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Model Determination Using Predictive Distributions

With Implementation Via Sampling-Based Methods

Alan E. Gelfand, Dipak K. Dey and Hong Chang
University of Connecticut

Summary

Model determination is divided into the issues of model adequacy and model
selection. Predictive distributions are used to address both issues. This seems natural
since, typically, prediction is a primary purpose for the chosen model. A cross-validation
viewpoint is argued for. In particular, for a given model, it is proposed to validate
conditional predictive distributions arising from single point deletion against observed
responses. Sampling based methods are used to carry out required calculations. An
example investigates the adequacy of and rather subtle choice between two sigmoidal
growth models of the same dimension.

Key Words: Model adequacy, model choice, predictive distributions,
cross-validation, sampling based methods, sigmoidal growth model,
logistic growth curve model, Gompertz model.
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1. Introduction

Responsible data analysis must address the issue of model determination which

divides into two components: model assessment or checking and model choice or selection.

That is, apart from rare situations, the model specification is never "correct". Rather the

questions are (i) is a given model adequate? (ii) within a collection of models under

consideration, which model is the best choice? The questions are distinct. We need not

envision a collection of models to address (i). Conversely, amongst a collection of models

several may be adequate (or perhaps all may be inadequate) but we still seek the "best"

one. Nonetheless in practice the questions are typically investigated concurrently. This

paper adopts a predictive viewpoint for answering them with resultant overlapping

methodology.

The literature on model assessment and model choice is, by now, enormous. Of

course, our modeling framework here is Bayesian whence our approach to these problems is

as well. We restrict ourselves to parametric models where the amount of data is fixed and

which are expressible in the form Likelihood x Prior where the Likelihood is an explicit

readily evaluable function of both the data and the parameters with the prior a readily

evaluable function of the parameters.

Model adequacy is considered with regard to the form of the product. Box (1980) is

persuasive on behalf of the predictive stance in arguing that the adequacy of a model can

not be assessed from the posterior distribution of the model parameters. Berger (1985)

observes that "Bayesians have long used (predictive distributions] to check assumptions".

A few additional references are Jeffreys (1961), Box and Tiao (1973), Dempster (1975),

Rubin (1984) and Geisser (1985).

Turning to model selection we need to clarify our objective. For a fixed likelihood

the prior may be varied. This case is typically not viewed as one of model selection but

rather one of model robustness (see Berger (1984) for a review). More recent work is

summarized in Gelfand and Dey (1991). In this work the estimative side using the

resultant posterior is usually investigated with regard to sensitivity to such variation.
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Rather, the usual business of model selection is the specification of the likelihood or

joint distribution of the data. For instance, in the case of response models one needs to

specify the parametric form of the error distribution (equivalently, a transformation of the

response variable), a parametric form for the mean and a parametric form for the variance.

(See in this regard the recent work of Carlin and Polson (1991) and George and McCulloch

(1991). There is an implicit trade-off here (Smith, 1986) e.g. complex form for the mean

with pure Gaussian error versus simple specification of the mean with say a mixture of

Gaussians as error. Hence judicious choice of the collection of models entertained is

essential.

Our discussion is concerned with model choice in this broad sense emphasizing that

predictive distributions enable arbitrary model comparisons. Moreover the predictive

viewpoint is typically consonant with the intended use of the model. In the special case

where models under consideration are nested so that a subset of components of the

parameter vector may be viewed as a discrepancy parameter measuring departure from a

baseline model (Box 1980) model choice reduces to posterior inference for this subset of

parameters. In the absence of nesting, comparison of posteriors between models typically

conveys little information. The models need not share the same dimensionality. Moreover,

even if they do, from one to another, the parameters will have different interpretations.

Model determination is closely related to other data analytic issues such as residual

analysis, influence measures and outlier detection. We offer no elaboration here but note

the recent papers of Pettit and Smith (1985), Geisser (1987), Chaloner and Brant (1988),

Verdinelli and Wasserman (1991) and Guttman (1991).

The entire proposed enterprise rests upon our ability to obtain desired predictive

distributions and to calculate expectations under these distributions. Analytic evaluation

of the required integrals is generally hopeless with effective approximations only available

for simpler cases. To accomplish needed integrations we propose the use of sampling-based

methods as discussed in Rubin (1988) and in Gelfand and Smith (1990). Such calculation

is very computer-intensive, particularly when undertaking more complex and realistic
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modeling. However, the routine availability of enormous computing power makes this no

obstacle. In particular this implies that many contending models may eventually be

considered. As Geisser (1988) notes, "this could create havoc.... for those who adhere to

stringent versions of.... Bayesian approaches." However we feel that the art of data

analysis should not be bound by overly formal inferential frameworks.

This paper is essentially a synthesis and extension of earlier work in Bayesian model

determination. Our main contributions are the fleshing out of the cross-validation

approach and the presentation of straightforward computing procedures to implement such

cross-validation. In Section 2 we detail the proposed predictive approaches for model

determination. In Section 3 we describe the Monte Carlo techniques for performing the

required calculations. An illustrative example is discussed in Section 4 and we offer brief

conclusions in Section 5.

2. Predictive Approaches for Model Determination

2.1 Predictive densities

Box (1980) discusses the complementary roles of the predictive and posterior

distributions in Bayesian data analysis noting that the posterior distribution provides a

basis for "estimation of parameters conditional on the adequacy of the entertained model"

while the predictive distribution enables "criticism of the entertained model in the light of

current data." We concur noting further that in comparing models predictive distributions

are directly comparable while posteriors are not. The predictive distribution (or marginal

likelihood) is the joint marginal distribution of the data. This distribution may be used in

various ways to examine model determination questions. Our approach, which is argued

for below, is a cross-validation one and leads to the examination of a collection of

conditional distributions arising from this joint distribution.

We use customary notation in letting upper case letters denote random variables and

lower case letters denote the observed realizations of these variables in our sample. In

particular, the observed value of the rth response, Y,,, in our sample is Yr. Let Y denote the
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nxl data vector, and let Y( r) denote the n-1 x 1 data vector with Yr deleted. Let Xnxp

denote the matrix of explanatory variables whose r'h row, Xr is associated with Yr- Let

X(r) denote the matrix which is X with the rth row deleted. All densities for the data will

be denoted by f, all densities for the parameters will be denoted by 7r with arguments

providing clarification. More precisely for a given model let 0 denote the vector of model

parameters. Then f(YI #,X) is the joint density of the data given 0 and 7r(U) is the prior

density for 0 whence f(Yi OX) • r(U) is the model specification. Both Y and 0 are

presumed continuous.

Assuming that the integral exists the predictive density is f(Y) = f f(YI #,X) 7(0)d0.

In model selection, interest focuses on f(YI 0,X) and w is often chosen to be vague. But if r

is improper then f(Y) necessarily is, making it awkward to use in model checking. Note

however, that

f(YrlY(r)) = -= f f(YrI ,Ycr,,X) r(OI Y(r, )dO (1)

is proper since 7(OIY(r)) is. The density f(YrI ,Y(r) ,X) is immediate if the Yr are

conditionally independent given 0 as well as, for example, if f(YI 0,X) is multivariate

normal.

