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ABSTRACT

We consider the problem of statically assigning many tasks to a (smaller) system of homogeneous

processors, where a task's structure is modeled as a branching process, and all tasks are assumed

to have identical behavior. We show how the theory of majorization can be used to obtain a partial

order among possible task assignments. Our results show that if the vector of numbers of tasks

assigned to each processor under one mapping is majorized by that of another mapping, then the

former mapping is better than the latter with respect to a large number of objective functions. In

particular, we show how measurements of finishing time, resource utilization, and reliability are all

captured by the theory. We also show how the theory may be applied to the problem of partitioning

a pool of processors for distribution among parallelizable tasks.
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1 Introduction

Parallel processing has emerged as an important means of achieving high computational perfor-

mance. As a conseqiuence, much research interest has been sparked in the area of efficient use of

1)arallel computers. The problent of assigning tasks among processors to minimize processing time

has already receive(] considerable attention in the literature, e.g., [3, 4, 8, 9, 12, 18]. We consider

the problem of statically assigning tasks to processors when the tasks have unknown random pro-

cessing times and a certain type of stochastic structure. The structure we examine embodies the

notion of one task spawning a set of others; we examine static assignments, under the assumption

that all offspring ()f a task are execute(d on the same processor as the task. Static assignment is

likely to be use(l when a task's state is large, thereby making dynamic assignment very costly in

terms o)f cOlmminui nication.

This paper examines theoretical issues associated with compamiNg different static mappings of

a set of complex stochastic tasks. In p)articular, we show how the theory of majorization can be

use(d to derive strong results concerning the compl)arison of different meal)pings. The strength of

our contril)ution lies in our providing a formal underpinning to the analysis of mapping complex

stochastic tasks and to the optimization of a rich class of objective functions.

Previous work on hlad balancing or task assignment [3, 4, 7, 8, 9, 12, 18] in parallel systems

may be loosely (livi(le(d into three categories. The first category, with deterministic structure,

involves task structures and execution times which are known prior to assignment. In this case

[14] includes a study of problem comlplexity under various constraints and heuristic algorithms for

task scheduling. A second class of load balancing formulations, in which task execution times are

random, is characterized by (lueueing-theoretic considerations [4, 16, 18]. Much of this work pertains

to steady-state expectations of task delays with state-del)endent [4, 18] and state-independent [16]

assignment )olicies. Our work is closest to the third category [7, 8, 9, 13] which also takes task

execution times to be randomn but focuses on minimizing expected processing times for a fixed set

of tasks. As (liscussed in [9], the assumption of random execution times and a given set of tasks is

justifie(d in apl)licatiomms su ch as Monte-( ,arlo simulations.

Our approaclh to the prol)lem differs from previous work [7, 8, 9, 13] in several ways. In

this p)al)('r, we (Io not concern ourselves with the explicit optimization of task assignment, but

rather. with the comparison between different assignments over a wide range of possible objective

functions. Past al)l)roaches typically address the question: given K processors and m tasks with

random execution requirements, find the assignment of tasks to processors that minimizes the

expected maximum workload (or makcspan). In this paper, we address a related question: given

two assignments, when can we say that one is "better" than the other, and for what class of

objective fumictions can we make this assertion? Our results have a simple general form. We can

descril)e a mal)l)inig of I)r(O)abilistically homogeneous tasks to processors by a vector m, whose



ith comp)onent is the number of tasks assigned to the ith processor. Let m and m' describe two
different mapp)ings. Then if m can be bounded by m' using the notion of majorization [10] (written
m -_< mI), theni for all objective functions f in a class C we may say that the assignment described

by m is better than the assignment described by mi. The class C is often quite general, and

includes many commonly used objective functions, e.g., the expected maximum workload. We note

that an interest in inequalities or stochastic ordcrings can be more useful than merely searching for

optimal assignments, because such orderings may be derived in a variety of cases where it is too

expensive to search for an optimal assignment. Inequalities are also useful when constraints on the

assignment (e.g. heteiogeneous memory capacity among processors) prohibit one from adopting

all otherwisc ub,'ious optiimal policy. We note that stochastic orderings are of independent interest

[15] and also, in some of the cases we consider the optimal strategy is apparent from the derived

ordering.

Our interest in obtaining stochastic orderings also stems from the observation that they are often

the only results available for small numblers of random variables and a wide variety of distributions.

Consider the fact that in [8, 9] the results are asymptotic in at least one variable n or K. In fact,

in [9], the results are only asymptotically correct in both the number of tasks t and the number

of pro('essors K. These al)l)roaches are based on the use of the central linit theorem [8] and large

(leviation theory [9], which are among the few limit results available that hold for a variety of
(listril)utions. In contrast, our approach is concerned with finite (and possibly small) u and K and

we make use of the theory of stochastic majorization [10]. Thus, while some of our results are not

as strong (in terms of ol)timnality) as those obtained from fundamental limit theorems, the accuracy

of our results (toes not depen(d ol the number of tasks or processors.

We now discuss other specific differences between our work and past efforts. Our structural

model of a single task is that of a branching process: a completing process spawns a random number

of subprocesses. This type of behavior appears in diverse applications such as Branch-and-Bound

searching algorithms [2] where the branching structure is obvious, and dynamic regridding algo-

rithins in numerical computations [1] where sections of -coarse grid serve as "processes" which give

rise to "subprocesses" associated with finer grids. Furthermore, our results permit the analysis of

much iore comnplex objective functions than have typically been studied for stochastic task models.

