D-A257 8439
\\ll\l\\\l\lMl\I\\\\\I\l\\|‘\ﬂ\|\|\|\\\|\‘ @

WL-TR-92-7015

Architecture/Environment Evaluation

Capt George York

Wright Laboratory, Armament Directorate _ D T l C

Weapon Flight Mechanics Division % ELECTE
R, NOV1 71992

Guidance and Control Branch
Eglin AFB FL 32542-5000

OCTOBER 1992

FINAL REPORT FOR PERIOD JUNE 1989 - FEBRUARY 1992

Approved for public release; distribution is unlimited.

‘4’ 92-29626
\\II\\!\I\&Illl\l“l\l\|\‘I|\\u\‘«|\||\“\||'

WRIGHT LABORATORY, ARMAMENT DIRECTORATE

Air Force Materiel Command 0 United States Air Force B Eglin Air Force Base

NOTICE

When Government drawings, specifications, or other data are used for any
purpose other than in connection with a definitely Government-related
procurement, the United States Government incurs no responsibility or any
obligation whatsoever. The fact that the Government may have formulated or
in any way supplied the said drawings, specifications, or other data, is not to be
regarded by implication, or otherwise as in any manner construed, as licensing
the holder, or any other person or corporation; or as conveying any rights or
permission to manufacture, use, or sell any patented invention that may in any
way be related thereto.

This technical report has been reviewed and is approved for publication.

The Public Affairs Office has reviewed this report, and it is releasable to the
National Technical Information Service (NTIS), where it will be available to
the general public, including foreign nationals.

FOR THE COMMANDER

Dstient I,

ROBERT F. DONOHUE, JfJ, Lt Col, USAF
Chief, Weapon Flight(Mechanics Division

Even though this report may contain special release rights held by the
controlling office, please do not request copies from the Wright Laboratory,
Armament Directorate. If you qualify as a recipient, release approval will be
obtained from the originating activity by DTIC. Address your request for
additional copies to:

Defense Technical Information Center
Cameron Station
Alexandria VA 22304-6145

If your address has changed, if you wish to be removed from our mailing
list, or if your organization no longer employs the addressee, please notify
WL/MNAG , Eglin AFB FL 32542-5000, to help us maintain a current mailing
list.

Do not return copies of this report unless contractual obligations or notice
on a specific document requires that it be returned.

Form Approved
REPORT DOCUMENTATION PAGE e s 0188
|
7T NIDLIQeN PTG DAt A AT AL In sy ST AT Tt g 3 11e T Lyl QR cas00rse roiudin g R TIMe PO f8 L eW N T ASTILITIORS 524r T T 9 5T 2313 50 ur?s
o M3 the 13aNeedag 1nd imoRtnl ing . TURTLIA St Adtematsa S8NgLImments rega M T Durden Ayt mate e e, Tirer asgett 2t N
ot Lt itor ’r‘. LI NG SLY RIS NT rAgLUIn T TG Dur3en T L shinGIin Hedadguariers Sercces. Tiractaryte 30 ntoomaton Goerats 2320 s, 27Y PEIAL T8 Tl
(3 aaa 51 T2T Aregeon L3 220024302 ang el cna Mth o rasagement ang dudgert Paperaveork Reductian Prract 3704-0738) tasnngerr D0 (3503
"1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPO_RT TYPE AND DATES COVERED
! October 1992 Final June 1989 - February 1992
4. TITLE AND SUBTITLE S. FUNDING NUMBERS
‘Architecture/Environment Evaluation PE: 62602F
PR: 2567
TA: 01
6. AUTHOR(S) WU: 59
.Capt George York
!
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER

Wright Laboratory, Armament Directorate
Weapon Flight Mechanics Division
Guidance and Control Branch (WL/MNAG)

Eglin AFB FL 32542-5000

. ING/ TORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING . MONITORING
3. SPONSORING/MONITO ©) AGENCY REPORT NUMBER

WL-TR-92-7015

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited. A

13. ABSTRACT (Maximum 200 words)

The objective of the Architecture/Environment Evaluation project was to determine the ideal
microprocessor and the Ada software environment for embedded guidance, navigation, and control
processing for tactical missiles. Off-the-shelf microprocessors and compilers were evaluated using
the Optimum Guidance Law Implementation (OGLI) benchmarks. The processors included the
MIPS R3000, Sun SPARC, Motorola 88000, IBM System/6000, TI TMS320C30, INMOS transputer
T800, Intel 80386, and the DEC MicroVAX II. This research also included an experiment
implementing OGLI on a parallel computer (transputer) to improve performance.

14, SUBJECT TERMS 15. NUMBER OF PAGES

Microprocessor Reduced Instruction Set Computer 51

Missile Guidance Benchmark 16. PRICE CODE

Ada Parallel Processing

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION |19 SECURITY CLASSIFICATION |20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified UL

NSM 734000 2305500 Staritaret om0 ey 2 B9
N [T B T ISR TR

PREFACE

This program was conducted by the Wright Laboratory, Armament
Directorate, Eglin AFB FL 32542-5000. Capt George York of the Guidance
Control Branch (WL/MNAG) managed this program. The program was conducted
during the period from 15 June 1989 through 28 February 1992.

Commercial products mentioned in this report are sometimes identified
by manufacturer or brand name. Performance statistics for these products
Gi. presented for specific benchmarks used in this Research and Development
(R&D) effort. These results can not be generalized to assume one product
is better than another. Given different benchmarks and/or different system
designs, the relative performance between products could change
considerably. The mentioning of these products and performance statistics
is necessary for an understanding of the R&D effort but dces not constitutaz
endorsement of these items by the U.S$. Government.

| e ok
S &t
T
Aceassiam Far
NTIS oMl i}
PPiC RS]
Unansounesd 9}

Juﬁtifl.&tllﬂ______.___v

|
!
!

]
i

By

i
]
|
|
'
i
!
!

_Distribetien/

{ Aveilability Codes

~eall and/or

Dist ' epectal
! I

iii/iv (Blank) j?%r\ } '
|) |

i

TABLE OF CONTENTS

Section Title Page
I INTRODUCTION 1
1. Objective 1
2. Background . . 2
a. Tactical MlSSlle Requlrements 2

b. RISC versus CISC Debate 2

c. Previous Projects - GISA 3

d. Tasks for this Project 4

II GUIDANCE, NAVIGATION, AND CONTROL (GN&C) BENCHMARKING 6
1. Philosophy of Benchmarking .o 6
a. All Levels of System Impact Performance 6

(1) Microprocessor . 6

(2) Computer Architecture 8

{(3) Operating System/Run-Time 8

(4) Assembler/Linker e e e e e e e e e s s

(5) Ada Compiler . . . O

(6) Algorlthm/Appllcatlon O

b. Real Requirement«11

¢c. Measurements .o O §

2. Benchmarks for GN&C Appllcatlon O 2
a. CAMPo e e s

b. ACEC e e e e e e e s L1

c. PIWG L . ..o

d. OGLI O

3. Benchmarking Tools e
4. Candidate Microprocessors « « « e « « « o15
a. DEC MicrovVax II (CISC) « . « . « « . . < . .15

b. Intel 80386 (CISC) « « « v v « « 16

c. Motorola 68040 (CISC) O

d. MIPS R3000 (RISC) « .« « « < v o o .o

e. Sun SPARC (RISC) « « < .« « «18

f. Motorola 88000 (RISC) 18

g. IBM System 6000 (RISC)« «19

h. 1Intel 1960 (RISC) < « .« < « « . . .+ . .20

i. Texas Instruments (TI) TMS320C30 (Signal) 20

j. INMOS Transputer T800 (Parallel) 20

S. Results and Analysis o . o . o . .o oozl
a. Execution Speed (VAX-MIPS)28

b. Compile Time < « < . < <30

c. Code Expansion« . .. o001

II1 PARALLEL IMPLEMENTATION OF OGLI G
1. Transputer Background .32
2. Approach Lo 32
a. Partition .33

b. Timing Analysis . . P

c. Throughput/Communlcatlon Analyols P

3. Resulbts . . . o oL 0oL Lo Lo s34

TABLE OF CONTENTS (Concluded)

Section Title Page
v CONCLUSION AND RECOMMENDATIONS 38
REFERENCES « « « o« v « v o e .3
BIBLIOGRAPHY « « . . « « v v v v v v o o v v . .oa0

vi

LIST OF FIGURES

Figure Title Page
1 All Levels of System Impact Performance 1
2 Pipeline Example «10
3 Optimum Guidance Law Implementation 14
4 OGLI Benchmarks24
5 OGLI Benchmarks at 20 MHz .25
6 OGLI Benchmarks at Max Clock26
7 Step 1 Benchmark at 20 MHz .27
8 Code Expansion and Compile Time 28
9 Partition and Dependency Analysis35

10 OGLI Processing Flow on Three Transputers 36

vii

Table

LIST OF TABLES
Title
OGLI Benchmark Results
Step 1 Benchmark Results
Code Expansion and Compile Times

OGLI Benchmarks on Transputers

vili

Page

22

23

23

37

ACEC
CAMP
CIsC
CMOS
CPU
CSALI
DARPA
ECL
FLOPS
Gbyte
GISA
GN&C
IMU
IsSa
kbyte
Mbhyte
MIPS

NOOPs
OoGL1
PIWG
RAM
RISC
ROM
SPARC
Tbyte

LIST OF ABBREVIATIONS AND ACRONYMS

Ada Compiler Evaluation Capability
Common Ada Missile Package

Complex Instruction Set Computer
Complimentary Metal Oxide Semiconductor
Central Processing Unit

Core Set of Assembly Language Instructions
Defense Advanced Research Projects Agency
Emitter Coupled Logic

Floating Point Operations Per Second
gigabyte

Guidance Instruction Set Architecture
Guidance, Navigation, and Control
Inertial Measurement Unit

Instruction Set Architecture

kilobyte

megabyte

Million Instructions Per Second

Memory Management Unit

No Operations

Optimal Guidance Law Implementation
Performance Issues Working Group

Randam Access Memory

Reduced Instruction Set Computers

Read Only Memory

Scalable Processor Architecture
terabyte

1x

SECTION 1

INTRODUCTION

1. OBJECTIVE

The Architecture/Environment Evaluation project was initiated to determine
the ideal microprocessor and Ada software environment for embedded Guidance,

Navigation, and Control (GN&C) processing for tactical missiles. Our gecal was
to reduce cost by evaluating state-of-the-art, off-the-shelf technology that has
been improving at an amacing rate due to the commercial market. Previously we

had planned to fund the research for a specialized GN&C Very High Speed
Integrated Circuit (VHSIC) chip. However, this VHSIC chip would have a limited
market, high cost, and lag in performance due to the commercial markets greater
efficiency over government procurement. Therefore, this research focuses on
evaluating the current off-the-shelf technology. This report discusses the
benchmarking of various microprocessor/compiler combinations with specific Ada
GN&C benchmarks. Also included in this report is a discussion of an experiment
using a parallel computer architecture to increase performance.