Suppose that f(Y) is proper and strictly positive over its domain. Then f(Y) is

equivalent to the set {f(Yrl Y( r) : r=1,...,n} in the sense that each uniquely determines

the other (Besag, 1974). Hence, in terms of model assessment, examining the observed y

with respect to f(Y) is the same as with respect to the set of f(Yr YI r)). It may be easier

to work with the latter distributions since each is univariate.

We briefly argue that, in checking against the observed Yr, f(Yr Y rj) is the

preferred univariate predictive distribution for Yr. If f(Y) is proper we could consider the

univariate marginal f(Yr). Of course the f(Yr) do not determine f(Y) but more importantly

f(Yr) ignores the remaining observations, y, r). In practice, were we to attempt prediction

of a new, not necessarily independent, Yr at X, we would use a posterior distribution for 0
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in creating the desired predictive distribution. In assessing the model this seems

appropriate as well; we should check how well the model predicts in the manner in which

we would use it to predict. But then should we use f(Yrly) or f(YrlY(r))? The former is

used for prediction at a new vector say X0 but for validation at an Xr for which we have

already observed Yr the latter seems preferable. That is, if we propose to check the

predictive distribution for Yr against an observed Yr we should not use that Yr to determine

this distribution. Note that f(YrjY(r)) may be quite different from f(YrIy) even in the

case that the Yr are conditionally independent given 0.

Such cross validation is well established in the Bayesian literature dating at least to

Stone (1974) and Geisser (1975). Frequentist model diagnostic approaches adopt a similar

point of view (see e.g. Belsley, Kuh and Welsch, 1980 or Cook and Weisberg, 1982). Cross

validation schemes other than single point deletion may be helpful and will share the same

advantages described above. However in the sequel we use f(YrI Y( r)) exclusively.

2.2 Model adequacy

The predictive distributions, f(Yr I Y, ri), are to be checked against Yr for r=1,2,..- n

in the sense that, if the model holds, Yr may be viewed as a random observation from

f(YrIY( r)). To do this we consider g(Yr; yr), called a checking function by Box (1980),

whose expectation under f(Yr IY(r) ) we will calculate and denote by dr. The set of dr will

be used for model assessment. Computation of the d, is discussed in Section 3. Once

obtained the approach is exploratory. In fact, since each dr is a function of the entire data

vector Y they will be strongly dependent making formal inference very difficult. Our

strategy is a Bayesian analogue to well accepted frequentist strategy of examining

studentized residuals, DFFITS, DFBETAS etc., (again see Belsley, Kuh and Welsch, 1979

or Cook and Weisberg, 1982).

We will look at several choices of g. For example

(i) gi(Yr; Yr) = Yr - Yr yielding dir -= Yr - Ar where pr = E(YrIY(r)). The dir are

natural deviations or residuals mentioned in Geisser (1987, p. 138). With
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=var (Yr Y ( r)), standardizing yields dj. = dlr/Urr. The quantity F(d') 2

could be used as an index of model fit. Many large Id'I cast doubt upon the

model but retaining the sign of d'. allows patterns of under or over fitting to be

revealed. If the f(YrI Y yr)) are assumed approximately normal then a normal

plot of the d1 . may be informative as well.

(ii) g9(Yr; Yr) = 1Ar(Yr) where Ar = (-m, YrJ yielding d2r = P(Yr • YrIY(r))-

Viewing Yr as a random observation from f(YrIYyr•) implies d 2r - U(0,1).

Because of the dependence amongst the d2r it would be wrong to expect them to

exhibit the spread associated with independent uniform samples. Nonetheless an

adequate model should manifest d2r which are roughly centered about .5 without

many extreme values. Evidence to the contrary calls the model to question.

(iii) g3(Yr; Yr) = lBr(Yr) where Br = {Yr : f(YrIY(r)) • f(YrIY(r,)} .ielding ,dr =

P(BrIY( r)). Again viewing Yr as a random observation from f(Yr[Ycr,) implies

f(YrIYcr)) is, itself, a random realization of f(YrIY(r)) whence d3r - U(0,1).

Again the d3r should be roughly centered about .5 without many extreme values.

The d 3r, adapted from Box (1980) also appear in Geisser (1987). Note that Yr

need not be univaniate in this definition; g3 may be used for other

cross-validation schemes. In fact Box proposed use of g3 to assess the entire

joint predictive distribution. Unfortunately, calculation of this multivariate

probability will generally be difficult. This same measure is referred to as the

surprise index in Aitchison and Dunsmore (1975).

Assuming that Yr is univariate and that f(Yr I Yc ri) is animodal, the d 3r calculate

a set of tail areas. If we further assume that f(YrIY(r)) is approximately a

normal density, then the event Br is approximately the event 1(Yr-A)2a'r >

(d r) 2 }. Thus d 3r - P(X2 >-(d' )2) relating dtr and d3r. In retaining the sign of

the deviation, dir is preferable to the induced d3r.

(iv) g,(Yr; Yr) = (2c)' lCrr()(Yr) where Cr(f) = {Yr: Yr <_ Yr _ Yr + C} yielding

d4r(f) = (2e)"' P(Cr(e)IY(r)). To avoid specification of e we take the limit as
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e- 0 obtaining d4r = f(yr y, r) ). This quantity dates at least to Geisser and

Eddy (1979) and is computed in the definition of Br. In the case of conditionally

n
independent Yr given 0, they suggest the use of H d 4r as a modification of f(y)

r=1
n

for assessing comparative validity of models. We might call U d4r a
r=1

pseudo-predictive distribution or pseudo-marginal likelihood.

Many small d4r criticize the model but it may not be obvious what a small d4r is.

Following an idea of Berger (1985, p 201) we might instead consider a relative

likelihood leading to a modified d4r such as d<r = d4r/SUp f(YIY(r)) or d'" =
y 4r

d 4r/E(f(Yr I ycr )I yr )

2.3 Model Choice

The standard Bayesian approach for model selection goes as follows. Suppose there

are J proposed models with model Mj denoted as f(YI 0j; X, Mj) • x(4j). If wj denotes the

prior probability of Mj then, by Bayes theorem, the posterior probability of Mj is

J
p(MAIY) = f(Y MI) .wj_/ E f(YIMW) • wj (2)

j=1

where f(YI Mj) is the predictive or joint marginal distribution of the data under model Mj.

For observed y the model yielding the largest p(Mj Iy) is selected. Calculation of (2) is

discussed in Section 3. Geisser and Eddy (1979) suggest a cross validation version

replacing f(YI Mj) in (2) by the pseudo-predictive distribution.

There is a fundamental complication engendered in this formalism which was

recognized as early as Bartlett (1957) and elegantly clarified by Pericchi (1984). Some

models are implicitly disadvantaged relative to others using this approach even under a

state of presumed indifference towards the models i.e. wj = l/J, j=1,. -,J. Section 2.3.1
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further investigates this complication including an extension of Pericchi's remedy. An

alternative remedy is considered in Section 2.3.2 also using cross-validation ideas.