Our" model differs significantly from those in [8, 9, 12]. The tasks in [9] were taken to be individ-

ual independent and identically distribute(] (i.i.d.) saml)les drawn from a common distribution,

aud sytnlchronization I)elhavior is that of periodic global synchronization. In [8] a complex task is

coml)rised of a fixed nuIluber of tasks with random i.i.d. execution times. However, the analyses

in both [9] and [8] are concerned with overheads (e.g. synchronization and communication costs)

that our model does not indlI(he. In some ways the present work resembles earlier results obtained

un(ler the assumnl)tion that the workload assigned to a processor causes the processor to behave

as a Markov chain [13]. Like this earlier work, our new results show how the quality of a static

assignllivit. persists across numerous stochastic transformations of the workload. The model we
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study in the present i)ap)er is a (listinct inm)rovement over that in [13], as the stochastic behavior

of a pitcessor is now exl)licitly (dependent oil the volume of workload it contains.

Other related research has been directed at comp)uting the expected coml)letion tine for a
single compl)lex task with a possibly random acyclic structure [6, 17]. Another related publication
[11] studies the problem of scheduling sub-tasks of a single task, where the sub-tasks form a tree.
Lastly, an analytic study of load-lbalancing statistically homogeneous workload on a hypercube is

presented in [7], where the mean and variance of the difference between the load on a processor

and the average load are derived. While past research has been concerned exclusively with a single

task or a given set of tasks, we also consider the joint assignment of multiple classes of tasks, where

tasks in different classes hiave different probabilistic behaviors.

Our work is based on results friom the study of stochastic majorization. The fundamental theory

of majorization originates in the economic study of income distribution-a sort of "load" balancing.

We believe majorization finds a natural ap)p)lication in the drea of mapping parallel workload, and

that one of our contributions is to demonstrate uses of this powerful theory in parallel processing.

In this resl)ect our work is similar to that in [3, 19]. In [3] the focus is on a new stochastic ordering

based on the class of symmetric, convex and L-subadditive functions with applications to routing
and designing processor speeds. The load balancing emphasis in [3] is on scheduling structurally

silnl)le tasks friom a queue. Majorization in steady-state queue lengths of open queueing networks is

studied in I19], in which orderings are parameterized by queue utilizations. In contrast, we use the

established orderings in [10] to obtain inequalities among all generations of complex tasks under

different static mnappings of the initial tasks.

The rest of this paper is organized as follows. In the next section, we define basic notation

anldl present our workload mnodel; also, we discuss the different stochastic orderings to be used

throughout the paper. Section §3 contains the fundamental orderings for workloads. Section §4

discusses various objective functions of interest in parallel systems and Section §5 applies the theory

to the p)robleni of partitionimng a pool of processors among a set of parallelizable tasks. Section §6

sum nmnarizes oulr work.

2 Preliminaries

We now introduce our model of computation, iml)ortant definitions and known results, and a

rationale for using majorization to study the assignment problem.

2.1 Workload amid System Model

We model the workload produc'ed by a single task as a branching process [15, pp. 116-117], as

follows. The task begins with a single work unit (WU) of computation. The WU is executed; upon
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its completion a random number of other WUs are created, and placed in the task's work list.

The initial WU can thus be thought of as containing the "seeds" for a number of additional WUs,

possibly zero, each of which similarly contain the seeds for additional WUs, and so on. One of

the first generation WUs may then be executed, and its children (which are 2 nd generation WUs)

sp awned andi placed in the task's work list. The number of children a WU spawns is assumed to be

ran(domn, chosen from a p)robability (listril)ution known as the branching distribution. The lrocess

is rel)eated until the task's work list is empty. The task workload is comprised of all computation

related to all WUs ultimately descended from the initial task WU.

We assume that the order of WU execution in no way affects the spawning of children: a WU in

the work list is destined to spawn some j children, regardless of the length of time it spends in the

list. This is easily understood if one views the WU generation as reflecting some intrinsic structural

property of the problem, e.g.. the branching of a search tree. Because of this independence, every

WEI belongs to some -generation" which is independent of execution order. The initial WU is in

generation 0; all children spawned by a generation I WU are in generation 2, and so on.

We assume that a given WU may be executed with the same constant cost on any one of A'

homogeneous processors, and that every WU is executed on the same processor as is its parent.

Therefore, we manp all coml)utation associated with a task when we map the task's initial WU.

Consider the evolution of an initial task WU. Let Nq denote the number of WUs in its q-th

generation. The size of the q-th generation is given as

Nq-IN( = Zj,q , l

where No = I and where Zi,q is the num1ber of WUs generated by the j-th WU in the (q - l)-th

generation. We assume that {Zq, I < q •_ K})'= is a sequence of independent and identically

(listributed (i.i.d.) random variables (r.v.'s). The following notation will be employed:

"* K - the number of processors.

"* v - the number of initial task WIJs.

"* m an integer assignment vector whose ith coml)onent mi gives the number of WUs assigned

to the ith p)rocessor.

"* N,) the size of generation q, descended from a single initial WU (when the branching

distribution is nnderstood). For any subset A C_ IV, SA is the sum of all sizes of generations

E A:

SA= Ni.
tEA
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"* f(P) - the jt4 convolution of a probability mass funiction f. If X is a random variable, we will

also use XW to denote a sum of j independent instances of X.

"* Wq(m) - the random vector of generation q WUs resulting from assignment vector m:

Wq(M) = (N?`1),. . , N(mL")

We denote the itL component of Wq(m) by (Wq(m))i. The notation is extended to arbitrary

subsets A C [V by

WA(m) A ASL) 9 m)

The theory we develop permiits us to compare different mappings under a variety of objective
functions ¢ : if?., __ . Our results focus on comparing values of E[O(Wq(m))] by deriving
conditions for inequalities involving initial task assignments m. Most of these are of the following
form: given two assignments m and m' where m -< rm' (see Definition 2.1), then E [W(WA(m))] _
E [O(WA(m'))] for all subsets A C _V, when the expectations exist.

