PhysicalQuantities.feet;
altitudeB : in PhysicalQuantities.feet)

return
PhysicalQuantities.nauticalmile;

-- Returns the aircraft's climb rate (i.e., its vertical velocity).

7-I

ATD/CWM Product lmplementation/Adaptable Code Components

-- Exception ClimbRateIsInfinite is raised when timeY equals time X.

Climb RateIsInfinite : exception;

function get climb rate(altitudeY in PhysicalQuantities.feet;
timeY: in PhysicalQuantities.seconds;
altitudeX in PhysicalQuantities.feet;
timeX in PhysicalQuantities.seconds)

return
PhysicalQuantities.fpm:

-- In three dimensional space, the velocity of an aircraft can be
-- decomposed into two components: velocity_zy which is the
-- component occurring in the X-Y plane; and velocity_z which
-- is the velocity occurring in the Z plane (i.e., vertical velocity also
-- referred to as climbrate). This function computes velocityxy.

function get velocity xy(velocity : in PhysicalQuantities.knots;
rate : in PhysicalQuantities.fpm)

return PhysicalQuantities.knots;

end Aircraft Motion;

Body

-- AircraftMotion (AM) package body

-- This module contains programs that model aircraft motion. Aircraft
-- location, velocity, and altitude with respect to the earth and
-- airmass are derived from measures of aircraft motion from devices
-- and other physical modules. The primary hidden decision is the
-- equation of motion.

with PhysicalQuantities; use PhysicalQuantities;
with NumericalAlgorithms;

package body AircraftMotion is

-- Maximum permissible climb rate value. Used to smooth
-- out gyrations in the getclimbrate computation.

MaxClimbRate : constant PhysicalQuantities.fpm := 5000.0;

-- Return the FAA dictated minimal separation distance. If two aircraft
-- pass each other within this limit, then a collision has occurred.

function get msd return PhysicalQuantities.feet
is

begin
return msd;

end get_msd;

7-2

ATD'ICV'M Productl Implementalion/Adaptable Code Components

-- In three dimensional space, the range between two aircraft

-- can be decomposed into two components: rangexy which is
-- the range component that li2s in the X-Y plane; and rangez which
-- is the component lying in the Z plane. This function computes rangexy.

function get rangexy(distance : in PhysicalQuantities.nauticalmile;
altitudeA in PhysicalQuantities.feet;

altitudeB in PhysicalQuantities.feet)
return

PhysicalQuantities.nauticalmile
is
begin

return PhysicalQuantities.nauticalmile(
NumericalAlgorithms.sqrt(distance * distance -

((altitudeA -
altitudeB)/PhysicalQuantities.nauticalmile to feet *

(altitudeA -
altitudeB)/PhysicalQuantities.nauticalmile to feet)));

end getrangexy;

-- In three dimensional space, the velocity of an aircraft can be

-- decomposed into two components: velocityzy which is the

-- component occurring in the X-Y plane: and velocity z which
-- is the velocity occurring in the Z plane (i.e., vertical velocity also

-- referred to as climbrate). This function computes velocity_xy.

function get velocity xy(velocity : in PhysicalQuantities.knots;
rate : in PhysicalQuantities.fpm)

return PhysicalQuantities.knots

is
begin

return Physical Quantities.knots(

NumericalAlgorithwrs.sqrtuvelocity * velocity -
(rate/PhysicalQuantities.knot _tofpm) *

(rate/Physical_Quantities.knot to fpm)));
end get_velocityxy;

-- Compute the climb rate (velocity in the vertical direction) give
-- two altitude readings and the time stamp of each.
-- If the time stamps are equal, then we have a division by zero
-- problem. Thus, we raise exception ClimbRateIsInfinite.

function get climbrate(altitudeY in PhysicalQuantities.feet;
timeY : in PhysicalQuantities.seconds;

altitudeX : in PhysicalQuantities.feet;
timeX : in PhysicalQuantities.seconds)

return
PhysicalQuantities.fpm

is
climb rate : float;

ATD/CWM Producl Implementation/Adaptable Code Components

begin

-- By definition, time Y is always greater than time X. If
-- timeY < time_X, then we need to handle a time stamp rollover.

if timeY < timeX then
climb-rate := PhysicalQuantities.fpm(

((altitudeY - altitudeX) /
float((timeY - timeX +

PhysicalQuantities.seconds'last))) *
PhysicalQuantities.fpstofpm);

elsif timeY = time X then
raise ClimbRateIsInfinite;

else

-- altitude/time gives us dimensions of fps (feet per second). So
-- we must convert it to fpm.

climb-rate := PhysicalQuantities.fpm(
((altitudeY - altitudeX) / float((timeY - timex))) *

PhysicalQuantities.fps tofpm);
end if;

-- Adjust rate if necessary.

if climb rate > MaxClimbRate then
return AlaxClimbRate;

else
return climb rate:

end if;
end getclimbrate:

end AircraftMotion:

2. AirTrafficControl (ATC)

Spec

-- AirTrafficControl (ATC) package 3pec

-- This module encapsulates the hardware / software interface
-- to the Air Traffic Control device. Its primary hidden decisions
-- are how to obtain raw data for the aircraft identification, altitude,
-- airspeed, ground track, and range; the scale and format of these
-- input data items; and the device-dependent operations that must be
-- applied to convert the raw data to the internal format of the
-- ATD/CWM system.

with Physical_Quantities;
package AirTrafficControl is

-- Returns information status for a specific aircraft.

7-4

ATD/CWM Product Implementation/Adaptable Code Components

procedure getatcmessage(aircraftid : out string,

altitude out PhysicalQuantities.feet;
airspeed out PhysicalQuantities.knots;
groundtrack out PhysicalQuantities.degrees;
target_range out

PhysicalQuantities.nautical mile;
relativebearing : out

PhysicalQuantities.degrees;

timestamp : out Physical_Quantities.seconds);

end AirTrafficControl;

Body

-- AirTrafficControl (ATC) package body

-- This module encapsulates the hardware / software interface
-- to the Air TrafficControl device. Its primary hidden decisions
-- are how to obtain raw data for the aircraft identification, altitude,
-- airspeed, ground track, and range; the scale and format of these
-- input data items; and the device-dependent operations that must be
-- applied to convert the raw data to the internal format of the
-- ATD/CWM system.

with PhysicalQuantities;
with Simulation Data;
package body AirTrafficControl is

-- Returns information status for a specified aircraft.

procedure get_atc_message(aircraft id : out string;
altitude out PhysicalQuantities.feet;

airspeed out PhysicalQuantities.knots;
groundtrack out PhysicalQuantities.degrees;
targetrange out

PhysicalQuantities.nauticalmile;
relative bearing : out

PhysicalQuantities.degrees;

timestamp : out PhysicalQuantities.seconds)
is
begin

-- Get information from ATC.

SimulationData.getsimdata(aircraftid, altitude, airspeed,
groundtrack, targetrange,

relative-bearing,;
timestamp := PhysicalQuantities.gettime;

end get_atc_message;

7-5

ATD/CWM Product Implementation/Adaptable Code Components

end AirTrafficControl;

3. AirTrafficDisplayDevice (ATDD)

NOTE: The body of this module is implemented Ada and C.

Spec

-- AirTrafficDisplayDevice (ATDD) package spec

-- This module encapsulates the hardware/software interface to
-- the display. Its primary hidden decisions are the particular sequence
-- of operations necessary to enable and position various icon
-- symbols; the methods for manipulating icon color, shape, shade,
-- and blink characteristics; the method for removing an icon from
-- the display; and the method for writing text to the display.

package AirTrafficDisplayDevice is

-- Icon shape

type shape is (square, circle, triangle);

-- Positioning type

subtype position is integer range -1270 .. 1270;

-- Identifier for a created object.

type displayhandle is private;
null_displayhandle : constant display handle;

-- Color and Fill type

type colors is (none, red, orange, green, yellow, white, blue,
black, pink, purple, indigo, violet);

type fill is new colors;
type color is new colors;

-- Icon size in pixels

subtype size is integer range 1..100;

-- Blink type

subtype blink is float digits 1 range 0.0 .. 10.0;

7-6

ATD/CWM Producl Implementation/Adaptable Code Componenws

-- Create object. Creates an icon with the given attributes
-- and labels, and returns a handle to it.

function createobject(iconshape in shape;
iconsize in size;
icon fill in fill;
icon color in color;
fill blink rate in blink;
obj _blinkrate in blink;
xloc in position;
yloc in position;

label 1 in string;
label 2 in string;
label 3 in string;
label_4 in string;
label_5 in string) return displayhandle;

-- Write text to the given location

procedure write text(rsg : in string; xloc : in position; yloc : in
position);

-- Set the color of an icon

procedure chg objectcolor(id : in displayhandle; icon-color : in color);

-- Fill an icon

procedure chg_objectfill(id : in display_handle; iconfill : in fill);

-- Blink an icon at the specified rate.

procedure chgobjectblink(id in displayhandle;
fillblinkrate in blink; obj_blinkrate : in blink);

-- Set the geometric shape of the icon.

procedure chg_object_shape(id in displayhandle; icon_shape in shape);

-- Move an icon to a new location and update its labels

procedure move object(id : in displayhandle;
xloc in position;
yloc in position;
label_1 in string;
label 2 in string;
label 3 in string;

7-7

ATD/CWM Product Implemenialion/Adaptable Code Components

label 4 in string;
label_5 in string);

-- Delete an object from the display.

procedure delete_object(id : in displayhandle);

-- Create a display window of a given size at the specified location.

procedure create_display(xloc in position; yloc : in position;
width in position; height : in position);

private

type icon record;
type dizplay handle is access icon_•ecord;
null_display_handle : constant displayhandle := null;

end AirTrafficDisplayDevice;

Body (Ada code part)

-- AirTrafficDisplay_Device (ATDD) package body

-- This module encapsulates the hardware/software interface to
-- the display. Its primary hidden decisions aie the particular sequence
-- of operations necessary to enable and pcosition various icon
-- symbols; the methods for manipulating icon color, shape, shade,
-- and blink characteristics; the method for removing an icon from
-- the display; and the method for writing text to the display.

with System:
with Unchecked Deallocation;
with Text_10;
package body AirTrafficDisplayDevice is

-- Label storage and a constant "clear" label. This will be used to
-- package the five labels for sending to the C routines. The string
-- lengths are currently bounded to 25 characters.

subtype label is string (1..26);
clear-label : constant label := label'(1..25 => " " others => ASCII.NUL);

-- Message text storage. Used to store the previous written text message.

oldmsgtext : string(l..35);
previousmessage : boolean := false;

7-8

ATD/CWM Product Implementation/Adaptable Code Components

-- Icon information. Record used to store information
-- about an icon displayed on the screen. when an icon
-- is created, a handle is returned to the calling program.

-- The icon record stores the following information.

-- icon-shape - icon shape
-- icon size - icon size (in pixels)
-- icon fill - icon fill color
-- icon-color - icon border color
-- fill blink rate - how fast the filled interior should blink
-- obj_ blink rate - how fast the icon itself should blink
-- xloc - "x" axis location of the upper left corner of the icon
-- yloc - "y" axis location of the upper left corner of the icon
-- label 1 - First icon label

label_2 - Second icon label

-- label_3 - Third icon label
-- label_4 - Fourth icon label
-- label_5 - Fifth icon label

type icon-record is
record

iconshape shape;
icon-size : size;
icon-fill : fill;
icon-color : color;
fill blink rate : blink;
obj _blink rate : blink;
xloc position;
yloc position;
label_1 label;
label_2 label;
label_3 : label;
label_4 : label:
label_5 label;

end record;

-- Unchecked deallocation routine for icon-records.

procedure free is new unchecked deallocation(iconrecord, displayhandle);

-- Interface declarations to the Xlibrary stuff.

procedure CCreateWindow (XLocation in Integer
YLocation in Integer
Width : in Positive

Height in Positive

pragma Interface (C, CCreateWindow)
pragma ImportProcedure (internal => CCreateWindow,

7-9

ATD/CWM Product Implementation/Adaptable Code Components

external => CreateWindow,
parametertypes => (integer,

integer,
positive,
positive),

mechanism => value);

procedure CCreate_Square (X_Location in Integer
YLocation in Integer

SideSize in Positive
Fill in Natural
Border in Natural

Label_1 in System.Address
Label_2 in System.Address
Label_3 in System.Address
Label_4 in System.Address

Label_5 in System.Address);

pragma Interface (C, CCreate_Square)
pragma ImportProcedure (internal => CCreateSquare,

externn] => CreateSquarzý,

parametertypes => (integer,
integer,
positive,
natural,
natural,
system.address,
system.address,

system.address,

system.address,
system.address),

mechanism => value);

procedure CCreate Circle (XLocation in Integer

YLocation in Integer
Diameter in Positive

Fill in Natural
Border in Natural
LabelI in System.Address
Label_2 in System.Address
Label_3 in System.Address
Label_4 in System.Address
Label_5 in System.Address);

pragma Interface (C, C_CreateCircle)
pragma ImportProcedure(internal => CCreateCircle,

external => CreateCircle,
parameter_types => (Integer,

Integer,
Positive,

Natural,
Natural,

7-10

ATD/CWM Product Implementalion/Adaptable Code Components

System.Address,

System. Address,
System.Address,
System.Address,
System. Address),

mechanism => value);

procedure CCreateTriangle (X_Location in Integer
YLocation in Integer
Height in Positive
Fill in Natural
Border in Natural
Label_1 in System.Address
Label_2 in Systom.Address
Label_3 in System.Address
Label_4 in System.Address
Label_5 in System.Address);

pragma Interface (C, C CreateTriangle)
pragma ImportProcedure(internal => CCreateTriangle,

external => CreateTriangle,
parametertypes => (integer,

integer,
positive,
natural,
natural,
system.address,
system.address,
system.address,
system.address,
system.address),

mechanism => value);

procedure CDraw_Square (XLocation in Integer
YLocation in Integer
SideSize in Positive

pragma Interface (C, CDrawSquare)
pragma Import Procedure(internal => CDrawSquare,

external => DrawSquare,
parameter_types => (integer, integer, positive),
mechanism => value);

procedure CDrawCircle (XLocation in Integer
YLocation in Integer
Diameter in Positive

pragma Interface (C, CDrawCircle)
pragma ImportProcedure(internal => CDrawCircle,

external => DrawCircle,
parameter_types => (integer, integer, positive),
mechanism => value);

7-11

ATD/CWM Product Implementafion/Adaptable Code Componenis

procedure CDrawTriangle (XLocation in Integer
YLocation in Integer
Height in Positive

pragnia Interface (C, CDrawTriangle)
pragma ImportProcedure(internal => CDraw Triangle,

external => DrawTriangle,
parameter_types => (integer, integer, positive),
mechanism => value);

procedure CDrawLine (FromLocationX in Integer
FromLocationY in Integer
ToLocationX in Integer
ToLocation Y in Integer

pragma Interface (C, CDrawLine);
pragma ImportProcedure~internal => CDrawLine,

external => DrawLine,
parameter_types => (integer, intege-ý-, integer,

integer),
mechanism => value);

procedure CDrawString ý''Location in Integer
YLocaLion in Integer
TheString in System.Address

pragma Interface (C, CDrawString)
pragma ImportProcedure(internal => CDrawString,

external => DrawString,
parameter-types => (integer, integer,

system.address),
mechanism => value);

procedure CMoveTriangle (Height in Positive
FromXLocation in Integer
FromYLocation in Integer
ToXLocation in Integer
ToYLocation in Integer
Fill in Natural
Border in Natural
OldLabel_1 in Systern.Address
OldLabel_2 in System.Address
OldLabel_3 in System.Address
OldLabel_4 in System.Address
OldLabel_5 in System.Address
NewLabel_1 irn System.Address
NewLabel_2 in System.Address
NewLabel_3 in System.Address
NewLabel_4 in System.Address
New Label_5 in System.Address)

7-12

ATD/CWM Product Implementation/Adaptable Code Components

pragma Interface (C, C_-Move_-Triangle);
pragma ImportProcedure(internal => CMoveTriangle,

external => MoveTriangle,
parameter-types => (positive, integer, integer,

integer,
integer, natural, natural,
system, address,
system, address,
system, address,
system. address,
system. address,
system. address,

system. address,
system. address,
system, address,
system. address),

mechanism => value);

procedure CMove Circle (Diameter in Positive
FromXLocation in Integer
FromYLocation in Integer
ToXLocation . in Integer
ToYLocation in Integer
Fill in Natural
Border in Natural
OldLabel_1 in System.Address
OldLabel_2 in System.Address
OldLabel_3 in System.Address
OldLabel_4 in System.Address
OldLabel_5 in System.Address
NewLabel_1 in System.Address
NewLabel_2 in System.Address
NewLabel_3 in System.Address
NewLabel_4 in System.Address
NewLabel_5 in System.Address)

pragma Interface (C, CMoveCircle ;
pragina ImportProcedure(internal => CMoveCircle,

external => MoveCircle,
parameter_types => (positive, integer, integer,

integer,
integer, natural, natural,
system.address,
system. address,

system. address,
system. address,
system, address,

system. address,
system, address,
system. address,
system. address,

7-13,

ATD/CWM Product Implernentation/Adaptable Code Components

system, address),
mechanism => value);

procedure CMove_Square (Size :in Positive
FromXLocation :in Integer
FromYLocation :in Integer
ToXLocation :in Integer
ToYLocation :in Integer
Fill in Natural
Border in Natural
OldLabel_1 :in System.Address
OldLabel_2 :in System.Address
OldLabel_3 in System.Address
OldLabel_4 in'System.Address
OldLabel_5 :in System.Address
NewLabel_1 in System.Address
NewLabel_2 in System.Address
NewLabel_3 in System.Address
NewLabel_4 in System.Address
NewLabel_5 in System.Address)

pragma Interface (C, CMoveSquare
pragma ImportProcedure(internal => C_MoveSquare,

external => MoveSquare,
parameter-types => (positive, integer, integer,

integer,
integer, natural, natural,
system. address,
system. address,

system. address,
system. address,
system. address,
system. address,
system. address,
system. address,
system. address,
system .address),

mechanism => value);

-- Local internal routines to simply eliminate the need for duplicate
-- code. Three routines here: creating a circle, square, or triangle.

procedure create-circle(handle : in display-handle)
is
begin

c-create-circle(x-location => integer(handle.xloc),
y-location => integer(handle.yloc),
diameter => positive~handle.icon size).
fill => fill'pos(handle.icon fill),
border => color'pos(handle.icon color),

7-14

ATD/CWM Product Implementation/Adaptable Code Components

label_1 => handle.label-l'address,
label_2 => handle.label_2'address,
label_3 => handle.label_3'address,
label_4 => handle.label_-4'address,
label_5 => handie~labelS'address);

end create-circle;

procedure create_square(handle :in display-handle)
is
begin

c-create-square(x_location => integer(handle.xloc),
y-location => integer(handle.yloc),
side-size => positive(handle.icon size),
fill => fill'pos(handle.icon fill),
border => color'pos(handle.icon-color),
label_1 => handle labelV'address,
label_2 => handle.label_2'address,
label_3 => handle.label_3'address,
label_4 => handle.label_4'address,
labell 5 => handle.label 5'address);

end create_square;

procedure create triangle(handle :in display handle)
is
begin

c-create triangle(x-location => integer(handle.xloc),
y location => integer(handle.yloc),
height => positive(handle.icon size),
fill => fill'pos(handle.icon fill),
border => color'pos(handle.icon-color),
label_1 => handle~label l'address,
label_2 => handle~label_2'address,
label_3 => handle~label_3'address,
label_4 => handle~label_4'address,
label_5 => handle~label_5'address);

end create-triangle:

-- Create object. Creates an icon with the given attributes
-- and returns a handle to it.

function create_object(icon -shape in shape;
icon-size :in size;
icon fill in fill;
icon color in color;
fill blink rate in blink;
obj _blink rate in blink;
xloc :in position;
yloc :in position;
label_1 in string;
label_2 :in string;
label_3 :in string;
label_4 in string;

7-15

ATD/CWM Product Implementation/Adaptable Code Components

label_5 : in string) return display_handle

is
handle displayhandle;

begin
handle := new icon record;
handle.icon_shape icon_shape;
handle.icon size icon-size;
handle.icon fill icon fill;

handle.icon color icon color;
handle.fillblinkrate fillblinkrate;

handle.objblinkrate obj blink rate;

handle.xloc xloc;
handle.yloc yloc;
handle.label_1 := clear label;
handle.label 2 clear label;

handle.label 3 clear label:
handle label 4 clear label:
handle.label 5 := clear label:
handle.label_1(1..label_l'length) := label_1;
handle label_2(1..label_2'length) label_2;

handle.label_3(l..label_3'length) := label_3;
handle.label_4(l..label_4"length) := label_4;

handle label_5(1..label_5'length) label_5;

case handle.iconshape is
when circle => create circle(handle);
when square => createsquare(handle);

when triangle => createtriangle(handle)

end case;
return handle;

exception

when constraint error =>
text io.pu;,t 14 re("create_object CE')

return nulldisplayhandle;
when numeric-error =>

text_io.putline("createobject NE");
return nulldisplay-handle;

when others =>
textio.put line("createobject Bozo errc,'";

return nulldisplay_handle;
end createobject;

-- Write text to the given location. The previously written message

-- is erased before writing the new message on the display. Assume that

-- the xloc and yioc. positions of the previous message are exactly

-- the same as xloc and yloc for the new message.

procedure write text(msg : in string; xloc : in position; yloc : in

position)
is
begin

if previousmessage then
C_DrawString(xlocation => xloc,

7-16

ATD/CWM Product Implementation'Adaptable Code Components

y_location => yloc,
thestring => oldmsgtext'address);

end if;
oldmsgtext(l..msg'length) msg;
old_msg_text(msg'length+l) Ascii.Nul;

CDrawString(xlocation => xloc,
y_location => yloc,
thestring => old_msg_text'address

previousmessage := true;
end write-text;

-- Set the color of an icon, Don't do anything if the color
-- is the same.

procedure chgobjectcolor(id : in display-handle; icon-color in color)
is
begin

if id.icon color /= icon-color then

case id.iconshape is
when square =>

createsquare(id);
id.icon_•olor := icon-color;
createsquare(id);

when circle =>
create circle(id);
id.icon color := iconcolor;

createcircle(id);

when triangle =>
create triangle(id);
id.iconcolor := iconcolor;

create triangle(id),

end case:
end if;

end chgobjectcolor;

-- Fill an icon. Don't do anything if the fill color is the same.

procedure chgobject fill(id : in displayhandle; icon fill in fill)
is
begin

if id.icon fill /= icon-fill then

case id.icon_shape is
when square =>

createsquare(id);
id.icon fill := icon-fill;
createsquare(id);

when circle =>

create circle(id);

7-17

ATD/CWM Product Implementation/Adaptable Code Components

id.iconfill := iconfill;

create circle(id);

when triangle =>

createtriangle(id);

id.iconfill := icon-fill;

create triangle(id);

end case;

end if;

end chg_objectfill;

-- Blink an icon at the specified rate.

procedure chgobjectblink(id 7 in displayhandle;

fillblink rate : in blink; objiblinkrate in blink)

is

begin

null;

end chg_objectbllnk:

-- Set the geometric shape of the icon.

procedure chg objectshape(id : in d;.splay handle; icon-shape :in shape)

is

begin

null;

end chg_object_shape:

-- Move an icon to a new location.

procedure move object(id : in display_hand e;
xloc : in position;

yloc : in position:

label 1 in string;

label 2 : in string;

label 3 : in string;

label 4 in string;

label_5 : in string)

is

temp_label_l, temp_label_2, templabel_3, temp_label_4, tpmp_label 5

label;

begin

temp_label_1 := clear-label,

temp_label_2 := clearlabel;

temp_label_3 := clearlabel;

temp_label_4 := clear-label;

temp_lauel_5 := clearlabel:

temp_label_1(1..labell'length) := labeil;

temp_label_2(1..label_2'length) := label_2;

temp label_3(l..label_3"length) := label_3;

7-1 •

ATD/CWM Producl Implementation/Adaptable Code Components

templabel_4(1..label_4'length) label_4;
temp_label_5(1..label_5'length) label_5;

-- See if the location is actually different. If not, then we have
-- nothing to do.

if id.xloc /= xloc or else id.yloc /= yloc
or else id.label_1 /= temp_label_1
or else id.label_2 /= temp_label_2
or else id.label_3 /= temp_label_3
or else id.label_4 /= temp_label_4

or else id.label_5 /= temp_label_5 then
case id.iconshape is

when circle =>
CMoveCircle (Diameter => positive(id.icon size),

FromXLocation => integer(id.xloc),
FromYLocation => integer(id.yloc),

ToXLocation => integer(xloc),
ToYLocation => integer(yloc),
Fill => fill'pos(id.iconfill),

Border => color'pos(id.icon color),
OldLabel_1 => id.labell'address,

OldLabel_2 => id.label_2'address,
Old Label_3 => id.label_3'address,
OldLabel_4 => id.label_4'address,
OldLabel_5 => id.label_5'address,
New-Label_1 => templabell'address,
NewLabel_2 => temp_label_2"address,
NewLabel_3 => temp_label_3'address,
NewLabel_4 => temp_label_4'address.
New_Label_5 => templabel_5"address);

when square =>

C_MoveSquare (Size => positive(id.iconsize),
From_X_Location => integer(id.xloc),
FromYLocation => integer(id.yloc),
To XLocation => integer(xloc),
ToYLocation => integer(yloc),
Fill => fill'pos(id.icon fill),
Border => color'oos(id.iconcolor),
OldLabel_1 => id.label l'address,
OldLabel_2 => id.label_2'address,
OldLabel_3 => id.label_3"address,
OldLabel_4 => id.label_4"address,
OldLabel_5 => id.label_5'address,
NewLabel_1 => templabell'address,

NewLabel_2 => temp_label_2'address,
NewLabel_3 => templabel_3"address,
NewLabel_4 => templabel_4"address,
NewLabel_5 => temp_label_5"address);

when triangle =>
C_Move Triangle (Height => positive(id.icon size),

ATD/CWM Product Implementation/Adaptable Code Componenis

FromXLocation => integer(id.xloc),
FromYLocation => integer(id.yloc),
To XLocation => integer(xloc),
To Y Location => integer(yloc),
Fill => fill'pos(id.icon fill),
Border => color'pos(id.icon color),
OldLabel_1 => id.label l'address,
OldLabel_2 => id.label_2'address,
OldLabel_3 => id.label_3"address,
OldLabel_4 => id.label_4'address,
OldLabel_5 => id.label_5'address,
NewLabel_1 => templabell'address,
NewLabel_2 => temp_label_2"address,
NewLabel_3 => templabel_3'address,
NewLabel_4 => templabel_4'address,
NewLabel_5 => temp label_5'address);

end case;
id.xloc xloc;
id yloc yloc;
id.label_ templabel_l;
id.label 2 temp label_2;
id label_3 temp label_3;
id.label_4 temp label_4;
id label_5 temp label_5;

end if;
exception

when constraint error =>
text_io.putline("moveobject CE");

when numeric-error =>
textio.putline("moveobject NE");

when others =>
text_io.putline("moveobject Bozo error");

end moveobject;

-- Delete an object from the display.

procedure delete_object(id : in display_handle)
is

x : displayhandle := id;
begin

case x.iconshape is
when circle => create-circle(x);
when square => create_square(x);
when triangle => create triangle(x);

end case;
free(x);

end delete object;

-- Create a display window of a given size at the specified location.

7-20

ATD/CWAM Product Implementation/Adaptable Code Components

procedure create_display(xloc :in position; yloc :in position;
width -in position; height in position)

is
begin

CCreateWindow(XLocation => integer(xloc),
YLocation => integer(yloc),
Width => positive(width),
Height => positive (height))

end create-display;

end AirTrafficDisplay_Device;

Body (C code part)

#include <stdio.h>
#include <types.h>
#include <tirne.h>
#include <stat~h>
#include <signal.h>
#include <Xll/Xlib.h>

#ifdef FOOFOO
#define DEBUG(x) fprintf(stderr, x); return;
#el1se
#define DEBUG(x)
#endif

Display *display;
Window window;
CC grid_gc;
GC icon gc;
GC text gc;
Pixmap tile[ll], greyscale [12];

void CreateWindow(xspot, yspot, width, height)

int xspot, yspot;
unsigned mnt width, height;

XGCValues grid~gcv;
XGCValues icon-gcv;

/* define pixrnaps for fill tiles (created using "bitmap" utility) *

/* tileO is all white (zeros) *
static char tileO bits[] = f

OxOO, Ox0O, OXOO, OxOC, Ox0O, OxOC, Ox0O, Ox0O, OxOC, OxOO, OxOO, OxOO,
OXOO, OxOC, OxOO, OxOC, OxOC, OxCO, OxOO, OxOO, OxOO, OXOO, OXOO, OXOO,
OxOO, QXOO, OxOC, OxOC, OxCO, OxOO, OxOO, OxOO};

static char tilel_bits[] =f

OxOO, QxOO, 0x80, OxOl, OxcO, OxOl, OxeO, OxOl, OxeO, OxOl, Ox8O, OxOl,
Ox8O, Ox0l, Ox8O, Ox0l, OX6O, Ox0l, 0x80, Ox0l, 0x80, OxO)., OX8O, Ox0l,
0x80, OxOl, OxeC, 0x07, OxeC, 0x07, OxCO, OxOO};

static char tile2_bits[] I

7-21

ATD/CWM Product Implementation/Adaptable Code Components

OxOO, OxOO, OxeO, OxOf, OxfO, Oxif, 0X38, 0x38, 0x38, 0x30, 0x18, 0x30,

OxOO, 0x38, OxOO, Oxic, 0x80, OxOf, OxeO, 0x07, OxfO, QxOO, 0x38, OxOO,

Ox:Lc, OxOC, Oxfc, Ox3f, Oxfc, Ox3f, OxOO. OxOO);
static char tile3_-bits[] = f

OxOC, OxOO, OxeO, 0x07, OxfO, OxOf, 0x70, Oxie, 0x30, Oxic, OxOO, Oxic

OxOO, Oxic, OxOO, OxOf, OxOO, OxOf, OxOQ, Oxic, OxOO, Oxic, 0x30, Oxic,
0x70, OxIe, Oxf 0, OxOf, OxeO, 0x07, OxOO, OxOO};

static char tile4_bits[] ={

OxOO, OxQO, OxOO, OxOf, 0x80, OxOf, OxcO, OxOd, OxeO, OxOc, 0x70, OxOc,
0x30, OxOc, 0x38, Ox~c, 0x18, OxOc, OxfS, Ox3f, Oxf8, Ox3f, OxOO, OxOc,
OxOO, Ox~c, QOO0, Ox~c, Ox00, Ox~c, OxOO, OxOO};

static char tile5_bits[) = f

OxOO, OxOO, OxfS, Oxif, Oxf8, Oxlf, 0x18, QxOO, OxiB, OxOO, Oxf8, 0x03,
Oxf8, 0x07, OxQO, OxOe, OxOO, Oxlc, OxOC, OxiS, OxOO, OxiS, OxOC, Oxic,

OxI8, OxOe, Oxf8, 0x07, OxfO, 0x03, OxOO, OxOO};

static char tile6_bits[) = f

OxOO, OxOO. OxOO, OxOc. OxOG, Oxif, OxcO, 0x13, OxeO. OxCO, 0x30, OxOO,

0x38, OxOO, Oxic, OxOO, OxOc, OxOf, Oxcc, Oxif, OxfS, 0x38. 0x78, 0x30,

0x70, OxiS, OxeC, Oxif, OxcO, 0x07, OxOO, OxOO};

static char tile7_bits[] ={

OxOO, OxOO, Oxf8, Oxif, Oxf8, OxIf, OxiS, Oxic, OxOO, OxOe, OxOO, 0x07,

Ox8O, 0x03, OxcO, OxOl, OxeO, OxOD, 0x60, OxOO, 0x70, OxOO, 0x70, OxOO,

0x70, OxCO, 0x70, OxOO, 0x70, OxOQr, OxOO, OxOO};

static char tileS bits[] = (

OxOO, OxOO, OxcO, 0x03, OxeC, 0x07, 0x70, Ox~e, 0x33, Oxic, 0x3g, Oxic,

0x70, OxOe, OxeO, 0x07, OxeO, 0x07, 0x70, OxOe, Ox3S, Oxic, 0x3S, Oxic,

0x70, OxOe, OxeO. 0x07, OxcO, 0x03, OxOO, OxOO};

static char tile9 bits[] = f

OxOO, OxOO. OxcO, 0x07, OxeO, OxOf, 0x70, OxOe, 0x38, Oxlc, Ox18, Ox3c,

Oxl8, 0x37, OxfS, 0x33, OxfO, 0x39, OxOO. 0x38, OxOO, Oxlc, OxOO, Oxlc,

OxOO, OxOe, OxOO, 0x07, OxOO, 0x07, OxOO, OxOO};

/* tilelO is all black (ones) ~
static char tilelO-bits[] ={

Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff. Oxff, Oxff, Oxff, Oxff,

Oxff. Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff,

Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff};

static char greyl bits[) = I
0x04, 0x41, OxOO, OxOC, 0x20, OxO8, OxOO, OxOO, 0x82, 0x20, OxOO. OxOO,

0x08, 0x82, OxOC, OxOO, 0x4l, OxiC, OxOO, OxOC, OxlO, 0x04, OxOO, OxOO,
0x04, 0x41, OxOO, OxOO, 0x20, 0x08, OxQO, 0x00};

static char grey2_bits[] = (

0x04, 0x41, 0x41, OxlO, 0x20, 0x08, 0x08, 0x82, 0x82, 0x20, 0x20, 0x08,

OxO8, 0x82, 0x82, 0x20, 0x4l, OxlO, 0x08, 0x82, OxlO, 0x04, 0x82, 0x20,

0x04, 0x41, 0x41, OxlO, 0x20, 0x08, 0x82, 0x20};

static char grey3_bits[] = {
0x14, 0x45, 0x41, 0x90, 0x24, 0x09, 0x09, 0x82, Oxc2, 0x24, 0x20, 0x48,

OxOc, 0x86, Oxa2, 0x20, 0x4l, 0x19, 0x88, 0x82, 0x14, 0x24, 0x82, 0x28,

0xI4, 0x45, 0x41, 0x90, 0x28, OxOa, 0x82, 0x24};

static char greY4_bits[] = (

0x54, 0x45, 0x49, 0x92. 0x24, 0x29, 0x19, 0x92, Oxc2, Ox2c, 0x21, 0x49,

Qx4c, 0x86, Oxb2, 0x60, 0x45, 0x19, Oxa8, Ox8a, 0x94, 0x24, Oxa2, OxaS.

0x14, Ox4d, 0x45, 0x9l, 0x28, Ox4a, Qx&2, Oxa4};

7-22

ATD/CWM Product Implementation/Adaptable Code Components

static char grey5_-bits[]=
0x56, Ox4d, Oxc9, 0x92, 0x34, 0x69, 0x19, 0x93, Oxd2, Oxac, 0x25, 0x49,
Oxcc, Oxa6, Oxb2, 0x64, 0x65, 0x59, Oxaa, Ox8a, Ox9c, 0x25, Oxa2, Oxbs,
Ox9c, Ox4d, 0x65, 0x9l, 0x28, Ox5b, Oxa6, Oxa4);

static char grey6_-bits[] = {
0x56, Ox6d, Qxe9, 0x96, 0x36, 0x69, 0x59, Oxb3, Oxda, Oxac, Oxa5, 0x59,
Oxcc, Oxb6, Oxb3, 0x65, Ox6d, 0x59, Oxaa, Oxda, Qxdc, 0x25, Oxb2, Oxba,
Ox9d, Ox4d, Ox6d, 0x95, Oxa8, Ox5b, Oxb6, Oxa6);

static char grey7_-bits(] = {
Oxd6, Oxed, Oxe9, Ox9e, Ox3e, Qx6b, Qxd9, Oxb3, Oxdb, Oxae, Oxb5, 0x59,
Oxce, Oxb7, Oxb3, 0x75, Ox6d, Oxdb, Oxea, Oxda, Oxde, Oxa5, Oxb2, Oxbb,
Oxdd, Ox6d, Ox6d, 0x97, Oxaa, Ox7b, Oxb6, Oxb6);

static char grey8 -bits[) = f
Oxde, Oxed, Oxeb, Oxde, Oxbe, Ox6b, Oxdb, Oxbb, Oxfb, Oxae, Oxb5, Oxdd,
Oxcf, Oxb7, Oxbb, Ox7d, Ox6d, Oxdf, Oxfa, Oxfa, Oxdf, Qxa5, Oxba, Oxfb,
Oxdd, Ox6f, Ox6f, Oxb7. Oxba, Ox7b, Oxb7, Oxb7};

static char grey9 bits[] ={

Oxdf, Oxef, Oxfb, Oxde, Oxbe, Oxef, Oxdf, Oxbb, Oxfb, Oxef, Oxbd, Oxcid,
Oxef, Oxf7, Oxbb, Ox7f, Oxef, Oxdf. Oxfa, Oxfe, Oxff, Oxad, Oxbb, Oxfb,
Oxfd, Ox7f, Ox6f. Oxf7, Oxfa, Ox7f, Oxbf, Oxb7};

static char greylo_bits[] = {
Oxdf, Oxff, Oxff, Oxfe, Oxfe, Oxef, Oxdf, Oxff, Oxff, Oxef, Oxfd, Oxfd.
Oxef, Oxff, Oxff, Ox7f, Oxef, Oxff, Oxfb, Oxff, Oxff, Oxbd, Oxbf, Oxff,
Oxfd, Oxff, Ox7f, Oxff, Oxfb, Ox7f, Oxff, Oxdf};

DEBUG(1"Opened display\n");
/* open a connection to the X server ~
if ((display = XOpenDisplay(0)) == NULL){

fprintf(stderr, "Cannot connect to X server %s.\n', getenv('DISPLAY"

exit(1.)

window = XCreateSirnpleWindow(
display, DefaultRootWindow(display
xspot, yspot, width, height, 3,
BlackPixel(display, DefaultScreen(display))
WhitePixel(display, DefaultScreen(display)))

XSelectlnput(display, window, ExposureMass)

XMapwindow(display, window)

XFlush(display);

grid gcv.foreground = BlackPixel(display, DefaultScreen(display))
grid-gcv.background = WhitePixel(display, DefaultScreen(display))

grid-gc = XCreateGC(display, window, GCForeground IGCBackground, &grid-gcv

1* see p-61,62 for definition of the XGCValues data type *
icon-gcv.foreground = BlackPixel(display, DefaultScreen(display))

7-23

ATD/CWM Product Implemnentation/Adapiable Code Components

icon_gcv.background = WhitePixel(display, DefaultScreen(display))
icon gcv.function = GXxor;
icon gcv.graphics-exposures = False;

icon_gc = XCreateGC(display, window,
GCForeground IGCBackground IGCFunct ion

GCGraphicsExposures,
&icon_gcv

/* text -gc uses same initial values as icon~go
text go = XCreateGC(display, window,

GCForeground I GCBackground IGCFunction
GCGraphicsExposures,

&icon-gcv

XClearWindow(display, window)

tile[O] = XCreateBitmapFromData(display, window, tileO_bits, 16, 16)
tilell) = XCreateBitmapFromData(display, window, tilel_bits, 16, 16)
tile[2) = XCreateBitmapFromData(display, window, tile2_bits, 16, 16)
tile[3] = XCreateBitmapFrornData(display, window, tile3_bits, 16, 16)
tile[4] = XCreateBitmapFromData(display, window, tile4_bits, 16, 16)
tile[5] = X~reateBitmapFrornData(display, window, tile5_bits, 16, 16)
tile[6] = XCreateBitmapFromData(display, window, tile6_bits, 16, 16)
tile[7] = XCreateBitmapFromData(display, window, tile7_bits, 16, 16)
tile[8) = XCreateBitmapFrornData(display, window, tile8_bits, 16, 16)
tile[9] = XCreateBitmapFromData(display, window, tile9_bits, 16, 16)
tile[1O) = XCreateBitmapFromData(display, window, tilelO-bits, 16, 16)

greyscale[O) = XCreateBitmapFromData(display, window, tileO-bits, 16, 16

greyscaleri) = XCreateBitmapFromData(display, window, grey:_bits, 16, 16

greyscale[2) = XCreateBitmapFromData(display, window, grey2_bits, 16, 16

greyscale[3) = XCreateBitmapFromData(display, window, greyS-bits. 16, 16

greyscale[4) = XCreateBitmapFroniData(display, window, grey4_bits, 16, 16

greyscale[5] = XCreateBitmapFromData(display, window, grey5_bits, 16, 16

greyscale[6] = XCreateBitmapFromData(display, window, grey6_bits, 16, 16

greyscale[7] = XCreateBitmapFrouiData(display, window, grey7_bits, 16, 16

greysoale[8] = XCreateBitmapFromData(display, window, grey8_bits, 16, 16

greyscale[9] = XCreateBitmapFromData(display, window, grey9_bits, 16, 16

greyscale[lO) = XCreateBitmapFromData(display, window, greylO-bits, 16, 16

greyscalefil) = XCreateBitmapFromData(display, window, tilelo bits, 16, 16

7-24

ATD/CWM Product !mptementation/Adaptable Code Components

XFlush(display);I

/* ---

void CreateCircle (xspot, yspot, diameter, fill, border, sl, s2, s3, s4, s5)

int xspot, yspot;
unsigned int diameter;
int fill, border;
char *sl, *s2, *s3, *s4, *s5;

{
extern Display *display;
extern Window window;

DEBUG("Created circle\n");
XSetFillStyle(display, icongc, FillTiled
XSetTile(display, icon_gc, greyscale[fill]);
XFillArc (display, window, icongc, xspot, yspot, diameter, diameter, 0,

23040) ;

XSetLineAttributes (display, icon_gc, 2, border, CapRound, JoinRound

XSetTile(display, icon_gc, greyscale[ll]);

XDrawArc (display, window, icongc, xspot, yspot, diameter, diameter, 0,

23040) ;

XDrawString(display, window, textgc, xspot+diameter+lO, yspot, sl,
strlen(sl));

XDrawString(display, window, text gc, xspot+diameter+10, yspot+12, s2,
strlen(s2));

XDrawString(display, window, text_gc, xspot+diameter+l0, yspot+24, s3,
strlen(s3));

XDrawString(display, window, text_gc, xspot+diameter+10, yspot+36, s4,
strlen(s4));

XDrawString(display, window, text_gc, xspot+diameter+l0, yspot+48, s5.
strlen(s5));

XFlush(display); /* causes requests to be processed by X server */}

/* --- *

void CreateSquare (xspot, yspot, size, fill, border, s1, s2, s3, s4, s5)

int xspot, yspot;
unsigned int size;
int fill, border;
char *sl, *s2, *s3, *s4, *sb;

{
extern Display *display;
extern Window window;

DEBUG("Created square\n");
XSetFillStyle(display, icon_gc, FillTiled);

7-25

ATD/CWM Product Implementation/Adaptable Code Components

XSetTile(display, icon_gc, greyscale[fillJ);
XFillRectangle(display, window, icon_gc, xspot, yspot, size, size

XSetLineAttributes (display, icon -gc, 2, border, CapRound, JoinRound
XSetTile(display, icon gc, greyscale(Ilj);
XDrawRectangle(display, window, icon_gc, xspot, yspot, size, size

