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ABSTRACT

An analytical approximation to the image theory model is developed for predicting the
acoustical pressure ficld in a wedge-shaped ocean. This thesis is a continuation of the ongoing
development of this model. Previously, limitations has restricted the source and receiver to be placed
in only an upslope/downslope configuration. This thesis removes these limitations and allows the

source and the receiver to be placed in cross-slope configurations.
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I. INTRODUCTION

Current historical events have necessitated a change from
studying the propagation of sound in deep water to studying
the propagation of sound in shallow water. With the fall of
the Soviet Union and the rise of Mid-Eastern countries,
Antisubmarine Warfare (ASW) is more and more likely to occur
in shallow water. Shallow water provides a much more complex
environment for ASW prosecution, and, unfortunately, has not
had as much research as in deep water.

Image theory is one method that is being developed to
predict sound propagation in shallow water. This method is
more accurate than ray tracing methods because it is not
limited to high frequencies. A number of thesis conducted at
the Naval Post Graduate School were involved with applying
image theory to a wedge-shaped, shallow-water ocean. The
first thesis provided the groundwork for the initial
development of the image theory. The most recent
[Nassopoulos, 1990] derives a simplification involving a
doublet approximation and incorporates all of this information
into one manageable computer program [Nassopoulos, 1992].

This thesis assimilates a more complicated cross-slope
approximation into the doublet analysis which allows the

source and receiver to be placed anywhere in the wedge. A




computer program has also been developed to show that the

approximations are correct within the set of assumptions.




II. BACKGROUND

Research on the prediction of sound propagation in a
wedge-shaped ocean has been directed in three major areas: the
parabolic equation approximation, the adiabatic normal mode
theory, and the image theory.

The parabolic equation can be used as a range dependent
underwater acoustic propagation model. It basically replaces
the Helmholz equation with a one-way parabolic approximation
which will generate the acoustic field as an initial value
problem. The original version of the parabclic equation,
developed in 1977 by Tappert, contained restrictions on the
maximum elevation angle at the source. These limitations were
reduced by Claerbout and Green and finally eliminated with the
use of a higher order parabolic equation [Collins, 1987].
Because the parabolic equation is cylindrically symmetric,
sloping bottoms cause a problem. One attempt to solve this
problem has been attempted by sectioning off the bottom into
a series of range-independent regions and then applying the
normal parabolic approximation to each section [Lee et al,
1983]. Although this method increases the accuracy, it still
does not alleviate the problem completely. A more recent
approach to this problem has been attempted by using a rotated

parabolic equation (Collins, 1990] which shows good results.




X ]

Normal mode theory is a range-independent approach. This
approach has been used for open ocean predictions, but for a
wedge shaped ocean, a range dependent approach is needed. For
this type of approach it was shown [Pierce, 1965] that an
approximation to the normal mode theory can be utilized by
performing an adiabatic separation of the depth and range
coordinates in the wave equation. This approach has been
applied to the wedge-shaped ocean [Graves et al, 1975] but was
limited to only small slopes and non-penetrable bottoms. An
exact solution for the ideal wedge, where boundaries are
perfectly reflected, was developed. [Buckingham, 1987] A
continuing problem for adiabatic mode theory is that it can
not explain the transition from the guided mode to the
evanescent modes at cutoff [Jensen et al, 1980]. One hybrid
approach that has been pursued to account for this is the use
of the parabolic equation (Pierce, 1982] which is solved
asymptotically subject to adiabatic mode initial conditions.
Another method is based on tracking of 1local plane-wave
spectra [Arnold et al, 1984] which produce intrinsic mode
fields. Another method uses spectral representation based
on the theory of characteristic Green’s functions [Kamel et
al, 1983].

Another approach in solving the wedge-shaped ocean problem
is image theory. This theory predicts the pressure field from
a series of projected images [Coppens et al, 1980]. A further

description of this approach will be provided in the following




chapters. The basic geometry and mathematical analysis has
been developed and compared to the parabolic equation model
with favorable results. The upslope/downslope case has been
approximated (Nassopoulos, 1992] by use of Taylor Series
approximations resulting in a substantial savings in computer
computational time. Although less research time has been
placed into the image theory approach, it shows high potential
as a viable way to predict acoustic pressure fields in a wedge

shaped ocean.