Applicable functions 0 include any symmetric convex function; the maximum operator, all

powers of the maximum, the sum operator, and the product operator are of particular interest.
Thus a single comparison between the assignment vectors m and m' vectors can yield a wealth of
information about the comparative behaviors of complex stochastic tasks under the two mappings.

Our results are al)l)lical)le to two different types of processor synchronization. We study gen-
crational synchronization (CS) where processors engage in a barrier synchronization between each
WU generation. A processor executes all WUs of a given generation, say q, then synchronizes at
the barrier. It is not released until all processors have executed all their generation q WUs and
reached the barrier. The process repeats for subsequent generations. This type of synchronization
is appropriate when the computation for a generation q in one task may depend on results computed
by a generation q - I WU in another task. We also study termination synchronization (TS), where
a processor engages in a b)arrier synchronization only after the work lists of all its initial tasks are
empty. This is al)propriate when the tasks are independent of each other, and the synchronization
serves only to aggregate the final results of their respective computations.

Not surprisingly, the optimal way of assigning n tasks to K processors is usually to assign n/P
to each. In the face of the obvious one may well ask why we study partial orderings. Primarily, the
theory proves the ol)tiliality with respect to a large number of objective functions, thereby lending
theoretical support to intuition. Secondly, the theory works even in the presence of constraints
that disallow the uniform assignment, and complicate one's intuition concerning optimality. For
example, memory constraints may exist that forbid one or more processors from being assigned more
than n/P tasks. The theory identifies the optimal assignment under heterogeneous constraints.

We will also apl)ly these concepts to the issue of partitioning a pool of processors among a
set of compl)ex 1)arallelizal)le tasks. Here we'll take K to the be number of parallelizable tasks,
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and use M to describe the number of processors assigned to each. Constraints on feasible m

are easily envisaged, as the assignment may need to consider "natural" partition sizes that arise

from communication topology, or system usage at the time of the assignment. So again, while the

optimal solution to the constraint-free version of the l)roblem may be apparent, the theory provides

a means of comparing feasible solutions.

2.2 Stochastic Ordering and Majorization

We now introduce the majorization partial ordering -< using notation largely taken from [10].

Definition 2.1 (majorization) A vcctor x is majorized by vector y, written as x -< y, iff

i= -[; i=__j k It,. . - 1,

"2 E i=1 X[i1 = Ei=1 Y[,i"

whcr( the notation X[i] is taken to be the i-th largest element of x.

Definition 2.2 (Schur-convex function) A function 0: R" -* J? is said to be 5chur-convex if

x -< y in N' implies Ob(x) <_ (/y) in Rl.

Examples of Schur-coivex functions include O(x) = max xi and O(x) = g g(xi), V convex g : R

JR.

Let Co be the class of increasing functions from f'• onto R. The well-known stochastic ordering

between random variables [15] is defined as follows. For random vectors X and Y with distribution

functions F and (6 respectively,

X <'t Y iffJ OI4)dF(x) 9 5(x)dG(x) VO E Co

such that the integrals are well defined. Majorization over deterministic quantities is extended to

rantdom variables in like manner by using an al)prol)riate class of functions:

('C = {'scxr} = {f: R"' JR I f Schur-convex },
(C2 = {ca.s} = {f ' I f cmnvex and symmetric }.

These define respectively the .Schur-convex partial ordering, denoted by -<,, and the convex sym-

metric, partial or(lering, denoted by -,, (the notation -<E, and -E 2 is used in [10]). Thus,

X Y i Il'

Jill JAR.dFa~ • t(x)d(G(x) VO E C1
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and X -<(-,s Y iff

J x4dF(x) < (~G~ VOk E C-2.

Note that C2 C C1 and thus, ", is a stronger ordering than "%,s.

Stochastic orderings based on likelihood ratio play an especially important role in this paper.
Consider non-negative integer valued r.v.'s X and Y with probability mass functions f and g.

Definition 2.3 (likelihood ratio) X is defined to be smaller than Y in likelihood ratio, written
as X <_I,. Y, iff

f ( 7 1 ) < f0mn )I
g~ < gn!)' 0<nKm, n,m- E .

Another important property for a probability distribution is known as increasing likelihood ratio.

Definition 2.4 (ILR) The non-negativc integer valued r. v. X is said to have increasing likelihood
ratio (ILR) (and its probability mass function f is said to be ILR) iff

c( + X <-t1 c 2 + X, whenever 0 < cl < c.2 .

Next we define another class of probability mass functions, those which have increasing likelihood

ratio under convolution.

Definition 2.5 (ILRC) Let f be a probability mass function defined onl IV. f is said to have

increasing likelihood under convolution (ILRC) iff f(') <I1 f(J) whenever i < j.

ILR. (listributions are known to be closed under convolution, even when the number of times con-
volution is applied is random (provided tile distribution of this number is also ILR) [10].

Lemma 2.1 Let f be an ILR probability mass function. Then

"* f is ILR(.

"* For any fixed integer k > 0, f(k) is ILR.

"* Let N be an ILR positive integer-valued random variable. Then f(N) is ILR.

Using these facts it is straightforward to prove the following.

Lemma 2.2 Let f be an ILR probability mass function. Then
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* If f is thit branching distribution for a task, then for all gencrations q, Nq is ILR.

* For ang subs(t A C IV, ifS-A =Z= EA Ni has Jinitc incan, then SA is ILRC.

Proof: The proof of the first claim is a simple induction on q that uses closure of the ILR property

under random ILRl mixtures; the proof of the second rewrites SW as Nq + ci, where q is the least

element of A, and ci < c, alhiost surely whenever i < j. The result follows from Definition 2.4 and

the fact that Nq is ILR. 0

As we will see, the assumnption of an ILI{ branching distribution often yields +sex orderings.

