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1. Introduction

This project addressed several aspects of the the problem of designing highly-reliable
dynamically reconfigurable processor arrays. The proposed work focused mainly on
reconfiguration schemes required to implement fault-tolerant processor arrays.
According to the original statement of work, the following complementary objectives
were pursued (relevant references to work performed under the grant appear in
parentheses):

1. a methodology for the design and evaluation of processor-switched arrays
([2], [71, [81, [11], [12], [131, [24]),

2. a methodology for the design and evaluation of multi-level hierarchically
reconfigurable processor arrays ([101,[23],[251),

3. a methodology for the design of fault-tolerant interconnection routers for
processor arrays with decentralized routing control ([51, [17], [19], [20],
[22], [27]) and

4. algorithm reconfiguration strategies which, together with hardware
reconfiguration schemes, can be used to achieve graceful degradation in
processor arrays ([1], [3], [4], [6], [19], [15], [16], [26]).

The emphasis of the proposed research was on the development of optimal
reconfiguration schemes for each of the above objectives by using mathematical and
simulation tools. For this purpose, evaluation methods and adequate measures were
also studied and developed. These measures include not only reliability but also joint
measures of performance, hardware area and reliability. Software tools were
developed to help in the process of evaluating the reconfiguration schemes proposed.
The contributions of this work include a sound mathematical framework for the
design of reliable reconfigurable processor arrays, tools for their evaluation and novel
hardware designs for processor arrays and their components. These results will allow
the design of very large processor array systems suited for applications characterized
by the need to survive without maintenance in hard-to-predict harsh environments
and long mission times. These areas of application include, among others, real-time
computers, digital signal, image and speech processing systems, robotics, aerospace
and transportation vehicles and remote data processing and sensing systems.
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REFERENCE NO. 1

Shang, W. and Fortes, J. A. B., "On the Optimality of Linear Schedules," Journal of
VLSI Signal Processing, Volume 1, Number 3, November 1989, pp. 209-220.

Note - This paper shows how to compare the optimal linear schedule for a single out-
put computed by a recurrence-like algorithm. These schedules and algorithms capture
the majority of systolic array algorithms. It is also shown that optimal linear
schedules are very close to the best possible schedules and, in many cases, just as
good. These results are relevant to the problem of rescheduling systolic algorithms in
arrays with faulty components.
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On the Optimality of Linear Schedules

WEUIIA SHANG AND JOSE A.B. FORTES
Schoo of Electrical Engineenng, Purdue University. J~s Lafayene. IN 47907

Received November 8. 1988

Abstract. An algorithm can be modeled as a set of indexed computations, and a schedule is a mapping of the algo-
rithm index space into time. Linear schedules are a special class of schedules that are described by a linear mapping
and are commonly used in many systolic algorithms. Free schedules cause computations of an algorithm to execute
as soon as their operads are available. If one computation uses data generated by another computation, then a
data dependence exists between these two computations which can be represented by the difference of their indices
(called dependence vector). Many important algorithms are characterized by the fact that data dependencies are
uniform, i.e., the values of the dependence vectors are independent of the indices of computations. There are appli-
cations where it is of interest to find an optimal linear schedule with respect to the time of execution of a specific
computation of the given algorithm. This paper addresses the problem of identifying optimal linear schedules for
uniform dependence algorithms so that the execution time of a specific computation of the algorithm is minimized
and proposes a procedure to solve this problem based on the mathematical solution of a linear optimization problem.
Also, linear schedules are compared with free schedules. The comparison indicates that optimal linear schedules
can be as efficient as free schedules, the best schedules possible, and identifies a class of algorithms for which
this is always true.

1. Introduction A linear schedule is a mapping from the multidi-
mensional algorithm index set into the one-dimensional

The algorithms under consideration in this paper are time space; this mapping is expressed as a linear trans-
characterized by uniform data dependencies and unit- formation that involves the multiplication of a vector,
time computations; they include those described by called linear schedule vector, by each and every point
single uniform recurrences [11 and resemble a very large of the index set. The image of the index point under
number of systolic computations and algorithms de- the mapping is the time of execution of the computation
scribed by programs with nested loops. Informally, an indexed by that point. This algorithm model and the
algorithm is represented in this paper as a partially notion of linear schedule are easily related to similar
ordered subset of a multidimensional integer lattice models and concepts used in [11-[131 and several other
(called indec set). The points of this lattice correspond works.
to (i.e.. are the indices of) computations, and the partial There are two formulations of optimal linear sched-
order reflects the data dependencies between them. ule problem. In one case, the execution time of the set
These data dependencies are represented as vectors that of all computations of the algorithm is to be minimized.
connect points of the lattice. If a given dependence vec- In [14], a procedure is provided to find an optimal solu-
tor is always present when the vector difference between tion for this problem for any uniform dependence algo-
my two lattice points equals the dependence vector. rithms whose index sets are convex polyhedra. In some
then the dependence is said to be uform. If all applications, given an algorithm. it is of interest to find
dependences are uniform then the algorithm is said to an optimal linear schedule with respect to the execution
be a muform dependence algorithm. time of one specific computation. Clearly, to execute this

Tby specific computation. all computations on which that

ti under Gra DO-84195 and in pw by dw nmi Scie nce specific computation depends must execute first. This

a Technolop Office of fe Stnmw Dekm tiative Orpmn- gives the second formulation of optimal linear sched-
u od m ahiimmmd duqh he Office of N"I Remmch uer ule problem where the goal is to minimize the execu-

conu-1m Na 0001445-"U and No. ooM4-88443. tion time of a specific computation of the algorithm.
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+iee schedule schedules computations to execute and the set of integers are aenoted Q, IR and Z. respec-
as soon as their operands are available. The total exe- :ively. The set of non-negative integers and the set of
cution time "hat results from using a free schedule is .osirive integers are renotd N and N , respectively.
an exact lower bound for the execution time of the The empty set is denoe 0. The symbol La] denotes
atgorithm. In [11 and [12] the execution times achievable the greatest integer tinxr is less than or equal to a. The
by linear schedules and free schedules are compared. greatest common divisor of integers a,. a. is
The difference between the execution time achieved by denoted gcd(al.  an). As a final remark, if x is an
ne free schedule and the execution time achievable by element of a set S. the notation xES is used and this
in optimal linear schedule is bounded by a constant notation is "abused" to indicate also that a column vec-
[1]. In [121, it was found that the difference is equal tor mni (or row vector Mr) is a column (row) of a matrix
to either one or zero for a set of 25 algorithms. M. i.e., rijEM(MEA1) means tn4 (M) is a column (row)

In this paper. the second formulation of the linear vector of matrix M.
schedule problem is considered and a procedure is pro- The algorithms of interest in this paper are the so-
posed to find the linear schedule that minimizes the ex- called uniform dependence algorithms defined as
ecution time of a specific computation of the algorithm. follows.
Also. the results reported in [11 and [12] on the compar-
ison of linear schedules and free schedules are extended. Defnition 21. (Uniform dependence algorithm): A
A class of algorithms is identified for which the differ- uniform dependence algorithm is an algorithm that can
ence between the execution times achieved by free be described by an equation of the form
schedules and linear schedules. respectively, is always
zero. This means that linear schedules can achieve the = - d) v(j - d). (2.1
execution time lower bound for this class of algorithms. v(I - .))

This paper is organized as fbllows. The basic termi- where
nology and definitions used throughout the paper are . is an index point (a column vector). I is
introduced in Section 2 as well as the formulation of the index toth a o mn vec) is

the problem of determining an optimal linear schedule gner of thenalgor a,

when the execution time of a single specific computa- 2. o componns j , .

tion is to be minimized. Section 3 is dedicated to tue 2. g fcthe comput ed o j' i a single

solution of this problem. Linear schedules are com- valued function computed -at pointj" in a single
unit of time;pared to free schedules in Section 4. and sufficient con- 3. v(j) is the value computed "atj" i.e.. the result of

ditions are provided for an algorithm to have an optimal computing the right hand side of (2.1) and
linear schedule which has the same execution time as . d;EZ", i = 1. m. mEN are dependence vectors.
the free schedule. Section 5 is dedicated to conclusions. also called dependencies, which are constant (i.e..

independent ofjEJ); the matrix D = [d1 .

2. Terminology and Definitions is called the dependence marix.
The class of uniform dependence algorithms is a

Throughout this paper. sets. matrices and row vectors simple extension of the class of computations described
are denoted by capital letters, column vectors are rep- by unifbrm recurrence equations [1]. The main differ-

resented by lower case symbols with an overbar. and ence is that uniform dependence algorithms allow for

scalars correspond to lower case letters. The transposes different functions to be computed (in a unit of time)

of a vector and a matrix M are denoted r and M r. at different points of the index set. From a practical

respectively. The symbol E, denotes the row vector viewpoint. uniformdependencealgorithmscanbeeasily
whose entries are all zeroes except that the ith entry related to programs where (1) a single statement appears
is equal to unity. The vector 1 (or 0) denotes the row in the body of a multiply nested loop and (2) the indices
vector or column vector whose entries are all ones (or of the variable in the left-hand side of the statement dif-

zeroes). The dimensions of vectors I and 0 and whether fer by a constant from the corresponding indices in each

they denote row or column vectors are implied by the reference to the same variable in the right-hand side.

context in which they are used. The symbol I denotes Alternative computations can occur in each iteration

the identity matrix. The rank of a matrix A is denoted as a result of a single conditional statement as long as

ranc(A). The set of rational numbers. the real space data dependencies do not change. Nested loup programs
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with multiple statements can also use the techniques
of this paper together with Cie alignment method dis-
cussed in (151 and [161. 2s

For me purpose of this paper. only structural infir-

mation of the algorithm, i.e., the index set J and the 4

dependence matrix D, is needed. Other information. - A7

such as what computations occur at different points and J: j

where and when input/output of variables akes place .... -1
can be ignored. Therefore. a uniform dependence algo- ..... 0 0
nthm with index setJand dependence matrix D is here ...... A= 0

on characterized simply by the pair (J. D). It is also ...... 2

assumed that, as in Definition 2.1. the letters n and in -. . .-..
always denote the dimension of index points in J and 4

the number of dependence vectors, respectively. The
following example illustrates the concept of uniform
dependence algorithms. 0

Example 21. Consider the following uniform depen- 2 S S 2s J,

dence algorithm: -3 -

x(j,j 2) = g(x(j, - 1, j2 + 3), d,

X(J, - 2. j. - 4) r(j, -2.)) F1. L. The index set of the altrithm of Example 2.1.

where of nodes of the graph andE= j'):

t 0. 2s .' -1 di, dED.j, jJ} is the set of edges.
Zs -f(j,j)EE, thenj andj' are called the tail and the head

0..... 2.s - 1  if sSj, 2s sof edge (, f). respectively. If there exists a set of in-
s-i, 2s -]i if 0'Sj s " dex points j . J, such that (i, ji). (,J, j2).

(j,,j*).EE. thenj is connected toj* The tuple L = (j,j,,
The index set J of this algorithm is shown in Figure .... J1, j*) is called a directed path and its length is

. The reader can verify easily that it can be described the number of edges on the path, i.e.. I + 1.
as I = {j = [jr, jJ: Aj., EZ2} where The partial ordering oc induced by the dependence

-1o 0 vectors on the index set J is such that, if j, j '61, then
0 -1 0 jat" if and only if there exists a directed path from]

A = [ 1 1 = tofj' in the precedence graph of thie algorithm.

L1 1ii Definidon 2.1 (Schedules): A schedule for algorithm

The dependence matrix is D = [d1, d2 , d31 where (V, D) is a function u: J - Z which is strictly monotone
= (1. -3]. , = [2. 4Jr and d3 = [2. 0]r .  increasing with respect to the ordering c induced by
The dependence vectors a1, i = 1 . . n induce d, i = 1 .... m in J. i.e.. if jaj' (computation in-

a partial ordering on the index set J. This ordering, dexed by]' depends on computation indexed byj), then
denoted c. can be easily described in terms of the algo- a(l) < Ofj').
rithm precedence graph. Informally, the set of nodes In other words, a schedule is a mapping which assigns
of the precedence graph is the index set. and if compu- a tnie of execution to each computation of the algorithm
ration indexed by j, depends directly on computation in such a way that dependencies are preserved. i.e..
indexed by j2 , then there is a directed edge from node if the computation indexed by.j' depends on the com-

12 to node j,. The formal definition is given next. putation indexed byj, then computation indexed byj'
can be executed only after the execution of computation

Deftiniion 2.2. (Algorithm precedence graph and indexed by . Examples of schedules of interest in this
directed path): The precedence graph of algorithm paper include free schedules and linear schedules. both
(J. D) is the directed graph (J. E) where J is the set of which are defined next.
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Defiition 2A. lF-.e scheduke: .7or algorithm (J. D) natrix of D and H(G) is a subset of Y. i.e.. (HG;). D,)
:he free scheduie . a mapping af: J - Z such that :s a sub-algonthm of (. D). Due to the fact that the

r0 if YdiED. j-'d. compumtion indexed by is the last to execae, the total
)xecution time t, for (H(-), D,) with a linear schedule

1,max {af(j-di): j-iEJ, i=l . l rl can be expressed as
.f 3dliED. j-aiEJ ma{1"( - j): fi-Eff ))

., = [,rDi nd{-J Max f-i - .J + 1 (2.3)

Definition 2.j. For algorithm (J. D) a schedule an:

J - Z is a linear schedule if an(" = L'I + c . jE . Because t, is minimum if the argument of the floor

where IIEQX" is such that min{Id: diED} I I and function in Equation 2.3 is minimized, the problem of

c = -minf{lj jEJ}. finding an optimal linear schedule with respect to the
Definitions 2.3 and 2.4 are similar to equivalent defi- execution of one specific computation is formulated as

nitions in [1]. Free schedules are the fastest schedules

possible, and the total execution time achieved by free
schedules is the exact lower bound of the execution time Problem .1 oe optain : Fcealrblm
of any algorithm. It is relatively simple to verify that for execution of one computation): For algorithmbot fre shedlesandlinear schedules satisfy Defini (3" D), let EJ. The time optimal linear schedule prob-.
both free schedules and lem for execution of the computation indexed by p con-
tion 2.3. i.e.. they preserve data dependencies. In the sists of finding a linear schedule vector IIEQix such
last dflnition, the entries of lI can be any rational num- that it minimizes
ber. However. given such a I, it is always possible to
find 'EZXn and a constant dispfl' E N' such that f = max {fI( - 1):f H!EH ) (
II = r'/disprI' where dispfl' equals the least common min {rId: d.ED }

multiple of the denominators of the entries of . For subject to r'l, > 0 cED,.
this reason, the following definition of a linear schedule
is equivalent to that of Definition 2.5 and is used Notice that if II is an optimal solution of Problem
throughout this paper. 2.1. so is cJI, for any non-zero constant a. This guar-

antees that the optimal solution rIl can always be ob-
Definition 2.6. (Linear schedule and linear schedule tained such that IIEZ""' and the greatest common
vector): For algorithm (J. D) a linear schedule is a divisor of the components of II, is equal to one. After
function an: J - N such that l,, is found. then. according to Definition 2.6. the con-

n + o)dispr I -J (2.2) stant c can be determined and the corresponding opti-
mal linear schedule an, can be specified completely.

where 'IEZx " . dispfI = min{lidi: dED } > 0. The solution of Problem 2.1 is discussed in the next
r,cd( t.  r) = I and c = - min{lIj: jEJ}. The section. From here on. the letters m and m; always

row vector II is called linear schedule vector associated denote the number of dependence vectors in matrix Da
with art. and the rank of matrix D,, respectively; and without

In some applications, given an algorithm (J. D), it loss of generality, it is assumed thatD, contains the
is of interest to find an optimal linear schedule with first m, columns of D, i.e.. D,, = [d,, . d].
respect to the time of execution of one specific compu-
tation. Let i be a point in J. If there exists a directed
path from point 1 to in the precedence graph of the 3. Solution of Time Optimal Linear Schedule
algorithm (J. D). I is a predecessor of i. Clearly, to Problem for Execution of One Computation
execute the computation indexed by p. all the computa-
tions ndexed by the predecessors of have to be exe- This section discusses the solution of Problem 2.1. i.e..
cuted first. LetI, ... j, be all the predecessors of ,. the problem of finding an optimal linear schedule such
H() be the set of t .... J . and and D. be the that the execution time of the computation indexed by
matrix of dependence vectors that are present in H(G). a point P'rEJ is minimized. A theorem and a procedure
i.e.. d, E D, if and only if there exist two points j 1 , are provided that describe how to find the solution of
j2EH('j) such that j, = j2 + di. Suppose that there are Problem 2.1. The long proof of the theorem is pro-
m, dependence vectors in D,. Clearly, D, is a sub- vided in Appendix. However. the idea of the proof is
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described informally and examples are given to illus- THEOREM 3.1. Consider algorithm (J, D) and let -A.
rate :he main concepts. An optimal solution II, of Problem 2.1 ,br (H(,j), D,,)

Let D(c, .. .c 1/r,.. .r,) denote the submatrix of D belongs to CO, i.e.,
:ontaining the elements in columns c, ... , c, and
-ows r,, .... , r., i.e., it contains the elements of D at .

the intersections of columns cl, ... , c, and rows r, 1 c1 <. .. <:,,, <mA, (3.1)
. ... r, respectively. If D(c,.. .c/kr ... rk) is nonsin-
gular, an integer row vector V = [vi,. v ]Zix± lr. < .. <r,, n}

's defined as V = 3 Z-'(c,.. .c/r,. . . rk) where $ is a P Prided in Appendix.

positive integer constant such that gcd(v, ..... v) = 1. The idea of the proof is as follows. The fact that the
In other words, V is a vector whose entries are the sums computation indexed by is the last to execute is explored
of the corresponding columns of D-'(c,...c*1 r1... rt) and Problem 2.1 is reformulated as a linear program-
scaled so that they are integers with the greatest corn- ming problem. Its dual is considered For m,
mon divisor equal to the unity. If D(c1 .. - krl... r) i
is nonsingular, then 11(c ... ck/r:... rk) = VBW"Z i"

,  it is shown that G = [d,,. d,], where d,,.
iw nnurd_'e ED,, is an optimal basis for the dual problem and
where 'I- = -, is an optimal solution of Problem 2.1. So

[EH,1 = II(c 1 . '.. n) and it belongs to C. Ifm', <

8= . n, H(p-) is transformed into an m',dimensional spaceL ~ jby a bijective linear mapping r specified by a matrix
TEZ"m",o . By applying the same reasoning in the case

In words. the subvector fir,. Irk] of 1(cI ... ck/ where W' = n, it is shown that I, = l(c.. .c,,,/
r,... rk) is the same as V and the remaining entries of r..... r,, ) for some values of rl, .. .. r.,o. The candi-
I(c,... ct/r... rO are zero. Finally, C' denotes the date set C' is constructed by the following procedure.
set {11(c,...,... r,, o): 1 <5 c, < ... < c,,,o <

m,, I < r, <... < r,, 5n}. The following example Procedure 3.1. (Construction of C"):
illustrates the notation and concepts just introduced. Input: Algorithm (H(I), D,)

Output: A finite candidate set C" containing the opti-

Example 11. Consider the algorithm (J, D) of Exam- mal solution of Problem 2.1.

ple 2.1 where index set J is shown in Figure 1 and Step 1: CO = and l = 1.
Step 2: Pick up a set of m', linearly independent col-

22 umns from D,D Step 3: Let the set of m' linearly independent col-
u3 4 umns being processed be d,,. .,,,. Find

a matrix
According to the definitions just introduced. D(lI) = [1]
(contains the element at the intersection of columrn 1 E
and row I of D), its corresponding V=,3WL-'(11) = [1] B ... , r, < < ro n.

where $ = 1. B -E, = [1. 01 and 11(1/1) = VB = [1, 01; E,..
similarly, D(1/2) = [-31, its corresponding V = such that D(c,.. .c,,,/r,.. .r,,,.) = B0d,

tD-'(112) = [-1] where 0 = 3, B = , = [0. 11 and .... de,, is not singular and set II =

I1(1/2) = VB = [1. -1; and c,.. .c, or, ... r',). C' = CU {f'}, I

D(12/12) = 2 Step 4: Check if all distinct sets of in', linearly inde-

L-3 4J pendent columns from D, have been proc-
essed. If not. pick up an unprocessed set and

its corresponding Vf= D-  = [7. -11 where 3 = 10, go to Step 3. Otherwise. stop.
B = I and 11(12/12) = VB = = (7, -11. Clearly, Step 3 dominates the whole procedure.For

Without loss of generality let D, = (Ia, ... , 4 ], Step 3. each iteration needs at most O((,,.)m',) oper-
rank(D,) = m', :s m,. The next theorem states that atioas to find matrix B such that B d,,. d,.]is
C' is the candidate set for (H(.), D,), i.e.. fIEC'. non-singular and there are at most () iterauons. So
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the complexity of Procedure 3.1 is bounded above by
O(('.1)( .)m'D) and is independent oi the size of .1
the agoridim (i.e.. Joes not depend on the cardinality
of H(p)). If m =in' = n, then the complexity is 2

C" according to Procedure 3.1.

0(.The f ( olowing eplesos howke to co"nstructr 1

Example 2.2. Consider the algorithm of Example 2.1 
where F1 22

D = L

-34 0 . . . .2 T=

Figure2shows theindexset J when s = 6. Let2. 6
[U. O. Then H(e.) = ([. OI} 9,j JT [7, 01 [8.. 31, . . . . .

Accordin t4,o [4], 3he 1 op 1,a liner schdul for [ ,, i=3 1

The set H() contains points marked by "W" in figure
2. Only dependence vectors [I . -3]r and [2, Or are
present in H(), i.e., . . . .

1 300 6 ~12 j,

There is only one combination of two dependence vec-
tors from D, which determines a vector = (lN3/1i) =nFig. 2. The index set of the algonth of Example 3.1 when s = 6.
[3. -theeorexe.i C im = {[3 th-ean fr shl e fo3 ] Ha() is the set of points which are marked bi an connected
(3. ) a i ., o ee o e t p1e.edence ecaoph Cf -31 and1h and 0 ) - [
According to [141, the optimal linear schedule for (J, to de nden to (. D3 and 12. e -
D) is n(12/12) which is diefrent from l. This implies determine how linear schedules compare with free
that. in general, the optimal linear schedule for (J. D) schedules.
is not necessarily the same as the one for (H(), D,,) Let t(fo. J. D). r~ap J. D) denote the total execution
where . The total execution time for (H(9), D) by timefor agorithm (J.D)achieved by the inearschedule

II, is 0(fl) = an. - an,([0. 91r) + 1 = 8. Notice ny and by the free schedule , respectively. Clearly, if
that the total execution time by the free schedule for I equals the length of the longest path in ( a), the algo-
(H(p), DO) is also 8 units. i.e., the total execution time rithm precedence graph of algorithm (J. D) defined in
by the optimal linear schedule . is equal to the total Definition 2.2. then Oaf, J. D) = I + 1. Let k(HG),
execution time by the free schedule. So. the optima d D e) = (e, H(), Di,) - (af, H(i)e Do ) where an.,
linear schedule achieves the lower bound of the execu- is the optimal linear schedule for algorithm (H()r D.)
tion time of (H(m), D,) in this example. and can be found by Procedure 3.1. Karp, et al.. [11 have

shown that k(H(h), ed, where Ws. is bounded above
by a constant. However, as they pointed out, to find

4. Comparison of Execution Mimes by Optimal the constant is still open. In [12], 25 algorithm were
Linear Schedules and Free Schedules studied and it was found that the difference W(J D) is

equal to either one or zero for those algorithms.
This section compares the execution time achievable The following theorem provides conditions on the
by optimal linear schedules with that of free schedules. dependence matrix of a given algord which guaran-
Fith a sufficient condition on the dependence matrix tee that an optimal linear schedule for a given com-
D of an algorithm is provided which guarantees that putation yields the same execution time as the f'ree
both schedules achieve the Am execution times for schedule.
a specific computation of the algorithm. Afterwards,
the execution time of all computations of the algorithm THEOREM .4.1. Without the loss of generality, let
is briefly considered. It is shown by examples that, for P" Ad, ... ., J. If rank ((dl - d2, d, - . -.
the last case, both the size and shape of the index set d,- 41") < ,uink(D2), then k((H(p-). D,) - 0.
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Proof Provided in Appendix.
Theorem 4.1 applies to Example 3.2 where k(H(-), . ... o.]

D,) = 0. ,6 =[U.0] rT. Next, it is shown in two exam - ,= .. 3 '.2. '.". t

pies that, k(J, D), the difference between execution
*imes of algorithm (J. D) achieved by optimal linear .4 4 .4.. a. ". . -.9

schedules and free schedules. depends on the shape and '.. 3 .3 d. ' " .. ' n

size of the index set of the algorithm. In other words. " ".; " %. 7 "_.7 .

the resutt of Theorem 4.1 does not generalize to the '.. .. '. '. . . . .

case when all computations are considered. -2- r. . 6i. i -. • o
{LI,~~ *~J 0 5 JIS1 a .sj, 2 Z n

Example 4.1. Consider algorithm (U. D) where 2 4 "- a o-."/'".. .. . .. .. . ... 3".."'.-.*-. "-.. ,,J~~~ S= {,,jr0<jJ2 <  S., j,, j2EZ} anid ." " -"." "IM
W1,~~~ .-r 0 .5ij 0

3 0 C.
-3 2

Let IlF be the linear schedule vector by which the total
execution time of the whole algorithm is minimized. By (a)
Procedure 3.1 in [141, 1W = (5, 31. Figure 3a depicts
the index set where s = 8. The label at each index point
j is equal to af(j), and the parallel lines correspond to
the hyperplanes no ff

) = ([5, 31)/6j = c,. If an . .

index pointj lies on the line aro(/) = ct or between .. ..

lines ajo() = c, and ar.(j) = c, + 1, then the compu- " ' ' "
tation indexed by] is assigned to execute at time step c, " 7
by the optimal linear schedule ano. It can be verified -.

that when s = 6. k(J, D) = 0 and when s =8. k(, .. . . . .......
1% 1a133.333

D) = 10 - 9 = 1. So k(J. D) is a fnction of the size s. " ' - 3 3 ..

Actually, regardless of the value of s. k(J, D) is bounded .o-" -*
above by constant Lfl[2. o1r)/6J = 1. The derivation % 2 % . o O,

of this upper bound can be done heuristically as follows. "

Clearly, the last computation scheduled to execute by
the optimal linear schedule ano is indexed by the index ' .
point s = s. sir. Consider (H(p-), D,); because D, 0

satisfies the condition in Theorem 4.1, k(H(p-), Di,) = 0.
.Also. H', = If due to the fact that D, = D. So. k(, (b)

D) = ariepji) where i is an initial point (i is an initialpoit i u1ai = ) schtha oo~a) mi~ur~z,) o, F. 3. The indexseuof the alorithnu ofExampie 4. (a) and Examr-
point if af(u) = 0) such that ano(u-) = min ,(fii) = 0, pie 4.2 (b). The label at each point equals the time step of execution
a,<i) = 0. z 1fH(f)}. There are six initial points in 1. assigned by the free schedule. The pallel lines indicate te time
It the initial point i is not easy to identify, one pos- step of executo assigned by the optimal linear scheme. All points

sible upper bound for k(J, D) is anal2. lr) - lying on the line ad)e-c or beven lines uan) c and flWJcN

max{arp(ij): qf ,i) = 0. i1eJ} a ano(i). As shown are executed at time step c.

in [17], there is only one initial point connected to 05.
and. regardless of the value of s. initial point [2. ir  Exempie 4.2. Consider the algorithm that has the

same eonncmarxaExml4.anJ

does not belong to H(p) (due to the fact r1M2, lJT , sAe e n matrix se m 1

MIt(mod6)). So, the upper bound acr4[2. 11T) is not (j: Aj S b, jEZ2} where

tight. It can be verified that the initial point [2, OJT 027
belongs to H( ) (i.e.. 11012. 0J fl (mod6)) when
s is such that 3 divides 4s - 2 (i.e.. s = 2, 5. 8, 1 A 0 1 and 0
and soon. Therefore. k(J. D) s an.[2, 0J) = I and
when s = 2 - 3t. rEZ, k(J, D) = antM2 0 ]T) - I. s
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The index set is shown in Figure 3b (for s = 3) and (min f =

has a shape different from that of Example 4.1. 3y Pro-
cedure 3.1 in [141, 110 [5, 31. The linear schedule ubject to rID . 6.3)
ipecifed by f is arO , = L([, 31)16J . When s = 6,
(J. D)=3 and when s=8. k(J. D)= 10-6=4. rIPi1 ,.., 7, s

.e.. .or the same sizes considered in Example 4.1 k(J,
D) has different values due to the different index set or equivalendy
,hape. Regardless of the value of s. k (J, D) is bounded Max f =[r.,T, I.
above by L(i°[5, llr)/6J = 4. The derivation of this [ '.

upper bound is similar to the one presented in Exam- (6.4)
pie 4.1.

5. Concluding Rema subect to [,, -.. . ]-D o V- ...

In summary, this paper provides a solution to the prob- 1,
lem of identifying an optimal linear schedule for the Clearly, if [Trl, r,. ir] is an optimal solu-
execution of one specific computation of algorithms tion to linear programming problem 6.4. then [r..
with uniform dependences. Also. a class of algorithms rJ is an optimal solution to (6.2), or Problem 2.1.
for which the optimal linear schedule is as efficient as The dual problem of Equation 6.4 is ([19], pp. 86):
the best possible schedule (i.e., it is as fast as the free m -i 6
schedule) is identified.

6. Appendix subject to - • .. s = [ (6.5)

Proof of Theorem 3.1. First. i is an initial point if and
only if af(u-) = 0. Let i, .. i, be all the initial
points in H(i). Because the computation indexed by where iEfR I, +*)xI. Now. Problem 2.1 has been for-

is the last to execute and the computation indexed by mulated as linear programming problem 6.4. Next. the
one of the initial points in H(,) is the first one to exe- solution of linear programming problem 6.5 is consid-
cute, Equation 2.4 can be rewritten as ered first. The solution of linear programming problem

6.4 can be constructed easily from the solution of (6.5).
m' f = max {( - ij): i Let's assume that m', = rank(D,) = n. Let (II.

min (11 di: dED, } (6.1) H(o-), D,) denote the total execution time achieved by
h fay for (H(-), D,), i.e.. t(II, H(.-), D,) is expressed

Subject to lID, >6 by Equation 2.3. Consider the linear schedule vector
II"EC' such that t(i', H( ), D,) = min{t(gi, H(P'),

Let's consider the linear schedule vector U defined D,): lIEC). Without loss of generality, let II" =
in Definition 2.5, i.e., the linear schedule vector II such Ml(... n/l.. n). Let G - [d, ..... d], then II" =
that rain{flid: d EDJ = 1. Then. Equation 6.1 is 0iG- . Clearly, if it can be shown that 1* = (I/t)fl"
equivalent to - 1G- is an optimal solution of linear programming

problem 6.2. we are done. Now let's assume that L,
rin ft rnax((j- it): i = 1 .. s} - is an initial pont to be executed first by i'.

(6.2) i.e., I'zi, =i min {fl'j: jEH(p-)} and consider the fbI-
L.subjec to [ID > i lowing linear programming problem

Furthermore. let s = - ii, i = 1. s. Using (min IT
the approach described in ([181, pp. 96), Equation 6.2 (6.6)
can be reformulated as a linear programming problem: Wject to ID
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2i Its duality I I G;'K G,, 1
r \J 3 (6.8)

max~ CK - CG.G,-'K -CGG,iubject :o D =, (6.7) After some manipulation it can be ieen that

v., = _-,,_-, 1
where 9EIR'". x1 By the definition of 1I*, it is an opti- -
-nal solution of problem 6.6. i.e., G is an optimal basis
for problem 6.6. Let DO  ( [G. HI CG = [-I. So.

-ll.. and Cg = [-IX.. l . By the sim- F-1 G- 1
plex procedure ([191, pp. 58) the initial tableau for prob- COoG.'K = [CG, 01
lem 6.7 takes form jCGo.,] :
If matrix G is used as a basis, then the corresponding
tableau becomes = - [f"*j,, 1'*]

1 [C'H. 
G H* 

(G7 - i 2) . vf- ,

5 C1 - CGG-'H -CjG-a.0 and
where I is the identity matrix. Because fl* is an optimal
solution, by the Optimality Condition Theorem ([191, CK - C0 Go' K = [C, - C0G-H. fl"(, - 12.),

pp. 43), G- ' >_ 6 and C,, - CG -'H -- 6. .... li*( , -
For linear programming problem 6.5, the initial

tableau takes form "*- minjI.*.i,: i = 1, s} implies that
2*6(i, - ii) =fi 1* - ii,) 0. i = I. s. There-F ... -1-1 fore. CK - C0 G;'K z 0. For GE', becauseG-' , -a 6, it follows

L JG [3 [03 [0:. IJ
Let Now it has been shown that Cr - CooG'K - 0

-t and GV" a- 6 for tableau 6.& Again by the Optimal-
Go ,iry Conditions Theorem ([191, pp. 43), G, is an op-

-G J timal basis for problem ( 5.
According to the theorem ([191, pp. 91, if G. is an

K optimal basis for problem 6.5. then IT' = CG.Go-
-H =' -CG[G-t i, G - 1] = [*tr1*] is an optimal solu-

tion for problem 6.4. Therefore, the optimal solution
-C[G ,O'1=ff* 1,flxs nopimlsou

Co, = [Co, 01, [-1. "1r(f+j) of problem 6.2 is I', = 1 and the optimal execution
time is w, . = 1'*. So the optimal solution of Prob-

and lem 2.1 for (H(p), DO) is 1(I...nil... n) which
CK = [Ce, txf,-,,,.-). belongs to CO. i.e.. 11 ,EC'.

Now let's discuss the case where ank(D) =

If G, is used as a basis for problem 6.5. the corre- m', < n. H( ) can be transformed into an m,-dimen-
sponding tableau for problem 6.5 is sional space by a bijective mapping. Without loss of
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generality, !et d,, . d., be linearly independent Let 0t and Q2. Jenote the soiution space of Equation
and D' = [d, ..... ,. Three facts are proven 5. ,a and the solution space of Equation 6.10b. respec-
next. First. let TEZ'°oT' and TH(p) denote the set {77: "veiy. Clearly, if flEfl, then 1IEfl,. so. , -=.. Let
jEHG)}. Then the mapping r: H(i ) - TH( ), r(J) dim{fli}. i = t. 2. denotes he lumoer of linearly
= 77, jEH(ii), is bijective if and only rank(TD'o) = independent vectors in ff. Because -ank(H) <

'. Because rank(D,) m, di can be written as a rank(D,), dim{fi2} = n - rank(H) > n - rank(D,)
linear combination of d, .... d,, i = r' 0 + 1...... = dimf{0 2 }. .his implies that U, C %. So there exists
Mo .e.. there exists a matrix P'fR' " such Lhat at least one vector 1I belonging to f2i but not belonging

_-= D',[I, ri vhere - is the identity matrix. If to 2,, i.e., ld, =.... [= 1dm # 0.
j1 , jzEH(), then j' = jz + D Xwhere XEZ"'n. So. The optimal linear schedule vector I10 for (H(p-), D,)
T(j, - J2) = TD TD'[I. Ix = TD'0 a- where can be selected as follows. IflT = ... =Iid,, < 0.
& = [I, IjX. If rank(TD'0 ) = m',, then equation the n,= -11, otherwise If = 11. Now.
TD',= -- 0 has no nontrivial solution which means
that T(, - fz) = 0 if and only if, -J2 = 0. Therefore. t(1' 0, H( ), D0) =
r is bijective. I disp R,0

Secondly, there always exists such matrix T that
rank(TD',) = m'. Because rank(D'0) = rm' 0, there Because sEH(,i), there exists a vector XEZ' such that

exists a set of m', linearly independent rows of D', = + . The length of the path connecting to

i.e.. there exists a nonsingular submatrix D(1... se',,! =T

r..r,), I -r < ... < r, n. letisequalto

1 "rf E,, M Z, .

then 0D' L DO So 11, - = Io = disp R.o'X = l-disp R,

th TD'=O(l. . n, mr,.. r.,) and rank(TD) = m. ,=7

Thirdly, n1,, = '(c,. c,;I/r,... r,). Consider the Therefore.
algorithm (77(,), TD,) where mnk(7D,) = m,. If the
same reasoning in the case where m', = n is applied, t(H.' H(s). D,,) = F 11 - fi I

then A = LD-'(c,...c,;/r,.. .r.) is the optimal solu-| disp [I,,
tion of Problem 2.1 fbr (TH( ), TD,,). If A is an opti- r disp 11o -
mal solution for (TH(p), TD,), then AT is an optimal I disp[- - = I -

solution of Problem 2.1 for (H( ), D,). This is true

because Now. taf, H( ). D,) < t(fl,, H( ), Do) = I - I.

maxA(Tt- Tui):i =1. = s)However. (af, H(i), D) _ 1 + I because there exists
a path with length I + 1. So r(af. H(s), D) = I

max{AT(5 - u,): i = 1. s} (6.9) = t(l, H(,i), D,), i.e. k(H(). D,) = 0.

The left-hand side of Equation 6.9 is the optimal
value of the objective function in Equation 6.2 achieved
by A for (TH( ), TD,). So the right-hand side of
Equation 6.9 should be optimal for (H(5). D,) and AT C0 : candidate set for H(p), D,); see Theorem
should be an optimal linear schedule vector for (H( ), 3.1.
D,). Therefore. the optimal solution of Problem 2.1 D: dependence matrix with n rows and r co-
for (H(5), D,,) is 1'., = AT = rI(c1...co./r1... r,,) umns: see Definition 2.1 (4).
which belongs to C*. i.e.. r1 EC". D,: matrix of dependencies that are present in

Proof of Theor-er 4.1. First, it is shown that there ex- H( ): see the paragraph before Problem
istsaolinercheulem ve r Frstit sh that ther -2.1.
ists a linear schedule vector 11 such that l =d~....i: dependence (column) vector with n corn-
= rd,, * 0. Let H= [d, -d, d, -d 3 .  d, - d, ponents: see Definition 2.1 (4).
consider the following two equations: E: the set of edges of the algorithm prece-

(a) IlH = 0 and (b) IID,, = 0 (610) dence graph: see Definition 2.2
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SURVEY & TUTORIAL SERIES

A Taxonomy of
Reconfiguration Techniques

for Fault-Tolerant
Processor Arrays

Mengly Chean* and- Jose A.B. Fortes.

Purdue University

V ery large scale integration/wafer- _ tion and classification of a specific feature

scale integration (VLSI/WSI) of FTPAs. that is. reconfiguration, as op-

technology is most advantageous posed to Abraham et al..' which surveys
when used to implement regularly struc- This proposed and discusses different features of FTPAs.

tured systems such as large arrays of iden- taxonomy fo cuses on Schemes can be differentiated from one
tical processing elements. As integration another according to the type of redun-
levels increase and the sizes of arrays grow FTPA reconfiguration dancy (time or hardware), allocation of
larger, the possibility of single or multiple redundancy (local or global), replacement
faults occurring in a VLSI/WSI array techniques useful for unit (processor or a set of processors),
heightens. These faults can occur during comparing many switching domain (global or local), and
the operational lifetime of the array, as switching implementation (switching ele-
well as during its manufacturing process. possible schemes. It ment. bus, or network). These characteris-
In a non-fault-tolerant array structure. t help tics can be used as the basis fora taxonomy
failure of a single element can cause the en ineers of reconfiguration techniques as illustrated
array performance to degrade severely if and researchers by th classification ees shown in Figures

not fatally. I and 2.
On the other hand, the array might be understand existing A detailed discusion of every ree leaf

able to operate in a fault-tolerant reconfig- appro as a separate and distinct clan is neither
urable structure, even if a certain number practical nor possible in- this article. In-
of faults are present. This can be done by develop new ones. stead, the techniques in four major sub-
using a reconfiguration technique for re- trees are grouped into larger classes that
structuring the irray statically (at fabrica- correspond to the following distinguishing
tion time, for yield enhancement) or dy- characteristics:
namically (during its operational lifetime, taxonomy for reonfiuration techaques
for improved reliability), for fault-tolerant processor arrays • local redundancy in hardware redun-

In recent years. a large number of re- (nPAs) and discusses their distinguish- ant schemes,
configuration schemes have been pro- ain characteristics. • set switching in schemes with global
posed. Before deciding which techniques The article focuses on the charateiza hardware redundancy,
are best suited for particular deuigns. it is • processor switching int schemes with
important to understand their similarities • c, , dr mluim Re~* cmw. global hardware redundancy, and

and differences. This article introduces a Si. Osvupmau ComPmy. Hornf. T8. * time redundancy.
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* .1 igures 1 ind 2. _-stet.ss identify the
soth ;btreesto - iichthe~e:i.Wses

*~'* ~. SW~lk~ ~corresvond. ?o rviy hese c..isses are
. - - ~ ~denoted as the locai-redundancy class, the

S pro.. ssor-switching class. :he set-switch-
L ;.j'iass. id th time-redundancy class.. attempt :a inimize ;nie maximum wire

~ N~g~b.S.~wIW ~ length: :his zzai 'esuit in some waste 3f

tunctional zells. -n processor-switching

Globat -ichemnes, efficient cell use can cc ootained
- reundocrat :he COSE of' reconfiguration :ime and

hardware. Reconfiguration algorithms in
Globak the set-switching class are less complex

- :nan local-redundancy approaches but can
-. waste more functional cells. Finally, when

a decrease in computational speed is an
* swehedacceptable form of performance degrada-

tion. time-redundancy techniques can be
L * SBE" considered and potentially have less sill-

- aereudny
-wghn ARCE!!! , con area overhead than those that use hard-

* A figuration schemes. Instead. we review
tpical techniques selezted from each class

in the following sections to discuss and
illustrate the main characteristics of differ-
ent classes of schemes.

t=Terminology r
The reconfiguration techniques pre-

sented in this article apply to an (M+R) x J
~3weM.'d n~dwmdui~ipi 4swcen fuTwmcmdk (N+C) array of cells in which M and N 1

_______________________________________________________ represent the number of rows and columns,
respectively, and R and C represent the

Figure 2. Taxonomy for tame-redundancy reconfIguration schemes. (Asterisk number of spare rows and spare columns,
identifies the root of the subtree and its corresponding claws.) respectively. Figure 3b shows an array

Figure 3. Mapping of a logicai array into a physical array: (a) logical 7TPA: (b) physical FTPA.
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with one spare row and one spare column. faulty cells is a faulty array. The probability of survival G(x) (also
Cells are denoted by squares. and crossed A physical FTPA is a nonreconfigured called survivability) is the conditional
cells represent faulty cells. We will intro- FTPA that can contain faulty cells. A cell probability of success in reconfiguring an
duce additional circuitry used to bypass in a physical FTPA is denoted by (i. j). array. given that it has x faulty cells. In
faulty cells when we discuss appropriate where i andj represent the cell coordinates, some instances, reconfiguration is aimed
reconfiguration techniques. I:5i5M+R. l5j:SN+C. A logical FTPA is a at constructing an array with the largest

A fault-tolerant processor array (see the reconfigured FTPA that is fully opera- possible number of functional cells. the
sidebar. "The ubiquitous processor array." tional. A cell in a logical FTPA is denoted target (logical) array size does not need to
for background on processor arrays) is a by (i. j] where iand~i represent its logicai be fixed. In this case, the term harvest
two-dimensional array of identical and coordinates. I SiSM. I5j:SN. refers to the numberof fault-tree cells used
regularly interconnected processing ele- An array reconfiguration is a mapping o to construct the largest logical array pos-
ments (Pks) incorporating redundant cir- of logical cells in a logical FTPA into sible. Ideally. the harvest is the number of
cuitry (sparest and hardware for recor- functional cells in a physical FTPA (see cells in the physical array minus the num-
figuration. A cell is a processing element Figure 3). Thus. o (i, ]]) (U1) if logical ber of faulty cells. In an FTPA. if S is the
of an FTPA. An available cell is a good. cell I i. j) corr esponds to physical cell (U)h. total number of spare cells and F the total
functional cell (also called fault-free or The inverse of 0 maps a functional physi- number of faulty celis. then the spare
live cell). An unavailable cell refers to cal cell to a logical cell, for example. 0' (Gi. demand p is defined as p = F/S.
either a faulty cell or a fault-free cell that is j)) = [mni. Also. 0 and 0 map a logical cell Four figures of merit. simplicit.
already used to replace another cell. to the corresponding physical row and the efficiencY. area, and 1,cala 'v (abbreviated

A group of cells in a row, column, or corresponding physical column. SEAL). are useful to evaluate areconfigu-
block is called a set. A functional set con- respectively: 0, and 0, are defined simi- ration scheme.
tains cells that are all functional. In con- larly. For example.,(ma = k if logical Simplicity refers to the time complexity
trast. a set that contains one or more faulty cell fm.nJ is on physical row k. If a map- of a reconfiguration algorithm as a func-
cells is faulty. For example. a row that ping between all cells in a logical FTPA tion of the number of processors in an
contains one or more faulty cells is a faulty and cells in a physical FTPA exists, the FTPA. A simple algorithm requires a short
row. and an array that contains one or more reconfiguration is said to be successful. execution timne that should be polyno-

The ubiquitous processor array
In Its basi.formn. a processor array is ample$ of these variants. Recently, a cssing and understanding, pattern

simply a set of processors organized particular type of architecture, detnoted recognition. adaptive-array
as a grid where each point corresponds systolic array, has been used in a large beamrforming, matrix computations.
to a processing element anrd tines be- number of proposals for speclal-pur- partial differential equations, bit-level
tween points correspond to communi- pose architectures. A sample of this -aritmetic. digital filter"ng celluar auto-
cation inks between processors. This type of work can be found in Corn- mati, computr graphics. Monte Carlo
,cis-iere~to #=-sbeen pro- pute$ and Mood and Conway.' isilmulations, and games. Nowadays,
posed Since the earlydays of lgtal Prooessorwaraysare pervasivevar- eanyepcii.pupand/or-oofmr-
4oMpaftsr anid has been doovered ale architectures foriwo main rea- -alalromemenays~ar beirig"ed
for many 411feenta4pulcwjonswan eons,:0 "lhe aultlta" electronic 11or1heeeappications. Poor yiel and
IWcNolMI' s atdcueeom of Vhe 41ech1nologiss 4padtlulafl VLVAWSI), isAllby onlmp~ chalack ols
*Aslor0yj0(WIry, proessor~Aouyesgns and f2) V"e van be stnhckuraly wall- madgt e ahesnrhi-

veitefadibrW~'ndPW aueo nd uNte a towiany appintions . The igrafdfdaes.Iepeve,*VWge1fem

.armyrdefare. ftsammiple, WoduW*sltama Rha Jtufflestode-
0 AsIebgwla m~n feoom- signm inasndule - apooesngele-
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nially bounded. sponds to the case when spares can logi-
Efficiency refers to spare use. An effi- cally replace only cells in specific pans of

ient scheme wastes none or very few spare PE PE PE the array (horizontal strips in Scheme In
;ells and. thus, achieves a very high array above). In a broad sense, this is equivalent
,urvivability and harv-st. to partitioning the array into smaller

Area refers to the ox -rhead of the added blocks, each reconfigured locally. In some

nterconnect and reconfigurationcircuiuy. cases, when a block cannot be reconfig-

Low-overhead schemes are desirable be- ured, a block-replacement scheme can be

,:ause a large silicon area increases the used to substiute the full block for a good
probability of having more defective ele- one. These techniques have a hierarchical
ments. nature and correspond to a combination of

Locality means that physical intercon- reconfiguration schemes that can belong to

nections between logically adjacent cells different classes. Global redundancy, on

in a reconfigured array should have mini- the other hand, means that any of the spare

mal lengths. It determines the maximum cells can logically replace any faulty cell.

delay in signal propagation, therefore 1m- Figure 4. A (2 x 3) reconfigure6 FTPA In some schemes, any cell can be either a

iting the clock rate at which the array can (middle row is skipped over), spare or a regular cell.

operate. The replacement unit can be a cell or a
oeti n bset of cells. and. the array is said. to beDistinguishing between two types of processor switched or set switched, re-

array reconfiguration that differ in their processor -switched .
goal andin hen hey akeplac isspectively In prcesor-switched arrays.

goals and in when they take place is eliminate therow orcolumncontaining the the replacement. of a faulty cell only re-
important. Static reconfiguratio n is en most faulty cells. quires the logical removal of that cell. On
formed at array fabrication time and often • Scheme II. The strategy is to build an the contrary, in set-switched arrays, the re-

ss hadftixed iterco os to y. array row by row, picking as the next cell placement of a faulty cel requires the
pass defective cells to enhance yield, the one that satisfies a predetermined crite- logical removal and replacement of a set of
Dynamic reconfiguration is performed rion and that excludes the least number of cells, such as a column or a row of cells
during the operational lifetime of the array live cells from being used. To accommo- (see Scheme I above).
and over time uses soft (programmable) date delay between two adjacent cells in a The switching domain can be distrib-
inutrcectins to lprogalay relacithe logical array, some "delay registers" can uted or global. The form of connection
faulty cells to improve array reliability, be used. A simple "maze-runner" can be between any two cells depends on their

The two types of reconfiguration also used to determine the interconnect require- physical location when distributed (local)
differ in the relative weighting of the SEAL ments. switching is used; topologically close cells
figures of merit. For example, in dynamic - Scheme II. The FTPA is partitioned are more easily connected, whereas distant
reconfiguration, it is important to have into horizontal strips, and the cells in each cells cannot be connected or require more
simple schemes to avoid degradation of strip are connected to form logical rows. switches/buses/lnking elements for the
system performance. On the other hand. in These logical rows are then connected to connection. Inan array with global switch-
static reconfiguration, using a sor -cwhat form the whole array. Also, delay registers ing, the form of connection between any
slower technique to achieve higher uffi- are used in the reconfigured array. two cells is independent of theirposition in
ciency can be desirable and affordable. In the array. Usually, distributed switching
both types, however, a major considera- The taxonomy proposed in this article is (as in all the schemes illustrated above)
lion is to minimize area that can impact based on a variety of reconfiguration char- allows the interspersing of switching
yield and reliability to different degrees. acteristics. iamely type of redundancy, mechanisms with cells (for example, a
Finally, manufacturing defects and opera- allocation of redundancy. replacement switch lattice), whereas global switching
tional faults can have different distribu- unit, switching domain, and. switching requires the separation of the reconfigura-
tions on the array, and evaluation of a mechanism. tion hardware from the processing ele-
particular scheme must take this fact into The type ofredundancy can be hardware ments (for example, a global bus or inter-
consideration. or time. Hardware redundancy indicates connection network).

that spare cells are available to. logically The switching mechanism: can be a
replace faulty cells, whereas. time redun- switch element, a switch bus, or a switch

Taxonomy for dancy means that operational cells are network.Aswitchelementconsistsof cells
reconfiguration assigned the computations that faulty cells or other elements (for example, multiplex-

would perform. if they were operauonal. era or delay registers as in Schemes I and

techniques All threeschemesoutlined above use hard- IM) that are capable of routing data. In
ware redundancy. An array can use both practice. this corresponds to the existence

To illustrate reconfiguration character, types of redundancy (for example, when of bypassing mechanisms "inside" the
istics, we use three schemes front Kung graceful degradtion is allowed after all elements that connect inputs directly to
and Lam :  physical spares have been used), but this is outputs. A switch bus consists of a bus and

equivalent to having two reconfiguration switches where different wires can be
Scheme 1. Faulty rows and/or columns schemes for the same array. connected to different cells to estabHsh a

areskipped (this is illustrated in Figure 4). The allocation of redundancy can be particular interconnection pattemn. Dis-
A greedy algorithm cai be used to first local or global. Local. redundancy corre- tinct segments of each wire can also be
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used toconnect different pairs of cells, and instance, by setting simple multiplexer
switches are used to make or break connec- switches that have been incorporated into

tions between wire segments and between the FTPA structure, as shown in Figure 5.
wires and cells. A switch network consists The bypass circuitry (multiplexer) can be

of a collection of interconnected switches implemented inside a cell, as proposed in
that. depenc,.ng on the setting of each Koren.' Bypassing a faulty row is accom-
iwitch, estaoiish connections between the plished by turning all cells (including
inputs ano outputs of specific cells (for faulty cells) in that row into -connecting
example, a crossbar network, a multistage elements" to allow signals to go through
interconnection network, or a lattice of them. The main advantage of the schemes
switches interspersed among cells), in this class is their simplicity. Since the

Figures I and 2 show the classification switches used to bypass (or to pass
trees defined by the taxonomy just intro- through) a faulty set are simple, the cost of
duced. Each leaf of the trees corresponds to redundant interconnect and control cir-

MUX MUX a different class of reconfiguration cuiry is minimal. On the other hand, the
schemes. References for selected schemes waste of cells is the main drawback.
discussed in this article (including the ref- There are several schemes in this class.

Flg $. An FTPA structure with erences in the "Further reading" sidebar) many of which- use a spare row, a spare
mutiple dre tare shown next to the leaves of the trees. In column, or both. The main distinction

multiplexer hardware to support these references, readers can find detailed among them is the way switch elements are
switching. descriptions of schemes in the. classes implemented. Certain schemes also use

specified by the respective leaves (how- multiple spare rows and/or columns, and a
ever, readers are cautioned that some refer- typical one is discussed next. (See "Further
ences describe several schemes, possibly reading" for additional references on this
from distinct classes). When the same topic.)

o O 0 scheme appears in more than one leaf. it
indicates a hierarchical combination of The Kuo-Fuchs strategy. Consider a

0 two different schemes, each of which cor- (7+2) x (9+3) FTPA as shown in Figure 6.

00 0 responds to a leaf orclass. In these cases. in in which circles represent faulty cells. A
addition to a reference, the domain of re- general set-replacement algorithm can
configuration is specified in parenthesis. replace faulty rows/columns by proceed-
As already mentioned. the large number of ing from left to right and from top to bot-
tyes of schemes detemrited by the taxon- tom; that is, rows I and 3 can be replaced
omy are grouped into four major classes, by the two spare rows, and columns 1. 3.
This is done to facilitate the discussion and and 4 can be replaced by the three spare
comparison of fundamentally different columns. Obviously, this strategy fails to

Figure 6. As example of the Kuo- approaches to the reconfiguration prob- reconfigure the array. In the Kuo-Fuchs
Fuchw approech.' tem. Three of these four major classes strategy,' rows and/or columns that con-

correspond to hardware redundancy solu- tain the most number ol faults are replaced
tions. namely local redundancy, processor first. To facilitate this, the FTPA is mod-
switching with global redundancy and set eled as a bipartite graph whose two sets of
switching with global redundancy. The nodes are array rows and columns that.
fourth major class contains schemes that contain faulty cells, and edges are faulty
use time redundancy. For simplicity, these ceUs. Figure 7 shows the bipartite descrip-
major classes are called the local-redun- non of the array in Figure 6. In the graph.
dancy class, the processor-switching class, R, and CI represent faulty row i and faulty
the set-switching class, and the time-re- column j, respectively. There are three
dundancy class. Asterisks indicate the edges from R, namely to columns C,. C4,
roots of the subtrees (see Figures 1 and 2) and C1, since there are three faulty cells
that correspond to these classes. (4.3), (4,4), (4.7). The Kuo-Fuchs ap-

proach replaces R, and R. with the two
spare rows and C ,, C,, and C, with dc three

Set-switcug class spare columns. and the reconfiguration is
successful.

In the set-switching class, the replace- The purpose of the bipartite description
merit of a faulty cell requires the logical is to transform the reconfiguration prob-
removal and replacement of a set of cells. lem into a graph-theoretic question. that is.
Typical replacement sets are FTPA rows that of finding the minimum cover of the
and columns. A typical array reconfigura- bipartite graph mentioned above. Kuo and
ion is shown in Figure 4 where one row of Fuchs' have shown that the optimal solu-

Figure 7. Blprtilte desripdoe of the the array is skipped (assuming one spare tion to the problem is NP-complete (ni-

fault disribution in. Filgem 6.' row is provided). This is accomplished. for deterministic polynomial-urm complete)
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&id proposed two algorithms. One. for Taole 1. Summa, v d set-iwitching reconlguration schemes.
•easonably small arrays, uses a branch-
And-bound approach to reduce the corn- Reconfiguration Scheme Redundant Set
plexity of searching for a minimum cove.
, he other, for very large arrays, is a poly- Miassiveiy narmi*.: processor (MPP) Group of 128 x 4 processing elements
!iomial-time approximation algorithm that Binary ?a1t.' ;r-.. :or (BAP)-
runs efficiently and often yields optimal Mesh intercoInvec;on chip (MIC ' Column of interconnect nodes

-olunons. Koren. Row/column of PEs
In summary, a scheme in the set-switch- McCanny-Mck, nirter" Row of PEs

ing class is characterized by its replace- Kim-Reddy' Row of PEs
nentunit. whether it bea rw, acolnmn. or Kuo-Fuchs' Row/Coiumn of PEs

A suberray. Since the replacement unit is a Hwang-Raghavendra" Row of PEs

,et of cells, a very large number of spares Configurable. highly parallel (CHiP)'0  Column of blocks of processing

might be required to provide sufficient elements
fault tolerance for an array. However, the Jesshope-Bentley" Row of PEs
.implicity of the algorithm and the switch-
:ng mechanism compensates for this 0 See the "Set.switching techniques- section of "Further reading."

wasteful use of spares. All set-switching See the "Local-redundancy techniques' section of "Further reading."

techniques described here and in "Further
reading" are summarized in Table 1. which
.hows the corresponding replacement sets.

Processor-switching
class

In processor-switching schemes, an
Available cell directly or indirectly re-
places a faulty cell. For this mason, the
,vasae of functional cells can be reduced.
There are two approaches in this class. In
)ne approach, functional cells are system-
itically collected (such as in a linear fsh-
on. as in Scheme 1I) to form a pan (say, a
row) of the target array. In another ap-
proach, faulty cells are replaced by their
neighbors and those neighbors are further
replaced by their neighbors and so on. in a
,.hai fashion, until spare cells are reached.
'lex, we discuss the Diogene schemes as
an example of the first approach, and the
rauit-eealing' and FUSS1 schemes as ex-
Amples of the second approach. Figure L A possible layout for the Diogenes approach.

Dinge-es strategy. In the Diogenes-
itrausgy approach.' functional cells are
collected by a mechanism consisting of
progrmmable switches and bundles of the scheme needs three control lines and switch bus allows the scheme to achieve

wirethatrunabovea lineofcellsandspare two bundles of wires. N lines for the stack 100-percent use of rault-free cells. How-

cells(thatis. thearray is linearized). Faulty and N (plus some other lines) for thequeue. ever. a large area must be allocated for the
cells are simply left unconnected. This In the Diogenes approach. the switch- switch bus that might itself fail. Another

procedure allows the Diogenes algorithm bus mechanism is the most important part potential disadvantage is that. in the pres-
to achieve 100-percent use of fault-free of the design. By adequately setting the ence of consecutive faulty PEs. logically

PEs. Figure 8 illustrates the Diogenes switches, implementing different connec- adjacent PEs can be very far apart. thus

,oncep. Small squares above individual tion patterns is possible. For a specific requiring longer interconnect links. For

cells represent switches that can connect desirable connectivity, the number of this reason, additional vertical-shortcut

rault-free cells (unmarked squares) or wires and switches can be chosen so that paths across the array have been consid-
,ypma faulty cells (squares marked with reconfiguring the array is always possible. ered. The problem can be alleviated if

X). The switching emulates a stack. (or One of the advantages of this approach somewhat simpler switching mechanisms
4um) mechanism that "pushes" and includes the possibility of implementing are used at the expense of lower array
'pope" wires "into" and "out of" proces- different topologies, including two-di- survivabilities. This strategy is imple-

,ors.Foran xNFTPA (recingulaggrd). mensional arrays. Its stack/queue-like mented in many schemes. two of which are
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presented next. The Diogenes approach is
best for small arrays with large processing
elements.

(1.4 . Fault-stealing strategy. Fault-stealing.31 1.41techniques.' also known as index-mapping

schemes, reconfigure an FTPA in such a
way that a faulty cell is replaced by a

neighbor and this neighbor, in turn, is re-

2 (32.41 placed by its neighbor and so on, until a
spare cell is used. The spare cell is said to
logically replace the faulty cell: the term
"shift" is used to mean direct replacement:

a cell is shifted to another if the former is

[(2.21 (341 0,0 directly replaced by the latter. For instance.
in Figure 9. cell (1.3) can be replaced by
(1.5) using the following successive direct

replacements: o(flj]) = (l.jl).j = 3. 4.

(4.5) This is referred to as a "chain shift."

Direct reconfiguration (DR) is a simple

scheme that is the basis for the family of
fault-stealing techniques. It uses one row

(5.2) (5.3) (54) (5.5) and one column of spares (R = C = 1). The
[(4.31 41 (0.01 algorithm begins by scanning each column

upward. marking the first faulty cell (if
any) of each row as a vertical fault and
other faults as horizontal faults. For the
array shown in Figure 9, (5.1), (4.2), (1.3),
and (4.4) are vertical faults, and other

Figure 9. Array reconflgured by direct-reconfiguration (DR) scheme. faulty cells are horizontal faults. Horizon-
tal faults are chain-shifted right, and verti-
cal faults are chain-shifted down. In Figure
9. (1.2) and (2,2) are chain-shifted right.
and (4.2). (1.3), and (4.4) are chain-shifted
down. Note that (1.2) and (2.2) were first
shifted right and then shifted down (that is,
they were shifted twice). The algorithm
fails when there is more than one horizon-
tal fault in one row of the array. Using this

scheme, the array. in Figure 9 is success-
2 12 2.4 fully reconfigured. The figure shows both

physical and logical coordinates.
Ir DR. a faulty cell (i. J) can be shifted

right to a fault-free cell (i.jl) or down to
(il , J). The set consisting of cells (i.). (i.

2,3 3,3 3.4 j+), and (i+ l. J) is referred to as an "adja-
cency domain." A family of schemes can
be extended from the DR scheme by vary-
ing the size of (number of cells in) the ad-
jacency domain and by modifying the

4.4 replacement rules. The schemes in this
family are called fault.stealing schemes.
In order of increasing complexity. they are
fault stealing of simple-fixed choice.
simple-variable choice, complex-fixed
choice, and complex-variable choice.

The fixed-stealing algorithm scans all
rows in the order of increasing index
numbers. In each row. the rightmos un-
available cell is shifted right. and other

Figure 10. Array reconfligured by complex-fauIt-stealing (CFS) scheme. faulty cells "steal" (are vertically shifted
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available cells on the next -ow. Vari-
.ble stealing differs from fixed stealing in
-ic choice of the unavailable cell in a mw
j shift right. Instead of selecting the right- 1,2 1,3 1.4
nosr unavailable cell. variable stealing
,elects the faulty cell that cannot steal a
S.:l on the next row. The rest of the ago-
-ithm is basically the same as in DR.

The two algorithms we just described 2.1

.re referred to as simple-itealing algo-
.ithms. Vertically, (i.j) can be only shifted I
:o (i+l.j). In complex fault stealing (CFS).
i. j) can be also shifted to (i+ I.j+ 1). For an 3.1 2.2 3,2 4,3
N+l) x (N+l) array, the complete CFS
ilgorithm is outlined as follows:

(1) Assume that in row i, 1'SiASN. there
are faulty or stolen (unavailable)
cells (i,) . . . (ik) with k,< ... <k.

(2) For each k., O<i<s:
(a) If(i+l _k) is fault free, shift (ik )

to it.
(b) Else it (i+ l+1) is fault fre. Figure 1U. Array reconfigured by fulI-use-of-suitable-spares scheme with two

shift (i.k) to it. columns of spares (FUSS-2).

(c) Otherwise, (i.k) is shifted right.
(3) If no cell is shifted along the row as ...

per rule (2). then (,) is. Otherwise.
(iJt) is shifted downward to either
(i4l.k,) or (i4l.k,4l).

As an example, consider the array shown
in Figure 10. In relation to the case shown
in Figure 9. this array contains an addi-
tional faulty cell at (2.3). Were DR used.
:he reconfiguration would fail because,
them are two horizontal faults in the first
row. However. if CFS is used, then the
reconfiguration is successful, as Figure 10
shows. The figure shows logical coordi-

nates and, to avoid cluttering, does not
show connections for logical cells on the
same columns.

The algorithm fails when, along a single
row, two or more cells are shifted right. as
in th case of Figure 1I where another fault
occurs at cell (2.4). The interconnect links
required by the algorithm become mor Figure 12. Switch-bus structure used in FUSS-I and CFS: (a) cell and switches,

complex than that required by DR. butcan and (b) switch settings.

be implemented by the switch bus shown
in Figure 12. On the other hand. the proba-
bility of survival is better than DR surviva-
bility of survival. tor is computed. Let f be the number ot

In FUSS-C. the FTPA is an M x (N C) faulty cells in row i. The surplus vector is.

FUSS strategy. A reconfiguration array in which C is the number of spare defined as
scheme called FUSS (Full Use of Suitable columns (spare rows are not used). Basi-
Spares 7 uses an indicator vector called a cally, the algorithm can be divided into s = [sI, s ..... sIr

surplus vector to guide the replacement of four steps: array preprocessing, surplus
faulty cells in an FTPA. In its most general normalization. fault shifting, and cell in- where

and ideal case. FUSS achieves 100G-percent terconnection. This subdivision is done for
array survivability. Simple FUSS (or clarity as well as for monitoring the algo- s = 1 (C -)=Ci- Z
FUSS-C). a practical instance of FUSS. nrhm progress. -" =1

can achieve up to 99-percent probability In array preprocessing, the surplus vec- is the surplus of row i.
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1 2 3 4 5 6 $

I 0 1 1 0 0 0 0
2 0 1 1 1 0 0-1 .
3 0 0 0 0 0 0 1 -- % '

4 01 0 1 0 10 Complex
(a fault

% stealing
%(CFS)

1 2 3 4 5 6 s %,'
1 0 1 1 0 0 0 %"•
2 0 1 1 1 0 0 0 _ irect-d • ,

3 0 3 0 2 0 0 0 %
4 0 1 0 1 0 1 0 - % %

(b) %"

1.1 0,0 0,0 1,2 1,.3 1,4-
2,1 0.0 0.0 0,0. 2,.3 2,4.
3.1 2,2 3.3 4,3 33 3,4.
4,1 0.0 4,2 0,0- 4,4.- 0,0.
W () Figure 14. Comparison of array survivabUftis (20 x 20).

Figurv 13. An example of FUSS-I: (a)
Initial array A; (b array B after AIM, vector is readjusted toward zero: that is, is shifted down to cell (3,2), which is now
(c) aal recofigured aray.. one is -ded to s in case (1), and one is assigned a staus code of 3 (Figure 13b); s.

subtracting from s,., in case (2). The shift- is reset to 0.
ing proceeds until the surplus vector be- (2) Scan the array upward. When sO.
comes null. Its effect can be described as a shift Is) unavailable cells in row i I to

(1) If s, then the sum of spam it cell migration from regions having most available cells in row ;s is reset 0 when
rows I through i is gat than the number faulty cell& to regions having Im faulty all IJ cells are shifted successfully. Inthe
of faulty cells in rows l througb i; thus, row cells, example, 43 = 1. Thus, one cell must be
i has extra cells available for use by faulty CeU interconnection is the construction shifted from row 4 to row 3: cell (4,4) the
cells in rows i 1, i+2 ..., M. of the logical array. Logical rows and col- only possible choice, is shifted up to cell

(2) If sO. then row i hu a deflcit and ums are formed one at a time, using a (3.4), which assumes the stams code ofL 2;
needs to use available cells ftm rows i+l' "status matrix" obtained from the fault- s, is readjusted to 0
42 .... M. shifting phase.

(3) If sw<O, then thnumberof spar mais The following example ustraMS L At this point, the surpus vector is null.
less than the number of faulm. In this case. FUSS-C reconfiuration. Figure 13a is a which means that fault shifting is success-
the array is not recanfigurable and the mam A representing a 4 x (4+2) army (4 ful. Also, a status mam Dis obtained and
algorithm must exit with failure. rows, 4 columns. 2 spare columns) where shown in Figure 13b: The matn metri

enry "0" represents a good cell and "1" a (denoted by b.) are stamcodes that guide
In surplus normalization, the surplus faulty cell (column and row indices are the ceal-interconnection phase of FUSS.

vector is recomputed so that fault shifting added for convenience). This array is Entry b. has the following meaning. b,:
can be simplified. For instance, when equivalentothtusedinDRorCF(see Oif(i,J)isfaultfree:b'.'1 lif(1,J)is fulty
sO, s.exracellsaeavailabefor usby Figure 10) except that the spare row be- b.-2if(ij).mp(acu(k.j);-dbi.J= 3
"Imaginary" faulty cells. in, nonexisM comes another spare column. Th surplus if(i,j) is replacing(a-l.). Sincethe stawm
rows M+I.M+2 .... Shifting these faulty, vector obtained after army preprmcessing ofeachcellisknown.itiamsytoautmati-
cells to available cells in row M would be is augmented to the marix. Figure 13b cally derive how cells ar intronnecte&
required by the rules used in the fault- shows the matix obtained after fault shift- Afterwards, the corresponding logical ar-
shifting phase of FUSS. A beter solutio ing. The reconfiguration is executed as ray is realized. Figure 136 shows wher
is to m*ke s = 0, which is one of tho follows: logical coordinates are givem. Figure 11
objectives of surplus normalizatio shows the actual reconfigured aray where

Fault shifting is the loica repacement (1) Scan the army (Figure 13a) down- logicaLceilaloangtherow areconmected.
of unavailable cells. In- FUSS-C. an un- ward. When s<.c0 shift a number equal to For FUSS-i, the inrerconnect require-
available cell (i,J) can be (1) shifted down IsI of unavailab e cells to row i+l and. meats a shown in Figure 12, where solid
to (i l .J if s1 is negative, or (2) shifted up, when successful, reset s, to 0. In the lines am used to coac -lol column
to(i-l.J) ifs., isposive. Aftereacshift example. s2 -- 1. Thus, one cell must be anddashedlinesamusedtocoaectlogi-
the corresponding entry im the surplus shifteddown from row 2 to row 3: cell (2.2) cal rows. This same switch-bu c
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Table 2. Probability 0d survival of selected reconfiguration schemes for 20 x 2A subarrays that must be constructed and.
arrays (partially from Jervis, Lomberdi, and Sciuto% and from Lombardi and then recursively constucts the subarrays.
Scia is "Further reading"). Each subarray is small enough to be con-

structed by inspection. The subarrays are:
Reconfigration Scheme Algorithm Complexity Survivability When then linked to form the complete array. Ir.

p=.50 p=.75 p-90 the worst case. this strategy costs polyno-
, t ' a 07 ial time and space. The worst-case comr.
Direct reconfiguration12 O(N) 0.43 0.35 0.27 plexity of the interconnect wires grows,
Fixed fault stealing'2  O(N) 0.47 0.38 0.30 with the array size.
Complex fault stealing2  O(N) 0.90 0.84 0.77 Minimization of the maximum wire
Modified index mapping" O(N 2) 0.67 0.62 0.54 length and the channel width (number of
Modified optimal reconfiguration wires between two rows or two columns)

algorithm (MORA) can be achieved by constructing the array
(see Lombardi et al.") O(NiogN) 0.90 0.84 0.78 out of not al of the fault-free cells but a

Spanning tree-based'I 0(NloglogN)i 0.93 0.89 0.78, fraction of them. In other words, the wire
Orthogonal mapping" O(N2) 0.93 0.89 0.82 length is further reduced if a degraded-
Simple full use of suitable spares array harvest is acceptable. This means,

(FUSS) 7  O(N2) 1.00 1.00 0.99; that some isolated fault-free cells in pre-
dominantly defective regions are not usecd

No$" The Ptcea-swishin.ch qu" scdcoftFuer mldii. in the reconfiguration.

*ee S.. the - .atimdaan y wamim" seato of Fha8" Interstitial redundancy. The intersut-

tial-redundancy scheme' is a good ilusta-
tion of a local-redundancy technique. The-
objective of the reconfiguration strategies
is to achieve fair area efficiency by using
as many good cells as possible, while ais

can be.used for the complex fault-stealing conquer technique' consists of procedures ensuring shorter intercell communication.
scheme. for restructuring two-dimensional as well links. Here. spare cells are assigned to

In summary, the probability of survival as linear WSI arrays. It focuses on achiev- replace failed primary cells in the prear-
of algorithms in this class improves over ing high reconfiguration harvest with short ranged clusters of a two-dimensional ar-
the probability of survival of those in the interconnect wires between logically adja- ray. For instance, in a 25-percent redun-
set-exclusion class. Thus, fewer spare cells cent cels. To construct a cwo-dimensional dancy array, as shown in Figure 15. every
are being wasted. However, the algorithms army out of functiona cells, the array is spare (squares labeled S) is assigned to a
become more complex, and the inercon- recursively bisectedand the number of live cluster of four primary cells. Each cluster
nect-link requirements increase. Figure 14 cells in each half is counted. Based on the is independent and can tolerate a faulty
graphs typical values of the probability of number of live cells in each half, the algO- cell. Since spares are physically close to.
survival. Table 2 summarizes survivabili- rithm computes the dimensions of the two the cell they replace, restructured intercon-
ties of all schemes discussed here (or
mentioned in "Further reading').

Local-redundancy
class

The allocatioe of redundancy of the
reconfiguration schemes in this clasw is.
distributed and localized in parts of am,
array. As mentioned earlier, this is equiva-
lent to partitioning or systematie reductiosm
of an array to smaler suberrays ecb ot
which can be reconfigured independently.
A common objective of the schemes in this
clas is the mimnmization of the inmercon- s
nection delays (that is. length of the long-
est wires between logically adjacent cells&
Two typical schemes are discussed berei
one illustrates well the partitioningcharacp-
teristic. and the other is a typical, local
redundancy scheme. Figue 1. A peasibei layb rfa. the iabrsd redumdamer approach to re-

Divide ad conquer. '** divide-an&~ ceifgeuade...'

January 199. 6S



nections am fixed and short. This results in Time-redundancy In summary, time-redundancy ap-
low inrerceil communication delays, thus a proaches to arry reconfiguranon might
minimizing performance degradation. For approac require less hardware but demand longer
higher redundancy arrays (50 percent, 100 processing time than hardware-redun-
percent, etc.) spares can also be shared The time-redundancy approach to fault- dancy techniques. These techniques can be
among cells in different clusters. For a tolerant systems has oeen used for yield particularly useful in some architectures,
wide range of array sizes, estimations of enhancement. reliable computation, and such as systolic arrays, where idle cycles
yield for arrays with different amounts of self testing. ideally, a time-redundancy can be used by logical spares to perform
redundancy show that approximately 50- reconfiguration scheme uses only logicat functions of the faulty cells. In addition.
percent use of fault-free cells on the chip spare cells, that is. physical cells that per- the time-redundancy approach can be
can be achieved, form their own functions as well as the considered when decreasing speed is an

functions of the faulty ones. However. it acceptable form of degradation.
Hierarchical redundancy. As men- can also include techniques that use some

tioned earlier, in local-redundancy (limited) physical spare cells in the recon-
schemes, reconfiguration takes place lo- figuration. Time-redundancy techniques Concluding remarks
cally in each block of an array partition. If can also be used to support graceful degra-
reconfiguration is not possible within a dation. because they can prevent system The proposed taxonomy for classifying
block, the system will fail unless the faulty failure after spates are- exhausted while different reconfiguration schemes for
block can be replaced by a functional one. reducing the computational speed of the processor arrays can be used to compare
From a structural point of view, hierarchi- overall system. A time-redundancy and contrast many possible approaches in
cally combining two or more reconfigura- scheme can use a limited number of cells to light of basic orthogonal characteristics. In
tion strategies is possible and practical in- perform operations that would require addition, we hope the different schemes
some arrays. Typically, these arrays are many more cells in a hardware-redundancy presented to illustrate the taxonomy will
themselves organized in a hierarchical scheme. help interested engineers and researchers
way. For example. a two-level hierarchical Sami and Stefanellill presented a typical understand existing approaches and de-
FTPA is an array of small subarrays. A time-redundancy technique that involves velop new ones.
multilevel hierarchical FTPA can be de- repeated use of functional cells and re- An important yet difficult question to be
fined recursively, that is. as an array of quires two phases and three clock cycles, faced by designers is that of deciding
multilevel subarrays. Different reconfigu- Each cell. is associated with two logical which of the many possible schemes is the
ration schemes can be applied to different cells. During the first phase, the cell exe- best for their application. The ultimate
levels of FTPA physical structures, with cutes the functions of the first logical cell: benefit of reconfiguration schemes is yield
the overall array reconfiguration schemes during the second phase, it executes the improvement (in the case of static recon-
having a hierarchical nature. In other functions of the second logical cell. The figuration) or reliability increase (for dy-
words, if a faulty processor cannot be re- redundant hardware elements required by namic reconfiguration).
placed within a subarray (using a given the techniques are much less than those A designer must be able to evaluate the
reconfiguration technique) that subarray is required by hardware approaches dis- impact of a scheme on yield and/or relia-
declared faulty and possibly replaced by a cussed previously. However, the process- bility, and these are complex functions of
spare one (possibly using a different recon- ing speed is lowered, technology, application, scheme surviva-
figuration technique). bility, and scheme overhead. The latter

Several examples of hierarchical SRE and ARCE. The successive row factor includes the hardware. software. and
schemes have been proposed and/or imple- elimination (SRE) and alternate row col- time necessary to implement thescheme. It
mented; additional references are given in umn elimination (ARCE) schemes" are can be the cause for faults and performance
the local-redundancy techniques section examples of graceful degradation degradation that mitigate the survivability
of "Further reading." A typical one is the schemes. In SRE, a row is eliminated if it of the scheme. Reliability and yield mod-
CHiP (configurable, highly parallel) archi- contains one or more faults (set switching), els must account not only for processing
tecturei° made up of building blocks, each and in ARCE either a row or a column that elements but also for connections.
of which is a two-dimensiona CHiP array. contains one or more faulty elemen is switches, reconfiguration logic, and other
The reconfiguration scheme for the high: bypassed. These schemes are similar to the hardware and software mechanisms.
level (array level) is implemented by set Kuo-Fuchs scheme presented earlier, ex- Much research is currently underway to
switching and that of low level (block cept that no spare rows or spare columns identify valid defect and fauldistribution
level) by processor switching. The CHiP are used and they are complemented by modelsandtodevelopmodelsandtoolsfor
architecture is highly flexible and the algorithm reconfiguration techniques that reliability and yield evaluation. Studies by
switch lattice (connection mechanism) can allow an algorithm designed for a proces- the authors and other researchers clearly
provide substantial fault tolerance in sor array of a given size to run on a proces- show that there is no universally ideal
VLSI/WSI implementation. However, the sor array of smaller size. Rows and col- reconfiguration scheme. For this reason.
area complexity of the switch is high. umns can be theoretically eliminated until identifying analytical approaches to the

The analysis and design of hierarchical one row and one column are left in the- evaluation of survivability, reliability, and
FTPA structures was considered in Wang array. The performance of the algorithms yield has become an important research
and Fortes." It shows that hierarchical is allowed to degrade gracefully, for ex- direction. Good results in this arm will
architectures can provide much higher ample, with up to (N/2)-I faults. SRE al- support a deeper technical understanding
reliability than single level, especially in lows the array to operate at half the speed of reconfiguration schemes and systematic
the case of very large arrays. of the fully operational array. derivation, analysis, and evaluationof new
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Time Optimal Linear Schedules for
Algorithms with Uniform Dependencies.

Weijia Shang, Student Member, IEEE, and Jose A. B. Fortes, Member, IEEE

Abstruct-An algorithm can be thought of as a set of indexed In simple terms, an algorithm is represented in this paper
computations and if one computation uses data generated by an- as a partially ordered subset of a multidimensional integer
other computation then rids data dependence can be represented lattice (called index set). The points of this lattice correspond
by the difference of their indexes (called. dependence vector).
Many important algorithma are characterized by the fact that to (or index) computations and the partial order reflects the
data dependencies are umfore, Le., the values of the dependence data dependencies between them. These data dependencies
vectors are independent of the indexes of computations. Linup are represented as vectors that connect points of the lattice.
schedules are a specira clas of schedule described by a linrt Informally, if a given dependence vector is always present
mapping of comUttio indexes into time. This paper addresses difference between any two lattice points
the problem of identifying optimaL linear schedule o when- the vectordete
dependence algorithms so dot tbeir executiome is mnmb e equals the dependence vector, then the dependence is said to be
Procedures an propos to. solve thls problem bs ou the umfor n If all dependences are uniform then the algorithm is
mathematical solution of a nonlhear optimizatio. problem. Tb said to be a uniform dependence algorithm. A linear schedule
complexity of thee procedures is independent- of the sie of is. a mapping from the multidimensional algorithm index set
the algorithm. Actually, the complexity Is. eponentat in the
dimension of the index set of the algorithnaa@ for alt practice& into the one-dimensional time space; this mapping is expressed
purposes, very small due to the limited dimesion of the index as a linear transformation that involves the multiplication of
set of algorithms of practical Interest. The results reported in a vector, called linear schedule vector, by each and every
this paper can be used to derive time-optimal systolic designs point of the index set. The image of the index point under the
and applied in optimizing compilers to restructure programs atcompile-Urme in order to maximally exploit available pauleim. mapping is the time of execution of the computation indexed

by that point. The purpose of this paper is to show how the
Index Term-- Algorithm mapping, data dependency, linear linear schedule vector can be determined so that the algorithm

schedule, optimizing compiler, nested-loop program, systolic
array, time-optimal. can be executed in a minimal amount of time (achievable by a

linear schedule). This algorithm model and the notion of linear
schedule are easily related to similar models and concepts used

I. INTRODUCTION in [11-[131, [191, and several other works.
A DIFFICULT problem in the parallel execution of an A free schedule schedules computations to execute as soon

algorithm is the choice of a schedule which results in as their operands are available. The total execution time that
minimum execution time. This paper formulates and solves results from using a free schedule is the exact lower bound for
this problem for a particular class of algorithms and a specific the execution time of the algorithm. The difference between
type of schedules denoted linear schedules. The algorithms the execution time achieved by the free schedule and the
under consideration are characterized by uniform data de- execution time achievable by an optimal linear schedule is
pendencies and unit-time computations; they include those bounded by a constant [1]. In [161, a class of algorithms is
described by single uniform recurrences (1] and resemble a identified for which that difference is zero, i.e., linear schedules
very large number of systolic computations and algorithms de- can be as fast as the free schedule and achieve the execution
scribed by programs with nested loops. The results reported in time lower bound for this class of algorithms.
this paper can be used to derive time-optimal systolic designs In practice, linear schedules are often characterized by
for those algorithms and can also be applied in optimizing the fact that computations in one or more "computational
compilers (13], [19] to restructure programs at compile-time wavefronts" take place at any given instant of time. These
in order to maximally exploit available parallelism, types of schedules have been proposed for the execution of

many practical algorithms including the solution of differential
equations [201, the computation of uniform recurrences [1],,wuctipt received March iS. t989:, revised Janury 10, 190. his wor matrx arithmetic algorithms [8], [21], [22], digital signal

was supported in part by the NaSonal Foundat under Gmat DCI-
8419745 and in pan by the Innovatuve Sciece and Techunoiogy oice of the processing applications [81, [221, [23], algorithms described by
Strategic Defense Imative Organizain and was adminstered through the nested-loop programs [19], (21], and systolic array algorithms
Ofte of Naval Research under Contracts 0014-45-k-0588 and 00014-88k- [81, [21]. Linear schedules can be described conveniently by
0723.

W. Shons is with t Ceter for Advanced Computer Studies. university using special purpose or extended programming languages
of Southwestern Louisiana. L.Afayett. LA 7090. [8], (19], [21], formal mathematical descriptions (1]-121, or
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of optimal linear schedules; however, they either have a by an equation of the form
heuristic nature or have a more restricted applicability than the
method described in this paper. In Section IV, one of these v(7) =g 7 (v(Y- i),v(I'--2),..,v(Y- 2 ,)) (2.1)
procedures, referred to as linear programming approach, is. where
presented and compared to that proposed in Section I1. The
linear programming approach can be directly derived from 1) 3 E J c Z is an index point (a column vector), J
Lemmas 1-4 in this paper and is similar or can be related is the index set of the algorithm, and n E N + is the
to the approaches proposed in (19], [27], [28], and other number of components of j;
references. 2) g- is the computation indexed by 3, i.e., a single-valued

This paper is organized as follows. The basic terminology function computed "at point j" in a single unit of time;
and definitions used throughout the paper are introduced in 3) v(3) is the value computed "at 7", i.e., the result of
Section [1 as well as the formulation of the problem of deter- computing the right-hand side of (2.1) and
mining an optimal linear schedule. Section. II is dedicated to 4) d - Z , i = 1,. ., m, m E ,V are dependence vec-
the description of the optimization procedure that finds the tors, also called dependencies, which are constant (i.e.,
time-optimal linear schedule for any given algorithm with independent of I E J); the matrix D [di,"-, d,,] is
uniform dependencies, the proof of its correctness- and the called the dependence matrix.
analysis of its complexity. Section IV presents the linear pro- The class of uniform, dependence algorithms is a simple
gramming approach and compares it to the approach presented extension of the class of computations described by uniform
in Section; IIL A particular class of algorithms for which recurrence equations [1]. The main difference is. that uni-
the proposed solution is greatly simplified is considered in form dependence algorithms allow for different functions to
Section V and the corresponding simpler optimization proce- be computed (in a unit of time) at different points of the
dure is also provided. Section VI is dedicated to conclusions index set. From a practical. viewpoint, uniform dependence
and future work. algorithms can be easily related to programs where 1) a single

statement appears in the body of a multiply-nested loop and
2) the indexes of the variable in the left-hand side of the
statement differ by a constant from the corresponding indexes

1I. TERMINOLOGY AND DEFINMONS in each reference to the same variable in the right-hand side.

Throughout this paper, sets, matrices, and row vectors are Alternative computations can occur in each iteration as a result
denoted by capital letters, column vectors are represented by of a single conditional statement as long as data dependencies
lower case symbols with an overbar, and scalars correspond to do not change. Nested loop programs with multiple statements
lower case letters. The transposes of a vector U and a matrix M can also use the techniques of this paper together with the
are denoted UT and Mr, respectively. The symbol E denotes alignment method discussed in [24] and [25].
the row vector whose entries are all zeros except that the ith For the purpose of this paper, only structural information of
entry is equal to unity. The vector " (or O) denotes the row the algorithm, i.e., the index set J and the dependence matrix
vector or column vector whose entries are all ones (or zeroes). D, is needed. Other information, such as what computations
The dimensions of vectors T and 5 and whether they denote occur at different points and where and when input/output of
row or column vectors are implied by the context in which variables takes place, can be ignored. Therefore, a uniform
they are used. The vector space spanned by a set of vectors dependence algorithm with index set J and dependence matrix
S - {U,U2 ," .k I is denoted sp{UI, U2, .., I = sp= S} D is hereon characterized simply by the pair (J, D). Herein, it
and its dimension (i.e., the number of linearly independent is assumed that, as in Definition 2.1, the letters n and m always
vectors in S) is denoted dim{S}. The symbol I denotes the denote the dimension of index points in J and the number of
identity matrix. The rank of a matrix A is denoted rank(A). dependence vectors, respectively. While no restrictions apply
The set of rational numbers, the real space, and the set to the type of the index set of an algorithm, the following is
of integers are denoted Q, R, and Z, respectively. The set assumed in regard to how index sets are described.
of nonnegative integers and the set of positive integers are Assumption 2.1 (Index set, index constrains matrix size
denoted N and NI, respectively. The empty set is denoted vector, and convex hull of the index set): The index set J C Z'

0. The notation ISI represents the cardinality of set S. Let u of any given algorithm is described as a set of integer points
and 9 be two vectors. Then V > 9 means every component of (vectors) whose convex hull R [14, p. 35] is a nondegenerate
U is greater than or equal to the corresponding component of (explained in the following paragraph) polyhedron, i.e.,
ff. As a final remark, if z is an element of a set 5, the notation
zE S is used and this notation is also used to indicate that R={(:.75bA E PZ EraE

a column vector Xj (or row vector M) is a column (row) of (2.2)

a matrix M, i.e., X e M (Mi E M) means RI(M) is a and
column (row) vector of matrix M.

The algorithms of interest in this papek are the so-called J G:IE R A E Z"}.
uniform dependence algorithms defined as follows.

Definion 2.1 (Uniform dependence algorimu: A uniform Matrix A is called index constraint mawix of J; vector b is
dependence algorithm is an algorithm that can be described called size vector; R is called convex hull of index set J.
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Equation (2.2) simply states that R is a polyhedron. If R it=c -ez = p='eI-ej Pn.'-ez
-ontains n + 1 points X, 72," , - , +1 such that lX, - Xn+I, i:=t- -I $=e7-'l Wae-: W2-e

X. -n+,," "" , Im -',t+l are linearly independent, then R is i3="1-'4 i64'4e ,e-e :- =

,rondegenerate For example, a line and a square with nonzero 71-1 0, 2-j? I r '7{o, sI r 'Isa, OfT e. -2, oj r

irea are cases of degenerate and nondegenerate polyhedra
in R , respectively. Clearly, degenerate polyhedra in- R" can
e reexpressed as nondegenerate polyhedra in Rn ' for some 2 3 01

' < n. According to Assumption 2.1, R is not necessarily D 2

ounded and J is not necessarily dense (J is not dense if F3 : r,+22=21

-here is at least one integer point in R that does not belong " ,J'=: A i--,EZ'}
.o J). Extreme points of polyhedron R are always integers " R -1Z A <b FER)

-ird belong to the index set J because R is the convex hull Fl- 1 -zO . ...

)t index set J. Finally, different size vectors correspond to -1 0
" .: .0 -1;nstances of the same algorithnm that differ only in their sizes -- A = 1 -I1

but have the same shape). The following example illustrates Fs. '=-=" .-.. .!
:he concepts introduced in Definition 2.1 and Assumption 2.1.

Example 2.1: Consider the following uniform dependence 3..

ilgorithm: . . .

V(jl,j 2 )=g(v(j 1- 2,j 2 - 2),v(j,j 2 - 3)) where 0 -' 
.. 

1 -o

J,. = 0, -.. , 2. 0 2 5 ,s 2a x,

0..-',2s-j if s <t < 2,s : F, : "
j -i,", 2s - ji if 0 < x<s :'

Fi. Zt" Z2=8 F2: ,-o.

The index set J of this algorithm is shown in Fig. 1. The reader~an eriy tat t cn bedesribd a J={j =fjij 2 J: A < Fi& 1. The index set of the algorithm of Example 2.1. Each point corne-
.an verify that it can be described as J-= { [j, 2 jT : .j 5 sponfds.to a comnputation.

j, E 2 I} and its convex huff is R ={7 = .21,r:]: AY <
I e R2 }, where vector in sp{Ah,, Ah, }, then for all Yi, 72 in F = {X:

=b&,, 7 C- R-, i = 1, - , k}, V(7 1 - 2 ) = 0. For
A = 0 -1 0 = a given index set J with index constraint matrix A E Z"xn,

1 2s there are at most Z 7{'a '
n (*) distinct norm spaces.