XDrawString(display, window, text_gc, xspot+size+lO, yspot, sl, strlen(sl)

XDrawString(display, window, text_gc, xspot+size+lO, yspot+12, s2,
strlen(s2))
XDrawString(display, window, text_gc, xspot+size+lO, yspot+24, s3,

strlen(s3))
XDrawString(display, window, text_gc, xspot+size+lO, yspot+36, s4,

strlen(s4))
XDrawString(display, window, text_gc, xspot+size+lO, yspot+4S, s5,

strlen(s5)

XFlush(display); * causes requests to be processed by X server ~

/* ---

void CreateTriangle (xspot, yspot, height, fill, border, s2L, s2, s3, s4, s5)

mnt xspot, yspot;
unsigned mnt height;
int fill, border;
char *sI, *s2, *s3, *s4, *s5;

XPoint points [4];

extern Display *display;
extern Window window;

DEBUG("Created triangle\n");
XSetFillStyle(display, icon gc, FillTiled)
XSetTile(display, icon_gc, greyscale[fill])

/* points[O] = upper tip of triangle *
pointsg¶OI.x = xspot + (height/2);
points[O].y = yspot;

/* points[l] = lower left corner of triangle *
points[l].x = xspot;
points~l11.y = yspot + height;

/* points[21 = lower right corner of triangle *

points[2].x = xspot + height;
points[2].y = yspot + height;

/* points[3J = upper tip of triangle *
points[3J.x = xspot + (height/2);
points[31.y = yspot;

7-2h

ATD!CWM Product Implementation/Adaptable Code Components

XFillPolygon (display, window, icon_gc, points, 4, Convex, CoordModeOrigin

XSetLineAttributes (display, icongc, 2, border, CapRound, JoinRound

XSetTile(display, icongc, greyscale[ll]);

XDrawLine(display, window, icongc, points[O].x, points[O].y, points[l].x,

points(l].y);

XDrawLine(display, window, icon_gc, points[l].x, points[l].y, points[2].x,

points[2].y);

XDrawLine(display, window, icongc, points[2].x, points[2].y, points[O].x,

points [0].y);

XDrawString(display, window, text_gc, xspot+height+10, yspot, sl,

strlen(sl));

XDrawString(display, window, text_gc, xspot+height+10, yspot+12, s2,

strlen(s2));

XDrawString(display, window, text_gc, xspot+height--lO, yspot+24, s3,

strlen(s3));

XDrawString(display, window, text gc, xspot+height+10, yspot+36, s4,

strlen(s4));
XDrawString(display, window, text_gc, xspot+height-lO, yspot+48, s5,

strlen(s5));

XFlush(display); /* causes requests to be processed by X server */
}

I* ---

void DrawLine (xspotl, yspotl, xspot2, yspot2)

int xspotl, yspotl, xspot2, yspot2;

{
extern Display *display;

extern Window window;

DEBUG("Draw line\n");

XDrawLine(display, window, grid_gc, xspotl, yspoti. xspot2, yspot2):

XFlush(display); /* causes requests to be processed by X server */
}

* --- *

void DrawCircle (xspot, yspot, diameter)

int xspot, yspot;

unsigned int diameter;

{
extern Display *display;

extern Window window;

DEBUG("Draw circle\n");

XDrawArc(display, window, grid_gc, xspot, yspot, diameter, diameter, 0,

23040);

7-27

ATD/CWM Product Implementation/Adaptable Code Components

XFiush(display); /* causes requests to be processed by X server ~

/*--*

void DrawSquare (xspot, yspot, size)

int xspot, yspot;
unsigned mnt size;

extern Display *display;
extern Window window;

DEBUG(I'Draw square\n");

XDrawRectangle(display, window, grid-gc, xspot, yspot, size, size);

XFlush(display); /* causes requests to be processed by X server ~

/* ---

void DrawTriangle (xspot, yspot, height)

mnt xspot, yspot;
unsigned int height;

extern Display *displayý
extern window window;

DEBUG(I'Draw triangle\nt);

/* draw line from top to bottom left *
XDrawLine(display, window, grid-gc, xspot+(height/2), yspot, xspot,

yspot+height);

/* draw line from bottom left to bottom right *
XDrawLine(display, window, grid-gc, xspot, yspot-sheight, xspot+height,

yspot-theight);

/* draw line from bottom right to top ~
XDrawLine(display, window, grid-gc, xspot+height, yspot-iheight,

xspot+(height/2) , yspot);

XFlush(display); /* causes requests to be processed by X server ~

/*--*

void DrawString (xspot, yspot, s)

int xspot, yspot:
char *s;

extern Display *display;

7-2P

ATD/CWM Product Implementation/Adaptable Code Components

extern Window window;
DEBUG("'Draw string\n");

XDrawString(display, window, text-gc, xspot, yspot, s, strien(s))

XFlush(display); /* causes requests to be processed by X server ~

/*--*

void MoveSquare (size, fromxspot, fromyspot, toxspot, toyspot, fill, border,
oldsl, olds2, olds3, oldS4, olds5, si, s2, s3, s4, s5)

int size, fromxspot, fromyspot, toxspot, toyspot, fill, border;
char *oldsl, *olds2, *olds3, *olds4, *olds5, *sl, *s2, *s3, *s4, *s5;

extern Display *display;
extern Window window;

DEBUG("'Move square\n");

XSetFillStyle(display, icon go, FillTiled)
XSetLineAttributes (display, icon-gc, 2, border, CapRound, JoinRound

/* erase old square */
XSetTile(display, icon_gc, greyscale~fill])
XFillRectangle(display, window, icon-gc, frornxspot, fromyspot, size, size)

XSetTile(display, icon gc, greyscale[1l))
XDrawRectangle(display, window, icon-gc, fromxspot, fromyspot, size, size

/* erase old label *

XDrawString(display, window, text-gc, frornxspot+size+1O, fromyspot, oldsl.
strlen(oldsi))
XDrawString(display, window, text-go, fromxspot+size-s-l, fromyspot-+12,

olds2, strlen(olds2))
XDrawString(display, window, text-gc, fromxspot+size+lO, fromyspot+24,

olds3, strlen(olds3))
XDrawString(display, window, text-go, fromxspot-tsize+lO, fromyspot+36,

olds4, strlen(olds4))
XDrawString(display, window, text-go, frornxspot+size+lO, frornyspot÷48,

olds5, strlen(olds5)

/* draw new square ~
XSetTile(display, icon gc, greyscaleffillJ)
XFillRectangle(display, window, icon-go, toxspot, toyspot, size, size

XSetTile(display, icon go, greyscalefll]);
XDrawRectangle(display, window, icon-go, toxspot, toyspot, size, size)

XDrawString(display, window, text-go, toxspot+size+1O, toyspot, si,
strlen(sl));
XDrawString(display, window, text-go, toxspot-ssize+lO, toyspot+12, s2,

strlen(s2))

7-29

ATTMiCWM Product Implementation/Adaptable Code Components

XDrawString(display, window, text_gc, toxspot+size-tlO, toyspot+24, s3,
strlen(s3));
XDrawString(display, window, text_gc, toxspot+size-i10, toyspot+36, s4,

strlen(S4));
XDrawString(display, window, text_gc, toxspot+size+l0, toyspot+48, s5,

strlen(s5));

XFlush(display)

/*--*

void MoveCircle (diameter, frornxspot, fromyspot, toxspot, toyspot, fill,
border, oldsl, olds2, olds3, olds4, olds5, sl, s2, s3, s4, s5)

int diameter, fromxspot, fromyspot, toxspot, toyspot, fill, border;
char *oldsl, *o1ds2, *01ds3, *olds4, *01ds5, *sl, *s2, *s3, *s4, *s5;

extern Display *display;
extern Window window;

DEBUG("'Move circle\n');

XSetFillStyle(display, icon_gc, FillTiled)
XSetLineAttributes (display, icon-gc, 2, border, CapRound, JoinRound

/* erase old circle */
XSetTile(display, iconac, greyscale[fill])
XFillArc (display, window, icon gc, fromxspot, fromyspot, diameter,

diameter, 0, 23040);

XSetTile(display, icon gc, greyscale[il])
XDrawArc (display, window, icon-gc, fromxspot, fromyspot. diameter,

diameter, 0, 23040);

/* erase old label */
XDrawString(display, window, text-gc, fromxspot-tdiaymeter+l0, fromyspot,

oldsl, strlen(oldsl))
XDrawString(display, window, text-gc, fromxspot-sdiameter+l0, fromyspot±12,

olds2, strlen(olds2))
XDrawStringC display, window, text_gc, fromxspot+diameter-t-0, fromyspot+24,

olds3, strlen(olds3));
XDrawString(display, window, text_gc, fromxspot+diameter+l0, fromyspot+36,

olds4, strlen(olds4));
XDrawString(display, window, text-gc, fromxspot+diameter+10, fromyspot+48,

olds5, strlen(olds5))

/* draw new circle *
XSetTile(display, icon gc, greyscale[fill])
XFillArc (display, window, icon-gc, toxspot, toyspot, diameter, diameter,

0, 23040

XSetTile(display, icon gc, greyscale(Il])
XDrawArc (display, window, icon_gc, toxspot, toyspot, diameter, diameter,

0, 23040

7-36

ATD/CWM Product Implementation/Adaptable Code Components

/* draw new label ~
XDrawString(display, window, text-go, toxspot+diameter-i-l, toyspot, sl,

strlen(sl));
XDrawString(display, window, text-ge, toxspot+diarneter+1O, toyspot+12, s2,

strlen(s2));
XDrawString(display, window, text-gc, toxspot+diameter+1O, toyspot*24, s3,

strlen(s3));
XDrawString(display, window, text_gc, toxspot+diameter+lO, toyspot+36, s4,

strlen(s4));
XDrawString(display, window, text-go, toxspot+diameter-i-l, toyspot+48, s5,

strlen(s5))

XFlush(display)

/*---*

void McweTriangle (height, fromxspot, fromyspot, toxspot, toyspot, fill.
border, oldsl, olds2, olds3, olds4, oids5, si, s2, s3, s4, S5)

mnt height, fromxspot, fromyspot, toxspot, toyspot, fill, border;
char *oldsl. *01ds2. *olds3, *01ds4, *olds5, Ssl, *s2, *S3, *s4, *s5;

extern Display *display;
extern Window window;

XPcint. points[4];
DEBUG("'Move triangle\n");

/* points[mi = upper tip of triangle *

points [0].x =fromxspot +r (height/2);
points[0].y = fromyspot;

/* points(l] lower left corner of triangle *

points~l].x =frornxspot;
points[l] .y = fromyspot + height;

/* points[2] = lower right corner of triangle *

points[2]. =~ frornxspot + height;
points[2] .y = fromyspot + height;

/* points[3] = upper tip of triangle ~
points[3].x = fromxspot +i (height/2);
points[3].y = fromyspot;

/* ei'ase old icon */

XSetLineAttributes (display, icon go, 2, border, CapRound, JoinRound
XSetFillStyle(display, icon-go, FillTiled);

XSetTile(display, icon go, greyscaleffill)");
XFillPolygon (display, window, icon-go, points, 4, Convex, CoordModeOrigin

XSetTile(display, icon Fo, greyscale[111);
XDrawLine(display, window, icon-go, points mi .x, points(O] .y, points[l] *x,

7-31

ATD/CIAM Product Implementiaton Adaptable Code Comp~itents

points El]3).;
XDrawLine(display, window, icon gc, points[l] .x, points[l] .y, points[2] .x,

poiýnts[2] .y
XDrawLine(display, window, icon-go, points[2] .x, points[2] .y, points[3] .x,

points [3] .y);

XDrawString(display, window, text gc, fromxspot+height+1O, fromyspot,
oldsl, strlen(oldsl));

XDrawString(display, window, text gc, fromxspot+height+lO, frornyspot+12,
olds2, strlen(olds2))

XDrawStraing(display, window, text gc, fromxspot+height+1O, fromyspot+24,
olds3, strlen(olds3))
XDrawString(display, window, text-go, fromxspot+height+lO, froinyspot±36,

olds4, strlen(olds4))
XDrawString(display, window, text go, fromxspot+height+lO, fromyspot+48,

olds5, strlen(olds5));

/* points[O] = upper tip of triangle *

points [0].x =toxspot -(height/2);

points[0].y = toyspot;

/* pointsil] =lower left corner of triangle *

points[l' .x = toxspot:

points[l] .y =toyspot ± height,:

/* points[2] lower right corner of t~riangle *

points[2] .x =toxspot, height:

points[2 .y = toyspot +heiriht:

/* pointsý3] = upper tip of triangl~e
points[3'1].x = toxs-pct (height '21

points [31 .y =toyspot:

/* draw new. ieccn */
XSetTiiec display, icon gc. greyscaie[fill])

XFillPolygon tdisplay, window, icon-gc, points, 4, Convex, Coord.1oceur-ig'M

XSetTiie: di.splay. icon gc, greyscale[ll])

XDrawLine(display, window, iccn-gc, points[0) .x, points!0] .y. points [1] .X,

points[l] .y

XDrawLine(display, window, icon gc, points[l] .x, points[il].y, points[2' .x,

points[2) .y);

XDrawLine(display, window, icon-gc, points[2] .x, points[2] .y., points[3 .x.

points[3] .y);

XDrawStringr display, window, text-gc, toxspot-iheight+l0, toyspot, si,

strlen(sl))
XDrawStriig(display, window, text-gc, toxspot+height-tlO, toyspot±12, s'-,

strlen(s2))

XDrawString(display, window, text _gc, tc spot+height-+lOC. toys,5;:'tý24. 3
strlen~s3, i

XDrawStringf d~spiay, window, text-gc, toxspot+heigh:*l+0, toyspot-36, S,.,

strlen(s4)

ATD/CWM Product Implementation/Adaptable Code Components

XDrawString(display, window, text_gc, toxspot+height+lO, toyspot+48, s5,
strlen(s5));

XFlush(display);
}

/* *--
/*

void SetDisplayType (iscolor)

int iscolor;

{
extern Display *display;
extern Window vindow;

XSetWindowColormap (display, window,
DefaultColormap (display, window

XFlush(display);

4. AirTraffic_Display (ATD)

Spec

-- AirTrafficDisplay (ATD) package spec

-- This module knows how to determine the content of the

-- corrective action advisory message, what aircraft status

-- information to display, and where to position aircraft

-- symbols on the AirTrafficDisplay device.

with Potential Threat;

package AirTrafficDisplay is

-- Determine the content of the corrective action advisory message

-- (CorrectiveMsg) and have it shown on the air traffic display.

procedure correctiveaction msg(threat : in PotentialThreat.pthandle);

-- Update an aircraft's display symbol when the aircraft partition

-- changes.

procedure update ads(threat : in PotentialThreat.ptnandle);

-- Initialize the air traffic dispiay

procedure initialize display:

ATD/CWM Product Implementation/Adaptable Code Components

-- Update the displayed information for the specified potential threat.

procedure updatecws(threat : in PotentialThreat.pthandle;
displaystatus : in PotentialThreat.target_display);

end AirTrafficDisplay;

Body

-- AirTrafficDisplay (ATD) package body

-- This module knows how to determine the content of the
-- corrective action advisory message, what aircraft status
-- information to display, and where to position aircraft
-- symools on the AirTrafficDisplay device.

with Air Traffic DisplayDevice; use AirTrafficDisplayDevice;
with Potential Threat; use Potential Threat;
with HostAircraft;
with SituationDynamics;
with Air CraftMotion;
with PhysicalQuantities;
with NumericalAlgorithms:
with Text 10;
package body Air TrafficDisplay is

package float io is new text io.float io(float); use float io;

-- Screen dimensions given in the following terms:

-- xorigin - "X" axis location of the display.
-- y_origin - "Y" axis location of the display.
-- x_size - Horizontal length across the screen of the display.
-- y_size - Vertical length down the screen of the display.
-- x centei. - "X" axis location of the center of the screen.
-- y center - "Y" axis location of the center of the screen.

-- (0, 0) is the upper left hand corner.

-- Start location of corrective action advisory message in the display.

-- x_msg - "X" axis location

-- ymsg - "Y" axis location

x_origin : constant AirTraffic_Display_Device.position :=0;
yoxigin : constant AirTrafficDisplayDevice.position := 0;
x_size : constant AirTrafficDisplay_Device.position := 1270;
y_size : constant AirTrafficDisplay_Device.position := 1000;
x_center : constant AirTrafficDisplayDevice.position := 635;

x size / 2;
y center : constant AirTrafficDisplay_Device.position := 500;

7-14

ATD/CAM Product Implementation/Adaptable Code Components

y_size / 2;

x_msg constant AirTraffic_DisplayDevice.position 610;
x center - 25;

y_msg constant AirTrafficDisplay_Device.position 980;

y_size - 20;

iconsize : constant AirTrafficDisplay_Device.size 16;

-- Host aircraft display handle.

hostaircrafthandle : Air TrafficDisplayDevice.displayhandle;

-- Determine the contents of the Corrective ActionMsg and send

-- it to the AirTrafficDisplayDevice (ATDD).

msg_ constant string "Maintain current heading and rate";

msg 2 constant string "Fly level";

msg_3 constant string "Climb at "'

msg_4 constant string "Dive at ";

msgsuffix : constant string := ' ft/min";

suibtype message index is integer range 0..8;

package NauticalMileI0 is new TextIO.Float_IO(num =>

Physical_Quantities.nautical mile);

Local formatting routine for the corrective action advisory message.

procedure concatenate(textl in string;

text2 in string; value in

PhysicalQuantities.fpm)

is

begin

AirTrafficDisplayDevice.write text(textl &

integer'image(integer(value)) & text2, x_msg, y_msg);

end concatenate;

-- Local formatting routine for outputting the range label (in lluating pt.

format).

function nautical mile tostring(value : in

PhysicalQuantities.nautical-mile) return string

is

tempstring string (1..10);

outstring string(l..ll);

begin

NauticalMileIO.Put(To => tempstring,

Item => value, aft => 1, exp => 0);

outstring(l..10) := tempstring;

out string(Il) := ASCII.NUL:

return (out-string);

end nautical mile to string:

7-3ý;

ATD/CWM Product Implementation/Adaptable Code Components

-- Function to determine whether a quantity is less than zero, equal to zero,
-- or greater than zero. The following values are returned.

-- 0=> 0

-- <0=>I1
-- 0 => 2

function zerotest(value : in PhysicalQuantities.fpm) return integer
is
begin

if value = 0.0 then

return 0;
elsif value < 0.0 then

return 1;
else

return 2;
end if;

end zero-test;

-- Format a message informing the pilot of the host-aircraft
-- how to avoid a collision warning situation.

procedure correctiveactionmsg(threat : in PotentialThreat.pt handle)
is

msd : PhysicalQuantities.feet; -- minimal separation distance
FAA msd : Physical_Qiantities.feet; -- FAA approved minimal

separation distance
ptrate : PhysicalQuantities.fpm. -- climb rate for

potentialthreat
pt-altitude : PhysicalQuantities.feet;-- altitude for potentialthreat
harate : PhysicalQuantities.fpm; -- climb rate for host-aircraft
haaltitude PhysicalQuantities.feet;-- altitude for hostaircraft
change_rate PhysicalQuantities.fpm; -- climb/descend rate

begin
begin

msd := SituationDynamics.get msd(threat);
exception

when numericerror => text_io.putline("cam 0 - NE");
when constraint error => text_io.put line("cam 0 - CE");
when others => textio.putline("cam 0 - Bozo error");

end;
FAAmsd := AirCraftMotion.getmsd;

-- If the predicted minimal separation distance is no less than the
-- minimal distance dictated by the FAA, then no change in heading
-- or climb rate is necessary.

if msd >= FAA msd then
AirTrafficDisplayDevice.write text(msgl, xmsg, y msg);
return;

end if;

ATD/CWM Product Implementtion/Adaptable Code Components

-- If minimal separation distance will be less than the FAA dictated
-- distance, then the appropriate corrective advisory message is
-- a function of the climb rate and altitude of the
-- potential threat and host aircraft.

begin
ha altitude := HostAircraft.getaltitude;

ha rate := HostAircraft.get_climbrate;
ptaltitude := Potential Threat.getaltitude(threat);
pt rate := PotentialThreat.getclimbrate(threat);

exception
when numeric error => text io.put line("cam 1 - NE");
when constrainterror => text_io.putline("cam 1 - CE");
when others => text-io.put-line("cam 1 - Bozo error");

end;

-- Determine what message to send based on the current altitudes
-- and climb-rates of the potential threat and host aircraft.

if ha altitude >= pt altitude then
if ha altitude - ptaltitude >= FAAmsd then

case 3 * zero test(harate) + zerotest(ptrate) is
when 2 1 5 1 8 =>

begin
change-rate := 60.0 * (FAA msd - msd) /

float(SituationDynamics.get elapsed time(threat));
concatenate(msg_3, msgsuffix, changerate);

exception
whei, n-!meric error =-> textio.put line("cam 2 - NE");
when constraint error => text_ io.putline("cam 2 - CE");
when others => textio.put line("cam 2 - Bozo error");

end;

when 3 14 =>

Air Traffic_Display Device.write-text(msg_2, xmsg, y msg):
when 6 =>

AirTrafficDisplay Device.write text(msgl, xmsg, y msg);
when others =>

null;

end case;
else

begin
change rate := 60.0 * (FAAmsd - msd) /

float(SituationDynamics.getelapsedtime(threat));

concatenate(msg_3. msg suffix, change-rate);
exception

when numeric _error => text _c6.put line("cam 3 - NE");
when constraint-error => text _ io.put _ line("cam 3 - CE");
when others => text io.put_ line("cam 3 - Bozo error");

7-3T

ATD/CWM Producl Implementation/Adapiable Code Components

end;
end if;

else
if pt_altitude - ha altitude >= FAA_msd then

case 3 * zerotest(harate) + zerotest(ptrate) is
when 1 1 4 =>

begin
changerate := 60.0 * (FAA_msd - msd) /

float(SituationDynamics.getelapsedtime(threat));
concatenate(msg_4, msg_suffix, changerate);

exception
when numericerror => text_io.putline("cam 4 - NE");
when constrainterror => textio.putline("cam 4 - CE");
when others => textio.put_line("cam 4 - Bozo error");

end;
when 3 =>

AirTrafficDisplay_Device.write_text(msg_l, xmsg, ymsg);
when 6 1 7 1 8 =>

AirTrafficDisplayDevice.write text(msg_2, xmsg, ymsg):
when others =>

null;
end case;

else
begin

change-rate := 60.0 * (FAAmsd - msd) /

float(SituationDynamics.get_elapsed_time(threat));
concatenate(msg_4, msg suffix, change_rate);

exception
when numeric error => textio.putline("cam 5 - NE");
when constraint error => textio.putline("cam 5 - CE");
when others => textio.putline("cam 5 - Bozo error");

end;
end if:

end if;
exception

when numericerror => text_io.putline("cam - NE");
when constrainterror => textio.putline("cam - CE");
when others => textio.putline("cam - Bozo error");
end corrective_actionmsg;

-- Update the icon shape for a potential-threat when its
-- partition changes.

procedure updateads(threat : in PotentialThreat.pt_handle)
is
begin

TBD

null;
end updateads;

7-38

ATID/CWM Produci Implementation/Adaptable Code Components

-- Initialize the air traffic display. Also position the host

-- aircraft icon in the center of the display as well. For

-- now, the icon shape is fixed to be a square.

procedure initialize-display
is
begin

AirTrafficDisplay_Device~create-display(xloc => x origin,
yloc => y_origin,
width => x-size,
height => y size);

host-aircraft-handle := AirTrafficDisplayDevice.create_object(
icon shape =

AirTrafficDisplayDevice.squal-e,
icon-size => icon-size,
icon fill =

AirTrafficDispjayDevice.black,
icon color =

Air Traffic DisplayDevice.white,
fill-blink-rate => 0.0,
obj blink_rate => 0.0,
xloc => x-center - icon -size / 2,

yloc => y -center - icon-size / 2,

label1 =>1 1
label_2 =

label_3 =

label4 4>
label_5 =>)

end initialize-display:

-- Update the information shown on the display for the

-- specified potential threat.

procedure update-cws(threat :in PotentialThreat.pt-handle:

displa-y-status :in PotentialThreat~target-display),
is

new-xloc :AirTrafficDisplay_Device.positionn;
new-yloc :AirTraffic_DisplayDevice.position;
x-location, y-location : PhysicalQuantities.nautical-mile;
handle : AirTraffic_Display_Device~display-handle;

begin

-- If the display_status indicates that the target should be

-- removed from the display, then do it.

if display -status = PotentialThreat.delete then

AirTrafficDisplayDevice~delete-object(
PotentialThreat get-display handle(threat));

return;
end if;

7-31)

ATDI/CWM Product Implementation/Adaptable Code Components

-- Otherwise, we need to update the display. So, compute
-- the location on display (in terms of pixels) for
-- the potential threat. The new pixel location is determined by

-- converting the range from the potential threat to the host
-- aircraft into equivalent pixels. One pixel equals:

-- y_size / 300.0

-- where 300.0 is the canned surveillance area and 'y_size' is defined above.

x_location := PotentialThreat.get_range(threat) *

NumericalAlgorithms.sin(PotentialThreat.get_relative_bearing(threat));

y_location := PotentialThreat.get_range(threat) *

Numerical_Algorithms.cos(PotentialThreat.get_relative_hearing(threat));
new xloc := x center + AirTrafficDisplay_Device.position(xlocation *

(float(y_size) /

300.0));
new yloc := y_center - AirTrafficDisplayDevice.position(ylocation *

(float(y_size) ,

300.0));

-- Adjust these locations to the center of the icon.

new xloc := new xloc - icon_ size / 2:
newyloc := new yloc - iconsize / 2;

-- Having the new position, determine whether we need to create an
-- icon for this potential threat or to simply move an existing
-- one. In either case, we must also update the host aircraft

-- attribute information.

handle := PotentialThreat.get_display handle(threat);

if handle /= AirTraffic DisplayDevice.nulldispiayhandle then
AirTrafficDispiayDevice.move_object(

id => handle,
xloc => new xloc,

yloc => new-yloc,
label 1 => "ID: " & PotentialThreat.getaircraftid(threat),

label 2 => "Altitude: " &
integer'image(integer(PotentialThreat.getaltitude(threat))),

label 3 => "Airspeed: " &
integer'image(integer(PotentialThreat.getvelocity(threat))),

label 4 => "Course: " &

integer'image(integer(PotentialThreat.get_groundtrack(threat))),

label 5 => "Range: " &

nauticalmile to string(PotentialThreat.getrange(threat)));

else

handle := AirTrafficDisplay Device.createobject(
icon-shape => AirTrafficDisplayDevice triangle,

icon-size => icon-size,

7-40

ATD/CVWM Product Implementation/Adaptable Code Components

icon fill => AirTraffic DisplayDevice.black,
icon color .=> AirTrafficDisplayDevice.white,
fill blink rate => 0.0,
obj blink rate => 0.0,
xloc => new-xloc,
yloc => new yloc,
label_1 => "IID: "1 &

PotentialThreat.get-aircraft-id(threat),
label_2 => "Altitude: "1 &

integer' image(integer(Potential_-Threat.get_altitude(threat))),
label_3 => "Airspeed: "1 &

integer' image(integer(Potential_-Threat.get_velocity(threat))),
label_4 => "Course: "1 &

integer' image(integer(Potential_-Threat.get_ground-track(threat))),
label_5 => "Range: " &

nautical-mile-to-string(PotentialThreat.get-range(threat)));
PotentialThreat.set display handle(threat, handle);

end if;

-- Update host aircraft information

AirTrafficDisplayDevice.move-object(
id => host aircraft handle,
xloc => x-center - icon-size / 2
yloc => y -center - icon-size / 2,
label_1 => 1 1
label_2 => "Altitude:"&

integer'image(integer(Host_-Aircraft.get-altitude)),
label_3 => "Airspeed: "1 &

integer'image(integer(Host_-Aircraft.get-velocity)),
label_4 => "Course: " L,

integer'image(integer(HostAircraft.get-ground-track)),
label 5 =>'

except ion
when constraint error =>

text-io.put-line("update-cws CE"I);
text -io.put-line("Target info: "1 &

PotentialThreat.get-aircraft-id(threat));
text-io.put("IR: "'); put(float(PotentialThreat.get_range(threat)), aft

-> 1
exp => 0);

text-io.new-line;
text io.put("'RB: "');

put(float(PotentialThreat.get-relative-bearing(threat)),
aft => 1, exp => 0);

text-io.new-line;
when numeric-error =>

text-io.put_line("update-cws NEI');
text io.put line("'Target info: " &

PotentialThreat.get-aircraft_ id(threat));
text-io.put("R: ") ; put(float(PotentialThreat.get-range(thr-eat)) aft

-> 1

7-41

ATD/CWM Product 1mplementaTion/Adapiable Code Components

exp => 0);
textjio.new line;

textio.put("RB: ");
put(float(PotentialThreat.getrelative bearing(threat)),

aft => 1, exp => 0);
text io.new line;

when others =>
text_io.put_line("updatecws BOZO error");

end update_cws:

end AirTraffic Display;

5. Audible_Alarm (AA)

Spec

-- AudibleAlarm (AA)

-- This module determines the frequency and duration at which
-- to ring the audible alarm for a specified collision warning
-- situation.

with Potential Threat;
package AudibleAlarm is

procedure ring_alarm(cws : in Potential Threat.cws id)

end AudibleAlarm;

Body

{
"module!external aa body)

"type(ringinfo, (cwsname : target,
frequency target.

duration target))

Aprogram(aa, (ring : list of ring info))

^module!internal(aa-body)

"prog_impl(aa, body, (}

-- AudibleAlarm (AA) body

-- The audible alarm device generates a tone that can be heard
-- within the host-aircraft cockpit.

with Potential Threat;
with Audible Alarm Device;
package body AudibleAlarm is

procedure ringalarm(cws : in PotentialThreat ews id)

is

7-42

ATD/CWM Productl Implementation/Adaptable Code Components

begin
case cws is

{-forall(r. ring, (}
when PotentialThreat.{r.cws name} =>

AudibleAlarmDevice.ring_alarm(f => {r.frequency}, d =>
{r.duration});
{))}

when others =>
return;

end case;

end ring_alarm;

end AudibleAlarm;

{))}

6. AudibleAlarmDevice (AAD)

Spec

{
"program(aad, (looselycoupled target))

"progimpl(aad, vl, c}

-- AudibleAlarmDevice (AAD) spec

-- The audible alarm device generates a tone that can be heard
-- within the host aircraft cockpit.

package AudibleAlarmDevice is

type Duration is delta 0.01 range 0.01 .. 10.00; -- seconds
type Frequency is range 1000 .. 10_000; -- hertz

procedure ring_alarm(f in Frequency;
d in Duration);

{fselect(
^equal(loosely coupled, {True}) -> (}

type AlarmMessageType is private;

private
type AlarmMessageType is

record
Frequency Frequency;
Duration Duration;

end record;
{))}

end AudibleAlarmDevice;
{))}

Body

TBD

7-41

ATD/CWM Product Implemenlation/Adaptable Code Components

7. CollisionWarning_Situation_Status (CWSS)

Spec

-- Collision Warning Situation Status (CWSS) spec

-- This module determines the collision warning situation status

-- for the given potential threat and host aircraft.

with Potential Threat;
package CollisionWarning_SituationStatus is

function determine cw3 status(threat : in PotentialThreat.pthandle)
return PotentialThreat.cws id;

function determine host cws status return PotentialThreat.cws id:

end CollisionWarningSituationStatus;

Body

{
*module!external (cwssbody)

"-type(time type, (min target,
max target))

"-type(range_type. (min target,
max target))

"^type(t_andrtype. (t_min target,
t max target,
rmin: target,
r max target))

"-type(cws def, (time ?: timetype.
range 9: range type,

t and r ?: t and r type))

"^type(cwstype, (cwsname target,

severity : target,
predicate cwsdef,
partition target))

"program(cwss, (cws : list of cwstype))

".module!internal(cwssbody)

*progimpl(cwss, body, }

-- Collision Warning Situation Status (CWSS) package body

-- This module determines the collision warning situation status

-- for the given potentialthreat and host-aircraft.

7-44

ATD/C`WM Product Implementation/Adaplable Code Components

with PotentialThreat;
{-~select(

~membert-filter(x, cws, ^not(vequal(x.partition, (ALL))))) *-> (
with PT_-Partition; use PT_Partition;

(M)
with Physical_-Quantities; use PhysicalQuantities;
(-~select(

~member(-filter(x, cws,
~or(-defined(x.predicate.time), -defined(x.predicate.t and-r))))

with SituationDynamics;
with Text_10;

0))}
package body Collision Warning Situation Status is

-- This routine keeps track of the number of potential
-- threats in each collision situation. This enables us to
-- quickly determine the host aircraft status when
-- requested to provide it.

target count :array(Potential_-Threat.cws -id'first
Potential_Threat.cws-id'last) of integer (others

=> 0);

-- Determine the collision warning situation status of the specified
-- potential threat.

function determine-cwsStatus(threat :in Potential_-Threat.pt -handle)
return PotentialThreat.cws id

is
airspeed and-altitude valid :boolean;

{ select(
~member(-filter(x, cws, -not(-equal(x.partition. {ALLJ)))) ->

partition :Potential_Threat.partition;

'select(
~member(-filter(x, cws,

or(-defined(x~predicate.time), 'defined(x.predicate.t and-r))))

time to intersect :PhysicalQuantities~seconds;

'select(
^member(^filter(x, cws,

-or(̂ defined(x.predicate.range),

-defined(x.predicate.t and r)))) -> (}
target-range :PhysicalQuantities.nautical-mile;

0))}
old -cws-status, new cws-status :Potential _Threat.cws-id;

begin
airspeed-and altitude valid :=Potential Threat~altitude valid~threat)

7-45

ATD!CWM Product Implementation /Adaptable Code Components

and then

Potential_-Threat.velocity valid(threat)
(-~select(

inember(-filter(x, cws, -not(-equal(x.partition, {ALL})))) - (
partition :=PTPartition~get _partition(threat);

~select(
member(-filter(x, cws,

-or(̂defined (x. predicate. range),
-defined(x.predicate.t -and -r)))) -> ()

target_range :=PotentialThreat.get-range(threat);

0))
~select(

~member(-filter(x, cws,
or(-defined(x.predicate.time), -defined(x.predicate.t and-r))))

if (airspeed and altitude valid) then
time-to-intersect :=SituationDynamics.get_elapsed-time(threat);

end if-,

old-cws-status :=Potent4ýa1_Threat.get_cws_status(threat);
if

{-forall(c, ews,
~select(

~not('equal(c.partition, {ALL}))->(
partition = Potential'_Threat.{c.partition) and then

~select(
-defined(c.predicate.range)->(

({c.predicate.range.min} <= target-range and then target-range <
{ c.predicate.range.max})) then

new-cws-status :=PotentialThreat.{c.cws_name};

-defined(c.predicate.time)->(

(airspeed and altitude valid) and then
({c.predicate.time.miin} <= time -to -intersect and then

time -to -intersect < {c.predicate.time.max))) then
new-cws-status :=PotentialThreat.{c.cws_name};

~defined(c.predicate.t and r)->(
(airspeed and altitude) and then
(({c.predicate.t_and_r.r_min' <= target_range and then target_range <

{ c.predicate.t_and_r.r~max})
or else
({cpredicate.t~and~r.t~min} <= time to intersect and then

time -to_- intersect < {c.predicate.t Tand_r.t~max}))) then
new-cws-status :=PotentialThreat.{c.cws_name);

-select(

7-46

ATD/CWM Product lmplementation/Adaptable Code Components

"not(^last(c)) -> (}
elsif

{)

else
new cws status := PotentialThreat.normal;

end if;
if (target count(oldcwsstatus) /= 0) then

targetcount(old_cwsstatus) target count(oldcwsstatus) - 1;
end if;
target_count(newcwsstatus) := target_count(new_cws status) + 1;
return new cws status;

exception
when constraint error => text_io.put line("determine cws CE"); return

PotentialThreat.normal;
when numeric-error => textio.put-line('determine cws NE"); return

Potential Threat.normal;
when others => textio.putline ("determine cws Bozo error"); return

Potential Threat.normal;
end determine cws status;

-- Determine the collision warning situation status of
-- the host aircraft. Each the number of potential threats
-- in each situation category starting with the most severe
-- situation and progressing to the least severe. The
-- first collision warning situation encountered which has

a non-zero target count is the status of the host aircraft.
-- If all situations have zero potential threats, then the
-- status of the host aircraft is "normal".

function determine host cws status return PotentialThreat.cws id
is
begin

if
{Aforall(c, cws, (}

target_count(PotentialThreat.{c.cws_name}j) = 0) then
return PotentialThreat.{c.cwsname};

{ -select(
"-not(-last(c)) -> (}
elsif

{)

else
return PotentialThreat.normal;

end if;
end determine host cws status;

end CollisionWarningSituation Status;
W))7

7-47,

ATD/CWM Product Implementation/Adaptable Code Components

8. Communication (COMM)

Spec

{
"module!external(comm spec)

-type(atcinfo, (cwsname : target,
code : target))

"type(interair info, (cwsname : target,
code : target))

"program(comm, (atc_msg : list of atc info,
inter air msg : list of inter air info,
mode target))

}

{

module!internal(comm-spec)

"prog_impl(comm, spec, (}

-- Communication (COMM) package spec

-- This module determines the content of the ATCMsg and
-- InterAirMsg messages that are transmitted to the
-- air traffic control center and potential threat, respectively for
-- a specified collision warning situation.

with PotentialThreat;
package Communication is
{(select(

"ýmember(atc_msg) -> (}

procedure sendatcmsg(cws in PotentialThreat.cws_ id);
{))"select(

"ýmember(interair msg) -> (}

procedure send iamsg(cws in Potential Threat.cws id);

{))}
end Communication;

{0))

Body

{
module!external(commbody)

"-type(atcinfo, (cws name : target,
cod- : t.trg-t))

7-48

ATD'/CWM Product Implementation/Adaptable Code Components

-type(inter-air-info, (cws-name :target,
code :target))

program(comm, (atc_msg :list of atc -info,
inter_air -msg :list of inter air info.
mode :target))

module! internal (comm-body)

prog~impl(comm, body,

-- Communication (COMM) package body

with PotentialThreat;
with CommunicationDevice;}
select(

or(^member(inter_air -msg), -equal(mode, {C})) -

with HostAircraft;}

select(
-member~inter -air msg) -

with PhysicalQuantities;)

package body Communication is)
select(

~member(atc-msg) ->({

procedure send-ato_msg(cws in PotentialThreatocws id)
is
begin

case ew~s is)
-forall(c, atc-msg. (

when Potential_-Threat.{c.cws name) =>

CommunicationDevice.send-atc_msg(code => {c.codel}
^select(

equal(mode, {C}))-
altitude => Host Aircraft.get altitude)

when othurý ,
return;

end case;

7-49

ATD/CWM Product Implementation/Adaplable Code Components

end send-atc-msg:}

select(
ýmember(inter-air_msg) -

procedure send_ia~msg(cws in PotentialThreat.cws_id)
is

latitude PhysicalIQuantities.degrees;
longitude PhysicalQuantities.degrees;

begin
HostAircraft.get_location(latitude => latitude,

longitude => longitude);
case cws is)

^forall(i, inter_air_msg, {

when Potential_-Threat. {i.cws~rame} =>
CommunicationDevice-send-ia_msg(code => {i.code},

altitude =>

Host Aircraft.get-altitude,
latitude => latitude,
longitude => longitude);)

when nthzors =>
return;

end case;
end send-ia-msg;1

end Communication;

9. Comm unicationDevice (CD)

Spec

module external (cd-spec)

.program(variant, (atc-msg: target,
inter-air-msg :target))

.prna-impl(variant, v1,
.select(

ýad(eul RcT,- ITr-u') , (~'r~mg Truel})
(msg :Msg_Type){}

7-501

ATD/CWM Product Implementation/Adaptable Code Components

"program(interairmsgpart, ())

"progimpl(inter_airmsg_part, v1, ({
altitude Physical Quantities.feet;
latitude Physical Quantities.degrees;
longitude PhysicalQuantities.degrees;

D))

program(cd, (atc_msg : target,

inter air msg : target,
mode : target,
loosely-coupled : target))I

{
"module!internal(cdspec)
prog impl(cd, spec,

{

-- CommunicationDevice (CD) package spec

-- This module encapsulates the hardware / software
-- interface to the communication device. It knows how
-- to transmit a message to either an air traffic
-- control center or to a specified potential threat.

with PhysicalQuantities:
package Communication Device is
I
"select(

"equal(atc_msg, {True}) -> ({

-- Send the ATCMsg to the nearest air traffic control center.

procedure send atc_msg(code : in natural {}
I

"select(
"equal(mode, {C}) -> ({

altitude in PhysicalQuantities.feet
}))
{

}))

"select(
•equal(interair_msg, {True}) -> ({

-- Send an Inter-Air_Msg to the specified potential-threat.

procedure senu Liiter air msg(code : in natural;

altitude in PhysicalQuantities.feet;
latitude : in Physical Quantities.degrees;

7-51

ATD/CWM Product Implementation/Adaptable Code Components

longitude :in PhysicalQuantities.degrees);

select(
~equal(loosely_coupled, {True}) -

'select (
~and(^equal(atc -msg, (True)), ^equal(inter-air msg, {True})) f>(

type Msg_Type is private;

type CommunicatLioni_Msg_Type}-variant(atc-rnsg, inter-air-msg){ is private;

private

~select(
.and(-equal(atc -nsg, (True)), -equal(inter-air_mnsg, (True})))-

type Msg_Type is (ATC, InterAir);

type Communication_Msg_Type}-variant(atc msg-, inter-air_msg){ is
record

code :natural;

~select(
~and(-equal(atc_msg. (True)), -equal(inter-air-msg, {True}) ->

case msg is
when ATC =>

~select(
~equal(mode, {C)) ->({

altitude Phys'JcalQuantities~feet;

true -

null;

{ when InterAir =>
^inter-air_msg_part()

end case;

~ecual(atc_msg, {True)) -

~select(
~equal(mode, {C}) -> I

altitude :PhysicalQuantities.feet;

~equal(inter -air-msg. (True)) ->
^inter air msg_part()

end record;

7-52

ATD/CWM Product Implementation/Adaptable Code Components

}))
{
end CommunicationDevice;

}

Body

{
"module!external(cd_body)

program(variant, (atc_msg: target,
interairmsg : target))

"prog-impl(variant, vi, (
.select(

ýand(-equal(atc msg, {True}), -equal(interairmsg, {True})) -> ({{}
(msg : MsgType){}
}))

-program(inter airmsgpart, ())

ýprog_impl(inter_air_msg_part, v1, ({
altitude PhysicalQuantities.feet;
latitude PhysicalQuantities.degrees;
longitude PhysicalQuantities.degrees;

}))

-program(cd, (atc_msg : target,
inter_airmsg : target,
mode : target,
looselycoupled : target))

}

{
"module!internal(cd_body)

"prog_impl(cd, body,
{

-- CommunicationDevice (CD) package body

}
"select(

"equal(loosely_coupled, {True}) -> ({
with CommunicationBuffer;
}))
{with PhysicalQuantities;
with System;
package body CommunicationDevice is
}
"select(