The ILI? condition is true of the discrete Uniformi, Poisson, (eometric and Binomial distributions,

showing that our results apply when the lwranching assumes some well-known (listributions.

Next we show how these stochastic orderings may be used to develop stochastic majorizations

between different static niaplings.

3 Branching and Stochastic Majorization

In this section we establish conditions under which either • or -,. orderings can be established

between -'workload" vectors under different mappings. The notion of workload will be seen to

be quite generai. Throughout this section it is iml)ortant to remember that the results relate to

intrinsic properties of branching behavior, and do not depend on assumnl)tions about execution

b)ehavio r, e.g.. sYnchrn ization.

Our results for the - ordering is based on the following theorem which is an application of

Theorem 3.J.2 in [10]. The corresl)on(lence between our form and the original is pointed out in the

Appendix.

'lheorem 3.1 LUt f b( an ILR(/ probability mass function, let m = (in, ... ,mK) be a vector of

nonti(ativc i ttf g( rs, and for (ach j = 1 . K., K let X('"j) be a r.v. with distribution f(..J). Suppose

this s. f of r. ,..s iV indcpmdh tit, and 1i0 : RI' - R bc a Schur-convcx function. Then

-7(m) E [(x1),..1,

is a *Schur-con'cx function of m.

Using Theoremi 3.1 we obtain our basic -s, ordering results.

Theorem 3.2 (Considur a s.t of n taskks, with coimmon ILR branching distribution f, and let m

and, mn' bf tivi, Iiieppinj l'( mtors such that m -< m'. Then



"* For- all g(J( ratlitns q, '41,( i) *< 1(m t ).

"* For any s-1.Es t A C IV suclh that ,SA has finlitc inwar,

Proof. Leinuxia 2.2 shows that the (list ribu tions of Nq arnd ';A are each ILRC; the result follows

fronti tlie( (definiitions 4)f 14',,(i) and 14'.j(in). and Theoremn :3. 1. a

Observe Ilhat the stateenipt of Theoremn :.1 app)hes mnore generally to the notion of a randomn
".rew;1rd" associatedl withI eachi iniitial 'Nil. It states that if each initial WU earns a randomn ILR(

rewardI. and if tite rewardl to a processor is the suitn of the rewards earned by its (independent)

W17s, theni a stochastic uinajorization onl the rewardls follows fromn a determininstic miajorization of

thle initial WVUS.

Our resuilts seeuin to require the assuniptioll of ILR or ILRC branching dlistributions.

However. lbv (4 (st rai nuig uu r at tenution to svinuiietrnc convex functions we are able to obtain -<cas

Ordlfri [if's fi r m le vigeeral Imbaiiclinirg dlist ri Lu ions. The dletails, which are numnerous, are

(level(ql)edl ill tilie Appe)4ll (lix. I'lie --K .,,, irint ierpart to Theoremn :.2 is

Theorem 3.3 ( onsith r a m t of! it tat.%k.%. iith cortnhiU)7 noniacgativc branching distribution .anid
lo m (in( m'l iN ho Iwi appinq t-ittor.% -- , that mn -< m's. Thcn

* Foi- all g(j( f i'ation.s q. W'.I(in) -•. .).

* F'or any .sjrbst I A IN'tich that h ~Ias Jintih httcflh,

3.1 Heterogentous Constraints

The K-vector m',p= (it/IC lKu is inajorized by any other vector whose comiponents

are nonnegative and~ sniji to it. Applied to thle assignuient probleni, this shows that the obvious way

to balance workload is indeed thle b~est. even for comiplex stochastic tasks. Optimial-ity is less clear,

however, if the ob)viouis assignmnent is prohibited lby constraints. For each processor i let ('i be an

upperW bound onl thle nunmber of WIls the processor ummay be given. Stich constraints mnight arise, for

instance, if tilie processors have dlifferent, ineninory capacities. The obvious inapping is prohibited if

Ally C', < 11/K%. Majorizatioii providles a way to idlentify the best assignmnent of comnplex stochastic

tasks even in thle face of such constraints.



( onsider any feasible, vector y = (YI ,.. yK), Yi < ('i for i = 1 , K. Suppose there exist i

and j sulch that !/J > yi + 1. and Yi + I < ('i. Construct a new vector x from y by transfering one

unit frml, Yj, to y" ie. x., = .1 - 1, Xi = yi + 1, X/,. = Y for all k $ i,j. It is shown in [10] (5.D) that

X -< y. hllis (observation tives a rule by which we ('an iteratively iml)rove a feasible solution, until

no fhirt her i PIIr(wvIeIInt is possible. We say a vector x resulting from this processed is balanced.

Withiout loess o)f generality assume that (' <_ ('C2 _ " ('.. K. It is apparent that x is balanced

if and only if whenever ./,/ > xi + 1, then xi ('i. A characterization of balanced vectors then

is that there is solne index j sulch that x, = ('i for i = 1 ... ,j, and for all 1, m > j we have

I .r1 - .1,,1L <_ 1. Furthermore, if x and y are both balanced, then this index j is the same for both

of theuim. It follows then that x < y and y -< x, which shows the essential uniqueness of balanced

Vectors. BakInllaced vectoHrs are thlus op)timlal lunder heterogenous constraints.

A simlue O(n) algorithiut will construct a b)alanced assignment. Assume the processors are

Mrthereld byi increasinig c'nistraiutt value, and initially set xi = 0, i = 1, 2,..., A'. We loop repeatedly

over illdices I to A". Each pass through the loop we increment x. once, provide(] xi < Ci. This

esse ltially assigns one unit to the ith processor. We repeat the loop until all n units are assigned.