III. DEVELOPMENT

The basic goal of this research is to approximate the
images by a sum of doublets. Although a full description of
the theories will not be incorporated into this thesis, the

following can be used as a general overview.

A. IMAGE THEORY

Image theory stems from the idea that if a source is
radiating near a surface, then an image, out of phase with the
source and an equal distance away from the surface, is
produced. In an isospeed wedge-shaped ocean, numerous images
are produced [MacPherson et al, 1966]. These images form a
circuiar pattern around the point where the surface meets the
bottom and interact with a series of images each possessing an
image of the surface and bottom of the wedge. The images are
numbered sequentially around the upper half of the circle
starting with 1 for the source, 2 for the image and so on
around the circle. The lower half of the circle is labeled in
a similar fashion. The pattern for the sign convention along

with the numbering of the images is shown in Fig. 1.




Image Pantern for a Wedge-Shaped Ocean
Figure 1
Each image contributes to the total pressure field at a point

in the wedge. For each image, the distance to the receiver
and the total reflection coefficient, which is the product of
all the reflection coefficients along the path from the image
to the receiver, can be determined. The total pressure is the
sum of the pressures from all of the images. A simplified
three dimensional view at Fig. 1 shows that the shoreline acts

as the perpendicular axis to the circle of images. See Fig.

) e AN

Shoreline -

3-Dimensional View of Wedge
Figure 2
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B. DOUBLET RADIATION

The images on each side of the pressure release surface
can be grouped together in pairs to form acoustic doublets:
Images 1 and 2 form a doublet, 3 and 4 form another doublet,
and so on around the upper and lower half of the circle. Each
doublet consists of two simple sources, vibrating at the same

frequency but 180 degrees out of phase. See Fig. 3.

Source (Image)

d

Source

P(0,r.1)

Geometrical Presentation of Doublet
Figure 3

It can be shown that in the far field the pressure field

resulting from this doublet using a far field approximation is

r

Where d is the separation of the source and image in the

doublet, r is the distance from the field point to the




midpoint of the doublet, and § is the angle formed by r and a
perpendicular bisector of the doublet. It should be noted
that, if the polarities were switched, the pressure field
would change sign.

To incorporate doublets into the wedge problem, Egqg. 1
needs to be modified to include the reflection coefficients.
Nassapolous developed the following equation for pressure

_A 1 .
P(r,8,t)==[(x-¥)cos(=k,dsinf)
+3 (x+¥) sin(-é-kldsinﬂ) ] @3 (wt-kx) »
Where x and y are the cumulative reflection coefficients for

the negative and positive images respectively.

C. DOUBLET ANALYSIS OF THE IMAGE THEORY
1. General Description:

The purpose of this thesis is to extend Nassapolous’
doublet approximation to the image theory model to incorporate
cross-slope propagation. The basic assumptions remain the
same: the sound speeds and densities are constant in both the
wedge and the bottom, the water-air boundary is a pressure-
release surface, and the slope is constant and shallow
[Nassapolous, 1992]. Nassapolous developed the case for
upslope and downslope propagation. Figure 4 shows how
doublets are grouped together: The third and fourth upper
images are grouped together with the first and second lower

images (n=1), the fifth and sixth upper images are grouped




together with the third and fourth lower images (n=2) and so

on around the circle until all the doublets are paired.

The source and image for the first surface reflected path form
the neutral doublet (n=0) and is an exception to this grouping
rule. Similar to doublet radiation, where each doublet
contributes to the pressure field, now, each pair of doublets
is considered the basic contributor to the total pressure
field. The number of paired doublets used in this total

pressure calculation can be determined by

360, _,

Ne— B (3)

4

B is the angle between the surface and the bottom. To ensure
that the pressure field is accurate, a wedge angle should be
chosen such that all of the images are grouped into pairs of

doublets. To insure that there is closure for the set of

10




images, 360/8 must be a multiple of four. 1In calculating the
total pressure field, the pressure from the neutral doublet
will first be developed, followed by the pressure field from
each of the paired doublets.