Example 2.2: In Example 2.1, A, = [-1,01, A 2 = [0,-1],

There are four extreme points, i.e., '9 = (0, 2sJr, 92 = A3 = [1, 11, A4 = [-1, -1), bt = 0, b2. = 0 and b3 = 2s.
I0,. ir , 13 = (, 0]r , and 14 = [2 s, 01

r . The index set J 'As shown in Fig. 1, F = {7: AIX = b1 , 7 e R2} =

in this example is bounded, dense, and nondegenerate. The {7 : x = = 0. 7 E R2 } is the one-dimensional boundary
dependence matrix is D = [d1 , 2 1 where d1 = [2, 2]r and surface of J containing the points on the Z2 axis. Also,
42 = 0.31

r. End of example. F4 = {I: A17 = b, A 3  = b, 7 C R2 } = {y: ZI =

In the example above, the index set J is bounded by four 0, zX1 + z2 = 2s. E R2} is a "zero"-dimensional surface of
lines described by equations z1 = 0, :2 = 0, zI + X2 = 3, J that corresponds to the extreme point 91 = (0, 2 31T

. Notice
and x1 + X2 = 2s, respectively. Each line is called a bound- thatthesetF={X:AIX=b, A 2 I=b2,ER 2}={X:
ary surface of index set J and the definitions of this and other x, = x 2 = 0} is not a boundary surface because F n R = 0.
ancillary concepts are formally stated next. ' = {X: A3 7 = b, A47 = b4 , 7 E R2 } is not a boundary

Definiton 2.2 (Boundary surface norm vector, norm space surface because A3 and A 4 are linearly dependent. One norm
and norm intersection): Let A e Z x ' be the index constraint intersection of J is the intersection sp{A } n *At, As} =

matrix of algorithm (J,D) and let A#,,, .Ah, 6 A, k !5 sp{AI} = {X = [z1,z2: X2 = 0. X E RIx2} where A1,
inin { a, n }, be linearly independent rows of A. The hyperplane A3, and X are row vectors, ie., the-intersection of the-norm
F = {X: A,Z = b,, e E R14, i = 1,... .k} is called an space of F, and the norm space of F4. End of example.
!n -k)-dimensional boundary surface of J if F n R # 0. D n Z3(Se s):Ascforalgori (J,D)
The row vectors A, ..., Ah, are called the norm vectors of is a function e: J - Z such that for any arbitrary index
boundary surface F, the notation surf{A,, .... Ah } is used is 7 e : o" < a if 7 + 3ny D
to represent and sp A,,.., A, } is called the nom pointsj , o" < (7) if7=pace +D.
(of index set J) associated with F. The intersection of any two In other words, a schedule is a mapping which assigns a time

norm spaces of J is called a norm intersection of index set j. of execution to each computation of the algorithm in such a

When k = n in the last definition, the coesponding s- way that dependencies are preserved, i.e., if the computation
face is "zero-dimensional," i.e., it is an extreme point of J. indexed by 7 depends on the computation indexed by 7, then
The norm space spannJi by norm vectors Aht,.--,A,, is the computation indexed by 7 can be executed only after the
Perpendicular, to its boundary surface F, i.e., if V is a row execution of the computation indexed by . Th1 schedules of
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interest in this paper are so-called linear schedules which are i2

defined next.
Defntiodn 2.4: For algorithm (J, D) a schedule on : J - Z

is a linear schedule if on(5) = LI + cj,' 5 E J, where "'-

HE Q'X is such that min , ,E D} D 1 and
c = - min{115: 3-E J}. . .. "

Definitions 2.3 and 2.4 are similar to equivalent concepts in . e'I-(11
[1]. In the last definition, the entries of I can be any rational- . .- .". . ",
number. However, given such a 11, it is always possible to 5 . *~

find W E Z" n and a constant diapfl' E N + such that 11= H, "
l'/diap11' where dispI' equals the least common multiple
of the- denominators of the entries of I. For this reason, the "2

following definition of a linear schedule is equivalent to that *. - -di

of Definition 2.4 and is used throughout this paper. __ "_-_-_-_.___._.."-.._-. _

Definition 2.5 (Linear schedule and linear schedule vector): 5 -'

For algorithm (J, D) a linear schedule is a functio. n: J."
N such that

un(S) - ~[(f -c)/diapflJ, S J (2.3)

where rJ C Zlx , dipll = min{II.: d. e D} > 0,
gcd(i- ,..-, )2 = I and c = -min{II-:f1 e J. The row i. I oxe od by a 1 (1. 1

algoritm of Example 2.1 when s = 5. Each line corresponds to a hyperplane
vector I is called linear schedule vector associated with o1n. with normal vector 1. All pomnt on three Consecutive lines can be scheduled

Example 2.3: Fig. 2 depicts a linear schedule an = to execute at the same time step without violating the dependency reiions.
Q1f, ilj - 5) /3J for the algorithm of Example 2.1 (.9 = 5)

where 1" = (1, 1], c = -5 and diaplI = 3. The hyperplanes
(dotted lines in this case) described by the equations HI = d h
for different values of c' help the visualization of the schedule f max{fll(37 - 3 ): 71,72 1 (2.5)
because all points contained in the same line are "executed" =  Min{fl i: d- e D}
at the same time. Actually, for any given group of three subject to I"[. > 0 a, E D.
consecutive lines (as identified in Fig. 2), all points on these
lines are executed simultaneously. In general, the number of
consecutive lines to execute simultaneously corresponds to the Let S denote the solution space of Problem 2.1, i.e., S =
value of disapl. Notice that all dependencies are "satisfied" {II: lID > 5}. The set S includes all linear schedule vectors
and it can be verified that the total execution time achieved H defined in Definition 2.5. Notice that if 11 is an optimal
by the linear schedule is the same as the one achieved by the solution of Problem 2.1, so is aIlr for any nonzero constant
free schedule. End of example. a. This guarantees that the optimal solution rl* can always

The total execution time of algorithm (J, D) with a linear be obtained such that H E Z1x11 and the greatest common
schedule o'1 is divisor of the components of HI is equal to one. After 1"Q

is found, then, according to Definition 2.5, the constant c can
t(H1) =mx{un(7): CJ} -mn{ui(I):7E J}+1 be determined and the corresponding optimal linear schedule

Fmax{H((y 1 - 3): i,)2 + J} +s] on-can be specified completely.
- ' min{112 .: .C- D} (2.3a) As in [1], the linear schedules considered in this paper

satisfy Definition 2.4 (or, equivalently, Definition 2.5). In
or other words, they are described by (2.3) and the condition

that dupfl = min{H1,: 3 E D} > 0. Schedules for
=max,{11-2: . J} + . which displl < min{II.: j C D} are easily transformed

min I I (24 eDinto equivalent schedules for which Definition 2.5 is satisfied.
However, there are valid schedules described by (2.3) for

Because t is minimum if the argument of the floor function which displl > min{fR.: 9, E DI > 0 that are not con-
in (2.4) is minimized, the problem of minimizing the total sidered in this paper. As an example, for algorithm (J, D)
execution time t can be stated as follows, where n = m = 1,J = {0, 1, 3}, and D = [21, the mapping

Problm 2.1 (lime optimal linear schedule problem): For c(i) = L(Ij)/3J, j = 0, 1, 3, is a feasible schedule (i.e..
algorithm (J, D) the time op&m linear schedule problem respects the dependency). Because the denominator displ' = 3
consism of finding a linear schedule vector II E Q"I- such is greater than min{I : 1 6 D} = I. 2 = 2, this schedule

is not a linear schedule (according to Definitions 2.4 and 2.5).
1 LaJ = the lpa im that is less than or equal to a. However, it is easy to prove that for a mappig on described
2 ged(a,...,a,)=the mscommnmdivisorofa,....a,. by (2.3), if them exist two index points j', J C J such
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that (117) /displI is an integer and 7 + d" = 7, 3. G D, discussed in Section Ill-B and its complexity is analyzed in
then an is a feasible schedule if and only if it meets the Section [1l-C.
conditions in Definition 2.5, i.e., displI = minfIi. : 3. E
D}. For example, for algorithm ({0, 1,2,3}, [2]), mapping A. Optimization Procedure
,T(i) = L([1]j)/3J, j = 0, 1, 2,3, is not a schedule because
c'(0) = r(2) and the computation indexed by point 2 depends Generally speaking, Problem 2.1 is a nonlinear program-
on the one indexed by 0. So, in general, for algorithms with ming problem (in the sense that the objective function is
reasonably large and dense index sets (the prevalent case for nonlinear) with linear constraints. The solution space S = {fl:
algorithms of practical interest), Definition 2.5 includes all 7di, > 0, d, E D} contains all feasible linear schedule vectors
schedules described by mappings of the form of (2.3). In fact, and its cardinality is infinite. The optimization procedure
because loop bounds are often unknown at compile time, it proposed in this section constructs a candidate set CO which
is desirable to consider only those schedules that are valid is a finite subset of S and contains the optimal solution of
regardless of the size of the algorithm- Also, for large and not Problem 2.1. Intuitively, the solution space S is a convex
necessarily dense algorithms which do not satisfy the condition cone and it can be partitioned into a finite number of convex
mentioned above it is often possible to do simple algorithm subcones so that the objective function in (2.5) becomes a
transformations that yield an equivalent algorithm for which linear fractional function in each subcone. What the optimiza-
the condition is satisfied. In this paper, only linear schedules, tion procedure does is to, include all extreme directions of
as defined by Definitions 2.4 and 2.5, are considered. each subcone in the candidate set C*. By the linear fractional

The solution of Problems 2.1 is discussed in Section III. programming theorem [14, Section 11.41,. one of the extreme
The remainder of this section contains two more definitions directions is the optimal solution of Problem 2.1.
which are necessary for discussions in the rest of this paper. In general, the optimal linear schedule vector- HO is a

When J is bounded, there always exist extreme points ', function of the size vector S (see Example 3.4), i.e., the
. of J such that maxIII( 1 -32): , 2 E J} = " - . optimal linear schedule vector 10 for algorithm (J,D) with
To characterize this, projection vectors are defined next. a size vector b may be different from the one for the same

Definition 2.6 (Projection vectors): A column vector P is a algorithm (J, D) with a different size vector R'. However,
projection vector if it is the difference of two extreme points for all possible different size vectors of the same algorithm
;i, e,, of R. (i.e., P = Fi - 9k). Hereon, the symbol q is used (J, D), the corresponding optimal linear schedule vectors
to denote the number of projection vectors and the set of all belong to the candidate set. In this sense, the candidate set
the projection vectors is denoted P, i.e., P = {P, . q}. C* is sufficient. For some algorithms (e.g., Example 3.4), it

Example 2.4: For the algorithm of Example 2.1, its solution is also necessary in order to provide optimal linear schedule
space is shown in Fig. 3. As it can be seen from Fig. 1, vectors for all possible different size vectors of the algorithm.
there are 12 projection vetors: Px = - e, P2 = - In other words, for these algorithms, every candidate in C0

P3 = 41 - g 4, P4  E2 - a,, ps = 2 - 3, P6 = F2 - F4 , might be an optimal solution for certain given size vector

?= e3 - FI, P8 93 - 92, P9 = 3 - 94, P10 = e4 - 91, of the algorithm. For a programmed algorithm, the candidate
P11 = F4 - 82, and P12 = E4 - E3. End of example. set C* can be constructed at compile-time. The optimal linear

Definiton 2.7 (Minmum dependence vector and maximum schedule vector iP can be identified either at compile-time or
projectwon vector): For a given algorithm (J, D) and a linear run-time by enumeration of all candidates in C*, depending
schedule vector 11, a dependence vector d is called inimum on whether or not the size vector E is known at compile-time.
dependence vector of [ if l'd = min(rl7i : d, E D} = disp1 As an informal description of the procedure, each candidate
and a projection vector P is called maximum projection vector H1 6 CO is determined by a pair consisting of a k-dimensional
of 1l if I1p = max{(lp: P E P}. norm intersection of the index set J and a set of k linearly

Example 2.5: Consider the algorithm of Example 2.1. The independent dependence vectors, 1 < k < rank(D). Con-
minimum dependence vector of II = [0. 1] is d91 because sider a k-dimensional norm intersection B9 and a set of k
U91 = min(1i2 1 , H'2 = min{2,3} = 2 and one of its maxi- linearly independent dependence vectors ",, , dt . Let
mum projection vectors is P3 = a - 94. End of example. { B1,-, Bk} be a basis forB (in most cases,B , i = 1--, k,

is a row vector of the index constraint matrix A), let B =r B1
II. SoLUTON oFTHE Ta OPrri. LNEAR. and let Hf = [t- dt,,- -, t-dtbj. A row

SCHED3U.E I OBLEM-THE BOUNDED INDEX SET CASE vector 1 is obtained as follows,
This section considers Problem 2.1 when the index set J

of the algorithm under consideration is bounded. i.e., the l = 3(aBi + .. +B ) (3.1)
cardinality of J is finite, and proposes a procedure to solve
this problem. While the derivation and proofs of correctness where a,, , satisfy equation

of this method are somewhat complex and long, the procedure [a, .- •, cf,]BH = (3.2)
itself is relatively simple and easy to illustrate by examples.
Therefore. in Section Ill-A, the optimization procedure is and 3 is a constant to be determined according to condition
first presented and illuitrated by four examples. The formal 2) below. For each vector I, the following three conditions
derivation and proofs of correctneas of the procedure are are tested:
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Fig. 3. Thbdonaliaspecify thesolution space S of Problem2.1 for lgorithm of Example 2.1 where S : 1ID > U (1I: r, +T2 > o.r 2 > o.
The solid How specifp four convex bucones into which S is partitioned. For Sh,. t = 1, 2, h = 2. 3. I, It is minimum and p,, is maximum.
?rq o vectom am shown in Fig. 1.

1) rank(BH) = kc - 1. 111 = 3(a, .- , a,.]B where 3 is a nonzero constant
2) There exists a. proper value of ( such that a. > 0, and [at, ot] is a nonzero solution of equation

-e D, and ]I satisfies Definition 2.5. [a,, .-. , ck]BH = 0. If rank(BH) < k - 1, go to

3) The dependence vectors d, d, .... ,_ are minimum Step 7.
dependence vectors of II. Step 6: If there does not exist a constant(3 such that 11D >

If any one of the three conditions is not met. then this pair U, 1L E Zxn and the greatest common divisor of

of norm intersection and dependence vectors is not good and the components of HI, is equal to one, then go to

the row vector II is ignored (i.e., these three conditions are Step 7; otherwise, set the value for 0 and if d,

necessary for the optimality of 11). If all conditions are met, ,. I , I*) - are minimum dependence vectors of

then the row vector II is a candidate and included in C* . The III, then Ct, = C, U {III} and L = L + 1.

procedure considemevery combination of each k-dimensional Step 7: Check if all distinct sets of k linearly independent

norm intersection- with every possible distinct set of k linearly dependence vectors have been processed. If not,

independent dependence vectors. 1 < A; < rank(D), to pick an unprocessed set of k linearly independent

construct the candidate set CO. The formal description of the dependence vectors and go to Step 5.

procedure is as follows. Step 8: Check if all distinct k-dimensional norm intersec-
Procedure 3.1 (Conruction of candidat set C*): tions have been processed. If not, pick an unpro-

Input: The index constraint matrix A and the dependence . cessed norm intersection and go to Step 4.

matrix Di of algorithm (J, D) where index set J is Step 9: Check the value of k. If k < rank(D), then k =
k + 1, go to Step 2.

Output A finite set- of candidates C* which, for any arbi- Step 10: C = U D) C. Stop.
trary size vector 5, contains the optimal solution of To find all distinct norm intersections in Step 1, all norm
Problem- 2.1. spaces have to be found first by considering all possible

Step 1: Find all distinct norm. intersections of J and set combinations of k rows of the index constraint matrix A k =
k = 1,1 = 1. 1,..., min{a, n}. If the k row vectors in a given combination

Step 2: C, =0 . are linearly dependent, then that combination is ignored. If
Step 3: Pick ak-dimensional norm intersection of J and find they are not, the row vectors in this combination span anorm

all distinct sets of k linearly independent dependence space. According to Definition 2.2, each and every norm space
vectors, corresponds to a set of linearly independent rows of matrix

Step 4: Pick a set of k linearly independent dependence A. Therefore, all norm spaces are found in this way and can
vectors, be put in a set of norm spaces. Clearly, as mentioned before

Step 5: Suppose that the k dependence vectors being pro. Example 2.2, there are at most distinct norm
cessed ar,, , and a basis for the spaces. When k = n, there is only one norm space which is
k-dimensiona norm intersection being processed is the real space R and can be spanned by any set of n linearly

rBI 1 n a independent rows of matrix A. Because two, or more different
{Bt,..,B,}. Let B = [ -and =[J dt- , sets of k linearly independent rows of matrix A may span the

B, jsame norm space, some norm space may appear more than
- ,. - _. If rank(BH) = k - 1, then once in the setofnormspaces. Of course some techniquescan
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0N.. B -N .

N -N, .- N 3,-N , I B,-N,

be applied to eliminate the repeated appearance of norm spaces 4, each one-dimensional norm intersection (i.e., B 1 , B 2 , and
to keep their uniqueness in the set. However, this repeated B3) is considered together with each of the dependence vectors
appearance in the set does not affect the correctness of the (ie., 2 1 and d2). According to Step 5 and because for all pairs
final result of Procedure 3.1. (Bi,d), i = 1,2,3, 1 = 1,2, H = U, rank(BH) = 0 = k-1,

All norm intersections can be found by intersecting each the following distinct vectors are generated: [I = 31 (-1, 0,
norm space with every other norm space. There are at most [12 = 30, -1], and 113 = 33[1,11. For Step 6, 111 is not

-.- t'ma{mn} (,))(Z ',n (a) - 1) norm intersections, feasible because III. = 0 regardless of the value of 1. If
As explained later after Example 3.4, for many algorithms, /2 = -1 and/ 3 = 1 then 12D > U and 1 3 D > 6, 112,
each and every norm intersection is equal to some norm space 13 E Z'' 2 and the greatest common divisors of the entries
and therefore, there is no need to put effort in finding norm of both 112 and [13 are unity; x is the minimum dependence
intersections. To find a basis for the norm intersection B of vector of 112 and 2 is the minimum dependence vector of 113

two norm space sp{At, A , At&, } and ap{A 1, ... , A , 2 } (i.e., [12 and [13 correspond to the pairs (B 2 , d1 ) and (Bs,3 2 ),
(needed in Step 5) requires the solution of the following respectively.) So, C1 = {1T2, 113}. Let k = 2, there is only one

equation: two-dimensional norm intersection (B 4 = R2 ) and only one

A , set of two linearly independent dependence vectors {d, d2 }.

.. According to Step 5, B 0 ~ j H = [2 1 , and
(6,...,6&1,6 ki,,... 4 ,, 2  A,h, = . (3.3) rank(BH) = 1 = k - 1. By equation [ca,a2]BH = 0,

' I[al,a 21 = (1,21 and the corresponding row vector 114 =
A 411, 2. Similarly, if 84 = 1, conditions in Step 6 are satisfied

A12 and 91 and d2 are minimum dependence vectors of 114.

If there are k linearly independent solutions - = ([6 j, Therefore, C2 = {II4} and C ° = CI U C2 = [112,I3,f14}.

61 ,*"-", 6i(kt+k-)], i = 1.' ', k for (3.3), then the dimension CO is a finite subset of the solution space S which is shown
of B is k and a basis for B is in Fig. 3. The candidate with shortest execution time in CO

rA 11. is the optimal solution of Problem 2.1, i.e., the optimal linear

i ffil, = 1, k. schedule vector for this algorithm. The total execution time

t., by each candidate in CO is evaluated according to (2.3a) as
follows:

The folloin exmls are used to show how the candidate r '
set CO is constructed according to Procedure 3.1 and illustrate 41h) = 0, 11 [0, 21 r - [., 01r ) + 1 2+
different aspects of it. Detailed discussion of different aspects "2 1 21
of Procedure 3.1 is given after these examples.

opimal linear schedule vector 110 for the algorithm of t(f 3) = = -
Example 2.1. There are 8 boundary surfaces, four of which

c01respon to the four boundary lines of J and the remaining(1 10,s -[,OT+1
four correspond to the four extreme points of J. There are k(a,) = I = [ .
four distinct norm spaces Ni, i = 1,.-,4 and four distinct
norm intrecin Bi, i = 1,.-.., 4. which ame listed in

Table 1. The derivation of these mrm intersections is shown Clearly, 113 is of the shortest execution time. Therefore, the

in Table I. Notice that the set of two linearly independent optimal linear schedule vector for this algorithm is [13, i.e.,

rows ([-1,0,[0, -1]} can spun a norm space Ns which is II* = [13. In this example, because there is only one variable
equal to N4 . Norm space Ns is removed from the set of $ in the size vector , the optimal linear schedule vector is
nrMm spaces because it is known that them is only one n- independent of the size vector. End of example.

dim.nsional nor spc for any algori s. in Sep 1, th6e Exampe 3.2: Consider the .ponth (J, D) with D =
orm -intersections are foundi.e., BI = sp{([-1,0}, 82 = [21, 23, where 1 = (1,-31 , 2 = [2,41 , g =

,[0,-11}, B3 = SP1, 1}, and 84 = .P([-, 0 ,, 1,l} [2, Of. The index set J is the same as the algorithm of
and k is assigped the, valum one. According to Steps 3 and Example 2.1 and shown in Fig. 1. Because the index set of
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Fig. 4. The 4-face clyhedro inside tof cube is the inde set of the aloritm of Example 33. It has for dxreme poinls , 4, fomr weiomnsnd
boundary s ans xapl, F4 and six on dateary swfa¢e Fs,.. Flo. Fi, is asociatd with the norm splay Ni, i dee- dp -, 11
i nNred in Table F3

p1,0,011, to B ot F, and F - B11 = sp[-r, only seven such pai are listed in the first seven rows of
1.01,n,0, res2 Bv1ey = Table I because, according to Step 5, only seven distinct row
P 1,0,d0, [1,- 1, -1gend b P 1 and t11,- 1,1, 0, vectors are generated by these 21 pairs. For d = 2, there

[1, 0, 0 .Notice that Bs, Be, and B are no longer norm are 18 distinct pairs of a two-dimensional orm intersection
spaces of J. So, in general, it is necessary to identify and a set of two linearly independent dependence vectors
all norm intersections of J instead of the norm space because there ari six two-dimensional norm intersections and
of J. As an example, if a candide 11 belongs to Bs, three distinct sets of two linearly independent dependence
the intersection of norm spaces Nr and N8, Ie, it is vectors. All the pairs are listed in Table ]. For k = 3,
perpendicular to both F and Fs which ar assciated to there is only one such pair corresponding to the last row of
Ne and N, respectively. Table M lists all row vectors and Table I .There are only two distinct candidates in C , i.e.,
all candidates in C generated by Procedure 3.1 and their C = {[, 1, 0, (0, 1, 11}. Bemuse the linear schedule vector
corresponding pr of a k-dimensional norm intersection 0, 1, 0 has shorter execution time, and = [0, 1, 0 and the total
and a set of k linerly independent dependence vectors. execution time is s + 1. End of example.
Each row of Table M corresponds to a row vector and its Ezmple 3.4: Consider the algorithm with index set J
torresn ding pair of a k-dimensionat n and ((iAe.,,inStepddmatrix
a set of k linearly independent depandence vector. CAlumn 1

condi soo the compnent of sunt. Column 6 it h orsodn

norm intrseion. Column 3 lists the corresponding sets of
dependence vectors. Column 4 lists the cr uding row werevectors obtained according to Step 5 in Procedure 3.1 if

H aedefined in Stp5 of Procedure 31). Colun 5 tests A 0 0 1

the feasibility of the corresponding row vector II. The case
where IIr is aot feasible is indicated by "NO." If H" is fusie,0 1
then it indicates the value of constant Of (i.e., 0 in Step 5 of and
Procedure 3.1) such that IID > 'd, II re Z ix" and the greatest

tests if the depedence vectors in colun 2 ame minimumi b 1a
dependence vectors of HI. Column 7 gives the execution time 3,21
of the candides. For k = 1, there sbould be 21 distinct

- of a one-dimensiqi norm interection and a set of one The index set J is shown in Fig. 5 and the dependence matrix
dependence vector because them are seven one-dimemonal is the same as the algorithm of Example 2.1. According to
norm intmrsections and three dependence vectors. However, Procedure 3.1, the candidate set CO -s constracted asC 0 =
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TABLE I
DMntWMM OP AL. CAND S or AL.GOaRmi oF EXA 3-3. Coww'M I ImWc.u man VALUE OFk; ICOLU 2 Lim m Con slommo NORM

[MrU~sci--a; CoLUmN 3 LIM s CoMzromMWO DOWmaoeiiu Vawros; CLUM 4 Lffrs TM ConaWKM o Row Vaclt3 OaWADm
Accommo m Sup 5 iN Puocmxanu 3.1; COLUMN 5 Ta rm FLusunxrY oF mqe Row Vuco. COLUMN 6 TEm iF Tm DoI" amC

VacWWa of COLUMN 3 Az MjO" A CoLUM 7 LAM nm FxamoN Tim or na Leau Sa4azu VaWRS EN COLUMN 4.

kNo. Intersecion J-Vector Row Vector Feasible? 1Minimum? Execution

ID,-,pf-.0,I _ n,-at-1,0,iJ No N
[ -,{lu~o d' n.-3..,-i,j,ol o 0

ItB,-Pjl1,.0-) d. n,-a, l ,0,- No
I d., No,-,-- do , -.. 8o, -o

I B,-Op4 f,1,01) i, fln83[O,1,01 3..-1 Yes l
I B,-,p{[0,0l] fl,-0,10,0.1 No
I B,-,p410,1,1) d 2 nii-,0,1.11 'J7-1 Yes 2s + 1

2 B,-,([-1,o, l,
[-1,,oJ) d,,4 n,- ,[-1,oi] No

2 B i,,da n1.,3,-iio( No
2 B, 4,14 fJ0,en0,oL0O,,- No
2 D,-,p1j(-O,1, -,

[1,0,01) 4,4 ,,-,,-1,o,1 No,
2 Do i,,-4 n,,-,0240,o,0 No

2 B, it ,, rl, 3 -0, 3 [o,o,1 No

2 Dwma-P4[-1,0,IJ,
[1,-1,-1J) ,,,Z, Not OK

2 Bn ;,;j, fl,&-s.j,40j 3106-1 Yes s + 1

2 Bio 4,4 rl1,-8,0,i,0j 31,-1 Yes S 1
2 B,, -.p4-I,1,0l,

[1,0,0l) d,,4 n,7 -o, 7j0,,0 3,7-I syes
21BI, i,i Not OK
2iB,, .,', n,,-,,io,1,ol 3,- Yes S I

2 D,-, ll- -l,V

2 B,.-... 1r.0,0!, , fl - a ,.0 No
Izz.-l} ,,! n,-J+= 1,-1,-1) .'4o

2 1, {, , l -24 .[1,0,01 No
2 813 3S.3-1 Yes 2+ 1
3 y ,-BI Z,,, , , .1- o.. oi 3.,- '  Yet , 6 1

([0. 1), [1,2}. The total execution time by each candidate is
evaluated as follows. ____________ -f: 03

[0,'LoSl.'J.T 1,01 + s1+19
t([0,1 ]) = ] = .2 1: Aj_, -:j EZ,:

"[1,21 (is, =17 - [, Or ). .+... .. .. ,

0-0

t(4 . . . . . . . .o([1, 21) = I 6 0,

Clearly, the optimal linear schedule depends on variablesst o . 4 3 .,

and 32, i.e., size vector 3. If s2 < s, - 2, then (s2 - 1)/2 < FiA.W. The index set of algonlh of Examl.3.4. Thw opual lina r
(st + 2*2 - 1)/6 and [0, 1 is the optimal solution. Similarly, scbedee deende on si. vecor b a ix a two v In A ad ,".
when s2 > s - 2. vector [1,21 is the optimal solution.
Therefore, for this algorithm, the candidate set CO is necessatr
i.e., every cadidate is an optimal solution for some s surfaces F and F2 , respectively. Intuitively, if a candate

vector. End of example.
From the discussion of the above examples it is possible II E CO is determined by B and a set of k linearly independent

to gos additional insighs into the candidates identified by
Procedure 3.1. Let B = p{ B, .. , Br, be a k-dimenional depedence vec tos ,...,,, then II is prpendilar
noma inunectiom of the nor mu associated with boundary to both bounday surfaces, F and F2 and li = -, .=
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-I,_,, i.e., 9l satisfies the following equation 8. Correcness of the Procedure
In this subsection, it is shown that 1I, the optimal solution

n(dt - 30 = 0 of Problem 2.1, belongs to the candidate set C0 constructed
r(dt-dr,) =0 (3.4) by Procedure 3.1. This fact is stated as Theorem 3.1 and is

I proven by using six lemmas. All the proofs of these lemmas are
11(3t - -t ) -- 0. provided in the Appendix. However, an example is presented

to illustrate the ideas behind these proofs.
For example, in Example 3.1, linear schedule vector H3 is Theorem 3.1: The optimal solution II* of Problem 2.1 be-
determined by the pair (B 3 , 22 )- As it can be seen in Fig. 1, longs to Co, the candidate set constructed by Procedure 3.1,
:he norm intersection B 3 can be thought as the intersection i.e., 1l0 E Co.
,)f the norm spaces associated with F3 = surf{A 3 } and The basic idea behind the proof of Theorem 3.1 is as
F5 = surf{A1 ,A 4 }. Surface F3 is the line through points follows. First, it is shown that the solution space S is- a
-7 and F4 and F5 is the extreme point 2 shown in Fig. 1. convex cone (Lemma 1) that can be partitioned into convex
It can be verified that 113 is perpendicular to both surfaces subcones StA where de is the minimum dependency and Ph is
F3 and Fs and satisfies equation 113 (d 2 - 2) = 0. Vector the maximum projection vector (Lemmas 2 and 3). In other
14 is determined by the pair (B 4 , {d1 ,d3 }) where B 4 is words, for any arbitrary II in Sth, max{II(51 -32): ,1i2 E
:he intersection, of the norm spaces associated with- any two J1= U and min{fldR: d e D} = Hd, which implies that
extreme points of J shown in Fig. 1. It can be verified that 114 the objective function described by (2.5) simply becomes a
is perpendicular to any extreme points and satisfies equations linear fractional function of 11 as follows (Lemma 2):
1 4(3 1 -3 1 ) = oandI11(31-d 2) =0.

The above examples also illustrate the following different f = ip-, rIE Sh. (3.5)
ispects of Procedure 3.1. First, Examples 3.1 and 3.2 show
7hat, to find the optimal linear schedule vector, not only Each direction [14, p. 551 in the convex cone S corresponds
the dependence vectors should be considered, but also the a feasible solution of Problem 2.1. Because for every R E S,
houndary surfaces, or the shape of the index set must be f(AII) = f(H1) for any nonzero constant A, f is a function
taken into account. In Example 3.1, the optimal linear schedule of directions in the cone instead of the points. i.e., for all
vector 11* is determined by boundary surfaces F3 = surf (A3 } points on the same direction except the origin, the objective
'nd F5 = surf {Ai,A 4 }, i.e., 91 is perpendicular to both F3  function takes the same value (Lemma 1). According to [14.

md F5 . In contrast, the optimal linear schedule vector fl* for Section 11.4], Problem 2.1 is a linear fractional program in
the algorithm of Example 3.2 is determined by (3.4) with two each convex subcone Sth, and the optimal direction of f
inearly independent dependence vectors d1 and d2 . Second, over Sth is one of the extreme directions of the subcone Sth

,or most algorithms (e.g., the algorithm of Example 3.1) each (Lemma 4). Therefore, one of the extreme directions of Sth,
norm intersection is still one of the norm spaces of J. It t = 1...., m and h = 1,... , q, must be the optimal solution
is shown in Section V that this is true for the algorithms 1 e. Finally, it is shown that all such extreme directions are
vhose index sets are shaped as a hyperparallelepiped. In included in the candidate set C ° constructed by Procedure 3.1
,his case, there is no need to find any norm intersections. (Lemmas 5, 6), i.e., each candidate in C0 corresponds to an

However, in general, some norm intersections are different extreme direction of convex subcone Sth for some t and h and
from all norm spaces as indicated by Example 3.3 (e.g., B 5 is vice versa. Therefore, the candidate in CO with the shortest
different from all norm spaces). Third, Example 3.4 indicates execution time is an optimal solution of Problem 2.1.
that, the optimal linear schedule vector I* may depend on the Lemma 1: The solution space S is a convex cone and the ob-

size vector 5 and each candidate in CO is an optimal linear jective function f = (max{fl(5 1 -E2):71,2 E J})/(min
,chedule vector for some instance of the algorithm. Finally, {fl1-3: 1- E D}) is a function. of the directions in S.
.hen k = 1, (3.2) is trivial because H = i. The corresponding Lemma 2: Let
row vector I is solely determined by (3.1). When. k = n, ,n q

:he n-dimensional norm intersection is simply RI and (3.1) sth = n { ri: nat < U&} n (II TIph  > 'p} rl S
is trivial. In this case, the corresponding row. vector can be -t
determined solely by (3.4). (3.6)

According to the observations above, it is clear that for
wo-dimensional algorithms (Examples 3.1, 3.2, and 3.4), be-

cause r' norm intersections are equal to some norm spaces, = {1: U(d - 3) S 0.'11(P-A, Ph) < 0.

there is no need to find norm intersections. Therefore. what i = 1... o.m. k = 1.---.q,f 1 E}. (3.7)
Procedure 3.1 does for two-dimensional algorithms is, for each
md every boundary line, to put the vector perpendicular to that f St is not empty, then $,, is a convex cone where the
boundary line in the candidate set if this vector is feasible. objective function can be reexpressed as

In addition. Procedure 3.1 considers all distinct sets of two axl( -'2):, 2  J} _ II,
inearly independent depldence vectors {3,,d 1} and puts the f = - E D} =J 2

ector I such that 11(g, - 1) = 0 in the candidate set if II

5s feaible. Leamm3: S= U,'1 U .L S,,-
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Lemma 4: An optimal direction for the objective function S13 is
f = (lphj/(rd,) over Sth is one of the extreme directions i3 = [_r,r2]_[-2. _ 3(-7r, +-r2)

of Sth. f = -= "

Lemma 5: Let WII E Sth. Then IIe is an extreme direction of lidt [TI, 72] [2, 21  71 + 71 2

Sth if and only if they: 'exists a set of n- 1 linearly independent 7id1 :_ id 2
vectors d - dt,, dt -dt, Th - ,", Ph -Ph,, subject to l > fP , i = 1.-. ,12
such that 1i satisfies the following equations: -

lID >0.

=o li( Ph - Ph,) = 0 This is a linear fractional programming problem and one of

i(3t - 3',t) = 0 the extreme directions is the optimal solution of f over S1 3

(a) .[14, p. 471]. By inspection, the set of extreme directions is

1I(h-Ph-, =0 { [O'11, (1, 21,[1,1I]} which is exactly die candidate set CO
-- = -, constructed by Procedure 3.1 in Example 3.1. To illustrate

(3.8) Lemma 5, S12 = {I: 14(31 - d2 ) < 0, (A - P) < 0,i = 1,...- , 12, 11 E S1 = {II: i(P3 - P2 o: , 11(31 - <2)

where 1 < ' < rank(D). 0, 1I E S}. Clearly, I' E S22 is an extreme direction of S 2

Lemma 6: Let I"' 6 S, be an extreme direction satisfying if and only if it satisfies one of the following equations

(3.8). Then the following statements are true. (T(3 1 - 91 ) -0

a) 3,, *. I ,,,_ are linearly independent and are mini- P (3.11)
mum dependence vectors of fl. II I1(. 3 - 2 )=i[-s,0 = 0

b) There exists a k-dimensional norm intersection. B ( f 3 - ) = 0
sp{B1,...,B} such that HO 6 B and k _< k', i.e., for i -2) - 2, -1T =0. (3.12)
some constants ai, i = 1,.-., k

k. Therefore, there are two extreme directions [0. 1] correspond-

rig = E aiBi. (3.9) ing to (3.11) and [1, 21 corresponding to (3.12). To illustrate

Lemma 6, consider the extreme direction 1' = [0. 1] deter-
mined by (3.11). In this case, 1 ( d - 30 = 0 corresponds to

FB] (3.8a) and 1IP - j52) = 0 corresponds to (3.8b) and k' = 1.
c) Let B ... and H' = [dt - 3t, 3t - dt...,d. - The following illustrates all statements of Lemma 6 one by

B, Jone. The vector 21 is a minimum dependence vector of fl';

Rt,-J. Then rank(BH') = k - 1. the norm intersection B 2 = spf{[0, -11) found in Example 3.1

d) Without los of generality, let H = [R - 3t, - is the one that I belongs to and k =' = 1; B = (0,-1l,

a*t... 3 - R,-J be such that ranlk(BH) = k - 1. H = [O,O]2, and rank(BH) = 0 k k - 1; and II can

Then 11" can be obtained from (3.9) and the equation be obtained equivalently from equations I = a(O, -1] and
a[01 = 0 corresponding to (3.9) and (3.10), respectively. End

(al,. .. aABH - 13. (3.10) of example.
Proof of Theorem 3.1: By Lemmas 1-4, the solution space

S is a convex cone; S is partitioned into convex subcones
Lemma 6 simply states (3.8) is equivalent to (3.9) and Sth, t = 1,...,m and h = 1,---,q; and over Sh one

(3.10), i.e., Il is a solution of (3.8) if and only if it is a of the extreme directions is optimal. Therefore, one of the
solution of (3.9) and (3.10). This provides another way to find extreme directions of Sh, t = 1,. .- , m and & = 1,-.., q1
all extreme directions because in practice, it is not easy to must be an optimal direction of the objective fur,-con f
identify all projection vectors, especially, when the number of described by (2.5) over S. By Lemmas 5 and 6, 11 6 Sti

the extreme points is large. All extreme directions can be more is an extreme direction of StA if and only if it is a solution
easily obtained by (3.9) and (3.10). of (3.8), or equivalently, a solution of (3.9) and (3.10) that

Ezample 3.5: The algorithm of Example 2.1 is used to has only one linearly independent solution. In other words.
illustrate Lemmas 1-6. The solution space of Problem 2.1 for III c Set, is an extreme direction of Sth if and only if it is
this algorithm is shown in Fig. 3. Lemmas 1-4 are illustrated the only one linearly independent solution of (3.9) and (3.10)
as follows. The solution space S is a convex cone {II: 121 > for some k-dimensional norm intersection of J, where I <
0. I22 > 0) = {l: 2r i + 21r 2 > 0, 3r2 > 0}. There are k < rank(D), and some k linearly independent dependence
24 subcones Sth, t = 1.2. h = 1, 12. However, it can vectors that are minimum dependence vectors otII and, in
be verified that there are only 4 nonempty subcones S 3 , S12, (3.10), rank(BH) = k - 1. Now, what Procedure 3.1 does is
S2, and S2.1 1. Therefore, the solution space 5 is partitioned to consider al possible combinations of norm interections
into four convex subcone S13 , 512 , S22, and S2,11 as shown with all distinct sets of linearly independent dependence vec-
in Fig. 3. The union of the four subcones is S. Consider tors, obtain a row vector fi by solving (3.9) and (3.10), cleck
subcone 513, 91 is the minimum dependence vector and P3 the feasibility of rIT, rank of matrix BH and if the dependence
is the maximum projection vecto, the objective function over vectors are minimum. If lI is feasible, rank(BH) = k - 1
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nd the k dependence vectors are minimum vectors of II,, algorithm is a hyperparallelepiped, Step I of Procedure 3.1
hen it is included in C0. So IIe E Sth is an extreme direction can be omitted. This reduces the complexity of Procedure 3.1

If Sth, t = 1,..-,m and h = 1,... q, if and only if it to O(21"n3 ) as explained later in Section V. It follows that
s included in C* which means Lhat the optimal solution HO this procedure is efficient for most algorithms.
nust be in C". 0

IV. COMPARISON TO A LINEAR PROGRAMMING APPROACH

Complexity Analysis This section discusses an alternative procedure, based on
The complexity of Procedure 3.1 is a constant in terms of linear programming, to find the time-optimal linear sched-

he cardinality of the index set J, i.e., it is independent of ule vector IP and compares its complexity with that of
he size of the algorithm. However, it is a function of a, Procedure 3.1. The comparison indicates that Procedure 3.1 is
, and n, i.e., of the number of rows of A, the number less computationally expensive than the linear programming

4 the dependencies, and the dimension of the index set, approach. However, because there are many existing tech,-
cspectively. Clearly, either Step 1 or Step 5 dominates the niques to implement linear programming problems, it might
vhole procedure. Step 1 identifies all norm intersections of be an alternative approach for some algorithms. Variations of

,. For 1 < k < min{n - 1, a}, there are at most (ak) the linear programming approach presented in this section are
iistinct k-dimensional norm spaces of J. For k = znin{n, a}, studied in (19], [271, and [281.
here is at most one k-dimensional norm space that is R1 As a direct consequence of Lemmas 1, 2, and 3, Problem 2.1

a > n. So, there are at most 1 + EAI ' n - 1) (') norm can be formulated as a set of linear programs as follows. In
,oaces of J and there are at most (1 + i 'm- 1' ()) each- Sth, a subset of the solution space S defined in (3.7),

!istinct norm intersections of J. To find each norm inter- Problem 2.1 is described as !

,.ction, at most O(n 3 ) operations are needed to solve (3.3). Ph

1'herefore, the total operations that Step 1 takes is 0((1 + Hd
-mrn.n -11 (a))2n3)" For Step 5, if it is assumed that there

re mk distinct k-dimensional norm intersections of J, then1
,cre are at most - m ('n) iterations. Each iteration subject to 1ID > (4.1)

ieds 0(k 3 ) operations to solve (3.10). Therefore, Step 5 iI(h-Pt) 0 > = 1..-.q.
(-/ -raal(D) 1l.1kes 0(-:ra_, (Dt m1,( k/3) operations and the complexity

, edu ( 3.prtn1 s andnded above by As mentioned before, IT is a function of directions of the cone
sbounded above by Sth. Clearly, every direction IT corresponds to a point I' such

mln~a,n-l} (a) 2 that dispfl' = II'Rt = 1. In other words, it is good enough

+ (: n 3  to consider only these feasible solutions 1' E Sth, such that

k=1 displ'F = ll'dt = 1. Therefore, (4.1) is equivalent to

_ =2' and~

)ue to the fact that k..= ( ) = 2n, it follows that 1 + subject to iD > " (4.2)

::=t m n ) (0 kGl) < iG =o (a) = 2&and , q.

eank(D) (a) < =k (') = 2'. Because there are at most

:' norm spaces of J, there are at most 2a - 1 distinct k- The constraints lID > 0 and 1it <_ Id, i = 1,..., m, in

i mensional norm intersections of J, i.e., m,< 2-. Therefore, (4.1) are implied by rID > T and lIds = 1. Because the

he complexity of Procedure 3.1 is bounded above by denominator of the objective function is equal to one, (4.2) is
equivalent to

0(22 n3) + 0(2n 32m) < O(22--i4{"'mn3). (3.14) mi
Vhen a = 2n > m, the complexity of Procedure 3.1 is l'dt = 1

Ounded above by subject to/ rID > 1 (4.3)

0(24nn3 ). (3.14a) lI(P-P) 0. 1 ,=.-. q.

vi it can be seen from the derivation, the upper bound of
' ocedure 3.1 given by (3.14) is very loose. It is remarked that Clearly, (4.3) is a linear programming problem. Let lIth be

ic procedure takes time exponential in the number of rows of the optimal solution of linear program (4.3), then the optimal

,e index constraint matrix A and the number of dependence solution rI0 of Problem. 2.1 belongs to the set {lath,, t =

:ctors of the algorithm rather than in the cardinality of its 1. ... , m, and h = 1. .. . , q}. In other words, lO can be found

idex set. i.e., it is indepe.lent of the size of the algorithm., by the following procedure.

most cases of practical: interest the values of a and rn are Procedure 4.1 (Finding 1? by linear program approach):

It large and, as mentioned before, when the index set of the Input: Algorithm (J, D) whose index set J is bounded.



736IEEE TRANSACTIONS ON COMPUTERS& VOL 40. NQ. 6, JUNE 199

1.*. ( n) n2
Output: The optimal solution. 11 of Problem 2.1. Ia = 2, then () = o ()) > 0 () =

Step 1: Identify all extreme points ,;,i = 1,.., e, e E N + , and, whe te simplex method is used, the upper bound for

of index set J. the complexity of Procdure 4.1 is at least

Step 2: Construct the set of projection vectors P -= { t c = '! 4

9- Ek : 1< i, k < e}1. Let I P1 = q. 0(2-2-22' in 3 ). (4.6)
Step 3: For projection vector Ph and dependence vector 3t,

h = 1,...,q and t = i., formulate linear If the ellipsoid method is applied to solve linear program
program (4.3) and find the optimal solution IIth of (4.4), the complexity of the linear programming approach is

(4.3) by applying existing techniques (e.g., simplex 0(18 log 2 T • m •q) where I = m + q = M + (() - 1)2 is

method), the number of columns of A" in (4.4) and m q is the num-

Step 4: Compare the total execution times by Ith, = ber of linear programs. As mentioned before, T is the maxi-

1,...o, m and h - 1,.., q. The one with minimum mum absolute value of the entries in A" or '. Because some

execution time is the optimal solution II° . Stop. entries of extreme points are linear functions of entries of the

There exist many techniques to solve linear programs (4.3) size vector 3 (e.g., extreme point E4 in Fig. 1), some entries

such as, the simplex method and. the ellipsoid method. [29]. of the projection vectors and matrix A" are linear functions of

Consider a linear program ma*x{C': A'- 5 b'} and its dual entries of the size vector b which characterizes the cardinality

min{ Yb: YA' = C', Y 2_ 04 where C' E QI x L, A' E QnIXL of the index set (size of the algorithm). Therefore, in addition

and F" e QxI are given and. Y e Qlxn, , E Q1x1 are' to a large proportionality constant, the complexity of the

unknown vectors. The complexity of the ellipsoid method for ellipsoid method is a logarithmic function of the cardinality

this linear program is 0(1• log 2 T) where T is the maximum of the index set J which is not desirable.

absolute value of the entries in A' or 6 and I is the number Compared to Procedure 4.1, Procedure 3.1 has at least two

of columns of matrix A' (29, p. 1701. The complexity of the advantages. First, Procedure 3.1 is computationaly less expen-

simplex method for the worst case of this linear program is sive than Procedure 4.1. This is clearly shown by (3.14) and

0(2ln 3 ) [29, p. 139]. (4.5) and (3.14a) and (4.6). One of the reasons for this is that

The complexity of the linear programming approach is as the linear programming approach. possibly, processes some

follows. As defined in Assumption 2.1, integer a is the number extreme directions of Sth more than once if these extreme

of rows of the index constraint matrix A. Clearly, there are at directions belong to more than one subcone St,. This can

most ,) extreme points of the index set J. Therefore, to be illustrated by Fig. 3 that shows the solution space of the

find all these extreme points, at most O( )n 3) operations algorithm of Example 2.1. In Fig. 3, extreme direction (0. 11

are needed. There are at most (() - 1) projection vectors belongs to both S12 and S13 . So, using the linear programming

(notice that E - 'A is different from 'F, - 'i in general), approach. that direction is considered twice, one by the linear

i.e., q _ (() - 1)2. So, for Step 2 to construct the set program for S12 and the other by the linear program for S13.
of projection vetors, at most 0(((:) - Z)" . ) operations In contrast, it is processed only once by Procedure 3.1.
are needed. In the worst case, there are ((6) _ )- linear Second. as mentioned in Section II-A, Procedure 3.1 can
prrare ne nhe o rs whcs, hesrie ar (() )mbe implemented at compile-time because it does not require

programs each of which is described by (4.3). Linear program knowledge of the size vector b. It is necessary to apply

(4.3) can be rewritten as Procedure 3.1 only once to get all solutions for all possible

different instances of the algorithm. In contrast, for the linear
Min('I Ph: II dt = 1, IIA" _ C"} (4.4) programming approach, it needs to know the size vector 3 to

determine extreme points and projection vectors to apply the

where A" = (D,I-P1,"" ,p-j ] and C" = [Tl]. There simplex method. So, the linear progrmming approach can be

are I = mn + q columns in matrix A". Linear program (4.4) applied only when the size vector b is known, possibly, at

can be transformed into standard linear program min{Yb' : run-time. For each instance of the same algorithm, in general.

YA' = C', Y . 0} by some techniques (e.g., slack variables Procedure 4.1 may have to be applied once to find the optimal

or surplus variables [31, p. 121) and there at least I = n + q solution.
columns in A'.

If the simplex method is applied to linear program (4.4), V. SOLUTION OF THE TIME OPTIMAL LeEAR SCHEDULE

then the complexity of solving one linear program in Step 3 is PROBL.M -mE HYPFRARALLELEPIPED WDEX SET CASE

0(2'n3 ) where 1 = mn 4 q = mn 4 ((,) - 1)2 is the number In most applications the index set J is simply a hyperparal-

of columns of A". Therefore, the number of operations needed lelepiped (see Definition 5.1 below). Because of the regularity

by Step 3 is 0(m -q.2m+q- n') = (1 of the index set, it is reasonable to expect Procedure 3.1 to

n3 ) where n - q is the number of linear programs. Clearly, become easier for this class of algorithms. In [121, a solution

Step 3 dominates the whole procedure and the complexity of of Problem 2.1 is proposed for algorithms where the index

Procedure 4.1 by the simplex method is set J is a hyperparallelepiped. In this section, some of the

results in [121 are restated as Corollary 5.1 and proven in a

S(() 1)22'n*(( )-z3r3) (4.5) different way. Their notations are used as much as possible in
n this section and introduced next.
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Throughout this section the shape of the index set of (5.2)
All algorithms under consideration is assumed to be like a
hyperparailelepiped, i.e., defined as follows.

Definition 5.1 (Hyperparailelepiped index set): An index set P Pro ide d iln Appendix..1 is a hyperparailelepiped if Procedure 5.1 (Constrwucto of Cr):
Input: Algorithm (J, D) where J is a hyperparaflelepiped.

J= {(J,',J,):0-- ji - siJi E Z, s i E N + , Output: A finite candidate set C containing the optimal

i = 1,... n}. (5.1) solution of Problem 2.1.

Step 1: k = 1, 1 = 1.

Clearly, if J is a hyperparallelepiped, then J = {: Aj < Step 2: Ch = 0.

er c. Step 3: Pick an unprocessed combination of k elements from
6.3E Z"}whereA= [.fpj b- and=(3 ...... ,, T . fl, - , n}. Denote it {rl, - , rk}.
A norm vector for any boundary surfae of J is of the form E Step 4: Pick an unprocessed combination of k elements from
or -Ei, 1 <_ i < n, where, as defined in Section IL E denotes {1,..., m}. Denote it {cl,..-, ck}.
the row vector whose entries are all zeros except that the ith Step 5: If D(ci ... c/. .. rk) is not singular, then 11, =
entry is one. Any norm space has the form sp{E,1,. .. , E,, } II(c ... c&/r, .. ra) and Ck = C'U{IIg}, 1 = +1.
where . 5 ri,..., rt <5 n and 1 < 1 < n. Therefore, any Step 6: Check if all distinct combinations of k elements from
norm intersection can choose {E., . ., }, 1 < k 5 n, as {1,..-,m Ihave been processed. f no, go to Step 4.
its basis and is equal to some norm space. Step 7: Check if all distinct combinations of k elements from

Let D(c .. . c/r ... r,) denote the submatrix of D {1, .- . , n} have been processed. If not, go to Step 3.
containing the elements in column c 1 ,-,c, and rows Step8: Ifk<rank(D),thenk=k+1, gotoStep2.
rt,'- , ry, i.e., it contains the elements- of D at the Step 9: C = Ur=k(D) Gt. Stop.

intersections of colmn .l,- -, c and rows ns,. r. Due to the fact that all norm intersections of J are known,
if D(c ... c ,/ rC) is nonsingular, an integer row Procedure 5.1 does not compute distinct norm intersections.
ve ct ... = ,... r whre Z is d postivef in asV This makes its complexity lower than Procedure 3.1. Clearly,

31D(ct ... cv/r1 . . , r) where r is a positive integer Step 5 dominates the whole procedure. For Step 5, there are
such what gcd(vtsa t = 1. In other words, V is a (k) distinct combinations of k elements from {1..-,n}
vector whose entries are the sums of the corresponding and there are (') distinct combinations of k elements from

columns of D-I(c, .. c/r ... rA,) scaled so that they are k-, (D)(D, _ ( m-.n _
integers with the greatest common divisor equal to the {1, . So there are .()(') = I.
unity. If D(ci ... ch/r,... ra) is nonsingular, then define iterations for Step 5. Each iteration needs 0(k) operations to

1  compute the inverse D-I(c, ... ck/r ... rk) if it is nonsingu-

II(c, . . . c ... rk) = VB, where B =L In words, lar. Therefore, the complexity for Procedure 5.1 is boundedLa O,((( )) - 3)n). If rank(D) = n = m.

the subvector ( Of 11(Ci...C/ri ..r) is the then n () () = < () : (n I (n =

same as V and the remaining entries of I(c, ... c/r... r) (2)2 = 22, and the complexity of Procedure 5.1 is bounded
are zero. Finally, Ch denotes the set {fl(ci ... r. ) : above by 0 (2 2n n3)d

1...... Some comments are made here regarding how the
The following example illustrates the notations and concepts gandidate set Ch constructed* by Procedure 5.1 is related
just introduced. CO constructed by Procedure 3.1. First, each candidate

Example 5.1: Consider the algorithm (J, D) of Example 3.4 to . tonstrcted b roindcrespondsFtoste cmbinatwher J f 1, ~l 0< ' 5 1YO5 j2:5 Z31329II(t ... tA_- t/r, ... rk,) in ChO corresponds to the combination

where J = {Lj 1,j 2]T: 0 < < s-,O < j2 < 82,1,82, of the norm intersection sp{E,,.. . ,E,,} and the set of

Jl,2 E Z} and D = )11. This algorithm has the same dependence vectors dt, d ,...,d..,_,. This is shown in
dependene matrix as-the agorithm of Example 2.1. Ac- the proof of Corollary 5.1 provided in the Appendix. So

cording to the definitions just introduced, D(1/1) = [2] 1I(t1 ... tk-.t/r, ... rk) belongs to the solution space of

(contains the entry in the first column and the first row), (3.4). This can be verified as follows. Let II = 1I(t1

its corresponding V - LD-1(1/1) - [1] where 3 - 2, .-- t/ri .... ra) then 11 - VB where V = 13TD-'
3 = E,= [1.01, and II(1/1) = VB = [1,01; D(112) =(21, FE7 1 1
its corresponding, V = OID-(1/2) = [1] where,3 = 2, B = ( 1 ... tkLt/r, .. .rA) and B = . Clearly, B[,,

E2=[0.1 11H(1/2) [ B 0,1];an D(12/12) D, E1
its corresponding V = O -D' [1, 21 where 1 = 6. B = f .,"'.-,dtJ = D(t ." - ... St/t r... '). So [ ,.,

andf(12/12) = VB = V = 1,21. End of example. dt,,_1,dt] = 11, i.e., = ... = .l3'. = I = 3.

Corollary 5.1: If the index set J of algorithm (J, D) is a Therefore, II is a solution of (3.4).

hyperparallelepiped defined by (5.1), then the optimal solution Second, the candidate set Co constructed by Procedure 3.1

E1' of Problem 2.1 for (J,D) belongs to Ch, i.e., is a subset of C, i.e.. C C * for algorithms whose
index sets are hyperpurailelepiped. Let I e CO be de-
termuined by a k-dimensional norm intersection B and k

< "" < cA _< m, 1 _ r, < ." < rr, :5 n}. linearly independent dependence vectors dt, dt,..-, 3,1. As
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mentioned before, a basis for B is {E 1,--. , E,., }. Theb extant work, this contribution considers a larger class of index
II - l.(t. tk...It/r .- r) E Ch. As a matter of fact, sets and linear schedules. It is also shown that, when index
C0 = {II: H1 E Ch, H1 or - H is feasible and 3t, 3t.. ,"... _1 sets are hyperparallelepipeds, the procedure- is considerably
are minimum dependence vectors of lI}. This is true because simpler and faster. The proposed optimization procedure can
each l1(t, ... t-lt/rl ... rk) corresponds to a combination of also be used to identify optimal schedules for the execution
a k-dimensional norm space 3p{E_, .-- E, }.with k linearly of a specific computation [16].

independent dependence vectors d4, d, ... , dt,_, and vice In MIMD machines, the total execution time of an algorithm
versa and C'* includes all the row vectors corresponding all consists not only of the time required to execute all of its corn-
combinations as long as D- (t, ... tk;-It/rI ... r ) is nonsin- putations but also of the time spent in coordinating concurrent
gular, i.e., the condition raank(BH) = k - I in Section 111-A operations, e.g., in data communication and synchronization.
is met. The partitioning techniques studied in [15], [25], and [26] are

Third, for II(t, ... tk-lt/r, ... rk), the order by which potentially applicable to the problems of selecting the linear
t.. , t- _ ,t and t appear and the order by which r1 ,.. •, r ap- schedules which minimize the time spent in the coordination of
pear do not matter. As an example, 11(t, ... tk-t/r, ... rk,) = concurrent operations. Together with the scheduling approach
II(t 2t, ... tk-I t/rl ... r,) = 1(t 2t4 ... t.. lt/r 2r, ... r,) = discussed in this paper, those techniques may be of use to
II(t1 ... t,_it/r2 r, ... rk). This is due to, the fact that. they identify optimal schedules for uniform dependence algorithms
are all determined by the same combination of a k-dimensional executed in MIMD machines. This topic will be addressed in
norm intersection spj.Ev,.., E,., } with a set of k linearly future research.
dependence vectors d, dt, ... d,_. Next, an example is-
used to illustrate Procedure 5.1. APPENDX

Example 5.2: Consider the algorithm of Example 5.1. Let Proof of Lemm 1: By defiition,
/€ = 1, there are two possible combinations of one element
from {1, • • , n I and two possible combinations of one element mn

from (1.-.,m} (n = m = 2). So, D(1/1), D(1/2), S = fl {i: rid. > 0}. (a.1)

D(2/1), and D(2/2) are processed. Each corresponding vector i=L

is obtained as follows. D(1/1) = [2] and I(1/1) = [1,0]; Clearly, {II: rIld. > 0} is a convex cone. By Theorem 2.5 in
D(2/1) = [0] is ignored because it is singular; D(1/2) = [2] [17] which states that the intersection of an arbitrary collection
and 11(1/2) = [0, 1]; D(2/2) = [31 and H(2/2) = [0, 1]. For of convex cones is a convex cone, S is a convex cone. For the
k = 2. there is only one combination, i.e., D(12/12) = D objective function f in (2.5), f(fl) = f(AI) for any nonzero
and 11(12/12) = (1,21. So Ch = {[1, 01, (0, 1],[1, 2)}. II(1/1) constant A. Therefore, f is a function of directions in S. C
is not feasible. If it is removed from C4, then CO is obtained Proof ofLemma 2: Obviously, Sth is a convex cone because
as {[0, 11, (1, 2]} which is the same as the one constructed by it is an intersection of convex cones. By definition of Sth,
Procedure 3.1 in Example 3.4. The total execution time by for all directions II E St, H'dt < a., i = 1,- -. , m and
each candidate is as follows. fI1 > Hflk, k = 1.. . . , q. Therefore, 9t is the minimum

(0 11( 2 -o 01T') + 1 [,2+ 1 dependency of 11 E Sth, and Ph~ is the maximum projection
t([0. 1) = 0 ( 2 224 0 1 = vector of II E Sth, i.e., nit = min{fldi : d" C D} and

2 I = max{11p-,: 17 E P1 = max{ 11(31 - 12): 11, 32 E J1.

t([1,21) = (1. 2]((,,, 2 ]r_[001)+1 Thus. max{+l(3T-hs):,,j 2 E} Gri !)S

_ in,+ 2.2 + 11 min{113i: J D}

If 31 > 32, then the optimal solution of Problem 2.1 is
IJO 11(1/2) = [0,1]. IhO is perpendicular to the surface Proof of Lemma 3: For every 1 E S, there must exist ,
surf {[0, 11}. Compared to Example 3.1, these two algorithms and Ph such that 3 is the minimum dependency and ph is the
have different optimal linear schedule vectors although they maximum projection vector which implies that there exists a
have the same dependence matrix. This is due to the fact that subcone Sth such that [E Sth. So S h U=. S .
they have different index sets. End of example. By definition of Sth [see (3.6)], for every 11 E Sth, II E S.

Therefore, Sth g S which means that S D U, 1 Uq,= St4.
VI. CONCLUSIONS AD FUTURE W K Therefore, S = U' I U'., Sth. CProofofLemma 4: In S, Problem 2.1 can be formulated

In summary, this paper provides a solution to the problem as

of identifying optimal linear schedules for the execution of
algorithms with uniform dependences. The complexity of the rain f = 1 Sat
proposed procedure is independent of the size of the algorithm
and is exponential in the dimension of its index set. For where Sth is defined by (3.7). According to [11, Section 11.41,
practical algoithms the index set has rather small dimension this is a linear fractional programming problem and one of the
and the procedure is therefore very efficient. Im comparison to extreme directions is the optimak direction of f over St,. C1
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Proof of Lemma 5: The idea behind this proof is as follows. It is always possible to choose a large enough constant

:irst, if lI is an extreme direction and there does not exist a set a and a small enough constant a' such that 112 c,_,',,

Of n- 1 linearly independent vectors d-dt,,d-d ,,, 4, -al,'"., --t] < U because 11.[6,+i,... , Z,, -d 1 ,...,

h,- Ph,' _,, - Ph such that 111 satisfies (3.8) then -d.] < . Thus, 112 E Sth, i.e., there exist at least two

170 can be written as a positive linear combination of two linearly independent solutions of (a.2) 112 and ie that are in

distinct directions 111, i2 E Sth (Iii and 112 are distinct if Sth. Let [11 be constructed as follows:

1it # a12 for any nonzero constant a). By definition of
an extreme direction [14, p. 55], 1e cannot be an extreme III = AHl - A2112  where A > 0 and

direction which is a contradiction. Second, it is shown that A2 > 0 are constants. (a.4)
1 there exists a set of n - 1 linearly independent vectors

it ... 3-t , -,Ph,_ --Ph such that The fact that l e 96 #1 for any constant -f implies 111 # 72112

IIe satisfies (3.8), then III cannot be written as any positive for any constant 72. Thus, ItI and 12 are distinct. If it can
linear combination of two distinct directions of Sth, i.e., He be shown that 111 e S,,1 , then by the definition of extreme
is an extreme direction. The formal proof is as follows, directions, 119 is not an extreme direction which is contrary to .

1) (=*-) A direction H of a convex set 11 is called an the assumption. Now, 111 is a solution of (a.2) because it is a
extreme direction if it cannot be written as a positive linear i/near combination of two solutions of (a.2). For (a.3)

combination of two distinct directions in fQ, that is, if 11 = I

tit + A2 112 where A1, A2 > 0 and 111, 112 E 0, then rr,
F11 = a12 for some constant a > 0 [14, p. 55]. By definition, - AI' [C,+1," • , 4, - ,', ,St = 11: n[d-t1,.. - , 9t- L, P1 -Ph," "" .- P, <--0, -

ri[?,. , - 3M]< 6}. Without loss of generality, let zj =
,- d, for i = 1,. , and ?I,, -P,-P for L = 1, q,
i.e.. Sth= (11: 11 [It," ,Zl S 0, -ZIId]," ,,, < 0}, Again, it is always possible to choose a large enough

where r = m + q. Suppose that III is an extreme diction in constant A and a small enough constant A2 . such that

5th and there does not exist a set of n- 1 linearly independent li ([s+i, ... ,r-,d,'", -3m] < 0 because II-,5+,",

vectors UeI,'", 4_ such that 1Ie satisfies (3.8). Because a,., d,",wl < O. Thus, II E Sth and II can be

[11 E S h, it satisfies the following equations: expressed as a linear positive combination of two other distinct
directions in Sth, i.e., Il e = a1111 + a2112 where a, =

1i,... .] <5 (1/A) > 0 and a2 = (A2/A) > 0, which means III is not an

- j .. , <. extreme direction. By assumption, i' is an extreme direction.
'Therefore, there must exist a set of n - 1 linearly independent

.ssume that there are s vectors s E Z, such that vectors a - d,", " * -at -phi -A,"".,P,- - Ph
Rezi = 0, i = 1...., s, and rank([- . Ut.) = s' < n - 1. such that 1 satisfies (3.8).

Without loss of generality, let us assume 4- = i, i = 1,..., s, 2) (4=) Conversely, suppose that there exists a set of n - I
i.e., II is a solution of (a.2) and satisfies (a.3) below: linearly independent vectors ZI,"" ,Z- such that [6P is a

solution of (3.8) and it is not an extreme direction of Sth.{(a) = 0 Then II can be expressed as a positive linear combination of
S(a.2) two distinct directions of Sth, i.e., there exist 111, 112 G Se

1 1= 0 such that fi e = A1111 + A2 112 where A,, A2 > 0 and 1I1

and 0112 for any constant a. By bringing Il e into (3.8), then
r 11,+, < 0 , tII + A21I1A = 0 i = 1,...- , n - 1. (a.5)

Because 111, 112 e Sth, A111i < 0 and A2 11Ai 5 0.

114< 0 (a.3) Therefore, the only choices for I1 and 112 that satisfy (a.5)
-1I, < 0 must be such that

""ad,, < 0. , tIit = All1hi7 = 0 i = 1,.- -, n - 1.

There are at least two independent solutions of (a.2) because
,' < n-1. Next, it is shown that there exist at least two linearly So, 111, and 112 are solutions of (3.8). Because rank([Zi,.,

independent solutions iI and 112 of (a.2) that are in Set. Let Z,,-1]) = n- 1, there is only one linearly independent solution

I' be a solution of (a.2) and 1' # -!.I for any constant "r, of (3.8). So II?, II, and 112 are linearly dependent, i.e., II =

i.e., I' and [II are linearly independent. Let 112 = a'U l'+oe  aItI1 = a2112 for some nonzero constants al and Q2. IS

where a' > 0 and a > 0 are constants. Obviously, 112 satisfies means that lII and 112 are not distinct in contradiction with the

ia.2). Now, initial assumption. Therefore, [I is an extreme direction. C3
Proof of Lemma 6:

,Proof of Stat m a): Suppose t, 9t..... 9t., a -

=aln'[ , -., , ,er] aly dependet. Then rank([,3, .,-..,,,,_,) = '- 1

+ [Z ,.,..., , -a,., -gm]. bemuse , - ,..., - dt,_, are linearly independent.
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Consider the following equation: Second, it is shown that H,. is contained in some boundary
surface of J, i.e., there exist two boundary surfaces F and

rit = 0 F2 of J such that H,. g F,., r = 1, 2. Notice that for any
ldt, =0 (a.6) Y E R and any row vector 11, if iI! = min{I11: X E R}

(a.6) or .1 = max{IfI: Y E R}, then I is oi some boundary
f, 4 ,,_' = 0. surface of J. As mentioned before, for any 2 E Hl, 1167 =

He1h = max{HeY: 7 = R}. So H1 is contained in some
Let Q, and Q2 be the solution space of (a.6) and (3.8a), boundary surface of J. Similarly, because for all 7 E H 2,
respectively. If I belongs to f2l, then [I belongs to Q 2 fHey = lieF2h = min{rI6 : I E R}, H2 is contained in

because Rdt - Hait, = 0, i = 1,..., k' - 1, i.e., I satisfies some boundary surface of J. Let F, be the boundary surface
(3.8a). Thus, l1 C Q2. Furthermore, f% = fQ2 because of J with the largest dimension which contains H,. and is
dim{fli} = dim{1 2} = n -k + 1. Now because II satisfies perpendicular to I", i.e., H,. g F, and 11(71 - 12) = 0, t,

(3.8a), it belongs to 2 which means it belongs to fh also. 72 E F,., r = 1,2.
So 11" is not feasible because lied, = 0, i = 1,..-, k' - 1 Third, it is shown that dim{.Fl U F2} >_ n -k . Now,
which is contrary to the assumption that III E Sth. Therefore, P- = ('lh -92h)- (li -I2) = ('9h-ki)- (a2h-92i),

at, d,..., d,,_, must be linearly independent. Moreover, dt i = 1,... , n - k', i.e., Ph - A is a linear combination of
is a minimum dependence vector of II because l" E Sth. So alh - Eli and F2, - F2i, i - 1, . .-, n - k'. By assumption.
d, d1 , - - , d,- are minimum dependence vectors of 11" due dim{ -Pi: i = 1,.--, n - k'} = n - W, so.dim{u 1 -F,

to the fact that led = H43, = ... = , 2h -'9 2i: i = 1,'- -, n -k'} > n -W. Let N, = {I, - Y2:

Proof of Statement b): At this point, some additional no- 71,72 E H,.}, r = 1,2, then, dimfli u. 7H2} = dim{fil, -
tations are needed. Let F = surf{At,,At,,..., At,, } ant; Eli, F2h - F2: i = 1,...,n - k'} _ n - k. Because
F2 = surf {Ah, , A ,. .. , Ah be boundary surfaces of J, Fr ;? H,, it follows that F, ;? ?I,, r = 1, 2. This means

', = {7t -72 : X1,72 C r = 1,2, N1 = sp{At,, that dim{Y'1 U. 2} > dim I Uf 2} __n-k'.
At, , }, N 2 = sp{A ,. .. , Ah, 2 } and B = N, n N 2. So far, the following statement has been proven. There

N, is the norm space of J associated with F,., r = 1, 2, B exist two boundary surfaces F, and F2 of J to which I is

is a norm intersection of J and F' and F2 are the solution perpendicular and dim{.Y U Y2 } > n - k'. Next, it is shown
spaces of (a.7a) and (a.7b) as follows, respectively, that 1II belongs to B, the intersection of the norm spaces of

(AtY = 0 (AhY= 0 F, and F2 and dimB} = k< k'.
I Consider (a.7a). By [181, its row space N, and the solution

(a) ... (b) ... (a.7) space .l are orthogonal complements of each other, i.e.,
At=0A, 0- V n.1  =0 , N1 u.' 1 = R" and X.1= 0, X E ,1V and

7 E 7j (X and 7 are row and column vectors, respectively).

Consider the projection vectors Ph, Ph,, Ph,_,, of (3.8b) Because III is perpendicular to F1, i.e., LPe(Xi - 72) = 0.

and, without loss of generality, let P = , = - ,.. . , n - k' !I - 72 6 Y1 (or 71, 72 e F), it must be in N1 , the norm

and h > n - k'. By definition of projection vectors, p is the space of Fl. Vector 110 is perpendicular to both F and F2

difference of two extreme points of J, i.e., Pi = Fli - 92i which means that it belongs to both N, and N 2 . Therefore.

for some extreme points Fli and e2i, where Fli is the head 116 must belong to B = NX n N2 , i.e., le = " ,Bi

of Pi and 92i is the tail of P, i = h, 1,..., n - W. Let where {B,...,B } is a basis for B and ci, i =1...k.

H,., r = 1. 2, denote the convex hull of the extreme points are constants.

F,-, i -h. 1,..- , n - k/'. In other words, H1 and H2 are the Because . is the orthogonal complement of N,., the

convex hulls of all the heads and tails of projection vectors orthogonal complement of N1 n N 2 is 1 U Y 2 (18] which

h, P,., - ,,_ ,, respectively. Three facts are proved next. means that
First, it is shown that I is perpendicular to both H, and

H2 , i.e., Ile(7, - u2) = 0, 71, 2 e H,., r = 1.2. Because k = dim{Ni n" N2} = n - dim{Yi U Y2} "

F1e1 , =max{fI'Y: 7 E R} and W72i = min{fle6: 1 R }, Because dim{Y 1 UY 2} > n -k', k < n - (n - k') = k'.

i= h, 1.. .,a - k', 11e 1h = 11"91i and 1e92h = fIe92i, So A < W.
i 1. •a -. W. If 7 E H,, r = 1, 2, then it can be expressed owerxn
as a convex combination of 9,, i = h, 1. nt - k', i.e. Now, it has been proven that there exists a k-dimensional

, norm space B such that (3.9) holds and k < k. To facilitate

a A,.ne,.t + tn A, , Ere Ai , p. -hu, the understanding of the proof of statement b) of Lemma 6, the
are nonnegtive and A\,.1 + ', A,. = 1 [14, p. 371. Thus, most difficult one in this paper, an example is provided next.

= %I~le rh, 4- A,. 9,1 + . +Example a.L: Consider the algorithm of Example 2.1. As

111 -'mentioned in Example 3.5, one extreme direction is identified

= E Z \ri = WiF.,, as tI = (0, 1] which satisfies the following equations:

Therefore, for any two points 71, Y2 E H,., 1i i = f11'72  (

lTI' &, WCe., iI(i - 72) = 0 which means that 14 is per- Equation (a.8b) corresponds to (3.8b). As indicated in Fig. 1,

pendicular to both H, and H2 . 13. = 1 - F4 and P? Et - !V. IT e sets of heads and tails
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ire {'E} and {F4 ,13}, respectively. In this case, H1 = {'i} Let detM" denote the determinant of a square matrix M.
md H2 is the line segment from e3 to F 4 . Clearly, II is Notice that B d is the last column of Dt, DT' = D*/(detDt)
,erpendicular to both H, and H2; H is contained in the where Dt is the adjugate [18, p. 170]) matrix of Dt and
zero-dimensional boundary surface F4 = surf{A1,A3} as Dt*Bde = [0,..-,O, detDt]T . So (a.11) becomes
,hown in Fig. I and H12 is contained in the one-dimensional
-)oundary surface F2 = surf {A2 1 as shown in Fig. 1; I is iIU1i"a =-.
erpendicular to both F4 and F2; dim{.F"iu."} = 1 = n-k' LU
. = 2, e = 1); 1.E belongs to the norm intersection B = Therefore, V is a solution of (a.10). By (3.9), 7e -
'p{AtA 3 1 n sp{A 2} = R2 n sp{A 2} = sp{A 2} and [ = VB = rl(ti...tk..t/ri...r). So Ile

dim{B} = k = k' = 1. End of examphle. c. By Lemmas 1-4, HO' is one of the extreme directions.
SB1] Therefore, 1l° E Ch*. 0

Proof of Statement c): LetB= . H' - £, £ -

,,..,4- ,, and " -=[ai,...,c,].Iflin(3.8a)is LIST OF SYMBOLS

substituted by U rB, then 5 can be found by solving equation A: index constraint matrix; see Assumption 2.1.
A,: row vector with n components; the ith row of matrix A.

NTBHI . (2.9) a. number of rows of index constraint matrix A; see

[1' 0 U is the only linearly independent solution satisfying Assumption 2.1.

(3.8). Equation (3.8) is equivalent to (3.9) and (a.9), i.e., B.- vector space; norm intersection; see Definition 2.2.
the vector satisfying (3.9) and (a.9) must satisfy (3.8) and B: a matrix.
vice versa. If rank(BH') > k - 1, then 5 = 5 which Bi: row vector with n components; the ith row of matrix B.

means III = U. If rank(BH') < k - 1, then there are at b: size vector (column); see Assumption 2.1.
least two linearly independent solutions 31 and Z2 of (a.9). C': candidate set for (J, D) constructed by Procedure 3.1.
Then it can be shown that there are at least two linearly Ch: candidate set for (J, D) constructed by Procedure 5.1
independent solutions ZjrB and "2T7B of (3.9) and (a.9), or where J is hyperparallelepiped.
equivalently (3.8) [30]. So far, it has been proven that if D: dependence matrix with n rows and m columns; see
rank(BH') > k - 1. then III = 0 and if rank(BH') <k - it Definition 2.1 (4).

then there are at least two linearly independent solutions of d,: dependence (column) vector with n components; see
(3.8). In both cases, the original assumption is contradicted. Definition 2.1 (4).
So rank(BH') must be k - 1. dim{f2}: the number of linearly independent vectors in the

Proof of Statement d): Because rank(BH') = k - 1, vector space (or set) f2.
there are only k - 1 linearly independent column vectors in Z': row vector with n components whose entries are zero
s3at - at,, * * , - 3,£ _, 1. Without loss of generality, let us except that the ith entry is one.

assume that the first k - 1 columns are linearly independent. 9: column vector, extreme point of index set J.
So, only k linearly independent vectors £4, I ,*... g_, are F: set; boundary surface of J; see Definition 2.2.
needed to determine 3. In other words, (a.9) is equivalent f: objective function of Problem 2.1.
to (3.10). So II can be obtained equivalently by (3.9) and Ifi: convex hull of all heads of projection vectors in (3.8b).
(3.10). ] H2: convex hull of all tails of projection vectors in (3.8b).

Proof of Corollary 5.1: Clearly, if J is defined by (5.1), 1: identity matrix.
then any norm vector has the form Ei or -Ei, i C {1,... . , n}. R: set of real numbers.
Therefore, {E,,...,E. }, where rl,.-.,rh E {1,.-..n}, J: index set; see Definition 2.1 (1).
can be chosen as the basis of any k-dimensional norm inter- .i: column vector;, index point; see Definition 2.1 (1).
section of J. Let Ie be an extreme direction of So, for some rr: number of dependence vectors in D; see Definition 2.1
values of t and h. According to Lemmas 5 and 6, I can be (4).
obtained from (3.9) and (3.10). Equation (3.10) is equivalent N: vector space; norm space; see Definition 2.2
to N: set of nonnegative integers.

N+: set of positive integers.
(a,''', al, {Bd - B[j-, ... n , de} -U. (a.1) a: number of components of index points in J; see Defi-

F Enition 2.1 (1).E,t P: set of projection vector, see Definition 2.6.
As mentioned before. B ... where ri,. r, E 5: projection vectors; see Definition 2.6.
• . . n}. Let De denote D(t ... tt/r 1 .. .). With lit- Q: set of rational numbers.tie thought it can be seen that B~it,.., dr, Wi] = li. q: number of projection vectors in P; see Definition 2.6.

Next, it is shown that V = "31DT is a solution of (a.10). R: convex hull of the index set J; see Assumption 2.1.

If (a,. -. caq is substituted by V, the left side of (a.10) rank(A): rank of matrix A.

becomes S: the solution space of Problem 2.1.
Sm: subset of S where 3t is minimum and Ph is maximum;

3T D1 B&I - J1. (a.11) see (3.6).
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pp. 303-320, 1967.
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Shang, W. and Fortes, J. A. B., "On the Independent Partitioning of Algorithms with
Uniform Data Dependencies," IEEE Transactions on Computers, Volume 41,
Number 2, February 1992, pp. 190-206.

Note - This paper presents a technique for optimal partition of algorithms into blocks
of computations among which no communication is required. The same techniques
can be used for the case when limited communication is possible. These techniques
are potentially useful to reallocate computations in multiprocessor systems where
failures result in diminished connectivity among processors.
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Independent Partitioning of Algorithms
with Uniform Dependencies

Weijia Shang, Member, IEEE, and Jose A. B. Fortes, Member, IEEE

Absuwt--An algorithm can be thought of as a set of in- achieve this goal. They are based on a sound mathematical
dexed computations (index set) and if one computation uses framework which yields optimal results for a meaningful class
data generated by another computation, this data dependence of algorithms and they outperform approaches proposed in
can be represented by the difference of their indexes (called
dependence vector). Many important algorithms are character, extant work.
ized by the fact that data dependencies are uniform. i.e., the The identification of a possible partition of an algorithm or
values of the dependence vectors are independent of the indexes program can be done by the user, by the analysis phase of an
of computations. An independent partition of the algorithm is optimizing compiler, or by the machine at run time [4]. The
such that there are no dependencies between computations that techniques proposed in this paper, while usable by a patient
belong to different blocks of the partition. This paper considers-
uniform dependence algorithms with arbitrary index sets and and dedicated programmer, are best suited for an optimizing
proposes two computationally inexpensive methods to find their compiler. They address the specific problem of identifying
independent partitions. Each method has advantages over the independent partitions of an algorithm with goals that are
other one for certain Iinds of applications, and they both outpelr- similar to those of the earlier works of Padua (13] and Pelt.
form previously proposed approaches in terms of computatlonal Gajski and Cytron [171, [161, [15]. The focus of then efforts
complexity andior optimality. Ahss, lower and upper bounds ar is on [he os of ese
given for the cardinailty of maximal independent partions is on the optimization of programs consisting mainly of nested
MIMD systems, if different blocks of an independent partitio, loops with regular data dependencies. The techniques proposed
are assigned to different processors, communications between in those papers are intended to complement many other tools
processors will be minimized to zero. This is sigifiant beCean for the analysis and restructuring of sequential programs for
the communications usually dominate the overhead in M MD execution in multiprocessing machines [1], (14], [25], [8], [18].
machines. A related potential application of partitioning techniques is

Index Terms- Data communication, independent algorithm in the design of algorithmically specialized concurrent VLSI
partition. multiprocessor, nested loops, optimizing compiler, syn- architectures [10].
chonization.

In this paper, nested loop programs with regular data
dependencies are modeled as uniform dependence algorithms

1. INTRODUCrON which resemble the uniform recurrence equations considered

P ARALLEL processing holds the potential for computa- in [7] and the linear recurrences of [15]. Data dependencies
tional speeds that surpass by far those achievable by are represented as dependence vectors (with as many entnes

technological advances in sequential computers. This potential as the number of nested loops) that describe the distance
is predicated on two often conflicting assumptions, namely, between dependent computations in terms of loop indexes (the
that many computations. can take place concurrently and that vectors are called dependence distance vectors in [151 and
the time spent in data exchanges between these computations are also considered in [25] and [21 in a complemented form).
is small. In order to meet these assumptions, algorithms and/or Dependence vectors are collected in a matrix, the dependence
programs must be partitioned into computational blocks that matrix, which is used in this paper and in [13], (17], and [15]
can execute in parallel and have communication requirements to identify independent partitions as briefly described in the
efficiently supported by the target parallel computer. Ideally, it following paragraphs.
may be desirable to identify, if at all possible. the independent The greatest common divisor method [13], [15] considers.
computational blocks of a program, i.e.. those that require for each row of the dependence matrix, the greatest common
no data communication between them. This paper describes divisor of the entries in that row. The resulting greatest
two practical and computationally inexpensive approaches to common divisors are used to partition the iteration space of

the program (also called the index set) and the cardinality of

was supported in par by the Naoal Scie Foundato under Gmat Tiwo the resulting partition is the product of the greatest common
8419745 and in part by the Innovative Scn and Tecmolg, Ofne of the divisors. In addition, an "alignment" method is provided in
Stmec Defam lnidaiave Orpizatin and was administered throug the [13] which allows in some cases the transformation of depen-
Office of Naval Research under Contracts 00014-8-.k-0588 and 00014-88-k- dencies so that the values of the greatest common divisors
0723.

W. Shag is with the Cent for Advaced Comput Studies. University are increased. This approach is simple and computationally
of Southwesma Louisia Lafayete, LA 70504. inexpensive. For a given set of dependencies, it yields a unique

1. A. &. Fortes is with the School of Electrica Engineering Purdue Uiver-
sity. Ws Loam IN 47907. independent partition which is not necessarily optimal. In some
[EE Log Number 9103034. cases, when all of the greatest common divisors equal unity.,
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the number of the blocks in. the partition is one, i.e., the whole vetoM W = {f, V2 ,. -, is denoted.ap{fir, i2i,-.- ,
program. spfW}. The symbok I denotes the identity matrix..The rankor

In the minimum distance method (17], (15], the dependence a matrix A is denoted rank(A) and the determinant of matriv
matrix is transformed into an upper triangular matrix which is A is represented by det A. The set of real numbers and the
then used to identify an independent partition. For some algo- set of integers. are denoted R and Z, respectively. The set
rithms the cardinality of the partition is :he product of the di- of nonnegative integers and the set of positive integers are
agonal elements of the upper triangular matrix. This approach denoted N and N+, respectively. The empty set is denoted 0
yields partitions that are better than those obtained through and the notation A - B denotes the set {x : x E A, x . B }
the greatest common divisor method. However, the computa- vhere A and B are sets. The notation JPJ means the cardinality
tional complexity of this method is higher (though affordable of set P and Ici represents the absolute value of scalar c. Let
according to [151) and the optimality is not always guaranteed, a, b, c, d E Z and a > 0, the notation a I b means "a divides

Two approaches are proposed in this paper. In the first b", i.e., b = ca; and b(mod a) denotes the modulo operation,
approach, called partitioning vector approach, a set of vectors i.e., b(mod a) = d if and only if a I (b - d), 0 < d < a. As a
(defined later in Section III) is derived from the dependence final remark, if the element a belongs to a set W. the notation
matrix. These vectors are used to find independent partitions of a E W is used and this notation is also used to. indicate that
uniform dependence algorithms. The block to which a given a column vector fn (or a row vector Mj) is a column (row)
computation belongs can be identified by simply computing of a matrix M, i.e., fnj E M(M E M) means fnj(Mj) is a
the dot products of each of the vectors by the index of the column (row) vector of matrix M.
computation. In the second approach, called Smith normal form' The algorithms of interest in; this paper are the so-called
approach, a matrix related to the Smith normal form of the uniform dependence algorithms defined as follows.
dependence matrix is used to find independent partitions of Definition 2.1 (Uniform dependence algorithm): A uniform
uniform dependence algorithms. The block to which a given dependence algorithm is an algorithm that can be described
computation belongs can be identified by the product of that by an. equation of the- form
matrix and the index of the computation. Both approaches
provide lower bounds and upper bounds on the cardinality V(3) = f;(v( - ji), v(3- d2 ),"" ,V(3- d)) (2.1)
of the resulting partitions. The first approach gives maximal
partitions for a meaningful class of algorithms and the second where
approach yields maximal partitions for any algorithms with 1) 3 E J C Z" is an index point (column vector), J is the
uniform dependence structure. Comparisons of these two ap- index set of the algorithm and n E N is the number
proaches proposed in this paper and the minimum distance of components of j;
method are provided in Section VI. 2) f; is the computation indexed by 3, i.e., a single-valued

The organization of this paper is as follows. Section 11 function computed "at point 3" in a single unit of time;
presents basic definitions and notation. Sections IMI and IV 3) v(3) is the value computed "at j," i.e., the result of
present the partitioning vector approach. In Section M, parti- computing the right-hand side of (2.1) and
tioning and separating vectors are defined and three types of 4) j, E Zn, i = 1,. .. , m, m E N are dependence vectors,
independent algorithm partitions by these vectors are derived, also called dependencies, which are constant (i.e., inde-
In Section IV, a procedure to use these vectors to find an pendent of 3 E J); the matrix D = [.... . ,,,] is called
independent algorithm partition is presented and sufficient con- the dependence matrix and rank(D) < min{n. m} is
ditions for the resulting partition to be maximal are discussed. denoted by m'.
Section V introduces the notion of Smith normal form and The class of uniform dependence algorithms is a simple
presents a procedure to find independent partitions based on extension of the class of computations described by uniform
this notion. Section VI compares the methods proposed in this recurrence equations [7]. The main difference is that uni-
paper and the minimum distance method in (15]. Section VII form dependence algorithms allow for different functions to
summarizes conclusions and points out some future work. be computed (in a unit of time) at different points of the

index set. From a practical viewpoint, uniform dependence
algorithms can be easily related to programs where 1) a

II. BASIC DEFINITIoNqs AND NOTATION single statement appears in the body of a multiply nested
Throughout this paper, sets. matrices, and row vectors are loop and 2) the indexes of the variable in the left-hand side

denoted by capital letters column vectors are represented by of the statement differ by a constant from the corresponding
lower-case symbols with an overbar and scalars correspond to indexes in all references to the same variable in the right-
lower-case letters. The transposes of a vector V and a matrix hand side. Alternative computations can occur in each iteration
M are denoted OT and .MTf', respectively. The symbol E as a result of a single conditional statement as long as data
denotes the row vector whose entries are all zeros except that dependencies do not change. Nested loop programs with
the ith entry is equal to unity. The vector I (or 0) denotes multiple -tatements-can also use the techniques of this paper
the row vector or column vector whose entries are all ones, together with the alignment method discussed in [131 and [151.
(or zeroes). The dimensions of I and 6 and whether they For the purpose of this paper, only structural, information of the
denote row or column vectors are implied by the context in algorithm. i.e., the index set J and the dependence matrix D, is
which they are used. The vector space spanned by a set of needed. Other information such as what computations, occuz at
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k
different points and where and when input/output of variables Fig. 1 shows the index sets J and J' where a = 8. These
takes place can be ignored. Therefore, a uniform dependence two algorithms have the same dependence matrix but different
algorithm with index set J and dependence matrix D is hereon index sets. In ', point [1, 1]T is not connected to any other
characterized simply by the pair (J, D). Also, as in Definition points because [1, 1 ]T ± d, i = 1, 2, do not belong to J'.
2.1, the letters n, m, and m' always denote the dimension of However, in J, it is connected to [4, 1]T E J'. End of example.
index points in J, the number of dependence vectors and the The dependence of the partitionability of an algorithm
rank of the dependence matrix D, respectively. (J. D) on the shape and size of its index set J is a complicated

Definition 2.2 (Algorithm dependence graph and connec- issue and has practical implications. For example, in many
tivity): The dependence graph of an algorithm (J, D) is the programs, the loop bounds are not known at compile time
nondirected graph (J. E) where J is the -set of nodes of the and partitions must be identified which are independent of
graph and E = {G',3) :3-j' = d or'-j = ,d E the size and shape of the index set and based solely on data
D, 3'3E J} is the set of edges. Two index points 3,3' are dependencies. To concentrate on the relationship between the
connected if there exist index points .71,', 31 E J such that dependence structure and the partitionability of the algorithm,
(3,31), (31,32)-''', Ci-i,j),(3i,3') E E. the following concepts are introduced.

Definition 2.3 (Independent partitwn, maximal independent Definition 2.4 (Pseudo-connectivity): Given an algorithm
partition and partitionability): Given an algorithm (J. D) (J. D), two index points I, 3' E i are pseudo-connected if
and the corresponding dependence graph (J. E), let p = there exists a vector A E Z' such that I = 3' + DA.

J1, "•"Jq }, q E N+, be a partition of J. If for any arbitrary As an example of pseudo-connectivity, in algorithm (J', D)
points 'J E J, and12 E Jj.iol andO<i.L < q,(31,32) 0 of Example 2.1, point [.1IT is pseudo-connected to [4.0]T
E, then p is an independent partition of the algorithm (J. D). through point [1 . 3 1T E (J - ').
The sets J,. i = 1,.. -, q, are called blocks of partition p. For Definition 2.5 (Pseudo-independent partition, maximal
an independent partition p, if any two arbitrary points 3,3' E pseudo-independent partition and pseudo-partitionabiliry):
jh, i = 1. .. . , q, are connected in the dependence graph, then p Given an algorithm (J.D), let P = {J 1."",Jq} be a
is the maximal independent partition of (J, D) and is denoted partition of J. If any two arbitrary points 3  E Ji E P
p. The cardinality of the maximal independent partition and 32 E J, E P. i # 1, are not pseudo-connected, then P
1pz.1 is referred to as the partitionability of the algorithm is a pseudo-independent partition of the algorithm (J. D). If
(J. D). P is a pseudo-independent partition and any two arbitrary

Informally, for the algorithm dependence graph, each index points 3,3' E J, i = 1. -- , q, are pseudo-connected, then
point corresponds to a node and if a computation depends P is the maximal pseudo-independent partition of (J. D) and
directly on another one, then there is an edge between their is denoted P,... The cardinality of the maximal pseudo-
index points. For Definition 2.3, an independent partition is independent partition P,.l is referred to as the pseudo-
such that there are no dependencies between computations partitionability of the the algorithm (J. D).
which belong to different blocks of the partition. In graph In many practical cases, e.g., when "while" loops are present
theoretical terms, each block of an independent partition of in a program, it is also convenient to consider algorithms
(J, D) corresponds to a component of its dependence graph whose index sets are arbitrarily large along one or more
(J, E). dimensions. The general case, Le., when this applies to all

Generally speaking, the shape and the size of the index dimensions, is captured in the following definition and is also
set influence the partitionability of the algorithm because considered in this paper.
of boundary conditions. Consider two algorithms (J, D) and Definition 2.6 (Semi-infinite index set): An index set J is
(J, D') such that D' = D. J = ' YU{3} and 3 Y I'. i.e., they semi-infinite if it takes the following form:
differ only in the size of the index sets. The corresponding
dependence graphs (J, E) and (J'. E') can be such that J = (3 = L.--" ,, j. 0 < o. Ji E N, i = 1....- n}

A1,32 E J' are not connected in (J'. E') but are connected in (2.2)

(J.E) because it is possible that E = E'U {(31,3),(3,32)}. Example 2.2: The algorithm (J.D), where D =
In other words, j, and 32 can belong to different blocks of the 2 -3
maximal independent partition of (J'. D') but belong to the 1 -1 2 ] and J = N2 is semi-infinite, i.e., J = {. =

same block of the maximal independent partition of (J.D). [,j2 1 T : 0 < j ,32 < 0c,j,j2 E N}. The index set J
The following example illustrates this concept. is partially shown in Fig. 2. The maximal partition p. =

Example 2.1: Consider algorithms (JD) and (J'.D), {J1,j2. j3, jI} where j, = {0.0JT}.J 2 = f[i.0]T}.J 3 =
where {[0. 1T,[2.OJT} and J4 {3 :3 E (J- Ui= J)}. Index

1 0T points 31- [0 o]T and 3 2  [0. 1iT are not actually connected
D = { ij] r  0 _1, 2 < 8. s N } in the dependence graph of the algorithm. However, they

are pseudo-connected by Definition 2.4 since 32 = 31 +and DA, A = [3, 2 ]T Intitively, 3i and 32 am connected through

1- 1 [0p1oints [2, -. 1]T, [4. -2 1T, (6, -3 1T and [3, -1 1T which are not
J' = {j: o < 1. s e N }. in J. Partition p.. is not a pseudo-independent partition.

L,
1  O1 0 Since detD = 1, equation DA = 3-3' always has an

integer solutior for A. So any two arbitrary points in J are
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(a) (b)

Fig. I. In .'. point [1.11T is not connected to any other points. However, in 1. it is connected to many other points such as point [4.0JT .

(a) Index set J. (b) Index set '.

Fig. 2. The maximal independent pariuon of algorithm of Example 2.1 is pm. = {ItJ 2, J.j A4. However, them is only one ,)ock in the maximal
pseudo-independent pariton. Pictorially, only the connectiviues of points near boundaries of J are influenced.

pseudo-connected. This implies that there is only one pseudo- vidual cardinalities are very small in relation to the sizes of the
independent partition P = {J} which is also the maximal algorithm and pseudo-independent blocks. As a consequence,
pseudo-independent partition. End of example. little additional speedup 'an result from executing boundary

At this point, some comments are in order. First. by Def- blocks concurrently with other blocks. Moreover, assigning
initions 2.3 and 2.5, a pseudo-independent partition is also small boundary blocks and other large pseudo-independent
an independent partition regardless of the shape and size blocks to different processors of a multiprocessor can cause a
of the index set. However, an independent partition is not nonbalanced load distribution and inefficient system operation.
nece&sarily a pseudo-independent partition. This is due to the In addition, as pointed out before, when index sets are known
fact that 1), J2 E J are pseudo-connected if they are connected only at run time, it is not possible to determine the boundary
and the reverse is not necessarily true. Second. for practical blocks. Finally, many algorithms are such that they have the
purposes, it is sufficient and more efficient to identify pseudo- same partitionability and pseudo-partitionability. For all of the
independent partitions than independent partitions for the above reasons, this paper considers hereon only the problem
reasons explained next. Blocks of independent partitions that of identifying pseudo-independent partitions of an algorithm.
are not blocks of a pseudo-independent partition and contain
only a few index points such as Ji, J2, and J3 in Example 2.2
(hereon called boundary blocks) always occur at or near the IL PAKTIIONING VECTOR APPROACH- BASIC RESULTS

boundaries of an index set. This can be shown for the general In this section and in Section IV the partitioning vector
case when J is semi-infinite. In fact, according to Lemma 3 approach is presented. In this approach, independent algorithm
in [71, there exists always a point i=pl,pT,. .. p,,]T E j partitions are determined by two types of vectors called
such that if any arbitrary points I = Li,J2,"" ,] E J partitioning vectors and separating vectors. Together with
and 3' = E.. ,J]T e I are beyond p (i.e., ji _> pi some auxiliary terminology they are introduced in Definitions
and j,' 2 pi, i = 1....n. n), then j and 3' are connected 3.1 and 3.3. These definitdons are followed by a theorem and an
in the dependenie graph if and only if they are pseudo- example which make clear the relation between these vectors
connected. Boundary blocks are typically such that their indi- and independear algorithm partitions.
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Defndbo3.1 (Partitioning vector, detemig vector, equak following concepts. Let row vector 'ki be such that 9ID = 0.
parttonng vector and algornm coefficient): Given an algo- Clearly, ther are n - m' linearly independent such vectors,
rithm (J, D), IV= (irx,7 2,",--, 1 1 E Z1' " is a paritioning denoted 91,..., Pnmand they define a setofhyperplanes
vector of (J,D), if and or ly if it satisfies the following
conditions.