Specific project objectives included:

a. Developing an Ada benchmark suite representative of GN&C software
for future missile systems. Thiz i3 a hybrid suite made up of the
Common Ada Missile Packages (CAMP) benchmarks, the Ada Compiler
Evaluation <Capability (ACEC) benchmarks, the Performance [ooue

Working Group (PIWG) benchmarks, and modern control algcrithms,
which includes the OGLI benchmarks.

b. Acquiring 3Z-bit microprocessor systems with accompanying Ada teool
sets. These processors include reduced instruction set computers
(RISC), complex instruction set computers (CISC), 3ignal processors,
and parallel processors.

¢. Benchmarking the performance of the candidate microprocessors in
executing the GN&C algorithms, and evaluating the unigue Instruction
Set Architecture (ISA) features of the various processors that lead
to increased performance. This thorough evaluation will determine
whether u specific processor for guidance and control should be
manufactured in YHSIC technology or whether an off-the-shelf
microprocessor will be sufficient.

d. Evaluating the Ada software environments with respect to code
efficiency (speed and sice), compilation Lime, user-friendliness,
design support, debugging support, testing support, and
reliability.

e Implementing GH&C algorithms in parallel for variocu: parallel
architecture:: and determine the performuance gain that can be

obtained. Evaluate the Ada software development tools for parallel
computers.

2. BACKGROUND
a. Tactical Missile Requirement

Virtually all future tactical weapons will make use of a computer,
either ground based for development and support or embedded in the weapon
itself. As the performance requirements placed on precision-guided
munitions become more complex, their embedded guidance processors must be
redesigned to satisfy these new demanding requirements. In order to mect
increasingly challenging threats, the weapon guidance processor must be
designed for quick and efficient response times. These processing
requirements are exceeding that of the 16-bit MIL-STD-1750A processor,
especially when executing in an Ada environment. Several new technologies
offer great potential for constructing improved guidance processors. A
notable near-term approach features using a streamlined computer ISA, based
on RISC concepts, optimized for missile guidance and control applications.

b. RISC Versus CISC Debate

Over the past two decades, as chip technology improved the allowance of
gates on a chip, microprocessor designers used thic extra rocm to add more
complex instructions, addressing schemes, and control technigques, thus
attempting to get more work done with a single instruction. This lead to
the term CISC. Although assembly programmers liked these complex
instructions, compilers rarely use a large number of these instructions and
stick to a few basic instructions. These excess instructions add
complexity in the circuitry, which results in slower instruction cycles and
less room on the chip that could be used for something else. Each CISC
instruction takes several clock cycles to execute, and the number of cycles
per instruction can vary greatly resulting in complex timing requirements.

RISC technology focuses on simple instructions that can be executed in
one machine cycle and on architectures where only load and store
lnstructions can access memory. These features tend to make RISC
processors execute much faster than CISC. The single cycle per instruction
removes the need for complex timing circuitry. oOnly having load and store
dccess to memory, 1nstead of a large number of addressing modes, reduces
the number of instructions and the timing problems due to complex memory
accesses. The disadvantage is several RISC instructions are needed to do
the equivalent work of one CISC instruction. However, due to the high
speed at which the KISC instructions are executed and the fact that CISC
instructiong tuke :,everal cycle: to execute, KISC processor:s have

conuclstently schown better processing performance. In order to procen:
instructions quickly, KISC processors need quick cache memery and memory
contrecllers to foed them, which it expenuive. CISC devigners are aluo
starting to find the neced for fust cache memory ao they improve theit
processors to keep up with RISC. Expert: hypothesize that CI1SC designs

o

will take on meore RISC features, and RISC designs will add more traditional
CISC features, eventually reaching an optimum medium.

Recently, some high powered signal processors and parallel processors
have come on the market with Ada compilers. Signal processors are
specifically designed for mathematically intense applications, such as
matrix and image processing. Parallel processors have special
communication links built on chip to minimize the overhead in communicating
with other processors. Many design features overlap between signal,
parallel, RISC and CISC.

c. Previous Projects - GISA

Two Guidance Instruction Set Architecture (GISA) prcgrams were

initiated to address these issues. The product of GISA-1 was an
experimental ISA design cptimized for GHN&C zystems in Ada. In GISA-z, the
GISA-1 design was analyzed along with several off-the-shelf processor:s, to

determine a candidate architecture on which to base the guidance computer
architecture. MNeither the GISA-1 design nor any existing architecture met
211 the guidance and control requirements; however, the Defense Advanced
Research Projects Agency (DARPA) Core Set of Assembly Language Instructions
(CSALI) was close. The CSALI architecture is a RISC design. Based on the
analysis of missile guidance and control code, the CSALI was modified for

cptimum execution. This design wac implemented in a hardware brasasboard,
built around the million instructions per second (MIPS) KR3000 (a commercial
application of CSALI) . An Ada tool set wuao developed with an embedded run-

time system.

In the second quarter of 1990, the evaluation of the GISA-Z processor
vercus a MIL-STD-1750A, a 68020, and a 80960 RISC processor in processing
the CAMP benchmarks was completed. This evaluation demonstrated that the
GISA 3Z-bit KRISC architecture far out-performed the 1l6-bit MIL-STD-1750 and
the 3Z-bit 68020 CISC. GISA out-performed its competitor, the 80960 RISC,
and performed similarly to a MIPS R3000 system. Since the off-the-shelf
F3000 system performed similarly, it would be more cost effective to use
off-the-shelf commercial products than to manufacture the GISA architecture
in YHSIC. V wever, a JHSIC chip would provide a small packuage with high
throughput. & YHSIC chip would allow unique cmbedded features to be built
on-chip, which are needed for real-time GHEC computers and not found in
commercial microprocen.ors. Examples of these features include external
real-time counter:s, interrupt logic, communication logic to buses ot
memory, or any of the external logic that interface between the chip and
external devices.

The competition of industry in the RISC market has resulted in several

highly capable microprocenaors. In the next year, several companies will
introduce new ver:sion: of their proces:ors, doubling theitr present
capability. [f the SISA-2 denign were made inte a VHSIC procesaor in a
GI5A-3 progaram, by the time the three-yca., procurement cycle wao over, the
SI3A-2 chip would be old and Glow tochnology compared Lo the commetcial

as

market. More information about the GISA-2 project can be found in the GISA
final report from the Defense Technical Information Center (DTIC); see
Reference 1.

d. Tasks for this Project

Due to these issues, Lhis in-house architecture/environment evaluation
was started, taking into account advances in industry, other government
programs, and our GN&C requirements. There were five specific tasks for
this project.

(1) Develop Benchmark Suite

An Ada software benchmark suite representative of GN&C requirements has
been developed. The CAMP benchmarks, ACEC benchmarks, PIWG benchmarks and
our in-house modern control algorithms (OGLI) make up the benchmark suite.
OGLI has been divided into four main benchmarks repcesenting the phases of
flight: Full_Midcourse, Ramping_Midcourse, Transition, and Terminal. The
process of executing the benchmarks has been automated and made portable to
all Ada systems, following the ACEC benchmarking methodology and tool set.

(2) Select Candidate Processors and Compilers

Several candidate processors with accompanying Ada software
environments have been acquired, including the RISC (GISA-2 or MIPS R3000,
IBM System 6000, Motorola 88000, and Sun Scalable Processor Architecture
known as SPARC), the CISC (Motorola 68020 and Intel 80286), the signal
processor {(Texas Instruments C30)}, and the parallel processor (Seven Inmos
transputer T800s). Presently the candidates not represented include the
upgraded CISC (Intel 80486 and Motorola 68040), RISC (MIPS R4000 and R5000,
and the Intel 80960), signal processor (Texas Instruments C40), and the
parallel processor (Inmos transputer H-1).

(3) Processor Evaluation

The GISA-2 processor has been evaluated versus the other RISC, CISC,
signal, and parallel microprocessors in executing the OGLI benchmarks. The
unique ISA design features of the various processors that lead to increased
performance have been examined. An optimum ISA design will eventually be
determined and the best candidate microprocessor chosen. This is a
continual process, with the "ideal" candidate updated as reflected by
changes in microprocessor technology.

(4) Compiler Evaluation

The efficiency with respect to execution speed, code expansion, and
compile time of the Ada compilers have been measured using the same
benchmark code. The Ada tool sets have been evaluated with respect to
"user-friendliness, " debugging support, testing support, design support,
and code reliability.

(5) Parallel Processiag

The OGLI GN&C algorithms were studied to determine their potential to be
implemented in parallel. The algorithms were decomposed into independent
blocks of code (Steps 1 through 25, which were further refined and are
presented in Section III). These steps in turn were decomposed further into
finer independent tasks, resulting in various levels of granularity. These
steps were run independently on a single processor. The timing information
for all the tasks were used to estimate the performance improvements due to
implementing in parallel at different levels of granularity and for
different numbers of processors. The transputer board with seven
processors was easily configured in different parallel architectures and was
used to execute the parallel Ada code.

SECTION II

GUIDANCE, NAVIGATION, AND CONTROL (GN&C) BENCHMARKING

1. PHILOSOPHY OF BENCHMARKING

When trying to compare the performance of one microprocessor to another
it’s hard to select a "best" processor, due to the many variables, and to
keep from comparing *apples and oranges."

Typically advertising literature quotes the speed of a processor in
MIPS for a classical benchmark. The problem with these benchmarks is that
they usually represent only one type of computation, in a small amount of
memory, thus do not truly represent the performance of the processor for
all applications. For example, the small memory size often can fit in the
fast cache memory of some processors, which leads to excellent results, but
does not represent problems that occur for most real applications that
exceed the cache size.

