
NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A257 861

DTIC
ELECTE

SDEC00 8 1992 D
THESIS

AN INTRA-THEATER TRANSPORTATION SYSTEM'
SIMULATION TO ASSIST LOGISTICIANS IN

TRANSPORTATION RESOURCE PLANNING AND
IMPLEMENTATION

by

James M. Judy

September 1992

Thesis Advisor: LTC William J. Caldwell

Approved for public release; distribution is unlimited.

92--31051

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

COLOR PAGES WHICH DO NOT

REPRODUCE LEGIBLY ON BLACK

AND WHITE MICROFICHE.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution is unlimited
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

"a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Naval Postgraduate School OR
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000

Sa. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION

Be. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Including Security Classification)
An Intra-Theater Transportation System Simulation to Assist Logisticians In Transportation Resource Planning and
Implementation
12 PERSONAL AUTHOR(S)
JUDY, James M.
13 TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 1S. Page Count
Master's thesis FROM TO 11992, SEPTEMBER 164
16. SUPPLEMENTAL NOTATION
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse If necessary and Identify by block number)

FIELD GROUP SUB-GROUP MODSIM, Object-Oriented Programming, Simulations, Transportation System,
Intra-Theater Operations

19. ABSTRACT (Continue on reverse If necessary and Identity by block number)

Transportation resource planning and implementation within a theater of operations have always been challenging
for logisticians. This was especially true during Operation Desert Storm, where new lessons were learned because
of a scenario different than any other experienced. What was needed was a transportation asset-focused model
that would allow logisticians to plan more effectively for current and future transportation system requirements. The
focus of this thesis is the development of the Intra-Theater Transportation System Simulation (lTTSS). ITTSS is an
object-oriented simulation model, which was developed to simulate a complete transportation system where units
consume supplies, supply points resupply, and assets deliver the supplies. ITTSS can also be used to schedule
specific missions of moving cargo from one location to another. Both modes can be run separately or together. A
variety of input parameters concerning supply points, motorpool, maintenance facilities, fuel points, convoys and
the operations performed can be adjusted to fit any specific scenario. The measures of performance produced by
the model include the daily amount of cargo moved, time required to move cargo to a certain location, and the
availability and utilization rates of vehicles. ITTSS is designed to run on a personal computer, using the PC-OS/2
version of MODSIM II, the OS/2 1.2 operating system, and Microsoft C 5.0.

20 DISTRIBUTION/AVAILABILTIY OF ABSTRACT la. REPORT SECURITY CLASSIFICATION
fj] UNCLASSIFIED/UNUMITED [] SAME AS RPT. [] DTIC Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
William J. Caldwell (408)646-3452 OR/Cw

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE
S/N 0102-LF-014-6603 Unclassified

Approved for public release; distribution is unlimited.

AN INTRA-THEATER TRANSPORTATION SYSTEM SIMULATION
TO ASSIST LOGISTICIANS IN TRANSPORTATION
RESOURCE PLANNING AND IMPLEMENTATION

by

James M. Judy
Captain, United States Army

B.S., United States Military Academy, 1983

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
September 1992

Author: 19 ~ A '
James M. Judy

Approved by: /•/"A! '•"{/

/TC William J. Caldwell, Advisor

Peter Purdue, Chairman
Department of Operations Research

ii

ABSTRACT

Transportation resource planning and implementation within a theater of operations

have always been challenging for logisticians. This was especially true during Operation

Desert Storm, where new lessons were learned because of a scenario different than any

other experienced. What was needed was a transportation asset-focused model that

would allow logisticians to plan more effectively for current and future transportation

system requirements. The focus of this thesis is the development of the Intra-Theater

Transportation System Simulation (HTSS). ITTSS is an object-oriented simulation

model, which was developed to simulate a complete transportation system where units

consume supplies, supply points resupply, and assets deliver the supplies. ITTSS can

also be used to schedule specific missions of moving cargo from one location to another.

Both modes can be run separately or together. A variety of input parameters concerning

supply points, motorpools, maintenance facilities, fuelpoints, convoys and the operations

performed can be adjusted to fit any specific scenario. The measures of performance

produced by the model include the daily amount of cargo moved, time required to move

cargo to a certain location, and the availability and utilization rates of vehicles. ITTSS

is designed to run on a personal computer, using the PC-OS/2 version of MODSIM II,

the OS/2 1.2 operating system, and Microsoft C 5.0.

Ill

THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may not

have been exercised for all cases of interest. While every effort has been made, within

the time available, to ensure that the programs are free of computational and logic errors,

they cannot be considered validated. Any application of these programs without additional

verification is at the risk of the user.

Accesion For

NTIS CRA&M
DTIC TAB
Unannounced El
Justification

By.........
BYt*
Distribution /

Availability Codes

D Avail andl/ or
Dist Special

i-v 9

iv

TABLE OF CONTENTS

I. INTRODUCTION I

A. BACKGROUND I

1. Operation Desert Storm 2

2. New Transportation Corps Doctrine 4

B. MODEL DISCUSSION 5

C. ORGANIZATION OF THESIS 7

II. METHODOLOGY AND DATA 8

A. INTRODUCTION 8

B. D ATA 8

1. Published Data 8

2. Vehicle Speeds 8

3. Reliability Data 9

a. Mean Miles Between Operational Mission Failure 9

b. Maintenance Manhours Per Mile 9

c. Administrative and Logistics Downtime 10

C. NETWORK DEFINITION 10

1. A ssets 11

v

V!

2. N odes 11

a. Unit Objects 11

b. Supply Objects 11

C. Motorpool Objects 12

d. Maintenance Objects 12

e. Fuelpoint Objects 12

3. Links 12

4. Cargo 13

III. MODEL DESCRIPTION 14

A. ASSUMPTIONS AND MODEL LIMITATIONS 14

1. A ssets 14

2. Combat Losses 14

3. Links 14

4. Rates of Travel 15

5. Vehicle Breakdowns 15

6. Aggregation of Cargo 15

7. U nits 15

B. MEASURES OF PERFORMANCE 16

1. Time Required to Move Cargo 16

2. Average Amount of Cargo Moved Daily/Weekly 16

3. Utilization Rate of Assets 16

V

vi

4. Availability Rate of Assets 17

5. Comparison of the performance of assets17

C. PARAMETERS 17

1. Model Input Parameters 17

a. Asset parameters 17

(1) Performance characteristics 17

(2) Reliability 18

(3) Cargo load dimensions 18

b. Link parameters 18

(1) Distance 18

(2) Origin and destination 19

(3) Road surface and terrain 19

C. Route parameters 19

d. Supply parameters 19

(1) Supply source 19

(2) Initial stock level 19

(3) Days of supply on hand 19

(4) Day to start/end and time to check stock20

(5) Receiving and loading points 20

(6) Material Handling Equipment (MHE) 20

e. Unit parameters 20

(1) Unit supply 20

vii

(2) Daily consumption rate 21

f. Motorpool parameters 21

(1) Assets 21

(2) Convoy Data 21

g. Maintenance parameters 22

(1) Maintenance manhours per mile 22

(2) Administrative and logistics downtime 22

h. Fuelpoint parameters 22

(1) Starting level 22

(2) Number of pumps 23

(3) Refueling time 23

D. REPORTS 23

1. Dispatch Report 23

2. Supply Report 23

3. Vehicle Status 24

4. Maintenance Activities 24

E. SIMULATION MODEL 24

1. M ODSIM H7 24

2. Event Driven 25

a. Daily Operations 26

(1) Unit consumption 26

(2) Checking stock 26

viii

b. Scheduled Missions 26

3. Conducting Missions 27

a. Loading cargo on assets 27

b. Convoy Organization 28

c. Traveling 29

(1) Entering a node 29

(2) Returning Home 30

IV. MODEL DEMONSTRATION EXAMPLE 31

A. INTRODUCTION 31

B. SCENARIO 31

C. SIMULATION RUNS 35

D. SIMULATION RESULTS 36

1. Data Analysis 36

2. Paired-Samples Statistics 37

3. Simulation Run Results 39

V. CONCLUSIONS AND RECOMMENDATIONS 40

A. SUMMARY AND CONCLUSIONS 40

B. RECOMMENDED FUTURE ENHANCEMENTS 41

1. User-Friendly M enu 41

2. Other Types of Assets 41

ix

3. Separation of Tractors and Trailers 41

4. Containers 42

5. Combat Losses 42

LIST OF REFERENCES 43

APPENDIX A - DATA FROM EXAMPLE PROBLEM 45

APPENDIX B - MODEL OUTPUT FROM EXAMPLE PROBLEM 50

APPENDIX C - INPUT DATA FILES 55

APPENDIX D - ITTSS PROGRAM CODE 64

INITIAL DISTRIBUTION LIST 150

x

ACKNOWLEDGEMENTS

The author wishes to express his thanks and gratitude to the following individuals,

witnout whom this project could not have been completed.

"* My fiancee, Lorrie, for her long distance support of my efforts.

"* My thesis advisor, LTC William Caldwell for believing in my proposal and
standing by me all the way.

"* Dr. David Homer, Waterways Experiment Station, Vicksburg, Mississippi, for
providing vehicle travel rate data.

"* Mr. Russ Farrell, U.S. Materiel Systems Analysis Activity, Aberdeen Proving
Grounds, Maryland for all the reliability data.

"* Captain Bernard Mimms, USMC, for MODSIM 11 programming support, being
one of only a handfull who used the PC-OS\2 version.

xi

I. INTRODUCTION

A. BACKGROUND

Victory is the beautiful, bright-coloured flower. Transport is the stem without

which it could never have blossomed. Sir Winston S. Churchill [Ref. 1: p. 202]

Ever since armies have gone to war, logistical support has played an important role

in the outcome of battles and the strategy of war. However, managing the transport of

supplies and the transportation assets within the transportation system has been far from

easy. Napoleon was quoted as saying

"that logistics make up as much as nine tenths of the business of war, and that the

mathematical problems involved in calculating the movements and supply of armies
are not unworthy of a Leibnitz or a Newton." [Ref. 2: p. 231]

During Operation Desert Storm, new lessons were learned in logistics because of

a scenario different than any other experienced. Support requirements for the men and

equipment that were deployed increased and changed dramatically. The successful

accomplishments in meeting transportation requirements within the theater of operations

in Saudi Arabia were instrumental in our success in the campaign.

However, the present configuration of transportation units did not support the

transportation requirements. Hundreds of vehicles, especially heavy transporters, were

leased from other countries to correct this deficiency. If the Army logisticians had a

realistic simulation model that was focused on transportation assets, it would have

assisted them in planning more effectively for current and future transportation system

requirements. Such a model would allow the same scenarios to be used to test different

transportation unit organizations and future transportation asset prototypes to optimize

the best mix of assets and the organization of units within the theater.

1. Operation Desert Storm

Operation Desert Storm offered enormous challenges to logisticians in the

movement of vehicles and cargo within the theater of operations. They were extremely

successful in meeting every transportation obstacle they faced. One obstacle was the

movement of two corps before the major offensive of the war.

KKMC ,

- SAUDI
- ARABIA ",R iyadh

e~eoeooooetl!'D................ Dammam

Figure 1. Corps Movements

2

In preparation for this offensive, the theater Commander-In-Chief (CINC) tasked his

logisticians to develop a plan to move all of the VII Corps' and XVUII Airborne Corps'

equipment within a two week timeframe. The logisticians did not have a model to

provide them with reasonable alternatives. "After many grueling days and nights of

analyzing every movement concept imaginable, [it was] concluded that the move could

not be completed in 14 days" [Ref. 3: p. 8]. At least three weeks were needed because

of the enormous amount of equipment involved and the limited available assets to move

them.

Table 1. CORPS EQUIPMENT MOVED BEFORE OFFENSIVE

Assets Available Loads to Move

280 Heavy Equipment Transporters 535

280 Lowboys (Equipment Transporters) 1793

500 Flatbeds (Cargo Trailers) 2815

This move was so critical to the start of the offensive that the CINC "required the

SUPCOM [Support Command] CG [Commanding General] to guarantee he complete the

movement in 21 days, and required the SUPCOM to sign a document attesting to the

same" [Ref. 3: p. 9]. The result was that "exactly 21 days after the start date, the

greatest battlefield movement in history was complete" [Ref. 3: p. 10].

If the logisticians in Operation Desert Storm had a transportation-asset-

focused simulation model, it could have assisted them in estimating the time needed to

move the corps equipment using their available assets. Further study of the Operation

Desert Storm scenario with different numbers and kinds of assets would be possible using

3

this model to determine what transportation unit configurations would best suit another

Operation Desert Storm type war. Using future prototypes in the same scenario could

also show if having better performing or more reliable equipment could have made a

difference in the amount of cargo moved daily.

2. New Transportation Corps Doctrine

The advantages in having the ability to move an entire Heavy Maneuver

Force (1MF) in one lift were apparent during Operation Desert Storm. Even though this

one lift concept was not used in Saudi Arabia because of the lack of heavy equipment

transporters (MET), the ability to analyze the movement of such a RMF in the Operation

Desert Storm scenario using HETs, would assist logisticians in planning for and

implementing their HET resources for future operations in a desert scenario. Such

analysis could also determine whether or not the same unit configuration would succeed

in fulfilling transportation requirements within a different theater of operations. Instead

of having a unit's tracked vehicles road-march several hundred miles, HETs can be used

to relocate the unit. This new doctrine results in substantial fuel savings and, more

importantly, a more rested and better prepared maneuver force [Ref. 4: p. 42]. Both

vehicles and crews have less wear and tear. The Transportation Corps is developing the

new doctrine for HET companies that can carry a battalion size HMF. Four such

companies would be able to provide a single-lift capacity for a brigade size HMF. A

simulation model that could focus on the HETs could test this configuration in a variety

of potential scenarios including the recent Operation Desert Storm Scenario. [Ref. 4: p.

42]

4

Every major conflict of war produces new transportation doctrine based on

the transportation system in existence, to include the modes of transportation assets

available, the network of vehicles, trains, aircraft and vessels and the availability of

various assets. A European scenario dictates the use of the existing rail lines. Saudi

Arabia favored using HETs to relocate tracked vehicles. The next location for a major

conflict is unknown, but having a transportation-asset-focused simulation model, could

test what kind of transportation unit configurations would be needed and how many and

what kind of assets are required to perform the mission.

B. MODEL DISCUSSION

The purpose of this thesis is to describe the development of an objected-oriented

simulation model, called the Intra-Theater Transportation System Simulation (ITTSS).

Currently, there are no models available that focus on individual asset performance and

reliability for an intra-theater scenario. Many models use flat rates for vehicle which as

resulted in standard transportation doctrine using using 83 % for long hauls and 75 % for

short hauls for truck availability. [Ref. 5: p. 3-22] Many existing large-scale combat

models aggregate transportation assets and therefore lose the ability to analyze the

individual performance of these assets. A detailed simulation would assist logisticians

greatly in determining transportation unit organizations to meet the requirements in a

particular theater of operations. A model that could also simulate a transportation system

with a variety of realistic inputs and parameters that could be varied depending on a

particular scenario would further contribute to logistics analysis. The Intra-Theater

5

Transportation System Simulation was developed with these needs in mind. With a focus

on transportation assets and flexibility to model a variety of scenarios, ITISS will assist

logisticians in transportation resource planning and implementation within an intra-theater

of operations.

The recent advent of object-oriented simulation programming makes developing

such a simulation model more attractive and useful than past simulation models. An

object-oriented language like MODSIM IH", allows the modeling assets and cargo as

actual objects that can move around and be loaded within the transportation system.

Nodes can be treated as objects and have supply, motorpool, maintenance, and fuelpoint

objects associated with them.

The result is a simulation model that the user can understand more clearly, and that

simulates more realistically the way the elements of a transportation system actually

work. Units consume supplies, supply points reorder supplies from their supply source,

and vehicles load and transport these supplies. All are objects that actually perform these

functions.

MODSIM F", being modular, makes adaptation to various scenarios and unit

organizations very easy. ITJ7SS focuses on vehicle assets, but with relative ease, can be

adapted to utilize aircraft, trains, or inland waterway vessels.

Being able to focus on the movement of cargo and transportation assets in an

object-oriented view gives a clearer understanding of the movement of assets and cargo.

Specific assets and cargo can be tracked individually within the transportation network.

Assets can have individual performance and reliability characteristics and methods that

6

let them perform realistic functions. Cargo can be individual items that have dimensions

and be can traced within the theater of operations.

ITTSS simulates an intra-theater transportation system to include daily supply and

transportation operations and specific movement of cargo from one location to another.

The focus is on assets and their performance within a theater of operations.

C. ORGANIZATION OF THESIS

Chapter I has addressed the background and motivation for an intra-theater

simulation model. In Chapter II the methodology in developing ITTSS, the sources for

the model's data, and the defining of the transportation network is discussed.

Assumptions, measures of performance, input parameters, reports and a complete

description of the capabilities of ITTSS is found in Chapter MI. Chapter IV provides an

example comparing the new Transportation Corps doctrine with doctrine used during

Operation Desert Storm and demonstrates the capabilities of the model. Concluding

remarks and recommendations for future enhancements arc discussed in Chapter V.

7

H. METHODOLOGY AND DATA

A. INTRODUCTION

TffSS is written in an object-oriented computer language, MODSIM H". This

allows the physical entities of TTrSS's transportation system to be treated as objects.

Objects have methods that allow them to perform functions and fields that describe them.

MODSIM IH also includes many convenient procedures and functions that are built in

and eliminates the need to create computer code for many routine functions. This

chapter discusses the sources of data for the model and describes the objects that define

the basic transportation network of ITTSS.

B. DATA

1. Published Data

All performance data is taken from technical manuals or a respected source

like "Jane's Military Vehicles and Logistics". [Ref. 6.] This data includes fuel

consumption rates, fuel capacities, vehicle length and weights, and cargo dimensions.

2. Vehicle Speeds

Rates of travel for the selected vehicles in ITI'SS are obtained from the

Waterways Experiment Station (WES) in Vicksburg, Mississippi. WES does an

enormous amount of mobility testing on almost every vehicle in the Army's inventory.

They have provided the average rate of speed for a particular type and model of vehicle

8

traveling over a road with a particular type of road surface and terrain. These speeds

are used when determining how long it takes a vehicle to travel over a road in the

network.

3. Reliability Data

For each vehicle used in ITTSS, reliability data was obtained from the U.S.

Army Material Systems Analysis Activity (AMSAA), located at Aberdeen Proving

Grounds, Maryland. AMSAA does extensive testing on all Army vehicles and provided

the following reliability measures.

a. Mean Miles Between Operational Mission Failure

This is the average rate of occurrence of a mission failure as a result

of any cause. Mission failure is defined as not being able to complete a mission in an

acceptable manner. Vehicles that fail are not able to continue with a convoy or complete

the mission unless repaired. [Ref. 7: p. 1]

b. Maintenance Manhours Per Mile

This reliability factor is the average number of maintenance manhours

that is needed per mile traveled by the vehicle between operational mission failures. This

includes the actual wrench turning time needed to repair the vehicle. More miles

between operational mission failures imply more time required to repair the asset. [Ref.

7: p. 1]

9

c. Administrative and Logistics Downtime

This is a flat rate that provides a measure of how long a vehicle is down

for each operational mission failure, excluding actual maintenance wrench turning time.

This includes time needed for recovery of assets, waiting for parts, tools, or mechanics.

[Ref. 7: p. I]

C. NETWORK DEFINITION

The basic transportation network of ITTSS consists of assets, nodes, links, and

cargo. They are all objects that have fields and methods that distinguish and describe

them.

S• [Fu,- Inn i n'tobt i

Motor oon Ii

NodeObj

Ma i ntenanceOlb t

Figure 2. Objects in the Network

10

1. Assets

The only assets in this simulation are vehicles. Vehicles consume fuel, load

cargo, and travel from one node to another. They travel in convoys along routes

predetermined by the user. Vehicle objects in this simulation include cargo trucks,

tractors trailers, lowboys, heavy equipment transporters and wreckers. Other types of

assets like aircraft, trains, watercraft or other types of vehicles can easily be incorporated

into the model with minimal code change.

2. Nodes

Nodes are objects and can have any combination of the objects listed below.

See Figure 2.

a. Unit Objects

These are the consumers of the simulation model. They consume

supplies from their supply point at the end of each day or at a time designated by the

user. Units can be given dates to start and end consuming.

b. Supply Objects

These objects conduct supply operations at a selected time each day.

Stock levels are checked and resupplies are ordered from its higher supply source object.

Supplies are received from vehicles that arrive at the supply point. Supply records are

used to account for items brought in and taken out of inventory. Supply objects have a

certain number of loading and receiving points that serve convoys. Material Handling

11

Equipment (MHE) is available at each point and available MHE is used to determine how

many vehicles of a convoy can be loaded or unloaded at the same time.

C. Motorpool Objects

All vehicles belong to a specific motorpool object. Motorpools

schedule missions using available vehicles and keep records on availability and

utilization. The matching of cargo to vehicles and loading of vehicles are conducted by

motorpools. Convoys are formed and prepared for travel.

d. Maintenance Objects

Repair of vehicles occur in maintenance objects. Vehicles that

breakdown are logged into the maintenance facilities, repaired and returned to their

motorpools.

e. Faelpoint Objeds

These objects refuel vehicles. Fuel levels are maintained at each

fuelpoint to show fuel consumption and demand. Vehicles do not run out of fuel, as a

reserve is carried by the convoy in case the distance to the next fuel point is beyond the

range of the convoy. Records will indicate those links in a route that vehicles would

need reserve fuel. The user may then want to establish another fuelpoint.

3. Links

Links are distinguished by an origin, destination arn' distance in miles. Each

link is characterized by a particular road surface of either concrete, bituminous (asphalt),

12

gravel, or dirt and a type terrain that is either flat, rolling hills, hills with curves, or

mountainous.

Links are collected together to form routes and can be a part of any number

of routes. More than one route list can be defined for the network to have several

ground routes or air, train, or inland waterway routes.

4. Cargo

These objects are supply items in pounds or special items with dimensions

in inches and pounds. Cargo objects must have a mode of resupply established. Cargo

is moved by cargo trucks, trailers, lowboys, heavy equipment transporters or wreckers.

Cargo can be separable or nonseparable. If separable, cargo is aggregated and separated

by pounds. Classes of supply are separable in ITFSS. These cargo objects can be

separated into smaller objects, so each cargo object will be a separate entity no matter

how small. Tanks and other major items of interest are nonseparable and cannot be

separated into smaller items. They are loaded by weight and length, and can be easily

tracked throughout the network.

Cargo can be prioritized by the user. The higher the priority given a cargo,

the higher priority a convoy has clearing through an intersection and offloading cargo at

a supply receiving point. All cargo is accounted for by supply records and kept in

supply point inventories.

13

MI. MODEL DESCRIPTION

A. ASSUMPTIONS AND MODEL LIMITATIONS

1. Assets

In ITTSS, all assets are vehicles. Tractors are aggregated with trailers and

tankers to keep the model manageable. Reliability data is available on trailers, but it is

assumed in ITTSS that the determining factor of whether or not a prime mover and

trailer are mission capable is the operational status of the prime mover. A trailer can

usually be moved regardless of its operational status, but without its prime mover it

cannot be moved at all. It is assumed that there would be no difference in the

performance of the assets if you separate tractor from trailers or keep them together.

2. Combat Losses

Combat losses are not modelled in ITTSS. Future embellishments to the

model could include such things as random ambushes that impact on the performance of

assets and the movement of cargo and that partially or fully disable a link or node.

3. Links

Each individual link is uniform in terrain and road surface. Instead of

updating a traversed link's characteristics every 100 meters and thereby having the need

of a large database, the model has user-defined links that have specified lengths, terrain

and road surfaces. These characteristics are chosen because a wealth of information is

14

currently available in this form. This greatly reduces the database needed, and allows

the model to be run on a stand-alone personal computer. Therefore, if no information

is available from the Defense Mapping Agency concerning a particular area in the world,

the user can input a best guess as to the length, terrain and road surface of a link.

4. Rates of Travel

Constant rates of travel are assumed through each link a vehicle traverses.

However, each vehicle type may have a different rate that is based on the link's road

surface and terrain. When vehicles travel in convoy, the slowest vehicle's rate of travel

is used in determining the convoy's travel time.

5. Vehicle Breakdowns

Because links are uniform, vehicles only breakdown at nodes. Vehicles will

check their status at each node and are either temporarily fixed or left to be recovered.

6. Aggregation of Cargo

Supply cargo are aggregated instead of tracking each nut and bolt in the

supply system. At the basic level, classes of supply are tracked and separated by

pounds. Special cargo, like tanks or infantry fighting vehicles are not separable and are

individually tracked. Any cargo can be designated nonseparable and scheduled to be

moved from one location to another.

7. Units

All units have constant consumption rates for any supplies the user wishes to

use in the simulation. Estimated rates of consumption for the different classes of supply

15

for various sizes of units are published in the U.S. Army's Field Manual 101-10-1/2,

Staff Officer's Field Manual: Organizational, Technical, and Logistical Data Planning

Factors (Volume 2). [Ref. 8.]

B. MEASURES OF PERFORMANCE

ITrSS, because of its flexibility, can provide several different measures of

performance to answer the following types of questions.

1. Time Required to Move Cargo

What is the amount of time required to move a large amount of nonseparable

cargo from one location to another?

2. Average Amount of Cargo Moved Daily/Weekly

Given a transportation network, what is the average amount of cargo in short

tons that is moved daily from motorpools to supply points?

3. Utilization Rate of Assets

How many assets are actually being used or committed daily? Are there too

many assets for the mission being conducted or are more needed to successfully

accomplish the mission? If cargo needs to be relocated within a certain time period, how

does increasing or decreasing the number of assets effect the time needed to relocated the

cargo? If the simulation is rerun and decreasing the number of assets onhand does not

effect the time required to relocate, then there are more assets than needed to accomplish

the mission. On the other hand, if increasing the amount of assets reduces the relocation

time, then more assets are needed.

16

4. Availability Rate of Assets

How many assets are mission capable? This may be calculated on either a

daily basis or for a specific mission.

5. Comparison of the performance of assets

How is asset performance (average pounds moved or time required to move

cargo) affected by unit (assets) location, type of assets, unit size, prioritization of cargo,

or selection of different routes?

C. PARAMETERS

1. Model Input Parameters

The model has many input parameters that the user can modify to allow a

wide range of scenarios. A list of these parameters follows.

a. Asset parameters

(1) Performance characteristics. Rates of travel and fuel consumption

are in the model's data fides (Appendix C) for a variety of vehicles. Rates of travel are

given for each vehicle over a particular road surface and terrain. These rates determine

the length of time a vehicle takes to traverse a link. Fuel consumption rates are used to

determine how much fuel is needed to support the assets. Fuel levels are maintained at

each fuelpoint. If a vehicle runs out of fuel and no fuelpoint is available, the vehicle is

assumed to have a reserve fuel supply to complete travel to its destination. This allows

the user to identify links that may require an additional fuelpoint. If desired, the user

could establish additional fuelpoints and rerun the model. The user can input different

17

values to see the effects that future vehicles with better performance characteristics would

have on the transportation system.

(2) Reliability. Mean miles between operational mission failure

(MMBF), maintenance manhours per mile and administrative and logistics downtime are

listed in Appendix C for commonly used vehicles. Vehicles are given an exponentially

distributed mean number of miles to breakdown based on the input MMBF. Upon

breakdown, the vehicle will either continue to its destination after a brief delay for repair

or be left at a node to be recovered by a wrecker. In either case, the vehicle, upon

return to a motorpool will be unavailable until repaired. Once repaired, the vehicle will

again be given a new mean miles to breakdown. The user can either increase or

decrease the MMBF to see the impact on asset availability.

(3) Cargo load dimensions. An asset's exact cargo load dimensions

of length in inches and weight in pounds are used if nonseparable cargo is to be moved.

If separable, only the weight capacity of an asset is used to load cargo. Changing this

input can show what impact future vehicles which have larger or smaller cargo load

dimensions would have on transporting cargo within the transportation system.

b. Link parameters

(1) Distance. Distances are input in miles. Links connect 2 nodes

together. A node may be a unit, fuelpoint, supply point, maintenance facility,

motorpool, or any combination.

18

(2) Origin and destination. A specific origin and destination must be

established for each link.

(3) Road surface and terrain. The numerical values for these

parameters are in the database of the model. Each link must be distinguished by a

certain type of road surface: concrete, bituminous (asphalt), gravel, or dirt. A particular

terrain must also be chosen: flat, rolling hills, hills with curves, or mountainous.

C. Route parameters

Each route must be explicitly stated in the route data file. From origin

to destination, each node that makes up the route must be listed. From this information,

a link list is created that convoys traverse when travelling within rl'SS.

d. Supply parameters

(1) Supply source. A supply source must be declared for each supply

point. Resupplies are requested and missions are scheduled to deliver the supplies from

the supply source to the requesting source.

(2) Initial stock level. The beginning stockage level for each supply

item must be set. If a value of 0 is entered, an immediate resupply will be requested

with the supply point's first checking of its stock. This resupply continues until the

required minimum number of days of supply for each item is onhand.

(3) Days of supply on hand. This parameter is multiplied by the

unit's consumption rate to determine the minimum amount of a supply item that is

required to be on hand.

19

(4) Day to stan/end and time to check stock. These parameters

determine the dates when a supply point should start and end checking its supply stocks.

These values can be changed to emulate a supply point that has not yet arrived or one

that will change locations sometime later in the simulation run. The time to check stock

designates the time every day the supply point will check its stock.

(5) Receiving and loading points. At each supply point object a

certain number of receiving and loading points can be set. Convoys will compete for

these points on a first come first serve basis, or on priority if the cargo in one convoy

has a higher priority than cargo in another. If all points are being used, a convoy will

have to wait until a point becomes clear. The end result is that a supply point can load

or unload a certain number of convoys at the same time. This process is handled by the

built-in functions of the MODSIM IW" construct called ResourceObj [Ref. 7: p. 163].

(6) Material Handling Equipment (MHE). Each receiving or loading

point has a specified number of MHE available. M-E unload the cargo from the assets,

and determine the number of assets that can be unloaded at the same time. MODSIM

Il's ResourceObj is again utilized. If all MIHE are being used, the other assets will

have to wait until a MME is available.

e. Unit parameters

(1) Unit supply. Units must have a supply point from which they

draw or consume supplies.

20

(2) Daily consumption rate. This parameter must be established for

each supply item that the unit consumes. Every 24 hours, this rate is debited from the

stockage level of the unit's supply.

f. Motorpool panrmeters

(I) Assets. All assets are located in motorpools. The number of each

kind of asset must be entered. These assets will be created before the simulation begins

with the asset characteristic database. Appendix C shows an example of the database

input requirement for each type of asset.

(2) Convoy Data. Distance between vehicles and convoys must be

entered in feet. A maximum limit for the number of vehicles in a convoy can be set.

Input for break miles and time can also be specified. During its travel, if a convoy has

travelled over a certain number of miles, it will conduct a break at the next node. Inputs

for standown miles and time can also be specified for convoys. Before its departure

from its destination or upon its arrival on its return trip home, the convoy will standown

for the specified amount of time. During Operation Desert Storm, a full day standown

time was established for travel over the long routes because of the desert climate, long

distance of the routes, and having only one operator available per vehicle.

The last parameters for convoys indicate whether maintenance

contact teams are available and how long it takes to temporarily fix vehicles. The first

input is a boolean value. If contact teams are available for travel with convoys, vehicles

can be temporarily fixed by these teams and continue to their destinations. The

21

temporary fix time is the time required to repair each non-mission capable vehicle. Upon

returning home, these vehicles will be entered into the maintenance facility and repaired.

Otherwise, if contact teams are not available and a vehicle is found non-mission capable

while travelling, the vehicle is left at the nearest node. The vehicle will be recovered

by a wrecker and taken to either the destination node's maintenance facility or the

vehicle's home maintenance facility, whichever is closest. Any cargo on the vehicle will

be off-loaded either at the destination node's receiving point or at the vehicle's home

motorpool and rescheduled for another mission.

g. Maintenance parameters

(1) Maintenance manhours per mile. This rate is multiplied by the

number of miles a vehicle has travelled since its last breakdown. The resulting time is

the length of time it takes to repair the vehicle in the maintenance facility.

(2) Administrative and logistics downtime. This is a flat rate that

determines how long an asset remains non-mission capable excluding the maintenance

manhours. This includes recovery time, waiting for parts, tools and anything else not

included within the maintenance manhours.

h. Fuelpoint parameters

(1) Starting level. Although a starting level can be given to each

fuelpoint, currently there is no effect in the model if this amount is exceeded. However,

ITTSS does keep track of total fuel consumption for each fuelpoint so that the user can

22

estimate how much fuel is required at each fuel point. Future embellishments of the

model could include the effects of running out of fuel.

(2) Number ,f 7umps. This parameter determines how many assets

can be refueled at the same time. Simulation time elapses during refueling and while

assets wait for pumps to become free.

