&

NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A257 861
HIIIIIHI!HIIIM!I’MIIIIIHIIIHIIIIII

R

DTIC
ELECTE
s DEC0 81992 D

AN INTRA-THEATER TRANSPORTATION SYSTEM'
SIMULATION TO ASSIST LOGISTICIANS IN
TRANSPORTATION RESOURCE PLANNING AND

IMPLEMENTATION

THESIS

by
James M. Judy
September 1992

Thesis Advisor: LTC William J. Caldwell

Approved for public release; distribution is unlimited.

92-31
I //I//IIIIIII///l//II/I/I(//iIII?II/,

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
COLOR PAGES WHICH DO NOT
REPRODUCE LEGIBLY ON BLACK
AND WHITE MICROFICHE.

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188
1a8. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution is unlimited

1.

13

Monterey, CA 93943-5000

TITLE (Including Security Classification)
An Intra-Theater Transportation System Simulation to Assist Logisticians in Transportation Resource Planning and
implementation
12 PERSONAL AUTHOR(S)
JUDY, James M.

16. SUPPLEMENTAL NOTATION
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE
ettt — et ————————————— e ———————————————————— i eiee e e —————— S ————————————————
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
6a_NAME OF PERFORMING ORGANIZATION | 6b. OFFICE SYMBOL] 7a. NAME OF MONITORING ORGANIZATION
Naval Postgraduate School OR
[6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOLU 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. [NO. NO. ACCESSION NO.

TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) [15. Page Count
Master’s thesis FROM To 1992, SEPTEMBER 164

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP | MODSIM, Object-Oriented Programming, Simulations, Transportation System,
Intra-Theater Operations

19.

ABSTRACT (Continue on reverse If necessary and identity by block number)

Transportation resource planning and implementation within a theater of operations have always been challenging
for logisticians. This was especially true during Operation Desert Storm, where new lessons were learned because
of a scenario different than any other experienced. What was needed was a transportation asset-focused mode!
that would allow logisticians to plan more effectively for current and future transportation system requirements. The
focus of this thesis is the development of the Intra-Theater Transportation System Simulation (ITTSS). ITTSS is an
object-oriented simulation model, which was developed to simulate a complete transportation system where units
consume supplies, supply points resupply, and assets deliver the supplies. ITTSS can also be used to schedule
specific missions of moving cargo from one location to another. Both modes can be run separately or together. A
variety of input parameters concerning supply points, motorpool, maintenance facilities, fuel points, convoys and
the operations performed can be adjusted to fit any specific scenario. The measures of performance produced by
the model include the daily amount of cargo moved, time required to move cargo to a certain location, and the
availability and utilization rates of vahicles. ITTSS is designed to run on a personal computer, using the PC-0S/2
version of MODSIM 1l, the OS/2 1.2 operating system, and Microsoft C 5.0.

o ————— —
20 DISTRIBUTION/AVAILABILTIY OF ABSTRACT 1a. REPORT SECURITY CLASSIFICATION
UNCLASSIFIED/UNLIMITED [] SAMEASRPT.[] DTIC Unclassified
I22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) | 22c. OFFICE SYMBOL
William J. Caldwell (408)646-3452 OR/Cw
DD Form 1473, JUN 86 Previous sditions are obselete. SECURITY CLASSIFICATION OF THIS PAGE

S/N 0102-LF-014-6603 Unclassified
|

Approved for public release; distribution is unlimited.

AN INTRA-THEATER TRANSPORTATION SYSTEM SIMULATION
TO ASSIST LOGISTICIANS IN TRANSPORTATION
RESOURCE PLANNING AND IMPLEMENTATION

by
James M. Judy

Captain, United States Army
B.S., United States Military Academy, 1983

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH
from the

NAVAL POSTGRADUATE SCHOOL
September 1992

Author: 1?47/’@ £ @ /é

James M. Judy

Approved by: // fL (/"/ / // J//

TC William J. Caldwell, Advisor

Peter Purdue, Chairman
Department of Operations Research

ABSTRACT

Transportation resource planning and implementation within a theater of operations
have always been challenging for logisticians. This was especially true during Operation
Desert Storm, where new lessons were learned because of a scenario different than any
other experienced. What was needed was a transportation asset-focused model that
would allow logisticians to plan more effectively for current and future transportation
system requirements. The focus of this thesis is the development of the Intra-Theater
Transportation System Simulation (ITTSS). ITTSS is an object-oriented simulation
model, which was developed to simulate a complete transportation system where units
consume supplies, supply points resupply, and assets deliver the supplies. ITTSS can
also be used to schedule specific missions of moving cargo from one location to another.
Both modes can be run separately or together. A variety of input parameters conceming
supply points, motorpools, maintenance facilities, fuelpoints, convoys and the operations
performed can be adjusted to fit any specific scenario. The measures of performance
produced by the model include the daily amount of cargo moved, time required to move
cargo to a certain location, and the availability and utilization rates of vehicles. ITTSS
is designed to run on a personal computer, using the PC-OS/2 version of MODSIM 11,

the OS/2 1.2 operating system, and Microsoft C 5.0.

THESIS DISCLAIMER
The reader is cautioned that computer programs developed in this research may not

have been exercised for all cases of interest. While every effort has been made, within

v
the time available, to ensure that the programs are free of computational and logic errors,
they cannot be considered validated. Any application of these programs without additional
verification is at the risk of the user.
Accesion For
NTIS CRA&t
DTIC T1AB
Unannounced 0
Justification
By
Distribution]]
Availability Codes
, Avail and|or
Dist Special
s T T .
L

iv

TABLE OF CONTENTS

I INTRODUCTION e e e e 1
A. BACKGROUND 1

1. OperationDesert Storm0uuuuu... 2

2. New Transportation Corps Doctrine 4

B. MODELDISCUSSIONttt 5

C. ORGANIZATIONOFTHESISc0cuu.n 7

IO. METHODOLOGY AND DATA, 8
A. INTRODUCTIONttt 8

B. DATA . . e 8

1. PublishedData 0.u.. 8

2. VehicleSpeeds i 8

3. ReliabilityData00 0., 9

a. Mean Miles Between Operational Mission Failure 9

b. Maintenance Manhours PerMile 9

c Administrative and Logistics Downtime 10

C. NETWORKDEFINITIONccuivuun... 10

1 ASSelS . .. e e 11

2. Nodescoiiiiiiiiiiii i 11
a. UnitObjects00 0iieeeene... 11
b. SupplyObjects, 11
¢. Motorpool Objects B 12
d. Maintenance Objects 12
e. FuelpointObjects 12
3. Links e e 12
4, Cargo e e e e e e 13
II. MODEL DESCRIPTIONttt ittnnnennnn 14
A. ASSUMPTIONS AND MODEL LIMITATIONS 14
I, Assets e e e 14
2. CombatLoSSesuuiviiiennnnnnnnnnns 14
3. LINKSt e e 14
4, RatesofTravel 15
5. Vehicle Breakdowns, 15
6. Aggregationof Cargo 15
7. Units ... e 15
B. MEASURES OFPERFORMANCE 16
1. Time RequiredtoMoveCargo 16
2. Average Amount of Cargo Moved Daily/Weekly 16
3. Utilization Rateof Assets 16
vi

4. Availability Rateof Assets 17

5. Comparison of the performance of assets 17
C. PARAMETERS ittt it 17
1. ModelInput Parameters 17
a. Assetparameterso eae ... 17

(1) Performance characteristics. 17

(2) Reliability. 18

(3) Cargoload dimensions. 18

b. Linkparameters0 ... 18

(1) Distance.ttt 18

(2) Origin and destination. 19

(3) Roadsurfaceandterrain. 19

c. Routeparametersc0iiunn.. 19

d. Supplyparameters 0. 19

(I) Supplysource.c. ... 19

(2) Imitial stocklevel. 19

(3 Daysofsupplyonhand. 19

(4) Day to start/end and time to check stock. 20

(5) Receiving and loading points. 20

(6) Material Handling Equipment MHE). 20

e. Unitparametersc000uiu.... 20

(1) Unitsupply. 20

vii

(2) Daily consumptionrate. 21

f. Motorpool parameters 21
(1) Assets. i, 21

(2) ConvoyData. 21

g. Maintenance parameters 22
(1) Maintenance manhours permile. 22

(2) Administrative and logistics downtime. 22

h. Fuelpoint parameters 22
(1) Startinglevel. 22

(2) Numberofpumps. 23

(3) Refuelingtime. 23

D. REPORTS ettt ettt 23
1. DispatchReport 23
2. SupplyReport 23
3. VehicleStatus 24
4. Maintenance Activities 24
E. SIMULATIONMODELc.tttuuunnn. 24
1. MODSIMII™ it 24
2. EventDriven, 25
a. DailyOperations 26
(1) Unitconsumption. 26

(2) Checkingstock. 26

viii

b. ScheduledMissions 26
3. ConductingMissions 27
a. Loadingcargoonassets 27
b. Convoy Organization 28
c. Traveling 29
(1) Enteringanode. 29
(2) ReturmingHome. 30
IV. MODEL DEMONSTRATION EXAMPLE 31
A. INTRODUCTIONttt 31
B. SCENARIOttt 31
C. SIMULATIONRUNS 35
D. SIMULATIONRESULTSt iiininnenn... 36
1. DataAnalysis0 i 36
2. Paired-Samples Statistics 37
3. SimulationRunResults 39
V. CONCLUSIONS AND RECOMMENDATIONS 40
A. SUMMARY ANDCONCLUSIONS 40
B. RECOMMENDED FUTURE ENHANCEMENTS 41
1. User-FriendlyMenu 41
2. Other Typesof Assets0ouvun... 41

ix

3. Separation of Tractors and Trailers 41

4. CONAINETS ittt et 42

5. CombatLossescciiiuiuieueeennn. 42
LISTOFREFERENCES 43
APPENDIX A - DATA FROM EXAMPLE PROBLEM 45
APPENDIX B - MODEL OUTPUT FROM EXAMPLE PROBLEM 50
APPENDIX C - INPUTDATAFILES 55
APPENDIX D - ITTSSPROGRAMCODEt uuunnu.n 64
INITIAL DISTRIBUTION LIST ittt i 150

ACKNOWLEDGEMENTS

The author wishes to express his thanks and gratitude to the following individuals,

without whom this project could not have been completed.

My fiancee, Lorrie, for her long distance support of my efforts.

My thesis advisor, LTC William Caldwell for believing in my proposal and
standing by me all the way.

Dr. David Homer, Waterways Experiment Station, Vicksburg, Mississippi, for
providing vehicle travel rate data.

Mr. Russ Farrell, U.S. Materiel Systems Analysis Activity, Aberdeen Proving
Grounds, Maryland for all the reliability data.

Captain Bernard Mimms, USMC, for MODSIM II programming support, being
one cf only a handfull who used the PC-OS\2 version.

I. INTRODUCTION

A. BACKGROUND

Victory is the beautiful, bright-coloured flower. Transport is the stem without
which it could never have blossomed. Sir Winston S. Churchill [Ref. 1: p. 202]

Ever since armies have gone to war, logistical support has played an important role
in the outcome of battles and the strategy of war. However, managing the transport of
supplies and the transportation assets within the transportation system has been far from
easy. Napoleon was quoted as saying

“that logistics make up as much as nine tenths of the business of war, and that the
mathematical problems involved in calculating the movements and supply of armies
are not unworthy of a Leibnitz or a Newton." [Ref. 2: p. 231]

During Operation Desert Storm, new lessons were learned in logistics because of
a scenario different than any other experienced. Support requirements for the men and
equipment that were deployed increased and changed dramatically. The successful
accomplishments in meeting transportation requirements within the theater of operations
in Saudi Arabia were instrumental in our success in the campaign.

However, the present configuration of transportation units did not support the
transportation requirements. Hundreds of vehicles, especially heavy transporters, were
leased from other countries to correct this deficiency. If the Army logisticians had a

realistic simulation model that was focused on transportation assets, it would have

assisted them in planning more effectively for current and future transportation system

requirements. Such a model would allow the same scenarios to be used to test different
transportation unit organizations and future transportation asset prototypes to optimize
the best mix of assets and the organization of units within the theater.
1. Operation Desert Storm
Operation Desert Storm offered enormous challenges to logisticians in the
movement of vehicles and cargo within the theater of operations. They were extremely

successful in meeting every transportation obstacle they faced. One obstacle was the

movement of two corps before the major offensive of the war.

SAUDI
ARABIA

[N (]
Ll [
.‘"nunulun-uln.nuunuull'

Riyadh @

Dammam

Figure 1. Corps Movements

In preparation for this offensive, the theater Commander-In-Chief (CINC) tasked his
logisticians to develop a plan to move all of the VII Corps’ and XVIII Airborne Corps’
equipment within a two week timeframe. The logisticians did not have a model to
provide them with reasonable alternatives. "After many grueling days and nights of
analyzing every movement concept imaginable, [it was] concluded that the move could
not be completed in 14 days” [Ref. 3: p. 8]. At least three weeks were needed because
of the enormous amount of equipment involved and the limited available assets to move
them.

Table 1. CORPS EQUIPMENT MOVED BEFORE OFFENSIVE

Assets Available Loads to Move
280 Heavy Equipment Transporters 535
“ 280 Lowboys (Equipment Transporters) 1793
Lzoo Flatbeds (Cargo Trailers) 2815

This move was so critical to the start of the offensive that the CINC "required the
SUPCOM [Support Command] CG [Commanding General] to guarantee he complete the
movement in 21 days, and required the SUPCOM to sign a document attesting to the
same” [Ref. 3: p. 9]. The result was that "exactly 21 days after the start date, the
greatest battlefield movement in history was complete” [Ref. 3: p. 10].

If the logisticians in Operation Desert Storm had a transportation-asset-
focused simulation model, it could have assisted them in estimating the time needed to
move the corps equipment using their available assets. Further study of the Operation

Desert Storm scenario with different numbers and kinds of assets would be possible using

this model to determine what transportation unit configurations would best suit another
Operation Desert Storm type war. Using future prototypes in the same scenario could
also show if having better performing or more reliable equipment could have made a

difrerence in the amount of cargo moved daily.

2. New Transportation Corps Doctrine

The advantages in having the ability to move an entire Heavy Maneuver
Force (HMF) in one lift were apparent during Operation Desert Storm. Even though this
one lift concept was not used in Saudi Arabia because of the lack of heavy equipment
transporters (HET), the ability to analyze the movement of such a HMF in the Operation
Desert Storm scenario using HETs, would assist logisticians in planning for and
implementing their HET resources for future operations in a desert scenario. Such
analysis could also determine whether or not the same unit configuration would succeed
in fulfilling transportation requirements within a different theater of operations. Instead
of having a unit’s tracked vehicles road-march several hundred miles, HETs can be used
to relocate the unit. This new doctrine results in substantial fuel savings and, more
importantly, a more rested and better prepared maneuver force [Ref. 4: p. 42]. Both
vehicles and crews have less wear and tear. The Transportation Corps is developing the
new doctrine for HET companies that can carry a battalion size HMF. Four such
companies would be able to provide a single-lift capacity for a brigade size HMF. A
simulation model that could focus on the HETs could test this configuration in a variety
of potential scenarios including the recent Operation Desert Storm Scenario. [Ref. 4: p.

42)

Every major conflict of war produces new transportation doctrine based on
the transportation system in existence, to include the modes of transportation assets
available, the network of vehicles, trains, aircraft and vessels and the availability of
various assets. A European scenario dictates the use of the existing rail lines. Saudi
Arabia favored using HETS to relocate tracked vehicles. The next location for a major
conflict is unknown, but having a transportation-asset-focused simulation model, could
test what kind of transportation unit configurations would be needed and how many and

what kind of assets are required to perform the mission.

B. MODEL DISCUSSION

The purpose of this thesis is to describe the development of an objected-oriented
simulation model, called the Intra-Theater Transportation System Simulation (ITTSS).
Currently, there are no models available that focus on individual asset performance and
reliability for an intra-theater scenario. Many models use flat rates for vehicle which as
resulted in standard transportation doctrine using using 83 % for long hauls and 75% for
short hauls for truck availability. [Ref. 5: p. 3-22] Many existing large-scale combat
models aggregate transportation assets and therefore lose the ability to analyze the
individual performance of these assets. A detailed simulation would assist logisticians
greatly in determining transportation unit organizations to meet the requirements in a
particular theater of operations. A model that could also simulate a transportation system
with a variety of realistic inputs and parameters that could be varied depending on a

particular scenario would further contribute to logistics analysis. The Intra-Theater

Transportation System Simulation was developed with these needs in mind. With a focus
on transportation assets and flexibility to model a variety of scenarios, ITTSS will assist
logisticians in transportation resource planning and implementation within an intra-theater
of operations.

The recent advent of object-oriented simulation programming makes developing
such a simulation model more attractive and useful than past simulation models. An
object-oriented language like MODSIM II™, allows the modeling assets and cargo as
actual objects that can move around and be loaded within the transportation system.
Nodes can be treated as objects and have supply, motorpool, maintenance, and fuelpoint
objects associated with them.

The result is a simulation model that the user can understand more clearly, and that
simulates more realistically the way the elements of a transportation system actually
work. Units consume supplies, supply points reorder supplies from their supply source,
and vehicles load and transport these supplies. All are objects that actually perform these
functions.

MODSIM II™, being modular, makes adaptation to various scenarios and unit
organizations very easy. ITTSS focuses on vehicle assets, but with relative ease, can be
adapted to utilize aircraft, trains, or inland waterway vessels.

Being able to focus on the movement of cargo and transportation assets in an
object-oriented view gives a clearer understanding of the movement of assets and cargo.
Specific assets and cargo can be tracked individually within the transportation network.

Assets can have individual performance and reliability characteristics and methods that

let them perform realistic functions. Cargo can be individual items that have dimensions
and be can traced within the theater of operations.

ITTSS simulates an intra-theater transportation system to include daily supply and
transportation operations and specific movement of cargo from one location to another.

The focus is on assets and their performance within a theater of operations.

C. ORGANIZATION OF THESIS

Chapter I has addressed the background and motivation for an intra-theater
simulation model. In Chapter IT the methodology in developing ITTSS, the sources for
the model’s data, and the defining of the transportation network is discussed.
Assumptions, measures of performance, input parameters, reports and a complete
description of the capabilities of ITTSS is found in Chapter III. Chapter IV provides an
example comparing the new Transportation Corps doctrine with doctrine used during
Operation Desert Storm and demonstrates the capabilities of the model. Concluding

remarks and recommendations for future enhancements arc discussed in Chapter V.

II. METHODOLOGY AND DATA

A. INTRODUCTION

ITTSS is written in an object-oriented computer language, MODSIM I™. This
allows the physical entities of ITTSS’s transportation system to be treated as objects.
Objects have methods that allow them to perform functions and fields that describe them.
MODSIM II™ also includes many convenient procedures and functions that are built in
and eliminates the need to create computer code for many routine functions. This
chapter discusses the sources of data for the model and describes the objects that define

the basic transportation network of ITTSS.

B. DATA

1. Published Data
All performance data is taken from technical manuals or a respected source
like "Jane’s Military Vehicles and Logistics". [Ref. 6.] This data includes fuel

consumption rates, fuel capacities, vehicle length and weights, and cargo dimensions.

2. Vehicle Speeds
Rates of travel for the selected vehicles in ITTSS are obtained from the
Waterways Experiment Station (WES) in Vicksburg, Mississippi. WES does an
enormous amount of mobility testing on almost every vehicle in the Army’s inventory.

They have provided the average rate of speed for a particular type and model of vehicle

traveling over a road with a particular type of road surface and terrain. These speeds
are used when determining how long it takes a vehicle to travel over a road in the

network.

3. Reliability Data
For each vehicle used in ITTSS, reliability data was obtained from the U.S.
Army Material Systems Analysis Activity (AMSAA), located at Aberdeen Proving
Grounds, Maryland. AMSAA does extensive testing on all Army vehicles and provided

the following reliability measures.

a. Mean Miles Between Operational Mission Failure
This is the average rate of occurrence of a mission failure as a result
of any cause. Mission failure is defined as not being able to complete a mission in an
acceptable manner. Vehicles that fail are not able to continue with a convoy or complete

the mission unless repaired. [Ref. 7: p. 1]

b. Maintenance Manhours Per Mile
This reliability factor is the average number of maintenance manhours
that is needed per mile traveled by the vehicle between operational mission failures. This
includes the actual wrench tumning time needed to repair the vehicle. More miles
between operational mission failures imply more time required to repair the asset. [Ref.

7:p. 1]

¢. Administrative and Logistics Downtime
This is a flat rate that provides a measure of how long a vehicle is down
for each operational mission failure, excluding actual maintenance wrench turning time.

This includes time needed for recovery of assets, waiting for parts, tools, or mechanics.

[Ref. 7: p. 1]

C. NETWORK DEFINITION
The basic transportation network of ITTSS consists of assets, nodes, links, and
cargo. They are all objects that have fields and methods that distinguish and describe

them.

Figure 2. Objects in the Network

10

1. Assets
The only assets in this simulation are vehicles. Vehicles consume fuel, load
cargo, and travel from one node to another. They travel in convoys along routes
predetermined by the user. Vehicle objects in this simulation include cargo trucks,
tractors trailers, lowboys, heavy equipment transporters and wreckers. Other types of
assets like aircraft, trains, watercraft or other types of vehicles can easily be incorporated

into the model with minimal code change.

2. Nodes
Nodes are objects and can have any combination of the objects listed below.

See Figure 2.

a. Unit Objects
These are the consumers of the simulation model. They consume
supplies from their supply point at the end of each day or at a time designated by the

user. Units can be given dates to start and end consuming.

b. Supply Objects
These objects conduct supply operations at a selected time each day.
Stock levels are checked and resupplies are ordered from its higher supply source object.
Supplies are received from vehicles that arrive at the supply point. Supply records are
used to account for items brought in and taken out of inventory. Supply objects have a

certain number of loading and receiving points that serve convoys. Material Handling

11

Equipment (MHE) is available at each point and available MHE is used to determine how

many vehicles of a convoy can be loaded or unloaded at the same time.

¢. Motorpool Objects
All vehicles belong to a specific motorpool object. Motorpools
schedule missions using available vehicles and keep records on availability and
utilization. The matching of cargo to vehicles and loading of vehicles are conducted by

motorpools. Convoys are formed and prepared for travel.

d. Maintenance Objects
Repair of vehicles occur in maintenance objects. Vehicles that
breakdown are logged into the maintenance facilities, repaired and returned to their

motorpools.

e. Fuelpoint Objects
These objects refuel vehicles. Fuel levels are maintained at each
fuelpoint to show fuel consumption and demand. Vehicles do not run out of fuel, as a
reserve is carried by the convoy in case the distance to the next fuel point is beyond the
range of the convoy. Records will indicate those links in a route that vehicles wculd

need reserve fuel. The user may then want to establish another fuelpoint.

3. Links
Links are distinguished by an origin, destination and distance in miles. Each

link is characterized by a particular road surface of either concrete, bituminous (asphalt),

12

gravel, or dirt and a type terrain that is either flat, rolling hills, hills with curves, or
mountainous.

Links are collected together to form routes and can be a part of any number
of routes. More than one route list can be defined for the network to have several

ground routes or air, train, or inland waterway routes.

4. Cargo

These objects are supply items in pounds or special items with dimensions
in inches and pounds. Cargo objects must have a mode of resupply established. Cargo
is moved by cargo trucks, trailers, lowboys, heavy equipment transporters or wreckers.
Cargo can be separable or nonseparable. If separable, cargo is aggregated and separated
by pounds. Classes of supply are separable in ITTSS. These cargo objects can be
separated into smaller objects, so each cargo object will be a separate entity no matter
how small. Tanks and other major items of interest are nonseparable and cannot be
separated into smaller items. They are loaded by weight and length, and can be easily
tracked throughout the network.

Cargo can be prioritized by the user. The higher the priority given a cargo,
the higher priority a convoy has clearing through an intersection and offloading cargo at
a supply receiving point. All cargo is accounted for by supply records and kept in

supply point inventories.

13

III. MODEL DESCRIPTION

A. ASSUMPTIONS AND MODEL LIMITATIONS

1. Assets
In ITTSS, all assets are vehicles. Tractors are aggregated with trailers and
tankers to keep the model manageable. Reliability data is available on trailers, but it is
assumed in ITTSS that the determining factor of whether or not a prime mover and
trailer are mission capable is the operational status of the prime mover. A trailer can
usually be moved regardless of its operational status, but without its prime mover it
cannot be moved at all. It is assumed that there would be no difference in the

performance of the assets if you separate tractor from trailers or keep them together.

2. Combat Losses
Combat losses are not modelled in ITTSS. Future embellishments to the -
model could include such things as random ambushes that impact on the performance of
assets and the movement of cargo and that partially or fully disable a link or node.
3. Links
Each individual link is uniform in terrain and road surface. Instead of
updating a traversed link’s characteristics every 100 meters and thereby having the need
of a large database, the model has user-defined links that have specified lengths, terrain

and road surfaces. These characteristics are chosen because a wealth of information is

14

currently available in this form. This greatly reduces the database needed, and allows
the model to be run on a stand-alone personal computer. Therefore, if no information
is available from the Defense Mapping Agency concerning a particular area in the world,

the user can input a best guess as to the length, terrain and road surface of a link.

4. Rates of Travel
Constant rates of travel are assumed through each link a vehicle traverses.
However, each vehicle type may have a different rate that is based on the link’s road
surface and terrain. When vehicles travel in convoy, the slowest vehicle’s rate of travel

is used in determining the convoy’s travel time.

5. Vehicle Breakdowns
Because links are uniform, vehicles only breakdown at nodes. Vehicles will

check their status at each node and are either temporarily fixed or left to be recovered.

6. Aggregation of Cargo

Supply cargo are aggregated instead of tracking each nut and bolt in the
supply system. At the basic level, classes of supply are tracked and separated by
pounds. Special cargo, like tanks or infantry fighting vehicles are not separable and are
individually tracked. Any cargo can be designated nonseparable and scheduled to be

moved from one location to another.

7. Units
All units have constant consumption rates for any supplies the user wishes to

use in the simulation. Estimated rates of consumption for the different classes of supply

15

for various sizes of units are published in the U.S. Army’s Field Manual 101-10-1/2,
Staff Officer’s Field Manual: Organizational, Technical, and Logistical Data Planning

Factors (Volume 2). [Ref. 8.]

B. MEASURES OF PERFORMANCE
ITTSS, because of its flexibility, can provide several different measures of

performance to answer the following types of questions.

1. Time Required to Move Cargo
What is the amount of time required to move a large amount of nonseparable

cargo from one location to another?

2. Average Amount of Cargo Moved Daily/Weekly
Given a transportation network, what is the average amount of cargo in short

tons that is moved daily from motorpools to supply points?

3. Utilization Rate of Assets

How many assets are actually being used or committed daily? Are there too
many assets for the mission being conducted or are more needed to successfully
accomplish the mission? If cargo needs to be relocated within a certain time period, how
does increasing or decreasing the number of assets effect the time needed to relocated the
cargo? If the simulation is rerun and decreasing the number of assets onhand does not
effect the time required to relocate, then there are more assets than needed to accomplish
the mission. On the other hand, if increasing the amount of assets reduces the relocation

time, then more assets are needed.

16

4. Availability Rate of Assets
How many assets are mission capable? This may be calculated on either a

daily basis or for a specific mission.

5. Comparison of the performance of assets
How is asset performance (average pounds moved or time required to move
cargo) affected by unit (assets) location, type of assets, unit size, prioritization of cargo,

or selection of different routes?

C. PARAMETERS

1. Model Input Parameters
The model has many input parameters that the user can modify to allow a

wide range of scenarios. A list of these parameters follows.
a. Asset parameters

(1) Performance characteristics. Rates of travel and fuel consumption
are in the model’s data files (Appendix C) for a variety of vehicles. Rates of travel are
given for each vehicle over a particular road surface and terrain. These rates determine
the length of time a vehicle takes to traverse a link. Fuel consumption rates are used to
determine how much fuel is needed to support the assets. Fuel levels are maintained at
each fuelpoint. If a vehicle runs out of fuel and no fuelpoint is available, the vehicle is
assumed to have a reserve fuel supply to complete travel to its destination. This allows
the user to identify links that may require an additional fuelpoint. If desired, the user

could establish additional fuelpoints and rerun the model. The user can input different

17

values to see the effects that future vehicles with better performance characteristics would

have on the transportation system.

(2) Reliabiliry. Mean miles between operational mission failure
(MMBF), maintenance manhours per mile and administrative and logistics downtime are
listed in Appendix C for commonly used vehicles. Vehicles are given an exponentially
distributed mean number of miles to breakdown based on the input MMBF. Upon
breakdown, the vehicle will either continue to its destination after a brief delay for repair
or be left at a node to be recovered by a wrecker. In either case, the vehicle, upon
return to a motorpool will be unavailable until repaired. Once repaired, the vehicle will
again be given a new mean miles to breakdown. The user can either increase or

decrease the MMBF to see the impact on asset availability.

(3) Cargo load dimensions. An asset’s exact cargo load dimensions
of length in inches and weight in pounds are used if nonseparable cargo is to be moved.
If separable, only the weight capacity of an asset is used to load cargo. Changing this
input can show what impact future vehicles which have larger or smaller cargo load

dimensions would have on transporting cargo within the transportation system.
b. Link parameters

(1) Distance. Distances are input in miles. Links connect 2 nodes
together. A node may be a unit, fuelpoint, supply point, maintenance facility,

motorpool, or any combination.

18

(2) Origin and destination. A specific origin and destination must be

established for each link.

(3) Road surface and terrain. The numerical values for these
parameters are in the database of the model. Each link must be distinguished by a
certain type of road surface: concrete, bituminous (asphalt), gravel, or dirt. A particular

terrain must also be chosen: flat, rolling hills, hills with curves, or mountainous.

¢. Route parameters
Each route must be explicitly stated in the route data file. From origin
to destination, each node that makes up the route must be listed. From this information,

a link list is created that convoys traverse when travelling within ITTSS.

d. Supply parameters
(1) Supply source. A supply source must be declared for each supply
point. Resupplies are requested and missions are scheduled to deliver the supplies from

the supply source to the requesting source.

(2) Initial stock level. The beginning stockage level for each supply
item must be set. If a value of O is entered, an immediate resupply will be requested
with the supply point’s first checking of its stock. This resupply continues until the

required minimum number of days of supply for each item is onhand.

(3) Days of supply on hand. This parameter is multiplied by the
unit’s consumption rate to determine the minimum amount of a supply item that is

required to be on hand.

19

(4) Day to start/end and time to check stock. These parameters
determine the dates when a supply point should start and end checking its supply stocks.
These values can be changed to emulate a supply point that has not yet arrived or one
that will change locations sometime later in the simulation run. The time to check stock

designates the time every day the supply point will check its stock.

(5) Receiving and loading points. At each supply point object a
certain number of receiving and loading points can be set. Convoys will compete for
these points on a first come first serve basis, or on priority if the cargo in one convoy
has a higher priority than cargo in another. If all points are being used, a convoy will
have to wait until a point becomes clear. The end result is that a supply point can load
or unload a certain number of convoys at the same time. This process is handled by the
built-in functions of the MODSIM I™ construct called ResourceObj [Ref. 7: p. 163].

(6) Material Handling Equipment (MHE). Each receiving or loading
point has a specified number of MHE available. MHE unload the cargo from the assets,
and determine the number of assets that can be unloaded at the same time. MODSIM
II™’s ResourceObj is again utilized. If all MHE are being used, 'the other assets will

have to wait until a MHE is available.
e. Unit parameters

(1) Unit supply. Units must have a supply point from which they

draw or consume supplies.

20

(2) Daily consumption rate. This parameter must be established for
each supply item that the unit consumes. Every 24 hours, this rate is debited from the

stockage level of the unit’s supply.
J. Motorpool parameters

(1) Assets. All assets are located in motorpools. The number of each
kind of asset must be entered. These assets will be created before the simulation begins
with the asset characteristic database. Appendix C shows an example of the database

input requirement for each type of asset.

(2) Convoy Data. Distance between vehicles and convoys must be
entered in feet. A maximum limit for the number of vehicles in a convoy can be set.
Input for break miles and time can also be specified. During its travel, if a convoy has
travelled over a certain number of miles, it will conduct a break at the next node. Inputs
for standown miles and time can also be specified for convoys. Before its departure
from its destination or upon its arrival on its return trip home, the convoy will standown
for the specified amount of time. During Operation Desert Storm, a full day standown
time was established for travel over the long routes because of the desert climate, long
distance of the routes, and having only one operator available per vehicle.

The last parameters for convoys indicate whether maintenance
contact teams are available and how long it takes to temporarily fix vehicles. The first
input is a boolean value. If contact teams are available for travel with convoys, vehicles

can be temporarily fixed by these teams and continue to their destinations. The

21

temporary fix time is the time required to repair each non-mission capable vehicle. Upon
returning home, these vehicles will be entered into the maintenance facility and repaired.
Otherwise, if contact teams are not available and a vehicle is found non-mission capable
while travelling, the vehicle is left at the nearest node. The vehicle will be recovered
by a wrecker and taken to either the destination node’s maintenance facility or the
vehicle’s home maintenance facility, whichever is closest. Any cargo on the vehicle will
be off-loaded either at the destination node’s receiving point or at the vehicle’s home

motorpool and rescheduled for another mission.
8. Maintenance parameters

(1) Maintenance manhours per mile. This rate is multiplied by the
number of miles a vehicle has travelled since its last breakdown. The resulting time is

the length of time it takes to repair the vehicle in the maintenance facility.