.equal(loosely_coupled, {True}) -> ({

7-53

ATD/CWM Product Implementalion/Adapiable Code Components

task output communication is
pragma Priority(1O);

end output_communication;

task body output communication i.s
mespage :CommunicationMsg_Type;

begin
loop

CommunicationBuffer.Receive(message);
-- write -to -physical-device(??);

end loop;
end output_communication;

select(
~equal(atc~msg, (True}))-

-- Send the ATCMsg to the nearest air traffic control center.

procedure send-atc_msgicode :in natural

~select(
equal(rnode,{C)- {

altitude :in PhysicalQuantities.feet

is

~select(
equal(loosely_coupled.. {True}) -

message :Communication_Msg_Type)
~select(

and(-equal(atc_msg-. {True)J, ^equal(inter air tnsg, {True})) -

(msg => ATC) {

{begin

~select(
-equal(loosely_coupled, {True}) -

tnessage.code :=code;)
'select(

teclual(mode, {(0) 1>(
message.altitude :=altitude;

CommunicationBuffer send (message);

true ->({

-- write-to-physical devices;

7-54

ATDICW~M Product Implemnentation/Adaptable Code Components

end send-ate-msg;

ýselect(
.equal(inter_air_msg, (True}))-

-- Send an Inter-AirMsg to the specified potential-threat.

procedure send inter air msg(code : in natural;
altitude :in Physical_-Quantities.feet;
latitude :in PhysicalQuantities.degrees;
longitude :in PhyvsicalQuantities.degrees)

is

~select(
ýequal(loosely -coupled, {Truel >

message : Communication M~sgType)
-select(

ýand(-ecualbatc -msg. (Truej), -equal(inter-air-msg. {True)fl - j
(msg => Inter-Air) {

{begin

-select(
ýequal(loosely_couplec, (True)) -

message~code :=code;
message~altitude altitude;
tnessage.latitude latitude;
message~longitude longitude;
CommunicationBuffer.send(message);

true ->

-- write-to-physicall-deviceo;

end send-inter-air-msg;

f end CommunicationDevice;)

10. Host-Aircraft (HA)

Spec

-- Host-Aircraft (HA) package spec

ATD/CWM Product Implementation/Adaptable Code Components

-- This module models the host aircraft in an ATD/CWM, system. The

-- host aircraft has properties of altitude, aircraft identification,

-- airzpeed, location, ground track, climb rate, and cwsstatus. The

-- hidden decisions of this module are the internal representation

-- of these properties, algorithms for manipulating them, and how to

-- determine the values for these properties.

with PhysicalQuantities;

with Potential Threat;

package HostAircraft is

-- Returns the most recently measured altitude of the host aircraft.

function getaltitude return PhysicalQuantities.feet;

-- Returns the most recently measured climb rate of the host aircraft.

function getclimbrate return PhysicalQuantities.fpm;

-- Returns the collision warning situation status of the host aircraft.

function getcws status return PotentialThreat.cws_ic;

-- Returns the most recently measured ground track of the host aircraft.

function getgroundtrack return PhysicalQuantities.degrees;

-- Returns the most recent values for all properties of the host aircraft.

procedure gethostdata(altitude : out PhysicalQuantities.feet:
ground-track : out PhysicalQuantities.degrees:

rate : out PhysicalQuantities.fps;

airspeed : out PhysicalQuantities.knots;

latitude out PhysicalQuantities.latitude:

longitude out PhysicalQuantities.longitude;

status : out PotentialThreat.cws id):

-- Returns the most recently measured position of the host aircraft

procedure get_location(latitude out PhysicalQuantities.latitude;

longitude out PhysicalQuantities.longitude),

-- Returns the most recently measured airspeed of the host aircraft.

function getvelocity return Physical Quantities.knots;

end Host-Aircraft;

7-56

ATD/CWM ?roduct Implemenlation/Adaptable Code Components

Body

-- HostAircraft (HA) package body

-- This module models the host aircraft in an ATD/CWM system. The
-- host aircraft has properties of alcitude, aircraft identification,
-- airspeed, location, groundtrack, climb rate, and cwsstatus. The
-- hidden decisions of this module are the internal representation
-- of thesei properties, algorithms for manipulating them, and how to
-- determine ;.e values for these properties.

with PhysicPl Ouantities;
with Potential Threat;
with Navigation;
with Collision Warning_SituationStatus;
with Air CraftMotion;
with System;
package body Host Aircraft is

-- Constants

HostAircraftUpdateFrequency : constant 1.0;

-- Information block for the host-aircraft.

type host aircraft-info is
record

altitude_- : Physical_Quantities.feet; -- most recent altitude
reading

tfmeY : PhysicalQuantities.seconds;
altitudeX : PhysicalQuantitie', feet; -- previous altitude reading
time_X : PhysicalQuantities.sec~nds:
velocity : PhysicalQuantities.knots;
climbra~e : Physical_Quantities.fpm;
latitude Physical Quant.'ies.latitud-2;
longitude PhysicalQuantj.ies.longitude;
groundtrack : PhysicalQ'iantities.degrees;
owsstatus : PotentialThreat.cwsid;

end record;

host-aircraft : host aircraft info
altitude Y => 0.0,
time Y => 0.0,
altitude X => 0.0,
time X => 0.0,
velocity => 0.0,

climb rate => 0.0,
latitude => 0.0,
longitude => 0.0,
ground-track => 0.0,

7-57

ATD/CWM Product Implementation/Adaptable Code Components

cws-status => PotentialThreat.normal

-- Returns the most recently measured Altitude of the host aircraft.

function getaltitude return PhysicalQuantities.feet

is

begin

return hostaircraft.altitude_Y;

end get_altitude;

-- Returns the most recently measured climb rate of the host-aircraft.

function get climbrate return PhysicalQuantities.fpm

is

begin

return host _aircraft.climb rate;

end get_climb_rate:

-- Returns the collision warning situation status of the host aircraft.

function get cwsstatus return PotentialThreat.cws id

is

begin

return host aircraft.cws status;

end get_cws_status:

-- Returns the most recently measured ground track of the host aircraft.

function get_groundtrack return PhysicalQuantities.degrees

is

begin

return hostaircraft.groundtrack;

end get_ground track:

-- Returns the most recent values for all properties of the host-aircraft.

procedure gethost_data(altitude : out PhysicalQuantities.feet;

ground track : out Physical Quantities.degrees;

rate : out PhysicalQuantities.fps;

airspeed out Physical Quantities.knots;

latitude out PhysicalQuantities.latitude;

longitude out PhysicalQuantities.longitude;

status : out PotentialThreat.ows id)

is

begin

altitude := hostaircraft.altitudeY;

groundtrack := hostaircraft.groundtrack;

rate := host aircraft.climb rate;

7-5R

ATD/CWM Product Implementafion/Adaptable Code Components

airspeed host aircraft.velocity;
latitude host aircraft.latitude;
longitude host aircraft.longitude;

status := host aircraft.cwsstatus;
end gethost data;

-- Returns the most recently measured position of the host-aircraft.

procedure getlocation(latitude out PhysicalQuantities.latitude;
longitude out PhysicalQuantities.longitude)

is
begin

latitude := host aircraft.latitude;
longitude := host aircraft.longitude;

end getlocation;

-- Returns the most recently measured airspeed of the host aircraft.

function getvelocity return PhysicalQuantities.knots
is
begin

return host aircraft.velocity;
end getvelocity;

-- Task to retrieve navigation data on the host aircraft from
-- the navigation device on a periodic basis since this device
-- is passive. The periodicity is given by HostAircraftUpdateFrequency.

task update_hostaircraft_ information is

pragma Priority(6);
end updatehost-aircraft-information;

task body update-host-aircraft-information

is
begin

delay 7.0; -- For simulation PURPOSES only to allow X interface setup
loop

delay HostAircraftUpdateFrequency;
host aircraft.altitudeX := host aircraft.altitudeY;
host aircraft.timeX := host aircraft.timeV;
Navigation.get_navdata(host_aircraft.altitudeY,

host aircraft.timeY,
host aircraft.velocity,
hostaircraft.ground track,
host aircraft. latitude,
host aircraft.longitude);

-- Compute the cws status and climb rate as well.

host aircraft.cws status

7-59

ATD/CWM Producl Implementalion/Adaptable Code Components

CollisionWarningSituationStatus.determinehostcwsstatus;

host aircraft.climb-rate :=
AirCraftMotion.get climb rate(hostaircraft.altitudeY,

host aircraft.time Y,
host aircraft.altitudeX,
host aircraft.time.X);

end loop;

end update_hostaircraft information;

end HostAircraft;

11. Initializationand_Termination (IT)

Body

-- The "main" procedure for the ATD'CWMNl system. It
-- starts all the tasks in the system and causes the
-- air traffic display to be initialized.

with Air TrafficDisplay;
with System;
pragma Elaborate(Air_TrafficDisplay);
procedure AtdCwm
is

pragma Priority(15);
begin

-- Initialize the air traffic display.

AirTrafficDisplay.initialize display;
loop

delay 86_400.0;
end loop;

end AtdCwm;

12. Navigation (NAV)

Spec

-- Navigation (NAV) package spec

-- This module encapsulates the hardware / software interface to the

-- host aircraft navigation device. The primary hidden decisions are
-- how to obtain host aircraft raw data for altitude, airspeed, ground
-- track, latitude, and longitude; the scale and format of these input
-- data items; and the device-dependent operations that must be
-- applied to convert the raw data to the internal format of the
-- ATD/CWM system.

with Physical_Quantities;

package Navigation is

7-60

ATD/CWM Product Implemenlation/Adaptable Code Components

procedure getnay_data(altitude : out PhysicalQuantities.feet;
timestamp : out PhysicalQuantities.seconds;
airspeed : out PhysicalQuantities.knots;
groundtrack : out PhysicalQuantities.degrees;
latitude out PhysicalQuantities.latitude;
longitude out PhysicalQuantities.longitude);

end Navigation;

Body

-- Navigation (NAV) package body

-- This module encapsulates the hardware / software interface to the
-- host aircraft navigation device. The primary hidden decisions are
-- how to obtain host aircraft raw data for altitude, airspeed, ground
-- track, latitude, and longitude; the scale and format of these input
-- data items; and the device-dependent operations that must be
-- applied to convert the raw data to the internal format of the
-- ATD/CWM system.

with PhysicalQuantities;
with SimulationData:

package body Navigation is

-- Read the host aircraft navigation data ad return the converted
-- information to the calling program.

procedure get_nay_data(altitude out PhysicalQuantities.feet;
timestamp out PhysicalQuantities.seconds;
airspeed out Physical Quantities.knots;
groundtrack : out PhysicalQuantities.degrees;
latitude out Physical Quantities.latitude;

longitude : out PhysicalQuantities.longitude)
is
begin

-- Get information from navigation "device".

SimulationData.get_simdata(altitude, airspeed, groundtrack,
latitude, longitude);

timestamp := PhysicalQuantities.gettime;
end get_nay_data;

end Navigation;

13. Numerical_Algorithms (NA)

NoTE: The package Spec and Body for this component have been purposely omitted to reduce the
size of the ATD/CWM case study documentation.

14. Physical Quantities (PQ)

7-61

ATD/CWM Producl Implementation/Adaptable Code Components

NoTE: The package Spec and Body for this component have been purposely omitted to reduce the
size of the ATD/CWM case study documentation.

15. PotentialThreat (PT)

Spec

{
•module!external(pt_spec)

"^type(timetype, (min target,
max target))

"^type(range_type, (min target,
max : target))

-type(t_andrtype, (t_min target,
t max target,
rmin: target,
r_max target))

"^type(cwsdef. (time ?: time_type,
range ?: range_type,
tcandr ?: tandr_type))

^type(cwsinfo, (cwsname target,
severity target,
predicate cws_def,
partition target,
alarm : target,
atcmsg : target,
interairmsg : target,
corrective : target))

"program(pt, (cws : list of cws info))

"module!internal(pt_spec)

"ýprogimpl(pt, spec, (}

-- PotentialThreat (PT) package spec

-- This module models potential threats in an ATD/CWM system. Potential
-- threats have properties of altitude, airspeed, aircraft identification,
-- groundtrack, range, relative-bearing, climb_rate, and collision
-- warning situation status. This module knows how to
-- determine values for these properties.

with PhysicalQuantities;
with AirTrafficDisplay_Device;
package PotentialThreat is

type pt handle is private;

7-62

ATD/CWM Producl Implementation/Adaptable Code Components

type target source is (RADARSOURCE, ATCSOURCE);

type target info(from : target_source := RADARSOURCE) is private;

type target_display is (add modify, delete);

type partition is (ID, UID); -- ID is identified

-- UID is unidentified

type cws id is (
{Jforall(c, ews, (}

{c.cwsname},
{)))

normal

-- Returns whether the altitude value for the specified

-- potential threat is valid.

function altitudevalid(threat : in pthandle) return boolean;

-- Returns the aircraft identification of the specified potential-threat.

function getaircraftid(threat : in pthandle) return string;

-- Returns the current altitude of the specified potentialthreat.

function getaltitude(threat : in pthandle) return

PhysicalQuantities.feet;

-- Returns the most recent collision warning situation status of

-- the specified potentialthreat.

function getcwsstatus(threat : in pt handle) return cws id:

-- Returns the current ground track of the specified potential-threat.

function getground_track(threat : in pthandle) return

PhysicalQuantities.degrees;

-- Returns the value of the display handle for the specified potential threat.

function getdisplayhandle(threat : in pt handle)
return AirTrafficDisplayDevice.display_handle;

-- Sets the display handle for the specified potential threat.

procedure set displayhandle(threat : in pt_handle;

7-63

ATD/CWM Product Implementation/Adaptable Code Components

handle : in

AirTrafficDisplay_Device.displayhandle);

-- Returns which partition the potential-threat is-a member of.

function get_partition(threat : in pt_handle) return partition;

-- Returns the most recently measured range between the specified

-- potential threat and the host-aircraft.

function getrange(threat : in pthandle) return

PhysicalQuantities.nauticalmile;

-- Returns the most recently measured climb rate for the

-- potential-threat.

function get climbrate(threat : in pthandle) return
PhysicalQuantities.fpm;

-- Returns the most recently measured relative-bearing of the

-- specified potential-threat.

function getrelativebearing(threat : in pt_handle)
return PhysicalQuantities.degrees;

-- Returns the most recently measured velocity of the specified

-- potentialthreat.

function get_velocity(threat : in pt handle) return

PhysicalQuantities.knots;

-- Returns a status which indicates whether the velocity of the

-- specified potential threat is valid.

function velocityvalid(threat : in pt_handle) return boolean;

private

type pt_info;

type pthandle is access ptinfo;

type targetinfo(from : target-source := RADARSOURCE) is

record

aircraft id : string(l..8);

relativebearing : PhysicalQuantities.degrees;

target_range : Physical Quantities.nautical mile;

timestamp : PhysicalQuantities.seconds;

case from is

7-64

ATD/CWM Product Implementation/Adaptable Code Components

when RADAR SOURCE =>
sweep : integer;

when ATC SOURCE =>

altitude Physical Quantities.feet;
airspeed Physical Quantities.knots;
ground-track : PhysicalQuantities.degrees;

end case;
end record;

end PotentialThreat;
{))}

Body

{
module!external(ptbody)

"-type(timetype, (min target,
max target))

^type(range_type, (min target,
max target))

"-type(tand_r type, (t_min target,
t max target,
r min target,
r_max target))

"^type(cws def, (time ?: time-type,
range ?: range_type,
t and r ?: t and_r_type))

"-type(cwsinfo, (cws_name target,
severity target,
predicate cwsdef,

partition target.,
alarm : target,
atc_msg : target,
interairmsg : target,
corrective : target))

"program(pt, (cws : list of cws info))

.module!internal(pt_body)

"progimpl(pt, body, (
{

-- PotentialThreat (PT) package body

-- This module models potential threats in an ATD/CWM system. Potential
-- threats have properties of altitude, airspeed, aircraft identification,
-- groundtrack, range, relativebearing, climbrate, and collision
-- warning situation status. This module knows how to

7-65

ATD/CWM Product Implementation/Adaptable Code Components

-- determine values for these properties.

with PhysicalQuantities;

} -select(
member(-filter(x, cws, -equal(x.alarm, {True}))) -> ({

with AudibleAlarm;
})){
with Air TrafficDisplay;
} -select(

Aor(member(-filter(x, cws, -equal(x.atcmsg, {True}))),
•member(-filter(c, cws, -equal(x.interair_msg, {True})))) -> ({

with Communication;

with Air Traffic Control;
with Air TrafficDisplay_Device;
with Air CraftMotion;
with System;
with TargetBuffer;
with Collision WarningSituationStatus;
with RadarTargetPriorityBuffer;
with Radar;
with Unchecked Deallocation;
with Text 10;
pragma Elaborate(Air TrafficControl, TargetBuffer):
pragma Elaborate(Radar_TargetPriority Puffer, Radar);
package body PotentialThreat is

-- Information block for potential threats.

type datavalidity is (valid, invalid);

type pt_info is
record

aircraft id string(l..8);
altitudeY : PhysicalQuantities.feet; -- most recent altitude

reading
altitude Y valid : data validity;
timeY : Physical_Quantities.seconds;

altitude X : Physical Quantities.feet; -- previous altitude reading
timeX : PhysicalQuantities.seconds;

velocity : Physical Quantities.knots;

velocity valid : data-validity;
climbrate : PhysicalQuantities.fpm;
ground_track : Physical Quantities.degrees;
cws status : PotentialThreat.cws_id;
target_range : Physical Quantities.nautical mile;
relative bearing : Physical_Quantities.degrees;
handle : AirTrafficDisplay Device.displayhandle;
sweep : integer;

end record;

-- Various constants.

7-66

ATD/CWM Product Implementation/Adaptable Code Components

PurgeTime : constant := 5.0;

StartupDelay : constant := 10.0; -- for SIMULATION purposes only

-- Symbol table entries and symbol table. Size of symbol table
-- given by HASHSIZE.

HASHSIZE : constant natural := 128;

type tableentry;
type next is access table_entry;

type tableentry is
record

target : pthandle; -- potential threat
link : next; -- pointer to next entry on hash chain

end record;

buckets : array(0..HASHSIZE-l) of next := (others => null);

-- Mapping of collision warning situations to priorities

-- for the radar target priority buffer.

cws topriority array(cws id range cws id'first .. }
"^forall(c, cws,

"select(
"-last(c) -> ({ {c.cwsname}) }

M

of RadarTargetPriorityBuffer.messagepriority

"forall(c, cws, ({
{c.cws_name} => RadarTarget_Priority_Buffer.{c.cwsname}}

"select(
*not(-last(c)) - ,

-- Procedures to deallocate storage previously allocated
-- for the symbol table entries.

procedure free-tableentry is new UncheckedDeallocation(table-entry,
next);

procedure free_target is new UncheckedDeallocation(ptinfo, pt_handle);

-- Potential threat lookup routine. Lookup is based on the potential
-- threat name. The potential threat information block is returned.

7-67

ATD/CWM Product Implementation/Adaptable Code Components

function lookup(name : in string) return pt_handle
is

hash-value : natural;
ptr : next;

begin

-- First, compute the hashing value for this target name.

hash-value := 0;
for n in name'first .. name'last loop

hash-value := hash-value * 2 + character'pos(name(n));
end loop;
hash-value := hash-value rem HASHSIZE;
ptr := buckets(hash_value);
while ptr /= null loop

if ptr.target.aircraft id = name then
return ptr.target;

end if;
ptr := ptr.link;

end loop;
return null;

end lookup;

-- Install potential threat in the symbol table and return a
-- pointer to the target information block.

function install(name : in string) return pthandle
is

ptr : next;
hash-value natural;

begin
hash-value 0;
for n in name'first .. name'last loop

hash-value := hash-value * 2 + character'pos(name(n));
end loop;
hash-value := hash-value rem HASHSIZE;
ptr := new tableentry;
ptr.target := new ptinfo;
ptr.target.aircraftid := name;
ptr.link := buckets(hashvalue);
buckets(hash value) := ptr;
return ptr.target;

end install;

-- Background task to periodically purge old out-of-date
-- target information blocks. An 'old' information block
-- is any block that has not been updated within the
-- last PurgeTime seconds.

task purgetargetinformation blocks
is

7-68

ATD/CWM1 Product ImplementationlAdaptable Code Components

pragma Priority(114;
end purge_target-information-blocks;

task body purge target_information-blocks
is

ptrl, ptr2, ptr3 : next;
current-time : Physical Quantities.seconds;

begin
loop

delay PurgeTime;
current-time :=PhysicalQuantities~get_tir
for n in buckets'first .. buckets'last loop

ptrl null;
ptr2 buckets(n);
while ptr2 /= null loop

if current-time - ptr2.target.time Y > PurgeTime then
ptr3 :=ptr2.link:
if ptrl = null then

buckets(n) ptr31;
else

end if;
AirTrafficDisplay.update-cws(threat => ptr2.target,

display-status => delete):
free-target(ptr2.target);
free-table-entr~y(ptr2);
ptr2 ptr3;

else
ptrl ptr2;
ptr2 :=ptr2.link;

end if;
end loop;

end loop;
end loop;

exception
when constraint -error => text -io.put_linecIlptib CE");
when numeric -error => text_io.put_line("ptib NE");
when others => text io~put line("ptib Bozo error");
end purge_target-information-blocks;

-- Tasks to process potential -threats in a specified
-- collision warning situation.

stream! int(priority,
^forall(c, cws, ({

task collision_warning_situation_{c.cws~name}
is

pragma Priority(6-{priority});
end collision warningý_s~tuation~ic.cws~name);

7-69

ATD/CWM Product Implementation /Adaptable Code Components

task body collision warning_situation_{c.cws name)
is

msg :Pt_handle;
begin

loop

-- Receive the next target and perform the desired processing
-- with it.

RadarTarget PriorityBuffer.receive_ýc-cws~name)(rnsg);

~select(
-equal(c.alarrn, (True}))-

AudibleAlarm.ring~alarmin(c.cws_name));

~select(
-equal(c.atc -nsg, {True}) ->({

Gommunication~send-atc_msg({c.cws_name));

~select(
-equal(c.inter -air_msg, {True}) -

Communication-send~ia~msg({c.cws~na:;.E)}

~select(
~equal(c.corrective, {True) >

AirTraffic_Display~corrective-action-msg(threat => msg);

{ AirTraffic_Display.update_cws(threat => msg,
display-status => add-modify);

end loop;
exception

when constraint -error => text-io.put-line("cwss_{c.cws_name) CE");
when numeric -error => text -io.put -line("cwss_{c.cws_name) NE"');
when others => text -io.put-lir.e("cwss {c.c'vs name) Bozo error"');
end collision-warning_situation_{c.cws_ iamej:}

-- Task to obtain radar information

-- How long to wait before accessing the next radar data record. This
-- is only used for the simulation. When we have a real

ATD/CWM Product Implementation!Adaptable Code Components

-- radar device, the delay statement in the monitor radar task body MUSI bc
-- removed.

task get_radar information is
pragma Priority(9);

end getradarinfornation;

task body get-radarinformation is
aircraft id : string(l..8);

sweep : integer;
relativebearirg : PhysicalQuantities.degrees;
targetrange : ?hysical Quantities.nautical mile;
timestamp : Physicýal Quantities.spconds;
target : target info(frotn => RADARSOURCE);

begin
delay StartupDelay;
loop

Radar.get_radar data(aircraftid, sweep. re]itive bearing,
target_range, timestamp);

-- Save the information and forward it to the processing task.

target.aircraftid := aircraft id;
target.targetrange := target_range;
target.relativebearing := relative bearn-:g;
target.timestamp := timestamp;
target.sweep :-= sweep;
TargetBuffer.send~target);

end loop:
exception

when constrainterror => textio.putline("gri CE"):
when numericerror => text_io.put_line("gri NE");
when others => textio.putline("gri Bozo error"):
end getradarinformation;

-- Task to obtain potential threat information from
-- the air traffic control device.

-- How long to wait before accessing the next atc data record. This is only
-- used during the simulation. When we have a real ATC device,
-- then the delay statement in the monitor atc task bod. MUST

-- be removed.

task get_atc_information is
pragma Priority(9);

end get_atcinformation;

task body get atcinformation is
aircraft id : string(l..8);
altitude : PhysicalQuantities.feet;
airspeed Physical Quantities.knots;

7-71

ATD/CWM Product Implementation!Adaptable Code Components

groundtrack PhysicalQuantities.degrees;
targetrange PhysicalQuantities.nautical mile;
relativebearing : PhysicalQuantities.degrees;
timestamp : Physical Quantities.seconds;
target : target_info(from => ATCSOURCE);

begin
delay Startup_Delay;
loop

Air_Traffic Control.getatcmessage(aircraftid, altitude, airspeed,
groundtrack, targetrange,

relativebearing,

timestamp);

-- Send the target information to the processing task.

target.aircraft id := aircraft id;
target altitude altitude;

target airspeed airspeed;
target.ground track ground track:
target.target range target range;
target relativebearing := relativebearing;
target.timestamp := timestamp;
TargetBuffer.send(target);

end loop;
exception

when constraint error => textio.put_line("gai CE");
when numericerror => textio.put line("gai NE");
when others => text _io.putline("gai Bozo error");
end get_atc_information;

-- Task to process the potential threat target information received
-- from the radar and ATC devices.

task updatepotentialthreatinformation is
pragma Priority(S);

end updatepotential threat information;

task body updatepotential_threatinformation

is
target : pt handle;
infoblock target_info;
new status cws id;

begin
loop

-- Get next potential threat information block.

Target_Buffer.receive(info block);

-- Process the target information. If this is a new target,
-- then we must add it to the symbol table and set the appropriate
-- fields.

7-72

ATD/CWM Product Implementation/Adaptabie Code Components

target :=lookup(info -block.aircraft-id);
if target =null then

target install(info block.aircraft id);
if info block.from =RADARSOURCE then

target.altitudeY valid :=invalid;
target.altitude_-X 0.0;
target.altitudeY 0.0;
target.time_-Y info block.timestamp;
target~time-X I'nfo-block.timestamp;
target.velocity -valid :=invalid;
target.climb -rate :=0.0;
target.ground -track :=0.0;
target.cws status :=normal;
target.target_range :=info Iblock.target range;
target.relative_bearing := info-block.relative-bearing;
target.handle :

Air TrafficDisplayDevice~null_display-handle;
target.sweep :=in-fo block.sweep;

else
target.altitudeY :=info block~altitude;
target~altitudeY valid :=valid;
target.time_Y := info Tblock.timestamp;
target~altitudeX :=info -block.altitude;
target.tineX :=info -block.timestamp;
target.velocity :=info block~airspeed;
target.velocity-valid :=valid;
target.climb rate :=0.0;
target.ground -track :=info -block.ground_track;
target.cws_status-: normal;
target~target-rang-e :=info-block.target range;
target.relative_bearing :=info-block.relative_bearing;
target~handle :

Air TrafficDisplay_-Device.null-display handle;
target.sweep :=0;

end if;
else

-- Update information for an existing target.

if info block.from = RADARSOURCE then
target.sweep :=info block.sweep;
target.target_range :=info-block.target range;
target.relative_bearing :=info -block.relative_bearing;
target~timeX target.time_-Y;
target.time_Y info-block.timestamp;

else
if target~altitudeY valid = invalid then

target.altitudeX into-block.altitude;
else

target~altitude X target.altitudeY;
end if;

.7-73

ATD/CWM Product Implementation/Adaptable Code Components

target.time_X := target.time Y;
target.altitudeY - info block.altitude;
target.altitude Y valid := valid;
target.time Y := info block.timestamp;
target.velocity := infoblock.airspeed;
target.velocityvalid := valid;
target.groundtrack infoblock.ground_track;
target.target range infoblock.target_range;
target .relative_bearing := infoblock.relativebearing;

end if;

-- Compute the climb rate for the target using the new information

begin
target.climb rate := AirCraftMotion.getclimb rate(

altitudeY => target.altitude Y,
time Y => target.time Y,
altitudeX => target.altitude X,
time X => target.timeX);

exception
when constraint error => text_io.put_line("upti -1- CE");
when numeric error => textio.put_line("upti -1- NE");
when others => text io.put-line("upti -l- Bozo error");

end;
end if;

-- Determine the situation this target is in relative to the host
-- aircraft and pass the target information along to the
-- appropriate task for further processing.

new-status
CollisionWarningSituationStatus.determinecws status(target);

if new-status /= target.cws status and new-status /= normal then
target.cws status := newstatus;
RadarTargetPriority_Buffer.send(target,

cwstopriority(target.cws status));
else

AirTrafficDisplay.updatecws(threat => target,
display_status add-modify);

end if;
end loop;

exception
when constrainterror => text_io.put_line("upti CE");
when numericerror => text_io.putline("upti NE");
when others => textio.putline("upti Bozo error");
end update_potentialthreatinformation;

-- Returns whether the altitude value for the specified
-- potential threat is valid.

7-74

ATD/CWM Product lmplementation/Adaptable Code Components

function altitude valid(threat : in pt_handle) return boolean

is

begin

return threat.altitudeY valid = valid;

end altitude-valid;

-- Return the identification of the specified potential threat.

function getaircraftid(threat : in pthandle) return string

is
begin

return threat.aircraftid;

end getaircraftid;

-- Return the current altitude of tne specified potential threat. Exception

-- AltitudeInvalid is raised if the altitude valid is invalid.

function getaltitude(threat : in pt_handle) return

Physical Qv~utities.feet

is

begin

return threat.altitudeY;

end getaltitude;

-- Returns the most recently measured climb rate for the

-- potential threat.

function get climb rate(threat : in pt handle) return

Physical Quantities.fpm

is

begin

return threat.climb-rate;

end get climbrate;

-- Return the collision warning situation status of the specified potential

-- threat.

function get cwsstatus(threat : in pt_handle) return cwsid

is

begin

return threat.cws status;

end getcws_status;

-- Return the display handle for the specified potential threat.

function getdisplayhandle(threat : in pthandle)

return AirTrafficDisplayDevice.displayhandle

is

7-75

ATD/CWM Product Implementation/Adaptable Code Components

begin
return threat.handle;

end get_display-handle;

-- Set the display handle for the specified potential threat.

procedure set_display_handle(threat in pt_handle;
handle in

AirTrafficDisplayDevice.display_handle)
is
begin

threat.handle := handle;
end set_displayhandle;

-- Return the ground track for the specified potential threat.

function getground_track(threat : in pthandle) return
PhysicalQuantities.degrees

is
begin

return threat.groundtrack;

end get_groundTrack;

-- Return the potential threat partition.

function get_partition(threat : in pt_handle) return partition
is
begin

return ID;
end get_partition;

-- Returns the most recently measured range between the specified
-- potential threat and the host aircraft.

function get_range(threat : in pt_handle) return
PhysicalQuantities.nautical mile

is
begin

return threat.targetrange;
end get_range;

-- Returns the most recently measured relativebearing of the
-- specified potential threat.

function get relative bearing(threat . in pthandle)
return PhysicalQuantities.degrees

is
begin

7-7r,

ATD/CWM Product Implementation/Adaptable Code Components

return threat.relativebearing;

end get_relativebearing;

-- Returns the most recently measured velocity of the specified

-- potential threat. Exception Velocity_Invalid is raised when
-- the velocity of the potential threat is invalid.

function getvelocity(threat : in pthandle) return
PhysicalQuantities.knots

is
begin

return threat.velocity;
end get_velocity;

-- Returns a status which indicates whether the velocity of the

-- specified potential threat is valid.

function velocity_valid(threat in pt handle) return boolean
is
begin

return threat.velocity_valid = valid;

end velocity-valid;

end PotentialThreat:

16. PotentialThreatPartition (PTP)

Spec

-- PotentialThreatPartition (PTP)

-- This module determines which partition a potentialthreat

-- is a member of.

-- Either generic parameter altitude, airspeed, or both MUST be TRUE

-- to have a legal instantiation.

with PotentialThreat;
generic

altitude boolean;
airspeed boolean;

package PotentialThreatPartition is

function get_partition(threat : PotentialThreat.pt_handle)

return Potential Threat.partition;

end PotentialThreat Partition;

Body

7-77

ATD/CWM Product Impemenitaion/Adaptable Code Components

-- PotentialThreatPartition (PTP) package body

with Potential Threat;

package body PotentialThreatPartition is

function getpartition(threat : PotentialThreat.pthandle)
return PotentialThreat.partition

is
begin

if (altitude = TRUE and then airspeed = TRUE) then

if Potential Threat.altitudevalid(threat) and then
PotentialThreat.velocityvalid(threat) then

return PotentialThreat.ID;
else

return PotentialThreat.UID;
end if;

elsif (altitude = TRUE) then
if Potential Threat.altitude valid(threat) then

return PotentialThreat.ID;
else

return PotentialThreat.UID;
end if;

elsif (airspeed = TRUE) then
if Potential Threat.velocity_valid(threat) then

return Potential Threat.ID,
else

return PotentialThreat.UID;
end if;

end if;
end get_partition;

end PotentialThreat Partition;

17. Radar (RADAR)

Spec

-- Radar (RADAR) package spec

-- This module encapsulates the hardware / software interface to
-- the radar device. The primary hidden decisions are how to

-- obtain ran data for the aircraft identification, sweep, relative
-- bearing, range, and timestamp; the scale and format
-- of these input dal.a imtes; and the device-dependent operations
-- that must be applied to convert the raw data to the internal format

-- of the ATD/CWM system.

with PhysicalQuantities;
package Radar is

procedure get radardata(aircraft id : out string;
sweep : out integer;

7-78

ATD/CWM Product lmplementation/Adapable Code Components

relative-bearing : out
PhysicalQuantities.degrees;

targetrange : out
PhysicalQuantities.nauticalmile;

timestamp : out PhysicalQuantities.seconds);

end Radar;

-- Following pcckage only for providing simulation data for
-- the Radar and ATC.

with PhysicalQuantities;
package Simulation Data is

-- Miscellaneous exceptions

Out Of Host Data exception;
OutOfRadarData exception;

-- Procedure for providing information for a simulated
-- radar return.

procedure get simdata(aircraftid out string;

sweep : out integer;
relativebearing : out PhysicalQuantities.degrees;
targetrange : out

PhysicalQuantities.nauticalmile);

-- Procedure for providing information for a simulated ATC input.

procedure get simdata(aircraft id : out string;
altitude out PhysicalQuantities.feet;
airspeed out Physical Quantities.knots:
ground-track out PhysicalQuantities.degrees;
target_range out

PhysicalQuantities.nauticalmile;

relative-bearing : out PhysicalQuantities.degrees);

-- Procedure for providing information for a simulated navigation input.

procedure get simdata(altitude out PhysicalQuantities.feet;
airspeed out PhysicalQuantities.knots;
groundtrack : out PhysicalQuantities.degrees;
latitude out PhysicalQuantities.latitude;
longitude out PhysicalQuantities.longitude);

end SimulationData;

Body

7-79

ATD/CWM Product Implementation/Adaptable Code Components

-- Radar (RADAR) package body

-- This module encapsulates the hardware / software interface to
-- the radar device. The primary hidden decisions are how to
-- obtain ran data for the aircraft identification, sweep, relative

bearing, range, and timestamp; the scale and format
-- of these input data imLes; and the device-dependent operations
-- that must be applied to convert the raw data to the internal format
-- of the ATD/CWM system.

with PhysicalQuantities;
with SimulationData;
with Text 10;
package body Radar is

-- Get next radar return.

procedure getradardata (aircraftid out string;
sweep : out integer;
relativebearing : out

PhysicalQuantities.degrees;
targetrange : out

PhysicalQuantities.nautical_mile;
timestamp : out PhysicalQuantities.seconds)

is
begin

Simulation Data getsim data(aircraft id, sweep, relative bearing.
target_range);

timestamp := PhysicalQuantities.gettime:
exception

when constrainterror => text_io.put_line("radar CE");

when numericerror => textio.putline("radar NE");
when SimulationData.OutOfRadarData => text_io.put_line("radar OUT

RADAR");
when others => text io.putline("radar BOZO");
end getradardata;

end Radar;

-- SimulationData package

with Physical_Quantities;
with Radar;
with Air Craft Motion;
with NumericalAlgorithms;
with Text 10;
package body SimulationData is

package float io is new text io.float io(float); use float io;

7-80

ATD/CWM Product Implementafion/Adaptable Code Componenis

-- Various Constants

Tracked-Targets : constant := 5;

RadarDelay : constant 2.0 / Tracked_Targets;

ATC_Delay : constant 2.0 / TrackedTargets;

-- Current radar sweep.

sweep_counter : integer := 0;

number of calls : integer := 1;

-- NAVIGATION DEVICE INPUT SIMULATION

-- Because we don't have a real navigation device, we are
-- going to use canned data. The data will describe a

-- hypothetical flight path for the host aircraft. To do this,

-- we will construct navigation data algorithmically

-- based on a given starting point. The algorithm

-- utilizes the following information to compute the navigation

-- records:

-- initial altitude

-- initial airspeed

-- initial groundtrack

-- delta altitude

-- delta airspeed

-- delta groundtrack

-- The algorithm computes an altitude, airspeed, and ground track

-- per invocation. The 'delta' values represent the rate of change per

invocation

-- of the algorithm for the respective quantity.

-- Each starting point is considered the beginning of a different

-- scenario. We also need to specify how long to simulate a given scenario

-- in terms of the number of records (i.e., how many times to invoke

-- the algorithm).

-- The following Ada declarations are used to store

-- the information described above for each scenario.

type scenario-info is

record

initialaltitude : PhysicalQuantities.feet;

initialairspeed : PhysicalQuantities.knots;

initialground_track : PhysicalQuantities.degrees;

records : integer;
delta-altitude : float;

7-81

ATD/CWM Product Implementation/Adaptable Code Componenms

delta-airspeed : float;
deltagroundtrack : float;

end record;

scenario : array(l..16) of scenario-info

-- Scenario #1

1 => (initialaltitude => 1000.0,
initial airspeed => 700.0,
initialground track => 0.0,
records => 600,
delta altitude => 0.0,
deltaairspeed => 0.0,
deltagroundtrack => 0.0),

-- Scenario #2

2 => (initial altitude => 2000.0,
initial airspeed => 700.0,
initialground track => 0.0,
records = -> 300,

delta altitude => 10.0,
deltaairspeed => 0.0.
delta_ground_track => 0.0),

-- Scenario #3

3 => (initial altitude => 31000.0,
initialairspeed => 700.0,

initial ground_track => 0.0,

records => 300,
delta altitude => -10.0,
delta-airspeed => 0.0.
deltagroundtrack => 0.0),

-- Scenario #4

4 => (initial-altitude => 1000.0,
initialairspeed => 500.0,
initialground_track => 0.0,
records => 150,
delta altitude => 0.0,
deltaairspeed => 0.1,

deltagroundtrack => 0.0),

-- Scenario #5

5 => (initial altitude => 1000.0,
initialairspeed => 700.0,
initial_ground_track => 0.0,
records => 150,

7-82

ATD/CWM Product Implementation/Adaptable Code Components

delta altitude => 0.0,
delta_airspeed => -0.1,
deltagroundtrack => 0.0),

-- Scenario #6

6 => (initial altitude => 1000.0,
initialairspeed => 500.0,

initialground_track => 0.0,
records => 150,
delta altitude => 10.0,
delta_airspeed => 0.1,
deltagroundtrack => 0.0),

-- Scenario #7

7 => (initial altitude => 31000.0,
initialairspeed => 700.0,

initialground_track => 0.0,
records => 150,

delta altitude => -10.0,
delta_airspeed => -0.1,

deltagroundtrack => 0.0),

-- Scenario #8

8 => (initial altitude => 1000.0,
initialairspeed => 500.0,
initialgroundtrack => 0.0,

records => 150.

delta altitude => 10.0,
deltaairspeed => 0.1,
deltaground_track => 0.0),

-- Scenario #9

9 => (initialaltitude => 31000.0,

initialairspeed => 700.0,
initial_ground_track => 0.0,
records => 150,
delta altitude => -10.0,
delta_airspeed => -0.1,
delta_ground_track => 0.0),

-- Scenario #10

10 => (initialaltitude => 1000.0,

initial_airspeed => 700.0,
initial_ground_track => 0.0,
records => 300,
delta altitude => 0.0,
delta_airspeed => 0.0,

7-83

ATD/CWM Product Implementalion/Adaptable Code Components

delta_groundtrack => 0.1),

-- Scenario #11

11 => (initial altitude => 1000.0,
initialairspeed => 500.0,
initial_groundtrack => 0.0,
records => 150,
delta altitude => 10.0,
deltaairspeed => 0.1,

deltagroundtrack => 0.1),

-- Scenario #12

12 => (initial altitude => 31000.0,
initial airspeed => 700.0,
initial_ground track => 0.0,

records => 150,
delta altitude => -10.0,
deltaairspeed => -0.1,

delta groundtrack => 0.1),

-- Scenario #13

13 => (initial altitude => 1000.0,
initialairspeed => 500.0,
initial ground track => 0.0,

records => 150,
delta altitude => 10.0,
delta airspeed => 0.1,

delta_groundtrack => 0.1),

-- Scenario #14

14 => (initialaltitude => 31000.0,
initialairspeed => 700.0,
initialgroundtrack => 0.0,

records => 150,
deltaaltitude => -10.0,
deltaairspeed => -0.1,

delta_ground_track => 0.1),

-- Scenario #15

15 => (initialaltitude => 1000.0,
initial_airspeed => 500.0,
initial_groundtrack => 0.0,

records => 150,
delta altitude => 10.0,

delta-airspeed => 0.1,

delta_groundtrack => 0.1),

7-84

ATD/CWM Produci Implementation/Adaptable Code Components

-- Scenario #16

16 => (initial altitude => 31000.0,

initialairspeed => 700.0,
initialgroundtrack => 0.0,
records => 150,
delta altitude => -10.0,

delta airspeed => -0.1,

delta ground_track => 0.1));

-- Pointers to current host aircraft navigation data.

host record count : integer := 1;
host data index : integer := suenario'first;

hostcurrentaltitude : PhysicalQuantities.feet

scenario(hostdataindex).initialaltitude;
host current_airspeed : PhysicalQuantities.knots

scenario(hostdataindex).initialairspeed;
hostcurrent_ground track : PhysicalQuantities.degrees

scenario(hostdataindex).ir.itialgroundtrack;

hostclimbrate : PhysicalQuantities.fpm := 0.0;

-- Previous host aircraft information so that we can

-- compute climb-rate for the host.

previoushost altitude : PhysicalQuantities.feet := 0.0:
previous hostaltitudetime : PhysicalQuantities.seconds;

-- RADAR and ATC INPUT SIMULATION

-- Each target has a scenario specified by an initial starting
-- condition. From this, we predict the new range and relative
-- bearing as well as updating the altitude. We are
-- assuming constant airspeed and groundtrack for the targets.