(3) Refueling time. The time required for the refueling of an asset

is input here.

D. REPORTS

Four reports are currently available after each simulation run of ITrSS. Additional

reports could be created for specific scenarios and easily implemented within the model's

code. Examples of these reports are listed in Appendix B.

1. Dispatch Report

All convoy activity is listed within this report. A convoy is designated by its

origin and time of departure. The time when a convoy leaves its origin, arrives at its

destination and ultimately returns home is recorded in the Dispatch Report. The number

of assets within the convoy, and the number that broke down during the mission and

were temporarily repaired and remained with the convoy are also listed with each

reference of convoy movement.

2. Supply Report

Every 24 hours, a supply report is generated showing the current stockage

levels of all supply items within the inventory of each supply point. These include

23

classes of supply and nonseparable items such as tanks and infantry fighting vehicles that

may have been relocated to the supply point's location.

3. Vehicle Status

A vehicle status report is generated every 24 hours showing the number of

assets available and deadlined at each motorpool. Availability and utilization rates are

calculated for the 24 hour period of the report. A report for each different type of asset

located within the motorpool is included in the daily vehicle status report.

4. Maintenance Activities

All pertinent maintenance activities are listed within this report. The actual

time an asset breaks down is reported to the asset's home maintenance facility and

recorded in this report. The times that a maintenance facility receives a deadlined asset

and completes its repair is also listed in this report.

E. SIMULATION MODEL

1. MODSIM I1'

ITSs was written entirely on a personal computer (486DX, 25mhz), using

the OS/2 operating system. The model is a stand alone simulation that requires only the

model code, MODSIM III, Microsoft C, OS/2 1.2 and database files. MTSS consists

of a total of 54 definition and implementation modules and one main module which can

be found in Appendix D. At present the only interactive feature available is for the

choice of running a complete simulation or just scheduled missions. Changes to

parameters must be made in the database files. This chapter contains a description of

24

events that drive IMTSS and actions that objects in the model perform. Because ITTSS

is an object-oriented model, the actions that are described are the actual methods that

are defined for the objects. When a motorpool schedules missions, a convoy travels, or

an asset refuels, they all refer to objects that actually have these methods written for

them. Much of the computer code for this model, listed in Appendix D, is much more

readable than traditional computer languages like FORTRAN or PASCAL. Current

transportation doctrine was followed as much as possible in the development of the

actions that objects in ITTSS perform while allowing flexibility for a variety of future

scenarios.

2. Event Driven

Two types of events drive the simulation model. The first event type is

driven by the daily operations of units consuming supplies and supply points checking

their stock for shortages. Missions are scheduled based on these shortages and assets

travel to fill mission requirements. The second event type occurs when the user

schedules missions to move cargo from one location to another. Either event can be run

separately or together. The advantages in having this option is that the user can compare

the performance of vehicles moving cargo from one location to another with or without

the interference of other vehicles within the transportation system.

25

a. Daily Operations

(1) Unit consumption. Each unit has a supply object (point) from

which supplies are consumed. A unit has a daily consumption rate for each supply item.

At a specified time, the unit consumes the amount and thereby decreases the inventory

of its supply. The default time is the end of each day. Inputs for the dates when the

units are to begin and end the daily consumption of their supplies enable the user to

simulate units entering or leaving the theater of operations at different times.

(2) Checking stock. Each supply object checks its inventory at a

specified time each day. If stock levels fall below a particular level, the object sends a

request list to its supply source for a resupply. The supply source, in turn, checks its

own inventory. If items on the request list cannot be f'dled, the supply source will ask

for a resupply from its higher supply source. Any items on the request list that are

onhand are immediately scheduled by the supply source's motorpool to be delivered to

the requesting supply object. Any items that are not onhand will be delivered when the

supply source receives its resupply from its higher supply source.

b. Scheduled Missions

In addition to supply missions that are scheduled within the simulation

to fill a resupply request, missions can be scheduled by the user to occur at any time

during the simulation run. An example of a user-scheduled mission is a one-time lift of

a heavy maneuver force or just the relocation of a few tanks. User-scheduled missions

26

can occur by themselves without interference of other supply/transportation actions or in

conjunction with them.

3. Conducting Missions

Whenever a mission is scheduled, either through a resupply request or for a

specified movement of cargo, certain actions occur that drive the simulation. Cargo must

be loaded upon the appropriate assets, assets must be placed in convoys, and convoys

must travel to a destination, perform their business and return home to complete the

mission. The following sections describe in detail the actions within these operations and

the purpose for the many parameters and inputs available in the model.

a. Loading cargo on assets

Once a mission is scheduled, a cargo list is sent to the appropriate

motorpool. The motorpool takes each item off the list and matches it to an available

asset within its asset list through a standard sorting algorithm that insures the best fit

using the available assets. If the item is separable, it can be broken down into smaller

pieces and just the weight is used to match cargo to the asset. If the cargo is

nonseparable, both length and weight are used to find the best fitting asset to carry the

cargo. The smallest asset that can carry the cargo is always chosen. If the cargo is too

large for any available asset, it is separated if possible. The user must insure that there

is an asset available in the motorpool that can transport any nonseparable item in the

transportation system. Any cargo that is not matched to an asset is placed in a waiting-

to-be-loaded queue. This queue is checked by all returning assets. The motorpool then

27

conducts the loading of cargo onto assets based on loading point availability and MHE

availability. Loading may be delayed if these points are busy with the loading of other

convoys. Once loading has begun on a convoy, the number of MHE available at the

supply point will determine how many assets can be loaded at the same time.

b. Convoy Organization

All loaded assets are organized by convoy. Convoys have a user-

defined maximum number, distance between assets and distance between other convoys.

All assets are refueled before traveling and a determination is made whether or not all

assets can make it to their destination and back without refueling. If they can, then the

convoy will not stop for any fuel throughout the mission. The user can define whether

or not a maintenance contact team/wrecker is available to travel with the convoy. If a

contact team is available, vehicles that breakdown during the mission are temporarily

repaired until they return home. Upon return they are entered into their maintenance

facility for repairs. If wreckers are not available, vehicles that breakdown during the

missi.:I are left at a node and a wrecker from either the home or destination point,

whichever is closer, will recover the asset and tow it to the maintenance facility. Cargo

will either be unloaded at the destination's supply point or at the origin's motorpool

where another mission will be scheduled. When a convoy is ready for travel, it is

released after the appropriate distance between it and the previous convoy has been

cleared.

28

c. Traveling

Convoys travel along a route that contains a list of links. The speed

of the slowest asset in the convoy is used to determine the time it takes to travel across

the link. Vehicles can reach their miles between failure during this time, but will not

become non-mission capable until they reach the next node. Miles driven and fuel

consumed are debited after the convoy enters a node.

(1) Entering a node. At the end of each link are nodes that may

contain supply, motorpool, maintenance or fuelpoint objects. Upon arrival at the node,

the convoy will determine whether or not the node is its destination for a resupply

mission, recovery of vehicles, or for the return of a repaired vehicle by another

maintenance facility.

If the vehicles carry cargo and it is at its destination node, the

convoy will enter the node's supply point. Unloading of the cargo is similar to loading

except convoys that carry higher priority cargo are be offloaded first by the available

receiving points and MME. If the vehicles in the convoy are wreckers, any broken-down

vehicles that are at the node will be recovered and carried back to a maintenance facility.

If the convoy contains repaired vehicles, these vehicles will be returned to their

motorpools.

Regardless of whether or not the node is a destination node, all

vehicles update their odometers and fuel gauges, check for breakdowns and refuel if

necessary. Delays occur if the convoy refuels, temporarily fixes a vehicle, or conducts

business within a destination node. Before departure from the node, the convoy checks

29

if its miles travelled is greater than its maximum allowable miles before a break is

required. If the miles travelled exceed this limit, the convoy breaks for the required

time. If the convoy is at a destination node and is about to return to its home motorpool,

a standown time will delay the convoy the appropriate length of time.

After these checks, the convoy must receive clearance before

passing through the node. Only one clearance is available at a time. If more than one

convoy is at the node, the first one that arrived will be allowed to proceed. Once the

appropriate distance between convoys has been reached, the next convoy will be allowed

to continue its travel. Unless a convoy has a user-specified higher priority, convoys are

released to travel by the order they arrive when they request clearance.

(2) Returning Home. Convoys return to their home motorpool along

a return route of links. The same actions of updating gauges and checking for refueling

and breakdowns are performed at each node they cross. Upon return to their home

node, preventative maintenance is performed on each vehicle in the form of checking for

breakdowns and refuelling. Any vehicles that are non-mission capable are entered into

the maintenance facility for repair. A standown time may be necessary if the convoy has

travelled farther than the allowable mileage. Once these actions have been conducted,

cargo that is waiting to be loaded is checked. If the vehicles can carry the cargo, another

mission is conducted. If there is no match or no more cargo to haul, the vehicles are

finally returned to their motorpool until another mission is scheduled.

30

IV. MODEL DEMONSTRATION EXAMPLE

A. INTRODUCTION

This chapter presents a demonstration of IT17SS's capability to estimate the time

required to move cargo from one location to another. This demonstration compares the

new doctrine of relocating a heavy maneuver force in a single lift using the new HETs

with the old doctrine using the actual vehicles available in Operation Desert Storm.

During the war, HETs were so critical that they were "intensively managed at the

General officer level on a daily basis, and during critical periods on an hourly basis"

[Ref. 3: p. 2]. What is of interest is the comparison of the expected travel time for the

two doctrines.

B. SCENARIO

The single lift of a HMF in the Operation Desert Storm scenario is used to show

how the measure of performance, time required to move the HMF from one location to

another, can be estimated from ITTSS. From ITTSS's output, data can be obtained to

perform a paired-sample test to show how much better the new doctrine is compared to

the old doctrine. Table 2 shows a typical brigade size heavy maneuver force (HMF) that

could be expected to be moved by the new transportation corps HET doctrine.

ITSS runs will be made using the same northern route that was actually used to

move the tracked vehicles during Operation Desert Storm. The origin will be Dammam

31

and the destination will be King Khalid Military City (KKMC). See Figure 3. Only the

new 70 ton HETs will be used for runs involving the new doctrine, since they are the

only HETs considered in the new single-lift concept [Ref. 4: p. 41]. In Operation Desert

Storm, the Army did not have any of the new 70 ton HETs to move the larger tracked

vehicles like the M-1. HETs had to be contracted from other countries to fill this void

[Ref. 3: p. 2]. These contracted HETs and the Army's 60 ton HETs are used in runs

involving the old doctrine.

TABLE 2. TYPICAL HEAVY MANEUVER FORCE.

TRACKED VEHICLE TYPE NUMBER TO BE MOVED

MI Abrams, Main Battle Tank 116
M2 Bradley, Infantry Fighting Vehicle 64
M3 Bradley, Cavalry Fighting Vehicle 18
M106 107mm Self Propelled Motor * 6
M109 155mm Self Propelled Howitzer 24
M113 Armored Personnel Carrier (APC) 118
M548 Cargo Carrier * 30
M578 Armored Recovery Vehicle 3
M577 Armored Command Vehicle * 29
M901 Improved TOW Vehicle * 12
ACE Armored Combat Earthmover 27
AVLB Mechanized Bridge 12
CEV Combat Engineer Vehicle 6
FIST-V Fire Support Team Vehicle * 16

• very similar to the M113, APC 505 Total Tracks

32

•' ..KUWAIT lID

Delt 46Al Jubayl

Riyadh-. '

,,,,, -. Dammam

Northern Route
334 miles

Figure 3. Routes During Operation Desert Storm

The significant model parmeters for both runs are listed in Table 3. Appendix C

contains the actual data files that were used for both runs. The result of these runs will

provide point estimates forthe travel time from Dammam to K"MC for each doctrine.

33

TABLE 3. MODEL PARAMETERS.

PARAMETER VALUE

Maximum Number in Convoy 25
Distance Between Convoys 3000 feet
Distance Between Vehicles 350 feet
Maintenance Contact Teams Available
Temporary Fix Time 15 min
Break Distance/Time 90 miles / 30 min
Standown Distance/Time 200 miles / 1 hr
Supply Load/Unload Time 15 min / 15 min
Supply Loading Points 2
Supply Receiving Points 2
Material Handling Equipment 5
New Doctrine:

HET 70 Ton 385 total
MMBF 2500 miles
Maint Manhours Per Mile .005
Admin and Log Downtime 34 hrs

Old Doctrine:
HET 60 Ton 160 total

MMBF 1600
Maint Manhours Per Mile .009
Admin and Log Downtime 34 hrs

Contracted HET, 70 Ton 120 total
MMBF 1600
Maint Marihours Per Mile .009
Admin and Log Downtime 34 hIs

No data is available for the contracted HETs. An assumption is made that they

have the same performance capabilities as the current 60 Ton HETs of the Army, except

they can carry heavy loads that the 60 Ton HETs cannot.

34

C. SIMULATION RUNS

100 runs each were made using the new and old doctrines. The variance-reduction

technique of common random numbers was used in setting up the simulation runs.

Variance reduction techniques can increase the model's efficiency by reducing the

variance of the estimated travel times without disturbing its expectation, and also produce

smaller confidence intervals for the difference between the two doctrines. Common

random numbers are used when comparing two alternative system configurations.

We want to compare the alternative configurations [the 2 doctrines] "under similar
experimental conditions" so that we can be more confident that any observed
differences in performance are due to differences in the system configurations
rather than to fluctuations of the "experimental conditions". In simulation, these
"experimental conditions" are the generated random variates that are used to drive
the models through simulated time. [Ref. 10: pp. 612-613]

All initial conditions were identical. 100 random number seeds were used to generate

a separate stream of 500 random numbers that were used for each individual simulation

run. These streams were created by MODSIM Il's random number generator which

is a multiplicative congruential pseudo-random number generator [Ref. 9: p. 160]. The

generator allowed the exact random number stream used in each simulation run of the

new doctrine to be used in the corresponding run of the old doctrine. Every vehicle

received the same MMBF input in each corresponding run. This parameter was used to

produce each vehicle's miles to failure from an exponential distribution. This enabled

as much matching up of random numbers across the different doctrines on a particular

replication as possible. The first 280 vehicles in each set of simulation runs received the

same random numbers to determine their miles before failure.

35

A single simulation run took approximately 4 minutes of computer time. The only

change in the input to the simulation during each run was the random number stream.

Because initial starting conditions were identical for each run, the same number of

vehicles were loaded. The departure time of the first convoy was also constant in every

one of the simulation runs. The expected travel time was determined by when the first

convoy of HETs left Dammam and the last one arrived at KKMC. Because of delays

in having to temporarily fix HETs that break down, and in waiting for clearance to

travel, a convoy that left first did not necessarily arrive first.

D. SIMULATION RESULTS

Because £f the terminating nature of the simulation runs (one mission to move

cargo from Dammam to KKMC), no steady state analysis was necessary. Each run was

independent, terminated by the arrival of the last convoy at KKMC and begun again with

identical initial conditions.

1. Data Analysis

Three sets of data were obtained from the 200 total simulation runs

(Appendix A). A travel time from Dammam to KKMC was obtained for each run using

the new and the old doctrines. The difference between the times was calculated for each

run. These will be used in paired-sample analysis. X-Y plots in Figure 4 shows the data

taken from the model's output. The top plot displays the old doctrine travel times.

Below it are the paired-differences between the doctrines. The bottom plot shows the

travel times using the new doctrine.

36

. 0 . -. -

S.A. A • . M f, .I A A A A .M .

* 0 a

-- Old •trI.

I , , , I , t , I I

o po 4o oo0 too

Figure 4. Data from the 200 Runs

2. Paired-Samples Statistics

The following statistics were used in finding point estimates, where X, is the

performance of old doctrine in the ith simulation nin [Ref. 10: pp. 532-533].

Sample Mean:

X(n)- -1 ,

n

Variance:
j [X,-X(n)j2

S 2(n)= -1 n
3-7

37

The sample mean and variance for Y1, the performance of the new doctrine in the ith

simulation run are found similarly.

The 100 independent replications of the simulation resulted in each of the data

points, X, and Y1, being independent and identically distributed random variables.

Therefore, the sample mean is an unbiased point estimator for the travel time. [Ref. 10:

p. 532] The formulas used in determining the estimate of the expected difference

between the doctrines are listed below [Ref. 12: p. 49].

Estimate of the expected difference in performance:

Confidence interval for the expected difference:

D+ sn , where k is the t-statistic
n

Variance of the expected difference:

Var[D.] = Var[X,] + Var[YJ - 2Cov[X1 ,YJ

The t-distribution was used to estimate a 95 % confidence interval with a =

.05. With 95 % confidence, the estimates for travel time and availability will be within

this interval. A t-value of 1.96 was used for v (v=n-l, the degrees of freedom)

equalling 99 [Ref. 11: p. 20]. Table 4 summarizes the results for point estimates,

variances, and confidence intervals for both doctrines.

38

TABLE 4. SIMULATION RUN STATISTICS.

NEW DOCTRINE (70 Ton HETs)

Estimate of Travel Time = 14.5916 hours
Variance = .073918

OLD DOCTRINE (Old and Contracted HETs)

Estimate of Travel Time = 69.6946 hours
Variance = 3.09445

PAIRED SAMPLE STATISTICS

Estimate of Difference Between Doctrines, D = 55.103
Variance = 3.04108
Covariance = .06365
Correlation Coefficient = .1331
Confidence Interval = [55.685,58.520]

3. Simulation Run Results

The travel time estimators in Table 4 seem reasonable for heavy equipment

transporters travelling routes of over 300 miles. The estimate of difference between the

doctrines is just over 55 hours. Applying the 95 % confidence interval, we can be 95 %

confident that the true difference is between 51.685 and 58.520. The use of the paired-

sample approach and common random numbers did reduce the variance. Using common

random numbers can positively correlate estimators and increase the covariance between

them which reduces, the variance of the estimate of the difference between them.

39

V. CONCLUSIONS AND RECOMMENDATIONS

A. SUMMARY AND CONCLUSIONS

There are no simulation models currently available that treat transportation assets

as individual objects and examine the variability in the reliability of assets. IT7SS fills

this modelling void by providing the capabilities to focus on the performance and

reliability characteristics of transportation assets. Many large combat models aggregate

transportation assets and therefore make it impossible to analyze the individual

performance of these assets. Still other models, like the Distribution System Analyzer

(DSA), provide a very detailed modelling of the supply and transportation system, but

intensive knowledge of the supply system is essential in setting up each scenario. DSA

provides a good analysis of the movement of supply items within the supply system, but

does not allow us to focus on transportation assets like ITTSS. ITITSS gives the user an

option to model an entire transportation system and/or to schedule movements of cargo.

Being an object-oriented simulation model, ITTSS allows individual monitoring of assets

throughout the simulation run and flexibility to easily add other types of assets.

The results produced by ITTSS from the model demonstration problem are very

reasonable. The travel times of 14.5 and 69.7 hours are reasonable time estimates for

HErs traveling in convoy over routes greater than 300 miles, given the doctrines that

were followed.

40

r1TSS allows the user to focus on transportation assets' performance and reliability

characteristics and can easily be modified or augmented to fit a wide range of future

scenarios or doctrinal changes without significant computi-r code changes.

B. RECOMMENDED FUTURE ENHANCEMENTS

The following enhancements for ITTSS are recommended for future development

and are currently being pursued by the author.

1. User-Friendly Menu

A user-friendly, menu-driven input capability will simplify data entry.

Currently all data must be entered through data files. The graphic capabilities of

SIMGRAPHICSO can be integrated with ITTSS MODSIM IM code to provide a more

foolproof and error free method of entering and changing parameters.

2. Other Types of Assets

Other types of assets could be defined within the transportation system.

Aircraft, especially helicopters, are an integral part of an intra-theater transportation

system. To take advantage of existing rail systems and inland waterways, train and

vessel objects could also be introduced.

3. Separation of Tractors and Trailers

While the assumption of aggregating tractors and trailers was made for this

model, a future enhancement to the model would be to separate them. This would enable

trailer transfer point operations to be accurately modelled. Army doctrine might

advocate the shuttling of trailers from one location to another by tractors that are

41

dedicated to a segment of the route. The trailers would then be shuttled by another

group of tractors dedicated to the next segment in the route.

4. Containers

Containers could also be introduced to take advantage of ITTSS's object-

oriented view. During Desert Storm, thousands of containers were within the t'eater of

operations and the managing of these assets was overwhelming. Future conflicts will

most certainly involve a great number containers to move unit equipment and classes of

supply.

S. Combat Losses

Random ambushes or air attacks that impact on the performance of assets and

the movement o. cargo and that partially or fully disable a link or node could be

introduced into 1ITSS.

42

LIST OF REFERENCES

1. Churchill, W. S., The River War, Thomas Nelson and Sons, 1899.

2. Van Creveld, M., Supplying War, Cambridge University Press, 1977.

3. 22nd Support Command(TAA), Theater Linehaul Transportation Operations During
Desert Shield and Desert Storm, by Major Paul L. Willis, 1991.

4. Fortner, J., Doux, J., Peterson, M., "Bring on the HETs! Operational and Tactical
Relocation of Heavy Maneuver Forces," Military Review, pp 36-45, January 1992.

5. Department of the Army, FM 55-15, Transportation Reference Data, 1986.

6. Foss, C., Gander, T., Jane's Military Vehicles and Logistics, Jane's Information
Group, 1992.

7. U.S. Army Materiel Systems Analysis Activity, Aberdeen Proving Ground, MD,
Subject: Reliability Data, 22 June 1991.

8. Department of the Army, FM 101-10-1/2, Staff Officer's Field Manual:
Organizational, Technical, and Logistical Data Planning Factors (Volume 2), 1986,

9. CACI Products Company, MODSIM IP"Reference Manual, CACI Products Company,
1991.

10. Law, A. M., and Kelton, W. D., Simulation Modeling and Analysis, McGraw-Hill,
Inc., 1991.

11. Neave, H. R., Elementary Statistics Tables, Biddles Ltd, 1981.

12. Bratley, P., Fox, B. L., and Schrage, L. E., A Guide to Simulation, Springer-
Verlag, 1987.

13. Hillier, F. S., and Lieberman, G. J., Introduction to Operations Research, Holden-
Day, Inc., 1980.

14. Koopmans, L. H., Introduction to Contemporary Statistical Methods, Duxbury
Press, 1987.

43

15. U.S. Army Corps of Engineers, Waterways Experiment Station, Vicksburg, MS,
Subject: Vehicle Travel Rates, 7 August 1991.

16. CACI Products Company, MODSIM Ill"The Language for Object-Oriented
Programming-User's Manual, CACI Products Company, 1991.

44

APPENDIX A - DATA FROM EXAMPLE PROBLEM

Table 5. Data from Simulation Runs.

RUN TRAVEL TIME TRAVEL TIME DIFFERENCE
Old Doctrine New Doctrine j XrY_

1 69.17737 14.53439 54.64299

2 69.50056 14.42781 55.07275

3 73.55607 14.63 58.92607

4 69.92296 14.53439 55.38858

5 69.22592 14.59315 54.63276

6 74.36455 15.1061 59.25845

7 68.99762 14.45171 54.5459

8 69.57631 14.21267 55.36364

9 69.18399 14.46267 54.72132

10 68.69243 14.53439 54.15805

11 69.96341 14.43877 55.52464

12 73.58925 14.38 59.20925

13 69.19834 14.68877 54.50957

14 68.9553 14.26048 54.69482

15 68.95422 14.42781 54.52641

16 67.17443 14.38 52.79443

17 68.70383 14.55829 54.14554

18 69.7546 14.41487 55.33974

19 69.5324 14.88 54.65239

20 69.49688 14.67781 54.81907

21 69.22592 14.53439 54.69153

45

RUN TRAVEL TIME TRAVEL TIME DIFFERENCE
i Old Doctrine New Doctrine XrY,

22 68.74909 14.59315 54.15593

23 68.73362 15.28439 53.44923

24 69.57595 14.30829 55.26766

25 69.71744 14.80829 54.90915

26 68.73511 14.14295 54.59216

27 74.31042 14.45171 59.85871

28 69.72626 14.62999 55.09627

29 74.07509 14.92781 59.14728

30 68.42149 14.45171 53.96978

31 70.22739 14.30829 55.9191

32 70.03109 14.70171 55.32937

33 69.44243 14.89096 54.55147

34 70.18581 14.58219 55.60362

35 74.78137 14.58219 60.19918

36 69.04616 14.45171 54.59444

37 68.45201 14.40391 54.04811

38 68.76194 14.30829 54.45365

39 68.7318 14.92781 53.80399

40 69.00276 15.33219 53.67057

41 70.00754 14.93877 55.06878

42 68.04894 14.53439 53.51456

43 68.4259 15.05829 53.36761

44 73.78509 14.70171 59.08338

45 73.01715 14.30829 58.70886

46 68.78513 14.63 54.15512

46

RUN TRAVEL TIME TRAVEL TIME DIMERENCE
i Old Doctrine New Doctrine XrY5

x Y,

47 68.43399 14.45171 53.98228

48 69.00056 14.70171 54.29884

49 68.49541 14.24952 54.24589

50 68.92002 14.3561 54.56392

51 68.79616 14.58219 54.21396

52 68.44832 15.14096 53.30735

53 68.47663 15.01048 53.46615

54 68.75203 14.42781 54.32422

55 68.76267 14.73658 54.0261

56 69.46709 14.65391 54.81319

57 73.58523 14.41487 59.17037

58 67.49467 14.83219 52.66248

59 68.91928 14.43877 54.48051

60 68.72739 14.73658 53.99081

61 68.54616 14.23658 54.30958

62 73.31427 15.15391 58.16036

63 69.20422 14.03439 55.16984

64 69.00203 15.17781 53.82422

65 69.75975 15.15391 54.60585

66 69.98364 14.76048 55.22316

67 68.68179 14.70171 53.98007

68 69.48141 14.8322 54.64921

69 68.45199 14.71267 53.73932

70 68.27299 14.30829 53.9647

71 67.75679 14.53439 53.2224

47

RUN TRAVEL TIME TRAVEL TIME DIFFERENCE
SOld Doctrine New Doctrine Xr•Y

72 69.29248 14.83219 54.46029

73 69.00497 14.49952 54.50545

74 68.96523 14.48658 54.47865

75 69.94539 14.42781 55.51758

76 70.17848 14.76048 55.418

77 69.67664 14.92781 54.74883

78 72.81427 14.67781 58.13646

79 69.19243 14.78439 54.40805

80 69.71709 14.78439 54.93271

81 69.23546 14.51048 54.72498

82 68.94464 14.11706 54.82758

83 73.28515 14.58219 58.70296

84 67.22075 14.55829 52.66246

85 69.45348 14.40391 55.04958

86 67.77005 14.68877 53.08128

87 69.0204 14.45171 54.56868

88 69.47592 14.43877 55.03715

89 69.72702 14.58219 55.14483

90 74.58108 15.1061 59.47498

91 69.0605 14.08219 54.97831

92 69.46376 14.23658 55.22718

93 68.7296 14.3561 54.3735

94 73.29292 14.28439 59.00853

95 69.25423 14.53439 54.71985

96 69.28069 14.41487 54. 86583

48

RUN TRAVEL TIME TRAVEL TIME DIFFERENCE
i Old Doctrine New Doctrine X.-Yi

97 68.69611 14.40391 54.2922

98 68.26343 14.68877 53.57466

99 69.49247 14.40391 55.08856

100 68.16928 14.40391 53.76538

49

APPENDIX B - MODEL OUTPUT FROM EXAMPLE PROBLEM

I. DISPATCH REPORT

The dispatch report contains information on the departure, arrival and return of all

convoys. A convoy is identified by its motorpool and time of departure. The time and

place of the action are listed next. The last item is how many assets were in the convoy

(convoys can leave non-mission capable assets at a node if no maintenance contact teams

are available). Following are excerpts of what an actual simulation run produced.

**********CONVOY ACTIVITIES************

Convoy DammamMotor60.073864 is leaving DammamMotor
TIME OF DEPARTURE is 60.073864. Number in convoy is 25

Convoy DammamMotor60.110795 is leaving DammamMotor
TIME OF DEPARTURE is 60.110795. Number in convoy is 25

CONVOY DammamMotor60.073864 arrived at KKMC
TIME OF ARRIVAL is 73.386943
Number in convoy is 25.

CONVOY DammamMotor60.110795 arrived at KKMC
TIME OF ARRIVAL is 73.910847
Number in convoy is 25.

convoy DammnamMotor60.110795 returned to KKMC
time of RETURN is 106.657896
Number in convoy is 25.

50

10. MOTORPOOL REPORTS

Every 24 hours a summary is generated for each motorpool in ITTSS. For each

vehicle type that a motorpool contains, the total assets, number committed, available and

deadlined are shown. The utilization and availability rates are also listed.

********* *** * ***** ** * *****

*******MOTORPOOL REPORTS****

*******Status for DammamMotor MOTORPOOL. Time is 120.000000
-............ Vehicle Type is HEM ---------

Total Assets are 385
Total Committed is 272 Util Rate % is 0.706494
Total Available is 272 Avail Rate % is 0.706494
Total Deadlined is 113

-- - ------Vehicle Type is WRECKERS------
Total Assets are 4
Total Committed is 0 Util Rate % is 0.000000
Total Available is 4 Avail Rate % is 1.000000
Total Deadlined is 0

III. MAINTENANCE ACTIVITIES

Whenever a maintenance action occurs, it is outputted to the activities report. An

asset's breakdown is reported with a reference to the time and location of the incident.

Whenever an asset is received to be repaired or returned repaired by a maintenance

facility, the action is listed in the report. An excerpt from one of the simulation runs is

found below.

*******MAINTENANCE ACTIVITIES****

Asset NMC at AUubayl. Bumper Number is Hett_ Dammam_326
Tune of breakdown is 62.543533

51

Asset NMC at Ailubayl. Bumper Number is Hett_ Dammam_272

Time of breakdown is 62.591341

Maint DammamMaint received Heft_ Dammam_291 at 109.891540

Maint DammamMaint received Heft_ Dammam_293 at 109.891540

MAINT DammamMaint RELEASED Heft Dammam 6 at 143.997896

MAINT DammamMaint RELEASED Heft Dammaml10 at 143.997896

IV. SUPPLY REPORTS

These reports are generated every 24 hours for each supply point in ITfSS. For

every separable supply item, the current stock level, days of supply onhand required,

maximum upper level, daily consumption rate and the current amount on order is listed.

For nonseparable items, like tracked vehicles, only the amount onhand is output.

********SUPPLY REPORTS*********

*******Status for DammamSup SUPPLY POINT. Time is 96.000000

-------------- Record for CL5 -----------------
stock level is 1000000.000000
days of supply is 5
upper level is 10000000.000000
daily consumption is 1000.000000
on order is 0.000000

*******Status for KKMCsup SUPPLY POINT. Time is 96.000000

--------Record for CL5- -----------
stock level is 1000000.000000
days of supply is 5
upper level is 10000000.000000
daily consumption is 1000.000000
on order is 0.000000

52

--------- Record for M -I -----
number on hand is 93

----------- Record for M2-
number on hand is 64

--- --------- Record for M113 ----
number on hand is 118

--------- ,Record for M109---
number on hand is 8

---------- Record for ACE----
number on hand is 27

-Record for M548 ----
number on hand is 30

--------------.Record for M106----
number on hand is 6

--Record for FIST-V--
number on hand is 16

-------- -----. Record for M577 ----
number on hand is 29

--------------.Record for M578 ----
number on hand is 3

--.-.---------Record for M3 ------
number on hand is 18

-------- Record for M901 ----
number on hand is 12

------.-.--.---Record for M88 -----
number on hand is 24

--Record for AVLB---
number on hand is 12

--------------.Record for CEV -----

53

number on hand is 6

54

APPENDIX C - INPUT DATA FILES

Data for ITSS must be input by means of data files that are listed in this

appendix. The method of reading the data and inputting it for use in the model was

provided by Professor Michael P. Bailey of the Naval Postgraduate School. This method

requires the data to be listed in a particular order. If too few or too many parameters

are listed or spaces between parameters are omitted, run-time errors could occur. Aside

from the MASTER.DAT file, each data file begins with an integer that represents how

many topstrings, the names of records in the array, will be read into that data file's input

array. The topstrings are the names that are located before the "-> ". They represent

the name of individual records that contain ownedstrings. Ownedstrings are the

characters after the "- > ". The ownedstrings represent the data in each record. Data in

each record is accessed by using the topstring to find the correct record and using the

position of the ownedstring to find the data's position in the data array. After each data

file is a description within braces of what each position of the topstring and its

ownedstrings represent.

The future version of ITTSS will be menu driven through the use of

SIMGRAPHICS. The user will have limited access to the data files and therefore, fewer

errors will occur when parameters need to be updated or changed.