Tlhe main results of these section show that stochastic branching preserves stochastic majoriza-

tion for additive reward systems. As we have seen, useful reward systems are derived from the

generation sizes. The section to follow illustrates how these results can be fruitfully applied to

vari'ms n )bjective funt'tions.

4 Objective Functions

We will omw establish that a number of interesting objective functions are either Schur-convex or

coi v(,x symmetric funtctions of some notion of workload. These objective functions include finishing

time under di'rerent synchronization schemes, the space-time product, and overall reliability. This

(liversity of application demonstrates the utility of the theory.

4.1 Finishing Time

One use" of Iiajorizaiotin is to show that whenever m -< m', the computation's expected finishing

tille it id(er m is better than that under mn'. This can be established using different models of

execlution. •-i)r examtple, one easily envisions a computation where the tasks must synchronize

ghl)ally ;ifter every generation, i.e., ;•S , inchronization. This is typical of tasks associated with

tiuterical computations. If the WVUs each have unit execution timi , then maXk{(Wq(M))k} tiiie

is re•(mtired n'der mapping m to execute all generation q WUs. Nq can be viewed as a random

rewaird associated with aln initial WU, thus Theorem 3.3 tells us that Wq(M) "cas Wq(ir'). The

,,,;cx ,opert,,r is cnvex aid symmetric. whence E [maxkJ{(Wq(M))k}) I] E E[ .axk{(Wq(M'))k1}]
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This same result holds true if the IAVU execution times are random, and i.i.d. Since the time

between each synchronization is no larger under m than than under m', it follows that the overall

finishing time is no larger.

Similar results are obtained under TV synchronization, where processors synchronize only at

termination. The reward for an initial WU can be defined to be SIy, the total size of the branching

tree rooted in that WU. When the mean of the branching distribution is strictly less than one, then

E[.qN] < oc. li this case, whenever m -< m', the expected maximum processor reward under m

is no larger than under m'. Even when the branching distribution's mean is greater than or equal

to one (but is fiuite) we can always assert that the time to execute all generations up through q is

no greater under m than it is under m', by defining the reward for an initial WU to be the sum of

the sizes of generations through q. Any symmetric convex function of the processor rewards-such

as the maximum processor reward--yields an -<cas ordering.

Another metric of in'erest is the variation in the time to synchronize. The sample variance,

defined below, is also symmetric and convex.

SamplcVar(x) = (x _ - k)2

7L

= E Xiý_ý2•

k=l

where x = (Zxj)/n. Thus,

SamplcVar(Wq(m)) -cas SampleVar(Wq(M'))

for any generation q, and(

SamplcVar(WA(m)) •¢as SampleVar(Wq(m'))

for any A C IV such that ,A has finite mean. When the branching distribution is ILR, a similar

result holds true for the sample standard deviation (square root of variance) of time between

synchronizations, because the standard deviation is Schur-convex ([10], pp. 71).

4.2 Functions of Queue Length

When a WU completes its execution it generates its children and places them on the processor's work

list. Followijig tliji, another WU is selected to be executed. There is thus a storage cost associated

with executing complex tasks; more generally, we show here how stochastic majorization can be

applied to objective functions based on measuring queue lengths at every time step. A simple

example of this is the computation's total space-time product, defined as follows. Let Q(t) be the

vector enumerating the number of WUs enqueued at each processor at time t, and let T be the
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complutation's termination time. Then the total space-time product is _•-- ZT=0 (Q(t))k. This
idlea can I)e generalized-let s(j) quantify the cost of holding j WUs in queue for one unit of time.

Then the total space-time cost with respect to s is k-=I _(=0 s((Q(t))k). We will show that if s

is increasing ('onvex with .s(O) = 0. and if m -< rn', then under TS synchroaization the expected

space-time cost with respect to 'S is no worse under m than it is under m'. This result is also

demonstrated for GS synchronization when the branching distribution is ILR.

Under the model assumptions we have made, the probabfihstic behavior of a processor's queue is

completely independent of the queueing discipline used. We will assume that the queueing discipline

is Smallest-(eneration-First (SCF): whenever a processor selects a WU for execution from its work

list, it chooses one with least generation index. For simplicity, we also assume that the execution

of a WU takes unit time.

The space-time function .s(k) = k gives rise to the usual space-time l)roduct, but other space-

time cost functions are also intuitive. For example, one might have to store WU states on disk

whenever the queue length exceeds a threshold L; furthermore, once L is exceeded the cost might

be superlinear, owing to fragmentation costs. A candidate cost function would be

S0 if k < L
(L -k) 1 + if k> L

where ( > 0. The general assumptions that a space-timiie cost function be convex, increasing, and

zero for empty queue lists seem to us quite natural.

Our treatment of space-time costs under TS synchronization hinges on the following observa-

tion: if I)rocess(.r k has exactly (Wq(M))k WU units in generation q, then under the SGF queueing

discil)line at soomc point in time the processors queue will have exactly (Wq(M))k WUs. In partic-

ular, at the instant where the first WU of generation q is about to be executed, the queue consists

entirely of generation q WUs, and contains all of them. We will show that the contribution to the

expecte(d space cost made by processor k while processing generation q WUs (under SGF schedul-

ing) is an increasing convex function of (Wq(m))k, and use this fact to find a majorization on the

vector of expectedl contributions made by all processors while processing generation q WUs. This,

in turn. will show that the total expected space-time cost under m is no worse than under mn',

when the expectations exist. This is a -C<,,, result, al)pical)le for any branching distribution.