Another criticism is that, in most practical situations, we doubt that anyone

including Bayesians would select models in this fashion. One doesn't really believe that

any of the proposed models are correct whence attaching a prior probability to an

individual model's correctness seems silly. The selection process is typically evolutionary

with comparisons often made in pairs until a satisfactory choice (in terms of both

parsimony and performance) is made. Such pairwise decisions would be made using the

Bayes factor, f(YI M1)/f(YI M2). But if at least one of the r(Oj) is vague interpretation of

this factor is problematic. A possible remedy is suggested in Spiegelhalter and Smith

(1982) using a reserved or imaginary training data set. In Section 2.3.3 we suggest simpler

validation criteria based on the ideas in Section 2.2 and in the spirit of Box (1980, p. 427).

2.3.1 Neutralizing differential expected increase in information

A simple example due to Bartlett (1957) reveals a difficulty with the Bayes factor

and the standard procedure. Suppose under Model 1, that Yi,-",Yn are i.i.d. N(0,1)

while, under Model 2, Y.,'" ",Yn are i.i.d. N(8,1) with 0 - N(0,r 2). Then regardless of the

data Y, of n, and of wl, as 7 2 -4 w, f(YjMi)/f(YIM 2 ) -4 ® and p(M1JY) -ý 1. This example

was extended to more general nested normal models in Smith and Spiegelhalter (1980).

Pericchi (1984) identified the source of the complication: for a given experiment the

expected increase in information about the model parameters varies with the specification

of the model. His remedy is to weight the Bayes factor or to revise the prior probabilities

wj to achieve neutral discrimination with regard to what is expected to be learned about Oj

under model Mj.

In particular, using the usual information entropy measure, the information in the

prior is -fi(U) logzr() d# (making the rather strong assumption that this integral exists),

the information in the posterior is -f ,(01iY) log ir(DJY) dO whence the expected increase

in information about 0 from the experiment (Lindley, 1956) is
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l(f,) = f (fir(OIY) log •r(OIY) dO) f(Y) dY -f0r(O) log r(U) dO.

For two models with I(f,7r1), I(f 2,7r2) Pericchi (1984) proposes revision of w, to

w' = exp(I(f1 ,irj))/{exp(I(fj,7rj)) + exp(I(f 2,7r2))}. Equivalently the Bayes factor would be

multiplied by p = wjl-wi).

Under the linear model Y = XO + e with Xnxp,, c - N(Oa 2 j), 02 known and

0 - N(U 0, a2 V0 ), u0, V0 known, it follows from Stone (1959) that

I(f,7r) = ½ log(Il + VoXTXI). (3)

For the example in Section 4 we propose model choice between two nonlinear models with

normal errors. But if we replace the mean of Yr, XrO, by fp(Xr; ), I(f,?r) no longer has the

dosed form (3). However a first order approximation may be readily obtained. Assuming

a•/60i exists for all 0i, i=1,2,. • .,p we may write

p 0ýo

P(Xr;0) = so(Xr;go) + E (Oi - 0o0 -• o
1=1 aei 1o0

so that Y, - E ari(X)'Oi + c where Y = Yr - (p(Xr;Oo) - Eari(X)-'oi and
a p( Xr;) 1)

ari(X) = . Hence using (3) I(fir) = ½ log(JI + V0 ATAI) where A is an nxp

matrix such that Ari = ari(X). A practical choice for 0o might be the MLE. For two

nonlinear models the resultant weight p = {lI + V 0 ATA 11I/II + V0 A TA2 1}'. We may

pass to noninformative prior specifications by setting V 01 = V02 = V and letting V- -. 0

whence p = {IA;AII/IATA2 I}2 .

2.3.2 A maximum expected utility approach

An alternative remedy modifies examination of (2) by formulating the problem of
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model choice as one of maximizing expected utility. Several authors (Box and Hill, 1967;

San Martini and Spezzaferri, 1984; Poskitt 1987) discuss such an approach. The crucial

concept is the introduction of a utility functional to capture "the utility of a model given

the data". Utility structures incorporating posterior distributions as an argument will have

limited applicability for model choice since the parameter vector may be interpreted

differently from model to model. Use of predictive distributions avoids this problem. San

Martini and Spezzaferri (1984) take the utility of the predictive distribution at a future

unobserved Yo, U(f(YojY), Yo), where yo is the true unknown future value. From an

argument in Bernardo (1979) they recognize that the unique proper local utility function

has the form b0 f(yoIY) + b1(yo).

In choosing between two models the expected utility solution is to select the model

yielding the larger expected utility. It turns out that, regardless of b0 and b1(yo), we

choose MI(M 2 ) if w, K(f(Yojy,M1 ), f(YoIy,M 2)) > (<) w2 K(f(Y0jyM 2), f(Yojy,M1))

where K(f1 ,f2) = ff, log(fl/f2) denotes the Kullback-Leibler divergence between the

densities f, and f2. This criterion is appealing since K(fl,f 2) is interpreted as the expected

or average information for discriminating in favor of ft against f2. In the cross validation

n
context we replace K(f(YoIY,Mj), f(YoIY,Mj,)) with E K(f(YrIY(r) ,Mj),f(YrIY(r) ,M 1)).

r=l

This substitution arises by replacing f(Yoly,Mj) with the pseudo-predictive distribution,

n
IU f(Yrl Y (r ,Mj), as discussed in (iv) of Section 2.2. An alternate form is

r=1

[ 1fYl~)M•f(Yr I Y( r) ,-2Jý

choose MI(M 2) if E.lo, f(YrIyrM2). > (<)0 (4)

where f* = wig f(Yrl Y(r) ,MA) + w2 l f(YrI Y(r) ,M2 ).

Calculation of the Kullback-Leibler divergences is discussed in Section 3. Other

information measures (see e.g. Csiszir, 1977) could be investigated as well. The expected

utility approach is readily extended to J > 2 models.
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2.3.3 Ad hoc procedures

Each of the criteria developed in Section 2.2 may be converted to an ad hoc model

choice procedure. Given two models, for k=1, 2, 3, 4 associate dkr(Mj) with model Mj,

j=1, 2.

For k = 1 choose Mj with the smaller value of Dli = E(dr(Mi))2

For k = 2, 3 choose Mj with the smaller value of Dkj = Fdkr(Mj) - .5)2

For k = 4 choose Mj with the larger value of lld4r(Mj). Equivalently

"fId4r(MI)l

choose M1 (M2 ) according to D4 = lod0.9[ > (<)0 (5)

Expression (5) may be directly compared with (4). For the latter we calculate expected

utilities; for the former we calculate observed utilities. In fact exp(D4) is a pseudo-Bayes

factor. Given that the dkr(Mj) will have already been calculated for use in model

assessment the additional computation for their use in these ad hoc model choice

procedures is negligible.

3. Computational Approaches

We propose the use of sampling-based methodology to calculate the various objects

of interest in Section 2. Monte Carlo techniques have significantly advanced our ability to

carry out integrations required for Bayesian inference. The literature for noniterative

methods is substantial. We mention here the recent papers of Rubin (1988), Geweke

(1989) and West (1990). The paper of Geweke provid&O many further references. Iterative

approaches are discussed in Tanner and Wong (1987) and in Gelfand and Smith (1990).