1) gcd (Il, Ir2, ' n) = 1.2 E (3.3)

2) There exists a set of m' = rank(D) linearly independent n-mI

dependence vectors ai,, it2, ... ,, such that in the index space. The index set J can be partitioned such

I - ... - fiu, = displl > 0. (3.1) that points lying on the same hyperplane belong to the same
block of the partition. It will be clear later (Lemma 8.3) that

The dependence vectors d, ... t, are called the de- if two index points J3, 32 E J lie on the same hyperplane
termining vectors of ri and D, = [dt,..., i_,,] is called defined by (3.3), then equation D- = (31-32) has a solution.
determining matrix of H'. The positive integer dispII is called These concepts are formally defined as follows.
displacement of vector . If l1d.(mod disp II) = 0, i = Definition 3.3 (Separating vector and separating matrix):
1,.--,m, then I is called an equal partitioning vector- of Given an algorithm (JD), 'Pi = ['iP,-", nj e Zt xn is
(J,D). The constant a = gcd(IlJ,..., fl4) is called the a separating vector of (JD) if and only if it satisfies the
algorithm coefflcient following conditions.

For a given partitioning vector the set of determining vectors 1) gcd( ,.. . , s,*) = 1
is not necessarily unique and, therefore, dispE! also might not 2) 9j.D = 0.
be unique. However, given a partitioning vector and a set of- Let Q', i I , -m, be all the- linearly independent separating
determining vectors, dispIl is unique. Therefore, whenever vectors; the matrix
displ is mentioned, it is, associated with a particular set ot
determining vectors. [ P 1

By Definition 3.1, if m' = n, then for each set of determin- ' = ... is called separating matrix.
ing vectors it .... , jt,, the corresponding partitioning vector. In.-,
iH is the unique solution that satisfies conditions 1 and 2 in
Definition 3.1 and the following system of linear equations: A set of n - m linearly independent separating vectorsz '", ..,m' for algorithm (J, D) can be found by solving

17pt - a,) = 0 the equation in condition 2 of Definition 3.3. The following

t -a =0 definition indicates how to use these separating vectors to
(3.2) construct a corresponding algorithm partition.

Def=i0ion 3.4 (%P-partition): Let 9 be a separating matrix
H(3, - 0. of algorithm (J, D). The partition P, = fJ9, ... , JV.} of J

is called the 'P-parition of algorithm (J, D) if 9, = {j :
When m' < n, the partitioning vector determined by m' j, j'3 = g}, where g, = [(yi,"', Y(n-m')iT E Z(n- M') is

linearly independent dependence vectors ,-.., , is not called the index of block J9, i = 1, .- ., .
unique and, of course, it belongs to the solution space of (3.2). Clearly, P& is a partition of J. If m' = n, then P, = {J}
In the next section, a closed form expression is provided for is a trivial partition since the only separating vector is 0 in this
a partitioning vector as a solution of (3.2). case. As for P,, P. is actually pseudo-independent as shown

A partitioning vector Ul defines a set of hyperplanes later in Theorem 3.1.
rl3(mod a) = c, c E Z, in the index space. Since an index Let JI E P# and consider the subalgorithm (J,D).
point lies on only one of the hyperplanes, the index set J can Clearly, if a > 1, subalgorithm (JV, D) can be further
be partitioned according to them, i.e, all points 3 lying on partitioned by the partitioning vector I. In other words, the
hyperplanes such that for a fixed c, IHj(mod a) = c, belong index set J can be partitioned by a set of hyperplines
to the same block of the partition. The following definition
stares this concept formally. I3md r

Definition 3.2 (a-partition): Let H be a partitioning vector I = '
and ai be the algorithm coefficient for (J.D). The partition- yoE {0,1,.-, -} and 6 Z" - W, (3.4)
P, = {J0 ," , J,-I} where J -= { : e J, El(moda)- =
i}, i =0,...,a- , is called the a-partition of (J. D). and all points lying on the same hyperplane belong to the same

Clearly, P. is a partition of J and it will be shown in block of the partition. This partition is formally stated next.
Theorem 3.1 that P. is also a pseudo-independent partition. Definiton 3.5 (a 9-partidon): Let II be a partitioning vector
For tle case where m' < n, i.e., rank(D) < n, a necessary and ' be a separating matrix of algorithm (J, D). The partition
condition for two index points 1, J2 J to be pseudo- P*, = {J ,..., JV,} of index set J is called the a9-
connected is that equation Dt = (A - 32) hasa least one p . - -i 1 : J (mod ar) where
reaisolutioneR . Thismotivatestheintroductionofthe f ift= :JE ,Y 'P j

Row em t souM m be Mea1s1 with pte m;8ammM 4 = YoVi ,t, (, _s,)ii E Z - n'+ is called. th. index
cd (at, a-.,,) = tdeM ODOtm=divi of a,,t, a. of block Jf,, i =1,..,zi.



SHAI4 AND FORTES: INDEPENDENT PARTTONING OP ALGOrTHMS VIT UNIFORM DEPENDENCIES 19

Partitioning vectors and separating vectors play a veryr are pseudo-independent partitions. In Sectiorr IV, it is shown
important role in algorithm, partition. The next theorem gives that the a 9-partition is also the maximal pseudo-independent
some of the motivation for the introduction of these concepts. partition. End of example.

More specifically, it p.-vides sufficient conditions for two By Theorem 3.1, if there is at least one point 3 E J
computations to belong to different blocks of an independent such that I13(mod a) = i, then Ji E P. is not empty, i.e.,
partition, in terms of those vectors and the index points Ji A 0, i = 0.... , a - 1. Therefore, IPmxj I> a. Intuitively,

associated with the computations. Moreover, it shows that if J is large enough and dense (informally, an index set J

a-partitions, 'P-partitions, and aQP-partitions are all pseudo- is dense if any arbitrary point j E Zn that is inside the

independent, boundaries of J belongs to J), then for any arbitrary value

Theorem 3.1: Let 1 1 be a partitioning vector, a he the algo- of i, 0 < i < a and i E Z, there usually exists at least

rithm coefficient, and * be a separating matrix of algorithm one index point j such that Hj(moda) = i. Therefore, it is

(J, D), respectively. The following statements are true: reasonable to make the following assumption:

1) For any two arbitrary points 31, 32 E J, if H1 (mod a) # Assumption 3.1 (Index set): For an algorithm (J, D) under

I3 2 (mod a) then they are not pseudo-connected. There- consideration in this paper, let 11 be a partitioning vector and a

fore, Pa, is a pseudo-independent partition of (J, D). be the algorithm coefficient. It is assumed that for any arbitrary

2) For any two arbitrary points 31,32 E J, if 1Pa, # P32, value of i E Z. 0 < i < a, there is at least one point 3 E J

then they are not pseudo-connected. Therefore, Rp is a such that lj (mod a) = i.
pseudoyindepenset-partition of (J, D). Corollary 3.2: Let a and P, be the algorithm coefficient and
pseudo-independent partition . the a-partition, respectively. Then Pl = a under Assumption

3) P is a pseudo-independent partition. 3.1.

Proof: Provided in Appendix. The next theorem shows that this is true if the index set J
Corollary 3.- rf algorithm (J. D) has an equal partition- is defined by (2.2), i.e., J = N". Therefore, IPm,. > a if

ing vector I"H, tht:: .1, 2 e J are not pseudo-connected if J is semi-infinite.
fIl3(mod disp17) 6 1'1 2 (mod disprI) or 'P

3
k # 'Q32. Theorem 3.2: Let II be a partitioning vector of (J, D) where

As a particular case of Theorem 3.1, Corollary 3.1 is, J is defined by (2.2) and a be the algorithm coefficient. Then
obviously true. If algorithm (J, D) has an equal partitioning for any arbitrary value of i C Z, 0 5 i < a, there exists at
vector H, then the algorithm coefficient a = dispI. By least one index point 3 E J such that jIj(moda) = i and the
Theorem 3.1, Corollary 3.1 holds. pseudo-partitionability of (J. D) is greater than or equal to a,

Example 3.1: Consider algorithm (J, D) where J = i.e., uPaina b ( a.

{lI,j2jT : 0 < jl,j2 < s_9 E N +i and D = [d where Proof: Provided in Appendix.
j = [2.21T . Fig. 3 shows the index set J for 9 = 4.
There is only one possible set of determining vectors {d}.
One of the partitionirng vectors determined by d is II = W PATIOIG VECTOR APPROACH-PRcEDuRE
[-1.2]. It follows that dispfI = idj = 2 and the algorithm

coefficient a = 2. Consider index points 31 - [0, 0]T and In this section, Theorem 3.1 and other results and concepts
32 = [1. 01T; since ritz(rod a) = 0 and '1j2(mod a) = 1, introduced in Section III are used to prescribe a partitioning

by Theorem 3.1, they are not pseudo-connected. There is only procedure. Afterwards, Section IV-A discusses how to find the

one linearly independent separating vector P, = [1, -1] and partitioning vectors required by the procedure. Then Section

a separating matrix is Q1 = [1. -1]. Again, consider index IV-B characterizes algorithms for which the method yields the

points 31,.J_ = (0. 11T for which P31 = 0 and P 3 = -1. optimal partition and derives lower and upper bounds on the

By Theorem 3.1, j and 33 are not pseudo-connected. In pseudo-partitionability of arbitrary uniform dependence algo-

Fig. 3(a) and (b), hyperplanes lj(mod a) = ci and %P3 = rithms. The independent partitioning procedure is as follows:

C2, (cI, c2 E Z), are drawn, respectively. All the points lying Procedure 4.1 (Finding aY -partion for algorithm (J, D)

on the same hyperplane II3(mod a) = ci belong to the by partitioning vector approach):

same block of the a-partition and all the points lying on Input: Algorithm (J, D).

the same hyperplane 'P3 = c2 belong to the same block of Output: a P-partition P, for algorithm (J. D).

the '-partition. Fig. 3 shows the a-partition, 'P-partition, and Step 1: Select m' linearly independent dependence vectors

aP-partition pictorially. Let s = 3, then Pa = {J0 , J"1 } where dt ... , dt_, , set Dc = [i,, -.. - ci,.,], find T r

Jo = ([0. 012., [0. 11. [0, 21T . [0, 312. [2. 0 T.. [2. 1]T , [2, 2)T,  Z Xfn such that rank(TDc) = In' and compute the

[2.312} andJ = {[i,0]T. [1,11'. [1.21r , [1.312., [3,01T , corresponding partitioning vector II according to

(3, 11Tr. 'L3.2 JT.[ 3 .3]T. Also P, = {t-3 . JTheorem 4.2 provided in Section IV-A. If dispI #

wher .1[3. - [3. T}. A oJ[21 = {[ -,o "". [3.l" " Ji ll i det(TD)1, then select another set of n' linearlyw here J(31 = f[3.012.}, 112 1 {[ ,0et[ .] , J[I -

{(1,OJT' [2. ]T.[ 3 ,212}, Jo0 - {[OOl2 , [1 ,11T, [2,21', independent dependence vectors and compute the

[3,312}, J!_1 1 = [0oiJT, (i,21T , (2, 31r}, J,-2 , = {[0,2 1T, corresponding partitioning vector until all distinct

[1, 3T} and Jr-3 = {[0. , 3J2 The partition P , 2an , sets of m' linearly independent dependence vectors
obtained by intersecting J, fl, i = 0, 1 and j = -3, .--, 3. are considered. If a partitioning vector II such that

obtanedby ntesecingji jui i 0,1 ad j 3,.- - 3.disp[l = I det(TD,)l is not found, then select
Table I lists all blcs of af-partition and their index points, thdrit ectorD)1 snu d that lect
1P.*, = 12 < aiPI = 14. Clearly, P, R., and. P,* the partitioning vector II such that Is
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Fi#. 3. Partitions of algorithm of Example 3.1 where D [ 2 21r. UI = (-l. 21, and '%J= [1. -l1. (a) ar-paxution: the hyperplanes. are described by
1i7p(mod 2) =ci. Points lying on dotted lines belong to block Jo E P . and points lying on dashed lines belong to bloct J, c Fa, (b) *-'partition:
the byperplanes ame described by %P; = c2. Points lying on hyperplane 411j = C2 belong to block J(,, C- Pq. (c) c'P-pamuutonz dotted. and dashed
lines specify the. o-pamudton and solid lines specify. the %Y-partition.

TABLE I
Lier op BLOCXS AND THEIR CORRESPONDING INDeX Potm~r op~ THE w-PAirrmoN oP ALGOftRM0 OF EXAMPLE 3.1

Block J[ J'[13 J[22 J[1] '2 [ J '[i JJ [J [1 '[J [1 '[J [

bnock ind2 e by ] [3 ~e, je 1]t = 0 [3
Poin 3p43: Pa=J 1  ,..J.;t 0

Stp: o0eey ne 0 [0 F1 [1(oa1 AFdnaaiim gVcopom1 0~3 Th 1 susc0npoie z hoe . lsdfr
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expression for the computation of partitioning vector II, as defined in the beginning of Section II, then rank(TD,) = in'.
required in Step 1 of the partitioning Procedure 4.1. la In other words, the result of multiplying D, by T is a square
addition, an equal partitioning vector is preferred whenever it submatrix of D that contains exactly rn' linearly independent
exists. This is because of the simple and regular mappings that rows of the m' linearly independent columns of D. If m' = n.
result from equal partitioning vectors when time scheduling of the., T = I, the identity matrix, and 11 = '3iD,'. The essence
computations is considered [21]. So, necessary and sufficient of the proof is as follows [3]. Because ,3i(TD,)-tTD, = 21,
conditions are provided in Theorem 4.1 and Corollary 4.i for vector .?1(TD,)-'T satisfies (3.1) and meets conditions 1
the existence of this type of vectors for a given algorithm, and 2 . Definition 3.1 by the meaning of the constant 3;

Theorem 4.1: An algorithm (.1. D) has an equal partition- so II = d1(TD,)-'T is a partitioning vector determined by
ing vector if and only if there exists a set of m' linearly dt,,-. , dt, and displI = 3 > 0.
independent vectors dJI, d,2 , -- dm' such that

all a12 ... alm B. Sufficient Conditions for Optimality
D = [d,,, dt2," ct,,,] ... a21  a22 ... a, Theorem 3.1 provides a necessary condition for two index

... ... ... "'" points in J to be pseudo-connected. Next it is shown in
am, 1 am'2 ... am'm Theorem 4.3 and 4.3a that when the dependence matrix D

aij E R (4.1) satisfies certain constraints, this condition becomes sufficient.

w J , iThe implication of this result is that the partition P.* obtained
where , aj is an integer, j -- , , m. by Procedure 4.1 is maximal. In order to motivate and facilitate

Proof. Provided in Appendix. the understanding of the main results of this section, first,
It is not easy to test whether a given algorithm has an equal a special case is discussed in Theorem 4.3 where m' = n,

partitioning vector using the condition, in Theorem 4.1. The i.e, rank(D) = n. In this case, the '-partition is trivial,
following corollary provides sufficient conditions which are i.e., P, = {J}. Therefore, by Theorem 3.1, the necessary
easier to test. condition for two index points 3,32 E J to be pseudo-

Corollary 4.1: An algorithm (J, D) has an equal partitioning connected is If3 (moda) = II2(moda).
vector if it satisfies one of the following conditions: Theorem 4.3: Let m' = n. II be a partitioning vector of algo-

1) rank([d1 - j 2, d1 - 3,., - im]) < rank(D). rithm (J, D) determined by it,-.. , c4, De (dtt,- .. . itj
2) There exists a set of m' linearly independent dependence and a be the algorithm coefficient. If I det D,1 = disprI. then

vectors dt,"...-. t,,,, such that all dependence vectors 1) two index points 31,32 E J are pseudo-connected if and
can be expressed as an integer linear combination of only if i31 (mod a) = 1132(mod a);

,..,d,,,, i.e., d = " ajdj = 1.-., n, 2) the a-partition is the maximal pseudo-independent par-
where ail, i = 1,.., m' and j = 1,.... m, are integer tition of (J. D), i.e., Pmax = Pa, and IP0. = a.
constants. Proof- Provided in Appendix.

Proof: Provided in Appendix. In this case, Procedure 4.1 becomes very simple. Since
If algorithm (J. D) satisfies condition 1 in Corollary 4.1, rank(D) = n. there is only one trivial separating vector 0

then it has an equal partitioning vector II such that l'dl = and therefore. P* = {J}. So Step 3 in Procedure 4.1 can
... = M4 = displf. To see if a given algorithm satisfies be skipped. When rl is an equal partitioning vector, then
condition 2 in Corollary 4.1, one has to see if (4.1) has 13di.(mod displ'I) = 0. i = 1.. . . ,m. So a = displI =
an integer solution. This can be achieved by applying the I det D, . This fact is summarized as Corollary 4.2 as follows.
necessary and sufficient conditions for a linear system of Corollary 4.2: Let m' = n, II be an equal partitioning vector
equations to have an integer solution provided in [19], [211. of algorithm (J. D) determined by t, ...- , i,, and D, =

Given in' linearly independent vectors 4l,.-., 4,,,, the [ ,,...,dej. If IdetD~I = dispi. then the pseudo-
corresponding partition vector II belongs to the solution space. partitionability of (J. D) is equal to the absolute value of the
of (3.2). In (3], a closed form expression for a partitioning determinant of matrix D , i.e.. IPmax = I det DeI.
vector which is determined by dit, - . . dt,,, is given. This The meaning of Corollary 4.2 is as follows. For a class
result is restated as Theorem 4.2 as follows, of algorithms, the number of blocks in the maximal pseudo-

Theorem 4.2 [3]: Let d,, .... c,, be linearly independent, independent partition is equal to I det DI, the absolute value
consider matrix D, = [dt ..... t, and let T c Z" ' " be of the determinant of a submatrix of the dependence matrix
such that rank(TD.) = in'. Then I = 0(TD,)-tT is a D. If the algorithm is to be executed by clusters of processors
partitioning vector determined by t,, t., and displ = with limited intercluster communication capabilities then the
3, where 3 E N+ is such that 1 1 ZI1' and the greatest number of clusters to be used should be directly related and
common divisor of the n components of II is equal to one. perhaps equal to the cardinality of the pseudo-independent par-

Notice that matrix T c Z, n such that rank(TD,) = rn' tition. In such MIMD systems. I det D,1 is a direct indication-
always exists. Because rank(Dc) = i', there are m' linearly of how many clusters can be used to execute the algorithm.
independent rows in7D,. Suypose rows r, - r,,, are linearly To find the necessary and sufficient conditions for two

2.,1l points J1,J2 E J to be pseudo-connected in general case,
independent. If T = -.. ] where E,1 ,. E. are as the approach used here is as follows. First, a subalgonthrm

E,,,, Ur(.1,. D) where .. G Pr, is considered and the .ece-vurv
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and sufficient conditions for two points J3,32 E 46 to be complexity is bounded by O((n - Wn)n 5 ). Step 3 needs at
pseudo-connected are derived. To- achieve this, the algorithm most O(min{, n - n' + 1}nIJI) operations. Th total; com-
(Jp,D) is transformed,. by a linear mapping T, into another plexity is bounded above by O((",)n 5 ) +-O((n.- mr)n5 ) +
algorithm (T(JV),T(D)) where the dimension of the index O(min{n,n - m' + l}nIJI). When m = n' = n, the
points is m' and there are m' linearly independent dependence complexity is bounded above by 0(n) + O(nJJI).
vectors. Then Theorem 4.3 is applied to find these necessary
and sufficient conditions for algorithm (T(Jg),T(D)). Then V. SMrrH NORMAL FORM APPROACH
it is shown that the mapping T is bijective and algorithms The partitioning vector approach is simple and the parti-

(J0,D) and (T(J3 ), T(D)) are equivalent in "he sense that tioning vector and separating vectors are easy to compute.
31,j2 E J are pseudo-connected in algorithm (J4,D) if However, when the algorithm does not satisfy the condition
and only if T 1 ), T(3 2 ) are pseudo-connected in algorithm in Theorem 4.3a, the optimality is not always guaranteed.
(T(Jq),T(D)). So these necessary and sufficient conditions This section discusses the Smith normal form approach which
for algorithm (T(JV), T(D)) are actually valid for algorithm yields maximal pseudo-independent partitions for any arbitrary
(4g, D). uniform dependence algorithms. This approach uses the Smith

Theorem 4.3a: Consider algorithm (J, D), let 4.,., d t -, normal form of the dependence matrix D which is introduced
be linearly independent, D. = [it,", dt,,, T Z'c" in Theorem 5.1. This theorem, is followed by the definitions
be such that rank(TDe) = nin, HI = dispHI1(TD,)-'T of the partitioning matrix and the displacement vector. These
be the partitioning vector determined by i,,, , ,,,, , a be concepts. are then used to define a partition. of index set J
the algorithm coefficient and Is be a separating matrix. If which is-also the maximal pseudo-independent partition of the
I det(TD,' = displl, then algorithm. Then a procedure is presented which constructs the

1) two points 31,3J2 E J are pseudo-connected if and only maximal pseudo-independent partition of a given algorithm.
if 1(31 - 12)(moda) = 0 and 9j 1 = 'F'2; Complexity of the procedure- is also discussed.

2) the iP-partition is the maximal pseudo-independent Theorem 5.1 (Smith normalform) (19, p. 50]: Given a matrix
partition of (J, D), i.e., Pr,, = P. D E Zs x ' , there exist two unimodular3 matrices U E Znxn

3) 1P , < 1 -[ m=.t ('i + 1), where -t = max{'IP(3 1 -32) : and V E Zf inr
m such that

jj 2  J},i = 1,..,n- m', and a < IP.I -s 0 0 0 ... 0
a IP I. 0 32  "" 0 0 ... 0

Proof. Provided in Appendix. ....................
If the cardinalities of the a-partitions of algorithms (4J, D), UDV = S = 0 0 ... 3m, 0 ... 0

where J9, E Pq,, i = 1,-.., *, are all equal toa , then 0 0 ... 0 0 ... 0
IP,-. = alPyj. However, for some block J9 e P,, the
cardinality of itsa -partition might be less than a because for 0 0 ... 0 0 ... 0

some value of i E Z, 0 < i < a. there might not exist Matrix S is called the Smith normal form (abbreviated SNF)
any index point j E Y9 such that II3(mod a) = i. This of matrix D, it is unique, sl,--, 3,,, are positive integers,
phenomenon is illustrated in the following example. It, is2I--. Is',,, 3l=1 a , k = 1,. - . V, is the greatest corn-

Example 4.1: Consider the algorithm of Example 3.1 with mon divisor of subdeterminants of order k of the dependence
a = 3. There is only one set of determining vectors {d} and matrix D and m' is the rank of the dependence matrix D. 0
D, = D. If T = [-1, 2], then TD, = [2]. According to More details and explanations about SNF can be found in
Theorem 4.2, 1 = 21[2]-[-1.2] = [-1,2] and displI = (19, p. 501 and (241. The following example illustrates these
2 = det(TD,). As in Example 3.1, the separating matrix concepts just introduced.
ir = [1, - 1]. To illustrate Theorem 4.3a 1), consider points Example 5.1: Consider the algorithm (J, D) studied in [15]

= (O.JT and 32 - 2, 2 1T. Because 113j(mod a) [ 1 2 01
r1j2 (mod a) and 1$31 = T32, by Theorem 4.3a, they are: for which D = 4 4 and J = {U1 ,j 2 ,j3 J]T
pseudo-connected. Due to the fact that dispfI = det(TD), 4 -1 21
by Theorem 4.3a. P,,* is the maximal pseudo-independent 1 < ji <_ 16,ji 6 N+.i = 1,2,3}. The matrices U, S, and
partition. Consider J[31 E P', i.e., the block whose points j V are as. follows.
are such that '19 = 3. j[31 = ({[3, OJT} as found in Example [ 1 0 01
3.1. There does not exist any index point 3 E J[31 such that U 2 -1 -1
[ij(mod a) = 0. This illustrates the explanation before this -14 9 8

example. By Theorem 4.3a 3), I~pI :5 -r + 1 = 7, where 10 0 r -2 2
y= 3- (-3) =6 and IPmxI = 12 <aIP# 5 14. End = 0 0 0 1 2]

of example. 0 0 52 0 0 1
The complexity of Procedure 4.1 is a linear function of the

cardinaity of the index set. Step 1 computes the partitioning It is easy to verify that UDV = S and U and; V are
vector. The complexity of the product of the number of unimodular. End of example.
memory locations (space) and the number of the operations 3 A roushiguar mimz is unmoduisi if its elam am MVisusa in
(time) is bounded by 0((,', )n5 ). For step 2 the spacextime deemeinam is *a.
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Definition 5.1 (Partitioning matrix and displacemen vec- Procedr 5.1 (Finding the maximal pseudo-independent
tor): Given- an algorithm (J, D), the matrix U such- that partition by SNF approach):
UDV = $ is the SNF of D is called partitioning matrix Input: Algorithm (J, D).
of (J, D). Given that s1 ,.. -, s,, are the nonzero diagonal Output: U-partition Pu of algorithm(J, D).
elements of S, the vector j = (si, .. -, sn,, 0...0 , 0 1T E N" Step 1: Find a partitioning matrix U and the displacement
is called displacement vector of (J. D). vector 9.

Definition 5.2 (U-partition): Let U be a partitioning matrix Step 2: For every index point 3 = J, compute U3(mod
of algorithm (J, D); the partition Pu = {J, '", J# } of J ) and assign j to J9, the block indexed by§.
index set J is called the U-parrition of algorithm (J, D) if Step 3: PU = {J, .. J9. }. Stop. 0
• 9, = {3 : U3(mod j) = gi,3 E J},' where 9i E Z" is called The complexity of Procedure 5.1 is a linear function of the
the index of block Jg,, i = 1.... , 14. cardinality of the index set J. i.e., the number of computations

Example 5.2: Consider the algorithm of Example 5.1. U is a of the algorithm. Also, it is a polynomial function of ni
partitioning matrix; j = [1. 1, 5 21T is the displacement vector, and m. the number of components of index vectors and the
Pu = { J[o0,0T '

. Jfoo, 51r } is the U-partition where number of the dependence vectors, respectively. To construct
Jo.0,jr = : U3(mods) - [0 , 0 , iJT,3 E J},i = 0,. ,51- the displacement vector j, the SNF of matrix D is needed. In
End of Example. [6], a polynomial algorithm is proposed to find the SNF of

It is clear that Pu is a partition of the index set J because any arbitrary matrix A E Zxr and the corresponding left
for each 3 E J, Uj(mod!) is unique. Actually, Pu is a pseudo,- and right multipliers U and: V such that UAV = SNF. The
independent partition. To show the pseudo-independence of U- complexity of the product of the number of memory locations
partition, the following lemma is introduced first and followed (space) and the number of operations (time) of this algorithm
by a theorem. is O((max{n, m})' 0 ) [6]. So, the space x time complexity of

Lemma 5.1: Given algorithm (J,D), let1 1 ,32 E J andi be Step 1 is bounded above by O((max{n,m})' 0 ). For Step 2,
the displacement vector, then j and.j 2 are pseudo-connected at most O(!JIn2 ) operations are needed to compute the value
if and only if U31(mod J) = U32 (mod j). of U9 for every index point 9. Therefore, the total complexity

Proof. Provided in Appendix. is bounded above by O((max{n, m})' 0 ) + O(IJIn 2 ). When
Theorem 5.2: Given an algorithm (J, D), let Ui be the 7n = in = n, the complexity is bounded above by O(ni-) +

ith row of the partitioning matrix U, i = 1...., nt, 6 = O(n 2 jJI).
max{Uij : 3 E J}, 6i = min{Uj : 3 E J} and -ti = Example 5.3: Consider the matrix multiplication algorithm
6i. - 6i - 1. i = in' -- 1,''', n. The following statements e0 = 0
are true: ,, -

1) The U-partition is the maximal pseudo-independent par- ij j + aj,k- bk., k = 1,..-, s
tition, i.e., Pu = Pmax. i, = 1,.... 3.

2) The pseudo-partitionability is, bounded above, by The dependence matrix and the index set are as follows:

ki " i-e,. IP,,,1 = IPuI < 5'I :i St.

Proof Provided in Appendix. D = [I:1 J s. E •
For every vector ,9 = [y,'",yn]T,0 <  y, < 3i,i I k k

(5.1)
1... M', 6i 5 Yk < 6i., k = M' + 1,.. n, if there exists Notice that the dependence matrix above only considers the
at least one index point j E J such that j E J#, then Jg # 0 data dependence caused by c. If data broadcasting is not
and IPuI = f sk L',m,'.t -i. Because det U = 1, for allowed or the dependence caused by data reads is considered.
each such yector 9, there always exists an integer vector then the dependence matix for the matrix multiplication
.7 such that U3(modi) = .Therefore, it is reasonable to [ 1 0 ol
assume that IPuI = II " -'i =,, , '+I • In particular, for algorithm isD= 0 1 0 [111. Dependences (1 , 0, OJT
algorithms whose index set J = Zn, this assumption in true. 0 0 1]
For the special case where m = n' = n. by Theorem 5.1, and [0. 1.OJT are to avoid broadcasting data b~i and ajj,

ri' I s= I det DI. If for each vector 9 = [Yi,'", Yn]T , 0 < respectively.
vi < s, = I... .n, there is at least one index point I E J For the dependence matrix D in (5.1), matrices U, V. and
such that I E 4, then the following corollary is true. S and the displacement vector i are as follows:

Corollary 5.1: Given algorithm (J, D), let m = rW = n
and j = [s,""- ,s]T be the displacement vector. Then U 0 0 i=
1P.1X = '[. 8, = I det DI, i.e., the pseudo-partitionability U = 0 1 , V = [1],
of algoithm (J, D) is equal to the absolute value of the 1 0
determinant of dependence matrix D. [ = 1

'Let = [E,..-.q, E Z" ad 3 = [S, ............ If s = 3, according to Definition 5.2, the=IT
with s > 0 i 1.-- -.- m'. The nation A(mod 5) denotes the vector fi-partbow
[At (mod&I),'",A,, (ods,). A,,t,.I T . is PC = {Jfoj,r i,j = 1,2.31 where ro..jr -
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{[i,j, 1]T , [i, j, 2 1T, [i,j, 3 ]T}. There are nine blocks in this Second, as mentioned above, in the MbM, blocks of the
maximal partition (IPUt = 9). Intuitively, each block resulting partition are implicitly expressed in terms of the
computes datum c_,. If multiple copies of data Gj and bij upper triangular matrix and a set of initial points. Although
can be provided, then there is no communication/dependence the serial loops in the original program can be transformed
among different blocks. Therefore, this partition is independent into parallel loops by the upper triangular matrix, it is costly
and also maximal. End of example. to know which block a given index point belongs to. If the

notation in [15] is used here, given an index point X E Z x"",
V[. COMPARATIVE EVALUATION then one way to see which block it belongs to is to see if
O. CmPARAT NG PRCEURES equation X = Xio + ADt has an integer solution A E Z l" n.

where X 0 is an initial point belonging to block i. If it has,
This section starts by discussing some of the advantages of then X belongs to block i. If it does not, then another initial

the methods proposed in this paper over the earlier pioneering point Xjo0 belonging to block j, j 0 i. is tried until an initial
method reported in [15] and [17]. In Section VI-B the two point Xko is found such that equation X = X1o + ADt has an
approaches proposed in this paper are compared. integer solution. This can be a very computationally expensive

procedure. In contrast, in the PVA, blocks of partitions are
A. Minimum Distance Method explicitly expressed in terms of the vectors. To see which

In the minimum distance method (abbreviated MDM) [15], block a given index point j E Z n belongs to, the computations

[17], an elegant idea is used which consists of using a linear required are to compute flj( mod a ) and '1G. Finally, it must

mapping to transform the dependence matrix D into an upper be said that despite its disadvantages, the MDM provided the

triangular matrix denoted D1 in [15]. These two dependence initial inspiration for the ideas of this paper.
matrices are equivalent in the sense that each dependence
vector in Dt, the upper triangular matrix, is a linear integer B. Smith Normal Form Approach Versus
combination of the dependence vectors in D and vice versa. Partitioning Vector Approach
A set of initial points, each of which corresponds to a block in In the Smith normal form. approach (abbreviated SNFA), a
the resulting partition, is identified by Dt and the cardinality partitioning matrix U and the displacement vector 9 are used
of the partition is the product of the diagonal elements of Dt. to construct the U-partition. As indicated by Definition 5.2,
An independent partition is implicitly expressed by Dt and if an element si. 1 < i < m', of j is equal to one, then
a set of initial points. "Independent partition" in [15] is used U3(modl) = 0 for any arbitrary index point j. This means
to denote the same as "pseudo-independent partition" in this that all index points 3 E 1 are assigned to the same block

paper. by U,. Therefore, when the value of U3(mod j) is computed
The MDM finds the maximal pseudo-independent partition in Step 2 of Procedure 5.1, the ith row Ui of the -3artitioning

for a class of algorithms which is more restricted than the matrix U can be ignored. Because s$1s21 ... ISm', it follows
methods proposed in this paper. For the case where m = that s 1<.< s, and only the first k _< n' elements of 9
m = n. the MDM generates the maximal pseudo-independent can possibly be one. If the first/k elements of the displacement
partition and for the case where m' = m < n, it generates vector s are equal to one, i.e., i = st = 1 0 < k <imn',

an independent partition that may not be maximal. In [17], then the first/k rows of matrix U can be removed and only

an algorithm to generate initial points is presented for this the last i - k rows are needed in Step 2 of Procedure 5.1 to

case. However, its complexity and optimality are not clear, construct the U-partition. When m' = 2 and k > r - 1,

Moreover, only index sets of the form J = { dene) ,Jar then only one row (vector) is needed to construct the U-
a, < j, < bl, z = 1,. . .. n} (not necessarily dense) are partition as in the PVA. The following theorem provides a
considered; otherwise, the initial points are not easy to identify. sufficient condition such that only the last row of U is needed

Compared with the partitioning vector approach (abbrevi- to construct the U-partition.
ated PVA) proposed in this paper, the MDM has the following Theorem 6.1: Given algorithm (J. D). let 9 be the displace-
disadvantages. First, in the MDM, partitions are expressed ment vector. If there exists a partitioning vector II such that
implicitly in terms of the upper triangular matrix and a set of disp H det(TDc) where D, is the determining matrix of
initial points. According to [15]. to find the upper triangular E,.,
matrix, it is necessary to solve n integer programming prob- I1 and T = -.. ] is such that rank(TD,) = m', then
lems with m variables which are NP-complete, where nm E,,
are ,!e number of dimensions of the index points and the a, = ...= s,- = 1.
numoer of dependence vectors, respectively. This is expensive Proof: Provided in Appendix.
although it is affordable when n, m are small. In tih PVA. Theorem 6.1 implies that if n - m' - 1 vectors are used to
partitions are expressed explicitly in terms of the partitioning construct the a'-cai-dtio, then only r - m' + 1 rows of matrix
vectors and separating vectors. To obtain these vectors, the U are needed to coastmct the U-partition. Therefore, it is not
dominating computations required are to find partitioning true that the SNFA always needs more vectors to construct
vectors, i.e., consider at most all possible -combinations of the U-partition than the PVA to construct the a4-partition if
m' vectors from the m dependence vectors and compute m' > 1.
dispIIi(TD,)-'T. The complexity of the execution time of Compared with the SNFA, the PVA has the following ad-
Procedure 4.1 is bounded above by O(( , )n 3). vantages and disadvantages. First, the SNFA always provides
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the maximal pseudo-independent partitions for. any uniform. Face 1:-

dependence algorithm&. In contrast the PVA provides. the. ' F - Air. A2t ... A,, i'

maximal pseudo-independent partitions only when the unifor. A'= A12- An A. 2

dependence algorithm satisfies the condition of Theorem 4.3a. A =
Second, most algorithms to find Smith normal forms have Ain A2, Anni
exponential complexity. For the algorithm proposed in (6], Fact 2: A-' =

although of polynomial complexity, the constant and the Lemma 8.1: Let A = (1,. --- , dm] E IRnm, rank(A) =
exponent are large; in particular, large memory space is rb],
needed. When m = n = in', the complexity of the PVA m',b = ... E sp{i,..,&,} and T E IR m"xn be
is O(n 5 ) + O(njJf) and the complexity of the SNFA is Lb.I
0(n 1 ° ) + O(n 2IJt). So, generally speaking, the PVA is less such that rank(A) = m'. Then t is a solution of equation
computationally expensive than the SNFA. Third, in MIMD TA2 = Tb if and only if it is a solution of equation A2 = b.
systems, one problem is to find an optimal time schedule such [ M,
that the total execution time plus the total overhead caused by Proof: = : Let M = [A,bJ = [.. . Since b E
communication is minimized. In this case the PVA is preferred MJ
because the partitioning vector H1 could also be used to specify sp{t,. , }, rank(M)= n' and rank(TM) = in'. Let
a linear schedule [20], [21]. K

TM = [TA,T = K SinceK,..., K,

V. zW , zO UO t are linear combinations. of Al1 ... 1 M, and rank(K)
Instead of f=ding maximal independent partitions, it may- rank(M) =n , spfM1,... , M,,} = sp{K, .. . , K,n,}, i.e.,

also be desirable to find maximal dependent partitions such- Mi, i 1,..., n, can be expressed as linear combinations of
that. communication among blocks can be supported-by the K-1, -'-,Kn,. Let

target machine. For nonpartitioable algorithms (an algorithr 711 712 ...

isnonpartitionable if its. pseudo-partitionability is equal to 7172 '~: Kone), sometimes, it may be desirable to find the maximal M= 721 722.

partition such that the ratio of communication between a . .. ,
block and other blocks with the cardinality of that block is 7n "n2
minimized. The results presented in this paper can be used or [AbJ = UK = [[TA Tb. Then A - [TA and 6 = [Tb.
as a basis for future work dealing with these problems. The Let t be a solution of equation TAI= Tb, then rTA2 =
main contributions of this paper are two computationally ["Tb, i.e., At = b. Therefore, 2 is also a solution of A2 = b.
inexpensive methods to identify independent partitions of 4=: Let t be a solution for equation At = b. Then
algorithms with uniform dependencies. The resulting partitions TA = Tb which implies 2 is also a solution of equation
are maximal. These methods can be applied in practice as TA = T6. o
one of the many analysis procedures used by optimizing The proofs of Lemma 5.1 and Theorem 5.2 are presented
compilers to detect and exploit concurrency in serial programs- first because the proof of Lemma 8.2 becomes much simpler
They may be particularly useful in mapping algorithms into if the results of Theorem 5.2 are used.
multiprocessor machines where processors are organized in Proof of Lemma 5.1:
clusters with limited intercluszer communication capabilities. ::: Suppose j, and j2- are psuedo-connected, then by
In these systems. different clusters can process distinct blocks Definition 2.4, there exists an integer vector A e Z' such
of a partition without intercluster communication overhead that D = 31 -32. Let V C Z s"x n be such that UDV = S is
costs. Among others, such multiprocessors include Cedar [9] the SNF of matrix D. Then SV-A = U(3 -z). The fact that
and Cm" (5]. V is unimodular implies that V - is also an integer matrix and

therefore, V-1A is an integer vector. So, U(31 - 2 )(mod i) =
APPENDOC SV- (mod 1) = 0. i.e., Uj3(mod j) = U32 (mod- ).

4-:: Suppose Ui(mod 1) = Uj2(mod A), i.e., U(31 -
Before the proofs are presented, some mathematical no- 3) [YISIY282,"', Y'S'n',O.'",OJT where yi, i =

tations are introduced. These notations are based on [23]. 1....,m', are integers. Let= [ti, y2 ,...,ym,,0,.- ,0JT E
Consider a matrix A E Rn  where Z". then U(31 - 32) = Sq. This implies that 3,r -32 =

all a12 ... aln I U-tUDV9, or 3- - 32 = DVV. The fact that V is integral
a2 a22 12, implies that V9 is integral. So, there exists an integral. vector

A a2 . a2  =[ a, a2," a*]. A-Vg such that - j 2 
= DA which means jand.iz rC

a,,2 -. a,, psued o-connected -  C
Proof of Theorem 5.2: Let j be the displacement vector.

The cofactors of A are denoted AI,i,j = 1,... ,n. The 1) FMrst, it is shown that Pu is a pumedo.idependent
adjugate (or adjoint) matrix of A is denoted A*. Some facts partition. For any two arbitrary points 3. E J1 , e PV and-
(231 are also listed yre which are used in some of the 32 6 J9, E Por, 9i 0# 9, by Definition 5.2, Uj,(modi j=)
following proofs. and U12(mod i) = §I. Because gi 0- §j U11(moct I)'#
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U32 (mod i). By Lemma 5.1, 3, and j2 are not psuedo- Proof of Theorem 3.2: If it can, be showv that there exists
connected which implies tha&Pu is psuedo-independenL. Next. at least on: index poi* ) E I such, that I13(modic4 i,. then
it is. shown that Pu is the maximal psuedo-independent par- Jj'. 0, where J e- P,,i = 0j -,-,or-I-This implies thai
tition. For any two arbitrary points '1,32 e J E P&, by the maximal psuedo-independent panitionrconins.a, least a
definition of the U-partition (Definition 5.2), Uj3(mod j) = blocks. So, IPmaxI _- a .
U32(mod j) = 9. By Lemma 5.1, *- and 32 are psuedo- Let II = [i '2 ... irn]. Since 11 is a nonzero vector, it has
connected. By Definition 2.5, Pu is the maximal psuedo- at least one nonzero component. Without loss of generality, let
independent partition. rl # 0. Let M = ta + i (i.e., M(mod a) = i), M E Z -

2) Let Pu = {Jg," 1 ,J9i.}. Consider a block Jg E Pu {0, t E Z, and M'. r1 > 0. Since gcd(ir1,...,r,) = 1, by
where g = [y, '. ,YIT. Clearly, 0 < yi < s, i = 1,. .., m' [12] there exists at least one integer solution, of the following
and 6, <y Y, < 6j., k = m' I1,..., n. So there are at most equation
s1 X 32 X ... X Sm' X 'Yin'+ x .. X - distinct block indexes,

i.e., IPm..i = IPul < FI, , sk li m',+ ,. 0 irA .+ + 'r.. = M. (8.1)
Proof of Theorem 3.1:
1) Suppose , and J2 are pseudo-connected, then there exists [z e 1

a vector A = A---, AIT E Z m such that .3 1 + DA = .. Let . = ... be such an integer solution of (8). If
Therefore, Z J

173+ nDX = r'32 Zip' , >_ O, then Z E J and it has been proven- that for
any, arbitrary integer i, 0 < i < a, there exists. at least one

or index point 2 c J such that nIi(mod a) = M(mod a> = i.
Now suppose not all, zj,.-., z, > 0. It is clear that alf the

n13x + AiII4 = 1132. solutions of (8.1) take the form

h.= aio3 where/ A EZ, i =1,..., m.So,

1132 - I31 a ExZiAi00..
i=1

where Em, Aj3j is an integer because Aj. and 3j, i -

1.... ,m. are integers. Then, where t2 , t3 ,'", t, are constants. This can be verified as

I(3j2 - 31)(mod a) = 0, follows.

i.e., 113l(mod ax) = nl32 (mod ax). This contradicts- to the -73' -1r.

assumption. So 3~j and j3. are not pseudo-connected. in1  0 10
Consider the a-partition P,. Since 113(mod ax) = i,3 E "i = af + rI 0 t2 + II t3 + + n o t,

Jj E P., i = 0,..,a- 1, for any two arbitrary index 01 0.

points 3 E J3' E J 1,i I ,13(mod a) # U3'(mod a) ... ... 0
and they are not pseudo-connected. By Definition 2.5, P is a L0" 0 J
pseudo-independent partition. =M + (-rtir 2 + 7r21rl)t2'+ (-rt7r3 + 7311)t 3 +-"

2) Suppose that j,J2 are pseudo-connected. Then there + (-n + inrl)t=
exists a vector A z' such that D - (31 - 32) and,
therefore, 'DA = Q(31 - 32). By Definition 3.3,. 'D =
0 which implies that *I()I - 32) = 0, i 3. = '- 3. Therefore, A is a solution of (8.1). Next, it is shown how a

This contradicts the assumption. Soj 31,32- are not pseudo- nonnegative integer solution of (8.1) is constructed from (82).

connected. For the 'l-partition P,, let 31 E J9, and 32 E Let,

JV,, gi g #,J,, JE, E P#. The fact that 9, # . implies that

IR3 ''2. So, it, j2 are not pseudo-connected. By Definition rI - -rt2 -7r- 7rntft rA
2.5, P# is pseudo-independent. z 2 +lrlt2 [A,

3) Simrnfty, let Jg ], r: P.#, and 2 r= J* E A = Z3 + 7rt3

P.,V, 9i #6 51,where 5i = [yo, Yu.,' .. ,( ,)]Tand 9t,

[YO, ll,'', Y(n-rm)1tJ. Since 94 # i , there exists. at least zn + . 1 tn,

one dimension t E {0,1,-.-,n - m'} such thaL , .* Y.
If t = 0, then 13l (moac) # 1 32(mod a) and by 1) of Iftj > -- thetAi > 0,i = 2,...,n. Let

Theorem 3.1, 3j and 32 are not pseudo-connected. If 1 < t <
n-mrV, then% 'j A * I,2 andby2)ofTheorem3.1,j 1 and _ z,1 =,w< i=2,...,n.
12 are not pseudo-connected. So, by Definition. 2., P~.t is T-
pseudo-independent. 0 (8-3)
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Now it is shown that A1 is also greater thamorequa tozero and.
illt, i = 2,-,.,n, amdefied by,(83)t " , =0

Al = ZI- i i =z- (' i r.t t2
i= " = (0i 'z . 1 IIit, = 0. S7

t ft

= Zl - j0 i + Z Ti Let N1 be the solution space of (8.6) and N2 be the solution
i2 i= space of (8.7). If I is a solution of (8.7), then it is a solution of

1 ziri) (8.6). Thus N2 g N 1.The dimension of NI isn-m'+ 1 and=Zi -E 3~ i+ - M -z n
i=2 7r the dimension of N2 is n - m'. This implies that N2 c N1 .
, n So, there exists at least one solution ' of (8.6> suchr that

M flF ovi'Wd0t 3 96 0, 1 : j 5 m'. Let iE Zl"' be such a solution
- i= of (8.6) that Hi, = a > 0, j = I..., m', and the greatest

N a common divisor of the n components of H1 is, equal, to one.Notice that E 217rl > En 2 A I ri 1> E in .2I f M is Te
selected such that M = ta + i and 2>" I l, the T a,

M ir >-1 -1 2 iril 0. So, there exists [a 1
an index point A E J such that (modc a) = i. EQ [ ,• .., a ,= m...

Proof of Theoret 4.1: [acmij J i=

=: Let II be an equal, partitioning vector of (J, D). Thez S , j = 1,- *,m, are integems the following
by Definition 3.1, there exists a set of mY' linearly independent holds.
dependence vectors such that r4(moda)=0, j=1, ,m and displI=a>0.

aid =.-. ,, =disp It> 0 By Definition 3.1, I is an equal partitioningvector of (JD).C
and Proof of Corollary 4.1:

1) Let ub first prove that if algorithm (, D) satisfies the first
Hdi = a2 disp[I, a, E Z, j = 1,-, m. (8.4) condition, then it has an equal partitioning vector. Consider the

following two systems of equations:
Since rank(D) = m' and d,d,...,d, are linearly in-
dependent, d&, i <5 j !5 m, can be expressed as a linear i(dx - d2) 0
combination of t...... _, ,,, i.e., 1(3 - d ) 0

. .a (88)

So, and

fljj= ljjti...iJ d 2 all ld 2 =0

K1, J 1 =0.
I al 1 Using reasoning similar to that used in the second part of

dispfl( 1..1 a2 , the proof of Theorem 4.1, it can be shown that there exists
-. . Iat least one solution IT' of (8.8) such that ti'd, A 0, 1 5
L.a,, ,ij < n. Let I1 C Z""n be such a solution of (8.8- that

,,n' lijd = dis pri > 0, j = 1,..., m. and. the greatest common
= dipl H ail. divisor of the n components of 1" is equal to one. Then

,= lid1 =dip H" > 0, j = 1,---, m. Therefore, IL, is an equal

By (8.4), id, = ajdispl, where a1 E Z, 1 < j < n. So partitioning vector.
2) By the assumption of condition 2, there exists a set of

' = a,, . < s < t, are integers.W linearly independent dependence vectors d 4,..,4,,, such
4: Consider the following two systems of equations: that all dependence vectors can be expressed as an integer lin-

Ii, d) = 0 ear combination ofd,1t ,d,, i e. imi
a 'id, = 0 (8.6) 1,...,m, where aij, i = 1,...,nr' and j - 1,.

are integer constants. Clearly, , = 1,..,,

t ., -J.,,,) =~ 0integers. According to Theorem 4.1, (JD). has an equal
partitioning vector. [
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Lemma 8.2: Let 7n' = n, 11 be a partitioning vector of algo- T : JV - L9, T(j) = Tj, 3 E J9 is bijective and 2) T31 , T3 2 E
rithin (J,D) determined by 4,---,-Ii,Dc -=- (,,...,tl L9 are pseudo-connected in algorithm(L#, TD) if and only
and 31,32 E J. If Idet DI = disp H1 and 1I(31 - 32 )(mod if J1,J2 E J4 are pseudo-connected in algorithm (4,D, i.e.,
disp II) = 0, then J1 and 32 are pseudo-connected. 11 - 32 = DA if and only if T(31 - 32) = TDA, A E Z n .

Proof. Consider algorithm (J, Dc). Its algorithm coef- Proof-,
ficient a' is equal to Idet Dcl because a' = gcd(1 I ,.-., 1) Consider the mapping T: JV -. LV, T(3) = T3, 3 E
lj=,) gcd(disp11,... , dispII) = disp1 = I det Del. Let J. Since L, = {T3:3 E Jg}, T is surective. By Lemma

= [s/i,...,a ]T be the displacement vector of algorithm 8.3,4 = {3E:3 J ,3 =15+ Dt, E IR m ,'i p= p }. Since
(J, Dc). By Theorem 5.1, rlj s" = f det Dc1. By Theorem di,-.., d_ are linearly independent and rank(D) = i', each
5.2, there are at most I det DcI blocks in the maximal pseudo- dependence vector can be written as a linear combination of
partition of algorithm (JDc) and by Corollary 3.2 IPI = it .-. i,, i.e., D = DcA where A E R '  So. J- can
a' = Idet De. So, the a'-partition is the maximal pseudo- be rewritten as J9 = {3 :3 = + DCff, 2 = A2,j E J, 2 E
independent partition. Because 11(31 - 32 )(mod disp 11) = R m , 'p = 91}. Let 31,32 E Jy and 3x - p + D Z1 ,32 =
0., and 32 are in the some block of the a-partition. Therefore, P + DZ 2 , then T(3h -32) = TDc(.1 - z2) = 0 if and only

3 and 32 are pseudo-connected. 0 if 21 = Z2, or equivalently, 3 = 32, since rank(TD) = m'.
Proof of Theorem 4.3: In summary, it has been shown that T31 = T32 if and only if
1) By Theorem 3.1, 31,32 are pseudo-connected only if 3t = 32. So 7" is injective which implies T is bijective.

113 1(mod a) = 1132 (mod a). Let' us prove that 31,32 are 2) =:.: If 31,32 E .1s are psuedo-connected, then there is a
pseudo-connected if r13 1(mod a) = 1132 (mod a). Because vector A E Z' such that 31 = 32 +DA. So, T31 = T32 +TD
I(31 -2)(mod a) = 0, it follows 1I(31 -32) = y"dip pI + and T31, T32 are pseudo-connected.
2a, 0 _ 3"2a < disp11 and -, -/2 E Z. If -y2 = 0, by Lemma (<=) : If T31, T3 2 are pseudo-connected, then there exists

8.2, j and 32 are pseudo-connected. Suppose -t2 # 0. Because a vector A E Zm such that T(31 - 32) = TDA. Index points
gcd( , .. -,U,) = a. By [121, there exists at lea ,t one il,J-2 E J.9 implies that31 -32 E spfd,... ,d,,}. By Lemma
integer solution of the following equation: 8.1, A is also a solution of equation DA = (31 - 32) which

A\lld, +... + AmInId = a. (8.9) implies that 3, and 32 are pseudo-connected,
Le (A 1,.- , AmIT be an integer solution of (8.9). Then Proof of Theorem 4.3a:

LetA an integer solution of the t hen 1) =>: see Theorem 3.1.

-r2A/, is an integer solution of the following equation: €4: Since ¢/31 = F3 2 ,31 and 32 belong to the same block

(2 AtIId1 + -.. + 12 A4d,,, = -qa. (8.9a) of the 'P-partition. i.e., 31,32 E J9 E P, where . 1 = 31 .

Let 3 = 32 + - 2 D . Clearly, j and 32 are pseudo-connected Let LV = {T3 : 3 E J.} and A = TD. Consider the

and by (8.9a) algorithm (Lg, A), let r be the partitioning vector determined

H(3-32) = -2A111di + + -y2Amln = -y2a. - by Tdt .... , Tit, and a' = gcd(rTd,... ,TTdm) be the
algorithm coefficient for algorithm (L0, A). By Theorem 4.2,

Therefore, 1(3 - 3) = 113 1 - 113 + U132 - 1132 = I( ' = I'I(TD ) -" and diap r = ', where ' E N + is

32)M- 1(3 -32) = "ft dispII + - 2 a - If2a. So, 11(31 -3)( mod such that the greatest common divisor of the m components
dispfl) 0. By Lemma 8.2, 3, and 3 are pseudo-connected, of r is equal to one and r E Z""1' . Now, consider the
Since 31, J and 3, 32 are pseudo-connected, respectively, j and row vector 11 - (1/p")rT = 1(TD)T where B =

J2 are also pseudo-connected. Therefore, if 11(3k - 32 )(mod ('/1"), 3 E N+ is such that the greatest common divisor of
a) = 0, then j, and 3j2 are pseudo-connected. the t components of 11 is equal to unity and 11 E Z x"l. By

2) Consider the a-partition P,, since H31 (mod a) = theorem 4.2, II is a partitioning vector determined by vectors
112 (mod a) where 31,32 E Ji E P, are arbitrary index dl, .- . , d, for algorithm (J,D). Therefore, the algorithm
points, 0 _< i < a, by the results in 1) of Theorem 4.3, coefficient for algorithm (J,D) is a = gcd(11dJ,-.. ,11,) =

J1,32 are pseudo-connected. By Definition 2.5, P, is the gcd((1/13")rTdi, ... , (1/13")fT,) = a'/".
maximal pseudo-independent partition, i.e., P, = Pmnx and By assumption 11(3 1-3 2)(moda) = 0, i.e., 11(31-32) = Aa
IPm = P = a. 3 where A C Z. Because a = a'/O", 1131 = (1/1")rT3

Lemma 8.3: Let J.9 C P*, then J.9 = {3 : 3 E J.j and 1132 = (1")T32, -3) = -

p+ D,, 2 Rm ,Pf, = 9}. T32 ) = Aa'/3". or r(T31 - T32) = Ac which means
Proof. Let 5 denote C3 : 3 E .1,3 = t+ D r. r (T31-T32 )(moda') = 0. That is, if 11(3 1-3 2 )(moda) = 0,

R m , lk -Y}. If 3 E 49, then '3 = 9 and 'P(3 - p) = 0. then F(T31 - T32 )(mod a') = 0. Notice that the dimension
By the Fundamental Theorem of Linear Algebra (23, pp. 15, of the index points of algorithm (LV, A) is mn' and the rank
87], 3 - p belongs to sp{d,,. . , dj,} because 9PD = 0. This of its dependence matrix A is in'. According to Theorem
implies that there exists an 2 C R m such that 3 - = Df. 4.3 1), for any two arbitrary index points T31 , T32 E L9 ,
i.e., +D. So, E S and J _S. Now, let S, then if r(T31 - T32)(mod a') = 0, then T31,T32 are pseudo-
3 = + D2 and TJ 3 pj + PDf %p€ = g. So 3 E Jg and connected. According to Lemma 8.4, 51, 32 E J. are also
ig = S. 0 pseudo-connected in algorithm (J ,D). In summary, it has

Lemma 8.4: Let d,,...., d ,, be linearly independent, D, = been proven that for any two arbitrary index points 3 1, j2 E J ,
[d,,..., ],T F Z-"'x" be such that rank (TD,) = if 11(51 -5 2 )(moda) = 0 and 'P5, = 'P5, then 31,32 a

m', J9 E 'P, and L9 = {T3 : 3 E JV}. Then, 1) the mapping pseudo-connected.
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2) Consider any two arbitrary points j1, -2 E Jyc E Po0 ofi 0 re' 6j: Without loS& of, genemaity, let
v, i = 1,..,u. Since f1(j -j 2 )(mod a) = 0 and, det(T!j,) >'19 BcauwdiopD-=det(Tl,),.byThoret'.

J -2) = , by the results in Theorem 4.3a 1), they 4.2, 1 = di8pIIT(TD")-Tr =' det(TD,)T(TDr,)- 1T.
are pseudo-connected. By Definition 2.5, P.* is the maximal By fact 2, I = T(TD)'T. Let r = .... ",,]=
pseudo-independent partition. 1(TD.)° , then gcd(-y1 ,..-, 7,) = gcd(ir,..., r,,) = 1. Let

3) Let 11- denote the a-partition for algorithm (LV, A). (TD,) j, i,j = 1,---, T ' be the cofactors of matrix (TD,).

First, IPY I < a because there are at most a nonempty blocks in Then by Fact r 1, F = .,,

P. Second, for P, clearly, there are at most ' " I +,,

nonempty blocks, where -ti = max{i',( -51 ) + , = 32)f:(TD )i , ,.,' cd("=]

J},i 1,.--,n - m'. So, IP*I < fjj'[= (_ + 1).The fact (TDc)ij,..,Y7Li(TDc),,,) = gcd(Ty, .... ,.-) = 1
that IP~i < a implies that IP,,.m < max{IPfj : JV E which means gcd((TD.) 1 ,i,j = 1,...,m') =

Pft}IPI = aIPi. By Theorem 3.1 and Corollary 3.2, P, This implies that the greatest common divisor of all.

is a pseudo-independent partition of (J, D) and IP. I = a. So subdeterminants of order m' - 1 is equal, to- 1 By Theorem

S< IPM.I <a IPPI. C3 5.1, rm'f 1 si = I -Therefore, s=**-- . =1. 03

List of Symbols
D: dependence matrix with n rows and m columns; see Definition' 2.1 4).
D,: determining matrix;, see Definition 3.1.
d,: dependence (column) vector with n components; see Definition- 2.1 4).
det(A): determinant of matrix A.
displ: a positive integer;, see Definition 3.1.
E: the set of edges of the algorithm dependence graph; see Definitionr 2.2.
E,: row vector with n components whose entries are zero except that the ith entry is one.
I: identity matrix.
R: set of real numbers.
J: index set; see Definition 2.1 1).
Ji: a block of a partition; see Definitions 2.3, 2.5 and 3.2.
Jr.: a block of a partition; see Definitions 3.4, 3.5 and 5.2.
J: index point (column vector); see Definition 2.1 1).
m: number of dependence vectors in D; see Definition 2.1 4).
M': the rank of the dependence matrix D; see Definition 2.1 4).
N: set of nonnegative integers.
N+: set of positive integers.
n: number of components of index points in J; see Definition 2.1 1).
P: a pseudo-independent partition; see Definition 2.5.
Pmna: maximal pseudo-independent partition; see Definition 2.5.
P,,: a-partition; see Definition 3.2.
P: tk-partition; see Definition 3.4.
P%: atk-partition; see Definition 3.5.
PU: U-partition; see Definition 5.2.
p: independent partition; see Definition 2.3.
rank(A): rank of matrix A.
S: the Smith normal form for dependence matrix D; see Theorem 5.1.
j: displacement vector (column); see D~finition 5.1.
3pf,""- ,VA}: the vector space spanned by vectors 9, . ..
SNF: abbreviation of Smith Normal Form.
U: left multiplier of the Smith normal form; see Theorem 5.1.
V: right multiplier of the Smith normal form; see Theorem 5.1.
7: a real column vector.
3F: index vector of blocks of a partition; see Definitions 3.4, 3.5, and 5.2.
Z: set of integers.
a: algorithm coefficient (positive integer); see Definition 3.1.
ps: number of blocks in the U-partition; see Definition 5.2.
v: number of blocks in the at-partition: see Definition 3.5.
1: partitioning vettor (row); see Definition 3.1.
4: separating matrix see Definition 3.3.
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41'j: separating vector (row); see Definition 3.3.
wp: number of blocks in the *P-partition; see Definition 3.4.
0: empty set.
1: a column or row vector whose entries are all 1.
0: a column or row vector whose entries are all 0.
IPI: cardinality of set P.
Icl: the absolute value of scalar c.
A - B: set f{x:x E A.: x B}1, where A and B are sets.
alb: a divides b, a, b E Z.
b(mod a): modulo operation, i.e., b(mod a)= d iff aI(b - d) where 0 :5 d < a.

ACKNOWLEDGMENT [20] W. Shang and 1. A. B. Fortes, -rune optimal linear schedules for
algorithms with uniform dependencies! in Proc. In. Conf Systolic

The authors thank S. H. Zak, M. O'Keefe, and V. Van Arrays. May 1988. pp. 393-402.
Dongen for their discussions on Section V. Also, 1.-K. Peir [21] - , "Partitioning of uniform dependency algorithms for parallel
provided valuable insights on the MDM and explained how it execution on MINID/systolic systems." Tech. Rep. Th-EE 88-18. School

of Electrical Engineering. Purdue Univ., W. Lafayette, IN 47907. Apr.
could be used to partition the algorithm of Example 5.2 in [22]. 19.

[22] - , "Independent partitioning of algorithms with uniform dependen-
REFERNCEScies,"~ in Proc. 1988 1w. Conf. Parallel Processing. Vol 2 Software, pp.

26-33.
III U. Baneijee. S. C. Chen. D. J. Kuck. and R. A. Towle. "Time and parallel [23] G. Strang. Linear Algebra and its Applications. second ed. New York:

procsso bondsfor ORTAN-ikeloop," EEETras. Cmpu.. ol. Academic, 1980.
proesar bund fo FOTRA-lie lops" IEE ran. Cmpu. vl. 241 0. Veblen and P. Franklin. -On matrices whose elements are integers,"

C-28, pp. 660-670, Sept. 1979.An.o awaisvl.2(112)p.1-5
[2)R. ytrn, Doaros: Byon vetorzaton or ultproessrs, in [25] MI. J. Wolfe, "Optimizing Supercompilers for Supercomputers," Ph.DProc. 1986 Int. Conf Parallel Processing, pp. 8364144. dissertation, Rep. UIUCDCS-R-82-1105. Univ. of Illinois at Urbana-

[3] J. A. B. Fortes. "Algorithm transformations for parallel processing and Cuain, Urbana. 1L, 1982
VLSI architecture design," Ph.D. dissertation. Dep. Elec. Eng.-Syst.,
Univ. of Southern California, Dec. 1983.

[4] D. D. Gajskz and J.-K. Peir, "Essential issues in multiprocessor systems."
IEEE Comput. Mag., vol. 18, pp. 9-27, June 1985.

J51 K. Hwang and F. A. Briggs, Compwser Architecture and Parallel Pro-
cessing. New York: McGraw-Hill. 1984. Woi Shan (S8w'0 eevdteBS e

[6] R. Kannan and A. Bachem, "Polynomial algorithms for computing . .elaSng(88M'0rcivdteBSdepree in computer enguteering and science fromthe Smith and Hermite normal forms of an integer matrix," SIAM J. fChangshla Institute of Technology in 1982 and the
Compt., vol. 8, no. 4, pp. 499-507. Nov. 1979. M.S. and Ph.D. degrees in electrical engineering

[7] R.MN. Karp, R. E. Miller, and S. Winograd, "The organtization offomureUnvstyWstLaet.I.in18
computations for uniform recurrence equations," 1. ACM, vol. 14. no. 3,an190repcvly
pp. 563-590, July 1967. She is9cursetly. sitn rfso nteCn

1] D. C. Luck, A. H. Samh, R. Cytron. A. V. Veidenbaum, C. D. Poly- Shter fo rreya Advancedt Copt rofdeso the nt
chrofopoulos. G. Lee. T. McDaniel, B. R. Leasure, C. Becknmn J. R. B. teof Southw ed outer Ltuayestte H ier sarc
Davies, and C. Knaskall. "The effects of program restructuring, algorithm ofnterestnLaa proc tessn. coper sarh
changes and architecture choice on hprogram Performanizce," in Proc. c itecre anlgodth raforaon processcoptr ar
19841w.L Comf Parallel Processing, pp. 129-138. cietr.agrtmtufrain rcso ra

[91 D. Kiick. E. Davidson. D. Lawrie, and A. H. Sameb,. "Parallel supercom- programming, seilpurpose VLSI bit-level processor array design, and
puting today and the Cedar approach." Science. vol. 231, pp. %7-974, optitinn comipiler technique.
Feb. 28 1986. Dr. Shang is a member of the Association for Computing Machinery.

[10] D. 1. Moldovan and 1. A. B. Fortes. "Partitioning and mapping algo-
rithm into fixed size systolic arrays." IEEE Trans. CofgnitL. vol. C-35,
pp. 1-12, Jan. 1986.

[ill D. 1. Moldovan. "On the design of algorithms for VLSI systolic arrays.-~
Proc. IEEE. vol. 71, pp. 113-120. Jan. 1983. Js .B ots('0M8)rcie h a

[121 L.Mordlell. DiapananeEquarwns. New York: Academic. 1969. p. 30. coeAu. em Engeara ElectM83receicaero thei
[13) D. A. Padua. -Multiprocessors: Discussion of theoretcal and practa-- Unaerae e ngolhan 1978,tcic fo thedge

cal problems." Ph.D. dissertation. Rep. UIUCDCS-R-79-990. Univ. of Uineecrical egnengom Coond 18,teMS.ategrne-
Ilinois at Urban-Campaign. Urbana. IL- Nov. 1979. i lcrclegitigfo ooaoSaeUi

14] D. A- Padua. D.J1. Lackr, and D. L Lawrie. "High speed multiprocessor versity. Fort Coffins. in 1981, and the Ph.D. degree
and compilation techniques." IEEE Trans. Coypi. vol. C-29. pp. in electrical engineering from the University of
763.-776, Sep. 1980. .Southern California. Los Angeles, in 1984.

101] 1-K. Petr and R. Cytron. 'Minimum distance- A method for partitioning In 1984. he joined the faculty of the Schooi
recurrences for multiprocessors." in Pr'oc. 1987 1w. Coti. Parallet of Electrical Engineering. Purdue University. Wes
Processing, pp. 217-2'-'. 4 LLaftatte, IN, where he currently is an Associate

1161 J.-K. Peir and D. D. GsjskLt 'CAMP: A propramning aid for multipro. Professor. From July 1989 through July 1990 he

cessors. in Prac. 19861wn. Coxf Paralle Processing, pp. 475-482. served at the Nationmal Science Foundation as program director for micro-
[17] J.-K. Peir. "01roprar partitioning and sywielriatoo on multiprocessor electronlics systems arciftectue. His research interests are in the areas of

systemis!' Ph.D dissertation. Rep. U1UCDCS-R-WI-259, Dep. Comput. parallel processing. bult-tolerant computing, and VLSI computer architecture
Sci.. Univ. of Ilinois at Urbsna-CliaipeiLa Urbana, LI Mar. 1966. on wich he co-anthored oae 50 techic.] papers. His research has been

[181 C. D. Polychrotopoulos, D. J. Kack, and D. A. Pabia, -Execution of funded by the Office of Naval Research., AT&T Foundation. General Electric,
parallel loops on parsal pitiammor syain." in Pr'om 19861in. CWb. aid the National Sine Foation.00
Paralle Processing, pp. 519-527. Dr. Form is a membe of the IME Pwutesional Society. He is on the

[19] A. Sckrive, Theory~ of Linear and laseger Pr'egrmising. New Yofk. Editorial Boards of the Jowuel of Parall and Disribise Computing and
Wiley, 1966. the JaW711al of VLSI Signal Processing.



REFERENCE NO. 5

Rau, D., Fortes, J. A. B. and Siegel, H. J., "Destination Tag Routing Techniques
Based on a State Model for the IADM Network," IEEE Transactions on Computers,
Volume 41, Number 3, March 1992, pp. 274-286.

Note - This paper proposes a simple destination-tag routing mechanism for a class of
networks. It also shows how the message routing scheme supports the rerouting of
messages around faulty nodes and links. These results are of use in fault-tolerant pro-
cessor arrays where a multistage network is used to connect processors.
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Destination Tag Routing Techniques Based
on a State Model for the IADM Network

Darwen Rau, Jose A.B. Fortes, Member, IEEE, and Howard Jay Siegel, Fellow, IEEE

Abstmt-A* 'state model" is proposed for solving the problem differ only in that the input side of one of them corresponds to
of routing and reroaing messages in the Inverse Augmented the output side o, ie other and vice versa. The Gamma and the
Data Manipulator (LADM) network. Using this model. necessary [ADM networks are topologically equivalent; however,, they
and sufficient conditions for the reroutability of messages are
established, and then destination tag schemes am derived. These use switches of different types. Each 3 x 3 crossbar switch
schemes- are simpler, more effien, ana require less complex used in the Gamma network can connect simultaneously all
hardware tha previously proposed routing schemes. Two des- three inputs to all three outputs whereas each switch used in
tinatlon tag schemes are proposed. Foir one of the schemes, the IADM network can connect only one of its three inputs to
rerouting is totally transparent to. the sender of the message and,
any, blocked link of a given type. cam be avoided Compared one or more of its three outputs. The main interest of this paper
previous works that dea withb the same type of blockage the is the study of the LADM network; both the one-to-one and
time x space complexity Is reduce. firom O(log N' to. 0(1). permutation routings are considered. The schemes proposed
For the other scheme, rerouting: is possible for any .lpa of link for routing and rerouting messages in the. IADM network are
blockage. A universal rerouting algorithm is constructed based also applicable to the Gamma network.
on the second scheme, which finds a blockage-ree path for any
combination of multiple blockages if there exists such a path, and Perhaps the most popular class of multistage networks is
indicates absence of suck a path if there exists none. In addition, the multistage cube-type networks such as the Indirect Binary
the state model is used to derive constructively a lower bound on n-Cube [15], Omega [6], Baseline [201, Generalized Cube
the number of subgraphs which are isomorphic to the Indirect [181, STARAN flip [21, and a special case of SW-Banyan
Binary n-Cube network in the JADM network. This knowledge
can be used to characterize properties of the LADIM networks and [4] networks. Among the main advantages of these networks
for permutation routing in the IADM networks, are their very efficient destination tag routing schemes. par-

Index Terms -Cube network, data manipulator network. titionability, O( N log2 N) cost. and ability to pass useftul

destination-tag mutng, tult tolerance, interconnection network. permutations [16]. Some results of this paper are based on

multiprocessor, parallel processing, state model characteristics of the Indirect Binary n-Cube network (hereon
referred to as the [Cube network). Since the cube-type net-
works mentioned above are all topologically equivalent [161,

I. INTRODUCrION [171, [20], [21], the results in this paper are also relevant to
T HIS paper discusses novel and efficient techniques for any of them.

routing and rerouting messages in the Inverse Augmented The ICube network is composed of n = log : stages
Data Manipulator (IADM) network [9]. These results are based labeled from 0 to n - 1. Each stage consists of N connection
on a new approach, the "state model." which characterizes and links and N/2 interchange (switches) boxes. The structure of
correlates the topologies of the IADM and Indirect Binary the network is such that two input links of an interchange box
n-Cube networks, and leads to efficient exploitation of the differ only in the ith bit of their labels; the upper links have
redundancy available in the LADM network. a "0" in the ith bit and the lower links have a "1." Fig. I

Considerable research has been dedicated to the design of illustrates an ICube network of size X = 8 and two possible
multistage interconnection networks for multiprocessor sys- states of an interchange box. "straight" and "exchange." Since
tems. The class of data manipulator, etworks. introduced in this paper considers only one-to-one and permutation routing,
[3], includes, among others, the Augx,.nted Data Manipulator broadcast states are not shown.
(ADM) network [17], the LADM network [9], and the Gamma The LADM network is composed of n stages labeled from
network [131, [141. The IADM network and the ADM network 0 to n - 1. Each stage consists of 3N connection links and N

ManuscrIpt received October 15. 1987, revised August 17- 1991. Tis work switching elements. An extra column of switches is appended
was supported in part by the National Science Foundanon uder Grant DCI- at the end of the last stage as the output switches and is referred
3419745. by the innovative Science and Technology Office of the Swnte$C tO as stage n. Each switch at stage i has three output links
Defense Initiative Organizauon and was administered through the Office ot
Naval Research under Contract 000 i4-88-k-0723, and by the Supercompuing to switches (j - 2') mod V, j, and (j + 2') mod .V of the
Research Center under Contract MDA904.85-C-5027. succeeding stage. Each switch selects one of its input links

!. Rau was with the School of Electrical Engineering, Purdue Univer- cci t e c sihe o n iput links
sity. West Lafayette. IN 47907. He is now with AT&T Beil Laboratoies, and co..nects it to one or more output links. Fig. 2 illustrates
Naperville. IL 60566. an IADM network of size N =

1. A. B. Fortes and H. J. Siegel are with the Parallel Processing L. oaoty. In a multistage interconnection network, the path connecting
School of Electrical Engineering. Purdue University. West Lafayette. IN
47907. the source of a message to its destination is determined by

IEEE Log Number 9105560. a routing scheme that specifies the switching state of each

0018-93449=.00 0 1992 IEEE
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0 o 0 0 to destination in order to generate routing and rerouting tags.
4 .1 The rerouting schemes in these works are basically finding an

alternate representation, which specifies an alternate routing
2 3 path, for the distance.

C. 4 McMillen and Siegel [91 proposed three dynamic rerouting
4 4 M techniques for the IADM network for avoiding faulty or
5" 5 0 

$ blocked ±2i (nonstraight) links. The first and the second

s- schemes require that switches be capable of performing two's
7 N7 complement and ±2' addition operations, respectively. The

STAGE 0 1 2 third scheme requires one extra tag bit which is dynamically
updated as the message propagates toward the destination.
In [10], the work of [9] was expanded, and a single-stage
look-ahead scheme was proposed to avoid certain types of

"-_ - straight link faults. This improved scheme also requires two's
straight exchange complement operations.

Parker and Raghavendra [13] used redundant number rep,-
Fig. 1. The Indirect Binary n-Cube (ICube) network for .N = 8 (according re and p ropo sed rit m naabl n g all

to the first graph model): two possible states for each box are shown (i.e.. resntation and proposed an algorithm capable of finding all
itraight and exchange). routing paths, which, effectively, are the redundant number

representations for the distance between the source and the
destination. Because of the complexity of the algorithm, the
cost of computation is prohibitively large so that it is infeasible

.\ Ito implement the algorithm in order to achieve dynamic
\\A / routing [19]. In addition, although the algorithm can generate

all routing tags for any distance, there is no specific work on
rerouting schemes in [131, [141.

1 1 1 Lee and Lee [7] proposed signed bit difference tag and
2 2 2 2destination tag local control algorithms for the ADM and

I- IADM networks that require no computation to,, the distance
< between the source and the destination. But their local control

0 algorithms can only find one routing path for each source and
destination pair. If the need for rerouting arises, they still resort

)A _to the distance tag schemes to find alternate paths.
7 7 7Past research has shown interesting relationships between

- - /- , data manipulator and cube-type networks. For example, be-
cause it is possible to embed the Generalized Cube network

in the ADM network [1], [17], the set of interconnections
/ implementable by the ADM network is a superser of that of

STAGE 0 1 2 the Generalized Cube network. This fact and the existence of

Fig. 2. The LADM network for .V 8 (according to the first graph model): multiple paths between any source s and destination d (s : d)
-en, and odd, switunes. 0 < i < 2. are enclosed with bold and regular in the ADM network suggests that the ADM network can

dges. respectiveli. The solid edges (links) show the [Cube subgraph. be thought of as a fault-tolerant Generalized Cube network.

Analogously, the IADM network can be regarded as a fault-

switch in the path. Routing schemes are considerably simpler tolerant [Cube network.' Since the permutations realizable

for the cube-type networks than for the data manipulator-type by cube-type networks are well studied. the identification
networks. In cube-type networks, the interchange box at stage iof possible embeddings of the [Cube network in the ADM

network can help characterize the permutation capabilities
needs to examine the th 5it of the binary representation of the of this network. A contribution to the precise understanding
destination address of an incoming message. If the ith bit is 0, of these notions is made in this paper: it consists of the
then the upper output of the box is taken. If the ath bit is 1. the identification of a large number of distinct subgraphs of the
lower output of the box is taken. These schemes are known as IADM network that are isomorphic to the [Cube network.

destination tag routing scnemes [6] and are extremely efficient Section II of this paper introduces a state model to de-
and simple to implement. Unlike cube-type networks, in the scribe and correlate topologies of the [Cube network and the
[ADM and other data manipulator-type networks there are LADM network. Necessary and sufficient conditions to perform
several paths between any source s and desunation d (a d) rerouting in the LADM network are derived in Section III. In
.nd each switching element has at least three switching states. Section IV. two routing and rerouting schemes are proposed
Previously proposed roWnng schemes [9], [101, [13] for the
Pretwo rkcansed thoutofasisag schemes 91, 101,31for While topologically eqivalent. the ICube and Generalized Cube 1/0 ports
[ADM network can be thought of as distance tag schemes: are addressed so that their interrelationship is the same as that of the IADM
thaL is. they require calculation of the distance from source and ADM network. i.e.. the input and output sides are interchanged.
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based on the theory developed in Section Ill, together with a 0 =0"
discussion of their merits and implementation considerations. - " "
A universal rerouting algorithm is proposed in Section V,
which can deal with any combination of multiple link block- 2 2 2 2

ages. A class of subgraphs in the IADM network that are 3 3 3C

isomorphic to the [Cube network are identified in Section VI, 4

and it is shown how to reconfigure the IADM network under
certain link faults to pass the cube-admissible permutations. "
Finally, Section VII summarizes the results presented in this 7
paper.

STAGE 0 1 2

11. STATE MODEL DESCRIPT!ON FOR THE ICUBE Fig. 3. The Indirect Binary n-Cube (ICube) network for N 8 (according
AND IAD14 NETWORKS to the second graph model).

Multistage networks can. be modeled as graphs by treating
interchange boxes (also called switching elements) and links Also, define the- functions C, (j. ti) = j + ACi (j, t,) and
of the network as nodes and edges of the graph, respectively. C(j, ti) = j + AC1 (j, ti). These definitions imply the fol-
Another equivalent graph model [1], (81 results if interchange lowing lemma of fundamental importance to the results of
boxes are associated. with edges, and- links. with nodes. Both this paper.
models are exemplified in.Figs. 1 and,3 forthe [Cube network. Lemma 2.1:
The tADM network is- shown in, Fig. 2 according to the
first model. The design of switches based on both models is Ci(J, ti) = jo/-tJi+I/.-I
discussed in [11]. Clearly, the lCube network in Fig. 3 can Ci(j, t1 ) =:jo/i-tiqi+1/,_-
be regarded as being a subgraph of the LADM network in
Fig. 2. Henceforth. the second model is always assumed when for some value of qi./,,-t which depends on j and ti.
referring to the [Cube network (i.e., Fig. 2) and the first model Proof. If j is an eveni switch and t4 = 0. then C,(j. t,) =
is assumed when dealing with the LADM network. Ci(j,ti) = j. If j is an odd, switch and ti = I. then

With respect to these graph models, the nodes and the Ct (j, ti) = Ci(j, ti) = j. If j is an odd, switch. ti = 0. then
edges of the graph refer to the switches and the links of the C,(j, ti) results from subtracting I from ji. Since j is an odd;
networks, respectively. The number of switches at each stage switch. ji = 1, no borrow is generated and all remaining bits
of a network is denoted N and n = iog2 N refers to the of j are unchanged; however, Ci(j, ti) adds I to ji, changing
number of stages. The switches of each stage are labeled from the ith bit to 0 and altering some of the bits in positions
0 to iV - I from the top to the bottom. Any integer j has i + 1. ... - 1 due to carry propagation. Similar reasoning
a binary representation j 0J ... j,,-,, where j,-t is the most applies when j is an eveni switch and ti = 1. ,"
significant bit and n denotes the number of bits. The notation The notation and terminology just introduced can now be
j,/, means the bits of j starting at j, and ending at j., where used to describe the networks of interest in this paper. The
r < s. Bit ji is l's complement of bit ji. Throughout this following description for a network iii terms of AC,, AC,,
paper, j and j + a. where a is some constant, are reserved Ci and C is called the network state modeL
to represent labels of switches. Also modulo Y arithmetic is The ICube network is composed of n stages labeled from
assumed, e.g., j + a implies (j + a) mod N. The notation 0 to n - 1. Each stage consists of 2N links and N switches.
j E Si is used to indicate that a switch j belongs to stage i An extra column of switches is appended at the end of the
and (j' E Si,j" E Si+t) is used to represent a link at stage last stage as the output switc,* s (Fig. 3) and is denoted S,.
i joiningj' E Si and j" E Si+t. A sequence of switches A switch j E Si is connected to switches C,(j, t,) E Si,
of contiguous stages ('ESi,j"ES ,,'..j..'.ESi+-) is for 0 < i < n- 1,0 < j < .V-1, andt =0or t, = 1.
used to represent a path from j' E Si to i'" E Si+k. When using destination tags, switch j E Si routes a message to

Notation and terminology required for the characterization switch C,(j, di) E Si,+ where di is the ith bit of the address
of network topologies and destination tag routing schemes are of the message destination.
introduced next. A switch j of stage i is an eveni switch if The IADMv network is composed of n stages labeled from 0
ji = 0 and an odd, switch if ji = 1. Fig. 2 identifies even to n- 1. Each stage consists of a column of N switches and 3N
and o(4 switches at different stages of the IADM network of connection links. An extra column of switches is appended at
size Y = 8. Let t, represent a tag bit and define the functions the end of the last stage as the output switches and is denoted
AC, and -0, that represent connection links at stage i as S,,. A switch j E Si is connected to switches C,(j, t,) E S.i-t

and C,(j,t,) E Sj+ 1 for 0 < i < n -1. 0 < j < .V - 1.0 if j is an eveno , switch and t = 0 and ti = 0 or t, = 1. In other words, three links connect
..- jt 0 if j is an oddi switch and t1 = I

A- ' ifj is an oddi switch and . 0 a switch j E Si to the switches (j - 2), j and (j - 2') at
- if is an odd, switch and t = 0 stage i + I. Sometimes -'-2' and -2' are used to represent

+2' if is an eveni switch and ti links (j C Si. (j + 2) E SiI ) and (j E 5i, (j -2')
AC,(jt,) = AC,(j,t,). Si.), respectively. The term a straight link refers to link
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/ /
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even .eveQn I . O ven

2

add odd add

-2 iU

function IC i

function Ac i

Fig. 4. The connection links of stage i of the ICube network can be described by the function AC,. The connection links of stage i of the [ADM
network can be described by the union of the functions AC, and AC,.

(j E Si,j E $ +,) and the term a nonstraight link refers to do/l-. is the unique destination routing tag to the destination
links ±2 i . d regardless of state of the IADM network.

According to the model, two types of switches, evenj and Proof. Consider an arbitrary tag fo/,,-t and assume that
,dd are required in the IADM and ICube networks. Fig. 4 the IADM network is in an arbitrary state. Let t0 /,_. =
illustrates the connection links of a pair of eveni and odd, fo/,-j. Then each switch will route the incoming mes-
,;witches for an ICube and IADM network of size N = S. The sage to either C,(j, fi) or C1(jj,). From Lemma 2.1. it can
AC, function describes the ICube connections. For the IADM be reasoned by induction that, at stage i. ((2(f, f ))o/j =
network, the connection links can be described by the union (Z,.(j,1 f))o/ = fol,; at the last stage, C,,-.(j,f.-i) =
of the functions AC, and AC,. In practice, evenj and odd. C,-(j, f,-) = fol-. Thus, the address of the destination
.witches can be identical and easily programmed (at power-up of the message is the same as the routing tag. This proves both

or system configuration time) to behave differently. the validity and the uniqueness of do/- as a routing tag.
There are two possible routing behaviors (or states) for each t

switch in an IADM network. A switch is said to be in state C ifthe outng s dcidd i acordncewit th fuctin C U~t1) It is implicit in the reasoning underlying Theorem 3.1 that
the routing is decided in accordance with the function C, (j, ti) any link on a given path results from the appropriate choice
anithe whol the line n wichamssae tis rted dples On of the state of the corresponding switch, i.e., the use of "link"the w hole, the link on w hich a m essage is routed depends on A C(j ti re u s f om etng j E S to ta e C nd se f
whether the switch is an evenj or odd, switch, in state C orC, AC,(jt 1) results from setting j E S to state C and use of
and the value of tag bit ti. Also the term state of the network "link" AC (J, t) results from setting j E Si to state C. Thus.

is used to denote collectively the states of all switches in the given a path to the destination d, there is at least one network

network. state for which the use of d as the destination tag results in

The notion of switch state is only conceptual; it can be the routing of a message through that path.

implemented by designing the switches with actual logic states The implication of Theorem 3.1 is that the use of a state

as well as by using tags with n added bits specifying the states model for the LADM network reduces the problem of finding

of the switches on the routing path. In Section IV, these and alternate routing paths to that of controlling the states of the

other aspects of the actual implementation of the proposed switches in the network. Capitalizing on this idea, the follow-

schemes are discussed in detail. ing theorems show how alternate routing paths can be found
in order to evade blockages in the network. A straight link
blockage occurs if a straight link on the routing path is faulty
or busy. A nonstraight link blockage is defined analogously.

Ill. THEORY BEHIND THE STATE-BASED DESTINATION The third type of blockage, called double nonstraight link
TAG ROUTING SCHEMES blockage, occurs if both nonstraight output links of a switch in

lMued on the framework developed in Section II. routing the routing path are faulty or busy. A switch blockage occurs

problems in the IADM network are now examined. It is if the switch itself is busy or faulty. A switch blockage has the

clear that when every switch in the [ADM network is in the same effect as blocking all of the switch's input links and can
state C, the IADM network behaves like an ICube network be transformed into a link blockages problem accordingly. The

and, therefore, the destination address do/,-i can be used discussion on rerouting in this paper is concerned only with

as a routing tag, i.e., tj = di. More generally, the following link blockages.
theorem can be proven-. Theorem 3.2: In the IADM network, a change of the state of

7heorem 3.1. Let d -:1 d0 /,,_. be the destination in the switch j E Si results in a different routing path to a desfltionti

(ADM network to which a message is to be senL Then t = d if and only if a nonstraight output link of j is used on db
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original routing path to d. Moreover, the other nonstraight jES1.tj. 1 t S1 jESl JeS 1 je 1

output link of j is used on the new path. 0j+2te/-, -
Proof. Changing the state of j implies that the "link"

AC, (j, ti) is used instead of Cj, (j' ti) or vice versa. How- (I'+2 b .k~i'

ever, if AC1(j, ti) = 0 then AC,(j, ti) = 0 (i.e., both use a u b +

straight link) and vice versa. 0 (j+21)e S,
With regard to the rerouting schemes proposed in this paper,

the implications of Theorem 3.2 are twofold. First, the "if"
part of the theorem implies that dynamic rerouting for a (j+21 ')C S.,.
nonstraight link blockage can be achieved by changing the
state of the switch whose output is the nonstraight link, which

is equivalent to rerouting the message through the oppositely
signed nonstraight link connected to the same switch. Thus, the
same subset of destinations is reachable from the two switches
whose input links are the two oppositely signed nonstraight (j+2 )E Si
links. Second, the- "only if" part of the theorem' implies that
dynamic rerouting for a straight link blockage is impossible.
This is true inr- general since every routing path in the IADM
network can be the result' of setting the network; to some state.
Moreover, if a path- from stage i' to stage i" consists of all
straight links connecting j E Si and j E Si+j, i' < i < i",
then there exist no alternate routing paths from j E Si, to
j E S,, for otherwise there would exist an alternate routing
path branching from i E Si, and ending at the destination. The
only resort, if any at all, to bypass the straight link blockage is
to backtrack to a switch connected to a nonstraight link on the I"-
routing path at some preceding stage and to reroute from that (j+2' t)e S1.1
switch. It remains to show that an alternate routing path always
exists, provided that such a nonstraight link exists. In fact, Fig. 5. Rerouting for a straight link blockage in (j E S,.j E S,. ). Path

p(C(j+2 -) E S,...E S,-.-. j E S,+, ) is a segment of the original
the existence of an alternate routing path partly results from path: ((i + 21 - ' E Sa-k.(J + 2'-"') E S.t.".j E S,-,.) and

Theorem 3.2, as stated in the next theorem. Fig. 5 illustrates ((j + 2.- k') E Si-A,.(j +- 2 
- 
1
€'t ) E .,-, 4 1.... U- 2') E st, (.

the situation in Theorem 3.3 for which a proof is provided 2"' ) E S+ I ) are the rerouting paths for it.

in [221.
Theorem 3.3: Consider a routing path in the IADM network link blockage.: Theorem 3.2 can be used to avoid case 1) a

to a destination d that contains a blocked straight link at stage nonstraight link blockage and Theorem 3.3, case 2) a straight
it. There exists at least one network state which results in link blockage. If case 2) occurs, then Theorem 3.2 cannot be
an alternate routing path that avoids the same straight link used to find a rerouting path. A backtracking scheme proposed
blockage at stage i if and only if the original routing path to d later in Corollary 4.2 based on Theorem 3.3 can be adapted
contains a nonstraight link at stage i - k for some k, i > k > 0. to overcome this type of blockage. The adapted backtracking

Previous work [7], [9], [13] implies only the "if" part of scheme is based on Theorem 3.4, which is illustrated in Fig. 6.
the theorem, i.e., the possibility of using nonstraightt link The proof of Theorem 3.4 is provided in [221.
of opposite sign in order to reroute a message in the case Theorem 3.4: Consider a routing path in the IADM network
of a nonstraight link failure. However the "only if" part of to a destination d that contains a switch at stage i whose both
the theorem also implies that, in addition, it is not possible nonstraight output links are blocked. There exists at least one
to devise a new rerouting scheme capable of avoiding a network state which results in an alternate routing path that
backtracking (or look-ahead) mechanism in order to deal with avoids the same blocked nonstraight links at stage i if and
straight link blockages, only if the original routing path to d contains a nonstraight

From Theorem 3.2. (for a given source/destination pair) link at stage i - k for some k. > k > 0.
if the straight output link of a switch is on some routing
path, both nonstraight output links of the switch cannot be IV. STATE-BASED ROUTING AND REROUTING SCHEMES

used for routing; if one of the nonstraight output links of a
switch is on some routing path, the other nonstraight link of In th seoroutingland in Schemes aeiued
the switch is also on another routing path and the straight
link of the switch-cannot be used for routing. So, for a given -Physically it is possible to have any combiatiia of blockages of the

switch, the output link blockages that affect paths from a given ouqMt links of a given swntch. However. the powable muting pats for a given
sourcedestinabon pair can be affected by either a straigh link blockage or a

source to a given destination can only be 1) a nonstraight link doubl nosturaight link blockage in a given switch but never bet ry of
blockage, 2) a straight link blockage, or 3) a double nonstraight blocksge.
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(j-2 .s,! rerouting is also transparent in the sense that it results from
a change in the network state. In practice, the implementation
can be such that, for instance state C (or C) is used as
the default state for each switch in the IADM network and
the switch regarcs the other nonstraight link as a spare link
for rerouting; if a nonstraight blockage is detected, then the
switch changes state to C (or C) so that the spare link is used
instead. This scheme is called the Self-Repairing State-Based
Destination Tag (SSDT) scheme.

Rerouting is useful not only when one nonstraight link
in a switch is faulty or busy, but also if both nonstraight
links are busy. For example, when considering a packet
switching environment, rerouting may be desirable as a means
of balancing the message load throughout the network. The
scheme proposed here is wefl suited for this purpose. Assume

S ES, that each nonstraight link has an associated buffer (queue).
When both nonstraight links are busy due to- message traffic
congestion, a switch can choose which nonstraight buffer to
assign a message to (i.e., which state to associate with that

*k queued message), based ort the number of messages present
in the buffers in order to evenly distribute the message load

U 2')GS, \to the nonstraight links.
The proposed SSDT scheme has the advantages that it uses

simple n-bit destination tags and is capable of rerouting mes-
sages when blockages occur in nonstraight links. In addition,
rerouting of a message is transparent to its sender since the
path of the message is determined by the state of the network.
For a given destination tag, the routing behavior of each switch
on a possible path is determined by the state of the switch.
i.e.. the SSDT scheme is fully distributed and rerouting is
done dynamically. Each switch requires a negligible amount
of extra hardware for the detection of blocked links and the
representation of two possible states.

li+2,S; l4'~)ES,-, ' The second scheme is called the Two-bit State-Based Des-
tination Tag (TSDT) scheme and it uses 2n-bit routing tags,

ig. 6. Rerouting for a double nonsuraight links blockage in (j E Si. (j-2')
~,-.t)andU Su .- 2) St).Pac ( + *~k e + which specify both the destination of the message and the:5,_,-t) and (i C- S,. U + 2') E S, t) . Path t(U + 2 -  E ,_ ( +

- ') E -,..1,'". U +2' E S.U + 2')E Si...) is a rerouting states of switches on the corresponding path. The TSDT
,athforbothpaths(j2k- ' ) E S,-E,. E 5j t...j E S,. .(j- 2 ') scheme has the advantage that rerouting is possible when

- .,.) and ((j - 2k') E S.-k.J E Si- . 1 .i E S,+i. U + 2') blockages occur for straight as well as nonstraight links.
As with the first scheme, the TSDT scheme assumes that

each switch is appropriately initialized to behave as an odd,
-arlier. the novelty of the ideas in this paper lies in the state or eveni switch. Each "digit" of the routing tag is represented
nodel of the routing behavior of each switch. In previously by two bits b,,., and bi, called the state bit and the destination
:)roposed approaches, routing is determined solely by tag bits. bit, respectively. For this scheme, the state of a switch of stage
\ccording to the state model, the switching action of each i is specified by b,+,: if b,,+, = 0. the switch is in state C and
ietwork element is conceptually determined by its relative if b,,,, = 1, the switch is in state C. For all i. 0 < i < n - 1.
-)osition (i.e.. an even or odd, switch), its state (i.e.. C or U) bi = di. In general, if j is an even, switch, bib,,+, = 00
tnd a destination tag bit (i.e.. 0 or 1) (Fig. 4). This conceptual and bib,, i = 01 direct the message through a straight link.
-eparation of routing information makes it possible to devise bib,, = 10 through link -2' and bib, = 11 through link
ne simple routing schemes described in this section. -2'. if j is an odd, switch bib,,, = 10 and bib,,+, = 11 direct

In the first scheme, each switch is initially set up to behave the message through a straight link. bib,,+, = 01 through link
is an odd, or eveni switch. In addition, each switch can -t-2' and ~b.,., = 00 through link -2'. In general, given a
ivnamicallv be set to one of the logical states C or C. In other switch, the destination bit specifies use of a straight link or a
,Vords. this scheme corresponds to a direct implementation of nonstraight link while the state bit determines the choice of the
ne conceptual view of switch states. Destination tags are used positive or the negative link (if the chosen link is a nonstraight
,nd. according to Theorem 3.1. the state of the network is link). Since state information is carried by tne routing tag,
ransparent to the sender If the message since it only affects switches are not required to determine and remember their
he path of the message and not its destination. Consequently, own states. i.e.. the design of the switches does not need to
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implement the logic states C and .