(2) Administrative and logistics downtime. This is a flat rate that
determines how long an asset remains non-mission capable excluding the maintenance
manhours. This includes recovery time, waiting for parts, tools and anything else not

included within the maintenance manhours.
h. Fuelpoint parameters

(1) Starting level. Although a starting level can be given to each
fuelpoint, currently there is no effect in the model if this amount is exceeded. However,

ITTSS does keep track of total fuel consumption for each fuelpoint so that the user can

estimate how much fuel is required at each fuel point. Future embellishments of the

model could include the effects of running out of fuel.

(2) Number of numps. This parameter determines how many assets
can be refueled at the same time. Simulation time elapses during refueling and while

assets wait for pumps to become free.

(3) Refueling time. The time required for the refueling of an asset

is input here.

D. REPORTS
Four reports are currently available after each simulation run of ITTSS. Additional
reports could be created for specific scenarios and easily implemented within the model’s

code. Examples of these reports are listed in Appendix B.

1. Dispatch Report
All convoy activity is listed within this report. A convoy is designated by its
origin and time of departure. The time when a convoy leaves its origin, arrives at its
destination and ultimately returns home is recorded in the Dispatch Report. The number
of assets within the convoy, and the number that broke down during the mission and
were temporarily repaired and remained with the convoy are also listed with each

reference of convoy movement.

2. Supply Report
Every 24 hours, a supply report is generated showing the current stockage

levels of all supply items within the inventory of each supply point. These include

23

classes of supply and nonseparable items such as tanks and infantry fighting vehicles that

may have been relocated to the supply point’s location.

3. Vehicle Status
A vehicle status report is generated every 24 hours showing the number of
assets available and deadlined at each motorpool. Availability and utilization rates are
calculated for the 24 hour period of the report. A report for each different type of asset

located within the motorpool is included in the daily vehicle status report.

4. Maintenance Activities
All pertinent maintenance activities are listed within this report. The actual
time an asset breaks down is reported to the asset’s home maintenance facility and
recorded in this report. The times that a maintenance facility receives a deadlined asset

and completes its repair is also listed in this report.

E. SIMULATION MODEL

1. MODSIM II™
ITTSS was written entirely on a personal computer (486DX, 25mhz), using
the OS/2 operating system. The model is a stand alone simulation that requires only the
model code, MODSIM II™, Microsoft C, OS/2 1.2 and database files. ITTSS consists
of a total of 54 definition and implementation modules and one main module which can
be found in Appendix D. At present the only interactive feature available is for the
choice of running a complete simulation or just scheduled missions. Changes to

parameters must be made in the database files. This chapter contains a description of

24

events that drive ITTSS and actions that objects in the model perfform. Because ITTSS
is an object-oriented model, the actions that are described are the actual methods that
are defined for the objects. When a motorpool schedules missions, a convoy travels, or
an asset refuels, they all refer to objects that actually have these methods written for
them. Much of the computer code for this model, listed in Appendix D, is much more
readable than traditional computer languages like FORTRAN or PASCAL. Current
transportation doctrine was followed as much as possible in the development of the
actions that objects in ITTSS perform while allowing flexibility for a variety of future

scenarios.

2. Event Driven

Two types of events drive the simulation model. The first event type is
driven by the daily operations of units consuming supplies and supply points checking
their stock for shortages. Missions are scheduled based on these shortages and assets
travel to fill mission requirements. The second event type occurs when the user
schedules missions to move cargo from one location to another. Either event can be run
separately or together. The advantages in having this option is that the user can compare
the performance of vehicles moving cargo from one location to another with or without

the interference of other vehicles within the transportation system.

25

a. Daily Operations
(1) Unit consumption. Each unit has a supply object (point) from
which supplies are consumed. A unit has a daily consumption rate for each supply item.
At a specified time, the unit consumes the amount and thereby decreases the inventory
of its supply. The default time is the end of each day. Inputs for the dates when the
units are to begin and end the daily consumption of their supplies enable the user to

simulate units entering or leaving the theater of operations at different times.

(2) Checking stock. Each supply object checks its inventory at a
specified time each day. If stock levels fall below a particular level, the object sends a
request list to its supply source for a resupply. The supply source, in turn, checks its
own inventory. If items on the request list cannot be filled, the supply source will ask
for a resupply from its higher supply source. Any items on the request list that are
onhand are immediately scheduled by the supply source’s motorpool to be delivered to
the requesting supply object. Any items that are not onhand will be delivered when the

supply source receives its resupply from its higher supply source.

b. Scheduled Missions
In addition to supply missions that are scheduled within the simulation
to fill a resupply request, missions can be scheduled by the user to occur at any time
during the simulation run. An example of a user-scheduled mission is a one-time lift of

a heavy maneuver force or just the relocation of a few tanks. User-scheduled missions

26

can occur by themselves without interference of other supply/transportation actions or in

conjunction with them.

3. Conducting Missions
Whenever a misston is scheduled, either through a resupply request or for a
specified movement of cargo, certain actions occur that drive the simulation. Cargo must
be loaded upon the appropriate assets, assets must be placed in convoys, and convoys
must travel to a destination, perform their business and return home to complete the
mission. The following sections describe in detail the actions within these operations and

the purpose for the many parameters and inputs available in the model.

a. Loading cargo on assets

Once a mission is scheduled, a cargo list is sent to the appropriate
motorpool. The motorpool takes each item off the list and matches it to an available
asset within its asset list through a standard sorting algorithm that insures the best fit
using the available assets. If the item is separable, it can be broken down into smaller
pieces and just the weight is used to match cargo to the asset. If the cargo is
nonseparable, both length and weight are used to find the best fitting asset to carry the
cargo. The smallest asset that can carry the cargo is always chosen. If the cargo is too
large for any available asset, it is separated if possible. The user must insure that there
is an asset available in the motorpool that can transport any nonseparable item in the
transportation system. Any cargo that is not matched to an asset is placed in a waiting-

to-be-loaded queue. This queue is checked by all returning assets. The motorpool then

27

conducts the loading of cargo onto assets based on loading point availability and MHE
availability. Loading may be delayed if these points are busy with the loading of other
convoys. Once loading has begun on a convoy, the number of MHE available at the

supply point will determine how many assets can be loaded at the same time.

b. Convoy Organization

All loaded assets are organized by convoy. Convoys have a user-
defined maximum number, distance between assets and distance between other convoys.
All assets are refueled before traveling and a determination is made whether or not all
assets can make it to their destination and back without refueling. If they can, then the
convoy will not stop for any fuel throughout the mission. The user can define whether
or not a maintenance contact team/wrecker is available to travel with the convoy. If a
contact team is available, vehicles that breakdown during the mission are temporarily
repaired until they returmn home. Upon retumn they are entered into their maintenance
facility for repairs. If wreckers are not available, vehicles that breakdown during the
missic. are left at a node and a wrecker from either the home or destination point,
whichever is closer, will recover the asset and tow it to the maintenance facility. Cargo
will either be unloaded at the destination’s supply point or at the origin’s motorpool
where another mission will be scheduled. When a convoy is ready for travel, it is
released after the appropriate distance between it and the previous convoy has been

cleared.

28

¢. Traveling
Convoys travel along a route that contains a list of links. The speed
of the slowest asset in the convoy is used to determine the time it takes to travel across
the link. Vehicles can reach their miles between failure during this time, but will not
become non-mission capable until they reach the next node. Miles driven and fuel

consumed are debited after the convoy enters a node.

(1) Entering a node. At the end of each link are nodes that may
contain supply, motorpool, maintenance or fuelpoint objects. Upon arrival at the node,
the convoy will determine whether or not the node is its destination for a resupply
mission, recovery of vehicles, or for the return of a repaired vehicle by another
maintenance facility.

If the vehicles carry cargo and it is at its destination node, the
convoy will enter the node’s supply point. Unloading of the cargo is similar to loading
except convoys that carry higher priority cargo are be offloaded first by the available
receiving points and MHE. If the vehicles in the convoy are wreckers, any broken-down
vehicles that are at the node will be recovered and carried back to a maintenance facility.
If the convoy contains repaired vehicles, these vehicles will be returned to their
motorpools.

Regardless of whether or not the node is a destination node, all
vehicles update their odometers and fuel gauges, check for breakdowns and refuel if
necessary. Delays occur if the convoy refuels, temporarily fixes a vehicle, or conducts

business within a destination node. Before departure from the node, the convoy checks

29

if its miles travelled is greater than its maximum allowable miles before a break is
required. If the miles travelled exceed this limit, the convoy breaks for the required
time. If the convoy is at a destination node and is about to return to its home motorpool,
a standown time will delay the convoy the appropriate length of time.

After these checks, the convoy must receive clearance before
passing through the node. Only one clearance is available at a time. If more than one
convoy is at the node, the first one that arrived will be allowed to proceed. Once the
appropriate distance between convoys has been reached, the next convoy will be allowed
to continue its travel. Unless a convoy has a user-specified higher priority, convoys are

released to travel by the order they arrive when they request clearance.

(2) Returning Home. Convoys retum to their home motorpool along
a return route of links. The same actions of updating gauges and checking for refueling
and breakdowns are performed at each node they cross. Upon return to their home
node, preventative maintenance is performed on each vehicle in the form of checking for
breakdowns and refuelling. Any vehicles that are non-mission capable are entered into
the maintenance facility for repair. A standown time may be necessary if the convoy has
travelled farther than the allowable mileage. Once these actions have been conducted,
cargo that is waiting to be loaded is checked. If the vehicles can carry the cargo, another
mission is conducted. If there is no match or no more cargo to haul, the vehicles are

finally returned to their motorpool until another mission is scheduled.

30

IV. MODEL DEMONSTRATION EXAMPLE

A. INTRODUCTION

This chapter presents a demonstration of ITTSS’s capability to estimate the time
required to move cargo from one location to another. This demonstration compares the
new doctrine of relocating a heavy maneuver force in a single lift using the new HETs
with the old doctrine using the actual vehicles available in Operation Desert Storm.
During the war, HETs were so critical that they were "intensively managed at the
General officer level on a daily basis, and during critical periods on an hourly basis"
[Ref. 3: p. 2]. What is of interest is the comparison of the expected travel time for the

two doctrines.

B. SCENARIO

The single lift of a HMF in the Operation Desert Storm scenario is used to show
how the measure of performance, time required to move the HMF from one location to
another, can be estimated from ITTSS. From ITTSS’s output, data can be obtained to
perform a paired-sample test to show how much better the new doctrine is compared to
the old doctrine. Table 2 shows a typical brigade size heavy maneuver force (HMF) that
could be expected to be moved by the new transportation corps HET doctrine.

ITTSS runs will be made using the same northern route that was actually used to

move the tracked vehicles during Operation Desert Storm. The origin will be Dammam

31

and the destination will be King Khalid Military City (KKMC). See Figure 3. Only the
new 70 ton HETs will be used for runs involving the new doctrine, since they are the
only HET' considered in the new single-lift concept [Ref. 4: p. 41]. In Operation Desert
Storm, the Army did not have any of the new 70 ton HETs to move the larger tracked
vehicles like the M-1. HETs had to be contracted from other countries to fill this void
[Ref. 3: p. 2]. These contracted HETs and the Army’s 60 ton HETs are used in runs

involving the old doctrine.

TABLE 2. TYPICAL HEAVY MANEUVER FORCE.

TRACKED VEHICLE TYPE NUMBER TO BE MOVED
M1 Abrams, Main Battle Tank 116
M2 Bradley, Infantry Fighting Vehicle 64
M3 Bradley, Cavalry Fighting Vehicle 18
M106 107mm Self Propelled Motor * 6
M109 155mm Self Propelled Howitzer 24
M113 Ammored Personnel Carrier (APC) 118
M548 Cargo Carrier * 30
M578 Armored Recovery Vehicle " 3
M577 Armored Command Vehicle * 29
M901 Improved TOW Vehicle * 12
ACE Amored Combat Earthmover 27
AVLIB Mechanized Bridge 12
CEV Combat Engineer Vehicle 6
FIST-V Fire Support Team Vehicle * 16
* very similar to the M113, APC 505 Total Tracks

32

SAUDI
7 ARABIA

KKMC L .
= ol '@.,, Bastogne
o - Alpha ‘-. e
Delta .- Al Jubayl B,
. : CSCy @
R dh.'n.~... " nulll"".'“
Iya 'n.uul..nllll""'.'"” ' M_a_m
Northern Route
334 miles

Figure 3. Routes During Operation Desert Storm

The significant model parameters for both runs are listed in Table 3. Appendix C
contains the actual data files that were used for both runs. The result of these runs will

provide point estimates for the travel time from Dammam to KKMC for each doctrine.

KX)

TABLE 3. MODEL PARAMETERS.

PARAMETER VALUE
Maximum Number in Convoy 25
Distance Between Convoys 3000 feet
Distance Between Vehicles 350 feet
Maintenance Contact Teams Available
Temporary Fix Time 15 min
Break Distance/Time 90 miles / 30 min
Standown Distance/Time 200 miles / 1 hr
Supply Load/Unload Time 15 min / 15 min
Supply Loading Points 2
Supply Receiving Points 2
Material Handling Equipment 5
New Doctrine:

HET 70 Ton 385 total
MMBF 2500 miles
Maint Manhours Per Mile .005
Admin and Log Downtime 34 hrs

Old Doctrine:

HET 60 Ton 160 total
MMBF 1600
Maint Manhours Per Mile .009
Admin and Log Downtime 34 hrs

Contracted HET, 70 Ton 120 total
MMBF 1600
Maint Manhours Per Mile .009
Admin and Log Downtime 34 hrs

No data is available for the contracted HETs. An assumption is made that they

have the same performance capabilities as the current 60 Ton HETs of the Army, except

they can carry heavy loads that the 60 Ton HETSs cannot.

34

C. SIMULATION RUNS
100 runs each were made using the new and old doctrines. The variance-reduction

technique of common random numbers was used in setting up the simulation runs.
Variance reduction techniques can increase the model’s efficiency by reducing the
variance of the estimated travel times without disturbing its expectation, and also produce
smaller confidence intervals for the difference between the two doctrines. Common
random numbers are used when comparing two alternative system configurations.

We want to compare the alternative configurations [the 2 doctrines] "under similar

experimental conditions” so that we can be more confident that any observed

differences in performance are due to differences in the system configurations

rather than to fluctuations of the "experimental conditions". In simulation, these

"experimental conditions" are the generated random variates that are used to drive

the models through simulated time. [Ref. 10: pp. 612-613]
All initial conditions were identical. 100 random number seeds were used to generate
a separate stream of 500 random numbers that were used for each individual simulation
run. These streams were created by MODSIM II™’s random number generator which
is a multiplicative congruential pseudo-random number generator [Ref. 9: p. 160]. The
generator allowed the exact random number stream used in each simulation run of the
new doctrine to be used in the corresponding run of the old doctrine. Every vehicle
received the same MMBF input in each corresponding run. This parameter was used to
produce each vehicle’s miles to failure from an exponential distribution. This enabled
as much matching up of random numbers across the different doctrines on a particular

replication as possible. The first 280 vehicles in each set of simulation runs received the

same random numbers to determine their miles before failure.

35

A single simulation run took approximately 4 minutes of computer time. The only
change in the input to the simulation during each run was the random number stream.
Because initial starting conditions were identical for each run, the same number of
vehicles were loaded. The departure time of the first convoy was also constant in every
one of the simulation runs. The expected travel time was determined by when the first
convoy of HETS left Dammam and the last one arrived at KKMC. Because of delays
in having to temporarily fix HETs that break down, and in waiting for clearance to

travel, a convoy that left first did not necessarily arrive first.

D. SIMULATION RESULTS

Because ¢f the terminating nature of the simulation runs (one mission to move
cargo from Dammam to KKMC), no steady state analysis was necessary. Each run was
independent, terminated by the arrival of the last convoy at KKMC and begun again with

identical initial conditions.

1. Data Analysis
Three sets of data were obtained from the 200 total simulation runs
(Appendix A). A travel time from Dammam to KKMC was obtained for each run using
the new and the old doctrines. The difference between the times was calculated for each
run. These will be used in paired-sample analysis. X-Y plots in Figure 4 shows the data
taken from the model’s output. The top plot displays the old doctrine travel times.
Below it are the paired-differences between the doctrines. The bottom plot shows the

travel times using the new doctrine.

36

Mitip

T ML | T T
Y LR S ' R]
r . « s b

CARNA MmN AR Ak AR
[VBRI SANNIYTLAY [T AT R ek ATV R RPN b
L NN v R ’... y T
ARSIGETIC LIS TS LRV SO RRIT A IOLE RS o ¢ BATA SRR PR
' 1
N — *
‘!‘ '°"'; """""" S Zl et ' T
. r e Paired DifY .
SEGEE NS SNV G
: : J
l 1 . l | L i
o 0 «© - .0 00

Iteration

Figure 4. Data from the 200 Runs

2. Paired-Samples Statistics
The following statistics were used in finding point estimates, where X, is the
performance of old doctrine in the ith simulation run [Ref. 10: pp. 532-533].
Sample Mean: n
> ¢
X(n)=£1—,
n

Variance:

Y [X,-X(m)P

S¥n)=L+1
n-1

37

The sample mean and variance for Y, the performance of the new doctrine in the ith
simulation run are found similarly.

The 100 independent replications of the simulation resulted in each of the data
points, X, and Y, being independent and identically distributed random variables.
Therefore, the sample mean is an unbiased point estimator for the travel time. [Ref. 10:
p. 532] The formulas used in determining the estimate of the expected difference
between the doctrines are listed below [Ref. 12: p. 49].

Estimate of the expected difference in performance:

D=X;-Y;,

Confidence interval for the expected difference:

_ sa(n)

Dtk , where k is the t-statistic
n

Variance of the expected difference:
Var{D] = VarlX] + Var[Y] - 2CoV{X,Y]
The t-distribution was used to estimate a 95% confidence interval with « =
.05. With 95% confidence, the estimates for travel time and availability will be within
this interval. A t-value of 1.96 was used for v (v=n-1, the degrees of freedom)
equalling 99 [Ref. 11: p. 20]. Table 4 summarizes the results for point estimates,

variances, and confidence intervals for both doctrines.

38

TABLE 4. SIMULATION RUN STATISTICS.
n NEW DOCTRINE (70 Ton HETsS)
u Estimate of Travel Time = 14.5916 hours

Variance = .073918
OLD DOCTRINE (Old and Contracted HETS)

Estimate of Travel Time = 69.6946 hours
Variance = 3.09445

[PAIRED SAMPLE STATISTICS

Estimate of Difference Between Doctrines, D = 55.103
Variance = 3.04108

Covariance = .06365

Correlation Coefficient = .1331

Confidence Interval = [55.685,58.520]

3. Simulation Run Results
The travel time estimators in Table 4 seem reasonable for heavy equipment
transporters travelling routes of over 300 miles. The estimate of difference between the
doctrines is just over 55 hours. Applying the 95% confidence interval, we can be 95%
confident that the true difference is between 51.685 and 58.520. The use of the paired-
sample approach and common random numbers did reduce the variance. Using common
random numbers can positively correlate estimators and increase the covariance between

them which reduces the variance of the estimate of the difference between them.

39

V. CONCLUSIONS AND RECOMMENDATIONS

A. SUMMARY AND CONCLUSIONS

There are no simulation models currently available that treat transportation assets
as individual objects and examine the variability in the reliability of assets. ITTSS fills
this modelling void by providing the capabilities to focus on the performance and
reliability characteristics of transportation assets. Many large combat models aggregate
transportation assets and therefore make it impossible to analyze the individual
performance of these assets. Still other models, like the Distribution System Analyzer
(DSA), provide a very detailed modelling of the supply and transportation system, but
intensive knowledge of the supply system is essential in setting up each scenario. DSA
provides a good analysis of the movement of supply items within the supply system, but
does not allow us to focus on transportation assets like ITTSS. ITTSS gives the user an
option to model an entire transportation system and/or to schedule movements of cargo.
Being an object-oriented simulation model, ITTSS allows individual monitoring of assets
throughout the simulation run and flexibility to easily add other types of assets.

The results produced by ITTSS from the model demonstration problem are very
reasonable. The travel times of 14.5 and 69.7 hours are reasonable time estimates for
HETs traveling in convoy over routes greater than 300 miles, given the doctrines that

were followed.

40

ITTSS allows the user to focus on transportation assets’ performance and reliability
characteristics and can easily be modified or augmented to fit a wide range of future

scenarios or doctrinal changes without significant computer code changes.

B. RECOMMENDED FUTURE ENHANCEMENTS
The following enhancements for ITTSS are recommended for future development

and are currently being pursued by the author.

1. User-Friendly Menu
A user-friendly, menu-driven input capability will simplify data entry.
Currently all data must be entered through data files. The graphic capabilities of
SIMGRAPHICS® can be integrated with ITTSS MODSIM II™ code to provide a more

foolproof and error free method of entering and changing parameters.

2. Other Types of Assets
Other types of assets could be defined within the transportation system.
Aircraft, especially helicopters, are an integral part of an intra-theater transportation
system. To take advantage of existing rail systems and inland waterways, train and

vessel objects could also be introduced.

3. Separation of Tractors and Trailers
While the assumption of aggregating tractors and trailers was made for this
model, a future enhancement to the model would be to separate them. This would enable
trailer transfer point operations to be accurately modelled. Army doctrine might

advocate the shuttling of trailers from one location to another by tractors that are

41

dedicated to a segment of the route. The trailers would then be shuttled by another

group of tractors dedicated to the next segment in the route.

4. Containers
Containers could also be introduced to take advantage of ITTSS’s object-
oriented view. During Desert Storm, thousands of containers were within the t-eater of
operations and the managing of these assets was overwhelming. Future conflicts will
most certainly involve a great number containers to move unit equipment and classes of
supply.
S. Combat Losses
Random ambushes or air attacks that impact on the performance of assets and
the movement o. cargo and that partiallv or fully disable a link or node could be

introduced into ITTSS.

42

LIST OF REFERENCES
1. Churchill, W. S., The River War, Thomas Nelson and Sons, 1899.
2. Van Creveld, M., Supplying War, Cambridge University Press, 1977.

3. 22nd Support Command(TAA), Theater Linehaul Transportation Operations During
Desert Shield and Desert Storm, by Major Paul L. Willis, 1991.

4. Fortner, J., Doux, J., Peterson, M., "Bring on the HETSs! Operational and Tactical
Relocation of Heavy Maneuver Forces," Military Review, pp 36-45, January 1992.

5. Department of the Army, FM 55-15, Transportation Reference Data, 1986.

6. Foss, C., Gander, T., Jane’s Military Vehicles and Logistics, Jane’s Information
Group, 1992.

7. U.S. Army Materiel Systems Analysis Activity, Aberdeen Proving Ground, MD,
Subject: Reliability Data, 22 June 1991,

8. Department of the Army, FM 101-10-1/2, Staff Officer’s Field Manual:
Organizational, Technical, and Logistical Data Planning Factors (Volume 2), 1986,

9. CACI Products Company, MODSIM I™Reference Manual, CACI Products Company,
1991.

10. Law, A. M., and Kelton, W. D., Simulation Modeling and Analysis, McGraw-Hill,
Inc., 1991.

11. Neave, H. R., Elementary Statistics Tables, Biddles Ltd, 1981.

12. Bratley, P., Fox, B. L., and Schrage, L. E., A Guide to Simulation, Springer-
Verlag, 1987.

13. Hillier, F. S., and Lieberman, G. J., Introduction to Operations Research, Holden-
Day, Inc., 1980.

14. Koopmans, L. H., Introduction to Contemporary Statistical Methods, Duxbury
Press, 1987.

43

15. U.S. Amy Corps of Engineers, Waterways Experiment Station, Vicksburg, MS,
Subject: Vehicle Travel Rates, 7 August 1991.

16. CACI Products Company, MODSIM I™The Language for Object-Oriented
Programming-User’s Manual, CACI Products Company, 1991.

APPENDIX A - DATA FROM EXAMPLE PROBLEM

14.53439

1 54.64299
2 69.50056 14.42781 55.07275
3 73.55607 14.63 58.92607 |
4 69.92296 14.53439 55.38858 |
5 69.22592 14.59315 54.63276 |
6 74.36455 15.1061 59.25845 |
7 68.99762 14.45171 54.5459 |
8 69.57631 14.21267 55.36364 |
9 69.18399 14.46267 5472132 |
10 68.69243 14.53439 54.15805 |
11 69.96341 14.43877 55.52464
12 73.58925 14.38 59.20925
13 69.19834 14.68877 54.50957
14 68.9553 14.26048 54.60482 |
15 68.95422 14.42781 54.52641 |
16 67.17443 14.38 52.79443 |
17 68.70383 14.55829 54.14554 |
18 69.7546 14.41487 55.33974
19 69.5324 14.88 54.65239
20 69.49688 14.67781 54.819074'
21 69.22592 14.53439 54.69153

45

R B

RUN | TRAVEL TIME | TRAVEL TIME | DIFFERENCE

-1 | Old Doctrine New Doctrine XY,
1 X Y,
2 68.74909 14.59315 54.15593 |
2 68.73362 15.28439 53.44923 |
24 69.57595 14.30829 55.26766
25 69.71744 14.80829 54.90915
2 68.73511 14.14295 54.59216
27 74.31042 14.45171 59.85871 |
28 69.72626 14.62999 55.09627]
29 74.07509 14.92781 59.14728
30 68.42149 14.45171 53.96978
31 70.22739 14.30829 55.9191
32 70.03109 14.70171 55.32937
33 69.44243 14.89096 54.551471'
34 70.18581 14.58219 55.60362 |
35 74.78137 14.58219 60.19918 |
36 69.04616 14.45171 54.50444
37 68.45201 14.40391 54.04811
38 68.76194 14.30829 54.45365
39 68.7318 14.92781 53.80399
40 69.00276 15.33219 53.67057 |
a1 70.00754 14.93877 55.06878
) 68.04894 14,53439 53.51456
43 68.4259 15.05829 53.36761
a1 73.78509 14.70171 59.08338
45 73.01715 14.30829 58.70886
46 68.78513 14.63 54.15512

46

47 68.43399 14.45171 53.98228 |
a8 69.00056 14.70171 54.29884
49 68.49541 14.24952 54.24589
50 68.92002 14,3561 54.56392
51 68.79616 14.58219 54.21396]
52 68.44832 15.14096 53.30735
53 68.47663 15.01048 53.46615
54 68.75203 14.42781 54.32422
55 68.76267 14.73658 54.0261
56 69.46709 14.65391 54.81319
57 73.58523 14.41487 59.17037
58 67.49467 14.83219 52.66248 |
59 68.91928 14.43877 54.43051
60 68.72739 14.73658 53.99081
61 68.54616 14.23658 54.30058 |
62 73.31427 15.15391 58.16036
63 69.20422 14.03439 55.16984
64 69.00203 15.17781 53.82422 |
65 69.75975 15.15391 54.60585 |
66 69.98364 14.76048 55.22316
67 68.68179 14.70171 53.98007
68 69.48141 14.8322 54.64921
69 68.45199 14.71267 53.73932
70 68.27299 14.30829 53.9647
71 67.75679 14.53439 53.2224

47

72

69.29248

14.83219 5446029 |
7 69.00497 14.49952 54.50545 |
74 68.96523 14.48658 54.47865 |
75 69.94539 14.42781 55.51758
76 70.17848 14.76048 55.418
77 69.67664 14.92781 5474883
78 72.81427 14.67781 58.13646 |
79 69.19243 14.78439 54.40805 |
80 69.71709 14.78439 54.93271
81 69.23546 14.51048 5472498
82 68.94464 14.11706 54.82758
3 73.28515 14.58219 58.70296
84 67.22075 14.55829 52.66246 |
85 69.45348 14.40391 55.04958 |
86 67.77005 14.68877 53.08128 |
87 69.0204 14.45171 54.56868 |
88 69.47592 14.43877 55.03715 |
89 69.72702 14.58219 55.14483 |
% 7458108 15.1061 59.47498 |
o1 69.0605 14.08219 54.97831 |
% 69.46376 14.23658 55.22718 |
93 68.7296 14,3561 54.3735 |
94 73.29292 14.28439 59.00853 |
95 69.25423 14.53439 54.71985 |
96 69.28069 14.41487 54.86583 |

48

TRAVEL TIME

TRAVEL TIME

DIFFERENCE

Old Doctrine New Doctrine XY,
X Y,
97 68.69611 14.40391 54.2922
98 68.26343 14.68877 53.57466
99 69.49247 14.40391 55.08856
100 68.16928 14.40391 53.76538

49

APPENDIX B - MODEL OUTPUT FROM EXAMPLE PROBLEM

I. DISPATCH REPORT

The dispatch report contains information on the departure, arrival and return of all
convoys. A convoy is identified by its motorpool and time of departure. The time and
place of the action are listed next. The last item is how many assets were in the convoy
(convoys can leave non-mission capable assets at a node if no maintenance contact teams

are available). Following are excerpts of what an actual simulation run produced.

a8 3k e 34¢ 20 2 24% ahe 3 e 2 30 afe 3 3 e 3¢ 2 8¢ afe 3 e 3 3 e 24 2 34 2k 2 ke 34 2 afe 3 e 3k 3 A

#**#CON‘VOY AC’I‘IVH‘IES****#******#

a8 3¢ 28 200 3 e a0 e e 2 296 20 2 2 0k e a4 34 306 24 2k 3 e e e 24 2je e 2 e e 3K K 2je 2 e e e 3k

Convoy DammamMotor60.073864 is leaving DammamMotor
TIME OF DEPARTURE is 60.073864. Number in convoy is 25

Convoy DammamMotor60.110795 is leaving DammamMotor
TIME OF DEPARTURE is 60.110795. Number in convoy is 25

CONVOY DammamMotor60.073864 arrived at KKMC
TIME OF ARRIVAL is 73.386943
Number in convoy is 25.

CONVOY DammamMotor60.110795 arrived at KKMC
TIME OF ARRIVAL is 73.910847
Number in convoy is 25.

convoy DammamMotor60.110795 returned to KKMC

time of RETURN is 106.657896
Number in convoy is 25.

50

IO. MOTORPOOL REPORTS
Every 24 hours a summary is generated for each motorpool in ITTSS. For each
vehicle type that a motorpool contains, the total assets, number committed, available and

deadlined are shown. The utilization and availability rates are also listed.

0 246 24 24 24¢ afe 20 e 2 24 2je 34¢ 398 20 46 20 3 e e 24 34 2 3he 24¢ 3¢ 3 3¢ ke afe ke 3

wwx4xxxMOTORPOOL REPORTS****

00 30 350 346 208 24 3 2 e 2 e ke e 20 206 2k 3h 20 2 e e 24¢ 24 35 3k 2 2 afe ke 34 3k 306 24 2 e ke 34 3¢ afe 20 e ke 3 34e 3k 3 3 3 3 afe ake afe 3 2 e e ke e e e

wernkxxStatus for DammamMotor MOTORPOOL. Time is 120.000000

Total Assets are 385

Total Committed is 272 Util Rate % is 0.706494
Total Available is 272 Avail Rate % is 0.706494
Total Deadlined is 113

34e 390 30 306 34 2 3¢ aje 25 3 34 30 3 38 20 3 2k 2 2 ke 34 3 k¢ 3 2 3 36 3ge 3 i 3 2 2he 34 2 3k 3 e 3k 2 e afe 2 3¢ afe ke 3 e 3k e

Total Assets are 4

Total Committed is 0 Util Rate % is 0.000000
Total Available is 4 Avail Rate % is 1.000000
Total Deadlined is 0

90t 33 346 356 2he 2 2 3 3k 30¢ ake 3¢ 3k 356 20 3 2 e ke 3¢ 34 34 3 e 3k 30 3k ake 34 e 2 2 e e e 24 ke e e e e e 30 e ke Ak e 34e ke

III. MAINTENANCE ACTIVITIES

Whenever a maintenance action occurs, it is outputted to the activities report. An
asset’s breakdown is reported with a reference to the time and location of the incident.
Whenever an asset is received to be repaired or returned repaired by a maintenance
facility, the action is listed in the report. An excerpt from one of the simulation runs is

found below.

0300 30 240 340 e 20 3 e 20 afe 20 390 3 3 e e ake 30 3 2 3 3 e e 200 3¢ g 3 e 30e oe 3k

wexsxx*MAINTENANCE ACTIVITIES****

Asset NMC at AlJubayl. Bumper Number is Hett_ Dammam_326
Time of breakdown is 62.543533

51

Asset NMC at Allubayl. Bumper Number is Hett_ Dammam_272
Time of breakdown is 62.591341

Maint DammamMaint received Hett_ Dammam_291 at 109.891540
Maint DammamMaint received Hett_ Dammam_293 at 109.891540
MAINT DammamMaint RELEASED Hett_ Dammam_6 at 143.997896

MAINT DammamMaint RELEASED Hett_ Dammam_10 at 143.997896

IV. SUPPLY REPORTS

These reports are generated every 24 hours for each supply point in ITTSS. For
every separable supply item, the current stock level, days of supply onhand required,
maximum upper level, daily consumption rate and the current amount on order is listed.