Therefore, the only true way to know the performance for your
application for various processors is to run your entire application on the
processors, versus relying on quoted benchmarks, which may have no
relevance to your application. However, this can be costly and time-
consuming to do. While attempting to do this for our application (GN&C),
we found there are still many "apples and oranges."

a. All Levels of System Impact Performance

Figure 1 shows a hierarchical list of possible variables that can have
a large impact on a measured performance result. The microprocessor is
just one piece of an overall system. Thus the overall efficiency and speed
of the system is what is important, not just the speed of the
microprocessor. It is also important that the system used in the
performance evaluation closely model the actual application of the embedded
system.

(1) Microprocessor

The microprocessor design obviously impacts the design of all the other
layers (see Figure 1). A microprocessor can be driven at different clock
speeds, which directly effects processing speed. 1In general, assuming
other system features such as memory can keep up, as the clock speed of a
processor increases, the speed of the benchmark will increase
proportionately. Even in the short time of this project, the
microprocessor vendors have come out with new versions of their

microprocessor at faster and faster clock speeds. If the processor is
upwardly compatible in software, its speed can be proportionately
increaced. Sometimes newer version: of processors offer other
enhancements, nuch as the parallel execution of some instructions, which

nonlinearly increcace performance and cannot be extrapolated. Therefore,

the performance must be measured by running the benchmark on the new
processor itself. If a newer processor were not upwardly compatible in
software, the upper layers in Figure 1 would have to be redesigned, thus
rebenchmarked.

Algorithm / Application

Ada Compiler

Assembler / Linker

Operating System / Runtime

Computer Architecture

Microprocessor

Figure 1. All Levels of System Impact Performance

The efficiency of many new processors is gained by deep pipelines
(see Figure 2). As long as the pipeline remains full of useful instructions,
good performance is maintained. However, events such as branches or external
memory access can cause a pipeline stall, whereby the pipeline must be flushed
and refilled with useful instructions. These delays greatly impact performance.
The efficiency that can be gained by the pipeline of a processor is dependent
on the other layers of the system (Figure 1) such as cache and memory
management, the compiler, assembler, and run-time systems use of the pipeline
architecture. The global and local branches required by the algorithm also
impact pipeline efficiency. To limit pipeline stalls, some architectures offer
parallel execution of the two sides of a branch.

Figure 2 shows the benefit of having an entire instruction set execute
in the same number of instruction cycles, which is a goal of RISC
processors. This leads to a more efficient pipeline (no wasted cycles) and
simpler pipeline control circuitry.

Another concern of microprocessors is scalability. If a processor is
scalable, its timing and control is independent of the clock speed.
Therefore, for nonscalable processors, if the clock speed is increased
above a certuain point, the timing and control circuitry has to be

redesigned. This often leads to software incompatibility and a nonlinear
performance increase due to clock speed. RISC processors tend to be more
scalable than CISC.

(2) Computer Architecture

Beside the microprocessor (see Figure 1), the computer architecture in
which it is designed can have a big impact on performance. For example,
the size and speed of the random access memory (RAM) will have an impact.
No matter how fast a processor is, 1f it cannot be fed fast enough by memory
and has to wait a long time for instructions or data, its performance will be
slowed. Many designs use fast cache memory to interface between RAM and the
processor to keep the processor’s pipeline fed. The size of the cache effects
the efficiency of cache hits. A large cache increases the probability that
a hit will occur; however, if a hit does not occur, the cache must be flushed
and refilled with new memory, which takes longer for a bigger cache. The
optimum cache size varies depending on application.

To smartly manage these memory transfers, some architectures have
memory management units (MMU). Again, the efficiency of the MMU is
determined by the application.

The two basic computer architectures styles are Von Neumann and
Harvard. Von Neumann architecture has one external bus that is used for
both data and instructions, while a Harvard architecture has two separate
buses, one for importing instructions and one for data. In an ideal
situation, the Harvard architecture can double the memory throughput.
However, it adds the complexity and cost of an extra 32-bit bus on the
chip. The data/instruction mix determines the relative efficiency of the
two different architectures and therefore, is application dependent.

Most embedded applications have to fit the entire application in RAM or
read only memory (ROM), while a traditional computer has other resources such
as a hard disk. Other resources such as math coprocessors (and its clock
speed) or hardware implemented functions can have an impact. Today with
better manufacturing and higher gate density on a chip, more of the computer
architecture is being moved on-chip (that is, on-chip coprocessors, cache,
MMU, and parallel execution). With each new release of a microprocessor
family, more features are added on-chip, increasing the performance, often
nonlinearly and application dependent, making extrapolation of previous
benchmarks more difficult.

Finally, for benchmarking, the computer architecture needs to reflect
the way it would be used in the embedded application, and hopefully in an
optimized manner.

(3) Operating System/Run-Time
Above the hardware layer is the software environment (Figure 1).

Traditional computers run an operating system (for example, UNIX, VMS, or
MS-DOS), while embedded systems have a run-time environment. The

efficiency of the run-time environment or operating system will impact the
overall system efficiency. Again, this run-time or operating system should
match what would be used in the final embedded application.

(4) Assembler/Linker

The assembler/linker is software that converts the assembly language
code to machine language and links together the code into the final image
to be downlocaded to the machine. The efficiency of this software (that is,
smart use of the processor‘s ISA) will greatly impact performance. For
example, some RISC processors use no operation (NOOPs) instructions for timing.
Instructions that last more than one instruction cycle (for example, a branch)
will have a NOOP to ensure the next real instruction does not effect the
resource the previous instruction was using. However, certain instructions,
which do not use conflicting resources, could be implemented during the NOOP
without causing timing problems. A "dumb* assembler will add NOOPs everywhere
needed, which will result in wasted instruction cycles. A “smart* assembler
will look for ways to reorganize the instructions to replace the NOOPs with
useful instructions, thus removing wasted instruction cycles and increasing
performance. The use of NOOPs for timing tends to make a RISC architecture
nonscalable in software, but not hardware. Therefore, when a new version of a
processor is released with a faster clock speed, the software tools
(assembler/linker) will have to be modified to ensure the NOOPs are inserted
properly and efficiently to control the timing and use of resources.

Another important aspect of the assembler/linker is how well it uses
lower system features efficiently such as the math coprocessor and cache.

(5) Ada Compiler

The maturity of the Ada compiler has a high impact on performance.
Generally the early versions of an Ada compiler will implement the Ada
language properly, but not necessarily efficiently. With time, newer
versions of the compiler will be offered which will make better use cf the
assembler, operating system, computer architecture, and microprocessor.
Many Ada compilers can perform different levels of optimizations. The ACEC
Reader’s Guide gives details of this partial list of optimizations: common
subexpression elimination, folding, loop invariant motion, strength
reduction, dead code elimination, register allocation, loop interchange,
loop fusion, test merging, Boolean exprescsion optimization, algebraic
simplification, order of expression evaluation, jump tracing, unreachable
code elimination, use of machine idioms, and packed Boolean array logical
operators. These optimizations can improve the execution speed and/or
decrease the code size, but usually increase the compilation time. The
philosophy followed in this project was to select all optimization options
that worked correctly. All combinations of optimizationg were attempted,
and the combination that resulted in the best execution time was reported.

oTdwexy auytedrd ‘'z ®

uonnoax3 suyadid
(P13u st aunadid Jabuoy ayl uoNINASUYRDAD | YOROIdde M = UONDNIISUIS10AD G/t

mnbrg

10 591242 /) GMMGM m _< __cav
21018’V irig
SRICITALY:
9,081V st
uoBNOBXT (euss
ooy [Q4E|V A0 8 v [§lals]v][Eioialv
uiy pig pug Isi
(uononiisul Jad s8j040 JO JaQUINU PaX1}) SUOHONIISU| PSINPaY
uonnoax3y sunadig
.co:uaﬁwﬁﬂﬂﬂmﬂm HQHAM m (s8)9hp pakejaq) < Uiy
gloigialalala Y Ipig
30(8(8|8!V jpuz
@iialyv pst
uonNNOaX3 [euss
ez 1210181V [Qo]alalalala]v [aio]alalelv falDialv
sepho o sepoho g v $61040 g
uip pig

puz

sephis y

1si

(uononusut Jad s8j0Ao Jo Jsquinu ajgeLeA) SuoloNsU| Xa|dwon)

10

To obtain the fastest possible version of the code, the PRAGMA SUPPRESS
feature of Ada was used to suppress run-time checks (that is, index_check,
discriminate_check, length_check, range_check, division_check,
overflow_check, elaboration_check, and storage_check). During software
design, these run-time checks should not be turned off. However, after
the code has been thoroughly debugged and is ready for embedded use, the
checks are removed because they add no value and slow down the processing.

Since Ada was the language used in all applications within this
project, it was the only one benchmarked. Another source of variability
can be introduced through different languages, such as C, FORTRAN, PASCAL,
LISP, and OCCAM.

(6) Algorithm/Application

The top level of Figure 1 is the algorithm that is dependent on the
application. As with all these levels of design, the algorithm can change
greatl, throughout a project, as requirements change. Typically, the final
algorithm and requirement are not determined until the cnd of a project.
However, the algorithm used in benchmarking must represent the final
application as much as possible and is another source of variability.

How closely the algorithm models the hardware architecture can also
impact performance. For example, in Ada, the precision of the REAL or
floating point variables can be specified. If this does not match the
precision of the hardware, the manipulation of REAL numbers will be
inefficient.

All the candidate systems were modeled as closely as possible to the
final GN&C application, knowing there are still many variables that could
improve or hinder each system.

b. Real Requirement

In determining a "best" processor to meet your applications needs, the
fastest processor may not be the only acceptable processor. For our GN&C
application, the execution time requirement is less than 10,000
microseconds (or 100 Hz cycle time). Several processors may meet this
requirement. Obviously the more margin the better, in case of future
upgrades or changes in the requirements. <Civen that several processors
meet the applications cpeed requirement, other factors guch as cost and
software zupport will come into play. Therefore, when developing a
benchmark to represent the application, the maximum allowable execution
time requirement for the benchmark should be determined.

c. Measurements
Benchmark results are presented in various forms: raw time, MIPS, and
floating point operations per second (FLOPS). Actual MIPS are hard to

calculate. The implication is that you would have to count the actual
number of instructions executed for the benchmark for each processor. Also

11

"instructions per second” is not a fair comparison between processors,
especially for CISC and RISC processors. It may take several RISC
instructions to do the equivalent work of a single CISC instruction. A more
meaningful measure would be equivalent work per second or benchmark per second.
To generalize this measure over several processors and benchmarks, "VAX-MIPS*
are used. The Digital Equipment Corporation (DEC) MicroVAX II is known to
process on the average around 1 MIPS (actually ~0.9 MIPS). Therefore, the
benchmark is executed on both the VAX and the processors in question. The
speed of each processor is then calculated relative to the speed of the VAX.
For example, if the VAX time for a benchmark was 100 microseconds and a
processor time was 20 microseconds, the processor would be 5 times faster,
therefore, 5 MIPS for the benchmark.