3.1 Monte Carlo estimates of the dr

For a given model, computational effort focuses on the calculation of the d, -

E(g(Yr;Yr) IY r,) = ff g(Yr;Yr) f(YrI 0 ,Y( r) ,X)A'( 1 Y r,) dO dYr.
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If (Os,Yrs), s = 1,... B are samples frem the joint conditional distribution for 0 and

Yr, f(Yr I 0,Y(r),X)'1(O1y(r)) then a Monte Carlo approximation for dr is

B
ar = B-1 E g(Yrs;Yr). Sampling from f(YrI 0,Y(r),X) is usually no problem; sampling

s=1

from 7T(01 y( r) ) is. We return to this matter shortly.

If £r(O ;y) = fg(Yr ; Yr) f(YrjG, y(r),X) dYr then dr = E(Cr(O ;Y)IY(r)), an

expectation with respect to the posterior 0Ojy(r)). In certain cases E(0 ;y) can be

B
calculated explicitly whence dr = B-1 F 64(Os;y). We need not draw the sample of Yrs.

s=1

Such savings in random variate generation is referred to as streamlining in Rubin (1988)

and in Gelfand and Smith (1990). In fact the estimate of the predictive density itself,

B
f(Yr I Y(r) ), requires only the Ps, i.e., f(Yr IY(r)) B- f(Yr I Os, Y(rX).

s=1

If h(O) is an importance sampling density for x(81 y(,) ) and 0, s = 1,..- .,B are drawn

B
from h, the above Monte Carlo estimates are modified to dr = I g(Yrs,Yr) "Vrs, or

S=1
B B

dr= E 6r(8s;y)'vrs and f(YrIY(r)) = 1 f(Yr1Ps,Y(r),X).vrs respectively where
s=1 s=1

B 1-I
Vrs 70s1Y(r))/h(s) " Os y(r) )/h(0s). As a related remark, if, for example,

s 1

f(YrI 0,Y(r),X) is a normal distribution then f(YrIY(r)) is a finite mixture of normals.

Theory developed in Johnson and Geisser (1983) shows that in such situations f(YrI Y(r) ) is

exactly or approximately a t-distribution. But t-distributions arise as scale mixtures of

normal distributions which can be arbitrarily well approximated by a finite mixture of

normals.

Note that 70O1yc r)) a 7(O)/f(yrJ O, y r,,X) where NOf) = f(y O,X). - () so that

=r(#s)I(h(8s) f(Yrf Gyc ,X))
Vrs =-"I
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Rather than develop an h(O) for each 7r(01Y( r) it would be more efficient to find a simple

choice which we could sample and then use for all r. The form of vrs suggests h(9) O Tr(9)

i.e. h(G) = 0r(Oy) would be a natural choice. We recall that the Gibbs sampler, as

described in Gelfand and Smith (1990) for application to hierarchical Bayes models,

produces observations essentially from the joint posterior ir(Gy). Hence, if the Gibbs

sampler is used to carry out Bayesian inference under the given model, the outputted P.

can be used directly as input to carry out computations needed for studying model

adequacy and model choice. Implementation of the Gibbs sampler for challenging models

will require tailored versions of the rejection method. See Carlin and Gelfand (1991), Gilks

and Wild (1991), lPitter and Tanner (1991). If a noniterative approach has been employed

resulting in an importance sampling density h(U) for r(d) then the samples from h(U) can as

well be used directly in the above formulas. There is considerable literature on the creation

of a good importance sampling density. In particular we note the recent work of Geweke

(1989) and West (1990).

For model choice additional calculations we may wish to make are the

Kullback-Leibler divergences K(f(YrY(r),Mj), f(YrIY(r),Mj.)). Since these are

expectations with respect to f(YrIY( r) ,MA), in principle they can be handled in the same

way as calculation of the dr(Mj). However, in practice, the calculation requires enormous

storage, even if n is small, since each f is itself a Monte Carlo estimate and since these

estimated f's are created under different models but must be merged to calculate K.

The standard approach to model choice requires updating of wj to p(M Iy) as in (2).

Except in simple cases the marginalization to obtain f(Yl Mj) is not available in closed

form. Noniterative Monte Carlo integration may be employed as follows. If 7r 8j) is proper

B
and Ojs, s = 1,...,B are a sample, f(YIMj) = B' - f(YJ Ojs;X). If Tr (O0) is improper

s=1

but h(Oj) is an importance sampling density for 7(Oj), r defined above, then f(YMj) -

B
B-s E =(1js)/h(#js).

s-=l
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Interestingly, the Gibbs sampler is less attractive here. By itself, it does not readily

produce an estimator of f(YI Mj). For a collection of J models it need not uniquely provide

the posterior probabilities p(Mj I Y) since Markovian updating using the Oj, j = 1, --- ,J

and a variable M to label the model may violate conditions for convergence (see e.g.,

George and McCulloch, 1991).

3.2 Simplified sampling for nonlinear normal models

Suppose the model Yr = (o(Xr; A) + cr, r = 1,.o,, n where the vector of errors, E f

N(O, a2 .W), W known positive definite. With 0 = (fl, a2 ) suppose r(O) = -ri(f$ • 2()2)

where 7r2(a2) is inverse gamma IG(a,b) i.e. 7r2(oa2) m exp(-b/a 2 )/(u 2 )a"l. We allow the

improper limiting cases as a-.0 and as b-.0. Then 7r(OY) = iri(PIY) •r2( a I2,Y) where
7r2(a2 I 0,Y) is IG(a',b-) with a" = a + n/2, b' b + ½(y- ()T W- I(y _ W), jpthe vector

of 'P(Xr; f) and Tr(flIY) m irj(fl)J(b')".

Suppose, after transformation of fl to domain RP, that a noninformative prior is taken

for P i.e. 7r,(fl) = 1 (as in e.g. Johnson and Geisser, 1983, p. 138). If g(Xr; fi) = Xrfi then,

as is well known (see, e.g., Box and Tiao 1973, p. 117), 1ri(fijY) is exactly a multivariate

student t-distribution and sampling-based approaches are not needed. For the nonlinear

case let 0(fl) = (Y - •)TWl(Y-V) and let ý be the MLE for f# whence 0(j) is the error or

residual sum of squares for the model. Assuming derivatives exist, to a second order

approximation, 0(p z 0( + 1( - fiT H(P-0) where H has entries Hu w= 0 I H ]
is, of course, proportional to the inverse of the sample Fisher information matrix. At the

least standard nonlinear regression software handles the independence case (W = I) and

routinely provides ,and (H*)' = 2oa H-1, the estimated asymptoticn-p

covariance matrix of P. In irl(fil Y), replacing 0(p) by this approximation again yields a

multivariate student t-distribution, say t(fi).