From Theorem 3.2, a nonstraight link blockage at stage i can
be bypassed conveniently by complementing the ith state bit
while the destination bits remain unchanged. For convenience \A

of reference, this is restated in terms of the TSDT scheme as " "
Corollary 4.1 below.

Corrollary 4.1: Let b,12,- and b'/2- be the state bits2222
of the routing tag and the rerouting tag, respectively, for the .

IADM network. In order to bypass a nonstraight link blockage M 3 3

at stage i. state bit bnt needs to be change to 6,,+i. That is, z 4 4

b12- - n/n+i-Lbn+&bn~.j+j/2n,, S e 55

Fig. 7 illustrates an example of routing from s = I to d = 0

in an LADM network of size N = 8. Let bals = 000000 7

be the routing tag and b,15 and b",_ denote the rerouting
tags. The original tag b0/ 5 = 000000 specifies the path

(1 E So.,0 E St,0 E 52,0 E S3). If (1 E So,0 E S) // \
is blocked, the rerouting tag b'05 = 000100 is obtained

by complementing b3, and link (1 E So, 2 E Si) is used for STAGE 1 / 2
rerouting. This tag specifies the patlh (1 E So, 2 E 51, 0 E Fig. 7. All routing paths from 1 E So to 0 E S., in an LADM network of

S 2 , 0 E S3). If (2 E S, 0 E S 2 ) is also blocked, the rerouting size .v = 8.

tag b"e/5 = 000110 results from complementing b,, and link

(2 E S1, 4 E S-2) is used for rerouting. This tag specifies the (I E So,2 E S 1 ,4 E S 2 ,0 E S3). If both nonstraight output

path (1 E So,2 E S1,4 E S 2 ,0 E S.1). links of 4 E S2 are blocked, the rerouting tag b'/ can be
As discussed in Section II. a straight link blockage and a 000100 which specifies path (1 E S/.2 E S5, E $2,( E S:w

double nonstraight link blockage cannot be overcome easily; by having b+be+b 2 = b3dtd2. Since state bits b 2.

implementing a backtracking (or look-ahead) mechanism is a 0003

must in order to evade these types of blockages. Since all links can be arbitrary, 101 is also a valid rerouting tag which

in the routing path from stage i - k + i to stage i consist of also specifies the same path.
The rerouting path computed from Corollary 4.2 is blockage-

only straight links, backtracking of at least k stages is required free from stage 0 to stage . While the rerouting path is

to find the switch from which an alternate routing path different from the original routing path from stage i-k to

branches. That is. at least k state bits need to be considered stage m the routing path from stage i - k e

for change. Due to the similarity between Theorems 3.3 and sae thi reuts from te t backcI aas

3.4, the TSDT schemes for finding the rerouting paths from thsaeTisrulsfo tefcthtbckaknglwy
3.4.theTSD scemesforfiningthererotin pahs rom proceeds backward along the original path until it stops at

Theorems 3.3 and 3.4 are exactly the same, which is stated as tage bakad rong path nly cag sos fo
Corolar 4.2(se (22 fo theprof).stage i .- k, and the rerouting path only changes course from

Corollary 4.2 (see (22] for the proof), stage i - k onwards. Although state bits b+i/27&-t remain
Corollary 4.2: Let /,- and b' be the state bits unchanged, the routing path from stage i to n - I may still be

of the routing tag and the rerouting tag, respectively, for a altered due to the changes from stage i - k to i. For example.

source/destination pair in the IADM network. Let i - k be the in Fig. 5, the switch on the original routing path at stage i + I
largest stage number for i > k > 0 such that a switch at stage is j E Sj+j whereas the switch on twe rerouting path at stage

i - k is connected to a nonstraight link on the routing path. In i + 1 may be (j + 2' + ') E Si,,, which may further induce

order to bypass a straight link blockage or a double nonstraight changes at higher-order stages.

link blockage at stage i, only state bits b,,+(jk)/,+i_ need In the TSDT scheme, the tag can be computed by the

to be changed; a) b'/,n+(-L) = bnn+(i-k)_tdi-k/i-L if the message sender which is assumed to know the Ication of

nonstraight link at stage i-k of the original path is link -2" k, faulty links and switches in the network. Thus. rerouting is

and b) b/l,,.(_t) = &n/n qt-k)_td'-1/j-t if the nonstraight transparent to the switches in the sense that the tag computed

link at stage i - k of the original path is link +2 - ''. The state by the sender of the message simply avoids the usage of faulty

bits 'tr,-,.i/2n-t have arbitrary values in both cases. links and switches. Therefore, switches do not require any

The example in Fig. 7 can be used to illustrate the TSDT extra hardware for rerouting purposes. It is assumed that there

scheme for 1) a straight link blockage and 2) a double exists a fault detection and location mechanism and a process

nonstraight link blockage. 1) Again the tag bo/,5 = 000000 that maintains a list of faulty switches and links. Changes to

specifies a path (1 E So,0 E S1,0 E S2,0 E 5I). If the the list are broadcasted by this process to the senders (the exact

straight link (0 E Si, 0 E 52) is blocked, the rerouting tag can broadcast method depends on system implementation). For

be 000110 which specifies path (1 E So, 2 E Si, 4 E S2, 0 E better performance. these lists should be in fast access memory

S3) by having bYl.0 b'j,+b'. 2 = d0tdb3.+2 = 110. Since state (e.g.. cache). An alternative is to implement dynamic rerouting

bits b', 1 b4. 2 can be arbitrary, 000100. for example. is also for the TSDT scheme. Since backtracking is indispensable for

a valid rerouting tag; it specifies path (1 E So, 2 E S1, 0 E avoiding a straight link blockage, it is required that each switch

S2 ,0 E $3). 2) Let the tag 60/s = 000110 specify a path can detect the inaccessibility of any output port (coamected to
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a switch at the next stage) and signal the presence of the blocked link is on the current path.
,lockage back to the switches of previous stages [101, [121. In summary, for both SDT schemes, the binary represen-
Whether rerouting is done by the sender or dynamically is an tation of the destination address can be used directly as the
implementation decision which depends on how many stages routing tag. In the SSDT scheme, rerouting tags are not needed
of backtracking are allowed. When the sender computes the and in the TSDT scheme, rerouting tags result from simple
tag, it must be able to identify and track the switches and links bit complementing operations. In terms of complexity of the
)n the corresponding routing and rerouting paths (the next computation for a rerouting tag, the SSDT scheme and the
paragraphs explain how this is done). If any of the switches or TSDT scheme for one instance of nonstraight link blockage
links in the path is known to the sender as being faulty, hen require time x space complexity 0(1); an improvement over
the sender computes another tag by changing the state bits as previous proposed schemes [9] dealing with rerouting for a
described in Section V. nonstraight link blockage that require time x space corn-

Locating the switches on the routing path is straightforward. plexity O(log X). In [101 a single-stage look-ahead scheme
For a given source s and a destination d, the initial routing for rerouting of a straight link blockage was proposed; it
path can be specified by setting state bits bn/2n-1 = 0 n/2n-I requires use of two's complement to compute the positive
(a string of n O's), equivalent to setting every switch in the and negative dominant tags so that the scheme has time x
(ADM network to state C. Then every switch on the original space complexity of 0(log.N). Note that the single-stage
path has label do/i-lsi,-, E Si, 0 < i < n - 1, since now look-ahead rerouting scheme is valid only for some cases of
the IADM network functions like an ICube network [6], [15). the straight link blockage; it cannot be applied to any case

To find the switches on the rerouting path, let j E Si be of the straight link blockage. From Corollary 4.2, k-stage
-he switch whose output link is blocked. First consider the backtracking is needed for a straight link blockage and k
case where the blocked link is a nonstraight link. It may be bits of the state bits need to be changed; thus, the complexity
a) positive or 2) negative link. In case 1) the switch at of the TSDT scheme for a nonstraight link is 0(k). If only
.,tage i + 1 reached by the positive link is (j + 2') E S+ I single-stage backtracking (corresponds to single-stage look-

and. from Corollary 4.1, rerouting can be done through switch ahead) is necessary, rerouting can be done dynamically and

ij - 2') G Sii. In case 2) the switch at stage i+ 1 reached by the complexity is 0(l), an improvement over the scheme in
the negative link is (j - 2') E S.j,- and, from Corollary 4.1, [10].
i crouting can be done through switch (j + 2') E S,+ 1. Let
ihe switch at stage L - I on the rerouting path be wo/,,- . The
tate bits b,-..(i,)/n-I remain intact (equal to O's) because it V. A UNIVERSAL REROUTING ALGORITHM

corresponds to having every switch from stage i + I to n - 1 FOR MULTIPLE BLOCKAGES
remain in state C so that the IADM network from stage i + 1 The TSDT scheme can be applied to not only one instance
to a - I can emulate the ICube network from stage i + I of some blockage, but also can be applied repetitively each
do n- i. Thus. the bits 1. , + I < I < n - 1, of the label time a new blockage is encountered as the message propagates
ot a switch on the rerouting path are w1 ,,,. From Lemma along. This section considers the derivation of an algorithm to
2.1, bits 0 to I - 1, 1 < I < i + 1, of the label of a switch deal with any case of multiple blockages. The backtracking
on a path to destination do/,,_. must be do/.t. Hence, the schemes proposed in Corollary 4.2 find a rerouting path for a
.witch on the rerouting path from stage i + 1 to n - 1 has straight link blockage and a double nonstraight link blockage.
label o/1-1101/,-l, i + 1 < I < n - I. Nevertheless, it is possible that blockages also exist on the

Next consider the case where the blockage of j E S is a rerouting path; then further backtracking to a lower-order
.traight link blockage or a double nonstraight link blockage stage is needed. Since this phenomenon can recur, repeated
.o that backtracking is necessary. There are two subcases backtracking may be necessary due to blockages on the
or each type of blockage: a) the nonstraight link found in rerouting paths. The algorithm BACKTRACK described next

;iacktracking is a negative link and b) it is a positive link. Here performs iterated backtracking to find an alternate routing path.
,nly subcase a) of the straight link blockage is considered; the It underlies a universal rerouting algorithm (called REROUTE)
ither cases can be dealt with similarly. From the proof of to be shown later that can find a routing path, if there exists
:orollary 4.2 (case a) only), the switch on the rerouting path any, to bypass multiple blockages in the network.

(j + 2') E St, t- k < I < i. The switch of stage i+ 1 on the The inputs to algorithm BACKTRACK are the current

crouting path is j E S, 1 if b'.,., = 0 and j E Sj+ 1 is an odd, routing path P, the stage number i where a blockage occurs,
'witch or if b'.., = I and j E Si.,.l is an even j switch, and and state bits , /2nI representing path P. The algorithm

's (j + 2 ' ) E S.- if b',, = 0 and j E Si., is an eveni returns updated values of the state bits bn/2n-I which specify
,witch or if ' = I and j E S,+ is an odd, switch. The a rerouting path that is blockage-free from stage 0 to stage i if
dentification of switches on the rerouting path from stage i+ 1 such a rerouting path exists, or returns FAIL if the blockages
, rL - I is done as in the case of a nonstraight link blockage on the current routing path and the rerouting paths eliminate
lescribed above, the possibility of communication between the source and the

The blocked link can be represented by the two switches destination. It is assumed that the blockage on the original
,,ned by the link. Since e.ery switch on the original routing routing path at stage i is a straight link blockage or a double
,ath and the rerouting paths can be easily identified as de- nonstraight link blockage and j E Si is the switch whose
cribed above, it can be readily determined whether or not the output links are the blocked links. Informal explanations for
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the algorithm will be given following the algorithm and the 9: If lin/found = 0 and the nonstraight link at stage r is
correctness proof of this algorithm can be found in [22]. -2", or if linkfound = 1 and the nonstraight link at

Algorithm BACKTRACK (and REROUTE) presumes ex- stage r is +2r, return(FAIL).
istence of the knowledge of all blockages in the network. 10: If linkfound = 0, b 12n l . bn/n+rd/q

The network controller is responsible for collecting this infor- -b'•+q/2n.1
mation and maintaining a global map of blockages, which is if linkfound = 1, b',/2n, 1  ' n/n+r-d/q
accessible to every sender of the messages in order to compute "+q/2-l*
a path to avoid the blockages. In addition, since it may take Go to step 4b.
several iterations before a blockage-free path can be found or it Step 0 is the initialization step. From Theorems 3.3 and 3.4,
can be concluded that no blockage-free paths exist, the sender S atp theitaliza in Fr horemk 3.3cad 34
of the message needs to maintain and update the locations of an alternate path exists for avoiding a straight link blockage orswitches on the rerouting path in each iteration. a double nonstraight link blockage if and only if there exists

Algoith BACTRAK (P ~,a nonstraight link at some stage preceding stage r; step I of
Algorithm BA CKTRACK (P, I, b'/2-) the algorithm searches backward for such a nonstraight link. If

0: Let q be the stage number where a blockage occurs. not found, it results in premature termination of the algorithm.
q 4-- i. reflecting the fact that no alternate paths for rerouting exist.

1: P = the current routing path. Step 2 is used to differentiate the cases when the nonstraight
Backtrack on path. P from. stage q to find a nonstraight link at stage r found in the first backtracking is a positive link
link. If no nonstraight link existsat any preceding stage, and when it is a negative link; flag linkfownd is assigned 0 for
return(FAIL); otherwise assign- to r the stage number the former and 1 for the latter. If a nonstraight link exists at
where tne first nonstraight output link is found. some stage preceding the blockages, in step 3, Corollary 4.2

2: If the nonstraigh link at stage r on the routing path is is applied to find the stage bits specifying the rerouting path:
+2', assign flag linkfound value 0; if it is -2", assign cases a) and b) in Corollary 4.2 correspond to linfound = I
3 inkfound value 1. and linkfound = 0. respectively, and q and r correspond to i

3: If linkfound = 0, b,,i2 g1l *-- b,,/,~r-+drt/q-1 and i - k, respectively.
"b1+q/2n-l; Steps 4a and 4b deal with the link blockage at stage q on the

if linkfound = 1, b,/2n .- b't rerouting path computed in step 3. If the blockage of a switch
"5'n+,/2n-i" at stage q on path P is a straight link. the possible rerouting

4a: This step applies only when the blockage at stage q on links at stage q are two nonstraight links. In step 4a the default
path P is a straight link blockage, link is a negative link if linkfound = 0 and a positive link if
If linkfound = 0, set b, +q = d,; if ((j - 2 9) E linkfound = 1. If the default link is blocked, step 4a attempts
S,, (j - 2q+) E Sq+ I) is blocked, change b+q to to reroute the message through the other nonstraight link. If
dq; furthermore, if ((j - 29) E Sq, j E Sq+l) is also both nonstraight links are blocked, there exist no blockage-free
blocked, return(FAIL). If linkfound = 1. set b'n, = jq; paths. Step 4b applies if the blockage of a switch at stage q
if ((j+2 q ) E Sq, (j+2 q+ t ) E S,+) is blocked, change on path P is a double nonstraight link blockage. The rerouting
b',,q to d.; furthermore, if ((j + 2 9) E Sq,j E Sq+1) path must use a straight link at stage q. If it is also blocked,
is also blocked, return(FAIL). no blockage-free path exists.

4b: This step applies only when the blockage at stage q on Step 5 checks blockages from stage r + 1 to stage q - I
path P is a double nonstraight link blockage. on the rerouting path; if any blockage falls on Q, there exists
If ((j - 2q ) E Sq, (3 - 2q ) E S,+,) is blocked for no blockage-free path. In step 6, if the blockage falls in the
linkfound = 0, or ((j + 2q ) E Sq, (j + 2q ) E Sq9 +) is link of stage r on the rerouting path, further backtracking is
blocked for linkfound = 1, return(FAIL). necessary. Otherwise (no blockages on the rerouting path),

5: Let Q denote the part of the rerouting path (specified the algorithm terminates with the state bits specifying the
by the tag in step 3) from stage r + 1 to q from step 3. rerouting path. Step 7 updates the stage number q and the
If linkfound = 0, Q = ((,j - 2" ) E S,....- . (j - switch label j where a blockage on the rerouting path occurs,
2q-') E Sq-, (3 - 2q) E Sq); if linkfound = 1, Q = initiating a new iteration of backtracking. Step 8 is the same
((j +2" + ') E 5 ,+1,- .(j+29- ) E S9-1,(j+2 q) as step 1, searching backward at lower-order stages again
S). for a nonstraight link. Step 9 of the algorithm dictates that
If a blockage occurs on path Q, return(FAIL). if the encountered nonstraight link in the first iteration of

6: If linkfound = 0, and ((j -2") E S,.. (j-2"+ t ) E S,. t) backtracking is a positive (or negative) link, the nonstraight
is blocked, or if linkfound = 1 and ((j + 2") E link found in each subsequent iteration of backtracking must
S,.. (j + 2" ') E S,.-l) is blocked, go to step 7: else be also a positive (or negative) link; otherwise no blockage-
return(b'/2,), free paths exist. If the condition in step 9 is satisfied, step 10.

7: j - j + 2' . q - r. which is the same as step 3, computes a rerouting path. After
8: Backtrack on path P from stage q to find a nonstraight the rerouting path is found, the algorithm returns to step 4b,

link. If no nonstraight link exists at any preceding stage. to check for further blockages on the rerouting path.
return{FAIL); otherwise assign to r the stage number For each source/destination pair. a link on some routing
where the first nonstraight output link is found. path for the source/destination pair is called a partcating
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:nk. As a direct result of Theorem 3.2, the set of participating the IADM network and be useful for permutation routing in
.utput links of a switch is composed of either its straight the IADM network.
,utput link or both of its nonstraight output links, but never Since each switch can be in state C or C, there are as
ii of them. So the output link blockages of i switch, for many-as 2 N'" (= lvv) network states, although each does not
given source/destination pair, can only be a straight link necessarily generate a unique permutation. Setting a switch to

hockage, a nonstraight link blockage, or a double nonstraight a certain state indicates that one of its nonstraight output links
,nk blockage. Algorithm BACKTRACK deals with the first can be used for routing (i.e., it is active) while the other cannot.
nd third kind of blockages, and the second kind of block- Thus, each network state can be associated with a subgraph of
-.e can be overcome by applying Corollary 4.1. Algorithm the IADM network which contains only the active links. When

;ACKTRACK and Corollary 4.1 can be used to form a uni- all switches in the IADM network are set to state C, the IADM
crsal algorithm capable of rerouting messages when multiple network functions as an [Cube network; this network state
Jockages exist in the IADM network. This algorithm, called corresponds to a cube subgraph. The constructive derivation
EROUTE. returns state bits b', /12 ._ specifying a blockage- of a lower bound for the number of cube subgraphs of the

'ee rerouting path if one exists, or returns FAIL otherwise. IADM network uses the two basic ideas discussed in the next
Algorithm REROUTE (P. b,,/2, - 1 ) paragraphs.
0: P = the original routing path. Since +2 ' -' _= -2' - 1 mod N, C,- 1(j,t,-1) = 7-1,-U,

b,/2., _= the routing tag specifying the original routing tn,-), i.e., the state of each switch of stage n - 1 is irrelevant
path. in the sense that any switch at stage n - 1 is always connected

b'n/2,_= the rerouting tag specifying the rerouting to the same two switches at stage n. Consequently, given any
path. cube subgraph, there exist (2

v - 1) subgraphs isomorphic to
b' /2n-1 - b,,/2,-, it which differ only in their choices of the nonstraight link

I: Let i be the smallest stage number such that there exists +2 ' -' or -2 ' - at stage nt - 1. Therefore, the total number
a blockage at stage i on path P. If no blockages occur of distinct cube subgraphs is given by the product of 2

v and
on path P, return(b,,/2n-t). the number of distinct subgraphs of the IADM network from

2: If the blockage at stage i on path P is a nonstraight link stage 0 to stage n - 2 that are isomorphic to the same stages
blockage and the other nonstraight link is not blocked, in the [Cube network.
apply Corollary 4.1 to find state bits bn/2,,1 and go to The calculation of the number of subgraphs in the first
step 4. a - I stages uses an idea similar to that proposed in [5]

: - BACKTRACK(P. i. ' for reconfiguring the DR network so that it performs as a4: 2 = the rerouting path specified by state bits 41 Generalized Cube network. All switches of the LADM network

P - Q and go to step 1. are logically relabeled by adding a constant x, 0 < x < NV - 1
Step 0 is the initialization step. At the end of each iteration, to the original labels, i.e., switch j becomes j' = j + x. By
hlockage-free path from stage 0 to stage i is found. Then setting each switch to be an even1 or odd, switch according
new iteration starts and i is given a new value in order to to its new label and having all switches be in state C, a

!1d a path avoiding the blockages at a higher-order stage. The cube subgraph results for each relabeling. However, of the
,ly terminating conditions for algorithm REROUTE are that V possible subgraphs, only N/2 are distinct as far as the first

return of FAIL from step 3 indicating that no blockage- r - I stages are concerned. This result is stated in Theorem
-c paths exist and the return from step t indicating a 6.1 and the proof appears in [221. A graphical interpretation
iockage-free path is found. Algorithm REROUTE is executed of cube subgraph isomorphism for an IADM network of size
-ratively to evade blockages from lower-order to higher-order N = 8 is illustrated in Fig. 8. In Fig. 8, each physical switch j
ages. The correctness of this algorithm follows from the acts as a logical switch j' - (j + 1) mod 8. The isomorphism
irrectness of algorithm BACKTRACK and Corollary 4.1. to the ICube network can be easily visualized by moving

switch 7 to the top of each stage as shown in the figure.
Notice that setting some switch to state C according to its

VI. PERMUTATION ROUTTNG AND CUBE SUBGRAPHS logical label may be equivalent to setting the switch to state
OF THE [ADM NETWORK Z according to its original label. For instance, switch 0 E So

The results discussed so far are a consequence of the (logical label 1) is set to state C' in Fig. 8.
,istence of spare nonstraight links in addition to the [Cube Theorem 6.1: There exist at least N/2 - 21v distinct cube
,twork embedded in the [ADM network. This section pursues subgraphs in the IADM network.
,is issue further by showing that there exist multiple distinct In order to reconfigure the IADM network to one of its cube
:ographs in the IADM network, each called a cube subgraph, subgraphs, each switch of stage i. for 0 < i < n - 2, needs
at are isomorphic to the [Cube network. Two cube subgraphs to know the ith bit of its logical label. This can be done by

considered to be distinct if they differ in at least one link. sending the same logical label to every switch in the same row
mentioned in the Introduction of this paper, the cube-type at system reconfiguration time. Each switch is set as being an

:tworks have been studied extensively in the literature and odd, or evmn switch by examining the itir bit of the logical
iown to be topologicallyfquivaent. Together with results label. All switches operate in state C according to its logical
.)m these studies, the knowledge of how to identify cube label with the exception of those at stage n - 1 for which
:0graphs can help the understanding of the capabilities of different states correspond to different subgraphs.
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,.-" -- blockages if there exists a blockage-free path and indicating
AC: -at absence of such a path if there exists none. The rerouting

so. capabilities of the new schemes can be readily used for fault-

7 -- -- -- ,7 0 tolerance and load balancing purposes since they adequately
0 0 1 exploit the redundancy available in the IADM network.

0 2,Another contribution of this paper is the constructive deriva-
tion of a lower bound on the number of cube subgraphs of2 &- 2 2 2 3 a-( - 0- the IADM network. While it was previously known that the

Z r 3~~ 3A7.t 30~~ [Cube network is a subgraph of the IADM network, this paper
4 4 4 5 shows that there exist at least X/2 -TV distinct cube sub-
S. - S graphs. This, combined with previous multistage cube network

7 studies, can help characterize some of the permutations per-
formable by the IADM network. As other use of the subgraph

STAGE 0 1 2 analysis, it is shown how to reconfigure the IADM network

Fig. 8. A cube subgraph generated by relabeling each switch j to under nonstraight link faults to pass the cube-admissible
(j + 1) mod 8 for an IADM network of size N = 8. permutations.

Perhaps the most. fundamental contribution of this paper is
that of the network state model used for the IADM and the

The results of this section can be used in different ways. One ICube networks. The essence of this model is in the recognition

usage is in characterizing a class of permutations performable that torks. Ion of h mod is nteptuaognitien
by the ADM network. Permutations paable by the ICube that the routing action of each switch is conceptually depen-

dent on its position in the network (topological information),
network are discussed in (15] and adaptable from [6]. Thus, its state (functional information), and the destination of the
the IADM network can perform all of these permutations plus
the same set of permutations with a given x added to both the message (routing information). Topological information is

fixed and, when using destination tags, the same can be
same source and destination labels, 0 < x < X/2. Another use said of routing information for a given message destination.
of the results of this section is that the [ADM network can pass Consequently, the routing path is solely determined by the
the permutations performable by the [Cube network when thete e tok emabed i the [ e network wstate of the network. These basic concepts are applicable to
[Cube network embedded in the IADM network experiences networks other than those considered in this paper; the state
nonstraight link failures. This is done by incorporating a model can help devise new designs. solve routing problems,
reconfiguration function in the system that reassigns each and understand relationships among networks.
switch j to (j + x) and reconfiguring the [ADM network to a
corresponding cube subgraph which does not include the faulty REFERENCES
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On Time Mapping. of Uniform
Dependence Algorithms into Lower

Dimensional Processor Arrays
Weijia Shang, Afember, IEEE, and Jose A. B. Fortes, Member, IEEE

Ab.sut-Most existing methods of mapping algorithms into J is the index set, or iteration space. Each element in J is an
processor arrays are rest-icte* to the cae where n-dimensional n-tuple integral column vector (called iteration vector or index
algorithm. or algodthua wit n naadi oopl arm mappedr into vector). Matrix D is the dependence matrix where each column

to, ma nn..dsiotabarrayrtlHw inv ( k- )-dectloai rraysis a dependence vector. If computation in one iteration depends
wheiv k < r. For example, many algorithum as bit level are on the computation in another iteration, this dependence is
at least four-dimensiona (matix mfltiplcadow convolution, LU represented by the vector difference of the iteration vectors
decompoetiow etc.) and most existing bit levek processor arrays corresponding to these two iterations. All dependences are
are two-dliaummleaL A cupuemiaaA mNficr occurs if two- or assumed to be wuform which. means the dependence relation
morer computations of as algorithm ame mappfr inito the sme exists between two iterations as long as the vector difference
processor and the same execution: time. I thi, paper, based on
the Hermite normal for of the mapping matrix, necessary and between these two iterations is equal to the vector representing
sufficient conditions are derived to identify mappings without that dependence relation. This algorithm model can be easily
computational conflic. These conditions are used- to find time related to similar models and concepts in [1]-[131, [19] and
mappings of n-dimensional algorithms into (k - 1)-dimensional several other works. Uniform dependence algorithms occur
arrays, k < ii without computational conflcts. For some appi- frequently in digital signal and image processing and sciencific
catons, the mapping is time-optimal, computing applications [36].

Index Terms- Bit level algorithm. confilct-hree, nested loops, Examples of two-dimensional bit level processor arrays
optimal time mappin, processor array, include GAPP [33], DAP [341, MPP [35], MP-I [311 etc. Many

bit level algorithms are four or five dimensional, such as matrix
1. I roDUCriON multiplication, convolution, LU decomposition, etc. How to

M OST existing methods of mapping algorithms into automatically map these algorithms into two-dimensional bit
processor arrays are restricted to the cases where n- level arrays is still a problem [281. That is why in practice

dimensional algorithms, or algorithms with n nested loops, are it is interesting to develop a method to map n-dimensional
mapped into (n - 1)-dimensional processor arrays [21-[131. algorithms into (k - 1)-dimensional processor arrays with
For example. the three-dimensional matrix multiplication al- k < a. The work reported in this paper was motivated by
gorithm is usually mapped into a two-dimensional processor the implementation of RAB (Reconfiguration Algorithm for

array by these methods [101, [211, [32]. This paper considers Bit level code) [26], an experimental tool which maps a class
time mappings of n-dimensional algorithms. into, (k - I)_ of algorithms programmed in "C" into bit level arrays. In the

dimensional. k < n. processor arrays. Procedures are proposed RAB approach, algorithms are first expanded into bit level.
to find time mappings (space mappings are assumed to be and second, the dependence relations are analyzed and the
given) without computational conflicts, which means no two algorithm is uniformized. Then the global optimal solution.
or more computations of the algorithm are mapped into the which maps often a four or five dimensional bit level algorithm
same processor and execution time. into a two-dimensional bit level processor array, is to be found.

Algorithms under consideration in this paper are nested Several attempts have been made to try to map algorithms

loops with regular data dependence structures. Such algorithms into lower dimensional systolic arrays [15], [22], [231, [251,
can be modeled by a uniform dependence algorithm (J, D). Set In particular, important steps toward a formal solution to this

problem were made in [23]. Based on the Lamport hyper-
Manuscript received May 1. 1990: revised June It. 1991. This work was plane transformation model [13], a procedure was proposed
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-ravel directions; and the fifth condition is to avoid data it denotes a row or column vector are implied by the context
!ink collisions. The concept of data link collisions and the in which they are used. The symbol I denotes the identity
conditions to avoid such collisions are introduced in this matrix. The rank and the determinant of matrix A are denoted
work. Detection of computationa! conflicts is basizally by a rank(A) and det A, respectively. The set of integers, the set
ieuristic analysis of all computations of the algorithm and the of nonnegative integers, and the set )f positive integers are
optimality of the mapping is not guaranteed. A suboptimal denoted Z, N, and N + , respectively. The empty set is denoted
iolution for the matrix multiplication algorithm was found in 0. The notations- JCJ and Ial represent :he cardinality, or the
'231 by which the total execution time is (3 +/u) u + I for number of elements, of set C and the absolute value of scalar
multiplying two (,u + 1) x (At + 1) matrices. In [221, further a, respectively. Let 0 and ii be two vectors. Then 0 > ii
results are reported in mapping n-dimensional algorithms into means every component of V is greater than or equal to the
k - 1)-dimensional processor arrays. A suboptimal solution corresponding component of ii. Finally, if x is an element of

tor the reindexed transitive closure algorithm (17], [23] was a set S, the notation x E S is used and this notation is also
found by the proposed procedure in [221 by which the total used to indicate that a column vector fnj (or row- vector Mi)
execution time is p(21A + 3) + 1 where 14 is the problem size. is a column (row) of a matrix M, i.e., rhj z M (Mr c M,

This paper describes a method of finding time mappings means r-j (Mei) is a column (row) vector of matrix M.
of n-dimensional uniform dependence algorithms into (k - Algorithms of interest in this paper are the so-called uniform
1)-dimensional arrays, k < n, without any computational dependence algorithms defined as follows.
conflicts. Based on the Hermite normal, form- of the mapping Definition 2.1 (Uniform dependence algorithm): A uniform
matrix, necessary and sufficient conditions are derived, to dependence algorithm- is art algorithm that can be described
guarantee a conflict-free mapping. Thes conditions are used to by an equation of the form.
formulate the problem of finding time-optimal and conflict-free
mappings as an integer programming problem. The mapping is v(3) = -(v(3 - d1), v(3 - j2), • v(j - dI)) (2.1)
optimal for some applications. Compared to the method in [22]
and [23], the main contributions of this paper are the closed where
form necessary and sufficient conditions for conflict-free map- 1) 1 E J C Z' is an index point (a column vector), J is
pings based on the Hermite normal form of the mapping the index set, or iteration space, of the algorithm and
matrix. In addition, by using these conditions, the problem n E N+ is the algorithm dimension, or the number of
of identifying time-optimal and conflict-free mappings is for- components of j;
mulated as an integer programming optimization problem. For 2) g- is the computation indexed by j, i.e., a single-valued
,,ome algorithms such as the matrix multiplication algorithm function computed "at point j" in a single unit of time;
and the transitive closure algorithm, the integer programming 3) v(j) is the value computed "at J," i.e., the result of
formulation can be further converted to linear programming computing the right-hand side of (2.1) and
problems. In Section V, the method proposed in this paper 4) 4 E Z'. i = 1, ... m,. m E X are dependence vec-
is used to find optimal solutions for the matrix multiplication tors, also called dependencies, which are constant (i.e.,
algorithm and the reindexed transitive closure algorithm which independent of E S J); the matrix D [d,.., d,] is
improve the total execution time of (3 +-4 ,) + 1 in [23] and called the dependence matrix.
/4(2 o 4- 3) + 1 in (221 to (2 + ) 1- I and IA(/ + 3) + 1, The class of uniform dependence algorithms is a simple
respectively, where g is the problem size. extension of the class of algorithms described by uniform

This paper is organized as follows. Section II presents recurrence equations [1]. The main difference is that uni-
basic terminology and definitions, introduces the concept of form dependence algorithms allow for different functions to
computational conflicts, and provides statements of problems be computed (in a unit of time) at different points of the
addressed in this paper. Section III discusses a simple case index set. From a practical viewpoint, uniform dependence
to illustrate different aspects of, and provide insight into, algorithms can be easily related to programs where 1) a
the conflict-free mapping problem. Section IV discusses the single statement appears in the body of a multiply nested
conflict-free mapping problem in general. Section V presents loop and 2) the indexes of the variable in the left-hand side
an optimization procedure and integer programming problem of the statement differ by a constant from the corresponding
zormulations which can be used to find mappings without any indexes in each reference to the same variable in the right-
computational conflicts. Section VI concludes this paper and hand side. Alternative computations can occur in each iteration
joints out some future work. as a result of a single conditional statement as long as data

dependencies do not change. Nested loop programs with
multiple statements can also use the techniques of this paper

II. TERMINOLOGY AND DEFINmONS together with the alignment method discussed in [14] and [24].
Throughout this paper, sets, matrices, and row vectors are Uniform dependence algorithms occur frequently in scientific

denoted by capital letters, column vectors are represented by computing and digital signal processing applications.
iower case symbols with an overbar and scalars correspond For the purpose of finding time-optimal and conflict-free
,o lower case letters. The transpose of a vector 10 is denoted mappings, only structural information of the algorithm. i.e.,
r. The vector 0 denoteL the row or column vector whose the index set J and the dependence matrix D, is needed.

entries are all zeroes. The dimensions of vector 0 and whether Therefore. a uniform dependence algorithm with index set
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J and dependence matrix D is herein characterized simply when the algorithm is to be mapped into a processor array with
by the pair (J. D). Each index vector 3 E J corresponds to a fixed interconnection structure.
a computation; and computation 3 depends on computatiors Condition 3 is for avoiding computational conflicts because
S- 4i E J. i = ,-.. m. It is assumed that, as in Definition if r( 1 ) = r( 2 ), then the computations indexed by Ji

2.1, the letters n and m always denote the algorithm dimensfon and J2 are mapped into the same processor and time and a
and the number of dependence vectors, respectively, conflict occurs. Condition 4 guarantees that the algorithm is

Many models have been proposed to map- algorithms into to be mapped into a (k - 1)-dimensional array but not a q-
processor arrays. The linear algorithm transformation method dimensional array, q < k - 1. When rank(T) = q + 1 < k.
proposed in [2], [121, and [321 is used in this paper and stated there are exactly q + 1 linearly independent rows in T, and all
as follows. other rows of T are linear combinations of these q + 1 linearly

Definition 2.2 (Linear algorithm transformation): A linear independent rows. Let T' be the matrix consisting of these
algorithm transformation maps an n-dimensional uniform de- q + I linearly independent rows; then T can be transformed
pendence algorithm into a (k - 1)-dimensional processor array linearly to T' which means the algorithm is actually mapped
according to the mapping: into a q-dimensional processor array.

More constraints on the mapping -r are possible for some
implementation requirements. In addition, different constraint

where T = [5] E Zk.- is the mapping, matrix, S E forms from those in Definition 2.2 for the same implementation

Z( - 1)xn is the space mapping matrix, and r' E Z "  requirement can be used. For example, in [23], the inequality
in (2.3) is required to be an equality which means data mustis the time mapping vector, or linear schedule vector. The arrive right at the time of their usage and are not allowed

computation indexed by 3 E J" is executed at time H3 and arv ih ttetm fteruaeada o loe
to arrive before the usage. Also, in [231, constraints to avoid

at processor Sj. The mapping r must satisfy the following data link collisions are considered.
conditions: Because the execution of any computation needs one time

1) ID > 0. unit as defined in Definition 2.1, the total execution time by
2) SD = PK where P E Z(k"- )x* is the matrix of the linear schedule vector LI is as follows:

interconnection primitives of the target machine, K E
Zr m is such that t = mnax{LI(J 1 -32): A. J2 E J} + 1. (2.4)

E- ki i  Id4, i = 1. tn. (2.3) For a class of practical algorithms. the loop bounds are
J=1 constants. This kind of algorithm is characterized by theconstant-bounded index set defined as

3) V'i, j2 E J., if J1 # j2, then r(3) # r( r2), or
T31 0 T32. "={[j,",j]:0ji < li,jiEZ. E N+ .

4) The rank of T is equal to k, or rank(T) = k. i = 1.-.. n (2.5)

Condition 1 in Definition 2.2 preserves the partial ordering where zero and A correspond to the lowr and upper bounds
induced by the dependence vectors. If this condition is sat-
isfied. then computation indexed by 3 E J is scheduled to of the ith loop, respectively. Upper bounds p , i = 1. ... , n.
execute only aftertteiexecutions of comutationshindexedtby are called problem size variables. To simplify the problem.execute only after the executions of computations indexed by

di E J, i = 1 . m because HD > O, and therefore the this paper is restricted to the algorithms with constant-bounded
dependence relation is respected index sets. This assumption is summarized as follows.

The matrix of interconnection primitives P describes the Assumption 2.1: In this paper, the index sets under consid-

connection links of processors in the array. For an; array with eration are assumed to be constant-bounded defined formally

each processor connected to its four nearest east. south, west. by (2.5).

and north neighbors, it has four interconnectioer primitives Some other kinds of algorithms can be transformed into al-

1. 17, [0.-I]T . [1,01T, and [1.OJT, and matrix P = gorithms with constant-bounded index sets by a linear mapping
1 0 1. -1 of the index sets [12]. For an algorithm with a constant-

1 -1 0 0. ]. Condition 2 in Definition 2.2 guarantees bounded index set, because
that the space mapping can be implemented in a fixed systolic
architecture with interconnection primitive matrix P. The max{LI(3 1 -32) 31,32 E J1

summation in the left-hand side of the inequality in (2.3) is = ( ri,-. 1,,([M1 , .- A-] T -0), (2.6)

the number of times of the usage of interconnection primitives the total execution time t in (2.4) can be simplified to
to pass the datum caused by the dependence vector j, from
the source to the destination. The item in the right is the time n

units between the source usage and the destination usage of t = I + l rIT . (2.7)

that datum. Assuming it takes one time unit for a datum to
travel one interconnection primitive, the inequality must be From (2.7), the vector LI which minimizes the objective
satisfied to have the datum arrive before it is used. Condition function t in (2.7) is such that the absolute values of its entries
2 in Definition 2.2 may not be required when a new processor Jir1, i = 1. , n are az small as possible and with some
array is designed speciaLy for the algorithm. It is required only constraints satisfied. In other words, if the absolute value of
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any one of the entries of the optimal II is reduced by one, then 1 72
the resulting vector is not a valid linear schedule vector. This J2
conclusion is also indicated in [10] and [11] and is summarized
n the following theorem. 4

Theorem 2.1 [101, [111: The total execution time described
in (2.4) is a monotonically increasing function of I[rij, i = 71
1. ... , n, the absolute values of entries of vector 11.

A conflict occurs if two or more computations are mapped
into the same processor and the same execution time. That is,
for two distinct index points 31 32 E J, if T31 = T32 , then7
there is a conflict. For the case where k = n, or T is a square
-natrix, that rank(T) = n guarantees a conflict-free mapping
-ecause T31 = T32 if and only if I = 32. For the case where 32I
k < n, even when rank(T) = k, or matrix T has full row
rank, there is at least one nonzero vector , such that T , = 0.
Let Ax = 32 + ;, then T31 = T32 . If both 3I and 32 belong -

to the index set, then the computations indexed by ji and j2, 71

respectively, are mapped to the same processor and the same
execution time and a conflict occurs. Therefore, it is much 0
more difficult to find a mapping without conflicts when k < n 4

than for the case when k = n. J1
One possible way to avoid conflicts is to find the mapping

matrix T such that, for any arbitrary index point 3 E J and Fig. 1. Nonfeasible conflict vector vt and feasible conflict vector 12. Vector
any , that is a nonzero integral solution of equation T!, = 0, 12 does not meet any integral points inside the index set.

.j + " does not belong to the index set J. This concept is
illustrated by Fig. 1 which shows a two-dimensional index
set J = {Lji, 2 ]T: 0 < j1,j2 5 t ,j,j2 E Z}. If ;, is dimensional, or linear, processor array and one possible map-

= 1, I]T, then index points 3 = and 3 + 11 = 1, 11T ping matrix is

both belong to index set J and computations indexed by r1  7 ].
.. 0 JT, [1. 11T, [2, 2 jT,-.., [4, 4 1T will be mapped into the T= 7 1 (2.8)

same processor and the same execution time. Therefore, there
is at least one conflict. However, if 1 is 2 = (3, 5 1T, there will Consider the following solutions of T;, = 0: ;y =
be no conflict at ail because for any arbitrary 3 E J,3 +r2 0 J. [0,1,- 7,OJT, 7y2 = [7 ,-1, 0 ,OJT and "73 = (1,0,-1,01T.
ntuitively, if vector (3, 5 IT is drawn with one end at [0, OJT Clearly, T11 = T'2 = Tj 3 = 6 and their greatest common

(or at any other index point of the index set), then the other divisors of their entries are unity. So ;', 12, and 73 are conflict
end is out of the index set and vector [3, 5 1T does not meet any vectors of mapping matrix T. However, vector [2,0, -2, 0 JT
integer points in the index SeL Therefore, the mapping with is also a solution of equation T, = 6 but is not a conflict
this I is conflict-free. To describe these concepts formally, the vector of mapping matrix T because the greatest common
following definitions are introduced. divisor of its entries is not unity. Conflict vectors jz and f2

Definition 2.3 (Conflict vector, feasible and nonfeasible con- are feasible because it can be checked that for any arbitrary
flict vectors, and conflict-free mapping matrix): Given an al- index point 3 E J, 3 + xf/ 0 J, i = 1, 2. Conflict vector 73 is
gorithm (J,D) and a mapping matrix T e Z* x ", an inte- not feasible because for the index point 3 = [0, 0,1, 1OJT E J,
gral column vector , = (y7,.. f,]T is a conflict vector + +3 = [1, 0 , 0 , 0 ]T E J. Therefore, T is not conflict-free. 0
of the mapping matrix T if and only if Tj = 0 and For algorithms with constant-bounded index sets, the fol-

= 1. If for any arbitrary index point 3 E lowing theorem describes the common characteristics of fea-
.- j 0 J, then is a feasible conflict vector. If there sible conflict-vectors.

exists at least one index point 3 E J such that 3 + E J Theorem 2.2: For algorithms with constant-bounded in-
then 1 is called a nonfeasible conflict vector. If all the conflict dex sets defined by (2.5), a mapping matrix T is conflict-
vectors are feasible, then this mapping matrix T is conflict- free if and only if for each of its conflict vectors ', =
free. [-y, ...... ,....y" there exists an entry 7i such that 1-yij >

Example 2.1: Consider a four-dimensional algorithm (J. D) pt.
where Proof. (=). Because T is conflict-free, all the conflict

vectors of T are feasible. Now suppose that ', is a conflict
vector of T and lI-j < Ns, i = 1,.-., n. Consider the index

Assume that this algorithm is to be mapped into a one- point 3 = U1, .. ,j,]' where ji = 0 if -'i > 0 and ji = -
if -ti < 0. Both 3 and -4- r belong to the index set J defined

jgcdj,.-..a.) de e no common divisor of integers by (2.5) because 1r 1 14. = 1.'". n. ByDefinition 2.3,
, a. is not feasible which is contrary to the assumption. Therefore,
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for each of the conflict vectors 9, there must txist an entry Let 11 e Z txn, S E Z(n- 2)xn, and rank(S) = n - 2.
- such that 1-yi > A. Consider the following equation-

(4=). Let f be a conflict vector of mapping matrix T and
consider an arbitrary index point J belonging to the index set Tj = 0 or [ 9 (3.1)
defined by (2.5). Let 3' = 3 = [J1,'" ,.]T. Because there LIIJ
exists an entry -i of 9 such that I", I > 14i and > ji > 0,

j" = ji + - > j if yi > 0 and jf = ji + y < 0 if -yi < 0. In Let us first assume that rank(T) = n -1. Later in this section,

both cases, 3' is not in the index set J and l is feasible. This conditions on I are given to guarantee that rank(T) = n - 1.

implies that T is conflict-free. C3 Clearly, there is only one linearly independent solution of

In practice, it is interesting to find optimal conflict-free (3.1). Without loss of generality, let T = [B, b1 where B

mappings with respect to different criteria and based on contains the first n- I columns of matrix T, rank(B) = n- 1.

different assumptions. To achieve this, one has to identify and b is the last column of T. Also, let B" and det B be the

first all feasible mappings that are conflict-free. Then it is adjugate matrix and determinant of matrix B, respectively [18,

possible to choose an optimal one with respect to a certain p. 1701. Then all solutions of (3.1) can be expressed as

criterion from these conflict-free mappings. The criterion could -f1(-r,, 1-. ]
be the total execution time for the algorithm, the VLSI area r- Bob f 2 (irt,..., r.,)
taken to implement this algorithm including the number of = deBJ = A ... (3.2)
processors and. the length of the wiring, or the combination .de,(Jr ,-. - ,) "
of the total execution- time and the VLSI area. Two problems
are addressed in this paper and are formulated below. The first where A is a constant.
is about identifying conflict-free mappings and the second is If the first nonzero entry of a conflict vector is assumed
about finding optimal time mappings where space mappings to be positive (this implies no loss of generality), then for
are given, the mapping matrix T E Z(1- 1)xn, there is only one unique

Problem 2.1 (Conflict-free mapping problem): Given an conflict vector (otherwise, -9 would also be a conflict vector).
n-dimensional uniform dependence algorithm and a (k - 1)- This unique conflict vector l is expressed by (3.2) where A is
dimensional processor array, find necessary and sufficient such that - is integral, its entries are relatively prime, and the
conditions for mapping matrix T E Z""' to be conflict-free, first nonzero entry is positive. According to Theorem 2.2 if

Problem 2.2 (Tune-optimal and conflict-free mapping prob- this unique conflict vector is feasible, then the corresponding
lem): Given an n-dimensional uniform dependence algorithm mapping is conflict-free. In addition, if II is such that there
(J,D) and a space mapping matrix S E Z( - )1, find an exists a nonzero entry fi(7r,..., r ), 1 < i < n, then
integral row vector 110 E Z"' which minimizes rank(T) = n - 1 because fir ... , ir) is the determinant of

f = max{I( I - 32): j,32 E J} the submatrix ofT consisting of all columns except the ith one

rIi > 6 of T. These facts are summarized in the following theorem.
Theorem 3.1 (Necessary and sufficient condition 1): Let l

sub k, ctd, where SD = PK be defined in (3.2) where the constant A in (3.2) is such that
subject to rk(T) = k l is integral, its entries are relatively prime, and the first

I is onflict-free, nonzero entry is positive. Then mapping matrix T' E Z(n- l)xn

is feasible if and only if vector 1 is feasible. The rank of

the total execution time t in (2.4). Clearly, f is mi d matrix T is n - 1 if and only if there exists a nonzero entry

if and only if t is minimized. P and K are as defined in roo F i i s as f ta t is o n
Definition 2.2. 'Me solution of a special case of Problem 2.1 Proof. First it is shown as folows that there is only one

iicussdion .2.Section ofI, ad seial case f Proble 2conflict vector if the first nonzero entry of the conflict vector is
isdiscssedin Section I anllowe dby the gneacsei discussen oassumed to be positive. Suppose there are two conflict vectors
in Section IV followed by the discussion of Problem 2.2.an'2whsfisnozretisaepstv.Bcue

9l and l2 whose first nonzero entries are positive. Bemause
there is only one linearly independent solution of (3.2), 9(

[II. NECESSARY AND SUFFICIENT CoNDmONS FOR and l2 are linearly dependent Thus, l2 = cg, where c is a

CoNF~icT-FREE MAPtO MATRix T E Zconstant. If c = 1. then 91 = 92; if c = -1. then the first

This section discusses the solution of Problem 2.1, or how entry of one of the vectors is not positive; if c is a nonintegral
to identify all conflict-free mapping matrices T E -( X

-
f

)
l
n rational number, then r2 is nonintegral because the greatest

that map n-dimensional algorithms into (n - 2)-dimensional common divisor of entries of ll is one; and if c > 1 is
processor arrays. This simplest case can illustrate and give an integral, the greatest common divisor of l2 is greater than
intuitive understanding of different aspects of the conflict-free unity. Therefore, in all the cases discussed above, r'2 is not a
mapping problem so the reader can follow the general dis- distinct conflict vector whose first entry is positive. So ther
cussion in the next section more easily. Practical applications is only one such conflict vector of mapping matrix T and,
are the mapping of four-dimensional convolution algorithm therefore, T is feasible if and only if 1 is feasible.
at bit level [261 into a two-dimensionai systolic array and It is trivial to show that if rank(T) = n - 1, then there is a
the mapping of the thre-dimensional matrix multiplication nonzero entry f(ri,. . . ,ir,,) because otherwise, rank(T) =
algorithns into a lineat systolic array [231- n. Now suppose there exists a nonzero entry f 1 (x -,.-, 7r,)
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.et j needs data A from index point I - d2 , B from index point

Bit B21  -'" B(,- 1 ), 1 - d, and C from index point -d 3 . If the space mapping

B12  B 22  ... B matrix is chosen as the one used in [23] 5 = [1, 1, -1], then
BB 2 .. B... -.. (3-3) mapping matrix T and its conflict vector I are as follows.uBl.(,-1) B2.(.,) ... B(,,_ . ,-1) 1-r -7]

ri 1 -ii = [ "+  l 35
there B,,, i.j = 1..., n - 1, are the cofactors of matrix B T= [r] =A r (3.5)
18, p. 165]. Clearly, fj = [Bi,. B(,-l),i]b = Blt3s.n +7 L -,2

.+ B(n.2),3(. 2 ) n + Bv 1 5 <5 (n - 1). With It is clear that Th. = 6. If II is chosen such that -r 2 - r3 6 0
ttle thought, it can be seen that fi is the determinant of matrix or i', + 3 A 0 or ,t - r, A 0, then rank(T) = n - 1 = 2. "
3 with the ith column being replaced by b [18, p. 165] which E 3 0osir anothen rit() used1in 2.21a submatrix of T. Therefore, there is a submatrix of T whose Example 3.2: Consider another algorithm (J'. D) used in [22]
teinntis onzT.Terfore, hich m s ra T of Twhose where dependence matrix D and index set J are as follows:cterminant is nonzero which means rank(T) = nt - 1. []

According to Theorem 2.2, the unique conflict vector ; in [0 0 1 1 11
3.2) is feasible if and only if the absolute value of one of D = 0 1 -1 -1 0
s entries is greater than a certain value. Therefore, given a 1 0 -1 0 -1
lapping matrix T, to see if it is conflict-free or not, (3.2) J = {3: E Z 3 , 0 < ji < /, i = 1,..., 31. (3.6)
an be used Later in Section V, (3.2) is used to formulate
roblem 2.2 as an integer programming problem. If functions This uniformt dependence algorithm can model the reindexed
, in (3.2), i = 1,-, n, are linear, then the formulation transitive closure algorithm. How the dependence matrix and
i possibly an integer linear programming problem. In the the index set are derived from the Fortran code of the transitive
)llowing, it is shown that if the space mapping matrix S is closure algorithm is shown in [171 and [231. If the space
iven, functions fi in (3.2), i = 1.-- n, are linear functions mapping matrix is chosen as the one used in [221 S = [0.0, 11,
Srj, j = ..... n. then mapping matrix T and its conflict vector I are as follows.
Proposition 3.2: Functions fi, i = 1.... , n in (3.2) are 2

near functions of r, j = 1,..., n. T=[0 0 1] "=A
Proof. Let B" be defined as in (3.3). Clearly, fi = Ll 2 T ]3J

" (n,-1),& = B1il., + "'" + B(n-2).3(n-2),n + L
,,,_j),ir, , I < i < (n - 1). Cofactors Bti, 1 < 1 <5 n - 2, It is clear that Tf = 6. If II is chosen such that 7r2 * 0 or

re the linear functions of rj, j = 1.---, n - I because ir A 0 then rak(T) = n - I = 2. 0
,ij is the determinant of the submatrix of B obtained from

:moving the Ith row and the ith column of matrix B. IV. GENERAL CASE-NECESSARY AND SUFFICIENT
hus, B,1s1ln are linear functions of ri, j = 1, ... , - 1. CONDMONS FOR CONFuCT-FREE MAPPINGS
Ofactor B(.-),i is independent of 1rj, j 1, ... , n because This section discusses and

is the determinant of the submatrix of B obtained by Thia setof Problem 21, presents the solution to the
:moving the ith column and the (n - 1)th row which is general case of Problem 2.1, i.e., it provides necessary and

Thus, (,=).,b,,- = ,),i is a linear function of sufficient conditions for conflict-free mappings where in-

Therefore, fi, i = 1.. .n - 1 are linear functions of dimensional algorithms are mapped into (k - 1)-dimensional
. j = 1.'"., n. The last entry f,. = det B is also a linear processor arrays. In these mappings, T E ZA , T = [ns5],

inction of 1r, j = 1... nt - 1 because it is the determinant 1g C Z t x n and S E Z(k- )xn.
matrix B. 0] Consider the equation
Example 3.1: Consider algorithm (J. D) used in [23] where

:pendence matrix D and index set J are as follows. T = or [IS] I=0. (4.1)1 0 01D 0 1 0 If rank(T) = k, then there are n - k linearly independent

_ 0 1j Jsolutions of (4.1). Let a ," - .5', - be the linearly independent

J = {3:3 E Z.0 < ji , = .... 3}. (3.4) integral solutions of (4.1), whose entries are relatively prime,
then all solutions 5' of (4.1) can be represented as linear

ctually, this uniform dependence algorithm can model the combinations of the n- k linear independent vectors as follows
atrix m ultiplication algorithm . How the dependence m atrix ' = ' - "' 4- _' , _,. (4.2)
id the index set are derived from the Fortran code of the
atrix multiplication algorithm is shown in [21], [23], and Clearly. ,.. ; ,-, are conflict vectors of T.
'I. Let the matrix multiplication algorithm compute C = In general, the mapping matrix T has more than t - k
/3. where C = [ciij, A = [aij], and B = [bil. By [231, conflict vectors when k < n - I because a linear combination
'pendence vectors d1 , d2, and d3 are induced by B, A, and of these n - k conflict vectors may be a different integral

respectively. In other wrds. the computation indexed by vector whose entries are relatively prime and therefore another

hte unique conlict vector (a vector in the nafip:c of 1) can be obtained conflict vector of T. This new conflict vector may or may not
,ther methd such a Gauuma elimimnati be feasible. Thus. unlike the mapping matrix T E )(n - ) x n
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described in Section 11, it is not guaranteed that all conflict Proof. 1) Because H = [L, 01 and H/3 = L (f3,-. , Ok IT

vectors of T are feasible even if the n - k linearly independent where L E Zk xl. is a nonsingular lower triangular matrix,
solutions Ai, i = 1..., t - k, of equation Tj = 6 are all /1,',. , k are zero if and only if H43 = 0.
feasible. This is illustrated by the following example. 2) By definition, a matrix is unimodular if and only if it is

Example 4.1: Consider the four-dimensional algorithm of integral and the absolute value of its determinant is unity. So U
Example 2.1 and the mapping matrix T in (2.8). Let Al = is unimodular means that matrix V = U - 1 is also unimodular.
(0. 1, -7, 0]T and A2 = (7, -1.0. 0J

T . Clearly, TA,, = T2 = Therefore, A, is integral implies that 3 is integral and vice versa.
0, Zl, and - 2 are linearly independent, and they are feasible 3) By Theorem 4.2 1) and 2), all integral solutions ;, of
conflict vectors of T. LetA, = 1/7Ai + 1/7,2 =[, 0 -i , O ]T. equation T5 = 0 are represented by (4.3) where fi, i =
Vector A, is also a solution of equation TA, = 0 and its entries k + 1, ... , n, have to be arbitrary integers because nonintegral
are relatively prime. By Definition 2.3 and Theorem 2.2. A, values of di, i = k + 1. .- . , n result in a nonintegral vector ,;.
is a nonfeasible conflict vector of T. Therefore, as mentioned Next it is shown that the greatest common divisor of j, i =
above, for a given mapping matrix T E Z I "I with k < nt - 1, 1. ... , t is unity if and only if the greatest common divisor of
there are possibly more than n- k conflict vectors, and T may -fi, i = 1,.. . ,n is unity. Suppose gcd(Ol ,-... /3,) = 1 and
not be conflict-free even if there are n - k linearly independent gcd(-y ,-.. t,) = c > 1. Then A, = c-y' where -' is integral
feasible conflict vectors of T. C and its entries are relatively prime. Because , = VA, = cV--'

From Example 4.1, an interesting observadon is. that one where, obviously V,' E Z" , the greatest common divisor
difficulty in' making all conflict vectors of mapping matrix T of [$i, i = 1,.-.. n is at least c > 1. This is contrary
feasible is that nonfeasible conflict- vectors cao result from to the assumption. So, the greatest common divisor of 0,
rational linear combinations of the n - k linearly independent i = 1,. ., n is unity implies the greatest common divisor of
feasible conflict vectors A,1, '" , ,-k like A, = 1/7,z + 1/ 7 12 -yj, i = 1. ... , n is unity. With similar reasoning, the reverse
in Example 4.1. Let us consider another way to select the n-k can be shown. Therefore, the 3j, i = k + 1,. ., n, in (4.3) have
linearly independent conflict vectors of T such that constants to be relatively prime integers, otherwise the greatest common
A , i = 1. ... . n - k in (4.2) must be integral in order for - to divisor of entries of vector , is greater than one, which is not
be integral. To achieve this, the notion of the Hermite normal a conflict vector by Definition 2.3. 0
form is introduced. What Theorem 4.2 implies is that all conflict vectors of map-

Theorem 4.1 (Hermite normal form [29, p. 451): Let T E ping matrix T can be represented by (4.3) where i3k+.,--. -. ,
Zk ×" and rank(T) = k. Then there exists a unimodula&3  are arbitrary integers which are not all zero and are relatively
matrix U E Zmn ' such that TU = H = (L,O1(O denotes a prime. Notice that a nonintegral value of any one of the
zero-entry matrix) where L E Z kx I is a nonsingular and lower O .-1," "-, O, results in a nonintegral vector A, according to
triangular matrix. Matrix H is called the Hermite normal form Theorem 4.2. So in this representation, the case where a new
of T. conflict vector of T can be obtained by a nonintegral linear

The definition of the Hermite normal. form used here is combination of the n - k linearly independent solutions of
slightly different from the one used conventionally and in [291, (4.1) is avoided.
where each diagonal element of matrix L is required to be Example 4.2: The Hermite normal form of the mapping
positive and be the maximum of all absolute values of elements matrix T in (2.8) is
in that same row. This is because for the purpose of this paper
it is enough to know that matrix T can be transformed into TU = H = [1 0 0
a lower triangular matrix [L, 01, by right multiplication of a

unimodular matrix U. where
For a given mapping matrix T, let H be the corresponding U 1 -1 -- 71 a 7111

Hermite normal form and T = HV where V = U-1 ,  [0d0 jo 0U = (il, -" , F, and V = (fit,'".. 0. Then (4.1) can be 0 0 1 0= 0 1 0

rewritten as HV, = 5. Let j = V, = [#I,..-. 0,1r and 0 1 0 [0 0 0
A, = U(. Then the following statements are true. ~ All conflict vectors of T are the integral combinations of the

Theorem- 4.2: third and fourth columns of matrix U as follows:1) HI = 0 if and only if/ t,'.,h are zero.

2) Vector A, is integral if and only if 0 is integral.
3) Vector A is a conflict vector of mapping matrix T if and [ 1 03]

oinly if 1 0 .34

-' = [ t ,'" ,] (4.3) where 43 and 04 are integers which are- not all zero and are
S3m relatively prime.

So far, a better representation of all conflict vectors of T

where 34, i = k + 1,. ..- . a rbitrary integers which has been found which requires integral combinations of n - k
are not all zero and are relatively prime. linearly independent conflict vectors of mapping matrix T.

3 A matrix is uwimodular if and only if it is integal and the absolute value However, it is still not guaranteed that all conflict vectors
of its determinant is one. are feasible unless matrix U satisfies some conditions. The
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following five theorems describe these necessary and sufficient Proof: Let x be an arbitrary conflict vector of mapping
conditions for mapping matrix T to be conflict-free, matrix T represented by (4.3) where /J+z, .... , 3, are arbitrary

Theorem 4.3 (Necessary condition 2): Let ui be the entry integers which are not all zero and are relatively prime.
of matrix V at the ith row and the jth column. If mapping Because
matrix T is conflict-bree, then at least one of the first k entries r ui,,k+1 U,k+2 "" U1 ,,

of each and every column of V must be nonzero, that is, the .

following condition holds. det % . j+ .... ... ... +2n 0

(VII #0V 21 AOV ... V Vi ?6)A and O3+,"',3,, are not all zero, there exists i E
(V12 0 0V V22 0 0V.." V2 36 O)A {i 1,' .in- }such that

(V 1, . 00, v 2,, 0 V ... v ,. A (4.4) [U2 .] = i A 0. (4.5)

Proof. Let 1 be an arbitrary conflict vector of mapping ) -.

matrix T. If T is conflict-free, then 7 is feasible. Feasible
conflict vector -j has at least two nonzero entries -yi # 0 and According to condition 1), gcd(ui,k+l,..-,u,,) = ai _

yj # 0, i 0 j. Otherwise, ' has only one nonzero entry which i s + 1. If [yfI < li' + 1, then a does not divide -yj which

is unity because the greatest common divider of entries of I means, according to [271, (4.5) has no integral solution and

is required to be one. Such a conflict vector is not feasible. O ,- /3, are not all integral Thus, ', is not integral and

Next, it is shown that , has at least two nonzero entries if and not a conflict vector. Therefore, it must be 17fi 1 >: j4 + 1.

only if (4.4) holds. By Definition 2.3 and. Theorem 2.2, 71 is feasible and T is

(4). Suppose that 1 has only one nonzero entry, then conflict-free. ("T
= (0...., 0, 1, 0 ],OJT2 .. By assumption, = VI = i, Theorem 4.6 (SufEicient condition 5 for T i the-2lx")n

the ith column of matrix V. According to (4.4), there exists Mapping matrix T E Z (" 2 ) x is conflict-free if the following
a nonzero element vii Ei {vb, , - -. vkj} which means 01 0 0, conditions are met.

I < I < k. This is contrary to Theorem 4.2 1) that 3i = 0, 1) There exists i E {1...-. nI such that gcd(ui.,,-, IU,,)
= I,.. . k. Therefore, 1 has at least two nonzero entries. a lpi 4-

(=.). Suppose there exists a column i of matrix 2) Let 3,,-. and 3,, be relatively prime integers, not both

V whose first k entries are all zero, then i = zero and such that. 3-juj,- + 6 ,,u,. = 0. there

0....0, vk+l.i, -.-, .J. Let V - ii. Because the first exists j E {1,-. -, n, j 96 i, such that + -
k entries of Vi are zero, H/= and 4 = V-1/ is a 0"U., > /4.

conflict vector of mapping matrix T. However, I = V'-i Proof. Consider all integral values for 3,,-. and p3.
0,-.. , 0,1.0,..., OJT whose entries are all zero except that which are not both zero, are relatively prime, and /,1 u 1 I
the ith entry is unity. So. mapping matrix T has a conflict + /Onlu.n # 0. Let the corresponding conflict vectors be
vector with only one nonzero entry which is contrary to the . Because yi 0 0 and gcd(uj.n_1,uj.n) = ai > 14- 1,

ssv-nption. This means (4.4) holds. C I-y 1' i +4- 1. Otherwise, cai does not divide -y, and equation
Theorem 4.4 (Necessary condition 3): If mapping matrix T /3n-ltim- + O.ui.. = yj has. no integral solution [27].

is feasible, then fil,."., f,, are feasible conflict vectors. Therefore, for these values of 3, 1 and /3,, the corresponding
Proof. By definitions, T = 0, i = k + 1, ..- , n. Thus, conflict vectors are feasible. Now let us consider the integral

ij+I,...,,, are conflict vectors of T. T is feasible implies values for/3,,_ and.,, which are not both zero, are relatively

,i, i = k + 1,..., n. must be feasible. 0- prime and / 3- .U,-i + .u,,n = 0. For the corresponding
Theorem 4.5 (Sufficient conditon 4): Mapping matrix T is conflict vector ' , because there exists j E {1,..., n},j # i,

:onflict-free if the following conditions are met. such that J0 IUj,,,_ +/Ou.,,I > js1, J-yj is greater than Al
There exist i,..., -,, E {1, .-. , n} such that and - is feasible. Therefore, mapping matrix T is conflict-free
I) because all of its conflict vectors are feasible. 0

Theorem 4.7 (Sufficient condition 6 for T E Z(n-2)xn)
gcd(ui, ,h+1.,j ,k+2, • , ?i,,,) > N, Mapping matrix T e Z("- 2)xn is conflict-free if the following

conditions are met.
1) There exists i E {I. I} such that Ut,..-• u .. _ 0

... and 1u.,-I + u,,I > gi.
gcd(u,.,. M.1, .. +2, U._,,,) > M14-. 2) There exists j e {1," - -, n} such that u1 ,.-•1 U,, <0

and Jul.,,-, -u,.j > ,. .
2) 3) S. - 1 and fl. are feasible conflict vectors.

,.4, k+ U,.,k+2 ... ui,.,, 1 Proof: Because T E Z( -2)xh, its conflict vetors are

det ui-., . ?Ui 2 .k+2 *" .' ., ?6 0. described by (4.3) where k = -n -2./-3,t and 3, areS... ... arbitrary integers that are not both zero and are relatively

tl4.-_b,k I U4,,_,b,k2 "*'" ,_"n1 prime. Suppose conditions 1), 2), and 3) are met Let. us
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consider the case where one of /3,, _- and 3,, is zero. Then the solution space intelligently by employing the basic strategy
corresponding conflict vector 1 equals either f,_ - ori f, and is in [101 and [11]. The integer linear programming formulation
feasible in either case because of condition 3). Let us consider plus some heuristic is used to find optimal. time mappings
the second case where 13,,_1 # 0 and 3,, A 0 have the same for the matrix multiplication algorithm and the reindexed
sign and the corresponding conflict vector y. By condition 1), transitive closure algorithm.
there exists i E {1, ---, n} such that i,,-_, ui,,, have the same By Theorem 2.1, the total execution time increases mono-
sign and 1u.n-l +ui,,I > p. Because u,- has the same sign tonically with the sum of the weighted absolute values of
as -u,, and o,-. has the same sign as O,, [ihl = 1,3,1%-.u,,-i + entries of vector I1. Therefore, to find the solution of Problem
,,. = Pn-.-I + >i..J 2 u%.n-l + Uinl > l.,- 2.2, one simple way is to modify the method in [10] and [111

Therefore, is feasible. Now let us consider the third case where candidates are enumerated in an increasing order of their
where i3C- A U and 3, # 0 have opposite signs and total execution times. In the modified method, besides other
the corresponding conflict vector 7y. According to condition considerations, each candidate should be checked to see if it
2), there exists j E {1,.-*-. r I such that u2 ,,n-1, Uj,n have contributes a conflict-free mapping. This method is described
opposite signs and 1Uj,n-1 - Uj,, > p. Because , ,- and in the following procedure.
/3,, have different signs, I-tl = + >3,n1 2 Procedure 5.1 (Finding optimal solution II of Problem 2.2):
luj,,.-1 - uj,,.I > 14j. Therefore, 4, is feasible. 0 Input: Algorithm (J, D) and the space mapping S E

Finding a closed form. necessary and, sufficient condition Z (/c-1)xn.

on conflict-free mappings for general case is still open. The Output: An integral row vector rI* which is the solution of
following discussion on; the mapping matrices T2E Z(" - z)xn Problem 2.2.
might provide some insight why this problem is difficult. Let Step 1: Set I = 1. Co = 0.
Ui' denote the ith, 1 _5 i < n, row of the n x 2 matrix Step 2: Construct a candidate set C1 = {"I: "= Jir / <
which has the last two columns of U as its columns. Let xt E N }. C = C, - C, n C -1.Let JC? = c.
C = {[I,,_, 3 ,,T :Uia0,_ 1 , J,,]TI 5 P4, i = 1...., n}. If Step 3: Sort and assign indices to all candidates in C such
C contains integral elements whose two entries are relatively that t(1i) < t(fj), 0 < i < j < c, where t(rII) is
prime and not all zero, then the corresponding mapping has the function described in (2.7).
computational conflicts. C is a convex polyhedron. Thus, Step 4: Set i = 1.
to find closed form necessary and sufficient conditions on Step 5: Consider candidate IL; set T - and check
conflict-free mappings can be reduced to the closed form Lsoitn d
conditions to test if a convex polyhedron contains integral if 1a) meets the following conditions

elements which is a difficulty open problem in integer pro- a) HD >

gramming problem area. One possible approach is to construct b) rank(T') = k.
a minimal hypercube which contains the convex polyhedron c) T" is conflict-free.
C. Because the upper and lower bounds of the hypercube in d) SD = PK and E"k=/ < fji , i = i,..-, m,
each dimension are constant, it is easier to test if this hypercube where P and K are as defined in Definition 2.2.
contains integral elements which are in C. Based on this idea, Step 6: If Ii meets all the three conditions above, then
instead of the closed form necessary and sufficient conditions, ri = i and stop. If II does not meet any one
a procedure is developed to test if a mapping matrix is conflict- of the conditions above, ignore this candidate, set
free or not. This procedure will be reported in a separate paper i = i + 1.
[371. Step 7: If i> c, setl =l+l.x, =x+a.a EN + and

Multiplier matrix U is involved in most of the necessary and go to Step 2. If i 5 c, go to Step 5.
sufficient conditions for conflict-free mappings and the key To test if T is conflict-free or not in step 5, for map-
point is to have matrix U satisfy certain conditions in order ping matrices T E Z( n- 1)xn, the necessary and sufficient
to make the mapping matrix T conflict-free. Given a mapping conditions in Theorem 3.1 can be used. For other mapping
matrix T in numbers, there are several numerical methods to matrices, either these necessary conditions in Section IV or
compute matrix U in, polynomial time [201. When the entries the testing procedure in [37] can be used. The computational
of T are symbols (variables), computing matrix U becomes complexity of Procedure 5.1 is estimated at least E((2/. + 1)")
more difficult. However, when the space mapping matrix S where gs = min{J/ : i = 1. -. , n}. This is justified as
is known, it is possible to express matrix U as a function of follows. Consider one conflict vector 1 of T and let S, i =
I. In [30], matrix U is expressed as a function of H1 for the 1.-.. , k - I be the sum of the absolute values of entries of
mapping matrix T E Z 3

,1. the ith row of space mapping matrix S. As indicated in [371,
im ., III 11_ s,). For .

to be feasible, at least, max{l-ty1,". 1,, } > ji + 1. Let

V. COP4iUCT-ISEE MAPPINGS Si = c be constant. Then > Ii j'A/c must

Solutions to Problem 2.1 have been discussed in the above be satisfied. Thus. some of the possible values Procedure 5.1
sections. In this section. Problem 2.2 and its solutions are at least should try for irT, i = 1.. .. n are 0. ±. .. ±1.
discussed: that is, how to find the optimal vector r11 which Because for each entry iri, 1 < i < n. there are (21.4 + 1)
contributes a conflict-free mapping matrix T and satisfies some possible values to consider and there are n entries in vector
other constraints. A procedure is presented which: searches the II, a lower bound for the complexity of Procedure 5.1 is



SHANG AND FORES: TIME MAPPING OF UNIFORM DEPENDENCE !.LGORrTHMS INTO LOWER DIMENSIONAL PROCESSOR ARRAYS 359

e((2A. + 1)'). Usually, candidate 1I where the absolute values the problem size variables m, i = 1,., n. Many existing
of i'i, i = 1,-.. , n. are small, e.g., 11 = [1, 1. 1] for the standard algorithms can be used to solve the formulation in
matrix multiplication algorithm, does not contribute a conflict- (5.1) and (5.2) efficiently because :n practice, the number of
free mapping. So more sophisticated methods of finding the constraints and the algorithm dimension nt are not large.
-olution of Problem 2.2 may be possible. In general, together Example 5.1: Consider the matrix multiplication algorithm
with Theorem 2.1, these necessary and sufficient conditions in Example 3.1 where the space mapping matrix is given as
described in Theorems 3.1, 4.5, 4.6, and 4.7, depending on S = [1, 1. -1] [23]. The dependence matrix D and index set
the dimension of the mapping matrix T, should be used to J are shown in (3.4). To satisfy conditionr 1 in (5.2), each
guide the solution search which is under investigation. In entry of the linear schedule vector 11 must be positive, i.e.,
the following, the integer linear programming approach is ,r 2! 1, i = 1..-, 3. Therefore, the problem of finding an
discussed. optimal linear schedule vector for the matrix multiplication

For the mapping matrix T E Z(n
-

I)xn, Problem 2.2 can be algorithm is formulated as an integer linear programming
formulated as an integer programming problem as follows, problem:

mnf

z= 1

1) RiD >0 1) iri 2: 1, i = 1,2, 3
2) SD = PKand 2) SD=Psu bject to E ? =I /kji _5 I 'd ,, i = , , M ni = I ' '

J= Ejpk,1  kj :5 Hd, i = 1, -.. ,3) t iE f1,... ,n}, ff( r,..., 1r,)I> 1h subject to 3) ir z+ rs> L+ 1, or i =,+r3_./A, Or
4) "I E Z x "  

1 7'1 - 21 2 >_ / + 1(5.2) 14) 11 E Z x +

whereT=[|}, S, and P are given and fi, i= 1.--.n
are as defined in (3.2). The last two constraints required by where the inequalities in constraint 3 are derived in Exam-
Definition 2.2 are included implicitly in (5.2) because by pIe 3.1 and shown in (3.5). As indicated in the Appendix,
Theorems 2.2 and 3.1 they are implied by constraint 3 in this problem can be converted to four linear programming
15.2). Also, constraint Z is not required if a new processor problems. In the Appendix. techniques for solving linear
array is designed specialy for the algorithm. By Proposition programming problems are used to find the optimal solution.
3.2. constraint 3 in (5.2) is linear. So the formulation in There are at least three potential optimal solutions 1'2 =

(5.1) and (5.2) is an integer linear programming problem if, (1,A. 11 and 113 = [1A,,1], 11 ' = [1,2, s - 1]. Their
as in Examples 5.1 and 5.2, constraint 1 in (5.2) requires corresponding conflict vectors are ',2 = [1A + 1. -2, AA - 1 1 T,

that 7r > 0, i = 1.-.... n. Actually, this integer linear -j3 = [2. -(IA + 1), 1 - 1A]T, and 11 = [(IA + 1), -,, i]T ,

programming problem can be further converted to a linear respectively. When 1A is an odd number, 112 and 113 are not
programming problem for some applications as indicated by feasible because their conflict vectors are not feasible. So, for
Examples 5.1 and 5.2. This is because in these applications, the cases where A is an odd number, H',1 can be chosen as the
the objective function is linear, and all extreme points of the optimal solution and for the cases where 1A is an even number,
soiution sets are integral, all the three linear schedule vectors can be the optimal solution.

One more constraint gcd(f, f,,) = 1, where fi, i = The derivation of the solution is shown in the Appendix. Let
. are as defined in (3.2), should be added to the us choose fII = In = [1, 2. 1 - 11. The total execution

formulation described by (5.1) and (5.2) to guarantee the time is t = k(2 + A) + 1 according to (2.7). The matrix of
greatest common divisor of the resulting conflict vector is interconnection primitives is P = S = [1. 1. -11 and K = [,
unity. However, this makes the problem more difficult to solve, the identity matrix. Fig. 2 shows the block diagram of the
Hence. this constraint is ignored and the feasibility of the linear array for multiplying two 4 x 4 matrices (1. = 3). Fig. 3
conflict vector of the resulting solution is checked. In other shows the execution of the matrix multiplication algorithm by
words, the conflict vector may not feasible after the common mapping matrix T = [1 1 -1. Computation Cj.. 2  =
factor of its entries is removed as indicated in Example 5.1. 11 2 2 "
If all extreme points which have the minimum value of the Cl.j2 + a 1.,3 • bj3.j2 indexed by J = U1t, j2, j3FT is executed
objective function in (5.1) are not feasible, i.e., they do not at processor S3 and at time rIj. By inspecting Fig. 3, there
contribute conflict-free mappings, then some heuristic analysis are no computational conflicts. Also, as shown in Fig. 3 and
has to be used to find the optimal solution. In the Appendix, explained in the Appendix, there is no link collision either

Example 5.1 illustrates this situation. which means no two data use the same link at the same time.

The general integer programming problem is NP-complete As shown in Fig. 2. three data links are used, one for data A
[29, p. 245]. However, for each fixed natural number n. there traveling from left to right, one for data B traveling fron left
exists a polynomial time algorithm which solves the integer to right. and one for data C traveling from right to left. Two
Iinear programming problm [29, p. 2591. This algorithm is a buffers are needed for each PE. One is on the link for data A.
polynomial function of the number of constraints of the integer or for dependence vector j 2 . The other is on the link for data
I inew prtoamming problem and a logarithmic function of C, or for dependence vector d3.
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A [1) 7ri 1, i =2, 3, i - -2 71 3
a -1 r > 1,iI'i - 73> 1

subject to 2) SD =PK and
E= k, < I ,, i = 1,..3

Fig. 2. Block diagram of the linear array for the matrix multiplication 3) 7r2 j + 1. Orir1 > j2 + 1
algorihm. 4) HE Z 1 "

where constraint 3 is derived in Example 3.2 and shown in
v(3.7). Again, as indicated in the Appendix, this problem can be

31 formulated as two linear programming problems. The optimal
Is 3b33

k33 solution of this algorithm is II° = [1 + 1. 1. 1] when ; > 2.Un
14 U3 The derivation of the solution is shown in the Appendix.

La 3233 3&J2 The total execution time is t = a(3 + ;L) + 1 according to
13 3633 W2 3623 (2.7). As mentioned in Section I. the solution found by the

02 22 2*22 heuristic procedure in [221 is IF = (2u + 1, 1, 11 (notice that
13- 3*3 24a the lower and upper bounds. for index points are I and n inIL- 343$ U12 3431t 3"el

11 2632 1631 3b62 262. 3b13 (22] and therefore, : n - I in (22]) and the total execution
3V2 U131 213 21 31 13

eson 0at o 1n U21 time is e = 1(2g + 3) + i which is much longer than for1O 2b32 lb31 3b3,l 2b. 3
3co2 31 2co 21,1 1 II. The matrix of interconnection primitives is P = SD =
15 343 Ua12 3J2 Lail 3h1 3*30

9 10 obo. b2 Ulf ,12 3b03 [1,0, -1,0,-] and K = 1, the identity matrix. Clearly, there
k.il 3.30 2,12 2C31 lIC 132 0 3 r

0.03 = 001 221 2*o0,are no computational conflicts because the conflict vector of
8 16~ k31 O 2 36 13 2612 3dol

301 3c2 2c2 ZI 1c03 1W32 oc3 0 0 1 i"
*13 W12 312 W1 3a3l WO 30 the mapping matrix = ,

7 0b o 1bl 0620 2b12 IbIl 3603 2b02 Li + 1 1
3d30 ki 2W0 142 1OcI 03 o which is feasible according to Theorem 2.2. Also, as explained

0*03 oo2 2&22 001 2*2l o0*0 20
6 121 0620 2b12 11b 0 2602 in the Appendix, there is no link collision either which means

N~o 2C01 213 IC02 1IC1 0 02
1&12 1a11 3&31 a1 3,Wo no two data use the same link at the sane time. 0

S 0620 1bl 0610 2b02 1b01
2c10 141 1c3O 0c132 OC31

001 OOl 2a21 0&00 2*20
4 0620 101 060 02 11 VI. CONCLUSIONS AND FUTURE WORK2¢00 Ic€O[ 130 Oc02 0c21

3 b tIo The first contribution of this paper is the use of the Hermite
Ic1O 0911 0c300&0 lOM 0 normal form of the mapping matrix by which all conflict

2 Oio I0l 0WO-
0oo 1Co1 0"0 vectors are expressed as integer combinations of a set of

1 960 vectors from the nuilspace of the mapping matrix. Based on
0*1 the Hermite normal form, necessary and sufficient conditions

0 ocoo are derived for computational conflict-free mappings. The

P14 & P-M1 PO Pa o PZ M FE second is the method of finding optimal time mappings of
n-dimensional algorithms into (n - 2)-dimensional processor

Fig. 3. The execution of multiplying two 4 x 4 matrices. The small block

with do lettmo column being Li- J2, J31 r correspods to the computation arrays. These techniques can be used to map algorithms with
es2 cj,,2 + atj3 •6,b3,2 which is exeCued at Proceso it + J2 - p, n nested loops into linear or two-dimensional processor arrays
and at time j, + 2j2 + 2j3. with the total execution time minimized; they are especially

useful for programming bit level processor arrays such that

In [23], with the same space mapping matrix S, linear the total execution time is minimized.
schedule vector 11' = [2,1. j which is not optimal is used and Future work includes optimal solutions of the general map-

the corresponding conflict vector ist = [(;+1),-2-t4,11T. pings where T E Zk x
, for arbitrary k. consideration of

The total execution time by II' is e =A(3 +,a) + 1 which is the number of buffers and length of wires required by the

longer than the optimal linear schedule 'U. Also. the number mappings, and investigation of the following two problems.

of buffers in (23] is F?. 1 (l'd, - 1) = 3 when 14 = 3. The Problem 6.1 (Space-optimal and coni t-free mapping prob-

systolic array designed in this paper only needs two buffers. lem): Given an n-dimensional uniform dependence algornhm

Example 5.2: Consider the transitive closure algorithm in and a linear schedule vector, find a space mapping matrix

Example 3.2 where the space mapping matrix is given as S C Zt - I)xn such that T [SJ is conflict-fee and the

S = (0. 0. 11 (221. The dependence matrix D and index set J number of processors plus the wire length of the array is
are shown in (3.6). To satisfy condition I in (5.2), it must have minimized.

.1 2 > 0, ir3 > 0. and ire - ir2 > 0, or 1rt > 1"2 > 0. This means Problem 6.2 (OpdmaL conflict-free mapping problem): Given
each entry of the linear schedule vector II must be positive, an n-dimensiona uniform dependence algorithm and a (k- i)-
Therefore, the problem of finding an optimal linear schedule dimensional processor array, find a conflict-free mapping
vector for the transitive closure algorithm is formulated as an matrix T e ZEP'" such that a certain criterion is optimized.
integer linear programming problem: In general, in Problem 2.2, space mapping matrix S is given

and. usually is not a. function of problem size variables iA,
• ;- ,:. -- - ( 5.4) i = 1. --...n: inProblem 6.1. Linear schedule vector 11 is given.
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'ossibly by the optimization procedure proposed in (16], and the corresponding conflict vector [1, -1. 0]T is not feasible.
sually is not a function of problem size variables; and in Conflict vectors for 112 and I"3 are [(p + 1), -2. (A - 1)]T

'roblem 6.2, both S and 1 are not given and possibly are and [2, -(A + 1), (1 - /)IT, respectively. When / is an even
,oth functions of problem size variables, number, 1I2 and 113 are feasible. However, when 1 is odd, both

112 and 113 are not feasible. The reason why some vectors in
APPENDIX the solution space are not feasible is as follows. In (5.3) the

constraint gcd(f, -. , f,,) = 1. where fi, i = 1.... n are as
Discussion of Example 5.1: Let us design a new linear defined in (3.2), is not included because this constraint makes,ystolic array for the matrix multiplication algorithm. Thus. h rbe oedfiutt sle hnaleteepit

. "in(5-) anbe gnredatths mmet. oran the problem more difficult to solve. When all extreme points
:onstraint 2 in (5.3) can be ignored at this moment. For an with the shortest execution time do not contribute conflict-
nteger linear programming problem with convex solution set, free mappings for a particular p. other solutions which are not

f all of its extreme points are integral, then one of the extreme eree pints a ha the so ution time o

ioints is the optimal solution of that problem [29, p. 2321. Now extreme points and have the shortest execution time should

he solution set of the integer programming problem in (5.3) is provide a lower bound on the execution time by all feasible

lot convex because of constraint 3 although all extreme points solutions. For example, when p is an odd number, all the

ire integral. One way to solve this problem is to partition the tree oremp le whe Aoist oddinume l the

,olution set as four convex subsets and theft to find all optimal three extreme points with the shortest execution time 111, 112,
,olutions for a c the disjoint solution subsets. If the one with and 13 do not contribute conflict-free mappings. Because the

sum of the entries of each of 111, 1 2 , and 113 are u + 2,
he smallest value of the objective fuiction is satisfactory, then other solutions with the same execution time have the property

it is the optimal solution of the integer programming problem 2
(5.3). rl + 7r2 + ir3 = 2 +,u. Let us consider 111, = [1, 2. jA - 11, a

,N (5.3). solution of equations ir t = 1 and i'r - r2 + 3 = jA + 2. The
Now let us partition the solution set of the integer program- conflict vector of IlI is i'ii = (A + 1. _p, 1 1

T . Thus, Fz1 is
ming problem in (5.3) as four subsets which are expressed as feasible and optimal because the conflict vector is feasible and

olows. it has the same execution time as the extreme points f11 , 112,

I) mm f = 2 - + -.r3) and 113 which have the shortest execution time. Therefore,
(1) , >1.i =1.2.3 for the matrix multiplication algorithm, when A is odd. one

21 - - 3 >14 + 1 optimal solution is fIl1 and when p is even. 112, 113, and IIu
3) -rI - "'i < / 4. 1 could be chosen as the optimal solution.

sub)ect T 1 - T'. 4 .- ' Let us design the linear systolic array for mapping matrix
3 -Ti - T2 < +1 T [,, = wherep=3. IfP=[1.1.-11is
to i c- z tx 3 -n 1 2 2 1

tr ) Zchosen as the matrix of interconnection primitives and K = I
1.mmnf = 1. + 2 ' 3) (the identity matrix), then SD = PK, .- k1  = 1 =

fI) x, > I. = 1.2,3 Fid , . tk1  -1 < IId2 = =2 . <Id, =
mtdblea to 2) rT, T - 2- ,- A > ,+ Im -= "" 5-T

3o ) 1 I~ +" 2 and therefore, constraint 2 in (5.3) is satisfied. Because

(a.1) HEd 2  ZJ k,2 -U3 k,3 = 2, two buffers are
(a.1) needed, one for the link of data A induced by dependence d2

III) rMin f = p( xt'1- T2 + T3) and the other for the link of data C induced by dependence d,.
(1) ri > 1, i = 1.2.3 The systolic structure and the execution are shown in Figs. 2

subject to 2) i't - I2 > l and 3, respectively.

3) 11 ZL*3  Notice that there is no data link collision because in every
(IV) Mnf =p(it + 71 2 1r3) column and every row of matrix K there is only one nonzero

1) > ,i = 1, 2.3 entry ki, = 1. i = 1.--, 3. This means that when data pass
subject to 2) -rt + T-2 > : 1 from the source to the destination. they use the data link

3) to C Z t x 3 . - just once (one hop between two PE's). Data link collisions

occur only if data use links more than once when passing
Each of the above problems is air integer linear programming from the source to the destination. For example, if the space
Problem with a convex solution set. It can be checked that mapping S' = [1. I.,u) and P' = [1, 1. 1], then to satisfy the
every extreme point of these convex sets is integral. Each condition SD = PK. one possible set of values for K is
extreme point is the solution of three of the following seven kt1 = k22 = 1. k33 = and ki, = 0. i j. Thus, the distance
equations: ,'re = 1. r2 = l, ,r3 = 1, 7r2 +7r3 = p+ 1, 71r1 +' 3 = between the source and destination for data C is p PE's and

t~. 7r,-7172 = +1. andir 2 -ir, = 1+1. There are ten such data C will takep hops over the third link in P, or the link for
.olutions from these seven equations which satisfy HID > 0 C to reach the destination. Suppose PE,, i = 1...., p, are
is follows. l1 = 1l, 112 =H[. p. 1], 113 = . ., 1], sending data xil (corresponding to cii of matrix C) to PEi,
114 = I.. -,- 2.11, Ils = [( + 2.1.11, 11. = (I.p + 2 .pJ, at time ti, j = 1... Then at time t1 , xII is on. the link
[1, = -. 2. .pl, rl,;= Ip..,1, f"I = [2u - 1.4 .1), between PE1 and PE2. At time t2 , two pieces of data xtl
and l' = p. 2p + 1. 11. Extreme points with the shortest and x,2 are on the link between PE 2 and PE3 and so on.
execution time are 111, 112, and 113. 111 is not feasible because At time t, - 1, p - 1 pieces of data x1, X22, X •.. .
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are on the link between PE~.. anid PE.. So, link collisions [41 P. Quinton. -;i ,tomatic synthesis of systolic arrays from uniform
exist after time t 1. This is caused by k33= recurrent equations.." in Prox- 11th, Annu. Symp. Comput Archieecnire.

1984. pp. 208-214.
Discussion of Example 5.2: Similarly, the integer program- [51 S. K Rao. -Regular iterative algorithms and their implementations on

ming problem in (5.4) can be converted to the following two processor arrays," Ph.D. dissertation. Stanford Univ.. Stanford. CA. Oct.
integer linear programming problems. 1985.

L161 M. Chen. "A design methodology for synthesizing parallel algorithms
and architectures." J. Parallel Distributed Comp"L. Dec. 1986.

(1) mmi f = m4iri + -,r, + 73) pp. 416 1-49 1.
1) iri 1, i =2.3.7r, - r3- 7r3>21, [7! J.-M Delosme and 1. C. F. Ipsen. "An illustration of a methodology for

the construction of efficient systolic architectures in VLSI." in Proc.
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Processing, pp. 217-225.be applied, which check ald extreme points of the solution [151 V. P. Roychowdhury and T. Kailath. "Subspace scheduling and parallel
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of the objective function f is the optimal one. Again, each Signal Processing, vol. 1. 1989.
[16) W. Shang and J.A.B. Fortes. "Time optimal linear schedules forextreme point is a solution of the following seven equations. algorithms with uniform dependencies." IEEE Tram& CompuL., vol. 40.

7r 1 3 71 1, 1 ~2-713 = r 1 '1 2 = . pp. M3-742. Junel1991.
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juwpls yew, to guid the floS~ P oftault Processors; within an 2 2r+
array. Analytical study of the gma FUSS algorithm shows thea there Is
a linea relationhip between the wap sis a"6 the ame of intercounect
required for recoufigurutle to be 100% suscetul.

In as intac of FUSS, cale abui& FUSS, recoafiguradow, is dome 2..

by impy "hileg"up or down, faulty processors along tercorrn-13

vetri oeiel*~ atrec ounIs recomfigued. ThI
recofigrads i sucessul henthe surplus vector becomes mall. Sim- 13
pk US Isdicusedin o" a" evaluated. Simulations show that N4E31~I~

when the number of fault processors is equal to that of spew procs- F F
son. simple FUS con ackie a a probability of survival as igth as 99%; (a) (b)
this is far better than the prehebility of survival of existing schmemes with Fig. 1. FUSS FTPA model. (a) FUSS FrPA. (b) FUSS lower support-
similar complexity In execution die "A late amectloa hardware. domain Lit.

Index Tems- alt-tolerut.L reconflguratlon. redundsacy, reliability, FTPA that is fully operational; faulty physical processors have been
survivability, replaced by operational spares.