-- The target scenarios arc defined by the following record.

type target_scenario is
record

id : string(l..8);
initial-altitude : PhysicalQuantities.feet;
initialairspeed : PhysicalQuantities.knot2;
initial groundtrack : PhysicalQuantities.degrees;

7-85

ATD/CWM Product lmplementation/Adaplable Code Components

initialtarget_range : PhysicalQuantities.nauticalmile;

initial relative bearing : PhysicalQuantities.degrees;
initial climb rate : PhysicalQuantities.fpm;

end record;

-- Target scenarios

targets : array(l..12) of target_scenario

I => (id => "PT 00034",
initial altitude => 1000.0,
initial_airspeed => 700.0,
initialgroundtrack => 180.0,
initial_target range => 60.0,
initial relativebearing => 0.0,
initial climb rate => 0.0),

2 => (id => "PT_06789',
initial altitude => 1000.0,
initial_airspeed => 700.0,
initialground track => 30.0,
initialtargetrange => 60.0,
initialrelativebearing => 225.0,
initial climb rate => 0.0),

3 => (id => "BlueBomb",.
initial altitude => 1000.0,
initiai_airspeed => 700.0,
initialgroundtrack => 210.0,
initial_targetrange => 60.0,
initialrelative_bearing => 45.0,
initial climb rate => 0.0),

4 => (id => "Stealth ",

initial altitude => 1000.0,
initial airspeed => 700.0,
initialgroundtrack => 90.0,
initial_targetrange => 60.0,
initialrelativebearing => 300.0,
initial climb rate => 0.0),

5 => (id => "SynThsis",
initial altitude => 1000.0,
initial_airspeed => 700.0,
initial-groundtrack => 270.0,
initial_targetrange => 60.0,
initialrelative_bearing => 75.0,
initial climb rate => 0.0),

6 => (id => "Snoopy ",
initial altitude => 5000.0,
initial_airspeed => 700.0,
initial_ground_track => 70.0,
initialtargetrange => 45.0,
initialrelative_bearing => 325.0,
initial climb rate => 0.0),

7 => (id => "F-Ill ",
initial altitude => 3000.0,

7-gR6

ATD/CWM Producl Implementation/Adaptable Code Components

initial_airspeed => 700.0,

initialgroundtrack => 180.0,

initialtargetrange => 60.0,

initialrelativebearing => 340.0,

initial climb-rate => 0.0),

8 => (id => "UA-12345",
initial altitude => 1500.0,

initial_airspeed => 700.0,

initialgroundtrack => 135.0,

initialtarget range => 50.0,

initialrelativebearing => 270.0,

initial climb rate => 0.0),

9 => (id => "ZeePlane",

initial altitude => 5000.0,

initial_airspeed => 700.0,
initialgroundtrack => 190.0,

initialtarget range => 60.0.

initialrelativebearing => 0.0,

initial climb rate => 0.0),

10 => (id => "Mt.Reuse",
initial altitude => 3500.0,

initial-airspeed => 700.0,

initialgroundtrack => 270.0,

initialtargetrange => 60.0.

initialrelativebearing => 45.0,

initial climb rate => 0.0),

11 => (id => "UFO #001"1,

initial altitude => 25000.0,

initial airspeed => 700.0.

initialgroundtrack => 90.0,

initialtarget range => 55.0.

initialrelative_bearing => 315.0,

initial climb rate => 0.0),

12 => (id => "Blimp 99",

initial altitude => 24000.0,

initial_airspeed => 700.0.

initialgroundtrack => 80.0,

initialtarget range => 60.0,

initialrelative_bearing => 350.0,

initial climb rate => 0.0)

-- We only track a certain number of targets at any one time. The following

-- record is used to keep track of a target while it is being tracked.

type trackedtarget is

record

tracked : boolean:

id : string(l..8);

altitude PhysicalQuantities.feet;

airspeed PhysicalQuantities.knots;

groundtrack : PhysicalQuantities.degrees;

7-87

ATD/CWM Product Implementation/Adaptable Code Components

targetrange : PhysicalQuantities.nauticalmile;
relativebearing : Physical Quantities.degrees;

climb-rate PhysicalQuantities.fpm;
timestamp PhysicalQuantities.seconds;

end record;

pt : array(l..TrackedTargets) of trackedtarget
1 => (tracked => false,

id => " ",
altitude => 0.0,

airspeed => 0.0,

groundtrack => 0.0,
targetrange => 0.0,
relativebearing => 0.0,
climbrate => 0.0,
timestamp => 0.0),

2 => (tracked => false.

id => " ",

altitude => 0.0,
airspeed => 0.0,
groundtrack => 0.0.
target_range => 0.0,
relative bearing => 0.0,
climb-rate => 0.0,
timestamp => 0.0),

3 => (tracked => false,
id =>

altitude => 0.0,

airspeed => 0.0,
groundtrack => 0.0,
targetrange => 0.0,
relativebearing => 0.0,

climbrate => 0.0,
timestamp => 0.0),

4 => (tracked => false,
id => " ",

altitude => 0.0,
airspeed => 0.0,
ground-track => 0.0,
targetrange => 0.0,
relativebearing => 0.0,
climb-rate => 0.0,
timestamp => 0.0),

5 => (tracked => false,
id => " ",

altitude => 0.0,
airspeed => 0.0,
ground-track => 0.0,
targetrange => 0.0,
relative bearing => 0.0,

climb rate => 0.0,

7-88

ATD/CWM Product Implemeniation/Adaptable Code Components

timestamp => 0.0)

-- Radar target index. Indicates Ahat target to fetch next
-- when getsimdata is invoked.

target_index: integer =1;

next_target : integer := 1;

-- ATC target index. Indicates what target to fetch next

-- when getsim_data is invoked for an ATC input.

atc targetindex : integer := 1;

-- Simulated navigation device input.

-- Read the host aircraft navigation data ad return the converted
-- information to the calling program.

procedure getsimdata(altitude : out PhysicalQuantities.feet;
airspeed : out Physical Quantities.knots;
groundtrack : out PhysicalQuantities.degrees;
latitude : out PhysicalQuantities.latitude;

longitude : out PhysicalQuantities.longitude)
is

currenttime : PhysicalQuantities.seconds;
begin

-- If already at the end of the simulation data, then punt with the
-- appropriate exception. Otherwise, generate the next navigation
-- data record for the current scenario.

if hostrecord count > scenario(hostdataindex).records then

host data index := host data index + 1;
if host data index > scenario'last then

raise OutOfHostData;
end if;
host currentaltitude := scenario(hostdataindex).initialaltitude;
hostcurrentairspeed := scenario(hostdataindex).initial airspeed;
hostcurrent_groundtrack :=

scenario(hostdata-index).initial_groundtrack;
hostrecordcount := 1;

end if;

-- Compute climb rate before we assign the current values of altitude,
-- airspeed, and ground_track to the 'out' parameters.

currenttime := PhysicalQuantities.get_time;
if previous hostaltitude /= 0.0 then

host climbrate := AirCraft Motion.get_climbrate(

7-89

ATD/CWM Product Implementation/Adaptable Code Components

hostcurrentaltitude,
current-time,
previous-host-altitude,
previoushostaltitudetime);

end if;
previous_host altitude := hostcurrent altitude;
previous hostaltitude time := currenttime;

-- Now that we have the climb rate, we can update the 'out' parameters
-- and adjust the altitude, airspeed, and groundtrack values
-- for the next time this routine is called.

altitude hostcurrentaltitude;
airspeed := hostcurrentairspeed;
groundtrack := host_current_groundtrack;
latitude := 0.0;
longitude := 0.0;
host current altitude := host current altitude +

scenario(hostdataindex).deltaaltitude;
hostcurrentairspeed := host currentairspeed +

scenario(hostdataindex).delta_airspeed;
hostcurrent_ground_track := hostcurrentground_track +

scenario(host dataindex).deltaground track;
host record count := host record count + 1;

end get simndata;

-- Simulated Radar and ATC input

-- The current altitude, airspeed, groundtrack, relativebearing,
-- and range is updated only when we need to provide new
-- information for the radar. A target is considered "tracked"
-- as long as its range is within the surveillance area. After
-- that, we exclude that target and begin tracking a "new"
-- target (i.e., that is, we start a new scenario).

procedure getsim_data(aircraftid : out string;
sweep : out integer;
relativebearing : out PhysicalQuantities.degrees;
target_range : out

PhysicalQuantities.nauticalmile)
is

rangexy : Physical_Quantities.nauticalmile;
pt_velocityxy : PhysicalQuantities.knots; -- X-Y velocity of

potential-threat
havelocityxy : PhysicalQuantities.knots; -- X-Y velocity of

host-aircraft
currenttime : PhysicalQuantities.seconds;
elapsed_time : PhysicalQuantities.seconds;
newrange : PhysicalQuantities.nautical mile;

7-90

ATD/CWM Product Implementation/Adaptable Code Components

xh, yh, zh :float;
xpt, ypt, zpt :float;
temp_1, temp_2, temp_-3 :float;
new -relative-bearing :PhysicalQuantities.degrees;

begin
delay RadarDelay;
current-time :=PhysicalQuantities.get_time;

-- Reference target indicated by target_index. If this slot indicates
-- that we are not tracking a target, then get the next
-- target. If none exist, then raise OutOfRadarData and punt.

if pt(target -index).tracked = false then
if next_target > targets'last then

raise OutOfRadar_Data;
end if;
pt(target index).id :=targets(next target).id;
pt(target index).altitude targets(next_target).initial -altitude;
pt(target index).airspeed targets(next_target).initial airspeed;
pt(target-index).ground -track :

targets(next-target). ini.tial-ground-track;
pt(target index).target range :

targets(next-target,),initial target_range;
pt(target index).relative bearing

targets(next-target).initial-relative_bearing;
pt(target -index).climb-rate-=

targets(next-target).initial-climb-rate;
pt(target index).tracke 'd :ýtrue;
next-target :=next target + 1;

else

-- Compute new range for this target

begin
range-xy :=Air CraftMotion~get_range_xy(

pt(target-index).target_range,
pt (target-index) .altitude,
host_'2urrent-altitude);

pt_velocity xy AirCraftMotion.get_velocity_xy(
pt (target index) .airspeed,
pt(target_index).climb-rate);

ha, velocity xy
AirCraftMotion.get-velocity-xy(host-current-airspeed,

host-climb_rate);
exception

when constraint error =>

text_io.put_line("lget sim data radar - 42 CE"I);
when numeric-error =>

text_io.put_line("lget sim data radar - 42 NEI');
when others =>

7-91

ATD/CWM Product Implementation/Adaptable Code Components

text_io~put_line("lget sim data radar - 42 Bozo error");
end;

-- Elapsed time is the difference between the value of the timestamp
-- in the threat(target_index) and the current time.

elapsed -time :=current-time - pt(target_index).timestamp;
pt(target._index).timestamp :=current-time;

-- First, compute the new location of the host aircraft.

begin
xh :=ha -velocity-xy

NumericalAlgorithms.cos(host-current_ground_track) *
(float(elapsed_time) / 3600.0);

yh :=ha velocity xy *
NumericalAlgorithms.sin(host-current~ground_track) *

(float(elapsed_time) / 3600.0);
zh :=host-climb-rate * (float(elapsed-time) /60.0);

exception
when constraint error =>

text_io.put-line("lget sim data radar - 43 CE"I);
when numeric-error =>

text_io.put._line("lget sin data radar - 43 NEI');
when others =>

text io.put-line("lget sim data radar - 43 Bozo error");
end;

-- Next, compute the new location of the threat.

begin
xpt :=range_xy

NumericalAlgorithms.cos(pt(target_index) .relative_bearing) +
pt_velocity -xy *

NumericalAlgorithms.cos(pt(target index) .ground -track)*
(float(elapsed-time) / 3600.0);

ypt :=range xy *
NumericalAlgorithms.sin(pt(target-index) .relative_bearing) +

pt_velocity_xy *

NumericalAlgorithms.sin(pt(target index) .ground_track)
(float(elapsed_time) I3600.0);

zpt :=(pt(target-index).altitude -host-current-altitude) +
(pt(target_index).climb-rate * (float(elapsed-time)/

60.0) - zh);
except ion

when constraint error =>
text_io.put_line("lget sin data radar - 44 CE"I);

when numeric-error =>
text_io.put_line("lget sim data radar - 44 NE"');

when others =>

text io.put_line("lget sim data radar - 44 Bozo error");
end;

7-92

ATD/CWM Product Implementation/fAdaptable Code Components

-- We can now compute the distance is then computed using

-- range = ((xpt-~xh)**2 + (ypt-yh)**2 + (zpt-zh)**2) ** 0.5

begin
temp_1 xpt - xh;
temp_2 ypt - yh;
temp_3 (zpt - zh) / Physical -Quantities.nautical -mile-to-feet;
new-range :=Numerical Algorithtns.sqrt(temp_1 * temp_1 + temp_2*

temp 2 +
temp_3*

temp_3);
exception

when constraint error =>

text-io.put-line("lget sirn data radar - 45 CE"I);
when numeric-error =>

text_io.put -line("lget sim data radar - 45 NE"'):

when others =>
text_io.put_line("lget sim data radar - 45 Bozo error");

end;

-- Boundary check. If the predicted range is outside the surveillance area,
-- then move on to the next target. If no more targets exist, then raise
-- OutOfRadarData exception and punt.

if new-range > 61.0 then
if next-target > targets' last then

raise OutOfRadarData;
end if;
pt(target index).tracked := true;,
pt(target index).id := targets(next target).id;
pt(target index).altitude

targets(next-target) .initial-altitude;
ptctarget Tindex).airspeed

targets(next-target). initial airspeed;
pt(target Tindex).ground_track

targets(next-target). initial ground_track;
pt(target Tindex).target_range

targets(next-target).initial_target_range;
pt(target index).relative bearing

targets(next_target).initial -relative-bearing;
pt(target_index).climb -rate

targets(next-target).initial-climb-rate;
next_target :=next_target + 1;

else

-- Store the new range and altitude. Next, we compute the
-- predicted relative bearing for this target.

begin
pt(target-index).target-range := new-range;

7-93

ATD/CWM Product Implementation/Adaptable Code Componenis

pt(target_index).altitude := pt(targetindex).altitude +
pt(targetindex).climb rate *

(float(elapsedtime) / 60.0);
exception

when constraint error =>
textio.put_line("get sim data radar - 46 CE");

when numeric-error =>

text_io.put line("get sim data radar - 46 NE");
when others =>

textio.put line("get sim data radar - 46 Bozo error");
end;
begin

rangexy := AirCraftMotion.getrange_xy(new range,

pt(target_index).altitude,

host current altitude);

exception
when constraint error =>

textio.put line("get sim data radar - 47 CE");
when numericerror =>

textio.putline("get sim data radar - 47 NE');
when others =>

textio.putline("get sim data radar - 47 Bozo error");

end;
begin

new relative bearing := PhysicalQuantities.degrees(
NumericalAlgorithms.arccos(

float((xpt - xh) / rangexy))

Physical Quantities.radiantodegree);
exception

when constraint error =>
textio.put line("get sim data radar - 48 CE");

when numericerror =>
text_io.put_line("get sim data radar - 48 NE");

when others =>

text_io.putline("get sim data radar - 48 Bozo error");
textio.put("ID: "); textio.put line(pt(targetindex).id);

text_io.put("Alt: "); put(float(pt(target index).altitude), aft=>l,

exp=>O); textio.new line;
text io.put("Vel: "); put(float(pt(target index).airspeed), aft=>l,

exp=>O); textio.newline;
textio.put("GT: "); put(float(pt(target_index).groundtrack), aft=>l,

exp=>O); textio.newline;
text io.put("TR: "); put(float(pt(targetindex).target_range),aft=>l,

exp=>0); text io.new line;
text io.put("RB: ");

put(float(pt(target_index).relativebearing),aft=>l,exp=>O); textio.new line;
text_ io.put("CR: "):

put(float(pt(targetindex).climb rate),aft=>l,exp=>O); textio.new line:
textio.put("xh: "); put(float(xh)); text io.newline;

7-94

ATD/CWM Product Implementation/Adaptable Code Components

textio.put("yh: "); put(float(yh)); textio.new line;
textio.put("zh: "); put(float(zh)); textio.newline;
textio.put("xpt: "); put(float(xpt)); textio.newline;
textio.put("ypt: "); put(float(ypt)); text io.newline;
text io.put("zpt: "); put(float(zpt)); text io.new line;
text_io.put("rangexy: "); put(range_xy, aft=>2, exp=>0);

text io.new line;
text-io.put('temp_1: "); put(temp_1, aft=>2, exp=>0); text io.new line;

text_io.put("temp_2: "); put(temp_2, aft=>2, exp=>O); textio.new line;
text_io.put("temp_3: "); put(temp_3, aft=>2, exp=>0); text io.new line;

text_io.put("HA alt: "); put(float(hostcurrentaltitude), aft=>2,
exp=>0); textio.newline;
end;

if ypt < 0.0 then
newrelativebearing := 360.0 - newrelative_bearing;

end if;
pt(target_index).relativebearing := newrelativebearing;

end if;
end if;

-- Assign the aircraft id, relative bearing, and range to the

-- out' parameters before returning.

begin
aircraftid := pt(targetindex).id;
relativebearing := pt(target_index).relatiie_bearing;

target_range := pt(targetindex).target_range;
if number of calls = TrackedTargets then

sweep-counter := sweep-counter + 1;
number of calls := 1

else
number of calls := number of calls + 1;

end if;
sweep := sweepcounter:

exception
when constraint error =>

text_io.put_line("get sim data radar - 49 CE"1);
when numeric-error =>

text_io.put_line("get sim data radar - 49 NE");

when others =>
text_io.put_line("get sim data radar - 49 Bozo error");

end;

-- Update fields for this target before returning.

pt(targetindex).timestamp := currenttime;

-- Update targetindex so that it will reference the next target
-- when getsim_data is called again.

targetindex := target-index mod TrackedTargets + 1;
exception

7-95

ATD/CWNI Product Implementation /Adaptable Code Componenis

when constraint error =>
text_io.put -line("lget -simTu data radar CE"I);
text_io.put -line("'Target information");
text-io.put("ID: "1); text_io.put-line(pt(target_index).id);
text -io.put("Alt: ") ; put(float(pt(target-index).altitude), aft=>l,

exp=>O); text-io.new-line;
text_io~put("'Vel: "); put(float(pt(target_index) .airspeed), aft=>l,

exp=>O); text-io.new-line;
text -ic.put("GT: "1); put(float(pt(target_index) .ground_track), aft=>l,

exp=>O); text-io.new-line;
text -io.put("TR: "); put(float(pt(target-index) .target range) ,aft=>lI

exp=>O); text-io.new-line;
text_io.put("RB: ");

put(float(pt(target_index).relative bearing) ,aft=>l,exp=>O); text-io.new-line;
text io.put("ICR: "1);

put(float(pt(target_index).climb-raLe) ,aft=>l,exp=>O); text-io.new line;

text_io.put("lrange xy: "); put(float(range -xy)); text-io.new-line;
text_io.put("~pt-velocity-xy-: 11); put(floatcpt-velocity-xy));

text-io.new-line;
text_io.put("lha-velocity xy: "); put(float(ha-velocity_xy));

text-io.new-line;
text_io.put("xh: "1); put(float(xh)); text io.new -line;
text_io.put("lyh: "1); put(float(yhfl; text io.new -line;
text_io.put("zh: "1); put(float(zh)): text io.new -line;
text_io.put("xpt: "1); put(float(xpt)); text -io.new -line;-
text io.put("lypt: "1); put(float(ypt)); text -io.new -line;
text_io.put("zpt: "1); put(float(zpt)); text io.new line;

when numeric-error => text_io.put_line("lget_sim_data radar NEI');
when Out_-Of_-Radar_-Data => text - o~put-line("lget-situ-data radar OUT RADAR",);
when NumericalAlgorithms.root_negative =>

text_io.put_line("lget -situ- data radar SQRT negative");
text_io.put("ltemp~l: "1); put(tetnp_1, aft=>2, exp=>O);
text_io.put("ltemp_2: "1); put(ternp_-2, aft=>2, exp=>O);
text io.put("ltemp_3: "1); put(temp_3, aft=>2, exp=>O);

when others =>

text io.put_line(clget -sim -data radar BOZO"I);
text_io.put -line("Host data index: "1 & integer'image(host -data -index));
text_io.put("lrange xy: "1); put(float(range_xy), aft=>l, exp=>O);

text-io.new-line;
text_io.put("ltemp_1: "1); put(temp_1, aft=>2, exp=>O); text_io.new -line;
text_io.put("ltemp_2: "1); put(temp_2, aft=>2, exp=>O); text-io.riew-line;
text io.put(Iltemp_3: "1); put(temp_3, aft=->2, exp=>O); text-io.new-line;

end get_situ_data;

-- Return current information to simulate an ATO input.

procedure get-situ-data(aircraft-id : out string;
altitude :out PhysicalQuantities~feet;
airspeed :out PhysicalQuantities.knots;
ground-track : out PhysicalQuantities.degrees;

7-96

ATD/CWM Product Implementation/Adaptable Code Components

targetrange : out
PhysicalQuantities.nauticalmile:

relative-bearing : out PhysicalQuantities.degrees)
is
begin

loop

delay ATCDelay;
if pt(atctargetindex).tracked = true then

airc-aftid := pt(atctarget_index).id;
altitude pt(atc_targetindex).altitude;
airspeed pt(atc_targetindex).airspeed;
ground track := pt(atc targetindex).groundtrack;
targetrange := pt(atctarget_index).targetrange;
relativebearing pt(atctargetindex).relative_bearing;
atc_targetindex atc_target_index mod Tracked-Targets + 1;
return;

end if;
end loop;

end get_sim_data;

end SimulationData;

18. Situation_Dynamics (SD)

Spec

-- SituationDynamics (SD) package spec

-- The hidden decisions of this module are how physical models -an
-- be put together to predict a future situation starting from
-- a known state history.

with PhysicalQuantities;
with Potential Threat;
package SituationDynamics is

-- Returns the predicted elapsed time before the host aircraft
-- and specified potentialthreat reach their closest range.

function get elapsedtime(threat : in PotentialThreat.pthandle)
return PhysicalQuantities.seconds;

-- Returns the predicted closest range between the host aircraft
-- and specified potentialthreat assuming constant velocity,
-- climb rate, and ground track for both aircraft.

function getmsd(threat : in PotentialThreat.pthandle)
return PhysicalQuantities.feet;

end Situation_Dynamics;

7-97

ATD/CWM Produci Implementation/Adaptable Code Components

Body

-- SituationDynamics (SD) package body

-- The hidden decisions of this module are how physical models can

-- be put together to predict a future situation starting from
-- a known state history.

with PhysicalQuantities;

with AirCraft_Motion;

with Potential Threat;

with HostAircraft;

with NumericalAlgorithms;

with TextIO;

package body SituationDynamics is

package float io is new text io.float io(float); use float io;

-- The time to intersect (elapsed time) computation assumes

-- constant velocity, ground track, and climbrate for both
-- the potential threat and host aircraft.

-- The range between the host aircraft (ha) and a potential threat (pt)

-- at a given point in time is a function of their respective

-- locations in space.

---\ /

-- range = \ / (pt_x - hax)**2 + (pty - hay)**2 + (ptz - haz)**2

-- The location of an aircraft over time (assuming constant velocity,

-- ground track, and climbrate) is

-- x = xO + velocityxy * cos(groundtrack) * time
-- y = yO + vwlocityxy * sin(groundtrack) * time

-- z = zO + climbrate * time

-- Quantity (xO, yO, zO) denote the aircraft's initial location
-- in space. "cos" and "sin" are the trigonometric functions

-- sine and cosine, and velocityxy is the horizontal component
-- of the velocity (i.e., the velocity component that lies in
-- the X-Y plane).

-- The potential threat location is always relative to the
-- host aircraft. By assuming that the origin of the
-- rectangular coordinate system is given by the host aircraft
-- location, an initial position of the potential threat
-- relative to the host aircraft is given by:

-- ptxO = range_xy * cos(pt_relative_bearing)

7-98

ATD/CWVM Product Implementafion/Adaptable Code Components

-- pt-yO =range_xy * sin(pt_relative_bearing)
-- pt_zO = pt-altitude - ha-altitude

-- range_xy is the range component that lies in the X-Y plane. Furthermore,
-t-Ptaltitude is the altitude of the potential threat (ha-altitude
-- is the altitude of the host aircraft).

-- Using these equations, the range between the host aircraft and
-- potential threat can be expressed as a function of time.
-- Taking the first derivative, setting it equal to zero, and
-- solving for time yields the time-to-intersect (i.e., how much
-- time elapses).

function get_elapsed-time(threat :in Potential_-Threat.pt_handle)
return PhysicalQuantities. seconds

is
range_xy :Physical_-Quantities.nautical -mile; -- X-Y range component
pt_velocity,_xy PhysicalQuantities.knots; -- X-Y velocity of

potential-threat
ha-velocity xy PhysicalQuantities.knots; -- X-Y velocity of

host-aircraft
temp_1, temp_2, temp_3, temp_-4 :float;

begin
begin

range xy :=Air CraftMotion~get_range-xy(
PotentialThreat.get_range(threat),
PotentialThreat.get_altitude(threat),
Host Aircraft.get altitude);

exception
when constraintError =>

text_ io.put -line(Isd 1 - CE *

PotentialThreat.get-aircraft-id(threat));
when numeric-error =>

text_ io.put line(Ilsd 12 NE ** 11&
Potential_-Threat.get aircraft id(threat));

when others =
text-io.put-line("lsd 1 -Bozo error");

end;
begin

pt_velocity_xy AirCraftMotion.get-velocity-xy(
PotentialThreat.get-velocity(threat),
PotentialThreat.get_climb-rate(threat)):

ha -velocity_xy
AirCraftMotion.get_velocity_xy(HostAircraft.get_velocity,

HostAircraft.get-climb-rate);
except ion

when constraintError =>

text -io.put-linet2'sd 2 - CE **1 &
PotentialThreat.get_aircraft-id(threat));

when numeric-error =>

text_io.put-line("lsd 2 - NE ** 11&

7-99

ATD/CWM Product Implementation/Adapiable Code Components

Potential_-Threat.get-aircraft -id(threat));
when others => text-io.put-line("lsd 2 - Bozo error");

end;
begin

temp_1 :=Pt_velocity -xy*
Numerical_Algorithms.cos(PotentialThreat.get-ground-track(threat))

ha-velocity_xy*

Numerical_Algorithms.cos(HostAircraft.get_ground-track);

except ion
when constraintError =>

text_io.put -line("lsd 3 - CE **"&

PotentialThreat.get-aircraft-id(threat));
when numerac-error =>

text_io.put-line(lsd 3 - NE ** 11 L

Potential_-Threat.get-aircraft_- id(threat)):
when others => text_io~put-line("lsd 3 - Bozo error");

end;
begin

temp_2 :=Pt_velocity -XY
Numerical_Algorithms.sin(PotentialThreat.get-ground-track(threat))

ha-velocity xy*

NumericalAlgorithms.sin(Host. Aircraft.gez -ground-track);

except ion
when constraintError =>

text_io.put -line("lsd 4 - CE ** " &
PotentialThreat.get._aircraft_ id(threat)):

when numeric-error =>
text_io.put -line("sd 4 - NE **

Potential_-Threat.get-aircraft -id(threat));
when others => text io.put-line("'sd 4 - Bozo error");

end;
begin

temp_3 :=(Potential_-Threat.get-climb-rate(threat)
HostAircraft.get-climb-rate) /

PhysicalQuantities.knot_to_fpm;

exception
when constraintError =>

text_io.put -line("lsd 5 - CE ** 11 &
PotentialThreat.get_aircraft-id(threat));

when numeric-error =>

text_io.put -line("lsd 5 - NE ** " &

Potential_-Threat.get-aircraft -id(threat));
when others => text io.put-line(I"sd 5 - Bozo error");

end;
begin

temp_4 -

7.100

ATD/CWM Produci Implementation/Adaptable Code Components

range_xy *

NumericalAlgorithms.cos(PotentialThreat.getrelative_bearing(threat)) *
temp_1 +

range_xy *

NumericalAlgorithms.sin(PotentialThreat.getrelativebearing(threat)) *
temp_2 +

(PotentialThreat.get_altitude(threat) -
HostAircraft.get altitude) * temp_3) /

(temp_l*temp_l + temp_2*temp_2 + temp_3*temp_3)) * 3600.0;

exception
when constraint Error =>

textio.putline("sd 6 - CE ** " &
PotentialThreat.get_aircraft id(threat));

when numeric-error =>
text _io.putline("sd 6 - NE ** " &

Potential Threat.get_aircraftid(threat)):
when others => textio.put line("sd 6 - Bozo error");

end

-- Since time must be positive, adjust result accordingly.

begin
if temp_4 < 0.0 then

return PhysicalQuantities.seconds(-temp_4);
else

return PhysicalQuantities.seconds(temp_4);
end if:

exception
when constraint Error =>

textio.putline("sd 7 - CE ** " &
PotentialThreat.get_aircraftid(threat));

when numeric-error =>
text io.put_ line("sd 7 - NE ** " K

PotentialThreat.getaircraft_ id(threat));
when others => text_io.put_line("sd 7 - Bozo error");

end ;
end get_elapsed time;

-- Determine the minimal separation distance for a specified potential threat
-- and the host aircraft assuming constant velocity, ground_track, and
-- climb-rate for each.

-- This is computed by first determining how much
-- time elapses before the specified potential threat and host aircraft
-- are closest to each other. From this, we predict their locations
-- in 3-dimensional space assuming constant velocity, groundtrack, and
-- climb rate for each. From their respective predicted locations, we
-- can then compute the range between each other.

7-101

ATD/CWM Product Implementation/Adaptable Code Components

function get-msd(threat :in PotentialThreat.pt_handle)
return PhysicalQuantities.feet

is
range_xy :Physical_Quantities~nautical -mile; -- X-Y range component
Pt_velocity_xy PhysicalQuantities.knots; -- X-Y velocity of

potential-threat
ha -velocity_xy PhysicalQuantities.knots; -- X-Y velocity of

host-aircraft
time : float;
temp_1 float;
temp_2 float;
temp_3 :float;

begin
begin

time :=float(get_elapsed-time(threat));
exception

when constraint error =>
text_io.put -line(Ilsd - 21 CE ** 11 &

PotentialThreat.get_aircraft-id(threat));
when numeric-error =>

text io.put line("lsd - 21 NE **I&

Potential_-Threat.get aircraft-ad(threat));
when others =>

text_io.put -line("lsd - 21 Bozo error *

PotentialThreat.get_aircraft-id(threat));
end;
begin

range xy :=Air CraftMotior~get-range-xy(
PotentialThreat.get-range(threat),
PotentialThreat.get-altitude(threat),
HostAircraft.get altitude):

except ion
when constraint error =>

text_io.put -line("'sd - 22 CE &
Potential_-Threat-get-aircraft-id(threat));

when numeric-error =>
text_io.put -line(Ilsd - 22 NE ** 11&

Potential_-Threat.get_aircraft-id(threat));
when others =>

text io.put line("lsd - 22 Bozo error ** &
PotentialThreat.get_aircraft-ad(threat));
end;
begin

pt-velocity_xy := AirCraftMotion.get_velocity-xy(
PotentialThreat.get-velocity(threat),
PotentialThreat.get-climb-rate(threat));

except ion
when constraint-error =>

text_ io.put line(I'sd - 23 CE ** 11&
PotentialThreat.get_aircraft id(threat));

when numeric_error =>

'7-102

ATD/CWM Product Implementation/Adaptable Code Components

text_io.put -line("'sd - 23 NE ** " &,
Potential_-Threat.get_aircraft-id(threat));

when others =>

text_io~put -line("lsd - 23 Bozo error **"&

PotentialThreat.get_aircraft-id(threat));
end;
begin

ha_velocity~xy
AirCraftMotion.get_velocity-xy(HostAircraft.get_velocity,

HostAircraft.get climb-rate);
exception

when constraint error =>
text io.put line(Ilsd - 24 CE * '&

PotentialThreat.get-aircraft-id(threat));
when numeric_error =>

text_io.put -line('1 sd - 24 NE **"&

Potential_-Threat.get-aircraft-id(threat));
when others =>

text_io.put -line("lsd - 24 Bozo error **"&

PotentialThreat,.get-aircraft-id(threat));
end

-- temp_1 holds the relative difference between the
-- host aircraft and potential threat at the elapsed time in the X'
-- component of our three-dimensional space. We must
-- convert the nautical mile difference to feet to have the
-- same units for later calculations.

begin
temp_1 : range_xy

NumericalAlgorithms.cos(?otentýialThreat.get_relative_bearing(threat))+
(pt-velocity-xy *

Numerical_Algorithms.cos(Potential_-Threat.get_ground-track(threat)) -

ha-velocity-xy *

NumericalAlgorithms.cos(HostAircraft.get-ground-track))*
(time / 3600.0);

exception
when constraint error =>

text -io.put-line(Ilsd - 25 CE * V&

PotentialThreat.get_aircraft-id(threat)),
when numeric-error =>

text_io.put -line("'sd - 25 NE **"&

Potential_-Threat.get_aircraft-id(threat));
when others =>

text_io.put -line("lsd - 25 Bozo error * !&

PotentialThreat.get_aircraft-id(threat));
end;

temp_1 :=temp_1 * PhysicalQuantities~nautical mile to feet;

7-103

ATD/CWM Product Implementation/Adaptable Code Components

-- temp_2 holds the relative difference between the
-- host aircraft and potential threat at the elapsed time in the "Y"
-- component of our three-dimensional space. We must
-- convert the nautical mile difference to feet to have the
-- same units for later calculations.

begin
temp_2 := rangexy *

NumericalAlgorithms.sin(PotentialThreat.get-relative_bearing(threat)) +
(ptvelocity_xy *

NumericalAlgorithms.sin(PotentialThreat.getgroundtrack(threat)) -
havelocityxy *
NumericalAlgorithms.sin(HostAircraft.getground_track))

(time / 3600.0);

exception
when constraint error =>

text_io.putline("sd - 26 CE ** " &

PotentialThreat.get_aircraftid(threat));

when numericerror =>
text_io.put line("sd - 26 NE ** " &

PotentialThreat.get aircraftid(threat));
when others =>

text_io.put line("sd - 26 Bozo error ** &

PotentialThreat.get_aircraftid(threat));
end ;

temp 2 := temp_2 * PhysicalQuantities.nautical mile to feet;

-- temp 3 holds the relative altitude difference (in feet) between the host
aircraft
-- and potential threat at the elapsed time. In our three-dimensional space,
-- it is the 'Z' component.

begin
temp_3 := (PotentialThreat.getaltitude(threat) -

HostAircraft.getaltitude) +

(PotentialThreat.get climbrate(threat) -
HostAircraft.getclimb rate) * (time / 60.0);

exception
when constraint error =>

text_io.put line("sd - 27 CE *" &

PotentialThreat~get_aircraftid(threat));
when numeric-error =>

text-io.put line('sd - 27 NE ** "&

PotentialThreat.get_aircraftid(threat));
when others =>

textio.put line("sd - 27 Bozo error ** &
PotentialThreat.getaircraftid(threat));
end

-- The distance is then computed using

7-104

ATD/CWM Produci Implementation/Adaptable Code Compoijents

-- range = (temp-l**2 + temp_2**2 + temp_3**2) ** 0.5

begin
return NumericalAlgorithms.sqrt(templ1 * temp_1 + temp 2 *tc;flp_2 +

telb;_3*
temp_3);
exception

when constraint error =>

text_io.put -line("lsd - 28 CE **"&

PotentialThreat.get_aircraft-id(threat));
text_io.put("Alt*: 1);

put(float(Potential_-Threat .get-altitude(threat)), aft=>l, exp=>0);
text-io.new_line;

text_io.put('CR: ri);

put(float(Potential_Threat.get climb_rate(threat)), aft=>l, exp=>0):
text-io.new-line;

text_io.put(I"TR: ");

put(float(Potential_Threat.get range(threat)), aft=>l, exp=>0):
text-io.new-line;

text_io.put("RB: 'I);
put(float(Potential_Threat.get_relativýe bearing(threat)), aft=>l,

exp=>O);
text-io.new-line;

text_iO.put("GT: I');

put(float (Potential_Threat.get_ground-track(threat)), aft=>l,
exp=>0);

text-io.new-line;
text_io.put("'Vel: 11);

put(float(Potential_Threat.get_velocity(threat)), aft=>1, exp=>0);
text-io.new-line;

text_aio.put('lpt -velocity -xy: 11);
put(float(pt -velocity-xy), aft=>l. exp=>0);
text-io.newý_line;

text_io.put("ltemp~l: 11);
put(temp_1, aft=>2, exp=>0);
text-io.new-line;

text_io.put("ltemp_2: "1);

put(temp_2, aft=>2, exp=>0);
text-io.new-line;

text_io.put("ltemp_3: 11);

put(temp_3, aft=>2, exp=>0);
text-io.new-line;

return 0.0;
when numeric-error =>

text-io.put -line(I"sd - 28 NE ** "1 &
PotentialThreat.get_aircraft-id(threat));

return 0.0;
when NumericalAlgorithms.root_negative =>

text_io.put line("lsd - 28 sqrt error **'&

PotentialThreat.get_aircraft-id(threat));
return 0.0;

7-105

ATD/CWM Producl Implementation/Adaptable Code Components

when others =>
textio.put line("sd - 28 Bozo error ** " &

PotentialThreat.get aircraftid(threat));
return 0.0;

end ;

end get msd;

end SituationDynamics;

19. Temporary_DataBuffers (TDB)

Spec

{
"module!external(tdb_spec)

"^type(message_type, (module name : target,

datatype : target))

"^type(consumertype, (consumer-name : target,
priority : target))

".program(tdb, (name : target.

length target,
message message_type,
consumer list of consumertype

"-module!internal(tdbspec)

".prog_impl(tdb, spec,
{

with (message.modulename);

package {name} is
}
"select(

-not(^member(consumer)) -> ({

-- Add a message to the buffer in a first-in/first-out (FIFO) fashion. An
-- exception is raised if the message buffer would overflow resulting
-- in loss of data.

procedure send(msg : in {message.modulename}.{message.datatype});
{name}_Overflow : exception;

-- Remove the oldest message from the buffer (FIFO principle). The calling
-- program is suspended until a message is available.

procedure receive(msg out {message.module name).{message.data_type));)

•member(consumer) -> ({

7-106

ATD/CWM Product Implementation/Adaptable Code Components

-- Message priority. These are listed in descending priority (high to low).

type messagepriority is (}
"^forall(c, consumer, ({

{c.consumername})
^select(

"not (last(c)) -> ({,}
)

-- Add a message to the buffer (first-in/first-out principle) having
-- the specified priority. Different exceptions can be raised depending
-- on which buffer would overflow resulting in loss of data.

procedure send(msg : in {message.module name).{message.data_type);
priority : in messagepriority);)

"-forall(c. consumer, ({
{name}_{c.consumer_name)_Overflow : exception;}

"-forall(c, consumer, ({

-- Removes the oldest message from the buffer (FIFO principle) having
-- the priority {c.consumer name). The calling program is suspended until a
-- message is available. The request is processed only after
-- all higher priority requests have been processed first.

procedure receive_{c.consumer_name}(msg : out
{message.modulename).{message.data-type));)

{

end {name};
}))
}

Body

{
Amodule!external(tdb body)

"-type(messagetype, (modulename target,
data-type : target))

^type(consumertype, (consumer_name : target,
priority : target))

7-107

ATD/CWM Product Implementation/Adaplable Code Components

".program(restfoo, (length : target,

message : messagetype,
pi : list of consumertype))

".prog_impl(restfoo, v1,
".select(

"member(pl) -> ({
or

when)
^forall(x, pl,

select(
-last(x) -> ({
count_{x.consumer fname) > 0 =>

accept receive_{x.consumername)(msg out
{message.modulename).{message.data type)) do

msg := data buffer({x.consumername),

Out-index-{x.consumer_name));
end;
out index_{x.consumername) := out_index_{x.consumer_name) mod

{length) + 1;
count_{x.consumername) := count_{x.consumername) - 1;)

true -> ({
count_{x.consumer name) = 0 and then)

restfoo(length, message, ^filter(x, p1, -not(-last(x))))

•program(tdb, (name : target,
length target,
message messagetype,

consumer : list of consumertype

"module!internal(tdb body)

"prog_impl(tdb, body,
{
with {message.modulename);
with System;

package body (name) is

-- Buffering task. Entries in the buffer are stored in a

-- first-in/first-out (FIFO) principle. The is a task entry

-- for sending a message to be buffered.)
"^select(

".not(-member(consumer)) -> ({ There is also an

-- entry for receiving a message from the buffer.)

7-108

ATD/CWM Product Implementation/Adaptable Code Components

^member~consumer) -> ({There are also multiple
-- entries for receiving messages; one for each message
-- priority.)

task buffer is

~select(
ýnot('member(consumer)) -

entry send(msg :in {message.module_name).{message.data_type));
entry receive(msg :out {message.module-name).{message.data_type));
pragma Priority(12) ;

-member(consumer) ->C{

entry send(msg :in {message.module Iname}.{message.data-type);
priority in message_priority);)

-forall(c, consumer, ({
entry receive_{c.consumer_name}(msg out

(message~module_name). {message.data type}) ;

{ pragma Priority(7);

end buffer;

~select(
.not(^member(consumer)) -> {

-- Add a message to the buffer in a first-in/first-out (FIFO) fashion.

procedure send(msg :in {message.module-name}.{message.data-type})
is
begin

buffer. send (msg);
end send;)

~member(consumer) -

-- Add a message to the buffer (first-in/first-out principle) having
-- the specified priority.

procedure send(msg :in {message.module -name).{message.data_type);
priority :in message_priority)

is
begin

buffer.send(msg, priority);
end send;)

ATD/CWM Product Implementation/Adaptable Code Components

"select
"-not(-member(consumer)) -> ({

-- Remove the oldest message in the buffer. The calling program
-- is suspended until a message is available.

procedure receive(msg : out {message.module-name).{message.data_type))
is
begin

buffer.receive(msg);
end receive;)
)

member(consumer) ->

-forall(c, consumer, ({

-- Removes the oldest message from the buffer (FIFO principle) having
-- the priority {c.consumer name). The calling program is suspended until a
-- message is available. The request is processed only after
-- all higher priority requests have been processed first.

procedure receive {c.consumer_name}(msg : out
{message.module_name).{message.data type))

is
begin

buffer.receive_{c.consumer_name}(msg);
end receive_{c.consumername);}

{

-- Task body.
}
Aselect(

.not(-member(consumer)) -> ({-- Messages are stored in a
-- databuffer having a fixed length.)

.member(consumer) -> ({
-- Messages are stored in
-- data_buffers; each buffer used for storing messages
-- of a specified priority.)