The VAX-MIPS speed calculated for a benchmark is valid only for that
specific benchmark and specific combination of system features. The VAX-
MIPS speed should not be generaliced as a speed for the processor for all
applications and system combinations.

Most microprocessor families have versions that run at various clock
fr-gucenclies, and the processors are often not benchmarked on a system with
their maximum clock frequency. The clock speed has a direct impact on VAX-
MIPS, although not always linear as discussed in Section II.la(l). To
reduce "apples and oranges" comparisons, two other calculations can be
made:

. Relative speed (VAX-MIPS) normalized to a common clock speed.
We used 20 MHz, a speed compatible for most systems. For
example, 1f a benchmark was measured to be 5 VAX-MIPS on a
25 MHz processor, the normalization to 20 MHz would be
5*(20/25) = 4 VAX-MIPS at 20 MH:z.

. Relative speed (VAX-MIPS) extrapolated to the maximum known
clock speed for the processor.

These calculations help level the playing field when comparing processors.
However, clock speed is not always directly proportional to processor
performance; therefore, these normalizations are just an estimate. The only
true bernichmark could be obtained through benchmarking on systems with the exact
clock speeds.

The averuging of the results of several different benchmarks is not
statistically valid. However, we have also calculated the average results

for a rough estimate of processor performance.

For accuracy in measuring the execution time, we used the ACEC
benchmarking tools, discussed further in Section I1.3.

Z. BENCHMARKS FOR GMN&C APPLICATIONS

The firct step in an evatuation iz to define the standard or
requirements. In the case of benchmarking processor:, the standard s

12

defined by the algorithm of the benchmark. The benchmark should model the
application as close as possible. For GN&C applications we have the CAMP,
ACEC, PIWG, and OGLI Ada benchmark suites. Because the CAMP, ACEC, and
PIWG benchmarks have been run on some processors, but not all, these
results are not presented. We developed our own in-house benchmark, OGLI,
which represents the currently used algorithms. The results for the OGLI
benchmarks are presented in Section II1.5.

a. CAMP

The CAMP benchmarks are guidance and navigation benchmarks in Ada
developed during the CAMP program. This program also included the development
of over 500 reusable Ada software parts with a library cataloging system, and
an expert system to aid in using the parts. (See Reference 2.)

The CAMP benchmarks were used for evaluation during the GISA program,
as discussed in Section I.2c. The processors compared included a MIL-STD-
1750A, a Motorola 68020 (CISC), a MIPS R3000 (RISC), and an Intel 80960
(RISC). This evaluation demonstrated that the two 32-bit RISC
architectures far out-performed the 16-bit MIL-STD-1750 and the 32-bit
68020 CISC. The R3000 was the better performer of the two RISC processors.
(See Reference 1.)

The CAMP benchmarks are a good representation of modern, Ada GN&C
benchmarks. -However, we used the OGLI benchmarks which more closely
represent our current applications.

b. ACEC

The ACEC benchmarks contain over 1,000 Ada benchmarks representing all
aspects of the Ada language. These benchmarks are good for testing fine
details of a compiler; however, they do not necessarily represent our specific
GN&C application. Most of the benchmarks are tiny and only measure one feature
of the language. A few larger applications, such as a Kalman filter, are
‘included in the benchmarks. The task of running numerous benchmarks is very

time-consuming, but it is automated by batch files. For the ACEC benchmarks, it

is important to study the benchmarks to understand what is really being
measured.

While this project does not report any ACEC benchmark results, the ACEC
benchmarking tools used are discussed in Section II.3. (For more
information about the ACEC benchmark, see References 3 and 4.)

c. PIWG

The PIWG of the Association of Computer Manufactures (ACM) special
interest group on Ada (SIGAda) has a series of general purpose benchmarks
designed to measure the performance of a processor and compiler on many
aspects of Ada. Copies of the benchmarks are free, provided the copies are
not used for commercial advantage and copyright credit is given to ACM
SIGAda. The PIWG benchmarks were not used in this evaluation; however, some

13

of these benchmarks were used in the GISA evaluation. The particular
benchmarks used included the Drystone, A00091, an integer benchmark that does
string operations; the Whetstone, A00093, which contains 15 percent floating
point operations; the procedure calling benchmarks, P00001-P00013; and eight
tasking benchmarks. (The results of these benchmarks can be found in
Reference 1.)

d. OGLI

The OGLI benchmark contains a guidance law designed for an air-to-air
missile. This guidance law is representative of the code used for our in-
house research at the start of this project. As shown in Figure 3, guidance
receives inputs from the seeker regarding the change in ctate of the target
(that is, elevation and aczimuth line of sight rate, range rate, and range).
The Inertial Navigation System (INS) provides the current state of the
missile (inertial accelerations) to guidance. Guidance then calculates the
commanded inertial accelerations necessary to optimally fly to the target

and passes the commands to the autopilot. (See Reference 5.)
1 we e Rynm, e ‘
Dynamics MU soomr INS I f| Target
RYZL,, oo we, i il
00 He t
®921,, | | |
oMy i“"" llauz 1wHe [i,?i“, j o
N ﬁ'
Seeker % & wu}Guidance <1 Autopilot |
Ry !
I
-
- o
| FuF.F lAerodynamics| ™ % o o ' Actuator
MMM e o
Figure 3. Optimum Guidance Law Implementation

The OGLI benchmarks are divided into four main benchmarks representing
the four phases of flight. The first phase iz Full_Midcourse, the longest
phase in which the guidance law is optimized to maintain maximum energy.
When closer to the target the guidance law switches to Kamping_Midcourse,
in which it zmoothly adjusts its heading for an anticipated straight line
collislon course with the target. The next phase is called Transition, in
which the autopilot tries to smoothly transition from the midcourse
commands to the commands of the next phase, known as the Terminal. The
Terminal phase 15 the end game, and the guidance law switches to augmented
proportional navigation.

lhe speed requirements are less than 100,000 microseconds (10 H:i) for

the midcourse phanes and less than 20,000 microseconds (50 H:z) for the
terminal phase. As 4 safe margin for error, our goal ig for all phases to

14

less than 10,000 microseconds (100 Hz). In the future, greater performance
will be needed for some modern techniques. For example, we would like to
use several different guidance laws and have the capability to smartly
select the optimum commands in real time.

3. BENCHMARKING TOOLS

The ACEC benchmarking tools provide the timing loop code to “wrap
around* the benchmark algorithms and thus accurately measure the execution
time. The benchmarks are nested in two loops:

OUTER LOOP
start_time_hack;
INNER LOOP

benchmark;
END INNER;
stop_time_hack;

END OUTER;

The ACEC tools first measure the overhead execution time for the inner loop
and check the accuracy of the clock. Via test runs of the benchmark, the
ACEC tools determine the number of inner and outer loops required to have
statistically valid results, based on the means and variances of the
execution time for each inner loop of the benchmark. The toolsz output the
mean execution time (minus the timing loop overhead), the variance, and the
number of inner and outer loops.

These tools are written in Ada and allow a processor independent
version of the OGLI benchmarks, which were easily transported to each of
the processors. (See References 3 and 4.)

4. CANDIDATE MICROPROCESSORS

In this section, each microprocessor and Ada compiler that was
considered as a candidate for evaluation is discussed. This list includes
the RISC and CISC processors we were considering for future embedded use.
This list does not include all RISC and CISC processors nor all Ada compilers
for each processor. At the time of this evaluation, most RISC processors only
had one Ada compiler vendzr, while the older CISC, with a larger commercial
support, have multiple sources for Ada compilers. Due to limited funds and
time, not all systems could be evaluated. This evaluation is a continual
effort, with the results continually updated. This paper is just a “snapshot”
in time.

a. DEC MicroVAX II (CISC)

The DEC MicroVAX II system was used as the base line for comparicon (as
discussed previously in Section II.1c.) The MicroVax I1 processor, KAB30-AA,
15 not being considered for embedded use and i35 a classic CISC architecture.
The MicroVAX [l i3 recogniced to have a speed in general of 1 MIPS
(actually 0.9). The speed of the benchmurks on the candidate proceussors

15

relative to the MicroVAX is used to calculate the VAX-MIPS for each
processor.

The VAX was configured with an 8-megabyte (Mbyte) RAM, a math
coprocessor, and the VMS 5.2 operating system.

The DEC Ada compililer Version 2.0 was used. This compiler offers
optimization with respect to time and size. All optimization combinations
were benchmarked. The time optimization resulted in not only the best
execution time but also decreased the sice compared to no optimizations.

b. Intel 380386 (CISC)

The Intel 80386 is a popular 3Z-bit CISC found in commercial personal
computers, and therefore, has a large software base. It has an upwardly
compatible family along with the 8086, 80286, and the new 80486. The 80386
has a maximum clock speed of 40 MHz. The 80486 soon will be offered at
50 MHz. The 80386 DX has a full 32Z2-bit central processing unit (CPU) and can
address up to 4 gigabytes (Gbytes) of physical memory and 64 terabytes (Tbytes)
of virtual memory. The 80386 interface can support the external
math coprocessor with 3z-, ed-, and 80-bit formats.

Two different 80386 configurations were benchmarked. The first had a
clock speed of 25 MHz, hosted on a Divercified Technology’s CAT980A board,
with an 8-Mbyte RAM (Lwo wait ctate), 3Z-kilobyte (kbyte) cache, Intel
80387 coprocessor, and IBM DOS Version 3.30.

The second configuration had a clock speed of 40 MH:, hosted on Bell
Computer System’s PAT38PX board, with an 8-Mbyte RAM, Z56-kbyte cuache (-ero
wait state), Intel 80387 coprocessor, and MS-DOS Version 4.01.