All distances used are scaled according to R,
=R.y/X. Two bottom types are examined in this research, a
fast bottom and a slow bottom. For a fast bottom, the scaling
distance X, occurs where the lowest mode attains cut off. For
a slow bottom, the lowest mode does not attain cut off, but a
scaling distance X, is used for convenience in calculations.
The definitions of these scaling distances are

Fast bottom:

n
o ST —
17¢ 2s8inB_tanp

KX L

<~ 2tanf_tanp (4)

C
coch=z%
2

Slow bottom: n

KX=——
1™s 2tanf.tanp
T

K S e
2Xs 2sin@_tanp (5)

C.
cosGs=?f
1

11




# is the wedge angle, the subscript 1 refers to the fluid in
the water, and the subscript 2 refers to the bottom
[Nassopoulos, 1992].
2. Neutral Doublet (n=0)
The neutral doublet, as stated above, comprises of the
source and upper image. The pressure field from the neutral
doublet crosses no bottom boundaries therefore, no reflection

coefficients need to be considered. See Fig. 5.

y

o

P
el

Geomemeal Representation of Neumal Do;xblu
Figure §

d is the distance between image 1 (the source) and image 2, §
is the angle formed between the surface and the plane
containing the receiver and the shoreline, and R, is the
perpendicular distance from the shoreline to the receiver.
Taking Eq. 1, that was developed for doublet radiation without
reflection coefficients, and applying it to the new cross

slope geometry gives

Po’=j-}2€f‘-’sin ( %kldsinoo’)

[+

k. !
ej(wt 1Ro) (6)

12




where P°, is the pressure field from the neutral doublet, R’
is the distance between the receiver and the midpoint between
the neutral doublet and ¢°, is the angle formed between R’, and
the surface.

To reduce Egq. 6, the following substitution is made:

€§=R1siny (7)

v is the angle formed between the surface plane anpd the plane
containing the source and shoreline, and R, 1is the
perpendicular distance from the shoreline to the source. See

Fig. 6. : e

Surface

Source

Geomerrical Representation of Ryand Y
Figure 6

Since § is assumed to be a small angle, siny can be

approximated by y which reduces Eq. 6 to

Jlwt-kR,

pJ;j%%sin(kqusinoJ)e (8)

(<]
A further substitution can be made by applying the geometry in

Fig. 7.

13




Sutface

—_—

Receiver

Geamerical Repeesentabon of o and R*,
bigwe 7

The side common to both triangles shows that R,sin§ =
R’sino’,. Since § is small, the small angle approximation can
be wutilized to form the equation sino’, = Ry§/R’,.

K,RR,/R’

Substituting this into Eq. 8 and assigning I'’,

o

gives the final pressure for the neutral doublet

J(wt-k,R,)

PJ=j€?%sin(Fbe)e (9)

o
3. Pressure Field From the Nth Pair of Acoustic Doublets
The paired doublets can be split into two groups, one

‘4 +

from the upper set of doublets P’ ' and one from the lower set
of doublets P°,;". The "’" denotes the cross slope geometry,
the subscript n denotes which paired doublet is being
calculated and the "+" and the "~-" denotes the upper and lower

doublet respectively. Figure 8 illustrates the geometry of

these upper and lower doublets.

14




Receiver
Plane

R, *
o’

MRCCCi ver
nth - y
lower Ra
doublet y ,

' ql'

Geometry of Upper and Lower Doublets
Figure 8
The pressure from the upper doublet is

P/ =(-1) “j—}f—%sin ( %kldsinon’*) oI (WekRy) (10)
n
and the pressure from the lower doublet is
P/ =-(-1)"j ::/1_ sin ( %kldsinan") o7 (WEKR) (11)
The (-1) and the -(-1) account for the different

orientations of the top and bottom doublets.

The total pressure from all of the paired doublets is

N
P/=p/+}" ‘P’:,+P’;, (12)

o1
This pressure could be calculated by a computer program, but
it would take a relatively long time to compute. To shorten
the computational time, and also research for an analytical
approximation a Taylor series expansion is used for R’ °,

and sino '~

R, sino’,’ n .

nt

15




a. Derivation R°," and R” -

The geometry for an upper doublet image

in Fig. 9.