Suppose (Wq(M))k = r. The processing of the ith WU in generation q (i = 1,...,r) produces

a randoum number .¥q,i of WU units, who join the processor's queue. The queue length at the

instant the it" WU begins execution is r - (i - 1) + E-' XkJ, as there were r work units in queue

at the point the first generation q WU was executed, i - I of them have been executed, and each

one prodllced a random number of generation q + 1 WUs. Therefore, the conditional expected

12



space-time cost suffered (luring the processing of this WU is

01(ir)= E [s(r-(i- 1)+i :Xq')]j ] (2)

4 is convex in r, because for any convex -y and random variable Z, the expectation E[y(a + Z)]

is convex in a (assuming the expectation exists). The expected space-time cost of processing all r

neml)ers of generation q on p)rocessor k is

TC1 ()= ~ 6(i, r).
i=1

Finally, we claim that Cl(r) is a convex function of r. To demonstrate this it suffices to show that

Cdr+2)+Cs(r) > 2Cs(r+ 1) for all r. Since q5 is convex in r we have 0(j, r+2)+¢(j, r) > 20(j, r+l)

for all j = 1,. .r. This observation reduces the l)roblem to a demonstration that

5(r+2, r+2)+ 0(r+ 1,r+2) _ 2(b(r+ 1,r+ 1).

The fact that s(r) is increasing establishes that both 0(r + 2, r + 2) and 0(r + 1, r + 2) dominate

0(r + 1, r + 1), thereby proving the convexity of C((r).

The function T,(r 1,.. ., rK) = Z'- 1 (Cs(rk) is symmetric and convex on/iK, because whenever

g is convex on N. thvni h(x) = Zg(xi) is convex on RK. Observe that Ts(Wq(m)) is the random

sl)ace-time cost with respect to s and generation q resulting from assignment vector m. We have

proven the following result.

Proposition 4.1 Let s be an increasing convex function with s(0) = 0 and suppose the space cost

of holding k WUs in one processor's queue for one time unit is s(k). Define

K
T=(Wq(M)) (7s((Iq(m))k)

k=1

to measure the space-timne cost suffered while executing generation q, under the assignment given

by m. Then whenever m < m',

"* E['T(Wq(m))] < E[Ts(Wq(m'))] for q = 0, 1,.

" The expected total space-time cost using TS' synchronization is no worse under m than under
m/:

E[•-•'T(Wq(m))1 < E[" T,(Wq(m'))] whenever the expectation exists.
q=O q=O

13



The analysis of space-time costs under GS synchronization requires more work, and the as-

sumption of an ILR branching (listril)ution. Suppose that (Wq(m))k = rk, for k = 1, .., K. The

sl)ace-tine cost to p)rocessor k during the interval of time when generation q WUs are executed has

two coml)onents. We have already seen the first: ((rk)-the cost accumulated over the period of

length rk while generation q WUs are executed. The second component is the space-time cost suf-

fered waiting for the most heavily loaded processor to finish. If processor k generates x generation

q+ I WUs, then the space-time cost it suffers waiting at the barrier is (maxi{rj}-rk)s(x). Recalling

the definition of 0 (equation (2)) we may write the expected total space-time cost of processing

generation q WUs under GS synchronization (conditioned on (Wq(m))k = rk, for k = 1,. . ., K) as

ý'(rj,...,r* ) = E ( (i, rk) + (max{rj} - rk)O(rk + 1,rk) ,
k=1l= 3)

Observe that 0(rk + 1, 7rk) is E[s(X(r"))], where X is the branching random variable. G is Schur-

convex on 1VI, a fact we show using the following characterization of Schur-convex functions on

IVK (3.A.2.1) in [10]).

A function a on NVAK is Schur-convex if and only if a is symmetric and

a(r1 , t - r7 ,r:l,r. . . , rK) is increasing in rl >_ t/2

for each fixed t, r:3 .... , rTh.

Fix r:3,.. ., rK, and consider rl > r 2 . If the difference G(rl + 1, r2 - 1,..., rT-)- -(ri,r 2 ,..., rK) is

always nonnegative, then the condition above tells us that G is Schur-convex. We need to examine

two cases, maxj 1{rj} = r1 , and the alternative. Assuming the former, straightforward algebra shows

that the difference is l)ounded from below by

TI r 2 --1

[q(i,r 71+ 1)- 4)(i,rI)]- 3 [4i,r2) - 0(i,r 2 - 1)]+
i=1 i=1

('k(rT + 1, r 1 + 1)0- 2(r, r 2 )) - (rT - r 2 ) (O(r 2 + 1, r 2 ) - O(r 2 , r2 - 1)).

Both of the two summations above are positive, because 0(i, r) increases in r. Since 0(i, r) is convex

in r and rT > r2 , it also follows that 0(i, rT + 1) - §(i, ri) Ž_ 0(i, r2 ) - 0(i, r 2 - 1) for every i. Thus

the positive summation above (lominates the negative summation, and the desired inequality will

hold if

(O(rT + 1,ri + 1) - 0(r.2 ,r. 2)) - (r, - r-2 ) (O(r.2 + 1,r 2 ) - €(r 2 , r2 - 1)) Ž_ 0.

Sinre 0(r, r) is a convex function of r, we have

rl +1 -r 2

0(r] + 1r 1 + l)-1(Tr2'r 2 ) = E (O(r 2 +i, r 2 +i)- (r 2 +i- 1,r 2 +i-1))
t=1
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r, +1 -r2

> ((r 2 + 1,r 2 + 1)-(r 2,r2 ))

- (r, - r2 )(O(r2 + 1,r2 + 1) - ¢(r.•2,. 2 )).