For nonseparable items, like tracked vehicles, only the amount onhand is output.

ke 346 20 2 2h e 34e 34e 34 24¢ ale 34e 0e e 20e 3 2 2he e 34¢ 24¢ 3je 3¢ 3¢ ke e e e e e 2k

****#***SUPPLY REPORTS********#

20 aje 34¢ 3¢ 2 e 2k 30 3fe ke 3¢ 3je 3 e e e 30¢ 34¢ 3ie 24 2 2 0e 3¢ 20¢ 240 3¢ 2he 2 3¢ 20 35 3k 2 3 3¢ e e 34 34 3 3 0k 24¢ ke 3ge 3k 2 e e e ke 3¢ 3 3 e e e e ke

wawxxx*Status for DammamSup SUPPLY POINT. Time is 96.000000

stock level is 1000000.000000
days of supply is 5

upper level is 10000000.000000
daily consumption is 1000.000000
on order is 0.000000

24 200 30¢ 3k 3 3 e 2k 34¢ 34 30 20 2 3 20e 34¢ 38 ahe 3he 30 20 e 3k 3fe 3k s 2 e 24e afe 36 2he 2 3 3 2k e 3k 3 2k e 3k 3¢ 2§ e 2 e e e 3k 3je 3 e e e e e e
e a0 206 20 3 30 2 2 2 3z 34¢ 34 3¢ ale a0 20 b 3 3 24 e 2he 3he 34¢ 24e 24¢ 34¢ 24e ke ke 38c e 3 2 3 3 3 20 24 3je 25 3jc 35 35 34¢ 35 e 3k ke e e A e e e A ok

*xxusxkStatus for KKMCsup SUPPLY POINT. Time is 96.000000
-~—-—ee—----Record for CLS
stock level is 1000000.000000
days of supply is 5

upper level is 10000000.000000
daily consumption is 1000.000000
on order is 0.000000

e e e 2 3c aje ale aje 2ie e 3fc 3¢ e e 2 e e e 20e 2he 34e 300 348 3¢ e e 3¢ 06 e e 2 e e

52

---------- --Record for M1------

number on hand is 93

208 300 20 256 2% 206 3¢ 30 3¢ 39x 24 aje 2 3 3¢ 3¢ 34 e 3he 3¢ 29¢ 246 e 3l sje 35¢ e e 3k 3¢ 3 e e 3¢
-+m-em--—--——-Record for M2------

number on hand is 64

e s 2l 2l 34e 0 20 30k 39 20¢ 2e e 20 30¢ 30¢ e 3k 3l 34¢ 24 2he ke 3l 3¢ aje 3¢ ale e e 3¢ e ke e 3k
------------ Record for M113----
number on hand is 118

348 30 20 306 25c 3¢ e 3fe 3fe 3¢ ohe e 3 3fe 206 3¢ 3§¢ 3 3 3k 3jc e 3 e 3 3 2 3 3K 2k 3¢ e e 3
--~=--—-------Record for M109----
number on hand is 8

2 afe s afe 3l 2l 2 ¢ 246 ¢ 2je 34¢ 2je 2l 2l 2je afe afe 30 e 38 3¢ 3¢ 3¢ 24¢ 3¢ 24¢ e e 20¢ 3¢ 3¢ 3¢ 3
==~------—--—-Record for ACE-----
number on hand is 27

246 3he 2 3je 356 3¢ 30 3¢ 3¢ 34¢ 24¢ 200 30 3he 28¢ 34¢ 24¢ e 30 3¢ 39¢ 35 3 e 34c 3¢ b 3 e 3¢ 3 e e e
-------------- Record for M548----
number on hand is 30

e e 3fe 24 3¢ 3¢ 24 30 e 24¢ 290 34 2k 3he 34 24¢ 34 e 3k e 29¢ 242 3 e 24e e e e e 3¢ 2 e e
-------------- Record for M106----
number on hand is 6

¢ 20e 3¢ afe 20 3 24 3 e e e 248 25e 24¢ 3¢ 2je 24¢ 2ie 2 2fe 2l e 3 3 3k e e 3¢ e 24¢ e 3¢ e A
-eeweee-=-———-Record for FIST-V--
number on hand is 16

3% 3¢ 33 20 3¢ 34 afe 2l e 3¢ e 3¢ 3¢ 3¢ 3k 2je 3j¢ 2l 3 e 2l ke 3 e sje 3¢ 3¢ ¢ e 3¢ e ¢ e 3k
-=eee-meneae--Record for MS577----
number on hand is 29

e afe 3 3je 3je 3k e 30e 35¢ 3je e e she 3je e 3e e e 3he 24¢ e 3 3be 34e 3jc 34 3k e 3k 2 e ale e e
-------------- Record for M578----
number on hand is 3

e aje 2 aje 20e 30 30 4¢3 3 e 2 20 3¢ 240 356 39e 35¢ 306 3 248 20 2 20 24 3fe 240 240 24¢ 3¢ 3¢ e 0e e

number on hand is 18

e 25¢ 3¢ sje 3¢ 2ke afe 3le 34e 34 sl e 3¢ 3¢ e 3je 3¢ 3¢ 3¢ 3je 34¢ 2c 30 34e 39 34c 2l e 2l e e i e e
-=e-—-—-—--Record for M901----
number on hand is 12

e she 30 39¢ 3j¢ e 30 3fe 3¢ 35K 3je e 3de 34¢ 3¢ e 30 3fe 3ie 30¢ 300 e e 2je 3¢ e e 2t 3¢ 3¢ ke e e e
axeeeeemeee---Record for M88-----

number on hand is 24

20¢ a4 3l sfe 3¢ 200 e 30 3 3je e afe 3 3ie 346 34 e e 3¢ e 3¢ e 3l 2fc 3he 3 e e 3¢ 3¢ e e e e
------------ Record for AVLB----
number on hand is 12

00 24 e b e 20 3 300 24 306 ol ale a4 30t 30 3 e 2 2je aje 3je 30¢ 35¢ 34e ale e e e e 20 e 2 e 3k

53

number on hand is 6
A 308 306 3 3¢ 30¢ 3jx 3je 2l 3k 24¢ 34¢ 34 2l 3le 24e 35¢ 3¢ 20e e e 3je 3 ke 3 3¢ 24 26 3¢ 3¢ 3¢ e e

5 206 20 2 e 3 3 e i b a2l 3k af 2 2 2 e e ke afe afe 2 2 e e e afe ake 206 e e le e 3¢ 206 26 2 2 2 3¢ 246 346 2 20 34 3¢ 30 206 346 306 e 2 3¢ e o e e

54

APPENDIX C - INPUT DATA FILES

Data for ITTSS must be input by means of data files that are listed in this
appendix. The method of reading the data and inputting it for use in the model was
provided by Professor Michael P. Bailey of the Naval Postgraduate School. This method
requires the data to be listed in a particular order. If too few or too many parameters
are listed or spaces between parameters are omitted, run-time errors could occur. Aside
from the MASTER.DAT file, each data file begins with an integer that represents how
many topstrings, the names of records in the array, will be read into that data file’s input
array. The topstrings are the names that are located before the "->". They represent
the name of individual records that contain ownedstrings. Ownedstrings are the
characters after the "->". The ownedstrings represent the data in each record. Data in
each record is accessed by using the topstring to find the correct record and using the
position of the ownedstring to find the data’s position in the data array. After each data
file is a description within braces of what each position of the topstring and its
ownedstrings represent.

The future version of ITTSS will be menu driven through the use of
SIMGRAPHICS. The user will have limited access to the data files and therefore, fewer

errors will occur when parameters need to be updated or changed.

55

I. MASTER.DAT

NODE.DAT
MOTORPL.DAT
SUPPLY.DAT
SSOUYCE.DAT
FUELPT.DAT
UNITS.DAT
VEHFLD.DAT
TRAVELP DAT
VEHOWN..>" T
LINKS.DAT
ROUTES.DAT
MISSION.DAT
SEEDS.DAT

II. NODE.DAT

9
Economy -> 300 18 90 5 1 5
M none MA none S TheEconomy
F none U EUnits EOF \\
Dammam -> 300 18 90 5 1 §
M DammamMotor MA DammamMaint S DammamSup
F DammamFuel U DammamUnits EOF \\
AlJubayl -> 300 18 90 5 1 5
M none MA none S none
F none U none EOF \\
Bastogne -> 300 18 90 5 1 5
M none MA none S none
F none U none EOF \\
ALPHA-> 300 18 90 5 1 5
M none MA none S none
F none U none EOF \\
KKMC -> 300 18 90 S5 1 5§
M none MA none S KKMCsup
F KKMCfuel U KKMCunits EOF \\
Riyadh-> 300 18 90 5 1 5
M none MA none S none

56

F RiyadhFuel U none EOF \\
DELTA-> 300 18 90 5 1 5
M none MA none S none
F none U none EOF \\
CSCy -> 300 18 90 5 1 5§
M none MA none S none
F CSCyFuel U none EOF \\

{node name -> maxMiles before standDown, standDownTime,
milesBeforeBreak, breakTime, dayToStart, dayToEnd
motorpool, maintenance facility, supplypoint,
fuelpoint, unit}

1. MOTORPOOL.DAT

1
Dammam -> 2§ 350 1000 TRUE .5 EOF\\

{node name -> maxNumbInConvoy, distBetweenVeh (feet), distBetweenConvoys (feet),
wreckersConvoy (maint contact team avail), repairTime}

IV. SUPPLY.DAT

3
Economy -> 7.0 2 2 2 .25 .25
CL5S CARGO 0 1000000 S5 10000000 EOF \\

Dammam -> 702 2 2 .25 .25

CL5 CARGO 0 1000000 5 10000000 EOF \\
KKMC ->702 2 2 .25 25

CLS CARGO 0 1000000 5 10000000 EOF \\

{node name -> TimeToCheckStock, # of ReceivingPoints, # of LoadingPoints,
of MHE, loadTime, unloadTime
Item, MOR, Priority, DailyConsRate, StkLvl, DOS, UpLvl}

V. SSOURCE.DAT
3
TheEconomy -> TheEconomy \\

DammamSup -> TheEconomy \\
KKMCsup -> DammamSup \\

57

{supply point name -> supply source}

VI. FUELPT.DAT

4
Dammam -> 0.0

5000.0 .25 4 \\
KKMC -> 0.0

5000.0 .25 3 \\
Riyadh -> 0.0

5000.0 .25 3 \\
CSCy -> 0.0

5000.0 .25 3 \\

{node name -> Starting Fuel Level
Max Fuel Level, Refueling Time, Number of Fuel Pumps}

VII. UNITS.DAT

3

Economy -> 1 § CLS 1000 EOF \\
Dammam -> 1 5 CL5 1000 EOF \\
KKMC -> 1 5 CLS 1000 EOF \

{node name -> day to start consuming, day to end consuming, class of supply,
amount to consume}

VIII. VEHFLD.DAT

5
TRUCKS ->
M35A2 CARGO 35 50 0 500 2000 15 12 20 8 1920 10000
.044 40.4 750
M54A1 CARGO 40 75 0 550 3500 15 12 25 8 2400 10000
.041 40.4 753
IMTV CARGO 35 50 0 500 2000 15 12 20 8 1920 10000
.008 40.4 2200
M939 CARGO 35 50 0 500 2000 15 12 20 8 1920 10000
.008 40.4 1800

HEMTT CARGO 35 50 0 500 2000 15 12 20 8 1920 10000
.005 34.0 2675 \\

58

TRAC_TRLS ->
Tractor TRAILER 50 50 0 500 2000 15 12 20 8 1920 5000
.01 40.0 1000
M939T TRAILER 50 50 0 500 2000 15 12 20 8 1920 5000
.008 40.4 2500
M915T TRAILER 50 50 0 500 2000 15 12 20 8 1920 5000
.09 34.0 1160 \\
TRAC_LOWBOYS ->
Trailer CARGO 50 50 0 500 2000 15 12 20 8 1920 5000
.01 40.0 500 \\
HETTS ->
Hett HETT 70 50 0 500 5000 20 0 403 0 0 140000
.005 34.0 2500
M911H HETT 70 50 0 500 5000 20 0 317 0 0 140000
.009 34.0 1630
M1070H HETT 70 50 0 500 5000 20 0 403 0 0 140000
.005 34.0 2500 \\
WRECKERS - >
Wrecker RECOVERY 40 75 0 550 3600 15 0 0 0 0 20000
017 40.4 1700 \\

{type vehicle -> model, type, fuelCap, fuelConsump, odometer, engHrs, assetWeight,
assetLength, height, length, width, cubeFt, weight
maintManHrs, adminLogTime, MMBF}

IX. TRAVELR.DAT

10
M35A2 ->

55.0 48.7 48.7 32.4 40.0 39.6 39.6 29.6

24.9 24.9 24.9 20.2 18.0 18.0 18.0 17.5 EOF \\
Wrecker ->

40.0 39.6 39.6 28.3 40.0 37.9 37.9 28.1

24.8 24.8 24.8 20.1 24.8 24.8 24.8 20.1 EOF \\
Hett ->

30.9 16.6 16.6 8.1 27.0 16.1 16.1 7.8

8.2 8.1 8.1 54 8.2 7.7 7.7 5.2 EOF \\

ILMTV ->

40.0 39.6 39.6 28.3 40.0 37.9 37.9 28.1

24.8 24.8 24.8 20.1 24.8 24.8 24.8 20.1 EOF \\
M939 ->

40.0 35.7 35.7 22.7 40.0 34.0 34.0 22.5

23.021.821.8 15.810.7 10.7 10.7 10.7 EOF \\

59

M939T ->

34.420.1 20.1 10.3 31.8 19.3 19.3 10.2

13.710.910.5 7.210.7 8. 8.6 6.1 EOF \\
HEMTT ->

38.0 38.0 38.0 25.3 38.0 34.4 34.4 24 4

24.7 23.323.3 18.016.9 16.9 16.9 15.4 EOF \\
MO15T ->

23.021.2 21.2 12.5 23.0 20.5 20.5 12.3

14.0 11.2 11.2 8.3 10.0 9.7 9.7 7.5 EOF \\
MO11H ->

21.013.413.4 7.719.311.811.8 7.4

8.6 7.6 7.6 4.5 79 6.8 6.8 4.2 EOF \\
MI1070H ->

30.9 16.6 16.6 8.127.016.1 16.1 7.8

8.2 8.1 8.1 5.4 8.2 7.7 7.7 5.2 EOF \\

{vehicle ->

concrete

flat rollingHills hillsCurves mountainous
bituminous

flat rollingHills hillsCurves mountainous
gravel

flat rollingHills hillsCurves mountainous
dirt

flat rollingHills hillsCurves mountainous}

X. VEHOWN.DAT

2

Dammam - > TRUCKS none
TRAC_TRLS none
TRAC_LOWBOYS none
HETTS Hett 385
WRECKERS Wrecker 4 \\

KKMC -> TRUCKS none
TRAC_TRLS none
TRAC_LOWBOYS none
HETTS none
WRECKERS none \\

{node -> type vehicle, model, number of}

XI. LINKS.DAT

9
Economy -> Dammam 20.0 concrete flat \\
Dammam -> Alubayl 60.0 concrete flat
CSCy 113.0 concrete flat \\
AlJubayl -> Bastogne 72.0 concrete flat
Dammam 60.0 concrete flat \\
Bastogne -> Aljubayl 72.0 concrete flat
ALPHA 101.0 concrete flat \\
ALPHA -> Bastogne 101.0 concrete flat
KKMC 101.0 concrete flat \\
KKMC -> ALPHA 101.0 concrete flat \\
CSCy -> Dammam 113.0 concrete flat
Riyadh 113.0 concrete flat \\
Riyadh -> CSCy 113.0 concrete flat
DELTA 175.0 concrete flat \\
DELTA -> Riyadh 175.0 concrete flat
KKMC2 127.0 concrete flat \\

{link origin -> link destination distance, roadSurface, terrain}
XII. ROUTES.DAT

9
Economy -> Economy Dammam EOF \\
Dammam ->
Dammam AlJubayl Bastogne ALPHA KKMC
Dammam Alubayl Bastogne ALPHA
Dammam AlJubayl Bastogne
Dammam AlJubayl
Dammam CSCy Riyadh DELTA KKMC2
Dammam CSCy Riyadh DELTA
Dammam CSCy Riyadh
Dammam CSCy EOF \\
AlJubayl ->
AlJubayl Bastogne BOF \\
Bastogne - >
Bastogne ALPHA EOF \\
ALPHA ->

61

ALPHA KKMC EOF \\
KKMC ->

KKMC ALPHA Bastogne AlJubayl Dammam

KKMC ALPHA EOF \\
KKMC2 ->

KKMC2 DELTA Riyadh CSCy Dammam EOF \\
AlJubayl ->

Allubayl Dammam

Alubayl Bastogne

AlJubayl Bastogne ALPHA

AlJubayl Bastogne ALPHA KKMC

AlJubayl Bastogne ALPHA ECHO

AlJubayl Bastogne ALPHA ECHO CHARLIE EOF \\
Dhahran ->

Dhahran CSCy

Dhahran CSCy Riyadh

Dhahran CSCy Riyadh DELTA

Dhahran CSCy Riyadh DELTA KKMC EOF \\

{node - > start node, next node...next to last, end node}
XIIl. MISSION.DAT

1
Dammam -> 116 M1 120251 312 HETT 0 TRUE KKMC 10
24 MB88 112100 325 HETT 0 TRUE KKMC 10
12 AVLB 91999 340 HETT 0 TRUE KKMC 10
6 CEV 111198 351 HETT 0 TRUE KKMC 10
64 M2 41899 254 HETT 0 TRUE KKMC 10
18 M3 41500 254 HETT 0 TRUE KKMC 10
12 M901 26001 191 HETT 0 TRUE KKMC 10
29 M577 23953 191 HETT 0 TRUE KKMC 10
3 M578 53572 220 HETT 0 TRUE KKMC 10
30 M548 16000 232 HETT 0 TRUE KKMC 10
16 FIST-V 26001 191 HETT 0 TRUE KKMC 10
27 ACE 26592 191 HETT 0 TRUE KKMC 10
6 MI106 19852 194 HEIT 0 TRUE KKMC 10
118 MI113 23442 191 HETT 0 TRUE KKMC 10
24 MI109 46540 244 HETT 0 TRUE KKMC 10 EOF \\

{node -> number to create, name of item, weight in Ibs,

length in inches, method of resupply, priority, nonseparable, destination, time to
begin mission}

62

XIV. SEEDS.DAT
This data file (not shown) contains an integer on the first line that represents the
number of seeds in the file. The remaining numbers are random seeds that are generated

by MODSIM II™’s random number seed generated.

63

APPENDIX D - ITTSS PROGRAM CODE

ITTSS was entirely written on a 486DX-25mhz personal computer. MODSIM IT™
can be run on a variety of operating systems. This simulation model was written with
the PC-OS/2 version that requires the PC-OS/2 version 1.1 or later and the C compiler,
Microsoft C 5.0. Programs are interchangeable on each system as long as the particular
version contains the required libraries the model utilizes.

ITTSS was written on a personal computer to insure that the model did not need
the support of a mainframe or a large database. The average compilation time was 10
to 20 minutes depending on how many of the modules required recompilation. Run times
were between 1 and 4 minutes, depending on the setup of the problem being run to

include number of assets created and number of cargo to be moved.

MAIN MODULE ITTSS;
FROM INPUT IMPORT ReadEmAIl;
FROM Debug IMPORT TraceStream;
FROM CREATET IMPORT CreateTransSystem;
FROM DEBUGRN IMPORT SetUpD;
FROM SimMod IMPORT StartSimulation;
FROM STARTEM IMPORT StartConsuming, StartSupplyActivities,
ScheduleMissions, StartReports,
FROM NETWORK IMPORT NetworkObj;

VAR
Network : NetworkObj;
decision : STRING;
BEGIN
SetUpD(TRUE);
ReadEmAll;
CresteTransSystem(Network);
OUTPUT("Do you want to run a COMPLETE Transportation Simulation?");
OUTPUT("Enter Y for yes, N for no.”);
INPUT(decision);
TF(decision = "Y™) OR (decision = "y") OR (decision = "YES") OR (decision = "Yes")
StartConsuming(Network);
StartSupply Activities(Network);
END IF;
ScheduleMissions(Network.NodeList);
StartReports(Network. NodeList);
OUTPUT("———START SIMULATION———");
StartSimulation;

OUTPUT("——FINISHED SIMULATION——");

END MODULE {ITTS}.

{ }

DEFINITION MODULE GLOBAL;
{Contains varisbles that will be used throughout ITTSS by other objects}
FROM GrpMod IMPORT QueueObj;

TYPE
HqNameType = STRING;
AssetNameType = STRING;
ModeiNameType = STRING;
NodeNameType = STRING;
FacilityNameType = STRING;
TransUnitNameType = STRING;

65

Dimensions = RECORD {Dimensions for stowage of cargo}
height,
length,
width,
cubeFt,
loadCap : REAL;
END RECORD;

Asse(TypeQueue = QueueObj;
CargoTypeQueue = QueueObj;
LinkTypeQueue = QueueObj;
NodeTypeQueue = QueuoObj;
RouteTypeQueue = QueueObj;
SupplyRecordTypeQueue = QueueObj;
RequestTypeQueue = QueueObj;
ConsumerQueue = QueueObj;
SupplyClassType = STRING;
DescriptTyps = STRING;
DestinationType = STRING;
CargoType = (AMMO, CONTAINER, FUEL, HETT, WATER, CARGO, RECOVERY);
AssetStatus = (Motorpool, Committed, Maintenance);
VehicleType = (TRUCKS, TRACTORS, TRAILERS, TANKERS, WRECKERS);
roadCharact = (flat, rollingHills, hillsCurves, mountainous, concrete, bituminous, gravel, dirt);
FailType = ARRAY INTEGER OF REAL;

PROCEDURE DisposeOfQueue (IN Queue : QueueObj);
END {DEFINITION} MODULE {global}.

IMPLEMENTATION MODULE GLOBAL,;
FROM GrpMod IMPORT QueueObj;

{ }
PROCEDURE DisposeOfQueuse (IN queue : QueueObj);
{ }
VAR
dump : ANYOBJ;
BEGIN
dump := ASK queue First ();
WHILE dump < > NILOBJ
DISPOSE(dump);
dump := ASK queue Next(dump);
END WHILE;
DISPOSE(queue);
END PROCEDURE {DisposeOfQueue};

END {IMPLEMENTATION} MODULE {global}.
oo

DEFINITION MODULE RGLOBAL;
{AR pertinent variables for ingutting data are defined here}

-

CONST
MansterFileName = "Master.dat”;
TYPE
FileNameType = STRING;
SArrayType = ARRAY INTEGER OF STRING;
SHierRecType = RECORD
TopString : STRING;
OwnedString : SArrayType;

66

END RECORD;

SHArrayType = ARRAY INTEGER OF SHierRecType;

SeedArrayType = ARRAY INTEGER OF INTEGER;
VAR

NodeSHArray : SHArrayType;

AssetOwnersSHArray : SHArrayType;

MotarpoolSHArray : SHAmayType;

MaintenanceSHArray : SHArrayType;

SupplySHArray : SHArrayType;

SupplySourceSHArray : SHArrayType;

FuelpointSHArray : SHArrayType;

UnitsSHArmy : SHAmmayType;

AssetFieldsSHArray : SHArrayType;

TravelRateaSHArray : SHArrayType;

LinkSHArrsy : SHArrayType;

RouteSHArray : SHArrayType;

MissionSHArray : SHArrayType;

SeedArray : Seed ArrayType;

SeedCount : INTEGER;

END {DEFINITION} MODULE {RGlobal}.

{ }

DEFINITION MODULE INPUT;
{This procedure input all data that is required to run ITTSS}

PROCEDURE ReadEmALl;
END {DEFINITION} MODULE {Input}.

IMPLEMENTATION MODULE INPUT;

FROM IOMod IMPORT StreamObj, FileUseType(Input);

FROM RGLOBAL IMPORT MasterFileName, NodeSHArray,
AssetOwnersSHArray, MotorpoolSHArray, MaintenanceSHArray, SupplySHArray,
SupplySourceSHArray, FuelpointSHArray, UnitsSHArray, AssetFieldsSHArray,
TravelRatesSHArray, LinkSHArray, RouteSHArray, MissionSHArray, SeedArray, FileNameType;

FROM READLST IMPORT ReadLast,

FROM READSED IMPORT ReadTheSeeds;

FROM Debug IMPORT TraceStream;

VAR
NodeFileName,
AssetOwnersFileName,
MotorpoolFileName,
MaintenanceFileName,
SupplyFileName,
SupplySourceFileName,
FuelpointFileName,
UnitsFileName,
AssetFieldsFileName,
TravelRstesFileName,
LinkFileName,
MissionFileName,
SeedFileName,
RouteFileName : FileNameType;

{(—
PROCEDURE ReadNode;

{(——}
BEGIN

67

ReadLst(NodeSHArray , NodeFileName);
END PROCEDURE {ReadNode},;

——)

PROCEDURE ReadMotorpool;
f—
BEGIN
ReadLst(MotorpooiSHArray, MotorpoolFileName);
END PROCEDURE {ReadMotorpool};

PROCEDURE ReadMaintenance;
{ }
BEGIN
ReadLst(MaintenanceSHArrsy, MaintenanceFileName);
END PROCEDURE {ReadMaintenance};

‘._____..__
PROCEDURE ReadSupply;
{(——1

BEGIN

ReadLst(SupplySHArray, SupplyFileName);
END PROCEDURE {ReadSupply};

{...__._._.____

PROCEDURE ReadSupplySource;
{(—)
BEGIN
ReadLst(SupplySourceSHArray, SupplySourceFileName);
END PROCEDURE {ReadSupplySource};

{___.___—_

PROCEDURE ReadFuelpoint;
{—
BEGIN
ReadLst(FuelpointSHArray, FuelpointFileName);
END PROCEDURE {ReadFuelpoint};

{..__.._____
PROCEDURE ReadUnits;
{(——}

BEGIN

ReadLat(UnitsSHArray, UnitsFileName);
END PROCEDURE {ReadUnits};

S —

PROCEDURE Read AssetFields;
f(———
BEGIN
ReadLst(AssetFieldsSHArray, AssetFieldsFileName);
END PROCEDURE {ReadAssetFields};

—}

PROCEDURE ReadTravelRates;
f—
BEGIN
ReadLst(TravelRatesSHAray, TravelRatesFileName);
END PROCEDURE {ReadTraveiRates};

"}
PROCEDURE ReadAssetOwners;

68

{—

BEGIN

ReadLst(AssetOwnersSHArray, AssetOwnersFileName);
END PROCEDURE {ReadAssetOwners};

{—

PROCEDURE ReadLinks;
{—————

BEGIN
ReadLst(LinkSHArray , LinkFileName);
END PROCEDURE {ReadLinks};
{————}

PROCEDURE ReadRoutes;
{————}

BEGIN
ReadLast(RouteSHArray , RouteFileName);
END PROCEDURE {ReadRoutes};
{———1

PROCEDURE ReadMissions;
{-———}
BEGIN

ReadLst(MissionSHArray , MissionFileName);
END PROCEDURE {ReadMissions};

{———
PROCEDURE ReadEmAll;
{—
VAR
File : StreamObj;
str : STRING;
BEGIN
NEW(File);

ASK File TO Open(MasterFileName, Input);
ASK File TO ReadString(NodeFileName);

ASK File TO ReadLine(str);

ASK File TO ReadString(MotorpoolFileName);
ASK File TO ReadLine(str);

ASK File TO ReadString(SupplyFileName);
ASK File TO ReadLine(str);

ASK File TO ReadString(SupplySourceFileName);
ASK File TO ReadLine(str);

ASK File TO ReadString(FuelpointFileName);
ASK File TO ReadLine(str);

ASK File TO ReadString(UnitsFileName);

ASK File TO ReadLine(str);

ASK File TO ReadString(AssetFieldsFileName);
ASK File TO ReadLine(str),

ASK File TO ReadString(TravelRate.: ileName);
ASK File TO ReadLine(str);

ASK File TO ReadString(AssetOwnersFileName);
ASK File TO ReadLine(str);

ASK File TO ReadString(LinkFileName);

ASK File TO ReadLine(str);

ASK File TO ReadString(RouteFileName);

ASK File TO ReadLine(str);

ASK File TO ReadString(MissionFileName);
ASK File TO ReadLine(str);

ASK File TO ReadString(SeedFileName);

69

ReadNode;

ReadMotorpool;

ReadSupply;
ReadSupplySource;
ReadFuelpoint;

ReadUnits;

ReadAssetFields;
ReadTraveiRates;

Read AssetOwners;

ReadLinks;

ReadRoutes;

ReadMissions;
ReadTheSeeds(SeedFileName);
END PROCEDURE {ReadEmAll};

END {IMPLEMENTATION} MODULE {Input}.
{ }
DEFINITION MODULE READLST;

{Integral procedure in the inputting of data to the model}
FROM RGLOBAL IMPORT SHArrayType, FileNameType;

PROCEDURE ReadLst INOUT SHArray : SHArrayType;
IN FileName : FileNameType);

END {DEFINITION} MODULE {ReadLst}.

IMPLEMENTATION MODULE READLST;
FROM IOMod IMPORT StreamObj, FileUseType(Input);
FROM RGLOBAL IMPORT SHArrayType, FileNameType;
FROM READSH IMPORT ReadSH;
FROM Debug IMPORT TraceStream;

{
PROCEDURE ReadLst (INOUT SHArray : SHArrayType;
IN FileName : FileNameType);

{ }
VAR

File : StreamObj;
numberOfSH : INTEGER;
i : INTEGER,
error : BOOLEAN;
string : STRING;
BEGIN
NEW(File);
ASK File TO Open(FileName, Input);
ASK File TO ReadInt(numberOfSH);
ASK File TO ReadLine(string);
NEW(SHArray, 1..numberOfSH);
FOR i := 1 TO numberOfSH
ReadSH(File, SHArray [i], error);
IF error
ASK TraceStream TO WriteString("problem reading file * + FileName + " BAD FORMAT DET > ");
END IF,;
END FOR;
ASK File TO ObjTerminate();
ASK File TO Delete();
END PROCEDURE {ReadLst};

END {IMPLEMENTATION} MODULE {ReadLast}.

70

{ }

DEFINITION MODULE READSH;

{integral part in inputting data to the model}
FROM RGLOBAL IMPORT SHierRecType;
FROM IOMod IMPORT StreamObj;

PROCEDURE ReadSH (IN File : StreamObj;
OUT SHierRec : SHierRecType;
OUT error : BOOLEAN);

END {DEFINITION} MODULE {ReadSH}.

IMPLEMENTATION MODULE READSH;
FROM RGLOBAL IMPORT SHierRecType;
FROM IOMod IMPORT StreamObj, FileUseType(Input), ReadKey,
FROM Debug IMPORT TraceStream;

{ }
PROCEDURE ReadSH (IN File : StreamObj;
OUT SHierRec : SHierRecType;
OUT error : BOOLEAN);
{ }
TYPE
StringRecType = RECORD
String : STRING;
Next : StringRecType;
END RECORD;
VAR

string : STRING;
numberOfStrings : INTEGER;
StringRec, OldStringRec : StringRecType;
first : StringRecType;
arrow : STRING;
stringRec : StringRecType;
i : INTEGER;
z : CHAR;
BEGIN
NEW(SHierRec);
ASK File TO ReadString(SHierRec.TopString);
NEW(StringRec);
numberOfStrings : = 1;
first := StringRec;
ASK File TO ReadString(arrow);
IF arrow <> "->"
ASK TraceStream TO WriteString("file not formatted correctly™);
error := TRUE;
RETURN;
ELSE
error := FALSE;
END IF;
WHILE string < > "*
ASK File TO ReadString(string);
IF string = *.."
ASK File TO ReadLine(string);
ELSE
OldStringRec : = StringRec;
StringRec .String : = string;
NEW(StringRec);
OldStringRec.Next : = StringRec:;
numberOfStrings : = numberOiStrings + 1;

71

END IF;

END WHILE;

ASK File TO ReadLine(string);

IF (numberOfStrings > 0) AND NOT error
NEW(SHierRec.OwnedString, 1..numberOfStrings - 2);
stringRec := first;

FOR i := 1 TO numberOfStrings - 2
SHierRec.OwnedString(i] : = stringRec.String;
stringRec := stringRec.Next;

END FOR;

END IF;

END PROCEDURE {ReadSH};

END {IMPLEMENTATION} MODULE {ReadSH}.

{ }

DEFINITION MODULE FINDSH;

{When given a name, it searchs a data array and gives back the correct record requested. Used for giving objects the initial values

for their fields}
FROM RGLOBAL IMPORT SHierRecType,SHArrayType;

PROCEDURE FindSHRec (IN SHArray : SHArrayType;
IN TopString : STRING;
OUT SHRec : SHierRecType);

END {DEFINITION} MODULE {FindSH}.

IMPLEMENTATION MODULE FINDSH;
FROM RGLOBAL IMPORT SHierRecType,SHArrayType;
FROM Debug IMPORT TraceStream;

{ }

PROCEDURE FindSHRec (IN SHArray : SHArrayType;
IN TopString : STRING;
OUT SHRec : SHierRecType);

{
VAR
ThisRec : SHierRecType;
i : INTEGER;
BEGIN
NEW(SHRec);
i:=0;
REPEAT
INCG);
ThisRec := SHArmayfi];
UNTIL (G > = HIGH(SHArray)) OR (ThisRec.TopString = TopString));
IF (ThisRec.TopString = TopString)
SHRec := ThisRec;
ELSE
ASK TraceStream TO WriteString("SHRec is 8 NILREC!");
SHRec := NILREC;
END IF;
END PROCEDURE {FindSHRec};

END {IMPLEMENTATION} MODULE {FindSH}.

{ }

DEFINITION MODULE READSED;
{Reads the seed from a seed file. Seeds are used for the mean miles between operational failures for each asset}

72

FROM RGLOBAL IMPORT FileNameType;

PROCEDURE ReadSeed () : INTEGER;
PROCEDURE ReadTheSeeds (IN FileName : FileNameType);

END {DEFINITION} MODULE {ReadSed}.