For noniterative Monte Carlo we immediately have a promising importance sampling

density for ir(dIY) namely t(•) • r2( 2 IAY). The work of Van Dijk and Kloek (1985),

Geweke (1989) and West (1990) suggests refinements to t(fl). Simplification occurs for the
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Gibbs sampler as well since it may be applied directly to ir1(fPIY) using t(fl) as described in

Carlin and Gelfand (1991). The resulting Gibbs replicates say fis would then be used to

sample 72s from r2(oa2 I AY) to obtain 0. The illustrative example in Section 4 is handled

using noniterative Monte Carlo. Other models may admit similar conjugacies which

ameliorate the computing burden.

4. An illustrative example

Our example compares two sigmoidal growth curve models of the same dimension.

Consider the following data (Ratkowsky, 1983, p. 88) recording as Y the dry weight of

onion bulbs plus tops versus growing time X.

X 1 2 3 4 5 6 7 8 9

Y 16.08 33.83 65.80 97.20 191.55 326.20 386.87 520.53 590.03

X 10 11 12 13 14 15

Y 651.92 724.93 699.56 689.86 637.56 717.41

The data is plotted in Figure 1 suggesting sigmoidal behavior. We propose to investigate

model adequacy for and choice between a logistic model, Yr = flo(1 + &62. ) + Er and a

Gompertz model, Yr = 00 e-PL82Xr + Er where in either case we assume the Er iid N(0,oý),

r = 1,2,..-15. Under either model f/o is interpreted as an asymptote while 92 E (0,1). We

take f1 > 0 to yield an increasing function of X. In both cases we reparametrize # to R3 by

setting 0' = log fil, 0; = log (,62/(1-0 2)) and then taking the prior 7r(fo, fl, #;, u2 ) =

(a 2)-. In the notation of the previous section 7ri(P3o, r, •;) = 1 and 7r2(a) = IG(0,0).

The results of a standard nonlinear regression fitting package (SAS PROC NLIN) for

each model are given in Table 1. These estimates were used to obtain, for each model, a

multivariate-t distribution which was then used as an importance sampling density for the
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noniterative Monte Carlo approach described in Section 3.2 with B = 2000. Table 2

provides the predictive means, E(YrI y r) ), and the dir for each model.

Table 2 reveals that Xr = 14 and, to a lesser extent, Xr = 11 are troublesome points

under both models. Plots of d2r VS Xr and d4, vs X, for both models reveal no systematic

patterns. For model 1 (logistic) d2 = .4978, d3 = .6076; for model 2 (Gompertz)

d2 = .5742, d3 = .5997. For illustration, Figure 2 presents boxplots of d2r -. 5 for each

model. Turning to the criteria of Section 2.3.3 we have D11 = 18.27, D12 = 16.82;

D21 = .9219, D22 = 1.3160; D 31 = 1.5657, D32 = 1.9487 and D4 = 1.6863. All told, both

models seem to provide adequate fit with model 1 being preferable.

5. Conclusions

The predictive techniques proposed here for model checking and model choice are

self-contained with respect to the experiment, accommodate both proper and improper

priors, employ only univariate distributions and, using sampling-based methods are readily

computed. The Monte Carlo technology described here can be straightforwardly modified

for use in other predictivist enterprise such as prediction of future observations, diagnostics

for outlier/influential point detection (Johnson and Geisser, 1982, 1983) and optimal

combination of models for prediction (Min and Zellner, 1990).

. Methodology for effective model assessment and selection is available and

implementable. As the art of Bayesian data analysis evolves and more challenging

problems are tackled, judicious use of this methodology should become a standard

component of the data analysis process.
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Table 1: Maximum Likelihood Estimation for the

Two Sigmoidal Growth Curve Models of Section 4.

Logistic Model:

o= 702.876 / = 4.454 = -0.008

= 8913.991 a - 742.833

193.741 -1.107 -0.872 ]
= -1.017 0.058 0.026

-0.872 0.026 0.0133J

Gompertz Model:

/o = 723.059 = 2.502 = 0.564

= 13616.000 " = 1134.667

486.053 -3.842 2.311

* -3.842 0.0813 0.039

2.311 0.039 0.020
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Table 2: Predictive means and dir for Models 1 and 2

Model 1

Xr Yr E(YrIY(r)) dir dfr d3r d 4r

1 16.08 15.88 0.0066 0.3846 0.9999 0.0364
2 33.83 31.00 0.0965 0.6125 0.7947 0.0361
3 65.80 59.19 0.2239 0.5091 0.8711 0.0349
4 97.20 110.26 -0.4347 0.3447 0.5418 0.0314
5 191.55 188.42 0.0967 0.5976 0.8754 0.0331
6 326.20 286.56 1.1858 0.8257 0.3467 0.0143
7 386.87 429.51 -1.3458 0.0963 0.2663 0.0110
8 520.53 524.68 -0.1244 0.4985 0.8740 0.0314
9 590.03 602.30 -0.3913 0.3181 0.6780 0.0304

10 651.92 647.43 0.1433 0.5822 0.8910 0.0336
11 724.93 665.16 2.2774 0.9832 0.0210 0.0028
12 699.56 687.16 0.3931 0.6559 0.6893 0.0304
13 689.96 697.74 -0.2425 0.3779 0.6734 0.0323
14 637.56 708.65 -2.9761 0.0012 0.0067 0.0006
15 717.41 698.73 0.5913 0.6784 0.5843 0.0266

Model 2

Xr Yr E(Yr I Y(r) d r d2r d3r d4r

1 16.08 0.38 0.4745 0.8105 0.4650 0.0280
2 33.83 5.40 0.8779 0.4938 0.6854 0.0205
3 65.80 30.25 1.1041 0.9247 0.1677 0.0158
4 97.20 97.22 -0.0007 0.6426 0.9840 0.0299
5 191.55 202.20 -0.2702 0.4809 0.9438 0.0275
6 326.20 314.97 0.2897 0.7406 0.8339 0.0258
7 386.87 436.20 -1.3458 0.0698 0.1539 0.0107
8 520.53 516.31 0.1157 0.4172 0.9202 0.0289
9 590.03 583.19 0.1916 0.7452 0.8931 0.0292

10 651.92 628.85 0.6543 0.8718 0.6351 0.0234
11 724.93 655.60 2.1501 0.9908 0.0207 0.0026
12 699.56 682.69 0.4533 0.5509 0.7938 0.0265
13 689.96 701.02 -0.2998 0.2456 0.5169 0.0276
14 637.56 717.28 -2.6886 0.0034 0.0038 0.0008
15 717.41 713.76 0.0947 0.6243 0.9778 0.0287
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Discussion

Adrian E. Raftery (University of Washington)

1. Introduction and summary

It is a pleasure to congratulate the authors on an interesting and important paper

that points out how sampling-based methods can make Bayesian diagnostics for model

checking routinely available. Bayesian diagnostics are often similar to frequentist ones, but

they have the great advantage of being systematically available through the predictive

distribution, even for complex models. This is in contrast with frequentist diagnostics,

which have to be developed from scratch for each new class of models, often requiring

considerable ingenuity. The interpretation of Bayesian diagnostics is somewhat glossed

over by the authors, however.