From this inequality we see that the desired bound will hold if (¢(r 2 + 1, r2 + 1) - O(r 2 , r 2 )) _

(O(r 2 + 1, r 2 ) - O(r 2 ,r 2 - I)) . The convexity of s implies that

h(r,2 + r,2'• + I) - 0(r2, r2) = E[s(1 + X(r2)) - s(1 + X(r2-1))]

> E[s(X(r 2) - s(X(r 2 - 1))]

= ¢(r2 + 1,r 2 ) - O(r 2 ,r 2 - 1),

as needed.

The argument for the case when r, 3- maxj{rj} is almost exactly the same, and so is omitted.

The Schur-convexity of ( gives us a stochastic majorization for GS synchronization.

Proposition 4.2 Let s be an increasing convex function with s(O) = 0, suppose the space cost

of holding k WUs in one processors queue for one time unit is s(k), and suppose the branching

distribution is ILR. Define

Cj(rl,. .. , r•')= 1_, ¢(i, rk) + (naxjrj}-rk)¢(rk + 1, rk),

to measure the space-time cost with respect to s of executing some generation q under GS synchro-

nization, where the each processor i has ri generation q W(Is. Then 9 is Schur-convex on IVK, so

that whenever m -< m',

* E[(g(Wq(m))] <_ E[tR(Wq(m))] for q = 0, 1,....

* The expected total space-time cost using GS synchronization is no worse under m than under

E[E g(Wq(m))] !_ E[E g(Wq(m))] whenever the expectation exists.
q=O q=O

4.3 Reliability

Yet another application of majorization is to the question of whether the hardware will successfully

execute the entire computation. We SUl)pose that the computation "fails" if any processor having

a non-cmpty queue fails. Observe that this definition permits the computation to successfully

complete even if a processor (lies before the entire computation is finished, provided the failing
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processor is itself already finished. We will show that if the branching distribution is ILR and a

p)rocessor's tilo-to-failii re (list ribution has an increasing hazard rate function, the the p)robability of

fail re tinhder in is nio greater than that U n(ler M', whenever m -. mi. (Conversely, if the branching

distribl)titll is ,L11 and tlie processor failure distribution has a decreasing hazard rate function, then

the reliability under m' is better than that under m. The result is proven for TS synchronization.

Sulppose t hat processor i's time to failure is the random variable Zi, with an monotone hazard

rate function A( u). It is well known that

fPr{Z > t} = exp{- j Au) ds}.

If A( it) is nondecreasiug in it, then - fo' A(u) dit is concave in t, which is to say that log Pr{Z > t}

is co'ncave. Conversely, if A( u) is decreasing, then log Pr{ Z > t} is convex.

It follows (31.E.I ill [10]) that when A( a) increases, the l)roduct

K

k(t 1 ,...,t 1 )-, I JPr{Zi > ti} (3)
i=I

is Schur-concave, or equivalently, that -J(t 1 ,..., tK') is Schur-convex. When A(u) decreases then

M(tl . .... tl ) is Schuir-convex.

If prce)ssor i is assigned mi W1Js initially, it ends ill) processing S(,/¢ WUs total. This is also

p)rocessor i's prio(,cessing time inder the assumptions of SGF scheduling, TS synchronization, and

unit execlution• cost per WIT. Given -ý' ...') tk for i =1, . ., K, equation (3) gives the probability

that every p)ro('essor execlutes all WUs without processor failure. The unconditional probability is

obtained by taking the exp)ectation with resp)ect to the joint distribution of SN(m):

VTr{very l)rocessor executes all its WUs before failing} = EtZ(S'N(m))].

Leinna 2.2 asserts that ,.jv is ILRC if the branching distribution is ILR. It follows from Theorem 3.1

that when ,A(u) is increasing, E[7?(SNt(m))] is a Schur-concave function of m. This proves the

following proposition.

Proposition 4.3 .'Luppo.s thif hazard rate fumction A( u) for the time to processor failure is increas-

ing, and suppos( Il(u branwhinug distribution is ILR. Let y(im) be the probability that every processor

cxcruths all its WI/s without proccssor failurc. Then under TS synchronization and .'GF scheduling,

whenever in -< im' wc have -j(m) > -y(m') The inequality is reversed if A(u) is decrcasing.

5 Assignment of Processor Pools

Our last application of stochastic majorization concerns a problem where a large number P of

pro('esso•s are to be) partitioned aunong a smaller number T of complex tasks. Parallel processing
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can be applied to the tasks to accelerate execution time. We assume that a task requires that all

of its generation i WUs to be executed before any of its generation i + 1 WUs are, but that all

generation i WUs may be processed in parallel. As before, the overall system may use either TS

or GS synchronization.

Let g(X, in) give the time required by 71 processors to execute X WUs. We assume that g(X, in)

is convex in in, e.g., g(X, in) = X/ln, and that g(0, in) = 0.

Suppose there are K initial WUs. We may describe our assignment of n processors to these

WUs with vector m, whose ith component gives the number of processors assigned to the ith WU.

Also let Nq,i denote the random number of WUs associated with generation q of task i. Under (S

synchronization, the time required to complete the qth generation is

Yq(m) = max {g(NqA , rl),g(Nq,2 , m 2),.. .,g(Nq,K, ifK)}.

Under our assumptions, E[Yq(m)] is a symmetric convex function of m (B.4 Proposition in [10]),

showing that E[Tyq(m)] < E[TYq(•')] whenever m --< m'. It follows immediately that the overall

expected finishing time under GS synchronization is no worse under m than under mi'.

Under TS synchronization the finishing time is

00 
00

p(m) = maxf{ g(Ni,,, ni,),..., I g(N,,K, ink)}.
q=O q=O

A sum of convex functions remains convex, whence E[p(m)] is symmetric and convex in m. When

m -< m' we are assured that the expected finishing time under TS synchronization is no worse

using m than it is with m'.