IMPLEMENTATION MODULE READSED;
FROM Debug IMPORT TraceStream;
FROM IOMod IMPORT FileUseType(lnput), StreamObj;
FROM RGLOBAL IMPORT FileNameType, SeedCount, SeedArray;

{ }
PROCEDURE ReadSeed () : INTEGER;
{ }
BEGIN
IF (SeedCount > HIGH(SeedArray))
ASK TraceStream TO WriteString("Ran out of seeds ");
ASK TraceStream TO WriteLn;
HALT;
RETURN();
ELSE
IF (SeedCount < = 0)
SeedCount := 1;
END IF;
INC(SeedCount);
RETURN(Seed Array[SeedCount - 1]);
END IF;
END PROCEDURE {ReadSeed};

{ }
PROCEDURE ReadTheSeeds (IN FileName : FileNameType);
{ }
VAR
file : StreamObj;
str : STRING;
i : INTEGER;
NumberOfSeeds : INTEGER;
BEGIN
NEW(file);
ASK file TO Open(FileName, Input);
ASK file TO ReadInt(NumberOfSeeds);
NEW(SeedArray, 1..NumberOfSeeds);
FOR i := 1 TO NumberOfSeeds
ASK file TO ReadInt(Seed Arrayli]);
ASK file TO ReadLine(str);
END FOR;
END PROCEDURE {ReadTheSeeds};

END {IMPLEMENTATION} MODULE {ReadSed}.

{ }

DEFINITION MODULE DEBUGRN;

{Sets up a tracestream that assists in debugging any compiling or ruatime errors.

is on, if false, only errors will be written to the debug.out file}
PROCEDURE SetUpD (IN TraceOn : BOOLEAN);

END {DEFINITION} MODULE {DebugRn}.

73

If SetUpD in the main module is true, the trace

IMPLEMENTATION MODULE DEBUGRN;
FROM I0Mod IMPORT FileUseType(Output);
FROM Debug IMPORT TrsceStream;

FROM UtilMod IMPORT DateTime;
}
PROCEDURE SetUpD (IN TraceOn : BOOLEAN);
}

{
VAR

DT : STRING;

BEGIN

NEW(TraceStream);

ASK TraceStream TO Open ("debug.out”, Output);

DateTime(DT);

ASK TraceStream TO WriteString(DT);

ASK TraceStream TO WriteLn;

ASK TraceStream TO WriteLn;

ASK TraceStream TO WriteLn;

IF TraceOn
ASK TraceStream TO TraceOn;
OUTPUT("-—TRACE ON "y;
ASK TraceStream TO WriteString("Initially, trace is on.");
ASK TraceStream TO WriteLn;

ELSE
ASK TraceStream TO TraceOff;
ASK TraceStream TO WriteString("Initially, trace is off."”);
ASK TraceStream TO WriteLn;

END IF;

END PROCEDURE {SetUpD};

END {IMPLEMENTATION} MODULE {DebugRn}.

{ }

DEFINITION MODULE NETWORK;
{Network is the top of the tree that contains all nodes, links and routes. All access to these objects are through the network’s queue
of these objects}

FROM GLOBAL IMPORT NodeTypeQueue,LinkTypeQueue,RouteTypeQueue;

TYPE

NetworkObj = OBJECT
NodeList : NodeTypeQueue;
RouteL.ist : RouteTypeQueue;
LinkList : LinkTypeQueue;

ASK METHOD Objlnit;
END OBJECT;

END {DEFINITION} MODULE {network}.

IMPLEMENTATION MODULE NETWORK;
FROM GLOBAL IMPORT NodeTypeQueue,LinkTypeQueue,RouteTypeQueue;

OBJECT NetworkObj;
——
ASK METHOD Objlnit;
{————)
BEGIN
NEW(NodeList);
NEW(RouteList);
NEW(LinkList);
END METHOD {Objlnit};

74

END OBJECT {NetworkObj};

END {IMPLEMENTATION} MODULE {network}.

{ }
DEFINITION MODULE CREATET;

{These are general procedures that initialize the transportation system for ITTSS. Nodes, links, routes, and all objects within each
node are created}

FROM RGLOBAL IMPORT SHierRecType;
FROM NODE IMPORT NodeObj;
FROM NETWORK IMPORT NetworkObj;

PROCEDURE CreateTransSystem(OUT Network : NetworkObj);
PROCEDURE CreateNetwork (IN Network : NetworkObj);
PROCEDURE CreateAttachedUnits (IN Node : NodeObj;

IN NodeSHRec : SHierRecType);

END {DEFINITION} MODULE {createt}.

IMPLEMENTATION MODULE CREATET;

FROM Debug IMPORT TraceStream;

FROM GLOBAL IMPORT RouteTypeQueue, NodeTypeQueue;

FROM RGLOBAL IMPORT SHierRecType, NodeSHArray, MaintenanceSHArray, MotorpoolSHArray,
SupplySHArray, FuelpointSHArray;

FROM NETWORK IMPORT NetworkObj;

FROM NODE IMPORT NodeObj;

FROM FINDSH IMPORT FindSHRec;

FROM ROUTE IMPORT CreateLinks, CreateRoutes;

FROM MAINT IMPORT MaintenanceObj;

FROM MOTORPL IMPORT MotorpoolObj;

FROM ASSET IMPORT AssetObj;

FROM SUPPLY IMPORT SupplyObj;

FROM FUELPT IMPORT FuelpointObj;

FROM UNITS IMPORT UnitsObj;

FROM CREATE IMPORT CreateMotorpool, CreateMaintenance, CreateSupply,
CreateFuelpoint, CreateUnits, CreateSupplySources;

PROCEDURE CreateTransSystem(OUT Network : NetworkObj);

{ }
VAR

i : INTEGER;
NodeSHRec : SHierRecType;
BEGIN
NEW(Network);
CreateNetwork (Network);
END PROCEDURE {CreateTransSystem};

{ }
PROCEDURE CresteNetwork (IN Network : NetworkObj);
{ }

VAR
i : INTEGER;
Node : NodeObj;
NodeSHRec : SHierRecType;
MasterRouteList : RouteTypeQueue;
MasterNodeList : NodeTypeQueue;
BEGIN

75

{ Creating Nodeg—————}
FOR i := 1 TO HIGH(NodeSHArray)
NEW(Node);
ASK Node TO GetName(NodeSHArray[i). TopString);
ASK Node TO GetClearances;
FindSHRec(NodeSHArray, ASK Node name, NodeSHRec);
ASK Node TO GetRestrictions(NodeSHRec);
CreateAttachedUnits(Node, NodeSHRec);
ASK Network.NodeList TO Add (Node);
CreateLinks(ASK Node name, Network .LinkList);
END FOR;
NEW(MasterRouteList);
FOR i := 1 TO HIGH(NodeSHArray)
CreateRoutes(NodeSHArray[i). TopString, Network, MasterRouteList);
END FOR;
{Give each Motorpool a copy of the Master Lists}
NEW(MasterNodeList);
MasterNodeList : = Network.NodeList;
Node := ASK Network.NodeList First();
REPEAT
IF(Node.myMotorpool < > NILOBJ)
ASK Node.myMotorpool TO GetMasterLists (MasterRouteList, MasterNodeList);
END IF;
Node := ASK Network.NodeList Next(Node);
UNTIL (Node = NILOBRJ);

Node := ASK Network.NodeList First();

REPEAT
IF(Node.mySupply < > NILOBJ)

CreateSupplySources(Node.mySupply, Network);

END [F;
Node := ASK Network.NodeList Next(Node);

UNTIL (Node = NILORJ);

END PROCEDURE {CreateNetwork};

{ }
PROCEDURE CreateAttachedUnits (IN Node : NodeObj;
IN NodeSHRec : SHierRecType);

{ }
VAR

i : INTEGER;

Motorpool : MotorpoolObj;
Maintenance : MaintenanceObj;
Supply : SupplyObj;

Fuelpoint : FuelpointObj;

Units : UnitsObj;

MotorpoolName, MaintenanceName, SupplyName, FuelpointName , UnitsName : STRING;

BEGIN
IF (NodeSHRec = NILREC)
FindSHRec (NodeSHArray, ASK Node name, NodeSHRec);
END IF;
CreateMotorpool(ASK Node name, NodeSHRec, Motorpool);
ASK Node TO GetMotorpool(Motorpool);

CreateMaintenance(ASK Node name, NodeSHRec, Maintenance);

IF((Motorpoci < > NILOBJ) AND (Maintenance < > NILOBI))
ASK Maintenance TO GetMyMotorpool(Motorpool);

END IF;

ASK Node TO GetMaintenance(Mairtenance);

CreateSupply(ASK Node name, NodeSHRec, Supply);

76

ASK Node TO GetSupply(Supply);

CreateFuelpoint(ASK Node name, NodeSHRec, Fuelpoint);
ASK Node TO GetFuelpoint(Fuelpoint);

CreateUnits(ASK Node name, NodeSHRec, Units),
ASK Node TO GetUnits(Units);

IF(Motorpool < > NILOBIJ)
ASK Supply TO GetMyMotorpool(Motorpool);
END IF;

IF(Supply < > NILOBJ)

ASK Units TO GetMySupply(Supply);
END IF;
END PROCEDURE {CreateAttachedUnits};

END {IMPLEMENTATION} MODULE {createt}.
{ }

DEFINITION MODULE CREATE;
{Each node’s motorpools, maintenance facilities, supply points, fuelpoints, units, and each supply point’s supply source are created
here}
FROM RGLOBAL IMPORT SHierRecType;
FROM NODE IMPORT NodeObj;
FROM MOTORPL IMPORT MotorpoolObj;
FROM MAINT IMPORT MaintenanceObj;
FROM SUPPLY IMPORT SupplyObj;
FROM FUELPT IMPORT FuelpointObj;
FROM UNITS IMPORT UnitsObj;
FROM NETWORK IMPORT NetworkObj;

PROCEDURE CreateMotorpool (IN name : STRING;
IN NodeSHRec : SHierRecType;
OUT Motorpool : MotorpoolObj);
PROCEDURE CreateMaintenance (IN name : STRING;
IN NodeSHRec : SHierRecType;
OUT Maintenance : MaintenanceObj);
PROCEDURE CreateSupply (IN name : STRING;
IN NodeSHRec : SHierRecType;
OUT Supply : SuppiyObj);
PROCEDURE CreateFuelpoint (IN name : STRING;
IN NodeSHRec : SHierRecType;
OUT Fuelpoint : FuelpointObj);
PROCEDURE CreateUnits (IN name : STRING;
IN NodeSHRec : SHierRecType;
OUT Units : UnitsObj);

PROCEDURE CreateSupplySources (IN Supply : SupplyObj;
IN Network : NetworkObj);

END {DEFINITION} MODULE {create}.

IMPLEMENTATION MODULE CREATE;
FROM Debug IMPORT TraceStream;
FROM RGLOBAL IMPORT SHierRecType, NodeSHArray, MotorpoolSHArray, MaintenanceSHArray, SupplySHArray,
FuelpointSHArray, UnitsSHAmmay, SupplySourceSHArray;
FROM NODE IMPORT NodeObj;
FROM MOTORPL IMPORT MotorpoolObj;
FROM MAINT IMPORT MaintenanceObj;

71

FROM SUPPLY IMPORT SupplyObj;
FROM FUELPT IMPORT FuelpointObj;
FROM UNITS IMPORT UnitsObj;

FROM FINDSH IMPORT FindSHRec;
FROM NETWORK IMPORT NetworkObj;

}
PROCEDURE CreateMotorpool (IN name : STRING;

IN NodeSHRec : SHierRecType;
OUT Motorpool : MotorpoolObj);

{
VAR
i : INTEGER;
MotorpoolName : STRING;
BEGIN

i:=1;

WHILE ((NodeSHRec.OwnedString[i] < > "M") AND
(NodeSHRec.OwnedString(i] <> "\")

INCG);

END WHILE;

INC(G);

REPEAT
MotorpoolName : = NodeSHRec.OwnedString{i];
NEW(Motorpool);

ASK Motorpool TO Objlnit;

ASK Motorpool TO GetName (MotorpoolName);
ASK Motorpool TO GetFields(name);

ASK Motorpool TO GetAssets (name);

INCG);

UNTIL (G >> HIGH(NodeSHRec.OwnedString)) OR
(NodeSHRec.OwnedString[i] = "\\") OR
(NodeSHRec.OwnedString[i] = "MA");

END PROCEDURE {CreateMotorpool};

}
PROCEDURE CreateMaintenance (IN name : STRING;

IN NodeSHRec : SHierRecType;

OUT Maintenance : MaintenanceObj);

{ }

VAR
i : INTEGER;

MaintenanceName : STRING;

BEGIN

i=1

WHILE ((NodeSHRec.OwnedStringfi] < > "MA®") AND
(NodeSHRec.OwnedString(i] < > "\\"))

INCG);

END WHILE;

INCG);

REPEAT
MaintenanceName : = NodeSHRec.OwnedStringli);
NEW(Maintenance),

ASK Maintenance TO GetName (MaintenanceName);
{ASK Maintenance TO GetFields(name);}
INC();

UNTLL (G > HIGHMNodeSHRec.OwnedString)) OR
(NodeSHRec.OwnedString{i} = "\\") OR
(NodeSHRec.OwnedString[i] = "S™));

END PROCEDURE {CresteMaintenance};

{ }

78

PROCEDURE CreateSupply (IN name : STRING;
IN NodeSHRec : SHierRecType;
OUT Supply : SupplyObj);

{ }

VAR

i : INTEGER;
SupplyName : STRING,;

BEGIN

i=1;

WHILE ((NodeSHRec.OwnedString{i] < > "S") AND
(NodeSHRec.OwnedStringli] < > *"\%)
INC(G);

END WHILE;

INCG);

REPEAT
SupplyName := NodeSHRec.OwnedStringli};
NEW(Supply);

ASK Supply TO GetName (SupplyName);
ASK Supply TO GetFields(name);
INCQ);

UNTIL (G > HIGH(NodeSHRec.OwnedString)) OR
(NodeSHRec.OwnedStringfi] = "\") OR
(NodeSHRec.OwnedString[i] = "F"));

END PROCEDURE {CreateSupply};

{ }
PROCEDURE CreateFuelpoint (IN name : STRING;

IN NodeSHRec : SHierRecType;
OUT Fuelpoint : FuelpointObj);

{
VAR
i : INTEGER;
FuelpointName : STRING;
BEGIN

im=1;

WHILE ((NodeSHRec.OwnedString[i] < > "F") AND
(NodeSHRec.OwnedString[i] < > "\\"))
INC(G);

END WHILE;

INC();

REPEAT
FuelpointName : = NodeSHRec.OwnedStringli];
NEW (Fuelpoint);

ASK Fuelpoint TO GetName (FuelpointName);
ASK Fuelpoint TO GetFields(name);
INCG);

UNTIL (G > HIGH(NodeSHRec.OwnedString)) OR
(NodeSHRec.OwnedString[i] = "\\") OR
(NodeSHRec.OwnedString[il = "U"));

END PROCEDURE {CreateFuelpoint};

{ }
PROCEDURE CreateUnits (IN name : STRING;

IN NodeSHRec : SHierRecType;
OUT Units : UnitsObj);

{
VAR
i : INTEGER;
UnitsName : STRING;
BEGIN

j=]

79

WHILE ((NodeSHRec.OwnedString[i] < > "U") AND
(NodeSHRec.OwnedStringli] < > "W")
INCG);

END WHILE;

INCG);

REPEAT
UgitsName := NodeSHRec.OwnedStriagli}l;
NEW(Units);

ASK Units TO GetName (UnitsName);
ASK Units TO GetFields(name);
INCG);

UNTLL (G > HIGH(NodeSHRec.OwnedString)) OR
(NodeSHRec.OwnedString[i] = "\\") OR
(NodeSHRec.OwnedString(i} = "EOF"));

END PROCEDURE {CieateUnits};

PROCEDURE CreateSupplySources (IN Supply : SupplyObj;
IN Network : NetworkObj);

{ }
VAR

i : INTEGER;
source : STRING;
Node : NodeObj;
SupplySourceSHRec : SHierRecType;
sourceFound : BOOLEAN;
BEGIN
sourceFound := FALSE;
FindSHRec(SupplySourceSHArray, ASK Supply name, SupplySourceSHRec);
source : = SupplySourceSHRec.OwnedString(1];
{Find the source SupplyObj that belongs to the node}
Node := ASK Network.NodeList First();
REPEAT
IF(source = Node.mySupply.name)
ASK Supply TO GetSupplySource (Node.mySupply);
sourceFound : = TRUE;
ELSE
Node := ASK Network.NodeList Next(Node);
END IF;
UNTIL ((Node=NILOBJ) OR (sourceFound));
END PROCEDURE {CreateSupplySources};

END {IMPLEMENTATION} MODULE {create}.
{ }
DEFINITION MODULE CREATEA;

{This procedure creates each asset for a motorpool, by giving it a name and all ficlds that necessary}
FROM ASSET IMPORT AssetOb;;

PROCEDURE CreateAsset (IN VehicleType : STRING;
IN model : STRING;
IN i : INTEGER;
IN Unit : STRING;
INOUT asset : AssetObj);

END {DEFINITION} MODULE {createa}.
IMPLEMENTATION MODULE CREATEA,;

FROM Debug IMPORT TraceStream;
FROM RGLOBAL IMPORT SHierRecType, AssetFieldsSHArray;

80

FROM ASSET IMPORT AssetObj;
FROM FINDSH IMPORT FindSHRec;

{ }
PROCEDURE CreateAsset (IN VehicleType : STRING;
IN model : STRING;
IN k : INTEGER;
IN Unit : STRING;
INOUT Asset : AssetObj);
{
VAR

i : INTEGER;
AssetFieldsSHRec : SHierRecType,
BEGIN
FindSHRec(AssetFieldsSHArray, VehicleType, AssetFieldsSHRec);
ji=1;
WHILE ((AssetFieldsSHRec.OwnedString[i] < > model) AND
(AssetFieldsSHRec.OwnedStringli] < > "\")
INCG);
END WHILE;
ASK Asset TO GetName(model, k, Unit);
ASK Asset TO GetFields(AssetFieldsSHRec);
END PROCEDURE {CreateAsset};

END {IMPLEMENTATION} MODULE {creates}.

{ }

DEFINITION MODULE NODE;
{Fields and methods of a node are defined here. A procedure that finds a node given its name is included}
FROM GrpMod IMPORT QueueObj;
FROM ResMod IMPORT ResourceObj; °
FROM GLOBAL IMPORT NodeNameType,CargoTypeQueue, AssetTypeQueue, NodeTypeQueue;
FROM RGLOBAL IMPORT SHierRecType;
FROM MOTORPL IMPORT MotorpoolObj;
FROM MAINT IMPORT MaintenanceQbj;
FROM SUPPLY IMPORT SupplyObj;
FROM FUELPT IMPORT FuelpointObj;
FROM UNITS IMPORT UnitsObj;
EXPORTTYPE
NodeObj = OBJECT; FORWARD;

TYPE
Clearance = ResourceObj;
DeadlinedQueue = QueueObj;
DeadlinePointObj = OBJECT
recoverer : STRING;
AssetQueue : AssetTypeQueue;
ASK METHOD Objlnit;
ASK METHOD GetRecoverer (IN name : STRING);
END OBJECT;

NodeObj = OBJECT
name : NodeNameType;
fuelLevel : REAL;
fuelCap : REAL;
fueiReserve : REAL;
loadTime : REAL;
unloadTime : REAL;
myMotorpool : MotorpoolObj;
myMaintenance : MaintenanceObj;
mySupply : SupplyChj;

81

myFuelpoint : FuelpointObj;

myUnits : UnitsObj;

deadlinePointQueue : DeadlinedQueue; {location of any NMC assets}
clearance : Clearance; {authority and right of passage thru node}
maxMilesAllowed : REAL; {at destin, miles before mandatory standwn}
maxOpHoursAllowed : REAL; {same, but in operating hours}
standDownTime : REAL; {hours standown before convoy can leave}
milesBeforeBreak : REAL; {any node, cept destin, max miles before bk}
breakTime : REAL; {hours for breaktime, before proceeding}
dayToStart : INTEGER; {day activities start at node}

dayToEnd : INTEGER; {day activities end at node}

ASK METHOD Objlnit;

ASK METHOD GetName (IN MyName : STRING);

ASK METHOD GetRestrictions (IN NodeSHRec : SHierRecType);
ASK METHOD GetMotorpool (IN Motorpool : MotorpoolObj);

ASK METHOD GetMaintenance (IN Maintenance : MaintenanceObj);
ASK METHOD GetSupply (IN Supply : SupplyObj);

ASK METHOD GetFuelpoint (IN Fuelpoint : FuelpointObj);

ASK METHOD GetUnits (IN Units : UnitsObj);

ASK METHOD GetClearances;

END OBJECT {node};

{ }

PROCEDURE FindNode (IN nodeName : STRING;
IN NodeList : NodeTypeQueue;
OUT Node : NodeObj);

{ }

END {DEFINITION} MODULE {node}.

IMPLEMENTATION MODULE NODE;
FROM GLOBAL IMPORT NodeNameType,CargoTypeQueue, NodeTypeQueue,
FROM RGLOBAL IMPORT SHierRecType;
FROM CARGO IMPORT CargoObj;
FROM MOTORPL IMPORT MotorpoolObj;
FROM MAINT IMPORT MaintenanceObj;
FROM SUPPLY IMPORT SupplyObj;
FROM FUELPT IMPORT FuelpointObj;
FROM UNITS IMPORT UnitsObj;
FROM Debug IMPORT TraceStream;

OBJECT DeadlinePointObj;
{—
ASK METHOD Obijlnit;
{———
BEGIN
NEW(AssetQueue);
END METHOD {Ovjlnit};

{ }
ASK METHOD GetRecoverer (IN Name : STRING);
{ }
BEGIN
recoverer := Name;
END METHOD {GetRecoverer};

END ORJECT {DeadlinePoint};

OBJECT NodeObj;
{(—————}

82

ASK METHOD Objlnit;
{——}
BEGIN
NEW(deadlinePointQueue);
NEW(clearance);
END METHOD {Objlnit};

{ }
ASK METHOD GetName (IN MyName : STRING);
{ }
BEGIN
pame : = MyName,
END METHOD {GetName};

{ }

ASK METHOD GetRestrictions (IN NodeSHRec : SHierRecType);

{ }

BEGIN
maxMilesAllowed : = STRTOREAL(NodeSHRec.OwnedString(1]);
maxOpHoursAllowed : = STRTOREAL (NodeSHRec.OwnedString(2]);
standDownTime := STRTOREAL (NodeSHRec.OwnedString{3]);
milesBeforeBreak : = STRTOREAL (NodeSHRec.OwnedString[4]);
breakTime := STRTOREAL (NodeSHRec.OwnedString[5]);
dayToStart := STRTOINT (NodeSHRec.OwnedString{6});
dayToEnd := STRTOINT (NodeSHRec.OwnedString[7]);

END METHOD {GetRestrictions};

}
ASK METHOD GetMotorpool (IN Motorpool : MotorpoolObj);
{
BEGIN
myMotorpool := Motorpool;
END METHOD {GetMotorpool};

{ }

ASK METHOD GetMaintenance (IN Maint : Maint Obj);
{ }

BEGIN

myMaintenance : = Maintenance;

END METHOD {GetMaintenance};

{ }

ASK METHOD GetSupply (IN Supply : SupplyOhbj);
{
BEGIN

mySupply := Supply;

END METHOD {GetSupply};

{ }

ASK METHOD GetFuelpoint (IN Fueipoint : FuelpointObj);
{ }

BEGIN

myFuelpoint : = Fuelpoint;

END METHOD {GetFuelpoint};

}
ASK METHOD GetUnits (IN Units : UnitsObj);
{ }
BEGIN
myUnits := Units;
END METHOD {GetUnits};

83

e}
ASK METHOD GetClearances;
{——}
BEGIN
NEW(clearance);
ASK clearance TO Create(l);
END METHOD {GetClearances};

END OBJECT {Node};

}
PROCEDURE FindNode (IN nodeName : STRING;
IN NodeList : NodeTypeQueue;
OUT Node : NodeObj);
{ }
VAR
foundNode : BOOLEAN;
BEGIN
foundNode : = FALSE;
Node := ASK NodeList First ();
REPEAT
IF (nodeName = (ASK Node name))
foundNode := TRUE;

ELSE
Node := ASK NodeList Next (Node);
END IF;
UNTILL ((¥ode=NILORBJ) OR (foundNode));
END PROCEDURE {FindNode};

END {IMPLEMENTATION} MODULE {node}.

{ *}

DEFINITION MODULE ROUTE;

{Everything associated with a route are defined here. Links, routes, creating them and finding them are included.}
FROM GLOBAL IMPORT NodeNameType,LinkTypeQueue, roadCharact, RouteTypeQueue;
FROM RGLOBAL IMPORT SHierRecType;
FROM NETWORK IMPORT NetworkObj;

TYPE
LinkObj = OBJECT
origin : NodeNameType;
destin : NodeNameType;
distance : REAL;
thruput : REAL;
roadSurface, terrain : roadCharact;

ASK METHOD GetFields(IN LinkSHRec : SHierRecType;
INOUT i : INTEGER);
ASK METHOD CopyFields(IN link : LinkObj);
END OBRJECT {Link};

RouteObj = OBJECT
origin : NodeNameType;
destin : NodeNameType;
LinkRoute : LinkTyreQueue;
ASK METHOD Objlnit;
ASK METHOD GetFields(IN origin : STRING;

IN destin : STRING);
END OBJECT {Route};

84

PROCEDURE CreateLinks (IN nsme : STRING;
IN LinkList : LinkTypeQueue);
PROCEDURE FindLink (IN origin : STRING;
IN destin : STRING;
IN LinkList : LinkTypeQueue;
OUT link : LinkObj);
PROCEDURE CreateRoutes (IN name : STRING;
IN Network : NetworkObj;
INOUT MasterRouteList : RouteTypeQueue);

END {DEFINITION} MODULE {route}.

IMPLEMENTATION MODULE ROUTE;
FROM Debug IMPORT TraceStream;
FROM GLOBAL IMPORT NodeNameType, ALL roadCharact, LinkTypeQueue, RouteTypeQueus;
FROM RGLOBAL IMPORT SHierRecType, NodeSHArray, LinkSHArray, RouteSHArray;
FROM NODE IMPORT NodeObj;
FROM FINDSH IMPORT FindSHRec;
FROM NETWORK IMPORT NetworkObj;

OBJECT LinkObj;

ASK METHOD GetFields(IN LinkSHRec : SHierRecType;
INOUT i : INTEGER);
{ }
BEGIN
origin := LinkSHRec.TopString;
destin := (LinkSHRec.OwnedString[i]);

INC(G);

distance : = STRTOREAL(LinkSHRec.OwnedString[i]);

INCG); v

CASE (LinkSHRec.OwnedString[i])
WHEN "concrete”: roadSurface : = concrete;
WHEN "bituminous”: roadSurface : = bituminous;
WHEN "gravel": roadSurface := gravel;
WHEN "dirt": roadSurface : = dirt;
OTHERWISE

roadSurface : =concrete;

END CASE;

INCG);

CASE (LinkSHRec.OwnedString(i])
WHEN "fiat™: terrain : = flat;
WHEN “rollingHills": terrain ;= rollingHills;
WHEN “hillsCurves": terrain := hillsCurves;
WHEN “mountainous” :terrain : = mountainous;
OTHERWISE

terrain ;= flat;
END CASE;
END METHOD {GetFields};

}
ASK METHOD CopyFields(IN Link : LinkObj);
{
BEGIN
origin := Link.origin;
destin := Link.destin;
distance := Link.distance;
roadSurface : = Link.roadSurface;
terrain := Link terrain;

END METHOD {CopyFields};

85

END OBJECT {LinkObj};

OBJECT RouteObj;
{—}
ASK METHOD Objlnit;
{——————}
BEGIN
NEW(LinkRoute);
END METHOD {Objlnit};

{ }
ASK METHOD GetFields(IN start : STRING;
IN end : STRING);

}

{

BEGIN
origin := start;
destin := ond;

END METHOD {GetFields};

END OBJECT {RouteObj};

{ }
PROCEDURE CreateLinks (IN name : STRING;

IN LinkList : LinkTypeQueue);
{ }

VAR
i : INTEGER;
Link : LinkObj;
LinkSHRec : SHierRecType;
BEGIN
1= 1;
FindSHRec(LinkSHArray, name, LinkSHRec);
REPEAT
NEW(Link);
ASK Link TO GetFields(LinkSHRec,i);
ASK LinkList TO Add (Link);
INCG);
UNTIL(G > HIGH(LinkSHRec.OwnedString)) OR (LinkSHRec.OwnedString{i} = "\"));
END PROCEDURE {CreateLinks};

{ }
PROCEDURE FindLink (IN start : STRING;
IN end : STRING;
IN LinkList : LinkTypeQueue;
OUT rightLink : LinkObj);

}

BEGIN
NEW(rightLink);
link := ASK Linklist First();
REPEAT
IF((ASK link origin = start) AND (ASK link destin = end))
ASK rightLink TO CopyFields (link);
tinkFound : = TRUE;
ELSE
link := ASK LinkList Next(link);
END IF;
UNTIL((linkFound) OR (link = NILORBY));
END PROCEDURE {FindLink};

86

}
PROCEDURE CreateRoutes (IN name : STRING;

IN Network : NetworkObj;
INOUT MasterRouteList : RouteTypeQueue);

i : INTEGER;
link : LinkObj;
Route : RouteObj;
RouteSHRec : SHierRecType;
origin, destin : STRING;
start, end : STRING;
BEGIN
FindSHRec(RouteSHArray, name, RouteSHRec);
im=1;
IF (HIGHRouteSHReoc.OwnedString) < 2)
ASK TraceStream TO WriteString(*No routes for node” + name);
ELSE
REPEAT
NEW(Route);
ASK Route TO Objlnit;
origin := RouteSHRec.OwnedString(i];
start := origin;
INCG);
end := RouteSHRec.OwnedString(i];
REPEAT
FindLink(start,end,Network . LinkList,link);
ASK Route.LinkRoute TO Add (link);
start := end;
INCG);
end := RouteSHRec.OwnedString(i};
IF((end = origin) OR (end = "EOF")
destin : = RouteSHRec.OwnedStringli-1];
ASK Route TO GetFields(origin,destin);
END IF;
UNTIL{(end = origin) OR (end = "EOF"));
ASK MasterRouteList TO Add (Route);
UNTIL(end = "EOF");
END IF;
END PROCEDURE {CreateRoutes};

END {IMPLEMENTATION} MODULE {route}.

{ }

DEFINITION MODULE ASSET;
{Module contains the methods and fields that describe an asset within ITTSS. Vehicle objects inherent the methods and fields from
the general asset object. Specific vehicle objects are further defined}

FROM GrpMod IMPORT QueueObj;

FROM GLOBAL IMPORT DescriptType, Dimensions, LinkTypeQueue, AssetTypeQueue, CargoTypeQueue, ALL roadCharact,

AssetStatus, FailType;

FROM RGLOBAL IMPORT SHierRecType;

FROM CARGO IMPORT CargoObj;

FROM ROUTE IMPORT LinkObj;

FROM RandMod IMPORT RandomObj;

EXPORTTYPE
AssetObj = ORJECT; FORWARD;

TYPE

dimensionsObj = OBJECT {Dimensions for stowage of cargo}
height,

87

length,

width,

cubeFt,

weight : REAL; {vehicle, capacity}

ASK METHOD GetFields(IN Height : REAL;
IN Length : REAL;
IN Width : REAL;
IN CubeFt : REAL;
IN Weight : REAL);
ASK METHOD AdjustDimensions(IN Height : REAL;
IN Length : REAL;
IN Width : REAL;
IN CubeFt : REAL;
IN Weight : REAL);
ASK METHOD UpdateLoad Weight(IN weight : REAL);
ASK METHOD UpdateLengthLoad(IN length : REAL);
ASK METHOD GetBigValue;
ASK METHOD GetSmallValue;
END OBJECT {dimensionsObj};

rates = ARRAY roadCharact OF ARRAY roadCharact OF REAL;

AssetObj = OBJECT
home : STRING;
MyMotorpool : STRING;
model,
description,
bumperNumber : DescriptType;
type : STRING;
vehType : STRING;
rateOfTravel : rates;
fuelCap,
fuelLevel, {Current fuel level of vehicle}
fuelConsump, {Fuel consumption rate}
fuelGuage, {Guage level of fuel, 1/2, etc}
fuelReserve,
odometer,
tripOdometer,
engHrs,
assetWeight : REAL;
assetLength : REAL;
maintManHours : REAL;
adminLogTime : REAL;
assetDimens : dimensionsObj; {Cargo dimensions of vehicle}
loadDimens : dimensionsObj;
missionCapable : BOOLEAN;
tempFix : BOOLEAN;
status : AssetStatus;
loadCap : REAL;
cargoHold : CargoTypeQueue;
milesToFsil : REAL;
FailureVariateStream : RandomObj;
MMBEF : FailType;

ASK METHOD Objlnit;

ASK METHOD ObjTerminate;

TELL METHOD LoadCargo (IN cargo : CargoObj);

TELL METHOD UnloadCargo (IN weight : REAL;
IN length : REAL);

ASK METHOD Refuel (OUT fuelUsed : REAL);

88

ASK METHOD GetBigValue;
ASK METHOD GetSmallValue;
ASK METHOD UpdateGuages (IN Link : LinkObj);
ASK METHOD GetName (IN NewName : DescriptType;
IN i : INTEGER;
IN Unit : STRING);
ASK METHOD GetFields (IN AssetFieldsSHRec : SHierRecType);
ASK METHOD GetFailure(IN AssetFieldsSHRec : SHierRecType);
ASK METHOD CheckForBreakdown;
ASK METHOD Break;
ASK METHOD ResetOdometer;
ASK METHOD ResetTripOdometer;
ASK METHOD FixTemporarily;
END OBJECT {asset};

VehicleObj = OBJECT(AssetOb;j)
END OBJECT {VehicleObj};

TruckObj = OBJECT(VehicleObj)
END OBJECT {TruckObj};

TracTriObj = OBJECT(VehicleObj)
END OBJECT {TracTrlObj};

TracLowBoyObj = OBJECT(VehicleObj)
END OBJECT {TracLowBoyObj};

HettObj = OBJECT (VehicleObj)
END OBJECT {HettObj};

RecoveryObj = OBJECT (VehicleObj)

RecoveryLoad : AssetTypeQueue;
hookTime : REAL;

TELL METHOD HookUp(IN brokenAsset : AssetObj);
TELL METHOD UnHook;
OVERRIDE
ASK METHOD Objlnit;
END OBJECT {RecoveryObj};

VeaselObj = OBJECT(AssetObj)
END OBJECT; {VesselObj}

AirObj = OBJECT(AssetObj)
END OBJECT; {AirObj}

TrainObj = OBJECT(AssetObj)
END OBJECT; {TrainObj}

END {DEFINITION} MODULE {asset}.