{

task body buffer is
}
^select(

"Tnot(rmember(consumer)) -> ({

7-110

ATD/CWM Product Implementation/Adaptable Code Components

data -buffer : array(l. . {ength)) of
{ message. module-name). (message. data_type):

count :integer range 0 .. {length} : 0;
in-index, out-index integer range I .. {length) = ;

~member(consumer) -

data -buffer :array(message_priority, 1.. (length)) of
(message~module-name}.{message.data type);)

-forall(c, consumer, ((
count-{c.consumer -name) : integer range 0 .. (length) :=0;
in-index {c.consumer name) integer range I . length) 1;
out-index~{c.consumer~name) :integer range 1 .. (length) : 1;

f

temp_message : {message.module~name).{message.data_type);

~select(
.member~consumer) -

temp-priority : message_priority;)

begin
loop

select

select(
~not(-member(consumer)) -

accept send(msg :in (message~module-name).{message.data_type)) do
temp_ýmessage :=msg;

end;
if count < (length) then

data-buffer(in-index) := temp-message;
in -index := in-index mod (length) + 1;
count := count + 1;

else
raise (name)_Overflow;

end if;)

~member(consumer) -

accept send(msg :in {message.module_name}.{message.data_type);
priority :in message_priority) do

temp message msg;
temp priority priority;

end;
if)

-forall(c, consumer, (
temp priority =(c.consumer_name) then
if count-(c.consumer name) < (length) then

7-311

ATD/CWM Product lmplemeritation/Adaptable Code Components

data-buffe~ temp priority, in-index~{c.consumer_name))
temp_message;

in-index_{c.consumer~name} : in~index_{c.consumer~name} mod
{length} + 1.;

count-{c.consumer name} : count_{c.consumer name) + 1;
else

raise {name} {c .consumer name)_Overflow;
end if;)

.select(

~not('last(c)) ->({
elsif}

end if;

~select(
Thot(-meinoer(consumer)) -

or
when count > 0 =>

accept receive(msg- out
{ message module_name}. {message.data type)) do

msg :=data-buffer(out-index);
end;
out -index :=out index mod {length) + 1;
count count-1;

~member(consumner) '

ýrestfoo(length, message, consume,-)

end select;
end loop;

end buffer:

end {name);

7-112

ATD/CWM Product Implementation/Adapiable Documentation Components

ADAPTABLE DOCUMENTATION COMPONENTS

1. Software Requirements Specification (SRS)

The parameterized implementation of the Software Requirements Specification (SRS) for the
ATD/CWM domain is presented on the following pages.

7-113

ATD/CWM Product Implementation/Adaplable Documentation Components

Air Traffic Control / Collision Warning Monitor Software Requirements Specification

ATDD/C0WM-SRS-1.0: Volume 1 of 1

<revision.indicator> :<revision.date>

SOFTWARE REQUIREMENTS SPECIFICATION

FOR THE

ATD/CWM COMPUTER SOFTWARE CONFIGURATION ITEM

OF

THE AIR TRAFFIC CONTROL / COLLISION WARNLNG MONITOR SYSTEM

CONTRACT NO. <contract.contract-number>

CDRL SEQUENCE NO. <contract.CDRL number>

Prepared for:

<contract. agenc-:>

Prepared by:

Software Productivity Consortium
SPC Building

2214 Rock Hill Rd.

Herndon, VA 22070

Authenticated by Approved by
(Contracting agency) (Contractor)

Date Date

7-114

ATD 1CWM Product Implementation/Adaptable Documentation Components

1. SCOPE

This section identifies the computer software configuration item (CSCI). which briefly states the
purpose of the system, describes the role of the CSCI within the system, and summarizes the purpose
and content of this software requirements specification (SRS).

1.1. Identification

This SRS establishes the require rnents for the CSCI identified as:

"• System title: <system.name>

"* System mnemonic: <system.mnemonic>

"* System Identification number: <system.id>

"* CSCI title: Air-Traffic-Display / Collision-Warning-Monitor

"* CSCI mnemonic: ATD/CWM

"* CSCI number: XXXX

1.2. CSCI Overview

The < system.mnemonic > system monitors air traffic to detect collision warning situations within
a surrounding surveillance area. The ATD/CWM CSCI will provide the following capabilities:

"* Potential_Threat monitoring. Monitors potential threat flight characteristics ground track,
relative bearing, range altitude. airspeed. and climb rate within the surveillance area.

"* Intersection monitoring,. Mon, ors the probable intersection of all aircraft with the host
aircraft.

"* Collision warning situation detection. Detects collision warning situations with respect to each
potential threat based upon its predicted flight path and the separation minima.

"* Displays a corrective action advisory message on the host aircraft's display which describes
what maneuvers the host aircraft should perform to avoid a collision.

<if alarm then>

* Sounds an audible alarm within the host aircraft's cockpit for a detected collision warning
situation.

"< endif>
"< if interairmsg then >

* Transmits messages to the nearby potential threat for a detected collision warning situation,

"< endif >

7-11i5

ATD/CWM Product Implementalion /Adaptable Documentation Components

<if atemsg then >

Transmits a message to a nearby air traffic control center for a detected collision warning
situation.

<endif>

1.3. Document Overview

This specification establishes engineering and qualifications requirements for the ATD/CWM CSCI
and provides the software requirements allocated from the @@ for the CSCI. The engineering re-
quirements include external interface and capability requirements, internal interface descriptions.
and other CSCI requirements. The external interface requirements identify all interfaces between this
CSCI and other CSCIs and between this CSCI and hardware configuration items (HWCI) or critical
items. The capability requirements state inputs, processing, and outputs for each CSCI capability.
The internal interface descriptions identify and briefly describe each of the interfaces between CSCI
capabilities. The other requirements include requirements for data elements, adaptation, sizing and
timing, safety. security, design constraints, software quality factors, and human performance/human
engineering. Requirements traceability matrices map these requirements to corresponding
requirements in the Ca @ and vice versa.

The qualification requirements describe the qualification methods to be performed to verity the CSCI
special qualification requirements. The method will be used to verify each requirement is showmn in
a verification traceability matrix.

The notes section lists abbreviations and acronyms used in this specification.

2. APPLICABLE DOCUMENTS

This section states document precedence and lists all documents referenced in this specification.

2.1. Government Documents

The following documents of the exact issue shown form a part of this specification to the extent
specified herein. In the event of conflict between the documents referenced herein and the contents
of this specification. the contents of this specification shall be considered a superseding requirement.

MIL-STD-1815A-1983 Reference Manual For the Ada Programming Language

Copies of specifications. standards, drawings, and publications required by suppliers in connection
with specified procurement functions should be obtained from the contracting agency or as directed
by the contracting officer.

2.2. Non-Government Documents

The following documents of the exact issue shown form a part of this specification to the extent
specified herein. In the event of conflict between the documents referenced herein and the contents
of this specification. the contents of this specification shall be considered a superseding requirement.

3. ENGINEERING REQUIREMENTS

This section contains the external interface and capability requirements for the ATD/CWM CSCI.
and it identifies internal CSCI interfaces. It also contains requirements for CSCI data elements.

7-116

ATD/CWM Product Implementation/Adaptable Documentation Components

adaptation, sizing and timing, safety, security, design constraints, software quality factors, and human
performance/human engineering.

Each requirement is identified uniquely by an {#} symbol at the end of the requirements. The
mappings of these requirements to corresponding requirements in the @& and vice versa are shown
in paragraph 3.12.

3.1. CSCI External Interface Requirements

The ATD/CWM CSCI will input and output data to the following external components:

"* Navigation (NAV)

"" Radar (RADAR)

<if alarm then >

* Audible-Alarm (AA)

"< endif >
"< if atc msg OR inter air msg then >

• Communication (COMM)

"< endif >

"* AirTrafficDisplay (ATD)

"• AirTrafficControl (ATC)

Figure 7-1 shows the ATD/CWM external interfaces. Each external interface shown in the diagram
is described in the subsequent subparagraphs.

SRadar (RADAR)I Nav.igatn°n (NAV)]

NAdo_ ATDcCWD

D - TD/CWM ATD/CWM toAA

4ATCto_ATD/CWM

i "'• Auc'ible Alarm (AA):,Air_TrafficControl (ATC) 7
ATD/CWM to_COMM

, Communication (COMM):

Nomr. Parameterization in this diagram is indicated by dashed lines (e.g.. Audible Alarm).

Figure 7-1. Air Traffic Display/Collision Warning Monitor External Interface Diagram

3.1.1. RADARtoATD/CWM Interface

The RADARto ATD/CWM interface shall provide potential threat data from the RADAR to the
ATD/CVWM CSCI. This interface is specified in the Interface Requirements Specification {#}.

7-117

ATD/CWM Product Implementation/Adaptable Documentation Components

3.1.2. NAVto ATD/CWM Interface

The NAV to ATD/CWM interface shall provide host-aircraft data from the NAV to the ATD/CWM
CSCI. This interface is specified in the Interface Requirements Specification {#}.

< if alarm then >

3.1.3. ATD/CWM toAA Interface

The ATD/CWM to AA interface shall provide a pitch and duration at which to ring an audible alarm.
This interface is specified in the Interface Requirements Specification {#).

< endif>

<if atc msg OR inter air msg then >

3.1.4. ATD/C\MN1_toCONIM Interface

The ATD/CWM to COMM interface shall provide collision warning situation status from the
ATD/CWM CSCI to the COMM. This interface is specified in the Interface Requirements
Specification {#}.

< endif>

3.1.5. ATD/CWM toATD Interface

The ATD/CWM to ATD interface shall provide collision warning situation status from the
ATD/CWM CSCI to the ATD. This interface is specified in the Interface Requirements Specification
{#).

3.1.6. ATC toATD/CNI Interface

The ATCtoATD!CWM interface shall provide potentialthreat data from the ATC to the
ATD/CWM CSCI. This interface is specified in the Interface Requirements Specification {#).

3.2. CSCI Capability Requirements

The ATD/CWM CSCI will provide the following capabilities:

"• PotentialThreat monitoring.

"* Intersection monitoring.

"* Collision warning situation detection.

3.3. CSCI Internal Interfaces

3.4. CSCI Data Element Requirements

3.5. Adaptation Requirements

This paragraph specifies the requirements for adapting the ATD/CWM CSCI to site-unique
conditions and to changes in the system environment.

7-118

ATD/CWM Product Implementation/Adaptable Documentation Components

3.5.1. Installation-dependent Data

None.

3.5.2. Operational Parameters

3.6. Sizing and Timing Requirements

The ATD/CWM CSCI program storage shall not exceed 70 percent of the available memory {#}. The
program storage capacity of the target computer is XXX.

3.7. Safety Requirements

3.8. Security Requirements

The ATD/CWM executable code shall be unclassified {#}.

3.9. Design Constraints

This paragraph specifies other requirements that constrain the CSCI design.

3.9.1. Programming Language.

The ATD/CWM CSCI shall be code in Ada and C. The Ada compiler is specified in
MIL-STD-1815A-1983. The ATD/CWM CSCI Ada source code shall be compiled via the Ada
compiler.

3.10. Software Quality Factors

This paragraph identifies the software quality factor requirements for the ATD/CWM CSCI.

3.11. Human Performance/Human Engineering Requirements

3.12. Requirements Traceability

4. QUALIFICATION REQUIREMENTS

This section specifies the qualification methods and any special qualification requirements necessarn
to establish that the ATD/CWM CSCI satisfies the requirements contained in Sections 3 and 5 of this
specification.

4.1. Qualification Methods

To be determined.

4.2. Special Qualification Requirements

None

5. Preparation for Delivery

The source code shall be delivered on 8-track magnetic tape.

7-119

ATD/CWM Product Implementation/Adaptable Documentation Components

6. NOTES

This section contains information only and is not contractually binding.

6.1. Abbreviations and Acronyms

ATD Air traffic display

CSCI Computer software configuration item

CWM Collision warning monitor

HWCI Hardware configuration item

7-120

ATD/CWM Product ImplementationAdaptable Documentation Components

2. Interface_RequirementsSpecification (IRS)

The parameterized implementation of the Interface Requirements Specification (IRS) for the
ATD/CWM domain is presented on the following pages.

7-121

ATD/CWM Product Implementalion/Adaptable Documentation Components

Air Traffic Control / Collision Warnin2 Monitor Interface Requirements Specification

ATD/CWM-IRS-1.0: Volume 1 of 1

<revision.indicator> : <revision.date>

INTERFACE REQUIREMENTS SPECIFICATION

FOR THE

THE AIR TRAFFIC CONTROL / COLLISION WARNING MONITOR SYSTEM

CONTRACT NO. <contract.contractnumber>

CDRL SEQUENCE NO. <contract.CDRL number>

Prepared for:

<contract.agency>

Prepared by:

Software Productivity Consortium
SPC Building

2214 Rock Hill Rd.
Herndon, VA 22070

Authenticated by Approved by
(Contracting agency) (Contractor)

Date Date

7-122

ATD!CWM Produci Implementation/Adaptable Documentation Components

1. SCOPE

This section identifies the interfaces, which briefly states the purpose of the system, describes the
role of the interfaces within the system and summarizes the purpose and contents of this interface
requirements specification (IRS).

1.1. Identification

This IRS establishes the requirements for the following interfaces:

"* NAV toATD/CWM

"* RADAR toATD/CWM

<if alarm then >

• ATD/CWM toAA

"< endif >

"< if atc msg or inter air msg then >

* ATD/CWM toCOMM

"< endif>

"* ATD/CWM toATD

"* ATC toATD/CWM

These are the interfaces of < system.name > (< system.mnemonic >) < system.id > system. The
subsequent subparagraphs list the computer software configuration items (CSCI) and hardware
configuration items (HWCI) and critical items to which this IRS applies.

1.1.1. Applicable CSCIs

This IRS applies to the following CSCIs:

• ATD/CWMI

1.1.2. Applicable HWCls and Critical Items

This IRS applies to the interfaces between the CSCIs listed in the preceding subparagraph and the
following HWCIs and critical items:

"* Radar (RADAR)

"* Navigation (NAV)

"* AirTrafficDisplay (ATD)

"• Air TrafficControl (ATC)

7-123

ATD/CWM Product Implementafion/Adaptable Documentation Components

<if alarm then>

6 Audible-Alarm (AA)

< endif >

<if atc msg or inter air msg then>

* Communication (COMM)

<endif>

1.2. System Overview

The < system.mnemonic > system monitors air traffic within a surrounding surveillance area to
detect collision warning situations. The following lists the role of each interface within the system:

"* RADAR to ATD/CWM. Provides potentialthreat data from the RADAR to the
ATD/CWM CSCI.

"* NAV toATD/CWM. Provides host-aircraft data from the NAV to the ATD/CWM CSCI.

<if alarm then>

* ATD/CWM to AA. Provides a pitch and duration at which to ring an audible alarm from
the ATD/CWM CSCI to the AA.

"< endif >

"< if atc msg or interair msg then >

- ATD/CWM to COMM. Provides collision warning situation status from the ATD/CWM
CSCI to the COMM.

"< endif >

"* ATD/CWM to ATD. Provides collision warning situation status from the ATD/CWM CSCI
to the ATD.

"* ATC toATD/CWM. Provides potentialthreat data from the ATC to the ATD/CWM CSCI.

1.3. Document Overview

This specification establishes the detailed requirements for the interfaces between the applicable
CSCIs and other configuration items. These detailed interface requirements have been allocated from
the @@ and are referenced in software requirements specifications (SRS) of the applicable CSCIs.

The interface requirements describe interfaces between CSCIs and other CSCls and between CSCls
and HWCIs and critical items. Requirements traceability matrices contained in the SRSs of the
applicable CSCIs map these requirements to corresponding requirements in the @ ,'.

The notes section lists abbreviations and acronyms used in this specification.

7-124

ATD/CWM Product Implementation/Adaptable Documentation Components

2. APPLICABLE DOCUMENTS

This section states document precedence and lists all documents referenced in this specification.

2.1. Government Documents

The following documents of the exact issue shown form a part of this specification to the extent
specified herein, In the event of conflict between the documents referenced herein and the contents
of this specification, the contents of this specification shall be considered a superseding requirement.

MIL-STD-1815A-19S3 Reference Manual For the Ada Programming Language

Copies of specifications. standards. drawings, and publications required by suppliers in connection
with specified procurement functions should be obtained from the contracting agency or as directed
by the contracting officer.

2.2. Non-Government Documents

The following documents of the exact issue shown form a part of this specification to the extent
specified herein. In the ev:ent of conflict between the documents referenced herein and the contents
of this specification, the contents of this specification shall be considered a superseding requirement.

7-125

ATD/CWM Product Implementation/Adaptable Documentaiic. Components

3. INTERFACE SPECIFICATION

This section specifies the interface requirements among CSCIs, H\VCLs. and critical items to which this
specification applies. The CSCI requirements to use the interfaces are specified in the SRS for each CSCI.
The project-unique identifiers for the interfaces link the requirements in the SRSs to this IRS.

Table 7-1 shows the interfaces specified in this IRS by interfacing CSCI, HWCI, and critical item.

Table 7-1. Interface Relationships

SCSCI, HWCI, or critical item Interfaces with CSCI, Interface identifier

H*N'CI, or critical item

<if alarm then>

[AA ATD/CWNMI ATD/CWM toAA

< endif >

ATC ATD/CWM ATC to ATD/CWM

ATD ATD/CWM t ATD/CWM toATD

<if alarm then>

ATD/CWM AA -[ATD/CWM toAA

< endif >

A)(C, ATC-to-ATD/CWM

AT[) ATD/CWM toATD

<if atc msg or inter air msg then >

'om C mM -FATD/CWM to COMM

"< endif >

NAV NAV toATD/CWM

RADAR RADAR toATD/CWM

"< if atc msg or inter air msg then >

COMM ATD/CWM ATD/CWM toCOMM

< endif >

NAV ATD/CWM NAV _toATD/CWM

RADAR ATD/CWM RADAR to ATD/CW'M

7-126

ATD/C'WM Product Implementalion /Adaptable Documentation Components

3.1. Interface Diagrams

Figure 7-2 shows the interfaces for each applicable CSCL. Each interface specified in this IRS is
described in Ltue subsequent subparagraphs.

IRADAR_to_.ATD/CWM NAy_to_AT`D!CWM

Air Traffic Display (ATD)

ATDICWMrN_to_AA

ATC t AJ~lCNV.% Audible Alarm (AA)

ICommunication (COMM)

No0 r. Parameterization in this diagram, is indicated by dashed lines (e.g.. Audible Alarm).

Figure 7-2. Air Traffic D)splay Collision Way ning Monitor External Interface Diagram

3.2. ATC-toATD/CWVX1 Interface

The ATC -to_-ATD/C vVMl interface provides potential-threat data from the ATC to ~he ATFD/CWM'N

cscI.

3.2.1. Interface Requiremients

The ATC-toATD/CWM data are transmitted via the serial data bus.

3.2.2. Data Requirements

Table 7-2 specifies at, applicable information for the data elements transmitt'-d across this interface.
The source of these data elements is the ATC: their destination is tf- - ATD/CWM CSCI.

Tablc 7-2. AFC_to_ATD/CWM Data Elements

Identifier Description Unit i Range AccuracN Precision

aircraft id Aircraft identification IN/A I N/A N/A

-127T

ATD'CWM Product lnmnementation'Adaplable Documentalion Componenls

'Table 7-2, continued

denti ier Description Unit Rangt Accuracy Precision

altitude Vertical distance height of the ft 10 to 60.00(0
potentialthreat measured
from mean sea level

velocity Indicated airspeed of the host knots 0 to 700 1
aircraft. _

relative bearing Bearing of the potential threat degrees 0 to 360 0.1 0.1
relative to the host aircraft.
Relative bearing is measured
from the ground track of the
host aircraft to the line from

Ithe host aircraft to the
potential threat in the

clockwise direction looking
down,

range Distance in nautical miles nm 0 to 300 0- 1 0.1
from this aircraft to the;

host aircraft.

2roundtrack Ground_ track is measured degrees 0 to 360 (.1 0.1
i from the line of the aircraft to

mapnetic north to the
horizontal component of the

iaircrafts actual flight path
over the surface of the earth.

timestamp ilmestamp o, when the data HHMM 0000WO to 2400 N A N' A
wkas valid. The timestamp is
four digits representing the
hours and minutes from the
24-hour cloAk.

<if alarm then >

3.3. ATD/CW NItoAA Interface

The ATD/CWM toAA interface pr(des pitch and duration from the ATD/CWNI CSCI to the

audible alarm.

3.3.1. Interface Requirements

The ATD/CWM toAA data are transmitted via the serial data bus.

3-3.2. Data Requirements

Tablc 7-3 specifies all applicable information for the data elchmcnt, transmitted across this interfacc.
The source of these data elements is the ATD/C(WM CSCI: their destination is the AA.

7-125,

ATD/CWM Product Implementation/Adaptable Documentation Componenws

Table 7-3. ATD/CWM toAA Data Elements

Identifier Description J Unit Range Accuracy ý Precision

pitch Pitch of the audible alarm in Hz 1,000 to 10,000 1 1
hertz. ar.

duration How long to ring the sec 0.01 to 10.0 0.01 0.01
audible-alarm.

< endif>

3.4. ATD/CWM to ATD Interface

The ATD/CWM to ATD interface provides collision warning situation status data from the
ATD/GWM CSCI to the ATD.

3.4.1. Interface Requirements

The ATDiCWM toATD data are transmitted via the serial data bus.

3.4.2. Data Requirements

Tables 7-4 and 7-5 specil\' all applicable information for the data elements transmitted across this
interface. The source of these data elements is the ATD/CWM CSCJ: their destination is the ATD.

Table 7-4. ATD/CWM toATD Data Elements

Identifier Description Unit Range f Accuracy 'Precision

id Handle for the displayed object. N'A 0 to 32767 N/A i NA

shape Icon shape. N/A square: (1) N."A N A
circle: (2)
trianglc:(3)

size Size in pixels of the icon. I N/A 1 to 1000 I N/'A N 'A

fill Color f•r the icon interior. N/A none: (1) NiA N/A
yellow: (2)
pink: (3)
orange: (4)
red: (5)
green: (6)
blue: (7)
indigo: (8)
purple: (9)
violet: (10)
black: (11)
white: (12)

• • I I I I I

ATD/CWTM Product Implementation/Adaptable Documentation Componenis

"lable 7-4. continued

Identifier Description Unit Range Accuracy f Precision

color Color for the icon. IN/A none: (1) N/A N/A

yellow: (2)

pink: (3)

Sorange: (4)

red: (5)

green: (6)

blue: (7)

indigo: (8)

purple: (9)

violet: (10)

black: (11)

- white: (12)

fillblink-rate Blinking rate for the icon interior. F sec 0.0 to 10.0 0.1 ().1

obj blink rate Blinking rate for the icon. 1 sec :0.0 to 10.0 0.1 '. 1

x location Horizontal pixel location for icon center. iN/A 0 to 1100 1 1

ylocation Vertical pixel location for the icon center. N/A 0 to 1100 1 II

Table 7-5. ATD/CWM toATD Data Elements

Identifier 1 Description Unit Range Accuracy I Precision

text Avariable length message describing what 1 NA N/A N/A FN,,A
actions the pilot should pertorm to avoid
a potential collision.

x location Horizontal pixel location for icon center. N,'A 10 to 1100 1 1

v location]Vertical pixel location for the icon center. N/A 10 to 1100 1 1

< if ate msg or interair msg then >

3.5. ATD/CWM toCOMM Interface

The ATD/CWM to COMM interface provides ATCMsg or InterAirM sg messages from the
ATD/CWM CSCI to the COMM.

3.5.1. Interface Requirements

The ATD/CWM toCOMM data are transmitted via the serial data bus.

3.5.2. Data Requirements

Table 7-6 specifies all applicable information for the data elements transmitted across this interface.
The source of these data elements is the ATD/CWM CSCI: their destination is the COMM.

7-131)

ATD/CWM Product Implementation/Adaptable Documentation Components

Table 7-6. ATD/CWM toCOMM Data Elements

< if atc-msg then >

Identifier Description 1 Unit Range Accuracy 1 Precision

destination Destination code. N/A 1 N/A N/A

code The transponder cocie indicating the tc 0000 to 7777 N/A N/A
specific collision warning situation the
host aircraft is in.

<if mode = C then>

Identifier Description Unit Range Accuracy I Precision

altitude Vertical distance height of the host ft 0 to 60,000 1 1
aircraft measured from mean sea level.

< endif >
"< endif >

"< if inter air msg then >

Identifier Description Unit Range Accuracy i Precision

destination Destination code. t N/A 0 N/A N/A

code The transponder code indicating the tc 0000 to 7777 N/A N/A
specific collision warning situation the
host aircraft is in._

altitude Vertical distance height of the host ft 0 tO 60,000 1 1
aircraft measured from mean sea level.

latitude Latitude component of the location. I degrees -90 to 90 0.1 1J.1
Negative values represent latitude south
of the equator.

longitude Longitude component of the location. A degrees -360 to 360 0.1 i0.1
positive value signifies longitude west of
the prime meridian at Grecnwich,
England. A negative value indicates
longitude east of the prime meridian.

< endif>
< endif>

3.6. NAV toATD/CNI Interface

The NAV_to ATD/CWM interface provides host aircraft status data from the NAV to the

ATD/CWM CSCI.

3.6.1. Interface Requirements

The NAV toATD/CWM data are transmitted via the serial data bus.

ATD/CWM Product Implementation'Adaptable Documentation Components

3.6.2. Data Requirements

Table 7-7 specifies all applicable information for the data elements transmitted across this interface.

The source of these data elements is the NAV\ their destination is the ATD/CWM CSCI.

Table 7-7. NAV toATD/CWM Data Elements

Identifier Description Unit Range Accuracy Precision

altitude Vertical distance height of the host ft 0 to 60,000 11
aircraft measured from mean sea level.

velocity Indicated velocity of the host aircraft. knots 0 to 700 1

ground_track Groundtrack is measured from the line of degrees 0 to 360 0.1 0.1
the aircraft to magnetic north to the
horizontal component of the aircraft's
actual flight path over the surface of the
earth.

latitude Latitude component of the location. degrees 90 to 90 0.1 0.1
:Negative values represent latitude south -

of the equator.

longitude Longitude component of the location. A degrees -360 to 360 0.1 10.1
positive value signifies longitude west of
the prime meridian at Greenwich.
England. A negative value indicates

_ longitude east of the prime meridian.

3.7. RADAR toATD/CWM Interface

The RADAR to ATD/CWM interface provides potentialthreat data from the RADAR to the
ATD/CWM CSCI.

3.7.1. Interface Requirements

The RADAR toATD/CWM data are transmitted via the serial data bus.

3.7.2. Data Requirements

Table 7-8 specifies all applicable information for the data elements transmitted across this interface.

The source of these data elements is the RADAR, their destination is the ATD/CWM CSCI.

Table 7-8. RADAR toATD/CWM Data Elements

Identifier Description Unit f Range Accuracy Precision

aircraftid Aircraft identification. N/A N/A N/A N/A

sweep Radar sweep number module 32. N/A 0 to 31 1 1

I ___ I (modulo 32)

range Distance in nautical miles trom this nm 0(to 3) 0.1 0.001525
aircraft to the host aircraft. I I

relative Aircraft bearing relative to the host degrees 0I to 3N() 0.1 0(.1
bearing aircraft. _

7-1 32

ATD/CWM Product Implementation/Adaptable Documentation Components

4. QUALITY ASSURANCE

None.

5. PREPARATION FOR DELIVERY

None.

6. NOTES

This section contains information only and is not contractually binding.

6.1. Abbreviations and Acronyms

<if alarm then> Audible alarm
AA
< endif>

ATC Air traffic control

ATD Air traffic display

<if inter air msg OR atc_msg >
COMM Communication
< endif >

CSCI Computer software configuration item

CWM Collision warning monitor

ft Feet

HHMM Four digit time (24-hour clock). Leftmost two digits
(HH) are hours: the rightmost two digits (MM) are
minutes.

HWC1 Hardware configuration item

Hz Hertz

N/A Not applicable

NAV Navigation

nm Nautical miles

sec Seconds

tc Transponder code. Each of the four digits only having
the range 0 .. 7.

7-133

ATD/CWM Product Implementation /Adaptable Documentation Components

This page intentionally left blank.

7-134

ATDICWM Product Implementalion lAdaptable Documentation Component

3. Software Design Document (SDD)

NOTE: The adaptable Software Design Document for the ATD/CWM domain has been purposely
omitted to reduce the size of the ATD/CWM case study documentation. Refer to the adaptable
SRS and adaptable IRS documents for other examples of adaptable documentation.

7-13S

ATDICWM Product Implemenlation/Adaptable Documentation Component

This page intentionally left blank.

7-136

ATD/CWM Product Implemenialion /Adaplable Verificaiion and Validation Support Componcnts

ADAPTABLE VERIFICATION AND VALIDATION SUPPORT COMPONENTS

Adaptable CSU Tests

1. AudibleAlarm (AA)

1.1. Test Procedure and Results

The test suite for the unit test of Audible Alarm consists of six modules of which four were written
specifically for this unit test:

"• aacsu.trf - Abstract driver program

"• aad_.a - Modified Ada package spec for the AudibleAlarmDevice module

"• aad.a - Modified Ada package body for the AudibleAlarmDevice module

"• pt_.trf - Abstract Potential_Threat package spec

The other two modules (aa.a and aa_.a) are the modules being tested. The test data for this unit test
is comprised of the pitch and duration at which to ring the audible alarm for a specified collision
warning situation as shown below.

Test Data

Collision Warning Situation Frequency Duration
"forall(c, ring. ({

{r.cws_name} {r.frequency} {r.duration} }

For each collision warning situation defined above, the test driver program writes the name of the
collision warning situation to the screen. This program then gives the AudibleAlarm module a colli-
sion warning situation name. AudibleAlarm, in turn, gives the AudibleAlarmDevice (AAD) mod-
ule the pitch and duration at which to ring the audible-alarm. Module AAD will write out to the screen
these values. For each test case. the following outputs are expected.

forall(c, ring. ({
{r.cwsname) {r.frequency} {r.duration})

The test passes if the values produced by running the test exactly match these values for each collision
warning situation.

7-137

ATD/CWM Product Implementation'Adaptable Verification and Validation Support Components

1.2. Source Code

Source code written specifically to perform unit testing of module AA is shown below.

AudibleAlarm Driver

{
"module!external(aacsu)

-type(ringinfo, (cwsname : target,

frequency: target,
duration : target))

^program(aacsu, (ring list of ring_info))
}

{
•module!internal~aa csu)

"prog_impl(aacsu. vi.
{

-- Driver for the AudibleAlarm module

with PotentialThreat:
with Text 10; use Text 10:

with Audible Alar.:
procedure AA CSU
is
begin

putline "CSU unit testin2 for module Audible-Alarm (AA")
new line:

putline("This module will call mcdule AudibleAlarm to see if")
putline("it correctly calis module AudibleAlarmDevice with the"'
putline("proper frequency and duration for each correspondin,'f):
putline("collision warning situation"):
new line;

put _line("The following frequency and duration are expected:");
newline:

putline(" Collision Warning Situation Frequency Duration" LI

"-forall(r, ring,
putline(" {r.cwsname} {r.frequency}

{r.duration}");}

{
new-line;

putline("These expected values must match those passed to
Audible Alarm Device");

putline("for each collision warning situation, respectively"):
new-line;
putline("Start of test"):
new-line:

put-line(" Collision Warning Situation Frequency Duration");

7-139

ATDICWVM Product lmplementation/Adaptable Verification and Validation Support Components

I
"forall(r, ring, ({

put(" {r.cws-name}");

AudibleAlarm.ringalarm(PotentialThreat.{r.cws_name});}

{
new line(2);

put line("End of test");

end AACSU;
I

AudibleAlarmDevice (spec)

-- AudibleAlarmDevice (AAD) spec

-- This module is solely for the unit test of

-- module AudibleAlarm.

package AudibleAlarm Device is

type Duration is delta 0.01 range 0.01 .1 0.00: -- seconds

type Frequency is range 1000 .. 10_000; -- hertz

procedure ring alarm(f : in Frequency

d : in Duration);

end AudibleAlarmDevice;

AudibleAlarmDevice (body)

-- AudibleAlarmDevice (AAD) body

-- This module is used solely for the unit test

-- of the AudibleAlarm module.

with Text 10;

package body AudibleAlarmDevice is

package Duration_10 is new TextIO.Fixed_IO(Duration); use DurationIO;
package FrequencyIO is new TextIO.IntegerIO(Frequency); use

Frequency_IO;

procedure ringalarm(f : in Frequency;

d : in Duration)

is

begin

text io.put("

put(f);
textio.put(""

put(d);

7-13Q

ATD/CWM Product Implementation/Adaptable Verification and Validation Support Components

text io.newline;

end ringalarm;

end AudibleAlarmDevice;

PotentialThreat (TRF spec)

{
"module!external(ptspec)

-type(cws info, (cws name : target))

"program(pt, (cws : list of cws info))
}

{
"module!internal(pt_spec)
"progimpl(pt, spec,

{

-- PotentialThreat (PT) package spec

-- This module is used solely for the unit test

-- of the AudibleAlarm module.

package Potential Threat is

type cwsid is
}
"forall(c, cws, ({

{ c.cws~name}.
{

normal

end Potential Threat;

}
}

7-14(1

ATD/CM Product Implernentation!Adapiable Verification and Validation Suppc:, Components

2. CollisionWarning_Situation _Status (C\WSS)

2.1. Test Procedure and Results

The test suite for the unit test of CollisionWarninoSituation Status consists of nine modules of
which four were written specifically for this unit test:

"* cwsscsu.trf - Abstract driver program

"• sd.a - Modified Ada package body for the SituationDynamics module

"* pt_.trf - Abstract PotentialThreat package spec

"* pt.a - Modified Ada package body for the PotentialThreat module

The following three modules needed for this test are used without any changes:

"* sd_.a - Ada package spec for the SituationDynamics module

"* pq_.a - Ada package spec for the PhysicalQuantities module

"* pq.a - Ada package body for the Physical Quantities module

The remaining two modules (cwss .a and cwss.a) are thu. modules being tested. The test data for this
unit test is generated automatically by the test driver program (cwsscsu.trf) from the collision warn-
ing situation definitions provided as instantiation parameters to this module. The tests check ihe
following scenarios:

"• Boundary conditions in terms of time. range, or both (as appropriate) for each collision
warning situation

"* The correct collision warning situation detected as a function of the aircrafts partition

The following data is output for each test:

"* Test number - Means for identifying the test

"* Time - Predicted elapsed time before the host aircraft and this potential threat reach the
predicted closest range

"• Range - Distance the potential threat is from the hest aircraft

"* Partition - Potential threat aircraft partition

"* Expected status - Predicted collision warning situation status for the pc'ential threat based
upon the time, range, and partition specified above

"* Actual status - Collision warning situation status computed by module CWSS for the potential
threat

If the "Expected status" and 'Actual status" agree. then the following message is printed.

7-141

ATD&CWM Product Implementation/Adaptable Verification and Wlidation Support Components

* Correct status : Test <Test Number> passed *

If they disagree, then the following message is printed.

***** Wrong status : Test <Test Number> failed

After all tests have been run, a test summary is printed describing the total number of tests that failed.

2.2. Source Code

Source code written specifically to perform unit testing of module CWSS is shown below.

CollisionWarningSituationStatus Driver

{
"module!external(cwsscsu)

"type(time_type, (min target,
max target))

"-type(rangetype, (min target,
max target))

"^type(tand_r_type, (t_min target,
t max target,
r min target,
r max target))

"^type(cws-def, (time ?: timetype,
range ?: range type,
t and r ?: t and r type))

"^type(cws_type. (cws_name target,
severity target,
predicate cws def,
partition target))

"program(cwss_csu, (cws list of cws type,
area target))}

{
"module!internal(cwsscsu)

"program(array_length, (cws list of cws_type))

"prog_impl(array_length, vl,
"stream!int(s, (

"-forall(x, -filter(y, 'transpose((a:cws, b:s)), ^last(y)), (x.b

7-142

ATD/CWM Product Implementation/Adaptable Verification and Validation Support Components

prog_impl(cwsscsu, body, (
{

-- Test driver for CWSS unit testing.

with Potential Threat; use PotentialThreat;
with Collision WarningSituationStatus;
with Text_IO; use Text_10;

with PhysicalQuantities; use PhysicalQuantities;
procedure CWSSCSU

is
status PotentialThreat.cws id;
errors natural := 0;

test-number : natural := 0;

type local_partition is (L_ALL, L_UID, LID);

type test case;
type test caseptr is access test-case;

type test case is
record

test-number natural:

expectedcws : PotentialThreat.cwsid;
elapsedtime : PhysicalQuantities.seconds;
targetdistance : PhysicalQuantities.nauticalmile;
partition : localpartition;

next : testcaseptr;
end record;

testcase list : testcase_ptr;

type cwscriteria is (timeonly, rangeonly, time andrange);

type raw data is
record

cws : PotentialThreat.cwsid;
severity: float;
partition : local_partition;
predicate cwscriteria;

time-min PhysicalQuant4ties.seconds;
timemax : PhysicalQuantities.seconds;

range_min PhysicalQuantities.nauticalmile;
range_max PhysicalQuantities.nautical mile;

end record;

pt : PotentialThreat.pthandle;

test : test case_ptr;

package secondsio is new floatio(seconds); use secondsio;

package nauticalmileio is new floatio(nauticalmile); use
nautical mile io;

-- Construct the test data based upon the collision warning

7-143

ATD&-CWM Product Implementation/Adaptable Verification and Validation Support Components

-- situation predicates and their respective partitions.

procedure construct-data
is

maximum-time PhysicalQuantities.seconds;
maximum-range PhysicalQuantities.nautical mile;

other partition :local_ýpartition;

rd :array(l. .{-array-length(cws)}) of raw-data (
-forall(c, cws, ({

({c.cws-name), {c.severity},}
select(

~equal(c.partition, (ALL)) (L -{LALL, 1
~equal(c.partition, {UID}) -. f LUID, }
'equal(c.partition, {ID)) ->(L_ID, }

select(
-defined(c.predicate.time) ({

time only, {c.predicate.time.min}, {c.predicate.time.max}, 0.0,
0.0))

~defined(c.predicate.range) -

range only, 0.0, 0.0, {c.predicate.range-min},

{ c.predicate.range.mý'x})}

true -

time-and-ran~ge, {c.predicate.t-and_r.tniin},
{c.predicate.t-and_r.t~max},

{c.predicate.t-and-r.r-min}, {c.predicate.t-and r.r max)))

~select(
~not(-last(c)) -> f ,)
¶last(c) -> ({:

-- Make a test. If the test applies to all aircraft
-- partitions, then add duplicate copies of the test; one for
-- each partition.

procedure make_test(cws in Potential_-Threat.cws -id;
time in PhysicalQuantities.seconds;
distance in Physical_-Quantities.nautical-mile;
partition in local_ýpartition)

is
p, rfl, q2 :test-caze_ptr;

begin
test-number :=test-number +i 1;
p new test-case' (test_number, cws, time, distance, partition,

7-1~44

ATD/CWM Product Implementation/Adaptable Verification and Validation Support Components

null);
if test case list = null then

test case list p;
else

ql := null;
q2 := test case list;

while q2 /= null loop
q1 := q2;
q2 q2.next;

end loop;
ql.next := p;

end if;
end make-test;

-- Make a test for both partitions using the supplied data

procedure make both tests(cws in PotentialThreat.cws id;
time in PhysicalQuantities.seconds;

distance in
PhysicalQuantities.nautical-mile)

is
begin

make test(cws, time, distance, LID);
maketest(cws, time, distance, LUID);

end makebothtests;

-- Determine which collision warning situation will apply
-- to the partition given the specified time. If no other
-- time predicate applies, then generate tests for all
-- comparable range predicates.

procedure scan time cws(time : in PhysicalQuantities.seconds;

partition : in local_partition)

is
flag boolean;

begin
flag false;
for x in rd'range loop

if rd(x).predicate = timeonly then
if rd(x).partition = partition and then

rd(x).time min <= time and then time < rd(x).time max

then
flag := true;

maketest(rd(x).cws, time, 0.0, partition);
exit when flag = true;

end if;
end if;

end loop;
if flag = false then

for x in rd'range loop
if rd(x).predicate = rangeonly and then

(rd(x).partition = partition or else rd(x).partition =

7-145

ATD/CWM Product Implementation/Adaptable Venfication and Validation Support Components

L_ALL) then
maketest(rd(x).cws, time, rd(x).range_min, partition);
maketest(rd(x).cws, time, rd(x).rangemax - 0.1,

partition);
maketest(rd(x).cws, time, (rd(x).range_max +

rd(x).range_min) / 2.0, partition);
flag := true;

end if;
end loop;
if flag = false and then maximumrange < {area) then

make test(normal, time, maximumrange, partition);
make test(normal, time, {area} - 0.1, partition);
maketest(normal, time, ({area} + maximum-range) / 2.0,

partition);
end if;

end if;
end scan time cws:

-- Determine which collision warning situation will apply
-- to the partition given the specified range. If no other
-- range predicate applies, then generate tests for all
-- comparable range predicates.

procedure scan_range_cws(distance in
PhysicalQuantities.nautical mile;

partition in local_partition)
is

flag boolean;
begin

flag false;
for x in rd'range loop

if rd(x).predicate = rangeonly then
if rd(x).partition = partition and then

rd(x).range_min <= distance and then distance <
rd(x).rangemax then

flag := true;
make test(rd(x).cws, maximum-time, distance, partition);
exit when flag = true;

end if;
end if;

end loop;
if flag = false then

for x in rd'range loop
if rd(x).predicate = timeonly and then

(rd(x).partition = partition or else rd(x).partition =

L_ALL) then
maketest(rd(x).cws, rd(x).time_min, distance, partition);
make test(rd(x).cws, rd(x).time max - 0.1, distance,

partition);
maketest(rd(x).cws, (rd(x).time max + rd(x).time_min) /

2.0, distance, partition);
flag := true;

7-146

ATD/CWM Product Implementation/Adaptable Verification and Validation Support Components

end if;
end loop;

end if;

end scanrange_cws;

begin
test case list := null;

-- Find the largest range and largest time specifying

-- a collision warning situation.

maximumrange 0.0;

maximum time 0.0;
for x in rd'range loop

if rd(x).predicate = rangeonly and then rd(x).rangemax >
maximumrange then

maximum_range := rd(x).rangemax;

elsif rd(x).predicate = timeonly and then rd(x).timemax >
maximum-time then

maximum-time:= rd(x).time max;

end if;

end loop;

-- Cycle through all partitions from highest severity to lowest severity

-- generating appropriate test data for each.

for x in rd'range loop
if rd(x).predicate = timeonly then

if rd(x).partition = LALL then
make both tests(rd(x).cws, rd(x).time min, 0.0);

make both tests(rd(x).cws, rd(x).time max - 0.1, 0.0);

makebothtests(rd(x).cws, (rd(x).timemax + rd(x).timemin) /

2.0, 0.0);
else

-- Collision warning situation does not apply to both partitions. Thus, we

need
-- to generate test data to ensure that this predicate does not apply to
-- the other partition.

make_test(rd(x).cws, rd(x).time_min, 0.0, rd(x).partition);
make_test(rd(x).cws, rd(x).timemax - 0.1, 0.0,

rd(x).partition);
make_test(rd(x).cws, (rd(x).timemax + rd(x).time_min) / 2.0,

0.0, rd(x).partition);
other_partition := L_ID;
if rd(x).partition = LID then

other_partition L_UID;
end if;

-- Scan through all the predicates (from highest severity to lowest severity)

-- to see if any other applicable predicates are true. If so, then

-- generate a test for it.