We part company to some extent on the issue of model choice. I am unconvinced by

the arguments against the standard Bayesian procedure, namely that based on posterior

model probabilities. New results indicate that posterior model probabilities can be readily

computed using sampling-based methods. Also, the standard Bayesian pro-cedure is based

on predictive distributions, in a prequential rather than a cross-validation sense.

2. Bayesian diagnostics for model checking

A real achievement of this paper is to show how sampling-based methods can be used to

obtain Bayesian diagnostics systematically and routinely for a very wide class of models.

When frequentist diagnostics are available they are often similar to Bayesian diagnostics.

The great advantage of Bayesian diagnostics is that they are available quite generally from

the predictive distribution, unlike their frequentist counterparts, which can require

considerable ingenuity for each new class of models.

The authors have, however, rather glossed over the interpretation of their diagnostics.

For example, in he nonlinear regression example, they conclude that points 11 and 14 are

troublesome but that, all told, both models provide an adequate fit. What is the basis for
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this conclusion? Nothing is suggested beyond eyeballing the results, but there are certainly

more precise criteria implicitly at work here, and they should be made explicit.

I would suggest that diagnostics not be used to reject the current model, but rather to

guide the search for better models by indicating the direction of search, or the way in

which the current model is inadequate. If this leads to the specification of an alternative

model, then the current model can be compared with alternative one using the posterior

odds ratio (or posterior expected utilities of these can be specified); the current model will

not be rejected unless the alternative one is decisively preferred. You don't abandon a

model unless you have a better one in hand.

Even viewing diagnostics this way, as an exploratory tool rather than as a basis for

inference, we still need some yardstick to calibrate our inspection of the results. Here it

does seem that frequentist calculations are useful, and I suspect that such calculations

implicitly underly the authors' interpretation of the results in their Table 2.

3. Model comparison: In support of the standard Bayesian procedure

The standard Bayesian procedure is given by the authors' equation. (3), and amounts to

basing inference on the posterior model probabilities. They raise two objections to this

procedure, which I will now briefly discuss.

3.1 "Bartlett's paradox"

This is the observation due to Bartlett (1957) that if under M, and Yi are i.i.d. N(0,1), and

2
under M2 they are i.i.d. N(0,1) with 0 - N(0,r 2), then p(MIIY) -. 1 as "r regardless of

the data; see the authors' section 2.3.1.

This has been presented by the authors and by others that they cite as a major flaw

of the standard Bayesian approach, but I do not find it too disquieting. Letting r -, w

implies that E[ 01 ] also becomes arbitrarily large, so it is not too surprising that, for any

data set, Ef 101 can be set large enough that the data prefer zero. Some prior information

is almost always available that will limit the prior variance r2-, and it is always important

to investigate the sensitivity of p(MiIY) to changes in r2 . In practice, p(MiIY) tends to
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be rather insensitive to changes in r2 over a wide range (see, e.g., Raftery, 1988). Thus,

Bartlett's paradox seems to me to suggest that the use of highly diffuse priors is not a good

idea for model comparison.

It may be objected that it is desirable to have a "reference" procedure for model

comparison. However, in my applied experience, reasonable proper priors are often readily

accepted, especially when backed up with a serious sensitivity analysis; the likelihood is

often the more controversial part of the analysis.

3.2 The more serious criticism

The authors write:

"Another criticism is that, in most practical situations, we doubt that anyone

including Bayesians would select models in this fashion. One doesn't really believe that

any of the proposed models are correct whence attaching a prior probability to an

individual model's correctness seems silly. The selection process is typically evolutionary

with comparisons often made in pairs until a satisfactory choice (in terms of both

parsimony and performance) is made."

Attaching a prior probability to a model is not any sillier than science as traditiunally

practiced. Most of science is an attempt to find a model that predicts the observations to

date well; it does not claim to have found the "truth" (if such a things exists) or the

"correct model". Science typically proceeds by adopting a paradigm, which means

essentially conditioning on a collection of models, often with an explicit parametric form.

Prior probabilities conditional on the adopted paradigm, or collection of models, do make

sense.

Of course, if one does not so condition, the prior probability, and hence also the

posterior probability of most models is zero. Since one does not believe the paradigm to be

the "truth", this may make science as a whole seem silly, but its record of success argues in

its favor. Note that the marginal likelihood, f(YJMj), which is proportional to the
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posterior probability of Mj, is just the (predictive) probability of the data given the model

Mj, and so is precisely the right quantity for evaluating the scientific theory defined by Mj.

Consider, for example, the question of whether smoking causes lung cancer, and

suppose that the currently accepted way of addressing this issue is within the framework of

the logistic regression model, logit(Pr[lung cancer]) = "tl[smokes] + i'rx, where x is a

vector of control variables. Conditionally on this framework (or "paradigm"), the issue

becomes a comparison of the two models M, : - = 0 and M2 : 7 > 0. Then a scientist's

natural language statement "I am 90% sure that smoking causes lung cancer" is equivalent,

given the framework, to the statement that p(M 1) = 0.1 and p(M 2) = 0.9. This does seem

to make sense even if, unconditionally on the framework, p(M1) = p(M 2) = 0.

Of course, the natural language statement itself can be viewed as not being about

"truth", but rather about future data and trends in scientific opinion. It might mean, for

example, "I am 90% sure that future data will be better predicted by M2 than by MI", or

"I am 90% sure that within T years the belief that smoking causes lung cancer will be

generally accepted"; note that the latter two statements can be given standard betting

interpretations. For an example where scientists might attach substantial prior probability

to the smaller ("null") model, consider cold fusion.

The authors describe the standard Bayesian procedure as a model selection procedure,

but it is considerably richer than that. When comparing two models that genuinely

represent rival scientific hypotheses, the posterior odds ratio provides a summary of the

evidence for one model against the other; unless the evidence is very strong, one model will

not necessarily be selected.

Often, however, model form is not the object of primary scientific interest. The

authors did not say what the main scientific question was in their growth curve example,

but I suspect that it was not the choice between the two models that they considered. If

interest focuses instead on some other quantity, a, such as the next observation, Ylo, or the

asymptote, flo, then model selection is a false problem, and it is important to take account
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of model uncertainty. The Bayesian approach provides an immediate way of doing this

using the equation.
J

p(AIY) = E p(AIY,Mj)p(MjIY). (1)
j=l

Hodges (1987) emphasized the importance of taking account of model uncertainty, pointing

out that failure to do so leads to the overall uncertainty being underestimated, and hence,

for example, to overly risky decisions.

If the posterior probability of one of the models is close to unity, or if the posterior

distribution of & is almost the same for the models that account for most of the posterior

probability, then p(a I Y) may be approximated by conditioning on a single model, namely

by p(& I Y,Mi) for some i. This seems to be the main situation in which model selection, as

such, is a valid exercise. The "evolutionary" process to which the authors refer is in reality

an informal search method for finding the main models that contribute to the sum in

equation (1), and in this sense may be viewed as an approximation to the full (standard)

Bayesian procedure. Clearer recognition of this might lead to more satisfactory model

search strategies.