6 Conclusions

This paper explores the application of majorization to the problem of assigning a large number of

stochastically complex (but probabilistically identical) tasks onto a multiprocessor. Using a model

of workload based on branching processes, the theory we develop establishes a partial ordering

among possible assignment of tasks to processors. We show that the quality of an initial assignment

persists through stochastic transformations of the workload, and that the ordering can be taken

with respect to a wide range of objective functions including those measuring finishing time, space-

usage, and reliability. We also show how the theory applies to the processor partitioning problem.

The utility of the theory lies in the generality of the objective functions that can be considered, and

in the fact that optimal solutions can be identified even when constraints are placed on potential

assignments.
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A Appendix

In this appendix we prove some claims made earlier in the paper.

The ILRC condition upon which our -<sex results depend involves the notion of totally positive
functions. Chapter 18 of [10] is the source for the following definition.

Definition A.1 (Totally Positive Function) Let A and B be subsets of the real line. A function
a•: A x B ,IR is said to be totally positive of order k, denoted TPk, if for all m, 1 < m K< k and
all xy < x2 < ... < X", Y < Y2 < ... < Y? (xi E A, yj E B)

n(Xxy,) ... 1
(let f> 0.

We will use the following result (18.A.4.a in [10]).

Lemma A.1 If K is TPm,, and L is T;,L, and a is a a-finite measure, then the convolution

M(x, y) = J (x, z)L(z, y)da(z)

is T t'ljIn { ,, }.

The relationship between total positivity and ILRC distributions is direct. Given any integer-
valued nonnegative probability mass function f we may define the function af :IV ×/V --+ [0, 1]:

of(i, X) f-(i)(W).

af is TP 2 iff

for all i < j, m < it. But this is equivalent to saying that f(i) <1, f(W, i.e., that f is ILRC.

The reason for our interest in ILRC distributions f is that their convolution functions ao satisfy
three criteria required by Theorem 3.J.2 of [10]

"f af(x,y) = 0 whenever y < 0;

"* of is totally positive of order 2;

"* of(x + z,y) = f a(x,u)a(z,y- u)dv(u), for some measure v on IV.
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Theorem 3.J.2's conclusion is that if m = (il, .. . , MK) E IVK, /i is counting measure, and

0 : +ff?' - is Se hur- convex, then

K

M) Im a y(ni,.Yi)y) "I Y(Yi) (4)7(m = , ... Y•')i=I

is Schur-convex on 'NnK. Theorem 3.1 is a restatement of this result, where Vu, dv(u) = 1; because

ao(mi, yi) is a pirobability, we recognize that 7((m)) expresses the expected value of 0(y).

-<,,., Results

We next consider the ".,,S ordering. In this case, we are able to obtain the analogue of Theorem 3.2,

save that the , result holds for completely general branching distributions. We first must

introduce a little more terminology, and develop an intermediate result.

A ra-ndom -(-,tor X = (X 1 , . ., X,,) is said to have exchangeable components if the joint dis-

tribution of XI, ... , X,, is invariant under permutations of its components. Our basic -<cs results

rest on the following observation.

Lemma A.2 Let X,Y be nonnegative random variables, and Z = (Z 1 , Z2 ) be a random vector

with nonnegative exchangeable components. Assumne that X, Y and Z are independent r.v.'s and

defin( U = (X, Y) and V = (X + Y, O). Then

Z + U Z + V.

Proof. Let ¢ 2 _* f? be a convex symmetric function. Define the function ; : 2_+

as Vi(a) = E[O(Z + a)], Va E #R•_. Since Z has exchangeable components, V) is also a convex

symmetric function.

Now U -< V a.s. from which it follows

V,(u) <_ V,(y) E[V,(U)] <ý E[V,(V)J,

SE[O(Z + U)] < E[O(Z + V)],

SZ + U <..Z+V.

The result extends easily to R".
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Lemma A.3 Let X,Y be any nonnegative random variables, let Z (Z 1 , Z2 ," .,Z,,) E Ell be a

random vector with independent components such that Z1 and Z 2 have the same distribution. As-

sume that X, Y, and thi components of Z are mutually independent and define U = (X, Y, 0,..., 0)

and V = (X + Y,0,. ,0). Thcit

Z + U <cas Z + V.

Proof: Let ¢: R"' -, 1? be a symmetric convex function. Now, ( is symmetric and convex in the

first two arguments. Therefore, we can condition the values of Zj, 3 < J < K to be zj and apply

the previous lemma to obtain

Ex,yvz,z, [O(U)IZ 3 =Z:3 , ZK = zj] :S Ex,yz,,z [k(V) Z13 = Z 3 ,..., Z = ZK]

Removal of the conditioning on Zj, 3 < j < K yields the desired result. U

We are now prepared to prove Theorem 3.3. Let m' be any mapping vector where there are

processors i, j such that mn > m'.. Without loss of generality we may take i = 1 and j = 2, and

let m" be the mapping vector obtained from m' by moving one WU from processor 1 to processor

2. We will apply lemma A.2. Interpret Z1 , Z2 as 714-fold convolutions of initial WU rewards, X

as the convolution of m, - m.! - 1 initial WU rewards, Y as a single initial WU reward, and each

Zj for j > 2 as the convolution of in' initial WU workloads. The application of lemma A.3 yields

R(m") R(m').

The incremental movement of a task from a heavily loaded processor to a more lightly loaded

processor corresponds to the more general notion of a "transfer" [101. It is known that whenever

x -< y, then x can be constrdcted from y with a finite number of transfers, where each transformed

vector is always dominated under -, by its predecessor. Consequently if m' is a mapping vector

with m -< m', then one demonstrates that W(m) -c,,s W(m') through a repeated application of

Lemma A.3 to the sequence of transfers that transmute m' into mn. This proves the result.
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