IMPLEMENTATION MODULE ASSET;
FROM GrpMod IMPORT QueueObj;

FROM GLOBAL IMPORT HqNameType, DescriptType, Dimensions, LinkTypeQueue,

AssetTypeQueue, CargoTypeQueue, ALL roadCharact, AssetStatus;

FROM RGLOBAL IMPORT SHierRecType,AssetFieldsSHArray, TravelRatesSHArray,

FROM FINDSH IMPORT FindSHRec;
FROM CARGO IMPORT CargoObj;
FROM ROUTE IMPORT LinkObj;
FROM Debug IMPORT TraceStream;
FROM RandMod IMPORT RendomOb;j;

89

FROM READSED IMPORT ReadSeed;

OBJECT dimensionsObj; {Dimensions for stowage of cargo}
}
ASK METHOD GetFields(IN Height : REAL;

IN Length : REAL;

IN Width : REAL;

IN CubeFt : REAL;

IN Weight : REAL);

{

BEGIN

height := Height;
length := Length;
width := Width;

cubeFt : = CubeFt;
weight := Weight;
END METHOD {GetFields};

}
ASK METHOD AdjustDimensions(IN Height : REAL;
IN Length : REAL;
IN Width : REAL;
IN CubeFt : REAL;
IN Weight : REAL);
}

{
BEGIN
END METHOD {AdjustDimensions};

{
ASK METHOD UpdateLoad Weight(IN Weight : REAL);
{ }
BEGIN

weight := weight + Weight;
END METHOD {UpdateLoadWeight};

{ }
ASK METHOD UpdateLengthLoad(IN Length : REAL);
{ }
BEGIN
length := length + Length;
END METHOD {UpdsteLoadLength};

{ }

ASK METHOD GetBigValue;
{ }

BEGIN

weight := 99999999999999.99;
length := 99999999999999.99;
END METHOD {GetBigValue};

{———}
ASK METHOD GetSmallValue;
{———
BEGIN
weight := 0.0;
length := 0.0;
END METHOD {GetSmallValue};
END OBJECT {dimensions};

OBJECT AussetObj;

90

)

ASK METHOD Objlnit;
t-——

BEGIN
NEW(assetDimens);
NEW(oadDimens);
NEW(csrgoHold);

END METHOD {Objlnit};

e |
ASK METHOD ObjTerminate;
|

VAR
cargo : CargoObj;

BEGIN

DISPOSE(assetDimens);

DISPOSE(loadDimens);

WHILE(ASK cargoHold numberin > 0);
cargo := ASK cargcHold TO Remove ();
DISPOSE(cargo);

END WHILE;

DISPOSE(cargoHold);

IFMMMBF < > NILARRAY)
DISPOSE(MMBF);

END IF;

IF(FailureVariateStream < > NILOBRBJ);
DISPOSE(FailureVariateStream);

END IF;

END METHOD {ObjTerminate};

{
ASK METHOD GetName (IN NewName : DescriptType;
IN i : INTEGER;
IN Unit : STRING);
{ }
BEGIN
mode] := NewName;
bumperNumber := ((ASK SELF model) + "_ " + (Unit) + "_" + INTTOSTR());
home := Unit;
END METHOD {GetName};

{ }
ASK METHOD GetFields(IN AssetFieldsSHRec : SHierRecType):
{ }
VAR
Height, Length, Width, CubeFt, Weight : REAL;
AssetDimens : dimensionsObj;
TravelRatesSHRec : SHierRecType;
i, j : INTEGER;
Rate : REAL;
roadSurface, terrain : roadCharact;
BEGIN
NEW(AssetDimens);
IF (AssetFieldsSHRec = NILREC)
ASK TraceStream TO WriteString(" AssetFieldsSHRec is NILREC"),
ELSE
vehType := AssetFieldsSHRec.TopString;
i:=1
model : = (AssetFieldsSHRec. OwnedStringli]);
INC();
type : = (AssetFieldsSHRec.OwnedString]i));

91

INCG);
fuelCap : = STRTOREAL(AssetFieldsSHRec.OwnedString(il);

INC(@);

fuelConsump : = STRTOREAL(AssetFieldsSHRec.OwnedStringiil);
INC();

odometer := STRTOREAL(AssetFieldsSHRec.OwnedStringli));
INC();

engHrs := STRTOREAL(AssetFieldsSHRec.OwnedStringlil);
INCG):

assetWeight : = STRTOREAL(AssetFieldsSHRec.OwnedStringli]);
INC();

assetLength : = STRTOREAL (AssetFieldsSHRec.OwnedStringli]);
INC(i);

Height := STRTOREAL(AssetFieldsSHRec.OwnedStringlil);
INC(i);

Length : = STRTOREAL (AssetFieldsSHRec.OwnedStringli));
INCG);

Width := STRTOREAL(AssetFieldsSHRec.OwnedStringli});
INC(G);

CubeFt := STRTOREAL(AssetFieldsSHRec.OwnedString(il);
INC(@);

Weight := STRTOREAL(AssetFieldsSHRec.OwnedString(if);
INC();

ASK AssetDimens TO GetFields(Height, Length, Width, CubeFt, Weight);
assetDimens : = AssetDimens;
maintManHours : = STRTOREAL (AssetFieldsSHRec.OwnedString(i]);
INCG);
adminLogTime : = STRTOREAL(AssetFisldsSHRec.OwnedStringli]);
INC();
missionCapable : = TRUE;
NEW(FailureVariateStream);
ASK FailureVariateStream TO SetSeed(ReadSeed());
ASK SELF TO GetFailure(AssetFieldsSHRec);
{————Getting Rates Of Travel for asset—-—-——}

FindSHRec(TravelRatesSHArray, model, TravelRatesSHRec);
NEW(ratsOfTravel, concrete..dirt, flat..mountainous);
ji=1
FOR roadSurface : = concrete TO dirt
FOR terrain := flat TO mountainous
rateOfTravel{roadSurface, terrain] := STRTOREAL (TravelRatesSHRec.OwnedString(j));
INCG);
END FOR;
END FOR;
END IF;
END METHOD {GetFields};

}
ASK METHOD GetFsilure(IN AssetFieldsSHRec : SHierRecType);

{ }
VAR

i: INTEGER;
BEGIN
IF (AssetFieldsSHRec = NILREC)
ASK TraceStream TO WriteString(" AssetFieldsSHRec is NILREC");
ELSE
NEW (MMBF, 1..1);
MMBF|1} : = STRTOREAL(AssetFieldsSHRec.OwnedString|16));
milesToFail := ASK FailureVaristeStream Exponentis! (MMBF|1]);
END IF;
END METHOD {GetFailure};

92

{)

ASK METHOD CheckForBreakdown;

{ }

BEGIN

IF(odometer > = milesToFail)
missionCapable : = FALSE;

END IF;

END METHOD {CheckForBreakdown};

{_.___.-.__.

ASK METHOD Break;
{-————}

BEGIN

missionCapable := FALSE;
END METHOD {Break};

{~———}

ASK METHOD ResetOdometer;
fmrre)

BEGIN

odometer := 0.0,

tripOdometer : = 0.0;

tempFix := FALSE;

milesToFail := ASK FailureVariateStream Exponential (MMBF[1]);
END METHOD {ResetOdometer};

{ }

ASK METHOD ResetTripOdometer;

{ }

BEGIN

tripOdometer : = 0.0;

END METHOD {ResetTripOdometer};

{t—

ASK METHOD FixTemporarily;
{(——

BEGIN

tempFix : = TRUE;
END METHOD {FixTemporarily};

{ }

TELL METHOD LoadCargo (IN cargo : CargoOb;);
{ }

BEGIN

ASK cargoHold TO Add (cargo);

END METHOD {LoadCargo};

{ }
TELL METHOD UnloadCargo (IN weight : REAL;

IN length : REAL);
{ }

BEGIN

ASK loadDimens TO UpdateLoad Weight (-(weight));
ASK loadDimens TO UpdateLengthLoad(-(length));
END METHOD {UnloadCargo};

{ }

ASK METHOD Refuel (OUT fuelUsed : REAL);
{ }

BEGIN

fuelUsed := fuelCap - fuelLevel;

93

fuelLevel : = firelLevel + fuelUsed;
END METHOD {Refuel};

{_._....._.____.._-

ASK METHOD GetBigValue;
{—
VAR

AssetDimens : dimensionsObj;
BEGIN

NEW(AssetDimens);

ASK AssetDimens TO GetBigValue;
assetDimens : = AssetDimens;

END METHOD {GetBigValue};

——ee—}
ASK METHOD GetSmallValue;
{-—

VAR

AssetDimens : dimensionsObj;
BEGIN

NEW(AssetDimens);

ASK AssetDimens TO GetSmallValue;

assetDimens : = AssetDimens;

END METHOD {GetSmallVaiue};

{ }

ASK METHOD UpdateGuages (IN Link : LinkObj);

{ }

BEGIN
odometer : = odometer + ASK Link distance;
tripOdometer : = tripOdometer + ASK Link distance;
fuelLevel : = fuelLevel - (ASK Link distance/fuelConsump);
{engHrs := engHrs + (ASK Link distance/rateOfTravel);}
fuelGuage : = fuelLevel/fuelCap;

END METHOD {UpdateGuages};

END OBJECT {asset};

ORJECT VehicleObj;
END OBJECT {VehicleObj};

OBJECT TruckObj;
END ORJECT {TruckOb,};

OBJECT TracTriObj;
END OBJECT {TracTriObj};

OBJECT TracLowBoyObj;
END OBJECT {TracLowBoyObj};

OBJECT HettObj;
END OBJECT {HettOb;};

OBJECT RecoveryObj;
 —

ASK METHOD Objlnit;
{———}

BEGIN
NEW(assetDimens);
NEW(loadDimens):
NEW(cargoHold);

94

NEW(RecoveryLoad);

NEW(FailureV. -ateStream);

ASK FailureVariateStream TO SetSeed(ReadSeed();
END METHOD {Objlnit};

}
TELL METHOD hookUp (IN brokenAsset : AssetObj);
{ }
BEGIN
ASK RecoverylLoad TO Add (brokenAsset);
WAIT DURATION hookTime
END WAIT;
END METHOD {HookUp};

{—}
TELL METHOD UnHook;

BEGIN

WAIT DURATION hookTime
END WAIT,

END METHOD {UnHook};

END OBJECT {RecoveryObj};

OBJECT VesselObj;
END OBJECT {VesselObj};

OBJECT AirObj;
END OBJECT {AirObj};

OBIECT TrainObj;
END OBJECT {TrainObj};

END {IMPLEMENTATION} MODULE {asset}.

{ }

DEFINITION MODULE CARGO,
{Methods and fields for cargo that is transported within ITTSS are defined here}
FROM GLOBAL IMPORT HqNameType, ModelNameType, Dimensions, SupplyClassType,

DescriptType, DestinationType, AssetTypeQueue, CargoTypeQueue, NodeNameType, VehicleType;

TYPE
cargoList = CargoTypeQueue;
CargoObj = OBJIECT
priority : REAL;
height : REAL;
width : REAL;
length : REAL,;
cubeFt : REAL,;
weight : REAL;
classOfSupply: SupplyClassType;
destination : STRING;
origin : STRING;
MOR : STRING {VehicleType}: {Method Of Resupply}
nonseparable : BOOLEAN;

ASK METHOD DumpStatus;
ASK METHOD SeparateCargo (IN max : REAL;

OUT separatedCargo : CargoObj);
ASK METHOD Change“'eight (IN max : REAL);

95

ASK METHOD GetSupplyFields (IN ClassOfSupply : STRING;
IN Weight : REAL;
IN Length : REAL,
IN MOR : STRING;
IN Priority : REAL;
IN SepStatus : BOOLEAN),
ASK METHOD Adjust (IN Adjustment : REAL);

END OBIJECT {cargo};
END {DEFINITION} MODULE {cargo).

IMPLEMENTATION MODULE CARGO;
FROM GLOBAL IMPORT HqNameType, NodeNameType, ModelNameType, Dimensions,
SupplyClassType, DescriptType, DestinationType, AssetTypeQueue, CargoTypeQueue;
FROM Debug IMPORT TraceStream;

OBJECT CargoObj;
{ }
ASK METHOD SeparateCargo (IN max : REAL;
OUT separatedCargo : CargoObj);
{)

VAR

newWeight : REAL;
BEGIN
NEW(separatedCargo);
ASK separatedCargo TO GetSupplyFields(SELF .classOfSupply, max, 0.0, SELF.MOR, SELF .priority, FALSE);
newWeight : = (ASK SELF weight) - max;
ASK SELF TO ChangeWeight(new Weight);
END METHOD {SeparateCargo};

{)
ASK METHOD ChangeWeight (IN max : REAL);
{ }
BEGIN
weight := max;
END METHOD {ChangeWeight};

{
ASK METHOD GetSupplyFields (IN class : SupplyClassType;
IN Weight : REAL;
IN Length : REAL;
IN methodOfResupply : STRING;
IN PRIDRITY : REAL;
IN SepStatus : BOOLEAN);
{ }
BEGIN
classOfSupply : = class;
weight := Weight;
length := Length;
MOR := methodOfResupply;
priority := PRIORITY;
nonsepsrabie : = SepStatus;
END METHOD {GetSupplyFields};

}
ASK METHOD Adjust(IN Adjustment : REAL);

{
BEGIN

weight : = weight + Adjustment;
END METHOD;

96

END OBJECT {cargo};
END {IMPLEMENTATION} MODULE {cargo}.
{ . }

DEFINITION MODULE MOTORPL,;
{Fields and methods of a motorpool are defined here. This include matching cargo to assets, scheduling missions and conducting
them}
FROM IOMod IMPORT StreamObj;
FROM GrpMod IMPORT QueueObj;
FROM GLOBAL IMPORT NodeNameType, AssetTypeQueue, CargoTypeQueue, RouteTypeQueue, NodeTypeQueue;
FROM ASSET IMPORT AssetObj;
FROM CARGO IMPORT CargoObj;
FROM CONVOY IMPORT ConvoyObj;
FROM RECORDS IMPORT VehiclesRec;
FROM ROUTE IMPORT RouteObj;
FROM NODE IMPORT NodeObj;

EXPORTTYPE

MotorpoolObj = OBJIECT; FORWARD;
TYPE
ConvoyTypeQueue = QueueObj;

RecoveryMissionObj = OBJECT
location : STRING;
numberToRecover : INTEGER;

ASK METHOD GetFields (IN Location : STRING;
IN NumberToRecover : INTEGER);
ASK METHOD Adijust (IN Adjustment : INTEGER);
END OBJECT {RecoveryMission};

MotorpoolObj = OBJECT
name : NodeNameType;
location : STRING,;
maxNumbInConvoy : INTEGER;
distBetweenVeh : REAL;
distBetweenConvoys : REAL;
wreckersConvoy : BOOLEAN;
repairTime : REAL;
VehiclesRecord : VehiclesRec;
AssetList : AssetTypeQueue;
MasterRouteList : RouteTypeQueue;
MasterNodeList : NodeTypeQueue;
RecoveryMissionList : AssetTypeQueue;
WaitingForAssetQueue : CargoTypeQueue;
Dispatch : StreamObj;
AlgorithmQueue : AssetTypeQueue;

ASK METHOD Objlnit;

ASK METHOD GetName (IN MyName : STRING),

ASK METHOD DumpStatus;

ASK METHOD QGetFields (IN name : STRING);

ASK METHOD GetAssets (IN name : STRING),

ASK METHOD GetMasterLists (INOUT MasterRouteList : RouteTypeQueue;
INOUT MasterNodeList : NodeTypeQueue);

TELL METHOD ScheduleMission(IN Requestor : STRING;
IN CargoToLoad : CargoTypeQueue;
IN Convoy : ConvoyOb;j);

TELL METHOD ConductMission (IN Convoy : ConvoyOb;j;

97

IN origin : STRING;
IN destination : STRING);
ASK METHOD RetumAssets (IN Convoy : ConvoyObj);
TELL METHOD MatchCargoToAsset(IN asset : AssetObj;
IN load : CargoObj);
TELL METHOD ConductLoading(IN Convoy : ConvoyOb;);
TELL METHOD SchedRecovery (IN Location : STRING;
IN NumberToRecover : INTEGER);
TELL METHOD ConductRecovery (IN convoy : ConvoyObj;
IN origin : STRING;
IN destination : STRING);
ASK METHOD FindWrecker (IN Convoy : ConvoyObj;
IN Mission : RecoveryMissionObj);
ASK METHOD Check WreckersReturning (IN Convoy : ConvoyObj;
INOUT NewConvoy : ConvoyOb;j);
TELL METHOD ReturnFixedAsset (IN fixedAsset : AssetObj);
TELL METHOD ReportStatus (IN MotorpoolReport : StreamOb;j);
TELL METHOD ClearConvoy (IN Convoy : ConvoyObj;
IN Route : RouteOby);

END OBJECT {MotorpoolObj};
END {DEFINITION} MODULE {motorpl}.

IMPLEMENTATION MODULE MOTORPL;
FROM UtilMod IMPORT Delsy;
FROM SimMod IMPORT SimTime;
FROM IOMod IMPORT StreamOb;j, FileUseType(Output);
FROM Debug IMPORT TraceStream;
FROM GLOBAL IMPORT NodeNameType, AssetTypeQueue, CargoTypeQueue, VehicleType,
LinkTypeQueue, NodeTypeQueue, RouteTypeQueue;
FROM RGLOBAL IMPORT AssetOwnersSHArray, MotorpoolSHArray, SHierRecType;
FROM CREATEA IMPORT CreateAnaset;
FROM ASSET IMPORT AssetObj, VehicleObj, TruckObj, TracTrlObj, TracLowBoyObj, HettObj, OldHettObj, RecoveryObj;
FROM FINDSH IMPORT FindSHRec;
FROM CARGO IMPORT CargoObj;
FROM FINDSHP IMPORT FindShortestPath;
FROM CONVQY IMPORT ConvoyObj;
FROM ROUTE IMPORT LinkObj, RouteObj;
FROM CHECKAS IMPORT FindAssets, CheckReturning Assets, CheckLoaded Assets;
FROM NODE IMPORT NodeObj, FindNod;
FROM RECORDS IMPORT DispstchRecList, DispatchRec, VehTypeRecList, VehTypeRec, VehiclesRec;
FROM FINDSUP IMPORT FindAssetTypeRecord;
FROM SUPPLY IMPORT SupplyPointObj;

OBJECT RecoveryMissionObj;

{ }
ASK METHOD GetFields (IN Location : STRING;
IN NumberToRecover : INTEGER);
{ }
BEGIN
location := Location;
numberToRecover : = NumberToRecover;
END METHOD {GetFields};

{ }
ASK METHOD Adjust (IN Adjustment : INTEGER);
{ }
BEGIN
numberToRecover : = numberToRecover + Adjustment;

98

END METHOD {Adjust};

END OBJECT {RecoveryMission};

OBJECT MotorpoolObj;

{

{
BEGIN

—eee}
ASK METHOD Objlnit;

}

NEW(AssetList);
NEW(MasterRouteList);
NEWMasterNodeList);
NEW(RecoveryMissionList);
NEW(WaitingForAssetQueue);
NEW(VehiclesRecord);
NEW(AlgorithmQueue);
NEW(Dispatch);

END METHOD {Objlnit};

}

{
ASK METHOD GetName (IN MyName : STRING);

{

BEGIN

}

name := MyName;

END METHOD {GetName};

{ }
ASK METHOD GetFields (IN name : STRING);

}

smallestAsset, biggestAsset : AssetObj;

{
VAR
i : INTEGER;
MotorpoolSHRec : SHierRecType;
wreckersAccompany : STRING;
BEGIN

location := name;
FindSHRec(MotorpoolSHArray, name, MotorpoolSHRec);

= 1;

REPEAT

maxNumbInConvoy : = STRTOINT (MotorpoolSHRec.OwnedStringlil);
INCG);
distBetweenVeh : = STRTOREAL (MotorpoolSHRec.OwnedStringli]);
INCG);
distBetweenConvoys : = STRTOREAL (MotorpoolSHRec.OwnedStringfil);
INCG);
wreckersAccompany : = (MotorpoolSHRec.OwnedString{i]);
INC(G);
IF(wreckersAccompany = "TRUE")
wreckersConvoy : = TRUE;
END IF;
repairTime : = STRTOREAL(MotorpoolSHRec.OwnedStringli]);
INCG):
NEW(biggestAsset);
ASK biggestAsset TO GetName("BIG",0,location);
ASK biggestAsset TO GetSmallValue;
ASK AlgorithmQueue TO Add(biggestAsset);
NEW(smallestAsset);
ASK smallestAsset TO GetName("SMALL",0,location);
ASK smallestAsset TO GetBigValue;
ASK AlgorithmQueue TO Add(smallestAsset);

UNTIL (G > HIGH(MotorpoolSHRec.OwnedString)) OR
(MotorpoolSHRec.OwnedStringli] = "EOF"));
END METHOD {GetFields};

{ }
ASK METHOD GetAssets (IN name : STRING);

{ }
VAR

i),k : INTEGER;
number, numberOfAssets : INTEGER;
AssetOwnersSHRec : SHierRecType;
model : STRING;
truck : TruckObj;
tracTrl : TracTriObj;
tracLowBoy : TracLowBoyObj;
hett ; HettObj;
oldHett : OldHettObj;
wrecker : RecoveryObj;
vehicleTypeRecord : VehTypeRec;
BEGIN
FindSHRec(AssetOwnersSHArray, name, AssetOwnersSHRec);
=1
WHILE ((AssetOwnersSHRec.OwnedString[i] < > "TRUCKS") AND
(AssetOwnersSHRec.OwnedStringfi] < > "\\"))
INCG);
END WHILE;
INCG);
IF (AssetOwnersSHRec.OwnedString[i} = “none")
ELSE
NEW(vehicleTypeRecord); {Getting record for all TRUCKS};
REPEAT
model := (AssetOwnersSHRec.OwnedString[i));
INCG);
number := STRTOINT(AssetOwnersSHRec.OwnedString(i]);
FOR j := 1 TO number
NEW(truck);
CreateAsset ("TRUCKS", model, j, name, truck);
ASK AssetList TO Add (truck);
numberOfAssets : = numberOfAssets + |;
END FOR;
INCG);

UNTIL ((> HIGH(AssetOwnersSHRec.OwnedString)) OR
(AssetOwnersSHRec.OwnedString[i] = "\\") OR
(AssetOwnersSHRec.OwnedStringfi) = "TRAC_TRLS");

ASK vehicleTypeRecord TO GetFields("TRUCKS", numberOfAssets);

ASK VehiclesRecord . vehTypeRecList TO Add(vehicleTypeRecord);

END IF;
numberOfAssets : = 0;
WHILE ((AssetOwnersSHRec.OwnedString[i] < > *TRAC_TRLS") AND
(AssetOwnersSHRec.OwnedString[i] < > "\"))
INC();
END WHILE;
INCG);
IF (AssetOwnersSHRec.OwnedString[i) = "none™)
ELSE
NEW(vehicleTypeRecord); {Getting record for all TRAC_TRLS};
REPEAT
model := (AssetOwnersSHRec.OwnedStringfi});
INC());
number : = STRTOINT(AssetOwnensSHRec.OwnedString(i]);
FOR j := 1 TO number

100

NEW(tracTrl);
CreateAsset ("TRAC_TRLS", model, j, name, tracTrl);
ASK AssetList TO Add (tracTrl);
numberOfAssets : = numberOfAssets + 1;
END FOR;
INCG);

UNTIL (G > HIGH(AssetOwnersSHRec.OwnedString)) OR
(AssetOwnersSHRec.OwnedString[i] = "\\") OR
(AssetOwnersSHRec.OwnedString[i] = "TRAC_LOWBOYS"));

ASK vehicleTypeRecord TO GetFields("TRAC_TRLS", numberOfAssets);

ASK VehiclesRecord.vehTypeRecList TO Add(vehicleTypeRecord);

END IF;

numberOfAssets := 0;

WHILE ((AssetOwnersSHRec.OwnedString(i] < > “TRAC_LOWBOYS") AND
(AssetOwnersSHRec.OwnedString(i] < > "*))
INCG);

END WHILE;

INCG);

IF (AssetOwnersSHRec.OwnedString[i] = "none”)

ELSE

NEW(vehicleTypeRecord); {Getting record for all TRAC_LOWBOYS};

REPEAT
model := (AssetOwnersSHRec.OwnedString[i]);

INCG);
number := STRTOINT(AssetOwnersSHRec.OwnedString[i));
FOR j := 1 TO number
NEW(tracLowBoy);
CreateAsset ("TRAC_LOWBOYS", model, j, name, tracLowBoy);
ASK AssetList TO Add (tracLowBoy); numberOfAssets : = numberOfAssets + 1;
END FOR;
INCG);

UNTIL (G > HIGH(AssetOwnersSHRec.OwnedString)) OR
(AssetOwnersSHRec.OwnedString[i] = *\\") OR
(AssetOwnersSHRec. OwnedString[i) = "HETTS");

ASK vehicleTypeRecord TO GetFields("TRAC_LOWBOYS", numberOfAssets);

ASK VehiclesRecord.vehTypeRecList TO Add(vehicleTypeRecord);

END [F;
numberOfAssets := 0;
WHILE ((AssetOwnersSHRec.OwnedString[i] < > “HETTS") AND
(AssetOwnersSHRec.OwnedString(i] <> "\\"))
INCG);
END WHILE;
INCG):
IF (AssetOwnersSHRec.OwnedStringli) = "none”)
ELSE
NEW(vehicleTypeRecord); {Getting record for all HETTS};
REPEAT
model := (AssetOwnernnSHRec.OwnedString(il);
INC();
number : = STRTOINT(AssetOwnersSHRec.OwnedString(i]);
FOR j := 1 TO number
NEW(hett);
CreateAsset ("HETTS", model, j, name, hett);
ASK AssetList TO Add (hett);
numberOfAssets : = numberOfAssets + 1;
END FOR;
INC();

UNTIL (G > HIGH(AssetOwnersSHRec.OwnedString)) OR
(AssetOwnersSHRec.OwnedStringfi] = "\\") OR
(AssetOwnersSHRec.OwnedString{i} = "WRECKERS");

ASK vehicleTypeRecord TO GetFields("HETTS", numberOfAssets);

101

ASK VehiclesRecord.vehTypeRecList TO Add(vehicleTypeRecord);

END IF;

numberOfAssets ;= 0;

WHILE ((AssetOwnersSHRec.OwnedStringli}] < > *WRECKERS") AND
(AssetOwnersSHRec.OwnedStringli] < > "\")
INC(G);

END WHILE;

INC();

IF (AssetOwnersSHRec.OwnedString{i] = "none”)

ELSE

NEW(vehicleTypeRecord); {Getting record for all WRECKERS};

REPEAT
model : = (AssetOwnersSHRec.OwnedString[i]);

INC();
number : = STRTOINT(AssetOwnersSHRec.OwnedString(i));
FOR j := 1 TO number
NEW(wrecker);
CreateAsset ("WRECKERS", model, j, name, wrecker);
ASK AssetList TO Add (wrecker);
numberOfAssets : = numberOfAssets + 1;
END FOR;
INCG);

UNTIL (G > HIGH(AssetOwnersSHRec.OwnedString)) OR
(AssetOwnersSHRec.OwnedStringfi] = "\\") OR
(AssetOwnersSHRec.OwnedString|i] = "TRUCKS"));

ASK vehicleTypeRecord TO GetFields("WRECKERS",numberOfAssets);

ASK VehiclesRecord.vehTypeRecList TO Add(vehicleTypeRecord);

END IF;
END METHOD {GetAssets};

}
ASK METHOD GetMasterLists INOUT masterRouteList : RouteTypeQueue;
{ }
BEGIN
MasterRouteList : = masterRouteList;
MasterNodeList : = masterNodeList;
END METHOD {GetMasterLists};

{ }
TELL METHOD ScheduleMission (IN Requestor : STRING;

IN CargoToLoad : CargoTypeQueue;
IN convoy : ConvoyObj);

INOUT masterNodeList

: NodeTypeQueue);

{
VAR
load : CargoObj;
asset : AssetObj;
newConvoy, returnConvoy : ConvoyObj;
ConvoyList : ConvoyTypeQueue;
RouteList : RouteObj;
anotherTrip : BOOLEAN;
CouldNotLosdQueue : AssetTypeQueue;
BEGIN
IF(convoy = NILOBJ)
NEW(convoy);
ASK convoy TO GetMissionType ("Resupply”, location, distBetweenConvoys, wreckersConvoy, repairTime);
END IF;
NEW(newConvoy);

ASK newConvoy TO GetMissionType ("Resupply”, location, distBetweenConvoys, wreckersConvoy, repairTime);

NEW(CouldNotLoadQueue);
WHILE ASK CargoTol.oad numberln > 0
load := ASK CargoToLoad TO Remove ();

102

FindAssets(SELF, convoy, load, CouldNotLoadQueue),
END WHILE;
WHILE ASK CouldNotLoadQueue numberln > 0
load := ASK CouldNotLoadQueue TO Remove ();
ASK WaitingForAssetQueue TO Add (load);
END WHILE;
DISPOSE(CouldNotLoadQueue);
NEW(returnConvoy);
asset := ASK convoy.AssetList First ();
REPEAT
IF(ssset.loadDimens.weight = 0.0)
ASK convoy.AssetList TO RemoveThis (asset);
ASK returnConvoy.AssetList TO Add (asset);
IF((ASK convoy.AssetList numberln) > 0)
asset := ASK convoy.AssetList First();
ELSE
asset := NILOBJ;
END IF;
ELSE
asset ;= ASK convoy.AssetList Next(asset);
END IF;
UNTIL(asset = NILOBJ);
IF(ASK returnConvoy.AssetList numberin > 0)
ReturnAssets(retumnConvoy);
ELSE
DISPOSE(returnConvoy);
END IF;
IF(ASK convoy.AssetList numberin > 0)
WAIT FOR SELF TO ConductLoading(coavoy);
END WAIT;
IF((ASK convoy.AssetList numberln) > maxNumbInConvoy)
REPEAT
REPEAT
asset := ASK convoy.AssetList TO Remove(); ASK newConvoy.AssetList TO Add(asset);
UNTIL((ASK convoy.AssetList numberin) = maxNumbInConvoy);
ASK convoy TO GetLength(distBetweenVeh);
TELL SELF TO ConductMission(convoy, location, Requestor);
convoy : = newConvoy;
NEW(newConvoy);
ASK newConvoy TO GetMissionType ("Resupply”, location, distBetweenConvoyswreckersConvoy repairTime);
UNTIL((ASK convoy.AssetList numberln) <= maxNumbinConvoy);
ASK convoy TO GetLength(distBetweenVeh);
TELL SELF TO ConductMission(convoy, location, Requestor);
ELSE
ASK convoy TO GetLength(distBetweenVeh);
TELL SELF TO ConductMission(convoy, location, Requestor);
END IF;
ELSE
DISPOSE(convoy);
END IF,;
END METHOD {ScheduleMission};

}
ASK METHOD ReturnAssets (IN Convoy : ConvoyObj);
)

{
VAR
asset : AssetObj;
VehTypeRecord : VehTypeRec;
BEGIN

asset := ASK Convoy.AssetList First();
IF (asset < > NILOBRJ)

103

REPEAT
ASK Convoy.AssetList TO RemoveThis (asset);
FindAssetTypeRecord(asset. vehType, SELF.VehiclesRecord, VehTypeRecord);
ASK VehTypeRecord TO GetUncommitted;
ASK AssetList TO Add (asset);
IF ((ASK Convoy.AssetList numberin) > 0)
asset := ASK Convoy.AssetList First);
ELSE
asset := NILOBIJ;
ENDIF;
UNTIL (asset = NILOBJ);
END IF;
END METHOD {ReturnAssets};

{ }

TELL METHOD ConductMission (IN convoy : ConvoyObj;
IN origin : STRING;
IN destination : STRING);

{ }

asset : AssetObj;
load : CargoObj;
Link : LinkObj;
Node : NodeObj;
Route, ReturnRoute : RouteObj;
routeDist, returnRouteDist, distance : REAL;
maxRange, MaxRange : REAL;
updatedOdometer, updatedFuelLevel : REAL;
timoElapsed,
mostTimeElapsed,
TravelTime,
clearanceDist : REAL;
BEGIN
FindShortestPath (MasterRouteList, origin, destination, Route);
FindShortestPath (MasterRouteList, destination, origin, ReturnRoute);
{Find total route distance}
Link := ASK Route.LinkRoute First ;
WHILE Link <> NILOBJ
routeDist := routeDist + Link.distance;
Link := ASK Route.LinkRoute Next (Link);
END WHILE;
Link := ASK ReturnRoute.LinkRoute First (;
WHILE Link <> NILOBJ
returnRouteDist : = returnRouteDist + Link.distance;
Link := ASK ReturmRoute.LinkRoute Next (Link);
END WHILE;
distance : = routeDist + returnRouteDist;
ASK convoy TO GetDistances(routeDist, returnRouteDist);
MaxRange : = 9999999999999999.0;
WAIT FOR convoy TO Refuel (origin, MasterNodeList)
asset := ASK convoy.AssetList First ();
REPEAT
maxRange : = asset.fuelCap * asset.fuelConsump;
IF(maxRange < MaxRange)
MaxRange : = maxRange;
END IF;
asset := ASK convoy.AssetList Next (asset);
UNTIL (asset = NILOBY);
IF(MaxRange > distance)
ASK convoy TO NotRefuelDuringMsn;
END IF;