55

I. MASTER.DAT

NODE.DAT
MOTORPL.DAT
SUPPLY.DAT
SSOURThCE.DAT
FUELT. DAT
UNITS.DAT
VEHFLD.DAT
TRAVELP DAT
VEHOWN.i' •_T
LINKS.DAT
ROUTES.DAT
MISSION.DAT
SEEDS.DAT

II. NODE.DAT

9
Economy-> 300 18 90 .5 1 5

M none MA none S TheEconomy
F none U EUnits EOF \\

Dammam-> 300 18 90 .5 1 5
M DammamMotor MA DammamMaint S DammamnSup
F DammamFuel U DammamUnits EOF \\

AIJubayl-> 300 18 90 .5 1 5
M none MA none S none
F none U none EOF \\

Bastogne-> 300 18 90 .5 1 5
M none MA none S none
F none U none EOF \\

ALPHA-> 300 18 90 .5 1 5
M none MA none S none
F none U none EOF \\

KKMC-> 300 18 90 .5 1 5
M none MA none S KKMCsup
F KKMCfuel U KKMCunits EOF \\

Riyadh-> 300 18 90 .5 1 5
M none MA none S none

56

F RiyadhFuel U none EOF \\
DELTA-> 300 18 90 .5 1 5

M none MA none S none
F none U none EOF \\

CSCy-> 300 18 90 .5 1 5
M none MA none S none
F CSCyFuel U none EOF \\

{node name -> maxMiles before standDown, standDownTime,
milesBeforeBreak, breakTime, dayToStart, dayToEnd

motorpool, maintenance facility, supplypoint,
fuelpoint, unit}

III. MOTORPOOL.DAT

1
Dammam -> 25 350 1000 TRUE .5 EOF\\

{node name- > maxNumblnConvoy, distBetweenVeh (feet), distBetweenConvoys (feet),
wreckersConvoy (maint contact team avail), repairTime}

IV. SUPPLY.DAT

3
Economy -> 7.0 2 2 2 .25 .25

CL5 CARGO 0 1000000 5 10000000 EOF \\

Dammam -> 7.0 2 2 2 .25 .25
CL5 CARGO 0 1000000 5 10000000 EOF \\

KKMC -> 7.0 2 2 2 .25 .25
CLM CARGO 0 1000000 5 10000000 EOF \\

{node name - > TimeToCheckStock, # of ReceivingPoints, # of LoadingPoints,
of MHE, loadTime, unloadTime

Item, MOR, Priority, DailyConsRate, StkLvl, DOS, UpLvl}

V. SSOURCE.DAT

3
TheEconomy - > TheEconomy \\
DammamSup -> TheEconomy \\
KKMCsup -> DammamSup \\

57

(supply point name -> supply source}

VI. FUELPT.DAT

4
Dammam -> 0.0

5000.0 .25 4 \\
KKMC -> 0.0

5000.0 .25 3 \\
Riyadh-> 0.0

5000.0 .25 3 \\
CSCy -> 0.0

5000.0 .25 3 \\

{node name -> Starting Fuel Level

Max Fuel Level, Refueling Time, Number of Fuel Pumps}

VII. UNITS.DAT

3
Economy-> 1 5 CL5 1000 EOF \\
Dammam -> 1 5 CL5 1000 EOF \\
KKMC -> 1 5 CL5 100 EOF\\

{node name -> day to start consuming, day to end consuming, class of supply,

amount to consume}

VIII. VEHFLD.DAT

5
TRUCKS ->

M35A2 CARGO 35 50 0 500 2000 15 12 20 8 1920 10000
.044 40.4 750

M54A1 CARGO 40 75 0 550 3500 15 12 25 8 2400 10000
.041 40.4 753

LMTV CARGO 35 50 0 500 2000 15 12 20 8 1920 10000
.008 40.4 2200

M939 CARGO 35 50 0 500 2000 15 12 20 8 1920 10000
.008 40.4 1800

HEMTT CARGO 35 50 0 500 2000 15 12 20 8 1920 10000
.005 34.0 2675 \\

58

TRAC TRLS ->
Tractor TRAMLER 50 50 0 500 2000 15 12 20 8 1920 5000

.01 40.0 1000
M939T TRAILER 50 50 0 500 2000 15 12 20 8 1920 5000

.008 40.4 2500
M915T TRALLER 50 50 0 500 2000 15 12 20 8 1920 5000

.09 34.0 1160\\
TRAC LOWBOYS - >

"Trailer CARGO 50 50 0 500 2000 15 12 20 8 1920 5000
.01 40.0 500 \\

HEITS ->

Hett HBT 70 50 0 500 5000 20 0 403 0 0 140000
.005 34.0 2500

M911H HET 70 50 0 500 5000 20 0 317 0 0 140000
.009 34.0 1630

M1070H HE 70 50 0 500 5000 20 0 403 0 0 140000
.005 34.0 2500 \\

WRECKERS ->
Wrecker RECOVERY 40 75 0 550 3600 15 0 0 0 0 20000

.017 40.4 1700 \\

{type vehicle -> model, type, fuelCap, fuelConsump, odometer, engHrs, assetWeight,
assetLength, height, length, width, cubeFt, weight
maintManHrs, adminLogTime, MMBF}

IX. TRAVELR.DAT

10
M35A2 - >

55.0 48.7 48.7 32.4 40.0 39.6 39.6 29.6
24.9 24.9 24.9 20.2 18.0 18.0 18.0 17.5 EOF \\

Wrecker - >
40.0 39.6 39.6 28.3 40.0 37.9 37.9 28.1
24.8 24.8 24.8 20.1 24.8 24.8 24.8 20.1 EOF \\

Hett ->
30.9 16.6 16.6 8.1 27.0 16.1 16.1 7.8
8.2 8.1 8.1 5.4 8.2 7.7 7.7 5.2 EOF\\

LMTV ->
40.0 39.6 39.6 28.3 40.0 37.9 37.9 28.1
24.8 24.8 24.8 20.1 24.8 24.8 24.8 20.1 EOF \\

M939 - >
40.0 35.7 35.7 22.7 40.0 34.0 34.0 22.5
23.0 21.8 21.8 15.8 10.7 10.7 10.7 10.7 EOF \\

59

M939T - >
34.4 20.1 20.1 10.3 31.8 19.3 19.3 10.2
13.7 10.9 10.9 7.2 10.7 8. 8.6 6.1 EOF \\

HEMT - >
38.0 38.0 38.0 25.3 38.0 34.4 34.4 24.4
24.7 23.3 23.3 18.0 16.9 16.9 16.9 15.4 EOF \\

M915T - >
23.0 21.2 21.2 12.5 23.0 20.5 20.5 12.3
14.0 11.2 11.2 8.3 10.0 9.7 9.7 7.5 EOF \\

M911H ->
21.0 13.4 13.4 7.7 19.3 11.8 11.8 7.4
8.6 7.6 7.6 4.5 7.9 6.8 6.8 4.2 EOF \\

M1070H ->
30.9 16.6 16.6 8.1 27.0 16.1 16.1 7.8
8.2 8.1 8.1 5.4 8.2 7.7 7.7 5.2 EOF \\

{vehicle - >
concrete

flat rollingHills billsCurves mountainous
bituminous

flat rollingliMs hillsCurves mountainous
gravel

flat rollingHills hillsCurves mountainous
dirt

flat ronlingHills hillsCurves mountainous}

X. VEHOWN.DAT

2
Dammam - > TRUCKS none

TRACTRIS none
TRACLOWBOYS none
HE'IT Hett 385
WRECKERS Wrecker 4 \\

KKMC - > TRUCKS none
TRACTRLS none
TRAC LOWBOYS none
Hzfl none
WRECKERS none \\

{node -> type vehicle, model, number of)

60

XI. IUNKS.DAT

9
Economy -> Dammam 20.0 concrete flat \\
Dammam -> AIJubayl 60.0 concrete flat

CSCy 113.0 concrete flat \\
AI~ubayl -> Bastogne 72.0 concrete flat

Dammam 60.0 concrete flat \\
Bastogne -> AiJubayl 72.0 concrete flat

ALPHA 101.0 concrete flat \\
ALPHA -> Bastogne 101.0 concrete flat

KKMC 101.0 concrete flat \\
KKMC -> ALPHA 101.0 concrete flat \\
CSCy -> Dammam 113.0 concrete flat

Riyadh 113.0 concrete flat \\
Riyadh - > CSCy 113.0 concrete flat

DELTA 175.0 concrete flat \\
DELTA -> Riyadh 175.0 concrete flat

KKMC2 127.0 concrete flat \\

{link origin -> link destination distance, roadSurface, terrain}

XEI. ROUTES.DAT

9
Economy -> Economy Dammam EOF \\
Dammam ->

Dammam AiJubayl Bastogne ALPHA KKMC
Dammam AIJubayl Bastogne ALPHA
Dammam AiJubayl Bastogne
Dammam AI~ubayl
Dammam CSCy Riyadh DELTA KKMC2
Dammam CSCy Riyadh DELTA
Dammam CSCy Riyadh
Dammam CSCy EOF \\

AIJubayl - >
AlJubayl Bastogne EOF \\

Bastogne - >
Bastogne ALPHA EOF \\

ALPHA->

61

ALPHA KKMC EOF \\
KKMC ->

KKMC ALPHA Bastogne AlJubayl Dammam
KKMC ALPHA EOF \\

KKMC2 - >
KKMC2 DELTA Riyadh CSCy Dammam EOF \\

Aiubayl - >
Ailubayl Dammam
AIJubayl Bastogne
AlJubayl Bastogne ALPHA
AliJubayl Bastogne ALPHA KKMC
AlJubayl Bastogne ALPHA ECHO
Al~ubayl Bastogne ALPHA ECHO CHARLIE EOF \\

Dhahran ->
Dhahran CSCy
Dhahran CSCy Riyadh
Dhahran CSCy Riyadh DELTA
Dhahran CSCy Riyadh DELTA KKMC EOF \\

{node -> start node, next node... next to last, end node}

XHI. MISSION.DAT

I
Dammam -> 116 M1 120251 312 HEIT 0 TRUE KKMC 10

24 M88 112100 325 HETr 0 TRUE KKMC 10
12 AVLB 91999 340 HETT 0 TRUE KKMC 10
6 CEV 111198 351 HETT 0 TRUE KKMC 10

64 M2 41899 254 HETT 0 TRUE KKMC 10
18 M3 41500 254 HETT 0 TRUE KKMC 10
12 M901 26001 191 HEIT 0 TRUE KKMC 10
29 M577 23953 191 HUT 0 TRUE KKMC 10
3 M578 53572 220 HETT 0 TRUE KKMC 10

30 M548 16000 232 HE=T 0 TRUE KKMC 10
16 FIST-V 26001 191 HETT 0 TRUE KKMC 10
27 ACE 26592 191 HETI 0 TRUE KKMC 10
6 M106 19852 194 HETT 0 TRUE KKMC 10

118 M113 23442 191 HETT 0 TRUE KKMC 10
24 M109 46540 244 HETT 0 TRUE KKMC 10 EOF\\

{node - > number to create, name of item, weight in lbs,
length in inches, method of resupply, priority, nonseparable, destination, time to

begin mission}

62

XlV. SEEDS.DAT

*This data file (not shown) contains an integer on the first line that represents the

number of seeds in the file. The remaining numbers are random seeds that are generated

by MODSIM lI's random number seed generated.

63

APPENDIX D - IrTSS PROGRAM CODE

ITrSS was entirely written on a 486DX-25mhz personal computer. MODSIM H'

can be run on a variety of operating systems. This simulation model was written with

the PC-OS/2 version that requires the PC-OS/2 version 1.1 or later and the C compiler,

Microsoft C 5.0. Programs are interchangeable on each system as long as the particular

version contains the required libraries the model utilizes.

ITrSS was written on a personal computer to insure that the model did not need

the support of a mainframe or a large database. The average compilation time was 10

to 20 minutes depending on how many of the modules required recompilation. Run times

were between 1 and 4 minutes, depending on the setup of the problem being run to

include number of assets created and number of cargo to be moved.

64

MAIN MODULE flTSS;
FROM INPUT IMPORT ReadEmAil;
FROM Debug IMPORT TraceStream;
FROM CREATEr IMPORT CreataTransSytemn;
FROM DEBUORN IMPORT SatUpD;

FROM SimMod IMPORT StartSimulation;

FROM STARTEM IMPORT StartConsuming, StartSupplyActivities,
SebedulaMissions, StartReports,

FROM NETWORK IMPORT Network~bi;

VAR
Network: NstworkObj;
decision : STRING;

BEGIN
Seffpt)(rRUE);
ReadEniAll;

CraatisTransSystem(Network);

OUTPUT("Do you want to nan a COMPLETE Transportation Simulation?");

OUTPUT(Eater Y for yes, N for no.");
INPUT(decision);

IP(decisioa - 'Y) OR (decision ' y") OR (decision ="YES*) OR (decision ' Yea")

StartCoasuning(Network);

StarSupplyActivitiea(Network);

END IF;

ScbeduieMisaions(Network.NodeL~st);

StartReports(Networt.NodeLint);

OUTPUT(*---START SIMULATION-%)

StartSimvulation;

OUTPUT(C-FINISHiED SIMULATION-")

END MODULE (ITTS).

DEFINITIION MODULE GLOBAL;
(Contains variables that will be used throughout IITrSS by other objects)

FROM GrpMod IMPORT QusueObj;

TYPE
HqNsmeType - STRING;
AssetNarneTypo - STRING;

Mode[NameType STRING;
NodaNameType =STRING;
FacilityNanieType -STRING;
TransUnitNanieType = STRING;

65

Dimensions = RECORD {Dimensions for stowage of cargo)
height,

width,
cubeFt,
loadCap - REAL;

END RECORD;

Assaet-peQueue QueueObj;
CargoTypeQue - QueueObj;
LinkTypeQuwue - QueueObj;
NodeTypeQueue QueteObf;
RouteTypeuue - QueueObj;
SupplyRecordTypeQueue - QueueObj;
RequestTypeQueue - QuaueObj;
ConsumerQueue = QueueObj;

SupplyClowsrype = STRING;
DeecriptTyp. - STRING;
DestinebonTyp. = STRING;
CargoType . (AMMO, CONTAINER, FUEL, HETl, WATER, CARGO, RECOVERY);
AssStatms - (Motorpool, Commited, Mainteance);
VebicleType - (TRUCKS, TRACTORS, TRAILERS, TANKERS, WRECKERS);
roadCharact - (flat, rollingHills, hil'sCurves, mountainous, concrete, bituminous, gravel, dirt);
FailType - ARRAY INTEGER OF REAL;

PROCEDURE DisposeOfQueue (IN Queue : QueueObj);

END {DEFINITION} MODULE {global).

IMPLEMENTATION MODULE GLOBAL;
FROM OrpMod IMPORT QueueObj;

PROCEDURE DisposeOtQueue (IN queue : QueueObj);

VAR
dump : ANYOBJ;

BEGIN
dump : ASK queue First 0;
WHILE dump < > NILOBJ

DISPOSE(dump);
dump : = ASK queue Next(dump);

END WHILE;

DISPOSE(queue);
END PROCEDURE (Dispose~fQueue);

END (IMPLEMENTATION) MODULE {global).

DEFINITION MODULE ROLOBAL;
(All pertinent variables for inputting data are defined here)

CONST
MaterFileName - "Master.dat';

TYPE
FileNameType = STRING;
SAmyType - ARRAY INTEGER OF STRING;
SHierRecType - RECORD

TopString : STRING;
OwnedString : SArrayType;

66

END RECORD;
SHAnfayTyp. - ARRAY INTEGER OF SHietRecType;
SeedAurayTYP* - ARRAY INTEER OF INTEGER;

VAR
NodeSHAnay: SHArrayTyp.;
AssetOwnmnSHArray : SHAffayTyp.;
MoozpooISHArry: SHAfrayTyp.;
MaintenanceSHArray: SHArrayTyp.;
SupplySHArray: SHAurayType;
SuppbySourc.SHArrvy: SHArrayType;
FuelpointSHArmy: SHArrayTyp.;
UnitaSHAray: SHArrayTyp.;
AsseetieldaSHArmy: SHArrayType;
Trav*lateaSHArray: SHArrayTyp.;
linkSHAurmy SHAurmyTyp.;
RouteSHArray :SHArrayTyp.;
MisalonSHArray: SHArrayType;
SeedArray: SeedArrmyType;
SeedCount: INTEGER;

END (DEFINITION) MODULE {RGlobaI).

DEFINITION MODULE INPUT;
(This procedure input all date that is required to run 1711W}

PROCEDURE Rmd~mAII;

END (DEFINITION) MODULE (Input).

IMPLEMENTATION MODULE INPUT;
FROM lOMod IMPORT StmemObij, FaieUa.Type(Inut);
FROM RGLOBAL IMPORT MauzerFileName, NodeSHArray,

AsaaeOwneraSHArray, MotorpoolSHArray, MaintsmanceSHArray, SupplySHArray,
SupplySourceSHArray, FuelpointSHArray, UnitaSHArray, AssetFieldaSHArray,
Trav.IltateaSliArray, ILinkS HArray, RouteSHAfray, MissionSHAfray, SeedArray, FileNameType;

FROM READLST IMPORT Readet,
FROM READSED IMPORT ReadTheSeeda;
FROM Debug IM1PORT TraceStream;

VAR
NodeFaleNatne,
AssetOwnersFileNatne,
MotorpoolFfieName,
Mainwmnnc.Fd*Nam.,
SupplyFilsName,
SupplySource~il*Naine,
FuolpointffdeName,
UwitsFileNams,
AsaeeFieldsFilaestm.,
TravellkatesFilsNanw,
Link~il.Nam.,
MissionFileName,
SeedFil*Nsme,
RouteFileName: FileNamneType;

PROCEDURE ReadNode;

BEGIN

67

ReadLot(Nod*SHArray, NodeFileName);
END PROCEDURE {RoadNode);

PROCEDURE ReadMotorpool;

BEGIN
ReadLua(MotorpoolSHArray, MotorpooIFi1.Nam);
END PROCEDURE (RoadMotorpool);

PROCEDURE RuadMaintena=c;

BEGIN
Readlast(MaintenmnceSHArray, MaintonanceFiloName);
END PROCEDURE {ReadMaintenance);

PROCEDURE ReadSupply;

BEGIN
ReadLst(SupplySHArray, SupplyFiloNaims);
END PROCEDURE {ReadSupply);

PROCEDURE ReadSupply~orcc;

BEGIN
ReadLut(SupplySourcaSHArray, SupplySourceFileName);
END PROCEDURE (ReadSupplySourc.);

PROCEDURE Re.dFuelpoint;

BEGIN
Readl~st(FueIpointSHAffay, FuelpointFileName);
END PROCEDURE {ReadFuelpoint);

I -)
PROCEDURE ReadUnits;

BEGIN
ReadLat(UnitaSHAffay, UnitsFileName);
END PROCEDURE {ReadUnita);

PROCEDURE ReadAsaetFields;

BEGIN
ReadIAt(AaaetFieldsSHAfray, AsseffieldeFtleName);
END PROCEDURE (ReadAuseffields);

PROCEDURE ReadTravelRates;

BEGIN
ReadLuz(rravelatae&SHAnfay, TravelRateaFie*Name);
END PROCEDURE {ReadTravelfatta);

PROCEDURE ReadAsactOwwner;

68

BEGIN
ReadLxt(AssetOwner*SHAffay, AssetOwneraFileName);
END PROCEDURE jlkeadAusetownmr);

PROCEDURE Read~inkc;

BEGIN
Reod.dI(LinkSHArray, LinkFiI.Neinw);
END PROCEDURE (ReadLinks);

PROCEDURE ReadRoute.;

BEGIN
Readlast(RtouteSHArray, RouteFileName);
END PROCEDURE {ReadRoutes);

PROCEDURE ReadMisions;

BEGIN
ReadLot(M~inionSHArray, MissionFiloName);
END PROCEDURE (ReadMiszions);

PROCEDURE ReadEmAfl;

VAR
File: StreamObj;
str :STRING;

BEEIIN
NEW(File);
ASK File TO Open(MrnterFileName, Input);
ASK File TO ReadString(NodeFileNamne);
ASK File TO ReadLine(str);
ASK File TO ReadString(MotorpoolFiloName);
ASK File TO Readline(str);
ASK File TO ReadString(SupplyFileNanie);
ASK File TO ReadLine(str);
ASK File TO ReadStrnng(SupplySourceFiieName);
ASK File TO ReadLine(str);
ASK File TO ReadString(FuelpointFitleNsme);
ASK File TO ReadLine(str);
ASK File TO Readfting(UnitsFiloNameo);
ASK File TO ReadLine(str);
ASK File TO ReadString(AusetFieldsFileName);
ASK File TO ReadUne(atr);
ASK File TO ReadString(Travelitste... ileName);
ASK File TO ReadLine(str);
ASK File TO ReadString(AuetOwnersFileNam*);
ASK File TO ReadLint(str);
ASK File TO ReadStfing(LinkFileNsmc);
ASK File TO ReadLine(mtr);
ASK File TO ReadString(RouteFileName);
ASK File TO ReadUne(str);
ASK File TO ReadString(MissionFileName);
ASK File TO Readl~ne(str);
ASK File TO ReadStuing(SeedFileNanie);

69

ReadNode;
ReadMotorpool;
ReadSupply;
ReadSupplySource;
ReadFuelpoint;
ReadUnits;
ReadAssetFields;
ReadTra,. elRates;
ReadAnsetOwners;
ReadLinks;
ReadRouteg;
ReadMissions;
ReadMeSeeds(SeedFdeName);
END PROCEDURE {ReadEmAll);

END (IMPLEMENTATION) MODULE (Input).

DEFINITON MODULE READLST;
(Integral procedure in the inputting of data to the model',

FROM ROLOBAL IMPORT SHArrayType, FileNameType;

PROCEDURE ReadLet (INOUT SHArray :SHArrayType;
IN FileName: FileNameType);

END {DEFINITION) MODULE (ReadLat) .

IMPLEMENTATION MODULE READLST;
FROM lOMod IMPORT StreamObj, FileUseType(Input);
FROM RCILOBAL IMPORT SHAffayT vpe, FileNameType;
FROM READSH IMPORT ReadSH;
FROM Debug IMPORT TraceStream;

PROCEDURE ReadLat (INOUT SHArray : SHArrayType;
IN FileName: FileNameType);

VAR
File : StreamObi;
numberOfSH: INTEGER;

i:INTEGER;
error: BOOLEAN;
sftring : STRING;

B EGIN
NEW(File);
ASK File TO Open(FileNsme, Input);
ASK File TO ResdInt(numberOfSH);
ASK File TO ReadLine(string);
NEW(SHArray, I. .numbetOfSll);
FOR i := I TO numberOfSH

ReadSH(File, SHArn, [iJ, error);
IF error

ASK TraceStream TO WniteStuing("problem reading file + FileName + -BAD FORMAT DET>)
END IF;

END FOR;
ASK File TO ObjTerminateO;
ASK File TO Deleteo;
END PROCEDURE (ReadLat);

END JIMPLEMENTATION) MODULE (ReadUa).

70

DEFINITON MODULE READSH;
(Integral part in inputting data to the mnodel)

FROM RGLOBAL IMPORT SHierRecType;
FROM JOMod IMPORT StreammObi;

PROCEDURE ResdSH (IN File: StreamObj;
OUT SHierRec :SHierRecType;
OUT error : BOOLEAN);

END (DEFINITION) MODULE (ReadSH).

IMPLEMENTATION MODULE READSH;
FROM ROLOBAL IMPORT SHierRecType;
FROM lOMod IMPORT StreamnObj, FileUseType(Input), ReadKey;
FROM Debug IMPORT TraceStream;

PROCEDURE RsadSH (IN File :StremmObi;
OUT SHierRec : SHierRecType;
OUT error :BOOLEAN);

TYPE
StringkecType - RECORD

String : STRING;
Next : StringRec7)ype;

END RECORD;
VAR

string : STRING;
numbeiOf~trings: INTEGER;
StringRec, OldStringRec : StringRecType;
first : StringRecType;
arrow : STRING;
stringRec : StringRecType;

iINTEGER;
z : CHAR;

BEGIN
NEW(SHierRec);
ASK File TO ReadString(SllierRec.TopString);
NEW(StringRec);
numberOf~tringg 1;
first : - StringRec;
ASK File TO ReadString(arrow);
IF arrow < > *->*

ASK TraceStream TO WriteString("file not formatted correctly");
error : -TRUE;
RETURN;

ELSE
error : -FALSE;

END IF;
WHILE string < >

ASK File TO ReadStning(string);
IF string -'..

ASK File TO ReadLine(string);
ELSE

OldStringRec := StringRec;
StringRec.String := string;
NEW(StringRec);
OldStfingRec.Next:= StringRe':;
numberOfStrings:= number~h~trings + 1;

71

END IF;
END WHILE;
ASK File TO ReadLine(string);
IF (numberOfStrings > 0) AND NOT error

NEW(SHierRec.OwnedString, I .. numberOfStrings - 2);
stringRec :- first;
FOR i = I TO numberO/Strings - 2

SHierRic.OwnedString[i := stringRec.String;
stringRec :- stringRec.Next;

END FOR;
END IF;
END PROCEDURE {ReadSH);

END (IMPLEMENTATION} MODULE {ReadSH}.

******e**e****s**s**e***.****s****e******.***********e***

DEFINITION MODULE FINDSH;
{When given a name, it searchs a data array and gives back the correct record requested. Used for giving objects the initial values
for their fields)

FROM RGLOBAL IMPORT SHierRecType,SHArrayType;

PROCEDURE FindSHRec (IN SHArray : SHArrayType;
IN TopString STRING;
OUT SHRec SHierRecType);

END {DEFINITION} MODULE {FindSH}.

IMPLEMENTATION MODULE FINDSH;
FROM ROLOBAL IMPORT SHierRecType,SHArrayType;
FROM Debug IMPORT TraceStream;

{)
PROCEDURE FindSHRec (IN SHArray : SHArrayType;

IN TopString : STRING;
OUT SHRec : SHierRecType);

{ }
VAR

ThisRec : SHierRecType;
i : INTEGER;

BEGIN
NEW(SHRec);
i := 0;
REPEAT

INC(i);
ThisRec SHArray[i];

UNTIL ((i > = HIGH(SHArray)) OR (ThisRec.TopString f TopString));
IF (ThisRec.TopString = TopString)

SHRec : ThisRec;
ELSE

ASK TraceStresm TO WriteString('SHRec is a NILREC!");
SHRec : NILREC;

END IF;
END PROCEDURE {FundSHRec};

END {IMPLEMENTATION) MODULE {FindSH).

DEFINITION MODULE READSED;
{Reads the seed from a seed file. Seeds are used for the mean miles between operational failures for each asset)

72

FROM RGLOBAL IMPORT FileNsmeType;

PROCEDURE ReedSeed 0 :INTEGER;
PROCEDURE ReadTheSeeds (IN FileName :FileNkmeT'ype);

END (DEFINITON) MODULE {ReadSed).

IMPLEMENTATION MODULE READSED;
FROM Debug IMPORT TraceStreamn;
FROM lOMod IMPORT FileUseTypeftnut), StreamObj;
FROM ROLOBAL IMPORT FileNamneType, SeedCount, SeedArray;

PROCEDURE ReadSeed 0 :INTEGER;

BEGIN
IF (SeedCount > HIGH(SeedArray))

ASK TraceStreamt TO Writ*String('Ran out of seeds)
ASK TraceStreaim TO WriteLn;
HALT;
REI'URN(O);

ELSE
IF (SeedCount < -0)

SeedCount: 1;
END IF;
INC(SeedCount);
REI1JRN(SeedArrsy[SeedCount- 11);

END IF;
END PROCEDURE {ReadSeed);

PROCEDURE ReadTheSeeds (IN FileName: FileNameType);

VAR
file: StreamObj;
str : STRING;

i:INTEGER;
Numbertfeeds: INTEGER;

BEGIN
NEW(file);
ASK file TO Open(FileName, Input);
ASK file TO Readlnt(NumberOt~eeds);
NEW(SeedArrsy, I. .NumberOtSeeds);
FOR i :=I TO NumberOfSeeds

ASK file TO Readlnt(SeedArraylij);
ASK file TO ReadLine(st);

END FOR;
END PROCEDURE (ResdMoSeeds);

END (IMPLEMENTATION) MODULE {ReadSed).

DEFINITION MODULE DEBUORN;
(Sets up a tracestream that assists in debugging any compiling or runtime errors. If SetUpD in the main module is true, the trsce
is on, if false, only errors will be written to the debug.out file)

PROCEDURE SetUpD (IN TraceOn : BOOLEAN);

END (DEFINITION) MODULE (DebugRn).

73

IMPLEMENTATION MODULE DEBUORN;
FROM IOMod IMPORT FileUseType(Output);
FROM Debug IMPORT TraceStream;
FROM UtilMod IMPORT DateTime;

{, }
PROCEDURE SetUpD (IN TraceOn : BOOLEAN);
{, }
VAR

DT : STRING; 0

BEGIN
NEW(TraceStream);
ASK TraceStream TO Open (*debug.out", Output);
DateTune(DI);
ASK TraceStream TO WriteString(DT);
ASK TraceStrmem TO WriteLn;
ASK TraceStroam TO WriteLn;
ASK TraceStream TO WriteLn;
IF TraceOn

ASK TraceStream TO TraceOn;
OUTPUT("-TRACE ON - ");
ASK TraceStream TO WriteString(*lnitially, trace is on.');
ASK TraceStream TO WriteLa;

ELSE
ASK TraceStrmem TO TraceOff;
ASK TraceStream TO WriteString("lnitialy, trace is off.");
ASK TraceStream TO WriteLn;

END IF;
END PROCEDURE {SetUpD);

END {IMPLEMENTATION) MODULE (DebugRn).

{e*5*****s******e*e*********eeees****************e*S***********

DEFINITION MODULE NETWORK,
(Network is the top of the tree that contains all nodes, links and routes. All access to these objects are through the network's queue
of thee objects)

FROM GLOBAL IMPORT NodeTypeQueue,LinkTypeQueue,RouteTypeQueue;

TYPE
NetworkObj = OBJECT

NodeList: NodeTypeQueue;
RouteList : RouteTypeQueue;
LinkList : LinkTypeQueue;

ASK METHOD ObjInit;
END OBJECT;

END (DEFINITION) MODULE (network).

IMPLEMENTATION MODULE NETWORK;
FROM GLOBAL IMPORT NodeTypeQueue,LinkTypeQueue,RouteTypeQueue;

OBJECT NetworkObj;
{ I
ASK MEr,4OD Objlnit;

BEGIN
NEW(NodeList);
NEW(RoutsLit);

NEW(LinkLiet);
END METHOD {Objlnitl;

74

END OBJECT (NetworkObj};

END (IMPLEMENTATION) MODULE (network).

DEFINITION MODULE CREATEr;
(Them are general procedures that initialize the transportation system for 'ITSS. Nodes, links, routes, and all objects within each
node are created)

FROM ROLOBAL IMPORT SHierRecType;
FROM NODE IMPORT NodeObj;
FROM NETWORK IMPORT NetworkObj;

PROCEDURE CreateTransSystem(OUT Network: NetworkObj);
PROCEDURE CreateNetwork (IN Network: NetworkObj);
PROCEDURE CreateAttachedUnits (IN Node: NodeObj;

IN NodeSHRec: SHierRecType);

END (DEFINITION) MODULE (createt).