A 80286 system was also benchmarked with an 8-MH:z clock, hosted on a
Zenith 2-248 computer, with a 3.2-Mbyte KAM, Intel 80287 coprocessor, and
MS-DOS Vercion 3.3. However, compilation of the OGLI benchmarks on this
configuration was not completed due to memory limitations.

F'he Ada compiler for both 8038b configurations was Alsys Version 4.5.
Hoth used the same executable code compiled on the 25 MHZ machine. The Alsys
compiler offer: four commund line optimizations: tasking, calls, reduction,
and expression. Since OGLI does not use Ada tasking, tasking was turned off.
The other threce optimizations were firat used in the normal mode (turned offl,
and OGLI compiled successfully. Next, the *"calls” optimization was set to

"inlined,* which repluces (inlines) all calls to subroutines with the uctual
subroutine code. With this aptimi-atisn celected, tho compiler never
"teturned” from compiling. I'he memory was probably overloaded due to a
combinational explouion of cualls. HNext, the reduction and expresuion
optimirations were et to "extensive." This combination of option: compiled
succennfully. However, during execution, it did not tun :uccessfully and
Jenerated an exceptioson or error. lherefore, the performance result: reported

in this paper ate for compiled code with tasking turned off and no other
optimiations.

The Ada compiler for the 80286 was Meridian Version 2.0. This compiler
was unable to complete compilations of OGLI due to a memory limitation of
the computer.

c. Motorola 68040 (CISC)

The Motorola 68000 family are CISC with a very large commercial base.
The family consists of the 68000, 68008, 68010, 68020, 68030, and 68040,
which are upwardly compatible.

The 68020 is a full 32-bit, Harvard architecture, microprocessor with
101 instructions. Its features include cache control registers to support
external data and instruction caches, a 32-bit direct address range, a 4
Gbyte virtual address range, 8 data and 8 address 32-bit registers, and a
20-MHZ clock. Coprocessors, MMU, and caches are supported via external
chips.

The on-chip enhancements of 68030, compared to°the 68020, includes a
MMU and Z256-kbyte data and instruction caches. The MMU and caches operate
in parallel with the CPU.

The on-chip enhancements of 68040, compared to the 68030, include a
floating point coprocessor (three stage pipeline); a new six stage, dual
execution, single-cycle pipeline for the CPU; two MMUs, each with their own
translation lookaside cache; 4-kbyte data and instruction caches; a bus
control unit; and a 25-MHz clock. All the processing units operate in
parallel.

Currently, the OGLI benchmarks have not been run on the 68000 family.
The 68020 was benchmarked in the GISA program versus a MIPS R3000, a
MIL-STD-~1750, and an Intel 80960 using the CAMP benchmarks. (For more
information see Reference 1.)

d. MIPS R3000 (RISC)

The MIPS Computer Systems R3000 is a 32-bit RISC processor. Its
instruction set was originally developed at Stanford University and meets
the requirements of DARPA’s CSALI. The family includes the original Rzooo,
the K3000 (CMOS) with a maximum clock of 33 MH~ and the ke000 (ECL) with a
maximum clock upeed of 60 MHz. The R400uy «MOS is5 anticipated soon. The
family 1o code compatible. The urchitecture i35 scalable in hardware, but
nonscalable in terms of software, ac mentioned in Section I1.1a(d). The
software 15 nonncaluble cince NOOPG are needed for timing. Therefore, the
accemblers and reorganizer: muay have to be modified uz the clock freguency
is lncreased above certain thresholds.

The R3000 is a full 32-bit Von Neumann architecture. Its features
include a five-:tuge CPU pipeline, thirty-two 3Z2-bit registers, and MMU
with a sd-entry translation lookaside buffers to support 4 Gbytes of
virtual memory. [t cuan also have cache control registers to support

17

external instruction and data caches up to 64 kbytes each. The R3000
supports up to three external coprocessors.

The benchmark configuration is a R3000 system built by Westinghouse
during the GISA program. The R3000 board resides in a VME rack, hosted by
a MicroVAX II. The clock speed is set at 14 MHz. The board has 1-Mbyte
RAM and dual caches (64 kbytes for instruction and 64 kbytes for data).

The dual external caches add the benefits of a Harvard architecture. With
separate caches, the code is more likely to be reused (and not flushed as
often) than 1f the instructions and data were mixed on one cache. The
math coprocessor resides on a separate chip, the R3010. The run-time
environment was developed specifically for the GISA program, designed for
real-time, distributed processing. (For more information see Reference 1.)

The Ada compiler is the InterAct 1.0, hosted on the MicrovVax II. This
compiler optimizes the code by default.

e. Sun SPARC (RISC)

The Sun SPARC is a 32-bit RISC processor developed for use in Sun
workstations. The waximum clock speed for the CMOS version is 40 MH:z,
while the ECL version can go up to 80 MHz.

The SPARC is a Von Neumann architecture. It has a large register bank
of 128 registers. By using the concept of overlapping register windows,
SPARC has a performance advantage. The windows can act like a local
variable cache, reducing the amount of memory traffic (number of parameters
that must be saved or restored) during subroutine calls.

The configuration used for OGLI benchmarking included a Sun-4
SPARCstation 1, with an 8-Mbyte RAM, 128-kbyte cache, math coprocessor, and
the UNIX-4 operating system.

The Ada compiler was Verdix VADS Version 6.0(G). All optimizations
were used. The Verdix User Guide (Reference 6) lists the following
applicable optimizations: code straightening, constant folding, copy
propagation, strength reduction, redundant branch and range check
elimination, common subexpression elimination, hoisting loop invariant
computations and range checks, limitation of assignment to unused local
variables, address simplification, local scalar and access variables
allocated in registers, loop variables allocated in registers, parameters
pasced in regicters, code generation for math coprocessors, and target
specific peephole optimization. (However, with all these optimizations,
one of the benchmarks calculated an incorrect answer, but the cause has not
been found.)

f. Motorola 88000 (RISC)

The Moteorola #3000 iz another 32Z-bit KISC processor. Currently the
maximum <lock speed available ic 33 MHz. The 88000 i implemented in a
three chip zet--the 48100 1 the CPU chip aund there are two BEZU0

18

cache/memory management units. The 88000 has a Harvard architecture and 32
registers. The 88100 has a floating point unit on-chip, with a five-stage
add pipeline and a six-stage multiply pipeline.

The configuration used for OGLI benchmarking was part of a Data General
AVIION 300 workstation based on the 88000, at a clock speed of 20 MHz, with
a 12-Mbyte RAM, dual caches (l6-kbyte instruction and 16-kbyte data), and
the DGUX 4.3 UNIX operating system.

The Ada compiler used was the Telesoft Telegen2 Version 4.0. For
benchmarking, we compiled with the default settings, which includes all
safe optimizations. When compiling with the global optimizations, the
system ran out of paging space due to the large size of the program. This
probably could have been avoided if the OGLI benchmarks were split into
several small packages, instead of one big procedure.

Telesoft offers two levels of optimizations. The User’s Guide
(Reference 7) shows Level 1 including subprogram inlining, common
subexpression elimination, dead code elimination, local value propagation,
range calculation and propagation, constant folding and propagation, check
elimination, and subprogram interface optimization. Level 2 includes
lifetime minimization, tail recursion elimination, loop-invariant code
motion, dead-store elimination, induction variable identification, and copy
propagation.

g. IBM System 6000 (RISC)

The IBM System 6000 is a workstation built around RISC concepts. It
uses a Performance Optimization with Enhanced RISC (POWER) architecture.
The family of POWER processors have different names for each clock speed.
The IBM System 6000 used for this evaluation is workstation model 530,
whiclt has the 25-MHz SGR2564 processor. Other models have clock speeds of
20 and 30 MHz. The fastest advertised processor with the POWER
architecture has a clock speed of 41.6 MHz.

The processor is designed to do multiple operations in parallel. Up to
four instructions can be executed in one clock cycle, provided they do not
need to use the same resources. To keep the parallel operations fed, there
is an 8-kbyte instruction cache and 64-kbyte data cache. The data cache is
split into four banks for each type of operation. The cache memory and the
floating point processor are all or-chip. The parallelism built into this
decign allows for such features as -ero-cycle branch operations.

The system used for evaluation contains 64-Mbytes of RAM. The UNIX
operating system i3 uced. The system is built around the IBM microchannel
input/output bu:s.

The Ada compiler for the IBM System bbbt family i the TBM Ada/eddo,
Jerszion z.0. The uuer’s manual (Reference 8) lists three levels of
optimization: normal, optimized, and highly optimized. The optimi-ed
level does :uch optimitations ac eolimination of unreachuble code, common

19

subexpressions, parameter substitution, constant folding and propagation,
and strength reduction. The highly optimized level does the more risky
optimizations like the inlining of calls. For the OGLI benchmarks, we found
the "optimized" level produced the fastest and smallest code. The inlining
of code for OGLI turns out to be less efficient.

h. 1Intel 1960 (RISC)

The Intel 1960 RISC processors have a Von Neumann 32-bit architecture
with 32 registers. The 1960 is marketed as an embedded processor. All of
its simple instruction set fits within a 32-bit boundary which aids
pipelining. On the military version, the 80960MC has a 512-byte instruction
cache and flocating point capabilities on-chip.

The 1960 processors have not been benchmarked with the OGLI code. The
main competitor of this processor appears to be the R3000. During the GISA
program {discussed in Section I.2c) the 1960 was benchmarked against a
R3000, 68020, and MIL-STD-1750. (See Reference 1.)

i. Texas Instruments (TI) TMS320C30 (Signal)

The TI TMS320C30 (or C30) is a floating-point, digital signal
processor. It is probably the first signal processor to have an Ada
compiler, which implies it is capable of general purpose applications too.
This family includes the C30 and C40, which both have a maximum clock speed
of 40 MHz.

The C30 on~chip features include 40- or 32-bit CPU (floating point and
integer), 64 by 32-bit instruction cache, two 1K by 32-bit single-cycle
dual-access RAMs, 4K by 32-bit single-cycle dual-access ROM, 8 extended
precision registers, 8 auxiliary registers, 12 control registers, two
external ports, and two 32-bit timers.

The C40 on-chip features include all the C30 features plus direct
memory access coprocessor, 512-byte instruction cache, 12 extended
precision registers, 14 control registers, six communication ports, and two
4-kbyte RAMs and 16-kbyte ROM that allow two data accesses in a single
cycle.