Receiver
Plane

Geometrical Representation of Upper Doublet
From this geometry Figure 9

(R )2=(R,") 2+(Y,)2

and

(R,")2=R,%+R,%2-2R,R,cos (2nf +8)

therefore by direct substitution

R, =/R,Z+R,*+Y 2-2R,R,C0S (2np +3)

By the same reasoning, for the lower doublet

16

is shown

(13)

(14)

(15)




/~
Ry =/R*+R,>+Y_ ?-2R,R,cos (2nP-0) (16)

Setting Y, to zero, Eq. 15 and Eq. 16 reduce to

R, =/R,2+R,*~2R,R,c0S (2np +3) (17)

Rn-=\/R12"’R22"2R1R2C°S (2np-38) ()

which match the equations developed be Nassapolous.

(1) The Taylor Series Expansion for R’,” and R’ .
Because R’ and R’ appears in the phase a third order Taylor
series expansion is needed. Taking this expansion around é=0
gives

16 an d?R)

db |5‘0 dbz |6~0 3| 6 d63 Ib*o (19)

R} R;o+6

This formula is the general case for both the upper and lower

doublet. To get the correct formula, R’, would be replaced

a
with R’,* or R’,” as needed. R’,, is the distance to the nth
doublet if the receiver were moved vertically to the surface.

See Fig. 10. Since the geometry is now symmetrical

Rh, =Rl =Rh,=\RT+R7+Y F-2R,R,C08 (211P) (20)

17




=

]

= =
4
Geometrical Representation of ab and R
Figure 10 "o "

Taking the first derivative yields

dR," R,R,8in(2nP+3)

dod R’;'

dR, _-R,R,sin(2np-8)

db Rl{l-
dr;’ Iy = R,R,sin(2np)
ds ' R
dr, , _ -RyR,sin(2nP)
I
no

Taking the second derivative yields

18

(21)

(22)

(23)

(24)




I

d?R;’ _ [R{'R,R,cos (2nB+8) ]

db® Ry (25)
_ (R{R;31in(2nP+8) R,R,sin (2nP+3) |
(Ra')?

d2R)’ lyoo= R,R,cos(2nB) R,?R,?sin?(2nf) (26)
ds? R., R.}
d?R,’ R,R in?

- 30" 1°2 [Cos(znp) = RIRZSln (znﬁ) ] (27)
dbz / Pl 2
no 20

Through cancellations of the minus signs, the second

derivative for the lower doublet is the same, so

d2R.’ d2R)” (28)
352 lawo= 52 lao

Taking the third derivative and evaluating at §6=0 yields

d3R}® R, R, . -3R,R,cos(2nP)sin(2np) ,
d&g lg-= 112 [ 172 /E B _ sin(2nf)
no Fno (29)
3R,2R,%sin*(2nP) ]
Rpo'
d3R.” R,R ~-3R,R,cos(2nP)sin(2n .
- fgaa=m =2 12 (20P) sin(2np) sin(2np)
d63 R/ R/ 2
no ~ Rrno (30)
3R,’R,*sin’(2nP) !
Rpo'

Combining these pieces together, the third order Taylor series

expansion is obtained

19




R,R,sin(2nP) ., 1RR

R =Rpo £ 8 —-282 [cos(2np)

7
RDO 2 no
R1R2s1n2(2nB)] ; 1R R263 [ -3RR,cos (2nf) sin(2nP) (31)
R/ 2 6 R /7 2
no no Rno
. 3R 2 3
- sin(2np) + “Ry’sin (ZnB)
74
RHO
(2) Phase Approximation. R’,' and R’ play

significant roles in ithe phase. Placing these terms in the
phase in the third order Taylor series expansion and
rearranging the terms gives

R,R,sin(2n R,\R

1% (20p) + 262 cos (2nf)

R;O ZRHO
-3R,R,cos (2n|3) sin(2nf)

exp(jwt)expé (-7k) [(R,ﬁo) + O
R,R,sin?*(2np) 263

/2
R0 &Rpp

2p 2 3
- sin(2np) + STalResin ‘zn‘”]}

(32)

Since ™ does not contain the index n, it can be set aside for
the moment and the second term will be examined for possible
reductions. In order for a term to be considered negligible,
a phase error of 1less than #/4 1is assumed. Certain
assumptions also need to be made in order to represent a

typical ocean environment. First, it is assumed that

c,-C,

|<0.1 (33)

1

which is equivalent to

20




sinB_<0.4 (34)

Where c, is the speed of sound in the water, c, is the speed of

sound in the bottom, and 6, is the critical angle.