IMPLEMENTATION MODULE CREATET;
FROM Debug IMPORT TraceStream;
FROM GLOBAL IMPORT RouteTypeQueue, NodeTypeQueue;
FROM RGLOBAL IMPORT SHierRecType, NodeSHArray, MaintenanceSHArray, MotorpoolSHArray,

SupplySHArray, FuelpointSHArray;
FROM NETWORK IMPORT NetworkObj;
FROM NODE IMPORT NodeObj;
FROM FINDSH IMPORT FindSHRec;
FROM ROUTE IMPORT CrateLinks, CreateRoutes;
FROM MAINT IMPORT MaintenanceObj;
FROM MOTORPL IMPORT MotorpoolObj;
FROM ASSET IMPORT AssetObj;
FROM SUPPLY IMPORT SupplyObj;
FROM FUELFr IMPORT FuelpointObj;
FROM UNITS IMPORT UnitsObj;
FROM CREATE IMPORT CreateMotorpool, CreateMaintenance, CreateSupply,

CreateFuelpoint, CreateUnits, CreateSupplySourcea;

(}
PROCEDURE CreateTrans~ystem(OUT Network : NetworkObj);
{ }
VAR

i : INTEGER;
NodeSHRec: SHierRecType;

BEGIN
NEW(Network);
CreateNetwork (Network);
END PROCEDURE (CresteTransytenm);

{ }
PROCEDURE CreateNetwork (IN Network: NetworkObj);

{ ,}
VAR

i : INTEGER;
Node : NodeObj;
NodeSHRec : SHierRecType;
MasterRouteList : RouteTypeQueue;
MasterNodeList: NodeTypeQueue;

BEGIN

75

{ -- Creting Nodes-
FOR i I TO HIUH(NodeSHAfrsy)

NEW(Node);
ASK Node TO OatNameQNodeSHArrayfiJ.TopString);
ASK Nods TO OetClearances;
FindSHRec(NodeSHArray, ASK Node namne, NodeSHRec);

ASK Node TO OatResunctions(NodeSHRec);
CrmteAttachedUnits(Node, NodeSHRec);
ASK Network.Node"iaTO Add (Node);
CreateLinks(ASK Node namne, Network.LinkList);

END FOR;
NEW(MssterloutaL~isf);
FOR i - 1 TO HIGH(NodeSHArray)

CreateRoutes(NodeSHAnayfi].TopString, Network, MasterRouteList);
END FOR;
(Give each Mototpool a copy of the Master Lists)
NEW(MasterNodeList);
MasteNodeList :- Network.NodeList;
Node: - ASK Network.NodeList FiratO;
REPEAT

IF(Node.inyMototpool < > NILOBJ)
ASK Node.myMotorpool TO GetMasterLists (MasterRouteList, MasterNodeLisft);

END IF;
Node : -ASK Network.Node~ist Next(Node);

UNTIL (Node - NILOBJ);

Node : -ASK Network.Nodelist FirstO;
REPEAT

IF(Node.mjySupply < > NILOBJ)
CreataSupplySourcea(Node.mySupply, Network);

END IF;
Node: - ASK Network.NodeList Next(Node);

UNTIL (Node - NELOBJ);
END PROCEDURE (CreateNetwork);

PROCEDURE CreteAttachedUnits (IN Node: NodeObj;
IN NodeSHRec: SHierRecType);

VAR
i:INTEGER;

Motorpool : MotorpoolObj;
Maintenance: MaintenanceObj;
Supply: SupplyObi;
Fuelpoint: FuelpointObj;
Units : UnitsObj;
MotorpootName, MaintenanceName, SupplyName, FuelpointName , UnitsName: STRING;

BEGIN
IF (NodeSHRee - NILREC)

Find'SHRec (NodeSHArray, ASK Node namne, NodeSHRec);
END IF;
CmeteMotorpool(ASK Node name, NodeSillec, Motorpool);
ASK Nods TO GotMotorpool(Motorpool);

CreateMaintenance(ASK Node name, NodeSHRec, Maintenance);
IF((Motorpocil < > NILOBI) AND (Maintenance < > NILOBF))

ASK Maintenance TO GetMyMotorpool(Mototpool);
END IF;
ASK Node TO GetMaintenance(Mairutnance);

CresteSupply(ASK Node name, NodeSHRec, Supply);

76

ASK Node TO OetSupply(Supply);

CrmeteFuelpoint(ASK Node name, Nod&SHRec, Fuelpoint);
ASK Node TO GetFuelpoint(Fuelpoint);

CreateUnits(ASK Node name, NodeSHRec, Units);
ASK Node TO GetUnits(Units);

IF(Motorpool < > NILOBI)
ASK Supply TO OetMyMotorpooi(Motorpool);

END IF;

lF(Suply < > NILOBJ)
ASK Units TO OetMySupply(Supply);

ENDIEF;
END PROCEDURE {CreateAttachedUnits);

END (IMPLEMENTATION) MODULE {createt).

DEFINITON MODULE C21EATE;
(Each node's motorpools, maintenance facilities, supply points, fuelpoints, units, and each supply point's supply source are created
here)

FROM ROLOBAL IMPORT SHierftecType;
FROM NODE IMPORT Node~bj;
FROM MOfTORPL IMPORT MotorpoolObj;
FROM MAINT IMPORT Maintenance~bj;
FROM SUPPLY IMPORT SupplyObj;
FROM FUELPT IMPORT FuelpointObj;
FROM UNITS IMPORT Units~bj;
FROM NETWORK IMPORT NetworkObj;

PROCEDURE CreateMotorpool (IN name: STRING;
IN NodeSHRec: SHierRecType;
OUT Motorpool : MotorpoolObj);

PROCEDURE CreateMaintenance (IN name : STRING;
IN NodeSHRec : SHierRecType;
OUT Maintenance : MaintenanceObj);

PROCEDURE CreateSupply (IN name : STRING;
IN NodeSHRec: SHierRecType;
OUT Supply : SupplyObj);

PROCEDURE CreateFuelpoint (IN name : STRING;
IN NodeSHRec: SHierRecType;
OUT Puelpoint : FuelpointObj);

PROCEDURE CreateUnits (IN name : STRING;
IN NodeSHRec: SilierRecType;
OUT Units: UnitsObj);

PROCEDURE CreateSupplySources (IN Supply: Supply~bj;
IN Network : NetworkObj);

END (DEFINMTON) MODULE (create).

IMPLEMENTATION MODULE CREATE;
FROM Debug IMPORT TraceStream;
FROM RGLOBAL IMPORT SHierReeType, NodeSHArray, MotorpoolSHArray, MaintenenceSHArray, SupplySHAzray,

FuelpointSHAffay, Unit&SHArrey, SupplySourceSHArray;
FROM NODE IMPORT Node~bj;
FROM MOTORPL. IMPORT MotorpoolObj;
FROM MAINT IMPORT Maintenance~bj;

77

FROM SUPPLY IMPORT Supply~bj;
FROM FUELPT RMPORT Fuelpouit~bi;
FROM UNITS IMORT UnitaObj;
FROM FINDSH IM4PORT FindSHRec;
FROM NETWORK IMPORT NetworkObj;

PROCEDURE CreateMotorpool (IN name : STRING;
IN NodeSHRec: SHierRocType;
OUT Motorpool : MotorpoolObj);

VAR
i:INTEGER;

MotorpoolName: STRING;
BEGIN
1=-1;
WHILE ((NodeSHRec.OwnedStrigij < > -M) AND

(Nd.SHRec.OwnedSttingtiJ < > ")

INCMi;
END WHILE;

REPEAT
Motorpoo[Name := NodeSHRee.OwnedString[iJ;
NEW(Motorpool);
ASK Motorpool TO Objlnt;
ASK Motorpool TO GetName (MotorpoolName);
ASK Motorpool TO Get~ilelds(name);
ASK Motorpool TO GetAssets (name);

INCQi);
UNTIL ((i- HIGH(NodeSHRee.OwnedString)) OR

(NodeSHRee.OwnWdStnngfil = 1-) OR
(NodeSHRec.OwnedStriflgfi -] "M"

END PROCEDURE {CreateMotorpoot);

PROCEDURE CreateMaintenance (IN name : STRING;
IN NodoSHRec: SHierRecTtype;

OUTr Maintenance : Makintenance~bi);

VAR
i : TEGER;

MaintenanceNames: STRING;
BEGIN

i = 1;
WHILE ((NodeSHRec.OwnedStringlil < > "MA*) AND

(NodeSHRec.OwnedStringllJ < > S

INCMi;
END WHILE;
INC~s);
REPEAT

MaintenanceNanme: = NodeSHRec.OwnedString[iJ;
NEW(Maintenance);
ASK Maintennce TO GetName (MaintenanceName);
{ASK Maintenance TO GetFields(name);)
INC(7z);

UNTIL ((i > HIGH(NodeSHRec.OwnedString)) OR
(NodeSHRec.OwnedStrineiI - \\) OR
(NodeSllRec.OwnedStrigflg -= ')

END PROCEDURE {CreateMaintenancel;

78

PROCEDURE CrmateSupply (IN namie: STRING;
IN Nod*SHRec: SHierlecType;
OUT Supply: SupplyObj);

VAR
i:INTEGER;

SupplyName: STRING;
BEGIN
a := I;
WHILE ((Nod.SHRec.OwnedStringjil < > 'S') AND

(NodeSHR~c.OwvwdString[iI < > *%*))
INC(i);

END WHILE;
INCOi);
REPEAT

SupplyNam. := NodeSHRec.OwnedStringliJ;
NEW(Suppiy);
ASK Supply TO GetNamne (SupplyName);
ASK Supply TO GetFielda(name);
INCol);

UNTIL ((i > HIOH(NodeSHRec.OwnedString))OR
(NodeSHRec.OwnedString[iI = "\\) OR
(NodeSHRee.OwnedString[iJ -= *)

END PROCEDURE {CmeteSupply);

PROCEDURE CreateFuelpoint (IN name : STllRING;
IN NodeSHRec: SHierRecType;
OUT Fuelpoint : FuelpointObj);

VAR
i:INTEGER;

FuelpointName: STRING;
BEGIN
a:- 1;
WHILE ((NodeSHRec.OwnedString[i] < > *F) AND

(NodeSHR~c.OwnedStringlij < > \
INC(i);

END WHILE;
INCQ);
REPEAT

FuelpointName : NodeSH~ec.OwnedSttingfil;
NEW(Fuelpoint);
ASK Fuelpoint TO GetName (FuelpointName);
ASK Fuelpoint TO Getfields(name);
INCQi);

UNTIL ((i > HIOH(NodeSHRec.OwnedString)) OR
(NodeSHRec.OwnedString[iJ - *\\) OR
(NodeSHR~c.OwnedStriagjij - U")

END PROCEDURE (CreezeFuelpoint);

PROCEDURE CreateUnits (IN nanwe: STRING;
IN NodeSHRec: SMrerlecType;
OUT Units: UnitsObj);

VAR
iINTEGER;

UnitsName: STRING;
BEGIN
i :- I

79

WHILE ((NodeSHRec.OwnedStning[iJ < > *U) AND
(Nod.SHRec.OwnedStringlij < > '
INC(i);

END WHILE;
INC(i);
REPEAT

UnitsNanw := NodeSHRec.OwnedStri.-iglij;
NEW(Units);
ASK Units TO GetName (UnitsNam.);
ASK Units TO GetFields(name);
INC(i);

UNTIL (0i > HIGH(NodeSllRec.OwnedString)) OR
(Nod.SHRec.OwnedString[iJ = '\\) OR
(NodeSHRec.OwnedString[i) = 'O')

END PROCEDURE {CieateUnits);

PROCEDURE CreateSupplySources (IN Supply :SupplyObi;
IN Network: NetworkObj);

VAR
i:INTEGER;

source: STRING;
Node: NodeObj;
SupplySourceSHRec - SHierRecType;
sourceFound: BOOLEAN;

BEGIN
sourceFound:- FALSE;
FindSHRec(SupplySourceSHAfray. ASK Supply name, SupplySourceSHRec);
source:-= SupplySourceSHRec.OwnsdString~ll;
(Find the source SupplyObj that belongs to the node)
Node:=- ASK Network.NodeList FiratO;
REPEAT

IF(source = Node. mySupply.name)
ASK Stpply TO GetSupplySource (Node.mySupply);
sourceFound:= TRUE;

ELSE
Node: - ASK Network.Nod*List Next(Node);

END IF;
UNTIL ((Node=NILOBJ) OR (sourceFound));
END PROCEDURE (CresteSupplySources);

END (IMPLEMENTATION) MODULE (create).

DEFINITON MODULE CREATEA;
(This procedure creates each asset for a motorpool, by giving it a name and all fields that necessary)

FROM ASSET IMPORT AssetObj;

PROCEDURE CreateAsset (IN VehicleType: STRING;
IN model : STRING;
IN i : INTEGER;
IN Unit: STRING;
INOUT asset : AssetObj);

END (DEFINITION) MODULE (creates).

IMPLEMENTATION MODULE CREATEA;
FROM Debug IMPORT TraceStream;
FROM RGLOBAL IMPORT SHierRecType, AsaetFields.SHArray;

80

FROMt ASSET IMPORT AseetObj;
FROM FINDSH IMPORT FindSHRec;

* PROCEDURE CreateAsset (IN VehicleType: STRING;
IN model : STRING;
IN k : INTEER;

* IN Unit: STRING;
INOUT Asset: AssetObj);

VAR
i:INTEGER;

AssatFieldsSHRee: SHierRecType;
BEGIN
FindSNRsc(AssetFielduSHArray, VabicleType. Assetfield&SHRec);
, :- I;
WHILE ((Asset~ieldsSHR~c.OwnedString[ij < > model) AND

(AasetFieldsSHRsc.OwnedStringji] < >)
JNCQi);

END WHILE;
ASK Asset TO GaeName(model, k, Unit);
ASK Asset TO Getfields(AssetFieldsSHRec);
END PROCEDURE {CreateAsset);

END (IMPLEMENTATION) MODULE {creaeea).

DEFINITIION MODULE NODE;
(Fields and methods of a node are defined here. A procedure that finds a node given its name is included)
FROM GzpMod IMPORT QueueObj;
FROM ResMod IMPORT ResourceObj;
FROM GLOBAL IMPORT NodeNameType,CargoTypeQueue,AaaetrypeQueue, NodeTypeQueue;
FROM ROLOBAL IMPORT SHierRecType;
FROM MOTORPL, IMPORT MotorpoolObj;
FROM MAINT IMPORT Maintenance~bj;
FROM SUPPLY IMPORT Supply~tbj;
FROM FUELPT IMPORT FuelpointObj;
FROM UNITS IMPORT UnitsObj,

EXPORTTYPE
NodeObi - OBJECT; FORWARD;

TYPE
Clearance - ResourceObj;
DeadlinedQueue - QueueObj;
DeadlinePointObj =OBJECT

recoverer: STRING;
AssetQueue : AssefrypeQueue;
ASK METHOD Objlnit;
ASK METHOD GetRecoverer (IN name :STRING);

END OBJECT;

NodsObj - OBJECT
name: NodeNameType;
fuelLevel : REAL;
fizelCap : REAL;
fusiReserve: REAL;
loed ime : REAL;
unload~ime : REAL;
niyMotorpool: MotorpoolObj;
inyMaintanance: MaintenanceObj;
mnySupply : supplychj;

81

myFuelpoint: FuelpointObj;
myUnits : UnitsObj;
deadlinePoinQueue: DeadlinedQueue; (location of any NMC assets)
clearance: Clearance; (authority and right of passage thna node)
maxMilesAllowed : REAL; {at destin, miles before mandatory standwn)
maxOpHoursAllowed: REAL; fsame, but in operating hours)
standDownT'ma: REAL; (hours standown before convoy can leave)
mileaBefore]reak : REAL; (any node, cept deatin, max miles before bk)
breakTime: REAL; (hours for breaktime, before proceeding)
dayToStart : INTEGER; (day activities start at node)
dayToEnd: INTEGER; (day activities end at node)

ASK METHOD Objlnit;
ASK METHOD GetName (IN MyName: STRING);
ASK METHOD GetRestrictions (IN NodeSHRec : SHierRecType);
ASK METHOD GetMotorpool (IN Motorpool - MotorpoolObj);
ASK METHOD GetMaintenance (IN Maintenance: MaintenanceObj);
ASK METHOD GetSupply (IN Supply : SupplyObj);
ASK METHOD GetFuelpoint (IN Fuelpoint : FuelpointObj);
ASK METHOD GetUnits (IN Units : UnitsObj);
ASK METHOD GetClearances;

END OBJECT {node);
{.)
PROCEDURE FindNode (IN nodeName: STRING;

IN NodeList: NodeTypeQueue;
OUT Node: NodeObj);

{. I

END (DEFINITION) MODULE (node).

IMPLEMENTATION MODULE NODE;
FROM GLOBAL IMPORT NodeNameType,CargoTypeQueue,NodeTypeQueue;
FROM RGLOBAL IMPORT SHierRecType;
FROM CARGO IMPORT CargoObj;
FROM MOTORPL IMPORT MotorpoolObj;
FROM MAINT IMPORT MaintenanceObj;
FROM SUPPLY IMPORT SupplyObj;
FROM FUELPT IMPORT FuelpointObj;
FROM UNITS IMPORT Unit*Obj;
FROM Debug IMPORT TrsceStream;

OBJECT DeadlinePointObj;
{. }
ASK METHOD ObjInit;
{ }
BEGIN

NEW(AssetQueue);
END METHOD (Oujlnit);

{ .}
ASK METHOD GetRecoverer (IN Name: STRING);

BEGIN
recoverer : , Name;

END METHOD (GetRecoverer);

END OBJECT (DeadlinePoint);

OBJECT NodeObj;

(. }

82

ASK METHOD Objlnit;

I -)
BEGIN

NEW(deadlinePointQuoue);
NEW(cloarance);

END METHOD (Objint);

ASK METHOD Getblame (IN MyName: STRING);

BEGIN
namne: MyNamne;

END METHOD 1GatNamo);

ASK METHOD Getkmtrictions (IN NodeSHRec: SHierRecType);

BEGIN
maxMilosAflowed: STRTOREAL(Nod.SHRec.OwnedStrinigr I]);
maxOpHoureAllowed: = '17MTOREAL (NodeSHRec.OwnedStringf21D;
standDownTjm : = STRtTOREAL (N.odeSI{Rec.OwnedString[3 I);
miflemfeforeBreak :- STRTOREAL (NodeSHRec.OwnedString[41);
breakTim. : STRTOREAL (NodeSHRec.OwnedString[51D;
dayToStart :=STRTOINT (NodeSHRec.OwnedString[6J);
dayToEnd : STRTOINT (NodeSHRec.OwnedStringl71D;

END METHOD {OetRestrnctions);

ASK METHOD GetMotorpool (IN Motorpool : MotorpoolObj);

BEGIN
myMotorpool :=Motorpool;
END METHOD {GetMotorpool);

ASK METHOD GetMaintenance (IN Maintenance: MaintenanceObj);

BEGIN
myMaintenance := Maintenance;
END METHOD {GotMaintenance);

ASK METHOD GetSupply (IN Supply : SupplyObj);

BEGIN
mySupply: supply;
END METHOD {GetSupplyl;

ASK METHOD GetFuelpoint (IN Fuelpoint: FuelpointObj);

BEGIN
myFuelpoint :- Fuelpoint;
END METHOD (GetFuelpoint);

ASK METHOD GetUnits (IN Units: UnitsObj);

BEGIN
myUnits Units;
END METHOD (Get~nita);

83

ASK METHOD GetClearances;()
BEGIN

NEW(clearance);
ASK clerance TO Create(I);

END METHOD (GetClearane});

END OBJECT (Node);

PROCEDURE FindNode (IN nodeName: STRING;
IN Nodedist: NodeTypeQueue;
OUT Node: NodeObJ);

{ .}
VAR

foundNode: BOOLEAN;
BEGIN
foundNode: = FALSE;
Node:= ASK NodeLixt Firt 0;
REPEAT

IF (nodeName = (ASK Node name))
foundNode := TRUE;

ELSE
Node :- ASK NodeList Next (Node);

END IF;
UNTIL ((Node-NILOBW) OR (foundNode));
END PROCEDURE {FindNode);

END (IMPLEMENTATION) MODULE (nodel.

(*e**ee***e*******e*ee****e******e*************e******e******

DEFINITION MODULE ROUTE;
(Evertything associated with a route are defined here. Links, routes, creating them and finding them are included.)

FROM GLOBAL IMPORT NodeNameType,LinkTypeQueue, roadCharact, RouteTypeQueue;
FROM RGLOBAL IMPORT SHierRecType;
FROM NETWORK IMPORT NetworkObj;

TYPE
LinkObj = OBJECT

origin: NodeNameType;
destin : NodeNameType;
distance: REAL;
thruput : REAL;
roadSurface, terrain : roadCharact;

ASK METHOD GetFields(IN LinkSHRec : SHierRecType;
INOUT i : INTEGER);

ASK METHOD CopyFi'lds(IN link - LinkObj);
END OBJECT (Link);

Rout6Otj - OBJECT
origin: NodeNameType;
destin : NodeNameType;
LinkRoute: LkTy-'SQue;

ASK METHOD Objlnit;
ASK METHOD GetFields(IN origin: STRING;

IN destin : STRING);
END OBJECT (Route);

84

PROCEDURE CreateLinka (IN name : STRING;
IN I inkrList : UinkTypeQueue);

PROCEDURE FindLink (IN onigin :STRING;
IN destin : STRING;
IN ILinrilst : Linkl'ypeQueue;
OUT fink :LinkObj);

PROCEDURE CreateRoutes (IN name : STRING;
IN Network : NetworkObj;
INOUT MasterRouteList :RouteTypeQueue);

END (DEFINITON) MODULE (route).

IMPLEAENTATION MODULE ROUTE;
FROM Debug IMPORT TraceStream;
FROM GLOBAL. IMPORT NodeNameType, ALL roadCharact, LinkTypeQueue, RouteTypeQueue;
FROM RULOBAL IMPORT SHierRecType, NodoSHArray, LinkSHArray, RouteSHAffay;
FROM NODE IMPORT NodeObj;
FROM FINDSH IMPORT FuidSHRec;
FROM NETWORK IMPORT NetworkObj;

OBJECT LinkObj;

ASK METHOD Getfields(IN LinkSHRec : SHierRecType;
INOUT i : INTEGER);

BEGIN
origin: - LinkSHRec.TopString;
deatin : (LinkSHRec.OwnedString[iD);
INCGi);
distAnce: = STRTOREAL(LinkSHRec.OwnedString[il);
INC(i);
CASE (LinkSHRec.OwnedStringliD

WHEN 'concrefte: roadSurface : = concrete;
WHEN 'bituminous*- roadSurface := bituminous;
WHEN *gravel". rosdSurface :=gravel;
WHEN *dirt". roadSurface :=dirt;
OTHERWISE

roadSurface : =conrete;
END CASE;
INC(i);
CASE (LinkSHRec.OwnedStringliJ)

WHEN *flat': terrain :=flat;
WHEN 'roliingHills*: terrain:= rollingHills;
WHEN 'hillsCurves": terrain := hilisCurves;
WHEN 'mountainous .terrain := mountainous;
OTHERWISE

terrain :-flat;
END CASE;

END METHOD (GetFields);

ASK METHOD Co1 ,yFields(IN Link: LinkObj);

BEGIN
origin : - Link.origin;
destin :- Link.destin;
distance : - Link.distance;
roadSurface :- Link.roadSurface;
terrain : = Link.terrain;

* END METHOD {CopyFields);

85

END OBJECT {LinkObj);

OBJECT RoutaObj;

ASK NMETOD Objlnt;
I -)
BEGIN

NEW(Linkfoute);
END NMETOD (Objini);

ASK WMETOD Gatpields(I dtart STRING;
IN end : STMIG);

BEGIN
origin : -start;
deatin :m -end;

END NMETOD (GetFieldsI;

END OBJECT (RoutcObj);

PROCEDURE CresteLinks (IN name: STRING;
IN LinkcList : Lnk&TypeQueue);

VAR
i INTEGER;

Link : LinkObj;
ILinkSReMc: SllierRecType;

BEGIN
i-I1;

FindSHlec(LinkSHAxray, namne, LinkSHRec);
REPEAT

NEW(Link);
ASK Link TO Get~telds(LinkSHRec,i);
ASK ILinkirst TO Add (Link);
INC(i);

UNTIL(t > HIGH(LInkSHRec.OwnedString)) OR (LinkSHRec.OwnedStriznf il
END PROCEDURE (CreateLinks);

PROCEDURE FindLink (IN start : STUING;
IN end : STRING;
IN LinkList : LinkTypeQueue;
OUT ng~htLin : LinkObj);

VAR
link : LinkObj;
linkFound : BOOLEAN;

BEGIN
NEW(rigbtLink);
link : - ASK LinkList Firsto;
REPEAT

EF((ASK link origin - start) AND (ASK link destin =end))

ASK rightLink TO CopyFields (link);
finkFound : TRUE;

ELSE
link :-ASK LinkList Next(link);

END IF,
UNTHL((inkFound) Olt Oink-NILOBJ);
END PROCEDURE (Find~ink);

86

PROCEDURE CreateRoutes (IN name: STRING;
IN Network:- Networkfbi
INOUT MasterRouteList : RouteTypeQuoue);

VAR
i:INTEGER;

link : LinkObj;
Route*: Rout*Obj;
RouteSHRec : SifierRecType;
origin, destin :STRING;
start, end : STRING;

BEGIN
FnndSHRec(RouteSHlArry. name, RouteSHRec);
i: 1;

IF (IUGH(RouteSHRec.OwnedString) < 2)
ASK TraceStream TO Writeatring('No routes for node' + name);

ELSE
REPEAT

NEW(Route);
ASK Route TO Objinit;
origin := RouteSHRec.OwnodStrizqg[i];
Start : - origin;
INCMi;
end : -RouteSHRec.OwnedStriqg~ij;
REPEAT

Frnd~nk(start,end,Network.LinkList,link);
ASK Routa.LinkRouteTO Add (link);
dtart:= end;
INCOi);
and : -RouteSHRec.OwnedStriingfil;
IIF((end - origin) OR (end = "E0F))

destin : RouteSHRec.OwnedStrizngli-lI;
ASK Route TO GetFields(origin,destin):

END IF;
UNTL((end -origin) OR (end -*O")
ASK MasterRoute~ist TO Add (Route);

UNTIL(end = E0F);
END IF;
END PROCEDURE (CreateRoutes);

END (IMPLEMENTATION) MODULE (route).

DEFINITION MODULE ASSET;
(Module contains the methods and fields that describe an asset within TITTSS. Vehicle objects inherent the methods and fields from
the general easset object. Specific vehicle objects are further defined)

FROM GrpMod IMPORT QueueObj;
FROM GLOBAL IMPORT DeacriptType, Dimensions, UinkTypeQuoue, AaaetTypeQueue, CargoTypeQueue, ALL roadCharact,

Amsetstatus, FailMye;
FROM ROLOBAL IMPORT SHierRecType;
FROM CARGO IMPORT CargoObj;
FROM ROUTE IMPORT Linkobj;
FROM RandMod IMPORT RandomObj;

EXPORTTYPE
Asset~bJ - OBJECT; FORWARD;

TYPE
dimensionsObj - OBJECT (Dimensions for stowage of cargo)

height,

87

length,
width,
cubeFt,
weight: REAL; (Vehicle, capacity)

ASK MErHOD GetFields(IN Height: REAL;
IN Length :REAL;
IN Width: REAL;
IN CubeFt : REAL;
IN Weight : REAL);

ASK METHOD AdjustDimensions(JN Height .REAL;
IN Length: REAL;
IN Width -REAL;
IN CubeFt : REAL;
IN Weight : REAL);

ASK METHOD UpdateLoad Weiht(IN weight: REAL);
ASK METHOD UpdateLengthLoad(IN length :REAL);

ASK METHOD GetuigVeluG;
ASK METHOD GetSmailValue;

END OBJECT (dinienhions~bi);

rates - ARRAY roadCharact OF ARRAY roadCharact OF REAL;

AssstObj - OBJECT
home : STRING;
MyMolorpool :STRING;
mnodel,
description,
bumperNumbsm: DescriptTYpe;
type: STRING;
vehType: STRING;
ratemffrVel : rates;
fulelCap,
fueILevel, lCurrent fuel level of vehicle)

fuelConaunip, (Fuel consumption rate)

fuelGuage, (Guage level of fuel, 1/2, etc)

fuellkeserve,
odometer,
trip~dotneter,
enS~rz,
asedWeight :REAL;
auaetLength REAL;

mnainiManlioura: REAL;
idminintogTime: REAL;
aaaetmimens : dimensionsObj; (Cargo dimfensionsa of vehicle)

loedDimens: dimensionsObi;
missionCapable: BOOLEAN;
tempFix: BOOLEAN;
status : AssetStatus;
loadCap : REAL;
cargoHold : CargoTypeQueue;
niilesToFail : REAL;
FailureVariateStrestf: RmndomObj;
MMBF: FailTIype;

ASK METHOD OtbjLni
ASK METHOD ObjTerminate;
TELL METHOD LoadCargo (IN cargo :CsfgoObi);
TELL METHOD UnloadCargo (IN weight : REAL;

IN length : REAL);

ASK METHOD Refuel (OUT fuelUsed *REAL);

88

ASK METHOD GetBigValu.;
ASK METHOD GetSmall Value;
ASK METHOD UpdateGuages (IN Link :LinkObj);
ASK METHOD GetNam. (IN NowNam. : DeacriptType;

IN i :INTEGER;
* IN Unit: STRING);

ASK METHOD GetFields (IN AssetFieldsSHRoc - SHierRecType);
ASK METHOD GetFailu*M(I AssatFieldsSHRec: SllierRecType);
ASK METHOD CotckFarltreakdown;
ASK METHOD Break;
ASK METHOD Remet~ometer,
ASK METHOD Rea(fripOdotxwtr,
ASK METHOD FbiTemporarily;

END OBJECT (asset);

Vekicle~bj - OBJECT(AsaetObj)
END OBJECT (VehicleObi);

TruckObj - OBJECT(Vehiclo~bj)
END OBJECT {TruckObj);

TracTrlObj -OBJECr(Vehid.eobj)
END OBJECT (TracTriObj);

TracLowBoyObj - OBJECT(VehicloObj)
END OBJECT {TracLowBoyObj);

lietObi - OBIECT(VehicleObj)
END OBJECT (HeftObi);

Recovery~bi = OBIECT(VehicI.Obj)
RecoveiyLoad: AssefrypeQueue;
hookTim.: REAL;

TELL METHOD HookUp(IN brokenAnwe: Assetobj);
TELL METHOD UnHook;
OVERRIDE

ASK METHOD ObjInit;
END OBJECT {RecoveryObj);

VeeselObi = OBJECr(AaaetObj)
END OBJECT; {VesselObj)

AitObj - OBJEC'r(AssetObj)
END OBJECT; (AliObj)

TrainObj - OBJECT(AssetObj)
END OBJECT; (TrainiObj)

END (DEFINITION) MODULE (asoew).