104

END WAIT;
FindNode(location, MasterNodeList, Node);
WAIT FOR Node.clesrance TO Give (SELF, 1);
WAIT FOR SELF TO ClearConvoy (convoy, Route);
END WAIT;
ASK Node.clearance TO TakeBack (SELF, 1);
END WAIT;
ASK convoy TO GetName(name + REALTOSTR(SimTime()));
ASK Dispatch TO WriteString("Convoy " + convoy.name + * is leaving " + name);
ASK Dispatch TO WriteLn;
ASK Dispatch TO WriteString(" TIME OF DEPARTURE is " + REALTOSTR (SimTime());
ASK Dispatch TO WriteString(". Number in convoy is * + INTTOSTR (ASK convoy.AssetList numberln));
ASK Dispatch TO WriteLn;
ASK Dispatch TO WriteLn;
WAIT FOR convoy TO Travel (destination, Route, MasterNodeList);
END WAIT;
{IF Fuelpoint avail, Refuel Assets}
IF (NOT convoy.fuelNotNeeded)
WAIT FOR convoy TO Refuel (destination, MasterNodeList)
END WAIT;
END IF;
FindNode(destination, MasterNodeList, Node);
WAIT FOR Node.clearance TO Give (SELF, 1);
WAIT FOR SELF TO ClearConvoy (convoy, ReturnRoute);
END WAIT;
ASK Node.clearance TO TakeBack (SELF, 1);
END WAIT;

WAIT FOR convoy TO Travel (destination, ReturnRoute, MasterNodeList)

END WAIT;

ASK Dispatch TO WriteString("convoy * + SELF.name + " returned to " + Node.name);

ASK Dispatch TO WriteLn;

ASK Dispatch TO WriteString(" time of RETURN is " + REALTOSTR (SimTime(Q));

ASK Dispatch TO WriteLn;

ASK Dispatch TO WriteString(" Number in convoy is * + INTTOSTR (ASK AssetList numberln));
asset := ASK convoy.AssetList First ();

WAIT FOR convoy TO PerformPMCS (origin, MasterNodeList);
END WAIT;
IF(convoy.returnRouteDist > Node.maxMilesAllowed)
WAIT DURATION Node.standDownTime
END WAIT;
END IF;
IF ASK WiaitingForAssetQueue numberln > 0
ScheduleMission(destination, WaitingForAssetQueue, convoy);
ELSE
ReturnAssets(convoy);
END IF;
END METHOD {ConductMission};

{ }
TELL METHOD MatchCargoToAsset(IN asset : AssetOb;j;
IN load : CargoObj);

BEGIN

WAIT FOR asset TO LoadCargo (load);
END WAIT;

END METHOD {MatchCargoToAsset};

{ }
TELL METHOD ConductLoading(IN convoy : ConvoyOb;);

105

{ }

VAR
LoadingPt : SupplyPointObj;
Node : NodeObj;

BEGIN

FindNode(location, MasterNodeList, Node);

WAIT FOR Node.mySupply .loadingPointsQueueTO PriorityGive (SELF, 1, convoy .priority);
LoadingPt : = ASK Node.mySupply.LoadingPoints TO Remove(),
WAIT FOR Node.mySupply TO LoadSupplies(convoy . AssetList, convoy .priority, LoadingPt);
END WAIT;

END WAIT;

ASK Node.mySupply .loadingPointsQueueTO TakeBack (SELF, 1);

ASK Node.mySupply.LoadingPointsTO Add(LoadingPt);

END METHOD {ConductLoading};

{ }
TELL METHOD SchedRecovery (IN Destination : STRING;

IN NumberToRecover : INTEGER);

{ }
VAR

i : INTEGER;
Node : NodeObj;
brokenAsset : AssetObj;
wrecker : RecoveryObj;
convoy, newConvoy : ConvoyObj;
RouteList : RouteObj;
anotherTrip : BOOLEAN;
RecoveryMission, NextMission : RecoveryMissionObj;
BEGIN
NEW(convoy);
ASK convoy TO GetMissionType ("Recovery”, location, distBetweenConvoys, wreckersConvoy, repairTime);
NEW(newConvoy);
ASK newConvoy TO GetMissionType ("Recovery”, location, distBetweenConvoys, wreckersConvoy, repairTime);
NEW(RecoveryMission);
ASK RecoveryMission TO GetFields (Destination, 0);
FOR i := | TO NumberToRecover
FindWrecker(convoy, RecoveryMission);
END FOR;
IF((ASK convoy.AssetList numberln) > 0)
REPEAT
WAIT FOR SELF TO ConductRecovery(convoy, location, Destination);
END WAIT;
anotherTrip : = FALSE;
FindNode(location, MasterNodeList, Node);
wrecker := ASK convoy.AssetList First ();
REPEAT
IF((ASK wrecker.RecoveryLoad numberln) > 0);
WAIT FOR wrecker TO UnHook;
brokenAsset := ASK wrecker.RecoveryLoad TO Remove ();
END WAIT;
{got to unload cargo}
TELL Node.myMaintenance TO ReceiveWork (brokenAsset);
END IF;
wrecker := ASK convoy.AssetList Next (wrecker);
UNTIL (wrecker = NILOBI);
IF(convoy.returnRouteDist > Node.maxMilesAllowed)
WAIT DURATION Node.standDownTime
END WAIT;
END IF,
ReturnAssets(convoy);
IF((ASK newConvoy.AssetList numberin) > 0)

106

convoy := newConvoy;
anotherTrip : = TRUE;
END IF;
UNTIL (NOT anotherTrip);
END IF;
END METHOD {ScheduleRecovery};

}
TELL METHOD ConductRecovery (IN convoy : ConvoyObj;

IN origin : STRING;
IN destination : STRING);

{ }
VAR

asset : AssetObj;
newConvoy : ConvoyObj;
load : CargoObj;
Link : LinkObj;
Route,ReturnRoute : RouteObj;
routeDist, returnRouteDist, distance : REAL;
maxRange, MaxRange : REAL;
updatedOdometer, updstedFuelLevel : REAL;
timeElapsed,
mostTimeElapsed : REAL;
TravelTime : REAL;
anotherTrip : BOOLEAN;
BEGIN
FindShortestPath (MasterRouteList, origin, destination, Route);
FindShortestPath (MasterRouteList, destination, origin, ReturnRoute);
{Find total route distance}
Link := ASK Route.LinkRoute First ;
WHILE Link <> NILOBJ
routeDist : = routeDist + Link.distance;
Link := ASK Route.LinkRoute Next (Link);
END WHILE;
Link := ASK ReturnRoute.LinkRoute First ();
WHILE Link <> NILOBRJ
returnRouteDist : = returnRouteDist + Link distance;
Link : = ASK ReturnRoute.LinkRoute Next (Link);
END WHILE;
distance : = routeDist + returnRouteDist;
ASK convoy TO GetDistances(routeDist, remrnRouteDist);
WAIT FOR convoy TO Refuel (origin, MasterNodeList)
asset 1= ASK AssetList First);
REPEAT
maxRange : = asset.fuelCap * asset.fuelConsump;
IF(maxRange < MaxRange)
MaxRange : = maxRange;
END IF;
asset := ASK AssetList Next (asset);
UNTIL (asset = NILOBJ);
IF(MaxRange > distance)
ASK convoy TO NotRefuelDuringMsn;
END IF;
END WAIT;
WAIT FOR convoy TO Travel (destination, Route, MasterNodeList);
END WAIT;
{IF Fuelpoint avail, Refuel Assets}
IF (NOT convoy.fuelNotNeeded)
WAIT FOR convoy TO Refuel (destination, MasterNodeList)
END WAIT;
END IF;

107

WAIT FOR convoy TO Travel (destir.-tion, ReturnRoute, MasterNodeL.ist)
END WAIT;
WAIT FOR convoy TO PerformPMCS (origin, MasterNodeList);
END WATIT;
END METHOD {ConductRecovery},

{
ASK METHOD FindWrecker (IN Convoy : ConvoyObj;
IN RecoveryMission : RecoveryMissionObj);
{ }
VAR
wrecker : AssetObj;
found Wrecker : BOOLEAN;
VehTypeRecord : VehTypeRec;
BEGIN
foundWrecker : = FALSE;
wrecker := ASK AssetLint First);
IF(wrecker < > NILOBJ)
REPEAT
[F(wrecker.type = "RECOVERY")
ASK AssetList TO RemoveThis (wrecker);
FindAssetTypeRecord(wrecker.vehType, SELF. VehiclesRecord, VehTypeRecord);
ASK Convoy.AssetList TO Add (wrecker);
foundWrecker : = TRUE;

ELSE
wrecker : = ASK AssetList Next (wrecker);
END IF;
UNTILL ((wrecker = NILOBIJ) OR (found Wrecker));
IF(NOT foundWrecker)
ASK RecoveryMission TO Adjust (1);
ASK Recovery MissionList TO Add (RecoveryMission);
END IF;
ENDIF;
END METHOD {FindWrecker};

{ }

ASK METHOD CheckWreckersReturning (IN Convoy : ConvoyOb;j;
INOUT NewConvoy : ConvoyQbj);

{ }

VAR

asset : AssetObj;
recoveryMission : RecoveryMissionObj;
BEGIN
ssset : = ASK Convoy.Assetlist First Q;
REPEAT
recoveryMission : = ASK RecoveryMissionList First (;
REPEAT
IF(recoveryMission.numberToRecover > 0)
REPEAT
ASK Convoy.AssetList TO RemoveThis (asset);
ASK NewConvoy.AssetList TO Add (asset);
ASK recoveryMission TO Adjust (-1);
IF ((ASK Convoy.AssetList numverln) = 0)
asset := NILOBIJ;
ELSE
asset := ASK Convoy.AssetList Next (asset);
END IF;
ELSIF(asset < > NILOBJ))
recoveryMission : = ASK RecoveryMissionList Next (recoveryMission);
END IF;
UNTIL ((recoveryMission = NILOBJ) OR (asset = NILOBJ);

108

IF(asset <> NILOB))
asset : = ASK Convoy.AssetList Next (asset);
END IF;

UNTIL (asset = NILOBJ);
END METHOD {CheckReturmingWreckers};

{ }
TELL METHOD ReturnFixedAsset (IN fixed Asset : AssetObj);
{ }
VAR
convoy : ConvoyQbj;
Route : RouteObj;
VehTypeRecord : VehTypeRec;
Node : NodeObj;
load : CargoObj;
BEGIN
NEW(convoy);

IF(fixedAsset.home = SELF .location)

Find AssetTypeRecord(fixed Asset.vehType, SELF.VehiclesRecord, VehTypeRecord);
ASK VehTypeRecord TO GetRepaired;
ASK AssetList TO Add(fixed Asset);

ELSE
FindNode(fixed Asset.home, MasterNodeList, Node);
Finda etTypeRecord(fixedAsset.type, Node.myMotorpool.VehiclesRecord, VehTypeRecord);
ASK VehTypeRecord TO GetRepaired;
ASK convoy TO GetMissionType("Repair™. ocation, distBetweenConvoys, NOT wreckersConvoy, repairTime);
ASK convoy.AssetList TO Add(fixedAssei);
FindShortestPath (MasterRouteList, location, fixed Asset.home, Route);
WAIT FOR convoy TO Travel (fixed Asset.home, Route, MasterNodeL.ist);
END WAIT;
END IF;
END METHOD {ReturnFixedAsset};
{ }
TELL METHOD ReportStatus (IN MotorpoolReport : StreamObj);
{ }
VAR
vehicleRec : VehTypeRec;
BEGIN
ASK MotorpuriReport TO WriteString("%

ASK Motorpooikeport TO WriteLn;

ASK MotorpoolReport TO WriteString("*##*#*sSiatusfor * + name + " MOTORPOOL. Timeis " + REALTOSTR(SimTime());
ASK MotorpoolReport TO WriteLn;

vehicleRec := ASK VehiclesRecord.vehTypeRecList First ();

REPEAT

ASK MotorpoolReport TO WriteString("-—
ASK MotorpoolReport TO WriteLn;

ASK MotorpoolReport TO WriteString (" "

ASK MotorpoolReport TO WriteLn;

ASK MotorpoolReport TO WriteString("Total Assets are “ + INTTOSTR (vehicieRec tot. Assets));

ASK MotorpoolReport TO WriteLn;

ASK MotorpoolReport TO WriteString(*Total Committed is * + INTTOSTR (vehicleRec.totalCommitied));

ASK vehicleRec TO FindRates;

ASK MotorpoolReport TO WriteString(" Util Rate % is " 4+ REALTOSTR (vehicleRec.utilRate));

ASK MotorpoolReport TO WriteLn;

ASK MotorpoolReport TO WriteString("Total Availableis " + INTTOSTR (vehicleRec totalAvail));

ASK MotorpoolReport TO WriteString(® Avail Rate % is " 4+ REALTOSTR (vehicleRec.availRate));

ASK MotorpoolReport TO WriteLn;

ASK MotorpoolReport TO WriteString("Total Deadlinedis " + INTTOSTR (vehicleRec.totalAssets -

Vehicle Type is " + vehicleRec.vehType);

vehicleRec.total Avail));

ASK MotorpoolReport TO WriteLn;

109

ASK MotorpoolReport TO WriteString(* b bbbk iy H
ASK MotorpoolReport TO WriteLn;
vehicleRec := ASK VehiclecRecord.vehTypeRecList Next (vehicleRec);

UNTIL (vehicleRec = NILOBI);

END METHOD {ReportStatus};

}
TELL METHOD C.earConvoy (IN Convoy : ConvoyObj;

IN Route : RouteObj);
{

VAR

asset : AssetObj;
Link : LinkObj;
timeElapsed,
mostTimeElapsed : REAL;
TravelTime : REAL;
clearanceDist : REAL;
clearanceTime : REAL;
rate : REAL;
BEGIN
Link := ASK Route.LinkRoute First ();
asset := ASK AssetList First O;
TravelTime := 0.0;
REPEAT
timeElapsed := ASK Link distance/ASK asset rateOfTravel [Link.roadSurface, Link.terrain];
IF (timeElapsed > mostTimeElapsed)
TravelTime : = timeElapsed;
rate := ASK asset rateOfTravel[Link.roadSurface, Link.terrain];
END IF;
asset ;= ASK AssetList Next (asset);
UNTIL (asset = NiLOBJ);
clearanceDist : = (Convoy.totalLength + Convoy.distBetweenConvoys)/5280.0;
clearanceTime : = clearanceDist/rate;
WAIT DURATION clearanceTime
END WAIT;
END METHOD {ClearConvoy};

END OBJECT {MotorpoolObj};

END {IMPLEMENTATION} MODULE {motorpl}.

{ }
DEFINITION MODULE RECORDS;

{Records that are kept for each vehicle type are defined here}

FROM GrpMod IMPORT QueueObj;
FROM GLOBAL IMPORT NodeNameType;

TYPE
{If individual records are required for each asset, use following...
VehRecList = QueueObj;
VehRec = OBJECT {Individual vehicle Record}
bumperNumber : STRING;
miles : REAL;
otalMiles : REAL;
opHours : REAL;
totalOpHours : REAL;
committed : BOOLEAN;
deadlined : BOOLEAN;

ASK METHOD GetFields(IN BumperNumber : STRING);
ASK METHOD UpDate(IN MilesDriven : REAL;

110

IN OpHours : REAL);
ASK METHOD GetCommitted;
ASK METHOD ChangeDeadlinedStatus(IN Status : BOOLEAN);
ASK METHOD ResetFields;
END OBJECT {VehRec};}

VehTypeRec = OBJECT {All vehicles of a particular TYPE}
vehType : STRING;
miles : REAL;
totalMiles : REAL;
opHours : REAL;
totalOpHours : REAL;
totalAssets : INTEGER;
totalCommitted : INTEGER;
totalAvail : INTEGER;
shortTons : REAL;
totalShortTons : REAL;
numberOfPieces : INTEGER;
availRate : REAL;
utilRate : REAL;
{vehRecList : VehRecList; only needed if ind asset rec needed}

ASK METHOD Objlnit;
ASK METHOD GetFields(IN vehType : STRING;
IN totalAssets : INTEGER);

ASK METHOD GetCommitted;

ASK METHOD GetUncommitted;

ASK METHOD GetDeadlined;

ASK METHOD GetRepaired;

ASK METHOD UpDate (IN Miles : REAL;
IN Hours : REAL;
IN STons : REAL);

ASK METHOD Reset;

ASK METHOD FindRates;

END OBJECT {VehTypeRec);
VehTypeRecList = QueueOb;;

VehiclesRec = OBJECT(VehTypeRec); {All vehicles in transportation sys}
vehTypeRecList : VehTypeRecList;

OVERRIDE
ASK METHOD Objlnit;

END OBJECT{VehiclesRec};

END {DEFINITION} MODULE {records}.

IMPLEMENTATION MODULE RECORDS;

FROM GLOBAL IMPORT NodeNameType;

FROM Debug IMPORT TraceStream;
{For future development, if individual records are required...
OBIECT VehRec; {For each individual vehicle, M35A2, MS5A1...}

}
ASK METHOD QGetFields(IN BumperNumber : STRING);

{
BEGIN

bumperNumber : = BumperNumber;
END METHOD {GetFields};

{
ASK METHOD UpDate(IN MilesDriven : REAL;

111

IN OpHours : REAL);
{ }
BEGIN
miles := miles + MilesDriven;
totalMiles : = totalMiles + MilesDriven;
opHours := opHours + OpHours;
totalOpHours : = totalOpHours + OpHours;
END METHOD {UpDate};

]}
ASK METHOD GetCommitted;
{———}
BEGIN
committed := TRUE;
END METHOD {GetCommitted};

{ }
ASK METHOD ChangeDeadlinedStatus(IN Status : BOOLEAN);
{ }
BEGIN
deadlined : = Status;
END METHOD {ChangeDeadlinedStatus};

{——}
ASK METHOD ResetFields;
{3}
BEGIN
committed := FALSE;
miles := 0.0;
opHours := 0.0;
END METHOD {ResetFields};

END OBIECT {VehRec};}

OBJECT VehTypeRec; {For each type of vehicle, TRUCKS, TRACTORS...
1}
ASK METHOD Objlnit;
{—}
BEGIN
{NEW(vehRecList); use if you do have a record list for each}
END METHOD {Objinit};

{ }
ASK METHOD GetFields(IN VehType : STRING;
IN TotalAssets : INTEGER);
{ }
BEGIN
vehType : = VehType;
totalAssets : = TotalAssets;
totalAvail : = TotalAssets;
END METHOD {GetFields};

—}
ASK METHOD GetCommitted;
{———}
BEGIN
totalCommitted : = totalCommitted + 1I;
END METHOD {GetCommitted};

—}
ASK METHOD GetUncommitted;

112

{——————}
BEGIN

totalCommitted : = totalCommitted - 1;
END METHOD {GetUncommitted};

-}
ASK METHOD GetDeadlined;
e}
BEGIN

totalAvail := totalAvail - 1;
END METHOD {GetDeadlined};

f————)
ASK METHOD GetRepaired;
{————}
BEGIN

totalAvail : = totalAvail + 1;
END METHOD {GetRepaired};

{ }
ASK METHOD UpDate (IN Miles : REAL;
IN Hours : REAL;
IN STons : REAL);
{ }
BEGIN
miles := miles + Miles;
totalMiles := totalMiles + Miles;
opHours : = opHours + Hours;
totalOpHours : = totalOpHours + Hours;
shontTons := shortTons + STons;
totalShorfTons : = totalShortTons + STons;
availRate := FLOAT(total Avail)/FLOAT (total Assets);
utilRate : = FLOAT (totalCommitted)/FLOAT (total Assets);
END METHOD {UpDate};

{————1
ASK METHOD Reset;
{—————}
BEGIN
miles : = 0.0
opHours : = 0.0;
shortTons := 0.0;
totalCommitted : = 0;
totalAvail : = totalAssets;
END METHOD {Reset};

{—}

ASK METHOD FindRates;

{—}

BEGIN
availRate : = FLOAT(total Avail)/FLOAT (total Assets);
utilRate : = FLOAT (totalCommitted)/FLOAT (total Assets);
END METHOD {FindRates};

END OBJECT {VehTypeRec};
OBJECT VehiclesRec; {All msjor types of vehicles, SUM of everything}
{

ASK METHOD Objlnit;
]

113

BEGIN
NEW(vehTypeRecList);
END METHOD {Objlnit};

END OBJECT{VehiclesRec};
END {IMPLEMENTATION} MODULE {records}.

{ }

DEFINITION MODULE MAINT;
{All fields and methods of & maintenance facility are defined here}
FROM I0Mod IMPORT StreamObj;
FROM GLOBAL IMPORT NodeNameType, AseetTypeQueue, NodeTypeQueue, RouteTypeQueue;
FROM MOTORPL IMPORT MotorpoolObj;
FROM ASSET IMPORT AssetObj;

EXPORTTYPE
MaintenanceObj = OBJECT; FORWARD;
TYPE
MaintenanceObj = OBJECT
name : NodeNameType;
WorkList : AssetTypeQueue;
myMotorpool : MotorpoolObj;
MaintReport : StreamObj;

ASK METHOD Objlnit;
ASK METHOD GetName (IN MyName : STRING);
ASK METHOD GetMyMotorpool (IN Motorpool : MotorpoolObj);
TELL METHOD RecoverAssets (IN Location : STRING;

IN NumberToRecover : INTEGER);
TELL METHOD ReceiveWork (IN brokenAsset : AssetObj);
TELL METHOD Repair (IN brokenAsset : AssetObj);

END OBJECT {Msimenance};
END {DEFINITION} MODULE {maintenance}.

IMPLEMENTATION MODULE MAINT;
FROM IOMod IMPORT StreamObj, FileUseType(< -..iput);
FROM SimMod IMPORT SimTime;
FROM GLOBAL IMPORT NodeNameType, AssetTypeQueue, RouteTypeQueue, NodeTypeQueue;
FROM RGLOBAL IMPORT AssetOwnersSHArray, SHierRecType;
FROM FINDSH IMPORT FindSHRec;
FROM Debug IMPORT TraceStream;
FROM ASSET IMPORT AssetObj;
FROM CREATEA IMPORT CreateAsset;
FROM MOTORPL TMPORT MotorpoolObj;
FROM CONVOY IMPORT ConvoyObj;
FROM ROUTE IMPORT RouteObj;

OBJECT MaintenanceObj;
{——}
ASK METHOD Objlnit;
{-————}
BEGIN
NEW(WorkList);
NEWMaintReport);
ASK MaintReport TO Open ("Maint.rpt®, Output);
END METHOD {Objlnit};

114

{ }
ASK METHOD GetName (IN MyName : STRING);
{ }
BEGIN
name := MyName;
END METHOD {GetName};

{ }

ASK METHOD GetMyMotorpool (IN Motorpool :MotorpoolOb;);
{
BEGIN

myMotorpool := Motorpool;
END METHOD {GetMyMotorpool};

{ }
TELL METHOD RecoverAssets (IN Location : STRING;
IN NumberToRecover : INTEGER);
{ }
VAR
brokenAsset : AssetObj;
convoy, newConvoy : ConvoyObj;
RouteList : RouteObj;
anotherTrip : BOOLEAN;
BEGIN
TELL myMotorpool TO SchedRecovery (Location, NumberToRecover);
END METHOD {RecoverAssets};

{ }

TELL METHOD ReceiveWork (IN brokenAsset : AssetObj);

{ }

BEGIN

ASK MaintReport TO WriteString("Maint * + name + " received " + brokenAsset.bumperNumber + * at " +
REALTOSTR(SimTime()));

ASK MaintReport TO WriteLn;

ASK MaintReport TO WriteLn;

WAIT FOR SELF TO Repair(brokenAsset)

END WAIT;

ASK MaintReport TO WriteString("MAINT " + name + " RELEASED " + brokenAsset.bumperNumber + * at " +
REALTOSTR(SimTime());

ASK MaintReport TO WriteLn;

ASK MaintReport TO WriteLn;

END METHOD {ReceiveWork};

3
TELL METHOD Repair (IN brokenAsset : AssetObj);
{ }
VAR
repairTime : REAL;
BEGIN
repairTime : = brokenAsset.adminLogTime + (brokenAsset.maintManHours * brokenAsset.odometer);
WAIT DURATION repairTime
END WAIT;
ASK brokenAsset TO ResetOdometer;
TELL myMotorpool TO ReturnFixed Asset(brokenAsset);
{vend asset back}
END METHOD {Repair};

END OBJECT {Maintenance};

END {IMPLEMENTATION} MODULE {maint}.

115

{ s }

DEFINITION MODULE SUPPLY;
{Methods and fields for supply points are defined here, to include checking stock, resupplying, loading, unloading and receiving
supplies}

FROM IOMod IMPORT StreamObj;

FROM GrpMod IMPORT QueueObj;

FROM ResMod IMPORT ResourceObj;

FROM GLOBAL IMPORT AssetTypeQueue, NodeNameType, CargoTypeQueue, SupplyClassType,

SupplyRecordTypeQueue, RequestTypeQueue, ConsumerQueue;

FROM RGLOBAL IMPORT SHierRecType;

FROM SUPREC IMPORT SupplyRecordObj;

FROM REQUEST IMPORT RequestObj;

FROM MOTORPL IMPORT MotorpoolObj;

FROM CARGO IMPORT CargoObj;

EXPORTTYPE
SupplyObj = OBIECT; FORWARD;
TYPE

SupplyPointQueue = ResourceObj;
MaterislHandlingEquipmentQueue = ResourceObj;
ConvoyTypeQueue = QueueObj;
SupplyPointsQueue = QueueObj;

SupplyPointObj = OBJECT
MHE : MaterialHandlingEquipmentQueue;
ASK METHOD Objlnit;

END OBJECT {SupplyPointObj};

SupplyObj = OBJECT
name : NodeNameType;
location : STRING;
myMotorpool : MotorpoolObj;
mySupplySource : SupplyObj;
inventory : CargoTypeQueue;
supplyRecords : SupplyRecordTypeQueue;
waiting : CargoTypeQueue;
loadTime : REAL;
unloadTime : REAL;
cargoToLoad : CargoTypeQueue;
timeToCheckStock : REAL;
numberOfReceivers : INTEGER;
numberOfLoaders : INTEGER;
numberOfMHE : INTEGER,;
receivingPoimsQueue : SupplyPointQueue;
loadingPointsQueue : SupplyPointQueue;
ReceivingPoints : SupplyPointsQueue;
LoadingPoints : SupplyPointsQueue;
convoyQueue : ConvoyTypeQueue;

ASK METHOD Objlnit;
ASK METHOD GetName (IN MyName : STRING);
ASK METHOD Adjustinventory (IN supplyltem : CargoObj;
IN amount : REAL);
ASK METHOD GetMyMotorpool(IN Motorpool : MotorpoolObj);
ASK METHOD GetFields (IN Name : STRING),
ASK METHOD GetConsumptionRates(IN Consumers : ConsumerQueue);
ASK METHOD GetMotorpool(IN Motorpool : MotorpoolObj);
ASK METHOD GetSupplyRecord(IN itemName : STRING;
IN SupplyClass : STRING;

116

OUT Record : SupplyRecordObj;
IN nonseparable : BOOLEAN);
ASK METHOD GetSupplySource (IN SupplySource : SupplyOb;);
TELL METHOD PrepareToStartSupply(IN dayToEndConsuming : INTEGER);
TELL METHOD Resupply (IN RequestList : RequestTypeQueue);
TELL METHOD Collectitems (IN RequestList : RequestTypeQueue);
TELL METHOD CheckStock;
TELL METHOD ReceiveSupplies (IN AssetList : AssetTypeQueue;
IN priority : REAL;
IN ReceivingPt : SupplyPointObj);
TELL METHOD LoadSupplies (IN AssetList : AssetTypeQueue;
IN priority : REAL;
IN LoadingPoint : SupplyPointObj);

ASK METHOD Admitltem (IN SupplyRecord : SupplyRecordObj;
IN cargo : CargoObj);
TELL METHOD ReportStatus (IN SupplyReport : StreamObj);

END OBJECT {Supply};

EconomyObj = OBJECT (SupplyObj);
OVERRIDE

TELL METHOD Resupply (IN RequestList : RequestTypeQueue);
END OBJECT {Economy};

END {DEFINITION} MODULE {supply}.

IMPLEMENTATION MODULE SUPPLY;
FROM SimMod IMPORT SimTime;
FROM JOMod IMPORT StreamObj;
FROM GLOBAL IMPORT NodeNameType, CargoTypeQueue, AssetTypeQueue, SupplyClassType,
SupplyRecordTypeQueue, RequestTypeQueue, ConsumerQueue, DisposeOfQueue;
FROM RGLOBAL IMPORT SHierRecType,SupplySHArray;
FROM FINDSH IMPORT FindSHRec;
FROM ASSET IMPORT AssetObj;
FROM CARGO IMPORT CargoObj;
FROM FINDSUP IMPORT FindCargo, Findltern, FillRequest, FindRec;
FROM SUPREC IMPORT SupplyRecordObj;
FROM DISPREQ IMPORT DisposeRequestTypeQueue;
FROM REQUEST IMPORT RequestObj;
FROM Debug IMPORT TraceStream;
FROM MOTORPL IMPORT MotorpoolObj;
FROM UNITS IMPORT ConsumerObj;

OBJECT SupplyPointObj;
{———}
ASK METHOD Objlnit;
{———}
BEGIN
NEW(MHE);
END METHOD {Objinit};

END OBJECT {SupplyPointObj};

OBJECT SupplyObj;
{—
ASK METHOD Objlnit;
{———}
BEGIN
NEW(nventory);
NEW(supplyRecords);

117

NEW(waiting);
NEW(receivingPointsQueue);
NEW (loadingPointsQueue);
NEW(ReceivingPoints);
NEW(LoadingPoints);
NEW(convoyQueue);

END METHOD {Objlnit};

{ }

ASK METHOD GetName (IN MyName : STRING);

{

BEGIN

name := MyName,
END METHOD {GetName};

}
ASK METHOD Adjustinventory (IN supplyltem : CargoObj;
IN amount : REAL);
{ }
BEGIN
IF(supplyltem.nonseparable)
ASK inventory TO Add (supplyltem);

ELSE

ASK supplyltem TO ChangeWeight(amount);
END IF;
END METHOD {Adjustinventory};

}
ASK METHOD GetMyMotorpool (IN Motorpool :MotorpoolObj);
{ }
BEGIN
myMotorpool := Motorpool;
END METHOD {GetMyMotorpool};

}
ASK METHOD GetFields(IN Name : STRING);

{ }
VAR

SupplyRecord : SupplyRecordObj;
supplyClass : SupplyClassType;
methodOfResupply : STRING;
i, j, daysOSupply : INTEGER;
stocklvl, upperivl, priority : REAL;
cargo : CargoObj;
SupplySHRec : SHierRecType;
ReceivingPoint : SupplyPointObj;
LoadingPoint : SupplyPointObj;
BEGIN
FindSHRec(SupplySHArray, Name, SupplySHRec);
location : = Name;

Jﬁ n:']}(;CheckStock := STRTOREAL(SupplySHRec.OwnedString(j]);
b Oocsivers = STRTOINT (SupplySHRec.OwnedString(j));
:::igl;:omdm := STRTOINT(SupplySHRec.OwnedString(j]);
;.:zg:;ONHE := STRTOINT (SupplySHRec.OwnedString[j});
gﬁgﬂ ;= STRTOREAL(SupplySHRec OwnedString(j]);

CG);

118

unloadTime := STRTOREAL(SupplySHRec.OwnedString(jl);
INC(G);

ASK receivingPointsQueue TO Create(numberOfReceivers);

FOR i := 1 TO numberOfReceivers
NEW(ReceivingPoint);
ASK ReceivingPoint. MHE TO Create (numberOfMHE);
ASK ReceivingPoints TO Add (ReceivingPoint);

END FOR;

ASK loadingPointsQueue TO Create(numberOfLoaders);

FOR i := | TO numberOfLoaders
NEW (LoadingPoint);
ASK LoadingPoint. MHE TO Create (numberOfMHE);
ASK LoadingPoints TO Add (LoadingPoint);

END FOR;

REPEAT
NEW(SupplyRecord);
NEW(cargo);
supplyClass : = SupplySHRec.OwnedString{jl;
INCG);
methodOfResupply := SupplySHRec.OwnedString(j}; INCG);
priority := STRTOREAL(SupplySHRec.OwnedString[jl};
INCG);
stocklv] : = STRTOREAL (SupplySHRec.OwnedString(j]);
INC(); .
daysOSupply := STRTOINT(SupplySHRec.OwnedString(j]);
INCG);
upperivl := STRTOREAL(SupplySHRec.OwnedString(jl);
INCG);
ASK SupplyRecord TO GetFields (supplyClass, stocklvl, daysOSupply, upperlvl, FALSE);
ASK supplyRecords TO Add (SupplyRecord);
ASK cargo TO GetSupplyFields (supplyClass, stocklvl, 0.0, methodOfResupply, priority , FALSE);
ASK inventory TO Add (cargo);
Ui ITIL(SupplySHRec.OwnedString(j} = “EOF");

END METHOD {GetFields};

{
ASK METHOD GetConsumptionRates(IN Consumers : ConsumerQueue);