Second,
fs0.1 (35)
Finally,
R, 1
—_ g 6
Rpo 10 e

Whose implementation will be seen in the following analysis.
Grouping the terms inside the brackets from Eq. 32 in

terms of powers in R, and R, gives

21




RiR}
k—gﬁ[%sw(znp)aa] (37)
R{R; .1 _. 1 .
k g Lislnz(ZnB)blnacos(ZHB)51n(2nB)8ﬂ (38)
R,R .
k—lTE[51n(2nﬂ)6+%cos(2nﬁ)62~%sin(2nﬁ)5ﬂ (39)

-no

kR/, (40)
Each group needs to be compared to 7/4 to determine if it can
be considered negligible. Beginning with expression 37 the

following inequality is set up

RIR; .1
k=22 [=sin3(2nP) s3] <n/4 (41)
Ry, 2
Rearranging gives
R, 3 R, ? 1 .
k(—) (=) R2L551n3(2np)63]<n/4 (42)
o no

Making the definitions S=R;/R’  and sinfi=R,/R’, and multiplying

through by X/X gives

kx S’sinzﬂ% [%sin3(2nﬁ)63]<n/4 (43)

where kX=n/(2sinf .tanf) for a fast bottom.

To ensure that the left hand side of the equation is always

22




<< /4 the maximum of all powers of sine and cosine terms will
be taken to be unity, with the exception of siné, which, as
stated in the above assumptions, already has a maximum value
of 0.4. Substituting these maximum values into Eg. 43 and

rearranging gives

g3 R m (44)

—_——_—

“atanp” X 3
Since # is small, tan B = 8 while §, the receiver angle, falls
between 0 and . The right hand side is minimized by setting
B=6. Making this substitution into Eg. 44 and allowing 8 to

take on a minimum value of 0.1, reduces Eg. 44 to

R
S3T2<40 (45)

Finally, substituting S = 1/10 according to Eg. 36 gives

R2
—2<40000 (46)
X(

If R,/X for some reason became larger than 40000, the term
would need to be added back into the equation to keep the
phase error less than m/4. Note that 8 > 0.1 is eqgivalent to
setting a lower limit on the wedge angle of about 6 degrees.

Expression 38 can be written

23




R ., R
k(—Ly2(Z2)R, [Ssin?(2nB) 8
no no

m%cos(ZnB)sin(ZnB)bﬂ <n/4

(47) .

Making the same substitutions as in the previous equation

yields
Sz-fg?-(sinz(,ZnB)ﬁ2
X (48)

e
2s1inb tanp
- cos(2nﬂ)sin(2nﬁ)63]<u/2

once again substituting in the maximizing values gives
R
52 2«4 (49)
X
Substituting § = 1/10 gives
Ry (50)

—~<400
X

which allows this expression to be neglected.

Expression 39 gives

kf—}—Rz (sin{(2nf) 6+-]-‘2-cos (2nP) 62—%sin(2nﬁ) 5°] <-1-'4- (51)

Rno

Making the sane substitutions as in the previous eguation

ylields

24




T

R, . 1
EEEBG:EEH;STE[Sln(ZHD)ﬁ +--?:cos(2nB)62 -

1 (52)
Esin(Zn[&) 83 « _’41

Rearranging the terms and substituting in the maximum values

gives

.02

< 1 1 (53)
sin(2np) d +-z-cos(2nﬂ)62~—-gsin(2nﬁ)53

Iw

S

The dominate terms in the denominator are sin(2nB8)é§ +
0.5cos(2nB)§%. Since 1/6 sin(2nB)s® is a comparatively small
number it can be neglected without increasing the phase error
over m/4.