The C30 configuration used for OGLI benchmarking had a clock speed of
16 MHz. Most of the benchmark could fit in zero wait state memory; however,

some spilled over into two wait state memory, which is a handicap.

Tartan makes the Ada compiler for the C30; however, the version or
optimizations used for benchmarking were not recorded.

j. INMOS Transputer T800 (Parallel)
The INMOS tranczputer T800 is a processor designed for parallel

processing. The T800 haz four bidirectional, high speed, serial
input/output (I/0) ports designed to easily connect to T80(s or other

20

transputers. A goal with the transputers is low cost, making super
parallel computers affordable and easily to build. The transputer is
marketed as a RISC processor. The T800 is a full 32-bit processor, with a
64-bit floating point unit and 4-kbytes of RAM on-chip. The T800 has a
maximum clock speed of 30 MHz. Unlike most RISC processors, the T800 has a
small set of 6 registers. The transputer family includes the upwardly
compatible T400, T800, and T805.

A single transputer T800 was used for OGLI benchmarking. In Section
ITI, multiple T800s are used in a parallel implementation of the OGLI code.
For benchmarking, the T800s reside on a "motherboard" that hold up to seven
T800s. The motherboard is hosted in a Zenith Z2-248 personal computer. The
main processor has 4 Mbytes of RAM and a clock speed of 25 MHz, wiile each
of the other six processors has 1 Mbyte of RAM and a clock speed of 20 MHz.
The T800 has specialized run-time software called ISERVER.

The transputer has its own high level language, called OCCAM, which was
developed together with the transpute. specifically for parallel
processing. Therefore, OCCAM runs very efficiently on the transputer, just
as an assembly language would.

Alsys developed the first (and only) Ada compiler for the transputer.
For benchmarking, Version 4.4 was used. This is an early version of the
compiler (in the first year), therefore, still has plenty of room to
mature. The compiler offers the same optimizations as the Alsys compiler
for the 80386, discussed in Section II.4b. The benchmark was compiled with
the default level of optimications. Alsys used the same user interface for
both the 80386 and transputer, which was "user friendly" and made the
benchmarking batch file portable.

A small portion of the OGLI benchmarks (called Step 1) was converted
from Ada to OCCAM for comparison. The results are presented in the next
section.

5. RESULTS AND ANALYSIS

The results for the OGLI benchmarks are presented in Tables 1, Z, and 3
and Figures 4 through 8. These results represent performance for a
specific GN&C application and cannot be generalized as a universal
performance. The recsults are prezented for three measures: execution
speed, compile time, and code expancion.

21

TABLE 1. OGLI BENCHMARK RESULTS

I IClock| Exec.| Speed | Speed I Speed I Max
Benchmark | Ada |Speed|! Time | Relative {Normalized! Normalized | Clock
Processor |Compiler| (MHz) | (usec)ito uVAX IIlto 20 MHz [to Max Clockl| (MHz)

Full_Midcourse

uVAX II DEC 2.0 -- 27605.7 1.00 -—--- -———- --

SPARC Verdix 6.0 20 3252.1 8.49 8.49 34.0 80 (ECL)

88000 TeleSoft4.0 20 3519.8 7.84 7.84 12.9 33

R3000 InterActl.0 14 5270.0 5.24 7.48 22.4 60 (R6000)

IBM6000O IBM 2.0 25 1264.9 21.82 17.46 36.3 41.6

C30 2wait* Tartan 16 3884.9 7.11 8.89 22.2 50

T800 Alsys 4.4 25 8986.3 3.07 2.46 3.7 30

80386 Alsys 4.5 25 262448.9 0.11 0.09 0.2 50(486)

80386 Alsys 4.5 40 20530.4 1.34 0.67 1.7 50(486)
Ramping_Midcourse

uVAX II DEC 2.0 -- 27321.2 1.00 -—-- -———- --

SPARC* Verdix 6.0 20 2799.3 9.76 9.76 39.0 80 (ECL)

88000 TeleSoft4.0 20 3465.2 7.88 7.88 13.0 33

R3000 InterActl.0 14 5166.7 5.29 7.55 zz.7 60 (R6000)

IBM6000 IBM 2.0 25 1243.2 21.98 17.58 36.6 41.6

C30 2wait Tartan 16 3969.5 6.88 8.60 21.5 50

T800 Alsys 4.4 25 8950.2 3.05 2.44 3.7 30

80386 Alsys 4.5 25 263922.8 0.10 0.08 0.2 50(486)

80386 Alsys 4.5 40 20242.4 1.35 G.67 1.7 S0 (486)
Transition

uVAX II DEC 2.0 -- 25965.6 1.00 -——— -——-- --

SPARC Verdix 6.0 20 2895.4 8.97 8.97 35.9 80 (ECL)

88000 TeleSoftd.0 20 3247.3 8.00 8.00 13.2 33

R3000 InterActl1.0 14 4770.0 5.44 7.78 23.3 60 (R60D00)

IBM60O0OG IBM 2.0 z5 1171.0 22.17 17.74 36.9 41.6

C30 2wait Tartan 16 3620.2 7.17 8.96 z2z.4 50

T800 Alsys 4.4 25 2087.8 3.21 2.57 3.9 30

80386 Alsys 4.5 25 267486.9 0.10 0.08 0.2 50(486)

80386 Alsys 4.5 40 18663.9 1.39 6.70 1.8 50(486)
Terminal

uVAX II1 DEC 2.0 -- 4785.0 1.00 -——— -——— --

SPARC Verdix 6.0 20 789.8 6.06 6.06 z24.2 80 (ECL)

88000 TeleSoftd.0 20 861.9 5.55 5.55 9.z 33

R3000 InterAct1.0 14 863.3 5.54 7.92 23.8 60 (R6D0O)

IBM6OOBO IBM 2.0 25 259.1 18.47 14.77 30.7 41.6

C30 Zwait Tartan 16 9572.3 5.02 6.28 15.7 50

THOO Aloys 4.4 25 z2173.0 2.20 1.76 Z.6 30

803486 Aluys 4.5 25 300039 .4 0.0Z2 0,01 0. 04 50 (486)

BO386 Alcys 4.5 40 5639 .6 .85 0.4z 1.1 S50({486)

TABLE 1.

OGLI BENCHMARK RESULTS

{Concluded)

iClockl Averag

e

|Average| Range |Averagel
[for |for Maxl

I 20 MHz |

Range |

for Max |

Clock |

Max
Clock
(MHz)

6.06-9.76
5.55-8.00
7.48-7.92
14.8-17.7
6.28-8.96
1.76-2.57
0.01-0.09
0.42-0.70

Clock |
33. 2
12,

23. 2
35. 3

80 (ECL)
33

60 (ECL)
41.6

50

30

30

50

50

MIPS | Normalized to

Overall |Speed| Relativel | for
Processor| (MHz)| Speed | Range |20 MHz
uvAXx II -- 1.00 1.00-1.00 ---~
SPARC 20 8.32 6.06-9.76 8.32
88000 20 7.32 5.55-8.00 7.32
R3000 14 5.38 5.24-5.54 7.68
IBM6000 25 21.11 18.5-22.2 16.89
C30 16 6.55 5.02-7.17 8.19
T800 25 2.88 2.20-3.21 2.31
T800-3 par. 5.06 3.96-5.51 ~----
80386 25 0.08 0.02-0.11 0.07
80386 40 1.23 0.85-1.39 0.62
TABLE 2. STEP

Processors | Time(usec) | VAX

uvVax IIL 2683.9

SPARC (20MHz) 447 .4

88000 (20MHz) 384.6

R3000 (14MHz) 374.4

80286 25603.6

T800 (Occam-25M) 202.0 1

T800 (ada-25MHz) 2393.6

CODE EXPANSION AND COMPILE TIMES

Sice
(bytes)

I Code I
tExpansion|

Compile

Time

Relativ
to uVAx

e

TABLE 3.
I I I
Processor | Hozt | Compiler |
uvAx 11 - DEC 2.0
SPARC —-———— Verdix 6.0
88000 -—-- TeleSoft 4.0
R3000 uVAXII InterAct 1.0
IBM6000O - IBM 2.0
T8O0O ZZAB(PC) Alsys 4.4
80386 -——- Alcys 4.5

59392
303104
478588
228352
122094
110711
172018

98€08 | |
008l N

000¢eY D
00088 @
oJedg

ooosnwgl 3

1xvan Bl

oy
S¢

91

vi
0¢
0¢
G¢
ZHN

SYIREY UG 1190

feuiuna |

uonisuel |

‘H ooandiy

asinoopiiy dwey asinoopipy |In4

J

J

0]

Gl

0c

S¢

><X =2-0o 0

24

0081 Y

0ooged D
00088 @
~JJeds

0009WE! &3]

1xvan Bl

ZHW 0g 3B sxIewyouag ITH0 "G 9Inbig
jeuiula | uolisuel | 2sSIN0opPIN dwey asINoopIN (N4
1]] |
% d
5
% (| \.l.
\
—
I “
g \J
%m
7

© < AN O

)8
cl
vi
9t
81

><<X Z=Z2-—0 0

25

«oleds 2
0009Ndl X

xvAn)

0S
o€
0S
09
ee
08
¢y

ZHIN

AD0TD XeW e s)aewyduad IT9H0

jeuluna |

‘9 9anbtg

asinoopiy dwey asINOIPIN IN4

i

S

SRR

R

g

o S AR e ST

>

Se

oy

><<X Z=2-0 0

26

(epv)oosL _UJ
(Wv220)008L 2
98208 i

oooed F

00088 2
ouvds B3

ZHW 02 3® YIewyduwg [do3s

"L

2anbTtg

I XVAN
N)

I
ity

~
N

ot

Lt

><X Z=2-0v

27

mmmmmmmmmmmm

28

a. Execution Speed (VAX-MIPS)

Table 1 and Figures 4 through 6 show the execution speed results for
the four OGLI benchmarks: Full_Midcourse, Ramping_Midcourse, Transition,
and Terminal. The speeds are presented in four forms: measured execution
time, speed relative to the MicroVAX II (VAX-MIPS), relative speed
normalized to 20 MHz, and relative speed normalized to the maximum clock.
Section I1.1c discussed the merits, drawbacks, and philosophy of these
measurements.