{ }
VAR

consumer : ConsumerObj;
OutRec : SupplyRecordObj;
BEGIN
consumer : = ASK Consumers First();
REPEAT
FindRec(consumer.name, supplyRecords, OutRec);
IF(OutRec = NILOB))
ASK TraceStream TO WriteString(Mistake, should have been a record matching consumer
SupplyRecord *);
ASK TraceStream TO WriteLn;
ELSE

ASK OutRec TO GetConsumptionRate (consumer.dailyConsumption);
END IF;
consumer := ASK Consumers Next(consumer);
UNTIL(consumer = NILOBIJ);
END METHOD {GetConsumptionRates};

119

with

}

ASK METHOD GetMotorpool(IN Motorpool : MotorpoolObj);
{
BEGIN

myMotorpool : = Motorpool;
END METHOD {GetMotorpool};

{ }
ASK METHOD GetSupplyRecord(IN itemName : STRING;

IN SupplyClass : STRING;
OUT Record : SupplyRecordObj;
IN nonseparable : BOOLEAN);

{ }
VAR

supplyClass : SupplyClassType;
daysOSupply : INTEGER;
stockivl, upperivl : REAL;

BEGIN

NEW(Record);

supplyClass : = SupplyClass,

stockivl := 0.0;

daysOSupply := 0,

upperivl := 0.0;

ASK Record TO GetFields (supplyClass, stocklvl, daysOSupply, upperlvl, nonseparable);

END METHOD {GetSupplyRecord};

{ }

ASK METHOD GetSuppltySource (IN SupplySource : SupplyObj);
{ }

BEGIN

mySupplySource : = SupplySource;
END METHOD {GetSupplySource};

}
TELL METHOD PrepareToStartSupply(IN dayToEndConsuming : INTEGER);
{ }
VAR
i : INTEGER;
ResupplyList : RequestTypeQueue;
SupplyRec : SupplyRecordObj;
twentyFourHours : REAL;
BEGIN
twentyFourHours := 24.0;
FOR i := 1 TO dayToEndConsuming
TELL SELF TO CheckStock IN (twentyFourHours + timeToCheckStock);
twentyFourHours : = twentyFourHours + 24.0;
END FOR;
END METHOD {PrepareToSurtSupply};

}
TELL METHOD Resupply (IN RequestList : RequestTypeQueue);
{ }
VAR

request : RequestObj;
cargoToLoad : CargoTypeQueue;
BEGIN
WAIT FOR SELF TO Collectitems(RequestList);
ON INTERRUPT TERMINATE;
END WAIT;
DisposeOfQueue(RequestList),
END METHOD {Resupply};

120

{ }
TELL METHOD Collectltemns (IN RequestList : RequestTypeQueue);
{)

VAR
Request,CloneRequest, AwaitedRequest : RequestObj;
CargoToLoad, RestToLoad : CargoTypeQueue;
SupplyRequestList, AwaitingRequestList : RequestTypeQueue;
OutRec : SupplyRecordObj;
goodltem : BOOLEAN;
itemName, Requestor : STRING;
cargo : CargoObj;
lefiToFill : REAL;

BEGIN

NEW(SupplyRequestList);

NEW(AwaitingRequestList);

NEW(CargoToload);

Request : = ASK RequestList First(Q);
Requestor : = Request.requestor;
REPEAT
itemName := Request.item;
FindRec(itemName, supplyRecords, OutRec);
IF(OutRec = NILORJ)
{ASK SELF TO GetSupplyRecord(itemName,0.0,0.0,0.0, FALSE);
NEW(CloneRequest);
ASK SupplyRequestList TO Add (CloneRequest);
CloneRequest : = CLONE(Request);
ASK AwiitingRequestList TO Add (CloneRequest); }
ELSE
gooditem := FALSE;
FindCargo(OutRec, inventory, cargo, Request.amountReq,
1eftToFill);
FillRequest(SELF.name, Request.requestor, OutRec, cargo, CargoToLoad, SupplyRequestList, AwsitingRequesti i,
leftToFill);
END IF;
Request := ASK RequestList Next(Request);
UNTIL(Request = NILOBJ);
IF(ASK CargoToLoad numberln > 0)
TELL myMotorpoot TO ScheduleMission(Requestor, CargoToLoad, NILOBIJ);
END IF;
IF(ASK SupplyRequestList numberin > 0)
WAIT FOR mySupplySource TO Resupply(SupplyRequestList)
ON INTERRUPT
TERMINATE;
END WAIT;
NEW(RestTolLoad);
AwsitedRequest : = ASK AwaitingRequestList First();
WHILE(AwaitedRequest < > NILOBIJ);
itemName := AwaitedRequest.item;
FindRec(itemName, supplyRecords, OutRec);
IF OutRec = NILOBJ
ASK TraceStream TO WriteString("item not found”);
ENDIF,;
FindCargo(OutRec, inventory, cargo, AwaitedRequest.amountReq,
feftToFill);
IF cargo = NILOBJ
ASK TraceStream TO WriteString("should have been cargo”);
ELSE
ASK RestToLoad TO Add (cargo);
END IF;
AwaitedRequest : = ASK AwaitingRequestList Next(AwaitedRequest);
END WHILE;

121

TELL myMotorpool TO ScheduleMission(Requestor, RestTolLoad, NILOB. ;
END IF;
DisposeOfQueue(SupplyRequestList);
DisposeOfQueue(AwaitingRequestList);
DisposeOfQueue(CargoToload);
DisposeOfQueue(RestToLoad);
END METHOD {Collectitems};

frrrr o)

TELL METHOD CheckStock;
fr e}
VAR

Record : SupplyRecordObj;
RequestList : RequestTypeQueue;
Request : RequestOb;;
amount : REAL;
BEGIN
NEW(RequestList);
Record := ASK supplyRecords First ();
REPEAT
IF(Record.stockLevel < = (Record.dailyConsumption*
FLOAT(Record.daysOfSupply))) AND (Record.upperLevel -
Record .stockLevel - Record.onOrder > 0.0)
smoumt : = Record.upperLevel - Record .stockLevel -
Record.onOrder;
NEW(Request);
ASK Request TO GetFields (Record.supplyClass, amount, SFLF .location);
ASK RequestLint TO Add(Request);
END IF;
Record := ASK supplyRecords Next(Record);
UNTIL(Record = NILOBI);
IF(RequestList < > NILOBJ)
IF(ASK RequestList numberln > 0)
TELL mySupplySource TO Resupply(RequestList);
END IF;
ENDIF;
Dispose OfQueus(RequestList);
END METHOD {CheckStock});

{ }

TELL METHOD ReceiveSupplies (IN AssetList : AssetTypeQueue;
IN priority : REAL,;

IN ReceivingPoint : SupplyPointObj);

asset : AssetObj;
OutRec : SupplyRecordObj;
item : CargoObj;
MHEused : INTEGER;
BEGIN
MHEused : = 0;
asset 1= ASK Asseilint Firm ();
REPEAT
WAIT FOR ReceivingPoint. MHF TO Give (SELF, I);
INC(MHEused);
WHILE (ASK asset.cargoHold numberln > 0)
item := ASK asset.cargoHold TO Remove (;
FindRec(item.classOfSupply, supplyRecords, OutRec);
IF(OutRec = NILOBI))

GetSupplyRecord(item.classOfSupply, item.classOfSupply, OutRec, TRUE);

ASK supplyRecords TO Add(OutRec);

122

END IF;
WAIT FOR asset TO UnloadCargo (0.0, item.weight, item.length);
END WAIT;
IF(OutRec < > NILOBIJ)
Admitltem(OutRec, item);
ELSE
ASK TraceStream TO WriteString("Got a NILORJ for OUTREC! *);
ASK TraceStream TO WriteLn;
END IF;
END WHILE;
IF(MHEused > = ReceivingPoint. MHE MaxResources)
WAIT DURATION unloadTime

END WAIT;
ASK ReceivingPoint. MHE TO TakeBack(SELF, MHEused);
MHEused := 0;
END IF;
END WAIT;

asset "= ASK AssetList Next (asset);

UNTIL (asset = NILOBD);

IF((MHEused < ReceivingPoint. MHE . MaxResources) AND (MHEused < > 0))
WAIT DURATION unioadTime
END WAIT;
ASK ReceivingPoint. MHE TO TakeBack(SELF, MHEused);

END IF;

END METHOD {ReceiveSupplies};

{ }
TELL METHOD LoadSupplies (IN AssetList : AssetTypeQueue;
IN priority : REAL;
IN LoadingPoint : SupplyPointObj);
}

{
VAR
asset : AssetObj;
MHEused : INTEGER,;
BEGIN
MHEused := 0,
asset .= ASK AssetList First (;
REPEAT
WAIT FOR LoadingPoint. MHE TO Give (SELF, 1);
INC(MHEused);
IF(MHEused > = LoadingPoint. MHE.MaxResources)
WAIT DURATION loadTime

END WAIT;
. ASK LoadingPoint. MHE TO TakeBack(SELF, MHEused);
MHEused := 0;
END IF;
END WAIT;

asset 1= ASK AssetList Next (asset);
UNTIL (asset = NILOBJ);
IF((MHEused < LoadingPoint. MHE.MaxResources) AND (MHEused < > 0))
WAIT DURATION loadTime
END WAIT;
ASK LoadingPoint. MH= TO TakeBack(SELF, MHEused);
END IF;
END METHOD {LoadSupplies};

{ }

ASK METHOD Admitltem (IN SupplyRecord : SupplyRecordObj;
IN cargo : CargoOb;j);

{ }

VAR

123

supplyltem : CargoObj;
BEGIN
Findltem(ASK cargo classOfSupply, inventory, supplyltem);
IF(supplyltem = NILOBJ)

ASK inventory TO Add(cargo);
ELSE

ASK SELF TO Adjustinventory(supplyltem, cargo.weight);
END IF;
ASK SupplyRecord TO Adjust(cargo.weight, cargo.nonseparable);
DISPOSE(cargo);
END METHOD {Admitltem};

}
TELL METHOD ReportStatus (IN SupplyReport : StreamOb;);

{ }
VAR

SupplyRec : SupplyRecordObj;
BEGIN
ASK SupplyReport TO WriteString("%
ASK SupplyReport TO WriteLn;
ASK SupplyReport TO WriteString("******$Status for " + name + " SUPPLY POINT. Time is * + REALTOSTR(SimTime()));
ASK SupplyReport TO WriteLn;

SupplyRec : = ASK supplyRecords First ();
REPEAT
ASK SupplyReport TO WriteString("—~——————Record for " + SupplyRec.supplyClass);
ASK SupplyReport TO WriteLn;
ASK SupplyReport TO WriteString("-———-—-—-");
ASK SupplyReport TO WriteLn;
IF SupplyRec.nonSeparable
ASK SupplyReport TO WriteString("number on hand is " + INTTOSTR (TRUNC(SupplyRec.stockLevel)));
ASK SupplyReport TO WriteLn;
ASK SupplyReport TO WriteString();
ASK SupplyReport TO WriteLn;
ELSE
ASK SupplyReport TO WriteString(“stock level is * + REALTOSTR (SupplyRec.stockLevah);
ASK SupplyReport TO WriteLn;
ASK SupplyReport TO WriteString("days of supply is * + INTTOSTR (SupplyRec.daysOfSupply));
ASK SupplyReport TO WriteLn;
ASK SupplyReport TO WriteString(“upper level is * + REALTOSTR (SupplyRec.upperLevel));
ASK SupplyReport TO WriteLn;
ASK SupplyReport TO WriteString("daily consumptionis * + REALTOSTR (SupplyRec.dailyConsumption));
ASK SupplyReport TO WriteLn;

ASK SupplyReport TO WriteString("on order is * + REALTOSTR (SupplyRec.onOrder));
ASK SupplyReport TO WriteLn;

ASK SupplyReport TO WriteStri: ;("%

ASK SupplyReport TO WriteLn;

END IF;

SupplyRec := ASK supplyRecords Next (SupplyRec);
UNTIL (SuppiyRec = NILOBJ);
END METHOD {ReportStatus};
END OBJECT {Supply};

OBJECT EconomyObj;

)
TELL METHOD Resupply (IN RequestList : RequestTypeQueue);

{
VAR

Request : RequestOb;);
OutRec : SupplyRecordObj;

124

itemName : STRING;
cargo, separatedCargo : CargoObj;
BEGIN
Request := ASK RequestList First();
REPEAT
itemName : = Request.item;
FindRec(itemName, supplyRecords, OutRec);
IF(OutRec = NILOBJ)
ASK SELF TO GetSupplyRecord(itemName,0.0,0.0,0.0);
ELSE
Findltem(itemName, inventory, cargo);
ASK cargo TO SeparateCargo (Request.amountReq, separatedCargo);
ASK OutRec TO Adjust (-(Request.amountReq), FALSE);
END IF;
FindNode(Request.requestor, Node);
ASK Node.mySupply TO Admit (separatedCargo);
Request := ASK RequestList Next(Request);
UNTIL(Request = NILOBJ);

END METHOD {Resupply};

—

TELL METHOD CheckStock;
{(——————}

VAR

Record : SupplyRecordObj;
RequestList : RequestTypeQueue;
Request : RequestObj;
amount : REAL;
BEGIN
NEW(RequestList);
Record := ASK supplyRecords First ();
REPEAT
IF(Record.stockLevel < = (Record.dailyConsumption *
FLOAT(Record.daysOfSupply))) AND (Record.upperLeve! -
Record.stockLevel - Record.onOrder > 0.0)
amount := Record.upperLevel - Record.stockLevel -
Record.onOrder;
END IF;
Record := ASK supp’sRecords Next(Record);
UNTIL(Record = NILOBJ);
END METHOD {CheckStock};

END OBJECT {Economy};
END {IMPLEMENTATION} MODULE {supply}.

{ }

DEFINITION MODULE SUPREC;
{Supply records for each supply point are defined here}

FROM GLOBAL IMPORT RequestTypeQueue, SupplyClassType;

TYPE
SupplyRecordObj = OBJECT
supplyClass : SupplyClassType; {CL1...CL9, Supply Class}
stockLevel : REAL;
daysOfSupply : INTEGER;
upperLevel . REAL;
dailyConsumption : REAL;

125

onOrder : REAL;
nonSeparsble : BOOLEAN;

ASK METHOD GetFields(IN class : SupplyClassType;
IN stockL : REAL;
IN daysOS : INTEGER,
IN upperL : REAL;
IN nonseparable : BOOLEAN);
ASK METHOD GetConsumptionRate(IN ConsumptionRate : REAL);
ASK METHOD Adjust (IN Adjustment : REAL;
IN nonseparable : BOOLEAN);
END OBJECT {SupplyRecord};

END {DEFINITION} MODULE {suprec}.

IMPLEMENTATION MODULE SUPREC;
FROM Debug IMPORT TraceStream;
FROM GLOBAL IMPORT SupplyClassType, RequestTypeQueue;
FROM REQUEST IMPORT RequestObj;

OBJECT SupplyRecordObj;

ASK METHOD GetFields(IN SupplyClass : SupplyClassType;
IN StockLevel : REAL;
IN DaysOfSupply : INTEGER;
IN UpperLevel : REAL;
IN NonSeparable : BOOLEAN);

{ }
BEGIN

supplyClass : = SupplyClass;

stockLevel : = StockLevel;

daysOfSupply : = DaysOfSupply;

upperLevel : = UpperLevel;

nonSeparable : = NonSeparable;
END METHOD;

{ }
ASK METHOD GetConsumptionRate(IN ConsumptionRate : REAL);
{
BEGIN

dailyConsumption : = ConsumptionRate;
END METHOD {GetConsumptionRate};

}
ASK METHOD Adjust(IN Adjustment : REAL;
IN nonseparabie : BOOLEAN);

{ }
VAR

short : REAL;
BEGIN
IF(nonseparable)
stockLevel : = stockLevel + (Adjustment/Adjustment);
ELSE
stockLevel : = stockLevel + Adjustment;
ENDIF;
END METHOD {Adjust};

END OBIECT {SupplyRecord};

END {IMPLEMENTATION} MODULE {suprec}.

126

{ e }

DEFINITION MODULE FINDSUP;
{Contains procedures that necessary in the normal activities of a supply point}
FROM GLOBAL IMPORT CargoTypeQueue, RequestTypeQueue, SnpplyRecordTypeQueue;
FROM CARGO IMPORT CargoObj;
FROM SUPREC IMPORT SupplyRecordObj;
FROM REQUEST IMPORT RequestObj;
FROM RECORDS IMPORT VehiclesRec, VehTypeRec;

{
PROCEDURE FindCargo(IN SupplyRecord : SupplyRecordObj;
IN inventory : CargoTypeQueue;

OUT cargo : CargoObj;
IN amountReq : REAL;
OUT leftToFill : REAL);

{ }

{ }
PROCEDURE Findltem(IN itemName : STRING;
IN inventory : CargoTypeQueue;
OUT item : CargoObj);
{ }
{ }
PROCEDURE FillRequest(IN Supply : STRING;
IN Requestor : STRING;
IN SupplyRecord : SupplyRecordObj;
IN cargo : CargoObj;
INOUT cargoToMove : CargoTypeQueue;
INOUT RequestList : RequestTypeQueue;
INOUT AwaitingList : RequestTypeQueue;
IN lefiToFill : REAL);
{ }
{ }
PROCEDURE FindRec(IN itemName : STRING;
IN SupplyRecords : SupplyRecordTypeQueue;
OUT OutRec : SupplyRecordObj);
{ }
}

{
PROCEDURE FindAssetTypeRecord (IN TypeOfAsset : STRING;
IN AssetsRecord : VehiciesRec;
OUT AssetTypeRec : VehTypeRec);
}

{

END {DEFINITION) MODULE {findsup}.

IMPLEMENTATION MODULE FINDSUP;
FROM Debug IMPORT TraceStream;
FROM GLOBAL IMPORT CargoTypeQueue, RequestTypeQueue, SupplyRecordTypeQueue;
FROM CARGO IMPORT CargoObj;
FROM SUPREC IMPORT SupplyRecordObj;
FROM SUPPLY IMPORT SupplyObj;
FROM REQUEST IMPORT RequestObj;
FROM RECORDS IMPORT VehiclesRec, VehTypeRec;

{ }
PROCEDURE FindCargo(IN SupplyRecord : SupplyRecordObj;
IN inventory : CargoTypeQueue;
OUT cargo : CargoObj;
IN amountReq : REAL;
OUT JefiToFill : REAL);

127

VAR
item : CargoObj;
found : BOOLEAN;
name : STRING;
amount : REAL;
BEGIN
item := ASK inventory First (;
found := FALSE;
REPEAT
IF (item = NILORBJ)
EXIT;
END IF;
name := ASK item classOfSupply;
IF (SupplyRecord .supplyClass = name)
found := TRUE;
ELSE
item := ASK inventory Next (item);
END IF;
UNTIL (item = NILOBJ) OR (found);
IF (item = NILOBJ)

cargo := NILOBJ;
ELSE
IF (SupplyRecord.stockLevel > amountReq)
ASK item TO SeparateCargo (amountReq, cargo);
ASK SupplyRecord TO Adjust (-amountReq, FALSE);
ELSIF (SupplyRecord.stockLevel > 0.0)
smount := amountReq - SupplyRecord.stockLevel;
ASK item TO SeparateCargo (amount, cargo);
ASK SupplyRecord TO Adjust (-amount, FALSE);
lefiToFill := amountReq - amount;
ELSE
cargo := NILOBRJ;
leftToFill := amountReq;
END IF;
END IF;
END PROCEDURE {FindCargo};

{ }
PROCEDURE Findltem(IN itemName : STRING;

IN inventory : CargoTypeQueue;
OUT item : CargoObj);

{ }

VAR

found : BOOLEAN;
BEGIN
item := ASK inventory First (;
found := FALSE;
REPEAT
IF (item = NILOBJ)
EXIT;
END IF;
IF ((ASK item classOfSupply) = itemName)
found := TRUE;
ELSE
item := ASK inventory Next (item);
END IF;
UNTIL (item = NILORBJ) OR (found);
END PROCEDURE {Finditem};

}
PROCEDURE FillRequest(IN Supply : STRING;

128

IN Requestor : STRING;

IN SupplyRecord : SupplyRecordObj;

IN cargo : CargoObj;

INOUT cargoToMove : CargoTypeQueue;
INOUT RequestList : RequestTypeQueue;
INOUT AwaitingList : RequestTypeQueue;
IN lefiToFill : REAL);

{ }
VAR

Request,copyRequest : RequestObj;
item : STRING;
amountReq : REAL;
BEGIN
IF(SupplyRecord = NILOBJ)
ASK TraceStream TO WriteString("Called Fill Request with a NILOBJ Record");
ASK TraceStream TO WriteLa;
ENDIF;
IF(cargo < > NILOBJ)
ASK cargoToMove TO Add(cargo);
ELSE
NEW(Request);
item : = SupplyRecord.supplyClass;
amountReq := leftToFill;
ASK Request TO GetFields(item,amountReq,Supply);
ASK RequestList TO Add(Request);
NEW(copyRequest);
item := SupplyRecord.eupplyClass;
amountReq : = leftToFill;
ASK copyRequest TO GetFields(item,amountReq,Requestor);
ASK AwaitingList TO Add(copyRequest);
END IF;
END PROCEDURE ({FillRequest};

{ }
PROCEDURE FindRec(IN itemName : STRING;

IN SupplyRecords : SupplyRecordTypeQueue;
OUT OutRec : SupplyRecordObj);
}

{
VAR
name : STRING;
notFound : BOOLEAN;
rec : SupplyRecordObj;
BEGIN
rec := ASK SupplyRecords First ();
notFound : = TRUE;
REPEAT
IF (rec <> NILOBJ)
name := cec.supplyClass;
END IF;
IF (name = itemName)
notFound : = FALSE;
ELSE
rec := ASK SupplyRecords Next (rec);
END IF;
UNTIL (rec = NILOBJ) OR (NOT notFound);
OutRec : = rec;
END PROCEDURE {FindRec};

}
PROCEDURE FindAssetTypeRecord (IN TypeOfAsset : STRING;
IN AssetsRecord : VehiclesRec;

129

OUT AssetTypeRec : VehTypeRec);
}

{
VAR

foundlt : BOOLEAN;
BEGIN
AssetTypeRec := ASK AssetsRecord.vehTypeRecList First ();
REPEAT
IF(AssetTypeRec.vehType = TypeOfAsset)
foundlt := TRUE;
ELSE
AssetTypeRec : = ASK AssetsRecord.vehTypeRecList Next (AssetTypeRec);
END [F;
UNTIL((AssetTypeRec = NILOBIJ) OR (foundlt));
IF(NOT foundlt)
ASK TraceStream TO WriteString("****COULD NOT FIND CORRECT ASSET TYPE RECORD!");
ASK TraceStream TO WriteLn;
END IF;
END PROCEDURE {FindAssetRecord};

END {IMPLEMENTATION} MODULE {findsup}.

{ }

DEFINITION MODULE REQUEST;
{Supply points that have shortages in their inventories use this object to request a resupply from their supply sources}

TYPE
RequestObj = OBJECT
item : STRING;
amountReq : REAL;
requestor : STRING; {Name of Node}

ASK METHOD GetFields (IN itemName : STRING;
IN amount : REAL;
IN requestor : STRING);
END OBJECT {RequestObj};
END {DEFINITION} MODULE {request}.
IMPLEMENTATION MODULE REQUEST;
OBJECT RequestOb;j;

{

}
ASK METHOD GetFields (IN Item : STRING;
IN AmountReq : REAL;
IN Requestor : STRING);
{ }
BEGIN
item := ltem;
smountReq := AmountReq;
requestor : = Requestor;
END METHOD {GetFields};

END OBJECT {RequestObj};

END {IMPLEMENTATION} MODULE {request}.

{ *}

DEFINITION MODULE FUELPT;

130

{All fields and methods of a fuelpoint are defined here}
FROM ResMod IMPORT ResourceObj;
FROM GLOBAL IMPORT NodeNameType,CargoTypeQueue;

TYPE
FuelPumpQueue = ResourceOb;j;

FuelpointObj = OBJECT
name : NodeNameType;

fuelLevel : REAL;
fuelCap : REAL;
shortageLevel : REAL;
refuelTime : REAL;
numberOfPumps : INTEGER;
FuelPumps : FuelPumpQueue;

ASK METHOD Objlnit;
ASK METHOD GetName (IN MyName : STRING);
TELL METHOD PumpFuel (IN FuelUsed : REAL;
IN RefuelTime : REAL);
ASK METHOD GetFields (IN name : STRING;;
END OBJECT {Fuelpoint};

END {DEFINITION} MODULE {fuelpt}.

IMPLEMENTATION MODULE FUELPT;
FROM Debug IMPORT TraceStream;
FROM GLOBAL IMPORT NodeNameType,CargoTypeQueue;
FROM RGLOBAL IMPORT SHierRecType,FuelpoiltSHArray;
FROM FINDSH IMPORT FindSHRec;

OBJECT FuelpointObj;
{ }
ASK METHOD Objlnit;
{—}
BEGIN
NEW(FueiPumps);
END METHOD {Objlnit};

{ }
ASK METHOD GetName (IN MyName : STRING);
}

{
BEGIN

name := MyName;
END METHOD {GetName};

{ }
ASK METHOD GetFields (IN name : STRING);

{ }
VAR

i : INTEGER;
FuelpointSHRec : SHierRecType;
BEGIN
FindSHRec (FuelpointSHArray, name, FuelpointSHRec);
=1
REPEAT
fuelLevel : = STRTOREAL (FuelpointSHRec.OwnedStringf(il);
INCG);
fuelCap : = STRTOREAL (FuelpointSHRec.OwnedString|i));
INC(i);
refuelTime : = STRTOREAL (FuelpointSHRec.OwnedStringlil);

131

INC();
numberOfPumps : = STRTOINT (FuelpointSHRec.OwnedString(i]);
ASK FuelPumps TO Create(numberOfPumps);
INC(G);

UNTIL (G > HIGH(FuelpointSHRec.OwnedString)) OR
(FuelpointSHRec.OwnedString[i] = "\\"));

END METHOD {GetFields};

{ }
TELL METHOD PumpFuel (IN FuelUsed : REAL;
IN RefueiTime : REAL);
{ }
BEGIN
WAIT DURATION RefuelTime
fuelLevel : = fuelLevel - FuelUsed;
END WAIT;
END METHOD {PumpFuel};

END OBJECT {Fuelpoint};
END {IMPLEMENTATION} MODULE {fuelpt}.

{ }

DEFINITION MODULE UNITS;
{A node’s units methods and fields are defined here. Units consume supplies within ITTSS}
FROM GrpMod IMPORT QueueObj;
FROM GLOBAL IMPORT NodeNameType, CargoTypeQueue, SupplyClassType, SupplyRecordTypeQueue,
RequestTypeQueue, ConsumerQueue;
FROM RGLOBAL IMPORT SHierRecType;
FROM MOTORPL IMPORT MotorpoolObj;
FROM SUPREC IMPORT SupplyRecordObj;
FROM REQUEST IMPORT RequestObj;
FROM SUPPLY IMPORT SupplyObj;

EXPORTTYPE
UnitsObj = OBJECT; FORWARD;
TYPE
ConsumerObj = OBJECT
name : STRING;
dailyConsumption : REAL,;
ASK METHOD GetFields(IN name : STRING;
IN dailyConsumption : REAL);
END OBJECT {Consumer};

UnitsObj = OBJIECT
name : NodeNameType;
dayToStartConsuming : INTEGER;
dayToEndConsuming : INTEGER;
Consumers : ConsumerQueue;
inventory : CargoTypeQueue;
mySupply : SupplyObj;

ASK METHOD Objlnit;
ASK METHOD GetName (IN MyName : STRING);
ASK METHOD GetMySupply(IN Supply : SupplyObj);
ASK METHOD GetFields (IN Name : STRING);
TELL METHOD PrepareForConsuming(IN SupplyRecords : SupplyRecordTypeQueue;
IN Inventory : CargoTypeQueue);
TELL METHOD ConsumeSupplies(IN SupplyRecords : SupplyRecordTypeQueue;
IN Inventory : CargoTypeQueue),

132

END OBJECT {Units};
END {DEFINITION} MODULE {units}.

IMPLEMENTATION MODULE UNITS;
FROM GLOBAL IMPORT NodeNameType,CargoTypeQueue,SupplyClassType,
SupplyRecordTypeQueue,RequestTypeQueue;
FROM RGLOBAL IMPORT SHierRecType,UnitsSHArray;
- FROM FINDSH IMPORT FindSHRec;
FROM CARGO IMPORT CargoObj;
FROM FINDSUP IMPORT FindRec, FindCargo, Findltem, FillRequest;
FROM SUPREC IMPORT SupplyRecordObj;
FROM DISPREQ IMPORT DisposeRequestTypeQueue;
FROM REQUEST IMPORT RequestObj;
FROM Debug IMPORT TraceStream;
FROM SUPPLY IMPORT SupplyObj;

OBJECT ConsumerObj;

{ }

ASK METHOD GetFields(IN Name : STRING;
IN DailyConsumption : REAL);

{

BEGIN

name := Name;

dailyConsumption : = DailyConsumption;
END METHOD {GetFields};

END OBJECT {Consumer};

OBJECT UnitsObj;
{—

ASK METHOD Objlnit;
{———}

BEGIN

NEW(Consumers);
NEW(inventory);

END METHOD {Objlnit};

}
ASK METHOD GetName (IN MyName : STRING);
{ }
BEGIN
name := MyName;
END METHOD {GetName};

{ }
ASK METHOD GetMySupply (IN Supply : SupplyObj);
{ }
BEGIN
mySupply := Supply;
ASK mySupply TO GetConsumptionRates(Consumers);
END METHOD {GetMySupply};

{ }
ASK METHOD GetFields(IN Name : STRING);

{)
VAR

j : INTEGER,;

UnitsSHRec : SHierRecType;
’ consumer : ConsumerObj;

itemName : STRING;

133

item : CargoObj;
DailyConsumption : REAL;
BEGIN
FindSHRec(UnitsSHArray, Name, UnitsSHRec);
ji=1
dayToStartConsuming : = STRTOINT(UnitsSHRec.OwnedString[j]);
INCG);
deyToEndConsuming : = STRTOINT(UnitsSHRec.OwnedString([j});
INC();
REPEAT
NEW(consumer);
NEW(tem);
itemName := (UnitsSHRec.OwnedString[jl);
INC();
DailyConsumption : = STRTOREAL (UnitsSHRec.OwnedString{j));
INCG);
ASK consumer TO GetFields(itemName, DailyConsumption);
ASK item TO GetSupplyFields (itemName, 0.0, 0.0, "genCgo", 0.0, FALSE);
ASK Consumers TO Add(consumer);
ASK inventory TO Add(item);
UNTIL(UnitsSHRec.OwnedString{j} = "EOF");
END METHOD {GetFields};

}
TELL METHOD PrepareForConsuming(IN SupplyRecords : SupplyRecordTypeQueue;
IN Inventory : CargoTypeQueue);
{

VAR

i : INTEGER;
ResupplyList : RequestTypeQueue;
SupplyRec : SupplyRecordObj;
supplyRecord : SupplyRecordTypeQueue;
twentyFourHours : REAL;
BEGIN
twentyFourHours : = (24.0 * FLOAT (dayToStartConsuming));
FOR i := dayToStartConsuming TO dayToEndConsuming
TELL SELF TO ConsumeSupplies(SupplyRecords, Inventory) IN twentyFourHours;
twentyFourHours : = twentyFourHours + 24.0;
END FOR;
END METHOD {PrepareForConsuming};

{

TELL METHOD ConsumeSupplies(IN SupplyRecords : SupplyRecordTypeQueue;
IN Inventory : CargoTypeQueue);

{ }

VAR

i : INTEGER;
item : CargoObj;
ResupplyList : RequestTypeQueue;
OutRec : SupplyRecordObj;
consumer : ConsumerObj;
BEGIN
consumer := ASK Consumers First(;
REPEAT
FindRec(consumer.name, SupplyRecords,OutRec);
ASK OutRec TO Adjust (-(consumer.dailyConsumption), FALSE);
Finditem(OutRec .supplyClass, Inventory, item);
ASK item TO Adjust (-(consumer.dailyConsumption));
consumer := ASK Consumers Next(consumer);
UNTIL(consumer=NILORIJ);
END METHOD {ConsumeSupplies};

134

END OBJECT {Units};
END {IMPLEMENTATION} MODULE {units}.

{ }

DEFINITION MODULE CHECKAS;
{The sorting algorithms for matching cargo to assets are in the following procedures. Standard sorting techniques are used and cargo
that cannot be loaded is put into 8 waiting queue}

FROM GLOBAL IMPORT AssetTypeQueue;

FROM CARGO IMPORT CargoObj;

FROM CONVOY IMPORT ConvoyObj;

FROM MOTORPL IMPORT MotorpoolObj;

FROM ASSET IMPORT AssetObj;

{ }

PROCEDURE FindAssets (INOUT Motorpool : MotorpoolObj;

INOUT Convoy : ConvoyObj;

IN Load : CargoObj;

INOUT CouldNotLoadQueue : AssetTypeQueue);
}

E
PROCEDURE CheckLoaded Assets (INOUT Motorpool : MotorpoolObj; INOUTConvoy ConvoyObj;
INOUT Load : CargoObj;
OUT cargoAllLoaded : BOOLEAN);
{ }

END {DEFINITION} MODULE {checkas}.