IMPLEMENTATION MODULE ASSET;
FROM GrpMod IMPORT Queueobj;
FROM GLOBAL IMPORT HqNsakeType, DewcnpfTyp*, Dimensions, LinkTypeQueue,

AuseerypeQuou., CargoTypeQuoue, ALL roadCharact, AssetStatus;
FROM ROLOBAL IMPORT SHi~rRecType,AasetFieldsSllAffay,TravelRatesSHAffay;
FROM FINDSH IMPORT FmdSHRec;
FROM CARGO IMPORT CargoObj;
FROM ROUTE IMPORT LinkObj;
FROM Debug IMPORT TraceStream;
FROM RandMod IMPORT RandomwObj;

89

FROM READSED IMPORT ReadSeed;

OBJECT dimeasionsObj; (Dimensions for stowage of cargo)
{ I}
ASK METHOD GetFields(IN Height : REAL;

IN Length REAL;
IN Width : REAL;
IN CubeFt: REAL;
IN Weight: REAL);

{. }
BEGIN
height : Height;
length : = Length;
width:= Width;
cubeFt := CubeFt
weight = Weight;

END METHOD (GetFields);

ASK METHOD AdjustDimensions(IN Height : REAL;
IN Length : REAL;
IN Width : REAL;
IN CubeFt : REAL;
IN Weight: REAL);

{ }
BEGIN
END METHOD {AdjuatDimensions};

{ }

ASK METHOD UpdateLoadWeight(IN Weight : REAL);
{ }
BEGIN

weight := weight + Weight;

END METHOD {UpdateLoadWeight);

{ }
ASK METHOD UpdateLengthLod(iN Length : REAL);

BEGIN
length := length + Length;

END METHOD {UpdeatLoadLength);

ASK METHOD GetBigValue;
{ '}
BEGIN

weight : 99999999999999.99;
length : 99999999999999.99;

END METHOD {GetBigValue);

{ }
ASK METHOD GetSmalVaIue;
{ }
BEGIN

weight : 0.0;
length := 0.0;

END METHOD {GetSmallValue);

END ORBECT (dimetsions);

OBJECT AsstObj;

90

ASK METHOD Objinit;

BEGIN
NEW(asaetDimens);
NEW~loadDimens);
NEW(corgoHold);
END METHOD {Objlnit);

ASK METHOD ObjTerminate;

VAR
cargo :CargoObj;

BEGIN
DISPOSE(assetDiamens);
DISPOSE~loadDimens);
WHILE(ASK cargoHold numberin > 0);

cargo := ASK cargoHold TO Remove 0;
DISPOSE(cargo);

END WHILE;
DISPOSE(cargoHold);
IF(MMBF < > NILARRAY)

DISPOSE(MMBF);
END IF;
IF(FailureVaniateStream < > NILOBJ);

DISPOSE(FailureVariateStreamn);
END IF;
END METHOD (ObjTerminate);

ASK METHOD GetName (IN NewName: DeacriptType;
IN i :INTEGER;
IN Unit: STRING);

BEGIN
model:= NewName;
bumperNumber: = ((ASK SELF model) + ~ + (Unit) + + INTIOSTRC,));
home: - Unit;

END METHOD {GetName);

ASK METHOD GatFields(IN AssetFieldsSHRec SHierRecType);

VAR
Height, Length, Width, CubeFt, Weight REAL;
AssetDimens: dimensionsObj;
TravetRatesSHRec: SHierRecType;

ij:INTEGER;
Rate :REAL;
roadSurface, terrain :roadCharact;

BEGIN
NEW(AsaeDimens);
IF (AssetFieldsSHRec -NILREC)

ASK TraceStream TO WniteString("AssetFieldsSHRec is NILREC");
ELSE

vehType := AsaetFieldsSHRec.TopString;
i : ;

model := (AasetFieldsSHRec.OwnedStringlil);
INCfa);
type :- (AsaetFieldsSHRec.OwniedStringliD);

91

INCMi;
flielCap : = STRTOREAL(AasetFieldsSHRec .OwnedStringlil);
INCMi;
flielConsump : STRTOREAL(Aas~eFieldaSHRec.OwnedStringiil);
INCCO;
odomewter:= STRTOREAL(AssetFieldsSHkec.OwnedString! ii);
INCMi;
engflrs:= STRTOREAL(AssetFieldsSHRec.OwnedStringlil);
INC6);
sassetWeight := STRTOREAL(AssetFieldsSHRec.OwnedStringlil)-,
INC(i);
assetLength:- STRTOREAL(AssetpieldsSHRec .OwnedStringliD);
INC(i);
Height:- STRTOREAL(AssetFieldsSHRec .OwnedStringlil);
INC(i);
Lengt:- STRTOREAL(AssetFieldsSflRec.OwnedSaringji));
INC(i);
Width -= STRTOREAL(AasetFieldsSHRec.OwnedString~ii);
INC(i);
CubeFt := STRTOREAL(AssetFieldsSl{Rec.OwnedStringliI);
INC6i);
Weight:- STRTOREAL(AssetFieldsSH~ec .OwnedStringlil);
INCOji;
ASK AssetDimens TO GetFields(Height, Length, Width, CubeFt, Weight);
asaetfimena = AssetDimens;
maintManHours:= STRTOREAL(AasetFieldsSHRec.OwnedStringlil);
INC(i);
adminLogTime:- STRTOREAL(AaaetFi-idsSHRec.OwnedStringiiD);
INC(i);
,niuionCapable: - TRUE;
NEW(FailureVariateStream);
ASK FailureVariateStream TO SetSeed(ReadSeedO);
ASK SELF TO OetFailur*(AusetFieldsSHRec);

{-etting Rates Of Travel for asset-

FindSH~ec(TraveiRateaSHArray, model, TravalRateaSHROc);
NEW(rataOfl'ravel, concrete. .dirt, flat. .mountainous),
j:- 1;

FOR roadSurface concrete TO dirt
FOR terrain : - flat TO mountainous

rateOffravelfroadSurface, terrain] := STRTOREAL (TravelRstesSl{Rec.OwnedStringU]);
INCOj);
END FOR;

END FOR;
END IF;
END METHOD (OatFields);

ASK METHOD OetFailure(IN AsaetFieldsSHRec : SHierRecType);

VAR
i:INTEGER;

BEGIN
IF (AsaetFieldsSHRec - NILREC)

ASK TraceStreamn TO WriteString(*AssetFieldsSHR~ec is NILREC");
ELSE

NEW (MMBF, I.-!);
MMBFI I I : = STRTOREAL(AaaetFieldsSHRec.OwnedStningl 161);
milesToFail =ASK FailureVariateStresm Exponential (MMBFI 1I);

END IF;
END METHOD (UetFailure);

92

ASK METHOD CheckForBreakdown;

BEGIN
IF(odometer > = mile*ToFail)

missionCapable = FALSE;
END IF;
END METHOD {CheckForBreakdown};

ASK METHOD Break;
{ I
BEGIN
mvssionCapable := FALSE;
END METHOD (Break);

ASK METHOD ResetOdometer;

BEGIN
odometer:= 0.0;
tripOdometer := 0.0;
tempFix:- FALSE;
mileToFail : = ASK FailureVariateStream Exponential (MMBF[I I);
END METHOD {ResetOdometer);

I .}
ASK METHOD ResetTripOdometer;
I .}
BEGIN
tripOdometer = 0.0;
END METHOD {ReetTnrpOdometer);

{. I
ASK METHOD FixTemporarily;
I .}

BEGIN
tempFix = TRUE;
END METHOD (FixTemporarily);

I .}
TELL METHOD LoadCargo (IN cargo CargoObj);
I I
BEGIN
ASK cargoHold TO Add (cargo);
END METHOD {LoadCargo);

TELL METHOD UnloadCargo (IN weight: REAL;
IN length: REAL);

BEGIN
ASK loadDimens TO UpdateLoadWeight (-(weight));
ASK loadDimens TO UpdateLengthLoad(-(ength));
END METHOD {UnloadCargo);

I .}
ASK METHOD Refuel (OUT fuelUsed : REAL);
I I
BEGIN
fuelUsed = fuelCap - fuelLevel;

93

fuslLavel :- fiieLsevl + fuelUsed;
END METHOD (Refuel);

ASK METHOD Gelt~iValue;

1- -)
VAR
AssetDimnsn: dimensionsObj;
BEGIN
NEW(AssetDimens);
ASK AssetDimens TO GetBig Value;
asaseDimens = AssetDimena;
END METHOD {GetfigValue);

ASK METHOD ClotSmall Value;

VAR
AmawDimena: dimensionaObj;
BEGIN
NEW(AssetDitnena).
ASK AssetDiimens TO OetSnmajValue;
aaaetDimnsn := AsactDimena;
END METHOD (GetSmallValue);

ASK METHOD Updat.Guagea (IN Link: LinkObi);

BEGIN
odometer : - odometer + ASK Link distance;
tripOdometer : -tinp~dometer + ASK Link distance;
fuelLevel = fuelLevel - (ASK Link diatance/fiuelConsurnp);
(engHra := angHrs + (ASK Link diutance/rateOffravel);l
fwelGuage = fuelLevel/fuelCap;

END METHOD {Update~uages),

END OBJECT {asaot);

OBJECT VuiticleObj;
END OBJECT {VehicleObj),

OBJECT TruckObj;
END OBJECT (TruckObj);

OBJECT TracTrlObj;
END OBJECT (TracTriObj);

OBJECT TracLowBoyObj;
END OBJECT jTracLowBoyObj);

OBJECT Hefttýb;
END OBJECT (HettObj);

OBJECT RecoveryObj;

ASK METHOD Objint,

BEGIN
NEW(assetDimens);
NEW~loadDimens):
NEW(cargoHotd);

94

NEW(RecoveryLoad);
NEW(FailureV. isteStream);
ASK FailureVariateStream TO SetSeed(ReadSeed0);
END METHOD {Objlnit);

TELL METHOD hookUp (IN brokenAsset: AssetObj);

BEGIN
ASK RecoveryLoad TO Add (brokenAsset);
WAIT DURATION hookTime
END WAIT;
END METHOD (HookUp);

I }

TELL METHOD UnHook;

BEGIN
WAIT DURATION hookTime
END WAIT;
END METHOD (UnHook);

END OBJECT (RecoveryObj);

OBJECT VesselObj;
END OBJECT [VesuelObj);

OBJECT AirObj;
END OBJECT (AirObj);

OBJECT TrainObj;
END OBJECT (TrainObj);

END (IMPLEMENTATION) MODULE {asset).

(*ss*s*ssssass**a***************ss**s****s****s*ss*s***s*s****

DEFINITION MODULE CARGO;
(Methods and fields for cargo that is transported within ITTSS are defined here)

FROM GLOBAL IMPORT HqNameType, ModeiNameType, Dimensions, SupplyClassType,
Descriptrype, DestinationType, AssetTypeQueue, CargoTypeQueue, NodeNameType, VehicleType;

TYPE
cargoList = CargoTypeQueue;
CargoObj = OBJECT

priority : REAL;
height: REAL;
width : REAL;
length : REAL,
cubeFt : REAL;
weight: REAL;
classOf3upply: SupplyClassType;

destination : STRING;
origin: STRING;
MOR : STRING (VehicleType); (Method Of Resupply)
nonseparable: BOOLEAN;

ASK METHOD DumpStarus,
ASK METHOD SeparateCargo (IN max : REAL;

OUT separatedCargo : CargoObj);
ASK METHOD Changeoreight (IN max : REAL);

95

ASK METHOD GetSupplyFields (IN ClassOfSupply: STRING;
IN Weight : REAL;
IN Length: REAL;
IN MOR : STRING;
IN Priority : REAL;

IN SepStatus: BOOLEAN);
ASK METHOD Adjust (IN Adjustment : REAL);

END OBJECT {cargol;

END (DEFINITION) MODULE {cargo).

IMPLEMENTATION MODULE CARGO;
FROM GLOBAL IMPORT HqNameType, NodeNameType, ModelNameType, Dimensions,

SupplyClassType, DescriptType, DestinationType, AssetTypeQueue, CargoTypeQueue;
FROM Debug IMPORT TraceStream;

OBJECT CargoObj;
{ })
ASK METHOD SeparateCargo (IN max : REAL;

OUT separatedCargo: CargoObj);
{- I
VAR

newWeight: REAL;
BEGIN
NEW(separatedCargo);
ASK separatedCargo TO GetSupplyFields(SELF.classOfSupply, max, 0.0, SELF.MOR, SELF.priority, FALSE);
newWeight :=- (ASK SELF weight) - max;
ASK SELF TO ChangeWeight(newWeight);
END METHOD (SeparateCargo);

{ }
ASK METHOD ChangeWeight (IN max : REAL);
{. }
BEGIN

weight : max;
END METHOD {ChangeWeight);

{. }
ASK METHOD GetSupplyFielda (IN class : SupplyClassType;

IN Weight: REAL;
IN Length : REAL;
IN methodOfResupply: STRING;
IN PRI3RITY : REAL;
IN SepStats : BOOLEAN);

(" I
BEGIN

classof~upply = class;
weight :f= Weight;
length := Length;
MOR: methodOiReaupply;
priority :, PRIORITY;
nonaeparable : - SepStatus;

END METHOD {GetSupplyFields);

{. }
ASK METHOD Adjust(IN Adjustment: REAL);

{ }
BEGIN

weight : = weight + Adjustment;
END METHOD;

96

END OBJECT (cargo);

END (IMPLEMENTATION) MODULE (cargo).

DEFINITION MODULE MOTORPL;
(Fields and methods of a motorpool are defined here. This include matching cargo to assets, scheduling missions and conducting
them)

FROM IOMod IMPORT StreamObj;
FROM GrpMod IMPORT QueueObj;
FROM GLOBAL IMPORT NodeNameType. AssetTypeQueue, CargoTypeQueue, RouteTypeQueue, NodeTypeQueue;
FROM ASSET IMPORT AssetObj;
FROM CARGO IMPORT CargoObj;
FROM CONVOY IMPORT ConvoyObj;
FROM RECORDS IMPORT VehicleaRec;
FROM ROUTE IMPORT RouteObj;
FROM NODE IMPORT NodeObj;

EXPORTrYPE
MotorpoolObj = OBJECT; FORWARD;

TYPE
ConvoyTypeQueue = QueueObj;

RecoveryMiaaionObj = OBJECT
location: STRING;
numberToRecover: INTEGER;

ASK METHOD GetFields (IN Location: STRING;
IN NumberToRecover: INTEGER);

ASK METHOD Adjust (IN Adjustment: INTEGER);
END OBJECT {RecoveryMission);

MotorpoolObj = OBJECT
name : NodeNameType;
location: STRING;
maxNumblnConvoy: INTEGER;
distBetweenVeh: REAL;
distBetweenConvoys: REAL;
wreckeraConvoy: BOOLEAN;
repairTime : REAL;
VehiclesRecord: VehicleaRec;
AawetList : AaeatTypeQueue;
MasterRouteList : RouteTypeQueue;
MaterNutdeList: NodeTypeQueue;
RecoveryMiasionList: AssefTypeQueue;
WaitingForAssetQueue: CargoTypeQueue;
Dispatch - StreamObj;
AlgorithmQueue: AssetTypeQueue;

ASK METHOD ObjInit;
ASK METHOD GetName (IN MyName : STRING);
ASK METHOD DumpStatus;
ASK METHOD GetFields (IN name : STRING);
ASK METHOD GetAssets (IN name: STRING);

ASK METHOD GetMasterlists (INOUT MasterRouteList : RouteTypeQueue;
INOUT MosterNodeList : NodeTypeQueue);

TELL METHOD SchoduleMission(IN Requestor : STRING;
IN CargoToLoad: CargoTypeQueue;
IN Convoy: ConvoyObj);

TELL METHOD ConductMission (IN Convoy: ConvoyObj;

97

IN origin: STRING;
IN domtination: STRING);

ASK METHOD ReturnAssets (IN Convoy : ConvoyObj);
TELL METHOD MatchCargoToAsaet(IN sassw: AssetObj;

IN load : CargoObJ);
TELL METHOD ConductLoading(IN Convoy : ConvoyObj);
TELL METHOD SchedRecovery (IN Location: STRING;

IN NuniberToRecover: INTEGER);
TELL METHOD ConductRecovery (IN convoy: ConvoyObj;

IN origin : STRING;
IN destination: STRING);

ASK METHOD Find Wrecker (IN Convoy: ConvoyObj;
IN Mission : RecoveryMissionObj);

ASK METHOD Check WreckersReturning (IN Convoy: ConvoyObj;
INOUT NewConvoy : ConvoyObj);

TELL METHOD ReturnlFixedAsset (IN fixedAsset : AssetObj);
TELL METHOD ReportStatus (IN MotorpoolReport : StreamObj);
TELL METHOD ClearConvoy (IN Convoy: ConvoyObj;

IN Route : Route~bJ);

END OBJECT {MotorpoolObj);

END (DEFINITON) MODULE {motorpl).

IMPLEMENTATION MODULE MOTORPL;
FROM UtilMod IMPORT Dielay;
FROM SimMod IMPORT SimTimne;
FROM lOMod IMPORT StreamnObj, FileUaeType(Output);
FROM Debug IMPORT TraceStreamn;
FROM GLOBAL IMPORT NodeNameaType, AsaaTypeQueue, CargoTypeQueue, VehicleType,

UinkTypeQueue, NodeTypeQueue, RouteTypeQueue;
FROM RULOBAL IMPORT AssetOwnersSHArray, MotorpoolSHArsay, SilierRecType;
FROM CREATEA IMPORT CreateAsset;
FROM ASSET IMPORT AssetObj, VehicleObj, TnzckObj, TracTrlObj, TrscLow~oyObj, HettObj, OldHettObj, RecoveryObj;
FROM FINDSH IMPORT FundSHlec;
FROM CARGO IMPORT CargoObj;
FROM FINDSHP IMPORT FindShottestPath;
FROM CONVOY IMPORT ConvoyObj;
FROM ROUTE IMPORT UinkObj, RouteObj;
FROM CHECKAS IMPORT FindAssets, CheckReturningAssets, CheckLoadedAssets;
FROM NODE IMPORT NodeObj, FindNod;
FROM RECORDS IMPORT DispatcbRec~st, DispatchRoc, VehTypeRecList, VehTypeRec, VehiclesRec;
FROM FINDSUP IMPORT FindAaaeTypeRecord;
FROM SUPPLY IMPORT SupplyPointObJ;

OBJECT RecoveryMiusionObj;

ASK METHOD GetFaieds (IN Location: STRING;
IN NumberToRecover: INTEGER);

BEGIN
location : - Location;

numberToRecover : NumberToRecover;
END METHOD {GotlFields);

ASK METHOD Adjust (IN Adjustmient: INTEGER);

BEGIN
numberToRecover : - numberToRecover + Adjustment;

98

END METHOD (Adjust);

END OBJECT (RecoveryMission);

OBJECT MotorpoolObj;

ASK METHOD ObjInit;

BEGIN
NEW(AssetList);
NEW(MasterRouteli4st);
NEW(MatterNodeList);
NEW(RecoveryMissionl~ist);
NEW(WaitinsForAssetQueue);
NEW(VehiclesRecord);
NEW(AlgorithmQueue);
NEW(Dispatch);

END METHOD (Objint);

ASK METHOD GetNamne (IN MyName: STRING);

BEGIN
name: - MyName;

END METHOD (GetName);

ASK METHOD GetFields (IN name: STRING);

VAR
i:INTEGER;

MotorpoolSHRec: SllierftecType;
wmekorsAccompany:- STRING;
smnalleatAuet, biggeeAsme: AssetObj;

BEGIN
location :-name;
lFindSHRec(MotorpoolSHAffay, name, MototpoolSHRec);
a:- I;
REPEAT

naxNumblnCon'voy : - STRTOINT (MotorpoolSHRec.OwnedStringri]);
fl4C(i);
distBetw~eenVeh STRTOREAL (M~otorpoolSHRec.OwnedStringli]);
INC(i);
dimeBetweenConvoys:- STRTOREAL (MotorpoolSHRec.OwnedString~iiD;
INCOi);
wrockersAccomspany : - (MotorpoolSHRec.OwnedStringli]);
INC(i);
EF(wreckersAccompany - TRUE*)

wreckereConvoy: TRUE;
END IF;
repairtime : STRTOREAL(MotofpoolSHRec.OwnedStringlD;
INC(i);
NEW~binestAsme);
ASK biggeaAsse TO GetNsme("BIG",O0ocation);
ASK biggestAsse TO Gent~mllValue;
ASK AlgorithmQueus TO Add(biggpstAsse);
NEW(smalleutAaset);
ASK wntalteetAsaet TO GstName("SMALL*,0location);
ASK sunlleutAsset TO GetBig Value;
ASK AlgorighmQuoue TO Add(smnallestAmsde);

99

UNTIL (Ci > HIGH(MotorpoolSHRec.OwnedString)) OR
(MotorpoolSflRec.OwnedStringlil = "O')

END METHOD {GetFields};

ASK METHOD GetAmsets (IN name: STRING);

VAR
ij,k :INTEGER;
number, number~fAssets: INTEGER;
AssetOwnersSHRec: SHierRecType;
model : STRING;
truck :TruckObj;
tracTri TracTrlObj;
tracLowBoy - TracLowBoyObj;
hen : HettObj;
oldHent: OldlletObj;
wrecker : RecoveryObj;
vehicieTypeRecord: VebTypeRec;

BEGIN
FindSHftec(AssetOwneroSHArray, name, AssetOwneraSHRec);
i :- 1;
WHILE ((AsserOwnersSHRec.OwnedString[iJ < > 'MUCKS') AND

(AssetOwnrsSHRec.OwnedStringriI < > ")
INCOa);

END WHILE;
INCQi);
IF (AusetOwner@SHRec.OwnedStringli) = "none*)
ELSE

NEW(vebicleTypeRecord); lGetting record for all TRUCKS);
REPEAT

model :- (AasetOwnersSKRec.OwnedStringliJ);
INCMi;
number:- STRTOINT(AssetOwneraSHRec.OwnedString[ij);
FORI :- I TO number

NEW(truck);
CreateAsset (-MUCKS% model, j, name, truck);
ASK AssetList TO Add (truck);
numbefOfAssets:= numberOfAssets + 1;

END FOR;
INC(i);

UNTIL ((7t > HIGH(AssetOwnersSliRec.OwnedString)) OR
(AssetOwnersSHRec.OwnedStringliI - "W) OR
(AaaetOwneraSHRec.OwnadStringjij = RAC-TRLS"));

ASK vehicleTypeRecord TO GetFields(TRUCKS', numberOfAssets);
ASK VuliiclesRecord.vahTypeRec~istTO Add(vehicleTypeRecord);

END IF;
numberOfAssets: 0;
WHILE ((AssetOwnersSHlec.OwnedStringf iI < > 'TRACTRLS*) AND

(Asse1OwnersSKRec.OwnedString~iJ < > *W))
INC(i);

END WHILE;
INC(i);
IF (AasetOwfneruSHlec.OwnedStfingliI = *none")
ELSE

NEW(vehicieTypeRecord); (Getting record for all TRACTRLS);
REPEAT

model :- (AssetOwnersSHRec.OwnedStringli));
INCMi;
number := STRTOINT(AtsstOwnersSHRec.OwnedStringiij),
FOR j :I TO number

100

NEW~trscTrl);
CreateAsset (TRAC -TRLS", model, j, name, tracTri);
ASK AssetList TO Add (tracTrl);
numberOfAssets= numberOfAssets + 1;

END FOR;
INC(i);

UNTIL (Ci > HIGH(AsaetOwnersSHRec.Own~dString)) OR
(AssetOwnersSHRec.OwnedStringliI = '\\) OR
(AssetOwDersSHRcC.OwnbdStrinS[iJ = *TRAC_-LOWBOYS"));

ASK vehicleTypeRecordTO GetFields(TRACTRLS', numberOfAssets);
ASK VehicletRecord.vahTypeRecList TO Add(vehicieTypeRecord);

END IF;
numberOfAssets:= 0;
WHILE ((AasetOwnersSHRec.OwnedStringfiI < > *TRAC-LOWBOYS') AND

(AaaedOwnersSHRec.OwnedStuingltl < > \)
INC~i);

END WHILE;
INC(i);
IF (AssatOwneruSHRec.OwnedStringlij = 'none')
ELSE

NEW(vehicleTypeRecord); (Geffing record for all TRAC-LOWBOYS);
REPEAT

model :- (AsaetOwneruSHRec.OwnedStringliJ);

number:- STRTOIN(AusetOwnerSHRec.OwnedStringlaD;
FOR j - I TO number

NEW(trscLow~oy);
CreateAnse (`TRAC LOWBOYS", model, j, name, tracLowBoy);
ASK AssetList TO Add (trscLowfloy);numbeiOfAswes :=number~fAssets + 1;

END FOR;
INC~t);

UNTIL (Ci > HIGH(AssetOwneraSlllec.OwnedString)) OR
(AssetOwnersSHRec.OwnedString(iJ = '\\) OR
(AssetOwnersSHRec.OwnedStringfiI = *HETrS"));

ASK vehicleTypeRecord TO GetFields(*TRAC LOW13OYS*, numberOfAusets);
ASK VehiclesRecofd.vehTypeRecListTO Add(vehicleTypeRecord);

END IF;
numberOfAssews:= 0;
WHILE ((Asset~wnrsrslmec.OwnedStingliJ < > "HEFTS") AND

(AssstOwneruSlRec.OwnedStringlij < >)
INC(i);

END WHILE;
INC(i);
IF (AusetOwneruSHRec.OwnedStringfij = 'none")
ELSE

NEW(vehicieTypeRecord); (Getting record for aUl HETTS);
REPEAT

model =(AuetOwnersSHRec.OwnedStringlil);

INCMa;
number :- STRTOINT(AusetOwneruSHRec.OwnedStringlil);
FOR j - I TO number

NEW(beft);
CreateAsset ('HETTS", model, j, name, hent);
ASK AssetList TO Add (1heft);
numberOfAssets = numberOfAssets + 1;

END FOR;
INC6);

UNTIL ((i > HIOH(AssetOwnersSHRec.OwnedString)) OR
(AaeetOwnersSflRec.OwnedStringf iI = '\\) OR
(AssatOwnersSHRec.OwnedStringliI = 'WRECKERS*));

ASK vehicl.Typ.Record TO OetFislds'HEmS', numberOfAssets);

101

ASK VehicleaRecord.vehTypeRecLixtTO Add(vehicleTypeRecord);
END IF;
numberOfAsseta := 0;
WHILE ((AssetOwnersSllRac.OwnedStringji) < > "WRECKERS") AND

(AsaetOwneraSHRec.OwnedStringji] < > "
INC~i);

END WHILE;
INC(i);
IF (AaaetOwnersSHRec.OwnedStringjsj = "none")
ELSE

NEW(vehicleTypeRecord); (Getting record for all WRECKERSI;
REPEAT

model:-= (AsaetOwneraSHRec.OwnedStringlD;
INC~i);
number := STRTOINT(AsaeOwneraSHRec.0wnedStringli);
FOR j = I TO number

NEW(wrecker);
CreateAsset (*WRECKERS", model, j, name, wrecker);
ASK AssetList TO Add (wrecker);
numberOfAsseta numberOfAsseta + 1;

END FOR;
INC(i);

UNTIL ((i > HIGH(AaaetOwnersSHRec.OwnedString)) OR
(AssetOwneraSHRec.OwnedStringlil = *\\) OR
(AssetOwnersSHRec.OwnedStrinhliJ = "TRUCKS'));

ASK vehicleTypeRecord TO GetFields("WIRECKERS",numberOfAaaets);
ASK VebiclesRecord.vehTypeRecListTO Add(vehicleTypeRecord);

END IF;
END METHOD {GetAsseft);

ASK METHOD GetMasterlists (INOLTT masterRouteList : RouterypeQueue; INOUT masterNodeL-ist: NodeTypeQueue);

BEGIN
MasterRouteLiat =masterRouteList;

MasterNodelList :=maaterNodel~ist;
END METHOD {GotMasterLiata);

TELL METHOD ScheduleMisamon (IN Requeator : STRING;
IN CargoToLoad - CargoTypeQueue;
IN convoy: ConvoyObj);

VAR
load : CsfgoObj;
asawt: AssetObj;
newConvoy, returfiConvoy : ConvoyObj;
ConvoyList: ConvoyTypeQueue;
Routeaist : Route~bj;
anodterTrip : BOOLEAN;
CouldNolLoadQueue: Assefl~ypeQueue;

BEGIN
IF(convoy - N9.LORI)

NEW(convoy);
ASK convoy TO GetMisalonTyp. ('Reaupply", location, distBetweenConvoys, wreckerBConvoy, repairTime);

END IF;
NEW(newConvoy);
ASK newConvoy TO GetMiaaionType ("Resupply", location, diatletweenConvoys, wreckeraConvoy, repairTime);
NEW(CouldNotlL.4dQueue);
WHILE ASK CargoToloAsd numberin > 0

load :=ASK CargoToLoad TO Remove 0;

102

FindAssets(SELF, convoy, load, CouldNotLoadQueue);
END WHILE;
WHILE ASK CouldNo(LoadQueue numberln > 0

load -.= ASK CouldNotLoadQueueTO Remove 0;
ASK WsitingforAssetQueue TO Add (load);

END WHILE;
DISPOSE(CouldNotLoadQueue);
NEW(returnConvoy);
saset = ASK convoy.AsweList First 0;
REPEAT

IF(aatw.loadDimens.weight = 0.0)
ASK convoy.AssetList TO Remove~is (asset);
ASK retumnConvoy.AssetList TO Add (asse);
IF((ASK convoy.AssetList numberin) > 0)

asset :=ASK convoy AssetList Firsto;
ELSE

sawst: NILOBJ;
END IF;

ELSE
asset :ASK convoy.AssetList Ncxt(asset);

END IF;
UNTILWsse - NILOBJ);
IF(ASK returmConvoy.AaseList numberin > 0)

ReturAssets(returConvoy);
ELSE

DISPOSE(retumConvoy);
END IF;
IF(ASK convoy.AsweList numberin > 0)

WAIT FOR SELF TO ConductLoading(convoy);
END WAIT;
IF((ASK convoy.Assetdist nuniherin) > msxNumblnConvoy)

REPEAT
REPEAT

sasstm ASK convoy.AsweList TO Remove4); ASK newConvoy.AsseList TO Add(asaet);
UNTIL((ASK convoy.AssetList numberin) = maxNumblnConvoy);
ASK convoy TO OetLength(distfletweenVeb);
TELL SELF TO ConduecMisuion(convoy, location, Requestor);
convoy: newConvoy;
NEW(newConvoy);
ASK newConvoy TO OetMissionType ("Resupply', location, distBetweenConvoys~wreckersConvoy~repirTime);

UNTIL((ASK convoy.Assetl~lst numberin) < = msxNumblnConvoy);
ASK convoy TO GetLength(distBetweenVeh);
TELL SELF TO ConductMiaaion(convoy, location, Requestor);

ELSE
ASK convoy TO GetLength(distBetweenVeh);
TELL SELF TO ConductMission(convoy, location, Requestor);

END IF;
ELSE

DJSPOSE(convoy);
END IF;
END METHOD (ScheduleMission);

ASK METHOD RetuffAssets, (IN Convoy: ConvoyObj);

VAR
asset: AssatObj;
VebTypeRecord: VehTypelkec;

BEGIN
asset : -ASK Convoy.A~stutst First0;
IF (asset < > NILOBJ)

103

REPEAT
ASK Convoy.Asset~ist TO RemoveThis (asset);
FindAssetTypeRecord(asse.vehType,SELF.VehicleaRecord,VehTypeRecord);
ASK VehTyp*Record TO GetUncommitted;
ASK AssetList TO Add (asset);
IF ((ASK Convoy.AssetLisft numberin) > 0)

sasst ASK Convoy.AssetList First 0;
ELSE

assw NILOBI;
END IF;

UNTIL (&ass = NILOBJ);
END IF;
END METHOD (RetumAsscta);

TELL METHOD ConductMission (IN convoy: ConvoyObj;
IN origin: STRING;
IN destination: STRING);

VAR
asset : AasetObj;
load : CargoObj;
Link: LinkObj;
Node: NodeObj;
Route, RetuzmRoute : RouteObj;
routeDist, returoRouteDist, distance: REAL;
maxRsnge, MaxRange : REAL;
updated~dometer, updatedFuelLevel: REAL;
timeElapsed,
moatriteElapsed,
TravilTime,
clearanc*Dist: REAL;

BEGIN
FindShortestPath (MasteRouteList, origin, destination, Route);
FindShowtestPath (MasterRouteList, destination, origin, ReturnRoute);
(Find total route distance)
link :=- ASK Route.UinkRoute First 0;
WHILE Link <C> NILOBI

routeDist :- routeDist + Link.distance;
Link : -ASK Route.LinkRoute Next (Link);

END WHILE;
Link : - ASK ReturnRoute.LinkRoute First 0;
WHILE Link <C> NELOBJ

rmturnRoutaDist : = returnRouteDist + Link.distance;
Link : -ASK ReturnRoute.LinkRoute Next (Link);

END WHILE;
distance :-= routeDist + retumnRouteDist;
ASK convoy TO GetDistancea(routeDist,. returnRouteDist);
MaxRmnge : - 999999990
WAIT FOR convoy TO Refuel (origin, MasterNodeList)

asset : - ASK convoy.AssetList First 0;
REPEAT

maxRange :-asset.fuelCap * asme.fuelConsump;
IF(mnaxRonge < MaxRange)

MaxRange := rmax.Rnge;
END IF;
sasst ASK convoy.AssetList Next (asse);

UNTIL (sasst NILOBI);
IF(MaxRange > distance)

ASK convoy TO NotRefuelDuringMan;
END IF;

104

END WAIT;
FindNodeolocation, MasterNodeList, Node);
WAIT FOR Node.cleanince TO Give (SELF, 1);

WAIT FOR SELF TO ClearConvoy (convoy, Route);
END WAIT;
ASK Node~clearance TO TakeBack (SELF, 1);

END WAIT;
ASK convoy TO GetName(name + REALTOSTR(SimTimeo));
ASK Dispatch TO WriteString("Convoy " + convoy~name + "is leaving -+ name);
ASK Dispatch TO WriteLn;
ASK Dispatch TO WriteString(' TIME OF DEPARTURE is '+ REALTOSTR (SimTimeo));
ASK Dispatch TO WriteString(". Number in convoy is " + INTIOSTR (ASK convoy. AssetList numberin));
ASK Dispatch TO WriteLn;
ASK Dispatch TO WriteLn;
WAIT FOR convoy TO Travel (destination, Route, MasterNodeList);
END WAIT;
{IF Fuelpoint avail, Refuel Assets)
IF (NOT convoy.fuelNotNeeded)

WAIT FOR convoy TO Refuel (destination, MasterNodeList)
END WAIT;

END IF;
FindNode(destination, MasterNodeList, Node);
WAIT FOR Node.clearance TO Give (SELF, 1);

WAIT FOR SELF TO ClearConvoy (convoy, Returnitoute);
END WAIT;
ASK Node~clearance TO TakeBack (SELF, 1);

END WAIT;

WAIT FOR convoy TO Travel (destination, ReturnRoute, MasterNodeList)
END WAIT;
ASK Dispatch TO WriteString(*convoy I+ SELF.name + Ireturned to " + Node.name);
ASK Dispatch TO WritsLn;
ASK Dispatch TO WriteString(" time of RETUJRN is *+ REALTOSTR (SimiTimeO));
ASK Dispatch TO WriteLn;
ASK Dispatch TO Writ*String(" Number in convoy is " + INTTOSTR (ASK AssetList numberin));
asset : ASK convoy.AsweList First 0;

WAIT FOR convoy TO PerfornPMCS (origin, MasterNodeList);
END WAIT;
IF(convoy.refurnlouteDist > Node.m~sxMilesAllowed)

WAIT DURATION Node.standDownTime
END WAIT;

END IF;
IF ASK WaitingForAuetQueue numberln > 0

SchaduleMission(deatinstion, WaitingForAssetQueue, convoy);
ELSE

ReturnAssets(convoy);
END IF;
END METHOD lConductMission);

TELL METHOD MatchCargoToAsae(IN asset: AssetObj;
IN load : CargoObj);

BEGIN
WAIT FOR asetm TO LoadCargo (load);
END WAIT;
END METHOD (MatchCargoToAswe);

TELL METHOD ConductLoading(IN convoy: ConvoyObj);