4. The standard Bayesian procedure and sampling-based methods.

The key quantity for the implementation of the standard Bayesian procedure is the

marginal likelihood, f(YI Mj) = ff(YI Oj,X,Mj)r(Oj)dOj. The authors say that the Gibbs

sampler does not readily produce an estimator of f(YI Mj). However, Newton and Raftery

(1991) have recently pointed out the existence of a simple and general such estimator.

They show that, given a sample from the posterior, the marginal likelihood may be

(simulation-consistently) estimated by the harmonic mean of the associated likelihood

values. This result applies no matter how the sample was obtained, whether directly using

the analytic form of the posterior, by importance sampling, the Gibbs sampler, the SIR

algorithm or the weighted likelihood bootstrap. There can be stability problems with this

estimator, and slight modifications that avoid these are discussed in the cited reference.
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The standard Bayesian procedure is a predictive approach since the marginal

likelihood can be written

n
f(YIMi)-) I= f(YrIYrl"M1 ), (2)

r=1

where yr-i = (Yi"" ,Yr-i). Note that the conditional densities on the right-hand side of

equation (2) are conditional on the first (r-1) observations, and not on all the other (n-1)

observations. Thus the standard Bayesian procedure is a "prequential" method in the

sense of Dawid (1984), and not a cross-validation approach. Each conditional density on

the right-hand side of equation (2) may be evaluated in a sampling-based way, using the

same methods as the authors propose for their d4r. It follows that this provides an

alternative sampling-based way of calculating the marginal likelihood, and hence of

implementing the standard Bayesian procedure.

Note also that equation (2) remains valid even if the observations are permuted.

Thus, even if the model does not impose a natural ordering on the observations,

"prequential diagnostics" may be obtained by sampling from the set of all permutations of

the observations and averaging over diagnostics based on the conditional densities on the

right-hand of equation (2).

If one replaces the conditional densities on the right-hand side of equation (2) by

densities conditional on all the observations except the rth one, one obtains the quantity

that the authors denote by D4 = ir:1 d4r. This could be called a "pseudo-marginal

likelihood", by analogy with the pseudo--likelihood concept introduced by Besag (1975).

Using D4 rather than f(YIMj) is similar to using the pseudo-likelihood rather than the

likelihood when the latter is available, which does not seem to be a very good choice. As

an argument in favor of D4, however, the authors point out that with improper priors D4 is

defined whereas f(YIMj) is not. This strikes me as a disadvantage of improper priors

rather than of the standard marginal likelihood.

I will attempt to summarize the various analogies and equivalences discussed in the

following table.
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Prequential analysis Cross-validation

Likelihood Pseudo-likelihood

Marginal likelihood "Pseudo-marginal
(f (YI1)) likelihood" (D4)

Posterior model probability/ Fixed-level significance
Bayes factor test

BIC (Schwarz, 1978) AIC, Cp

Entries in the same column are regarded as being related, either by being motivated

by the same approach or by being asymptotically equivalent. Entries in the same row are

viewed as different approaches to the same task or concept. I prefer the entries in the

left-hand column, headed "prequential analysis", while the authors seem to incline to the

entries in the right-hand column. Note that the difference can be important, especially

with large samples.
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Daniel Pefka (Universidad Carlos HI de Madrid)

This paper contains three features that I really like: (1) it stresses the importance of model

determination and model diagnosis in statistical analysis; (2) it advocates a

cross-validatory assessment of the model using the predictive distribution; (3) it points out

the difficulties of using a naive Bayesian analysis for Model choice.

Model diagnosis has received an increasing interest in the Bayesian literature and I

would like to add the works by Zeliner (1975), Johnson and Geisser (1985) and Guttman

and Pefia (1988) to the references given in the paper.

The information about the model adequacy is contained in the joint predictive

distribution f(y) and a key problem is to devise simple procedures to reveal this

information. A sensible first step is the one used in this paper, as

f(y) = f(yi jyc )f(YiA()

we can look at the cross-validatory predictive distribution f(Yilyyi,ý) that is

unidimensional. However, this procedure, although very useful, does not show some of the

interesting multivariate features of the data, for instance, sets of similar points that are

different from the rest of the data and which cannot be identified by univariate analysis

because of masking. Also a set of outliers can produce that some other good points appear

as outlying, and this situation has been called swamping in the statistical literature. To

avoid these problems, we need to consider either the whole predictive density or the

distributions f(y y( (0) and f(y( I(), where y, is a subset of observations. Of course, looking

at all the possible decompositions of the data is an impossible task and we need to develop

procedures to search for interesting combinations of points. My joint work with George

Tiao in this volume may be a first step on this direction.

As far as the computation of f(y, I y 1,) is concerned it should be pointed out that the

easiest way to understand its structure is to use:

f(y1 Iyl(1 ) = f(y' I, y(•))f(#Jy(J))d# (I)
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instead of f(y)/f(y( i). The reason is that (1) is similar to the standard marginalization to

compute the predictive, and therefore, standard techniques can be applied to obtain the

distribution in a compact way. For instance, if y ~ N(,o,2 ) with o2 known and

ju - N(so,o,2o), it is straightforward to show that

f~y • =._ I o) I-1(i + 2)-1/2 eXp I +I.
f VT2 [a 2  Ia' + 1J2

where

(n-I)Y- 1&2  + 2

(I) (nl)a-2 + 0.02

and

2 ((n_)- 2 +a-2)-1

Therefore, the cross-validation predictive density for the subset I depends on the ratio

E£iCI(Yi-Y!) 2 /(Ia ) that is a key factor in the analysis of this subset.
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L.R. Pericchi (Simon Bolivar Universidad, Caracas)

It would be a promising theoretical exercise to investigate the relationship between

your interesting suggestions for selecting a model and the dimension of the model. As an

extreme case, one may think of a model that encompasses both models 1 and 2 in your

illustrative example, and then compare with models 1 and 2. Which model would your

suggestions select?



32

L.1- Pettit (Goldsmiths' College, London)

I would firstly like to comment on the measure of model adequacy discussed in

section 2.2 and fill in some of their history.

The possibility of using dir and other similar 'Bayesian residuals' was discussed by

Pettit (1986) and Geisser (1987). Chaloner and Brant (1988) suggest a different definition

of Bayesian residuals using an idea going back to Zellner (1975). Geisser (1987) also

discusses the use of d3r which he describes as a discordancy ranking. The quantity d4r,

usually called the conditional predictive ordinate (CPO), was proposed by Geisser (1980)

and used by Pettit and Smith (1983, 1985) and Pettit (1988) as a tool in outlier modelling.

Pettit (1990) presents a number of results about the CPO for the normal distribution. The

quantity d4r is called the -atio ordinate measure by Pettit (1990). I think the idea of

comparing a predictive distribution to its mode goes back to Roberts (1965).

As far aw model choice goes, I have found the use of Bayes factors, which do not

require a prior probability of an individual model's correctness (§2.3), to be very useful.