A cell is a processing element (PE) of an FTPA. Thne notation
1. INTRODUCniON (U. J) refers to the cell with physical coordinates i, j. The cell with

A dffiultprolemfacd i th deignof aul-toerat pocesor logicak cordinates i, j is referred to as VI, j]. A recon/1-guration
arry disfhculto robemcdin hde in ode futoleraially rceso mapping 0 is a function that maps a logical cell to a physical cel.

par aly oo esosgurhardwaeion rer Toi dyamicaprseyts e.g.. (V, J]) = (x. y). The inverse of 0mp a functional physi-
gener altyn idoel ppoa.s w el un pctical a.Tistpapeo irset tat cal cell to a logical cell. e.g., 0- ((l, j)) = fin, nJ. Also. 01(-)
genraltaes idcesl prohgratio elwiaptca hinghanc pofbiit than and 01(-) map a logical cell to the corresponding physical row

guzees uccssfl re iraionwit hiher ibbulty hUS and the corresponding physical column, respectively. For example.
presently known approaches of comparable space-time comnplexity. 4([m. nj) = x if logical, celt [mn, nj is on. physicaL row x. The
ror the proposed scheme. called FUSS (full use of suitable spares), n -*;- (*) an 0'( -) am defined similarly.
basic ecnfi urao and uscneto requireets and prba An available cell is a Igood, functional cell, whereas an unavail-
bility of survival are presented and discussed. able cell refers to either a faulty cell or a fault-free cell that is already

Many reconfiuration schemes (see (1) for a recent discusion an used to replace another cell. Shift efers to logical replacement of

of the distribution of faulty processors in the array. As the algo- (mn, n) if (in, n) replaces (i. j).
flthm proceeds, faulty processors are replaced locally. Thus, spare A status matrix is an M x (N+C) matrix whose entries represent
processrs that have not been used may nti be available for replacing the status of cells of an array. In a physical MFA. the status of a cell
faulty processrs that the algorithm encounters later. This results is either 0 (fault-free) or I (faulty). In a logical FrA. the status of
in low probability of survival (the conditional probability tht h a cell may also include a higher number (2, 3,.) to indicate that it
reconfiguration is successful given tha the array has a number of replaces; another cell.
faulty processors). especially when the. mnber of faulty processors A support-domain A of a cell is a set of cells called supporters,
approaches the number of spares. FUSS uses an indicator vector, each of which may replace the cell when it becomes unavailable. Two
the surplus vector, to guide the replacement of faulty processors ymtiasupr-o maedfndfrecheli hehscl
within an mray. This vector has as many entries as the number of srrymetica l~ hw h oe support-domains.r defie o cl nothed physiAl;
rows of the array. The initial value of entry i is the sum of saein the upper support-domain (,a,) is similar except that it is the mirror
the subarray consisting of rows I through i4 minus the sum of fauty image of the one shown. A support-domain has a triangular shape
processors in the subarray. Based on the entries of the surplus vectr, (except nar the amy boundary) such that the Manhattan distanc
reconfiguration is accompished by "shifting" faulty processors from between the cell and any of its farthes supporters is the same; this
regions having the most faulty processors to regions having fee diManc, denoed by 6, is referred to as support radius.
faulty processrs. The surplus vector is progressively updated during The connection window W of a cell is the set of all physical cells
shifting, and reconfiguration is successful when the surplus vector that can be logical neighbors wo the cell. Two connection windows are
becomes nuill. associated with a cell, horizontal window W,1 and vertcl window

General FUSS has. in i;& am general and ideali cue. 100% pratib Wv. MWe size of a window, is the number of cells it contains.
ability of survival. The general FUSS. algorithm is studied (Section Th prababit of stervival or survivability a is the conditional
Ir). and then a practical instance of FUSS. called simple FUSS, is probability of success i reconfiguring an array given that the array
d .iscussed in detail and evaluated (Section Ill. Simialaons shwdn has a number of faulty cells. The demand-spire p is the ratio of
sinple FUSS can achieve a probability of. survival as& high& as 99 the number of faulty cells to the total number of spares in the array
at the maximuim number of faults allowable in as. array (i.e., when (ietedmn rqp P4omazdwthesctod ubr
there are as many faulty processors, as there are 1P - es;tis eteemn fofprsaorldwthrsettotenme
bette than the probability of survival of exiting schemes with Win oft Spam). b hesau mti o hsia WA .

[5) (6) edndan rr theee[2), b,,1 j I if (i, j) is faulty, and b,. j = 0 if V., j) is fault-free. The
[5] [], ndreerece thmi).following ialstof additional symbols used throughout the paper

[L FUSS APPRoACm To ARRAY RacormuuAniop and teir . .ng

T An M xM lower triangular matrix such that r = [ti, J:
A. Definitions and Notations i f1 <j a dt.j I oh r ie

In FUSS, thearmay is asmumedto be x (N +C0. whom M is u Unit Yor.u = [1, 1,...- , 111
the total number of rows. N is the total, tanber of columns, and C n. Integer vectori mi[1, 2...M T

is the total nmbcer of spare columms Fig. I(&) shows sudh an array.
A fault-tolerant poes anry (FTPA) is a nwo-diinmuiona 'The dsa. buI s cells. say Y., j) and (k. 1), zeins as the Men-

array of identical a&d regularly inmrconcted processin eleents tisariinm betweon them ie..
in which redundant circuitry and spare arm incorpomnd. A phys ,,-) (.) k 1icad F7PA is a noareoeflgured FrPA which may ca -a failty d(~) kI) I~*l-l
elemem. A logica F7PA. on the other hand, is a reconfigured The aift is and to be die cell side. the cell being a @ qr-
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/ Faul vector;f = Vf,. -f, fa = 'v~b,,. 001001111 31

F Toa muber of faulty cells indie array; F= MA1
00001 0

S Total number of spare cells in the array; S =; .The spare- 10in o 01 1 3
demand defined previously is given by p = F/S. l~~~

s Surplus vector; s = [si,,s2 ,.. .,~ r where s, represnt .01 * 00 .
the accumulated surplus in the subarray consisting of rows I
through i (total number of spares in the subarry minus total 1 10000 '3' -
numrber of faulty cells in the subarray); see (2.3) below. 2 111000 0 1

All Cells are assumed identical and self-testing. aults are assumed s - Cn-~Tf' - 2 3 -I 11100 0 3

independent and uniformly distributed in the physical array. 4 11110 3 2

B. Basic Conept
B. BsicConcptsFi. 2. Example of generation of fault vector f and surplus vectors for a

The fault vector and the surplus vector can be written. respectively, physical FTPA withi status mi B.

f =Mr(2.1)

s =Ca -Tf. (2.2) FPA&

Each entry si in s indicates the accunmulated surplus in the subarray
consisting of rows. 1 through i:

S,=1( -f)=C - Ef(2.3)Ary
j-L j.1 Preproemiag

a) Is, >; thnC .i > 'E j t~b.). This means that the

sum of spares in rows 1 througK i is greater than the number of faulty
cells in rows 1 through i; thus, row aihas extra cells available for use Srls
by faulty cells in rows i+ 1,s+ 2, - M.

b)If s, <0, them C -i < Z, b,. k); row i has a -cell-
deficit" and needs to use availabl cells from rows + 1, i +2, . .M.

c) If sm < 0. then the total number of spares is less than the total
number of faults. In this case, the array is not reconfigurable and the Fault-
algorithm must exit witr a failure. Shimaig

T7he basic strategy of the proposed reconfiguration scheme is to
shift cells around acrding to these needs: for instance, unavailable
cells are shifted to row i if s, > 0. or out of row i if s, < 0. The
generation of fault vector and surplus vector is shown in Fig. 2, forCel
a 5 x (5 +2) physical FTPA (M=NIV= 5, C = 2). Cflti

C. General FUSS Algorithm
The general FUSS algorithm accepts a physical FFPA as the input.

generates a logical FFPA as its output, and can be divided into four Logical
parts which execute in the following order. 1) array preprocessing. 2) ( P

surplus normialization. 3) fault shifting, and 4) cell interconnection.Fi.3 GeraFUSfocrt
This subdivision is done for clarity as well as. for monitoring the algo- Fg .GnrlFS lwin
rithm progress. For instance, the reconfiguration may be successful
when "fault shifting" is completed; however, it may fail when -cell these rows may not be needed. In general. unnecessary shifting may
interconnection" is applied if the provided interconnection network~ result from large accumuilated surplus. Thus, surplus normaliamt is
is restricted. For this reason, the study of the effect of limiuted in- preferred to minimiz the number of shiftings required by the actual
terconnect on the algorithm can be easily done. A flowchart of the faults.
general FUSS algorithm is provided in Fig. 3. Surplus normalization is outlined below. The notation S,,1, refers

Armay Peproenog- The array preprocessing consists of gener- to an ordered list with, elements (s,, s1+1, --.,sj). i :5j
ating fault vector and surplus vectors, and, based on. the value 1) Givensa = [sI, s2,. - - ,smJr. sm > 0, set I = 1.
of s"j, deciding to abort or contiue the reconfiguration. It can be 2) Let Srim = (sr. sr.1 , - .,m

summarized as follows: 3) Partition. Sr~m into, two disjoit Lists-
1) Generawf and susing (2. 1) and (2-2). Sql,+A =(s, .s,.i,..,s.gr).I +k <M and st :50. i=I1,
2) If sm < 0. exit with failure. I+I... k
Surplus Normalization.- If sm > 0. sm extra cells in rows M sI~kI /M = (31+,1. s1 +k+2, . .5w's). 51.,k..i > 0.

are available for use by "imaginary" faulty cells in nonexisent rows 4) Partition St+C+ll into two disjoit Lists (one of which may be
M+ 1. M+, -- Shifting these faulty cells to available cells in row empty):
M would be required by the rules used in the fault-shifting phase of S = (+l4.=i,51+§ .2 .sk, ,S,I < M.
FUSS. A better sokitioflis tolflak5A = 0. which iso0nsof the si, :5s,,i=-ik+i2,.1-k+3,...,-,ands.. >sl
objectives of the surplus normalization. A second reason applies to (S,1 +k1- has elanems11 With an1 increasing order of valutes);
FTPAs with a tamber of faulty cells tmich smaller than the nuamber S?1A - (S,,,, S1+29 - ,Sp4.
of spares For intstane, if in asurplus vector there eissa set of pos- 5) If S,.+*+1 1, = 0. (i.e.. there ane no two, comecunive Ce.
itive Cries with increasing values, echb row of FTPA corresponding ms a, s1+11 E Sr& I/ such thst st > st,,), then set a, - 0.
to each eny of this set mam have a number of faulty cells less than VS, 6 Sr+k+ilm; go tog8).
the number of spare cells. This maum that shifting faulty cells in 6) Otherwise,
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a) o min(sl,$M) ifo, >e0 C+,
a)ost*-€0 if st < 0 ei I

b) s, ,--s -offset. Vs1 C S++I,/M; Z
C) V, E S1++ 11, ifs1 <0 then reassigns i -0

7) If sM > 0, 1 ,-l + and go to 2).
8) Return (s '- S,/M). -"
To illustrate the surplus normalization. consiaer the surplus vector

obtained in the example shown in Fig. 2. The first iteration through Y X
Aurplus-normalization procedure gives Sl/m = (-1, 1, 3, 2, 3);
S...k = (-1); S +k+l/M = (1, 3, 2, 3). Step 4) yields Sl+ Fig. 4. Worst case block of faults.

(1.3, 2) andSl,+I,m = (3) (note that k = 0 andI =4). ln step 6) a)
offset = 2; b) S ./.k.u = (-1, 1, 0, 1); c) S+k+I,. = (0, 1, 0- 1)
("- 1," the first element, is rcset to 0 since it is also inSl+k+,/). The
second iteration reassigns sm (M = 5) to zero in step 5). The no-n"al-
ized surplus is thens = [-1. 0, 1. 0, 0]r . As will be shown next (in
fault shifting), based on the normalized surplus vector, the number
of shifts will be 1-11+1 =2 as opposed to 1-11+1+3+2+3 = 10
if the nonnormalized surplus vector were used.

Fault Shifting: Each unavailable cell in row i of a physical FTPA
can be 1) shifted down to one of its supporters ifsi < 0, or 2) shifted (a)
up to one of its supporters in row j (j < i) if s, > 0. After each shift.
the corresponding entry in the surplus vector is readjusted toward
zero; i.e., one is added to s, in case 1), and one is subtracted from
ss in case 2). The shifting proceeds until the surplus vector becomes C+/
null; its effect can be described as cell migration from regions having
most faulty cells to regions having less faulty cells. Fault shifting can
be summarized as follows.

While s # 0 then shift unavailable cells as follows:
1) For i = 1, 2,...,M, if s, < 0 and (i, j) is unavailable. (b)

I < j < N + C. then shift (i, j) to one of its supporters (if Pos- Fig Distance between two adjacent logical cells. (a) Horizonta logical
sible) in A,; then increment si. (Shifting rules must be defined here. neihb o (b jet logical neils.
For instance, the selection of a good supporter could consider the neighbors (b) Vertcal logical neighbors.
closest supporter first. etc.)

2) Fori = M-l, M-2,- 1.., ifs, > 0 and (k, j) is unavailable. the largest support-domain is a cluster (of faulty cells) that spans one
i < k <.M. 1 5 j <_ N +C, shift (k, j) to one of its suppoters (if cornerofthephysicalarrayasshowninFig. 4. Inthisfigure. there
possible) in A, and in row i; then decrement si. (Again priority are C + I faulty cells in the first row. This means that one cell
rules must be observed here.) needs a replacement from its lower support-domain A1. Let a block

Fault shifting generates a status matrix for the logical FTpA. Each (UVZXY) underneath the C +1 faulty cells contain the total possible
entry in this matrix is a status value which identifies whether the number of additional faulty cells but such that the reconfiguration can
corresponding cell is faul-free, faulty, or "shifted.' This value can still succeed. The maximum tolerable number of faulty cells in the
also reveal the replacing cell location. A concrete example will be FTPA is F = S = MC. Since there are C + 1 faulty cells on the top
discussed in Section I. row. the number of faulty cells in (UVZXY) is MC - (C + I).

Cell Interconnection: The cell-interconnection constructs the Furthermore. the (UVZXY) block size ( = total number of cells in
logical FTPA represented by the status matrix formed by "fault shift- the block) must be at least one cell larger than MC - (C + 1) so
ing." Fault-free cells are systematically interconnected. This imple- that there is at least one fault-free cell inside the block available for
mentation could be incorporated into the "fault shifting" part of the replacing a faulty cell in the top row. This block dictates the size of
algorithm as has been done in chain-replacement schemes [41, [51. A, required to support the algorithm. Its area is
Instead. in FUSS, fault shifting and cell interconnection are done in
separate steps to facilitate the analysis of the effect of a restricted (UZXY) = MC - (C +1) + I = (M - I)C. (2.5)
interconnection network on the algorithm. Cell inerconnection will But
be illustrated in Section IH.

D. Interconnection Requiremerns (UZXY) =(UVXY) + (VXZ)

This subection shows the minimum size of a support-domainA = (C + 16 + (6 - 1) +(6 -2) + + I
required by the algorthm and the resulting maximum physical dis- 60- (6
lance (tms, the maximum signal delay) between two adjacen logical = (C + t)a + 2 (2.6)
cells. Thes requirements are for the ideal case where 100% prob-
ability of survival is guaranteed. As illustrated by simple FUSS (in Setting (2.5) equal to (2.6), solving for 5, and taing the greatest
Section IIM, survivability is no noticeably worse if interconnect is integer value, (2.4) results.
more limited and interprocessor delays are smaller. Theorem 2: If the support radius of the support-domain used in

Theorem 1: For an M x (N +C) physical FTPA with MC faulty FUSS is 6. then the maximum possible distance between two adjacent
ceils (p = I), the miniu m support radius 6 of each support-domain logical cells is
required by FUSS in order to achieve a 100% survivability rate (a =
l) is given by d([,j1]. [i, j + I) = d([i, j]. [i + l,j1) = 26 + C + 1. (2.7)

Proof" Fig. 5(a) and Fig. 5(b) show the wort possible cas
5= (2C+I);+8(M-I)C - (2C + I) (2.4) that remlt in largest distances between two adjaent logical cells. In

2 these figure the blocks shown inside each array (rectangle) contain
celis that mare faulty with the exception of cells murted with x" and

Proof' The worst blt diibutio that cases FUSS to reqi ywhic ar used to replace cells x and y, respectsily. In de worst
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case, celix' is at the outer left edge of the upper block shown, and 1235 2 1 23 S0 0
CUllY1is atthe outer gt edgeof the lower block. Inbothfigures, 2 :00 000 2 02 200
x' represents [1, 11; in Fig. 5(a). y' = [i, j+l11, and in Fig. 5(b), 3 0 0 1 1 0 0 1 0 2 110 0
y =i + .jj.As shown inFig. 5(a), d(x',y') is th sumlof 4 01 1 01 0 0dj~nesewex'nx=),ad(=~)5lda 1Y 5 0110 00.:2 01 130 0

djunowbewee xIan x =6) xandy (C 1) an YandYS 0 00 0001 03300
(_-6). Therefore, d(i, J, i +1)= 26 + C +.The expression 7 00 00 0 00 0 300 0
for d([i, J].i + 1 ) is obtainedina similar way. (a (b)

MI. Snmn'u FUSS
inwid ac -A--13 2,2 1,2 1,3 1,4 1,5

Simple FUSS is an instance of FUSS iwhceahsupport-domain... 2,1 3,2 3.3 2.3 2,4 2,5
is restricted to one cell (6= 1)to minimize the maxinm=itn ce 3,1 4.2 0,0 0,0 3,4 3,5

tj) , 0,0 0,0 0,0 4,4 4,5
between two adjacent logical cells. In this case, shifting is either 5, 0,0 0,0 4,3 5,4 5,5
straight up or straight down along a column. From here on, the terms 6,1 5,2 5,3 6,3 6,4 6,5
"simple FUSS" and "FUSS" are used interchangeably; simple FUJSS 7.1 6,2 7,2 7,3 7A4 7,5

with C = I is referred to as "FUSS-1," that with C = 2 "FUSS-2," (c)
and so on. T7he general FUSS scheme discussed in the latscini Fig. 6. An example of FUSS-1. (a) Initial stoaws matrix and surplus vec-

referred to as "general FUSS." tor 5 0. Mb Final stanws malrix B (s =0). (c) Final reconfigured FTPA
showing logical coordinates.

A. Simple FUSS Algorithm

The algorithmn consists of four basic procedures, each of which de-El l
scribes a corresponding part in the general FUSS algorithm described
in Section 11. Procedures corresponding to array preprocessing and '_ 1I

surplus nortnalization are as described in Section 11. In fault shifting, El 0i E]l D 1
cell (i, j) can only replace either cell (i - 1, j) or cell (i + 1,]j). 13E El E lE
Fault shifting constructs status matrix B as follows: E 1 M E

1) InitalzBD b.={0 if (i, j)is fault-freeEl ll l l
Iif (i, J) is fauilty

2) Assign status to "shifted-cells": b5,j = 2 if cell (i + 1,fJ) is
shifted to cell (U, j), and bi = 3if cell(i -,j) isshifted to E lE lE
cell (i, j). ()(b)
MazixB is formed one column at a time. The order in which th Fig. 7. FUSS-I physical connection windows. (a) WH. (b) WV.

columns are considered may affect the shift capability. it is there-
fore conceivable that these colus- can be scanned in an order that by the algorithm. The size of each window (number of cells in the
maximizes FUSS probability of survval but this remains an open window) is as stated in the following theorem.
question at this time. For simple FUSS, the order is from columns Theorem 3: In FUSS, the size of horizonta connection window
I to N +C. jWf and the size of vertical connection window jWv Iof a cell ame

Cell interconnection is applied to matrix B. Since the status of given by, respectively,
each cell is known, it is easy to automatically derive how cell are

ineronece. FUSS-C algorithm is shown in detail in M7. Each IWH I = 5(C + 1) (3.1)
of the four procedures in the general FUSS algorithm takes at most
OWMx (N +C)) operatios.TIliatime complexity of FUSS is then IWvI =4(2C +1)- 1. (3.2)
OWMN). i.e., proportional to the inumber of processor in the array.

T7he following example illustrates how FUSS-l reconfigures a Proof.: From cell shifting, #,([i, j]) = k. i - I :5 k :5 i + 1
7 x (5 +)ary.Fig. 6(a) repreents the initil status matrix of the (i, J1is onphysical row k),and 1([i j + ])=.i -l15 :5 ~i+ 1.
FrPA augmented by the normalized surplus veo~r row- and column Itis mean that the physical location of (i, j + 1] is at most two
indexes are added for convenience. Fult shifting scans s downward physical rows above or two rows below the physical location of [j, j].
for negative surplus values. Since s4 = - 1. one cell is shifted down; Therefore, relative to O([i, jJ), [i j + 1] is within a band consisting
the only choice in this case is (4.,4). As a result bs. 4 becomes 3, to of five physcal rows as shown in Fig. 7(a) (for C = I). Since there
denote that (5.,4) replaces a cell from above, namely (4, 4). At the are C spare columns, the link from (i, j] to [i, j+ 1) can skip over
next row, ss = -2, which means that two unavailable cells ust be at most a number of C cells. Hence, IWH I 5 (C + 1).
shifted down, cells (5, 2) and (5, 3) are chosen. Similarly, S( = -I Without loss of generality, let O([i, jj) =(i, j). Consider the
and (7, 2) replaces (6, 2). During the upward scan, the first positive physical location of the vertical neighbor [i + 1, jJ. Since physical
surplus encountered is s3 = 1. Tbtus, one cell from the row below cells may be shifted up from the immediate row below, (i + 1, ]
mustbe siftdupward to row 3. Cell (4, 2) isthe only choice; as can be onphysical row i;i.e..(i, j) = 0([i + 1.jj)= i.Alo
a result, b3.2 = 2 to denote that cell (3, 2) replace a cell from since cells my be shifted down, the physical location of yi +1, j)
beOW. Similar actions take Place for 52 and S1 - Fig. 6(b) shows may be three physical rows below that of [1, .11 (#,([i, j]) = Oi([i -
the final status matrix after a successful cell shiftinig (s is null). T1he 1, j]) - 3). Furthermore, ri + 1. j] can be C cells to the left (right)
final reconfigured FTPA is shown in Fig. 6(c). This example depicts of (i, J1. T7he vertical window is readily seen to have the size of
the worst case of fisult distrbution insa physical array that results in lWvI =4(2C + 1) - 1. C
Intigest interconnect links in a logical array. For FUSS-I1, IWH I and lWv Iarm 10and 11. respectively, as showt,

in Fig. 7. This means that interconnect links ans be provided for
B. Ctll Iftrcolnt stuctur e each cell so that it can counumncat with any one of 10 cells hori-

From Theoremn 2, the maximn distance between two mscat zosuay Md any one of 11I cells vertically. These ae not necessarily
logical cells is d(V.J.[i j+lID =dfi,j] i+ 1,jA - C + deficad links; they can be shared bus=s, vitual chaninels, ac. In
3. Fg. 6(c) shows that the dic betwen 4, 2] -and (4, 31 is 4 this paper a switch-bus similar to that used in [5]-M7 is considered.
(([4,2D) - (3, 2) and #([4, 3]) = (5,4)). The dimoce 'het en In general, the number of buse and switches required by a logical
(3, 31 and (4, 31 is also 4. In general, The inerconnect requiranomt row is cosnt and that required by a logical column is a linea funic-
for FUSS can be foundl by studyin the connection windows required tion of the nume of spare columns. FUSS-C requires a (a + 1) x 3
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H10) Uli) VIW

() (b)

Fig. ~ (a S. S(b)sstutr.()FU S b wic etns

Fig. 9. Source-sink on sam raw; source at left.

Fig. 10. Source-sink on samie row: source at right.

switch bus as shown in Fig. 8(a), where a f ri5c1. (Thus, FUSS- e use V, (p) to reach (p. q).
I reurs a3 x3switch bus.) The toloi ng corollaries give the 2) Ifi =p. then
size of the intrcncton. a) If j < q (source on the left: Fig. 9):

Corollary 1: In addition to cel-to-cell links, the horizontal path i) use the first availabile bus from the ordered set
of FUSS consists of one horizontal bus per row, two vertical buses (V1Q), V.0(i 1). V.-(l - 1) V8.1+20 - 1)j to go
per column. and four switches per cell of the physical FTPA. rgt

Corollary 2: Let at = f I .5C1. In addition to ceil-to-ceil links. ii) if all buses in case i0 are exhausted. use t first available
the vertical path of FUSS consists of one vertical bus per column. bus fromthe ordered set {V2(0), VNOi," Vj (i) I to
(z horizontal buses per row, and 2a switches per cell of the physical go right:
FTPA. iii) use V0(j) for canci). V(q) for caseii))to go upward.

Fig. 8 shows a switch-bus suictre required by FUSS. With th~is b) If q < j (source to the right of sink; Pig. 10):
structure. there are many possible paths between any pair of adja- i) use the first available bus from the ordered set
cent logical cells. Therefore, a shortest path msat be devisedi so that MVY~). NOi)...,V5 41  (i100to go'left;
the intercofnect delay is minimized. Due to space limtaios, the Us) if all bume in case i) ane exhausted, use the fmrs availabe
following bypass interconnect rules are summarized next (details are buts from the ordered set {Vj(O. V,(i - 1), V.-,(i -

given in7M .Bs Labels Hi =0. 1, 2. and Vi,,1 = 0. 1, ~a an 1). -- , VO+20- 1togo0l1eft;
as shown in Pig. 8. Let [mn. n) = (1,j), Offm,n +lID=(k.l1). iii) use V(q) for case 0, V(j) for case ii)) to goupward.
and [m+ .nj) - (p. q)i -2 5k5i +2. j + 51< j+C+l1. Ilutati~fons ofiWMsconnection between Y.jD = sand (p, q)=
i 5p!i + 3.ad j - C :q j +C.Cellm, njis called source t ame shown in Figs. 9-11 (common subscripti s used for a
(denoted by s) and cells [k. 11 and Ep. q] are honzonal sin an source-sink pair). BUS V0 is exclusively assigned toits correspond-
vertical sink. respectively (denoted by 0). iag cell. It directs thet signal downward for case 1) and upward for

Corelaig (1. j) to (k. I): case 2). This exclusive assignment of V0 may result in extra wire
" Use Ho(i) to go rightward; length (two units). For instance, in Fig. 9. V0 on the left of tc (and
" use HFI (j + 1) oriand Hi,(l) to go donad VO for some other sinks) may be used. However, this can maim the
* Use HI(j) Orland H 20 -1) togo upward. Mliesor foplex.SIIC
Connwting (i. J) to (p, q): C. F7PA Sbucture and Arm Owrhmad
Lets 0 rO.5al, whm a= - . .
1) If /<p0(Fig. 11I). then The FTPA cosntrol *machanisni required to support a reconfigura

*use the Amrsavailable, V(W,,x -2.3...*d+1 to go right tion schem cam bemlemamied in different ways. Sincea scheme
orcan be designed to be eitheir 'cealized" (executed by a cetal

left tward (p. q); computer) or -distrbutetL' the cotupiexuty of the conuro hardware
*Use VO(q) to So downwad; varies, accordingly. The interconnet redundancy depends on whether
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Puossn..rry oF SURVFVAL OF S LEco R coNraUi.ATION SCHE ES (PARiT'L.Y

IaOM [3]. [4])

Probability of Survival oof FUSS with Improved Cell-Shifting
Number of Faults = Number or Snaes (o-1

- -C ForArrlySie (MxN)
SX I lOxi0 20x20 30x30 40x40

1 90.2567 98.7047 98.7383 98.9145 99.0524

2 98.7698 98.6465 99.1764 99.4904 99.6391
3 98.4911 98.654 -9.4346 99.7239 "9834

--- 4 08.3180 98.6508 99.5387 99.8301 99.9214

5 18.1736 98.6242 9.6006 92.8670 gg.sog

TABLE II
AXIAY SURVIVABILrrY AT MAXIMuM NuMsf, OF FAULTS

S- Reconfiguration Algorithm Probability of Survival
Scheme com"eity -SO 1# .59 axL g-..O

Direct Reeonfiguration 110j O(N) 0.43 0.35 0.27

--- - - - Fixed-Fault-Stealing O(N) 0.47 0.38 0.30
L0 '-1 Complex-Fault-Stealing O(N) 0.90 0.84 0.77

Fig. 11. Source-sink on differem r Modified Index-Mapping O(N
2

) 0.67 0.62 0.54
MORA O(NIogN) 0.0 0.84 0.78
Spanning Tree Based O(Nleglo#N) 0.93 0.89 0.78
Orthogonal Mapping O(N2) 0.93 0.88 0.82

Simple FUSS OW(N) f 1.00 1.00 0.09

This provides a one cell "look-ahead" capability in anticipating and
facilitating further shifting. Simulation results show much improved

I probability of survival as summarized in Table II. Here. only the

worst case (o = 1, number of faults equal to number of spares) is
shown. Each case involves 1 000 000 simulated arrays.

IV. CONCLUDING REMARKS

, A new approach to hardware reconfiguration for fault-tolerant pro-
['~ cessor arrays has been described. The technique, called FUSS (full

use of suitable spares), is based on global information about faulty
cells in the array. That is. the number of faulty cells and their dis-
tribution in the array are compiled to form a surplus vector which
is used to guide cell replacement. The general FUSS can achieveW: 100% probability of survival when unlimited interconnect links are
provided. These interconnection requirements have been derived and
shown to be proportional to the size of the array.

Fig. 12. FUSS-l FTPA. An instance of FUSS, called simple FUSS, has been presemed
in detail. Simulations show that simple FUSS achieves up to 99%

multiplexers. virtual channels, switched buses or other approaches probability of survival when the number of faulty cells equals the
are used. FUSS-C uses the switch-bus structure shown in Fig. 8 and mumber of spare cells in a given array. Simple FUSS executes in
a typical FTPA is shown in Fig. 12, for FUSS-I. In Fig. 12. feet- O(MN) time, for an M x (N + C) array.
angles represent I/O ports, large boxes represent cells, small boxes Recently, Youn and Singh [11] have independently proposed an
represent switches, dashed lines are buses for horizontal paths, and approach, called row modular scheme, similar to simple FUSS (the
solid lines buses for vertical path. Other reconfiguration circuitry FUSS approach was first reported in [12]). The approach is an in-
(fault and surplus counters) is not shown in Fig. 14 but can be found stance of general FUSS and is implemented for yield enhancement
in (7] where area complexity is also computed. in WSIIVLSI processor arrays.

The FUSS approach can be readily applied to other mesh-like
D. FUSS Performance structures, such as programmable logic arrays, memory arrays. etc.

FUSS has been evaluated with respect to its probability of survival While FUSS has been designed for two-dimensional arrays, it mayalso be extended to other architectures such as modified meshes
and its reliability. The former was achieved by extensive simulation al meshes meshe wit ctu ses c.). treeshe-

and the latter was estimated by the MGRE (model generator and (toFidal meshes, meshes with broadcast buses, etc.). trees. hyper-
reliability evaluator) software tool [9) (details shown in M7]). cubes. multistage networks, and others. The use of FUSS in these

rlay efvauators softres to [9] ( a swnth vyin g - and other useful topologies needs further study and evaluation [7].
Arrays of various sizes (5 x 5 to 40 x 40) and with varying ni-

ber of spare columns (C = I-C = 5) have been simulated. Faults
were randomly injected into the array cels. In each case, probability REFERENCES
of survivals are obtained for 100 000 arrays having demand-spare [1] M. Chean and J. A. B. Fort, "A taxonomy for reconfiguration tech-
0.5 :_ p : 1.0. When p < 5, the survivability rate is 100%: it is more niques for fault-tolerant processor arrays," IEEE Computer Mag..
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Scale Intq'aon, G. Saucier and J. Trilhe, Eds.. New York: Else-
FUSS survibiity rate can be frther improved by slighly rod- vier Scwe, 1986, pp. 207-222.
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[81 L. Snyder. "Inroduction to the configurable highly parallel comput- Several mathematical models for reliability prediction have been
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(91 N. Lopez-Benitez and J. A. B. Fortes. "Detailed modeling of fault- developed and are available as software packages ([1), (31, [91).
tolerant processor arrays." in P=o. 19th It. SYMP. Faudt-Tolerant These packages accept a high-level description of a fault-tolerant sys-
Comput. Syst., June 1989. pp. 545-552. tern and internally generate an equivalent mathematical model of the

[101 M. G. Sarni and R. Stefanelli. "Reconfigurable architectures for VLSI system. Various dependability measures are then derived by solv-
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(1l1 H. Y. Youn and A. D. Singh, "Efficient reconfiguration of WSI arrays of several of these models, we refer the reader to (21 and (5]. The
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Fault Tolerance Multiprocessors, June 199., pp. 24-26. ity model developed for evaluating fault-tolerant computer systems.
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icy fuinction Rqt) is an analytical expression which is in the form of
a weighted sum of pure negative exponentials. Hence, the solution is
completely specified by a set of parameter pairs (parameters of the
exponentis and the corresponding multipliers) which depend on the
fault-tolerant system under evaluation. However, the solution is of
this form only if the state transition rate matrix of the Markov chain

On Reliability Modeling of Closedo Fault-Tolerant Computer is diagonalizable.
Systems Let (S denote the tansition rate matrix. The solution ap-

proach in ARIES is to compute the matrix fuinction e at using the
MEERA BALAKRSHNAN AND C. S. RAGHAVENDRA Lagrange-Sylvester interpolation formrula. The state probability vec-

tor is then given by P(t) = eatP(0) and the reliability function by
Abstract- Markot modeling techniques bae" pro.e aweful for rjj.. R(t) = Ei-mP,(t). From standard matrix theory, if the eigen-

abilty prediction of complex fault-tolerant computers In [71, Ng an values of (B are distinct, then. (% is diagonalizable so that the
Avtmenls proposed a general, model for evaluating farsit-toera, con minimal poiynomal of (B has distinct roots. For this case, the
poler systems -a continuous. time Mawkoe moel m v to asth Lagrange-Sylvester fornilal is a valid solution technique. If the
ARIES moe" ad suggested the LerneSywse iitroi for eigenvalues are not distinct, however, (B may or may not be diag-
uila as, a unified sointlow technique to tis model. mis. mis a vai onalizable. For this case of repeated eigenvalues, ARIES considers

soluntion approach it the eigeavalues of thae state transiton rate mou only the distinct eigenvalues (ignoring duplicates) and solves as in
associated with the Niarkoy dhin, ame diatluct or, if elgenvalues reea, the previouts case. Since this is a valid approach only when (S is
the rate matrix i diagonalzartrie. to [21. Geist ad Tflhed have pro diagonalizable, it is not clear that the ARIES results are correct for
sented on eample of a closed (l.e., noorepairable) fault-toleram syte all systems with repeated eigenvalues. In [21. Geist and Trivedi have
modele by AXME which has. repeated .igetrjs m thi paper we given an example of an ARIES closed fault-tolerant system in which
obnerv that. in fact, a larg mnmer of dosed famlt-tolerant systems the eigenvalues of the transition rate matrix are not distinct. Further.
modeled by ARME ae repet ed eigenvmlues. The Lagrange-Sytveswe they have observed that the set of eigenvectors of the transition rate
forroula is an acceptable solution approach only It It -a be guaraseteed matrix are independent (i.e., (S is diagonaiizable) and that classical
that the rage matrix is diaguallutie. solution methods yield correct results. In this, paper we prove that

tn this paper, we Prove that the rate maf revan the syte is for ARIES closed systemi. (3,the transition rate matrix, is always
diagonalabler for every closWa fault-toleranst syste mo e by ARM. diagonalizable so that the Lagrange-Sylvester formula is applicable
Comequeafy, the Lagrange-Sylvester Interpolation formula is aplh.despite repeated cigenvalues. Further, since our proof guaratetes that
to all closed fault-toierant system whide ARIES models. Alm. since our the rate matrx is always diagoniizable, general methods for solving
proof gimares that the rate matris is dilosslumble. Zenera methods arbitrary Markov chains can be tailored to solve the ARIE model
for solving ar&Ttry Muao cmhi an be talored to solve the, ARM efficiently.
moe" for doed system effleatl. For eample, the ACE alodi.n OE ADSLUINTEHIUEFRCtoa

for the traisime solutio, of acyclc Maukov chains 141 an be specisilu 1.AISdOE FAND-TOLuRNoTec w SorsTLOSE
to solve the ARIES model for doed system effleleusly. uL-bEr4Srrs

We begin with a brief description of the. ARIES model for closed
Index r.'mi-aCosed fault-tolerum system&, I.episce, transform, fault-toleran system (for a detailed description, see [61 and [71).

Marina' modeling. rlhbit prediction. The input to ARIES consist of a set of parameters which completely
specifies the fault-tolerant system. The definition of these parameters

Mlanuscript received July 3. 1989: revised November 6. 1989. M. Bala- t6) is reproduced here for easy reference.
icrisbasa was supported by a Zontm Imernasional Amerll. Earhart Fllosp
Award. C. S. Raghavendra was supported by the NSF Gant M28452003. N = Initial inmber of modules in the active configuration
a gu ra om(an AT&T, and a grnt froms TRW. S = Numtiber of spare modules

The authors are with the Department of Electrical. Enginecrig-Sysnu
University ot Southern Cailfrnia. Lot Angeles, CA 90089. Tis forula. described by (2.2) in this paper-, is applicable only if (S is

IEE Log Number 8978. diagonllzable.
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is illustrated by the detailed analysis of the SRE reconfiguration
scheme [31; also, analytical expressions to estimate probabilities of
survival are derived for this scheme. Other applications that include
schemes such as ARCE (Alternate Row-Column Elimination) [3] and
DR (Direct Reconfiguration) [4], are reported in [5].

Detailed Modeling and Reliability Analysis Once the Petri net model and the corresponding reachability graph
of Fault-Tolerant Processor Arrays have been obtained, all the information required to build the transition

matrix of the corresponding Markov chain is available. Reliability
N. Lopez-Benitez and J. A. B. Fortes evaluation tools such as ARIES (6] and SHARPE [71 can be used to

evaluate the models developed here.

Absuwt-A method for the generation- of detailed models of fault. The second section of this paper discusses some basic notation

tolerant processor arrays, based on Stochastic Petri Nets tSPN) is pre- and concepts which include array configurations and Petri nets: also,

sented in this paper. A compact SPN model of the array associates with the large state space inherent in the models generated is illustrated.
each transition a set of attributes that includes a discrete probability The third section discusses MSPN models as an extension of SPN's.
distribution. Depending on the type of component and the recoalguration Throughout these two sections the SRE reconfiguration scheme is
scheme, these probabilities are determined using simulatio or closed- used as an application. In the fourth section a procedure used in
rorm expressions and correspond to the survival of the array given that a
number of components required by the reconfiguration process are faulty. generating the reachability graph is dscribed. Finally, results on

Index Terms-Fault-tolerane Markov models, processor arrays. reli reliability analysis are reported in Section V.

ability, stochastic Petri nets. II. PRELIMINARIES

i. INTRODUCTION A. Array Con/figuratons

As is the case with many systems. Markov models can be used To analyze a fault-tolerant array architecture with k types of
to evaluate the reliability of processor arrays. However, reliability components. the configuration of an array is represented as a k-tuple:
estimations are mostly based on the failures of processing elements Ct : (7s 112t .. . i = 0.1. 10

only [1]. Components other than processing elements become very
important in the analysis of fault-tolerant processor arrays because where qTti denotes the number of elements of component type I and
of their susceptibility to faults and the added hardware complexity C is the set of all possible configurations of the array. Examples of
of the overall array. This fact has played an important role in the component types include processing elements, links, switches, spare
derivation of the mathematical framework developed by Koren et aL links, and spare processing elements. The occurrence of faults and
[21 to evaluate yield improvement and performance-related measures the application of the reconfiguration algorithm define a sequence
of different array architectures. A detailed modeling of fault-tolerant of configurations that begins with Co as the initial configuration;
processor arrays, which explicitly takes into consideration the failure any other configuration can correspond to the failure state or an
statistics of each component as well as their possible interdependen- operational state of the array. The latter will be referred to as an
cies. entails not only an explosive growth in the model state space operational configuration.
but also a difficult model construction process. This paper proposes Upon detection of a faulty component. the reconfiguration algo-
a systematic method to construct Markov models for evaluating the rithm may not send the array to an operational configuration if any

of the following happens:
Manuscrit received September 11. 1990: revised October :1. 1991. This 1) The reconfiguration circuitry failed. This possibility can be

work was supported in part by the Innovative Science and Technology Office

of the Strategic Defense Initiative Organization and was administered through considered through a coverage factor (denoted by c) defined
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3&k4M7"23. fault has occurred (8]. This is a measure of the probability of
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2) Redundancy is exhausted. This information :an be inferred
from C.. s s s

3) The presence of faults in nonactive components (redundancy) 1

hinders a successful reconfiguration. Redundant components
are present in C, as spare processing elements, spare switches,
spare links, spare buses. etc. Some of these components become (
active in the new configuration.

In a given configuration with a number of faulty components. a
successful reconfiguration. will depend not only on the type of faults
but also on their distribution in the array. Thus. the probability of a
correct reconfiguration in the presence of faults is referred to as the
probability of survival [41. Because the reconfiguration algorithm may

choose one of several new configurations (including a nonoperational
one), a probability is assigned to each possible new configuration.
The probability of survival corresponds to the sum of probabilities
assigned to new operational configurations.S

B. The Largeness Problem s

Consider for example an n x n array that supports the Successive-
Row-Elimination (SRE) reconfiguration scheme with a layout as in Fig. 1. Schematic layout of the SRE structue.
Fig. I (where n = 4). A row of Switches (S) and Spare Bypass Links
bypass all the Processing Elements (PE's) in any row containing at Similar expressions have been derived for the ARCE and DR schemes

least one faulty PE or at least one faulty horizontal link (HL) or at [5] whose values are shown in Table I for several instances of n.

least one faulty input/output link (IOL); spare bypass links (SBL's) The complexity involved in constructing Markov chains with

then become active Bypass Links (BL); the array performance detailed modeling obviates the need for a higher level representation

degrades gracefully as rows are eliminated. The minimum working such as the Modified Stochastic Petri Nets proposed in this paper.

configuration consists of a single functional row of PE's. However. This type of modeling is useful in representing the fault behavior of

all active bypass links and all switches must be fault-free. The array the array in the presence of different types of faults and in generating

fails if operational rows are exhausted or a single switch or an active the Markov chain for any array size and in the format required by

bypass link have failed. Assuming only PE's (ail. a Markov chain the chosen evaluation package.

will contain n operational states [31. For each operational state i in
the Markov chain there will be one transition to an operational state C. Petr Nets
j with a rate denoted as A., and one transition to the failure with a Petri nets can be used to analyze complex systems with interdepen-
rate A,. If the failure rate of a PE is an, then these transition rates dent components. A formal definition of a Petri net is presented in [9!
can be evaluated asA,, = lTicjaicandif = bital-c)were asa4-tuplePY = (P. T. .4. ."o)whereP = (pt, P2."" .pht
qjT corresponds to the number of PE's active when the process is in is the set of places. T = (tt. t2 --.. . t,} is the set of transitions.
state i and c is a constant coverage factor. .4 C (P x T} U {T x P} is the set of input and output

Assume now that not only PE's fail but also switches are suscep- arcs and .1o is the initial marking. Each place contains a number
tible to failure with a rate ci. Note that the failure of a single switch of tokens. A mtarking in a PN is represented by a k-component
will cause the array to fail therefore, the transition rate to the failure vector .11 = I. M2. -. . mA,] where in, is the number of
state is modified accordingly; i.e.. A.,/ = 1 if1(1 - c) + qi"a3 tokens in place pi. The set of input places I and the set of output
where q.W corresponds to the number of switches when the process is places 0 are mappings defined with respect to a transition t. as
in state i. In addition to failures of PE's and switches, assume failures !(t,) = {pj(p.t,)eA} and O(t,) = {pj(t,,p)eA}, respectively.
of links including spare and active bypass links can occur. Failures of The number of tokens associated with an arc is referred to as the
UO links and horizontal links can be treated as PE failures in the sense mudtipicuy of the arc. A transition is enabled when a PN is in marking
that the same state will be generated but with a different transition .11 such that all input places of t. contain a number of tokens greater
rate. Of particular interest is the failure of spare bypass links, because than or equal to the multiplicities associated with the corresponding
failures of this type will generate a large state space. For n - 4 arcs. A transition fir if it is enabled. When a. transition fires.
the number of states increases to 44 as shown in Table I. Although tokens are removed from its input places and added to its output
it is possible to construct the model manually, the process has now places according to the multiplicities of the corresponding arcs. This
become complex and time consuming. In addition. nondistim states determines a new marking. The reachability set of a PN is the set
must be merged and the surviability and coverage factors must be of all markinp reachable from 1o through a sequence of finngs.
aggregated to estimate transition rates. The reachability graph of a PN is a directed graph whose vertices

The maximum number of states S5RE(a( generated in terms of are the elements of the reachability set and whose arcs correspond
the size a, of the array is tabulated in Table L An expression of to transition firing in the PN.

SSRE(n) is obtained by observing that a states are generated with
nonfaulty spare bypass links. for each operational state i. n(n - i III. MODIFIED STmCHASTIC PEtl NETS

additional states can be generated with at least one faulty spare bypass .4. SPN Represtndton
link. Hence. SsRS(na) = '-_-L'[nin - 4)4- ].]. SimpLifying this
ex eine mxmun u e of statesn - is + 11. giveng this Stochastic Petri Nets extend the Petri Net concept by associating
expression. the maximum number of states is given by random firing times with each transition. This extension allows a

1 , one-to-one mapping between the markings generated by a Stochastic
SsRE(fl) = ; (n'--+ +2n). Petri Net and the operational states of an homogeneous Markov chain
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TABLE I
MAX7,UM STATE SIAcE SrzE FOR THREE RECONFoUiuiON SCHEMES

n2 3 4 5 6 7 8 9 10
SSRE(n ) 8 21 44 80 132 203 296 414 560

SARCEW) 17 51 107 199 333 517 759 1067 1449

SOR(n) 75 188 385 690 1127 1720 2493 3470 4675

(assuming exponentially distributed firing times) [101. Thus, SPN's resents i random marking .Al, in a set R directly reachable from

are defined by a 5-ruple (P. T. .4. .l. c) where O = {a. a2. a particular marking .11,; the notation Pr,, is used to denote

.- } specifies the firing rates of transitions tt.t 2 . - .t,. To the probabiliy of reconfiguration P(x = 1Xl.\,[.t,), i.e., the

model fault-tolerant processor arrays, an operational configuration probability that the net is in marking Jf, after t, fires when the
corresponds to an operational state in the Markov chain- thus, to net is in marking M,;
Jerive all possible operational configurations of the array, a marking Si( ,M.) is a sequence of transitions that will fire immediately
n the SPN must correspond to an operational configuration of after t, fires. If no immediate firing is required then Si( .X4) is a
the array. Each place pi identifies components of type i and, at null sequence. Depending on the reconfiguration scheme, S, can be
a given marking Vf,, the number of tokens mq corresponds to identical for all markings or can be determined in terms of .11,;

,!,q which is the number of components of type i. Two or more Bi is a binary transition vector with k elements bt such that, bt = 1

distinct component types may identify the same physical component: if the failure of the Ith component triggers the transition t, and bt = 0
for example, a physical spare is a component of the type "active otherwise. This vector facilitates the merging of nondistinct markings,

'ipare" when it is used to replace or bypass a faulty part and it the derivation of probability transition vectors (defined in Sectior. IV),

is a component of the type "nonactive spare" otherwise. Consider and. the derivation of flap (i.e., failure rate conditions) that signal a

the n x n SRE array in Fig. 1: a marking .f is described as possible nonoccurrence of a transition;
.11 = (#PE. #IOL. #S. #BL. #HL. #SBL) = (mtq, m2q, c, is a coverage factor associated with to, such that if t, is triggered

• . m.) where the symbol "#" is used to denote 'number of." by the failure of a spare (inactive) component then ci = 1; if t, is

A possible SPN representation is given in Fig. 2. The tiring of triggered by the failure of an active component then ci corresponds
t,. represents the occurrence of a fault in a PE, a fault in an [OL to the probability of detection given that a fault occurs (i.e.. ci < 1).

is represented '.y the tiring of 12 and so on. In general. the firing For each transition t, in a MSPN. there is a set A, of 110 places

Of i, represents a fault occurrence in a component of type i where and a set i,, of multiplicities ,A associated with each arc in A,.
I < , < k and k is the number of places and transitions. In SRE. When the MSPN is in a marking .1/, and a transition t, fires.

component types I through 6 correspond to PE. [OL S. BL HL the number of tokens mt., in each place pleA, is then modified
SBL and k = 6. respectively, as follows: mij = rrtiq - jit + g, , resulting in the generation of

Although the SPN in Fig. 2. might provide the number of op- a new marking .1,. Since the input multiplicities g: and output

crational configurations required. it fails to consider the cases when multiplicities A0. can be functions of the size of the array and the

-nough spares are available but reconfiguration cannot take place (due current marking, they are referred to as variable muLt/pitcties: this

,or example to a peculiar distribution of faults). As a consequence, concept is a natural extension to the usual notion of "multiplicities"
this approach might provide overly optimistic reliability estimates. in Petri Net theory and it has been used in the development of the

Conceivably, a different SPN model can be used to accurately Stochastic Petri Net Package (SPNP) [ 11. The notion of "immediate"
represent the dependency of successful reconfigurations on fault firing was introduced in the Generalized Stochastic Petri Net model

distributions. However. such a SPN would itself consist of a large [121 with the classification of dimd and immediate transitions. The

number of places and transitions (which increases with the size of former fire after a random exponentially distributed enabling time:

the array) that would generate a large state space in the underlying the latter fire as soon as they are enabled. Similar distinction ;s

'arkov chain. One of the intents of this paper is to provide an made in the Stochastic Activity Network (SAN) models used in

extension of the SPN concept so that dependence on fault distribution developing Metasan [131; in a SAN model, instantaneous activities

can be accounted for in a model with a complexity comparable to occur in a negligible amount of time. Immediate firings in a MSPN
tlat of Fig. 2 regardless of the size of the array and reconfiguration capture a sequence of structural changes that may occur when
,cheme used. the reconfiguration procedure is triggered and spare support is not

available. However. these structural changes must be preserved as
3. MSP.V Represemaon states with transition rates modified by the distribution P(zIAfq. t,)

The fact that several types of faults affect the array in the same (see Fig. 4). By specifying in S, which transitions tire immediately,

manner. sugbesm a more compact SPN-like representation, which is there is no need of an explicit representation of immediate transitions
referred to as Modified SPN (MSPN). for each t, with additional places to control the firing sequence

Deinnon: An MSPN is defined as .IISP. = (P. T. .4. .11n. until a failure marking is reached. It is important to note that the

Pr. Sq. B. Ct'.i where P = (pi." ". pkI is the set of place association of P(zxA,,.t,j allows the simplification of the model

r = (tI ... ,} is the set of transitions, .4 C (PxT} UfTx and therefore the reduction of the state space. Otherwise. additional
P) is the set of input and output arc, Mo is an initial marking. Pr places and transitions must be created to model the effect of fawty.
is t set of probability functions Pfzl.V,, t,) associated to transitions spares distributed in the array.
1, eT, Sq is a st of sequences Si of transitions that fire immediately As an example, a MSPN representation of SRE given in Fig. 3.
ifter an exponesnial firing of tranaroo t,eT. B is the set of binary describes the fault model of an n x n array. Since t1 , i2, and t.

!ranitioa vectors Bi defined for each t.t, Cu is the set of coverage in Fig. 2. have the same effect on the array, a single transition t1
,conatm ci associated with each t,eT. 0 is defined in Fig. 3. with a vector B, = (1 1 0 0 10 tto indicate

-n MSN repsattasaociate a set of aibaes with eac that either the failure of a PE, IOL or a HL. can cause tt to fire.

transition ,; i.e. < P(zIM .t,).S,( 4).B,.c, > where: ikewise. 6 and t]4 beome 12 with a vector B-. = [0 0 1 1 0 01.
p(zI.,.tj defines a discrte probability function where z rep- The firing of t2 rpresents the failure of a BL or a S either of which
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Fig. 2. SPN of the SRE scheme.

is tal. Transition 4 becomes t3 and represents the failure of a SBL -"

with % vector B, = [000001].
Consider now the case when a given operational configuration PI P2 Ps P6 P3

contains faulty SBL's. The probability that none of them lies in the p' ail L all HLal P S

row chat is eliminated when t1 fires. *orresponds to che probability 1 2 1(

of survival Ps such that Prb = P.q. If at least one SBL is

faulty in the row deleted, the array fails to reconfigure with a

probability Pr,,f = 1 - Ps (the failure marking is denoted as P,: <(Pr4,r/).(2 ).B .c>
J.[y); i.e.. t. fires immediatedly and S, = (t2). This follows from t2: <Prq ,JB2 .c>

the fact that when t1 tires, the required SBL's become BL's and BL t=O0 <PT9 4,2-.B l.>

if ane if them is faulty t2 fires to generate a failure marking. 8i , i Sl.P2-(0011001.2,=0000011

In general. probabilities of survival are complicated functions of P4 (eqn. 5.2).Pr-t-Ps

the characteristics of each reconfiguration scheme (e.g., replacement 3. MSPN of the SRE scheme.

rules, hardware requirements, dependencies on fault d..tributions,
etc.) and the size and shape of the array. They must be derived for

each scheme and in some cases extensive simulation is required due
to the complexity of the cominatorial analysis involved. Examples

where suitable expressions have been derived include SRE, ARCE. ,etai

and DR (5]. For SRE. Ps can be estimated via (5.2) where .V Pr

corresponds to the number of faulty SBL's present in the current
marking M,. Note that both values Ps and I - Ps form a discrete ...
distribution which is associated with t1 as indicated in Fig. 3. When
t2 or t 3 fire exponentially, no immediate transition firing is required

and 52 and S, are null sequences. In some applications such as F% 4. Making generation with Pr

ARCE [51, the sequence Si is not unique as it is selected depending
on the current marking.

The set of multiplicities t = = . 2 ' 5n.ji PrTB, = [prt ... pr, where pri = Pr,7 if b, = 1 and pr = 0

S-- I. j = n.n = ni, indicates how the I/O places in A I if b = O. These vectors are referred to as the Probability Transition

{{p~.~l~p2.p~ }. {pf4 are affected when t, fires; the failure of a S Vectors (PTV's). In the event that two or more nondiszinct new
or a BL will cause the transition t2 to fire. Since these failures are markings are generated from the same marking, a merging to a single

fatal, all places are affected and .42 = { {p, .... po , J 01 with a new marking is carried out by a vector addition of the corresponding

set of multiplicities (labeled "all" in Fig. 3) t; ={p #PE,; probability transition vectors. The use of PTV's is described in Fig.
I,, = #l0; o = *S,; p" = s; = #HL; 4. Assuming j = 1.2. ... RI. then E' tt Pr, , = 1 where is

941 = #SBL1 }, which sets all places to zero to indicate a failure the set of markings generated by the tiring of t,.
marking. Finally, the failure of a SBL (t) affects only SBL's; i.e.. Exampe 1: Analyzing a particular marking (in a 4 x 4 array with

.A. {{Pel. with V1  {Je = 11. a MSPN as in Fig. 3) say .11=-t [12 24 20 4 9 11], then

if t, fires (i.e.. either a PM, a IOL or a IL failed) the marking

IV. RaACHABI.ITY GRAPH -1o = [8 16 20 8 6 7] results with Pris.3o  = .667. Thus.
a PTV is given by Prs.30oB, = j.667 .667 0 0 .667 0). However

the array may fail with Pris; = .333 due to the existence of
A. Probab/iiy Tram~ifon Vectors one faulty SBL (#PE's - #SBL's 1 12 - 11 = 1). Thus. a v

For each marking .1, generated when t, fires. Bi and the distribu- is given by Pr,,1 Bt = [.333 .333 0 0 .333 01. Note that

tion functon P( M,. t,) can be used to generate vectors o t he form Prts3o = Ps and Prs./ = 1-Ps where Ps is estimated
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asing (5.2). When t 2 fires (i.e a S or a BL failed), the array fails respect to 'the sum of the components indicated by previously set
vith probability Pr2,.f = 1. the corresponding PTV is given by: comparison flags. An array of pointers to the newly created targets
?rt.B 2 = [0 0 1 1 0 01. Therefore, the overall PTV associated is updated. A pointer to the current marking is denoted by CM. A
.vith the transition to the failure marking when tj or t2 fires is ob- pointer to the next marking in the linked list is referred to by next. A
ained as follows: Prtl., B, -t- Prfsj B 2 = [.333 .333 1 1 .333 0]. systematic indexing of markings is carried out such that the resulting

matrix is always upper triangular, a marking number is assigned to
every next marking fetched; a pointer nxtopr points to markings

3. Derivation of State Transition Rates which are candidates to be printed or saved in a file. A marking
becomes a candidate for output if all its targets have been numbered;

continuous-time Markov chain (CTMat can be expressed in terms of therefore, no significant amount of memory is required to generate
theatibusties aocawin the ann be xp iners o. = large models. The procedure stops, when all markings have been
the attributes associated with the transitions in the MSPN. i.e., r fetched from the sorted list. Notice that the linked list corresponds to

Polutions are given in o14d. the reachability graph and as it is formed, both a matrix representation
Let i, [n,.. 1 ... k where ns is the failure rate of of the Markov model and the reachability graph are printed out or

Let 4 =rin1 ~,i =1.. ~]wher ta isthefaiurerat of saved as requested by the user.
the ith component and M,q is the number of such components in

.LI,, then Procedure MODELGEN
(1 = [, ciPrib,; beB.j = 1. k],34 (4.1) Inputs: Set of failure rates (ai);

File names (to save the matrix representation of the Markov
model);

defines the transition rate from state q to an operational state I. The An MSPN representation of the reconfiguration algorithm.
summation is defined over all transitions that fire exponentially and Output= Reachability graph description:
generae the same marking 1. It is interesting to note the relationship Matrix representation. of the Markov model.
of (4.1) with the firing rate of a particular transition ti given by
the vector product B, iMT. Note also that a transition tj fires only g
if B,a > 0. A transition to the failure state occurs for lack of Set a coverage flag for each transition that is fired by
support (i.e., enough spares) or lack of coverage. In the first case, nonactive components.
lack ot support occurs if the reconfiguration algorithm failed due to (this allows for the evaluation of a symbolic matrix for
exhaustion of spare components or the fact that the array fals to different coverage values).
reconfigure if a given distribution of faults is not supported by the Set comparison flags (to select those components by
reconfiguration algorithm. Denote by A,f the transition to the failure which the list of markings is sorted).
state f for lack of support. then At = [E, P'Itbj; bieBi.j = Load initial marking

I ..... k]3 . Let Ac be the transition to f for lack of coverage then: roe each t, let si = Biot

A Z i = ( (l - c)Pr,,bj; bjeBi, j -- 1. kJ]1 v") Let cm point to initial marking
"" nxtopr =- cm

while not end. of list do

The overall transition rate to the failure state is: ., - Af + A'f fetch current marking
and the diagonal term of the matrix .4 is calculated as follows: assign a number to current marking

foeeachti and ifsi > Odo
a., = -(Za.,i + A). get P(xlMJ ,t,)

I=q fire t, and those transitions tieS.

Example 2: Consider a particular marking say Mts = [12 24 20 4 calculate transition rates

9 11], then the following failure rates: co = 1. ,a = a2 = ... store targets in temporary table

, = 0.01. yield -lis = [12 0.24 0.20 0.04 0.09 .111. As in end for

example 1, the following probabilities are used: Pr1s.30 = 0.667, merge repeated targets
Pris.f = 0.333, Pr28.1 = 1. Let ct = c2 =- c then, when tt insert new targets in sorted list
fires the following transition rates in the Markov chain are generated- insert pointers to new targets in current marking
,, j = ci0.667 0.667 00 0.667 0,,Jre = 8.2241c. The transition while all targets of nxtopr are numbered do

:o the failure state due to lack of support when t, and t2 fire. is output nxtopr marking
ts.f = ([0.3330.33300 0.333 01+[0 0 110 01)M = 4.34L9. let nxtopr = nxtopr - next

For lack ofcoverageAlf = (1-c)(.667.66700.6670M:b = end while
7 let cm = c-m next

.2241( 1-ci. The overall transition rate to the failure state is given as end while
,s. = 8.2241(1-i + 4.34589. Considering that the failure of a end procedure

SBL(to) yields a transition rate at,.t 9 = [0 0 0 0 0 1) 1
1 ' = 0.11

then the diagonal term is calculated as: aits.j = -(8.2241c 4 This procedure has been incorporated into a software package
i.34589.- 8.2241(1 - c) +.11) = -12.68. MGRE (Model Generator and Reliability Evaluator) described in

[5]. MGRE generates and solves reliability models given the re-
C. ir ze11mon1 Procedure configuration scheme, the size of the array and a set of failure

The implementation procedure MODELGEN outlined below rates.
merges repeated markings as they an being generated and calculates The execution time of MODELGEN is proportional to the number
or modifies the transition rates in the process. The new markings of states generated and therefore depends on the reconfiguration
;enerated every iteration, are targets of the currently visited marking; algorithm. For the applications discussed in [51, the execution time
.hey are inserted into a linked list of markings which is sorted with is 0(n ' ) for n x n processor arrays.
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TABLE 11
FAtLUa RxE Usm rot "1B ResuL ShowN iN T au III

.ray col. a t z 0- a Explanaion
a sx a I =pCfrate
b 1 0.0 0.0 0.0 0.0 0.0 a2-101E t Me
C 1 0.01 0.0 0.0 0.01 0.0 a3XSWiuth f.rate

SRE d 1 0.01 0.01 0.01 0.01 0.01 a4=b.link f.rae
e 1 0.01 0.1 0.01 0.01 0.01 a5s=hiink f.rate
f 1 0.01 0.01 0.1 0.01 0.1 as =p.b.link frate
7 1 0.01 0.01 0.0 0.01 0.0
a S* - - a3 =. wch Lfrate
b 1 0.0 0.0 0.0 0.0 0.0 0.0 a4nr.$SWud f.rate
A 1 0.01 0.0 0.0 0.01 0.01 0.0 as c.b.link f.rae

ARCE d 1 0.01 0.01 0.01 0.01 0.01 0.01 as=r.b.link f.rate
e 1 0.01 0.1 0.1 0.01 0.01 0.01 a =sp.b.Lf.rate
f 1 0.01 0.01 0.01 0.1 0.1 0.1 sxasimplex

V. PiOBABILITY TRANsmON VECTORS IN SRE VI. REL.iALFtY ANALYsts

For an nx n processor array using the SRE reconfiguration scheme, To illustrate the applicability of MODELGEN, several sets of
the initial marking Vfo of the reachability graph is given as follows: failure rates (a's) have been selected and described in Table II.
p1: #PE = n 2 ; p2: #IOL = 2n 2 ; pi: # = n+n 2 ; For each failure rate set, the Reliability (R), the NfJW, and the
p4: #BL = 0; Ps: #HL = n(n -1); ps: #SBL = n2 . Reliability Improvement Factors (RIF) have beeir computed for a

A failure marking corresponds to the case when #PE = 0 or 4x 4 processor array. The results obtained are tabulated in Table III
#SBL < 0. Transition tt will take place if either at, a2, or aS is and correspond to the analysis of the SRE scheme and the ARCE
greater than zero; t 2 will take place if either a-1 or a4 is greater than (Alternate Row Elimination Scheme) scheme analyzed in [5]. In our
zero. Likewise, t3 takes place if cs > 0. Other applications include analysis we have used the PE failure rate as a reference normalized
ARCE [31 and the Direct Reconfiguration (DR) [41 schemes, reported with respect to the time unit such that at = 1 and with a coverage
in [5] and FUSS reported in [15]. factor of c = 0.99. The computations were carried out using the

To derive PTV's, estimations of probabilities of reconfiguration MGRE (Model Generator and Reliability Evaluator) software package
are required for each reconfiguration scheme. In the SRE case. its described in [5].
MSPN indicates (Fig. 2) that when tj fires, two transitions in the The main purpose of the tabulations in Table III is to show the
Markov model may occur (corresponding to a sequence of two firings interdependencies of the different components now contained in the
in the MSPN: t1 followed by t 2 ); one with probability Pr' which model. Column b corresponds to the reliability and NMITF results
corresponds to the probability of survival denoted by Ps. The other obtained when only PE's failures are considered. Columns c to f are
transition fires immediately and will lead the processor array to the results of detailed modeling with different sets of failure rates.
a failure state with probability Pr 1 . The- array will survive with Notice for example in column e, the sensitivity to switch failures is
probability Ps if the failure of a PE or an IOL that triggers the reflected in a reduced MTFF. The array is less sensitive to increments
reconfiguration algorithm occurs in a row that contains no faulty in the failure rate of BL's because at all times the number of active
SBL Let X denote the number of faulty SBL in a marking .1, switches is greater than the number of active BL's. The simplex sx
then X = #PEI - #SBLl = mt, - meq where case in column a, corresponds to the case of the failure of the array
0 < X < n x n. when a single processor fails; the Reliability Improvement Factors

To estimate Ps, it is necessary to find all the possible ways in (RIF's) were calculated with respect to the simplex case.
which N faulty SBL's can be mapped into a total of r x c SBL's Let us consider a simplified model such as the one proposed in [161
in the array with a current configuration containing r rows and c where the reliability of the array is expressed as R(t) = R. t) x
columns. Because each row contains c SBL's, up to c faulty SBL's R,(t). The terms R. and R,. refer to the reliability of nonredundant
in each row are possible. Let X denote the random number of faulty and redundant hardware, respectively. For the SRE case, let the
SBL's in any operational marking, then Ps can be obtained using number of PE's in the array be the redundant hardware, then
the following hypergeometric distribution:

rc -c ( rc. R Mc' ( a.o , --, - -.- -' ,,t
Ps = Pr(X=X) = ()(c ) / ( ) (5.1) =

This expression calculates the probability that z faulty SBL's exist Considering IOL's, HL's. and Switches as the nonredundant hard-
in the row to be eliminated during reconfiguration. However. for the ware. then
case of the SRE reconfiguration scheme, a successful configuration
will occur only if r = 0, in which case (5.1) is simplified to the = e(2l 2 2 + (n.9.n)03 +-

following expression:

Table IV shows the reliability and WM results obtained with a

Ps = Pr(X=O) = .V / .V " (5.2) setoffailurratesasshowninrowgin Table11and witc= 0.99 .
The results given by the simplified model show an underestimation

of the reliability of a 4 x 4 array with the SRE scheme as conpared
In [51 probabilities of survival for the ARCE and the DR schemes to the results obtained by solving the Markov model generated with

are derived using also combinoial expresmons detailed modeling.
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7ABLE III
RELL~siLrry AmD RIF's FOR SRE AND ARCE WmI C 0 .99 AND FAILURE RATES GIVEN IN TABLE 11

Arrav time a b df
RIRIF

iRE 0.1 0.201897 0.97553 0.974196 0.949305 o.7 92264 0.901154
.10.3 0.008230 0.74327 i).729796 0.663918 0.3869727 0.489128

1.5 !).000335 0.428912 0.410413 0.347755 0.141386 0.194080
ZF0. 1 -32.62 3.93 15.91 3.86 3.50

0.3 -3.86 3.67 2.98 1.62 2.04
1).5 -1.75 1.70 1.34 1.17 !.27

%ITTF 01.510087 o.496435 0.447789 -).2 80379 0.33785
kRCE 1.1 0.Z01897 0.986691 0.986227 0.985946 0.983185 0.985713

R0.3 o.008230 0.969483 1.98212 0.966729 0.939159 0.959977
'1. 100035 0.926 0.47970.940533 0-831963 0.903652

RIF .1 - 59.97 57.95 55.75 4L6.78 47.29
o1.3 -32.50 31.20 29.31 :6.17 21.72
o.5 -21.13 19.22 16.61 5.93 9.65

\4TTF .. 2.07274 1.90644 1.74707 1.-02882 1.28279

TABLE IV other than PE's; in this regard. the application chosen (SRE) ii-
RELtAsit-rrr RESULTS OF SIMPLIFIED AND DETAILED MODELS lustrates the modeling of failure interdependencies as well as the

Time Simplified Detailed aggregation of probabilities of survival and coverage factors. The
0.1 0.915052 0.954906 combination of marking-dependent variable multiplicities and the
0.3 0.613426 0.6872%6 set of attributes associated to transitions contribute to make of
1.0 0.311454 o.371557 MP' lxbeadcmatmdln olt atr h al

,\4TF 0.15710.40996behavior of Fault-Tolerant Processor Arrays. Such flexibility is not
found in other packages such as Metasan (131, GreatSPN (191,

V11. CONCLUSIONS SHARPE (71, etc. Some of the features of MSPN's are incorpo-

In this paper Modified Stochastic Petri Nets were proposed as an rated in SPNIP [111 which is being developed independently of
.:xtension of SPN's to represent fault-tolerant processor arrays and MGRE.
generate detailed VMarkov models that include several components

Of the array. A mapping from transitions and markings in a MSPN RFRNE
representation to transitions and states in the Markov model was
Jerived. This mapping allows the construction of the corresponding [11 C. S. Raghavendra. A. Avizienis. and M. Ercegovac. "Fault-tolerance
Markov model as the reachability graph is being generated. The in binarv tree architectures.- IEEE Trans. Coin t.. vol. C-33. pp.
proposed modeling approach has been applied in the analysis of 568-572. June 1984.

recnfiuraionschmes[5] [1]. he se f tis pprach (21 1. Koren and D. K. Pradhan. 'Modeling the effect of redundancy onr~ ecofgrto cees[1 11 h seo hsapoc yield and performance of VLSI systems." IEEE Trans. Coin1Pu..*vol.
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n deailin 51.[5] N. Lopez-Benitez. "Detailed modeling and reliability estimation of fault-
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1. INTRODUCTION
The relevance of Processor Arrays (PA's) stems not only from their ability to meet the

computational demands of many real-time applications but also from their suitability for
efficient implementations using Very Large Scale Integration/Wafer Scale Integration
(VLSI/WSI) technology '. Fault-tolerant PA's (FTPA's) contain hardware redundancy for
some of their components (globally referred to as "redundant hardware") as well as hardware
for which spares are not provided (called "non-redundant hardware"). Typically, redundant
hardware includes processor elements (PE's) and, sometimes, communication links, whereas
non-redundant hardware may include circuitry for control, fault-detection, hardware
reconfiguration, etc.. Low reliability in a bad FTPA design may result from, among other
reasons, the unreliability of non-redundant hardware. This is particularly true for very large
arrays and/or long operation times. This problem can be avoided in well designed hierarchi-
cal FTPA's, i.e., processor arrays organized as small fault-tolerant arrays of small FTPA's.
This paper addresses the problems of analytically estimating and optimizing the reliability of
hierarchical FTPA's.

Extensive work has been done towards devising FTPA's and a non-exhaustive list of
references is 2-11. There exist many fault-tolerant schemes such as the Column Redundancy
(CR) (3 " and others), Diogenes (DI) 6, Complex Fault Stealing (CFS) 7 and Triplicated
Modular Redundancy (TMR) 10. Hierarchical FTPA's or closely related approaches have
been proposed ( , '- and others) for the yield improvement purposes. Because closed
form expressions for the reliability of FTPA's are not easy to derive, one of the motivations
of this paper is to provide the general reliability estimation model based on the properties of
the hazard function that describes the instantaneous failure rate of FTPA's.

The basic ideas and the approximation model of the hazard function are studied in Sec-
tion 2. Section 3 introduces two general approximation models for the reliability of FTPA's:
the "single-Weibull" and "double-Weibuli" approximation models. The first one is used to
estimate the reliability of FTPA's where the reliabilities of unit non-redundant area (where
the non-redundant hardware is laid) and redundant area (where the redundant hardware is
laid) have the same value. The second one can be used to estimate the reliability of FTPA's
where the two reliabilities are independent variables. In Section 4, the motivations of
hierarchical structure FTPA are discussed and the methodology for the design of bi-level
hierarchical FTPA's is presented. A case study is briefly described that illustrates the very
high reliability improvement achievable by a bi-level structure in contrast with the poor reli-
ability of single-level FTPA's with the same amount of redundancy. Section 5 is dedicated
to conclusions.

This rmarch was supported in part by the National Science Foundation under Grant DC1-
$419745 and in part by the Innovative Science and Technology Office of the Strategic Defense
Initiative Orgization and was administered through the Office of Naval Research under contract
No. 00014-6S-k.088.



2. THE OVERALL RELIABILITY AND HAZARD FUNCTION OF FTPA'S
The overall reliability of FTPA's depends on many factors, e.g., the reconfiguration

scheme used, number of redundant components added, size of the array, complexity of PE's,
reliability of switches and control circuits, etc. One reconfiguration scheme may have better
performance than the others under some circumstances and have worse performance other-
wise. For example, as shown in Figure 1, the DI scheme is better than CFS scheme if the
size of FTPA's is small whereas for large size FTPA's, the opposite is true (see 13 for details
and assumed design and technology parameters).

Without loss of generality, let's assume that an FTPA contains (nxn) + k PE's, where
k is the number of spare PE's. Let A.(n,k) and A,(n,k) represent the area of non-
redundant and redundant hardware in FTPA's, and R,(n,k,r,) and R.(n,k,r.) denote the
reliabilities of the redundant and non-redundant hardware respectively, where r, is the relia-
bility of a unit of redundant area (in this paper, the area for a single PE is defined as the
unit of area), and r. is the reliability of a unit of non-redundant area. The reliability of an
FTPA can be written as

R(n,k,r.,r.) = R.(n,k,r.) • R,(nkr,) (2.1)

Clearly, the overall reliability of an FTPA is at most as good as the lowest of the reliabilities
of the redundant hardware and the non-redundant hardware.

In an FTPA, if some PE's fail, the reconfiguration scheme will try to replace these
faulty PE's and make the whole system operational. For a given FTPA with (nxn)+k PE's,
let r, be the reliability of each PE, then the overall reliability can be written as

R(n,k,r.,r.) = r. " - * k (n r.- r,-(1 - (2.2)

where ai is the probability that the reconfiguration scheme succeds when there are i faulty
PE's in the array. Expressions (2.1) and (2.2) are valid for any type of FTPA. However, in
order to facilitate the presentation and discussion of the ideas and results, two assumptions
are introduced next and apply to the remainder of this paper. For a given FTPA, it is
assumed that, (1) all PE's are redundant hardware and the remaining circuitry corresponds
to non-redundant hardware; (2) at the exception of the mechanisms and scheme used for
reconfiguration, all other procedures and hardware required for fault tolerance are perfect
(e.g., fault detection and location).

In general, the Cumulative Distribution Function (CDF) of any FTPA component is
assumed to be exponential with operation time. Then the corresponding hazard function of
each component is a constant . In a simplex processor array (the array without any redun-
dancy), a failure in any component causes the whole array to fail and the hazard function of
the entire array, h(t), is also a constant, i.e., h(t) =X >0. The corresponding reliability is
R(t) =e - ".

In FTPA's, a faulty redundant hardware component (e.g. a PE) may be replaced if
there is a spare available in the array. Clearly, at time t=0, all components (including the
spare ones) are assumed to be good, the probability of a successful reconfiguration is high,
and the total number of mortal failures of the array per unit time is low. However, as time
goes on, i.e., when the value of t becomes large, some of the spare components are exhausted.
The possibility of recovery from additional failures becomes smaller, i.e., the probability of
successful reconfiguration is lower and the value of h(t) will increase. Eventually, when most
of the spare components are exhausted, the hazard function h(t) will tend to the constant
which is the hazard rate of the array with redundancy exhausted. The value of h(t) depends
on many factors and, as for the reliability R(t), it is very difficult to obtain the exact expres-
sion of h(t). However, the following simple properties of h(t) can be inferred from the discus-
sions above: i) It should be a monotonic increasing function of time t and tend to a con-
stant. ii) It is a continuous function and changes its value smoothly in range (0, +oo). The
well known Weibull estimation model 12 17-18 will be studied and used to approximate the
h(t) based on these properties. In the rest of this paper, R (t) and h (t) denote approxima-
tions of R(t) and A(t), respectively.

The two-parameter Weibull estimation model has the form

h"(t)=a-t , a, bEGR, a>O and b>O. (2.3)

The parameters a and b are called the scale parameter and shape parameter, respectively.



The corresponding formula for the reliability function is

-eb+1 (2.4)

The expressions for both h *(t) and R *(t) are very simple compared to other possible approx-
imations, such as Gamma, Beta and Lognormal distributions 12 1. On the other hand,
according to our experience and previous work 17-13, the Weibull distribution model is very
flexible and capable of providing a rich family of approximations for increasing (and decreas-
ing) hazard functions h(t) by adjusting the scale parameter a and the shape parameter b.
Because, for FTPA's, h(t) is a positive monotonic increasing function of t, parameters a and
b are always positive numbers.

3. GENERAL MODELS FOR FTPA RELIABILITY

The reliability of FTPA's is not only a function of time but also a function of the size
of FTPA's. A generalized reliability evaluation model that captures this dependence on size
is studied in this section.

For a simplex PA of size N (i.e., N= number of PE's), the hazard function, in terms of
the size, is a constant, i.e., h(N)==lnL. The corresponding reliability is

tr

R (N) = rN = e- 'V . For FTPA's, instead of a constant, the hazard function is a monotonic
increasing function of N. This can be explained by the following two facts. First, the redun-

danc factor 7= -- decreases significantly with the increasing of N. This may cause a
N-k'

shortage of the spares to replace faulty PE's in a very large array and implies that the pro-
bability of the failure of the whole system increases with the increase of N. Secondly,
because the size of the non-redundant area Aa, usually, is proportional to the size of the

A.
array, the reliability of the non-redundant hardware R,=r. decreases with the increase of
N.

As mentioned in Section 2, the Weibull model can provide a simple and good approxi-
mation for those non-linear monotonic increasing (or decreasing) hazard functions. So, h(N)
can be modeled by another Weibull formula, i.e.,

h (N) = aI-Nb', at, V EIR, and at>0, Y >0. (3.1)

Without loss of generality, let's assume that the variable N is a continuous variable; then the
corresponding reliability in terms of the size N can be written as

R*(N) = e-fA(")d - e . (3.2)

where a -- ! and 8 - b 1+1.

There is no time variable t in Equation 3.1 which implies the time is fixed in the equ ,-
tion, i.e., t = t0 . Assume that, for a given reconfiguration scheme, the parameter Y, which
describes the sensitivity of h°(N) to the size N, is independent of the time t; in other words,

a (N+1)
assumed to be the increasing rate of the hazard rate, , for a given fault-tolerant

scheme, is independent of time (parameter a should be a function of t). If parameter b in
Equation 2.3 is independent of the size N, then the hazard rate can be approximated by a
model with two variables.

h°*(N, t) - c .t'-N" , c >0, b >0, ¥l>0, c, b, YEIR (3.3)

where c is a new parameter. (The error of the two variable approximation model may
increase if parameters b and 6' are not independent of N and t, respectively.) The
corresponding two variable model for the reliability function is

(N,t) = --ffA0(Nv ' ).fi - + - 1-N' (3.4)
where parameters a- = b +1 and -=6Y +1 are positive real numbers.

(6 +1)( 6' +1)
Besides the time t and the size N, the reliability of FTPA also strongly depends on r,,

the reliability of single PE which is determined by the complexity of PE, thchnology etc..

Because r,(t) ---e - 1, where X is the failure rate of a single PE, it follows that t =X In r,(t).
X



Let 6- >0. By bringing t into Equation 3.4, the reliabilityt then can be written in terms
of N, and r, as

R (N,r,(t)) = e)(3.5)

Instead of a function of time t, r. itself can be an independent variable. Letting a' =a-60,
Equation 3.5 can be rewritten as

R "(N,r,) = e r,)O.N7 (3.6)

In general, if the reliability of unit non-redundant area always has the same value as
the reliability of a single PE, i.e., r. = r,, then the reliability of the array can be described
by a single- Weibull distribution formula in terms of N and r, as in Equation 3.6. However, in
some cases, e.g., in hierarchical fault-tolerant structures 14-16, r. and r, may vary indepen-
dently (details are shown in Section 4). Therefore, the reliability of redundant hardware and
non-redundant hardware should be described separately in terms of variables r, and r,.
Because the overall reliability of the system is the product of the reliability of the non-
redundant hardware and the redundant hardware, another model, double- Weibull distribution
formula, is used to estimate the reliability,

R (N, r., r, ) = R,(N, r )'R,(N, rr) = e -a•4 (-e.1. N 7 rj5 'N" (3.7)

where a. on , , ,, 6, and -,. are the six parameters that must be estimated for different
FTPA's. Equations 3.6 and 3.7 are used in next section to study the different
reconfiguration schemes and to derive a methodology to find the optimal structure of a bi-
level FTPA.

4. THE ANALYSIS AND DESIGN OF HIERARCHICAL FTPA'S
The basic idea behind the design of a hierarchical FTPA is best explained if the partic-

ular case of a bi-level FTPA is considered first. A bi-level FTPA consists of a set of fault-
tolerant subarrays. In other words, the full array is partitioned into subarrays and can be
thought of as an array of subarrays. Both the subarrays and the array of subarrays use
some fault-tolerance scheme. The subarrays are hereon denoted as 1#t-level FTPA 'a and the
array of subarrays is referred to as the 2nd-level FTPA. A 2nd-level FTPA can be thought
of as an FTPA where the basic modules are themselves FTPA's and, physically, it is the
same as the bi-level FTPA. The extension to multi-level FTPA's can be easily made by real-
izing that an n-level FTPA consists of an FTPA whose basic modules are (n-1)-level FTPA's
which are FTPA's composed of (n-2)-level FTPA's, etc. For convenience of presentation,
bi-level arrays are assumed hereon and, unless stated otherwise, the basic ideas and results
apply to multi-level arrays as well.

When faults occur in a bi-level array, reconfiguration is first attempted at the 1st-level
FTPA's, and, when reconfiguration fails at the 1st-level, then reconfiguration at the 2nd-
level FTPA is attempted. The total non-redundant hardware in a bi-level structure consists
of the switches, links and control circuits at the 2nd-level. Therefore, hi-level FTPA's can be
expected to have better reliability than single-level FTPA's for at least two reasons: (1) the
area of non-redundant hardware in bi-level FTPA's can be smaller than that in single-level
FTPA's and (2) the size of arrays and the reconfiguration approach used at each level can be
chosen so that optimal reliability results, thus avoiding the inevitable reliability degradation
that occurs when the size of single-level arrays grows too large.

Having realized the potential benefits of multi-level FTPA's, from an engineering point
of view, it is essential to have a systematic and formal approach to the design of these sys-
tems so to optimize the reliability of the overall FTPA. This approach is described in the
remainder of this paper.

4.1 The optimization of hierarchical structure
Without loss of generality, let the size of the 1st-level and 2nd-level FTPA's be

(nlxn1 ) + k, and (n2xns) + k2, respectively. Here, k, and k2 correspond to the number of
spare PE's in lst-level and the number of spare subarrays in 2nd-level, respectively. Also,
the number of processors in the bi-level array is (nxn) + k where n = nlxn2 and
k = k1 n + k1 (n1 + ki). The reliability of the bi-level FTPA is essentially the reliability
of the 2nd-level FTPA, i.e., R 2 = R 2 (n2,k 2,Rl) where R, is the reliability of one 1st-level



FTPA, i.e., R, = R, (nl,kl,r,). Assume that k, and k2 can be expressed as the functions of
n1 and n2 for the given reconfiguration schemes, R, and R 2 can be simplified as
R, =Rl(nl~r,) and R2 =(n2 ,R1 ). For a given array size n, different values of n2 significantly
affect both R, and R 2. A small value of nj may yield a higher value of R, but does not
necessarily provide a high value on R 2 because of the increase of n2 (n2 = n/n,). The exam-
ple of the reliability of a bi-level FTPA against the number of subarrays n2 is shown in Fig-
ure 2. The value of n2 for which R 2 is optimal is the solution of the equation

dR2 R 2  8R 2  OR, aR2 .k 2--- = - +  - + -- 7- (4.1)
dn2 ~ -n OR 9 n2  Ok2 On

Once the solution n2 is obtained, nj can be found because n is assumed to be known. Unfor-
tunately, for a bi-level FTPA design, Equation 4.1 is hard to obtain and solve. In order to
deal with this problem, a new methodology based on the general single- and double-Weibull
approximation models discussed in Section 3 is proposed in which individual models are used
to estimate the reliabilities of the first and the second levels.

Without loss of generality, assume that the area of hardware is normalized so that a
single PE always occupies one unit of chip area. Let the reliability of hardware in any unit
of area have the same value regardless the kind of circuitry in it. For the reconfiguration
schemes used at the first level, because the reliability of a basic PE is given as a constant,
the only one variable for R, is the size of subarrays n1. The single-Weibll approximation
model can be used to estimate R(n) as

R*(nl) = e- *"*l (4.2)

where a' and 3 are real positive constants.

The approximation form R2 of the reliability for the second-level as a function of n2 is
more involved than R,. This is because the reliability of one module (subarray) in 2nd-level
is R1 (n) which is the function of nj (it is also a function of n2 for a fixed n because
%=n/n2) instead of a constant (as r, in the Ist-level). However, the reliability of unit
non-redundant area r, is still a constant. The reliability of redundant and non-redundant
area R, and R. in 2nd-level will not always vary congruously with n 2. For example, some-
times, a decrease of R, due to a larger value of n2 may cause R, to increase. Because the
goal here is to find the trade-off between n2 and n1 on which the overall reliability is optim-
ized, the single-Weibull model can not be used here any more and, the reliability R, and R,
should be estimated separately in order to represent their variations with n2. According to
the general expression of the reliability in Equation 2.1, the reliability in 2nd-level for some
reconfiguration scheme can be written as

R 2(n2,r.,R (n2)) = R,(n 2,r.).R,(n 2,R,(n2)) (4.3)

where
R.(n2, r.) =, rX" ':  (4.4)

Because r, is a constant, R 2(n2,r.,R1 (n 2)) can be written in terms of n2 and R,

R,(n 2,R1 (n2)) = F, 2i 2 R1 (1 - R 1 )' .(4.5)

i-O

A, is the non-redundant area in 2nd-level and k2 is the number of spare subarrays which is,
usually, a known function of n2 for a given reconfiguration scheme. The double-Weibull
approximation model then should be used to express the reliability of the reconfiguration
schemes used in 2nd-level of FTPA. Because r. is a constant, R, can be modeled as

R:(n 2) = (4.6)

where a and b are positive real number parameters. From (4.4) and (4.6), it is clear that

A,(n.) is approximated by I -n b, i.e., the non-redundant area is assumed to grow pro-
In r.

portionally with some power of the number of processors in the array.

The approximation form used for R,(n2,R1 ) has two variables, n2 and R1,



R,(f 2,Ri) - - (4.7)

where u, v and w are positive real constants. In summary, the double-Weibull approxima-
tion form R 2 is

=R' -(-IMRJI,'- (4.8)
Because nj = n/n 2, letting a = a'-no, (4.2) can be rewritten as

Substituting Rj into (4.8) yields

ff e + Ei-(o-2 + .., - -)

--- - " • (4.10)

Equation (4.1) can now be solved, i.e.,

dR; 1+a.__2= [a.bn - + c,.1(W - .u).nw-.-1)] -(, +",w.k'-") =0. (4.11)
dn 2

Because- 0 if and only if
dn2

a'b 1 +* .V(w - /'u)'n ' -1) -0. (4.12)

Also let's assume n2#0, (4.12) can be simplified as

a -b-n + al V(W -13-u)44""') = 0. (4.13)

Because all parameters are positive real numbers, the necessary and sufficient condition for
the existence of a real positive solution to (4.12) is

tW -- u < 0 (4.14)

There are many fault-tolerant schemes (with different values on the parameters
u, w and 3) which can be used to construct the bi-level structure. If (4.14) is not satisfied
for two chosen schemes, then Equation 4.13 has no real number solution and R 2 gets its
maximum at one of the boundary points, i.e., n2 =1 or n2 =nxn. This means the bi-level
structure can not provide better reliability with these two schemes than a single-level struc-
ture with one of these schemes. If this happens, other schemes should be considered and
checked by (4.14). If (4.14) holds for two specific schemes, Equation (4.13) can be rewritten
as

abn-(- ')+ v(w -- ' -0. (4.15)

Letting 8 - w -,8-u and = --ac-' /(a .b), then the optimal solution is

=; 0~110-0) (4.16)

Substituting (4.16) in (4.10) yields the maximum reliability attainable with a bi-level FTPA
using two given fault-tolerance schemes

R; =-- C -l"'/60-4 +"''l' (4.17)

In summary, the optimal hierarchical structure can be obtained by the following four
steps: 1) Getting the parameters of Weibull distribution model (via simulation or estima-
tion) for all previous fault-tolerant schemes that are possibly to be used on the hierarchical
structure. 2) Choosing different combinations of the schemes in 1st and 2nd level and
checking Equation 4.14 to find the possible candidates. 3) Substituting the parameters of
the possible combinations of the schemes into (4.17), the one which maximizes R; is the
optimal combination of the schemes. 4) Substituting the chosen parameters into (4.16) to
achieve the optimal partition nj of the hierarchical structure.

4.2 An illustrative example



As an example, the design of a bi-level FTPA with n=36 is considered where the sim-
ple CR approach is to be used in the 1st-level and the DI scheme is used in the 2nd-level.
For both CR and DI schemes a column of spare processors is used. The area and reliability
estimations were computed for both the CR and the DI methods and the reliabilities for each
of the levels were approximated as

R, = e -2 (4.18)

-10.027%1 -28 + 0.64 (1a -)y .2k'"

R 2 = e 1 (4.19)

Assume that r, = r, = 0.99. The values of the variables in (4.16) are 0 = -11.24, b = 1.26,
1.144x10 9 and the optimal value of n2 is n; = 5.3. Because both nj and n; should be

integer numbers with n1 xn 2 = 36, the number n; = 6 is used. Then, there are total 1764
PE's in the array and the redundancy factor q is 1.36. The overall reliability is 0.75, where
the reliabilities for a single-level array using the DI approach or the CR approach with the
same redundancy factor are 0.08 and 0.31, respectively.

5. CONCLUSIONS

Several important related conclusions can be made from the work reported in this
paper. First, according to the properties of the hazard rate of the FTPA's, the Weibull esti-
mation model can give a good evaluation on the reliability of different FTPA's. The second
conclusion is that, based on reliability estimations, it can be found that non-redundant
hardware for fault-tolerant purposes does limit the usefulness of single-level FTPA's beyond
a certain size. For different fault-tolerant schemes, different array sizes and different area
and technology parameters, there does not exist a scheme for FTPA's which is universally
optimal. In other words, different fault-tolerant schemes are optimal for different array sizes
and different technologies of VLSI. The third conclusion is that the hierarchical FTPA's do
not suffer from the disadvantage pointed out in the second conclusion for single-level FTPA's
and can make highly reliable.