The bottom of Table 1 shows the average results for the four benchmarks.
Averaging the four together is not statistically valid but is presented for
a rough estimate.

As for actual execution time, the goal was to be less than 10,000
microseconds. All the RISC processors easily exceeded this goal, along with
the C30 signal processor. The T800 also met the goal but with a closer
margin. The CISC 80386 and MicroVAX II were too slow to meet the goal.

Even when the results for the two 80386 systems are normalized for their
maximum clock (50 MHz), they were too slow.

For the more lenient requirements of the current OGLI system (that is,
less than 100,000 microseconds for the midcourse phases and less than
20,000 microseconds for the terminal phase), all RISC processors and the 40
MHz 80386 system are fast enough, while the 25 MHz 80386 system is5 too
slow. Note the different results obtained for two 80386 systems, using the
same Ada compiler. Even when the results are normalized for Z0 MHz, the
40-MHz system is around six times more efficient than the Z5-MHz system.
This implies that some system level feature is slowing down the Z5-MH:
system. This highlights the *"apples and oranges® and scalability problem
with benchmarking.

Figure 5 shows the results normalized to a common clock speed of Z0 MHZ-.
The IBM System 6000 performance far exceeded all processors, doubling the
speed of most RISC processors. This speed is probably due to the internal
parallism of instructions that were used extensively for this application.
The other three KISC processzors (SPARC, 88000, R3000) had similar results.
The SPARC processor speed slightly exceeded the other two. The C30 signal
processor surprisingly handled the general purpose Ada code well (as cpponed
to mathematical code specifically turned for its architecture). The (30
processed at the same level the KISC processors. The transputer fell
surprisingly behind the others probably due to itz inefficient new compiler.
When the Ada compiler matures to the level of the transputer OCCAM compiler,
the transputer is expected to perform similarly to the RISC processors.
Results for the transputer comparing Ada to OCCAM are discussed laterv.
Finally, the CISC processors greatly lagged the RISC processors.

The pattern for the first three benchmarks (Full_Midcourse,
kamp_Midcource, and Trancition) uare pructically identical, indicating
similar type of proceusing. The fourth benchmark (Terminalt shows the
difference one benchmautk cuan make. 'he K3vvdy war much more efficient with

this benchmark than the others, while the other RISC processors were still

grouped together. HNote that the R3000 actually processed at the same speed
relative to the VAX (VAX-MIPS) for the four benchmarks, while all the other
processeorc dropped in relative speed to the VAX for the terminal benchmark.

Figure 6 shows the results extrapolated to the speed normalized to the
maximum clock for each processor. The microprocessors that have versions
manufactured in ECL technology obviously have an advantage. However, the
CMOS 41.6 MHz IBM System 6000 still is faster than the ECL 80 MH:z SPARC,
but they are close. The R6000, also in ECL, has the next best performance.
However, the CMOS C30 at 50 MH:z has almost identical performance as the
R6000 at 60 MHz. Since the processor vendors keep coming out with faster
versions, these results must be continually updated. Some vendors probably
have faster versions developed but have not publicized this information.

Results for a small csubset of OGLI (called Step 1) are shown in Table Z
and Figure 7. Step 1 was converted from Ada to OCCAM. The transputer

running OCCAM was ten times more efficient than the Ada version. The
transputer using OCCAM performed at the same level as the faster RISC (in
this case R3000). Again, note this is just one small benchmark. For

example, note how much better the R3000 performed than the other RISCu,
which is not true for the overall GN&C application benchmark.

b. Compile Time

The compilation times for the procescors are shown in Tuble 3 and
Figure 8. The compilation time is the time required to compile and link the
overall OGLI benchmark Ada progrum (which includes the four main
benchmarkc: Full_Midcourse, kamp_Midcourze, Transition, and Terminal; the
timing loop code; and a supporting package calied global). Compilation
time is not important for the actual execution of an embedded cystem but
does give a feel for the "ucer-friendlinezz" during the design phase. If
the developer has to wait a long time for compilation between change: to
the program, development time can be long. Compilation time generally does
not reflect the speed of the embedded processor; it reflects the efficiency of
the host system.

The compilers for the RISC processors, which served as their own host

(IBM System 6000, SPARC and 88000}, had very quick compilation times. Ao
with the execution time results, the IDBM System 6000 was twice as fact as

the SPARC and #5000 compilers. The compilere for the CISC processor:s,

which served as their own host (MicroVAX [l and B03K6), had reasonable
compilation times. However, the compiler: heorted on a CISC systems,

targeted to KISC procecsszors (K3000 and Tsuu) had excensively long compile
times. Since they ure embedded proceusors with remote hosts, they do not
have an operating sy:stem already at their disposal. Concequently the run-
time environment i:: alco being linked in, which requires more time. An hout
and ZO-minute wait betwecen compilation: can be frustrating. To minimice thic

time during development, the cuggestion is that instecad of compiling
all codes aut once, design the code such that it is5 broken up into

30

manageable packages and procedures. In that case, only the portion of code
being worked on would have to be recompiled.

c. Code Expansion

Table 2 and Figure 8 also show the code expansion for each processor.
This 1is the sicze in bytes of the executable OGLI benchmarks (including the
timing loop and all four benchmarks) and the sicze relative to the MicroVAX II.
One of the disadvantages of RISC processors is that they generally need to use
more instructions to get the same work done as the CISC complex instructions.
Therefore, they require a higher memory for the embedded system and mechanisms
(like fast cache memory) to quickly move all these instructions in order to
keep the processor pipeline full.

The results for the OGLI benchmarks reinforce this observation. The
CISC MicroVAX II had the smallest code size. Most of the RISC processors
(SPARC, 88000, R3000) had large code expansion. The 88000 RISC had the worst
code expansion, requiring eight times more memory than the MicrovVAX II. The
80386 and T80OU were in the middle. However, the IBM System 6000 compiler had
the second smallest code expansion, which is surprising for a RISC
architecture. This implies that either the IBM Ada/6000 compiler produces
very efficient code or the IBM System 6000 architecture is more like tLhe CISC.

SECTION ITI

PARALLEL IMPLEMENTATION OF OGLI

In an effort to improve the processing performance of the OGLI code, an
experiment was made using parallel processing. In this section, the
transputer hardware is discussed, followed by the parallel processing
approach, and finally the benchmark results are presented.

1. TRANSPUTER BACKGROUND

The transputer was designed specifically with parallel processing in
mind. Each transputer has four pairs of high speed serial 1I/0 ports (T-
links). The transputer family of processors were designed for low cost, so
that massively parallel systems can be affordable. On each transputer T800
is 4K of internal RAM, a 32-bit processor, a 64-bit floating point unit, and
timers.

To aid in the development of transputer systems, INMOS packages the
transputers in various modules that can easily be plugged into a
*motherboard, * which in turn can be plugged into a personal computer bus.
In this case, we have the IMS B008 motherboard, which has up to ten slots
for modules. . The primary module, which communicates directly with the
personal computer, needs more memory to handle the Ada run-time. This
module has a T800 running at 25 MHz and 4 Mbytes of RAM external to the
T800, but dedicated to the T800. The other seven modules have 20 MHz T800s
and 1 Mbyte of external memory each.

On the motherboard, each module has two hardwired serial 1/0
connections (hard links) to each »f its neighbors. This leaves two
remaining pairs of serial input/output for each processor {soft links) that
can be routed to any other open pair via software changes. This setup
gives the designer much flexibility in changing the hardware configuration
of the processors without much effort. Therefore, there are a maximum of
seven processors avallable to configure for this parallel processing
experiment.

For this architecture, each processor has its own memory. There is no
shared or blackboard memory; therefore, the transputers must communicote
all values to each other when needed.

2. APPROACH

Today, there are many hardware systems desighed efficiently for parallel
processing. The real difficulty is not designing parallel hardware, but
writing parallel software for an application that optimally takes advantage of
the parallel hardware. Algorithms and systems designed by engineers are
generally created by a serial thought process. Humans have been trained to
think serially.

Therefore, the first step is to convert the serial aigorithm into a
parallel version. The code must be partitioned into parallel subroutines.
The timing of the subroutines must be analyzed, and the communication
throughput between the subroutines must be calculated. From this
information, the appropriate level of granularity can be determined.

a. Partition

The first step is to partition the code into smaller pieces, which can
be implemented in parallel. For the OGLI benchmark code, the guidance law
naturally had 25 steps. Each formed a partition. Some of these
partitions were bigger than others or did multiple functions, and thus,
could be subpartitioned. The level to which the code is partitioned is
referred to as granularity.

A dependency analysis is done between partitions. This action
determines which partitions depend on variables passed from other
partitions that in turn determines which partitions can be implemented
parallel to each other and which must be done serially. Figure 9 shows the
dependencies of the original 25 OGLI partitions. Some were dropped or
absorbed. Note the parallelism at the widest point only includes four
parallel partitions and several serial partitions at the end. The smaller
boxes inside the partition boxes represent code that is independent of each
other, so could be subpartitioned if necessary. With further analysis,
some code may be moved from one partition to another. This would be
beneficial if it eliminated a dependency and allowed the partitions to be
in executed in parallel instead of serially.

b. Timing Analysis

The next step is to calculate 'he time required to execute each

partition and subpartition. For the OGLI partitions, each was executed as
a benchmark on a T800 to get the timing. These times are inside each
partition in Figure 9 in microseconds. If possible, a worst and best case

time were determined.

Given this timing and dependency information, the use and idleness of
the processors can be determined. For the OGLI partitions in Figure 9, it
appears that two processors can be kept busy most of the time. Even though
there are extra partitions that can be implemented on two extra processors
in parallel, they will be idle most of the time. These partitions can be
combined and executed on one processor and still not slow down the overall
system.

¢. Throughput/Communication Anualyuia

The next step i to ctudy the communication tequitred between the

partitionsz and uubpuartition:. l'he communication overheud between
processors iz uzually the limiting facter in parallel procensing. Even
though an algorithm can be decomponed into finer und finer granularity, if

the communication time betwecen proccessor: i greater than the execution

33

time for the function on the processor, this level of parallel processing
will provide no benefit. In this situation, adding additional processors
will actually slow down the processing.

For OGLI, the communication time is related to the number of variables
passed. The communication time between processors was calculated for the
transputer system. It was found, on average, to be around 77 microseconds
for two-way communication and 38 microseconds for one-way. Given this
information, any partition that can be executed in less time would have too
much communication overhead to be run on a separate processor and could be
executed quicker on the processor that needs the information.