105

VAR
ILoadin&Pt: SupplyPointObj;
Node: NodeObj;

BEGIN
FindNode(Iocation, MasterNodeList, Node);
WAIT FOR Node. mySupply.toadingPointsQueueTO PriorityGive (SELF, 1, convoy priority),

LoadingPt : = ASK Node.mySupply.Lo"ding Points TO Removeo;
WAIT FOR Node~mySupply TO LodSupplies(convoy.AssetList, convoy~priority, LoadingPt);
END WAIT;

END WATT;
ASK Node.mySupply.loadingPointsQueueTO TakeBack (SELF, 1);
ASK Node.mySupply.LoodingPointsTO Add(LoadingPt);
END METHOD (Conduct~oding);

TELL METHOD SchedRecovery (IN Destination : STRING;
IN NumberToftecover: INTEGER);

VAR
i:INTEGER;

Node: NodeObj;
brokenAsset: AssetObj;
wrecker : RecoveiyObj;
convoy, raewConvoy : ConvoyObj;
RouteL-ist : RouteObj;
anotherTrip : BOOLEAN;
RecoveryMission, NextMission : RecovefyMissionObj;

BEGIN
NEW(convoy);
ASK convoy TO GetMissionType ("Recovery", location, distBetweenConvoys, wreckersConvoy, repairTime);
NEW(newConvoy);
ASK newConvoy TO OstMisaionType (*Recovery*, location, distBetweenConvoys, wreckeraConvoy, repairTime);
NEW(RecoveryMission);
ASK RecoveryMission TO GetFields (Destination, 0);
FOR i - I TO NumberToRecover

Find Wrecker(convoy, RecoveryMission);
END FOR;
IF((ASK convoy.AsaeList numberin) > 0)

REPEAT
WAIT FOR SELF TO Conduchlecovery(convoy, location, Destination);
END WAIT ;

anothewTrip : = FALSE;
FindNode(loeation, MasterNodeList, Node);
wrecker :=- ASK convoy. AssetList First 0;
REPEAT

IF((ASK wrecker.Recovery~od numberln) > 0);
WATT FOR wrecker TO UnHook;

brokenAsst w ASK wrecker.RecoveryLoad TO Remove 0;
END WAIT;
(got to unload cargo)
TELL Node. myMaintenance TO ReceiveWork (brokenAsset);

END IF;
wrecker :=ASK convoy.AssetLiat Next (wrecker);

UNTIL (wrecker =NU.ORJ);

IF(convoy.reumlouteDist > Node.maxMilesAllowed)
WAIT DURATION Node. standDownTime
END WAIT;

END IF;
ReturnAssets(convoy);
IF((ASK newConvoy.AssetList numberin) > 0)

106

convoy :newConvoy;

anotherTrip := TRUE;
END IF;

UNTIL (NOT anotherTrip);
END IF;
END METHOD {SchoduleRecovery);

TELL METHOD ConductRecovery (IN convoy : ConvoyObj;
IN origin : STRING;
IN destination: STRING);

VAR
asset : AssetObi;
newConvoy: ConvoyObj;
load : CargoObj;
Link : LinkObj;
Route,ReturnRoute: RouteObi;
routeDist, returoRouteDist, distance : REAL;
maxRange, MaxRange : REAL;
updated~dometar, updatedFuelLevel: REAL;
tinmElapsed,
mostTizneElapsed : REAL;
Travemnie : REAL;
anotherTip: BOOLEAN;

BEGIN
FindShortestPath (MasterlouteList, origin, destination, Route);
FindShor~tmPath (MasteaRouteList. destination, origin, ReturnRoute);
(Find total route distance)
Link : -ASK Route. Linkloute First 0;
WHILE Link < > NILOB1

routeDist : - routeDist + Link.distance;
Link : - ASK Routs.LinkRoute Next (Link);

END WHILE;
Link : -ASK Retrndtoute.UinkRoute First 0;
WHILE Link < > NILOBI

returnRoutaDist :- returnRouteDist + Link.distance;
Link : - ASK Returnloute.Linkloute Next (Link);

END WHILE;
distance : - routaDist + raturniouteDist;
ASK convoy TO UetDistancea(routeDist, returnRouteDist);
WAIT FOR convoy TO Refusel (origin, MasterNodeList)

&asse - ASK AsmeList First 0;
REPEAT

fmaxRange :- aseet~fb*lCap * asset.fuiieConsump;
IF(maxRange < MaxRange)

MaxRange :=maxRange;
END IF;
asse : - ASK AsseList Next (asse);

UNTIL (asset NELODI);
IF(MaxRange > distance)

ASK convoy TO NotRefuelDuringMsn;
END IF;

END WAIT;
WAIT FOR convoy TO Travel (destination, Route, MasterNodeList);
END WAIT;

(IF Fuelpoint avail, Refuel Asses)
IF (NOT convoy.fueliNotNeeded)

WAIT FOR convoy TO Refuel (destination, MasterNodeList)
END WAIT

END IF;

107

WAIT FOR convoy TO Travel (destir. tion, ReturnRoute, MasterNodeList)
END WAIT';
WAIT FOR convoy TO PerformnPMCS (origin, MasterNodeList);
END WAIT;

END METHOD lConductRecovety);

ASK METHOD Find Wrecker (IN Convoy: ConvoyObj;
IN RecoveryMission: RecoveryMissionObj);

VAR
wrecker : AssetObj;
found Wrecker: BOOLEAN;
VehTypelkecord: VehTypeRec;

BEGIN
found Wrecker := FALSE;
wrecker : = ASK AssetList First 0;
IF(wrecker < > NILOBJ)

REPEAT
IF(wrecker.type - "RECOVERY")

ASK AssetList TO Removelhis (wrecker),
FindAssetTypeRecord(wrecker.vehType,SELF.VehiclesRecord, VehTypeRecord);
ASK Convoy.AsseList TO Add (wrecker);
found Wrecker :=TRUE;

ELSE
wrecker :=ASK AssetList Next (wrecker);

END IF;
UNTIL ((wrecker - NILOBJ) OR (foundWrocker));
IF(NOT found Wrecker)

ASK RecoveryMission TO Adjust (1);
ASK Recover) MissionList TO Add (RecoveryMission);

END IF;
END IF;
END METHOD (Find Wrecker);

ASK METHOD Check Wreckerslteturning (IN Convoy : ConvoyObj;
INOUTr NewConvoy: Convoy~bj);

VAR
sawst: AsmstObj;
recoveryMission: RecoveryMissonObj;

BEGIN
asset :- ASK Convoy.Assetlist First 0;
REPEAT

recoveryMission :ASK RecoveryMissionList First 0;
REPEAT

IF(recoveryMission.numbet'FoRecover > 0)
REPEAT
ASK Convoy.AsseList TO RemnoveThis (asse);
ASK NawCowavoy. AssetList TO Add (asse);
ASK recoveryMission TO Adjust (41);
IF ((ASK Coovoy.AsmetList numberhi) = 0)

asset:= NfL~OB;
ELSE

nowt: ASK Convoy.AsseList Next (asset);
END IF;

ELSIF(asset < > NELOBI)
recoveryMission :-ASK RecoveryMissionList Next (recoveryMission);

END IF;
UNTIL ((meoveryMiasion = NILOBI) OR (asse - NILOBJ);

108

IF(asset < > NILOBJ)
asset ASK Convoy. AssetList Next (asset),

END IF;
UNTIL (asse = NILOBJ);
END METHOD (CheckReturningWreckers);

------- --- - --
TELL METHOD RetumFixedAsact (IN fixedAsset: AssetObj);

VAR
convoy: ConvoyObj;
Route : RouteObj;
VehTypeRecord: VeWI'ypeRec;
Node: Node~bj;
load : CargoObj;

BEGIN
NEW(convoy);
IF(fixedAsset.home = SELF.location)

Find AsaetTypeRecord(fixedAsset.vehType, SELF.VehicleaRecord, VehTypekecord);
ASK VehTypeRecord TO GetRepaired;
ASK AssetList TO Add(fixedAaae);

ELSE
Fin~JodeffixedAsset.homne, MasterNodeList, Node);
Find^ effypelkecord(fixedAsset.type, Node.myMotorpool.VehiclesRecord, VehTypeRecord);
ASK VehTypeRecord TO GetRepaired;
ASK convoy TO OetMissionType("Repair'. ocation, distfletweenConvoys, NOT wreckersConvoy, repairTime);
ASK convoy.AssetList TO Add(fixed Assei);
FindShortmaPath (MasterRouteList. locattion, fixedAsaet.home, Route);
WAIT FOR convoy TO Travel (fixedAsset.home, Route, MasterNodeList);
END WAIT;

END IF;
END METHOD (RetumFixedAsset);

TELL METHOD ReportStatus (IN Motorpoollkeport: StreamObj);

VAR
vehicleRec: VehTypeRec;

BEGIN
ASK Motorpo'lieport TO Wi tjg5* *5* S********S C**)
ASK Motorpoolkeport TO WniteLn;
ASK MotorpoolleportTO Writ.String('*******Status for"- + name + MOTORPOOL. Time is' + REALTOSTR(SimTimeo));
ASK MotorpoolReport TO WriteLn;
vehicleRec :-ASK VehicleaRecord.vahTypeRecList First 0;
REPEAT

ASK Motorpoolleport TO WriteString("--Vehicle Type is '+ vehicleRec.vehType);
ASK MotorpoolReport TO WriteLn;
ASK MotorpoolReport TO Writ*String(* ----------- _ _

ASK Motorpoollkeport TO WnteLn;
ASK Motorpoollkepoit TO WriteString('TotaI Assets are * + INTTOSTR (vehicleRec.toti. Assets));
ASK MotorpoolReport TO WriteLn;
ASK MotorpoolReportTO Writdtring("Total Committed is " + INTTOSTR (vehicleRec.totalCommitted));
ASK vehickla~c TO FindRates;
ASK Motorpoollkeport TO WriteString(* Util Rate % is + REALTOSTR (vehicleRec.utilRate));
ASK Motorpoollkeport TO WriteLn;
ASK Motorpoollepoft TO WriteString(*Total Available is + PNTIOSTR (vehicleRec.totalAvail)),
ASK MotorpoolReport TO WriteString(' Avail Rate % is + REALTOSTR (vehicleRec.availRate));
ASK MotorpoolReport TO Writel-n;
ASK MotorpoolReport TO WritGString("Total Deadlined is -+ IN7TOSTR (v ehi clIe Reac . t o talIAss et a

vehicleRec.totalAvail));
ASK MotorpoolReport TO WniteLn;

109

ASK Moto.'poolReporflTO
ASK MotorpoolReport To WriteLn;
vehicleRec: ASK VehiclecRecord.vehTypeRec List Next (vehicleRec);

UNTIL (vehicleRec =NILOBI);

END METHOD {ReportStawas);

TELL METHOD C~earConvoy (IN Convoy: ConvoyObj;
IN Route: Route~bj);

VAR
aSSW AssetObj;
Link :LinkObj;
tisnieElapsed,
moutTimeElapsed: REAL;
Travelrimne: REAL;
clearanceDist: REAL;
clearancerimne: REAL;
rate : REAL;

BEGIN
1.4nk :=ASK Route.LinkRoute First 0;
sawg: ASK Assetdist First 0;
Traverl'ime 0.0;
REPEAT

timeElapsed :=ASK Link distance/ASK asset rateOffravel [Link nvadSurface, Link.terrainJ;
EF (timeEiapaed > mostTimneElapsed)

Travelrinw: -timewElapsed;
rate :- ASK asne ratoOffravel[Link.roadSurface, Link.terrsinJ;

END IW;
Sawg ASK AsseList Next (asae);

UNTIL (asset NILOBJ);
clearanceDist :=(Convoy.totalLength + Convoy.distBetweenConvoys)/5280.O;
clearanc*Time : clearanceDiatirate;
WAIT DURATION clearanceTimne
END WAIT;
END METHOD {ClearConvoy);

END OBJECT {MotorpoolObj);

END (IMPLEMENTATION) MODULE 4 motorpl).

DEFINITION MODULE RECORDS;
(Records that are kept for each vehicle type are defined here)

FROM GrpMod IMPORT QueueObj;
FROM GLOBAL IMPORT NodeNameType;

TYPE
(if individual records are required for each sset, use following...
VehRecList - Queue~bj;
VehRec - OBJECT (Individual vehicle Record)

buniperNumber: STRING;
atiles : REAL;

oTARlMileS : REAL;
opHours : REAL;
totalOpHoun: REAL;
commnitted : BOOLEAN;
deadlined: BOOLEAN;

ASK METHOD OetFields(IN BumperNumber: STRING3);
ASK METHOD UpDate(IN MilesDriven: REAL;

110

IN OpHours: REAL);

ASK METHOD GetCommitted;
ASK METHOD ChangeDesdlinedStatus(IN Status : BOOLEAN);
ASK METHOD ReactFields;

END OBJECT {VelaRec);)

VehTypeRec = OBJECT (All vehicles of a particular TYPE)
vehType: STRING;
miles : REAL;
totalMiles : REAL;
opHours : REAL;
totalOpHours: REAL;
totalAssets : INTEGER;
totalCommitted : INTEGER;
totalAvail : INTEGER;
shortTons: REAL;
totalShortTons : REAL;
numberOfPieces: INTEGER;
avaiRate : REAL;
utilRate : REAL;
{vehRecList : VehRecList; only needed if ind asset rec needed)

ASK METHOD ObjInit;
ASK METHOD GetFields(IN vehType: STRING;

IN totslAusets : INTEGER);
ASK METHOD GetCommitted;
ASK METHOD GetUncommitted;
ASK METHOD GetDeadlined;
ASK METHOD GetRepaired;
ASK METHOD UpDate (IN Miles : REAL;

IN Hours : REAL;
IN STons: REAL);

ASK METHOD Reset;
ASK METHOD FindRates;

END OBJECT (VebTypeRec);

VehTypeRecList - QueueObj;

VehiclesRec = OBJECT(VehTypeRec); (All vehicles in transportation sys)
vehTypeReclst: VehTypeRecList;

OVERRIDE
ASK METHOD Objlnit;

END OBJECT(VehiclesRec);

END (DEFINITION) MODULE (records).

IMPLEMENTATION MODULE RECORDS;
FROM GLOBAL IMPORT NodeNameType;
FROM Debug IMPORT TraceStream;

(For future development, if individual records are required...
OBJECT VehRec; (For each individual vehicle, M35A2, M55AI...}
(}

ASK METHOD GetFields(IN BumperNumber: STRING);
(}

BEGIN
bumperNumber : - BumperNumber;

END METHOD (OetFields);

{ Mi
ASK METHOD UpDate(IN MilesDriven : REAL,

I''

IN OpHours : REAL);
{ }
BEGIN

miles : miles + MilesDriven;
totalMiles := totalMiles + MilesDriven;
opHours := opHours + OpHours;
totalOpHours := totalOpHours + OpHours;

END METHOD (UpDate);

(I
ASK METHOD GetCommitted;
{ I
BEGIN

committed TRUE;
END METHOD {GetCommitted);

{
ASK METHOD ChangeDeadlinedStatus(IN Status BOOLEAN);
{
BEGIN

deadlined := Status;
END METHOD (ChangeDeadlinedStatus);

I -)
ASK METHOD ResetFields;
{ I
BEGIN

committed : FALSE;
miles : = 0.0;
opHours :f- 0.0;

END METHOD (Re•eFields);

END OBJECT (VehRec};)

OBJECT VehTypeRec; (For each type of vehicle, TRUCKS, TRACTORS...)
(. }
ASK METHOD Objinit;
{I I
BEGIN

(NEW(vehRecList); use if you do have a record list for each)

END METHOD (Objinit);

I I
ASK METHOD GetFields(IN VehType: STRING;

IN TotalAssets : INTEGER);

BEGIN
vehType : = VehType;
totalAssets : TotalAssets;
totalAvail : TotalAssets;

END METHOD (GetFields);

I I
ASK METHOD GetCommitted;
I .}
BEGIN

totalCommitted := totalCommitted + 1;
END METHOD (OGtCommitted);

I I
ASK METHOD GetUncommitted;

112

BEGIN
totalCommittod -totalCommitted - 1;

END METHOD fOetUncommitted);

ASK METHOD GetDeadlined;

BEGIN
totalAvail =totalAvail - 1;

END METHOD {GetDesdlinod);

ASK METHOD GetRepaired;

BEGIN
totalAvail =totalAvail + 1;

END METHOD (Getlepaired);

ASK METHOD UpDate (IN Miles: REAL;
IN Hours: REAL;
IN STons : REAL);

BEGIN
miles - miles + Miles;
totalMiles : =totalMiles + Miles;
opHours: opHours + Hours,
totalOpliours:= totalOpHours + Hours;
sbortTons:- uhortTons + STons;
tomsiShonfTons:- totaiShortTons + STons;

avajiRate, - FLOAT(totalAvail)/PLOAT(totalAaseso);
utliRaste : FLOAT(totalCommittsd)/FLOAT(totslAssets);
END METHOD (UpDate);

ASK METHOD Resm;

BEGIN
miles : -0.0;
opHours :=0.0;
shortTons :-0.0;
totalComminscld - 0;
totalAvail : totalAssests;

END METHOD (Reow);

f -)
ASK METHOD FindRates;

BEGIN
availlate FLOAT(totalAvail)/FLOAT(toitslAsset);
utilRate :- FLOAT(totalCommattad)/FLOAT(totaAsset);
END METHOD (FindRates);

END OBJECT {VehTypeRec);

OBJECT VehiciesRec; (All major types of vehicles, SUM of everythiing)

ASK METHOD OtijInit;

113

BEGIN
NEW(vehTypeRecl.ist);

END METHOD (Objinit);

END OBJECT(VeliclesRec);

END (IMPLEMENTATION) MODULE frecords).

DEFINITION MODULE MAINTr;
(All fields and methods of a maintenance facility are defined here)

FROM IOMod IMPORT StreamObj;
FROM GLOBAL IMPORT NodeNameType, AssetTypeQueue, NodeTypeQueue, RouteTypeQueue;
FROM MOTORPL IMPORT MotorpoolObj;
FROM ASSET IMPORT AssetObj;

EXPORTTYPE
Maintoenc*Obj - OBJECT; FORWARD;

TYPE
MaintenanceObj = OBJECT

name : NodeNameType;
WorkList : AssetTypeQueue;
myMototpool : MotorpoolObj;
MaintReport : StremObj;

ASK METHOD Objlnit;
ASK METHOD GetName (IN MyName,: STRING);
ASK METHOD GetMyMotorpool (IN Motorpool : MotorpoolObj);
TELL METHOD RecoverAssets (IN Location : STRING;

IN NumberroRecover: INTEGER);
TELL METHOD ReceiveWork (IN brokenAsset: AssetObj);
TELL METHOD Repair (IN brokenAsset: AsetObj);

END OBJECT (Maintenance);

END (DEFINITION) MODULE (maintenance).

IMPLEMENTATION MODULE MAINT;
FROM IOMod IMPORT StrmmObj, FdeUsaType(t .,put);
FROM SimMod IMPORT SimTime;
FROM GLOBAL IMPORT NodeNemeType, AssetTypeQueue, RouteTypeQueue, NodeTypeQueue;
FROM ROLOBAL IMPORT AssetOwner.SHArrey, SHierRecType;
FROM FINDSH IMPORT FindSHRec;
FROM Debug IMPORT TraceStream;
FROM ASSET IMPORT AssetObj;
FROM CREATEA IMPORT CreateAsset;
FROM MOTORPL IMPORT MotorpoolObj;
FROM CONVOY IMPORT ConvoyObj;
FROM ROUTE IMPORT RouteObj;

OBJECT MaintenanceObj;

ASK METHOD ObjInit;

BEGIN
NEW(WorkList);
NEW(MaintReport);
ASK Maintkeport TO Open ("Maint.rpt', Output);

END METHOD (Objlnit);

114

ASK METHOD GetName (IN MyNamne: STRING);

BEGIN
- ~name: = MyName;

END METHOD fGetNamne);

ASK METHOD GetMyMotorpool (IN Motorpool :MotorpoolObj);

BEGIN
myMotorpool := Motorpool;

END METHOD {GetMyMototpool);

TELL METHOD RecoverAsseta (IN Location: STRING;
IN NumberToRecover: INTEGER);

VAR
brokenAsset: AsaezObj;
convoy, newConvoy: ConvoyObj;
RouteList : RouteObj;
anotherTrip : BOOLEAN;

BEGIN
TELL myMotorpool TO SchedRecovery (Location, NumbegToRecover);
END METHOD (RecoverAssets);

TELL METHOD ReceiveWork (IN brokenAude: AssetObi);

BEGIN
ASK Mmintkeport TO WriteString("Maint "+ namne + received + brokenAaaet.bumperNumber + at *+

REALTOSTR(SimritneO));
ASK MainitRopoft TO Writeln;
ASK MaintReport TO WriteLn;
WAIT FOR SELF TO Repair(brokenAsset)
END WAIT;
ASK MaintReport TO WriteString("MAINT + namne + *RELEASED *+ brokenAtaae.bumperNumber + at +
REALTOSTR(SimrTimeO));
ASK MaintReport TO Writeln;
ASK MaintReport TO WriteLn;
END METHOD (ReceiveWork);

TELL METHOD Repair (IN bmkoknAsset: AaaetObj);

VAR
repairTimne : REAL;

BEGIN
repsir'Iinn: brokenAaaet.adminLogTime + (brokenAssetxmaintManHoura5 brokenAsmet.odometer);
WAIT DURATION repaii'Time
END WAIT;
ASK brokenAaae TO RemetOdomneter;
TELL myMotorpool TO ReturnFixedAaaet(brokenAaaet);
Isand asset back)
END METHOD (Repair);

END OBJECT (Maintenance);

END (IMPLEMENTATION) MODULE (mnaint).

115

DEFINITION MODULE SUPPLY;
(Methods and fields for supply points are defined here, to include checking stock, resupplying, loading, unloading and receiving
supplies)

FROM lOMod IMPORT StreamObi;
FROM (3rpMod IMPORT QueucObj;
FROM ReaMod IMPORT ResourceObj;
FROM GLOBAL IMPORT AssetTypeQueue, NodeNameType, CargoTypeQueue, SupplyClassType,

SupplyRecordTypeQueue, RequestTypeQucue, ConsumerQueue;
FROM ROLOBAL IMPORT SHierRecType;
FROM SUPREC IMPORT SupplyRecordObj;
FROM REQUEST IMPORT RequeatObj;
FROM MOTORPL. IMPORT MotorpoolObj;
FROM CARGO IMPORT CargoObj;

EXPORTTYPE
SupplyObj OBJECT; FORWARD;

TYPE

SupplyPointQueue =Resource~bj;

MaterialHandlingEquipmentQueue = ResourceObi;
ConvoyTyp.Queue = QueueObj;
SupplyfointaQueue = QueueObj;

SupplyPointObj = OBJECT
MHE: MaterialHandlingEquipmentQueue;
ASK METHOD Objlnit;

END OBJECT iSupplyPointobj);

SupplyObj - OBJECT
name: NodeNametType;
location : STRING;
inyMotofpool : MotorpoolObi;
inySupplySource. SupplyObj;
inventory : CafgoTypeQueue;
supplyRecords: SupplyRecordTyp*Queue;
waiting : CafgoTypeQueue;
loadTime: REAL;
unloadTime: REAL;
cargoToLoad: CargoTypeQueue;
timeToCheckStock. - REAL;
nuwnberoMecsivers: INTEGER;
numnberOflLoaders: iNTEGER;
numberODAHE: INTEGER;
receivingPointsQueue: SupplyPointQuoue;
loadingPointaQueue: SupplyPointQueue;
ReceivingPoints : SupplyPointsQueue;
LoadingPoints: SupplyPointsQueue;
convoyQueue: ConvoyTypeQuoue;

ASK METHOD Objint;
ASK METHOD GOdName (IN MyName: STRING);
ASK METHOD Adjustlaventory (IN supplyltem :CargoObj;

IN amount: REAL);
ASK METHOD GetMyMotorpool(IN Motorpool :MotorpoolObj);
ASK METHOD GOaFields (IN Name : STRING);
ASK METHOD GetConsumptionRatea(IN Consumers : ConsumerQueue);
ASK METHOD GetMotorpool(IN Motorpool : MotorpoolObj);
ASK METHOD GetSupplyRecord(IN itemName: STRING;

IN SupplyClasa: STRING;

116

OUT Record :SupplyRecordObj;
IN nonseparable: BOOLEAN);

ASK METHOD GetSupplySource (IN SupplySource : SupplyObj);
TELL METHOD PrepareToStartSupply(IN dayToEndConsuming: INTEGER);
TELL METHOD Resupply (IN RequestList : RequestTypeQueue);
TELL METHOD CoIlectitema (IN RequestList : RequestTypeQueue);
TELL METHOD CheckStock;
TELL METHOD ReceiveSupplies (IN AssetList : AssetTypeQueue;

IN priority :REAL;
IN Receivingft: SupplyPointObj);

TELL METHOD LoadSupplies (IN AsweList : AssetTypeQueue;
IN priority: REAL;
IN LoadingPoint: SupplyPointObj).

ASK METHOD Admithtem (IN SupplyRecord : SupplyRecordObj;
IN cargo : CargoObj);

TELL METHOD ReportStatus (IN SupplyReport: StreamObj);

END OBJECT (Supply);

EconomyObi - OBJECT(SupplyObj);
OVERRIDE

TELL METHOD Resupply (IN RequestList : RaquestTypeQueue);
END OBJECT {Economay);

END (DEFINITION) MODULE {mipplyl.

IMPLEMENTATION MODULE SUPPLY;
FROM SimtMod IMPORT SimThne;
FROM lOMod IMPORT StreamObj;
FROM GLOBAL IMPORT NodeNameType, CargoTypeQueue, AssetTypeQueue, SupplyClassType,

SupplyRecordTypeQueue,Requestf'ypeQueue, ConsumerQueue, DisposeOf~ueue;
FROM ROLOBAL IMPORT SHierRecType,SupplySHAfrsy;
FROM FINDSH IMPORT FindSHRec;
FROM ASSET IMPORT AssetObj;
FROM CARGO IMPORT CargoObj;
FROM FINDSUP IMPORT FindCargo, FindItemn, FillRequest, FindRec;
FROM SUPREC IMPORT SupplyRecotdObj;
FROM DISPREQ IMPORT DisposeRequeatTypeQueue;
FROM REQUEST IMPORT RequestObj;
FROM Debug IMPORT TnaceStmem;
FROM MOTORPL. IMPORT MotorpoolObj;
FROM UNITS IMPORT ConsumeaObj;

OBJECT SupplyPointObj;

ASK METHOD Objlnit;

BEGIN
NEW(MHE);

END METHOD (Objhit);

END OBJECT {SupplyPointObj);

OBJECT SupplyObj;

ASK METHOD Objlnit;

BEGIN
NEW(inventory);
NEW(supplyRecords);

117

NEW(waiting);
NEW(receivingPointsQuoeu);
NEW(IoadingPointsQuoue);
NEW(ReceivingPoints);
NEW(LoadingPoints);
NEW(convoyQueue);

END METHOD {Objlnit);

ASK METHOD GetName (IN MyName: STRING);

BEGIN
name :=MyNamne;

END METHOD (GetName);

ASK METHOD AdjustInventory (IN aupplyltem CargoObj;
IN amnount: REAL);

BEGIN
IIF(offlyltem.nonaeparable)

ASK inventory TO Add (supplyltem);
ELSE

ASK supplyltem TO CbangeWeight(amount);
END IF;
END METHOD {Adjustlnventory);

ASK METHOD GetM~yMotofpool (IN Motorpool :MotorpoolObj);

BEGIN
Mmyotowol : = Mototpool;

END METHOD {GetMyMotorpooi);

ASK METHOD Oa~etF.ds(IN Name: STRING);

VAR
Supplyltecord: SupplyRecordObj;
supplyClass: SupplyClasaType;
mothodOiRempply: STRING;
i, j, daysOSupply : IN'TEGER;
intocklvt, upperivi, priority : REAL;
cargo: CargoObj;
SupplySHRec: SHierRacType;
ReceivingPoint: SupplyPointObj;
LoadinSPoint: SupplyPointObj;

BEGIN
FindSI{Rec(SupplySHAzray, Namne, SupplySHRec);

location :-Name;
j := 1;
timeToCheckStock:- STRTOREAL(SupplySHRec.OwnedStringo 1);
INCO);
,wmnberOgteceivers:- STRTOINT(SupplySHRec.OwnedStringblj);
INCOj);
numbeuOtLoaders : STRTOINT(SupplySHRec.OwnedStringU I);
INCO);
numberOlMHE : STRTOINT(SupplySHRec.OwnedString~j);
INCOi);
IoadTime : STRTOREAL(SupplySIIRec.OwnedString~jI);
]NCOj);

118

unioadTim.:- STRTOREAL(SupplySHRec.OwnedStringljl);
INCOj);

ASK receivingPointaQuoue To Create(numbewOtReceivers);

FOR i := I TO numbeOfecaavers
NEW(ReceivingPoint);
ASK Roc~ivinSPoint.MHE TO Create (numberOlM~HE);
ASK ReceivingPoints TO Add (ReceivingPoint);

END FOR;

ASK IoadingPointsQuoucTO Create(numberOfLoaders);

FOR i -= I TO numberOftoaders
NEW(LoadingPoint);
ASK LoadingPoint .MHE TO Create (numberOfM~HE);
ASK LoadingPoints TO Add (Loading~oint);

END FOR;

REPEAT
NEW(SupplyRecord);
NEW(cargo);
supplyClass:- SupplySHRec.OwnedStringbi;
INCO);
methodOtlesupply:= SupptySHRee.OwnedSttinglj; [NCOj);
priority: - STRTORE.AL(SupplySHRec.OwnedStringljD;
INCQ);
stockivl STRTOREAL(SupplySHRec.OwnedString~lj;
INCO);
daysOSupply = STRTOINT(SupplySHRec.OwnedStringUJ);

upperivi = STRTOREAL(SupplySHRec.OwnedStringWl);
INCQ);
ASK SupplyRecord TO GetFields (aupplyClass, stockivi, daysOSupply, upperivi, FALSE);
ASK supplyRecords TO Add (SupplyRecord);
ASK cargo TO ClatSupplyFields (supplyClass, utocklvi, 0.0, methodOfl~esupply, priority , FALSE);
ASK inventory TO Add (cargo);

UiJTIL(SupplySHRec.OwnedStringSjI - *E0F);

END METOD {OatFieIds);

ASK METOD OatConsuniptionRatea(IN Consumers ConsumetQueue);

VAR
consumer : ConsumerObj;
OutRec : SupplyRecordObi;

BEGIN
consiumer =ASK Consumers PinstO;
REPEAT

FindRec(consumer.name, supplyRecorda, QutRec);
IF(OutRec - NIILOBI)

ASK TraceStream TO WritaString("0*0ea*****ee*******Miusake, should have been a record matching consumer with
SupplyRecord ");
ASK TraceStream TO WriteLn;

ELSE
ASK OutRec TO GetConsumptionRats (consumer.dailyConsumption);

END IF;
consumer :=ASK Consumers Next(consumer);

UNTIL(consumer - NILODI);
END MMTOD lOetConsumptionRatas);

119

ASK METHOD GetMotorpool(IN Motorpool: MotorpoolObj);

BEGIN
myMotorpool :=Motoipool;

END METHOD {GetMotorpool);

ASK METHOD GetSupplyRecord(IN itemiName : STRING;
IN SupplyClass: STRING;
OUT Record : SupplyRecordObj;
IN nonseparable: BOOLEAN);

VAR
supplyClass: SupplyClassType;
daysOSupply : INTEGER;
stockivi, upperlvi : REAL;

BEGIN
NEW(Record);
5wpplyClaus : - SupplyClass;
stockivi : -0.0;
daysOSupply := 0;
upperlvi = 0.0;
ASK Record TO GetFields (supplyClass. stockivi, daysOSupply, upperiv], nonseparable);
END METHOD (GstSupplyRecord);

ASK METHOD GetSupplySource (IN SupplySource: SupplyObi);

BEGIN
mySupplySouirce :=SupplySource;
END METHOD (GetSupplySource);

TELL METHOD PrepareToStertSupply(IN dayToEndConsumiing: INTEGER);

VAR
i:INTEGER;

ResupplyList : RoquestTypeQueue;
SupplyRec: SupplyRecordObj;
twentyFourHours: REAL;

BEGIN
twentyFourHours : 24.0;
FOR i :-= I TO dayToEndConsuniing

TELL SELF TO CheckStock IN (twentyFourHours + timeToCheckStock);
twentyFourHours := twentyFourliours + 24.0;

END FOR;
END METHOD lPrepsreToStartSupply};

TELL METHOD Resupply (IN Requesti-ist: RequestTypeQueue);

VAR
request : RequestObi;
cargoToLoad: CargoTypeQueue;

BEGIN
WAIT FOR SELF TO Collecltems(RequestList);