It follows that the expression for the upper doublet is

~jK(Rhys 27 (1n(28) 8+ L cos (2n8) 8] (54)
e 20
and by the same method
-jk[R,’,o-f;,—Rz (sin(2n9) 8+ L cos (2n$) 87)] (55)
e 20
for the lower doublet.
(3) Amplitude Approximation. It can be shown

that, in the far field, the amplitude, R’ and R°,” can be

replaced by R’,, with a relatively small margin of error.
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b. Derivation of sino”’' and sino’

n n

To take the Taylor series expansion of sino ' * and

n

sino’,, an expression for each term is needed. The geometry

for this is shown in Fig. 11 for an upper doublet.

Receiver .

Geomerical Representation of ¢ - + and R, *
Figore 11 " ’

From the law of sines

Iad
Rn _VRZ +Y02 (56)

sinn  ging/’
Rearranging this gives
R} sino, =sinn/RZ+Y, (57)

Substitution V1-cos? ) for sin n gives

R,'siney =/ (RZ+Y 5 - (R,2+Y,’) cos™n (58)

To get 7 in terms of § a substitution for cos? n is needed.

To do this the following equality is seﬁup:
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/42
Ry =R ®+Rj?+Y}? “2R,R,cos(2nP+d) =

(59)
Rf +Rzz"Y(f"2131\/1?25+Yo§cos1'|
Canceling similar terms and solving for cos? n gives
RZcos?
cos?n= 2COS? (2nPf+6) (60)

R7+Y?

Substituting this into Eq. 58 and replacing cos?’(2n8 + §)

with 1-sin?(2n8 + §) gives:

R,'siney = /Y 2+R,’sin? (2np+8) (61)

Bringing R’ over to the right side gives the final

*
n *

expression for sinc’

oYY 2+R,*sin? (2nP+8)

1+
Rﬂ

sing) (62)

And finally, by the same reasoning the expression for sinog’,

is

, - JY.2+R ?sin?(2nP-8
31no’n=£° 2 /-( B-8)
R,

(63)

When the receiver is moved vertically to the surface Eg. 62

and Eq. 63 become

_yY,2+R,%sin® (2nP)

- (64)
Rno

sinah,

Again, by setting Y =0 for a geometrical check
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sing, =810 (2np+3) (65)

R

R,sin(2np-
= ,S1in ( ?B 3) _ (66)
Rn

sSingo

which agrees with the upslope/downslope case.

(1) The Taylor series expansion for sino’,” and

n

sino’,". The first order Taylor series expansion taken around

n

Y =0 gives

dsine '

Tnlb-o (67)

+ l—ai /
sing =sing,/+&

Because these terms only appear in the amplitude, the
approximation sino’, ® sino’,, is acceptably accurate.
c. Total Pressure Including Approximations
Putting all of these equations together yields the

pressure for the upper doublet,

Pl =( -1)"ji‘f- [sin%kldsinoﬁ,o] el we)
no (68)
, s RyRy . 1 2
-Jky (Rpo+ == (sm(2nb)6+-3cos(2nb)6 )]
e "no

That for the lower doublet is the same except for a sign,
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/- . . . :
P, =-(-1)“j§1?- [s:.n%k1d51naﬁ,o] edve)

. Rno (69)
-Gk [RL,- Rl,’ (sin(ZnBN*%cos(ZnB)bz)l

e no

The pressure from the pair is

(-1) n4_*/4 [Sin%kldSino;o] ej(wt-kRn’o)
RHO
k,R,R , 1 (70)
sin[—2 /1 2 (s:.n(2n[5)6+_§cos (2nP) 82) ]

no

The total pressure as stated in Eq. 12 is

N
P/=p/+Y P +P, (71)
n=1

Combining Eq. 9 and Eg. 70 gives the final solution for the

total pressure,

PT=j—2—A%sin (T,yd) e
R

o

e !
Yy (-1)” :A [sin%kldsinof,o] g7 (WeTkhn) - (72)

Jlwe-kR) |

/
no

sin {2225 (sin (2np) 8+ Lcos (20f) %))
Rno

4. Validation
To validate the analysis of doublet cross-slope
propagation, a computer program was developed. See Appendix
"A". Different inputs of Y, R,, and R, were used along with
a wedge angle and source depth of 7.5 and 3.75 degrees
respectively. These inputs were also put into the program