To achieve the third conclusion mentioned above, the problem of designing optimal bi-
level FTPA's was addressed and a methodology for its solution has been described. The key
to this methodology is to avoid
the complexity of the exact analytical expressions by using accurate functional approxima-

tions of the reliability of FTPA's at different levels, These approximations are based on
Weibull reliability functions.
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ABSTRACT can choose an initial FTPA architecture that can then be
An important problem in the design of Fault-Tolerant designed and evaluated in detail in order to confirm and refine

Processor Arrays (FTPAs) involves determining the amount of the estimates. This paper addresses the important questions of
redundancy needed to meet requirements of the Mean Time To how much redundancy is necessary to achieve a required MTTF
Failure (MTTF) or to optimize the MTTF. Given a desired and what is the optimal redundancy amount that maximizes
value of MTTF and an FTPA architecture, the necessary MTTF.
number of spares (NNS) is defined as the minimum number of The cost of an FTPA increases with the number of spares
spares needed to achieve the desired MTTF. The optimal and the extra hardware needed for reconfiguration. Given a
number of spares (ONS) is defined as the number of spares for desired value of MTTF and an FTPA architecture, the neces-
which the MTTV of the FTPA is maximized. This paper intro- sary number of spares (NNS) is defined as the minimum
duces reliability and MTTF models of different FTPAs. Based number of spares needed to achieve that MTTF. If, for a
on these models, approaches which allow for the analytical esti- prescribed MTTF, the number of spares is much greater than
mate of the NNS and the ONS are proposed. Knowledge of the necessary number of spares, the spares in excess will render
NNS is suited for FTPAs where non-redundant hardware the FTPA unnecessarily expensive. Moreover, because the
(hardware for which no redundancy is provided) is considered amount of extra hardware increases with the number of spares,
nearly fault-free. Knowledge of ONS is useful when faults can it is not guaranteed that the additional redundancy always
affect the non-redundant hardware, because in this case overall improves the MTTF of an FTPA. The decrease of the reliabil-
array reliability may actually decrease when the number of ity of the extra hardware may reduce the MTTF significantly,
spares increases beyond some value. The quick estimates pro- particularly when the size of the array is very large. Thus, it is
vided in this paper can be used to help designers in the early not always true that the larger the number of spares the higher
phases of design of an FTPA. the MTTF of the array. The optimal number of spares (ONS)

is defin-d as the number of spares for which the MTTF of the
FTPA is ,naximized. Different reliability models and MTTF

1. Introduction models of FTPAs in terms of the number of spares, survivabil-
For processor arrays of large size, there is a high probabil- ity of the reconfiguration scheme, reliability of a single proces-

ity of failure of one or more processors. This implies that the sor and other parameters are proposed in this paper in order to
value of mean time to failure (MTTF) may be very small for analyze and find the NNS and ONS. The results obtained by
these processor arrays. In a fault-tolerant processor array the proposed estimation models are quite accurate when corn-
(FTPA), spare processors are added and a fault- tolerant scheme pared with exact values obtained by extensive computer simu-
(or reconfiguration scheme) is used to reconfigure the intercon- lations.
nections in order to replace faulty processors when faults occur. The paper is organized as follows. Basic models of FTPAs
Besides the spare process.-1, some eztra hardware such as inter- and faults are introduced in Section 2. In Section 3. MTTF
connections, switches and control circuits is added to support evaluation models are discussed and the effects of hardware
.he reconfiguration. Extensive work has been done towards redundancy on MTTF and reliability are compared. The esti-
designing FTPAs and typical schemes such as Column Redun. mation of the necessary number of spares is presented in See-
dancy (CR) f5j, Diogenes (DI) (I1, Complex Fault Stealing tion 4. Section 5 discusses and proposes an ITTF model for
(CFS), and FUSS [41 are of particular interest in this paper. the FTPAs where failures of interconnections, links, logic con-

In order to design FTPAs, it is necessary to choose one of trol circuits and other hardware elements are taken into con-
many possible reconfiguration schemes and to decide how many sideration. A procedure for estimating the optimal number of
spares are needed to achieve either maximum MTTF or a spares is proposed in Section 6. Section 7 concludes the work
prescribed value of it. Detailed design and MTTF evaluation of reported in this paper.
all possible FTPA 'architectures are too time-consuming and
cannot be used to help a designer make the above decisions. 2. Reliability Models for FTPA&
Instead, it is desirable to use valid estimate of MTTF and the For the purposes of this paper, an FTPA with 1Y - k pro-
number of spares that can be quickly computed for different cemors is modeled as JV - k identical modules each of which
reconfiguration schemes. Based on these estimates, a designer consists of two parts. One part contains hardware for which

redundancy is provided; typically it corresponds to a procesing
This research was supported in part by the Innovative Science element but, in general, it may also contain part of the
and Technoloy Office of the Strategic Defense Initiative hardware used for control, communication and reconfiguration.
Organisatilon and was administered through the Office of Naval With this understanding, this part of the module is herein
Research tnder contracts No. 00014-S-k-0588 and No. 00014- referred to as the processing element (PE). The other part of
1S.k-0723. each module contains hardware for which no redundancy is

provided. Typically, it includes switches, links and control cir-
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cuitry for communication and reconfiguration purposes. In this not a constant but a variable in the range 0 <_ sa<5 1. Because
paper, the hardware of the modules in the array without redun- there is no general closed form to express the survivability for
dancy is collectively referred to an the non-redundant hardware this kind of scheme, computer simulations can be used to
and processing elements are called redundant hardware because obtain the survivability sa 12. Due to article size limitations,
k spare PEa are provided, this paper only considers schemes for which the survivability ai

In ,his paper, a failure of any component is assumed to can be approximated by a constant S. The discussion of the

cause the failure of -he entire processor array unless it can be cases where the survivability s, is not constant can be found in

-epiaced by a functional spare. So, two conditions must be
iatisfied for an FTPA to be successfully reconfigured when In some previously proposed FTFA designs, it is assumed
:auIts occur. First. the reconfiguration scheme must succeed that the non-redundant hardware is perfect and never fails.
wnen the given number and pattern of faults are present. The This assumption is based on the fact that these non-redundant
:oaditionai probability of a scheme being able to reconfigure hardware components are, compared with redundant hardware,
:.he array given there are / faulty PEs in the array is cailed pro- smaller and simpler and therefore can be designed carefully and
5ability of $Urvifal or survivability and is denoted 3;. 2econd, conservatively so as to minimize the probability of operational
the mechanisms that support reconfiguration must woric prop- failure. Therefore, when the amount of the non-redundant
eriy, i.e.. the non-redundant hardware must be fauit-free. hardware is small, the non-redundant hardware can be assumed

Faults in an FTPA are assumed to be uniformly distri- to be almost fault-free or R,(t) _ I [11 ;2!. Thz-, the overall

buted and independent. In other words, the failure of a given reliability of an FTPA can be written as

PE aever causes failure of other PEs or non-redundantII
hardware component and vice versa. Furthermore, it is R(t) =s. Ve-iN'k-e)tL(l-e4)s (4)
assumed that failure of a non-redundant component results in i=o
failure of the entire processor array. Then the overall reliabil- For large enough processor arrays, non-redundant hardware
ity of an array can be modeled as can not be assumed to be fault-free. The general reliability

R = R,- (1) model of the FTPAJ in which Rq < I is studied later in Section

where R, is the reliability of redundant hardware and R. is the
reliability of the non-redundant hardware. 3. MTTF Model of Processor Arrays

Without loss of generality, let a unit area of the hardware The MTTF should not be confused with the reliability
be defined as the area occupied by a single PE. The average function R(t). As shown in Section 2, the reliability function
area of non-redundant hardware in each module is assumed to R(t) is the probability that the array has no fatal faults during
be a, and. therefore, the total area of the non-redundant the time period (0, tj and is a function of operation time t.
hardware of the FTPA is A. = (jV-k) a,. Also let the reliabil- However, the MTTF is independent of the operation time t and
ity of the hardware in a unit area be e-1" where X is the failure can also be written as the integration of the reliability of the
rate of the hardware of a unit area and t is the operation time array as (31:
variable. Then the reliability of the non-redundant hardware is
R.(.) = e- If the operation time t is a constant that is MTTF = R(t) dt (5)
normalized to unity, R. also can be written as R, = o

The reliability of the redundant hardware R.(t) is defined
as the summation of the probabil;tie that the reconfiguration 3.1. Harmonic series imodel
scheme survives i failures for all possible fault distributions ana For FTPAs where the reliability can be modeled by (4),
'or =0. ,. k. where k is the number of spare PEa. Then, according to (5), the MTTF can be written as

R,(t)=,C,
,- N MTTF = S "k - ' dt

1-~ 0 0-o
The combination term in the above equation accounts for all lk epossible fault distributions with i faults. The overall reliability =s E t kf(e *,+,_ . (--.)i e- } dt
of an FTPA with Ni'-k PEa can be modeled as -O o -o J

R(t)-R,(t)Rjt)=e-_ ,,d N -( I+h1-)di(1-e-.)e . (2) = S i j (-1)' ( dt
i.-4 )i-0 i_0j.O,

Notice that not every failure of the redundant hardware cause.sfpkId~ _____

the whole array to fail because the faulty redundant hardware I= 8 1
may be replaced by spares. The fault which causes the whole i- i-o
array to fail is called the fetal fault (which may occur after all According to [8!, the summation in the above equation can be
spares are exhausted). simplified as

For some reconfiguration schemes, such as the Diogenes I ~__________
.11 and FUSS [41 scheme, the survivability si is almost con- - .(__1) =

stant and cloe to one. Let S denote the constant value of sur- j-. ( Y(NI+l)(2V+2)...(N'i)
vivability sa, then the reliability of this kind of FTPA can be So, the MTF can be written as
modeled as

e A-1 ,jVTFk j (i\. k-t)(Afl.k-i+l) ... l:%,+k)'
R(t) s 1  

- e-' (3)

However, for some other reconfiguration schemes, such as the
CFS scheme and the CR scheme 2t (51, the survivability s; is

l's



or TTF 2. ' IrM+ t!(iV-'k-i-l)! Increment rate A..4 and .1.or MTTF =- i- (r )

t:J (,'- k-Q)'i! ' oo "'
o-. .. .. ..

MTTF =-.! N'kl!i!(N'-k-i-)! S t 0.03

S I I (6) o -*.. =0.02
XI M- 1 M' 2 N'44)

The MTTF model in (6) also can be written as a difference of . \ =.01.0.02, 0.03
t w o H a r m o n i c s e r i e s a s 1 0 0 _ ... .. .2 0. .

MTTF =2T ( - T( ) (7) .........
24 6 a

where- + + - is the Harmonic

-i

ieries. The MTTF model in (7) is called the Harmonic series Figure 1: The dotted lines indicate the variation of the
model, increment of reliability -,(i) with number of spares . The

solid line indicates the variation of the increment of MTTF
3.2. Comparison of the models of MTTF and reliability . ,(i) with i. The logic size of the FTPA's is AP - 100 and

How the spare PEs improve the MTTF is very different operation time is t = 1. It shows that, -1.(i) is much dependent
from the way they improve the reliability in large size FTPAs. on the failure rate X and i, but A_1(i) is almost independent of

According to Equation 4, the reliability of an FTPA with V \ and 4.

PEs and k spares is

R = S.( r " '+ (Pp+k) " where MTTF%.o = i/(NiX) = 100 is the mean time to failure of

UV-k)(IP+k-) .0,.k-2 the simplex array without any redundancy. Equation 8 shows
" 2! .": .... ) , that there is almost a 100 percent improvement in the MTTF

for the FTPA with only one spare PE. However, for the same
where r =e - )" is the reliability of a single PE andq=l-r. If FTPA with one spare PE, there is only about I percent
it is assumed that r >>q, N >>k and S 1., then the reliabil- improvement in the reliability with unity operation time t = 1.
ity of the array can be approximated as In summary, the IMT can be improved by adding spare

-' . ( .V t .... ) . PEa when N' >>k and the improvement rate is independent ofr J. )the number of spares and the failure rate . In contrast, the

Intuitively, the first item in the above equation is the reliability reliability improvement per added spare PE depends on the
of the array without any replacement. The second item in the number of spare PEa and the failure rate X.
equation can be thought of as the reliability increment for the
case when the first faulty PE can be replaced or be recovered. 3.3. Simplified form of MTTF
The third item is the reliability increment if the second faulty Because there is no closed form expression for the Har-
PE also can be replaced and so on. Let A.(i) be the increment monic series model of the MTTF,
rate which is the ratio of the reliability increment contributed S
by the replacement of irt faulty PE to the reliability of the MfTTF = ( -
corresponding array without any replacement. Figure I shows \,V'V - 2"'"
that A,(i) strongly depends on the failure rate X and i and it = 5(
decreases very quickly with the number of spares when X is ,

;mall. This implies that a significant reliability improvement is further simplification of the MTTF model may be needed in
Unlikely to result from increasing the number of spare PEa and order to find the analytic expression for the number of spares
the reliability cannot be improved constantly by successively which is required for a given FTPA structure.
adding spares for FTPAs with very small failure rate . According to [81, H, can be written as another series

However, the MTTF can be improved almost constantly which may contain an infinite number of items as
when NP > k and the improvement rate contributed by the
spare PEs is almoso independent of X and ; Let ,,(i) denote . = Inn +T + . - l .
the increment rate which is the ratio of the MTTF increment 2n 12n 120n4

contributed by the replacement of ith faulty PE to the Tf 1 1 w
of the corresponding array without any replacement. Figure L or Hl . Inn . "7 . - 1 =  

-'n where
shows that, -L i) is approximately a liner function of the 0 < 4 < 1/(252 ns) and -1 - 0.572156649... is the Enter's con-
number i regardless of the value of X. For example, consider an slant. Then the MTV can be expressed as
FTPA where M = 100, X =10', S= I and k -I (which , 1 1
means only one faulty PE can be replaced), then the MTTP of MTTF =21 (In(/'4-k) + - - .... ) -
the array with one spare PE is X 2(4k) 12(N'+k)5

ITF.1 --- =9~'T F (8)_ - (n(N-1) - -- + .. ) 9NWT41-(7 __ 7V'-i - 9-2MTj_ a 2(M-01) i2(N'-1)1
The main advantage of this expression, compared to the Har-
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-nonic series model in i7) is that the series in (9) converges function of kc. In the rest of this section, further simplification
., uch more quickly than that in (7) for those FTPAs having a and estimation of the solution of Equation 12 are discussed.
a3rge number of PEs .V. Assuming the number of PEs in an To estimate the solution. Equation 12 is studied in three
FT'.PA s large enough so that nly the first three items in series different cases. [n the first case. the value of M is small and ;7,
,9) are significant enough to ipproximate the MTTF and let- the second case, the value of M is large. The third case conaid-
-ing V' - .V' ic follows that ers FTPA designs which most frequently happen in practice,

fTTF -- _I_-____ and therefore it deserves more attettion.
, ., 2,'( I) ) "  (10) In the first case, it is assumed that, for a given FTPA

-his ciosed form expression of MTTF is much simpler than the structure and the prescribed MTTF, the value M = (M,-')/Sis

ne in 17). The error of this approximation is 0( 1) which very small such that M< I/N'<< 1. According .o (6), -he
Y2 .MTTF of an array without redundancy (k = 0) is

:an be neglected ror !arge size FTPAs. The comparison of MTTF = S/(V'.\). This implies that a prescribed MTTF of an
these two expressions with different values of Nl and k is given array is at least .MS/(N'\) and it must be equal or greater
.n Table L. The estimation of the necessary number of spares than the MTTF of the array without any redundancy. In other
NNS required for an FTPA to achieve a prescribed value of words, the value M=M,'X)/S of any array is at least
MTTF is discussed in the next section by using the model in M" = 1/A'. Therefore, for a given FTPA structure, when the

101. prescribed MTTF M, is such that M=(M'.)/S /N', no
redundancy is needed for the array and,

Logic number Number of spares MTTF { MTTF* Ic 0 . (13)
200 10 227.6443 222.6436 The second case includes all FTPAs where the prescribed
200 0 4 .109.6329 . 404.6318 MTTF is large such that M> 1/N'. Since
200 150 .563.5458 4 558.5443 = k/(2N'(AN+k)) I/(2N9 << 1 usually is very small for

200 200 696.8987 691.8972 large size arrays, it has e I - 6 where the error is 0(P)
S400 i 50 120.1443 11 7.6441 which is O(I/(A )). Then Equation 12 can be approximated as
.00 10 225.3937 222.8936 k = AP(e'.(t -- ) - 1). Because o << I and I - j = 1, it yields
100 150 320.6131 4 318.1128 7= Y ( CM - }
100 200 1 407.5487 1 .105.0484 k
500 50 it.6453 , 7g.9786 Thus, for a given FTPA with M = ,;./S>1iN. the neces-
600 too 155.98 154.0316 sary number of spares NNS for the array to achieve the

150 224.8436 122 7 prescribed value of MTTF can be estimated as an exponential00 15 ! 24.436 22.960 I  function a600 80 "9. 1 -105 287..1738 f as
0000r 1

Table 1: The values of MTTF are obtained from the Harmonic I = N,( e - 1) .(14)
odel in 6) and the values marked by TTF* are obtained The estimation of the NNS by Equation L4 for the FTPAs
S0.001 and survivability is 1). with different values of M and ,V' is shown in Figure 2 by dot-

ted lines. As a comparison, the accurate values of the NNS are

indicated by x in Figure 2. These accurate values are obtained
by a computer program in which the calculation of Equation 6

4..Nectsar Number of Spares is repeated for different values of Ic-I. 2, ... until the result of
Equation 6 reaches the desired MTTF for a given FTPA. It is

Given a desired value of MTTF (prescribed MTTF) and clear that Equation 14 provides a good estimation on the NNS
an FTPA structure ithe logic 3ize. fault-tolerant scheme, etc.), for the FTPAs with large values of M.
he neccsary number of spares INNS) is defined as the The first case does not happen very often and can be
minimum number of spares needed to achieve the prescribed
MTTF. For a prescribed value of MTTF, if the number of ignored in large size fault-tolerant processor array designs. This
ipares in an FTPA is much greater than the necessary number is because if M = (M,X)/S < /N'. the prescribed MTTF
of spares, the spares in excess will render the array unneces- .M - S/(=.>k) is very low when the logic size of the array N' is
sarily expensive. In this section. estimates of NNS of FTPA large and in practice, the prescribed .TF is expected to be
structures with constant survivability are proposed. much larger than this value.

Let M, denote the prescribed value of MTTF of an FTPA. The second case where M is larger than or comparable to
According to the model in (101. the number of spares should one also does not happen very often in practice. This is
satisfy the equation because for an FTPA structure with given survivability S and

failure rate of a single PE X, a large value of Mm(M,'X)/S may
__ -g ( -'V- ! require a huge number of spares which is unreasonably expen-'sive to implement. For example, consider an FTPA with logic

size N' =- 400 and S = 1; according to Equation 14, almost 700
spare PEa are required for the array if M = 1 is expected. So it

M9infN'..). 11 may be too expensive to implement an FTPA to achieve the
2N'fN'-k) prescribed MTTF which results in a large value of M. Actu-

Let M = (M,)\/S and k = k/(2.V1f.V-k)), then Equation 11 can ally, the prescribed MTTF M, such that M=(MjN)/S is very
-e rewritten as .P'-0k/M - e- .'1 . Hence tbe necessary high may not be achievable for large size FTPAs if the failure
number of spares k for which -he array can achieve the of non-redundant hardware is considered as indicated later in
7Jrescribed value M, is Section S. Experience with numerical simulations shows that,

Y (e (12) for most FTPA designs, the prescribed MTTF Mp is such that
fi - - .M ,X)/S is in a special range where M is neither as large as

This is not yet a final solution of the NNS because o itself is a comparable to one nor smaller than I/N'. Because it applies to
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IV -400 N'=200 NNS1000 ....

800- -",400"

400 100-

."N' 400 ,c

I."200

. ..... .. -. . - . o

0.5 1 1.5

M=Mo/S
Figure 2: The dotted lines are obtained from exponential N 100
estimation model in (14) with different values of N' and Ml. 4 ~ '
The points marked by x are the accurate values of NNS 0 - 0.1 0.2 0.3
required for the FTPAs obtained by simulation program
according to (6). M-M,X/S

Figure 3: The dashed lines are obtained from linear estimation

most P'TPA designs, this special range of Ml which is a subease equation (16) and the dotted lines are obtained from
of cm two is discussed next as the third case, and a simpler exponential estimation equation (14). The points marked by x

linear equation, instead of (14) can be used to estimate the are accurate values of NNS of the FTPAs achieved by

riNS for this special ca. simulation program according to (6). It shows that, the error
of linear estimation equation (16) increases with the value of

The third cae applies to most FTPAs. Typically in this of the FTPAs.
case, 0.1 >M>1/N'. Because M is relatively small, the
airroximation formula e' z- 1 + x for small : can be used for
e and Equation 14 can be approximated as (3) If 0.1 > M > 1/N, the NNS can be estimated especially

k-IN' ((1 +M) 1)]=N'. (15) by a linear function k = M.N'.

All estimations of the NNS above are based on the
This provides a very simple linear estimation formula of the assumption that the non-redundant hardware of FTPA is smm-
NNS for most of the FTPAa pie, takes a small area and is almost perfect such that R, = 1.

k- (16) The general cas where R, <I is discussed next.

It shows that, for moot FTPAs with given 5 and X, the ncces. S. General Model of MTTF
sary number of spares to achieve the prescribed MTTF is Because the amount of non-redundant hardware of
almost proportional to the logic size M' and the prescribed FTPAs is usually proportional to the size of the array and
MTTF 'M'. increases with the number of the PEs in the array, the reliabil-

Figure 3 compares the estimation models in (16) and (14) ity of non-redundant hardware may derea drastically and
to the accurate values of the INNS obtained by Equation 6. The become too low to ignore for very large size FTPAs. As indi-
dashed lines in Figure 3 show the estimation of the NNS cated by (1), the overall reliability is the product of the reliabil.
according to Equation 16, and the dotted lines show the estima. ities of the non-redundant and redundant hardwares. There-
tion of the NNS obtained by Equation 14. The accurate values fore, for very large sise procesr arrays, a valid estimation of
of the NNS obtained from the computer program according to the desired amount of the redundancy must take the influence
Equation 6 are marked by x. As Figure 3 illustrates, the linear of the non-redundant hardware into consideration. in thes
Equation 16 can provide a quite good estimation of the NNS cases, instead of R, = 1, the expression R. - '  should be
when M is small. Also, (16) is a linear approximation of (14) used to establish more accurate reliability models for large size
when V is small. When M is large or MW>.1, estimation model FTPAs, where A, is, an defined in Section 2, the total area
(14) provides better results than the one in (16). The estimation taken by non-redundant hardware. Therefore, for the general
error of model (16) increases with . case, instead of Equation 4. Equation 3 should be used to study

As a summary, for a given prescribed MM l, of an and derive MTTF models, i.e.,

FTPA with nealy perfect non-redundant hardware (R, =-1) -) A( X

and constant survivability S, the NNS can be estimated by R(t) - S.eA N .e(N'4')) (- -

three difeent formulas according to the value of
M - (M,.X)/S According to Equation 5, the general MTTF model can be
(1) If M - (M,.X)/S < 1/M, no spare PEs are needed for the obtained as

array and k - 0. *0
(2) If M > I/N', the NNS can be estimated by an exponential MTTF -f R(t) dt

function as k = I'.(eM - ).
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k (Vk.t.ddenominator in (22) is not required to be an integer, the accu-
S -

"  i ' (I - e~')' dL rate value A. can be used to substitute B. Then, the general
0 model of MTTF can be written as

S dt MTTF = S-(I - 'V-'+') (23)

r L (--)i f dt The error caused by using integer B to replace the total

.- 0  " ,A?-0 area of non-redundant hardware is negligible because he
S ' .difference between 3 and A. is less than or equal to 0.5.
_.S -) (17)
J-0 ( -o S. Optimal Number of Spares

3ecause the summation of the combination in (17) can be As discussed in Section 1, because non-redundant

impiified as ') 1)' i ii hardware can also fail and the non-redundant hardware
C-j--- i C(C )(C -2)...(C+) [8 increases along with the number of spares, it is not always true) Cthat the larger the number of spares, the higher the MTTF of

where C is not necessarily integral, the MTTF of FTPA.s can the FTPA. As indicated by (2), when the number of spares
be expressed as increases, the reliability of the redundant hardware increases

S i N'v'kl and the reliability of the non-redundant hardware decreases. At
V ( k*A-)(N4'k-A,-1-)...(N+kA," (18) the beginning, the overall reliability increases along with the

number of spares and it decreases when the number of spares is
The total area of non-redundant hardware A. should not be beyond some value. Therefore, there is a particular number of
assumed to be very small for large size FTPAs in this section, spares for which the MTTF is maximized. This section
otherwise the model in Equation 10 can be used to estimate the discusses how to find the ONS by using the models proposed in
MTTF as discused in Section 4. To simplify (18), the total Section 4.
area of non-redundant hardware A.=(VN+k)a, can be approxi- S S
mated as the nearest integer B -A, > 1. This is because Let X(k) " _-A denote the first part of
,sually M' is large and the relative error between N + A, and .23 aP-I +i.
V - is very small. Then the equation above can be simplified Equation 23 and let Y(k) = (-s kj be the second
aspart of Equation 23. Then WTTF=PX(k)-Y(k). Because X(k)

V', IV+k) i!(N-k+--i)! decreases with k and Y(k) increases with k, there is an optimal
STTF (19) value of k which can maximize MTTF(k) =.'X(k). Y(k) for a

given FTPA structure. Figure 4 provides an intuitive idea of

j (N'+k)! how the MTTF of FTPAs varies with the number of spares.
Because (N'+k_,)i! The dotted lines describe the MTTF of the arrays with

V:' 400 and dashed lines correspond to the MTTF of the
ST" (N'+k)!i!(N'+k--B-1-)! arrays with M = 100. The survivability of the arrays is S = 1.
X - k-a)!i!('-k+B)! It is clearly shown that the MTTF increases with the number-S (N-kl! , (N-.k,.B_ :)! of spares first, and then after some point, it starts to decrease

monotonically. For example, consider an array with 4, = 10-
1

.\ (1P~*')! ,. (N'k--)! and N = 400; the fMTTF is optimized only when the array

_ S (t'k)i takes k = 38 spare PEs.
- (N-t+) ,. 'kl)('')It is clear that the optimal number of spares ONS of the

FTPA is the minimum number of k which satisfies the follow-
- ' (N' ~)(N' -2+I....(N'4.B-i+,) ing inequality

_S (N'-,! ."' o X(k)Y(k) > X(k.+-1)Y(k+1) . (24)
S- i(i+l)(i-2)....(iB-2) (20) This is because before and after the optimal number of spares,

.,-B -'- the MTTF increases and decreases monotonically, respectively.

Because B > 1 then Unfortunately, it is very difficult to find the accurate solution

S (A*+k)! of the inequality in (24) if a numerical method is not used.
TTF- x Som further simplification of inequality 24 is discussed in the

.\ (N'.k--B)1 rest of the section based on which a simple estimation of the

( s(i+i)...(i+ -2)- i(i+)...(i+B-2)) (21) ONS is obta
As indicated in Section 2, the reliability of non-redundant

hardware is R, - e "
-A.) =8e + )  and the reliability of a

It is easy to prove by induction that i i(i+l)...(i+k) == simplex array without any redundancy (k =0)is R -

s-1 Because the overall reliability of an FTPA is the product of the
flN'(,1V-)...(NIV-i+l) '81, so Equation 21 can be reliabilities of redundant hardware and non-redundant
-I2 - hardware, i.e., R = R," R,, one necessary condition for an

simplified as FTPA to achieve a better reliability than that of the

TTF _ (N'-k)! ( 3 corresponding simplex array with the same logic number of
.W T _-+Y)! ('(Y )-'(N+i-I)) FEs is that the total area of non-redundant hardware in the

,-(-k , FTPA should be much smaller than the total area of the redun-

S (N'k-)! 3 dant hardware of the array, i.e., A, = (,V+k)a, << .Y. If the
77 , (4-k-B area of the non-redundant hardware of an FTPA is equal to or

comparable with the area of the redundant hardware in the
Because rhe area of non-redundant hardware B used as a
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SMTTF can be written as
i

V =409.$ .,.=.04, X=5.0x10o- f(C +j) (C + 1)(C + J))((C + 2)(C + J- 1))...
1000- or i-i

• * ""&...... , -'0 =:0.1, Xa:2'5xl0-5 ),-(C-t2 )

goo ,41 5 ......... X ..... .

.00 :* . If C >> (1-1)/2, it can be approximated by
I J+1 J+ 1 -1

V=100, 0. 04, iXfa.ch lrh+ant)=(C+ to- arf-o-) C+--- , i... (2s)

As mentioned before, che area of the non-redundant hardware

500 .",V >>B>(B-)/2. So, by (25a), inequality (25) can be approx-
imated as

M '=00, a.,-.1, X-2.0x104  Then the value of k is

Because M >> B and V-+((B-1)/2) M, k can be approxi.
mated as

20 40 60 80 100 120 140 k - [,Y( BVU+l 21. (20)

k If it is assumed that M >> k so that 8 N'a,, then a simpler
estimation of the ONS is

Figure 4: The variations of MTTF of the FTPAs with different ri o

values of the parameters are shown by dotted and solid lines. k-i2( V' 1.-1)-2| . (27)
The points marked by x are values of MTTF of the arrays with
number of spares estimated by This formula shows that the value of the ONS of a given FTPA

k, 1' ' '"" I 1 -) -, structure is independent of the failure rate of a single PE X. It
S "also shows that, for the FTPAs which have constant survivabil-

ity S, the value of ONS is independent of the value of S.

array, the reliability of that FTPA cannot be better, or it could The acceptable accuracy of the estimation of the ONS by

he even worse than the reliability of the corresponding simplex (27) is demonstrated in Figures 4 and 5. Figure 4 shows the

array no matter what rault-tolerant scheme is used. From FTPAs with a relatively small optimal number of spares, and

these discussions, it can be concluded that one constraint in Figure 5 is for the FTPAs with a relatively large optimal

FTPA design is , << 1. So, it is reasonable to say that in number of spares. The dotted and the dashed lines show exactlyoe ea ed ) how the MTTF of the FTPAs varies with the number of
most cass, integers 8(k) (JV+k) and B(k+)- spares. These curves are obtained according to Equation 18 by

have the same value. Then the inequality in (24) computer programs. The points marked by x are the values of
can!be approximated as the MTTF corresponding to the estimated optimal number of

spares obtained according to (27). Figures 4 and 5 show that
S - N'-1-i the estimation of the ONS by (27) is quite close to the exact

X('N'.-k)e N-+k+i value of the optimal number of spares required for different

S V-+ FTPAs and the estimation by (27) is acceptable.
-. (I--- ) ,One assumption which makes possible to estimate the

NNS and ONS by Equations 14. 16 and 27 is that the surviva-

and we have bility of the fault-tolerant scheme can be approximated by a

3N'_+i constant S so that (4) provides a good reliability model of the
redundant hardware R,. Some discussions of the cases where

,I +k + the survivability s, is not close to a constant can be found in

S(N -k)(N'-k-11 / N'--l - :101. These estimates obtained by Equations 14, 16 and 27 can
> N'+k-,-B t * be readily used by FTPA designers instead of the time-*+ +-'.k consuming trial-and-error computations of MTTF for many

or different possible numbers of spares. They may not be as accu-
3 3rate as estimates computed through detailed modeling and

HT (NM-k+s1-i0 > (B-1) [I (N---t) (25) sophisticated software tools such as in '81, i71 and others.
,-i ,-i These tools can capture failure dependencies, the effect of faults

Notice that of links and control mechanisms and other details. but require
I time-consuming model construction and computer runs, partic-
-(C - J) = (C - 1)(C - 2)...(C - I - 1)(C -- ) ularly if different reconfiguration schemes and numbers of
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3pares must be considered. Idealy, detailed modeling should be
ised when a few candidate designs have been identified which
are very likely to meet MTTF requirements. The estimates
provided in this paper can be used to identify these candidates.

7. Conclusions
An important problem in FTPA design is how to deter-

mine the amount of redundancy needed to meet MTTF require-
ments or to maximize MTTF. This is also important when a
designer needs to comparatively evaluate different FTPA
reconfiguration schemes. It would be interesting to know the
smallest amount of redundancy (the least expensive design)
needed to achieve a desired MTTF, or the goal may be to find
the best MTTF achievable by any scheme and to know how
many spares are required for this best MTTF. Because
different technologies and reconfiguration schemes can be
chosen to design FTPAs. several cases are considered in this
paper. The drst case is for the FTPA designs where non-
redundant hardware can be assumed to be perfect and never
fail and any soare can replace any faulty component regardle s
Of" the fault-distribution. In the other case, the failure of non.
redundant hardware is taken into consideration. This paper
provides different methods that can be effectively used to esti-
mate the necessary number of spares needed to attain a
prescribed MTTF and the optimal number of spares which
maximize the value of MT=F of a given reconfiguration
scrieme. Finally, the results of this paper can be readily
extended to modular systems other than processor arrays.
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On Loop 7ransformations for Generalized Cycle Shrinking
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Abstract: This paper describes several loop transformation shriking - were introduced to transform sequential loops
techniques for extracting parallelism from nested loop into parallel loops. The concept of cycle shrinking is best
structures. One technique is called slective cycle srinking and illustrated by an aigorithm with only one loop. In this case,
the other is called h-ue depeem e cycle sh ng. It is shown each dependence vector has only one entry Cycle shrinking is

how selective shrinking is related to linear scheduling of useful when the minimum of the dependences 5 is greater
nested loops and how true dependence shrinking is related to than anitv; it transforms a sequential DO loop into two
conflict-free mappings of higher dimensional algorithms into perfectly-nested loops: a sequential outer loop and a parallel
lower dimensional algorithms. Methods are proposed in this inner loop. For example, let a single loop have u iterations,
paper to find the selective and true dependence shrinkdngs i.e., index set j - (1, 2, ..., u); then iterations in sets (1, 2,
with minimum total execution time by applying the ..., 6). or (6+1, ... 25), ... can be executed in parallel without

techniques of finding optimal linear schedules and optimal violating data dependence relations. If the algorithm has a
and conflict-free mappings proposed in (13] and (15], cyclic dependence structure, then the size of the dependence
respectively, cycle is shrunk by a reduction facor 5 which is the number of

iterations that can be executed in parallel. More examples for
1. Introduction the intuitive concepts behind cycle shrinking can be found in

This paper describes several loop transformation [11].
techniques for extracting parallelism from nested loop This paper considers generalized selective and true
structures. This task is often performed by optimizing and dependence shrinkings.1 It is shown that the execution order
paralelizing compilers that have as their goal the of a generalized selective shrinking can be described by a
transformation and mapping of a serial program into a linear schedule r13]; in addition, it is shown that true
parallel form that can be executed on a particular architecture dependence shrinking can actually be described by a conflict-
(17]. Nested loop structures offer the most fruitful sources of free mapping from higher to lower dimensional algorithms
parallelism in serial programs, and "t is therefore of (15]. Methods are proposed to lind selective and true
paramount importance that the analysis necessary for such dependence shrinkings by applying the techniques proposed
parallelization be both precise and eficient. in (13] and [15]. The resulting selective shrinking is optimal

Algorithms under consideration in this paper are nested for algorithms with convex polyhedron index sets, while the
Loops with regular data dependence structures. Such resulting true dependence shrinking is optimal for algorithms

algorithms can be modeled by a uniform dependence a4grichm with doubly-neted loops. The resulting transforms
0J, D) (13]. Set j is the index set or iteraton pace. Each outperform those proposed in (11] both in terms of shortest
element in J is an ,-tuple integral column vector (called execution time and generality. Also, it is shown that selective
iterahsm vecor or ndex vector). Matrix D is the dependence shrinking describes wavefront execution [16], [6] and the
,nanrix where each column is a dependence vector. If time-optimal wavefront execution can be obtained by the
computation in one iteration depends on the computation in method discussed in this paper for selective shrinking.
another iteration, this dependence is represented by the The paper is organized as follows. In Section 2, basic
vector difference of the iteration vectors corresponding to notations, assumptions and ideas and the algorithm model
these two iterations. All dependences are assumed to be are introduced. Selective and true dependence shrinking are
uniferi which means the dependence relation exists between described in Sections 3 and 4, respectively, where the
two iterations as long as the vector difference between these generalized definitions and motivations are given. Methods
two iterations is equal to the vector representing that to find optimal cycle shrinkings arc also presented in these
dependence relation. This algorithm model can be used for two sections. Section 5 concludes this paper and points out
algorithms with nested loops and cyclic dependence some futurc research.
structures (dependene cycle) described in [11] and is easily
related to models used in [5], (10]. Uniform dependence 2. Basic Ideas, Definitions and Motivations
algorithms can be used to model a class of practical Throughout this paper, sets, matries and row vectors are
algorithms in signal and image processing [4]. denoted by capital letters, column vectors are represented by

In (11], three loop transformation techniques - simnple lower case symbols with an overbar and scalarr correspond to
cycle shrmkin, selctise cycle shrinking and true dependence cycle lower case letters. The trans ose of a vector F is denoted vr .

The vector 0 (Y) denotes the row or column vector whose
This research was supported in part by the National entries are all zeroes (ones). The dimensions of vector 0 (1)
Sciece Foundation under Grant DC1-8419745 and in and whether it denotes a row or column vector are implied
part by the Innovative Science and Technology Office of"
the Strategic Defense Initiative Organization and was ad- I Both selective and true dependence shrinking always out-
rnmstered through the Office of Naval Research under perform simple shrinking u indicated in (11]. Hence. we do
contract No. 00014-8-k-0723. not consider simple shrinking in this paper.
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by the context in which they are used. E denotes the row
vector whose entries arc zero except that the irk etry is DO j, - 3, ut
unity. I denotes the identity matrix. The rank of matrix A is DO j2 - 5, ":
denoted ra.nk(A). The set of integers, the set of non-negative SI: A(ij, jz) - B(ji - 3, j2 - 3)
integers, the set of positive integers and the set of real S2: B(j 1 ,j 2) - A(jj - 2,j2- 4)
numbers are denoted Z, N, N and I, respectively. The END
empty set is denoted 0. The notations ICI and Jil represent END
the cardinality or the number of elements of set C and the
absolute value of scalar a, respectively. Let 7 and W~ be two d ~27 t1~ . 2
vectors. Then 'F;o means every component of " is greater S, - S1, i2v j' , 1"
than or equal to the corresponding componenlt of i. Finally, Flgure 1 Nested loops with cyclic dependence structure
if x is an element of a set S, the notation x E S is used and wher 1 endsonS andviceversa.
this notation is also used to indicate that a column vector ete -j ep 2

or row vector 4d) is a column (row) of a matrix M, i.e., -
;WI EM (M EM ) means i", (A ) is a column (row) vector of -310

matrix M. - 0 D1d;2_ (2.2)
This work was motivated by (i 1] and some of the results A 1 0 I

reported in this paper are applications of work reported in 1,
[13] and [15]. In (11], a special kind of Fortran-like nested
loop was considered with a dependence cycle among the The pair (J, D) only captures the structural information

statements. This kind of loop has the following form: of cyclic dependence algorithms in (2.1). Finer-grained
information, such as where and when input/output of
variables take place, can be ignored for the purposes of this

DOj -,I ul paper. Informally, an index vector in the index set j
DOj2 - '2 ,2 corresponds to a computation of the algorithm which
... ""includes all p statements. Computation 7 (the computation
DO j. - 1.,, indexed by 7" is often simply described as "computation 7")

SI") depends on computation -di, i-1, ..., m if T-diE.
S 2 J (2.1) Clearly, given a nested loop like the one in (2.1), the pair

(J, D) can be constructed. Herein, it is assumed that, the
S2 (7) letters x and m always denote the number of nested Loops

END (ayeirhm dimmuuoin) and the number of dependence vectors,
respectively,

END The pair (f, D) can also be used to characterize a more
END general clas of algorithms called unsifom dependence

Column vector 7 _ UI,jz,...,J.]. is the iteration vector. adagios whose detailed defnition can be found in (13].
The algorithm model in (2.1) can be transformed into a

St(7), S ), ..... St(7) are tihe P statements in iteration uniform dependence algorithm and all results and techniques

Let Si _. St denote that statement Sr depends on statement presented in this paper apply to both uniform dependence

Si with distance . In other words, SJ depends on algorithms and the algorithm model in (2.1). Uniform

Si (7-4) for all iteration vectors 7 and 7-. A dependence depeldence algorithms occur frequently in signal processing

yce s15 d and scientific computing applications. Examples include
cycle exists in the p statements if S S2 Z... matrx multiplication, LU decomposition, and convolution.
Vectors il, r-1 ..., k are assumed to be constant and non- In this paper, only the bounds of the outermost loop
zero. The lower and upper bounds of the itk nested loop, aced to be constant; the upper and lower bounds of the

I 4i 4o, are denoted by Ii and -i, respectively. Thes bounds inner loops can be functions of outer loop indices. This

were assumed to be constant in [11]. IA i paper, it is paper considers convex polyhedron index sets. Examples of

assumed that I I and uI are constant and Ii, an linear such index sets include trapezoidal, square and triangular

functions of indices jj, 1k 4i-1, k-2 .... a. Algoritms index sets. For 2-dimecnsional algorithms, these index sets are

with x nested loops are called n-dimensional algorithms. A shown in Figure 2. The convex hulls (1, pp. 3S] of these

typjia xjmple (11] i in Figure 1 (Figure 6a in 11]) where index sets can be described by

S!2S, and 7 s-(3,]r and Z2-2, 4 This algorithm(2.3)
is 2-dimensional. and

For the purposes ofthis paper, a pai UD) can be used I y7:7 e RA7" Z (2.4)
to characterize the algorithm model in (2.1). f is the 6sW $ where A is calledthe n strit ma ix ofJ;vector Wis
or itraio isp . Each element in is a a-tuple column called the Ji m=9 I is called the CeuW xU of index set
vector corresponding to one iteration of the loop. Often in J. Since R is the convex hull of index set J, extreme points
this paper, a column vector in f is called the indox point or of polyhedron R are always integers and belong to the index
index votm. Matnx D is the dqmdmc mati with n set j. Finally, different size vectors correspond to instance$ of
columns each of which is a dependence vector di, i-I .... I. the same algoathm that differ only in their sizes (but have
For example, the algonthm i Figure 1 can be described by the same shape).
(, D) where J -rATak,7 Z and
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j2 J2 3. Generalized Selective Shrinking

In this section, selective cycle shrinking, introduced in
! .... [11], is described informally in order to motivate janeraA4

S:dwctv sbrikinsg, which employs a linear transformation to
order algorithm execution. A method for determining

. optimal generalized selective shrinking is presented, as well as
L. techniques for transforming the original source code

. according to optimal shrinking.

-I it; 3.1. Selective shrinking and generalized selective
jo shrinking

For an n-dimcnsional algorithm (j, D), let the
dependence matrix -i ... and j-1, ..., m and

. . . . . . . Ii-min(dij. j-i, ..., ml, i-1 ... , n. According to I1],
S. . . . .. . selective shrinking starts from the outermost loop, i.e., at i-1and considers each 5j, i-I ... , t in turn. When the first

positive number ii is met, the process stops. -A loops nested
, . inside the ibk loop are trnsformced into parallel DOALL

loops which mns ail iterations inside the loop can be
executed in puallel. The i-I outermost loops stay
unchanged and the irk loop is sequcntial with a loop

Flgure 2: 2-dimensional convex polyhedra. increment ii.

Figure 3a shows the index set f of the algorithm inr For example, consider the algorithm in Figure 1 where

Figure 1. Each point corresponds to a computation or an D- 3 2 and index set j is shown in Figure 3a. This
index point. Dependence relations exist among different 5 4 i
computations or points. The convex hull of this index set is alori thm has a dependence cycle because statement S,
simply a rectangle which is described by R-(-- 1 , xzjr: depends on S2 and S2 depends on S1 . Clearly, 51-min(3, 21
Ai-b,''U T R. Matrix A and the size vector b are defined in -2 and ,-min(5, 4) -4. Because 61-2>0, the outermost
Equation 2.2. For diffrent values of uI and u2 of size vector loop is blocked and is executed sequentially with a loop
b, the algorithm has its different instances. increment S,-2 and the innermost loop becomes a parallel

loop DOALL. The parallel code transformed by the selective
shrinking is shown in Figure 4a. With this parallel code, if

-_. -- ._________ there arc enough processors available, index points (3,ja]r ,

0 0 0 0 * 0 *0 (4, jj]r, j2-5, .-.. u , can be executed in parallel at time step
0, and index points (S,jj 1 , (6,yjjr, j2-5,.u 2 can be

* 0 0 0 0 a 6 0 0 executed in parallel at time step 1, etc. The rduction facor is
* 0 . -* * . . '5-2(u 2-4) which equals the number of computations

d- executed in parallel at one time step. Pictorially, if a set of

hyperplanes (lines in this two-dimensional algorithm)
40 0 1, O]70-, c-3, ..., u I are drawn in the index set as shown in

0 0 0 Figure 4b, then all the points lying on two consecutive
hyprplanes (1, 0]7-c and (1, 0]7. c+l (e.g., (1, 0O-3 and
(1, 0]1--4) can be =e cuted in paralle according to the

@selective shrinking. This execution order can be described by

3 mapping 01o0( ) - 1 1 -2-1 1 such that computation " is

exectuted tt time step 911.0(-). Computations indexed by
(a) The index set of the algorithm in Figure I. vectors Y' and T7 can be xcut d in paralli according to the

code in Figure 4a if and on if erj.oU) -,t 2. Clcarly,

this execution order respects the dependence relations. For
ex.mpLc, computation (5, 9]f depends on computation(3) 3~) 3) .[ 3 , 5]1 by dependence vector 2 . This dependence relation is

() " respcted by selective shrinking because computation (3. s]r

S- is schedulcd to execute (at t-0) before (5, 9] (at time r-i).
( 3(u 2 -4)+S (*-2)(u2-4) In fact, the dcpcndcace relation is respected because the

2(-4)-4 (-+inequality [1, 030 >0 is satisfied.

At this point, some interesting observations can be
(b) New i-dimensional index set after true dependence made. First there are other possible mappings c by which the

total execution time may be shorter than the mapping pl01.
shrinking The total execution time by Irl,01 is

Figue 3t True dependence shrinking. (I 1rt 3 , S-r)+1 However, if the

1 2 2
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in parallel.
DO j3 -3, ul, 2 jI

DOALL j, - j3,J3*1 ...... _T- 4

DOALL j2 - 5. N2 3L
SI: A(j, j2) -B(j - 3, j2" 5) - 5. ......
ENDOALL

ENDOALL
EN D O ...... ....................................... ........ ........ 2

(a). Parallel code after selective shrinking.

V7-3 4 5
010U, . . . .i 0 i

4 d d Figure 5: AA example in which the selective and true
. ...... .. . . . dependence shrinkings do not get speedup or are not

* 4 -44 i4 i 4 faibe

S* : : : :f ibe.
4 4 i These two observations indicate that selective shrinking

d,: Limits the full exploitation of the parallelism i nested loop
"structures and motivates the definition of generalized

4 4 selectivesbhinking as follows.

. q Definitiso 3.1 (generatized selective shrinking): For
q 4 k * * . - algorithm (U, D) a pmnralzd amleame brinking is a mapping

5I~-- cit j~ i-W such that
3: .. ... 11J 1 1'

-0 0 1 1. 2 2 .. u( T )- (11T+ )lds* , Te (3.1)

(b). Pictorial description of the execution order of sezective where r.z., di* U-mm (II: Z ED I>0,

shrisiting. ood
3 (vr,..r)-l and c- -min(l. 7EJ). The row vector 11

Figretel" is called the sdwNtsk vamr specifying a,,.
Generalized selective shrinking as defined in Definition

mapping rrJ ((0. 1]7/5)I4 is used, then the total 3.1 respects the dependence relations. This means

[ O 1]([3, n j-(3, Slr)+l ,,_,4 ] computation 7 is executed only after the execution of

_Ix-cution time s . computations 7-d CE, i-i, ..., M, upon which computation
I J-odepends. This follows from the constraint IID >0. For any

Note that mapping a(0. also respects the depindence algoithm UI, D), the total execution time by the generalized

relation because (0, 11D>0 (131. Cleary, when u < 2a 1, the selective shrinking aIis u follows:
total execution time of mapping eitol %s shorter than the
mapping ap01 "ound using the original selective shrinking mz{f(Gz-T2):YJ' +

technique2 (11I]. diip 11
A second observation can be made from the example 'af(j7)5~~

4goithmn given in Figure 5, with dependence vector .+1 (3.2)
d-,fo. i0, In this case, the original selective shrinking A 11

technique fais to obtain any speedup because mapping . 'M ." Because total executon timer is minimized the part inside

which describes the execution order of the algonrthm aft the flor i minimized. the ?roblem of finding
selective shrinking, does not respect the dependence relation optimal generalized shrinking can be formulated as follows:
((1,01d - 0) (131. However. other feasible mappings with
significant reduction factors exist for this algorithm. One mif (-):T 1 ,7eJ)
posibie mapping is -lkl - (I'O 7 with reduction factor miA(1d 1 id1 EDI
I-v 1 . The execution order determined by mapping efol is (1) D. (3.3)

pictorialy shown in Figure 5 where the execution wavefront M to (2) jrd ( .)-l
is described by dashed hvperpiane (0,1 )U - c and all
computations on u.e same hyperptane (0. 1) - are executed The optimal solution of the above problem is denoted

If the values of a, r a, am nor ntil n-lw. It, Notice that 11 is optimal only for the kind of schedule

this analysis could be used to genrate a run-o.,u test to dednd in (3.1). It is possble that theme exist other schedula

ch the op mal mappung at mn-mms ba"d on the relatve
values of *2 and aI, This concept is simiar to that propoed 8 l(a .) - t est common dior

un (2] Ao -vbqk mu kepm
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with shorter execution time than WI. In (14], a class of Theorem 3.1 [13]: If the index set J of algorithm (I, D) is
algorithms is identified where the optimal linear schedule is constant-bounded as defined by (3.4), then the optimal
optimal for all kinds of schedules. The schedule vector solution WI" to problem (3.3) belongs to C, i.e.,
describing the execution order of the selective shrinking a* EC-.jf(c 1 .. r.rj)" 1 B,

defined in [11] for algorithms where 51 - min(dI , ...,

d,.J>0 is rl Il, 0 ... , 0]. For the algorithm in Figure 4, the 1; 1<... <ck4m, I 4r,<... <rk 4m) (3.5)
schedulc vector for the selective shrinking is rl-[(, 0]. Prof: Se [13].
Because [1,0]d 1 , dJ-3, 2], this schedule vector is feasible
and respects the dependence relation. However, it is not Procedure 3.1 (construction of candidate set C):
necessarily the optimal one. Input: Algorithm U, D) herc I is constant-bounded.

Output: A finite candidate set C containing -he optimal

3.2. Finding optimal generalized selective shrinking solution I.

In (13], a procedure is proposed to find the optimal Step 1: k-1, -4, C-0.
schedule vector .XI for any uniform dependence algorithms Step 2: C,-0.

with convex polyhedron index sets. To avoid further Step 3: Pick an unprocessed combination of k elements

complicated terminology and defiaitions, that are needed for from (1 .... x). Denote it (r,. rk] where

a formal presentation of the procedure for any uniform r, <... <rk.

dependence algorithm, only the procedure for uniform Step 4: Pick an unprocessed combination of k elements
dependence algorithms where the loop bounds are constant from (1 ... n m}. Denote it {1,..... where
and the procedure for 2-dimensional algorithms with any C€ <... <,.
convex polyhedron index sets arc presented. The procedure Step 5: If D (c ...cklrl... J is not singular, then
for is-dimensional algorithms with any polyhedron index sets II-II(c...ci ri...ri) and C& -C& U (111), 1-1 +1.
and the proofs of the correctness of these procedures can be Step 6: Check if all distinct combinations of k elements
found in (13]. from 1, ..., m) have been processed. If not, go to

An index set is called costran.-boed if all loop Step 4.
bounds of the associated algorithm are constant, i.e., Step 7: Check if all distinct combinations of k elements

J-{k"i ..... i. J):,lj, (u 1 ,Ji,,ui Z,i-l....n). (3.4) from (1 .... x) have been processed. If not, go to
Step 3.

t D (ct.../..) dnote the submatnx of D containing Step 8: If k <rank(D), then k-k+1, go to Step 2.
the elements in columns c.c, and rows r ,,, i.e.* %t ,IfD)

contains the elements of D at the intersections of columns Step 9: C- UI Ck. Stop.
C . ... c, and rows P, ..., r. If D (c...cir,...r) is
nonsngular, an integer row vector V-f ..i,,,]EZis The compiexity of Procedure 3.1 is bounded above by

defined as V-dfD-(cI...cIrt... r) where 0 is a positive O( V ()k 3 ). If rank(D)-s.-m, then (

integer such that gci(wz.,)-L In ether words, V is a *-, -J

vector whose entries are the sums of the corresponding - (n)Z 2 ( (n))l -(2")2-2' and the complexity of
columns of D- 1(c I... c/rl... r) scaed so that they are integers k-I k

with the greatest common divisor equal to unity. If Procedure 3.1 is bounded above by O(200 3 ). As indicated

D(cl... c/r 1 ...rk) is nosingular, then defk in (13], this upper bounder on the complexity is loose and in
practical algorithms, x is small e.g., x-2 for the algorithm

wher B-I..I an E~is s deine in in Figure 1. Next, an example is used to illustrate Procedurel.,] i 3.1.

the dirst paragraph of Section 2 words, the subvector Example 3.2: Consider the algorithm in Figure 1.
.-1 ... ,r,)j of II(rl...c,/r...rk) is the same as V and the According to Steps I. and 2 in Procedure 3.1, let k-1, -I

remaining entries of II(cx...c&/rx...r&) are zero. Finally, C and C 1 -0. For Steps 3 and 4, there are two possible

denotes the set (II(s,...rk/r...rk): combinations of one element (k-1) from (1, ..., I and two

104s. 1Grl<...<c4m, 14r,<... <r 4n). The possible combinations of one element from (1....m)

following example illustrates the notations and concepts just (*,-m-2). So in Step 5, D(1/1), D(1/2), D(2/1) and

introduced followed by a theirm which states that the D(2/2) ar processed. Each corresponding vector is obtained

optimal solution UI is in C and :. procedure which as follows. D(1/1)-(313 and 0(1/1)-fl, 0]; D(2/1)-(2],

constructs the candidate set C. U(2/1)-1, 0]; D(1/2)-(5] and 11(1/2)-{0, 1]; D(2/2)-4]
and 11(2/2)-0, 1]. C1 - ((1. 0], (0, 11). For k-2, there is

Example 3.1: Consider the algorithm , D) in Figure I only one combination, i.c., D(12/12)-D and 11(12/12)-f-1,
where dependence matrix D is as shown in Equation 2.2. 1]. C, - ((-1, 1]9. so c-{f1, 0], (0. i], [-1, Ii - {n, a2,
According to the definitions just introduced, D(1/1)-(3] 113. Every vector in C is feasible since reiD-,3, 2],
(contains the entry in the first column and the first row of 112Dl.5, 4], and I1" D -2, 2]. The total execution time by
D), its corresponding V-d lD-(/I,-{1] where -3, each candidate is as follows.

-E,-.fl, 0] and 1(1/1)-VB-(l, 0]; D(1/2)-5], its
corresponding V-41D(1 )-l where 0-5, B-E 2 -O, 1] [(1, 0](u I, 5,~r.. 3, 51r) +I f!2
and g11(/2)-V3-.0, 1]; and D(12112)-D, its corresponding (11) 2
V-d --- (-i, 1] where -2, 3- and

(1212)-VB-V(-, 1]. The candidate set C - [1,01, t(112)(0, 11((3, r3,5r , u2-4
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(- jQ.Jr+v1. ul)+ 1+2U3- 7  as explained next.
[(11 . 2 " _2 Let the original serial program be as in (2.1), the

optimal schedule vector I - [s., .r,,] and /Ip be as

With little thought, it can be seen that no matter what values defined as in Dcfinition 3.1. Then the parallel code using
v, and m, take, I, and 11 have shorter c cution time than DOALL construct is as follows:
n13. When um,2u,, vector 11, has the rinimum execution I-min (WT.:3-E J
.umc and should be the optimal schedule vector and if
;o>2u,, fl, should be the optimal schedule vector. - M max(W T T E '}

For 2-dimensional algorithms with convex polyhedron DO k-I, u, diP W

index sets (examples of such index sets are shown in Figure DOALL . I '-k, k+l. k+dir*-1)
2), let C' denote the candidate set. According to [13), C' Si(-)
,ontains all vectors 1I which (1) are perpendicular to one of (3.6)
Se_boundarv lines of the index set or (2) satisfy equation S2(7)
1I(di-dk)-0 where d;, and Wt are two linearly independent ...

dependence vectors of the algorithm. As defined in Equation SP (J")
2.3, Let Ai and bi be a row of the index constraint matrix A END
and an entry of the size vector b, respectively, then Aj;-bi  .ND
defines a boundary line of the index set J. Vectors which are
perpendicular to that boundary line are described by c, i  The statement DOALL U1. I'-k, k+1, ... , k+di i'-1)
where a is a non-zero constant. Thus, C' contains these rows corresponds to the parallel execution of all iterations T such
of A each of which is linearly independent of any other rows that W7-k, k+1, ..., or k+dirpll"-1. For the algorithm in
of A in C'. For example, if A has two rows (1, 0] and Figure 1, if U2 <2u1 , the 2ptimaL schedule vector is I1 -
[-1, 01, then only one of them is included in C' because they [0,1] and di* W - minfifdi: d1i ED) - WZd2 - 4. The serial
really correspond to the same schedule vector. The following code in Figure 1 can be transformed into the following
procedure summarizes how to construct the candidate set C' parallel code:
of 2-dimensional algorithms with polyhedron index sets. - ' E J]-. 0, .]3, 5jT-5

Procedure 3.2 (construction of C' for 2-dimensional a-maz(Ir 77E 1}-[0,11[3,u,-u,
algorithms): DO k-5, 4
Input: Index constraint matrix A and dependence matrix

D. DOAI.L '. I'7-k, k+1, k+2. k+31
Output: A finite candidate set C' containing the optimal Si:A (jZ)-B(jt-3,4s-5)

solution II". S2: B(j j 2)-A(jr 2.1a 4 )
Step 1: k-I, 1-1. C'-0. $-
Step 2: If A* satisfies the following two conditions (1) END

linearly independent of any other vectors in C' and END
(2) either AkD>0 or -AtD>0, then either jr -i.A The DOACROSS constructs can also be used to express
(if AtD>0) or rj-ttAk (if -AkD>0), C' - the parallel code of the algorithm in (2.1) with optimal
C'U (It), where a is such that the greatest common schedule vector I1 - [('1, r2, ... , a,].
divisor of entries of II, is unity and III is integral, DO ji,-", u
and 1L-1 +1.

Step 3: k-k+1. If all rows of A have not been considered, delay (W- 1 ) ' rj)
go to Step 2. DO j2,21 t 2

Step 4: Pick an unprocessed combination of two linearly d ((J') ' a',)
independent dependence vectors di and dt form D.
Let 1* be the integral sobtion of equation ...

I(d-4)-0 such that the greatest common divisor DO j,-,, u
of its entries is unity. If 1I" is feasible (either dela ((i=-I) r.)
If D>0 or -IX'D>0), then ri,.-r*, C'-C'U UM,),
and 1-1+1 SIO (3.7)

Step 5: If all distinct combinations of two linear S20
independent dependence vectors arc processed, stop.
Otherwise, go to Step 4. ...

The procedure of finding the optimal solution WO for SP 0
n-dimensional algorithms and the formal proof of the END
correctness of these procedures can be tound in [13]. The ...

execution of the generalized selective shinking can be coded END
using parallel constructs which is discussed next. END

3.3. Code Conversion According to the definition of DOACROSS [3], the

After the optimal schedule vector II is found, the computation in iteration 7- L/i .... 1 ,Jr is executed at time

parallel version of the code, using DOALL or DOACROSS step 1
[3] constructs. can be generated from the original serial code
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3.4. Relation to Wavufront Scheduling mapped into the new 1-dimensional space as point TJ-)
The wavefront method [16] (or hyperplane method [6]) and the dependence matrix D is mapped as T") - (Td I, ...,

is used to execute nested loops on parallel and vector Td]. Therefore, the transformed algorithm can be
machines when no loop can be parallelized independently of considered a 1-dimensional algorithm with index set r(,T) and
the others in a loop nest. In this method, a set of wavefronts dependence matrix TD. Clearly, no two or more index points
or hy perplans is drawn across the index set and all iterations T1, 7I2Ej are mapped into the same point in the 1-
on the same wavefront (hyperplane) can be executed in dimensional index set since TtTT", 411, T2EJ. The
parallel. The only difference between the wavefront method reduction factor is 6 - min(Tdl: i-1 ..., m). Usually,
and a feasible generalized selective shrinking with schedule TD >0 is required otherwise the new i-dimensional
vector 11 is that the latter executes several (dispf) wavefronts 41gorirhm is not computable. In :he new i-dimensional
imultancously, exploiting more parallelism in the algorithm. algorithm, 5 consecutive points can be executed in parallel.
In addition, the method presented in this paper provides a For :he algorithm in Figure 1, the mapping matrix is
technique to find an opnmai wavefront schedule. T-[u ,-4. 1] and the shift vector is i7-[3, ]. An index

point T'El is mapped into the I-dimensional index set as
4. True Dependence Shrinking point y-. The new dependence matrix is Cu2-4, lID -

This section inkbrmaly describes tme depe0dnmt [3o,-7, 2u,-4] and the reduction factor is
rhrmxking and motivates the generalized defnition. The -.min{3u,_7,2U2-4).
relationship between generalized selective shrinking and Again, some interesting observations can be made from
g$arlie tmua dapsdar shrinking is also discussed. A th Agisminesigobrvinscnemaefm
prcede is prped toind tie otimalsodiscsthe exampie above. Consider the algorithm in Figure 5 with a
procedure is proposed to nd ne optimal loop dependence vector d-0, ]. By true dependence shrinking
transformation for generlizd trae dependence shrking for in [11], the corresponding true dependence distance is Td-I
2-dimensional algorithms with constant-bounded index sets. where T - [u+1,1] is as defined in Equation 4.1 and the
41 reduction factor i-min(Td,, i-1 ..., m) - I. Thus, the new

4.True dependee and generaliz ed te dependence algorithm (](), TD) can only be executed sequentially and
shrinking

In (11], for an n-dimensional algorithm (j, D), a> 1, no speedup is possible. However, it is clear that if another

true dependence shrinking transforms the n-dimensional mapping r specified by a matrix T, different from the one

index set into a 1-dimensional index set by coalescing [8], defined in Equation 4.1, it is possible to obtain speedup and

[121 the original nested loops according to their sequential explore the maximal degree of parallelism.

order. Let ut and I& be the upper and lower bounds of the The total execution time by the true dependence
kth nested loop, then each dependence vector d ..,... d.]r  shrinking specified by T is

is transformed into the nu dependauce dinrance [11], the maxtT(7zj):5,,EJI+.
corresponding dependence vector in the new 1-dimensional "

index space, Mdi j(u -iftl). Let 5 be the minimum ofi-I q'
4

-i I
all true dependence distances of the algorithm; then the max(T(jt-' 2)T1,T 2EJJ +, (4.2)
reduction factor4 is 6, and 5 consecutive index points in the minT: i-..m}
new 1-dimensional index set can be executed in parallel
without violating dependence relations of the algorithm. Instead of the mapping matrix T in Equation 4.1, T should

As an example, for the algorithm in Figure 1, according be chosen such that the total execution time r is minimized.
to the true dependence shrinking described in [11], the 2- This is illustrated by the example in Figure 6a where
dimensional index set in Figure 3a is mapped into a 1- 2 01
dimensional index set as shown in Figure 3b. Clearly, the J..T04j1jj-MV7-Z2 ) and D..4d,4,jT'
index points in Figure 3b are ordered from left to right .?0 -I
according to the exact sequential execution order of the if the mapping matrix T - [--u, 1] in Equation is
nested ops in Figure 1. The true dependence distances oft
d, and d, are 3(u 2-4)+S and 2(u 2-4)+4, respectively. [+-4u, 1i)+ -

Therefore, the reduction factor is 6-2(u2 -4)4-4 and applied, then the total execution time is 2
2(u2-4)+4 consecutive index points in the 1-dimensional
index set in Figure 3b can be executed in parallel. [u(+2)+1 . Consider another mapping matrix T' -

True dependence shrinking can ba, described by the 2 "
mapping -: J--(J), () V-T(y E, j where [1+u, u]. Clearly T'D - [2(1+u), 2u]>0 and it can be

% Is shown that no two or more index points are mapped into the
T-.r(uj-ll), -. ] (uj-14+1), ..., 1] (4.1) same image in the new index set (this will become clear later

in Section 4.2). Hence, this mapping is feasible. The new I-
with fi (u;-l+1) being the k entry of T and dimensional index set is shown in Figure 6b. The total

W -*4*1[1+ub [ ]h, ,,b 1
. .15  is the shift , ar. An index point 7'fT is execution time is r(T') - 2 u

The mmmum reduction factor 5 is dependent on the [(2u+l)+l hich is cearly much shorter than the
loop bounds, wtich may not be known until run-ame; a run- 2w
rime test could be generated to determine the minimum . u Imapping matrix [1+u, 1] when u >1. There may be several

choices for mapping matrix T which have shorter execution
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(1) v.JT2E f7 . ,7TT'j ,,T7"2

2 .... "bjge. (2) TD >o
__,_._. ___.. _.. ". (3) gd(:j....d)-

Notice that the total execution time t-fJ+'. So r is
minimized iff is minimized.

4.2. Conflict-free mappings
The concept of conflict-free mapping is well dcfined and

.. . explained in (15]. Necssary and sufficient conditions for
mapping matrix TEZh, k <n to have T7IOT"2, -rij 7EJ,
T. " ' are also given in [15]. For clearity, it is necessary to

' -t review one definition and one theorem in [15].
Let TEZI" be the mapping matrix from an

Ix-dimensional index set J to a 1-dimensional index set -(J).
(a) The index ast bafeve su ma i. s/ama" A confict occurs if two or more index points are mapped

into the same point in r(J). That is, for two distinct index
points T1, T EJ, if TTj -T7 2, then there is a conflict.
Consider a non-zero vector - such that Ty.0. Let 7*-h--v,
then T71 - TT. If both 3 and 7 belong to the index set,

00 01 10 02 11 20 031221300413223140 then T, and T2, are mapped to the same point in the 1-
dimensional index set r(J) and a conflict occurs. One

0 7' T' possible way to avoid conflicts is to find the mapping matrix
T such that, for any arbitrary index point 7EJnd any.7 that

(b) New 1-dimensional index set after optimal true dcpen- is a non-zero integral solution of equation T-0, 7+' does
dencc shrinking. The point with label sb is the image of not belong to the index set J. This concept is illustrated by
point (a) in (a). Figure 7 which shows a 2-dimensional index set/-(',jzT':

FguO6: Illustration of optimal true dependence shrinking. 0j,j 2 4,j,j 2 EZ. If , is ,Yl-f1, 1], then index points
Figure 6 uan 7-0 and T+y-_(-, I]r both belong to index set J and index

tune than the mapping matrix defined in Equation (4.1). In points [0,O]r, [1], [2, 2 ]r , ... , [4 , 4 ]r will be mapped into
index points should be allowed to project along the same point in _JU)..Therefore, there is at least oneother words, condectpooweversiou isb72 a. o ther will be o conflic

not only the nck dimension but also other directions. These contact. However, i -Y is - 3, 51r, there w be no conflict

observations motivate the definition of :he onwsxd tr at all because for any arbitrary 7-J, 74;+ 4. Intuitively, if

dqdonm s /brinkins as follows, vector [3,5] r is drawn with one end at (0,o]r (or at any
other index point of the index set), then the other end is out

Denitiou 4.1 (generalbsd true depend-nce shrinking): of the index set and vector [3, 5] does not meet any inteSer
Ganralized tru dapxdonme skrinking is a mapping r: J--r(Jf), points in the index set. Therefore, the mapping with this -y is

- T('-), '7ej where T-: 1 , 2 ..., c,]EZ" is the conflict-free. To describe these concepts formally, the

mappoW n ,m-rix, and 1-..]r is the sMft veew. following definitions arc introduced.
Mapping r must satisfy the following three conditions:

(1) 7J Pyj2 , TT 1PTT, i2 7
(2) TD >0, and
(3) ffc(ti, t2 ..... r.)-l.4

True dependence shrinking in (11] is a special case of I
generalized true dependence shrinking with T as defined in
Equation 4.1; which may not be aptimal for some *
algorithms. Condition I in the above definition guarantees
that no two or more index points in J are mapped into the
same point in the new 1-dimensional index set r(J). For any 71
T1, T 61, 7-Tz, if r(3 1) '(i;) then the mapping r is said to
have c nflicts. Otherwise, mapping r is conxji-fr.v. Condition
2 guarantees that all dependence vectors are transformed into
positive true dependence distances and the new algorithm is 0./
executable. Because r(aT) - t(T) where aPO is an integer 0 4
constant, condition 3 avoids repeated representations of
solutions. Hence, to find optimal 3encraLized true Ji
dependence shrinking is to find an integral row vector T Pigure 7: Non-feasible conflict vector -'l and feasible
which minimizes the total execution time and satisfies certain conflict vector '2. Vector y, does not meet any
constraints: integral points inside the index set.

mn f__max{T(T-T):To T2, EP (4.3) Definon 4,.2 (CoJJic vector, feasible and son-
ma ATie.... fei eOi vectors and confilct-fre mapping
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matrix): Given an algorithm (, D)aInd a mapping matrix as follows.
TEZ I ' , an integral column vector -y - [3yl ... , %y] is a Consider the algorithm in Figure 6a again, by Procedure
ceuflwr Pcct"r of the mapping matrix T if and only if T-"-0 3.1, the optimal linear schedule is rI - [1, 1]. Let T-IW"
and gcd(3 .. _ )-1. If for any arbitrary index point 7EJ, and T' - [i-i-u, u]. Clearly, when u is large enough, T' is in
74-3"1, then 'v is a feasibk conflict pe.w. If there exists at a small neighborhood of T. All conflict vectors of mapping
least one index point 7EJ such that 7+4-EJ then -, is called a matrix T' can be expressed as 'Y - x-u,l+u]r where X - -+I.
non-feasible conflict vctor. If all the conflict vectors are Clearly, these conflict vectors ar feasible by Theorem 4.1.
feasible, then T is conflicr-free. The corresponding f(T'), r(T), f(T') and r(T'), defined in

(4.3) and (4.2), arc is follows, respectively:
For algorithms with constant-bounded index sets, the

common characteristics of feasible conflict vectors are [1, 1]() 2,
described in the following theorem. f(M')- 2
Theorem 4.1: For algorithms with constant-bounded index
sets defined by Equation 3.4, a mapping matrix T is conflict-[1](+ u .
free if and only if for each of its conflict vectors 3"[3y, ... y,,', r (2)-l 221 -u + 1

.... there exists an entry - such that rj j>ui-4. 2

Proof: (->). Without loss of generality, let I-0, i-1, .... n. [1 Wu),U u (2u +1) +1
Because T is conflict-free, all the conflict vectors of T are 2. 2u 2
feasible. Now suppose that -' is a conflict vector of T and

yv [4u6, i-1, ... , n. Consider the index pointT - [U1, ..., j.f 1U U]Q)+1
where j.-0 if -i' 0 0 and j;-y, if fi <0. It is clear that both t(T')- - I U(2w+1)+l U+U+l

T and T -y belong to the index set J defined by Equation 3.4

because H'js,, i-1 ... , n. Bv Definition 4.2, -f is not -o -+1
feasible which is contrary to the assumption. Therefore, for Clearly, t (T') - r (T) so, this mapping is optimal.
each of the conflict vectors -y, there must exist an entry i Intuitively, T is in a ver smal neghborood of 7". By
such that j L> ui. rotating 7' a little bit, all points can be projected along T'
(<-). Let -" be a conflict vector of mapping matrix T and such that no two or more points are projected in to the same
consider an arbitrary index point T beionging to the index set posituon on T'. Because T' and 7' are so close, the difference
defined by Equation 3.4. Let T _- J - ' - If 1 ... IT between :(T') and r(7") is zero because of the ceiling
Because there exists an entry, ' of -' such that yj' J>u and function, as defined in (4.2).
uj>J0,j'-ji+,3->', if ,>0 and j'-ji 'j.<0if ,y5 <0. In In the following, finding an optimal generalized true
both cases, T is not in the index set J and -r is feasible. This dependence shrinking for 2-dimensional algorithms with
implies that T is conflict-free. 0 constant-bounded index sets is discussed by using the idea

Example 4.1: Consider a 3-dimensionl index set j--: mentioned above. How to find optimal solutions for

04j44u, i-1, 2, 3 TEZ3], mapping matrix T - [u +1,.., ] algorithms with any convex polyhedron index sets is under

and the following solutions of T77-0: uI-[-uu+, O]r and investiPtion.
'2 -i,-,-1]. Clearly, T,'1 - T7 2 - 0 and the greatest Leaxma 1: Let T - I, t2, ..., r. ] andged(t1 , 2 .... ) - 1.

common divisors of their entries are unity. So -fl and 72 are Then there exist a positive integer wr and an index i E (1, .. n]
conflict vectors of mapping matrix T However, vector such thatfcd(tIw ... r,w+1 .... r. w)- 1.
[2,-2,-2]T is also a solution of equation T-0 but is not a Proof: Because ged(t2, .... r.) - 1, T has at least one
conflict vector of mapping matrix T because the greatst nonzero entry and there exist two elements rt and tj such
common divisor of its entries is not unity. Conflict vector ,'
is feasible because itcan be checked that for any arbir, that gcd(tk, t,)-1. Without loss of generality, let k-1. 1-2
index point beau, it7-cae. Conflict vector 2 is not feaible and rt '0. Let w-jw' where w' is an arbitrary positivebecause for the index point Tmt-[0,1,l,)TEJC, vetr72 i integer. Consider the pair (rtw, t.w+l) and it is shown

(1,0,0]"fEJ. Therefore, T is not conflict-free. 0 next that qcd( r w, 2w+l) -1. Suppose gcd(tIw.
t 2w+1)-O. Then

4.3. Finding optimal g .neralived shrinking for 2- tjw- ta or t 1 iwlW'-fia: (4.4)

dimensional algorithms
Notice that if constraint 1 in (4.3' is removed. this and

optimization problem is exactly the same as optimal t 2w+1-0&: or -tw+#a2-1 (4.5)
generalized .elective shrinking problem defined in (3.3).
Therefore, our approach to find the optimal solution to (4.3) According to [7], equation ax +by -1 has integral solution ifr

is as follows. Firs:, the optimal solution 7"-I ° to (3.3) gcd(a, b)-1 and gcd(x. .)-. Therefore, because of

without consideration of conflicts is obtained by Procedure Equation 4.5, ged (w, 0) -1. By Equation 4.4, 0 consists of

3.1. Without any doubt, this 7' is not conflict-free. Then, as factors of either t, or w' or both. in both cases, 0 is a factor

illustrated in Figure 6, a mapping matrix T' is selected from of w. Therefore, it must have 0-1 otherwise, gi (w, 0 > 1.
a small neighborhood of 7' such that T is conflict-free and Hence, #6d(tW- t 2W+1)-6 - 1 which implies gcd(t:w,

r(T')-t(7'). Because 7' is the optim;J solution without t 2 W+1, t3W, .... t, W) - 1. 0
considering conflicts, t(7') is a lower bound on the total Lemma 2: Consider a 2-dimensional algorithm with /-(7
execution time of any solutions to (4.3): hence, T' must be O4 .,, , ui,,EZ, s-1,2). Let T - ft1 , t2] and ged(rl, t2)
optimal. This idea is illustrated by the example mn Figure 6a - 1. Without loss of generality, let , 0. Le w be a positive
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integcr such -hat (1) w - 0r1j' for a positive integer w' and S. Conclusions
(2) ws j>u. Then mapping matrix T' - [(,,, : 2W+l] is In this paper, two loop transformation techniques
:ooffict free. proposed in [11] are generalized in rdcr to explore mor

paraillism of algorithms with nested oops. Methods to- find
Proof: Let;' - i'yi, ,2 and consider the following equation optimal transformations are discussed. For the generalized

T"'-. (4.6) selective shrinking, the method finds time-optimal
transformations for algorithms with any convex polyhedron

,Clearl, all conflict vectors of T' can be expressed as follows: index sets. For the generalized true dependence shrinkin,

I ftw+1 the method finds optimal solutions for 2-dimeasional
i2 " -rw (4.7) algorithms with constant-bounded index sets. How the two

transformation techniques are related is also briefly discussed.
where X is a constant such that -y is integral andged (1, .... ',e)
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FAULT- T OLERAINT SELF-ROUTING PERMUTATION
NETWORKS"

Hasan Cam and Jose A.B. Fortes
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Abstract - Four different self-routing permu- tation networks presented in this paper are stated in
tation networks are presented in this paper. The gate-level the area complexities of our self-routing
first self-routing permutation network is constructed permutation networks are expressed in VLSI-level
from concentrators and digit-controlled 2x4 instead of gate-level because the concentrators used
switches. This self-routing permutation network has in these networks contain gates whose sises vary
O(log 2 N) gate-level delay with a very emall constant with the number of inputs.
and use O(N 2 logN) VLSI-level hardware.') The Batcher [31 presented both the bitonic network
propagation time of this network is less than that of and the odd-even network, both of which take
any self-routing permutation network presented to 0 (log2N) comparator-level time to sort input vec-
date. The second self-routing permutation network tors of size N. Ajtai et al. [4) introduced a network
is obtained from the first self-routing permutation of size 0 (N logN) that can sort in 0 (logN) steps,
network by replacing 2x4 switches at some stages by which is asymptotically superior to the existing sort-
short-circuit switches and removing the concentra- ing networks, but not practical because of its large
tore at these stages. This network is proposed to constant. Koppelman and Oruc f1 described a self-
avoid having very large concentrators when N gets routing permutation network whic.h has 0(log 3IN
large. The third self-routing permutation network gate-level delay and uses O(Nlog3 N) gate-level
consuits of a logN-stage network followed by one con- hardware. Jan and Oruc 191 presented two self-
centrator whose outputs are connected to the inputs routing permutation networks, one of which has
of the network. Finally, a I-fault-tolerant self- 0 (log-.) gate-level cost and 0(log3 N) gate-level
routing permutation network is obtained by adding delay. If VLSI-area (instead of simply gate-level
intraStage links, multiplezers and demultiplezers to area) is considered, then Jan and Oruc's network
the first self-routing permutation network. has 0 (.N'logN) VLSI-level cost as a consequence of

1. INTRODUCTION the results in (10.11j which show that cube-type net-
An interconnection network (IN) with N - 2" works use O(N") layout-area. One of the self-

inputs/outputs is called a permutation network (or routing permutation networks presented in this
rearrangeable network) if it realizes every one of the paper has 0 (log N) gate-level delay and
N! permutations in a single pass. This paper O N ) VLSI-level Cost.
presents four different self-routing permutation net- This paper is organized as follows. Section 2
works constructed from concentrator(s) and briefly explains radix sorting and the destination
different digit-controlled switches. Each of these net- routing scheme and points out the close relation
works realizes a given permutation using the desti- between them. In Section 3, the configuration and
nation tag routing scheme. Three of these networks performance analysis of a self-routing permutation
are based on a new approach which does not allow network are described. Section 4 presents three
any conflict to occur in switches. Because the sorting additional self-routing permutation networks which
is the rearrangement of items into ascending or des- are obtained by modifying the self-routing permuta-
cending order 2), these networks can also be used as tion network presented in Section 3. Section 5 is
sorting networL dedicated to the conclusions.

Sorting networks are often constructed using 2. RADIX SORTING AND
two-input, two-output comparators that send the CONFLICTS
smaller of their two inputs to their upper output. A
comparator compares its two logN-bit inputs to Some self-routing INs, called cube-type net-
determine its state. Because a comparator can be works, employ the so-called destination tag routing
replaced by logN 1-bit wide comparators, the gate- scheme for realizing any passable permutation
level (also referred as bit-level) delay of sorting net- through them [7]. In this scheme, the destination
works with N inputs/outputs can be determined by address of the ith input, 0< i::5 N-1, is used as the
multiplying their comparator-level delay by logN routing tag for the ith input and a 2x2 switch at
[1,21. Although the delay of the self-routing permu- stage k for 1:5 kS n examines the kth bit of the des-

tination address of the incoming input: if the kth bit
Research supported in part by the Office of Naval is 0, then the upper output of the switch is taken;

Research under contract No. 00014-90-J-14893 and in put otherwise, the lower output is taken. In some cube-
by the Innovative Science and Technology Office of the tewi su a the baselin, te wa te de-
Strategic Defense Initiative Organisation and administered " network- such as the baseline, the way the des-
through the Office of Naval Resarch under contract No. tination tag routing scheme works is closely related
00014 8-k-0723. to radix sorting. To see this, let S be the set of the

("IAll logarithms are in bse 2 unlm stated otherwiee, binary representations of N numbers from 0 to N-1
in some order. Radix sorting sorts the elements of S
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recursively as follows: in the Srst iteration, the set R outputs Y 1, Y.,,.., YR. This implies that any N-
S is artitioned into two subsets, 3ay S1 and So, hyperconcentrator can be used as a (, M) concen-
such 'that the most significant bits of all :he trator by simply choosing the Srst M outputs of the
numbers of Si, jE(1,2}, are the same. In the second hyperconcentrator as the M outputs of the concen-
iteration, the set Si is partitioned into two subsets trator. In this paper the iyperconcentrator of Cor-
such that the second most significant bits of all the men and Leiserson [6f is used as a concentrator.
numbers of each subset are the same. The partition- 3.1. Network Configuration
ing process of a set into two subsets of equal size is
iterated for the third most significant bit, the fourth The first self-routing permutation network
most significant bit, and finally the least significant introduced in this paper is called PN and can be
5it. Now, :et us consider the realization of a pass- constructed recursively. The first iteration of the
able permutation through the baseline network recursive construction, shown in Figure 1, is com-
using the destination tag routing scheme. The first posed of the input and output stages. The input
stage partitions the given set of N numbers into two stage consists of 2V/2 digit-controlled 2x4 switches
subsets such that the most significant bits of the and two (N,N/2)-concentrators. The output stage
destination addresses of all the inputs at the upper consists of two copies of a N/2-input PN in parallel.
(respectively, lower) half of the second stage are 0 The PNs with smaller inputs/outputs are decom-
respectively, 1). Similar to the iterations of the posed recursively until N/2 switches of size 2x2 are

radix sorting, the kth stage of the baseline network obtained in the last iteration. (Note that at the last
partitions every incoming subsets of the inputs into stage of PN, there is no need to employ 2x4
two subsets with respect to the kth most significant switches because the outputs of a switch are con-
bits of the destination addresses of their inputs. nected to only 2 outputs of PV). This implies that a

Cube-type networks pass a small fraction of PN with Ninputs/outputs can be constructed recur-

N! permutations because, for some permutations, sively in log N iterations. Thus, PN is composed of
"conflicts" occur in the switches when the kth bits log N stages labeled from left to right starting with1. For 1:5 k:5 a-1, the stage k consists of 2' - 2x4
of the destination addresses of the 2 inputs consti- switches followed by 2 , he te k concentrators
tute either the set (0,0} or the set {1,1). The net- swtces fo o 2- stag conentao
works proposed in this paper use 2x4 switches to numbered from 0 to 2"-1. The stage a consists of
prevent conflicts and are based on the idea of radix 2 i 2x2 switches. As an example, Figure 2 illus-

sorting. This implementation is different from that trates PNwith N=8 inputs/outputs.

of Jan and Oruc [9I in many respects, although both 3.2. Routing Scheme
implementations have some common points. The All the inputs routed by PNV to their destina-
network proposed by Jan and Oruc first demulti- tions are bit-serial data streams in a packet format.
plexes each input onto all N outputs of a distributor Each packet is divided into header and data sec-
through a binary tree of 27-i vertices, then the tions; the header contains the destination address of
second half of the network concentrate these inputs the packet and a single "valid bit", which is "1" if
to their appropriate outputs. The approach of this the packet contains valid message and "0" if it con-
paper replaces the 2x2 switches by the 2x4 switches tains invalid message. Those 2 outputs of any 2x4
to enable the 2 inputs of every switch to go to next switch which are not connected to any oi its inputs
stage simultaneously even if their control bits con- contain invalid messages. To inform the
stitute the set (0,0} or (1,1}. But, no matter what concentrator(s) that they carry invalid messages, the
the 2 inputs of a 2x4 switch are, the 2 outputs of switch appends a valid bit of 0 to the header of each
any switch carry invalid messages to the next stage. :avlid message. On the other hand, the valid bits
In order to detect and dscard these invalid messages of the other 2 outputq rlat are connected to the
before they arrive at the switches of next stage, con- incoming inputs are made 1. These valid bits of the
centrators are provided between stages. inputs are used during setup the conducting paths of

3. SELF-ROUTING PERMUTATION a concentrator, so that a valid message arrives at an
NETWORK output of the concentrator as opposed to an invalid

If a network sets its swicthes Using a distri- message which is not routed any output of the con-Ifnaraetwork setstits snccttestusingsaddistri-

buted routing scheme in which each switch deter- centrator. Also, the concentrators used in PN

mines its own setting dynamically by examining the require all n bits of each invalid message to be O's.

routing tag bits of the inputs, then this network is In PN, the destination tag routing scheme is
said to be selfrouting. In this section, a self-routing employed to realize any permutation through it.
permutation network constructed from concentra- The switches and the concentrators of PNV are "self-
tors and digit-controlled 2x4 switches is presented. setting" when inputs are presented to them. No
First, the definitions of concentrator and hypercon- matter what the inputs are, the switches never have
centrator are given below, a conflict because both inputs can be routed to the

same concentrator. For 1-- k5 n-1, if the kth
A (N,M concentrator is an IN that has N most significant bit of the destination tag of the

inputs X,, , , and < 27 outputs upper input to a switch at the kth stage is 0, then
Y1, Y..-,oYu, an t can etblh M dot aths the upper input of the switch is routed to the first
from any set of Ml inputs to the Al outputs [1. An (topmost) output; otherwise, the upper input is
IN with N inputs and N outputs is called a N- routed to the third output. If the kth most
hype rconcentrator if there are R disjoint paths, for significant bit of the destination tag of the lower
any 1 R5 7, from each set of R inputs to the first input to a switch at the kth stage is 0, then the
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lower input of the switch is routed to the second 3.4.1. The Propagation Delay. I
output from top; otherwise, the 'ower input is Because oNcan be constructed recursively, its
routed to the fourth output. If both kth bits of the ?ropagation delay can be described with 'he help of
inputs are O's, then both inputs are routed to the Figure 1 by the following recurrence equation:
upper two outputs, called upper-connection: if both DPN(N) = DpN(N/2) + DC(N,Y/2) - DS (3.1)
ith bits are l's, then they are directed to the lower
.wo outputs, called lower-connection. The input where Dp,(N) is -he propagation delay of FN with
inks of a 2x4 switch are labeled by 0 and 1, while N inputs/outputs, Dc(jVV/2) is the propagation
the output links are numbered 0, 0, 1, and . from delay of an (NN/2) concentrator, and DS is the
top to bottom (see Figure 3 for the illustration of ielay of a 2x4 switch which equais 1. Because PN
the four states of a 2x4 switch). uses the N-hyperconcentrator of Cormen and Leiser-

3.3. Concentrators Used in the FN son [61 as a (NV/2) concentrator, Dc(N,N/2) has3.3 CncntatrsUsd n hePN21ogN gate-level delay [61, ie.

The PN uses the -hyperconcentrator 1Cf,V/2) = 2log N. So, the equation (3.1) cat be
M = 2' and 2S m:S n, of Cormen and Leiserson [6f rewritten
as an (MM/2) concentrator by simply choosing the
first M/2 outputs of the AMhyperconcentrator as the DpN(N) = Dpv(N/2) + 2 logN + 1 (3.2)
M/2 outputs of the (MM/2) concentrator. Because
an (M,1/2) concentrator in PN have exactly M/2 = logcIN + 21ogN - 2 (3.3)
valid and M/2 invalid messages at its inputs, every
output of the concentrator carries a valid message Hence, realizing a permutation through PN takes
to the next stage. Their M-hyperconcentrator 0 (logN) gate-level delay.
routes all the valid messages to the first outputs and 3.4.2. The Hardware Cost, ApN
does not route any of the invalid messages at all. The cost is given by the recurrence:

Theorem 1. The network shown in Figure 1
is a self-routing permutation network. Apti(N) = 2pN(N/2) + 2Ac(NN/2) + Ast (3.4)

Proof. Each of the 2x4 switches at the first where APN(N) is the cost of PN with N
stage of Figure 1 examines the most significant bits inputs/outputs, Ac(N,N/2) is the cost of an
of the destination addresses of its inputs to set itself (N,N/2) concentrator, and Ast is the cost of N/2
to one of the four states shown in Figure 3. Because switches and all the interconnection links in a stage
a 2x4 switch is connected to each 3f the two concen- of the PN. Because the N-hyperconcentrator is used
trators through 2 links, no conflict occurs in the as an (N,N/2) concentrator, the cost of the N
switches. So, a 2x4 switch routes the input whose hyperconcentrator A,(NN) equals Ac(N,N/2).
destination address' most significant bit equals 0 Because the N-hyperconcentrator of Cormen and
(respectively, 1) to the upper concentrator (respec- Leiserson uses E(N 2 ) components and has area
tively, the lower concentrator). e(N2 ), Ac(NN/2) = .

Because the realization of permutations on N According to (iIf A,t for a shuffle-exchange
integers through the network is considered, the most stage is O(Nf,'1og)1 4 and O(N'2 /logN), respec-
significant bits of the Y/2 destination addresses are tively. Therefore, it is assumed that Ast = 0(mV').
1 and the most significant bits of the other half is 0. When these values are substituted in (3.4), we
Therefore, each of the two (N,N/2) concentrators obtain
has X'/2 valid and N/2 invalid messages. These
concentrators route their only valid messages to APN(N) = 2APN(N/2)+ 2N2 + N (3.5)
their outputs. Finally, each of the 2 permutation
networks at the last stage of Figure I route their = N/2 + 3 N2 (n-1) - 3/2 N2 + 3N (3.6)
inputs to their destinations. Therefore, the network The equation (3.6) shows that PN uses 0( Nlog N)
shown in Figure 1 is rearrangeable and, hence, is a VLSI-level hardware. Table 1 compares the propa-
permutation network. Due to the fact that the con- gation delay and cost of PN with those of the net-
centrators are self-routing and the switches set works of Batcher [3) and Jan and Oruc [9).
themselves "online" by examining the destination
addresses of the inputs, the network illustrated in 4. THREE SELF-ROUTING
Figure 1 is also self-routing. 0] PERMUTATION NETWORKS
3.4. Performance Analysis First network: The network PN presented in

In this section, the hardware cost and the Section 3 employs the N-hyperconcentrator intro-

propagation delay of the PN are computed. In duced in (61 at the first stage. This N-
deriving the computations, the propagation delay of hyperconcentrator has logN stages of merge boxes,
any switch used in PN will be taken as 1. In other each of which routes all its valid messages to thewords, the propagation delay of a digit-controlled first outputs. The last merge box at the last stage
w4 switch is he basic unit of time. Le AP and of the N.hyperconcentrator has N inputs and N out-
Dp4 swithei the asiwarcosnit of the Apaan puts. Therefore, when JY gets larger, implementing
)p denote the hardware cost and the propagation the merge boxes at the last stages of the N-

delay of RN, respectively.
hyperconcentrator may require multiple chips. To
avoid having large merge boxes, the short-circuit
switches introduced in [81 can be used at some of the
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first stages of the network. If these switches are 5. CONCLUSIONS
used only in a few first stages of PN, the propaga-
tion time remains in 0(log2 N) gate-level delay Four different self-routing permutation net-
because the extra delay of these short-circuit works have been presented. One of these self-routing
switches is a small constant. permutation networks, called PN, is constructed

from 2x4 switches and concentrators of 21ogN gate-
Second network: This network, called MPN level delay. The PN uses the AV-hyperconcentrator

and shown in Figure 4 for N=15, consists of an n- introduced in [6L as an (N, A/2)-concentrator. The
stage network followed by a concentrator C(2NN) RN has O(log-N) gate-level delay and uses
whose ith output, 0:_ i:5 Nr-1, is connected back to O(N 2 logN) VLSI-level area. The propagation time
the ith input. This single (2NNr)-concentrator can of this network is less than that of any self-routing
also be replaced by two (N,/2f concentrators in permutation network proposed in the literature. In
parallel. All the switches are digit-controlled, but order to make PN 1-fault-tolerant, intrastage links
the switches at stages 2 through n are 4x4, while all among switches of every stage, along with multi-
the switches at the first stage are 2x4. plexers and demultiplexers are added. Using the

Routing Scheme of MPN. The outputs of the advantage of recycling the inputs back a-1 times, a
concentrator are recycled back n-1 times as self-routing permutation network is obtained from
inputs, so that the given inputs pass through IMFN an n-stage IN and a concentrator with 2N inputs
it times. During the kth pass, 1: .k5 n, of the inputs and NV outputs. The problem of not being able to
through the NMPN, the switches are classified into 3 implement a concentrator in a single chip when N
groups as follows: (1) if a switch belongs to a, stage gets larger has been resolved using short-circuit
whose label is smaller than k, then the switch con- switches with queues.
nects only its upper 2 inputs to its upper 2 outputs REFERENCES
and ignores its lower 2 inputs, (2) if a switch
belongs to the kth stage, then it determines its state i11 D.M. Koppelman and A.Y. Oruc, "A self-
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2: k5 n-1, which receive their inputs from the [8J T.H. Cormen and C.E. Leiserson, "A hyper-
same concentrator are connected to each other by concentrator switch for routing bit-serial mes-
the auxiliary links to form a loop. The switches at sages," Proc. of the 1986 Int'l Conf. on Paral-
stage % do not need these auxiliary links because the lel Processing, 1986, pp. 721-728.
outputs of any concentrator at this stage are con- [71 D.H. Lawrie, "Access and alignment of data in
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Thesis, P'xrdue Univ., West Lafayette, 1992. (a) (b)

0 0-0
0 0

Table 1. Comparison of the performance of 3 self- (c) (d)
routing networks, where the delay and cost are corn- Figure 3. The 4 states of a switching box in PN.
plated in gate-level and VLSI-level, respectively. (a) Straight connection when no conflict exists. (b)

..... _ (Cross connection when no conflict exists. (c) Upper
Network Delay Cost connection when both control bits are 0. (d) Lower
_etwor__el_ y __os_ _connection when both control bits are 1.
Batcher's IN O(log3N) O (N2logN)

Jan & Oruc's IN O(log3 N) O(N2logN)

PN O (logN) 0(N 2 0o 0

N-22

5- c -5

Ig1.Tefrtieaino thet rec-siveco

N wih2 6- e 6
*2 3 8-

g 1N/2+1 9-

N-1N-r

12- 12
Fgure 1. The first iteration of the recursive con- 13- 6 63

struction of the self-routing permutation networkcalled Ply. 14- 7 7" 74

15- "5

Nigure 4. The modified permutation networkMNwith N=16 inputs/outputs.