7-147

ATDICWM Product lmplementation/Adaptable Verification and Validation Support Components

scan time cws(rd(x).time min, otherpartition);
scantimecws(rd(x).timemax - 0.1, other_partition);
scantimecws((rd(x).time max + rd(x).time min) / 2.0,

other_partition);
end if;

elsif rd(x).predicate = range_only then
if rd(x).partition = L ALL then

make both tests(rd(x).cws, maximumtime, rd(x).range_min);
makeboth tests(rd(x).cws, maximumtime, rd(x).rangemax -

0.1);
makebothtests(rd(x).cws, maximumtime, (rd(x).rangemax +

rd(x).range_min) / 2.0);
else

-- Collision warning situation does not apply to both partitions. Thus, we
need
-- to generate test data to ensure that this predicate does not apply to
-- the other partition.

maketest(rd(x).cws, maximum-time, rd(x).range_min,
rd(x).partition);

make test(rd(x).cws, maximumtime, rd(x).rangemax - 0.1,
rd(x).partition);

maketest(rd(x).cws, maximumtime, (rd(x).range max +
rd(x).range min) / 2.0, rd(x).partition);

otherpartition := L_ID;
if rd(x).partition = LID then

otherpartition := LUID;
end if;
scanrangecws(rd(x).rangemin, other_partition);
scan_rangecws(rd(x).range max - 0.1, other partition);
scan_range_cws((rd(x).range max + rd(x).rangemin) / 2.0,

otherpartition);
end if;

end if;
end loop;

end construct-data;

begin
put-line("CSU unit test for module CollisionWarningSituationStatus

(CWSS)");
new-line;
putline("Module CWSS is called repeatedly to determine the collision

warning");
put_line("situation status of a potential threat. The value returned by

this");
putline("module is compared against the expected status value.");
new line(2);
constructdata;
put_line("Start of tests");
new-line;
test := test case list;

7-148

ATD/CWM Product Implementation/Adaptable Vrification and Validation Support Components

while test /= null loop
new-line;
putline("Test number " & natural'image(test.testnumber));
put(" Time: ");
put(test.elapsedtime, exp => 0);
putline(" seconds");
put(" Range: ");

put(test.target_distance, exp => 0);
put_line(" nauticalmiles");
pt.time := test.elapsedtime;
pt.targetrange := test.target_distance;
if test.partition = LUID then

pt.par := UID;
put-line(" Partition: UID");

elsif test.partition = LID then
pt.par := ID;
put-line(" Partition: ID");

else
put-line(" Partition: ALL");

end if;
putline(" Expected status: " &

PotentialThreat.cws_id'image(test.expected cws));
status := CollisionWarning SituationStatus.get_cwsstatus(pt);
putline(" Actual status: " & PotentialThreat.cws id'image(status));
if (status /= test.expectedcws) then

put line(" ***** Wrong status : Test " &
natural'image(test.test number) & " failed ****");

errors :ý errors + 1;

else
put line(" * Correct status : Test " &

natural'image(test.test number) & " passed *****");

end if;
test := test.next;

end loop;
new line(2);
if (errors /= 0) then

putline("Test Summary : " & integer'image(errors) & " case(s) failed"):
else

putline("Test Summary: All test cases passed");
end if;

end CWSSCSU;}

Potential-Threat (TRF spec)

{
"module!external(pt_spec)

^type(cws info, (cws name : target))

7-149

ATD/CWM Product Implementation/Adaptable Wnfication and Validation Support Components

"program(pt, (cws : list of cwsinfo))
)

{
Amodule!internal(pt_spec)

"progimpl(pt, spec,
{

-- Potential Threat (PT) package spec

-- This module is used solely for the unit test
-- of the CollisionWarning_SituationStatus module.

with PhysicalQuantities;
package Potential Threat is

type partition is (ID, UID);

type pt_handle is
record

time : PhysicalQuantities.seconds;
targetrange : PhysicalQuantities.nautical mile;

par : partition;

end record;

type cws id is
I
"forall(c, cws, ({

{c.cws namel, }

{
normal

function get range(pt . in pthandle) return
PhysicalQuantities.nauticalmile;

function getpartition(pt : in pthandle) return partition;

end PotentialThreat;

}

Potential-Threat (body)

with PhysicalQuantities;
package body PotentialThreat is

function get_range(pt : in pt_handle) return
PhysicalQuantities.nautical mile

is
begin

7-150

ATD/CWM Product Implementation/Adaptable Vefification and Validation Supporl Components

return pt.target_range;
end get_range;

function get_partition(pt : in pt handle) return partition
is
begin

return pt.par;
end get_partition;

end PotentialThreat;

SituationDynamics (body)

-- SituationDynamics (SD) package body

with PhysicalQuantities;
with Potential Threat;
package body SituationDynamics is

function getelapsed_time(threat in Potential_Threat.pthandle)
return PhysicalQuantities.seconds

is
begin

return threat.time;
end get_elapsedtime;

function get_msd(threat in Potential_Threat.pt_handle)
return PhysicalQuantities.feet

is
begin

return 0.0;
end getmsd;

end SituationDynamics;

7-151

ATD/&WM Product Implemer•',,on/Adaplable Verification an%, Validation Support Components

This page intentionally left blank.

7-152

ATD/CWM Producl Implementation/Generalion Procedure

2. GENERATION PROCEDURE

NoTE: This Generation Procedure was written with the Consortium's computer environment in mind.
There is a network consisting of Apollo and VAX/VMS computers. The adaptable code com-
ponents used in this procedure reside on an Apollo; adapting these components also takes
place on an Apollo. After the components have been adapted, they are transferred to an VAX
running VMS. One mechanism for transferring the components is by using a Consortium-mo-
dified UNIX transfer program called rcp. Compiling, linking, and execution subsequently
takes place on the VAX/VMS. An X-terminal client uses an Apollo node to simulate the ATD
display for the ATD/CWM system.

The Generation Procedure describes how to generate a working system from the Product
Implementation using the decision resolutions of the Application Model and the Decision Model
Extensions. This Generation Procedure consists of four major steps:

1. Transforming the ATD/CWM Application Model into the canonic decision model form for
ATD/CWM

2. Selecting Adaptable Components

3. Adapting the components

4. Composing a system from the Adapted Components

Each of these steps will be described in greatcr detail in the following sections.

Step 1. Application Model Transformation

You must first transform your validated ATD/CWM Application Model (from its external form) into
an equivalent internal form expressed in terms of the ATD/CWM decision model before you proceed
with the remaining activities of the Generation Procedure. The ATD/CWM decision model consists
of the following decision classes:

"* AircraftStatusDisplay

"* HostAircraftStatusDisplay

"* AircraftDisplaySymbol

"• CollisionWarningSituationResponse

"* ATCMessage

"* CollisionWarningSituation

"* SurveillanceArea

To do this transformation, you will need to fill in forms that are provided with each step. Each form
has the following organization.

Form Name Value

Decision Name

7- 153

ATDICWM Product Implementation/Generation Procedure

The first column identifies the name of the form (boldface) and its related decisions. You use the
second column to record values for the decisions. You derive these values from your external form
of the ATD/CWM Application Model.

The transformation steps you must follow are listed below. You can perform these steps in any order.
However, you must perform all of them before you have completed the internal form of the Application
Model.

1. Fill in a SurveillanceArea form (Table 7-9). This form appears exactly once. Get the value
for range from the HostAircraft Characteristics SurveillanceArea.

Table 7-9. Surveillance Area

SurveillanceArea Value

Range

2. Fill in the Collision_WarningSituation form (Table 7-10). This form is repeated once for every
collision warning situation defined in your ATD/CWM Application Model. For example, if
you have three collision warning situations, there will be three instances of this decision class.
The values for each instance of this decision class are obtained using the following steps.

Table 7-10. CollisionWarningSituation

CollisionWarningSituation Value

CWSName

CWS Def.Time.Min

CWS Def.Tlme.Max

CrWSDcf.Ranuc.\in

CWSDef.Rangc.Max

CWS.Partition

Severity
Response

2.1. Get the value for CWSName from Collision Warning Situation CWSName.

2.2. Get the value for CWSDef.Time.Min from Collision Warning Situation TimeMin. If no
value for Time_Min is specified, leave CWSDef.Time.Min blank.

2.3. Get the value for CWSDef.Time.Max from Collision Warning Situation Time-Max. If no
value for TimeMax is specified, leave CWSDef.Time.Max blank.

2.4., •, the value for CWSDef.Range.Min from Collision Warning Situation Range_Min. If
no value for Range_Min is specified, leave CWSDef.Range.Min blank.

2.5. Get the value for CWSDef.Range.Max from Collision Warning Situation Range_Max. If
no value for RangeMax is specified, leave CWSDef.Range.Max blank.

7-154

ATD/CWM Product Implementation/Generation Procedure

2.6. Get the value for CWS.Partition from Collision Warning Situation Partition.

2.7. Get the value for Severity from Collision Warning Situation Severity.

2.8. Get the value for Response by concatenating Collision Warning Situation CWSName
with the text "_Response." For example, if the value for CWSName is Possible, the value
for Response would be Possible-Response.

3. Fill in the CollisionWarning SituationResponse form ('Thble 7-11). Repeat this form once
for every collision warning situation defined in your ATD/CWM Application Model. For ex-
ample, if you have three collision warning situations, there will be three instances of this deci-
sion class. Use the following steps to obtain the values for each instance of this decision class.

Table 7-11. CollisionWaring_Situation Response

Collision Warning_SituationResponse Value

CWSRName

ATCMsg

Inter Air Msg

CorrectiveMsg

Alarm

Alarm.Pitch

Alarm.Duration

Code

3.1. Get the value for CWSRName by concatenating the value for Collision Warning Situation
CWS Name with the text "_Response". For example, if the value for CWSName is
Possible, the value for Response would be Possible-Response.

3.2. Get the value for ATCMsg from Collision Warning Situation ATCMsg.

3.3. Get the value for InterAirMsg from Collision Warning Situation Inter_Air_Msg.

3.4. Get the value for Corrective_Msg from Collision Warning Situation CorrectiveMsg.

3.5. Get the value for Alarm from Collision Warning Situation Alarm.

3.6. Get the value for Alarm.Pitch from Collision Warning Situation AlarmPitch.

3.7. Get the value for Alarm.Duration from Collision Warning Situation AlarmDuration.

3.8. Get the value for Code from Code.

4. Fill in the ATCMessage form (Table 7- '.2). This form appears exactly once. Get the value for
Mode from Collision Warning Situation MessageMode.

Table 7-12. ATC_Message

ATC Message Value

Mode

7-155

ATD/CWM Product Implementation/Generation Procedure

5. Fill in the AircraftStatusDisplay form (Table 7-13). Repeat this form once for every collision
warning situation that applies to a specific aircraft partition. For example, assume that your
Application Model defines collision warning situations S1, S2, and S3. Furthermore, assume
that S1 applies to all aircraft, S2 only applies to identified aircraft, and S3 only applies to un-
identified aircraft. This would result in four instances of this decision class: two for S1, one
for S2, and one for S3. Use the following steps to obtain the values of each instance of this
decision class.

Table 7-13. Aircraft StatusDisplay

AircraftStatus_Display Value

Situation

Partition

PTColor

PT Blink

PTFill

5.1. Examine the value for Collision Warning Situation Partition for the current collision
warning situation. If the value for mnemonic Partition is ID or ALL, you provide an addi-
tional AircraftStatusDisplay form to fill in. Then you must perform the following steps
to obtain values for its related decisions.

5.1.1. Get the value for Situation from Collision Warning Situation CWSName.

5.1.2. The value for Partition is ID.

5.1.3. Get the value for PTColor from Collision Warning Situation IDColor.

5.1.4. Get the value for PT Blink from Collision Warning Situation IDBlink.

5.1.5. Get the value for PTFill from Collision Warning Situation IDFill.

5.2. If the value for Collision Warning Situation Partition is UID or ALL, you provide an
additional AircraftStatus Display form to fill in. Then you must perform the following
steps to obtain values for its related decisions.

5.2.1. Get the value for Situation from Collision Warning Situation CWSName.

5.2.2. The value for Partition is UID.

5.2.3. Get the value for PT Color from Collision Warning Situation UIDColor.

5.2.4. Get the value for PTBlink from Collision Warning Situation UIDBlink.

5.2.5. Get the value for PTFill from Collision Warning Situation UID Fill.

6. Fill in the HostAircraftStatus-Display form (Table 7-14). Repeat this form once for every
collision warning situation defined in your ATD/CWM Application Model. For example, if
you have three collision warning situations, there will be three instances of this decision class.
Use the following steps to obtain the values for each instance of this decision class.

7-156

ATD/CWM Product Implementation/Generation Procedure

"Fable 7-14. HostAircraft-StatusDisplay

HostAircraftStatusDisplay Value

Situation
Color

6.1. Get the value for Situation from Collision Warning Situation CWSName.

6.2. Get the value for Color from Collision Warning Situation HostColor. The HostColor
must correspond to the named collision warning situation.

7. Fill in the AircraftDisplaySymbol form (Table 7-15). This form appears exactly once.

Table 7-15. AircraftDisplaySymbol

AircraftDisplaySymbol Value

Host-Shapc

IDShape.Shape

ID_Shape.Partition

UID_Shape

7.1. Get the value for HostShape from HostAircraftCharacteristics HostShape.

7.2. Get the value for IDShape.Shape from PotentialThreat Characteristics IDShape.

7.3. Get the value for IDShape.Partition from PotentialThreat Characteristics IDReq.

7.4. Get the value for UIDShape from PotentialThreat Characteristics UIDShape.

Step 2. Select the Adaptable Components

You will use the information you captured in Step 1 to select adaptable components.

Table 7-16 describes selection criteria for each adaptable component. The first column of the table
names the concrete components that can potentially be included in a generated system. The second
column describes the selection criteria for each component. You select the concrete component only
v"hen the criteria is True. An Always condition means that the component is always selected. Refer-
ences in the criteria correspond to decisions captured in Step 1. You select the concrete component
only when the conditions are True. A third column has been added so that you can use Table 7-16 as
a worksheet to indicate which components you have selected.

Below the selection criteria for each concrete component is a description of how the component is
implemented. The first item is the names (can be more than one) of the text files that implement the
concrete component followed by the implementation language in parentheses. Ada designates an Ada
language component (these require no adaptation): AdaGeneric designates an Ada generic; TRF2
designates that the text file is written in a combination of TRF2 and Ada; C designates a C language
component: Interleaf designates that the text file is written using Interleaf (i.e., a text processing tool).
The text files (except those implemented in Interleaf) listed in the "Implemented By" column are
located in the following Apollo directory.

7-157

ATD/CWM Product Implemeniation/Generation Procedure

//venus/local/public/atd cwmadaptablecomponents/codecomponents

The Interleaf documents are located in following directory.

//venus/local/public/atdcwmadaptable components/doccomponents

To select the adaptable component, you must evaluate the selection criteria for each concrete
component. Record the names of the concrete components you selected so that you can adapt them
where necessary in the next step.

As an example, you would select the concrete component named Audible Alarm Buffer only if at
least one of the Collision Warning Situations from the Application Model internal form had a C.Re-
sponse.Alarm value of True. On the other hand, the Concrete Component named HostAircraft
would always be included in a generated system.

Table 7-16. Component Selection Criteria

Concrete Component Name Include this Concrete ;0
Component...

AudibleAlarmDevice If there is a Collision Warning Situation, C, such that
C.Response.Alarm is True.

Implemented By: aad_.trf (TRF2)

AudibleAlarm_Buffer If there is (1) a Collision Warning Situation, C, such that
C.Response.Alarm is True.

Implemented By: tdb_.trf ("RF2)
tdb.trf (TRF2)

CommunicationDevice If there is a Collision Warning Situation, C, such that either
C.Response.ATCMsg OR C.Response.InterAir Msg is True.

Implemented By: cd_.trf (TRF2)
cd.trf (TRF2)

CommunicationBuffer If there is (1) a Collision Warning Situation, C, such that either
C.Response.ATCMsg OR C.Response.InterAir Msg is True.

Implemented By: tdb_.trf (TRF2)
tdb.trf (TRF2)

AudibleAlarm If there is a Collision Warning Situation, C, such that
C.Response.Alarm is True.

Implemented By: aa_.a (Ada)
aa.trf (1RF2)

Communication If there is a Collision Warning Situation, C, such that either
C.Response.ATCMsg OR C.Response.InterAir Msg is True.

Implemented By: comm_.trf (TRF2)
comm.trf (TRF2)

7-158

ATD/CWM Product Implementalion/Generation Procedure

Table 7-16, continued

Concrete Component Name Include this Concrete
Component...

Radar._TrgetPriorityBuffer Always

Implemented By: tdb_.trf (TRF2)
tdb.trf (TRF2)

Potential-Threat Always

Implemented By: pt_.trf (TRF2)

pt.trf (TRF2)

TargetBuffer Always

Implemented By: tdb_.trf (TRF2)
tdb.trf (TRF2)

HostAircraft Always

Implemented By: ha_.a (Ada)

ha.a (Ada)

Initializationand Termination Always

Implemented By: it.a (Ada)

Navigation Always

Implemented By: nav.a (Ada)
nav.a (Ada)

Radar Always

Implemented By: radar..a (Ada)
radar.a (Ada)

AirTrafficControl Always

Implemented By: atc_.a (Ada)
atc.a (Ada)

AirTrafficDisplayDevice Always

Implemented By: atdd_.a (Ada)

atdd.a (Ada)
xlibrary.c (C)

CollisionWarningSituationStatus Always

Implemented By: cwss_.a (Ada)

cwss.trf (TRF2)

7-159

ATD/CWM Product Implementalion/Generation Procedure

Table 7-16, continued

Concrete Component Name Include this Concrete
Component...

PhysicalQuantities Always

Implemented By: pl_.a (Ada)

pq.a (Ada)

Numerical-Algorithms Always

Implemented By: na_.a (Ada)
na.a (Ada)

Air TrafficDisplay Always

Implemented By: atd_.a (Ada)
atd.a (Ada)

PotentialThreatPartition If there is a Collision Warning Situation such that
CWS.Partition is not ALL.

Implemented By: ptp_.a (Ada_Generic)

ptp.a (AdaGeneric)

SituationDynamics Always P,

Implemented By: sd_.a (Ada)
sd.a (Ada)

Aircraft-Motion Always V,

Implemented By: am_.a (Ada-Generic)
am.a (AdaGeneric)

SRS Always

Implemented By: SRS.doc (Interleaf)

IRS Always

Implemented By: IRS.doc (Interleaf)

Step 3. Adapt the Components

Each of the adaptable code components is normally implemented by two parts: a specification and
a body. You adapt either the specification, body, or both for a given adaptable code component as
described in Table 7-16.

The form of the values for the adaptation parameters is subject to constraints imposed by the
component implementation language. Examples of constraints include numeric precision and gram-
matical rules (e.g., capitalization). You must ensure that the constraints for the adaptable components
are met; otherwise, you will not be able to produce the desired ATD/CWM system. You can assume

7-160

ATD/CWM Product Implementation/Generation Procedure

that the form of a value for a particular parameter has no constraints unless otherwise specifically
expressed.

You adapt only those adaptable components you selected in Step 2. Thus, you will not necessarily
follow all of the steps listed below.

Adapt Ada Generics

* To adapt AircraftMotion, you create a text file named amgen.a which contains the following
text verbatim.

with AircraftMotion;
package AirCraftMotion is new AircraftMotion(msd = > 500.0);

* To adapt PotentialThreatPartition, you create a text file named pt partition.a which
contains the following text verbatim.

with PotentialThreat;
package PTPartition is new PotentialThreatPartition(altitude = > Altitude,

airspeed = > Airspeed);

You determine the values for Altitude and Airspeed by examining your Application Model
internal form. Altitude has the value true if, and only if, the value for AircraftDisplaySymbol
IDShape.Partition contains the value of altitude. Otherwise, the value for Altitude is false.

Similarly, Airspeed has the value true if, and only if, the value for AircraftDisplaySymbol
IDShape.Partition contains the value of airspeed. Otherwise, the value for Airspeed is false.

Adapt TRF2 Components

You mechanically adapt components written in TRF2 by using the TRF2 translator. The exact form
and use of the TRF2 metaprogramming notation is described in the TRF2Metaprogramming Tool User
Guide (Software Productivity Consortium 1991b). For convenience, a csh script (named adapt.csh)
has been provided which contains all of the translations possible in constructing a system. This script
file is located in the following Apollo directory:

//venus/local/public/atdcwmadaptablecomponents/code components

You must remove from this file all lines referencing components that are not to be included in your
ATD/CWM system. The csh script file contains hardcoded file names that will be used in naming the
resulting concrete components. These hardcoded names will be used in later scripts for controlling
compilation. However, if so desired, you can rename the files contained in these scripts to any name
as long as the names do not conflict with any implementation names listed in Table 7-16 nor conflict
with any names chosen for the text files describing the adaptations of Ada generics. The TRF2
translator is located in the following Apollo file:

- spectrum/TRF/apollo.trft

You must create a single text file, called a metafile, for each part of an adaptable component to be
adapted using TRF2 (e.g., Communication-Device requires two text files; AudibleAlarm only

7-161

ATD/CWM Product Implementation/Generation Procedure

requires one). This metafile contains the adaptation parameter values used by TRF2 in modifying the
adaptable component. Templates for these metafiles (denoted by the suffix ".meta") are found in the
following Apollo directory:

//venus/local/public/atd cwm adaptable.components/code components

You should modify these templates according to the directions provided below. The names of the
metafiles are hardcoded into the adapt.csh script. However, if so desired, you can change the names
of these metafiles, and likewise the names in the script, to any name as long as the names do not conflict
with any implementation names listed in Table 7-16 nor conflict with any names chosen for the text
filei describing the adaptations of Ada generics.

The contents of each TRF2 metafile is described below. You must modify each metafile according
to the directions given to guarantee a valid adaptation of the component. You must replace the boldface
italicized identifiers with the corresponding values from the internal form of the Application Model
you developed in Step 1.

" AA.TRF-To adapt aa.trf for AudibleAlarm, you create a metafile called aa.meta which
contains the following statements:

{ ^ module! include(aaspec, "aa.trf")}
{ ^ aa spec.aa!spec(

ring:((cwsname: {CWSName},
frequency: {Alarm.Pitch [see note 11],
duration: {Alarm.Duration [see note 2]1),
see note- 3

)
)

Note 1: The value for Alarm.Pitch must be an integer (i.e., have no decimal point).

Note 2: The value for Alarm.Duration must have exactly two digits after the decimal point.

Note 3: The triple (cws_name, frequency, duration) is repeated once for every collision
warning situation that has a "true" value for its Alarm mnemonic. Each triple is enclosed in
parentheses and has a trailing comma except for the last triple in the list.

" AAB_.TRF and AAB.TRF-To adapt tdb_.trf for AudibleAlarmBuffer, you create a
metafile called aab_.meta which contains the following statements:

{ ̂ module!include(tdb spec, "tdb_.trf")}
{ ^ tdb-spec.tdb!spec(

name: {AudibleAlarmBuffer},
length : {10},
message : (modulename: {AudibleAlarmDevice},

datatype: {AlarmMessage Type}),
consumer':(

7-162

ATD/CWM Product Implementation/Generation Procedure

To adapt tdb.trf for AudibleAlarmBuffer, you create a metafile called aab.meta which
contains the following statements:

{ ̂ module!include(tdbbody, "tdb.trf")}
{ ^ tdbbody.tdb!body(

name: {AudibleAlarmBuffer},
length: {10},
message: (modulename: {AudibleAlarmDevice},

data type: {Alarm_Message Type}).

consumer "

AAD_.TRF-To adapt aad_.trf for AudibleAlarmDevice, you create a metafile called
aad_.meta which contains the following statements:

{ ̂ module!include(aadspec, "aad_.trf")}
{ ^ aad_spec.aad!spec({True})
}

CB_.TRF and CB.TRF-To adapt tdb_.trf for CommunicationBuffer, you create a metafile
called cb_.meta which contains the following statements:

{ ^ module!include(tdb spec, "tdb_.trf")}
{ tdbspec.tdb!spec(

name: {CommunicationBuffer},
length : {10},
message: (modulename: {CommunicationDevice},

data type : {Communication MsgType}),
consumer:(0

To adapt tdb.trf for CommunicationBuffer, you create a metafile called cb.meta which
contains the following statements:

{ module!include(tdb body, "tdb.trf")}
{ tdb-body.tdb!body(

name: {CommunicationBuffer},
length: {10},
message: (modulename: {CommunicationDevice},

datatype : { CommunicationMsg_Type }),
consumer':(

CD .TRF and CD.TRF-To adapt cd.trf for Communication-Device, you create a metafile
called cd.meta which contains the following statements:

7-163

ATD/CWM Product Implementation/Generation Procedure

{ ^ module!include(cdbody, "cd.trf")}
{ ' cdbody.cd!body({see note 4}.

{see note 5},
{Mode [see note 6]),
{True})

}

To adapt cd_.trf for CommunicationDevice, you create a metafile called cd_.meta which
contains the following statements:

{ ^module!include(cd spec, "cd_.trf")I
{^cd-spec.cd!spec({see note 4),

{ see note 5},
{Mode [see note 6]),
{True))

Note 4: If you have at least one collision warning situation which contains a "true" value for
the ATC_Msg mnemonic, then this parameter's value is True; otherwise it is False. The
capitalization, as indicated, must be used.

Note 5: If you have at least one collision warning situation which contains a "true" value for
the InterAir Msg mnemonic, then this parameter's value is True; otherwise it is False. The
capitalization, as indicated, must be used.

Note 6: The value for Mode must be upper-case.

COMM_.TRF and COMM.TRF-To adapt comm_.trf for Communication, you create a

metafile called comm .meta which contains the following statements:

{ ̂ module!include(commspec, "comm_.trf")}
{ ^commspec.comm!spec(

((cws_name: {CWS_Name}, code: {Response.Code [see note 7]}),
... see note 8

0,
{Mode [see note 9]})

To adapt comm.trf for Communication, you create a metafile called comm.meta which
contains the following statements:

{ ̂ module!include(commbody, "comm.trf")}
{ "" comm body.comm! body(

((cwsname: {CWSName}, code: {Response.Code [see note 7]}),
... see note 8

0,
{Mode [see note 91)

7-164

ATD/CWM Product Implementation/Generation Procedure

Note 7:The value for Response.Code must be an integer (i.e., have no decimal point).

Note 8: Repeat the pair (cwsname, code) once for every collision warning situation you have
defined in Step 1 that also has a true value for either ATCMsg or Inter Air Msg. Each or-
dered pair is enclosed in parentheses and has a trailing comma except for the last ordered
pair in the list.

Note 9: The value for Mode must be all upper-case.

CWSS.TRF-To adapt cwss.trf for Collision_WarningSituationStatus, you create a metafile
called cwss.meta which contains the following statements:

{ ^ module!include(cwssbody. "cwss.trf")}
{ ^ cwssbody.cwss!body(

(cwsname: {CWSName),
severity : {Severit'}.
predicate • see note 10,
partition: {C"S.Partition }),

... see note 11
)

)
}

Note 10: The predicate component of the ordered quadruple (cws_name. severity,
predicate. partition) has one of the following forms depending on the situation flight
characteristics for the named collision warning situation.

(time : (min {CWSDef.Time.Min}. max: {CMSDef.Time.Max}))

(range : (min : {CWS DefRange.Min}, max: {COSDefRange.Max}))

(tandr : (tmin : {CII-S_Def.Time.Min},
t_max: { C1S_Def Time.Max}.
r_min: {CWS_Def.Range.Min},
r_max: {CWSDef.Range.Max})))

Use the first form when the situation flight characteristics for the named collision warning
situation are specified by time only. Use the second form when the situation flight characteris-
tics for the named collision warning situation are specified by range only. Use the third form
when the situation flight characteristics for the named collision warning situation are specified
by both time and range. In all cases, the values for CWS DefThne.Min, CWSDefTime.Max,
CWSDefRange.Min, and CWSDefRange.Max must have exactly one digit after the decimal
point (e.g., 44.0).

Note 11: Repeat the quadruple (cwsname, severity, predicate, partition) once for every
collision warning situation you have defined in Step 1. Each ordered quadruple is enclosed
in parentheses and has a trailing comma except for the last ordered quadruple in the list.
Furthermore. each quadruple must be ordered in decreasing severity level.

7-165

ATD/C'WM Product Implementalion/Generation Procedure

PT_.TRF and PT.TRF-To adapt pt_.trf for PotentialThreat, you create a metafile called
pt_.meta which contains the following statements:

{ ̂ module! include(pt_spec. "pt_.trf")}
{ ̂ ptspec.pt!spec(

((cws_name: {CWSName},
severity : {Severity},
predicate • see note 12,
partition: {CWS.Partition},

alarm : {ResponseAlarm [see note 131},
atcmsg : {Response.ATC Msg [see note 13]},
inter airmsg: {Response.inter Air Msg [see note 13]},
corrective : { Response.Corrective Msg [see note 13]}).

... see note 14
)

To adapt pt.trf for PotentialThreat, you create a metafile called pt.meta which contains the
following statements:

{ module!include(ptbody. "pt.trf")}
{ "ptbody.pt!body(

((cws_name {CWS-Aanze},
severitv : {Severity ,.
predicate • see note 12,
partition f {CWS.Partition},
alarm : {ResponseAlarm [see note 13]}.
atc msg• {ResponseA4TC Msg [see note 13]}.
inter air msg : {Response.InterAir Asg [see note 13]}.
corrective • {Response.CorrectiveMsg [see note 13]}).

... see note 14
)

)

Note 12: The predicate component of the ordered tuple (cws_name, severity, predicate,
partition, alarm, atc_msg. interair msg. corrective) has one of the following forms depending
on the situation flight characteristics for the named collision warning situation.

(time : (min {CWS DefTime.Min}, max: {CWSDe.Time.Mar}))

(range : (min: {CWSDefRange.Min), max: {CWSDefRange.Max}))

(tandr : (tmin : {CWSDefTime.Min},
t_max: { CWSDef TimeMar},
r_min: {CWSDefRange.Min},
r_max: {CWSDef.Range.Max}))

7-166

All) 1CWM Product Implementation/'Generation Procedure

Use the first form when the situation flight characteristics for the named collision warning
situation are specified by time only. Use the second form when the situation flight characteris-
tics for the named collision warning situation are specified by range only. Use the third form
when the situation flight characteristics for the named collision warning situation are specified
by both time and range. In all cases, the values for CWSDefTime.Min, CWSDefTime.Max,
CWSDefRange.Min, and CWSDefRange.Max must have exactly one digit after the decimal
point (e.g., 44.0).

Note 13: The value must be either True or False (using the capitalization as indicated).

Note 14: Repeat the tuple (cwsname, severity, predicate, partition, alarm, atcmsg.
interairmsg, corrective) once for ever' collision warning situation you have defined in Step
1. Each ordered tuple is enclosed in parentheses and has a trailing comma except for the last
tuple in the list. Furthermore, you must order each tuple in decreasing severity level.

RTPB_.TRF and RTPB.TRF-To adapt tdb_.trf for RadarTargetPriority_Buffer. you create
a metafile called rtpb_.meta which contains the following statements:

{ module'include(tdbspec, "tdb_.trf")}
{ ^ tdb_spec.tdb!spec(

name " {RadarTargetPriorityBuffer}.
length {20},
message: (module name• {Potential_Threat}.

data type : {pt_handle}),
consumer "((consumername : {CHS Name}. priority • {Severity)).

see note 15
)

)
}

To adapt tdb.trf for RadarTargetPriorityBuffer, you create a metafile called rtpb.meta
which contains the following statements:

{ ' module!include(tdbbody. "tdb.trf')D}
{ ^ tdb-body.tdb!body(

name f {Radar TargetPriorityBuffer},
length • {20},
message : (modulename : {Potential_Threat},

data type : {pthandle)),
consumer'((consumername: {CWS_Name}, priority: {Severity}),

... see note 15
)

)

Note 15: Repeat the pair (consumername, priority) once for every collision warning
situation you have defined in Step 1. Each pair is enclosed in parentheses and has a trailing
comma except for the last ordered pair in the list. Furthermore, you must order the pairs in
decreasing priority value.

7-16"7

ATDC'WM Product Implementation/Generation Procedure

TB_.TRF and TB.TRF-To adapt tdb_.trf for Target-Buffer, you c -ate a metafile called
tb_.meta which contains the the following statements:

{ ̂ module!inc!ude(tdbspec, "tdb_.trf"))
{ ̂ tdb-spec.tdb!spec(

name {TargetBuffer},
length f {20},
message : (mod~lle_name• {PotentialThreat},

datatype • {target-info}),
consumer':

To adapt tdb.trf for Target-Buffer, you create a metafile called tb.meta which contains the
following statements:

{ ̂ module!include(tdbbody, "tdb.trf")}
{ tdbbodv.tdb! body(

name : {TargetBuffer},
length: {20),
message : (module_name : {PotentialThreat},

Jata type : {targetinfo}),
consumei • 0

Step 4. Compose the Components

You compose the adapted code components into an executable ATD/CWM system by copying the
files from the Apollo system to the target sys t em, compiling the Ada files, compiling the one C file,
and linking them to form an executable. These steps are described in greater detail below. The target
system is defined as VAX/VMS V5.4-2. This target system must also have VAX Ada V2.2-38 and
VAX C V3.2-044 on it.

Move the files to the target

You must move the Ada and C files (i.e., files with the ".a" or ".c" suffix) over to the target system
prior to starting the compilations. If the only Ada and C files that reside in the local directory contain-
ing the adapted code components are ATD/CWM Ada and C files, the following command will copy
all Ada files over to the target machine:

rcp *.a vaxhost:'[honie dir...]'

The syntax for the target machine and directory is host:path where host is the name of the remote
target machine and path is a single quoted pathname on the target machine. If needed, a csh script
has been created that will only copy the exact ATD/CWM Ada files over to the target system. This
copy script, entitled transport.csh, is located in the following Apollo directory:

//venus/local/public/atd_cwmadaptable components/codecomponents

7-168

ATD/CWM Product Implementation/Genciration Procedure

This copy script accepts one command line parameter which is the remote node and directory where
the Ada files are to be copied. The syntax for the command line parameter is identical to the one de-
scribed above for the rcp command. You will need to edit this copy script to remove any Ada files
that are not to be copied (i.e., those components not selected in Step 2). An example usage of this copy
script, assuming a VAX target, is illustrated as follows:

transport.csh < vaxhost> :'[< home dir >. < somesubdir >1'

Compile the Ada files

It is assumed that you have some knowledge of how to establish and use a suitable Ada environment
on VAX/VMS and that you have some knowledge of the VAX/VMS command language before you
attempt this step. It is assumed that all necessary adaptations have been performed in creating the
needed Ada files prior to attempting compilation.

Each adapted Ada code component, each Ada code components that did not require any adaptation,
and those text files created to instantiate Ada generics must be compiled in a specific compilation
order. The following list reflects the proper compilation order where components enclosed by square
brackets ([]) are compiled only if they were selected in Step 2 and italicized "names" are substituted
with the names you selected for those components:

pq_.a
na_.a
am .a
atdd_.a
file containing adapted pt_.trf for Potential Threat
sd .a
cwss .a
atd_.a
atc_.a
nay_.a
[file containing adapted cd. trf for CommunicationDevice]
[flue containing adapted tdb_. trf for ComunicationBuffer]

[file containing adapted comm_ trf for Communication]
file containing adapted tdb. trf for Radar Target Pno-ity Buffer
file containing adapted tdb. trf for Target Buffer
ha .a
radar-.a
am.a
file containing text to adapt Aircraft Motion
atc.a
atd.a
atdd.a
[file containing adapted cd.trf for Communicatin_Device]
[file containing adapted comm.trf for Communication]
[file containing adapted tdb.trf for CommunicationBuffer]
file containing adapted cwss. tirf for CollisionWarningSituationSt atus

ha.a

7.16t)

ATD/CWM Product Implementation/Generation Procedure

it.a
na.a
nav.a
pq.a
file containing adapted pt. trf for PotentialThreat
radar.a
file containing adapted tdb.trf for Radar TargetPriority Buffer
sd.a
file containing adapted tdb.trf for Target Buffer

A predefined VAX compilation script, entitled vaxcompile.com, reflects this compilation order and
is available for compiling these Ada files. This compilation script is available in the following Apollo
directory and should be copied over to the VAX:

//venus/local/public/atdcwmadaptable components/codecomponents

If the adapted Ada components were created using the predefined Ada filenames contained in the
csh script, adapt.csh, you will only need to edit out any Ada files from this compile script that were
not copied over to the VAX (i.e., because they were not selected in Step 2). However, if the predefined
names were not used, you will need to substitute the new names for the italicized items as described
in the above list.

The VAX/VMS Ada compiler generates a series of extraneous warning messages for the following
components:

atd.a
atdd.a
file containing adapted cwss.trf for CollisionWarning&Situation-Status
file containing adapted pt. trf for Potential_ Threat
radar.a
sd.a

You can ignore these. Any other messages shoi~d be reported to the ATD/CWM domain engineers.

Compile the C file

It is assumed that you have some knowledge of how to use the VAX/VMS C compiler on VAX/VMS
and that you have some knowledge of the VAX/VMS command language before you attempt this step.
Before compiling component xlibrary.c, you must define a VAXJVMS logical name X11 to be the name
of the VAX/VMS directory that contains the C include file X.h. This equivalence name is defined on
the VAX as follows:

$ define X11 decw$include

Once you have defined this logical name, you can compile xlibrary.c using the C compiler. Any
messages reported by the C compiler should be reported to the ATD/CWM domain engineers.

7-170

ATD/C7WM Product Implementation/Generation Procedure

Creating an executable

Once you have compiled these components, they are linked together to form the desired executable
ATD/CWM system. The entry point for your system is named AtdCwm. You must also link in the
following VAX/VMS libraries:

"* decw$xlibshr.exe

"* vaxcrtl.olb

A linking script file, entitled iink.com, can be found in the following Apollo directory:

//venus/local/public/atdcwm adaptable-components/code components

The linker generates a series of extraneous warning messages for components.

atd.a
atdd.a
file containing adapted cwss. trf for Collision Warning Situation-Status
file containing adapted pt. trf for Potential_ Threat
radar.a
sd.a

These are caused by the extraneous messages generated by the VAX/VMS Ada compiler. You can
ignore these. Any other messages should be reported to the ATD/CWM domain engineers.

Step 5. Executing Your System

Your ATD/CWM system is intended to execute on VAX/VMS using your Apollo terminal as an
X-terminal client. Before you can execute your ATD/CWM system, you must perform the following steps:

"* Type the following command at the VAX/VMS DCL prompt:

- set disp/create/node=XK/trans =wintcp

where XX is the name of the Apollo node that you wish to use as an X-terminal.

"* On the Apollo node called XX, ensure that the X-server is running. It must be running before
you can perform the next step.

"* Type the following command at the Apollo prompt on the Apollo node called XX:

- /usr/bin/Xll/xhost +

You can now start your ATD/CWM system on the VAX by issuing the following command:

- $ run/nodebug atd-cwm

Your ATD/CWM system will execute using simulated radar and ATC data.

7-171

ATD/CWM Product Implementation/Generation Procedure

This page intentionally left blank.

7-172

8. ATD/CWM PROCESS SUPPORT

1. APPLICATION ENGINEERING USER'S GUIDE

The application engineering process for the ATD/CWM domain consists of two activities: Application
Modeling and Application Production. You must complete the Application Modeling activity before
the Application Production activity is started.

1. APPLICATION MODELING

Application Modeling consists of two activities: specification and validation. Specification analyzes
a customer's statement of needs to produce an Application Model. The Application Model expresses
requirements and engineering decisions that describe an instance of a family of systems intended to
satisfy those needs.

In this activity, you will be describing an ATDCWM system which when installed in an aircraft will
monitor air traffic in a surveillance area and detect collision warning situations. This system will moni-
tor flight characteristics (e.g., altitude, bearing, range) of potential threats and show the flight charac-
teristics on a display within the host aircraft's cockpit. The ATD/CWM system obtains flight
characteristics from either messages transmitted by potential threats or air traffic control centers.
This system will also detect collision warning situations and take appropriate actions such as display-
ing collision warning characteristics and corrective action advisory messages on a display within the
host aircraft's cockpit, transmitting inter-air messages to potential threats, and transmitting advisory
messages to an air traffic control center.

The following sections describe the sequence of steps you. the application engineer, perform to
develop an ATD/CWM application.

1.1. SPECIFICATION

You must specify the ATD/CWM Application Model before generation activities can be done. The
steps that you follow are listed below. The forms you will need to fill in are provided with each step.
Each form has the following organization.

Decision Mnemonic Value

The first column identifies the decisions (i.e., the requirements variations); the second column
contains a mnemonic which is a shorthand identifier for the decision; and the third column records
your decisions. You can repeat the form pertaining to decisions you must make for collision warning
situations as often as necessary. This allows you to capture your decisions for each collision warning
situation. The steps describe what decisions you must make and permissible values for each decision.

8-1

ATD/CWM Process Support

1. Define the Application Model name. This name is a case-sensitive alphanumeric text string.
The length of this string must be between 1 and 64 characters. You enter this name in the form
shown in Table 8-1.

Table 8-1. Application Model Name

Decision Mnemonic Value

Application Model Name ModelName

2. You can perform the following steps in any order. However, you must perform all of them
before you have completed an Application Model.

2.1. Define the host aircraft characteristics. There are three decisions that you must make: the
surveillance area radius, the icon shape for the host aircraft, and the ATCMsg message
format. You enter your decisions for these requirements variations in the form shown in
Table 8-2 opposite labels marked "SurveillanceArea," "Host AircraftShape," and
"ATC Message-Mode," respectively. A brief description of these decisions and their
associated value space follows.

SurveillanceArea Radius (in nautical miles) of the surveillance area that
the ATD/CWM monitors. The surveillance area is a
sphere whose origin is the host aircraft's position. You
must chose an integer in the range 10 to 300, inclusive.

HostAircraftShape Icon shape for the host aircraft when it is displayed.
You can select only one of circle, square, or triangle.

ATCMessage_Mode Designates the format for the ATC Msg messages sent
from the host aircraft to an air traffic control center.
You can select only one of the following values:

A - Transponder code only

C - Transponder code plus altitude

Table 8-2. Host Aircraft Characteristics

Decision Mnemonic Value

HostAircraft Characteristics

Surveillance Area SurveillanceArea

Host Aircraft Shape HostAircraftShape

ATCMessageMode MessageMode

You only need to select a value for 'ATCMessage Mode" when you have at least one
collision warning situation response which has the "Response to ATC" decision marked
true.

2.2. Define potential threat characteristics. These are the characteristics unique to potential
threats. There are three decisions that you must make: the criteria for distinguishing be-
tween "identified" and "unidentified" aircraft, the icon shape for "identified" aircraft, and

8-2

ATD/CVWM Process Support

the icon shape for "unidentified" aircraft. You enter your decisions for these requirements
variations in the form shown in Table 8-3 opposite labels marked "Identification Require-
ments," "Shape of Identified Aircraft," and "Shape of Unidentified Aircraft," respectively.
A brief description of these decisions and their permitted value space follows.

Identification Requirements A set that defines criteria for a potential threat to be
considered "identified." You can select one or more of
airspeed or altitude. To select element, say airspeed,
means that the value for airspeed must be known for
a potential threat to be designated as "identified." Se-
lecting both elements means that both values must be
known.

Shape of Identified Aircraft Icon shape for an "identified" potential threat when it
is displayed. You can select only one of circle, square,
or triangle.

Shape of Unidentified Aircraft
Icon shape for an "unidentified" potential threat when
it is displayed. You can select only one of circle, square,
or triangle.