URTEXT and a comparative table was constructed. See Table 1.
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TABLE 1

COMPARISON OF DOUBLET ANALYSIS TO IMAGE THEORY

p=7.5 y=3.75  #of depth points = 6
Rl=1 R2=15 YO0=0 Rl=1 R2=12 YO0=8
DOUBLET IMAGE DOUBLET IMAGE
AMP PHS AMP PHS AMP PHS AMP PHS
.19230(-1.189(.19020{-1.174 }.20760{.97186 [ .14901 | .99135
.37155(-1.192 1.36747 ] -1.175].40214{.97103|.28788{.99132
525641 -1.195].519731-1.177 1.57139 | .96959 | .40713 | .99133
044141 -1.199].63659]-1.179 {.70471 | .96741 | .49862 | .99135
71913(-1.203 |.71006 | -1.180 }.79371 | .96432 |.55614 |.99135
745751 -1.207 1.73519] -1.180 ]1.83276 |.96002 |.57590 | .99138
AAMP = .0066 APHS =.01898 AAMP = 1729 APHS = .0232
Rl=1 R2=14 YO0=3 Ril=1 R2=8 Y0=9
DOUBLET IMAGE DOUBLET IMAGE
AMP PHS AMP PHS AMP PHS AMP PHS
16437 1.777491.15456 | .80884 1.18308 | -.2626 |.12944 ] -.2403
.31909].77590}.29861 | .80795 §.35338 | -.2536 | .25005 | -.2402
45507 1.773531.42229 | .80677 }.49899 | -.2554 | .353061 | -.2402
56437 1.770591.51721 | .80558 | .60956 | -.2580 | .43309 | -.2403
04061 ].76720}.57687 | .80473 1.67701 | -.2617 | .48304 ] -.2403
.67940(.763161.59736].80443 1.69602 | -.2671 | .50009 | -.2403
AAMP = 0423 APHS =.0351 AAMP = 1447 APHS = .0178
RI-1 RZ-13_ Y0=6 RI-1 R2-2 YO-10
DOUBLET IMAGE DOUBLET IMAGE
AMP PHS AMP PHS AMP PHS AMP PHS
9161 1.770721.148131.74146 §1.00110] -.3287 | .00016 | -.0074
306918 1.77044 |1.28616].74157 1.00216 | -.3376 |.00030 | -.0376
S1968 [.76982 | .40469 |.74174 1.00320 | -.3477 | .00043 1 -.0112
.63207 | .76894 | .49564 | .74189 1.00415 | -.3607 | .00052 | -.0134
.698201.76776|.55281 }.74199 }.00500 | -.3813 | .00055 | -.0195
71336 (.76620(.57226{.74203 1.00573 | -.4041 { .00055 | -.0251
AAMP = (11073 APHS =.0272 AAMP = .0031 APHS = .3421
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It is shown that the doublet cross-slope propagation results
are in good agreement with the URTEXT results. It should be
noted though, that for the results to compare favorably, the
wedge angle that is chosen must ensure that the number of

wedges are an even multiple of four.
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IV. CONCLUSIONS AND RECOMMENDATIONS

Image theory is an excellent method for predicting the
transmission of sound in shallow water. It is an important
area of research because it is directly applicable to shallow
water Anti-submarine Warfare. Other methods that are being
examined include the Parabolic Equation approximation, ray
tracing methods, and the Adiabatic Normal Mode theory. Image
theory shows the most promise for predicting the acoustical
pressure fields in a wedge-shaped ocean because it can predict
pressure fields for cross-slope and for all frequencies.
Image theory can also deal with the transitional area at cut
off, a region that is difficult for normal mode theory.