ON INTERRUPT TERMINATE;
END WAIT;
DisposeOf~ueue(Raquest~iat);
END METHOD (Resupply);

120

TELL METHOD CoIlectitems (IN Requestlist :RequestTypeQueue);

VAR
Request,CloneRequest, AwaitedRequesa : RequestObj;
CargoToLoad, ReatToLoad :CargoTypeQucue;
SupplyRequestList, AwaitingRequest~ist: RequestTypeQueue;
OutRec : SupplyRecordObi;
gooditein: BOOLEAN;
itemnNam., Requestor: STRING;
cargo: CargoObj;
lef(ToFill : REAL;

BEGIN
NEW(SupplyRequeatLiat);
NEW(AwaitingRequeatist);
NEW(CarsoToLoad);
Request -. - ASK RequestList FirstO;
Requestor :- Requeat.requestor;
REPEAT

itemnNem :- Request~item;
FindRec(iternNamne, supplyRecords. OutRec);
IF(OutRec - NILOBJ)

(ASK SELF TO OstSupplyRecord(itemName,O.O,O.O,O.O. FALSE);
NEW(CloneRequest);
ASK SupplyRequeatLigt TO Add (CloneRequest);
CloneRequest.- CLONE(Request);
ASK AwaitingRequest~ist TO Add (ClonkeRequest);)

ELSE
gooditem:- FALSE;
FindCargo(Outltec, inventory, cargo, Request.amountReq,

lefeToFili);
FiliRequest(SELF.namec, Request -requestor, OutRec, cargo, CargoToLoad, SupplyRequestList, AuefRopmLst,

leftToFill);
END IF;
Request :-ASK RequestList Next(Requeat);

UNTIL(Reaquest - NILOBI);
IF(ASK CargoTo~od numbetin > 0)

TELL myMotorpool TO ScheduleMission(Requestor, CargoToLoad. NILOBI);
END IF;
IF(ASK SupplyRequedt~it numberin > 0)

WAIT FOR mySupplySource TO Resupply(SupplyRequeatList)
ON INTERRUPT
TERMINATE;
END WAIT;
NEW(RextToLoad);
AwaitedRequest : = ASK AwaitingRequestUxt Firsto;
WHILE(AwaitedRequest < > NILOBJ);

itemName := AwaitedRequeat.item;
FindRec(itemnName, supplyRecords, OutRec);
IF OutRec - NILOBJ

ASK TraceStream TO WriteString(*item not found");
END IF;
FindCargo(Outltec, inventory, cargo, AwaitedRequest.amountReq,

lefiToFill);
IF cargo -NILORI

ASK TraceStream TO WriteString("should have been cargo*);
ELSE

ASK ReatroLoad TO Add (cargo);
END IF;
AwaitedlRequest :=ASK AwaitingRequest~iat Next(AweitedRequest);

END WHILE;

121

TELL myMotorpool TO SchaduleMaision(Requeator, ReatToLoad, NILOB;
END IF;
DispoeeOf~ucue(Supp~yRequeatUst);
Dispoa.Ofeue(AwaitivigRequostList);
DispoaeO~uueu(Car33ToLoad);
DiaposeOfuaie(ResToLoad);
END METHOD (CollecItems);

TELL METHOD CheckStock;
U --
VAR

Record :SupplyRecordObj;
RequestList :RequestTypeQueue;
Request : RequestObj;
amount: REAL;

BEGIN
NEW(RequestList);
Record : ASK aupplyRecorda First 0;
REPEAT

IF(Record.stockLaveI < - (Record.duilyConsumption~
FLOAT(Record.days~fupply))) AND (Record. upperLevel
Record.atockLeveI.- Record~onOrder > 0.0)

amount : -Record~upperLevel - RecordastockLevel -
Record .onOrder;

NEW(Request);
ASK Request TO OstFields (Record. supplyClass, amount, srLF.Iocation);
ASK RequestList TO Add(Request);

END IF;
Record :=ASK supplyRecords Next(Record);,

UNTIL(Record =NILOBI);

IF(RequestList < > NILOBI)
IF(ASK Request~ist numberin > 0)

TELL mySupplySource TO Resupply(RequestList);
END IF;

END IF;
Dispose OfQuoue(Request~ist);
END METHOD (CheckStock);

TELL METHOD ReceiveSupplies (IN Assetiat: AgsetTypeQueue;
IN priority : REAL;
IN ReceivingPoint : SupplyPointObj);,

VAR
#asst : A~eteObj;
OutRec : SupplyRecordObj;
item : CargoObj;
MHEused : INTEGER;

BEGIN
MHEuwd :- 0;
asse -. ASK AssetaLis First 0;
REPEAT

WAIT FOR ReceivingPoint.MHF TO Give (SELF, I);
INC(MHEuaed);
WHILE (ASK aaeet.cargoHold numberin > 0)

item : = ASK aaset.cargoHold TO Remove 0;
FindRec(item.class*Mupply, supplyRecords, OutRec);
IF(OutRec -NILOBI)

GetSupplyRecord~item.classOtSupply, item.claasOfSupply, OutRec, TRUE);
ASK supplyRecorda TO Add(Outlec);

122

END) IF;
WAIT FOR asset TO UnloadCsrgo (0.0, item.weight, item length),
END WAIT ;
IF(OutRec < > NILOBI)

Admitltemi(OutRec, item);
ELSE

ASK TraceStream TO WriteString(UGot a NILOBI for OUTREC!)
ASK TraceStream TO WriteLn;

END IF;
END WHILE;
IF(MllEused > = ReceivingPoint.MHE.MaxResources)

WAIT DURATION unloadTime
END WAIT;
ASK ReceivingPoint.MHE TO Takellack(SELF, MHEused);
MHEused =0;

END IF;
END WAIT;
sawst ASK AssetList Next (asset);

UNTIL (asset = NILOBJ);
IF((MHEused < ReceivingPoint.MHE.MaxResources) AND (MHEused < >0))

WAIT DURATION unloadTime
END WAIT;
ASK RecevingPoint .MHE TO Takellack(SELF. MHEused);

END IF;
END METHOD {ReceiveSuppliea);

TELL METHOD LoadSupplies (IN AssetList : AssetTypeQueue;
IN priority :REAL;
IN Loaudingftint: SupplyPbintObj);

VAR
&asst : AssetObj;
MHEused: INTEGER;

BEGIN
MHEuasd : 0;
sase : -ASK AssetList First 0;
REPEAT

WAIT FOR LoadingPoint.MHE TO Give (SELF, 1);
INC(MHEused);
IF(MHEused > - LodingPoint.MHE.MaxResources)

WAIT DURATION IoadTir,.
END WAIT;
ASK LoadingPoint.MHE TO Tskellack(SELF, MHEused),
MHEused =0;

END IF;
END WAIT ;
asse - ASK AsseList Next (asset);

UNTIL (asset -NILOBI);
IF((MHEised < LoadingPoint.MHE.Maxlesources) AND (MHEused < > 0))

WAIT DURATION loadTime
END WAIT;
ASK LosdingPoint.MHS TO Takellack(SELF, MilEused);

END IF;
END METHOD (LoodSuppliea);

ASK METHOD Admithtem (IN SupplyRecord :SupplyRe-cordObj;
IN cargo :CargoOtbj);

VAR

123

supplyltem: Cargo~hi;
BEGIN
Findltem(ASK cargo classOfSupply, inventory, supplyltem);
IF(supplyltemn - NILOBJ)

ASK inventory TO Add(cargo);
ELSE

ASK SELF TO Adjustlnventory(supplyltem, cargo.weight);
END IF;
ASK SupplyRecord TO Adjust(cargo.weight, cargo. nonseparable);
DISPOSE(cargo);
END METHOD {Admitltem);

TELL METHOD ReportStatus (IN Supplylkeport: StreamObj);

VAR
SupplyRec * SupplyRecrdObi;

BEGIN
ASK Supplylkeport TO Wttn(************~*****)

ASK Supplylkeport TO WriteLn;
ASK SupplyReport TO WritString("******Statug for"- + name + SUPPLY POINT. Time is *+ REALTOSTR(SimnTimeO));
ASK SupplyReport TO WriteLa;

SupplyRec :=ASK supplylecords First 0;
REPEAT

ASK Supplylkeport TO WriteString(" - Record for *+ SupplyRec.supplyClass);
ASK SupplyReport TO WriteLn;
ASK Supplylkeport TO WriteString(*
ASK Supplylkeport TO WriteLn;
IF SupplyRec.nonSeparable

ASK SupplyRepoit TO WriteString("number on hand is "+ INTITOSTR (TRUNC(SupplyRec.stockLevel)));
ASK SupplyReport TO WriteLn;
ASK Supplykeport TO Writ.String("*******************~**");
ASK Supplylkeport TO WriteLn;

ELSE
ASK SupplyReport TO WriteString(*stock level is"' + REALTOSTR (SupplyRec.gtockLe-.z));
ASK Supplylkepott TO WriteLn;
ASK SupplyReort TO WriteString(*days of supply is *+ INTTOSTR (SupplyRec.daysOfSupply));
ASK SupplyReport TO WniteLn;
ASK Supplylteport TO WriteString("upper level is *+ REALTOSTR (SupplyRec.upperlevel));
ASK Supplylkeport TO WriteLn;
ASK SupplyReport TO WriteString("duily consumption is "+ REALTOSTR (SupplyRec.dailyConsumption));
ASK Supplylkeport TO Writel-n;
ASK SupplyReport TO WriteString("on order is "+ REALTOSTR (SupplyRec.onOrder));
ASK SupplyReport TO WriteL-n;
ASK SupplyReport TO WriteStri. 4("*****5***5**5***")

ASK SupplyReport TO WriteLn;
END IF;

Supplykec =ASK supplyRecords Next (SupplyRec);
UNTIL (SupplyRec =NILORJ);

END METHOD (ReportStatus);

END OBJECT~ (Supply);

OBJECT EconomyObi;

TELL METHOD Resupply (IN RequestList RequestTypeQuoue);

VAR
Request: RequestObi;
OutRec :SupplyRecordObi;

124

itamNsme : STRING;
cargo, separatedCargo: CargoObj;

BEGIN
Request =ASK Requesitist Firsto;

* REPEAT
itemName:= Request~item;
FindRec(itemName, supplyRecords. OutRec);
EF(OutRec = NELOBI)

ASK SELF TO GetSupplyRecord~itemName,O.0,O.O,0.0);
ELSE

Findltcm(itemName, inventory, cargo);
ASK cargo TO SeparateCargo (Request.amountRcq, separatedCargo);
ASK OutRec TO Adjust (-(Requeat.amountReq), FALSE);

END IF;
FinbdNode(Request.requestor, Node);
ASK Node~mySupplyTO Admit (separatedCargo);
Request = ASK RequestList Next(Request);

UI4TIL(Request NILOBJ);

END METOD (Resupply);

TELL METOD Checkatock;

VAR
Record SupplyRecordObj;
RequestList : RequestTypeQueue;
Request :RequestObj;
ambount: REAL;

BEGIN
NEW(RequestList);
Record : - ASK supplyRecords First 0;
REPEAT

IF(Record.stockLevel < - (Record dailyConsumption*
FLOAT(Record.daysOtSupply))) AND (Rtecord .upperLevel -

RecofdistockLevel - Record~onOrder > 0.0)
amount := Record.upperLevel - Record stockLevel -

Record~onOrder;
END IF;
Record :=ASK supp'yRecords Next(Record);

UNTIL(Record -NILOBJ);

END METOD {ChockStock);

END OBJECT (Economy);

END (IMPLEMENTATION) MODULE (supply).

DEFINITON MODULE SUPREC;
(Supply records for each supply point are defined here)

FROM GLOBAL IMPORT RequestTypeQueue, SupplyCisassType;

TYPE
SupplyRecordObj = OBJECT

supplyClass: SupplyClassType; (CLI... .CL9, Supply Class)
stockLevel :REAL;
daysOtSupply: INTEGER;
upperLevel.- REAL;
dailyConsunption: REAL;

125

onOrder : REAL;
nonSeparable: BOOLEAN;

ASK METHOD GetFields(IN clans: SupplyClasssType;
IN stockL : REAL;
IN dsysOS. RNTEGER;
IN upperl- - REAL;
IN nonseparable: BOOLEAN);

ASK METHOD OetConsumptionitateQIN Consumptionitate: REAL);
ASK METHOD Adjust (IN Adjustment : REAL;

IN nonseparable: BOOLEAN);
END OBJECT (SupplyRecord);

END (DEFINITION) MODULE (suprec).

IMPLEMENTATION MODULE SUPREC;
FROM Debug IMPORT TrsceStresm;
FROM GLOBAL IMPORT SupplyClatsType. RequestTypeQueue;
FROM REQUEST IMPORT RequestObj;

OBJECT SupplyRecordObj;

ASK METHOD GetFields(IN SupplyClass: SupplyClsssType;
IN StockLevel : REAL;
IN Days~fupply: INTEGER;
IN UpperLevel: REAL;
IN NonSeparsble: BOOLEAN);

BEGIN
supplyClass := SupplyClass;
stockLevel : - StockLevel;
days~tupply : DsysOfSupply;
upperLevel : - UpperLevel;
nonSeparsble : NonSepsrable;

END METHOD;

ASK METHOD GetConsuniptionitate(IN Consumptionitate: REAL);

BEGIN
dailyConsumiption : Consumptionitate;

END METHOD {GetCorisumptitonlate);

ASK METHOD Adjust(IN Adjustment: REAL;
IN nonsepsrable: BOOLEAN);

VAR
short : REAL;

BEGIN
112(nonsepsrable)

stockLevel :-= stockLevel + (Adjustment/Adjustment);
ELSE

utockLevel : stockLaevl + Adjustment;
END IF;
END METHOD (Adjust);

END OBJECT (Supplyltecord);

END (IMPLEMENTATION) MODULE (suprec).

126

DEFINMON MODULE FINDSUP;
(Contains procedures that neceasary in the normal activities of a supply point)

FROM GLOBAL IMPORT CargoTypeQueue, RequestTypeQueue, S.'pplyRecordTypeQueue;
FROM CARGO IMPORT CargoObj;
FROM SUPREC IMPORT SupplyRecordObj;
FROM REQUEST IMPORT RequestObj;
FROM RECORDS IMPORT VehiclesRec, VehTypeRec;

PROCEDURE FindCargo(IN SupplyRecord : SupplyRecordObj;
IN inventory -. CargoTypeQueue;
OUT cargo - CargoObj;
IN amountReq: REAL;
OUT leftToFill : REAL);

PROCEDURE Findltem(IN itemblame : STRING;
IN inventory - CargoTypeQueue;
OUT item: CargoObj);

PROCEDURE FillRequest(IN Supply: STRING;
IN Requestor : STRING;
IN SupplyRecord : SupplyR-crdObj;
IN cargo :CargoObj;
INOUT cargoToMovs: CsrgoTypeQueue;
INOUT RequestList : RequesfrypoQueaze;
INOUT AwaitingList :Reques(TrypeQueue;
IN leftToFill :REAL);

PROCEDURE Findkoc(IN itemName : STRING;
IN SupplyRecords: SupplyRecordrrypeQuoue;
OUT OutRec : SupplyRecordObj);

PROCEDURE FindAasseffypeRecord (IN TypeOfAsset : STRING;
IN AssetsRecord :VehicleaRec;
OUT AssatTypeRec : VehTypekec);

END IDEFINITON) MODULE ffindsup).

IMPLEMENTATION MODULE FINDSUP;
FROM Debug IMPORT TraceStream;
FROM GLOBAL IMPORT CargoTypeQueut, RequeatTypeQueue, SupplyRecordTypeQueue;
FROM CARGO IMPORT CargoObj;
FROM SUPREC IMPORT SupplyRecordObj;
FROM SUPPLY IMPORT SupplyObj;
FROM REQUEST IMPORT RequestObj;
FROM RECORDS IMPORT VehiclesRec, VebTypeRec;

PROCEDURE FindCargo(IN SupplyRecord :SupplykecordObj;
IN inventory : CargoTypeQueue;
OUT cargo: CargoObj;
IN amountReq :REAL;
OUT leftToFiil REAL);

127

VAR
item : CargoObj;
found: BOOLEAN;
name : STRING;
amount: REAL;

BEGIN
item : -ASK inventory Firet 0;
found : FALSE;
REPEAT

IF (item = NILOBI)
EXIT;

END IF;
nano : - ASK item clas*Mfupply;
IF (SupplyRecord.supplyClass = name)

found :TRUE;

ELSE
item :=ASK inventory Next (item);

END IF;
UNTIL (item - NILOBI) OR (found);
IF (item - NILOBI)

cargo := NILOBI;
ELSE

IF (SupplyRecord.utockLevel > amountReq)
ASK item TO SeparateCargo (amountReq, cargo);
ASK SupplyRecord TO Adjust (-amountReq, FALSE);

ELSIF (SupplyRecord stockLeval > 0.0)
amount : -amountleq - SupplyRecord.atockLevel;
ASK item TO SeparateCar~go (amount, cargo);
ASK SupplyRecord TO Adjust (-amount, FALSE);
leffroFill :=amountleq - amount;

ELSE
cargo :NILOBI;
IeftToFiII :- = aountReq;

END IF;
END IF;
END PROCEDURE {FindCargo);

PROCEDURE Findlter(IN itemName : STRING;
IN inventory: CargoTypeQuoue;
OUT item : CargoObj);

VAR
found : BOOLEAN;

BEGIN
item : - ASK inventory First 0;
found : -FALSE;
REPEAT

IF (item -NILOBI)
EXIT;

END IF;
IF ((ASK item ciasasfupply) =itemName)

found: - TRUE;
ELSE

item :=ASK inventory Next (item);
END IF;

UNTIL (item = NILOBI) OR (found);
END PROCEDURE {Findltemn);

PROCEDURE FillRequeat(IN Supply : STRING;

128

IN Requestor: STRING;
IN SupplyRecofd : SupplyftecordObi;
IN cargo:- CargoObj;
INOUT cergoToMove: CargoTypeQueue;

* ~INOUT RequestList : RequeafrypeQueue;
INOUT AwaitingList : RequestTypeQueut;
IN ReRiToFdl REAL);

VAR
Request,copyRequest RequestObj;
item: STRING;
amountReq: REAL;

BEGIN
IF(SupplyRecord - NILOBJ)

ASK TraceStream TO WfiteString("Called F~iI Request with a NILOBI Record");
ASK TraceStream TO WriteLm;

END IF;
IF(cargo < > NILOBJ)

ASK cargoToMove TO Add(cargo);
ELSE

NEW(Request);
item :- SupplyRecord.wupplyClass;
amountReq : = lefifoFill;
ASK Request TO GetFields~item,amiountReq,Supply);
ASK Request~ist TO Add(Requsta);
NEW(copyRequeat);
item -. SupplyRecord .gupplyClaaa;
amountReq :- leftTo~ifl;
ASK copyRequest TO GetFi.Ids(item,am~ountReq,Requestor);
ASK AwaitingList TO Add(copyRequest);

END IF;
END PROCEDURE {FillRequest);

PROCEDURE FmdRec(IN itemName: STRING;
IN SupplyRecords: SupplyRecordrypeQuoue;
OUT OutRec, : SupplyRecordObj);

VAR
name: STRING;
notFouzid: BOOLEAN;
-ec :SupplyRecordObj;

BEGIN
rec : ASK SupplyRecords First 0;
notFound :TRUE;
REPEAT

IF (rec < > NILOBY)
name:- toc.supplyClass;

END IF;
IF (name itervName)

not~ound:= FALSE;
ELSE

fec :=ASK SupplyRecords Next (tee);
END IF;

UNTIL (rec -NILODJ) OR (NOT notFound);
OutRec : - ee;
END PROCEDURE {FindRec);

PROCEDURE FindAsseerypeltecord (IN TypeOfAsset: STRING;
IN AssetsRecord : VehiclesRec;

129

OUT AssetTypeRec : VehTypeRec);

VAR
foundh: BOOLEAN;

BEGIN
AssetTypeRec : ASK AssetsRecord.vehTypeRecList First 0;
REPEAT

IF(AssetTypelec.vehType = TypeOfAss)
foundt := TRUE;

ELSE
AssetTypeRec := ASK AssetsRecord.vehTypeRecList Next (AssetTypeRec);

END IF;
UNTIL((AssetTypeRec = NILOBJ) OR (foundit));
IF(NOT foundlt)

ASK TraceStream TO WriteString(*****COULD NOT FIND CORRECT ASSET TYPE RECORD!');
ASK TraceStream TO WriteLn;

END IF;
END PROCEDURE (FindAssetRecordl;

END (IMPLEMENTATION) MODULE (findsup).

DEFINITION MODULE REQUEST;
(Supply points that have shortages in their inventories use this object to request a resupply from their supply sources)

TYPE
RequeatObj - OBJECT

item : STRING;
amountReq: REAL;
requestor : STRING; (Name of Node)

ASK METHOD GetFields (IN itemName : STRING;
IN amount: REAL;
IN requestor: STRING);

END OBJECT (RequestObj);

END (DEFINITION) MODULE (request).

IMPLEMENTATION MODULE REQUEST;

OBJECT RequestObj;

(}
ASK METHOD GetFields (IN Item : STRING;

IN AmountReq : REAL;
IN Requestor: STRING);

BEGIN
item : =Item;
amountReq : = AmountReq;
requestor : = Requestor;

END METHOD (GetFields);

END OBJECT (RequestObj);

END (IMPLEMENTATION) MODULE (request).

DEFINITION MODULE FUELPT;

130

(All fields and meothods of a fueipoint are defined here)
FROM RexMod IMPORT ResourceObj;
FROM GLOBAL IMPORT NodeNameType,CargoTypeQueue;

* TYPE
FuelPumpQueue = Reaourco~bj;

FuelpointObj = OBJECT
name: NodeNamneType;

fuelLovel : REAL;
fuelCap : REAL;
shortageL~vel: REAL;
refnerriume : REAL;
numberOfPtzmps - INTEGER;
FuelPumps : FuedPumpQueue;

ASK METHOD Objlnit;
ASK METHOD GetNamne (IN MyNamne: STRING);
TELL METHOD PumipFuel (IN FuelUsed : REAL;

IN Refuelrime : REAL);
ASK METHOD GetFields (IN name: STRING',;

END OBJECT (Fuelpoint);

END (DEFINITION) MODULE (fuelpt).

IMPLEMENTATION MODULE FUELPT;
FROM Debug IMPORT TraceStream;
FROM GLOBAL IMPORT NodeNanwTyp*,CargoTypeQueue;
FROM ROLOBAL, IMPORT SHierRecType,FuelpointSHAxray;
FROM FINDSH IMPORT FindSHRec;

OBJECT FuelpointObj;

I -)
ASK METHOD Objinit;

BEGIN
NEW(FuciPunmps);

END METHOD (Objinit);

ASK METHOD GetName (IN MyName : STRING);

BEGIN
name := MyNerme;

END METHOD (GetName);

ASK METHOD GetFields (IN namne : STRING);

VAR
i : INTEGER;
FuelpointSllRec: SHierRecType;

BEGIN
FindSHRec (FuslpointSHArray. name, Fu.IpointSHRec);
i:w 1;

REPEAT
fuelLevel :-= STRTOREAL (FuelpointSHkec.OwnedStringlii);
INCC.);
fuelCap :=STRtTOREAL (FueipointSHlec.OwnedStringliJ);
INCOi);
refuerriffe : = STRTOREAL (FuelpointSHRec.OwnedStfingliiD;

131

numberOfPumps := STRTOINT (FuelpointSHRec.OwnedStringlD;
ASK FuelPumps TO Creste(numbetOfPumps);
INC6i);

UNTIL ((j > HIGH(FuelpointSHRec.OwnedStrnna))OR
(FuelpointSflloc.OwnedStringlil=

END METHOD (GetFields);

TELL METHOD PumpFuel (IN FuelUsed: REAL;
IN Refuelrime: REAL);

BEGIN
WAIT DURATION Refuelrime

flielLevel =fuelLevel - FuelUsed;
END WAIT;
END METHOD {PumpFuel);

END OBJECT (Fuelpoint);

END (IMPLEMENTATION) MODULE {fuelpt).

DEFINITION MODULE UNITS;
(A node's units methods and fields are defined here. Units consume supplies within TITSS)

FROM GrpMod IMPORT QueueObj;
FROM GLOBAL IMPORT NodeNameType, CargoTypeQueue, SupplyClsassType, SupplyRecordTypeQueue,

RequesfTypeQueue, ConsumerQueue;
FROM ROLOBAL IMPORT SHierRecType;
FROM MOTORPL, IMPORT MotorpoolObj;
FROM SUPREC IMPORT SupplyRecordObj;
FROM REQUEST IMPORT RequestObj;
FROM SUPPLY IMPORT SupplyObi;

EXPORTTYPE
UnitsObj - OBJECT; FORWARD;

TYPE
ConsumerObj = OBJECT

name : STRING;
dailyConsumption: REAL;
ASK METHOD GetFields(IN name : STRING;

IN dailyConsumption: REAL);
END OBJECT (Consumer);

UnitsObj - OBJECT
name : NodeNameType;
dayToStartConsumiing: INTEGER;
dayToEndConsuming: INTEGER;
Consumers: ConsumeQueue;
inventory : CargoTypeQueue;
mySupply: Supplyjb;

ASK METHOD Objinit;
ASK METHOD GetName (IN MyName : STRING);
ASK METHOD GetMySupply(IN Supply : SupplyObj);
ASK METHOD GetFields (IN Name :STRING);
TELL METHOD ProepreForConsumning(IN SupplyRecords: SupplyRecordTypeQueue;

IN Inventory : CargoTypeQueue);
TELL METHOD ConsumeSupplies(IN SupplyRecords : SupplyRecordTypeQueue;

IN Inventory : CargoTypeQueue);

132

END OBJECT (Units);

END (DEFINITION) MODULE (units).

IMPLEMENTATION MODULE UNITS;
FROM GLOBAL IMPORT NodeNsmeTypeCargoTypeQueue,SupplyClassType,

SupplyRecordTypeQueue,RequestTypeQuetie;
FROM ROLOBAL IMPORT SllierkedType,UnitsSllAffay;
FROM FINDSH IMPORT FindSHRec;
FROM CARGO IMPORT CargoObj;
FROM FINDSUP IMPORT lFindRec, FindCargo, FindItem, FillRequest;
FROM SUPREC IMPORT SupplyRecordObj;
FROM DISPREQ IMPORT DisposeRequestTypeQueue;
FROM REQUEST IMPORT RequestObj;
FROM Debug IMPORT TraceStream;
FROM SUPPLY IMPORT SupplyObi;

OBJECT ConsutnetObj;

ASK METHOD GetFieIds(IN Name : STRING;
IN DailyConsumption: REAL);

BEGIN
name :- Name;
dailyCoasumption : DailyConsunytion;
END METHOD (GetFields);

END OBJECT (Consumer);

OBJECT UnitBObj;

ASK METHOD Objinit;

BEGIN
NEW(Consumers);
NEW(inventory);
END METHOD (Objlnit);

ASK METHOD GetNamea (IN MyName : STRING);

BEGIN
name :-MyName;

END METHOD (GetNeam);

ASK METHOD GetdySupply (IN Supply : SupplyObj);

BEGIN
mySupply: supply;
ASK mySupply TO GetConsurmptionRates(Consumers);

END METHOD (QatMySupply);

ASK METHOD OatFieIds(IN Name : STRING);

VAR
j:INTEGER;

UnitsSHRec : SHierRedType;
consumer: ConsumerObj;
itemiName : STRING;

133

item :Cargo~bj;
DailyConaumption: REAL;

BEGIN
FindSHRec(UnitsSHArray, Name, Unit&SHRec);
j := I;
dayToStertConsumin : = STRTOIN(UnitsSHRec.OwnedStrinSVD;

day~oEndConsuiring:= STRTOINT(UnitaSHRec.OwnedStringVD);
INCO);
REPEAT

NEW(consumer);
NEW~item);
itemnNsme := (UnitsSHRec.OwnedStrnngUD);
INCQj);
DailyConsumption.= STRTOREAL (UnitsSHRec.OwnedStringfjJ);
INCOj);
ASK consumer TO Oetfields(itemName, DailyConsumption);
ASK item TO GetSuppiyFields (itemName, 0.0, 0.0, "genCgo', 0.0, FALSE);
ASK Consumers TO Add(consumer);
ASK inventory TO Add(item);

VNTIL(UnitsSHRec.OwnedStringUI - "EOP");
END METHOD {Get~ields);

TELL METHOD PrepareFowConsumiing(IN SupplyRecords: SupplyRecordTypeQueue;
IN Inventory : CargoTypeQueut);

VAR
i:INTEGER;

Resupplylust: RequestaypeQueue;
SupplyRec: SupplyRecordObj;
supplyRecord: SupplyRecordTypeQueue;
twentyFourHours: REAL;

BEGIN
twewyFourHours:- (24.0 * FLOAT(dayToStartConsuming));
FOR i := dayToStartConsuming TO dayToEndConsuming

TELL SELF TO ConsumeSuppli*sSupplyRecords, Inventory) IN twentyFourHours;
twentyFourHoufs :-twentyFourHours + 24.0;

END FOR;
END METHOD {PrepareFoiConsumning};

TELL METHOD Consutne~upplies(IN SupplyRecords: SupplyRecordTypeQueue;
IN Inventory : CafgoTypeQueue);

VAR
S:INTEGER;

item :CargoObj;
ResupplyList: RequestfypeQueue;
OutRec : SupplyRecordObi;
consumer: ConsumerObj;

BEGIN
consumer: ASK Consumers FirstO;
REPEAT

FindRec(consumner.nsme, SupplyRecords,Outkec);
ASK OutRec TO Adjust (-(consumer.dailyConsumption), FALSE);
Findltem(OutRec.supptyClass, Inventory, item);
ASK item TO Adjust (-(consunmr.deilyConsunmption)).
consumer: - ASK Consumers Next(consumer);

UNTIIL(consumer= NILOWi);
END METHOD (ConsumeSupplies);

134

END OBJECT {Units);

END {IMPLEMENTATION) MODULE {units).

DEFINITION MODULE CHECKAS;
{The sorting algorithms for matching cargo to assets are in the following procedures. Standard sorting techniques are used and cargo
that cannot be loaded is put into a waiting queue)

FROM GLOBAL IMPORT AssetTypeQueue;
FROM CARGO IMPORT CargoObj;
FROM CONVOY IMPORT ConvoyObj;
FROM MOTORPL IMPORT MotorpoolObj;
FROM ASSET IMPORT AsaetObj;

{)
PROCEDURE FindAssets (INOUT Motorpool : MotorpoolObj;

INOUT Convoy: ConvoyObj;
IN Load : CargoObj;
INOUT CouldNotLoadQueue: AsaetTypeQueue);

{)

PROCEDURE CheckLoadedAssst (INOUT Motorpool : MotorpoolObj; INOUTConvoy:ConvoyObj;
INOUT Load : CargoObj;
OUT cargoAILoaded: BOOLEAN);{)

END (DEFINmON) MODULE {chockas).