Table 8-3. Potential Threat Characteristics

Decision Mnemonic Value

Potential Threat Characteristics

Identification Requirements IDReq

Shape of Identified Aircraft ID Shape

Shape of Unidentified Aircraft UIDShape

2.3. Define Collision Warning Situation. You enter the name of a specific collision warning
situation in the form shown in Table 8-4 opposite label "Collision Warning Situation
Name." This name is a case-insensitive alphanumeric identifier (no spaces allowed) having
a maximum length of 64 characters. The name "normal" is reserved and cannot be speci-
fied by the application engineer, including all upper- and lower-case variations. Steps 2.3.
2.3.1. 2.3.2, 2.3.3. and 2.3.4 are repeated as often as there are collision warning situations
to specify. You will need to complete Table 8-4 (shown on Page 8-8) once for every collision
warning situation in your ATD/CWM system.

A collision warning situation consists of three portions: the defining characteristics, the
appropriate response performed by the system, and the desired display characteristics.
You must specify these for each collision warning situation using the following steps.

2.3.1. Define the collision warning situation characteristics. There are two required
decisions: the aircraft partition to which this situation applies and the severity of
this collision warning situation. You enter your decisions for these requirements
variations in the form shown in Table 8-4 opposite labels marked "Situation Air-
craft Partition" and "Situation Severity," respectively. A brief description of these
decisions and their permitted value space follows.

8-3

ATD/CWM Process Support

Situation Aircraft Partition Indicates the potential threat partition for which this
collision warning situation applies. You can select only
one of ID. UID, or ALL. ID is "identified"; UID is
"unidentified"' ALL is both.

Situation Severity Relative probability that a collision is likely to occur.
The higher the severity, the more likely a collision will
occur. By definition, the predefined normal situation
has the lowest severity. You can select a severity level
in the range 0.00 to 1.00 having a resolution of 0.01.

There are also four optional decisions: the minimum and maximum allowed time
before the flight paths of a potential threat and the host aircraft intersect, and the
minimum and maximum distance a potential threat is from the host aircraft. You
can specify the minimum and maximum time or the minimum and maximum range
or both. However, you must specify at least one of these pairs. If both are specified.
it is interpreted as a logical "OR" (i.e., time OR range). You enter your decision
for these requirements variations in the form shown in Table 8-4 opposite labels
marked "Time Min," "TimeMax," "RangeMin," and "Range_Max," respective-
ly. If airspeed is unknown, then 1000 nautical miles per hour is assumed. A brief
description of these decisions and their permitted value space follows.

Time Minimum Minimum allowed elapsed time before the flight path's
of the potential threat and host aircraft intersect. You
can select a minimum time value in the range 1 to 300
seconds.

Time Maximum Upper bound on the allowed elapsed time before the
flight paths of the potential threat and host aircraft in-
tersect. You can select a maximum time value in the
range 1 to 300 seconds.

Range Minimum Minimum distance the potential threat is from the host
aircraft. The upper limit is determined by the value
chosen for the Surveillance Area decision. You can se-
lect a minimum range value in the range 0 to X nautical
miles, inclusive. X denotes the value chosen for the
SurveillanceArea decision.

Range Maximum Upper bound on the potential threat is from the host
aircraft. The upper limit is determined by the value
chosen for the Surveillance Area decision. You can se-
lect a maximum range value in the range 0 to X nautical
miles, inclusive. X denotes the value chosen for the
SurveillanceArea decision.

2.3.2. Define the situation response. There are five decisions that you must make: should
the ATD/CWM system send notification to the air traffic control center; should
the system send notification to the intruding potential threat: should the system

8-4

ATD/CWM Process Support

display a corrective action message, should the system ring the audible alarm: and
what transponder code the ATD/CWM should use in the ATCMsg or
InterAir_Msg. You enter your decisions for these requirements variations in the
form shown in Table 8-4 opposite labels marked "Response to ATC," "Response
to other Aircraft," "Corrective Action Response," 'Alarm," and "Code," respec-
tively. A brief description of these decisions and their permitted value space
follows.

Response to ATC Designates whether a message is sent to the nearest air
traffic control center. You can select either True or
False. True means to send the message; false means do
not send the message.

Response to other Aircraft Designates whether a message is sent to the
appropriate potential threat. You can select either
True or False. True means to send the message, false
means do not send the message.

Corrective Action Response Designates whether a corrective action advisory
message is displayed on the ATD. You can select cth"-r

True or False. True means the message is displayed;
false means that the message is not displayed.

Alarm Designates whether the audible alarm should be rung
when a potential threat migrates into this collision
warning situation from a lower severity. You can select
either True or False. A value of false means to not ring
the alarm. A value of true means to ring the alarm. In
this case. a pitch and duration must be specified as
wvell.

Code Designates the four-digit transponder code to usc in
the ATC_Msg and InterAirMsg. You must chose a
4-digit integer in the range 0000 to 7777. inclusive.
excluding the following reserved codes:

7500
7600 through 7677, inclusive
7700 through 7777, inclusive

The last two digits of your code must always read 00.
Furthermore. each digit is restricted to values in the
range 0 to 7, inclusive. You do not need to make a selec-
tion for this decision when your choices for "Response
to ATC" and "Response to other Aircraft" decisions
are both false.

If "Response to ATC" is marked true, you must chose a value for the
'ATC Message Mode" decision found in Table 8-2.

8-5

ATD/CWM Process Support

2.3.3. If you chose true value for the 'Alarm" decision, you must specify the alarm
characteristics by specifying a pitch and a duration for the audible alarm. You enter
your decisions for these requirements variations in the form shown in Table 8-4 oppo-
site labels marked "Pitch" and "Duration," respectively. A brief description of these
decisions and their permitted value space follows.

Pitch What frequency, in hertz, at which the audible alarm
is rung. You can select an integer-valued frequency in
the range 1,000 to 10,000, inclusive.

Duration How long to ring the audible alarm. You can select a
time duration in the range 0.01 to 10.0 seconds,
inclusive, having a resolution of 0.01 seconds.

2.3.4. Define the situation display characteristics. There are seven decisions that you
must make: icon color of host aircraft, icon color of identified potential threats,
whether the icons for identified potential threats should blink, whether the icons
for identified potential threats should be filled in. icon color of unidentified poten-
tial threats, whether the icon for unidentified potential threats should blink, and
whether the icons for unidentified potential threats should be filled in. You enter
your decisions for these requirements variations in the form shown in Table 8-4
opposite labels marked "Color of Host Aircraft," "Color of Identified Potential
Threats," "Blinking Identified Potential Threats," "Fill Identified Potential
Threats." "Color of Unidentified Potential Threats," "Blinking Unidentified Po-
tential Threats," and "Fill Unidentified Potential Threats," respectively. A brief
description of these decisions and their permitted value space follows.

Color of Host Aircraft Icon color for the host aircraft. You can select only one
color: red, yellow, pink. orange. blue, green, white,
black, purple. indigo, or violet.

Color of Identified Potential Threat
Icon color for the identified potential threat. You can
select only one color: red, yellow, pink, orange, blue,
green, white, black. purple, indigo, or violet.

Blinking Identified Potential Threat
You can select either True or False. True means that
the icon for the identified potential threat should blink
in this collision warning situation. False means that it
should not blink.

Fill Identified Potential Threat
You can select either True or False. True means that
the icon for the identified potential threat should be
filled in (i.e., color the icon interior). False means do
not fill the icon.

Color of Unidentified Potential Threat
Icon color for the unidentified potential threat. You

8-6

ATD/CWM Process Supporl

can select only one color: rcd, yellow, pink, orange,
blue, green, white, black, purple, indigo, or violet.

Blinking Unidentified Potential Threat
You can select either True or False. True means that
the icon for the unidentified potential threat should
blink in this collision warning situation. False means
that it should not blink.

Fill Unidentified Potential Threat
You can select either Txrue or False. True means that
the icon for the unidentified potential threat should be
filled in (i.e., color the icon interior). False means do
not fill the icon.

8-7

ATD/CWM Process Support

Table 8-4. Collision Warning Situation

Decision Mnemonic Value

Collision Warning Situation
Collision Warning Situation Name CWSName

Situation Definition

Situation Aircraft Partition Partition

Situation Severity Severity

Situation Flight Characteristics

Time
Min Time Min
Max Time Max

Range
Min Range_Min

Max RangeMax
Situation Response

Response to ATC ATC Mse

Response to other Aircraft InterAir_Msg

Corrective Action Response CorrectiveMsg

Alarm Alarm

Code Code 000
Alarm Characteristics

Pitch AlarmPitch

Duration AlarmDuration

Situation Display ------- - -

Color of Host Aircraft HostColor

Color of Identified Potential Threats IDColor

Blinking Identified Potential Threats IDBlink

Fill Identified Potential Threats IDFill

Color of Unidentified Potential Threats UIDColor

Blinking Unidentified Potential Threats UIDBlink

Fill Unidentified Potential Threats UID Fill

1.2. VALIDATION

Having completed the specification, you can validate the Application Model by performing the
following checks shown below. All checks must pass to have a validated Application Model. If any
of the checks fail, you must correct the necessary portions of the Application Model and subsequently
validate it again.

1. Your Application Model contains at least one collision warning situation.

2. Every collision warning situation contains values for all required fields.

ATD 'CWM Process Support

3. You have marked the "Corrective Action Response" decision true for at least one collision
warning situation.

4. You have specified a value for the ATCMessageMode if, and only if. there is at least one
collision warning situation response which has the "Response to ATC" decision marked true.

5. For each collision warning situation in which Time is specified, the minimum time value
("Time_Min") must be less than or equal to the maximum time ("TimeMax").

6. For each collision warning situation in which Range is specified, the following checks are done.

a) The minimum range value ("Range_Min") must be less than or equal to the maximum
range ("Range Max").

b) The minimum range value ("Range_Min") must be less than or equal to the
SurveillanceArea range specified in your Application Model and greater than or equal
to zero.

c) The maximum range value ("RangeMax") must be less than or equal to the
SurveillanceArea range specified in your Application Model and greater than or equal
to zero.

7. You have specified mutually exclusive icon shapes for the host aircraft, identified potential
threats, and unidentified potential threats.

S. The set of collision warning situations do not overlap. It is likely that all of the collision warning
situations will be specified either in terms of time or in terms of range but not a mixture of
both. Thus, these time-based or range-based situations should not overlap.

2. APPLICATION PRODUCTION

You must have successfully validated your Application Model before you can generate the Application
Products. If your Application Model has been validated, you follow the following steps to produce
the desired application.

1. Application Model Transformation.

You must transform your validated ATD/CWM Application Model (from its external form)
into an equivalent internal form expressed in terms of the ATD/CWM Decision Model before
you proceed with the remaining activities of the Generation Procedure. To do this transforma-
tion, you fill in forms that correspond to decision classes in the ATD/CWrM Decision Model.
You derive the values for these forms from your ATD/CWM Application Model. Page 7-153
describes how to do this step in more detail.

2. Select the Adaptable Components.

You use the information you captured in the preceding step to select adaptable components.
You are provided a group of adaptable components and selection criteria for each component.
To select the adaptable component, you must evaluate the selection criteria for each adaptable
component. Page 7-157 describes in more detail how you perform this step.

8-9

ATD/CWM Process Support

3. Adapt the Components.

Each of the adaptable code components is normally implemented by two parts: a specification
and a body. You adapt either the specification. body, or both for a given adaptable code com-
ponent. You adapt only those components you selected in the preceding step. Page 7-160
describes in greater detail how yvu adapt the components.

4. Compose the Components.

You compose the adapted code components into an executable ATD/CWM system by
compiling the source code files and linking them to form an executable. The basic steps are
moving the components to the target system (i.e., the system on which the ATD/CWM system
executes), compiling the Ada and C code components, and finally linking the compiled code
components together to form your ATD/CWM system. Page 7-168 describes in greater detail
how you compose the selected components for your ATD/CWM system.

Once you have successfully built the desired application, you can execute your ATD/CWM system
on the target hardware by following the steps described on page 7-171.

3. RUNTIME VALIDATION

You and your customer can evaluate your ATD/CWM system by performing the following checks as
the system executes.

1. The ATD/CWM system recognizes each collision warning situation.

2. The ATD/CWM system performs the desired actions in response to detected collision warning
situations.

3. Each aircraft in the surveillance area is displayed with the desired identifying icon.

8-10

9. ATD/CWM APPLICATION MODEL

NoTE: The requirements for the ATD/CWM system captured in the following Application Model
are shown in Appendix D. This Application Model was developed by manually following the
ATD/CWM Application Engineering User's Guide contained in the ATD/CWM Process

Support work product (Section 8).

Decision Mnemonic Value

Application Model Name ModelName ATD/CWM Svstem_1

Decision] Mnemonic Value

HostAircraft Characteristics 1
Surveillance Area Surveillance-Area 125

Host Aircraft Shape 1 HostAircraft Shape circle

ATC Messace Mode MessageMode A

Decision 1Mnemonic Value

Potential Threat Characteristics

Identification Requirements IDReq (airspeed)

Shape of Identified Aircraft IDShape triangle

Shape of Unidentified Aircraft UIDShape square

Decision Mnemonic Value

Collision Warning Situation

Collision Warning Situation Name CWSName Monitored

Situation Definition

Situation Aircraft Partition Partition ALL

Situation Seveiity Severity 0.10

Situation Flight Characteristics

Time

Min Time Min

Max TimeMax

Range

Min RangeMin 0

Max RangeMax 125

9-1

ATD/CWM Application Model

Decision Mnemonic Value

Situation Response

Response to ATC ATCMsg false

Response to other Aircraft InterAirMsg false

Corrective Action Response CorrectiveMsg false

Alarm Alarm false

Code Code 7400

Alarm Characteristics

Pitch AlarmPitch

Duration AlarmDuration

Situation Display

Color of Host Aircraft HostColor white

Color of Identified Potential Threats IDColor orange

Blinking Identified Potential Threats "IDBlink false

Fill Identified Potential Threats IDFill false

Color of Unidentified Potential Threats UIDColor green

Blinking Unidentified Potential Threats UIDBlink false

Fill Unidentified Potential Threats UID Fill false

Decision Mnemonic Value

Collision Warning Situation

Collision Warning Situation Name CWSName Possible

Situation Definition

Situation Aircraft Partition Partition ALL

Situation Severity Severity 0.20

Situation Flight Characteristics

Tim e - -------- -_----

Min TimeMin 60

Max Time-Max 90

Range

Min Range_Min

Max RangeMax

Situation Response

Response to ATC ATCMsg true

Response to other Aircraft InterAirMsg false

Corrective Action Response CorrectiveMsg false

Alarm Alarm true

Code Code 7200

Alarm Characteristics

Pitch Alarm Pitch 2500

9-2

ATD/CWM Application Model

Decision Mnemonic Value

Duration AlarmDuration 5.00

Situation Display -------- _-_-_--

Color of Host Aircraft HostColor white

Color of Identified Potential Threats IDColor orange

Blinking Identified Potential Threats IDBlink false

Fill Identified Potential Threats IDFill false

Color of Unidentified Potential Threats UIDColor green

Blinking Unidentified Potential Threats UIDBlink false

Fill Unidentified Potential Threats UID Fill false

Decision Mnemonic Value

Collision Warning Situation

Collision Warning Situation Name CWSName Potential

Situation Definition

Situation Aircraft Partition Partition ALL

Situation Severity Severity 0.30

Situation Flight Characteristics ---
Time

Min TimeMin 30

Max Time Max 60

Range

Min RangoeMin

Max RangeMax

Situation Response

Response to ATC ATCMsg true

Response to other Aircraft Inter_Air_Msg true

Corrective Action Response Corrective Msg true

Alarm Alarm true

Code Code 7300

Alarm Characteristics

Pitch AlarmPitch 4000

Duration AlarmDuration 5.00

Situation Display

Color of Host Aircraft HostColor white

Color of Identified Potential Threats IDColor pink

Blinking Identified Potential Threats IDBlink true

Fill Identified Potential Threats ID Fill true

Color of Unidentified Potential Threats UID Color blue

9-3

ATD/CWM Application Model

Decision Mnemonic Value

Blinking Unidentified Potential Threats UIDBlink true

Fill Unidentified Potential Threats UID Fill true

Decision Mnemonic Value

Collision Warning Situation

Collision Warning Situation Name CWSName Imminent
Situation Definition

Situation Aircraft Partition Partition ALL

Situation Severity Severity 0.50

Situation Flight Characteristics

Time

Min Time Min 0

Max Time Max 30

Range

Min Range_Min

Max RangeMax

Situation Response

Response to ATC ATCMsg true

Response to other Aircraft InterAirMsg true

Corrective Action Response CorrectiveMsg true

Alarm Alarm true

Code Code 7100

Alarm Characteristics

Pitch AlarmPitch 8000

Duration AlarmDuration 5.00

Situation Display ---

Color of Host Aircraft HostColor red

Color of Identified Potential Threats IDColor yellow

Blinking Identified Potential Threats IDBlink true

Fill Identified Potential Threats IDFill true

Color of Unidentified Potential Threats UIDColor purple

Blinking Unidentified Potential Threats UIDBlink true

Fill Unidentified Potential Threats UID Fill true

9-4

10. ATD/CWM APPLICATION SOFTWARE

NoTE: The components shown in this section were produced by manually following the Application
Production portion of the ATD/CWM Application User's Guide (Section 8) for the Applica-
tion Model shown on page 9-1. For clarity and illustrative purposes, only some of the code
components and documentation components are shown below.

Code Components

1. AudibleAlarm

Spec

-- AudibleAlarm (AA)

-- This module determines the frequency and duration at which
-- to ring the audible alarm for a specified collision warning
-- situation.

with PotentialThreat;
package AudibleAlarm is

procedure ringalarm(cws : in PotentialThreat.cws_id);

end AudibleAlarm;

Body

-- AudibleAlarm (AA) body

-- The audible alarm device generates a tone that can be heard
-- within the host-aircraft cockpit.

with PotentialThreat;
with AudibleAlarmDevice;
package body AudibleAlarm is

procedure ring_alarm(cws : in PotentialThreat.cws_id)
is
begin

case cws is
when PotentialThreat.Possible =>

AudibleAlarmDevice.ring_alarm(f => 2500, d => 5.00);

10-1

ATD/CWM Application Software

when Potential Threat.Potential =>
AudibleAlarmDevice.ring_alarm(f => 4000, d => 5.00);

when Potential Threat.Imminent =>
AudibleAlarm Device.ring_alarm(f => 8000, d => 5.00);

when others =>
return;

end case;
end ring_alarm;

end AudibleAlarm;

2. CollisionWarning SituationStatus

Spec

-- Collision Warning Situation Status (CWSS) spec

-- This module determines the collision warning situation status
-- for the given potential threat and host aircraft.

with PotentialThreat;
package CollisionWarningSituation Status is

function determinecws status(threat : in PotentialThreat.pthandle)
return PotentialThreat.cws id;

function determine host status return PotentialThreat.ows id;

end CollisionWarning_SituationStatus;

Body (excerpt)

-- Collision Warning Situation Status (CWSS) package body

-- This module determines the collision warning situation status
-- for the given potential_threat and hostaircraft.

with PotentialThreat;

with PhysicalQuantities; use PhysicalQuantities;

with SituationDynamics;
with TextI0;

package body Collision_Warning_SituationStatus is

-- This routine keeps track of the number of potential
-- threats in each collision situation. This enables us to
-- quickly determine the host aircraft status when
-- requested to provide it.

targetcount : array(PotentialThreat.cwsid'first
PotentialThreat.cws id'last) of integer (others

=> 0);

10-2

ATD/CWM Application Software

-- Determine the collision warning situation status of the specified

-- potential threat.

function determine-cws-status(threat :in PotentialThreat.pt_handle)
return Potential _Threat.cws id

is
airspeed_and-altitude-valid :boolean:

time-to-intersect :PhysicalQuantities.seconds;

target_range :PhysicalQuantities.nautical-mile;

old -cws-status, new-cws-status :PotentialThreat.cws_id;
begin

airspeed_and-altitude-valid :=PotentialThreat.altitude-valid(threat)
and then

PotentialThreat.velocity_valid(threat);

target_range :=PotentialThreat.get~range(threat);

if (airspeed -and-altitude-valid) then
time -to -intersect := SituationDynamics.get_elapsed-time(threat);

end if;

old -cws -status :=PotentialThreat.get_cws-status(threat);
if

(airspeed Iand-altitude-valid) and then
(0.0 <= time-to-intersect and then

time-to intersect < 30.0)) then
new-cws-status :=PotentialThreat.Imminent;

elsif

(airspeed and altitude valid) and then
(30.0 <= time-to-intersect and then

time to intersect < 60.0)) then
new-ows-status :=PotentialThreat.Potential;

elsif

(airspeed and altitude valid) and then
(60.0 <= time-to-intersect and then

time to intersect < 90.0)) then
new-ows-status :=PotentialThreat.Possible;

elsif

(0.0 <= target -range and then target range < 125.0)) then
new-cws-status :=PotentialThreat.Monitor;

else
new-cws-status :- PotentialThreat.normal;

10-3

ATD/CWM Application Software

end if;
if (targetcount(old cws status) /= 0) then

target_count(oldcwsstatus) := targetcount(old_cwsstatus) -
end if;
target_count(new__cws status) target_count(newcws status) + 1;
return new cws status;

exception
when constrainterror => textio.put_line("determine cws CE"); return

Potential Threat.normal;
when numeric-error => text_io.put_line("determine cws NE"); return

PotentialThreat.normal;
when others => textio.put line("determine cws Bozo error"); return

Potential Threat.normal;
end determine_cws_status;

-- Determine the collision warning situation status of
-- the host aircraft. Each the number of potential threats
-- in each situation category starting with the most severe
-- situation and progressing to the least severe. The
-- first collision warning situation encountered which has
-- a non-zero target count is the status of the host aircraft.
-- If all situations have zero potential threats, then the
-- status of the host aircraft is "normal".

function determine host cws status return Potential Threat.cws id
is

begin
if(

targetcount(PotentialThreat. Imminent) /= 0) then
return PotentialThreat.Imminent;

elsif (

targetcount(PotentialThreat.Potential) /= 0) then
return PotentialThreat.Potential;

elsif (

targetcount(PotentialThreat.Possible) 0= 0) then
return PotentialThreat.Possible;

elsif

targetcount(PotentialThreat.Monitor) /= 0) then
return PotentialThreat.Monitor;

else
return PotentialThreat.normal;

end if;
end determine host cws status;

end CollisionWarning_SituationStatus;

10-4

ATD/CWM Application Software

3. Audible AlarmDevice

Spec

-- Audible Alarm Device (AAD) spec

The audible alarm device generates a tone that can be heard
-- within the host-aircraft cockpit.

package AudibleAlarmDevice is

type Duration is delta 0.01 range 0.01 .. 10.00; -- seconds
type Frequency is range 1000 .. 10_000; -- hertz

procedure ringalarm(f in Frequency;

d in Duration);

type AlarmMessageType is private;

private
type AlarmMessageType is

record
Frequency Frequency;
Duration Duration;

end record;

end AudibleAlarmDevice;

Documentation Components

1. ATD/CWM Software Requirements Specification (SRS)

NoTE: Only a portion of the ATD/CWM Software Requirements Specification document is shown
here to reduce the size of the ATD/CWM case study documentation. The " indicates
portions purposely omitted within sections of this document.

10-5

ATD/CWM Application Software

Air Traffic Control / Collision Warning Monitor Software Requirements Specification
ATD/CWM-SRS-1.0: Volume 1 of I

1.0 : May 20, 1992

SOFTWARE REQUIREMENTS SPECIFICATION

FOR THE

ATD/CWM COMPUTER SOFTWARE CONFIGURATION ITEM

OF

THE AIR TRAFFIC CONTROL / COLLISION WARNING MONITOR SYSTEM

CONTRACT NO. Contract_1

CDRL SEQUENCE NO. XYZ004

Prepared for:

Government Agency - GA1

Prepared by:

Software Productivity Consortium
SPC Building

2214 Rock Hill Rd.
Herndon, VA 22070

Authenticated by Approved by
(Contracting agency) (Contractor)

Date Date

10-6

ATD/CWM Application Software

1. Scope

This section identifies the computer software configuration item (CSCI), which briefly states the
purpose of the system, describes the role of the CSCI within the system, and summarizes the purpose
and content of this software requirements specification (SRS).

1.1. Identification

This SRS establishes the requirements for the CSCI identified as:

"• System title: ATD/CWM

"* System mnemonic: ATD/CWM

"* System Identification number: ATD/CWM System_1

"* CSCI title: Air-Traffic-Display / Collision-Warning-Monitor

"* CSCI mnemonic: ATD/CWM

"* CSCI number: XXXX

1.2. CSCI Overview

The ATD/CWM system monitors air traffic to detect collision warning situations within a surrounding
surveillance area. The ATD/CWM CSCI will provide the following capabilities:

"* PotentialThreat monitoring. Monitors potential threat flight characteristics ground track.
relative bearing, range altitude, airspeed, and climb rate within the surveillance area.

"* Intersection monitoring. Monitors the probable intersection of all aircraft with the host
aircraft.

"* Collision warning situation detection. Detects collision warning situations with respect to each
potential threat based upon its predicted flight path and the separation minima.

"• Display a corrective action advisory message on the host aircraft's display which describes
what maneuvers the host aircraft should perform to avoid a collision.

"* Sound an audible alarm within the host aircraft's cockpit for a detected collision warning
situation.

"• Transmit messages to the nearby potential threat for a detected collision warning situation.

"* Transmit a message to a nearby air traffic control center for a detected collision warning
situation.

1.3. Document Overview

10-7

ATD/CWM Application Software

2. APPLICABLE DOCUMENTS

This section states document precedence and lists all documents referenced in this specification.

2.1. Government Documents

The following documents of the exact issue shown form a part of this specification to the extent
specified herein. In the event of conflict between the documents referenced herein and the contents
of this specification, the contents of this specification shall be considered a superseding requirement.

MIL-STD-1815A-1983 Reference Manual For the Ada Programming Language

Copies of specifications, standards, drawings, and publications required by suppliers in connection
with specified procurement functions should be obtained from the contracting agency or as directed
by the contracting officer.

2.2. Non-Government Documents

The following documents of the exact issue shown form a part of this specification to the extent
specified herein. In the event of conflict between the documents referenced herein and the contents
of this specification, the contents of this specification shall be considered a superseding requirement.

3. ENGINEERING REQUIREMENTS

This section contains the external interface and capability requirements for the ATD/CWM'M CSCI and
identifies internal CSCI interfaces. It also contains requirenients for CSCI data elements, adaptation,
sizing and timing. safety, security, design constraints, software quality factors, and human
performance/human engineering.

3.1. CSCI External Interface Requirements

The ATD/CWM CSCI will input and output data to the following external components:

"* Navigation (NAV)

"• Radar (RADAR)

"* AudibleAlarm (AA)

"• Communication (COMM)

"• AirTrafficDisplay (ATD)

"• AirTrafficControl (ATC)

10-8

APPENDIX A. A SEMI-FORMAL REQUIREMENTS
METHOD

A.1 INTRODUCTION

This appendix describes the requirements method used in the third and fourth iterations of the Air
Traffic Display/Collision Warning Monitor (ATD/CWM) domain case study of Synthesis practice.
This requirements method was designed for precise definition of the requirements of systems that
are members of the family comprising the ATD/CWM domain. This method is a variation of the meth-
od developed by the Naval Research Laboratory (NRL) Software Cost Reduction (SCR) project for
defining requirements of operational flight software for the Navy's A-7 aircraft (Heninger et al. 1978).
Both methods are semiformal in that the structure and form of specifications are precise but content
may sometimes be informal. This method will be superseded as the Consortium requirements
engineering method (Faulk et al. 1991) matures.

A.2 TERMINOLOGY

A knowledge of the following terms is required to understand the description of this requirements
method.

Control function A description of software that coordinates the
activation of other functions.

Device A physical entity with which the software interacts to
acquire information or to effect required behavior.

Environment The physical framework in which the software operates.

Function (1) Output function (SCR); (2) Output function,
control function or input function.

Input data item A specification of an allowed transmission of data
from a device to the software.

Input function A description of software that determines the response
to an input data item.

Output data item A specification of an allowed transmission of data
from the software to a device.

Output function A description of software that is solely responsible for
determining the value of one output data item.

(the) software (system) An implementation of required behavior.

A-I

Appendix A. A Semi-Formal Requirements Method

A.3 METHOD CONTRASTS

NoTE: Readers not familiar with the SCR requirements methods do not have to read this section.

The SCR method was designed to address the particular problems of complex, real-time software
systems. It had six objectives (Heninger 1980) of which two are particularly relevant for the
ATD/CWM domain case study:

* To specify external behavior only.

* To specify constraints on the implementation.

The method described here was designed to adhere to these objectives and all guiding principles of
the SCR method but in a variant form that is appropriate to the ATD/CWM domain. The primary
causes for modification are:

" A need to describe modifiable device outputs (i.e., the device, such as a CRT. maintains the
state of a continuous output so that arbitrary fragments can be modified independently).

" A need to describe processing of input data items that is dependent on the output state of
the software.

"* A need to describe control functions whose purpose is the explicit coordination of other functions.

"* A need to define the relevant theory upon which the system is built in a precise form (i.e., the
precise form can be used to derive code).

In addition, some features of the SCR method are omitted from this method to simplify assumptions
about the ATD/CWM problems to be described. This is possible only because this case study illus-
trates key facets of developing a domain and that objective is not u pendent on total realism in
problem complexity. The features of the SCR method that are simplified here include:

"• System states are assumed to be simple enough to describe which modes are not needed to
describe output functions.

"• Timing and accuracy constraints are given less attention than-would otherwise be necessary.
Onlycategories of constraint description that are essential to illustrating domain development
are covered.

"* Undesired event descrip tions are not considered. This is an important but simple extension
from SCR to this method.

" Required subsets and expected change are not treated within this method. These are
accommodated under the broader domain concern for all variation: both over a single system's
life cycle and among alternative systems.

A.4 STRUCTURE OF A REQUIREMENTS SPECIFICATION

The ATD/CWM requirements method guides the creation of an abstract requirements specification.
An abstract specification is inlendcd as a definitive guide for developers to use in the design,

A-2

Appendix A. A Semi-Formal Requirements Method

implementation, and verification of acceptable software. It is not intended for use by end-users or
others interested in an operational view of system behavior (however, such documentation should be
derivable without undue effort from the abstract specification).

The requirements specification is organized into three major descriptions: theory, environment, and
behavior. These descriptions are defined generally in Sections A.4.1 through A.4.3. Section A.5
provides the detailed content of each description.

A.4.1 THEORY

Theory is a description of a model of the relevant theoretical system upon which the system concept
is based. This model incorporates the entities in the environment whose detectable (i.e., measurable)
features and behavior can affect the behavior of the software. It further incorporates the definition
of relationships among those entities and features that reveal additional information which cannot
be directly measured. These entities, relationships, and features are a model of the theoretical limits
within which the system must operate.

Theory is comprised of a static model and a dynamic model. The static model is a definition of the
categories of information that are directly detectable in the environment. The dynamic model is a de-
scription of theoretical relationships and processes that characterize the potential behaviors of the
environment, as indicated by device inputs.

A.4.2 ENVIRONMENT

Environment is a description of the external environment within which the system operates. It includes
descriptions of the characteristics of the computer resources upon which the software executes and
the hardware devices with which the software is required to interact. These descriptions must be suffi-
cient to communicate all assumptions that imply constraints on the software. Each hardware device
is characterized by the protocols and formats by which the software receives input data from the
device and transmits output data to the device.

Environment is comprised of platform and devices. Platform defines the characteristics and assumptions
of the hardware, run-time facilities, and execution primitives upon which software behavior is implem-
ented. Devices describe the external devices (hardware, software, or hardware/software hybrids) with
which the software interacts to acquire information or effect required behavior. Each device is
characterized by the inputs it provides to the software and the outputs it accepts from the software.

A.4.3 BEHAVIOR

Behavior is a description of the ways in which the software can affect the environment in which it

operates. This corresponds to a description of the conditions under which each possible output of
data is produced and a description of how the value of the output is determined.

Behavior is composed of presentations and activities. A presentation is an output function; it
describes the ways in which the software determines the value of each device output, An activity is
a control function; it describes the events and conditions that enable/disable and activate/deactivate
presentations and other activities for coordination among presentations and with processing of device
inpu:e (i.e., input functions).

A-3

Appendix A. A Semi-Formal Requirements Method

A.5 DETAILED CONTENT OF A REQUIREMENTS SPECIFICATION

This section contains a precise description of the content and form of required information, applicable
verification criteria, and a procedure and heuristics for producing that information.

A.5.1 THEORY - STATIC MODEL

A static model is a collection of class specifications that express an essential information model of
the software. A class denotes a collection of entities that are alike in specific, important ways. Differ-
ences among the entities are expressed as a set of properties that prescribe concrete data associated
with each entity and links to other entities (of any class) that establish relationships among entities.
A class may have subclasses that denote important subsets of the membership of the class.

Content and Form

Each class description requires the following information:

"* Name: an identifier that allows for explicit references, at other points in the specification, to
a particular type of entity.

* Ancestry: a class of which this is a subclass.

"* Properties: a description of the data items that characterize members of the class.

A data item description requires the following information:

"* Name: an identifier that allows for explicit references, at other points in the specification, to
a particular property of members of a class.

"* Value space: the data type of properties having a concrete (i.e., printable) value or designation
of a class having members to which members of this class may refer.

"* Description: a textual explanation of the meaning of the data item.

Verification Criteria

A completed class description must satisfy the following criteria:

"* The class is uniquely named and all its properties are uniquely named relative to it and its
ancestry.

"* All referenced classes arc defined.

Procedure and Heuristics

To be determined

A.5.2 THEORY - DYNAMIC MODEL

A dynamic model defines logical and mathematical relationships among the concepts of the static
model and derivations of additional information. These relationships and derivations form the basis

A-4

Appendix A- A Semi-Formal Requirements Method

for predicting the current (or future) state of the physical system based on measurements of past (or
current) state. These predictions determine the need and provide the rationale for particular software
behavior.

Content and Form

A relationship or derivation description requires the following information:

"* Name: an identifier that allows for explicit references, at other points in the specification, to
this relationship or derivation.

" Equation: a logical or mathematical equation that defines this relationship or derivation as
a function of properties in the static model (and a function of other intermediate relationships
and derivations).

"• Subordinate relationships/derivations: a set of relationships/derivations that are referenced
only within the containing relationship/derivation.

The equation may define a time-variant or iterative computation process.

Verification Criteria

A completed relationship/derivation description must satisfy the following criteria:

"* The relationship/derivation is uniquely named and subordinates are uniquely named relative
to it.

"* All referenced data items, relationships, and derivations are defined.

Procedure and Heuristics

To be determined

A.5.3 ENVIRONMENT - PLATFORM

Platform is a description of the hardware/software mechanism upon which a system operates. The
characteristics of the platform determine the primitive mechanisms and capabilities by which the
required behavior of the system can be achieved.

Content and Form

A platform description requires the following information:

"* Hardware: the nature and variety of computational equipment upon which the system is
required to operate.

"* Operating software: the nature and variety of the run-time facilities available for the operation
of the system.

"* Computational software: the nature and variety of implementation facilities by which the
system is realized.

A-5

Appendix A. A Semi-Formal Requirements Method

Verification Criteria

A completed platform description must satisfy the following criterion:

• All platform characteristics must be consistent with the required capabilities of the system.

Procedure and Heuristics

To be determined

A.5.4 ENViRONMENT - DEVICES

A device defines a description of the means by which a system senses or affects the environment in
which it operates. Devices can be either hardware or software and must have a well-defined interface
with which the system can communicate.

Content and Form

A device is described by the set of input and output data items that it provides for software interaction.
Each device requires the following information:

"• Name: an identifier that allows for explicit references, at other points in the specification, to
a particular device.

"* Inputs: a description of the input data items that the device is able to deliver to the software.

"* Outputs: a description of the output data items that the device is able to receive from the software.

An input data item description requires the following information:

"* Name: an identifier that allows for explicit references, at other points in the specification, to
a particular input of a device.

"* Value space: (1) A specification of the form in which input is delivered to the software. (2) A
set of name/value space/description tuples describing the structure of a composite input data
item.

" Timing characteristics: if time constrained, how long input data is available after occurrence
(for interrupt signalled data) or how often input data is to be measured to attain sufficient
accuracy (for polled data).

"• Input mapping: a specification of the input function(s) that map input datavalues into entities
(and their associated properties) of the static model.

An output data item description requires the following information:

"* Name: an identifier that allows for explicit references, at other points in the specification, to
a particular output of a device.

" Value space: (1) A specification of the form in which output is to be received from the software.
(2) A set of name/value space/description tuples describing the structure of a composite
output data item.

"* Timing characteristics: if time constrained, the rate at which output must be produced.

A-6

Appendix A. A Semi-Formal Requirements Method

A value space description includes the assumed units of measurement, acceptable range and assumed
accuracy or acceptable discrete values, prescribed data representation, and required instruction se-
quence or software interface. See (Heninger et al. 1978) for examples of value space descriptions.

Verification Criteria

A completed device description must satisfy the following criterion:

• The device is uniquely named and all its data items are uniquely named relative to it.

Procedure and Heuristics

To be determined

A.5.5 BEHAVIOR - PRESENTATION

A presentation is a specification for an output function. Presentations are described in terms of a
standard set of paradigms characterized by the form in which information is organized for output.
One presentation is defined for each output data item of each device. This method is tailored to a
problem domain by establishing an applicable paradigm set that satisfies the particular needs of that
domain.

Content and Form

All presentations require the following information. Particular paradigms may require additional
information.

" Name: an identifier that allows for explicit references, at other points in the specification, to
a particular presentation.

" Paradigm: the paradigm that controls the way in which the presentation is described and how
it will behave.

" Context: a class of information from the static model that indicates the type of data to be
output and a predicate that can be applied to limit the instances of the class that determines
an output value. Any data that is accessible, via references, to other information classes can
also be considered part of the context.

" Mapping template: a paradigm-specific description of how context (and constant) data is
mapped into the output data item within paradigm-determined constraints. A mapping may
include an algorithmic transform of context data to satisfy the semantics or value form/units/
constraints of the output data item. Alternative mappings may be specified by identifying a
set of mappings, each designated by an associated enabling condition (described by a
predicate on the context).

" Input control: any input data items whose detection and handling are enabled only within the
activation lifetime of the presentation and relative to its context. Input handling may be (1) inde-
pendent of the particular enabling output, (2) relative only to the context of its enabling output,
or (3) variable, under the control of the enabling output as determined by its particular paradigm,
by correlation of the input to the structure of the output as defined by the mapping template.

" Lifetime: either invoked or activated. Invoked presentations produce an output and terminate;
activated presentations produce an output whenever context data changes until deactivated.

A-7

Appendix A. A Semi-Formal Requirements Method

Verfcation Criteria

A completed presentation description must satisfy the following criteria:

"* All presentations are uniquely named.

"* Context data is used consistent with its value space definition in the mapping to output.

"* The mapped value of context data satisfies the value space definition of the output data item.

"* The mapping template is completed correctly with respect to the referenced paradigm.

"* All additional, paradigm-required information is provided.

"* Any paradigm-specific constraints are satisfied.

Procedure and Heuristics

A presentation is specified through the following procedure:

1. Name and identify the context of the presentation.

The output data item to be produced usually suggests an appropriate name and context.

2. Determine which standard mapping paradigm and lifetime best characterize the required
output behavior.

3. Describe, in paradigm-specific terms, how context data (defined in the static model) is
mapped into output data form (defined in devices).

4. Identify which, if any, input data items are enabled by this presentation.

5. Revise this or other referenced specifications to satisfy the verification criterion.

When an inconsistency exists, it is necessary to determine whether the fault is in this
specification or in the one(s) with which it conflicts.

A.5.6 BEHAVIOR - AcnVrFEs

An activity is a specification for a control function. Activities are described in terms of four control
paradigms:

"* Sequence. A set of activities are activated in a prescribed order.

"* Concurrence. A set of activities are activated at the same time.

"* Selection. One of a set of activities are activated depending on user choice or system state.

"* Subordination. Activation of a controlled activity enables subsequent activation of other
activities depending on user choice or system state.

A-8

Appendix A. A Semi-Formal Requirements Method

All requirements methods for real-time systems must provide methods for representing the states and
state changes that a system must track and to which it must respond. Current state information is
expressed in terms of conditions and events. A condition is a truth-valued function (i.e., one that only
takes on the values true or false) that characterizes the state of the system for some measurable period
of time (e.g., altitude > 500 ft represents all states of the aircraft where its altitude is above 500 feet).
More complex conditions can be described in the usual way by forming boolean expressions over
simple conditions (e.g., altitude > 500 ft AND altitude < 2500 ft).

For real-time applications, the interest is not only in the current state but in those points in time
associated with state changes. These moments where the value of a condition changes is called an
event. Whereas conditions persist for measurable periods of time, events occur at single points in time.
Events are a relation between the state before and after the change. For example, the event associated
with altitude > 500 ft refers to any state change where the altitude was 500 ft or less and became
greater than 500 ft. An event is represented by the following notation:

@T(condition)

This describes any moment at which there is a state change from a state in which the condition is not
true to one in which it is. Thus, the event given above is written as @T(altitude > 500 ft). Similarly,

@F(condition)

denotes any moment the condition becomes false. Often, more information is needed about the state
to describe an event than just what conditions have changed. The when clause describes an event in
which one condition changes at a time when another holds.

@T(conditionl) when condition2
@',F(cond ition3) when condition4

An activity may be either invoked by another activity or activated by an internal or external event.
Activation of an invoked activity may be conditional on a truth-valued expression concerning system
state. Activities can be defined to terminate when all subactivities have terminated, upon occurrence
of a disabling event, or when user choice dictates.

Content and Form

All activities require the following information:

"* Name: an identifier that allows for explicit references, at other points in the specification, to
a particular activity.

"* Paradigm: the paradigm that controls the way in which the activity is described and how it
will behave (one of sequence, concurrence, selection, or subordination).

" Context: a class of information from the static model that indicates the type of data to be
output and a predicate that can be applied to limit the instances of the class that determine
an output value. Any data that is accessible, via references, to other information classes can
also be considered part of the context.

"* Activation: invoked or specification of an activating event. These are represented using the
@T or @F notation described above.

A-9

Appendix A. A Semi-Fonmal Requirements Method

"* Control set: the set of presentations and/or activities that are to be controlled and, for each,
a specification of how its context is determined from activity context.

"* Deactivation criteria: either subactivity termination, disabling event, or user choice.

Verification Criteria

A completed activity description must satisfy the following criteria:

"* All activities are uniquely named.

"* All referenced activities, presentations, and data items are defined.

"* The activity is either event-activated or there is at least one invoking activity.

"* If the activity is invoked, there is at least one activity somewhere in its ancestry that is event
activated.

In addition, there must be at least one activity that is activated by system startup.

Procedure and Heuristics

An activity is specified through the following procedure:

1. Name and identif,, the context of the activity.

The purpose of the activity usually suggests an appropriate name and context.

2. Determine which standard control paradigm and lifetime best characterize the required
behavior.

3. Describe, in paradigm-specific terms, how context data (defined in the static model) is derived
from activity context data for each element of the control set (defined in presentations or other
activities).