Using the partitions, dependency analysis, execution timing, and
communication overhead information, the partitions were mapped to the
transputers as shown in Figuie 10. The arrows note when communication must
be done between processors. Some of the partitions were subpartioned (that
is, steps la, 1lb, and 1lc).

3. RESULTS

The results for the parallel implementation of OGLI on three T800
transputers is shown in Table 4. Given an ideal parallel algorithm, which
can keep all processors busy and no communication overhead, the speed
improvement for three processors over a single processor would be
200 percent. For the OGLI algorithm, over half of the processing is done
sequentially. Therefore, the 76 percent speed improvement was expected.
Adding an additional transputer would not increase the speed since the
communication overhead would overcome the benefits of any further parallel
executlon. Reducing the number of transputers from three to two reduced
the speed improvement to around 49 percent.

It involves extensive the time and trouble to optimize a parallel
system. Although performance gains are achieved, greater gains may be
made through simpler methods--for example, upgrading the processor to
a faster clock speed or using a more efficient version of an Ada compiler.
The additional processors also add cost, weight, and space to an embedded
system. This guidance law can be implemented on a single processor with
plenty of margin.

However, a parallel tranzputer architecture would still be beneficial
for an overall zystem as in Figure 1. For example, the guidance code
could be executed on one processor, the zeeker on a couple of processors,
and the IMU code on another processor.

34

Step 1 Step 3
OCoa OO

195.9 1121

St 4‘ f is—LW -
ep tep
1
Step 13 l; O O Step 2

112 &

Step 9 Step 15 Step 5 64.0-103 2
18.0 6.0 0 O

Step 12 Step 11

68.2

Step 14
2535
[—
Step 16

=1 [—

Step 17

5433

365.8-396.0
—
Step 18

678-707

I
tep 19

2.4:—‘3%%1

mb—

‘ e ——
Step22 || =1 Step23 L[Step 24
(307 M.

Figure 9. Partition and Dependency Anal-.sis

35

Transputer 1

Transputer 2 Transputer 3

Figure 10. OGLI Processing Flow on Three Transputers

TABLE 4. OGLI BENCHMARKS ON TRANSPUTERS

I | | | Percentage
I Number | Exec. | Speed | of Speed
| of | Time | Relative | Increase
Benchmark | Processors | (usec) | to uVAX II | over One
Full_Midcourse
1 8986.3 3.07 --
3 5118.3 5.39 76
Ramping_Midcourse
1 8950.2 3.05 --
3 5097.3 5.36 76
Transition
1 8087.8 3.21 --
3 4708.9 5.51 72
Terminal
1 2173.0 2.20 --
3 1208.6 3.96 80

37

SECTION IV

CONCLUSION AND RECOMMENDATIONS

Overall, the RISC processors far out-performed the CISC processors for
our guidance law application. The IBM System 6000 was the best performer,
demonstrating the power of its internal parallel instructions. However,
the IBM System 6000 architecture is currently a dedicated workstation,
while the other RISC processors are more suited for embedded applications.
IBM is working on an embedded version of the 6000.

All the RISC processors met our processing requirements by a large
margin. Surprisingly, the TI C30 signal processor also performed at the same
level as the RISC processors. The TI C30 is the first signal processor to
have an Ada compiler. The transputer parallel processor did not perform as
well as the RISC processors (when a single transputer was used), but did
meet the processing requirements. As the Ada compiler of the transputer
matures and becomes more efficient, the transputer is expected to perform
closer to the RISC levels.

The CISC processors executed too slowly to meet our reguirements.
However, the CISC processors did offer the advantage of little code

expansion (small memory size) compared to the RISC processors. The IBM
System 6000 was the exception of the RISC processors, having a small code
expansion similar to the CISC processors. Having both a quick execution

time and a small code expansion indicates an efficient compiler.

When executing the guidance law in parallel, three transputerc offered
the most efficient execution. Three transputers increased performance 76
percent compared to a single transputer. Adding more transputers actually
decreased performance due to communication overhead. The three transputers
in parallel were able to process at or about the same level as the RISC
processors.

Again, these benchmark results only apply to this specific application.
Given different benchmarks, completely different results could occur.
These results are really just a snapshot in time. To remain current, we
must continually update benchmarking as new processors are introduced, as
new Ada compilers are released, and as the benchmuarking algorithm changes.

38

REFERENCES

1. W. Brauckmann, Guidance Instruction Set Architecture (GISA) Phase 11,
AFATL-TR-90-58, Westinghouse Electric Corp., Baltimore, Maryland, October
1990.

2. S. Cohen and T. Taylor, Common Ada Missile Packages - Phase 2 (CAMP-2),
Volume III. CAMP Armonics Benchmarks, AFATL-TR-88-62, McDonnonnell Douglas
Astronautics Company, St Louis, Missouri, November 1988.

3. T. Leavitt and K. Terrell, Ada Compiler Evaluation Capability (ACEC)
Reader‘s Guide, AFWAL-TR-88-1094, Boeing Military Airplane, Wichita, Kansas,
August 1988.

4. T. Leavitt and K. Terrell, ACEC Technical Operating Report: User‘s Guide,
AFWAL-TR-88-1094, Boeing Military Airplane, Wichita, Kansas, August 1988.

5. M. E. Sisle, F. Zupancic, and D. Luciano, QOptimal Guijdance Law
Implementation, AFATL-TR-88-103, Raytheon Company, Bedford, Massachusetts,
October 1988.

6. Verdix Corporation,] ev t Vv

User's Guide, Sun-4 sSun0S, 5 April 1989.
7. TeleSoft, Telegen2 for UNIX/88k, Host User’'s Guide, 25 May 1990.

8. IBM, AIX Ada/6000, Release 2.0, User's Gujide, March, 1991.

39

BIBLIOGRAPHY

Advanced Technology Croup, "RISC Enough for the Next Generation, " Computer
Design, November 13, 1989.

Alsys, Alsys Ad Ada Compilation Svstem Environment, Version 4.4, Burlington,
Massachusetts, March 30, 19990.

Brauckmann, W., Guidance Instruction Set Architecture (GISA) Phase II, AFATL-
TR-90-58, Westinghouse Electric Corp., Baltimore, Maryland, October 1990.

Cohen, S., and Taylor, T., Common Ada Missile Packages - Phase 2 (CAMP-2).,
Yolume IJI. CAMP Armeonics Benchmarks, AFATL-TR-88-62, McDcnnell Douglas

Astronautics Company, St Louis, Missouri, November 1988.

Gross, T., Core Assembly Language Instruction Interface for RISC-stvle
Microprocessorg, Version 3.3, School of Computer Science, Carnegie Mellon
University, Pittsburgh, Pennsylvania, June 1989.

IBM, AIX Ada/6000, Relegse 2.0, User’s Guide, March, 1991.

IBM, "“IBM RISC System/6000 Processor," IBM Journal of Research and
Development, Veolume 34, Number 1, January, 1990.

INMOS, Iransputer Reference Manual, Prentice Hall, New York, 1988.
Intel, 386 DX Programmer'’s Reference Manual, 1990.
Intel, 80960 Programmer‘'s Reference Manual, Santa Clara, California, 1988.

Release 1.0, October 31,

Johnson, T. L., "A Comparison of MC68000 Family Processors," Byte, September
1986.

Kane, G., MIPS RISC Architecture, Prentice-Hall Inc., Englewood Cliffs, New
Jersey, 1988.

Leavitt, T., and Terrell K., AC icni C i . UseUser’ ide,
AFWAL-TK-88-1094, Boeing Military Airplane, Wichita, Kansas, August 1988,

Leavitt, T., and Terrell K., “omp i valuat i ~ R e
Reader’'s Guide, AFWAL-TR-88-1094, Boeing Military Airplane, Wichita, Kansas,
August 1988.

Motorola, MC8#8100 RISC Microproceuszor Ucer’s Manual, Second Edition, Prentice
Hall, New Jerzey, 199%0.

40

BIBLIOGRAPHY (Concluded)

Sisle, M. M. E., Zupancic, F., and Luciano, D., Qptimal Guidance Law
lmplementation, AFATL-TR-88-103, Raytheon Company, Bedford, Massachusetts,
October 19589.

TeleSoft, Telegen2 for UNIX/88k, Host User’'s Guide, 25 May 1990.
Texas Instruments, TMS320C3x User’s Guide, 19%0.

Verdix Corporation, i A y i ('
Guide, Sun-4 Sun0OS, 5 April 1989.

Wilson, R., "Motorola 68040 Challenges RISC Microprocessors Head
On, * Computer Design, February 1, 1990.

41

DTIC/DDAC
Camerion Station
Alexandria VA 22304-6145

AUL/LSE
Maxwell AFB AL 36112-5564

HQ USAFE/INATW
APO NY 09012-5001

AFSAA/SAI
Washington DC 20330-5420

—— e e — —— e — ———— ———— —— o —— ——— - = —— e —— = —— — - — — i L e . o o T . o = " s = o e ot~ o i

Eglin offices:

WUMNPX
WL/MNAV
WU/MNM
WL/MNAG
WUMNSI
ASC/XRC
AFDTC/PA

WL/ TXA
Wright-Patterson AFB OH 45433-6523

Wright-Patterson AFB OH 45433-6553:

WUFIM
WUCA-F
WU/FIB
WUFIBA
WUFIGX
WUFIGC

Commander

U. S. Army Missile Command
Redstone Sci Info Center

Attn: AMSMI-RD-CS-R/Documents
Redstone Arsenal AL 35898-5241

DISTRIBUTION LIST
(WL-TR-92-7015)

L I Y R e)

42

Eqglin offices:

WUMNOI (Scientific and Tech.
Info. Facility)
WL/CA-N

WUFIES/SURVIAC
Wright-Patterson AFB OH 45433-6553

ASC/XRH
Wright-Patterson AFB OH 45433-6503

ASC/ENSTA
Wright-Patterson AFB OH 45433-6503

AFIA/INT
Bolling AFB DC 20332-5000

EOARD/LDV
Box 14
FPO NY 09510-0200

Commander

Naval Weapons Center (Code 3431)
Attn: Technical Library

China Lake CA 93555-6001

NASA Langles Research Center
Technicai Library - MS 185

Attn: Document Cataloging
Hampton VA 23665-5225