4 4 4 14

S tage 1 2 3 7 3 37

F'igure 2. The self-routing permutation network Stage 1I
tPN) with YV = 8. The letter C in the boxes stands

or concentrator. Figure 5. An APN with jV 8.
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Abstra - D)w faf,, MCOflgwaioM hs been Win to be tolerated. A general disadvantage o dIe
proposed for use in Iarge-scaLe parvsioabie paral redunant h-dw . qppoach is dt die exra Iwdwar is
proce sing systems wth diwibuW shared mmory. If a idle unl a bunk occus.
processor delops a permaneatfauk dww the cwcu- The work presemed here focuses on partionable
don of a task on a sub echine A. three recowry op01 parallel pxocesing systems whee the set of pwemors
ar" ngration of the task to amoer sbmn, task ca be parlitioned to form mulple ndependent sub-
migration to a subdivision of A. and redisibution of d M The eecutioa of a parallel popra on a Z
tak amog dw fauk-f,'e procesmors in A to effecivey aiis deined sa SLk. Iris possble achieve fanlt
"disonnect'" the fauWl, proce .s,. QUandtw Models tolerance in such a system by utilizin the
of these three reconyiuradon schewme are developed to 0eConhgurability of the system to dfcvely "disco*-
consider what inftormaon o needed to make a choice nect" the bulty component For example, Par" Po-
among thes methods for a pracca i A cessing system such as Lod Cube [15). nCUBE [13],
mulitage cube or hypercube iner-processor network is IBM RP3 (241. mad PASM (29,81 incorporate putiton-
assumed. It will be pointed out that in cetain sDfiatiens able networks and therefor ha dte
collecting precise Yaws for all neaded parameters will ability to mw a task frm a foulty submachie to a
be y diffcuiL Thu, the motaton for this resmarch is falt-fee submachne [e.g., 271. Such an approach has
to examine to wht extemt a choice of recofiguranon die advantage of no reduant hardware cos however,
strategies is quantfiable in a realistic setting. e tal avalable systa resorces am decreased when a

.IU t ocs Fud more, if th smallest poible sub-
.NRODUC'ION machine in such a system conss of mor dm one pro-

If massively parallel processing system ame to Pro. cessor. de fault-fre procesors in th faulty submachine
vide reiiable operadon over ea1nded periofs of cIme, become xdle. Thus, te is a uraf.off between redundant
they must be capuble of tolerating fault. A fault-Woemuat hardwar con and degraded system performance for the
system must be able to demct and locm s faults, lt f teice schemes discussed.
reconfigure inl to "dsou t nd pe TherelceM ariaecnmu assumed beneipeet a phyui-
faulty cornponents, to ecover from pombly eruusous caily dtributed memory such tit each p ocessar is
computations, and to reaut operatin from , art paired widh local memory to fom a procesing clement
state. A dependable fauit-oerum sysm must be al to (). Most esig lar =d-scale parallel pmoesing sys-
both operat in t e presence of faults and meet de perfor- rams ue a pbysically doisnd memory qVpovh (e.g.,
mance requirements of its applications BBN Buutu [1y (5 oma). Machim CM-2 [32, Imel

One apprmc to achieving bhull tolerace in Paallel Cube (151. 9UBE (13], DAP [14L MWaPa [4), .1M
processing system involmv the un of redundmn RP3 [24D. These symms implement. aithr a logically
hardware. When a faulty component is dected the sys- 1O id memory system, a logically shred memory
mm is recosnfgured in suck a way dt d fa uy coi- sysm. or a hybrid a( de two memory sysmus. In a logi-
ponent is rplaced by an of de teduadt compOnnt CAly u ed memory sysem (e.g., CM-2, M Par),
An example of a system is MW [2]. MP is a 128 x poesno caD aoess remote memory locations
128 ay of single bit p acomos implemented a a 64 diectly. Iwt, al communication between Ps is
32 army of 2 row 4 column VLSI ICS. A mdmda ftough exum meplict p ug . In a logically shered
column of VLSI ICs (64 ICs) is provided to lace M ay memory system (e.g., BBN Butterfly), all system memory
of lhs 32 columns of ICs wihin which a bly m roessor Sp; F " -v a addres space of each ; I Pes . Accesses
may exisL Thus, any single p acessor IC failure in the 1 memory location locatd in a remtm pMrc-r's
array can be tolerated. Addiiamel bardwae could be memory tequies us of a M necm network. As
xded. at additiml cost, to alOW a grer numbe of a tesult, remote memory accees incur a lar latency

than local memory refeences. Careful placement Of pro.
10 mswch wa qprhm i by do ON= a Naeva Rmmb u gram code and dat is en way to reduce he effects of
grnm r NMor NM14-MJ-1483 =d aImd by dffs dmv dis net-ork lamw ,. In oa type of hybrid memory sys-
Scumum an Teclu&o O af o sW wo o tem (e.g., IBM RP3), a portion of each pro cesr's
MW abanMd h th ofin o( Navd Rmsak = . a memory a tamve for nosumded access. d remainder
tinanbi 0 44W.k4,. is das logically sied memory, and all inwproces-
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sor communication is dhrough dhe shird memory. The It is ssumed that overall system activities wre super-
work in this paper ussWms a iogically shared or hybrid vised by a dedicated processor known U de sysm con-

memory system. troder unit (=D, although it could be a program diswri-
Previous research an fai. rcovery by dynamic buted among system processors. Among other duties, the

reconfiguration includes [331 and [341. These papers SCU is responsible for allocating and deallocating sub.
explored task redistribution in a MIMD environment to machines, and for determining the proer recovery action
recover from a PE fault for near-neighbor-dass pioblems. in the event of a detected fault. The activities in each sub-
Other work has considered the reconfiguation of hyper- machine are supervised by a submachine controller ().
cube architectures in the tvee. oi PE failure [12, 201. 3imilar to the SCU, the SC is assumed to be a designated
Here, quantitative models or e diflrent processor., although it could be a program distributed
reconfiguratimon schemes are developed to consider what among the processors of tie submachine.
information is needed to make a choice among these The execution of an SIMD procedure on a sub-
methods for practical implementations, such as mission machine is an SIMD process. An MIMD process is the
critical situations (e.g., automated defense systems). It executie of an MIMD procedure on a PE t atis part of
will be pointed out that. given today's technology, in cer- te submachine. The rm s refers to a single
ain circumstances collecting precise values for all thred of control (stream of instructions). A subtwk can
needed parameters will be very difficult. Thus, the be composed of one or more SIMD processes executed
motivation for this researh is to examine to what extent a sequentially on the same submachine, or one or more
choice of reconfiguration strategies is quantfiable in a MMD processes executed sequentially on the same sub-
realistic setting. machine PS. A ta can be composed of one or more sub

The system and fault models used to analyze fault- a. Taks re o a hat any number of ir-

recovery options are described in Section 2. Section 3 al processors requied is avilable. At execution time,

presents recovery options and associated costs. One cost tue SC r ines the number of physical processors

that must be considered for every fault recovery option is available in the submachine and maps the viral proces-

the remaining execution time of the task that was on the sors onto physical processors. The ratio of virtual proces-

faulty submachine when the fault occurred. As an exam- sors to physical processors itcal te

pie of the difficulties in determining some of these costs, vrtua processor ratio. Wben the virtual processor ratio
Sections 4 and 5 provide models for determining the is greater than one some or all of the physical processors
remaining execution time of a task depending on the Sys- greaer the sameora of the phsi al protern configuration and operation modes. In Section 4. wil prfor the functions of more than one virtual po
tasks whose execution e a datm in sen 4 cessor. If the virtial processor ratio is less than one. someconsidered, while n Section 5 tasks wd expeuton physical processors will remain idle. Use of a virtual pro-considered, whilent eco L 5taskswhocesstr scheme allows tasks to be executed on sub-mes are data dependent a considered. machines of various sizes without having to be re-

2. SYSTEM MODEL cc-inpled. The Connection Machine CM-2 [321 uses such

Two approaches to massively parallel computation a virtual processor scheme to allow programs to be exe-

are the SIMD and MIMD modes of parallefism [9]. In cuted on machines consisting of different numbers of

machines that operate in MIMD mode, die PEs contain physical p Other schemes that allow for the

programs and data, and each PE functions independently. same lnd of funtionality are equally applicable to this

In machines that operate in SIMD mode, instructions a re a

broadcast to the PEs, the PEa ontain only data, and all Te model used for fault tolerance and recovery isas

the PEs operate in lock-step fashion. A multiple.SIMD follows. At regular intervals during the execution of a
rsk, the intemediate results of each PE are smed in a

machine s an SIMD machine at ca opaize as one or ifm PE within the same i.e., a permuta-
re independent SIMD machines [22]. A - e tio of the PEs in the submachine). These results are

machine can operate in either the SIMD or MIMD mode called checkpoint dam and they will be used to restore a
of parallelism and can switch modes at iuwruction level valid system state in the event of a fault Error-recovery
granularity [8]. A partitionable SIM/MID machine techniques using checkpcinting am discussed in [10]. It
c= operate as one or more independent or cooperating is assumed chat one or more existing fault detection tech-
submachines, where each submachine may operate as a niques in the literatre (e.g. 71 or (1]) is used in the sys-
mixed-mode machine [301. m to d faulty components. The faults of interest are

The analyses he can be used to model MIND. pemanue faults that affect the processor of the PE or the
multiple-SIMD, or pwfitionable S1MD/MIMD pmtlel memory module of the P,. Transient faults are not con-
processing systems, utilizing a multistage cube or hyper- sidered in this paper. For this study it is assumed that a
cube interconnection network. and possessing a logically faulty 2Mo is unable to either compute or commum-
shared or hybrid memory system. The research assumes cas with other PEs but does not interfere with the opera-
a partitionable SIMD/WMD machine with a multita to of fault-free PEs. Furdaencre the local memory of a
cube network and can be directly applied to the other faulty processor is assumed to be corrupt o inaccessible.
caseS.
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Alm failure of a woceor local data bus or arituetic constraints dictate that the subdivision is required ito-
:ogic unit would ae examples of faults classified as pro- seas the same topokgical network properties as die ougi-
.essor faults. WMhen a memory module is faulty, it is nal submachine. The recovery option of Section 3.3 is
,ssurned that acither te licalF n"Fai nor any other PE used when the is no need to preserve these proeties.
.an reliably read iala bom or write data to the To create indepwdent submachines with the same Aopo-
aulty memory module. Te local processor is assumed to logical network properties as the original network, all
3e fully operational in every other way. Such would be submachines in a system possessing a multistage cube or

"he case if there was a failure in the memory module hypercube intr onectio network must have sizes that
refresh circukry or a memory module I/0 buffer, for are a power of two [28, 30). Thus, if a submachine can be
example. APE with a faulty proesso or a faulty memory partitioned (Le., it is not of minimum size), it can be puti-
module will henceforth be referred to as a faulty PE. doned into two equal-size submachines. For a machine
unless it is necessary to distinguish between the twofault with N = 2' PE& numbered from 0 to N- 1, the numbers
types. When a fault is detected, the SCU determines and of all PEs in a submachine of size K = 2k agree in n-k bit
directs the proper recovery action after which processing positions. These n-k bits are called submahine bis.
continues from the last valid checkpoinL Without loss of generality, let these submachine bits be

the low-order n-k bits. The fault-free subdivision (balf) B
3. RECOVERY OPTIONS AND COSTS of this submachine A is composed of K/2 PEs. B's sub-
When a permanent fault occurs in a submachine A, machine bits am calculated by appending the complement

three possible reconfiguration/recov. - iptions are as fol- of bit n-k+l of the faulty PE number to the high-order
lows. end of submachine A's submachine bits. Thus, to deter-
1) Subdivide A into two equal-size system submachines, mine the submachine bits of the fault-free subdivision

and use the one that is fault-free to complete the exe- (M) requires a constant amount of time TM .
cution of the task. The number of physical processors in the subdivi-

2) Migrate the task to another submachine that is fault- sion is half the number of physical processors in the origi-
free. nal submachine. Therefore, the virtual processor ratio for

3) Redistribute the task programs and data among the the subdivision will double. The SC must determine the
fault-free PEs in A and complete the task using a new mapping of virtual processors onto physical proces-
modified algorithm that does not use the faulty PE. sors and coordinate the relocation of program code and

These recovery options are discussed further in the fol- data accordingly. TM"W, the time to perform this map-
lowing subsections. ping, is computable by the SC and will depend on the

If a PE memory module fault occurs, another implementation specifics of virtual processors in the sys-
reconfiguration/recovery option is possible. Using infor- tem.
macion from secondary storage or checkpoint data, the The next step is to move all the task program code
process tha was executing on that PE can be loaded into and dam onto the fault-free subdivision as per the virtual
the memory modules of other PEs in submachine A. Exe- processor to physical sor mappingdetermined
cution then continues as before, but with che processor above. This will requireT time. Te amountofcode
associated with the faulty memory module accessing only a task consists of can be easily detmeined during task
remote memory. This option was considered in the compilation. However, the amount of data associated
research described here, but could not be included with a task can change dynamically during task execu-
because of space limitations. Results of chat work can be tion. For this reason, part of the information saved during
found in [251. every checkpoint operation is the amount of checkpoint

In addition to the costs of recovery discussed for data saved. Because every PE stores its checkpoint data
each option, there is a time overhead of determining these into a different PE within the same submachine, no data is
recovery costs to select the best option for a given situa- lost when a PE becomes faulty. It is assumed that the
tion. However, this overhead is incurred prior to the ini- intuvonnecnon network is used to transer data. This
uation of any of these recovery schemes. so it is separate traner can be accomplished without conflicting with
from the cost of recovery and is not included in the fol- inter-PE messages from other submachines because of
lowing subsections. the partitioning properties of the network. The time to

accomplish the dam trans'er can therefore be dewmned3. 1. Task Completion on a Fault-Free Subdivision and will depend on the amount of data and the virtual pro-
When a PE fault occurs on a dynamically partition- cesMr to physical Fcessr mapp1ing.

able system, it can be avoided by subdividing the current In the SPMD (!Jingle Program - Multiple 2am) res-
submachine and completing the task on the fault-free sub- triction of MIMD mode 7], every PE in the submachine
division. This process would proceed as follows. Once has a copy of the same program. Thus, in SPMD mode,
the PE fault has been located and the recovery point for program code does not have to be transferred and Tj*
the task has been determined, the SCU must make a deter- will consist only of the time required to trander the data.
mination about the parnitionability of the current sub- However, for SIMD and MIMD modes, some program
machine. For this option, it is assumed that algorithmic code will have to be transferred.
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The stucure of SC/IE and iner-SC connections (if becomes idle. In MIMD mode, the fault-free PEs of this
they exist) varies among ipproaches to multiple-SIMD subdivision can be utilized by the system because the
architecuires (e.g., CM-2 [32], MAP [221, PASM [29), PEa act independendy of one aother. However, in
TRAC[191). Because of this, the time to do any needed SIMD mode, the system must repeatedly paiion the
ransfer of SIMM programs when "moving" a SIMD task suodivision containing the fault until the fault is in a sub-
from one set of PEs to a subset or different set is highly machine of minimum size. Other tasks can be executed
machine dependent. Thus, in the discussions that follow, on the fault-free submachines 2ated during this parti-
it will be assuned as an upper bound time requirement :ioning process. If the minimum size of the submachine
that the SIMD program is reloaded ro secondary containing the fault is greaer than one. fat-fre PEs
storage whenever a reconfigmation occurs. become underutilized and thus contribme to a degrada-

For general MIhD mode tasks, program code will tion in system performance.
have to be moved from PEs not in the subdivision to those 3.2. Task NU
that are in the subdivision. Frthanmore, depending on
the mapping of virtual to physical processon, program It is likely that some tasks executing on a massively
code may have to be moved among PEs in the subdivi- parallel processor will not use the entire machine and will
sion. The interconnection network is used to perform this therefore execute on an independent submachine formed
transfer of program code and the time to do this can be by partitioning the machine. Reasons for partitioning
determined in the same way as for the transfer of data include allowing multiple uses (spatially), improving
across the network. However, the MIMD programs that system utilization, and improving task execution dime
resided on the faulty PE will have to be loaded from (some tasks can execute faster using fewer PEs) (28, 311.
secondary storage (disk). Therefore, if one or more PE faults occur in the current

The time to transfer a SIMD or MIMD program (source) submachine P,., the task can be migmted to a
from disk depends on the disk latency, the amount of code another (destination) submachine Pd, if one is available.
to be transferred, and the bandwidth of the disk communi- It is assumed that P, and Pd are of equal size. While this
cation channel In such cases, TTzr is difficult to predict may not be a requirement for some systems. it is a reason-
accurately because of variation in disk latency from one able assumption to make because P, was originally of an
access to another. Therefore, an expected time for disk appropriate size for the task. A brief analysis of the task
access will have to be used to determine TV.:&. migration costs discussed in [261 is provided below.

The SCU must then perform whatever operating sys- The first step to be made during the migration of a
tem functions are needed to establish the new system par- task from P, to Pd is to decide to which Pd to migrate.
tuoning. This require a system dependent nie When more than one Pj is available, the Pd that results in
represented by TF". The time to complete the task exe- the least cost of migration should be chosen. Two factors
cution on the subdivision is Tm and will generally that enter into this decision are the locations of P, anu Pd
be greater than the time to complete the task execution on and the mapping of P, PEs to Pd PEs. For a N = 21 PE
the original submachine. The difficulty of determining machine, a O(n) time method for determining the map-
Tcow& for this recovery option and those that follow is ping of PEs from P. to Pd that minimizes the task migra-
discussed in Sections 4 and 5. TT-, the total time to tion (I3) time is provided in [27]. Thus, T ,, the time
reconfigure and complete a task on a subdivision of the to choose Pj and to determine the optimal mapping of
original submachine is represented as follows. sorce PEs to destination PEs is a function of the log of

= TM* + T= + the size of the machine and the number of destination
=T+ TP submachines to be considered. The SCU perform this

There are three main disadvantages of the subdivi- function, because it is responsible for allocating and deal-
sion recovery method. The first is that a subdivision of locating submachines
the current submachine may not exist, i.e., there is no The next step in the task migration process is to
way to further subdivide the current submachine. This is wansfer all necessary task information from P, to Pd. The
due to restrictions on minimum submachine size, which tume to accomplish the data transfer depends on a combi-
is usually associated with SIMD operation. The second nation of the amount of data to be transmitted, the loca-
disadvantage is similar and follows from this. There is a tion of source and destination submachines, the source PE
limit to how many faults can be tolerated in this way to destination PE mapping, the use of the inmtr, i.a vion
because of the physical limits to the number of times a network by other tasks, the type of network, and system
machine can be partitioned. Finally, two types of perfor- implementation details. It is assumed that the intercon-
mance degradation may occur. The first is task perfor- nection network is used to transfer data for the SIMD
mace degradation. A task will generally require more case, and programs and data for all other cases. It is also
time to complete on a subdivision of the original sub- assumed tha there is no interference during the transfer
machine. This is further discussed in Section 5. The from other casks because it is expected that that simul-
second type of performance degradation is that of the taneous task migratons would rarely occur. Furthermore,
system. After subdividing a submachine because of a interference from nornmal inter-PE message traffic gen-
fault, the entre subdivision containing the faulty PE erated by a task(s) executing on a submachine(s) that the
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task migrates through is additive in nature and very lin- tribution solution can be found that works for all clas
ited relative to the task migration traffic. of problems. Furthermore, there is a trade-off between

Let TT71L be tde time to trauder the program and the time it takes to distribm the load and the savings in
law. For multistage cube interconection networks and execution time that result.
with the exception of SIMD and general NIMD program Consider an SIMD machine with a mesh intercon-
code, the time to perform this transfer is a linear function nection network. A faulty PE might require that all the
of the amount of dam to be transferred and the number of data on all tie PEs be considered in the redistrution to
network permutation settings required to accomplished achieve optimal performance and preserve the near-
the trnsfer. TIh amount of time to transfer te SIMD neighbor communication pattern (341. If a multistage
program code to Pd is machine dependenL In the worst cube network is used, it is possible that the network will
case, the code will have to be loaded from secondary nort be able to support te required single-puss inter-PE
storage into the SC of Pd. For the general MIfMD case, communication permutations on a submachine where one
the program for the faulty PE must also be transferred or more PEs have been effectively removed (i.e., the per-
from secondary storage. As discussed earlier, this access mutations permitted are limited [171). In general, them
to secondary storage makes prediction of the transfer time may be additional overhead incurred whether extra am
difficult. is required to redistribute the data or ex= time is needed

As before. T~ . is the time to complete the task to perform ommunicao in a network where a needed
execution once the migration is complete. m will permutation cannot be performed in one step due to a PE
be equivalent to the time required to complete the task fauiL
from the recovery point on the original sbmachine "r first step in the tas redistribution (M)process
before the fault occurred. Thus. T,., the time to is to determine how to accomplish the redistribution. In
migrate a task is as follows. general, an equal load distribution (of dam for

Tr = Tz + TT!& + T SIMD/SPMD tasks and of both programs and data for
MIMD tasks) among all of the fault-fiee PEs will result in

The main advantages of task migration to another equal- the greatest efficiency for completion of the task. The
size submachine are that no remapping of virtual proces- time to make the redistribution, Tp, depends on the
sors to physical processors is required and once the mode of operation, the algorithm mapping, and the
migration is completed, the task will finish executing current stae of each subask
without any performance degradation. However, task It is assumed that die SC has user-supplied
migration is not possible if another submachine is not knowledge about the algorithm mapping, which it uses to
available. Also, the overhead to move a task may be decide how to redistribut the task. Ideally, this
significant compared to the task execution time remain- knowledge would be compiler-supplied. However, while
ing. As with the fau-free subdivision option, system this may be possible for certain classes of problems, it is
degradation in the form of underutilizaon of fault-free still an open problem in t general cas&.
PEs may occur for the PEs in P,. The next s is to perform the subtask and/or data

redis3ibution. T Y.* is the time required to accomplish
3.3. Task Redistribution the relocation of the program code and/or data. As in the

In many cases when a PE or PE memory fault previous two options, the time to accompfish this transfer
occurs, it may be possible to redistribute the dat and/er depends on the mode of operation, the amount of dam to
subtasks associated with the faulty PE to neighboring PEs be tranferred, the location of source and destination PEs,
within the same submachine, thus effectively removing the inerconneco network. and systm implementation
the faulty PE from dhe computation. The ability to redis- details Once again. for a MIMD task. the transfer of pro-
trbute the task in such a way that the faulty PE is effec- gram code from secondary storage will add some unpred-
tively removed from the computation depends on a ictability into the expected transfer time. The time to
number of factors including the algorithm, the mode of complete task executio, after task redistributio
operation, and the intemaonection netwo. Consider an TTI,, is expected to be greater than tie time to corn-
algorithm that exhibits coarse grain parallelism and is piem the task on the fault-free submachine and is dis-
implemented as a set of MMD subuske that require little csed further in Sections 4 and 5. Thus, TLT.T, the time
inter-subtask communication. If a PE becomes faulty, te to redistribute a task among the fault-free PEs of a sub-
subtask that was executing on that PE can be distributed machine and complete execution of the task is as follows.
to one or mo fault-fe PE. However, to Minimize the= + +
execution tme of the task, load balancing may be
required. Work on load balancing on parallel and distri- An advantage of the task redistribution option is
buted systems [e.g., 211 has shown that the opimd load that all the fault-free PEs in the submachine can be util-
balancing solution depends on a number of fatms includ- ized by the task, while with the fault-free subdivision
ing the task/subtask queuing model used, the precedence optiM, only half the number of original PEs are utilized.
constraints involved, and on the tasks being executed. A disadvantage is that to allow data and subtus to be
Thus. it is unlikely, using available technology, that a dis- redistributed with a minimum of effort, the task must be
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coded and/or compiled conmidering fault tolerance nd comprehensive model ,or determining the amount of
reconfiguration. As an example, linked lists should be SC/PE overlap in an SIMD task see [161. Let Tsc be the
favored over indexed arrays when random access to the ame the SC spends performin, its calculations, To, be
list elements is infrequeunt, because the code does not the total SCRPE overlap, and TW be the execution time of
Uve to know the number of elements um the stucture and insruction i on processor P. For a disabled PE, TW = 0.
does not have to be modified when the data is redistri- In SUMD mode, a new instuction is broadcast to the PEs
Juted. Of the three options for reconfiguration discussed, by the SC only after the current instructn's execution
Jhe rask redistribution option is by far the most difficult to in been completed (or initiated, if prefetching is used).
quantify. However, if t task redistribution option is to Therfore Tsnm, the overall time for a SID task con-
be considered, the information discussed in this section is sisting of the execution of I instructiom on Q PEs,
needed to chowe the best altenative OQSQ-t, is

4. DATA-INDEPENDENT MODEL Tsn=TSC-To.+max [ ].
One recovery cost common to all the options

presented is the remaining execution time. However, the Let t be the time required for a PE to make a single
time required to complete execution of a task varies with access to its local memory. It is assumed that any such
the recovery option. For example, a task that has nearly access takes a constant amount of time. Similarly, let tR
completed executin may complete much earlier on a be the average time required to make aw access to a
subdivision than it would if it were migrated to another remote (non-local) memory location.
submachine, especially if a high overhead migration cost For the archiectares under consideration. a remote
is incurred. Alternatively, if a significant amount of on- memory reference requires use of the intemonnection net-
putaion remains, migrating the task may result in an ear- work. For a read of remote memory, an address must
ier task completion time. Thus, the remaining task exe- traverse the network to the remote memory and the
cution time becomes important. memory contents must traverse the network to the source

Tasks can be divided into two categories based on of the read request. For a remote memory write, an
execution time. These are tasks with data-independent address and word to be written must be sent to the remote
execution times and tasks with dam-dependent execution memory location. Generally, an acknowledgment of
times. A task with a dam-independent execution dine some type is returned by the remote network interface.
does not depend on input data to make branching deci- The time required for an address or data word to traverse
sions. Thus, the number of times any branch in the task the network can be divided into two components These
program code is taken can be determined by a compiler are ransfer time and overhead. The transfer time is the
during program compilation. A task with a dam- actual propagation time required assuming no contention
dependent execution time, on the other hand, has branch in the network. Transfer time is a constant for networks
decisions that are based on data that is known only at run that have equidisant paths between any suvwe and desti-
time. The execution time of such tasks is considered in nation pair (e.g., multistage cube network), but may vary
the next section. for other networks (e.g., hypercube). The overhead is

A model is presented in this section for determining time spent to establish a path through the network and the
the execution-time costs of data-independent-execution- tme spent waiting due to network contention or conten-
time tasks. This model differs from other models in that it tion at the remote memory. In general, the determination
can accommodate a logically shared or hybrid memory of overhead is a difficult problem that depends on the net-
system. Such an execution-time model must necessarily work implmentation details and the message traffic.
include detail about the amount of time spent making Thus, ti is only an estimated average value; calculating
local and remote memory accesses. Both SIMD and an exact time for each transfer would require machine
MIMD versions of the model are presented. Because and application-dpendent analysis, Reseazch on detailed
SPMD is a subset of MIMD, it is accommodated by the modeling of networks has been the tpio of entire papers
MIMD model. Mixed-mode operation execution-ume [e.g., 11], and is beyond the scope of this work.
prediction can be accomplished by extending the model Here for the sake of simplicity, remote memory
to account for switching between modes. reads and writes are assumed to take the same amount of

4. 1. SIMD Task Execution Time time. The model could be extended to include different
costs for the two types of references

In SIMD mode, it is assumed that instructions to be The number of local and remote memory references
executed by the submachine P s are loaded into an made by PE P during instruction i (when no PE is faulty)
automatic broadcast queue by the SC. This leaves the SC is denoted by MLeO and MPR0 , respectively. A compiler
free to perform computations of its own (e.g., fte manipu- could determine these values for every insrction in a
lation of loop index variables PS-common array index task as well as the amount of time spent by PE P on
calculations). Thus, the execution time for an SIMD task instruction i doing non-memory reference work ("com-
includes the SC execution time plus the PE execution putri time' P- . For a disabled M MEW = 0.
time minus any overlap between the two. For a MI W = 0, and TE = 0. Thus, the total time spent by PE P
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on instructioniis given by tion above is useful only when the exact sequence of
instructinm for eve y M D submask is known. "Me

ti. ILO+ 4 MI + TF. MNMWD execudon-time equation given does not ccoun

Therefore, the new SID execution-tme model for conflicts in the inteonnectioan network. so the exe-
,e€omes cuion time derived from the equation will be a minimum

' r _ 1executioni ine.
=TsC-'og+1rna [tLM "1+tu 5. DATA-DEPENDENT MODEL

The model for detemining SID task exuion Mo tasks have a dat-ependent execun time.
time presented above can be applied in cases whae thl making the execution-time model presented in de
axact sequence of insuuctaons to be executed is known at preceding section iMppiable. However, in a production
compile time. However, for most programs the sequence environmnt where a task is executed repeatedly on van-
of insmtions executed is dam dependem. For such pro- ous sets of data (e.g., image processing of satellite Pic-
grams it is not possible to determine an execution tme te), empirical studs can be performed to derive an
during compilation. Furthermote, it is not Practical for estimated execution time for a task. For these cases it is
the SC to determine the amount of execution time left possible to develop a model that will predict the expected
when a fault occurs, because it would potentially have to execution time remaining for a task that is recovering
simulate the execution of every instruction on every PE frot a faulL
to determine when the task has completed. In casem 5.1. ExecutionT'une on a Different Submachine
where empirical data is available on the execution time
of a particular task, it is possible to determine an oni a taskuybee migatedu fium asubmachin e
estimate of the execution time remaining. Such an esti- conaining a faulty PS to a faultfree s of equal
mate is discussed in the next section. For data- size, the time to complete the task execution will be de
dependent-execution-tine tasks where there is little same as it would have been on the original fault-free sub-
empirical data, dhere is no practical way of determining machine. An estimate of this expected completion time is
an execution time, In such cases, the reconfiguration now derived.
decision may have to be made without benefit of Let T&= be a discrete random variable that
execution-time knowledge. represents the execution time for a specific task. Te, is

always positive because a negative execution time is not4.2. MIMD Task Execution Time eassible. f(TE.) is the discrete density function (23] of
It is assumed in the following model that an instruc- T&.. If Ti.m takes the value x with probability pi, and

don cycle is composed of a fetch phase and an execute 8(x) is the impulse function such that S(x - xi has value
phase. Because each PE may execute a different program one at x = x, and value zero elsewhere, then
in MIMD mode, let I(P) denote the number of instructions f.) p, W&, - X0.
that PE P must execute to complete a task and let T'W be

the time for PEP to execute its i* instruction. Then.
TIM , the execution dime for a task in MOM mode is By definition, the expected value of T. is

max .f -- frT& f(T&)dT&a = i=.

This "max of sums" for MIMD verus"sum of max's" It is assumed that te amount of execution time
for SIMD has been discussed in another context in [31. spent on a task prior to a checkpoint is stored with that

Let W'O reptesem the number of words that PE P checkpoit. If a recovering task is to proceed from a
must fetch from local memory to read in instwtion i. As checkpoint and the execution time stored with that check-
before, the number of local and remote memory refer- paint is , To,,., the expected amount of time required
ences made by PEP during its iz intruction is denoted by to complete task execution is
WCO and M3  respectively. A compiler could determine T = -

these values for every intruction in a task as well as TcI ,

the amount of time spent by PE P on its i " instruction Tca,.. amines that the submachine size remains the
doirg non-memory-reference work. Thus, the MIMD same and that all the PEs in the submachine are fault-free.
task execution time becomes 5.2. Execution Time on a Fault-Free Submachine

[m ' C+rK Here, the completion tine of a task that completes
= m xLg l+wP) j+tuMu0+Tc - execution on a subdivision that is half the size of the on-

I I ginal submachine a considered. Let T2, be the expected
Aswiththe SM execution-time model. the aq- execution time of a task on a submachine consisting of 2x

As with he D uoPE, and let T, be the expetd executi time of the
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same task remapped onto one of tbe two equal-sized sub- section, one can arrive at an estimate of the remaining
divisions of the original submachine. If the average time execution tme for a task after recovery from a fault.
for an inter-PE transer remains the same in either case, The remaining execution time for tasks with data-

1 dependent execution times for which no empirical data is
Th a -T 1 . available cannot be estimated reliably. In these cases, the

user must be required to supply an estimate prior to exe-
The inequality becomes an equality when the mapping of cution time if a comparison of recovery options is to be
the task from the subdivision onto the 2x PE submachine performed.
is optimaL An alternative method for determining remaining

This equation can be extended to submachines of execution time centeus around the use of an automac
arbitrary size as follows. Let Sow be the number of PEs complexity evaluator such as that presented in [18). The
in the old (original) submachine and let SN.,, be the approach here is to attempt to generate a nonrecursive
number of PEs in the new submachine (subdivision). function, prior to run time, that can be solved at run tme
Then, the expected remaining execution time on the sub- to determine the asymptotic time-complexity behavior of
division is bounded by a program. This approah is applicable to a wide range

Sold ]  1of prograns, but it is not always successful in generating
Tc, n i - J•a nonrecursive function. Further study is needed to see

how it can be applied here.
A more accurate remaining execution aime estimate 6. CONCLUSIONS

can be obtained if empirical data is available to deter-
mine expected task execution times for the submachine The viability of a quantitative model of system
sizes of interest. Then, the estimated task execution time reconfiguration due to a PE or PE memory module fault
becomes a function of the submachine size and the esti- was examined. Three fault recovery options were dis-
mate of the remaining execution time becomes cussed and the parameters required to determine their

r respective costs were identified. It has been shown that
TS.) = . J given the present technology, collecting precise valuesTI.(Soa) "for some of these paameters is very difficult. As an

example of this, two models for determining the remain-
5.3. Execution Time After Task Redisibution ing execution time of a task after reconfiguration to

tolerate a fault were presented. The first is applicable to
An execution-time estimate for the task redistribution tasks with data-independent execution times and relies on

recovery option is more difficult than for the previous compile-ame analysis of the task. The second
options. Consider a task executing on a submachine of execution-time model is for use with tasks with data-
size So in MIMD mode. If a PE becomes faulty and its dependent execution times that are production oriented.
subtasks are distributed equally to the SN, = Sow- I This model uses empirically derived or user suplied
fault-free PEs in the submachine, the remaining execution expected execution times to estinmte the remaining exe-
time is bounded as follows. cution time for tasks.

The model presented in the preceding sections can
Tc~ sB S I- be used to daive some beuristics to aid in the decision of

which option to choose. Consider a SIMD task for which

Consider the case where the faulty PE's subtasks cannot every PE in a subdivision of the submachine checkpoints
ie distributed equally among the fault-fme PEs. In the to a PE in the other subdivision in such a way that no two
worst case, all the faulty PE's subtasks would be PEs checkpoint to the ame PE. Then, eithd subdivision
assigned to one PE. In this case, the remaining execution will contain all the data needed to recover from a PE fault
time could be twice that of the remaining execution aime and no data will have to be moved during the recovery if
on a fault-fre submachine. The degree to which the the subdivision option is used (although a better mapping
performance of the system on a task is degraded is a may exist). Let Da 1 ,, be the amount of data check-
function of the system (ot), the algorithm implementation pointed per PE during de last dcpoi operation and

(0), and the number and location of faulty PEs (y). Let let td be the expected um to =rnser one daa item across
d(a,0, ) e defined as the amount of performance degra- the interconnection networ i:Z Dopt id < (11.(=w - T)..

dation: <d(a, ,y) S 2. The amount of performance the task migration optim 4atwu Axx oe cofisiderCf
degradaon can be estimated from empirical data or from because it would take longer man corpleing the task on
user -run tea information about the algorthm implemen- a subdivision.

*on. 1 Z!emaming execution time then becomes It is possible that the overhead :uirea to determinc

ca 1the best fault-recovery opticn a, -v greaw. than the
Tc.o =d(,,y) A, -I, . possible benefit of selecting the best optim. Let TDm,

be the expected time todec on the best optim. For r
Using the execution-time models presented in this SIMD task, if 2(l.=.- c) < T w&, tie sublivisioc
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option can be used to complete the task before a be=ter Distrib. Comput., Special Issue on Masively Paral-
option (if one exists) can be selected. The subdivision lei Computation, v. 13, OcL 1991, pp. 154-169.
option is chosen becia there is no possibility of [4] T. Blank, "The MasPar MP-I architecture," IEEE
interference with tasks on other submachines and no algo- Compcon, Feb. 1990, pp. 20-24.
rithm dependent redistribution of data (and associated
overhead) is need. [5] W. CowthI, ". Goodhue, R. Thomas, W. Milliken,

For MIMI and SPMD tasks, if all the subtasks of and T. B ekadar, "Performance measurements 0n a
the faulty PE are redistributed to one falt-f , e 12node butterfly paralel p cessor," 1985 d'!
task will complete in approximately the same amount of Conf. on Parallel Processing, Aug. 1985, pp. 531-
time as it would on a subdivision. When the subtasks of
the faulty PE am redistributed to more tdan one fault-fee [6] A. T. Dahbura G. M. Masson. and C. Yang, "Self-
PE, the redistribution option will be faster than the subdi- implicating structures for diagnosuble systems,"
vision option. Thus, as a general heuristic, there is no IEEE Trans. Comput., v. C-33, Aug. 1985, pp. 718-
need to consider the subdivision option for M[MD and 723.
SPMD t . (7] F. Darema-Rodgers, D. A. George, V. A. Norton,

For production envirunment tasks it may be possible and G. F. Pfister, Environment and System Interface
to collect empirical data on expected completion time for for VMIEPEX. Research Report RC1 1381 (#51260),
a task as a function of the time the task spent executing IBM T. J. Watson Research Center, 1985.
before the fault and the recovery method used (the fault
location may also have to be considered). Then 8] S. A. Fnebe, T. L Casvant, and H. . Siegel
choice of recovery options becomes simply a matter of "Experimental analysis of a mixed-mode parallel
chosing the option with the smallest completion time arae bitonic sequence sorting," 1.
given the point at which the fault occurred. Of course, for Parallel Dis25 ib. Conpa., v. 11, Mar. 1991, pp.
the task migration option it may be impossible to predict 239-251.
the amount of interference possible from tasks executing [91 M. J. Flynn, "Very high-speed computing sys-
on other submachines. tems," Proc. IEEE, v. 54, Dec. 1966, pp. 1901-

In conclusion, using the model presented here, it 1909.
may be possible to choose an "optimal" reconfiguration [101 T. M. Frazier and Y. Tamir, "Applicatio-
strategy for some classes of tasks executing on a given transparent error-recovery techniques for multicom-
machine. However, much work remains before a quanti- puters," Fourth Conf. on Hypercubes, Concur.
taUve model of system reconfigurantion will be practical Comput., &Appl., Mar. 1989, pp. 103-108.
for all classes of tasks. Analysis of such models helps [11] P. G. Harrison, "Analytic Models for Multistage
designers of fault tolerant systems determine require- Intrconetion Networks," 1. Parallel Distrib.
ments for compilers and operating system to provide Comput. Special Iss, Modeling of Parallel
needed input parameters for the model. It also serves to Comput . ei Iue on M i of Paralle.
identify areas where new cology Computers,v. 12, Aug. 1991,pp.35369.

Plans for future work include the validation of the [12] J. Hastad, T. Leighton, and M. Newman,
model presented here by experimenation and/or simula- "Reconfiguring a hypercube in the presence of
dion. faults," 19th ACKM Syp. Theory Compua., 1987,
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ABSTRACT

Rearrangeable multistage interconnection networks such as the Benes network
realize any permutation, yet their routing algorithms are not cost-effective. On the
other hand, non-rearrangeable networks can have inexpensive routing algorithms, but
no simple technique exists to characterize all the permutations realized on these net-
works. This paper introduces the concept of frame and shows how it can be used to
characterize all the permutations realized on various multistage interconnection net-
works. They include any subnetwork of the Benes network, the class of networks that
are topologically equivalent to the baseline network, and cascaded baseline and
shuffle-exchange networks. The question of how the addition of a stage co any of these
networks affects the type of permutations realized by the network is precisely
answered. Also, of interest from a thortcal standpoint, a new simple proof is pro-
vided for the rearrangeability of the Benes network.

Index Terms- Multistage interonnection network, permutations, rearrngeabil-
ity, topological equivalence, balanced marices, frames.

This resemwch supponed in prt by te M e of Naval Rewmnh undar comunt No. 00014-
90-J-1483 md in prt by the novadve Scienc md TechnolM Office of the Strwaeic Defee
Iniiaive Omuizaion and was admiaitemd draqc the Office of Naval Reseazrh under contert
No. 00014-814723.



i:st d yiwn1
J-l: I inaetw tI

1P: pama D me d by l inks.
IP~ PM=r farmed by output links.

Sa: switching bom swirAc
BE: buelbn netwodr; we Deinion E.3.
RD: zvwm b seline netwok we Definition 11.3.
SE.*: shuffi- i ehin network; see Definido .3.
SE : uc netwar ; = Definitio EL.3
as: Beau. netwark; se e iJ nition ILI

CS:. Clo networ ; see Deiniia U1.3.
N. aumber ot inpasuputsu of a netwa&k

F'1z* the mtadod a-ype frum with k columns; se Definitioni 11.2.
Fdl~: an a-type frome with k coluns see Definition 11.
F~l: dhe universal frame with k columns; see Definition M1.6.
h: dfe ientity pennutoran mauix wee Deinition M 1.
R: th e svers peamutaion mni see Definition 11. 1.
r die inverse permutodon rqeaeud by R.
Am.: mix A with N rows aid k columns.

Am,(&): the Ath row of mrix A.
r apermuaonon di se (0,1 .... N-1); see Definition 1.2.

A: a mopping of he set (1.2... ,k) mao (1,2,... ki}; see Definition 12.
P* a uaple of partitais; we Deinitiona112



-2-

L INTRODUCTION
Interconnection networks are utilized to provide communication among process-

ing elements and/or memory modules. Network performance significantly affects the
overall cost and performance of a computational system because processors may spend
a considerable amount of time in proceswr-processor and/or processor-memory com-
munication. Therefore, it is important to know exactly the interconnection patterns that
can be implemented by a network. In particular, it is desirable to know what permuta-
tions can be realized because parallel algorithms often require permutation-type data
t-ansfers. This paper presents a simple and easily understandable characterization of
the permutations realized by any network with N=2' inputs that is topologically
equivalent to one of the following networks: first k stages, 1 k < n, of the reverse
baseline network, the last n+k-l stages of Benes network [7], or a cascade of baseline
[I I] and k-stage shuffle-exchange [1,5] networks. The proposed characterizations are
based on the notion of "frame" (introduced in this paper), balanced matrices [2] and
graph theory (3,4].

The effectiveness of any interconnection network depends on factors such as the
efficiency of the routing algorithm, the number and type of permutations it realizes,
and the actual hardware implementation of the network. On one hand, rearrangeable
multistage interconnection networks such as Benes and Mr' (the '2f -l is a cascade
of omega and inverse omega (1]) can realize any permutation. However, there are no
known efficient routing algorithms to allow dynamic configuration in an environment
where the switching permutations change rapidly. On the other hand, some networks
such as baseline and omega have efficient routing algorithms and small propagation
delays, but cannot realize many permutations. In these cases, it is important to know
which permutations are reaizable and this is possible by using the results of this paper.

Different approaches have been proposed in the literature to circumvent
inefficient routing algorithms. One approach is to detemine certain types of permuta-
tions that occur more frequently than others in a parallel processing environment. Such
permutations have been classified by Lenfant [23] into five families. In order to imple-
ment these permutations on the Benes network with a small propagation delay, Lenfant
proposed a specialized routing algorithm for each family. A permutation that fails to
be in one of these families still is routed using an inefficient routing algorithm. To
increase the number of the families of permutations that can be realized by a network,
Youssef and Anen [22] introduced an O (og 2N) routing algorithm which sets the
(rxr) crossbar switches of the first stage of 3-stage Benes networks with N=r2 inputs
to a fixed configuration and acts exactly like a self-routing algorithm in setting the
remaining switches. Another approach is to provide self-routing algorithms for realiz-
ing some classes of permutations in various multistage interconnection networks such
as Benes, 2n-stap shuffle-exchange. Nassimi and Sahni (24] presented simple self-
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routing algorithms to realize some important permutations in Benes networks.
Aahavendra and Boppana [25] proposed self-routing algorithms to realize the class of
linear permutations on Benes and 2n-stage shuffle-exchange networks.

Although a large number of multistage intrconectuon networks are extensively
widied, there is a relatively small number of basic designs for their underlying topolo-
giea. Especially, Benes networks and six topologically equivalent networks, namely,
omega, flip, indirect binary cube, modified data manipulator, baseliu- and reverse
baseline have been investigated in depth and are frequently used in research studies
and real systems. Characterizations of the topologies of these networks are given in
(9,26,27]. However, to our knowledge, the characterization of the permutations per-
formed by these and other networks is done for the first time in this paper. One excep-
tion is the work of Lee (10] which characteries the permutations realized by the
inverse omega network in terms of residue clufts.

The rest of the paper is organized as follows. Basic definitions and notations used
throughout the paper are presented in Section IL Also included in this section is a
motivational example for the concept of frame. In Section I, this concept, illustra-
tions of many different frames, notation and terminology are introduced. Permutations
realized by the k-stage reverse-baseline, 1 k n, and the networks which are topolog-
ically equivalent to it are characterized in Section IV. In Section V, the permutations
realized by a cascade of reverse baseline and the k-stage shuffle-exchange networks are
identified. These cases show how frames can be used to characterize the permutations
of some relatively complex netwrks with more than n stages. Section VI provides
new proofs for the rearrangeability of the three-stage Clos and Benes networks. Permu-
tations realized by the last n+k-I stages of Benes network are identified in Section
Vii This characterization illustrates how frames can be used to understand why a net-
work is remrangeable. Section VII concludes the paper. The Appendix (Section IX)
contains the proofs of most of theorems and lemmata in the paper.

IL BASIC DEFINITIONS AND A MOTIVATIONAL EXAMPLE

Throughout this paper, matri e am denoted by single capital letters and columns
of a matrix are represented by the lower case of the capital letter denoting that matrix.
Matrix A having N rows and k columns is denoted by ANk. Given a matrix, e.g. Aiv,
the jth column is denoted by aj, 1 :5 j < k. To be able to refer to a set of specific
columns of a matrix, the notation A.y is used to denote the submatrix that contains
those columns of A whose indices are x x +1, ,y, where 1 S x <5y, if x happens to
be greater than y, then A,.. refers to a nil matrix, unless stated xherwise. Iffx=y, then
A. 7 refers to a single column a.. Unless specifically stated, the number of the rows of
a matrix A.. is assumed to be equal to N. AN,(i) refers to the ith row of the matrix
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A,., when 0 i 5 N-1. A column vector of N entries of which half are O'3 and the
ither half are l's is called a column permutation. Unless otherwise stated, any column
of any matrix in this paper is a column permutation. The binary representation of a
positive integer 0:< b S N-1 is (bb 2 " bn) such that
b =b.2r-I+b2.r- 2+ "  .

Apermutation on a setX is a bijection of X onto itself. A permutation f permutes
the ordered list 0, 1, -.., N-I into f (0), f (1), .-. ,f (N-1). A cyclic notation [20,21]
can be used to represent a permutation as the product of cycles, where a cycle
(COC 1 C2 ... Ok-let) means f(co)-c 1 , f(c)=c 2 , ", f(ck-1)=ck, and.
f (ck) = Co. The composition of several permutations fl.f2 ... fi is evaluated from
left to right, i.e., it maps i into fk(... (f2(fi (i))) ).

Definition I.. (Permutation matrix, identity permutation matrix, reverse
permutation matrix): A permutation h can be represented by a Nxn binary matrix
called permumtaon matrix, H, such that its ith row, HN,,(i), is the binary representation
of the integer h(i). The identity permutation matrix denoted by INV, is the matrix
whose ith row is the binary representation of i (this is called "standard matrix" in
(12]). The reverse permutation matrix, denoted RN,, is the matrix whose jth column
is the (n +1-j)th column of Nxi.

For instance, the identity permutation matrix I ,, the reverse permutation matrix
R W and a permutation matrix Es. are shown below:

0 0 011 1010 0 11 1 10I s= 1 00

sz-1 0 0I 0 0 11 1 1 0

1 0 11 1 0 11 0 0 11 101 01 1: 10 1
1 1 11 1 1 1: 0 1 1

Clearly, there is a one-to-one correspondence between permutations and permuta-
tion matrices. For instance, R S,3 represents the permutation r:

01 2345 67Usig t61537 "

Using the cyclic notation, r is represented by r = (0)(1 4)(2)(3 6)(5)(7).

L •I I~lMIMI IMIIIIll lll• l lnllll mlml1
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ILl. Networks

In the terminology used 'n this paper, a k-stage interconnection network (IN) con-

sists of k columns of switching boxes (SBs), each followed and preceded by links

which form interconnection patterns (IPs) as shown in Figure IL 1. The IPs formed by

the input and output links are denoted by IPJ. and IPw, respectively. Thus, an IN con-

tains (k+l) i -- onnection patterns labeled IPj,, IP1 , IP2,...,IP'.-q, IP 5w. A

column of IN contains N /2 (2x2) SBs, each of which can be set either straight or cross.

Figures L2, 113, HA.4, .5, and 11L6 show several networks considered in this paper for

N=16, namely, reverse baseline, baseline, Benes, the 4-stage shuffle-exchange (SE),

and the 4-stage inverse SE. If some networks are placed in parallel to form a new IN,

then the IN is said to be a "pile of networks". Unless otherwise stated, any IN is

assumed to have N inputs/outputs and its stages are labeled from left to right starting

with 1. Network stages are defined below and illustrated in the figures.

Detinition IL2. (Stages of reverse baseline, baseline, Benes, SE, and inverse

SE networks): With one exception, a stage in the reverse baseline and SE networks

consists of a connection pattern and the following column of SBs. The exception is the
rightmost stage (i.e., the output stage) which consists of the last column of SBs and

both the preceding and succeeding connection patterns. Stages are labeled from left to

right in ascending order starting with 1. In the baseline network the kth stage

corresponds to the (n-k+l)th stage of the reverse baseline network. (Notice that both

the reverse baseline and the baseline can have at most n stages, by definition). In the

inverse SE network with m stages, its kth stage corresponds to the (m-k+i)th stage of

the m-stage SE network. In this paper, Benes network is considered as being com-

posed of the first n-1 stages of the n-stage baseline followed by the n-stage reverse

baseline. (It could also be considered as being composed of the n-stage baseline fol-

lowed by the last n-i stages of the n-stage reverse baseline). Therefore, the stages of

Benes network are labeled according to the labeling rules of the baseline and 'he

reverse baseline.
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An IN aving N inputs/outputs and k stages is denoted by both INV and IN-:,
where k > 1. The subnetwork that consists of the stages x through y of IN l:k is denoted
byIN. 7 , where 1 <x<y < k. If x>y, then IN1 :y refers to a nil network, unless specified
otherwise. INj, 1: j :5 k, refers to the jth stage of/R Iik. The notation used for net-
works is different from that used for matrices because matrices are always denoted by
single luers.

Without loss of genei ity, it is assumed that routing of a permutation through a
network is done as described in this paragraph. Assuming that the stages of the net-
work are labeled from left to right starting with 1, if the routing tag is d 1 d2 ... d,
then di is examined to set the SB at stage i as follows: if di equals zero then the output

is sent to the upper output of the SB; otherwise, it is sent to the lower output. The ith
entries of the routing tags of the two inputs entering a SB are also called the control
bits of that SB. So, to set a SB properly to either straight or cross (or equivalently not
to have any conflict in a SB), the control bits of a SB must constitute the set (0, 1). In
some networks, the routing tag of an input equals its destination address, but this is not
always the case.

In this paper the following convention is adopted to denote an IN: if the name of
an IN has more than one word, then it is denoted by the upper case form of the first
letters of those words; otherwise, it is denoted by the upper case form of its first and

last letters. Also, if XX denotes an IN, then the inverse XX network may be denoted by
XX - I. The following definition applies this convention to the baseline, reverse base-
line, shuffle-exchange, inverse shuffle-exchange, Benes and three-stage Clos networks
of interest in this paper.

Definition IL. (BE, RB, SE, SE - ', BS, CS, composite IN): The symbols BE,
RB, SE, SE - t , BS and CS in this paper refer to the networks baseline, reverse baseline,
shuffle-exchange, inverse shuffle-exchange, Benes and three-stage Clos network
v(2,2,N/2) [7,13], respectively. (If the number of inputs/outputs of three-stage Clos
network v(2,2,N/2) is equal to N, then each of the outside stages of three-stage Clos
network in this paper contains N/2 (2x2) SBs and the middle stage consists of 2 boxes
with N12 inputs/outputs each). If an IN is a cascade of different INs, then it is called a
composite IN and is denoted by the concatenation of symbols that represent the INs in
the order they are cascaded.

As an example for a composite network, the notation RB 1:SE 1.,, m 2 1, denotes
the network consisting of RB 1:. followed by SE 1:m.

Unial and Tarsi [2] introduced the concept of balanced matrices to establish a
relation between SE networks and their realizable permutations. The following
definition is equivalent to the one given in [2].
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Defltion .4. Balanced matrix): Let N= and call a 0-1 mrni'rx ANv 5m1-

am ed if either one of the following conditions is satisfied:

1. Fork S n, it consists of any k coiumns of the binary .epresentation of a permu-
tation on the set 0

2. For *>n, every n consecutive columns form the binary representation of a per-

mutation on the set {0, 1,....,N-1).

As an example, two balanced manices E and F am shown below. But notice that
the matrix [E F ] is not balanced.

111 10
100 10
000 1 1

E=[eIe 2 e 3]= 0 1 0 F=[fVf 2]= 1 I
1 10 01
001 01
1 01 00
011 00

Definition L5. (Pass, realize): A balanced matrix ANl (respectively, an IN) is

said to pass a k-stage IN (respectively, a matrix AN) if no conflict occurs in the SBs

of the IN when ANk(l) is used as the routing tag for the ith input of the IN. A network

IN realizes a permutation represented by BN,, if there is a network switch setting such

that input i is sentto outputB(i) for alli0,1,... ,N-1.

According to the last definition, in this paper, the phrases "an IN passes a bal-

anced matrix" and "a balanced matrix passes an IN" are used alternatively. It is also

assumed that only "one pass" is allowed through a network to realize a permutation.

Therefore, the phrase "one pass" is omitted in the sequel. To emphasize the distinction

between the meaning of the terms "pass" and "realize" as used in this paper, it is

important to notice that matrix ANj, in Definition IL5 does not necessarily correspond

to the permutation realized by the network IN. Indeed, the ith row of ANv is the rout-

ing tag for input i and it is only when it equals the destination of input i that AN,& is the

permutation realized by IN; the cases in which this occurs will become clear in the
remainde of the paper.

1.2. A Motivational Example

Consider permutations , = (0 6)(12)(3 5 4)(7), x2 = (0 2)(14 3 7)(5 6), and the

reverse baseline network with 8 inputs/outputs, denoted by RB &a and shown in Figure

IL7a. A frame is illustrated in Figure 11.Tb. The binary representations of thes pev-
mutations are given below:
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r1 0 0 1 0
01 00 0
00100
1 011 13
0 11 01 1]

1 123

0 0 1

L 1 1

2 2 2
3 3 3
4 4 4

6 66
7! 7 77_

(a) (b)

Figre 11.7. (a) The reverse bmline netwark with 8 inputoutpus
(b) A frm.

When the ith row, 05 i 5 7, of both j and s is used as the routing a g for the ith
input of RB ,, no conflict occurs in the switches and connections are established

between the input i and the outputs rI1 (i) and f' 2(i), respectively. Therefore, RB 8&

realizes x, and x2. Now, let us place the ith row of , and x2 into the ith row of the

frame in Figure IL7b with 8 rows as shown in Figure I.Sa and Figure II.8b, respec-

tively.



1 2 3 1 2 3
01 1 0 00 1 0
1 _ 1 0 1 L 0
20 0 1 20 0 0
3 1 0 1 3 1 1 1
40 1 1 40 1 1
5 1 0 0 51 1 0
60 0 0 61 '0 1
71_ I 1 0 1 17

(a) (b)

Figwe 1.. (a) Frame with die binay nxenwdoa of the pemuttion =I.
(b) Frme wit the bin y npuenmo of t PUM"M X2.

The first k columns, 1 : k < 3, of any of these two frames consists of 23" rectangles of
size 2kxk. Note that the matrix enclosed by any rectangle of the frames is balanced (in
fact, it represents a permutation on [ 0,1,..., 2k )). It is shown in Section IV that, when
the rows of any permutation realized by the reverse baseline network are placed into
this type of frame, the matrix enclosed by each rectangle is balanced, and vice versa.
Different frames are introduced in this paper and it is shown how they are useful to
identify the permutations realized by some frequently used networks.

IL FRAMES AND FUNDAMENTAL CONCEPTS

This section introduces the concept of frames to characterize the permutations
realized by a network. Different frames are derived from this concept and their graphi-
cal representations are presented. In addition, some related fundamental concepts used
in the proofs of this paper are introduced. More extended discussion of these concepts
appears in (28].

In order to facilitate the underanding of the concept of frame, the following
definition is first introduced (a k-tmple V with the elements v1,v 2,... ,vt, denoted by
V = <v1 2, • •., vt >, refers to an ordered collection of k elements).

Definition iL1. (Partition. P1, block, standard partition P', P*): Let
X=(0,1,... ,N-1),N=2" and i1=,2,... ,n. ApardtionPj ofX is a tuple of 2'-dis-
joint ordered subsets of X, called blockb, each of which is a tuple with 2i distinct ele-
ments. The partition P!=<<h, h+1,...,h+2-l> such that hmod2'=0 and
h =0,1,... ,N-l> is a standard par'tion of X. The n-uple <P!, i=1,2,... ,n> is
denoted by P.

Example IILI. Let N=8. The following are the standard partitions:
P;=< <0,1>, <2,3>, <4,5>, <6,7> >, P2=< <0,1,2,3>, <4,5,6,7> > and
P;=<0, 1,2,3,4,5,6,7>. Also, P*=<Po, P2, P;>.
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The aotion of frame is defined ne.t and an -xample (Example 1112) is given after
the definition. Note that the fi-ame of Hguz 17 and 11.8 is characterized by the label-
ing of its columns, the labeling of its tows and how each column is partitioned. There-
fore, the defintion of frame Is done in terms of two mappings (the column and row
labeling) and a tuple of partitions (am for each column). The column labels determine
:be aumber and size of the blocks in each partition and the row labeling determines the
elements in each block and their aider. As precisely stated in the definition, column
with label P(i) corresponds to a partion with 2 - N ) blocks with 2N ) elements each
and the mth element within the jth block corresponds to the label I(r) of row
r= 2 ('(-l)+mr-l). After Example M1.2, a convenient graphical representation for
frames is introduced and its use is illustrated in Example 11L3 for the frames described
in Example 111.

Definiion 1]L2. (Frame): Let 1: k5n and 1 <i5k. Aframe FX,, 1 <k5n,
is a 3-tuple <,yP>, where

- is a mapping of the set f1,2,.... k) into f,2,... ,n),
- is a permutation on the set (0,1 .... ,N-1) and

P is a tuple of partitions <P P(I),P P2),. .. ,P(k)> determined by f3
and y as follows:
Pi) = <P 1(i),Pj i).2 ,... ,P o(a-i) > where

Pp(i, = <U11.j,U2j, ... u2Mo j> such that
, j =-- K2(')(j-1)+m-1) for 1 S j < 2R- P(i) and 1 < m < 20 i) .

Definition 111.3. (a-frame, standard a-frame): Consider the 3-tuple <O,,P>
that defines a frame FNI,,. If 0 is the identity permutation, then F,v is an a-frame
denoted by Fk,. If 0 and y are the identity permutations (which implies P=P ), then
F,, is the standard a-frame denoted by F,.

By definition of standard a-type frame, column 1, I < i n, has 2n- ' blocks,
each having 2' rows. Unless otherwise stated, the number of the rows of F", k > 1, is
assumed to be N. Similar to the notation of matrices, to be able to refer to specific
columns of a frame, the notation F,:y is used to denote the subfiame that contains
those columns of F whose indices are x, x+1,... ,y. Unless specifically stated, the
number of rows of F . is assumed to be N.

Example III.2. The following ae examples of frames for N=8 and k=3.
(a) F, =<O,yP> where 0 = (12)(3), y is the identity permutation and
P=<P 2,PI,P 3 > such thatP 1 =PI, P 2=P2 and P 3=P;.
(b) FL,3=<P,yP> where 3 =ic:n.ntity permutation, y=(0)(12)(3)(4)(5)(6)(7),
P=<P1.P,P'3 >, P 1=< <0,2>, <1,3>, <4,5>, <6,7>>, P 2=< <0,2,1,3>,
<4,5,6,7> > and P3=<O,2,1,3,4,5,6,7>.
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(c) Fta=<O,',P> where O= idendty peamutaion, .= (0(1 364)(25X7),
P=<P1,P 2 ,P 3>, P=< <0,3>, <5,6>, <1,2>, <4,7>>, P2=< <0,3,5,6>,
<1,2,4,7> > and P3=<0,3,5,6,1,2,4,7>.

(d) Fs3 =<Ay4P> where A-- 2 3] Y is the identicy permnutation,

P=<PZP2 ,P 3>, P2=P2* and P 3- .

Definition 11L4. (Graphical representation of a frame, rectangle of a frame):
The graphical representaon of a frane FNv=<O3,yP> consists of k columns labeled
A , i=l,. .. ,k, from left to right and N rows labeled (j), j=0,1,.. . ,N-1 starting at
the top. The column fi corresponds to the partition P Ai), that is, fi consists of 2"- 00
blocks of 2A( ) entries each. In the graphical representation of a frame, any polygon
with four sides and four right angles is a rectangle of the frame.

Examl 1IL3. Figures liLla, HI.lb, HI.lc and IlLid show the graphical
representation of the frames described in the part (a), (b), (c) and (d) of Example M1.2,
respectively. Figure M1l.le shows the graphical representation of the standard a-frame
Ff,3. The labels of the partitions below each column are implicit by the sizes of the
rectangles in the column and can be omitted.

fl f2 f3 !I Au A ft A A f f2 f3 j joa
0

1 5 12
3_3

1 4
2 5
4 6

7 7

P 2P1P 3  P1P2 P3  P1P 2P 3  P 2P2P3  PIP 2P 3
(a) (b) () (d) (e)

igxe MI.. (a). (b). (c) and (d) a tie ra ical resenm s of the frames desr in de
pwt (a). (b). (c) and (d) of Exampie H1.2. recvely. (e) Ocaphical repreuadmn
of he advd a-fraue F:3.

Definition HL. (F1t): Letk 2: 1,0<i :5N-1 and 1 j 5k. Consider a blanced
matrix AN and a frame FN4. The matrix A fit Fs,, if and only if, after placing aij in
the ith row and jfh column of FN4, every rectangle of FNkt contains a balanced
matix.
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Example 111A. The matrix E, shown just after Definition H4, fits all the frames
shown in Figures M.1 except F,3 shown in F'gu ULle because, for example, the
mbmat'ix in the top leftmost rectangle (the 2-tuple P .I) is not balanced.

Note that the value of k in Definition M[5 does not have to equal n. It will become
:Ia that frames of any number of columns can be used to characterize permutations
which am epmsented by balanced matrices of n columns).

In addition to a-franm, other two types of frames are of use in this paper. One is
called universal frame and, as suggested by its name, any balanced matrix t it. The
other type of frame is a concatenation of frames and is useful in characterizing the per-
mutations realized by, for example, composite networks.

Definition 111.6. (Universal frame F:k): Te uversal frame FI:k, k ! 1, is
such that, for i=1,2,... ,k, P(i)=n, y is the identity permutation and Pi =P*,. The
universal frame F".k is illustrated in Figure IL2.

0

FI
N1

N-I ____

igie 1.2. Th tmiveui fmm Fa.

Definition 11L7. F,; ,.): Th e notation FMF., m a 1, represents the frame
obtained by concatenating F" , as shown in Figure M3.
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0 ..

2
3

= :~ ~ . o •o

N-4
N-3N-2 ..,,
N-!

igire M1.3. The fram F 'SO.S which is obtane by coaanan Fal and Fot..

The following definition states precisely what means to establish a correspon-
dence between a frame and a network.

Definition HI& (Correspondence between frames and networks): A frame
(respectively, an IN) is said to correspond to an IN (respectively, a frame) if a bal-
anced matrix fits the frame if and only if it passes the network.

When a frame corresponds to a network it suffices to check if a matrix fits the
frame in order to determine whether the network passes the matrix. This does not mean
that, when the matrix represents a permutation, the network realizes the permutation.
Instead, it means that, when the rows of the matrix are used as routing tags, no
conflicts occur in the network.

The complexity of checking that a matrix fits a frame is discussed next. First, the
complexity of testing if a rectangle contains a permutation matrix is considered. Next,
the complexity of checking all rectangles of the same size is discussed and, finally, the
complexity of checking all rectangles (Le., the entire frame) is derived. Note that it
suffices to consider only those rectangles whose number of columns equals the loga-
rihm of the number of rows. To check whether a given rectangle with x rows and
logp columns contains a balanced matrix, it suffices to verify that the rows of the
matrix are distinc. This can be done by building a binary search tree starung with the
root which corresponds to the first row of the matrix each row is then added as a leaf
to the tree as long as it is distinct from all previously inserted rows and so that it
satisfies the binary-search-tmee property [29]. According to this property, if v(p) is the
value of the row that corresponds to node p, then v (y)<v (p) for any node y in the left

'Al Ichn am in bm 2 m=k mod od6wis.
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smutene of p and v(z)>v(p) for any node z in the right subtree of p. In the worst case,
:'is procedure takes 0(, 2 ) steps and has average complexity of O(xlogx) [29]. If
everm'l rectangles of the same size exist in a frame, then the total number of rows con-
tair- in %I the rectangles with the same columns is N. The same procedure can be
uet ror each rectangle and the total worst case and %verage complexities will be
0 (N 2) and 0 (NlogV), respectively. Because there are at most k different types of rec-
tangies in a frame with k columns, the total worst case and average complexities are
o (kN2) and 0 (kNlogN), respectively. These bounds apply to any frame, but it is pos-
bible to do better with particular frames. For example, for a-frames the worst-case
complexity becomes 0 (N2+2(N/2) 2+ ". '+N/2)22) - 0 (N2).

IV. BASELINE-TYPE NETWORKS

Equivalence relations among INs have been extensively studied in the literature
using different tools such as graph theory, group theory, and Boolean algebra
[6,11,27,26). Networks can be modeled by directed graphs where vertices and edges
represent switches and links, respectively. Two INs are ftunctionally equivalent if they
realize the same set of permutations while two INs are topologically equivalent if their
topologies (i.e., directed graphs) are isomorphic. Wu and Feng [11] have shown the
topological equivalence of a class of MINs, which include data manipulator [14],
omega [1], flip [15], SW-banyan (s=f=2) [16], and indirect binary n-cube [17], baseline
and reverse baseline [11]. From [18], "the notion of functional equivalence is more
practical than that of topological equivalence because it provides an equivalence basis
among networks at their inputs, and thus it does not call for any modification in their
internal switching structure". Given a network in a class of isomorphic INs, it is possi-
ble to rename its inputs and/or outputs so that this network can directly simulate any
network in the class (11]. In this section, all the matrices that pass those networks that
are topologically equivalent to the k-stage baseline, 1 : k < n, are identified by a-
frames that may differ only in how their rows are labeled. First, the permutations real-
ized by the k-stage reverse baseline are identified. Then, this result is extended to the
other networks. These results also show how the addition of a stage to the right of
these networks changes the type of their realizable permutations. An algorithm is pro-
vided to find whether a network is topologically equivalent to the reverse baseline net-
work, its corresponding frame and how to relabel inputs and outputs to achieve func-
tional equivalence. Omitted proofs are provided in the Appendix.
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V.I. Correspondence between F.k and RBl:k

Because RB :, is functionally and topologically equivalent to BE :. r 1], any
permutation that is realized by RB 1: is also realized by BE 1:., and vice versa. How-
ever, this is not true for RB 1:t and BE 1 , 1 < k n-l, because they are not function-
ally equivalent (they are only topologically equivalent). But, the set of balanced

mutrices that pass RB 1:k is the same as the set of balanced matrices that pass BE t as
explained next. The network RB I. can be obtained by repositioning the SBs of the
second stage through the last stage of BE l:t and reordering its outputs. It follows that
any pair of routing tags that enter a SB at the kth stage of BE :,t also enter a SB at the
kth stage of RB .*, and vice versa. So, if the routing tags used in BE 1:t do not create
any conflict, then they also do not have any conflict in the SBs of RB 1.., and vice
versa. Therefore, a balanced matrix D :kt passes RB 1  if and only if D 1:t passes BE i:k.

The following theom shows that there exists a very close relation between
RB 1:t and F", 1 < k < n, so that the matrices that pass the network can be identified
by FI'. It shows that the ith input of RB 1.t is sent without conflicts to the output

whose value equals ( 1ii 2 j x2) Plus the value of D i:±(i) when the ith row of a matix

D 11 that fits F" is used as the routing tag for the ith input of RB I. .

Theorem IV.1 A matrix D:.tf=[dI d 2  dk] fits F". if and only if D :k
passes RB :kt, 1 : k < n. Moreover, RB I.k sends its ith input to its jth output, where j is

equal to the sum of ( [i/2k jx 2 ) and the value of Dlt(i).

Basic dea ofproof (complete proof appears in Appendix):

(-)Di:t fits F" -+ D 1" passes RB l:t.
Induction on k is used. For k=l, each rectangle of F has a 0 and a 1. These
correspond to the control bits of a switch in RB 1:* and, thus, no conflict occurs. For
k>1, assuming the theorem holds for k-i, it is also shown that each switch in the kth
stage "has" control bits 0 and 1 and, therefore, no conflicts occur. These control bits
must appear as the kht bits at the end of identical (k-1)-bit rows of subframes F-', A-

and F -,&_ of F. so that D 1:t fits F. Each subframe corresponds to a subnet-
work ofRB 1. which is also a reverse baseline network RB ?-' _t.

(--) D t:k passes RBI.k -+ D :* fits Ff:t.
Induction on k is used. For k=l, if dI passes RB , then each rectangle of F' contains
a0 anda 1 anddI fits f!a. For k>1, assuming the theorem holds for k-I, itis shown
that for the outputs of two subnetworks RBJ-',- 1 and RBP-',k-1 to cause no conflict
in any switch of the kth stage it must be the case that a 0 and a I are added to the k-1
entries of identical rows of the frames that correspond to the two subnetworks. This
implies that D 1. fits F%'k. The value of j follows from the topology of RB 1. and how
switches are set by control bits. 0



Coniary IV.1. A network with k stages and N inputs/outputs is topologically

equivalent to the k-stage reverse baseline, RB :k, if and only if it corresponds to an a-

type frame F&, where I <kn.

TV .1 FUrm&tAions Realized by Basine-Type Networks

In this section, a-type frames are used to characterize all the permutations real-
ized by any network that is topologically equivalent to the baseline network. An algo-

rithm, called FRAME-IN, is introduced to determine the a-type frame that corresponds

to a given network. It is also shown how to construct a network to realize all the per-
mutations that fit an a-type frame.

Let Fa:k(a- 1) denote a particular a-type frame where 1=o -1, i.e., whose row
labels form the vector c -l . Let H denote a network with k stages which is the same as

RB l:k except that the label of its ith input equals the ith entry of c -'. By Corollary

IV. 1, a balanced matrix D 1. fits F .j( -l) if and only if D Ik passes H. If k=n, any of

these balanced matrices represents a permutation, so that H is a network that realizes

all the permutations characteized by F :z(CI). If k<n, then the relation between a

D.k that fits F.k(a') and a permutation that passes H is first determined. By apply-

ing this relation to every balanced matrix that fits Fa. (a -1 ), all the permutations real-

ized by H are determined. Theorem IV.3 determines the relation between a balanced

matrix that fits F . and the permutation realized by RB 1:k when this balanced matrix

passes the network. Corollary IV.3 genAalizes this result to the class of baseline-type
networks.

Theorem IV.3. A matrix D r1 k, I l< k 5 n, fits F..t if and only if RB :t realizes

the permutation represented by (I i.-t D 1:].

Proof. (-+) Let D 1-a fit Ff. It is shown that RB :t realizes the permutation

represented by [I lI.-k D 1:].

Theorem IV.1 states that RBi:k sends its ith input, 0<i <N-1, to its jth output,

wherej is equal to the sum of ([i/ 2k]x2) and the value of D1 :.(i). Due to the fact

that [(I/hj x2 k)+D l:k(i)J equals the ith row of VJ1:x-kD ..kI, RB 1 ~ realize the per-

mutation represented by [lJ- D l:k].

(--) Assume that RB 1.* realizes the permutation represented by VIx-,t D 1:.]- It

is shown that D I.k fits F*I.

Because RB 1:t realizes the permutation represented by I 1:-k D 1:], it sends its

ith input to the output whose value equals the sum of ( 1i/2kJx') and the value of

D1 j(i),D1.. j passes RB 1 k. It follows fmn Theorem IV.1 that D:t fits F"t. C



- i.9-

Corollary IV.3. Consider a k-stage, 1 5 k < n, network l which is topologically
equivalent to AB :t. The network ZI is functionally and topologically equivalent to a
network IPnRB 1.iPo,, where IPi, and P., are interconnection patterns that realize
permutations o and a , respectively. Also, let Fa.(at) denote an a-type k-column
frame whose ith Tow label equals a.71(i) for i=O,1, ... ,N-1. A matrix Di..1 fits
F.,(a. ) if and only if II realizes the permutation 0Jn.g.0w, where p. is the permuta-
tion represented by the balanced matrix I .- , D 0:k] and D ;:k(i) = D 1 :t(a.q (i)).

Corollary IV.3 implies that the network IPmRB I.k corresponds to the frame
Fk(a',*), where 1Pi realizes the permutation aj. Hence, for a given F.., a
corresponding network can be constructed easily. The following example shows the
construction of a network that realizes a set of permutations which includes two given
permutations.

Example IV.L Let N=16, k=2, 0 < i < N-1. Assume that ao, and a.w denote
the permutations realized by the interconnection patterns Pi and IPw. Given two
permutations a = (0985 12 12 10 14 63 7 11 13)(4)(15) and
b = (0 7)(1)(2 3 9 13 118 4 5)(6 12)(10 15 14), it is shown how to construct a network
IPi.RB 1:21Pow that realizes a set of permutations including a and b. Let A and B refer
to the binary representations of a and b, respectively. By Theorem IV.3, any permuta-
tion that passes RB 1:2 must be represented by a balanced matrix whose first (leftmost)
two columns form 11:2 (recall that k =2 and n =4 in this example). If there was only one
given permutation, then the balanced matrix representing the permutation could be
converted by IP, to a balanced matrix whose first two columns form 11:2 because IPi,
can be chosen so as to permute the rows in any given way. However, if more than one
permutation are given, and the first two columns of their binary representations do not
form the same matrix, then IPw is needed to convert the binary representations of
these permutations into balanced matrices whose first two columns form the same
matrix. So, the matrices A and B are first converted by IPw to A and B such that

B1:2 = I 1:2 - Specifically, aw converts A and B to A and B, respectively such that

A(i) = a (A(i)) andB(i)=a-0(B(i)). Then, A andB are converted by a,, to A" and
B, respectively such that the first two columns of each of these matrices form 11:2.
Specifically, A(i) = A (a.Zt (1)) and B(i) =B (a. l (i)). For instance,

tx - (0 13 12)(15 7 2 4)(3 869 14)(10 15 11) converts a and b to
d =(06 148 17 15 10935 42 13 12 11) and
b = (0 5 7 12 8 2 14 113 6 13 15 9 0 5 7), respectively. Similarly,
ao.= (0 5 4 17 15 9 3 6 13 12 11)(2 14 8)(10) converts d and b into

= (0)(1 2)(3)(4)(5 6)(7)(8)(9 10)(11)(12)(13 14)(15) and
b = (0 3)(1)(2X4 7)(5)(6)(8 1 1)(9)(10X12 15)(13X14), respectively. The binary

representations of a, a, d, b, 6 and b are shown below. The network that realizes the
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permutations a and b is shown in Figure IV. I.

0 1001 0 0111 0 0110 0 0101 0 0000 0 0011
1 0010 1 0001 1 0111 1 0100 1 0010 1 0001
2 1100 2 0011 21101 21110 20001 20010
3 0111 3 1001 3 0101 3 0110 3 0011 3 0000
4 0100 4 0101 4 0010 4 0001 40100 40111
5 0001 5 0010 5 0100 5 0111 5 0110 5 0101
6 0011 6 1100 6 1110 6 1101 6 0101 6 0110

A 71011 B 70000 7 1111 1100 70111 .7 0100
S80101 *80100 a 0001 80010 81000 81011

91000 91101 90011 9 0000 9 1010 9 1001
10 1110 10 1111 10 1001 10 1010 10 1001 10 1010
11 1101 11 1000 11 0000 11 0011 11 1011 11 1000
12 1010 12 0110 12 1011 12 1000 12 1100 12 1111
13 0000 13 1011 13 1100 13 1111 13 1110 13 1101
14 0110 14 1010 14 1000 14 1011 14 1101 14 1110
15 1111 15 1110 15 1010 15 1001 15 1111 15 1100

Because a 2x2 switch has two possible settings (cross and straight), the number of bal-
anced matrices that pass a k-stage baseline-type network with N inputs equals 2 12.

By Corollary IV.l, for any given k-column a-type frame, there exists a corresponding
baseline-type network. Therefore, exactly 2 /2 balanced matrices fit any F":2 . For
k=2, 21V balanced matrices pass a baseline-type network. Let D1:2 , 1 : r 5 2N, denote
one of the 21v balanced matrices that fit FT:z2(a',,) - Also, assume thatD is obtaind
flUn D: 2 such thatD DS(i)= O':2 (a. (i)). Let g. denote the permutation represented
by [1:2 D-]. So, the network shown in Figure IV.1 realizes any of those permuta-
tions that result from a .p.Go,. The ith row of D 1.1 is used as the routing tag for the
ith input of RB 1: in IP.RB 1:21P.t. As an example, let r=l and consider the bal-
anced matrix D:2, shown in Figure IV.2a, that fits F42 (a.l). The matrix D . that is
obtained from D I:2, and the matrix V (1:2 D j. ] are also shown in Figure IV.2. When
the ith row of D .,2 is used as the routing tag for the ith input of RB1:2 , RB 1:2 realzes
the permutation gtt = (0)(1 3 2)(4 5 6)(7)(8 10 1 1)(9)(12 15 14 13) which is represented
by V11:2 D *- ]. On the other hand, the network IP1 RB l:2 Pow realizes the pernuta-
tion 9 4 8 5 7 3 12 12 6)(10)(11 13)(14 15) which results from .gt .a. . . End of
example.
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Figure TV. 1. TWhetw IPa 1JPR 1Pw atExample IV. 1.

010o 11 00o 000 00000
I111 4 1 1 1 11 1 0011
2 01 8 0 12 01 2 0001
3 00 9 1 o 3 10 3 0010
4 11 5 0 1 4 01 4 0101
501 0.1 10 5 10 5 0110
6 00 3 00 6 00 6 0100
7 10 1 1 1 7 11 7 0111
801 14 1 0 8 10 8 1010
9 10 15 0 1 9 01 9 1001

10 11 10 1 1 10 11 t0 1011
i1 00 12 - a 11 00 11 1000
12 00 13 1 1 12 11 12 1111
13 11 6 0 0 13 00 13 1100
14 10 2 0 1 14 01 14 110115 01 7 15 10 15 1110

(A) (b) (C) (d)

igure IV.2. (a) A brained ma'ix DJ. whkits aF=:, ( ). (b)F ., (oq,) with DI:.
(C) h ,bwei d tow equDl:k( (i). (d) V1.. I oi .1].

In the rest of this section. some preliminary results used in the Algorithm
FRAME-IN are first presented, then the algorithm is itzoduced.



Lemma [V.I. Let r denote the reverse permutation represented by the reverse
permutation matrix RN,. described in Definition 11l. The reverse baseline network
RB 1, realizes r when all the switches are set straight.

Proo. The permutation realized by RB 1:, when all the switches are set Straight

is determined by the interconnection patterns 1P1 ,,P 1,. .IP,,PW. Beckuse
IPi, = IPm = identity pattern, the permutation is given by aj.o 2 ... a,-, where a is
the permutation realized by IPi . Permutation ai is such that ai(x) rotates left the right-
most i1-i bits of x by one position because IP, is a pile of 2-i-' shuffle-exchange pat-
terns each with 2i * links. Applying this operation for all i starting with the initial
matrix Iv,. yields the reverse permutation matrix Rv,, = (i, ij- 1 ... i j. 0

Because the reverse baseline network can be converted to the baseline network by
repositioning the switches of the middle stages only, Lemma IV. I is also valid for the

baseline network. If there exists a unique path between any input and any output of a
network, then the network satisfies the Banyan property [6,261. Bermond et. al [26]
present a set of properties to determine whether a network is topologically equivalent
to baseline network. Their main result is formally restated below.

Theorem IV.2. [26] Let G be a directed graph representing a network with n
stages and N inputs/outputs which satisfies the Banyan property. This network is topo-
logically equivalent to the baseline network if and only if both the first j stages and the
last j stages of G contain 2"'- connected components for each j, 1 : j < n.

This result is used next as the basis for Algorithm FRAME_IN. The description

of the algorithm is followed by a proof of its correctness and analysis of its complexity.

Algorithm FRAME IN
Input: A network GN with 2x2 switches, n stages and 2'

inputs/outputs.
Output: An a-type frame that corresponds to GN if GN is topologically

equivalent to the baseline network; the permutations ow and
aw realized by the interconnection patterns IPin and IPw,
respectively, such that the network IP 1 GN l.IPw is function-

ally equivalent to RBw,.
Step 1. Let G denotm a graph with n "stages" that is obtained by

representing the switches and links of the given network by.
vertices and edges that are directed from left to right, respec-

tively.
Step 2. Using a breadth-first search algorithm check whether there

exists a unique path between any input vertex and any output
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vertex of G. If so, go to next step. If not, go to Step 9.
Step 3. Let j andp be integer variables initialized to 0.
3tev 4. Increment j by 1. If j>n, then go to next step; otherwise, using

a depth-search algorithm, check whether the last j stages of the
G contain 2i connected components. If so, go to Step 4. If
not, go to Step 9.

Step 5. Increment p by 1. Ifp >n, then go to Step 7; otherwise, using a
depth-search algorithm, check whether the first p stages of G
contains 2-P connected components. If so, go to next step. If
not go to Step 9.

Step 6. If p=l, let V, denote a vector of the input labels of a distict
connected component (a 2x2 switch) for each r, (1 S r S 2"),
and then go to Step 5; otherwise, do: let V., 1 < r <.25 - ,
denote a vector that is formed by merging two vectors I
and Vf -1 for 1 S s, t 2%-P+1 and s* such that the set of
entries of VP equals the set of input labels of a distinct con-
nected component determined in Step 5. Go to Step 5.

Step 7. Let ^(i) = V11(i) for i= 1,2,...,N-1 (note that V'7 is obtained in
Step 6). Write '"The a-type frame F, whose ith row label
equas 7li) corresponds to the GN".

Step 8. Let a denote the permutation realized by the given network
GN 1:. when all the switches ae set straight. The permutation
realized by IPin is aj. = Y-l. The permutation realized by IPo
is are0=d : a-n.r, where r is the reverse permutation
represented by the reverse permutation matrix RNt (see
Definition 1. 1). Stop.

Step 9. Write "The given network is not topologically equivalent to
baseline network and no corresponding a-type frame exists".
Stop.

In Steps 2 through 6, Algorithm FRAME-IN checks whether the given network
satisfies the set of properties described in Theorem IV.2. Specifically, Step 2 checks
the Banyan property, while Steps 3 through 6 check whether both the first j stages and
the last j stages of the network graph contain 2 - ' connected components, for each j.
So, if Algorithm FRAME-IN fails in any of these steps, then it follows from Theorem
IV.2 that the given network is not topologically equivalent to baseline network and, by
Corollary IV. 1, has no corresponding a-type frame.

It is now shown that the given network corresponds to the a-type frame deter-
mined in Step 7, that is, any balanced matrix that fits the a-type frame determined in



Step 7 passes the given network, and vice versa. Theorem IV.1 Proves hiat, for
<nthe frameF .corresponds to RB: that is, a balanced matrix D fits F.:

if and only ifD l:t passes RB I-k. Note that RB 1:j is a pile of 2"- RB 2
J / s. Recall that

he only difference between the standard a-frame Fi. and an a-ryp. frame Ft is the
i ier of their row labels. Because Step 7 assigns *Ki) to the ith row label of F1:H, this
vtame corresponds to the given network. Step 8 first assumes that the permutation real-

ized by the given network equals a when all the switches ae set smaight. Then, Step 8

states that the interconnection pattern IPin realizes the permutation a.. = Y-1 . Relabel-
ing the ith input of the given network by fli) is equivalent to adding the interconnec-
tion pattem JPjR to the left of the given network. Thus, any balanced matrix that fits the
a-type frame obtained in Step 7 passes the network IP 1 GNxI:, and vice versa. Algo-
rithm FRAME-IN also adds an interconnection pattern IPw that realizes a permuta-
tion called o g to the right of the given network such that the network IPj.GN, 1,IPo,

realizes the permutation r when all the switches are set straight. By Lemma IV. 1, the

reverse baseline (baseline) realizes the permutation r when all the switches are set

st-aight. Therefore, the network lPkGNl:.APw is functionally and topologically
equivalent to the reverse baseline and baseline networks. This completes the proof of

correctness of the algorithm.

The graph of Algorithm FRAMEJIN can have at most 0 (NlogN) vertices
because each vertex represents a switch. Algorithm FRAMEN uses a breadth-first

search to check whether the given network holds the Banyan property. A depth-first

search is used to identify the connected components of G, and that the depth-first forest

contains as many trees as G has connected components (29]. If V and E are the sets of
vertices and edges, respectively, the running time of both a breadth-first search and a

depth-first search is e(V+E). This implies that, for each value of j, Algorithm
FRAMEN takes e(NlogN) time. Because there are 2logNV iterations, the running

time of Algorithm FRAME-IN is 9(N log2 N).

Algorithm FRAME-IN yields a frame that corresponds to the given network.

This means that any matrix that fits the frame also passes the network and vice versa.
However, this does not necessarily mean that the permutation represented by the

matrix is realized by the network. When a balanced matrix DN, fits an a-frame

corresponding to a baseline-type network, the network realizes the permutation

d .a,, where d is the permutation represented by DNv, and a is the permutation

realized by IP, determined in Step 8 of Algorithm FRAMEN. In other words,

given a network that is topologically equivalent to the reverse baseline, relabeling its

inputs and outputs by aX and aw, respectively, results in a new network that is func-

tionally equivalent to the reverse baseline.

As an example, for N=16, Algorithm FRAME-IN can be used to characterize the

permutations of the following baseline-type networks: generalized cube, omega,
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indirect binary n-cube, banyan (S=F=2), inverse omega, modified data manipulator,
flip. The topological equivalence among these networks and baseline and reverse
,'uitcne networks is well known and previously studied in [6,11,18,26]. From Corol-
!ary IV. 1, each of these networks corresponds to an a-frame. Algorithm FRAME_IN
yields the row labeling y and a, for each of these networks and frames as follows:
,I=v,w = identity permutation for the reverse baseline and baseline networks, y= the
reverse permutation = (0)(1 8)(2 4)(3 12)(5 10)(6)(7 14)(9)(11 13)(15) and a6, = iden-
tity permutation for the omega and generalized cube, y= identity permutation and
a., = (0)(1)(2 8)(3 9)(4)(5)(6 12)(7 13)(10)(11)(14)(15) for the indirect binary cube,
banyan, inverse omega, and flip networks,
y= (OX1)(2 8)(3 9)(4)(5)(6 12)(7 13)(10)(11)(14)(15) and (ow = identity permutation
for the modified data manipulator network.

V. NETWORKS RBi:aSEi:m AND SE-'RBI:

This section illustrates how frames can be used to characterize permutations per-
formed by relatively complex networks with more than n stages. It is first shown that
the balanced matrices that pass the network RB i:nSE1:m, m > 0, are identified by the
frame F"F I (Theorem V.1), then it is shown that RB :,,SE 1:m is functionally and

topologically equivalent to SETjRB :, (Theorem V.2). Hence, any balanced matrix

passing RB I:,SE:m also passes SEj,,'RB :,, and vice versa. Theorem V.I also shows
how the addition of a SE stage to the right of RB I:,SE I,, affects the type of permuta-
tions realized by the network. Theorem V.2 proves that the addition of a SE stage to
the right of RB $SE1,.m is equivalent to the addition of an inverse SE stage to the left

of SE'.,, R:n. All the proofs are provided in the Appendix.

V.1. Balanced Matrices and Shuffle-Exchange Networks

Linial and Tarsi [2] have shown how balanced matrices can be used to determine
the number of SE stages (or the number of passes through a single SE stage) necessary

to realize a given permutation. Lemma V.1 below restates their result using the nota-

tion and assumptions of this paper.

Lemma V.I. [21 Let MN, and Cvk be balanced matrices such that
MN,V, = (NW. CNV], k > 1 and n+k=m. The network SEN, realizes the permutation
represented by M(m+--a),.

To illustrate Lemma V.1, consider the identity permutation matrix

IsW= =[iI i 2 i 3] and the balanced matrices Ms.,=[gW i1 ], Mg,d =[gIS iI i2 ] and
M" = [Is, 3]. Because M,,, MW and Msg6 are balanced, the permutations
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presented in binary by i2 i 3 il], i 3 il i2] and [il i 2 i 3] are realized by the single-
stage SE, 2-stage SE and 3-stage SE with N=8 inputs/outputs, respectively.

V.2. Permutations Realized by RB:2SE1 =

The following theorem shows how the concatenated frame Fr'4,M can be used
to characterize the permutations realized by RB I.SE 1..

Theorem V.1. A balanced matrix D x:(,+,), m k 0, fits the frame Fj'F*, if and
only if D :(. +) passes the network RB I:.SE l.:. Moreover, RB :,SE ,,J realizes the
permutation represented by D (m*+1:(.).

V.3. Permutations Realized by SEI.RBI:a

It is shown that the network SE'.RB I1. constructed by appending the network

SE-1. to the left of RB 1 , is functionally and topologically equivalent to the network
RE :,SE,. constructed by appending SE 1 :, network to the right of RB I. Also,
because RB 1:. is functionally and topologically eqvi.valent to BE,:,,, Theorem V.2
remains valid when RB 1 . is replaced by BE 1:..

Theorem V.2. The network RB .SE I:., m a I, is topologically and functionally
equivalent to the network SEiWRB 1:.

VL NEW PROOFS FOR REARRANGEABILITY OF BENES AND
THREE-STAGE CLOS NETWORKS

Rearrangeability of Benes and three-stage Clos networks is proven in [7,13] using
the Slepian-Duguid theorem which applies only to symmetric networks. In this section,

new simpler proofs are provided for rearrangeability of these networks using balanced
matices and the properties of graph theory. These proofs directly lead to routing algo-
rithms [19] and provide an insight into the proofs of Section VII that identify the per-
mutations realized by subnetworks of the Benes network. In what follows, some
known results from (21 and definitions used in the proofs are presented first Lemma
VIA from [21 is self-explanatory.

Lemma VLL [2] For n a 2, let A and B be two Nx(n-1) balanced matrices.

Then there exists a column vector x such that both (A x] and [x B ] are balanced

Malaice&

Note that, when the order of columns in a balanced matrix with at most n columns

is changed, the matrix remains balanced. Therefore, the position of x in the matrices A
and B in Lemma VI. I is immaterial. Because the possible choices of vector x increase



is the number of columns of A or B is reduced, Lemma VII.. remains valid when A md
3 have less than n-I columns.

Some properties of balanced matices can be captured by graphs. Therefore, iome
Jasic definitions of graph theory are given below. A graph G=(VE) consists of a set
of vertices V and a set of edges E, ech of which is a pair of vertices. The union of
two graphs Gl=(V,E 1 ) and G 2=(V,E 2 ) is the graph G=GIk.C 2 =(VE 1'E 2 ). In
other words, an edge is present in G=G I G 2 if and only if it is present in either G I
or G2. A subset M of edges in a graph G is called independent or a matching if no two
edges of M have a vertex in common. A matching M is said to be a perfect matching if
it covers all vertices of G. More extended discussion of these basic concepts can be
found in (3,4].

Definition VI.1. (Perfect matching graph of a matrix): Let A be an Nxk
(1 < k , n-1, n a 2) balanced matrix. A perfect matching graph of A, denoted by PGA,
is a graph whose vertices are in one-to-one correspondence with the rows of A, have
degree one and vertices vi and vj are joined by an edge only if the ith row and jth row
of A are identical.

If the number of columns in a balanced matrix ANk is less than n-I (i.e., if
k<n-i), then its perfect matching graph is not unique because each distinct row in A
appears 2 - times. If k=n-1, then PGA is unique because each distinct row in A
appears twice. As an example, consider the balanced matrix F 84 presented just after
Definition 1.4. Its perfect matching graph is unique and shown in Figure VI.ia.

Definition VL2. (Labeling): 2-labeling or 2-coloring of a graph is the assign-
ment of integers 0 and 1 to its vertices such that the labels of the vertices incident with
an edge are different.

Fact VLL (2]. The union of two perfect matching graphs with the same set of

vertices is a union of disjoint even cycles and. therefore, it can be 2-labeled.

Definiton VL3. (Perfect matching graph of a frame column): Let f. denote
a column of a frame Fvw. A perfect matching graph off., denoted by PGf., is a graph

whose vertices are in one-to-one correspondence with the row labels of FVA, have
degree one and vertices vi and vi are joined by an edge only if i and j belong to the
same block of f.

Example VL1. One possible perfect matching graph for frame column 1 in Fig-
ure lIlLb is shown in Figure VI.la. The graph in Figure VL.lb is the unique perfect
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.miching 3raph of frame column .tj in Figure IM. lb.

f 2 14 6 V O V I4 V 6

t V1 3 L 3 V7 V 2 (b) 7

iRe '1.1. (a) The perec matching graph of F&2; it is also one posible perfect maiching graph
o.jj shown in Figue lILb.

(b) The uniq pefect mahing gaph forft shown in Figure .Lb.

From Defnition V3 and Example VL I, it is clear that the perfect matching
graph of the frame column that consists of only the blocks of size two is unique and is
also a perfect matching graph for all the other columns in the same frame.

Let the black box, called P (N!) and shown in Figure V,2, denote a rearrange-
able (permutation) network on N elements, i.e., it realizes all N! distnct permutations
in a single pass.

i0
NP N- I

Pigam VL2. AbakonP(N!) which rein alN!kuuwos

This black box P(N!) can be expanded zersively using Algorithm CONSBENES
presented below until all of its black boxes are identical to (2x2) switching boxes
(SBs), each of which can be set both smright and cross. This expansion results in the
Benes network. Algorithm CONSBENES substitutes the three-stage Clos network
with R inputs/outputs, denoted by CSR,3 and shown in Figure VI.3, for the black box
P (R!).
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Algorihm CONS BENES
Input: A black box called P (N!).

Output: Benes Network
Step 1. Let R be an integer variable and be initialized to N. Relabel

the black box ?W') by P(R!) and let BS denote a network
consisting of P (R !).

Step 2. Replace each and every black box called P(R!) of BS by
CS.3 shown in Figure VI.3.

Step 3. If all the SBs of BS am (2x2), then call BS Benes network and
stop; otherwise first relabel each of its non-(2x2) SBs by P (R!)
and halve the value of R. then go to Step 2.

Using the notions of balanced maices and frames, it is first shown in the follow-
ing theorem that CSRI3 is functionally equivalent to P (R !). Then, it follows that the
Benes network constructed by Algorithm CONSBENES is rearrangeable because,
due to the recursive structure of the algorithm, only the correctness of Step 2 needs to
be proven.

0

2 PH(2r-1 !

3 3

Figwe VL3. Three-stage Cbs network with R inputs/outputs which is denoted by CSr,3, where
R-2.

Theorem VLI. Three-stage Cbs network with R inputs is rearrangeable.

Preoo. As it is shown in Fig. VL4, the network CSR,3 is composed of three com-
ponents, namely, a) an inverse SE stage with 2r inputs/outputs, b) a pile of two per-
mutation networks P'(2r - !) and P'(2"- !), and c) a SE stage with 2r inputs/outputs.
It is assumed in this proof that, unless otherwise stated, any balanced matrix has R =2'
rows. Recall that P(2!) refers to a rearrungeable network on 2' elements. Because
P(2'!) passes any balanced matrix B1, corresponding to a permutation on 2' ele-
ments, CSR,,3 must also pass B 1, in order to state that CSR. is functionally equivalent
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to P (2r!).