The approach of Spiegelhalter and Smith (1982) to the problem of improper priors is

important. Measuring the effect of individual observations on Bayes factors (Pettit and

Young, 1990) leads to an expression which is the difference in logarithms of the CPO's for

the two models and so ties in with the model adequacy ideas.

The computational methods discussed in this paper will be very useful in calculating

all these quantities and it is therefore for me a very welcome paper.
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Franqoise Seillier-Moiseiwitsch (University of North Carolina, Chapel Hill)

The fundamental, and welcomed, stance of this paper is the shift of emphasis, in

model determination, from parameters to observables: goodness-of-fit criteria are

abandoned in favour of an assessment based on the model's ability to produce decent

predictions. The selected model will indeed often be used on new observables.

Several questions arise regarding the checking functions the authors adopted. Which

one did they find most useful? In particular, g, focuses on a single characteristic of the

predictive distribution whereas g3 and g take into account the whole distribution function.

Situations where the former is more informative are likely to be few. For model

comparison, have they found the difference in logarithmic scores more revealing than

looking at the difference in other scores?

Scoring rules can also be of use in checking the adequacy of a single model. The

results of Seillier-Moiseiwitsch & Dawid (1990), developed for discrete outcomes and

bounded scoring rules, can be adapted for continuous variables. These results assume a

natural ordering in the realizations. The probability range can be partitioned into a fixed

number of bins and the probabilities, under the predictive distribution, that the observable

falls in each of these bins can be compared to the indicators of the realized Bernoulli

process. The score constructed over a number of outcomes, once normalized, behaves

asymptotically like a N(0,1) random variable. The normalization is carried out with

respect to the predictive distribution at each point.

The authors mention the difficulty in drawing formal inference from {drj due to the

strong dependency among these. Transformations that yield independent random variables

could be considered. for instance, by conditioning on sufficient statistics in the probability

integral transform, one is provided with a set of i.i.d. residuals (O'Reilly & Quesenberry,

1973). Let FN(y) = F(y TO) where Tn is a minimal sufficient statistic, {'n(Yi)} are i.i.d.

uniforms on [0,1]. Furthermore, POO(Y), Pn(Y2IY'),'" .",n(YLIY1,' ,Y,) also generate

a set of a i.i.d. U[0,1] random variables, where a is the number of components in the vector
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of minimally sufficient statistics. This conditional transform fits particularly well in a

sequential sampling framework (Seilier-Moiseiwitsch, 1990). Indeed, if T, is doubly

transitive and adequate, then Pn-a n , "',FQJ n(Yn) have the same distributional

properties. If no natural ordering exists, the transform should be applied to the ordering

sample (O'Reilly & Stephens, 1982).
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Reply to the discussion:

We thank the discussants for their kind and generally positive remarks. We knew

that our reference list for this active research area was very incomplete and appreciate the

additional citations provided in the discussion. Pettit's historical perspective is a

particularly welcome supplement.

Several discussants comment upon the close relationship between the model

determination problem and the issues of diagnosing and modeling outliers. Also see Draper

and Guttman (1987). We note that sampling-based approaches expedite calculations

associated with these issues. See for instance, the recent paper of Verdineili and

Wasserman (1991). Pefia encourages us to investigate cross-validation schemes other than

single point deletion in particular with regard to identifying masking and swamping. He

suggests that f(Y1 Y(,)) be computed. We concur noting that the methodology in section

3 is pertinent to such computation. Our only reservation involves possible combinatoric

problems as indicated in Pefia and Tiao (1991).

Pericchi raises an interesting question which does not appear to have a simple answer.

The difficulty is that, in general, it is not obvious what the model which "encompasses

both models 1 and 2" is. In customary linear models it is clear; we merely augment the

design matrix to do this. However consider the two nonlinear models discussed in section 4

i.e. model 1: Y - fio(1 + 01/8'12)" + e, model 2: Y = -yoe '1 2 + e. The encompassing

model which is additive in the mean structure will not be identifiable; the asymptote is 00

+ yo. If we remedy this by setting / = -to we can no longer retrieve model 1 or model 2 as

a reduced model. Suppose we try a multiplicative form for the encompassing model

= #0(1+## 2 )"' e)-9';"2 + E. Now the reduced models are not identifiable; f01 = 0 or

032 = 0 produces model 2, yj = 0 or 72 = 0 produces model 1.

Turning to the remarks of Seillier-Moiseiwitsch we agree that the checking function

g, may be less informative than the others. Nonetheless examination of residuals is

standard and familiar. Moreover, the resulting d, r have an immediate connection with

Bayesian residuals as discussed in Chaloner and Brant (1988). They consider the posterior
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distribution of the unobserved errors which, in our setting, leads to the distribution of

frlY(r) = Yr - •(Xr; fl)I.r" Themean of this distribution is dir.

Her suggestion to transform the {djr; r=1, -.. , n} to a set of i.i.d. U(0,1) variates is

interesting but we suspect feasible only in certain simple cases. That is, preliminary

reading of O'Reilly and Quesenberry (1973) yields several concerns. Their approach

requires the joint predictive distribution, f(Y), to be proper, requires an explicit expression

for f(Y) and in fact, appears to require that f(Y) be an exponential family to effectively

bring (minimal) sufficiency into play. A separate problem is that, even were we able to

carry out the calculations, we worry about the inherent order dependence of the results

since for general response model data no natural ordering need exist.

Finally, Raftaey offers tlie lengthiest and most penetrating discussion. One of his

main points concerns the computation of f(Y). We agree that this can be done and, in fact,

at the end of section 3 mention the use of importance sampling densities to do so. Whether

the posterior is a good choice is unclear since the resulting harmonic mean estimator may

be unstable. Calculation of f(Y) in a sequential fashion seems silly. In most cases the

effort to compute f(Y) directly would not be much greater than that required to compute

an individual term in the factorization. We also note the aforementioned concern regarding

the inherent order dependence which is not mitigated computationally by the suggestion to

randomly sample permutations.

More importantly, we criticized the use of f(Y) when it is not integrable and not

because we couldn't compute it. We completely agree that the choice of likelihood is the

critical problem and in fact say so in the introduction. We are less sanguine about the

availability of proper priors. If they are developed through training data (imaginary or

otherwise) is this not really similar in spirit to cross-validation?

Turning to our criticism of the standard Bayesian model choice procedure there are

no doubt situations where we may knowledgeably assign prior weights to models in which

case we would certainly do so and obtain posterior odds. But "garden variety"

specification of the likelihood with regard to features discussed in our introduction doesn't
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seem to readily lend itself to such weighting. -However we thoroughly agree that Bayes

factors (when interpretable) or pseudo-Bayes factors are vital objects to compute in

comparing models. Still these factors may disadvantage some models relative to others.

Hence we value the information obtained through other checking functions. A question

requiring further analytic and empirical elaboration is, in the case of proper priors, how

different will the Bayes factor and the pseudo-Bayes factor be particularly as n increases?

In conclusion we are invigorated by all of the discussion, critical or otherwise. Model

determination is obviously a fundamental data analytic task. Illumination of its aspects in

the Bayesian framework, particularly contentious ones, necessarily enhances our

understanding of the task.
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