IMPLEMENTATION MODULE CHECKAS;
FROM Debug IMPORT TraceStream;
FROM GLOBAL IMPORT AsaeTypeQueue, CargoTypeQueue;
FROM ASSET IMPORT AssetObj;
FROM CARGO IMPORT CargoObj;
FROM FINDSHP IMPORT FindShortestPath;
FROM CONVOY IMPORT ConvoyObj;
FROM MOTORPL IMPORT MotofpoolObj;
FROM RECORDS IMPORT VehTypeRec;
FROM FINDSUP IMPORT FindAsseTypeRecord;

(INPUT A LOAD, FINDS AN ASSET AND LOADS CARGO IN CARGOHOLDS. IF ASSETS ARE PREVIOUSLY LOADED,
WILL CHECK THEM. RETURNS THE ASSET IN A CONVOY}

PROCEDURE FndAssets (INOUT Motorpool : MotorpoolObj;
INOUT Convoy : ConvoyObj;
IN Load: CargoObj;
INOUT CouldNotLoadQueue: As•efTypeQueue);

I }
VAR

cargoWeight, cargoLoength,
maxCanBeLoaded, maxCanB*PutOn: REAL;
amst, biggeatAsset, smalleatAsaet : AssetObj;
cargoAllLoeded, allCargoWiIIFit, assetAvailable: BOOLEAN;
chosenAsset: AssetObj;
separatadLoad: CargoObj;
VahTyplRecord: VehTypeRec;

BEGIN
cargoAlILoaded :- FALSE;
IF(Convoy < > NILOBJ)

ChockLoadedAsseft(Motorpool, Convoy, Load, cargoAllLoaded);
END IF;

135

(all the cargo possible has been loaded on available space on vehicles already in convoy)

REPEAT
asew : ASK Motorpool.AlgorithmQueue First 0;
REPEAT

EF(assae.model = 'BIG*)
biggeatAsWet= asset;

ELSIF(asset.model = SMALL)
aniallestAsse:= asset;

END EF;
asset -= ASK Motorpool. AlgorithmQueue Next(asset);

UNTEL(aaaet NILOBI);
cargoWeight:- Load.weight;
cargoLength : -Load.length;
assetAvailable = FALSE;
asset : -ASK Motorpool.AsaeList First 0;
EF (asset = NILOBJ)

assetAvailable =FALSE;

END IF;
(algorithm finds smallest &asst that will bold cargo. If cargo is too big for any of the assets, the largest asset available will be used

and the cargo will be separated into a useable fit)

WHILE (asset < > NILOBI) AND (NOT cargoAliLoaded)
REPEAT

EF (ASK &asst type -ASK Load MOR)
IF (cargoWeight < - asset.assetDiinens. weight) AND (assect. assetDiinens.weight <

smalleastsuet.assetDimen~s.weight)
amallestAsset:- asset;
sflCsrgoV~ilIFit:= TRUE;
assettAvailable:- TRUE;

ELSIF (NOT allCargoWillFit) AND (asset.assetDimezts.weight > biggeetAswe.assetDimens.weight)
biggeatAssat:- asset;
assetAvailable: TRUE;

END IF;
END IF;
asset : -ASK Motorpool.Assetdst Next (sasset);

UNTIL (asset - NILOBI);
(Found the right asset to load cargo upon)

IF IlICargoWilffit
chosenAsset =sniaflestAsect;

ELSE
chosimAsset : biggestAsset;

END IF;
IF ((NOT cargoAllLcaded) AND (assetAvailable))

maxCanBeLoaded:- chosenAssat.assetDimens.weight;
maxCanflePutOn:- chosenAsset.asaetDimens.length;
IF (cargoWeight <=- maxCanBeLoaded)

IF (Load.nonseparabie) AND (cargoLength < - maxCanBePutOn)
ASK Motorpool.AssetList TO Removenhis (chosenAsse);
Find AsetTypeRecord(chosenAsset.vehType, Motorpool.VehiclesRecord, VehTypeRecord);

EF(VahTypeRecord =NELOBJ)
ASK TraceStream TO WriteStning("G0T a NILOBI from FindAsseTypeRecord*****);,
ASK TraceStream TO WriteLn;

ELSE
ASK VehTypeRecord TO GetCommitted;

END IF;
ASK chosenAsset.losdDimensTO UpdateLengthLoad (Load.length);

ASK chosenAssae.loadDimensTO UpdateLoad Weight (Load~weight);

TELL Motorpool TO MatchCargoToAaset (chosenAsset, Load);

ASK Convoy.AaseetL~it TO Add (chosenAsset);
cargoAll~oded : TRUE;

ELSIF(NOT L.oad.nonseparsble)

136

ASK Motorpool.AsweList TO RemoveThis (chosenAsset);
FindAssezT7ypeRecord(chosenAsaez.vehType. Motorpool.VehiclesRecord, VehTypeRecord);
IF(VehTypeRecord = NILOBJ)

ASK TraceStreamn TO WriteString("G0T a NILOBJ from Find AssetTypeRecor i~)
ASK TraceStream TO WriteLn;

ELSE
ASK VehTypeRecord TO GetCommitted;

END IF;
-'ASK chosenAsaae load Dimens TO UpdateLoadWeight (Load~weight);

TELL Motorpool TO MatchCargoToAsset (chosenAsset, Load);
ASK Convoy. AssetList TO Add (chosenAsset); cargoAilLoaded =TRUE;

END IF;
ELSIF (NOT Load~nonseparable)

ASK Load TO SeparateCargo (maxCanBeLoaded, separatedLoad);
ASK Motorpool.AsweList TO RemoveThia (choxenAsset);
FirndAsaetTypeRecord(chosenA~set.vchType, Motorpool.VehiclesRecord, VebTypeRecord);
IF(VehTypeRecord =NILORJ)

ASK TraceStream TO WriteString("GOT a NELOB) from FindAaswATypeRecord****");
ASK TraceStream TO WriteLn;

ELSE
ASK VehTypeRecord TO GetCommitted;

END IF;
ASK Convoy.AssetList TO Add (chosenAsset);
ASK choaenAsset.loadDimenaTO Upda'eLoadWeigbt (separsatedLoad~weight);
TELL Motorpool TO MatchCargoToAsaae (chogenAaaet, separatedLoad);
END IF;

END IF;
END WHILE;

UNTIL (cargoAllLoaded) OR (NOT assetAvailable);
IF (NOT cargoAllLoadled) AND (NOT asastAvailiable)

ASK CouldNotLoadQueusTO Add (Load);
END IF;
END PROCEDURE (FindAssets);

(INPUTS A LOAD. WILL ADD LOAD TO A LOADED ASSET ALREADY IN THE CONVOY IF ROOM IS AVAILABLE.)

PROCEDURE CheckLosaddAsasta (INOUT Motorpool :MotorpoolObj; INOUTConvoy.iConvoyObj;
INOUT Load: CargoObj;
OUT cargoAllLoaded : BOOLEAN);

VAR
cargo Weight, cafgoLength,
maxCanBeLoaded, maxCanflePutOn: REAL;
amse: AsostObj;
alICargoWilIFit, asmeAvailable: BOOLEAN;
esperatedLoad: CargoObj;

BEGIN
cargoAllLoaded: FALSE;
asue: -ASK Convoy.AssetList First 0;
IF (asset < > NILOBJ)

REPEAT
IF (sasbetyp* - Load.MOR)

maxCenBeLoaded:- assocasmsetDimens.weight -
asset.loadDimens.weigbt;

maxCanP-ePutOn:- asset.aaaetDimena.length - asset.loadDimens-length;
cargo Weight : Load~weight;
cargoLangth . Load.Iength;
IF cargoWeight < - maxCanBeLoaded

IF (Lead. nonseparable) AND (cargoLength < = maxCanlePutOn)
* ~ASK asset.ioadDimena TO UpdateLoadWeight(Load.weight);

ASK asset. loeilDimens TO UpdateLength~od(Load. length);

137

TELL Motorpool TO MatchCargoToAsset (asset, Load);
cargoAllLoaded : - TRUE;

ELSIF(NOT Load.nonseparable)
ASK asset.loadDimens TO UpdateLoadWeight(Load.weight);
TELL Motorpool TO MatchCargoToAsset (asset, Load);
cargoAll.osded := TRUE;

END IF;
ELSIF (maxCanBeLoaded > 0.0) AND (NOT Load.nonseparsble)

ASK Load TO SeparateCargo (rnaxCanBeLoaded,
aeparstedLoad);

ASK aaset.loadDimenaTO UpdateLoadWeight (separatedLoad.weight);
TELL Motorpool TO MatchCargoToAaaet (asset, separatedLoad);

END IF;
END IF;
asset :f= ASK Convoy.AsaetList Next (asset);

UNTIL (cargoAllLoaded) OR (asset = NILOBJ);
END IF;
END PROCEDURE {CheckLoadedAsaetas);

END (IMPLEMENTATION) MODULE (checkas).

(******e**ee*****e******.*es****.**e**e******se************** DEFINITION MODULE CONVOY;

JAR actions of a convoy are defined here. Everthing from loading, travelling and actions upon entering a node are included}
FROM GLOBAL IMPORT AssefrypeQueue, NodeTypeQueue;
FROM ROUTE IMPORT LinkObj, RouteObj;
FROM SUPPLY IMPORT SupplyObj;
FROM NODE IMPORT NodeObj;

EXPORTTYPE
ConvoyObj - OBJECT; FORWARD;

TYPE
ConvoyObj - OBJECT

name : STRING;
mxAsseta, (max assets allowed in convoy)
distTweenAaaeat, (distence in feet, between assets)
diatBetweenConvoys, {distance between 2 convoys}
totalLength : REAL; (actual length of the convoy)
arrivalTime : REAL; (time convoy arrives at nission destination)
PMCSime: REAL; {time required for entire convoy to do PMCS)
allowBreakdowns: BOOLEAN; {TRUE if wrecker is not avail)
fixT'ime : REAL; (if wrecker or maint is avail, time req to fix asset)
misaionType: STRING; (either RESUPPLY, RECOVERY, or)
home: STRING; (RETURN(fixed asse))
priority : REAL; (priority of highest cargo is given to convoy)
routeDist : REAL; (distance in miles of route to destination)
returnRouteDist : REAL; (in miles of return trip home)
fuelNotNeeded: BOOLEAN; (if TRUE assets do not have to refuel)
Asietlist : AssetTypeQueue;
DeadlinedPoint : AssetTypeQueue;

ASK METHOD Objlnit;
ASK METHOD ObjTerminate;
ASK METHOD GetName (IN Name : STRING);
ASK METHOD GetMissionType (IN Mission: STRING;

IN Home: STRING;
IN distBetweenConvoy: REAL;
IN wreckersAvail : BOOLEAN;
IN fixTrime : REAL);

ASK METHOD GetDistances (IN routeDistance: REAL;
IN returnRouteDistance: REAL);

138

TELL METHOD Travel (IN Destination : STRING;
IN Route : RouteObj;
IN MasterNodeList: NodeTypeQueue);

TELL METHOD EnterNode (IN destination: STRING;
a IN location : STRING;

IN MasterNodeList : NodeTypeQueue;
IN Route : RouteObj;
IN linkDistance : REAL);

TELL METHOD CheckAssetStatur (IN Route : RouteObj;
IN currentLocation: NodeObj;
IN MasterNodeLixt: NodeTypeQueue);

ASK METHOD FindClosestMaintenance (IN Route : RouteObj;
IN currentLocation: STRING;
IN MasterNodeLiat : NodeTypeQueue;
OUT maintNode: NodeObj);

TELL METHOD Refuel (IN location: STRING;
IN MasterNodeList : NodeTypeQueue);

TELL METHOD PerformRecovery (IN Node: NodeObj;
IN Origin : STRING);

TELL METHOD PerformnPMCS (IN location : STRING;
IN MasterNodeList: NodeTypeQueue);

ASK METHOD GetLength (IN distBetweenVeh : REAL);
TELL METHOD EnterSupply (IN Supply : SupplyObj);
ASK METHOD NotRefuelDuringMsn;
TELL METHOD FixAsset;
TELL METHOD Break (IN breakTime : REAL);
TELL METHOD CrosLink (IN CrosTime : REAL);
TELL METHOD StandDown (IN StandDownTime: REAL);

END OBJECT (Convoy);

END (DEFINITION) MODULE (convoy).

IMPLEMENTATION MODULE CONVOY;
(This procedure does the travelling from one node to another)

FROM SimMod IMPORT SimTime;
FROM ResMod IMPORT ResourceObj;
FROM GLOBAL IMPORT NodeNameType, LinkTypeQueue, AsaetTypeQueue, NodeTypeQueue, ALL roadCharact;
FROM ROUTE IMPORT LinkObj, RouteObj;
FROM ASSET IMPORT AsuetObj, RecoveryObj;
FROM NODE IMPORT NodeObj, DeadlinePointObj, DeadlinedQueue;
FROM FINDNOD IMPORT FindNode;
FROM Debug IMPORT TraceStmam;
FROM SUPPLY IMPORT SupplyObj, SupplyPointObj;
FROM FINDSUP IMPORT FindAasetTypeRecord;
FROM RECORDS IMPORT VehTypeRec;

OBJECT ConvoyObj;

ASK METHOD GetName(IN Name : STRING);

BEGIN
name : Name;
END METHOD (GetName);

{,
ASK METHOD Objlnit;

I -)
BEGIN
NEW(AssetList);
END METHOD {Objinit);

139

ASK METHOD ObjTerminste;

BEGIN
DISPOSE(Assetist);
END METHOD (ObjTerm~inate);

ASK METHOD GetMissionType (IN Mission : STRING;
IN Home: STRING;
Di distance: REAL;
IN wreckersAvail : BOOLEAN;
IN repairTime : REAL);

BEGIN
missionType := Mission;
home : = Home;
distletweenConvoys : = distance;
IF(wmekersAvail)

sllowBreakdowns := FALSE;
ELSE

allowBreakdowns := TRUE;
END IF;
fixT ime:= repairrime;
END METHOD (GetMissionType);

ASK METHOD GetDistances (IN RouteDistance: REAL;
IN RetumnRouteDistance: REAL);

BEGIN
routeDist: RouteDistance;
rewzmRouteDist : - RetniRrlouteDistance,
END METHOD {GetDistances};

TELL METHOD Travel (IN Destination : STRING;
IN Route: RouteObi;
IN MasterNodeList : NodeTypeQueue);

VAR
asset : AssetObj;
Link : LinkObj;
checkRoute: RouteObj;
Node: Node~bj;
updated~dometer, updaW.FueILeveI: REAL;
timeElapsed,
mostTimeElapsed : REAL;
Traveflime : REAL;
clearanceDist - REAL;
clearancerime: REAL;
rate : REAL;

BEGIN
NEW(checkRoute);
NEW(Node);
cbeckRoute : = Route;
link : = ASK Route. LinkRoute First 0;
REPEAT

asst: ASK AsasUst First 0;
TravelTime :=0.0;
REPEAT

140

ASK &asse TO UpdateGuagea (Link);
tiraeElapsed : = ASK Link distance/ASK asset rsteOffravel

(Uink.roadSurface, Link.teffain);
IF (timeElapsed > mostTimeElapsed)

*Travelrimme :=timeElapsed;
rate =ASK asset rste~frravellLink.roadSurface, Link.terrainJ;

END IF;
&asstm ASK AssetList Next (asset);

UNTIL (asset =NILOBJ);

clearsnceDist :=(totalLongth + distBetweenConvoys)15280.;
clearanceTime =clearanceDist/rate;

FindNode(Link.origin, MasterNodeList, Node);

WAIT FOR Node.clearenceTO PriorityGive (SELF, 1, SELF.priority);
WAIT FOR SELF TO CrossLink (clearanceTimne)

ASK Node.clearance TO Takellack (SELF, 1);
END WAIT;

END WAIT;

WAIT FOR SELF TO CrossLink (Travemrme - clearanceTime)
END WAIT;

WAIT FOR SELF TO EnterNode (Destination, Ljnk.destin, MasterNodeList, checkRoute, Link.distance);
END WAIT;
IF((ASK Assetist numberin) = 0)

TERMINATE;
END IF;
Link: ASK Route.LinkRoute Next (Link);

UNTIL (Link -NILODI);

END METHOD (Travel);

TELL METHOD EnterNode (IN destination :STRING;
IN location: STRING;
IN MasterNode~ist: NodeTypeQueue;
IN Route :RouteObj;
IN linkDistance : REAL);

VAR
Nods: NodeObj;
convoy: ConvoyObj;
asset : AssetObj;
Homes: Node~bi;
milesTraveled ; REAL;
NMC : INTEGER;

BEGIN
FindNode (location, MasterNodelist, Node);
FindNode (home, MasterNodeList, Homne);
(do not chock asset status if back homne)
IF(Node.name < > SELF.homne)

WAIT FOR SELF TO CheckAssetStatus (Route, Node, MasterNodeList);
END WAIT;

END IF;
IF((ASK AsseList numberin) - 0)

TERMINATE;
END IF;
IF ((ASK Node narme) - destination)

arriarrime : - SimnTime 0;
IF (tnijesionType = "Resuapply')

ASK Honw.myMotorpool.Diapatch TO WriteString("CONVOY + SELF.name + arrived at" + Node.name);
ASK Honw.myMotorpool.DimsatchTO WriteLn;

141

ASK Homec.myMotorpool.DispatchTO WriteString(* TIME OF ARRIVAL is + REALTOSTR (SimTimeo));
ASK Home.myMotorpool.DispatchTO WriteLn;
ASK Homne.myMotorpool.DispatchTO WriteString('. Number in convoy is + IN1TOSTR (ASK AssetList

number][));
&asst ASK AssetList First 0;
REPEAT

ASK samset TO CheckForBreakdown;
IF(NOT assaet.missionCapable)

NMC : NMC + 1;

END IF;
asset =ASK Asset~ist Next (asset);

UNTIL (asset =NILOBI);

TELL SELF TO EnterSupply(Node.mySupply);
IF(routeDjst > Node.maxMilesAilowed)

WAIT FOR SELF TO StandDown (Node.standDownTime)
END WAIT;

END IF;
ELSIF (missionType - "Recovery")

WAIT FOR SELF TO PerforniRecoveiy(Node, Route.origin);
END WAIT;

ELSE (must be a repaired asset, even if not, let in)
WHIELE(ASK AssetList numberln < > 0)

asset := ASK AssetList Remove 0;
ASK NodeniyMotorpool.AssetLiatTO Add(ssset);

END WHILE;
END IF;

ELSE
milesTravelled: = inkDisance;
IF(milesTravelled > - Node.milesBeforeBreak)

WAIT FOR SELF TO Break (Node.breakTime)
END WAIT;

END IF;
END IF;
END METHOD (EnteNode);

TELL METOD CheckAssetStatus (IN Route : RouteObj;
IN currentLocation: NodeObj;
IN MasterNodeList: NodeTypeQueue);

VAR
i, ntamberOfAaaets: INTEGER;
asset, copy : AasetObj;
InspectionQueue:- AasstTypsQueue;
Node, maintNod.: NodeObj;
deadlinedAsaela: DesdlinePoimtObj;
VehTyp*Record: VehTypelkec
distHome, distDestn : REAL;
Link : LinkObj;
distance : REAL;
range, Range, nmxRange, Maxkange : REAL;
atHome, foundLocation, fiaelpointFound : BOOLEAN;

BEGIN
(check vehicle maintenance statuzs, if non-mission capable, find shortest distance, either back home or at mission destination. Schedule
recovery mission, assow will be recovered and hauled back. Cargo will be loaded off at destination or mission rescheduled if taken
back home)

(performing PMCS, If NMC, put in DeadlinedQueue)
NEW(deadlined[Assets);
NEWflnspectionQueue);
stflome =FALSE;

142

numbarOfAsseta : - (ASK Assetiat numberin);
WHILE (ASK Assatist numberin > 0)

asset: =ASK AssetList Remove 0;
ASK easse TO CheckForBrsakdown;

* IF(NOT sasset.misuionCapable)
FandNode(ssset homne, MasterNodeL-ist, Node);
IF(allowBreakdowns)

-' ~FindAssetnyeRecord(asset.vehType, Node. myMotorpool.VehiclesRecord, VehTypeRecord);
ASK VahTypeRecord TO GetUncommitted;
ASK VehTypeRocord TO GetDeadlined;
ASK deadlinedAsset.AssetQueueTO Add (asset);
ASK Node.mryMaintenanice.MaintReportTO WriteString ("Asset MMC at "+ currentLocation.name);
ASK Node.mnyMaintenance.MsintReportTO WriteString (.Bumper Number is'+ asset.bumperNumber);
ASK Node.myMaintenance.MaintReportTO WriteLn;
ASK Node.myMaintenance.MaintReportTO WniteString (" Time of breakdown is " +

REALTOSTR(SiamTimeo));
ASK Node.myMaintenance.MaintReportTO WriteLn;
ASK Node.myMaintenance.MaintReportTO WriteLn;

ELSE
ASK InspectionQueue TO Add(asset);
IF(NOT asset .tempFix)

ASK Node.myMaintenance.MsintkeportTO WriteString (A aa e t N M C a t ' +

currentLocation.nsme);
ASK Node.myMaintensnce.MaintkeportTO WriteString (.Bumper Number is " +

assetbumperNumber);
ASK Node.myMaintenance.MsintReportTO WriteLa;
ASK Node.myMaintensnce.MsintitepoitTO WriteString (Time of breakdown is *+

REALTOSTR(SimTim*0));
ASK Node.myMaintenance.MsintReportTO WriteLn;
ASK Node.myMaintensnce.MaintRoportTO WriteLn;
ASK asset TO FixTemporarily;
WAIT FOR SELF TO FixAsset
END WAIT;

END IF;
END IF;

ELSE
ASK InspectionQueue TO Add (asset);

END IF;
END WHILE;

EF((ASK deadlinedAsseta.AssetQueuenumiberln) > 0)
(Zeoting home of asset)

asset :- ASK desdlinedAaseso.AssetQueueFirsto;
ASK currentLocation.deadlinePointQueueTO Add (deadlinedAssets); (get name of closest maintenance node)
FindClosestMaintonance (Route, cu.. nLocation.name, MasterNodeList, mairitNode);

(took out deadlineAsse below)
ASK deedlinedAsseta TO OetRecoverer(maintNodo.name);
TELL niaintNode.myMaintenanceTO RecoverAssea(currentLocation.name, ASK deadlinedAssets.AssetQueumnumberln);

(Tell home motorpool that asset is deadlined)
FindNode(asset.home, MosterNodeList, Node);
IFidAssetTypoRecord(&ssetvshType, Node.niyMotorpool.VelriclesRecord, VehTypeltecord);
END IF;

END IF;
(return assets to convoy, finished with inspection)
WHILE (ASK InspectionQueue numberin > 0);

sasset: = ASK InspectionQueue TO Remove 0;
ASK Asset~ist TO Add (asse);

END WHILE;

(check each assets range to next node with a Fuelpoint. If all assets can make travel with avail fuel, do not refuiel. If at least one
cannot, refuel all assets. If link distance too long, cany reserve fuel)

'43

IF((ASK AssetList numberin) = 0)
TERMINATE;

END IF;

IF((cuffentLocation.name < > Route.deatin) AND (NOT fuelNotNeeded))
(dont worry about refutelling if at destination)

distance : = 0.0;
Link =ASK Route. LinkRoute First 0;

(Finding distance to next Fuelpoint)
REPEAT

IF((ASK Link origin = currentLocation name) OR (foundLocation))
foundLocation :.= TRUE;

(find next node that has fuel. at link destin for Fuelpoint availability)
distance :=distance + Link.distance;
FindNode(Link.destin, MasterNodeLiat, Node);
EF(Node.myFuelpoint < > NILOBJ)

fuelpointFound :=TRUE;
END IF;

END IF;
Link ASK Route.Linkloute Next (Link);

UNTIL((Link =NILOBJ) OR (fuelpointFound));
asset := ASK AsseList First 0;
REPEAT

range: - (saset~fuelCap - asset.fuellevel) * (asset fuielConsumnp);
tmaxRange : = ass.1etfeCap * asset.fiielConaump;
IF(range < Range)

Range: - range;
END IF;

(After refueling, need to see if distance is still too great for fully fueled assets)
IF7(msx~tange < MaxRange)

MaxRange:= maxRange;
END IF;
asset :ASK AssetList Next (masset);

UNTIIL (sasst NILOBI);
IF(Range < distance)

WAIT FOR SELF TO Refuel (Node.name, MasterNodeList);
END WAIT;

END IF;
IF(MaxRange < distance)
(carry reserve to next node. have to check if node has a

fiselpoint, if not, then must carry enough fuel to make it there
w/dolays)

END IF;
END IF;
END METHOD (CheckAssetStatus);

ASK METHOD FindClosestMaintenance (IN Route: RouteObj;
IN currentLocation :STRING;
IN MasterNodeLigt :NodeTypeQueue;
OUT nuintNode: NodeObj);

VAR
Node: NodeObj;
distilome, distl~extin : REAL;
Link : LinkObj;
distance: REAL;
foundLocation, fimelpointFound: BOOLEAN;

BEGIN
distHome :=0.0;
distDestin :=0.0;

144

foundLocation := FALSE;
Link : -ASK Route..LinkRoute First 0;
REPEAT

IF((ASK Link origin = cunrentLocation) OR (foundLocation))
foundLocation : = TRUE;
distDestin :distDestin + Link.disftsnce;

ELSE
distHome :distHome + Link.distance;

END IF;
Link -= ASK Route. LinkRoute Next (Link);

UNTIL(LiA - NILORJ);
FindNode(Route.destin, MasterNodeList, Node);
IF((distDestin > = distHome) AND (Node.myMaintensnce < > NILOBJ))

mainiNode :=Node;
ELSE

FindNode(home, MeuterNodeList, Node);
imintNode := Node;

END IF;
END METHOD {FindClosestMaintenanct);

TELL METHOD Refuel (IN location: STRING;
IN MesterNodeList: NodeTypeQueue);

VAR
fuselUsed : REAL;
&sset : AxsetObj;
Node: NodeObj;
purMpUmed: INTEGER;

BEGIN
punipsUed :- 0;
FindNode(Iocation, MasterNodoList, Node);
IF (Node~myFuelpoint < > NILODJ)

&asse : - ASK Aiset~st First 0;
IF(assetAuelLeveI < > asset.fwelCap)
REPEAT

WAIT FOR Nodii-myFuelpoint.FuelfunipsTO Give (SELF, 1);
INC(puwnipsUsed);
WAIT FOR Node.myFuelpoint TO PumpFuel (fuelUsed, 0.0);

ASK Nod..myFuelpoint.FuellumnpoTO Take~ack (SELF, I);
ASK @assm TO Refuel (fuelUsed);
IF(pumnpaUsed > = Node. myFuelpoint.FuelPumips.MaxReaources)

WATT DLRATIOTN Node.myFuelvoint.refue1Time
END WAIT;
putnpsUsed :-0;

END IF;
END WAIT;

END WAIF;
sawst:= ASK Assetist Next (asset);
UNTIL (asset = NILOBJ)
IF((pumpsUsed < Node.myFuelpoint.FuelPumips.MsxResources)OR (pumfpaUsed < > 0))

WAIT DURATION Node.myFuelpoint.refuefllme
END WAIF;

END IF;
END IF;

END IF;
END METHOD (Refuel);

* ~TELL METHOD PerformRecovewy (IN Node: NodeObj;
IN Origin : STRING);

145

VAR
deadLinedAssets: DeadlinePoint~bi;
wrecker :RecoveryObj;
brokenAsset: Assetfbi
foundDeadlinedAssets: BOOLEAN;

BEGIN
foundDeadiinedAssets := FALSE;
dead~inedAssets :- ASK Node.deadlinePointQueue First 0;
REPEAT

IF (deadLinedAssets.recoverer = Origin)
foundDeadlinedAssets:= TRUE;

ELSE
deadLinedAssets : = ASK Node~deadlinePointQueut Next (deadLinedAssets);

END IF;
UNTIL ((demdLinedAasets - NILOBJ) OR (foundDeadlinedAssets));
wrecker := ASK AssetList First 0;
REPEAT

IF((ASK deadrinedAssets.AssetQueuenumberln) > 0)
brokenAsset :=ASK deadLinedAhsets.AssetQueue Remove0;
WAIT FOR wrecker TO HookUp(brokenAsset);
END WAIT;

ELSE
ASK TraceStream TO WritaString('could not find deadlined asset");
ASK TraceStream TO WriteLn;

END IF;
wrecker :=ASK AssetList. Next (wrecker);

UNTIL(wrocker - NILODI);
END METHOD {PerformRecovery);

TELL METHOD PerformPMCS (IN location: STRING;
IN MamterNodeList: NodeTypeQueue);

VAR
fiselUsed : REAL;
i, numberOfAssets, pumnpsUsed : INTEGER;
asset : AssetObj;
DeadlinedQueue, InspectionQueue: AssetTypeQueue;
Node: NodeObj;
fbundLocation, fiielpointFound : BOOLEAN;
VehTyp*Rocord: VebTypeltec;

BEGIN
(performning PMCS, If NMC, put in DeadlinedQueue)
NEW(DeadlinadQuous);
NEW(InhpectionQuoue);
FindNode(Iocation, MasteNodeList, Node);
nuffberOfAssets : - (ASK AsseList numberin);

WAIT DURATION PMCStimne
END WAIT;
FOR i - I TO numbe"~Assets

easse : - ASK AsseList Remnove 0;
IF (asset < > NILOBJ)

ASK asse TO CheckForBrsekdown;
IF(NOT asset.missionCapable)

ASK DeedlinedQueueTO Add (msset);
ELSE

ASK InspectionQueue TO Add (asset); f
END IF;

END IF;

146

END FOR;
IF((ASK DeadlinedQueue numberin) > 0)

numberOfAsset= (ASK DeadlinedQueue numberin);
FOR i -~ I TO numberOfAssets

sase := ASK DeadlinedQueue RemoveO;
FindAaseTypekecord(asast.vehType, Node.myMotorpool.VehiclesRecord, VehTypeRecord);
EF(VebTypeRecord = NILOBI)

ASK TraceStream TO WriteString("G0T a NILOBI from FindAssetTypeRecord***");
ASK TraceStream TO WritcLn;

ELSE
ASK VehTypeRecord TO GetDeadlined;
ASK VebTypeRecord TO GetUncommitted;

END IF;
TELL Node~myMiintenanceTO ReceiveWork(assaet);

END FOR;
END IF;
numberOfAssets :=(ASK InspectionQueue numberin);
EF(numberOfAaseso> 0)

FORi:- I TO numberOfAssets
sass : = ASK InspectionQueut TO Remove 0;
IF(asaet < > NILOBI)

ASK AssetList TO Add (asset);
END IF;

END FOR;
END IF;
(Refueal Assets)
IF (Node.myFuelpoint < > NELOBI)

pumpaUsed : - 0;
assest : -ASK AssetList First 0;
REPEAT

ASK suset TO ResetTrip~dometer;
WAIT FOR Nod*.myFuelpoint.FuetPunpaTO Give (SELF, 1);

WAIT FOR Node.myFuelpoint TO PumpFuel (fuelUsed, 0.0);
ASK Node.mnyFuelpoint.FuelPumpsTO Takellack (SELF, 1);
ASK asset TO Refuel (fuelUsed);
IF(pumpsUsed > - Node. myFuclpoint. FuelPumpas.MaxResources)

WAIT' DURATION Node.myFuelpoint.refuelTime
END WAIT;
pumpaUsed : = 0;

END IF;
END WAIT;

END WAIT;
assow: ASK Asset~ist Next (sasset);

UNTIL (asset -NILOBI);

IF((pumpsUsed < Node.myFuelpoinz.FueiPumps.MaxResources)OR (pumpsUsed < >0))
WAIT DURATION Node.myFuelpoint.refuerrnme
END WArr;

END IF;
END IF;
END METHOD {PerformPMCS);

ASK METHOD GetLength (IN diatfletweenVeli REAL);

VAR
asset : AaaetObj;

BEGIN
wutlLenath :=0.0;
asse : - ASK AssetList First 0;

* ~~totsiI=ntJh: aaaet.assattatgth;
REPEAT

147

sawst ASK AsseList Next(asset);
IF(asset < > NILOBI)

totalLength:= totalLength + asset.amstLength + distBetweenVeb;
END IF;

UNTIL(assat = NILOBJ);
END METHOD {GetLength};

TELL METHOD EnterSupply (IN Supply: SupplyObj);

VAR
ReceivingPt : SupplyPointObj;

BEGIN
WAIT FOR Supply. roceivingPointsQueueTO PriorityGive (SELF, 1, SELF.prionty);

ReccivingPt : =ASK Supply.RaceivingPoints TO Removeo;
WAIT FOR Supply TO ReceiveSupplies(AasetList, SELF.priority, Re4;eivingPt);

ASK Supply.receivingPointsQueueTO Takellack (SELF, 1);
ASK Supply .RectivingPoints TO Add(ReceivingPt);

END WAIT;
END WAIT;
END METHOD {EnterSuppiy);

ASK METHOD NotRefuslDuringMsn;

BEGIN
fuelNotNssdad := TRUE;

END METHOD {NotRefuelDuringMan);

I -)
TELL METHOD FixAsset;

BEGIN
WAIT DURATION fixTime
END WAIT;

END METHOD (FixAsset);

TELL METHOD Break (IN broakTime : REAL);

BEGIN
WAfl DURATION breskTime
END WAIT;

END METHOD (Break);

TELL METHOD Croasink (IN CrossTime : REAL);

BEGIN
WAIT DURATION CrossTime
END WAIT;

END METHOD (CrossLink);

148

TELL METHOD StandDown (IN StandDownTime: REAL);

BEGIN
WAIT DURATION StandDownTime
END WAIT;

END METHOD {StandDown);

END OBJECT {Convoy);

END (IMPLEMENTATION) MODULE {convoy).

149

INITIAL DISTRIBUTION LIST

copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. LTC William Caldwell 1
Department of Operations Research
Naval Postgraduate School, Code OR/CW
Monterey, CA 93943-5000

4. Professor Michael P. Bailey 1
Department of Operations Research
Naval Postgraduate School, Code OR/BA
Monterey, CA 93943-5000

5. Director 1
Military Traffic Management Command
Transportation Engineering Agency
720 Thimble Shoals Boulevard
Newport News, VA 23606-2574

6. Commander and Director 1
U.S. Army Engineers
Waterways Experiment Station
ATTN: (CEWES-GM-L (Dr. David Homer)
3909 Halls Ferry Road
Vicksburg, MS 39180-6199

7. Commander 1
U.S. Army Materiel Systems Analysis Activity
ATTN: Mr. Russell Farrell
Aberdeen Proving Grounds, MD 21005-5071

150

8. CPT James 7.. Judy 2
15 Warren Drive
Newport News, VA 23602

151