4. Identify which, if any, input actions are enabled by this activity.

5. Revise this or other referenced specifications to satisfy the verification criterion.

When an inconsistency exists, it is necessary to determine whether the fault is in this
specification or in the one(s) with which it conflicts.

A.6 MAPPING A SPECIFICATION INTO AN ADARTS DESIGN

This requirements method is used in the ATD/CWM case study. Furthermore, the case study also
follows the Ada-based Design Approach for Real-Time Systems (ADARTS) guidance on creating de-
sign structures (Software Productivity Consortium 1991b). The ADARTS guidance assumes that a
Real-Time Structured Analysis (RTSA) requirements method has been used. As a result, the
ADARTS guidance must be modified so that is can accommodate this requirements method.

A.6.1 PROCESS STRUCTURING

In the process structuring activity, ADARTS first requires the derivation of a set of concurrently
executable sequential processes. Interpreting ADARTS guidance on process derivation in terms of
this requirements method, derive an initial set of processes as follows:

A-10

Appendix A. A Semi-Formal Requirements Method

"• One for each possible instance of each static model class.

"* One for each relationship/derivation of the dynamic model.

"* One for each device.

"* One for each device input mapping.

"* One for each device output data item/presentation.

"* One for each activity.

Each process in this initial set is minimal (i.e., atomic with respect to concurrency). Combine these
processes according to ADAPTS clustering criteria to create a refined process structure. ADAPTS
process clustering criteria is a sufficient guide to resolving the dependency relations even though this
requirement method does not create data flow/control flow and finite state machine descriptions. This
is a sufficient resolution for purposes of this case study, but fuller resolution is expected when the
Consortium requirements method is integrated with ADAPTS. Create process behavior
specifications for each process consistent with ADARTS guidance.

A.6.2 CLASS STRUCTURING

The approach in the case study for class structuring is influenced by both (Parnas and Clements 1986)
and ADAPTS. In this approach, derive the information hiding structure directly from the structure
of the requirements specification using the following heuristics. The term module is used below in
lieu of the ADARTS term class to avoid confusion with the concept of static model classes.

"* There are three top-level modules: environment hiding, behavior hiding, and software
decision, following (Parnas, Clements, and Weiss 1985).

"* Behavior hiding has two submodules: function drivers and shared functions.

" Environment hiding has two submodules: extended computer, characterized by the platform
specification, and device interface, which has one submodule for each device specification.

" There is one function driver submodule for each device (i.e., related set of presentations). In
addition, there is one submodule (or more, as appropriate) for the set of activities.

"* Shared functions has a submodule each for the static model and the dynamic model. Each
class of the static model becomes a submodule of the static model module.

Create the information hiding structure first even though this is contrary to ADAPTS guidance on
class structuring. This change is recommended because the information hiding structure determines
the identity of all modules for which interface specifications are produced. This step combines the
ADARTS guidance of deriving abstractions and organizing them into an information hiding structure.
Synthesis subsumes the ADAPTS creation of a generalization/specialization structure. This is
accomplished by allowing for adaptation in a manner independent of the design method.

Create the module specifications and an assumptions-oriented dependency structure using the
ADAPTS guidance.

A-11

Appendix A. A Semi-Formal Requirements Method

This page intentionally left blank.

A-12

APPENDIX B. PRESENTATION PARADIGMS

B.1 INTRODUCTION

This appendix describes the presentation paradigms used in the ATD/CWM Product Requirements.
These paradigms characterize the form in which information is organized for output. Each paradigm
is defined by one or more components. The paradigms presented in this appendix satisfy the particular
needs of the ATD/CWM domain.

B.2 MAP PRESENTATION

The Map Presentation characterizes the form in which information is organized on a graphical
display. This presentation is defined by a Context, Focus, PositionAttribute, Image, Labels, and
Coordinate-System as described in the following table.

Component Description

Context The class of entity in the static model to display and a filter to determine a subset
of the class entities which are actually displayed. The general form is:

(class, filter)

where filter is a boolean-valued expression expressed in terms of attributes of the
class entities. Only those entities for which the filter is true are displayed. If the
filter expression is a constant true, then all class entities are displayed.

Focus A singleton class specifying the focus (i.e., central entity) in the display.

PositionAttribute The location, in terms of direction and magnitude, of the entity position on the
display. Magnitude and direction are relative to the focus. The focus is always at the
center of the display.

Image An image is composed of four attributes: shape, color, fill, and blinking. Values for
an image are determined by evaluating a conditional. The general form is:

(predicate, (shape, color, fill, blink))

where predicate is a boolean-valued expression. If the predicate is true, then the
associated values are used. Only one predicate for a given context entity can be true
at any given instant.

Entities are displayed as icons having a particular geometric shape and color. The
icon outline will be colored while its interior is black. The icon shape is portrayed
in outline form. If fill is specified, then the icon interior is also colored.

Icons are positioned relative to the focus. The display orientation for the triangle
and square will always appear as shown in Figure B-1.

The blinking rate is fixed at 0.125 seconds.

B-1

Appendix B. Presentalion Paradigms

Component Description

Labels Textual attributes shown with the displayed object. These are displayed in a vertical
field as indicated by:

text 1
text 2
text_3

This field is located either immediately to the left. to the right, above, or below the
displayed entity.

Coordinate System Maximum (x, y) range of display in nautical miles.

Figure B-1. Icon Display Orientation

Figure B-2 represents the type of display the map paradigm provides. The boxes indicate displayed
entities. The direction is given by 0 and the magnitude is the distance from the box to the focus. The
cross-hatch (+) marks the location of the focus.

[]

Figure B-2. Map Presentation

B.3 TEXT PRESENTATION

The Text Presentation characterizes the form in which printable textual information is organized on
a display. This presentation is defined by a Template and Context as described in the following table.

B-2

Appendix B. Presenlalion Paradigms

Component f Description

Template Boilerplate text having embedded placeholders that must be filled in before the
message is sent to the device. A value for the boilerplate text is determined by
evaluating a conditional of the form:

(predicate, value)

where predicate is a boolean-valued expression. If the predicate is true, then the
associated value is used for the boilerplate. There is a list of these (predicate, value)
pairs for template. Only one predicate for a given context entity can be true.

Text car be either alphanumeric or hexadecimal constants of the form OxNN (N is
a hexadecimal digit 0-9, A-F). Placeholders are designated by %attribute where
attribute indicates the source of information within the context entity. Placeholders
are filled in using the corresponding attribute value.

Context The class of entity in the static model from which to retrieve the information to fill
in the placeholders.

When activated, this presentation formats the text from the template replacing placeholders with
information retrieved from the attributes of the context class.

B.4 AUDIBLE ALARM PRESENTATION

The Audible Alarm Presentation characterizes the pitch and duration for an audible alarm. This
presentation is defined by a Context and FreqandDuration as described in the following table.

Component Description

Context [he class of entity in the static model from which to determine the frequency of the
audible alarm and how long (i.e., duration) to ring it.

Freq and Duration The pitch of the alarm measured in hertz (resolution of one hertz) and how long
the alarm is rung measured in seconds (resolution of 0.01 seconds). A value for
frequency and duration is determined by evaluating a conditional of the form:

(predicate. frequency, duration)

where predicate is a boolean-valued expression. If the predicate is true, then the
associated frequency and duration is used. There is a list of these (predicate.
frequency, duration) triples for frequency and duration. Only one predicate for a
given context entity can be true.

When activated, this presentation causes the audible alarm to ring at a specified frequency for a
specified time duration by accessing the context entity to determine which frequency and duration
predicates are true.

B.5 BINARY PRESENTATION

The Binary Presentation characterizes the form in which information is organized into a binary
representation. This presentation is defined by a Context and Template as described in the following table.

B-3

Appendix B. Presentation Paradigms

Component Description

Context The class of entity in the static model from which to retrieve the information to fill
in the placeholders.

Template Boilerplate having embedded placeholders that must be filled in before the
message is sent to the device. Placeholders are designated by %attribute where
attribute indicates the source of information within the context entity. Placeholders
are also designated by @class.attribute signifying where to get information from a
singleton class. The @ can only be used for a singleton class. All numeric
information in the template, including the values filled in for the placeholders, is
converted to binary. A value for the boilerplate is determined by evaluating a
conditional of the form:

(predicate, value)

where predicate is a boolean-valued expression. If the predicate is true. then the
associated value is used for the boilerplate. There is a list of (predicate, value) pairs
for template. Only one predicate for a given context entity can be true.

When activated, this presentation formats the information from the template replacing placeholders

with information retrieved from the attributes of the context class.

"1-4

APPENDIX C. AIR TRAFFIC DISPLAY/COLLISION
WARNING MONITOR CASE STUDY WITH

AUTOMATION

C.1 INTRODUCTION

This section describes how a commercially available tool--MetaToolTm Specification-Driven-Tool Builder
(SDTB [AT&T 1990])-could be used to automate a portion of the Synthesis Domain Implementation
and Application Engineering activities for a domain. Even though effective use of Synthesis does not de-
pend on automation. the mechanical orientation of Synthesis is partially predicated on automation of the
Application Engineering process. As context for the remainder of the section, the following two subsec-
tions briefly describe MetaTool SDTB and the general strategy of the Consortium for using it for the
ATD/CWM domain. Sections C.2 through C.6 present sample work products for that domain, including
examples of the MetaTool source and product description files and examples of products built using the
ATD/CWM Specification-Driven tool (ATD/CWM SDTool) produced with MetaTool SDTB. The nota-
tion used in the MetaTool source and product description files is defined in (AT&T 1990); however, the
examples given can be understood without detailed knowledge of this notation.

C.1.1 METATOOL SPECIFICATION-DRIVEN-TOOL BUILDER OvERVIEW

MetaTool SDTB translates tool description files into specification-driven tools (SDTools). Similarly,
generated SDTools translate textual specifications into text-based products such as code and documenta-
tion. MetaTool SDTB reads a source description file and a product description file in order to automati-
cally generate an SDTool (Figure C-i). Similarly, a generated SDTool reads a specification file and
produces products according to the information contained in that specification.

Source JSpecification
Jescription

Prtoduct Product

Description

Figure C-1. SDTool Development Using MetaTool Specification-Driven-Tool Builder

C-I

Appendix C. Air Traffic Display 'Collision Warning Monitor Case Study With Automation

A source description file describes the grammar for a language to be used in the corresponding SDTool
specification file. A product description file defines a template that describes how the SDTool is to
build a product depending on the information the SDTool finds in its input specification file.

Each SDTool built by MetaTool SDTB is composed of three functional parts: the front end, the middle
part, and the back end (Figure C-2 from [AT&T 1990]). The front end parses the input specification and
creates an internal parse tree. MetaTool SDTB automatically generates the front end from the source de-
scription file. The middle part executes after the front end and performs whatever operations are necessary
to prepare for generation of the products. The middle part is a customized part provided by the SDTool
developer. The back end of a SDTool generates the products. MetaTool SDTB automatically generates
the back end from the product description files.

I Specification

SDTool
Front End

Parse Tree I

Middle Part

Parse Tree and
Other Data Structures

Back End

Products

Figure C-2. Internal Structure of an SDTool

C.1.2 USING METATOOL SPECIFICATION-DRIVEN-TOOL BUILDER TO SUPPORT THE AIR TRAmc

DISPLAY/COLLISION WARNING MONITOR DOMAIN

The Product Implementation activity defines a product called Generation Procedure. This product defines
a mechanical process for selecting, adapting, and composing adaptable components based on decisions
expressed in an Application Model to form an application. The Generation Procedures also define a map-
ping of decisions in the Application Model to parameters of adaptable components. The Product Imple-
mentation activity also creates adaptable components that satisfy the product design specifications. The
Consortium used MetaTool SDTB to automate only the mechanical selection and adaptation process. and
the decision mapping aspects of the ATD/CWM Generation Procedures. In addition, MetaTool SDTB
provides a means to represent adaptable components.

To realize the mechanical process. the ATD/CWM SDTool accepts an ATD/CWM Application Model
expressed in textual form and uses information contained in the model to determine which code and

C-2

Appendix C. Air Traffic Display/Collision Warning Monitor Case Study With Automation

documentation components to generate. The grammar of the ATD/CWM Application Model
Notation is expressed in a Backus-Naur form (BNF) in a MetaTool source description file. The source
description file also defines all Adaptable Components that the ATD/CWM SDTool could select and
adapt. Implementations of the Adaptable Components are captured in product description files
(Figure C-3). The product description files contain metaprogramming constructs used for both Gener-
ation Implementation (i.e., defining a Generation Procedure for selecting and adapting a component)
and Component Implementation (i.e., defining an Adaptable Component).

S BNF Description of ATD/CW'M

ATD/CWM Application Model Applicationd

Product Description Product Description

Figure C-3. Air Traffic Display/Collision Warning Monitor SDTool Development Using MetaTool
Specification-Driven-Tool Builder

To implement the decision mapping. the Consortium developed customized code for the middle part of
the ATD/CWM SDTool. This code calculates values for parameters of the Adaptable Components by
extracting decisions of the ATD/CWM Application Model from the internal parse tree representation
of the Application Model. Figure C4 depicts the resulting ATD/CWM SDTool.

ATD,'CWM

Application Model

ATD!CWM
SDToo ont End

I Parse Tree

Customized Code for
ecision Mappin

I Parse Tree and

Other Data Structures

Back End

Saa.ada cs~d

Figure C-4. Internal Structure of Air Traffic Display/Collision Warning Monitor SDTool

C-3

Appendix C. Air Traffic Display!Collision Warning Monitor Case Siudy With Automalion

The ATD/CWM SDTool automates a portion of the ATD/CWM Application Engineering Process
Support-namely, a portion of the Application Production phase (partially shaded box in Figure C-5).
Application Modeling, which precedes Application Production, remains a manual process. The applica-
tion engineer must follow a mechanical process to build and assess an Application Model. Once the appli-
cation engineer is qatisfied that the Appli ation Model describes the desired ATD!CWM system, he uses
the ATD/CWM SDTool to produce the desired components for that system. The application engineer
then manually composes these components to obtain the desired products (e.g., application,
documentation). The Consortium could have used MetaTool SDTB to compose the components as well.

Customer
Requirements

- Application Modeling -

Application Production

Application Procductio

Comomponents

pplication Delivery
Software Support

------------------- Delivery and Operation Support

Deliverables

KEY:

c:z> Product

[Activity

Information Flow

Product Flow

[. Automated Activity

Figure C-5. Partial Automation of Air Traffic Display/Collision Warning Monitor Application Engineering Process

(C-4

Appendix C. Air Traffic Display/Collision Warning Monitor Case Study With Automation

C.2 GENERATION PROCEDURES AUTOMATION

The source description file describes the BNF grammar of the Application Modeling Notation that
the ATD/CWM SDTool accepts. This is the language used to write an ATD/CWM Application Model.
The source description file also identifies the products that the ATD/CWM SDTool generates. An
excerpt of the source description file is shown in Figure C-6.

%grammar

model (model_name projectinformation host-aircraft potentialthreat cws+)

modelname : ("ApplicationModelName:" id)

project-information : ("Project_Information:" contract systeminfo)

host-aircraft : ("HostAircraftCharacteristics:" surveillance-area

host_aircraft shape)

surveillance area ("Surveillance Area:" number)

hostaircraftshape : ("HostAircraftShape:" icon_shape)

%product aa.ada
%product cwss.ada

Figure C-6. Generation Procedures Source Specification (Excerpt)

Each %product statement (e.g.. %product aa.ada) identifies a product description file which defines
a product of the ATD/CWM SDTool. Each product description file corresponds to an Adaptable
Component specified in the Product Design Activity. Figure C-6 shows a partial listing of the products
produced by the ATD/CWM SDTool.

The product description file contains a template that describes how to build the product. The template
contains target text and metaprogramming constructs. Target text (any text not escaped with the %
MetaTool SDTB meta-character) appears exactly as is in the generated product. The metaprogram-
ming constructs specify how to adapt the component. Metaprogramming constructs begin with the
% character. Figure C-7 shows an excerpt of the product description file for product aa.ada. You can
compare this implementation of aa.ada with the TRF2 implementation in the fourth iteration of the
ATD/CWM case study.

C-5

Appendix C. Air "Iaffic Display/Collision Warning Monitor Case Study With Automation

%template

%if _ring != NULL %then

-- AudibleAlarm (AA) body

-- This module determines the characteristics at which
-- to ring the audible alarm for a specified collision warning

-- situation.

with Potential Threat;
with Audible AlarmDevice;

package body AudibleAlarm is

procedure ringalarm(cws in PotentialThreat.cwsid)
is
begin

case c,,s is

%for (r=_ring; r != NULL: r = r->_next) %loop

when PotentialThreat.%s(r->_cws_name) =>

AudibleAlarmDevice.ring alarm(f => %s(r->_frequency),
d => %s(r->_duration));

%end-loop
when others =>

return;

end case;

end ring_alarm;

end AudibleAlarm;
%end-if

Figure C-7. Product Description File - aa.ada (Excerpt)

C.3 GENERATED PRODUCTS

This section shows samples of the aa.ada and cwss.ada products produced by the ATD/CWM SDTool.
These samples are based on the ATD/CWM Application Model excerpt shown in Figure C-8. The
front end of the ATD/CWM SDTool parses this textual input producing in internal parse tree. The
middle code calculates the parameters for the adaptable components using information contained
in the Application Model. The back end generates the desired work products.

The ATD/CWM SDTool will select and generate product aa.ada because the Application Model
contains a Situation Response which has an Alarm of Yes (i.e., the ATD/CWM SDTool evaluates the
%if conditional at the beginning of the %template and determines that it is true). The ATD/CWM
SDTool will also adapt this component based on values of decisions expressed in the Application Mod-
el (e.g., alarm pitch and duration). An excerpt of the adapted aa.ada component is shown in Figure

C-9. The ATD/CWM SDTool will always select cwss.ada. Furthermore, this component is also adapted
based on values in the Application Model (e.g., Min and Max time values) as shown in Figure C-10.

C-6

Appendix C. Air Traffic Display/Collision %aming Monitor Case Study With Automation

Collision_Warning_Situation:
CollisionWarning_SituationName: Possible

SituationDefinition:

SituationFlightCharacteristics:
Time:

Min: 60

Max: 90
Range:

Range_Min:
RangeMax:

Situation Aircraft Partition: ALL
SituationSeverity: 0.20

SituationResponse:
Responseto ATC: No
Responseto other Aircraft: No

CorrectiveActionResponse: No
Alarm: Yes

AlarmCharacteristics:
Pitch: 2500

Duration: 5.00

Figure C-8. Air Traffic Display/Collision Warning Monitor Application Model (Excerpt)

procedure ringalarm(cws : in PotentialThreat.cwsid)
is
begin

case cws is
when Potential Threat.Possible =>

AudibleAlarmDevice.ringalarm(f => 2500, d => 5.00);

when ...

when ...

when others =>
return;

end case;
end ringalarm;

Figure C-9. Generated Product - aa.ada (Excerpt)

C-7

Appendix C. Air Ikaffic Display/Collision Warning Monitor Case Study With Automation

function get-cws-status(threat :in PotentialThreat.pt-handle)
return PotentialThreat.cws id

is
time to intersect :PhysicalQuantities.seconds;
target-range PhysicalQuantities.nautical_mile;

begin
target_range Potential_-Threat.get-range(threat);
time-to-intersect :=SituationDynamics.get-elapsed_time(threat);
if (.)then

elsif ..)then

elsif
(60.0 <= time-to -intersect and then

time to intersect < 90.0)) then
return PotentialThreat.Possible;

elsif (..)then

else
return PotentialThreat.nornial;

end if;
end get_cws_status;

Figure C-10. Generated Product - cwss.ada (Excerpt)

Appendix C. Air Traffic Display/Collision Warning Monitor Case Stud With Automation

C.4 METATOOL SPECIFICATION-DRIVEN-TOOL BUILDER DESCRIPTION FILES

This section provides complete listings of the source description file (defining the grammar for the
ATD/CWM Application Model) and product descriptions files for aa.ada and cwss.ada.

C.4.1 SOURCE DESCRIPTION FILE

%features R

%red id number

%lex-definitions
%%e 1500
%%p 5000
%%n 1000
0%/a 4000

%grammar

model : (modelname project information host-aircraft potential-threat cws+)

model-name : ("ApplicationModelName:" id)

projectinformation : ("ProjectInformation:" contract systeminfo)

contract : ("Contract:" contractagency contract number contractcdrl)

contract-agency ("Agency:" id)

contract-number ("Number:" id)

contract cdrl : ("CDRL:" id)

systeminfo ("System:" systemname system mnemonic systemid)

systemname : ("Name:" id)

system_mnemonic : ("Mnemonic:" id)

system_id : ("Id:" id)

host-aircraft : ("HostAircraftCharacteristics:" surveillance-area
hostaircraftshape)

surveillance-area : ("SurveillanceArea:" number)

host aircraftshape : ("HostAircraftShape:" iconshape)

potentialthreat : ("PotentialThreatCharacteristics:"
idreq idshape uidshape)

idreq : ("IdentificationRequirements:" idrequirement)

id requirement : ("(" idl:id ["2' id2:id] ")")

C-9

Appendix C. Air fraffic Display/Collision %maring Monitor Case Study With Automation

idshape ("Shape-ofIdentified Aircraft:"I icon-shape)

uidshape :("Shape_ofUnidentifiedAircraft:"I icon_shape)

cws : ("CollisionWarning_Situation:" cws-name defn response display)

cws-name : ("CollisionWarning_SituationName:"I id)

defn : ("Situation-Definition:" predicate partition severity)

predicate :("SituationFlightCharacteristics:"I cws time cws range)

cws-time : ("Time:" min-time max-time)

min-time :("Min:" [number]))

max-time :("Max:"1 [number]))

cws-range :("Range:" min range max range)

min-range :("Range-Mmn:" [number]))

max_range :("RangeMax:" [number]))

partition :("Situation AircraftPartition:"I id)

severity : ("SituationSeverity:" number)

response :("SituationResponse:" atc pt corrective alarm)

atc :("Response-toATC:"1 yes-or-no)

pt :("Response to other Aircraft:"I yes or no)

corrective : ("Correct iveAc tion_Response:"1 yes_or_no)

alarm : ("Alarm:" id alarm-info)

alarm-info :("AlarmCharacteristics:", alarm_pitch alarm-duration)

alarm_pitch : ("Pitch:" [number))

alarm-duration : ("Duration:" [number]))

display :(Si tuat ionDi splay:" host-color id-color id-blink id-fill
uid color uid-blink uid fill)

host-color : ("Color of Host Aircraft:" icon-color)

id-color :("Color-ofIdentifiedPotentialThreats:"I icon_color)

id-blink :("Blinking_IdentifiedPotentialThreats:"I yes_or_no)

id-fill :("FillIdentifiedPotentialThreats:"I yes_or_no)

uid color : ("Color of Unidentified Potential Threats:"I icon-color)

C-10

Appendix C. Air Traffic Display/Collision Warning Monitor Case Study With Automation

uid blink : ("BlinkingUnidentifiedPotential_Threats:" yesor no)

uidfill : ("FillUnidentifiedPotentialThreats:" yesor no)

iconshape : ("square"I "circle" I "triangle")

iconcolor ("red"I "orange"I "green"I "yellow"I "white"l "blue"I "black"I
"pink" I "purple" I "indigo" "violet")

yes-or no : ("Yes" I "No")

id : <[a-zA-Z] [_a-zA-ZO-9/3*>

number : <0-9]+(" "[0-9]*)?>

%middlecode
extract();

%files
extract.c extract.h

%makefile
dependencies
extract.o : extract.c extract.h
GEN i.o extract.h
GEN_2.o : extract.h
GEN_4.0 : extract.h
GEN_5.0 extract.h
GEN a.o : extract.h

Use GNU C compiler (the SUN version has a bug in it)
CC= gcc

%product srs.doc -a
%product aa .ada -1
%product aa.ada -2
%product cwss .ada -3
%product cwss.ada -4
%product aad ,ada -5
%product na .ada -7
%product na.ada -8

C.4.2 PRODUCT DESCRIPTION FILE - aa.ada

%declare
#include "extract.h"

extern RING *_ring;

static RING *r;

%template
%if _ring != NULL %then

C-I I

Appendix C Air Traffic Display/Collision Waing Monitor Case Stu4 Wilh Automation

-- AudibleAlarm (AA) body

-- This module determines the characteristics at which
-- to ring the audible alarm for a specified collision warning
-- situation.

with Potential Threat;
with Audible AlarmDevice;
package body AudibleAlarm is

procedure ring_alarm(cws in PotentialThreat.cws_id)
is
begin

case cws is
%for (r=_ring; r != NULL; r = r-> next) %loop

when PotentialThreat.%s(r->_cwsname) =>
AudibleAlarmDevice.ring-alarm(f => %s(r->_frequency),

d => %s(r->_duration));
%end-loop

when others =>
return;

end case;
end ring_alarm;

end AudibleAlarm;
%end-if

C.4-3 PRODUCT DESCRIPTION FILE - cwss.ada

%declare
#include "extract.h"

extern CWS TYPE * cws;
extern char *_partition;

static CWSTYPE *cws local;
static int time form = 0;
static int range_form = 0;
static int id or uid_partition = 0;

%template

-- Collision Warning Situation Status (CWSS) package body

-- This module determines the collision warning situation status
-- for the given potential_threat and hostaircraft.

with PotentialThreat;
with Physical_Quantities; use PhysicalQuantities;
%for (cwslocal=_cws; cwslocal != NULL; cws_local = cwslocal->_next) %loop

%if cwslocal->_predicate.cwsdef type == TIMEONLY %then
%{ time_form = 1; }

%elif cwslocal->_predicate.cws-def_type == RANGEONLY %then

C-12

Appendix C. Air Traffic Display/Collision Warning Monitor Case Study With Automation

%{ range form = 1;
%eis e

%{ time-form = 1
range form = 1;}

%end- if
%if strcmp(cws local->_partition, "ALL"t) !=0 %then

%{ id -or -uid-partition = 1;}

%end-if
%end- loop
%if time form %then
with SituationDynamics;
%end-if

package body Collision WarningSituation Status is

function get cws status(threat :in Potential_Threat.pt handle)
return Potential Threat.cws id

is
%if id-or-uid-partition %then

partition :Potential Threat.partition;
%end-if
%if time form %then

time to intersect :Physical Quantities.seconds;
%end-if
%if range form %then

target-range :PhysicalQuantities~nautical mile;
%end- if

begin
%iff id-or-uid-partition %then

partition :=%s(_partition).get-partition(threat);
%end-if
%if range_form %then

target-range := PotentialThreat.get~range(threat);
%end-if
%if time form %then

time-to intersect :=SituationDynamacs.get-elapsed-time(threat);
%end-if

if
%for (cws local=_c ws; cws-local != NULL; cws_local = cws-local->_next) %loop

%if strcmp(cws-local->_partition, "ALL") != 0 %th en
partition = PotentialThreat.%s(cws-local->_ýpartition) and then

%end- if
%if cws -local->_-predicate.cws_def type == RANqGE-ONLY %then

(%s(cws -local->_predicate.range-mmn) <= target_range and then
target range < %s(cws -local->_predicate.range -max))) then

return Potential_-Threat.%s(cws-local->_cws-name);
%elif cws local->_predicate.cws def type == TIMEONLY %then

(%s(cws-local->_predicate~time-mmn) <= time-to-intersect and then
time-to-intersect < %s(cws-local->_predicate.time-max)))

then
return Potential Threat.%s(cws local->_cws name);

%el1se
((%s(cws-local->_predicate.range~min) <= target_range and then

C- 13

Appendix C. Air Traffic Display/Collision Vaming Monitor Case Study With Automation

targetrange <
%s(cw5_local->_predicate.range-max))

or else

(%s(cws local->_predicate.time min) <= time to intersect and then
timc to intersect <

%s(cws_local->_predicate.time max)))) then
return PotentialThreat.%s(cws local->_cwsname);

%end-if
%if cws local-> next != NULL %then

elsif
%end-if

%end-loop
else

return PotentialThreat.normal;

end if;
end getcws_status;

-- Determine the collision warning situation status of

-- the host-aircraft.

function gethost status return PotentialThreat.cws id

is

begin

end gethoststatus;

end CollisionWarning_SituationStatus;

C.5 AIR TRAFFIC DISPLAY/COLLISION WARNING MONITOR APPLICATION
MODEL

This section shows a complete ATD/CWM Application Model that the ATD/CWM SDTool will accept.

Application_ModelName: ATD/CWMSystem

Project Information:

Contract:
Agency: SPC
Number: A123_456_789

CDRL: rABBCC

System:
Name: ATDCWMN
Mnemonic: ATDCWMM

Id: ATDCWM i

HostAircraftCharacteristics:

Surveillance Area: 125

HostAircraftShape: circle

Potential Threat Characteristics:

Identification_Requirements: (airspeed)
Shape of Identified Aircraft: triangle
Shape of Unide'tified Aircraft: square

Appendix C. Air Traffic Display/Collision Wamring Monitor Case Study With Automation

Collision -Warning_Situation:
CollisionWarning_SituationName: Monitored

SituationDefinition:
SituationFlightCharacteristics:

Time:
Min:
Max:

Range:
RangeMin: 0.0
RangeMax: 125.0

SituationAircraftPartition: ALL
SituationSeverity: 0.10

SituationResponse:
Response_to_-ATC: No
Response-to-otherAircraft: No
CorrectiveActionResponse: No
Alarm : No

AlarinCharacteristics:
Pitch:
Duration:

Situation_Display:
Color-ofHostAircraft: white
Color-ofIdentifiedPotentialThreats: orange
BlinkingIdentifiedPotentialThreats: No
FillIdentifiedPotentialThreats: No
Color-ofUnidentifiedPotentialThreats: green
Blinking_Unidentified_-Potential_-Threats: No
FillUnidentified PotentialThreats: No

CollisionWarningSituation:
CollisionWarningSituationName: Possible

SituationDefinition:
Situation_-Flight_Characteristics:

Time:
Min: 60.0
Max: 90.0

Range:
RangeMin:
Range Max:

SituationAircraftPartition: ALL
SituationSeverity: 0.20

Situation _Response:
Response_toATC: Yes
Response_to other_-Aircraft: No
CorrectiveActionResponse: No
Alarm: Yes

AlarmCharacteristics:
Pitch: 2500
Duration: 5.00

C-15

Appendix C. Air Tflaffic Display/Collision Warning Monitor Case Study With Automation

SituationDisplay:
Color-ofHostAircraft: white
Color-ofIdentifiedPotentialThreats: orange
Blinking_Identified_-Potential_-Threats: No
FillIdentifiedPotentialThreats: No
Color-ofUnidentifiedPotentialThreats: green
Blinking_ýUnidentified_-Potential_-Threats: No
FillUnidentifiedPotentialThreats: No

CollisionWarning_Situation:
CollisionWarning_SituationName: Potential

SituationDefinition:
SituationFlightCharacteristics:

Time:
Min: 30.0
Max: 60.0

Range:
RangeMin:
RangeMax:

SituationAircraftPartition: ALL
SituationSeverity: 0.30

Situation_Response:
Response-toATC: Yes
Response--to-otherAircraft! Yes

CorrectiveActionResponse: Yes
Alarm: Yes

AlarmCharacteristics:
Pitch: 4000
Duration: 5.00

SituationDisplay:
Color-ofHostAircraft: white
Color-ofIdentlifiedPotentialThreats: pink
Blinking_Identified_-PotentialThreats: Yes
FillIdentifiedPotentialThreats: Yes
Color-ofUnidentifiedPotentialThreats: blue
Blinking_ýUnidentified_-Potential_-Threats: Yes
Fill UnidentifiedPotentialThreats: Yes

Collision_-Warning_Situation:
CollisionWarningSituationName: Imminent

SituationDefinition:
SituationFlightCharacteristics:

"'ime:
Min: 0.0
Max: 30.0

Range:
RangeMmn:
RangeMax:

SituationAircraftPartition: ALL
Situation-Severity: 0.50

C-16

Appendix C. Air Traffic Display/Collision Warning Monitor Case Study With Automation

SituationResponse:
Responseto ATC: Yes

Responseto otherAircraft: Yes
CorrectiveActionResponse: Yes
Alarm: Yes

AlarmCharacteristics:
Pitch: 8000
Duration: 5.00

SituationDisplay:
Color ofHostAircraft: red
Color ofIdentifiedPotentialThreats: yellow
Blinking_IdentifiedPotentialThreats: Yes
FillIdentifiedPotentialThreats: Yes
Color ofUnidentifiedPotential Threats: purple
Blinking_Unidentified PotentialThreats: Yes
FillUnidentifiedPotential Threats: Yes

C.6 GENERATED PRODUCTS

This section shows the complete products aa.ada and cwss.ada produced by the ATD/CWM SDTool
using the Application Model shown in Section C.5.

C.6.1 PRODUCT - aa.ada

-- AudibleAlarm (AA) body

-- This module determines the characteristics at which
-- to ring the audible alarm for a specified collision warning
-- situation.

with Potential Threat;
with Audible Alarm Device;
package body AudibleAlarm is

procedure ringalarm(cws : in PotentialThreat.cwsid)
is
begin

case cws is
when Potential Threat.Imminent =>

AudibleAlarmDevice.ringalarm(f => 8000, d => 5.00);

when Potential Threat.Potential =>
AudibleAlarmDevice.ring alarm(f => 4000, d => 5.00);

when Potential Threat.Possible =>
AudibleAlarmDevice.ring alarm(f => 2500, d => 5.00);

when others =>

return;
end case;

end ring_alarm;

end AudibleAlarm;

C-17

Appendix C. Air Traffic Display/Collision Warning Monitor Case Study With Automation

C.6.2 PRODUCT - cwss.ada

-- Collision Warning Situation Status (CWSS) package body

-- This module determines the collision warning situation status
-- for the given potential_threat and hostaircraft.

with Potential Threat;
with PhysicalQuantities; use PhysicalQuantities;
with SituationDynamics;

package body CollisionWarning_SituationStatus is

function get_cwsstatus(threat : in Potential Threat.pt handle)
return PotentialThreat.cws id

is
time to intersect : PhysicalQuantities.seconds;
target_range PhysicalQuantities.nauticalmile;

begin
target_range PotentialThreat.getrange(threat);
time to intersect := SituationDynamics.getelapsed_time(threat);
if (

(0.0 <= time to intersect and then*
time to intersect < 30.0)) then

return PotentialThreat.Imminent;
elsif (

(30.0 <= time to intersect and then
time to intersect < 60.0)) then

return PotentialThreat.Potential;
elsif (

(60.0 <= time to intersect and then
time to intersect < 90.0)) then

return PotentialThreat.Possible;
elsif (

(0.0 <= target_range and then target_range < 125.0)) then
return PotentialThreat.Monitored;

else
return PotentialThreat.normal;

end if;
end get_cws_status;

-- Determine the collision warning situation status of
-- the host aircraft.

function get_hoststatus return PotentialThreat.cws id
is
begin

end get_host_status;

end CollisionWarningSituationStatus;

C-18

APPENDIX D. AIR TRAFFIC DISPLAY/COLLISION
WARNING MONITOR CUSTOMER

REQUIREMENTS

Update 06/04/91 -- Copied Aith permission from P. P. Texel & Company Inc. and Adapted from:
Statement of Requirements for the On-Board Embedded Air Traffic Display/Collision Warning Monitor System

ATD/CWM
Copyright 1987 P. P Texel & Company Inc.

1. Introduction

Create an Air Traffic Display/Collision Warning Monitor. The display should be continuously
updated (at least four (4) times per second) to show all aircraft within an 125 mile radius. In addition,
the monitor will immediately respond to warning situations with appropriate alarms and actions.

1.1 Air Traffic Display (ATD) System

The ATD will display items in three (3) uniquely determined classes:

1. Host Aircraft - This display item will show the following information:

a. Altitude (in feet)

b. Air Speed (in knots)

c. Course Bearing (degrees)

d. Aircraft ID (alphanumeric)

2. Other identifiable aircraft - These display items will show the following information for
each aircraft:

a. Altitude (in feet)

b. Air Speed (in knots)

c. Course Bearing (degrees)

d. Aircraft ID (alphanumeric)

This information shall be obtained from the following sources:

i. Target aircraft

ii. Nearby air traffic control center

D-1

Appendix D. ATD/CWM Customer Requirements

3. Unidentifiable aircraft - These display items will show as much of the information required
in (2.) as possible. (unidentifiable is defined to mean that the airspeed of (2.) is missing.)

1.2 Collision Warning Monitor

The Collision Warning Monitor (CWM) System will evaluate the host aircraft's course in relation
to all other air traffic within an 125 mile radius. The CWM will recognize three (3) types of warning
situations and will take the action indicated below for each.

1. Possible Collision - A collision between the host aircraft and one or more target aircraft is
considered possible if the two aircraft could possibly intersect in less than 90 seconds. For
aircraft which are identified the time to collision would be based on the time to impact tak-
ing into consideration any course change to an intersection course, with the target aircraft
maintaining the current speed. For unidentified aircraft, the time to collision would be
based on the time to impact assuming a course which intersected that of the host aircraft at
a worst case target aircraft speed. In the event of a possible collision, the CWM will take the
following actions:

a. The ATD system icon representing the aircraft will be tagged as specified in Paragraph

2.1.

b. An audible alarm will be sounded in the cockpit.

c. A message will be sent to the nearest air traffic control center.

2. Potential Collision - A collision between the host aircraft and one or more target aircraft is
considered potential if a collision could possibly intersect in less than 60 seconds. For air-
craft which are identified the time to collision would be based on the time to impact taking
into consideration any course change to an intersection course , with the target aircraft
maintaining the current speed. For unidentified aircraft, the time to collision would be
based on the time to impact assuming a course which intersected that of the host aircraft at
a worst case target aircraft speed. In the event of a potential collision, the CWM will take the
following actions:

a. The ATD system icon representing the aircraft will change color and begin to blink at
twice the update rate.

b. An audible alarm will be sounded in the cockpit.

c. A message will be sent to the nearest air traffic control center.

d. A message will sent to the other aircraft.

e. A corrective action advisory message will be displayed on the ATD.

3. Imminent Collision - A collision between the host aircraft and one or more target aircraft is
considered imminent if a collision could occur in less than 30 seconds. For aircraft which
are identified the time to collision would be based on the time to impact taking into consid-
eration any course change to an intersection course, with the target aircraft maintaining the
current speed. For unidentified aircraft, the time to collision would be based on the time to

1)-2

Appendix D. ATD/CWM Customer Requirements

impact assuming a course which intersected that of the host aircraft at a worst case target
aircraft speed. In the event of an potential collision, the CWM will take the following actions:

a. The ATD system icon representing the aircraft will change color and begin to blink at
twice the update rate.

b. An audible alarm will be sounded in the cockpit.

c. A message will be sent to the nearest air traffic control center.

d. A message will sent to the other aircraft.

e. A corrective action advisory message will be displayed on the ATD.

f. The ATD system icon for the host aircraft will change color.

Note that these warning situations have been listed in reverse priority order.

2. ATD Display Item Data

2.1 Identifying Icons

1. The host aircraft will be identified by a circle.

2. Identifiable aircraft will be shown as triangles.

3. Unidentifiable aircraft will be shown as squares.

4. Aircraft involved in a potential collision warning will be tagged by filling in their respective
icon. This state will be maintained until the target aircraft moves to a condition of lower
priority than that of a potential collision.

2.2 Colors

1. The host aircraft will be displayed in white under most conditions. It will be displayed in red
if an imminent collision situation occurs.

2. Identifiable aircraft will be displayed in orange under normal conditions. They will be
displayed in pink if they are involved in a potential collision situation, yellow if an imminent
collision situation occurs.

3. Unidentifiable aircraft will be displayed in green under normal conditions. They will be
displayed in blue if they are involved in a potential collision situation, and purple if an
imminent collision situation occurs.

2.3 Position of aircraft icons (other than host)

1. Icons will be positions relative to the host aircraft position on the screen based on least
cluttered location for unidentified aircraft.

2. After initial positioning of the aircraft, it will continue to move along the radius of the
concentric rings until it goes out of range.

D-3

Appendix D. ATD/ChWM Customer Requirements

3. Alarms

A distinct audible alarm will be issued for each of the warning situations described in Paragraph 1.2
whenever a target aircraft goes from a state of lower priority to one of higher priority.

4. Assumptions

The ATD/CWM System currently does not have the capability to handle multiple warnings for the
host aircraft. Therefore, the system will always react to warning situations in priority order.

D-4

REFERENCES

Aircraft Owners and AOPA's Aviation USA. Frederick, Maryland: Aircraft Owners
Pilots Association and Pilots Association, 1990.
1990

ASA Publications FAR-AIM. Seattle, Washington: ASA Publications, Inc., 1989.
1989

AT&T MetaTool Specification-Driven-Tool Builder User Manual.
1990

Connes, Keith Black Box Watch. Plane & Pilot 28,4:27-28.
1992

Faulk, Stuart, James Kirby, Jr.. The Consortium Requirements Engineering Method,
Skip Osborne, SPC-91140-MC. Herndon, Virginia: Software Productivity
D. Douglas Smith, Consortium.
Steven Wartik, John Brackett,
and Paul T Ward
1991

Heninger, Kathryn L. Specifying Software Requirements for Complex Systems: New
1980 Techniques and Their Application. IEEE Transactions on

Software Engineering SE-6:2-13.

Heninger, Kathryn, Software Requirements for the A-7E Aircraft. Memorandum
J. Kallander, David L. Parnas. Report 3876. Washington, D.C.: Naval Research Laboratory.
and John Shore
1978

Horne, Thomas A. TCAS Preview: On-Board ATC. AOPA Pilot 32, 6:36-40.
1989

Nordwall, Bruce D. Foster Airdata Develops Low-Cost Collision Warning System
1991 for Navy. Aviation Week & Space Technology 58-59.

Parnas, David L. and Paul C. A Rational Design Process: How and Why to Fake It. IEEE
Clements Transactions on Software Engineering SE-12, 251-257.
1986

Parnas, David L., Paul C. The Modular Structure of Complex Systems. IEEE Transactions
Clements, and David M. Weiss on Software Engineering SE-11, 259-266.
1985

Ref-I

References

P.P Texel & Co. On-Board Embedded Air Traffic Display/Collision Warning Monitor
1987 System ATD/CWM. Wayside, New Jersey: P.R Texel & Co.

Ritter, Douglas S. TCAS: Boon or Boondoggle? Aviation Safety XII,2:1-5.
1992

Software Productivity TRF2 Metaprogramming Tool User Guide, SPC-91132-MC.
Consortium Herndon, Virginia: Software Productivity Consortium.
1991a

1991b ADARTS Guidebook, SPC-91104-MC. Herndon, Virginia:
Software Productivity Consortium.

1991c Synthesis Guidebook Volume I Methodology Definition,
SPC-91122-MC. Herndon, Virginia: Software Productivity
Consortium.

1991d Synthesis Guidebook Volume 2 Case Studies, SPC-91122-MC.
Herndon, Virginia: Software Productivity Consortium.

United States Department of Reference Manual for the Ada Programming Language.
Defense ANSI/MIL-STD-1815A. United States Department of Defense,
1983 Ada Joint Program Office.

Webster Websters II New Riverside University Dictionarv. Bosten.
1984 Massachusetts: The Riverside Publishing Company, 1984.

Ref-2