Previous theses have laid the groundwork for the image
theory model. This thesis has extended the doublet
approximation to <cross-slope propagation. The base
approximation used, R << R’ + Y, limits the extension to the
far-field. Another 1limiting restriction on this thesis
basically states that for a phase error of w/4 or less, the
scaled receiver distance R,/X must be 1less thaa 400.
Geometrically this says that when the receiver gets too far
away the phase errors combine and the pressure equation

developed in Eq. 72 1is no 1longer valid. One further
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restriction is that the wedge angle must be chosen such that
the number of wedges produced is an even multiple of four.
Because of this, when the dipoles are grouped into pairs of
doublets, one dipole, 180 degrees from the neutral doublet,
will be left ungrouped. This will only be a significant
factor when the grouped dipoles cancel completely leaving only
the dipole to contribute to the pressure. The effects of this
dipole can also be seen in Table 1: The results vary when R|
gets small and Y, gets large. Although this dipole can have
noticeable effects on the pressure in the rigid bottom case,
when reflection coefficients are incorporated, the effects
become negligible.

The next step in this research would be to incorporate the
reflection coefficients for the upper and lower doublet into
Eq. 72. The reflection coefficients though, because of their
large effect on the pressure, need to be calculated
individually for each image. Nassopoulos incorporated the
reflection coefficients into the upslope/downslope case, but

an extension is still needed for the cross-slope case.
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APPENDIX ''p'

1oy REM WEOaD DERTIE . DIPOLE APEROX IMATION

20 PEM fra~z glopa, wedge with rigld bottom. including third order approx
XPT Y 141 I20H

A0 FHPUT tanqleel{dea) of wedae, source: B,G =*,8,G

70 INPUT "ML = 8/({delta 0) =" M1

€0 MIP1S =INILLCINT( 260784 NO0L )-2)/4 )+ .0001)

70 INPUT "eource, reselver. apex distances: Ri,R2,Y0 =" ,R1.R2,Y0O

a0 IMHPLT 102 - 0L

30 T4HF180/P1: B=B/TR: G=G/T14
100 STARCHS - SQP! ARG(CH*C-1)): TA=PI/( 2%STARCOS*TAN(B))

110 LPRINT 1ISING "THESTS APPROX angles: wedgex ## .8 source= H¥.§#";B%T76,G*xT6
120 LPRIMNT USING "Aistances: source=#R.## receiver=##.## shore=##.#";R1,R2.Y0
130 LFRINT USING cl/c2= R 4 "3

140 LPRINT VCING YkIV-ni /(D teanB earabs(1-c™2) )=nift . Hrne" 3174

190 1LPRINT SING "No. of Dinnle-Pairs =##_ #8":NPTS

1AO LVRINTE DFS nHe PHASE *

145 DIST=2¢R14SIN(G)

170 YZ2=YQiYQ: R22-RZ2VP2

190 C2=CwC: D=YOXYDIRTYRLIIR2*R2

130 PRI eR) 22

Z00 FOR M=1 TQ 100: L-DrR/ML: IF (B-D)(~.0001 THEN 280
210 RO=SQR(D2-RIXCOS(D ) ) GAMO=R1I*R2/R0O

220 1=( 2/R0 IVSIN( TAYLAMDIYGYY)

230 PLeT+SIN( T4¢RO): P2=T¥COS( TA4¥RO )

2140 P220: FA=Q

250 FOR N=1 10 MPTS

260 PN=SQR( L2 RAFCOS( 2¢H*B))

262 RANL=( TA*R1*R2¥SIN( 2+N¥B) }/RN

264 RN2=( TA«R(¥R2vCOS( 2¢NIR ) )/RN

270 NS=(SOR(Y2+¢R22*( SIN(2¥N*B))"2))/RN

20 ¥=({ -1 NM(2/ENZIN( [S«TA+DIST*SNS )

282 THOPOS= -TA+RN ~ D¥RN1 - _5%D"2%RN2

292 THONEG- -TA¢RM + D¥EN1 - S¢D” 2xRN2

284 THOR = COS( THDPOS )-COS( THONEG)

28 THOL = SINCTHDPOS ) -SIN( THONES )

287 REALL = -X*THDI

2R IMAGL ~ X¥THDR

00 PI=REALL1 + 2

IO PA-IMAGL 2 4

20 NEXT N

R0 FPR-F1+03: PIM-P2PA

340 AMP=SQR( PRYPRIPIMY I IM )

A0 FHE=AIN PIM/PR)

A0 LPRINT USING “ NHR.HE  8#8 _ niedd A9 _suase “; OxT6,AMP ,PHS
270 NEXT M

N0 END
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