IMPLEMENTATION MODULE CHECKAS;
FROM Debug IMPORT TraceStream;
FROM GLOBAL IMPORT AssetTypeQueue, CargoTypeQueue;
FROM ASSET IMPORT AssetObj;
FROM CARGO IMPORT CargoObj;
FROM FINDSHP IMPORT FindShortestPath;
FROM CONVOY IMPORT ConvoyObj;
FROM MOTORPL IMPORT MotorpoolObj;
FROM RECORDS IMPORT VehTypeRec;
FROM FINDSUP IMPORT FindAssetTypeRecord,;

{INPUT A LOAD, FINDS AN ASSET AND LOADS CARGO IN CARGOHOLDS. IF ASSETS ARE PREVIOUSLY LOADED,
WILL CHECK THEM. RETURNS THE ASSET IN A CONVOY}

{

PROCEDURE FindAssets INOUT Motorpool : MotorpoolObj;
INOUT Convoy : ConvoyObj;
IN Load : CargoObj;
INOUT CouldNotLoadQueue : AssetTypeQueue);

cargoWeight, cargoLength,
maxCanBeLoaded, maxCanBePutOn : REAL;
asset, biggestAsset, smaliestAsset : AssetObj;
cargoAllLoaded, aliCargoWillFit, assetAvailable : BOOLEAN;
chosenAsset : AssetOb;j;
separatedLoad : CargoObj;
VehTypeRecord : VehTypeRec;
BEGIN
cargoAllLoaded : = FALSE;
IF(Convoy < > NILOBI)
CheckLoaded Assets(Motorpool, Convoy, Load, cargoAllLoaded);
END IF;

135

{all the cargo possibie has been loaded on available space on vehicles already in convoy}
REPEAT
asset := ASK Motorpool. AlgorithmQueue First ();
REPEAT
IF(asset.model = "BIG")
biggestAsset 1= asset;
ELSIF(asset.model = "SMALL")
smallestAsset ;= asset;
END IF;
asset := ASK Motorpool. AlgorithmQueue Next(asset);
UNTTL(asset = NILOBJ);
cargoWeight := Load.weight;
cargoLength : = Load.length;
assetAvailable : = FALSE,
asset := ASK Motorpool.AssetList First ();
IF (asset = NILOBJ)
assetAvailable := FALSE;
END IF;
{algorithm finds smallest asset that will hold cargo. If cargo is too big for any of the assets, the largest asset available will be used
and the cargo will be separated into a useable fit}

WHILE (asset < > NILOBI) AND (NOT cargoAllLoaded)
REPEAT
IF (ASK asset type = ASK Load MOR)
IF (cargoWeight < = asset.assetDimens.weight) AND (asset.assetDimens.weight <
smallestAsset.assetDimens. weight)
smallestAsset := asset;
aliCargoWillFit : = TRUE;
assetAvailsble : = TRUE;
ELSIF (NOT allCargoWillFit) AND (asset.assetDimens.weight > biggestAsset.assetDimens. weight)
biggestAsset : = asset;
assetAvailable : = TRUE;
END IF;
END IF;
asset := ASK Motorpool.AssetList Next (asset);
UNTIL (asset = NILORJ);
{Found the right asset to load cargo upon}
IF aliCargoWillFit
chosenAsset : = smallestAsset;
ELSE
chosenAsset : = biggestAsset;
END IF;
IF ((NOT cargoAllLoaded) AND (assetAvailable))
maxCanBeLoaded := chosenAsset.assetDimens.weight;
maxCanBePutOn : = chosenAsset.assetDimens.length;
IF (cargoWeight < = maxCanBeLoaded)
IF (Load.nonseparsble) AND (cargoLength < = maxCanBePutOn)
ASK Motorpool. AssetList TO RemoveThis (chosenAsset);
Find AssetTypeRecord(chosenAsset.vehType, Motorpool. VehiclesRecord, VehTypeRecord);
IF(VehTypeRecord = NILOBJ)
ASK TraceStream TO WriteString("GOT a NILOBJ from FindAssetTypeRecord****");
ASK TraceStresm TO WriteLn;
ELSE
ASK VehTypeRecord TO GetCommitted;
END IF;
ASK chosenAsset.loadDimens TO UpdateLengthLoad (Load.length);
ASK chosenAsset.loadDimens TO UpdateLoadWeight (Load.weight);
TELL Motorpool TO MatchCargoToAsset (chosenAsset, Load);
ASK Convoy.AssetList TO Add (chosenAsset);
cargoAllLoaded : = TRUE;
ELSIF(NOT Load.nonseparable)

136

ASK Motorpoo!.AssetList TO RemoveThis (chosenAsset);
FindAssetTypeRecord(chosenAsset.vehType. Motorpool. VehiclesRecord, VehTypeRecord);
IF(VehTypeRecord = NILOBIJ)
ASK TraceStream TO WriteString("GOT a NILOBJ from FindAssetTypeRecor***#+");
ASK TraceStream TO WriteLn;
ELSE
ASK VehTypeRecord TO GetCommitted;
END IF;
ASK chosenAsse: .loadDimens TO UpdateLoadWeight (Load.weight),
TELL Motorpool TO MatchCargoToAsset (chosenAsset, Load);
ASK Convoy.AssetList TO Add (chosenAsset);cargoAllLoaded := TRUE;
END IF;
ELSIF (NOT Load.nonseparable)
ASK Load TO SeparateCargo (maxCanBeLoaded, separatedLoad);
ASK Motorpool.AssetList TO RemoveThis (chosenAsset);
FindAssetTypeRecord(chosenAsset.vehType, Motorpool.VehiclesRecord, VehTypeRecord);
IF(VehTypeRecord = NILOBJ)
ASK TraceStream TO WriteString("GOT a NILOBJ from FindAssetTypeRecord****"),
ASK TraceStream TO WriteLn;
ELSE
ASK VehTypeRecord TO GetCommitted;
END IF;
ASK Convoy.AssetList TO Add (chosenAsset);
ASK chosenAsset.loadDimens TO UpdsteLoadWeight (separatedLoad.weight);
TELL Motorpool TO MatchCargoToAsset (chosenAsset, separatedLoad);
END IF;
END IF;
END WHILE;
UNTIL (cargoAllLoaded) OR (NOT assetAvailable);
IF (NOT cargoAllLoaded) AND (NOT assetAvailable)
ASK CouldNotLoadQueue TO Add (Load);
END IF;
END PROCEDURE {FindAssets};

{INPUTS A LOAD. WILL ADD LOAD TO A LOADED ASSET ALREADY IN THE CONVOY IF ROOM IS AVAILABLE.}
{
PROCEDURE CheckLoaded Assets (INOUT Motorpool : MotorpoolObj; INOUTConvoy ConvoyObj;
INOUT Load : CargoObj;
OUT cargoAllLoaded : BOOLEAN);
{ }

cargoWeight, cargoLength,
maxCanBeLoaded, maxCanBePutOn : REAL;
asset : AssetObj;
aliCargoWillFit, assetAvailable : BOOLEAN;
separatedLoad : CargoObj;
BEGIN
cargoAllLoaded : = FALSE;
asset : = ASK Convoy.AssetList First (;
IF (asset < > NILOBJ)
REPEAT
IF (asset.type = Load MOR)
maxCanBeloaded : = asset.assetDimens. weight -
asset.loadDimens. weight;
maxCanRePutOn : = asset.assetDimens.length - asset.loadDimens.length;
cargoWeight : = Load.weight;
cargoLength . = Load.length;
IF cargoWeight < = maxCanBeLoaded
IF (Load.nonseparable) AND (cargoLength < = maxCanBePutOn)
ASK asset.loadDimens TO UpdateLoad Weight(Load.weight);
ASK saset.loadDimens TO UpdateLengthLoad(Load.length);

137

TELL Motorpool TO MatchCargoToAsset (asset, Load);
cargoAllLoaded : = TRUE;
ELSIF(NOT Load.nonseparablie)
ASK asset.loadDimens TO UpdateLoad Weight(Load.weight);
TELL Motorpool TO MatchCargoToAsset (asset, Load);
cargoAllLoaded : = TRUE;
END IF,
ELSIF (maxCanBeLoaded > 0.0) AND (NOT Load.nonseparable)
ASK Load TO SeparateCargo (maxCanBeLoaded,
separstedLoad);
ASK asset.loadDimens TO UpdateLoadWeight (separatedLoad weight);
TELL Motorpool TO MatchCargoToAsset (asset, separatedLoad);
END IF;
END IF;
asset := ASK Convoy.AssetList Next (asset);
UNTIL (cargoAllloaded) OR (asset = NILORBJ);
END IF;
END PROCEDURE {CheckLoaded Assets};

END {IMPLEMENTATION} MODULE {checkas}.

{ } DEFINITION MODULE CONVOY;

{All actions of a convoy are defined here. Everthing from loading, travelling and sctions upon entering a node are included}
FROM GLOBAL IMPORT AssetTypeQueue, NodeTypeQueue;
FROM ROUTE IMPORT LinkObj, RouteOb;;
FROM SUPPLY IMPORT SupplyObj;
FROM NODE IMPORT NodeObj;

EXPORTTYPE
ConvoyObj = OBJECT; FORWARD;
TYPE
ConvoyObj = OBJECT
name : STRING;
maxAssets, {max assets allowed in convoy}
distTweenAssets, {distance in feet, between assets}

distBetweenConvoys, {distance between 2 convoys}

totalLength : REAL; {actua! length of the convoy)

arrivalTime : REAL; {time convoy arrives at mission destination}
PMCStime : REAL; {time required for entire convoy to do PMCS}
allowBreakdowns : BOOLEAN; {TRUE if wrecker is not avail}

fixTime : REAL; {if wrecker or maint is avail, time req to fix asset}
missionType : STRING; ({either RESUPPLY, RECOVERY, or}

home : STRING; {RETURN(fixed asset)}

priority : REAL; {priority of highest cargo is given to convoy}
routeDist : REAL; {distance in miles of route to destination}
returnRouteDist : REAL; {in miles of return trip home}
fuelNotNeeded : BOOLEAN; {if TRUE assets do not have to refuel}

AssetList : AssetTypeQueue,
DeadlinedPoint : AssetTypeQueue;

ASK METHOD Objlnit;
ASK METHOD ObjTerminate;
ASK METHOD GetName (IN Name : STRING);
ASK METHOD GetMissionType (IN Mission : STRING;
IN Home : STRING;
IN distBetweenConvoy : REAL;
IN wreckersAvail : BOOLEAN;
IN fixTime : REAL);
ASK METHOD GetDistances (IN routeDistsnce : REAL;
IN returnRouteDistance : REAL);

138

TELL METHOD Trave! (IN Destination : STRING;
IN Route : RouteObj;
IN MasterNodeList : NodeTypeQueue);
TELL METHOD EnterNode (IN destinstion : STRING;
IN locstion : STRING;
IN MasterNodeList : NodeTypeQueue;
IN Route : RouteObj;
IN linkDistance : REAL);
TELL METHOD Check AssetStatur (TN Route : RouteObj;
IN currentLocation : NodeObj;
IN MasterNodeList : NodeTypeQueue);
ASK METHOD FindClosestMaintenance (IN Route : RouteObj;
IN currentLocation : STRING;
IN MasterNodeList : NodeTypeQueue;
OUT maintNode : NodeObj);
TELL METHOD Refuel (IN location : STRING;
IN MasterNodeList : NodeTypeQueue);
TELL METHOD PerformRecovery (IN Node : NodeOb;j;
IN Origin : STRING);
TELL METHOD PerformPMCS (IN location : STRING;
IN MasterNodeList : NodeTypeQueue);
ASK METHOD GetLength (IN distBetweenVeh : REAL);
TELL METHOD EnterSupply (IN Supply : SupplyObj);
ASK METHOD NotRefuelDuringMsn;
TELL METHOD FixAsset;
TELL METHOD Break (IN breakTime : REAL);
TELL METHOD CrossLink (IN CrossTime : REAL);
TELL METHOD StandDown (IN StandDownTime : REAL);

END OBJECT {Convoy};
END {DEFINITION} MODULE {convoy}.

IMPLEMENTATION MODULE CONVOY;
{This procedure does the travelling from one node to another}
FROM SimMod IMPORT SimTime;
FROM ResMod IMPORT ResourceObj;
FROM GLOBAL IMPORT NodeNameType, LinkTypeQueue, AssetTypeQueue, NodeTypeQueue, ALL roadCharact;
FROM ROUTE IMPORT LinkObj, RouteObj;
FROM ASSET IMPORT AssetObj, RecoveryObj;
FROM NODE IMPORT NodeObj, DeadlinePointObj, DeadlinedQueue;
FROM FINDNOD IMPORT FindNode;
FROM Debug IMPORT TraceStream;
FROM SUPPLY IMPORT SupplyObj, SupplyPointObj;
FROM FINDSUP IMPORT FindAssetTypeRecord;
FROM RECORDS IMPORT VehTypeRec;

OBJECT ConvoyObj;

{ }

ASK METHOD GetName(IN Name : STRING);
{ }

BEGIN

name := Name;

END METHOD {GetName};

o—
ASK METHOD Objlnit;
{—rre———}
BEGIN
NEW(AssetList);
END METHOD {Objlnit};

139

e}

ASK METHOD ObjTerminate;
{t————
BEGIN
DISPOSE(AssetList);
END METHOD {ObjTerminate};

{ }

ASK METHOD GetMissionType (IN Mission : STRING;
IN Home : STRING;
IN distance : REAL;
IN wreckersAvail : BOOLEAN;
IN repairTime : REAL);

{ }

BEGIN

missionType := Mission;

home := Home;

distBetweenConvoys := distance;

IF(wreckersAvail)

silowBreakdowns : = FALSE;

ELSE
allowBreakdowns : = TRUE;
END IF;
fixTime : = repairTime;
END METHOD {GetMissionType};

}

ASK METHOD GetDistances (IN RouteDistance : REAL;
IN ReturnRouteDistance : REAL);

{ }

BEGIN

routeDist : = RouteDistance;

returnRouteDist : = RetumRouteDistance;

END METHOD {GetDistances};

}
TELL METHOD Travel (IN Destination : STRING;

IN Route : RouteObj;
IN MasterNodeList : NodeTypeQueue);
{)

asset : AssetObj;
Link : LinkObj;
checkRoute : RouteObj;
Node : NodeObj;
updatedOdometer, update”’FuelLevel : REAL;
timeElapsed,
mostTimeElapsed : REAL;
TravelTime : REAL;
clearanceDist : REAL,;
clearanceTime : REAL;
rate : REAL;
BEGIN
NEW(checkRoute);
NEW(Node);
checkRoute : = Route;
Link := ASK Route.LinkRoute First ();
REPEAT
asset := ASK AssetList First ;
TravelTime := 0.0;
REPEAT

140

ASK asset TO UpdateGuages (Link);
timeElapsed : = ASK Link distance/ASK asset rateOfTravel
[Link.roadSurface, Link.terrain];
IF (timeElspsed > mostTimeElapsed)
TravelTime : = timeElapsed;
rate := ASK asset rateOfTravel[Link.roadSurface, Link.terrain];
END IF;
asset := ASK AssetList Next (asset);
UNTIL (asset = NILOBJ);
clearanceDist : = (totalLength + distBetweenConvoys)/5280.0;
clearanceTime : = clearanceDist/rate;
FindNode(Link .origin, MasterNodeList, Node);

WAIT FOR Node.clearance TO PriorityGive (SELF, 1, SELF.priority);
WAIT FOR SELF TO CrossLink (clearanceTime)
ASK Node.clearance TO TakeBack (SELF, 1);
END WAIT;
END WAIT;

WAIT FOR SELF TO CrossLink (TravelTime - clearanceTime)
END WAIT;

WAIT FOR SELF TO EnterNode (Destination, Link.destin, MasterNodeList, checkRoute, Link.distance);
END WAIT;
IF((ASK AssetList numberln) = 0)
TERMINATE;
END IF;
Link := ASK Route.LinkRoute Next (Link);
UNTIL (Link = NILOBJ),
END METHOD {Travel};

{ }

TELL METHOD EnterNode (IN destination : STRING;
IN location : STRING;

IN MasterNodeList : NodeTypeQueue;
IN Route : RouteObj;

IN linkDistance : REAL);

{ }
VAR

Node : NodeObj;

convoy : ConvoyObj;

asset : AssetObj;

Home : NodeObj;

milesTraveled : REAL;
NMC : INTEGER;
BEGIN
FindNode (location, MasterNodeList, Node);
FindNode (home, MasterNodeList, Home);
{do not check asset status if back home}
IF(Node.name < > SELF.home)
WAIT FOR SELF TO CheckAssetStatus (Route, Node, MasterNodeList);
END WAIT;
END IF;
IF((ASK AssetList numberin) = 0)
TERMINATE;
END IF,
IF ((ASK Node name) = destinstion)
arrivalTime := SimTime ();
IF (missionType = "Resupply”)
ASK Home.myMotorpool . Dispatch TO WriteString("CONVOY " + SELF.name + " arrivedat " + Node.name);
ASK Home.myMotorpool. Dispatch TO WriteLn;

141

ASK Home.myMotorpool.Dispatch TO WriteString(" TIME OF ARRIVAL is * + REALTOSTR (SimTime()));
ASK Home.myMotorpool.Dispatch TO WriteLn;
ASK Home.myMotorpool.Dispatch TO WriteString(". Number in convoy is * + INTTOSTR (ASK AssetList
numberln));
asset := ASK AssetList First ();
REPEAT
ASK asset TO CheckForBreakdown;
IF(NOT asset.missionCapable)
NMC := NMC + 1|,
END IF;
asset := ASK AssetList Next (asset);
UNTIL (asset = NILOBJ);
TELL SELF TO EnterSupply(Node.mySupply);
IF(routeDist > Node.maxMilesAllowed)
WAIT FOR SELF TO StandDown (Node.standDownTime)
END WAIT;
END IF;
ELSIF (missionType = "Recovery”)
WAIT FOR SELF TO PerformRecovery(Node, Route.origin);
END WAIT;
ELSE {must be a repaired asset, even if not, let in}
WHILE(ASK AssetList numberln < > 0)
asset := ASK AssetList Remove ();
ASK Node.myMotorpool.AssetList TO Add(asset);
END WHILE;
END IF;
ELSE
milesTraveled := linkDistance;
IF(milesTraveled > = Node.milesBeforeBreak)
WAIT FOR SELF TO Break (Node.breakTime)
END WAIT;
END IF;
END [F;
END METHOD {EnterNode};

{ }
TELL METHOD CheckAssetStatus (IN Route : RouteObj;

IN curreatLocation : NodeObj;

IN MasterNodeList : NodeTypeQueue);
{ }

i, numberOfAssets : INTEGER;

asset, copy : AssetObj;

InspectionQueue : AssetTypeQueue;

Node, maintNode : NodeObj;

deadlined Assets : DeadlinePointObj;

VehTypeRecord : VehTypeRec;

distHome, distDestin : REAL;

Link : LinkObj;

distance : REAL;

range, Range, maxRange, MaxRange : REAL;

stHome, foundLocation, fuelpointFound : BOOLEAN;
BEGIN
{check vehicle maintenance status, if non-mission capable, find shortest distance, either back home or at mission destination. Schedule
recovery mission. asset will be recovered and hauled back. Cargo will be loaded off at destination or mission rescheduled if taken
back home}

{performing PMCS, If NMC, put in DeadlinedQueue}
NEW(deadlinedAssets);

NEW(InspectionQueue);

astHome := FALSE;

142

numberOfAssets : = (ASK AssetList numberln);
WHILE (ASK AssetList numberin > 0)
asset := ASK AssetList Remove ();
ASK asset TO CheckForBreskdown;
IF(NOT asset.missionCapable)
FindNode(asset.home, MasterNodeList, Node);
[F(allowBreakdowns)
FindAssetTypeRecord(asset.vehType, Node.myMotorpool. VehiclesRecord, VehTypeRecord);
ASK VehTypeRecord TO GetUncommitted;
ASK VehTypeRecord TO GetDeadlined;
ASK deadlined Assets. AssetQueue TO Add (asset);
ASK Node.myMaintenance.MaintReport TO WriteString ("Asset NMC at " + currentLocation.name);
ASK Node.myMaintenance. MaintReport TO WriteString (. Bumper Numberis " + asset.bumperNumber);
ASK Node.myMaintenance.MaintReport TO WriteLn;
ASK Node.myMaintenance MaintReport TO WriteString (* Time of breakdown is "= +
REALTOSTR(SimTime()));
ASK Node.myMasintenance MaintReport TO WriteLn;
ASK Node.myMaintenance. MaintReport TO WriteLn;
ELSE
ASK InspectionQueue TO Add(asset);
IF(NOT asset.tempFix)
ASK Node.myMaintenance MaintReport TO WriteString (" Asset NMC at " +
currentLocation.name);
ASK Node.myMaintenance. MaintReport TO WriteString (*. Bumper Number is * +

asset.bumperNumber);
ASK Node.myMaintenance. MaintReport TO WriteLn;
ASK Node.myMaintenance. MaintReport TO WriteString (* Time of breakdown is " +
REALTOSTR(SimTime());
ASK Node.myMaintenance MaintReport TO WriteLn;
ASK Node.myMaintenance. MaintReport TO WriteLn;
ASK asset TO FixTemporarily;
WAIT FOR SELF TO FixAsset
END WAIT;
END IF;
END IF,;
ELSE
ASK InspectionQueue TO Add (asset);
END IF;
END WHILE;

IF((ASK deadlinedAssets. AssetQueue numberin) > 0)
{getting home of asset}
asset : = ASK deadlined Assets. AssetQueue First();
ASK currentLocation.deadlinePointQueue TO Add (deadlinedAssets); {get name of closest maintenance node}
FindClosestMaintenance (Route, currentLocation.name, MasterNodeList, maintNode);
{took out deadlineAsset below)
ASK deadlinedAssets TO GetRecoverer(maintNode.name);
TELL maintNode.myMaintenance TO RecoverAssets(currentLocation.name, ASK deadlined Assets. AssetQueusumberln);
{Tell home motorpool that asset is deadlined}
FindNode(asset.home, MasterNodeList, Node);
Find AssetTypeRecord(asset.vehType, Node.myMotorpool. VehiclesRecord, VehTypeRecord);
END IF;
END IF;
{return assets to convoy, finished with inspection}
WHILE (ASK InspectionQueue numberln > 0);
asset : = ASK InspectionQueue TO Remove ();
ASK AssetList TO Add (asser);
END WHILE;

{check each assets range to next node with & Fuelpoint. If all assets can make travel with avail fuel, do not refuel. If at least one
cannot, refuel all assets. If link distance 100 long, carry reserve fuel)

143

IF((ASK AssetList numberln) = 0)
TERMINATE;
END IF;

IF((currentLocation.name < > Route.destin) AND (NOT fuelNotNeeded))
{ dont worry about refuelling if at destination}
distance := 0.0;
Link := ASK Route.LinkRoute First ();
{Finding distance to next Fuelpoint}
REPEAT
IF((ASK Link origin = currentLocation.name) OR (foundLocation))
foundLocation : = TRUE;
{find next node that has fuel. st link destin for Fuelpoint availability}
distance := distance + Link.distance;
FindNode(Link.destin, MasterNodeList, Node);
IF(Node.myFuelpoint < > NILOBJ)
fuelpointFound : =TRUE;
ENDIF;
END IF;
Link := ASK Route.LinkRoute Next (Link);
UNTIL((Link = NILOBJ) OR (fuelpointFound));
asset := ASK AssetList First ;
REPEAT
range := (asset.fuelCap - asset.fuelLevel) * (asset.fuelConsump);
maxRange : = asset.fuelCap * asset.fuelConsump;
[F(range < Range)
Range := range;
END IF;
{After refueling, need to see if distance is still too great for fully fueled assets}
IF(maxRange < MaxRange)
MaxRange := maxRange;
END IF;
asset := ASK AssetList Next (asset);
UNTIL (asset = NILOBI);
IF(Range < distance)
WAIT FOR SELF TO Refuel (Node.name, MasterNodeList);
END WAIT;
END IF;
IF(MaxRange < distance)
{carry reserve to next node. have to check if node has &
fuelpoint, if not, then must carry enough fuel to make it there
w/delays}
END IF;
END IF;
END METHOD {CheckAssetStatus};

{ }

ASK METHOD FindClosestMaintenance (IN Route : RouteObj;
IN currentlocstion : STRING;
IN MasterNodeList : NodeTypeQueue;
OUT maintNode : NodeObj);

{ }
VAR

Node : NodeObj;

distHome, distDestin : REAL;

Link : LinkObj;

distance : REAL;

foundLocation, fuelpointFound : BOOLEAN;
BEGIN
distHome : = 0.0;
distDestin : = 0.0;

144

foundLocation : = FALSE;
Link := ASK Route.LinkRoute First (;
REPEAT
IF((ASK Link origin = currentLocation) OR (foundLocation))
foundLocation : = TRUE;
distDestin : = distDestin + Link.distance;
ELSE
distHome : = distHome + Link.distance;
END IF;
Link := ASK Route.LinkRoute Next (Link);
UNTIL(Link = NILORBYJ);
FindNode(Route.destin, MasterNodeList, Node);
IF((distDestin > = distHome) AND (Node.myMaintenance < > NILOB))
maintNode := Node;
ELSE
FindNode(home, MasterNodeList, Node);
maintNode := Node;
END IF;
END METHOD {FindClosestMaintenance};

}
TELL METHOD Refuel (IN location : STRING;
IN MasterNodeList : NodeTypeQueue);

{ }
VAR

fuelUsed : REAL;
asset : AssetObj;
Node : NodeObj;
pumpsUsed : INTEGER;
BEGIN
pumpsUsed : = 0;
FindNode(location, MasterNodeList, Node);
IF (Node.myFuelpoint < > NILOBJ)
asset ;= ASK AssetList First (;
IF(asset.fuelLevel < > asset.fuelCap)
REPEAT
WAIT FOR Node.myFuelpoint.FuelPumps TO Give (SELF, 1);
INC(pumpsUsed);
WAIT FOR Node.myFuelpoint TO PumpFuel (fuelUsed, 0.0);
ASK Node.myFuelpoint. FuelPumps TO TakeBack (SELF, 1);
ASK asset TO Refuel (fuelUsed);
IF(pumpsUsed > = Node.myFuelpoint. FuelPumps.MaxResources)
WATT DURATION Node.myFuelpoint.refuelTime
END WAIT;
pumpsUsed : = 0;
END IF;
END WAIT;
END WAIT;
asset := ASK AssetList Next (asset);
UNTIL (asset = NILOBJ);
IF((pumpsUsed < Node.myFuelpoint. FuelPumps.MaxResources)OR (pumpsUsed < > 0))
WAIT DURATION Node.myFuelpoint.refuelTime
END WAIT;
END IF;
END IF;
END IF,;
END METHOD {Refuel};

{ }
TELL METHOD PerformRecovery (IN Node : NodeObj;
IN Origin : STRING);

145

{ }

deadLinedAssets : DeadlinePointObj;
wrecker : RecoveryObj;
brokenAsset : AssetObj;
foundDeadlined Assets : BOOLEAN;
BEGIN
foundDeadlined Assets := FALSE;
deadLinedAssets : = ASK Node.deadlinePointQueue First ();
REPEAT
IF (deadLinedAssets.recoverer = Origin)
foundDeadlined Assets : = TRUE;
ELSE
deadLinedAssets : = ASK Node.deadlinePointQueue Next (deadLined Assets);
END IF;
UNTIL ((deadLinedAssets = NILOBJ) OR (foundDeadlined Assets));
wrecker := ASK AssetList First ();
REPEAT
IF((ASK deadLined Assets. AssetQueue numberin) > 0)
brokenAsset : = ASK deadLined Assets. AssetQueue Remove();
WAIT FOR wrecker TO HookUp(brokenAsset);

END WAIT;

ELSE
ASK TraceStream TO WriteString("could not find deadlined asset");
ASK TraceStream TO WriteLn;

END IF;

wrecker := ASK AssetList Next (wrecker);
UNTIL(wrecker = NILOBI);
END METHOD {PerformRecovery};

{ }
TELL METHOD PerformPMCS (IN location : STRING;

IN MasterNodeList : NodeTypeQueue);

{ }
VAR

fuelUsed : REAL;
i, numberOfAssets, pumpsUsed : INTEGER;
asset : AssetObj;
DeadlinedQueue, InspectionQueue : AssetTypeQueue;
Node : NodeObj;
foundLocation, fuelpointFound : BOOLEAN;
VehTypeRecord : VehTypeRec;
BEGIN
{performing PMCS, If NMC, put in DeadlinedQueue}
NEW(DeadlinedQueue);
NEW(InspectionQueue);
FindNode(location, MasterNodeList, Node);
numberOfAssets : = (ASK AssetList numberln);

WAIT DURATION PMCStime
END WAIT;
FOR i := 1 TO numberOfAssets
asset : = ASK AssetList Remove ();
IF (asset <> NILOBIJ)
ASK asset TO CheckForBreakdown;
IF(NOT asset.missionCapabie)
ASK DeadlinedQueue TO Add (asset);
ELSE
ASK InspectionQueue TO Add (asset);
END IF;
END IF;

146

END FOR;
IF((ASK DeadlinedQueue numberln) > 0)
numberOfAssets : = (ASK DeadlinedQueue numberln);
FOR i := 1 TO numberOfAssets
asset := ASK DeadlinedQueue Remove();
FindAssetTypeRecord(asset.vehType, Node.myMotorpool.VehiclesRecord, VehTypeRecord);
IF(VehTypeRecord = NILOBJ)
ASK TraceStream TO WriteString("GOT a NILOBJ from FindAssetTypeRecord****");
ASK TraceStream TO WriteLn;
ELSE
ASK VehTypeRecord TO GetDeadlined;
ASK VehTypeRecord TO GetUncommitted;
END IF;
TELL Node.myMiintenance TO ReceiveWork(asset);
END FOR;
END IF;
numberOfAssets : = (ASK InspectionQueue numberln);
IF(numberOfAssets > 0)
FOR i := 1 TO numberOfAssets
asset := ASK InspectionQueue TO Remove ();
IF(asset <> NILOBI)
ASK AssetList TO Add (asset);
END IF;
END FOR;
END IF;
{Refuel Assets}
IF (Node.myFuelpoint < > NILOBJ)
pumpsUsed : = 0;
asset := ASK AssetList First ();
REPEAT
ASK asset TO ResetTripOdometer;
WAIT FOR Node.myFuelpoint. FuelPumps TO Give (SELF, 1);
WAIT FOR Node.myFuelpoint TO PumpFuel (fuelUsed, 0.0);
ASK Node.myFuelpoint.FuelPumps TO TakeBack (SELF, 1);
ASK asset TO Refuel (fuelUsed);
IF(pumpsUsed > = Node.myFuelpoint. FuelPumps. MaxResources)
WAIT DURATION Node.myFuelpoint.refuelTime
END WAIT;
pumpsUsed := 0;
END IF;
END WAIT;
END WAIT;
asset ;= ASK AssetList Next (asset);
UNTIL (asset = NILOBI);
IF((pumpsUsed < Node.myFuelpoint. FuelPumps.MaxResources)OR (pumpsUsed < > 0))
WAIT DURATION Node.myFuelpoint.refuelTime
END WAIT;

END IF;
END IF;
END METHOD {PerformPMCS};

{ }
ASK METHOD GetLength (IN distBetweenVeh : REAL);
{ }
VAR
asset : AssetObj;
BEGIN
totalLength : = 0.0,
asset = ASK AsnsetList First O,
] totalLength : = saset.assetLength;
REPEAT

147

asset := ASK AssetList Next(asset);
IF(asset < > NILOBI)
totalLength : = totalLength + asset.assetLength + distBetweenVeh;
END IF;
UNTIL(asset = NILOBJ);
END METHOD {GetLength};

TELL METHOD EanterSupply (IN Supply : SupplyObj);
{
VAR
ReceivingPt : SupplyPointObj;
BEGIN
WAIT FOR Supply.receivingPointsQueue TO PriorityGive (SELF, 1, SELF.priority);
ReceivingPt := ASK Supply .ReceivingPoints TO Remove();
WAIT FOR Supply TO ReceiveSupplies(AssetList, SELF.priority, ReceivingPt);
ASK Supply.receivingPointsQueue TO TakeBack (SELF, 1);
ASK Supply ReceivingPoints TO Add(ReceivingPt);

END WAIT;
END WAIT;
END METHOD {EnterSupply};
{
ASK METHOD NotRefuelDuringMsn;
{ }
BEGIN

fuelNotNeeded : = TRUE;
END METHOD {NotRefuelDuringMsn};

{—
TELL METHOD FixAsset;
{——}
BEGIN
WAIT DURATION fixTime
END WATIT;
END METHOD {FixAsset);

}
TELL METHOD Break (IN breakTime : REAL);
{ }
BEGIN
WAIT DURATION breakTime
END WAIT;
END METHOD {Break};

{ }
TELL METHOD CrossLink (IN CroasTime : REAL);
{ H
BEGIN
WAIT DURATION CrossTime
END WAIT;
END METHOD {CrossLink};

148

2]

TELL METHOD StandDown (IN StandDownTime : REAL);
{ }
BEGIN
WAIT DURATION StandDownTime
END WAIT;
END METHOD {StandDown};

END OBIECT {Convoy};

END {IMPLEMENTATION} MODULE {convoy}.

149

INITIAL DISTRIBUTION LIST
copies

. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

. Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943-5002

. LTC William Caldwell 1
Department of Operations Research

Naval Postgraduate School, Code OR/CW

Monterey, CA 93943-5000

. Professor Michael P. Bailey 1
Department of Operations Research

Naval Postgraduate School, Code OR/BA

Monterey, CA 93943-5000

. Director 1
Military Traffic Management Command

Transportation Engineering Agency

720 Thimble Shoals Boulevard

Newport News, VA 23606-2574

. Commander and Director 1
U.S. Army Engineers

Waterways Experiment Station

ATTN: (CEWES-GM-L (Dr. David Homer)

3909 Halls Ferry Road

Vicksburg, MS 39180-6199

. Commander 1
U.S. Army Materiel Systems Analysis Activity

ATTN: Mr. Russell Farrell

Aberdeen Proving Grounds, MD 21005-5071

150

8. CPT James M. Judy
15 Warren Drive
Newport News, VA 23602

151