It is .ow shown that the inverse SE stage with 2' inputs/outputs partitions B 1,
into Bjr-,, and Br-1, such that the submatrices Blr-l(rl) and B/r-l,(,l) are bal-
anced, where B2r-l,(,-,) and B~r-l,<r.-) are the first (r-1) columns of Br-1., and
Bfr-%., respectively. Both BV-I.(,-t) and B-r-l(r,1) pass the permutation network
P(2" -' !) because it realizes any permutation on 2r-1 elements. Because the control
bits of each SB must constitute the set (0, 1) to avoid conflict, any vector that fits j "
carn be used as the vector of control bits of the SBs of the inverse SE stage. Let the
perfect matching graph of jI denote a graph with R vertices such that the vertices v2j
and v2j+1, 0 <j S 2r--l, are connected by an edge, where v2j and V2j+l correspond
to the 2jth and (2j+l)th rows of ji, respectively. Let x be a column vector obtained
by a 2-labeling of the union of the perfect matching graphs of ,f and B 1:(r-1). By Fact
VI.1, the matrix [x Bl1(,-.)] is balanced. This implies that x "partitions" the balanced
matrix B 1:(,.-.) into two balanced submatrices B2r-1.(,_.) and B~r-l%(,-.) in such a
way that row i of Bl:(-.) belongs to B~r-y,...1 ) if the ith entry of x equals zero, and
belongs to Bfr-l1 r,-) otherwise, where 0<5i <2r-1. Without loss of generality,
assume that the SBs of the inverse SE stage with 2' inputs/outputs are labeled in
ascending order starting with 0 and that the control bit for the ith input is the ith entry
of x. So, when the 2jth and (2j+l)th entries of x are used as control bits for the jth SB
of the inverse SE stage, no conflict occurs and, hence, the matrix B 1:(r-1) is partitioned
into Br-lx(,-i) and - . Because both P"(2 1-!) and P1(2r- !) can pass any
balanced matrix of order 2'-x(r-), the matrices B.r-l(,-.) and B. (r-,) pass
P"(2 - 1 !) and P'(2 1!), respectively.

In order for B ., to pass CSRe, CSRX3 must send its ith input to the output whose
value equals B 1 ,(i). So far, this proof showed that CSR,3 sends its ith input with the
row B 1.. (i) to either the hth outpr., of P"(2 - I 1) or the hth output of P'(2'-'!), where
h equals the value of B 1:(r- 1)(i). Because B 1:, is a balanced matrix, the last entries of
the routing tags of the rows that are sent to the jth outputs of P*(2r- 1!) and P'(2r -1)
constitute the set (0, 1). Due to the fact that the third component of CSq.3 is an SE
stage, the rows that are sent to the jth outputs of PM(2r- 1!) and P'(2'- 1 !) enter the jth
SB of the SE stage. Because the connections of the SE stage implement the perfect
shuffle permutation and the last entries of the routing tags of the rows entering a SB
constitute the set (0,1 , no conflict occurs in the SBs. It follows that CSRX.Z sends its
ith input to the output whose value equals B 1.(i). Therefore, the theorem holds. 0

Corollary VL1. The Benes network obtained by Algorithm CONS-BENES is
rearrangeable.

Proof. Because Steps 1 and 3 of Algorithm CONSBENES are relabelings and
the network is constructed recursively, it suffices to show that CSR4 is functionally
equivalent to P(2r!). Because this is proven in Theorem VI.l, the corollary holds. C1



-31-

VIL PERMUTATIONS REALIZED BY BS(n.r):(2.-)

Recall that Benes network :an be considered as being BEv, n-1)RBh,. Theorem
IV.1 identified the permutations passing RBv in the sense that a balanced matrix
DNv.. p8. s RBNNA if and only if DN. fits FV,. Likewise, jhe following theorem and
corollary determine the set of permutations that pass the network BS (-,). 2.-_) which
consists of the subnetwork BS(n-,):(,-) followed by RBS., where 1 < r < n-1.
(Recall that INx.. denotes the stages x through y of an IN and that INx:y refers to a nil
network if x>y). The permutations that pass BS(-r):(2,.-.) are characterized by the
frames defined next. This characterization illustrates how frames can be used to gain
insight into why the Benes network is rearrangeable. All the proofs are provided in the
Appendix. An example is presented to illustrate the results of these proofs. For N=16,
this example clearly shows how the addition of the stage BS,-,- 1 to the left of
B$(,-, .(2,) converts the frame that corresponds to BS(,.-,):(2,-,) into a new frame
that corresponds to the resulting network.

Definition VILL. (Fft ): The frame Faf, re(0,1, ... ,k-1) and

ke (1,2,..., n), is a frame <f3,y,P> where

f+1 if 1-i5r+l
,r if r+l<i k,

yis the identity permutation on the set (0,1,..., N-1} and

Pi= -- r+i if I < i <r+l
p! ifr+l<i <k.

Note that F'11 0 and F',.'" 1 are identical to F' and Fo.k, respectively. As exam-
ples of Fl', the frames Ff9-O, FJ 1, Fn 2 and Fsj. 3 for N=16 are illustrated in Fig-
ure VIL1.

Theorem VIL1. Consider the frame F , 0< r 5 n-1. Let S be a pile of 2 "-'1
copies of a rearrangeable network P(2 +1 1). Let T be an IN that consists of the net-
work S followed by RB (r 2):.. A balanced matrix DNw, fits F if and only if Div..
passes T.

Corollary V[I.. A balanced matrix DNV. fits the frame Fft '. if and only if DrV,
passes the network BS where 0:< r 5 n-1.
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Example VI1. Let N=16 and n=4. The frames Fs ., FfL4 F j and F, are
shown in Figure ViI1. By Theorem ,V.1, all balanced matrices that fit F(.4 pass

:R,4. If the stage BE 3 is added to the left of RB 1:4, the network BS3:7 shown in
Figure VI.2a is obtained. While RB 1:4 passes all balanced matrices that fit F! (the
same as FIL4), a balanced matrix D 1:4 pases BS 3:7 if and only if D 1:4 fits Fi,,i. If
the stage BE 2 is added to the left of BS 3:7 , then B52S7 shown in Figure VII.2b is
obtained. A balanced matrix D 1:4 passes BS -7 if and only if D 1 :4 fits F%. If the
stage BEI is added to the left of BS 2 7 , hen Benes network, BS 1:7, shown in Figure
1L4 is obtained. It is obvious that a balanced matrix D 1:4 passes BS 1:7 if and only if
D :4 fits FAIU =F*1. 4. Notice that, when the stage BE, 1 j :Sn-I, is added to the
left of BEi.,):(,,_)RB .,, the subnetwork BE:(._.)RB 1:(,-j+1) becomes a pile of 2j -1

copies of Benes network with 2 -j+1 inputs/outputs and 2n-2j+l stages. Because
Benes network with 2n-j+l inputs/outputs and 2n-2j+1 stages is a rearrangeable net-
work, it corresponds to the universal frame with 2r-j+ rows and n-j+1 columns.
Therefore, the first n-j+I columns of FfjL'-j is a pile of 2j-i copies of the universal
frame with 2 -j+1 rows and n-j+1 columns. End of example.

w j w j A" j" a a44

22 2 2
2- 3 3 3
4 4 4 4

8
9

12 R ~ 12 12
13 1i 13 13
14 14 14 14
15- 15 1S 15

(a) (b) (C) (d)

Fig=. VEL 1. (a) FisI,(b) FAIL' (c) FAI and (d) F'L3
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223 3
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99

12 R 12

(a) (b)

FigRe VI. (a) B$:7 (BE3 followed by RB). (b) BSI 7 (BE2a folowed by R 1.4).

V1IL CONCLUSIONS

In this paper, a new approach has been developed to characterize permutations
realized by some ftquently used networks. The concept of frame has been introduced
and different frames have been illustrated. It is simple to check whether a given permu-
tation is realized by a given network once the corresponding frame and the output
interconnection pattern are known.

The permutations of the following three classes of networks have been character-
ized: the class of k-stage baseline-type networks that are topologically equivalent to the
k-stage baseline network, the class of those networks that are constructed by appending
shuffle-exchange stages to the left or right of a baseline-type network, and the class of
those networks that form a part of Benes network.

The proof that Benes network is rearrangeable was first presented in 7]. This
proof is based on the Slepian-Duguid theorem which applies only to symmetric net-
workL In this paper, a new simple proof has been presented for rearrangeability of
Benes and three-stage Clos networks using the notion of balanced marices and graph
theory. The technique used in this proof can also be applied to nonsymmetric net-
works.

In practice, the results presented in this paper can be used to design networks that

realim classes of permutations that fit the same frame. In addition, engineers and/or
compilers may use frame to test if the corresponding networks realize a given permu-
tation. Debuggers and programming environment can also use frames to detect when
and why a permutation cannot be realized by the network. The definitions, theorems
and lemmam that are presented in this paper to characterize the permutations realized

in the afo ntioned networks can also be used to address the issues of routing and
counting permutatons. But, to limit the size of this paper, these issues are addressed in
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19,28].
It is clear that frames, as defined in is paper, cannot characterize the permuta-

tiom of every network. Conceivably, extensions of the definitions may be possible to
characterie a larger class of networks. In particular, the concepts should be extensible
to networks not considered in this paper including those constructed with (kxk)
3witches for k>2. Future research will address these issues.

IX. APPENDIX

Proof Theorem IV.l: (-+) It is shown that if D :A fits F" then D 1  passes
RB 1:t. Proof is by induction on k. Also, it is proven that RB 1  sends its ith input to its

jth output, where j is equal to the sum of [[ili/kxe]k and the value of D 1:kt(i).

Basis Step: Let k=1. Label the SBs of RB 1 in ascending order starting with 0.
(Recall that RB I refers to the first stage of a reverse baseline network with N
inputs/outputs). By definition, j" contains 2n-1 blocks of size 2 each. The fact that
D1rk fits F"ft implies that d1 fits AJ'. Therefore, the 2rth and (2r+l)th entries of d,
constitute the set (0,1 , where 0<r < 2"- 1-1. Hence, when the 2rth and (2r+l)th
entries of dI are used as the control bits to set the rth SB of RB 1 , no conflict occurs

andRB1 sends its ith input to its jth output, where j is equal to the sum of [ [i/2jx2j

and the value of the ith entry of d1 , where 0: <i < N-1. (Recall that, if thecontrol bit
of the routing tag of an input equals zero, then the input is sent to the upper output of
the SB that it enters; otherwise it is sent to the the lower output of the SB).

Induction Step: Assume that, for 2 < k < n, if D 1:(k-,) fits Fk.1), then D :(k-1)

passes AR : -1) and RB L:(k1) sends its ith input to its jth output, where j is equal to

the sum of 1e ie-fand the value of D 1:(k-1)Qi). Now, show that, if D 1 ~ fits

F , then D 1 ~k passes RB 1,k and RB Ik sends its ith input to its jth output, where j is

equal to the sum of [ i/#jxe]and the value of D 1 1(i)

The frame F., (m=k-l,k), can be considered as being composed of '

copies of FI,, in parallel if the row labels of the =h,0 x s ""-i, Fp,, consisus
of the numbers (=2") to (a4l)x - inclusive. Let F, denote the ath FIt.
RB 1*,, can also be considered as being the pile of r-" distinct RBr,,,,s. Label these
RBr-ns in ascending order sarting with 0 at the top and denote the ath one by
RBI-,. By hypothesis, D 1 m fits Ffl.,. Let D%.I denote the submatrix of D 1 ,, that
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fits FI.. Thus, the induction hypothesis also implies that D -,,k_1 (which fits
F-,-i-) passes RB -, k- and that RBa-,Aj sends its pth input to the output whose

value is equal to the value of D -t-_ (p), where 0 5p < 2 -'-l.

Let FP-lk-i and FP-lk-i denote the 2lth and (21+1)th F -i&-j s, respectively,

where 0:I <2"-t-I. Similarly, let Dp-ik- and DP-I denote the 2th and

(21+1)th D-,-,k_s. Likewise, assume that RB-1-, and RBP-i-,. denote the 2Ith

and (21+1)th RBO-1-_ s.

Because D -,(t-1) is a balanced matrix of order 2 -x(k-1), it has 2k- distinct

rows. Therefore, the matrix

H- [ -:'::- I
contains 2k-' distinct rows, each being repeated twice. Assume that the rows of H are

partitioned into 2k- ' classes, each of which contains 2 identical rows, that is, each

class contains the two copies of a distinct row of H. After adding a column permuta-

tion of length 2k to the right of H, call the resultant matrix DO ,k). This implies that

the number of the entries of the rows of a class is incremented by 1. In order for

D ,,k) to fit F& the kh entries of the rows of each class of H must constitute the set

(0, 1), which is true because D 1:k fits F" by the induction hypothesis.

By definition, the kth stage of reverse baseline, RB, consists of a pile of 2 -

copies of the SE stage with 2  inputs/outputs. Assume that the network consisting of

the pile of two networks RB-tk.t-.) and RB-2-,i.(.t-) followed by the SE stage with 2 "

inputs/outputs is called RB AL. Because RB-,x,_j sends its pth input to the output
whose value is equal to the value of D -t,,- (p), the first (k-1) entries of the row that

is sent to the pth output of the network RB -,.(kj_) is the same as the first (k-I) entries

of the row that is sent to the pth output of the network RBP-IX(k-..). The kth entries of

those two rows sent to the pth outputs of RBJ-X(A-) and RBP-t.(k.-) constitute the set

(0,1) because D ,k fits the frame F ,, by induction hypothesis. Because the rows

that are sent to the pth outputs of RB -i,(k_) and RBP-i*(k-) enter the pth SB of the

SE stage following these networks such that the kth entries of these rows are the con-

ol bits for the SB, no conflict occurs in the pth SB. This amounts to stating that

RBA sends its hth input to the output whose value is equal to the value of D ,k(h),

where 0 h < 2 - 1  Therefore, the balanced matrix D :t passes RB . and RB 1

sends it ith input to its jth output, where 0 < i < N-1 and j is equal to the sum of

I(l e IIa and the value of.D.I..(.).

(4)It isshown that, if D :,tpasses RB :A, then D :,t fits Fm"k. Prof is by iduc-
tion on k.
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Bas& Step: Let k=1. The fact that d, passes RB 1 implies that no conflict occurs
in t SBs of RB1 when the ith entry ofd 1 is used as the control bit for the ith input of
Rr L i setting its rth SB. 3ecause the control bits of the rth SB of RB I constitute the
set (0,) and fit the rth block ofJ ", d IfitsJ".

inducdon Step: Assume that the theorem holds for k-1. It is shown that it also
hbolds for k, where 2:5 k 5 n.

By induction hypohesis, if D-a-l passes RB -'~~ fits F -Lk- 1 . Notice that
the last stage of RB ,it is the SE stage with 2k inputs/outputs. Recall that the network
consisting of the pile of two networks RB -i..A-) and RB-i(k.-) followed by the SE
stage with 2* inputs/outputs is called RB kXA. As it is also explained above, the rows

that are sent to the pth outputs of RB-,,..-t) and RBI-,)(k-k) enter the pth SB of the
SE stage that follows these networks. If D , passes RB YA, then the kth entries of the
rows of a class of H must constitute the set (0, 1) to avoid having a conflict in the pth
SB. Therefore, Dk fits 4.k. It follows that D i.k fits F. 0

Proof of Corollary IV.: (-+) Let 0 be topologically equivalent to RB I. When
int con networks are modeled by directed graphs in which vertices represent
the switches and edges the links, two networks are said to be topologically equivalent
if the graphs representing them are isomorphic. Two graphs G and H are said to be
isomorphic if there exist bijections from the vertices and edges of G to the vertices and
edges of H, respectively such that the velationship of adjacency is preserved. So, if two
networks are topologically equivalent to each other, one of them can be made identical
to the other network by relabeling the inputs and/or outputs. This implies that 0 can be
made identical to RB 1 .. by relabeling the inputs and/or outputs of 0, and vice versa.
Because (1) F,. corresponds to RB I.t such that there exists a one-to-one correspon-
dence between the row labels of F' and RB 1 .k (Theorem IV. 1), (2) the only differ-
ence between F .l and an a-type frame F.t is the order of their row labels, and (3) 0
is topologically equivalent to RB ,*, there exists an a-type frame F'.t corresponding to
0 such that no conflict occurs in the switches of 0 when the contents of the ith row,
09i <N-1, ofF areusedas the routing tag for the ith input of 0.

(+-) Let y denote the vector of input labels of 0 such that the ith entry of y equals
the ith input label of 0. Let Fj(* denote the frame corresponding to 0 such that the
ith entry of y equals the ith. row label of the frame. By definition of "'correspondence"
(Definition 1.8), no conflict occurs in the switches of 0 when the contents of the ith
row of F.( are used as the routing tag for the ith input of 0. Not that ther exists a
one-to-oe corsn't denc between the input labels of 0 and the row labels of
F ..t(y) Therefore, when both the ith row label of F.(y and the ith input label of 0
ae replmd by the integer i, the resulting frame Fk and network still remain
corespondent to each other. By Theorem IV. 1, F. corresponds to RB I~k. It folows
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that 0 can be converted to RB 1-k by relabeling the input and/or output labels of 4b.
Thus, (b is topologically equivalent to RB 1±. C

Definition UL1. (forward-routing, reverse-routing): Given an INNk and a set-
ting of its SBs that realizes h : i-+h (i),forward-roiaing of a matrix A means that A (i)
is sent from input i to output h (i), where 0 < i < N-1. Likewise, reverse-rounng of A
means that A (i) is sent from the output i to the input h- (i). The matrix
AF =A(h-'(i)), i=O,l,... ,N-l, is obtained by forward-routing of A. Similarly, the
matrix AR = A (h(i)), i= 0,1,... ,N-1, is obtained by reverse-routing of A.

Proof of Corolary IV.3: Because the network fl is a k-stage baseline-type net-
work, it is topologically equivalent to RB :t. This implies that RB :k can be made
identical to rI by relabeling its inputs and/or outputs. Because relabeling the inputs
(re-.pectively, outputs) of RB 1:t is equivalent to adding an interconnection pattern to
the left (respectively, right) of RB 1.k, there exist two interconnection patterns IPin and
IPow such that H is topologically and functionally equivalent to IPFRB 1I.Pow.

(-) Assume that D :,t fits Ff :(a.l). It is shown that the network H realizes the
permutation a ..

Adding the interconnection pattern IPul to the left of RB 1k is equivalent to rela-
beling the ith input of RB 1:t by ix-.1 (i). Because the only difference between two a-
type frames with k columns is the order of their row labels and IP, is just an intercon-
nection patter, it follows from Theorem IV.1 that D r1 k passes rL By Definition IX.l,
when D 1-, is forward-routed through the interconnection pattern IPi, D 1. is mapped
to DO.t = D r1 (aj (i)), i=0, 1,... ,N-1. By Theorem IV.3, the subnetwork RB :t of
H realizes the permutation g represented by [ - D.]. Therefore, the network H
realizes the permutation a6.4Law.

(+-) Assume that the network H realizes the permutation a..g.aW. It is shown
that D1 fits F1x()i

The fact that H realizes the permutation oa..o implies that the permutation g.
is realized by RB :k of M. Because gi is the permutation represented by the balanced
matrix VI.-* D ] such that D*(i) =D t((Tn1 (i)), it follows from Theorem IV.3

that D i.k passes RB 1:t. By Definition IXL 1, when D 1:t is reverse-routed through the
intrconnection pattern IF,, Di.* is mapped to D1 k. Thus, Dl:k passes IP.,WRB t.
Note that the network IPi.RB 1:t is identical to the network obtained by relabeling the
ith input ofRB :t by a7Lq (1). In addition, because F ..t(a. ) is the same as Ff.. except
that the ith row label of Fd(a.l) equals M. t (i) instead ofi, D fits Fd- (cX7). 0
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Proof of Theorem V.I: !-+) It is ihown :hat if D : fits Fs,,F,,, then
D . passes RB :,,SEI:, and the permutation represented in binary by D (,+):(n+,u,)
is realized by RB 1:SE I:n.

Recall that by definition, RB :.SE 1 :. consists of RB :. followed by SEt.re.
Because, by hypothesis, D . fits FAl:.F*:, D 1:. fits F",. RB 1:,, maps the matrix
D I:(,.,.,) into the matrix denoted by Dl:(A+m) when D l:(n.+.)(i), 0 e i < N-I, is used as
the routing tag for the ith input of RB 1 .. Theorem IV. I has shown that any balanced
matrix D 1:. fitting the frame F" passes the network RB 1:.. So, when D 1:.'(i) is used
as the routing tag for the ith input of RB 1:, RB 1:. sends its ith input to the output
whose value equals D 1:(i). So, RB 1:, maps any D I., fitting the frame FfI, to I IlX-

This implies that, when D :(n+,)(i) is used as the routing tag for the ith input of
RBI:nSEl. the submarix D0:, of D :(,+.) is the same as the identity permutation
matrix 11,. Therefore, D:(.) is equal to the balanced matrix V11:A D(*,+l):(n+n)]. By
Lemma V.1, SEI., realizes the permutation represented by D(*,+j (,+,) and no
conflict occurs in the SBs of SE 1:. when DO,+l):0,s,,) (i) is used as the routing tag for
the ith input of SE 1 ,,. Therefore, D :(,+,) passes RB ItSE :,. Now, it remains to
show that RB 1 .,SE 1:,, realizes the permutation represented by D (R+t):(n,).

Let the entries of D :(n+,,,)(i) be denoted in binary by (x'ix' ..x x',). The
fact that D*, of D :(n ,, is identical to I:,, implies that RB ,. of RB :nSEim sends
the routing tag D l:(nm )(i) to the output of RB 1:, whose value equals the value of
(xtx2 ... x'). Because the jth output of RB 1:, is the same as the jth input of SE 1 ..,
when RB 1r.SE 1:. is considered, D l:(n.i)(i) is sent to the jth input of SE 1 ., by RB1,,,
where j equals (x' x& ... x',). Hence, the bit x', 1 p :m, of
(X'lx ..x '" xi...,,) is used as the control bit to set a SB at the pth stage of SE .,
where xjx ... x) and (x',,4ix i +2 ... ;e.+.) are the addresses of the input and the
destination, repectively. Due to the fact that D t:(n+) passes RB t:nSE I:m and a SE
stage performs the shuffle operation followed by the exchange operation, RB I:,,SE 1:p

sends D 1 .(,+,)(i) to the output of RB IxSE ., whose value equals (X4+Ii+2"' .i

Therefore, the permutation represented by D(.+t).,+,) is implemented by
RB ISE tIn.

(+-) It is shown that, if D:na) passes RB:RSE:.,, thet D :(,+,,) fits FsaFs:
and RB i:SE 1:. realizes the permutation represented by D (mnIa.(m+s).

Because, by hypothesis, D 1:(M.+,) passes RB :.SEi:., the submatrix D 1  of
Dl:(R m) passe RB.,,. So, by Theorem IV.A, the submatrix Dl:. fits F'. By
definition, any column of the universal frame Fr,: is a single block of size N. There-
fore, any balanced matrix of order (Nxm) fits Flom. It follows that D(,t+1 ).(,,) fits
FI~m . He=, D :(R~n) fits FI:mFI:n.

The first part (-+) of the proof has shown that the permutation represented by
D(.+tg,(+-) is implemented by RBI:iSEI:. if Dt. m4m) fits F:,AFx:A. Because it is
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3hown above that D 1:(..m fits ? qf2m, RB i:.SEi realizes the permutation
corresponding to D (,+1 (A+). 0

Proof of Theorem V.2: Proof is 3y induction on m.

Basis Step: Let m=l. In this step it is proven that RB I.SE I is functionally and
wpologkaiy equivalent to SE IRB 1,. Recall that RB 1:. is functionally and topologi-
cally equivalent to BE l:m. Therefore, RB t:xSE I is functionally and topologically
equivalent to BE.ISE1 . BE?., consists of 2 copies of BE2r-, 5 -t) in parallel, while
RB l:(,-I) consists of 2 copies of RB-2.-.l) in paralleL Because BE2-,,,.-.) is func-
tionally and topologically equivalent to RB 2.-%.,), BE.2m is functionally and topo-
logically equivalent to RBI:(,,_t). Therefore, BE 1:,SE1 is functionally and topologi-
cally equivalent to BEl RB :(n-I)SE1. Because the last stage of RB 1:,, is identical to
the SE stage, RB l:(n-l)SE 1 is identical to RB t,. Therefore, BE 1RB I:..(-)SE, is func-
tionally and topologically equivalent to BE IRB I:. Due to the fact that BE I is identi-
cal to the inverse SE stage, BE IRB 1:n is functionally and topologically equivalent to
SE-1 RB 1:. It follows that RB i:xSEI is functionally and topologically equivalent to
SE71 RB i..,,

Induction Step: Assume that, for m > 2, the theorem holds for m-1, and show
that it also holds for n.

Because RB 1:. is functionally and topologically equivalent to BE I:, RB I:nSE Ijm
is functionally and topologically equivalent to BE i:nSE I.. As it is explained in the
Basis Step above, BE2., is functionally and topologically equivalent to RB1:(n-)-
Therefore, RB l.ASE , is functionally and topologically equivalent to
BEIRB :(jg,)SE 1:n. Because the last stage of RB 1, is identical to the SE stage,
BE IRB l:(n-l)SE l, is identical to BE IRB l:,sSEl:(m-t). By the induction hypothesis,
RBlgSEj:0,s-j) is functionally and topologically equivalent to SElmj..l)inRB :.- So,
BERB roSE:(.-) is fuictionally and topologically equivalent to
BEiSej..-l_)1 RB.. Because BE1  is identical to the inverse SE stage,
BE lSE'!.lt)RB t, is func'ionsaly and topologically equivalent to SE T..RB :,. Thus,
the theorem holds. 3

Proof Theorem VII1: Case 1: Let r=n-1. When r=n-1, Tconsists of only
a rearrngeable network P(2!) and Ff is identical to the universal frame F ,,. By
definition, any balanced matrix of order Nxn fits F;,, and P(2"!) passes any balanced
matrix of order Nxn. Therefore, a DV., fits F# if and only if DN.. passes T.

Case 2: Let r=O. When r=O, F r and T are identical to FV,, and RBNw.,
respectively. Becaue Theorem IV.1 shows that a Dy,, fits F), if and only if Dy,
pas= RBy,,. Theorem VILI holds for this case.
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Case3: Let 1 r n-2. Assume that DN,(i), 0i N-1, is used as the rout-
ing tag for the ith input of T.

(-,) It is 3hown that, if DN,. fits Ft.", then DN, passes T.

In what follows, it is first shown that the submatrix D 1:(r+1) of a DNV. passes S.
By the definition of rearrangeability, any of the 2 -' rearrangeable networks
P(2r' 1!) of S can pass any balanced matrix of order 2"'lx(r+l). Label these rear-
rangeable networks in ascending order starting with 0. Let Pa(2+l!) denote the ah
rearrangeable network P(2'+ !) of S, where 0 < 2a l-.

Consider the universal frame F'+14,+,(). Any column of Fr+X(r+) is just a
single block of length 2r +'. Because a column of F*r+lx(,,+I) requires a column vector
of length 21 to have only 2' zeros and 2' ones, any column of a balanced matrix of
order 2 '1 x(r+l) fits it. It follows that any balanced matrix of order 2'+lx(r+l) fits
F;r+l,+1 ). Therefore, Pa(2 "+! ) corresponds to the universal frame F +1(,+l).
The subframe FIf.- +) can be considered as being a pile of 2 ' - ' F;,+.(r+1 )s. Label
these universal frames in ascending order starting with 0.

Partition the balanced submanrix D I:(,+,) of DOvm. into 2 -1 balanced subma-
trices of orter 2'+lx(r+l) such that the set of the row indices of the oh submatrix con-
sists of the numbers (rx2+' • ) to [(c+l)x2 1-1] inclusive. Label these submatrices of
order 2+lx(r+l) in ascending order starting with 0. Denote the azth submatrix of
D 1:(p41) by D l:(r+).

By hypothesis, D,.A fits Fl%'. This implies that D :(,.1) fits Fsfl.). Therefore,
Df(p+l) fits the ath FPr+l(, 1 ). Because Pa(2r1! 1) is a rearrangeable network, it
passes Dt(r+l). that is, PG(2+l! ) sends its kth input to the output whose value equals
D',+1) (k) wbere 0 k 5 2" ! -l. This implies that the network S sends its ith input to

its Jth output, where j equals the sum of [ [i/2y+1J x2'44)I and the value of the left-

most (r+l) bits of the D :,(i). Hence, D 1:(,+) passes S.

Theorem IV.I shows that a balanced matrix C 1, that fits F.% passes RB 1.
Theorem IV.1 also shows that RB 1: +1) sends its ith input to its hth output, where h is

equal to the sum of [i 2lJxr+1adtevalue Of C l:(,4 1)(i). Thus, the networks

RB :(,,) and S send their ith inputs to their jth outputs, where j equals the sum of

Ii/r~lJ ~r+ Iand the value of the ith row of the matrix passing the corresponding

Networ that is either RB 1.1+ ) or S. By definition, Fft is the same as
This implies that Ffm+' 2 a is also the same as F 2ka . It follows from this paragraph
that the argument given in the (-+) part of the proof of Theorem IV. I applies to
RB(r+2 :. of T and F-r+r2):. (If in Theorem IV. 1 RB t.(,*1) and F r(,+l) are replaced by
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S and F4l4), respectively, T I.1 becomes identical to Theorem V11.1).

Therefore, DN passes T.

(--) It is shown that, if DNw1 passes T, then DNR fits F#.

First, consider the submatrix D :(,+1) of D l:. By hypothesis, DNv, passes T.

This implies that D 1:(r+l) passes S because S consists of 2nr-1 copies of a rearrange-

able network P(2'"  !) in parallel and Di:('+1) passes pa(2' l!). Because any bal-
anced matrix of order 2r+lx(r+l) fits a universal frame F2r+i. ), Dm:(, ,) also fits
Fi'+Ir,+). Recall that F ,+ ) can be considered as a pile of 2 - P-  copies of
F2 '+Ix(?+l). Therefore, D 1:(.+1) fits Fl;r,+l).

Now, it is shown by induction on 0, I < : n-r-l, that D l:(r,+A) fits Flrr+l+0),

assuming that DN,. passes T. (The proof presented below is analogous to part (4-) of
the proof of Theorem M1.1).

Basis step: Let f=1. For 0!5 1: < 2p-2-1, letD" +l) (k) and D),+ 1 )(k) denote

the 21th and (21+1)th Dm(,,l)s, respectively. Similarly, let P"4 (2p"+) andP 2~1 !)

denote the 2/th and (21+1)th rearrangeable networks of S, respectively. Because the

stage RB(, 2) consists of a pile of 2 - 2 copies of the SE stage with 2 2

inputs/outputs, the subnetwork that consists of the pile of P ' (2 +' ) and P(2'1 !)
is followed by the SE stage with 2f+2 inputs/outputs. Because Df.(,,) passes
pa(2+l 1), Pa(2r+l 1) sends its kth input to its mth output, where m equals the contents

of D? r 1 )(k). Hence, the rows that are sent to the kth outputs of P"(2" !) and
Pc (2" !) enter the kth SB of the succeeding SE stage with 2+2 inputs/outputs. By
hypothesis, DN,. passes T. This implies that D :(,+2) passes the network consisting of

S followed by the stage RB, 2 without having any conffict in the SBs. Therefore, the

(r+2)th entries of fie rows that are sent to the kth outputs of P '(2!) and

Pc4(2 r+*!) constitute the set (0,1). Notice that these rows have the same first k-I

entries. Therefore, the (r+2)th entries of any two identical rows of the submatrix

constitute the set (0,1). Therefore, by definiton of fit, D :(r+2) fits F1;+2).

Inuction step: Assume that, for 2: 0 5 n-r-1. D :(,4 ) fits FI;+!). Then,

show that D 1.ir++) also fits FI l+rr1 ).

Let 2<P<n-r-1. By the induction hypothesis, D 1:(pr) fits Ff1; 4 ). It is also

known that Dp) m. passes T. So, as D 1:(-0) passes the network consisting of S followed

by RB(, 2)(,ro), Dlxx.l.) passes the network consisting of S followed by
RB 0(P2)*Q lO)"
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Partition the matx D1:(,+p) into 2'O submatrices Djr4, ,+p), .5 y:5 2 -'- ,

which are labeled in ascending order starting with 0. Let 0 < : 2u -- 15-, yh=2u

and h/=2u+l. The stage RB (,+1+p) consists of 2 - copies of the SE stage with
2+1 + inputs/outputs. The rows that are sent to the sth, 0 < s 5 2"+0-1, outputs of the

subnetworks that pass D 4,#(,+O) and D3K#,,,+p) enterfte sth SB of the SE stage with
2 +'O inputs/outputs. Because no conflict occurs in the sth SB by hypothesis, the
(r+l+O)th entries of the rows entering the sth SB must constitute the set (0, 1). There-
fore, by definion of fit, D 1:(r+1+0) fits F1I +l+p). 0

Poof Corollary VILI: Consider the network T, that is defined in Theorem
VIl, and its components S and RB(, 2)... Recall that S consists of 2 copies of a
rearmageable network P(2' + !) in paralleL If the Benes networkBS2r+l, 1,r) substi-

tutes for each rearrangeable network P(2'1 !) of S, then S consists of 2 -'- copies of
the rearrangeable network BS 2r+l2r,+) in parallel and hence S is made identical to
the subnetwork BS(,-,(n.,e) of BSNv(j(_-). Because BSl:(2n-l) can be considered as

being composed of BEl:(n.-) followed by RB 1:,,, BS(n,_r):(n+,) is the same as
BE(-,):(,-RB l:(,.). So, T is functionally equivalent to the network consisting of
BS(,_,.(,,.) followed by RB(, 2:,z. Because the network that consists of BS(,-.,):(,,,)

followed by R29(v 2kn is identical to BS(,.,y.(2,-l) and the fact that a balanced matrix
DN,. its FY, if and only if DNv. passes T(Theorem VIL1), DN,, fits F,' if and only
if D,, passes BS(,,,.(2, 1 ). Therefore, the corollary holds. 0
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I. Introduction

An interconnection network (IN) is used for exchanging of information
among the computation nodes and memory modules in a parallel computer. An

IN is often required to realize any permutation between processors and
processors/memory modules because many parallel algorithms are designed on

the basis of one-to-one type data transfers. If an IN realizes any permutation in

one pass, then it is called rearrangeable. A multistage IN of 2x2 switching
boxes (SBs) must have at least 2n-1 stages to be rearrangeable [7]. A disad-

vantage of this type of networks is the fact that their routing algorithms have

costly implementations. This paper presents new simple routing algorithms to

realize permutations in these networks. These algorithms, which make use of
balanced matrices [2], frames [181 "-d perfect matching graphs [3,4], take

O(NlogN) time on a uniprocessor computer and O(log2 N) on a parallel com-
puter of N processors. 1

Routing algorithms for Benes network, a well-known rearrangeable net-
work [6], are described in [13,14,15,16]. The control algorithm presented in [16],

called looping algorithm, determines the settings of the SBs recursively starting
with outermost stages and heading towards the center stage. This algorithm

takes O(NlogN) time on a uniprocessor. Nassimi and Sahni [15] proposed a

parallel algorithm which determines the switch settings in O(log2 N) time when

a fully interconnected network of N processors is used. Lee [13] introduced a

non-recursive algorithm which sets SBs stage by stage from left to right. The

advantages of a non-recursive algorithm include a reduction of information

transfer among the chips in VLSI Benes network implementations and the pipe-

lining of consecutive permutations so that the routing time is reduced by a fac-

tor of O(logN). Taking into consideration the number of comparisons needed
to pair switches such that every consecutive pair has a common residue class

number (see [13] and Section III of this paper), the time complexity of the algo-
rithm is O(N 2logN) and O(N 2) on a uniprocessor and a parallel computer,

respectively. The routing algorithm proposed in this paper for Benes network is

also non-recursive, but it takes O(NogN) time on a uniprocessor computer and
O(log2 N) on a parallel computer. In addition, it is easy to comprehend and

simple to program.

Lee [9] has proven the rearrangeability of the network called the reduced

f ,1N 1 , which is composed of the (n-1)-stage SE network followed by the n-

stage inverse SE network. The routing algorithm proposed in [9] for reduced

fN1lN1 takes the same time as the one proposed in [131 for the Benes network

All Iogaitbms are in bae 2 unless stated otherwise.
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discussed in the above paragraph. A new proof for the rearrangeability of this

network is also provided in this paper. This proof directly leads to a routing

algorithm which is very similar to the routing algorithm of Benes network. This

proposed algorithm also takes O(NlogN) time on a uniprocessor computer and

O(log2 N) on a parallel computer.

The remaining of this paper is organized as follows. Section II is dedicated
to the basic terminology and definitions used throughout the paper. Section III

presents basic serial and parallel algorithms used in the routing algorithms of
the Benes and reduced fN2 1. Section IV is dedicated to the routing algo-

rithm of the Benes network. Section V discusses the routing algorithm of the
reduced QNQNr. Concluding remarks are made in Section VII. The proofs

omitted in the paper are presented in the Appendix (Section VI).

H. BASIC DEFINITIONS

Throughout this paper, matrices are denoted by single capital letters and
columns of a matrix are represented by the lower case of the capital letter

denoting that matrix. Matrix A having N rows and k columns is denoted by

ANk. Given a matrix, e.g. ANxk, the jth column is denoted by aj, 1 < j : k.

To be able to refer to a set of specific columns of a matrix, the notation A,:y is
used to denote the submatrix that contains those columns of A whose indices

are z, z +1, "" , y, where 1 <z y; if z happens to be greater than y, then

AZ:Y ref .s to a nil matrix, unless stated otherwise. If z=y, then A,:y refers to a
single column a.. Unless specifically stated, the number of the rows of a matrix

A,:, is assumed to be equal to N. AN.,(i) refers to the ith row of the matrix
Atxn, where 0 < i < N-1. A column vector of N entries of which half are O's

and the other half are l's is called a column permutation. Unless otherwise

stated, any column of any matrix in this paper is a column permutation. The

binary representation of a positive integer 0 < b < N-1 is (bl b2 ... b) such

that b = b,.2n' +b 2 .2n 2 + +bn.2 .

A permutation on a set X is a bijection of X onto itself. A permutation f
permutes the ordered list 0, 1, "'', N-1 into f(0), f(1), " '',f(N-1). A
cyclic notation [19,20] can be used to represent a permutation as the product of
cycles, where a cycle (Co c1 c2 * **Ck-1 ck) means f(co)--cl, f(C) =c 2,
. . . , f(C-1) = Ck, and f (4i) = co. The composition of several permutations

S12 ... k is evaluated from left to right, i.e., it maps i into

fk( . (f2(f1 (i))) . . ).

Definition I.1. (Permutation matrix, identity permutation
matrix, reverse permutation matrix): A permutation h can be
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represented by a Nxn binary matrix called permutation matrix, H, such that its
ith row, IN~(i), is the binary representation of the integer h(i). The identity

permutation matrix denoted by IN,,, is the matrix whose ith row is the binary

representation of i (this is called "standard matrix" in [121). The reverse per-
mutation matrix, denoted RN,,n, is the matrix whose jth column is the

(n+1-j)th column of INn.

In the terminology used in this paper, a k-stage IN consists of k columns of
switching boxes (SBs), each followed and preceded by links which form inter-

connection patterns (IPs) as shown in Figure II.1. The IPs formed by the input

and output links are denoted by IPin and IPo,, respectively. Thus, an IN con-
tains (k+l) interconnection patterns labeled IPi n , 'Py IP2, i -, IiPk-l, IPout.

A column of IN contains N/2 (2x2) SBs, each of which can be set either

straight or cross. Figures 11.2, 11.3, and II.4 show several networks considered in
this paper for N=16, namely, reverse baseline, baseline, Benes, the 4-stage

shuffle-exchange (SE), and the 4-stage inverse SE. If some networks are placed
in parallel to form a new IN, then the IN is said to be a "pile of networks".

Unless otherwise stated, any IN is assumed to have N inputs/outputs and its
stages are labeled from left to right starting with 1. Network stages are defined

below and illustrated in the figures.

Definition H.2. (Stages of reverse baseline, baseline, Benes, SE,
and inverse SE networks): With one exception, a stage in the reverse base-
line and SE networks consists of a connection pattern and the following column

of SBs. The exception is the rightmost stage (i.e., the output stage) which con-

sists of the last column of SBs and both the preceding and succeeding connec-
tion patterns. Stages are labeled from left to right in ascending order starting
with 1. In the baseline network the kth stage corresponds to the (n-k+l)th

stage of the reverse baseline network. (Notice that both the reverse baseline

and the baseline can have at most n stages, by definition). In the inverse SE
network with m stages, its kth stage corresponds to the (m-k+l)th stage of the
m-stage SE network. In this paper, Benes network is considered as being com-

posed of the first n-1 stages of the n-stage baseline followed by the n-stage
reverse baseline. (It could also be considered as being composed of the n-stage

baseline followed by the last n-1 stages of the n-stage reverse baseline). There-
fore, the stages of Benes network are labeled according to the labeling rules of

the baseline and the reverse baseline.
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1 1 1 1
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(a) (b)

Figure 11.4. (a) The omega network (i.e., the 4-stage SE) with 16 inputs/outputs. (b) The

inverse omega network (i.e., the 4-stage inverse SE) with 16 inputs/outputs.

An IN with N inputs/outputs and k stages is denoted by both INN,,k and
IN 1k, where k > 1. The subnetwork that consists of the stages z through y of
IN:k is denoted by IN:y, where 1 < z<y < k. If z>y, then INz:y refers to a nil

network, unless specified otherwise. INj, 1 < j < k, refers to the jth stage of
IN: k. The notation used for networks is different from that used for matrices
because matrices are always denoted by single letters.

In this paper the following convention is adopted to denote an IN: if the
name of an IN has more than one word, then it is denoted by the upper case
form of the first letters of those words; otherwise, it is denoted by the upper
case form of its first and last letters. Also, if XX denotes an IN, then the inverse
XX network may be denoted by XX - 1. The following i efinition applies this

convention to the baseline, reverse baseline, shuffle-exchange, inverse shuffle-

exchange and Benes networks of interest in this paper.

Definition 11.3. (BE, RB, SE, SE - 1 , BS, composite IN, IP*): The
symbols BE, RB, SE, SE - ' and BS in this paper refer to the networks base-
line, reverse baseline, shuffle-exchange, inverse shuffle-exchange and Benes,
respectively. If an IN is a cascade of different INs, then it is called a composite
IN and is denoted by the concatenation of symbols that represent the INs in the
order they are cascaded. IP' denotes the shuffle interconnection pattern of a SE
stage of N inputs/outputs.

As an example for a composite network, the notation RBI:,,SEI:m, m > 1,

denotes the network consisting of RBI:n followed by SEI:.. The reduced
QN11-1 can also be denoted by both SEl:(n.-)IP'SEj1, and
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SEN.(a-I)IP'SE-1a

Linial and Tarsi 12] introduced the concept of balanced matrices to estab-
lish a relation between SE networks and their realizable permutations. The fol-
lowing definition is equivalent to the one given in [2].

Definition H.4. (Balanced matrix): Let N=2n and call a 0-1 matrix

ANyk balanced if either one of the following conditions is satisfied:

1. For k < n, it consists of any k columns of the binary representation of a
permutation on the set (0,1,..., N-1}.

2. For k>n, every n consecutive columns form the binary representation of
a permutation on the set {0,1,...,N-1}.

As an example, two balanced matrices E and H are shown below. But
notice that the matrix [E Hi is not balanced.

1 1 1 1 0
1001 10
000 11
010 11

E=[el e2 e 3 ] 1 1 0 H=[h, h2 ]= 0111 01
0O0 11 0 1

101 00
011 00

Definition 1.5. (Pass, realize): A balanced matrix ANxk (respectively,
an IN) is said to pass a k-stage IN (respectively, a matrix ANxk) if no conflict
occurs in the SBs of the IN when AVxk(i) is used as the routing tag for the ith
input of the IN. A network IN realizes a permutation represented by BNxn if
there is a network switch setting such that input i is sent to output B(i) for all
i-- 0, 1, . .. , N-1.

According to the last definition, in this paper, the phrases "an IN passes a
balanced matrix" and "a balanced matrix passes an IN" are used alternatively.
It is also assumed that only "one pass" is allowed through a network to realize a
permutation. Therefore, the phrase "one pass" is omitted in the sequel. To
emphasize the distinction between the meaning of the terms "pass" and "real-
ize" as used in this paper, it is important to notice that matrix ANxk in
Definition H.5 does not necessarily correspond to the permutation realized by
the network IN. Indeed, the ith row of ANxk is the routing tag for input i and it

is only when it equals the destination of input i that ANxk is the permutation
realized by IN; these cases will become clear in the remainder of the paper.
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In the rest of this section, the concept of frames is introduced to character-
ize the permutations realized by a network. Different frames are derived from

this concept and their graphical representations are presented. In addition,
some related fun'd-nental concepts used in the proofs of this paper are intro-

duced. More extended discussion of these concepts appears in '17].

In order to understand the concept of frame, the following definition is first

introduced (a k-tuple V with the elements V1 ,V2 , .. . , Vk, denoted by
V - <v1,v 2 , • . . , vk>, refers to an ordered collection of k elements).

Definition H.8. (Partition Pi, block, standard partition P*, P*):

Let X={0, 1, . . . , N-1}, N=2- and i=1,2, ... , n. A partition Pi of X is a

tuple of 2' - ' disjoint ordered subsets of X, clled blocks, each of which is a
tuple with 2' distinct elements. The partition Pi=< <h, h+1, . . . , h+28-1>

such that h mod 2'= 0 and h = 0,1, . . . , N-1l> is a standard partition of X.

The n-tuple <P,, i=1,2, . . . , n> is denoted by P

Example 1.1. Let N=8. The following are the standard partitions:
P;=< <0,1>, <2,3>, <4,5>, <6,7> >, P;=< <0,1,2,3>, <4,5,6,7> >
and P;=<0,1,2,3,4,5,6,7>. Also, P =<P;, P;, P'>.

The notion of frame is defined next and an example (Example 11.2) is given
after the definition. Several frames are graphically represented in Figure 1.5.

Notice that the frames are characterized by the labeling of columns, the label-
ing of rows, and the number of blocks in columns. Therefore, the definition of
frame is done in terms of two mappings (the column and row labeling) and a

tuple of partitions (one for each column). The column labels determine the
number and size of the blocks in each partition and the row labeling determines
the elements in each block and their order. As precisely stated in the definition,
column with label 0(i) corresponds to a partition with 2' - l(' } blocks with TIN

elements each and the mth element within the Jth block corresponds to the

label -1(r) of row r- 2' 1'()(j-1)+m-1). After Example 11.2, a convenient
graphical representation for frames is introduced and its use is illustrated in

Example 11.3 for the frames described in Example 1.2.

Definition II.7. (Frame): Let 1 < k < n and 1 < i < k. A frame FXk,

1 < k < n, is a 3-tuple <0,1,P>, where

- 6is a mapping of the set (1,2, ... , k} into {1,2, ... ,n},
-y is a permutation on the set (0,1, . . . , N-1} and

P is a tuple of partitions <P,(1)I,P (2), . . ,Pzq 1 > determined

by # and y as follows:
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P;J(i) = <P3(i.), I P(i),2, , Pi(i),2 ' _> where
Pl(i)j= Kul, u21j,•, . , u 2 't.j> such that

UM, j = ^t(2"(' 1)(j-1)+m -1), 1 < j < 2n- ,I i) and 1 < m < 2.i}.

Definition 11.8. (a-frame, standard a-frame, b-frame, standard b-

frame): Consider the 3-tuple <f,.,P> that defines a frame FN k . If /3 is the
identity permutation, then FNk is an a-frame denoted by F Jxk. If 31 and -)

are the identity permutations (which implies P=P "), then FNXk is the standard
a-frame denoted by P"xk.

By definition of standard a-type frame, column fr, 1 < i < n has 2'
blocks, each having 2' rows. Unless otherwise stated, the number of the rows of
Ffa1, k > 1, is assumed to be N. The notation F:y is used to denote the sub-
frame that contains those columns of F whose indices are x, z+,... , y.

Unless specifically stated, the number of rows or F1 :y is assumed to be N.

Example 1.2. The following are examples of frames for N=8 and k=3.
(a) Fs×3=<8,-7,P> where /8 = (1 2)(3), -y is the identity permutation and

P=<P2 ,P 1 ,P 3 > such that P 1 =P*, P 2 =P2 and P 3 =P 3 .

(b) FS4 =<3,'7,P> where 8 = identity permutation, -y = (0)(1 2)(3)(4)(5)(6)(7),
P=<P1 ,P 2,P 3 >, Pl=< <0,2>, <1,3>, <4,5>, <6,7> >,

P 2=< <0,2,1,3>, <4,5,6,7> > and P 3 =<0,2,1,3,4,5,6,7>.
(c) Fgx3 =<O,-y,P> where / = identity permutation, -f = (0)(1 3 6 4)(2 5)(7),
P=<P1 ,P2 ,P 3 >, P I=< <0,3>, <5,6>, <1,2>, <4,7> >,

P 2 =< <0,3,5,6>, <1,2,4,7> > and P 3 =<0,3,5,6,1,2,4,7>.

(d) Fs=</3,"y, P> where /--3 2 3j, -y is the identity permutation,

P=<P2 ,P 2,P 3 >, P2=P2 and P 3=P;.

Definition ".9. (Graphical representation of a frame, rectangle of

a frame): The graphical representation of a frame FN,k=<, ,"7,P> consists of
k columns labeled fi, i=1, . .. , k, from left to right and N rows labeled "(j),
j=- 0, 1,... , N-1 starting at the top. The column fi corresponds to the parti-
tion P#(q), that is, fi consists of 2 -0(') blocks of 2A') entries each. In the

graphical representation of a frame, any polygon with four sides and four right
angles is a rectangle of the frame.

Example 11.3. Figures MI.ia, 1If.lb, I1.lc and 1I.ld show the graphical
representation of the frames described in the part (a), (b), (c) ad (d) of Exam-
ple 11.2, respectively. Figure I1.Se shows the graphical representation of the

standard a-frame F" . The labels of the partitions below each column are
implicit by the sizes of the rectangles in the column and can be omitted.



1 f- 2 - 3 1,1 1 1 -
1 ,3 2 1

3 3 6 3 3
4 4 4

2 5
4 6

7 77 7 7

P2PIP3 P P2 P3 PP2P3 P2P2P3 P 1 P 2 P 3
(a) (b) (c) (d) (e)

Figure 11.5. (a), (b), (c) and (d) are the graphical representations of the frames described in
the part (a), (b), (c) and (d) of Example 11.2, respectively. (e) Graphical
representation of the standard a-frame Fg".

Definition 1.10. (Fit): Let k > 1, 0 < i <N-1 and 1 <j<k. Con-
sider a balanced matrix ANxk and a frame FN.k. The matrix A fits FNk if and
only if, after placing aij in the ith row and jth column of FNxk, every rectangle

of FNvk contains a balanced matrix.

Example 11.4. The matrix E, shown just after Definition II.4, fits all the
frames shown in Figure 11.5 (a)-(d). It does not fit F"3 shown in Figure II.5e
because, for example, the submatrix in the top leftmost rectangle (the 2-tuple

P1 ,1) is not balanced.

m. BASIC ALGORITHMS

This section introduces sequential and parallel algorithms for determining

a column vector z for given balanced matrices AN)4nI) and BNx(n,_) such
that [ANx(,n-) zJ and !BN-n 1) z] are balanced. These algorithms are later used

in obtaining the routing algorithms for the Benes and SE :(n_.)IPSE1:, net-
works. Some preliminary results and basic definitions are introduced first.

Lemma 111.1. [2] For n > 2, let A. and B be two Nx(n-1) balanced
matrices. Then there exists a column vector z such that both [A z] and [z B]
are balanced matrices.

Note that, when the order of columns in a balanced matrix with at most n
columns is changed, the matrix remains balanced. Therefore, the position of z
in the matrices A and B in Lemma 111.1 is immaterial. Because the possible

choices of vector z increase as the number of columns of A or B is reduced,

Lemma flI.1 remains valid when A and B have less than n-1 columns.
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Some properties of balanced matrices can be captured by graphs. A graph

G=( V, E) consists of a set of vertices V and a set of edges E, each of which is a

pair of vertices. The union of two graphs CG=(V,E]) and G 2 =(V,E 2 ) is the

graph G=GIUG 2=(VEIUE 2 ). In other words, an edge is present in

G=G 1 UG 2 if and only if it is present in either G, or G 2 . A subset M of

edges in a graph G is called independent or a matching if no two edges of M

have a vertex in common. A matching M is said to be a perfect matching if it

covers all vertices of G. More extended discussion of these basic concepts can be

found in [3,41.

Definition I.1. (Perfect matching graph of a matrix): Let A be an

Nxk (1 < k < n-1, n > 2) balanced matrix. A perfect matching graph of A,

denoted by PGA, is a graph whose vertices are in one-to-one correspondence
with the rows of A, have degree one and vertices vi and vi are joined by an

edge only if the ith row and Jth row of A are identical.

If the number of columns in a balanced matrix ANk is less than n-1 (i.e.,

if k<n-1), then its perfect matching graph is not unique because each distinct

row in A appears 2 n-k times. If k=n-1, then PGA is unique because each dis-

tinct row in A appears twice. As an example, consider the balanced matrix Hs×2

presented just after Definition 11.4. Its perfect matching graph is unique and

shown in Figure III.1.

Definition 11.2. (Labeling): 2-labeling or 2-coloring of a graph is the

assignment of integers 0 and 1 to its vertices such that the labels of the vertices

incident with an edge are different.

F&ct M.1. 12] The union of two perfect matching graphs with the same

set of vertices is a union of disjoint even cycles and, therefore, it can be 2-

labeled.

10 1 V2 f4  Jtl

Vl V3  V5  V7

Figure H1.1. The perfect matching graph of Hg.2.

Given balanced matrices Dl:, and El:n, the following algorithm

CONS-COLUMN determines a column vector V such that Si:n = ID2 :, V] and

T,:, - [E2:,, V] are balanced. The detailed steps of this serial algorithm are

shown in procedure COLUMN.



Algorithm CONS-COLUMN
Input: Balanced matrices D1  and E,

Output: A vector V such that ID2,n V] and [E2 : , V] are balanced.

Step 11. Determine D-1 and E-, which represent the inverse of the permu-

tations corresponding to Dl:,, and El:,, respectively.

Step 2. Determine the perfect matching graph of D 2:, by joining the ver-

tices with indices D-1(j) and D-1(3 +(N/2)) by an edge,

0 < J < (N/2)-1. Similarly, determine the perfect matching graph

of E,., by joining the vertices with indices E-(j) and

E-1n(j+(N/2)) by an edge.
Step 3. 2-label each cycle of the union of the perfect matching graphs of

D 2., and E 2.n. The vector V is such that V(r) equals the integer
assigned to the vertex with index r in 2-labeling, where

0 < r < N-1. Stop.

To prove the correctness of Algorithm CONS-COLUMN, note that D-'(i)
can be thought of as a pointer to the row with value i of Di:n because it equals

the index of the row of DI:,, whose contents equal i. This implies that any two

rows of Di:n whose indices equal D-1(j) and Dj'(j+(N/2)) differ only in their
leftmost bits. When the perfect matching graph of D 2:n needs to be con-

structed, it follows from Definition III.1 that the vertices with indices Dj1(j)

and Djl(j+(N/2)) must be joined by an edge. Similarly, in case of the perfect

matching graph of E 2,,, the vertices with indices Ejj(j) and E-'(j+(N/2))
must be joined by an edge. By Fact 11I.1, the union of two perfect matching

graphs can be labeled in the way that the labels of the vertices incident with an

edge constitute the set (0,1). This completes the correctness proof of Algo-

rithm CONS-COLUMN.

Procedure COLUMN, an implementation of Algorithm CONS-COLUMN,

is now discussed in order to rigorously analyze the complexity of the algorithm.

It calls two simple procedures namely CONSLIST(N) and DELETE(k) which

constructs a linear linked list of N nodes and deletes the kth node of the list,

respectively (these procedures are described in Appendix). Given balanced

matrices Dl:. and El:n, procedure COLUMN determines a column vector V

such that the matrices [D 2:n VI and [E2 :: V] are balanced. The lines 1 to 4 in

procedure COLUMN construct Dj'1: and E- 1 which represent the inverse of the

permutation represented by Djl: and El:., respectively. The lines 5 to 10

create as many circular doubly linked lists as the number of cycles in the union

of the perfect matching graphs of D2:n and E 2:.. (Recall that any of these

cycles has an even number of vertices). Any node of these lists has three fields

called R1, R 2 and V, where RI and R 2 are used for pointers and V will, later,
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be assigned either 0 or 1 in 2-labeling. The fields R, (respectively, R 2 ) are used

to obtain the perfect matching graph of D2:, (respectively, E 2:,). The pointers

R, and R,, of any one of these lists are ordered as

(RIR 2 R 2 R ... RIRR 2 R). The line 11 calls the procedure CONSLIST(N)

to construct a linear linked list, called H, of N nodes. The lines 12 to 24 do the

2-labeling of all the cycles in the union of the perfect matching graphs of D2:n

and E 2:, by assigning 0 or 1 appropriately to the fields V of nodes of the
corresponding circular doubly linked lists. The 2-labeling of the cycle contain-

ing the vertex of index 0 is done first. Whenever the field V of a node is
assigned either 0 or 1, the node is deleted from the list H, so that H contains

only those nodes which are not assigned any integer yet. If the node to be

deleted is the header node, the pointer to the header is changed to point to the

node following the header node. When all the nodes of H are deleted, it means
that all the cycles are 2-labeled. When the 2-labeling of a cycle is completed

(i.e., when the "while" loop between the lines 18 and 23 is exited), the next

cycle to be 2-labeled is the one that contains the node with the index p pointing

to the header of H. So, the lines 12 to 24 do the 2-labeling of N nodes one by

one. Also, note that the "for" loops are executed O(N) times. Therefore, the

time complexity of procedure COLUMN is O(N).

line procedure COLUMN
1 for i:=0 to V-1 do
2 DjI(Di:n(i)) :

3 E-1(EI:n(i)) i

4 end

5 for j :=-0 to (N/2)-1 do
B R 1 (D-1(j)) D-'(j+(N/2))

7 R 1 (D (j+(N/2))) := D-(j)
8 R 2 (Ej'(j)) E-'(j+(N/2))
9 R 2 (E-'(j+(N/2))) :nl(j)

10 end

11 call CONS.LIST(N)

12 p:=0
13 while p $ nil do

14 V(p) 0; V(RI(p)) := 1
15 m :- R2 (RI(p))

16 call DELETE(p)
17 call DELETE(R I (p))
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18 while V(m) is empty do

19 V(m) := 0; V(R 1 (m)) 1

20 m := R 2(RI(m))

21 call DELETE(m)

22 call DELETE(R I(m))

23 end

24 end
25 end COLUMN

Algorithm CONS-COLUMN and procedure COLUMN can be adapted for

execution on an N processor PRAM machine [21], as shown next in Algorithm

CONSCOLUMNPRAM and procedure COLUMNJPRAM.

Algorithm CONSCOLUMN_.PRAM

Input: Balanced matrices Dl:n and El:n.

Output: A column vector Vsuch that [D2:n V] and [E2:n V1 are balanced.

Step 1. Determine the perfect matching graphs of D 2:, and E2:n.

Step 2. Represent each cycle of the union of the perfect matching graphs of

D 2:n and E 2:n by a circular doubly linked list.

Step 3. For each list, first determine the node with smallest index and then

assign "nil" to one of its pointers.
Step 4. For each list, determine the distance of each node to the node with

smallest index.

/* Note that, although the distance of any node of a circular dou-

bly linked list to the node of smallest index can be measured in two

different directions, both distances of the same node are either odd

or even because the list contains an even number of nodes. */

Step 5. For each list, assign 0 (respectively, 1) to all those nodes whose dis-

tances are even (respectively, odd). Stop.

The correctness proof of Algorithm CONSCOLUMNPRAM is the same

as that of Algorithm CONS-COLUMN, except that Algorithm

CONSCOLUMN.PRAM is implemented using N processors instead of a single
processor.

Given balanced matrices Di:n and El:., procedure COLUMNPRAM

determines a column vector V using an N processor PRAM model such that the

matrices [D2:, V] and JE2:n V] are balanced. Assignments which are local and

not local to the processors are denoted by the operators ":-" and "---", respec-

tively. Any variable with index z is an operand in processor PE(z), where
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0 < z < N-1. Lines 1 and 2 determine the inverse of the permutations
represented by Dl:, and El:n. Lines 3 to 10 represent each cycle of the union
of the perfect matching graphs of D 2:n and E 2:n by a circular doubly linked
list. The pointers R, and R2 of any one of these lists are ordered as
(RIR 2 R 2R1 ... RIR 2R 2 R,). Let 2 < p < n. Any one of these lists can have

at most 2 k nodes, where k=p-1 if Dp:n = Ep:n, else k=n.

Lines 11 and 12 copy the circular lists into new lists whose pointers are
denoted by S, and S2. Lines 13 to 21 determine the node of the smallest index

in each list and the smallest index is stored in M(i). Line 13 initializes M(i) to
i. Lines 14 and 15 find the smaller index of every two nodes that point to each
other by S1 fields and then the M()s of these nodes are assigned the smaller
index. Line 16 partitions each circular linked list into two sublists, such that
each sublist is formed by the S fields of the nodes and contains every other
node of the list. Due to the lines 14 and 15, the smallest one of the node indices
of a list is stored in the M(i) of a node in the every sublist. This guarantees
that the M(i)s of all the nodes of a list will eventually contain the same index
even though the list is partitioned into two sublists. Because a sublist can have
at most 2k- 1 nodes and, after the jth iteration, SI(i) of node i points to the
node which is 2i nodes away from node i, the loop "for" in lines 17 to 21 needs
to be executed at most k-1 times. Hence, the loop "for" takes O(k) times.

Lines 22 to 35 determine d(i) which is the distance of node i to the node of
the smallest index. Line 23 partitions each linked list into two sublists, each
formed by the R 1 fields of the nodes and contains every other node of the origi-
nal list. The distance d(i) is first initialized to 2 (line 24), then d(i)s of the
node with the smallest index and its neighboring nodes are made equal to 0, 1,
and 1, respectively, and their R 1 (i)s are assigned "nil" (lines 25 to 29). The
reason why d(i) of all the nodes other than the nodes with the smallest index
and its neighboring nodes are equal to 2 initially is that every sublist of a list
contains every other node of a list. For the same reason, one of the two sublists
contains the node with the smallest index while the other sublist contains the
neighboring nodes of the node with the smallest index. So, a sublist has at least
one node with R, field assigned "nil". The distances of the other nodes of
every list to the node of the smallest index are computed in the loop "while"
between the lines 30 to 35. This loop can be executed at most k times because,
after the jth iteration, RI(i) of node i of a sublist points to the node which is 2j

nodes away from node i, and RI(i) is assigned "nil" when the R, field of the
node pointed to by the RI(i) equals "nil". Lines 36 and 37 do the 2-labeling of
the nodes of every list. Because the loops "for" and "while" of procedure
COLUMN..PRAM take O(logN) times, its time complexity equals 0(logN).
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line procedure COLUMNPRAM
1Dj'(D,:.(i)) - i
2 -- ,

3 if i > 0 and i< (N/2)-I then do
4 Rj(D-'I(i)) -- D'(i+(N/2))

5 R 2(E-'(i))- E-: (i+(N/2))

6 end

7 if i > N/2 and i < N-1 then do
8 R(D'(i))- D'(i-(N/2))

9 R 2(E-(i)) E - -(NI2))

10 end
11 Sj(i) R 1 (i)

12 S 2 (i) R 2(i)

13 M(i) i
14 T (i) -M(S 1(0))

15 M(i) min{ T(i),M(i)}
16 SI) W- S2 (S (0))

17 for j 1 to k-i do
18 T(i) - M(S (0))

19 SI(i) - SI(SI(i))

20 M(i):- min{ T(i),M(i)}

21 end

22 t(i) := R(i)

23 RI(i) - R2 (RI(i))

24 d(i) := 2

25 if M(i)= i then do

26 d(i) :=-0; RI(i) :nil

27 d(t(i)) -- 1 ; R 1 (t(i)) - nil

28 d(R 2 (i)) - 1; RI(R 2 (i)) 4- nil

29 end

30 while there exists a node i such that R I(i) $ nil do

31 if RI(i) $ nil then do

32 d(i) -- d(i) + d(RI(i))

33 RI(i) - RI(RI(i))

34 end

35 end

36 if d(i) = 2x[d(i)/2] then V(i) :- 0

37 else V(i) := 1

38 end ,OLUMNPRAM
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An example is presented below to show how circular doubly linked lists

are used to represent the cycles of the union of the perfect matching graphs of

two given balanced matrices. Also, the 2-labeling of these lists and the resulting

column vector are shown.

Example I1I.1. Let II = (04 1109 6 153 5 7)(2 11)(8 12 13)(14) and

(P = (0 2)(1 3 9 4)(5 8 10 11)(6 12 7 13 15 14) be the given permutations.

Assume that D1. 4 and E 1:4 represent 11 and 4) in binary, respectively. The

inverse of these permutations, denoted by H - 1 and V-1, can be easily deter-

mined: o- [=-  = (0 7 5 3 15 6 9 10 1 4)(2 11)(8 13 12)(14) and

pt = V1- = (0 2)(1 4 9 3)(5 1110 8)(6 14 15 13 7 12). The perfect matching

graphs of D 2. 4 and E 2:4 , denoted by PGD and PGE, respectively, are illustrated

in Figure 111.2. The union of the perfect matching graphs of D 2:4 and E 2:4 ,

denoted by PGDuE, is illustrated in Figure 1.3.

Each cycle of PGDuE is represented by a circular doubly linked list such

that the pointer field R 1 (respectively, R 2 ) of each node is used for PGD

(respectively, P GE). The corresponding lists are shown in Figure III.4a. Each

list (as well as a cycle) can be 2-labeled in two different ways. The integers

assigned to the nodes of a list in a 2-labeling are stored in their V fields. The

column vector V obtained from these 2-labelings is shown with the given

matrices D 1 4 and E:4 in Figure III.4b.

o(O)=7 a(1)=4 a(2)=11 a(3)=15 a(4)=O a(5)=3 a(6)=9 a(7)=5

011111 1 011
a(8)=13 r(g)=10 a(10)=1 a(11)=2 a(12)=8 a(13)=12 a(14)=14 o(15)=6

(a)

/(0)=2 9(1)=4 y(2)=0 p(3)=1 j(4)= 9  p(5 )=11 p(5)=14 u(7 )=12I I II II I:
p(8)=5 p( 9 )=3 u(10)=8 p(11)=1O p(1 2 )=68 p(1 3 )= 7 p(14)=15 p(15)=1 3

(b)

Figure M1.2. (a) PGD, the perfect matching graph of D2:. (b) PG,, the perfect matching
graph of E2:4. The numbers on an edge refer to the indices of its vertices.
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Although this algorithm works like Lee's algorithm in the sense that it sets the

SBs of a stage at a time, starting with the leftmost stage and heading towards

the rightmost stage, it is easy to understand and simple to program.

When the Benes network realizes a permutation represented by a balanced

matrix Bl:n, the ?nth input of the Benes network is sent to the output whose

value equals Bi:n(m), 0 < m < N-1. In order for a balanced matrix Bl:n to

also pass the Benes network, Bl:n must be transformed by BE:(n-) into

another balanced matrix which can pass RBI:n. Algorithm CNTRBENES first

determines a balanced matrix Cl:(n-1) which passes BEl:(n-) and transforms

Bl:n into another balanced matrix passing RBI:,. Algorithm CNTR..BENES,

then, determines the routing tag matrix Ul:(2n-1) whose mth row is the routing

tag for the mth input of Benes network to implement a given permutation

matrix Bl:n through it.

The routing scheme used in Benes network is as follows: at the jth stage,

1 < j < 2n-1, of Benes network, every SB examines the bit uj of the routing

tag (uIu 2 * * u2n- 1 ) of its each input. If u2 =O, the input is sent to the.upper

output of the SB; otherwise, the lower output of the SB is taken.

Algorithm CNTRBENES

Input: A balanced matrix Bl:n = [b, b 2 ... b,] and the reverse permuta-

tion matrix Rl:n.
Output: A matrix U1:(2n- 1) such that, when its mth row, 0 < m r< N-1, is

used as the routing tag for the mth input of the Benes network, the

permutation represented by Bl:n is realized by the Benes network.
Step 1. Let p denote an integer variable. Let B":n - [b. b -.. "' b1J. Set

p=l. Determine a column vector cl such that the matrices

[R2, c1l] and [B,:(,.-,) c1 ] are balanced.

Step 2. Increment p by 1. If p>n-1, go to next step; otherwise, first deter-

mine a column vector c. such that [R(p+l):n Cl:(p-l)] and
[Bl:(n-p) Cl:(p-})] are balanced, and then go to Step 2.

Step 3. Let Ui:(2n-i) = [Ci:(n-) Bi:n]. A switch at the jth stage,

1 < j < 2n -1, of the Benes network examines the bit uj of the

routing tag (u1 u 2  U2•• n-) of its input to set itself either straight

or cross. Stop.

Theorems 1V.1 and IV.2 below are used in the correctness proof of Algo-

rithm CNTR.BENES. The proof of Theorem IV.2 appears in Appendix.

Theorem lV.1 establishes the correspondence between RBI:k and F!.k.
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Theorem IV.1. A matrix D1:k = [d 2 ... dk] fits Fk if and only if
Di:k passes RBIk, 1 < k < n. Moreover, RBI:k sends its ith input to its ith

output, where j is equal to the sum of ( [/ 2 kx 2 k) and the value of Dl:k(i).

Basic idea of proof:

(-'*) Di:k fits F"k - Dl:k passes RBI:k.

Induction on k is used. For k=1, each rectangle of F has a 0 and a 1. These
are the control bits of a switch in RBl:k and, thus, no conflict occurs. For k>1,
assuming the theorem holds for k-1, each switch in the kth stage "has" control
bits 0 and 1 and, therefore, no conflicts occur. These control bits must appear
as the kth bits at the end of identical (k-1)-bit rows of subframes F2-xk-l and

F k-" Of F" so that Dik fits F" . Each subframe corresponds to a subnet-
work of RBI:k which is also a reverse baseline network RB 2*-tk-l.

(-) Dl:k passes RB1:k - DI:k fits Frlk.

Induction on k is used. For k=1, if d1 passes RB 1 , then each rectangle of F"'k
contains a 0 and a 1 and d1 fits f'8. For k>1, assuming the theorem holds for
k-1, for the outputs of two subnetworks RB0,-,×k-. and RBG2-'_xk_ 1 to cause

no conflict in any switch of the kth stage it must be the case that a 0 and a 1
are added to the k-1 entries of identical rows of the frames that correspond to
the two subnetworks. This implies that D1 :k fits F[ '. The value of j follows
from the topology of RBl:k and how switches are set by control bits. 0

Theorem IV.2. Consider a balanced matrix DNxk, 1 < k < n, the reverse
permutation matrix RNx. and the frame F$"×k. The matrix [RNxfl DNxk] is bal-
anced if and only if DNxk fits Fxk.

To prove the correctness of Algorithm CNTR..BENES, note that it follows

from Algorithms CONSCOLUMN and Algorithm CONSCOLUMNPRAM

that Step 1 and Step 2 of Algorithm CNTRBENES are realizable. Now, it
remains to show that, when the mth row of Ul:(2.-)1 is used as the routing tag

for the mth input of the Benes network, the permutation represented by Bi:n is
realized on the Benes network.

Because IRI:. Cl:(-,l)] is balanced, it follows from Theorems IV.1 and
IV.2 that Cl:(.-}) passes RBI:(.-). Because RBI:,, is functionally and topolog-

ically equivalent to BE 1 :n, RBI:(n-i) can be converted to BE,:(.-,) by reposi-
tioning its switches only. This implies that Cl:(.-.) also passes BEL(n-i), that
is, no conflict occurs in the switches of BE,:(.-l) when the ith input of Cl:(n-1)

is used as the routing tag for the ith input. Let x denote a column vector such

that [CI:(.,) z] is balanced. Because BEI., (and RB 1 .n) realizes the permuta-
tion represented by ICl:(,-l) x] (Theorem IV.A), the routing tags form the
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matrix I1:,, when they reach the outputs of BEi:,. This implies that, when the
mth row of Cl:(,._1 ) is used as the routing tag for the mth input of BEl:(n-,),
the rouling tags form the matrix II:(n-1) at the outputs of BE!:(,-,). So, when

the mth row of U1:(2n-) is used as the routing tag for the mth input of

BE,:(n-,), the routing tags form the matrix Ul:;( 2 n- 1 ) =11:(,-1) B1:] at the
outputs, where B:n denote the matrix obtained from Bl:n by routing it with

Cl:(n-i). It will be shown next that Bl':, is realized by RBI:n.

Let 1 < r < n-1. The rth stage of BEI:(n-i), called BE,, is a pile of 2' - 1

inverse SE stages on 2n- r l inputs/outputs each. The matrix U1:(2 n-1) of rout-
ing tags is assigned [CI:(n-l) Bi:n] in Step 3 of Algorithm CNTRBENES.
Note that the matrix [Bl:n Cl:(n-1)] is balanced due to the way Cl:(,,_) is con-
structed in Steps 1 and 2 of Algorithm CNTR.BENES. Because the matrix
[B1:n C1:(.-1)] is balanced and Cl:(n-l) passes BEl:(n-1), the following is true:
the first stage of BE:(n.-1) partitions Bi:n into two submatrices of 2 - 1 rows
each such that the first n-1 columns of each submatrix form a balanced
matrix; similarly, each of the 2 inverse SE stages of BE 2 partitions the subma-
trix at its inputs into two submatrices of 2n - 2 rows each such that the first
n-2 columns of each submatrix form a balanced matrix; so, each inverse SE
stage of BEr partitions the submatrix arrived in its inputs into two submatrices
of 2n-' rows each such that the first n-r columns of each submatrix form a
balanced matrix. This implies that, when [Cl:(,i) BI:n] is routed through
BEI:(n-i), [Ci:(,i) Bi:n] is transformed into [1l:(.,) B;:nI such that Bn:: fits
F81'. It follows from Theorem IV.1 that B*:n can be realized by RB 1:,. There-

fore, the Benes network realizes the permutation represented by Bi:n when the
ith input uses the ith row of Ul:(2 n. 1) as the routing tag. This completes the
correctness proof of Algorithm CNTR.BENES.

Steps 2 and 3 of Algorithm CNTR-BENES can be implemented using both
the procedure COLUMN and procedure COLUMNPRAM which are serial and
parallel, respectively. Recall that procedure COLUMN and COLUMNPRAM
take O(N) time and 0(logN) time, respectively. Because the columns of
Ci:(-,-) are determined sequentially, Algorithm CNTRBENES takes
O(NlogN) time in serial and 0 (log 2 N) in parallel. Due to the fact that it takes
0(logN) time to set up the switches of the Benes network if the routing tags
are available, realizing a permutation on the Benes network using the Algo-
rithm CNTRBENES takes O(NlogN) time in serial and 0(log2 N) in parallel.
As shown next, these complexities are better than those of the algorithm, pro-
posed by Lee [131, which also sets up the switches of the Benes network stage by
stage from left to right.

To describe Lee's algorithm [13], several definitions are needed. A Complete
Residue System modulo m, CRS(mod m), is a set of m integers which contains
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exactly one representative of each residue class mod m. A Complete Residue

Partition, CRP, is a partition of CRS(mod 2k) into two CRS's(mod 2 k-I),

k > 1. Lee's algorithm sets the switches of the rth stage, 1 < r < n-1, of the

Benes network as follows: in order to perform 2 r-I CRP's on the 2r - I

CRSs(mod 2 "-"+1), switches are set sequentially in such a way that every two

switches that are set consecutively must have a common residue class number.

According to Lee, the control algorithm for Benes network takes O(NogN)

time because each stage is controlled in O(N) time required for the CRP con-

trol. However, not included in the analysis are O(N/2 - 1) comparisons in deter-

mining the setting of the next switch which has a common residue class number

with the switch just set up. If the comparisons are accounted for, Lee's algo-

rithm indeed takes O(N 2 +2(N/2) 2 + +(N/4)42 ) = o(N 2 ) time for serial

control. For the same reason, the algorithm takes O(N 2 ) time when the number

of comparisons are also included in the complexity (instead of O(N)). Lee also

proposed in [9] a routing algorithm for SEl:(n-.1)IP'SE 1 (i.e., reduced -QN2N

which also sets up the switches using the notion of CRS(mod m) and CRP.

Therefore, this algorithm also takes O(N 2logN) time in serial and O(N 2) time

in parallel. The CRP done at the first stage which takes O(N 2 ) time deter-

mines tiae overall complexity of the parallel algorithm.

The following example uses figures to illustrate how the Algorithm

CNTRBENES determines a routing tags matrix Ui:(2 n-i) for a given permuta-

tion on N=8 numbers.

Example IW.2. Let N=8 and R 8s 3 =[r1 r2 r 3]. In this example, given a

permutation b=(O 3 2 1 6)(4 7)(5), the matrix Ul:s = [C1:2 B1:3] of routing tags

to realize the permutation is determined. The binary representation

B 1:3 = 1b, b2 b3J of b is shown in Figure IV.2. As explained in Algorithm

CNTRBENES, the matrix C1 :2 needs to be determined. Columns of C 1:2 can

be determined one by one from left to right using both procedures COLUMN

and COLUMN.PRAM. Column c1 must be a vector such that matrices

[R 2:3 c1 l] and [BI:2 c1l are balanced. So, cl is determined by a 2-labeling of the

union of the perfect matching graphs of R 2:3 and B 1:2 , as shown in Figure lV.2.

Similarly, c2 is determined by a 2-labeling of the union of the perfect matching

graphs of [r3 c1J and 1b, cl], so that matrices [r3 c1 c21 and [b, c1 C2] are bal-

anced, as shown in Figure rV.2. Using the routing scheme described in Step 3

of Algorithm CNTRBENES, the switches of the Benes network are set to real-

ize the permutation b, as shown in Figure rV.3. End of Example.
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B 1:3  B1: 3  R 1:3  PGR.U::,UBI.. I
0 i 0 '1173 b~olVV3 V2 0r0-
o1l oi 1100 V 1 l
21001 2 100 2 010l 2 0
310101 3 0101 311101 10 1 0 131

4111 411111 4 001 4l 0511011 5 1011 5 11],o o5oo 1,,,o -
600 600 011

7Loom 7 001 71010U VI V 4 V7
(a) (b) (c) (d) (e)

fb2 bl 1 1J r 3 C11 PCir~jcJUlb, cii C2
0 100 0000 V V4  V ~ 0r
1111 1 001 1r2
2 000 2 100
3101 3 101 3 0

4110 4 010 14

7MO1 7 L110 V2  V7  V3  V6  71
(f) (g) (h) (i)

Figure IV.2. (a) B 1:3 = (b, b- b,], the binary representation of a given permutation
b=(0 3 2 1 6)(4 7)(5); (b) Bl:3, = [b3 b__ b,]; (c) R,:3 = [r I r.. :,; (d) PGR.-,"SUB,
the union of the perfect matching graphs of R.,:, and B,:2; the solid edges
(respectively, the dashed edges) form the perfect matching graph of R,.:,
(respectively, Bi.J); (e) cl obtained from a 2-labeling of PGR.z.lUB1:,:; (f)
[b2 bI1 C 1 ; (g) [r, r. c I]; (h) PG, Clul , ,,, the union of the perfect matching

graphs of [r3 C] and [b, el; the solid edges (respectively, the dashed edges)
form the perfect matching graph of (r3 ei] (respectively, [b, cl]); (i) c.
obtained from a 2-labeling of PG, ,djulhi ,ii"

Ul:5

0 "01011 11000
111110 HX00001

2100001 10010
3 10010 01011

4100111 01100
5 10101 10101

6 11000 11110
7L01100 00111

Figure IV.3. The Benes network BSI: with 8 inputs/outputa; the switches are set according
to the routing tags matrix Ul:s f c, e , bI b. b3] using the routing scheme
described in Step 3 of Algorithm CNTR_.BENES.

Because any even component can be 2-labeled in 2 different ways, there
exist at least 2(2 '- ) different choices of cps. This implies that the SBs of
SEI:(nl_)IP'SEiI, has many different settings to realize a given permutation.
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Theorem V.1. The network SE:(n_j)1 IP SE-:1 is rearrangeable.

Proof. It is first shown that all the switches at last stage of the network

SEI:n (i.e., omega network) are set straight if the last bit of any input equals

the last bit of its destination address. Let i =ii T '" I' and

d7=d'd' "'" d" denote the label and destination address of the mth input,

respectively, where 0 < m, r < N-1. Note that im is the mth row of 'i:n

because the inputs are labeled from 0 to N-1 in ascending order. Lawrie 11]
has shown that, at any given stage k, 1 < k < n, an input at the position

tkk+ 1 ".. in d dr ... df_ 1 is mapped by the perfect shuffle pattern to the

position 'M 1+ 2 . . . ni d+ dd '' in, and is then switched into the posi-
tion ik+li' + i '' ' ... df-dr by the corresponding SB. Thus, at the

nth stage of SEI:n an input which has been switched to position*?n'drdr . . . dr r d d r . .• d r_I i ,

in 1 dn-I is mapped by the perfect shuffle pattern to dl 2 n -m
and is then switched into position dldS i'-dn, thennth

switch to which i 'n is an input is set straight. Therefore, if =d for every

pair of input and its destination, then all the switches at the last stage are set

straight, i.e., at the last stage only the shuffle pattern is needed and all the

switches can be removed.

Given a balanced matrix Bl:n, there exists a balanced matrix Dl:n deter-

mined by the repeated application of Lemma III.1 such that the matrices

[Il:n Dl:n] and [Bi:n Di:n are balanced [21. This means that a given permuta-

tion represented by Bl:n can be expressed as a product of permutation D1 :n

realized on SEi:n (Proposition 5.1 12]) and permutation Dl:n-*B:n realized on

SE-', (Lemma V.1). It is shown below that the last column of Di:n can always

be made equal to the last column of Il:n, which implies that the last stage of

SEI:n can be replaced by IP because it follows from the above paragraph that

in this case all the switches of this stage can always be set straight. Because

[Il:n DI:(n-1)] is balanced, the matrix [in Dj:(n-.)1 is balanced. Because the

number of columns in [in Dl:(.-,)] is not greater than n, [Dl:(n-l) in] is also

balanced. So, the matrices [IJ:n Dl:(n-) in] and [Bi:n Dl:(n-) in] are balanced,
which implies that dn can be made equal to In. Because [Ii:n Dl:(n-l) in] is bal-

anced, the permutation represented in binary by [Di:(n-1) in] passes SEI:n.

Thus, the mth input of SE,:n, denoted by im, is sent to the output d' whose

value equals the contents of the mth row of [Dl:(n-l) in]. When the mth row of

[Dl:(n-1) in] is used as the routing tag for the mth input of SEi:n, all the SBs of

SE. are set straight because dn' = in'. This implies that the nth bits of the

routing tags are no longer needed. Therefore, when all the SBs of the last stage

of SE :n are removed, the permutation corresponding to [DI:(n.-) in] can be

realized through SEi:(n_.l)P' using only Dl:(n-i) as a matrix of routing tags.

Because [B1 :n Dl:(.-.) inJ is balanced, it follows from Lemma V.1 that SEI:
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realizes the permutation represented by [D(,(n-1) In],-..Bl:n . Therefore, the per-
mutation represented by B:n is realized by the network SEi:(,_j)IPSE1:,,

that is, SE1 (,_I)IPSE-, is rearrangeable. 0

The following algorithm determines the routing tags of the inputs of
SEI:(,-_.)IP'SE-1, to realize any permutation.

Algorithm RSE

Input: A balanced matrix Bl:,, = [b b2 ... bn] and the identity permuta-

tion matrix Ii,,.
Output: A matrix Ul:( 2 n. 1 ) such that, when its mth row, 0 < m < N-1, is

used as the routing tag for the mth input of SE(_IIPSE-', the
permutation represented by Bl:,, is realized by SEj:(n-I)IP-SE:n.

Step 1. Let p denote an integer variable. Set p=l. Determine a column vec-

tor d, such that the matrices 1I4n d1 l] and [B2 :n dJ are balanced.
Step 2. Increment p by 1. If p>n-1, go to next step; otherwise, first deter-

mine a column vector dp such that [I(p+l):n Dl:(p- 1)] and

[B(p+l):n Dl:(p-)] are balanced, and then go to Step 2.
Step 3. Let Ul:(2 ,,-) = [Dl:(n-l) Bl:nI. For 1 < j < n-1, a SB at the jth

stage of SEI:(,,-_) examines the bit ui of the routing tag
(ul u 2 " u*2 n- 1 ) of its inputs, while for n < j 2n-1 a SB at

the jth stage of SEl:(,,_-)IP'SE11 examines the bit u3n-i+i of the

routing tag (ul u 2  u 2n- 1 ) of its input. Stop.

To prove the correctness of Algorithm RSE, note that it follows from Algo-
rithms CONSCOLUMN and CONSCOLUMN-PRAM that Step 1 and Step 2

of Algorithm RSE are realizable. Theorem V.1 has shown that Bl:n passes
SEi:(n-_)IPJSEj. Now, it remains to show that the mth row of

Ul:(2 n-) = [DI:(n-,) B':.] can be used as the routing tag for the mth input of

SEl:(._)IP'SE-:1 to realize Bl:n.

Let Ul:(2nl})(m) denote the mth row of Ul:(2 -,1). The destination tag

routing scheme used in SEI:k, k > 1, (respectively, SE-1) is as follows: at the

jth stage, 1 < j : k, of SE1 :. (respectively, SEj1) a SB examines the u1

(respectively, the uk-_+1) of the routing tag (uIu 2 ... Uk) of its input [1]. If
ujffi, the input is sent to the upper output of the SB; otherwise, the lower out-

put of the SB is taken. Therefore, the routing scheme described in Step 3 is

used, and Ul:(2n-) is assigned IDI:(n-,) Bi:.]. This completes the correctness

proof of Algorithm RSE.

Algorithms CNTR.BENES and RSE are the same, except that Algorithm

RSE replaces Rl:n by J1:n. Therefore, the complexities of these algorithms are
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the same, that is, Algorithm RSE also takes O(NogN) time in serial and
O(log 2 N) time in parallel.

The following example uses figures to illustrate Algorithm RSE.

Example V.1. Let N=8 and Is8 3 =[i1 i 2 i 3]. In this example, given a
permutation b=(O 3 2 1 6)(4 7)(5), the matrix U1, 5 = IDI: 2 B1:3 ] of routing tags
to realize the permutation on SEI:2IP 8 SE13 is determined. Columns of D1.
can be determined one by one from left to right using both procedures
COLUMN and COLUMN.PRAM. Column d1 must be such that 112:3 dl and
[B 2:3 d1l are balanced. So, d, is determined by a 2-labeling of the union of the
perfect matching graphs of 12:3 and B 2:3 , as shown in Figure V.1. Similarly, d'
is determined by a 2-labeling of the union of the perfect matching graphs of
i3 dj] and lb3 d1 ], so that matrices [i 3 d, d1 and [b3 d, d] are balanced, as

shown in Figure V.1. Using the routing scherme described in Step 3 of Algo-
rithm RSE, the switches of the SEI:2 IP"SE-1 network are set to realize the
permutation b, as shown in Figure V.2. End of Example.

PGI.3 uB... PG[i3 d,Jujb., d.)

V0  V1 V3  V7  d, v0  v1  v3  V6  d2
10 1 k 17 7 0'0
2 0 10

1~2 1
S 31 30
1 4 1 4010 ll_ 5 1 1J / 1 1 51

V 4 VS 5 V V5j 7 .0A V2 V7 Vs V4 7 .I.

(a) (b) (c) (d)

Figure V.I. (a) PG,,3U,. 3, the union of the perfect matching graphs of 12:3 and B23 ; the
solid edges (respectively, the dashed edges) form the perfect matching graph of
2:3 (respectively, B.:3); (b) d, obtained from a 2-labeling of PGC, 3 ua6 3; (c)

PG1i3 di dtA& dill the union of the perfect matching graphs of [i3 d1] and [b3 dr};
the solid edges (respectively, the dashed edges) form the perfect matching graph
of [i3 d1J (respectively, [b3 d1 ]); (d) d. obtained from a 2-labeling of
PG;j3 d1tlu 3 11"

Because Algorithm RSE is the same as Algorithm CNTR.BENES except
that Rl:n is replaced by I,:., the minimum number of settings that enables a

BNxn to pass through SEl:(,.j)IP'SE- is also equal to 1- 2(-I)
p-I
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VI. CONCLUSIONS

New routing algorithms are presented in this paper for realizing any per-

mutation in rearrangeable networks Benes and the reduced .QNf.QN,. The pro-

posed routing algorithms in this paper are easier to comprehend and they take

O(NlogN) time in serial and O(log2 N) time in parallel. These algorithms first

compute a routing tag of 2n-1 bits for every input, then set the switches one

stage at a time such that the switches at the jth stage are set by decoding the
jth bits of the pre-computed routing tags at their inputs. The last n bits of any

routing tag are the destination address bits. The routing algorithm of the

reduced QNF j, follows from a new rearrangeability proof presented in this

paper.

U1:5
0 00011 11000
1 00110 01001

2 01001 10010
3 10010 00011

4 10111 01100
5 11101 11101

6 11000 00110
7 L0 1 1 

I  ,10111.

SE:,2 IP' SE-1

Figure V.2. The SEj:2IP'SE-' network with 8 inputs/outputs; the switches are set accord-
ing to the routing tags matrix Uj:6 = [d, d. b, b. b] using the routing scheme
described in Step 3 of Algorithm RSE.

VII. APPENDIX

Procedure CONSLIST(N) constructs a linear linked list of N nodes, called

H, each of which contains 2 fields, namely, LEFT and RIGHT which are the

pointers to the previous and the following node, respectively. For 1 < i < N-i,

the LEFT field of the ith node of H equals i-1. For 0 < i < N-2, the RIGHT

field of the ith node of H equals i+1. Let p be the pointer to the header of H

and initialized to 0. Procedure DELETE(k) deletes the node H(k) from H. In

addition, it updates the pointer if H(k) is the first node of the current H.



- 28-

procedure CONSLIST(N)

Let p be the header of H and p := 0

LEFT(O) := nil; RIGHT(O):= nil

for s :1 to N-1 do LEFT(s):= s-1; RIGHT(s)"- nil; RIGHT(s-l) s

end

end CONSLIST(N)

procedure DELETE(k)

Let p be the header of H and p := 0
if k=p then do p := RIGHT(p); LEFT(p) :=nil; end

else RIGHT(LEFT(k)):= RIGHT(k)

end DELETE(k)

Proof of Theorem IV.2. (--) It is shown that if DN)k fits F" then

[RNXn DN~k] is balanced. By definition, a matrix with N rows and more than n

columns is balanced if every n consecutive columns form a balanced matrix.

Therefore, it suffices to show that for any j, 1 < j < k, [R(j+i):f Di:j] is bal-

anced. Partition [R(j+l):n Di:jI into 2' - j submatrices S h3xn = R" +,):n. D:j],

o 2n-'-1, such that any of S,× R(tj+):n, and Di:j contains 22 rows

whose indices belong to the same block of the partition Pj, that is, the row

indices of 2×n, R( +I):n, and Dh:. consist of the numbers (hx2i ) to

[(h-+1)x2']- inclusive. D: 1, has 2' distinct rows because it is a balanced

matrix of order (2'xj). Therefore, no matter what the rows of R,+i):n are, the

2i rows of Sh are distinct. On the other hand, because of the definitions of

RNvx, and P', the rows of Rhj+l):n are alt identical and are distinct from any

other row of R(j+l): . It follows that there exist no common rows in any two

different submatrices S'x, and Slixn, where zxy and 0 < L' 2"-1.

Therefore, there are 2 n - i submatrices Sh-xn that have no common rows and

each submatrix has 2i distinct rows. So, the total number of distinct rows in

[R(j+l):n Di:j] equals 2n-=2"-x2. Because [R(j+l):n Di:j] is of order Nxn, by

definition 11.2.1 the matrix [R(j+l):n Dl:j] is balanced.

(-*) It is shown that if IRNxn DN×k1 is balanced then DNxk fits F"' . Con-

sider the balanced matrix [R(i+I):n Di:j]. By definition of RNx×, the rows of

Rk+l):n of order (2'xj) (whose indices belong to the same block in P;') are

identical. By hypothesis, IRNxn DNkI is balanced and, therefore, IR(,+l):n Dl:j]

must also be balanced. This implies that Dj:j (whose indices belong to the same

block of P,) must be a balanced matrix of order 21xj (because, as mentioned

above, the rows in R h+1):n are identical). This is true for all j=, ... , k and all

blocks of Pi. Therefore, by the definition of fit (Definition 11.2.9) and the

definition of standard frame Fpxk (Definition 11.2.7), DNxk fits F'. 0
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Theorem PV.2 establishes a relation between L..e reverse permutation
matrix RNn and F", 1 < k < n. The basic idea of Theorem IV.2 is illus-
trated next in an example.

Example IV.1. Let N=16 and n=4. The reverse permutation matrix
RM×, a balanced matrix D 18 4 that fits , and the matrix [R1 8 X4 D16, 4 ]

with the frame F16X4 are illustrated in Figure IV.1. As it is seen from
[R 18 . 4 D 16, 4I, the rows of R(h+I):n are all identical and are distinct from any

other row of R(j+l):n. Also, notice that Dh:j is a balanced matrix of order 2'xj,
so that each row in it is distinct. End of example.

I f 2a !L
0 0000 0 0000 0 0000 0 0 0 0
1 1000 1 1100 1 1000 1 1 0 0
2 0100 2 0100 2 0100 0 1 0 0
3 1100 3 1011 3 1100 1 0 1 1
4 0010 4 1000 4 0010 1 0 0 0
5 1010 5 0010 5 1010 0 0 1 0
6 0110 6 0111 8 0110 0 1 1 1
7 1110 7 1110 7 1110 1 1 1 0
8 0001 8 0011 8 0001 0 0 1 1
9 1001 9 1001 9 1001 1 0 0 1

10 0101 10 1111 10 0101 1 1 1 1

11 1101 11 0110 11 1101 0 1 1 0
12 0011 12 0101 12 0011 0 1 0 1
13 1011 13 1010 13 1011 1 0 1 0
14 0111 14 0001 14 0111 0 0 0 1
15 I111 15 1101_ 15 L1111 1 1 0 1

(a) (b) (c)

Figure IV.1. (a) The reverse permutation matrix R11×4 for N=18. (b) A D16 4 that fits
F'1 4 . (c) [R 1 6x4 D16x41 with F1. 4 .
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