
Technical Document 2332

March 1992

JDL Tri-Service
Distributed Technology Experiment

"DTIC
LECTE

OV 2 0.19W, L. R. Dunham
S B M. J. Gadbois

M. F. Barrett

262

9a2-29849

"Approved for public release; distribution is unlimited.

9

Technical Document 2332
March 1992

JDL Tri-Service
Distributed Technology Experiment

L. R. Dunham
M. J. Gadbois
M. F. Barrett

NAVAL COMMAND, CONTROL AND
OCEAN SURVEILLANCE CENTER

RDT&E DIVISION
San Diego, California 92152-5000

J. D. FONTANA, CAPT, USN R.T. SHEARER

Commanding Officer Executive Director

ADMINISTRATIVE INFORMATION

This work was performed for the Office of Naval Technology under accession
number DN888630, program element 62232N project CDB3.

Released by Under authority of
M. C. Butterbrodt, Head A. G. Justice, Head
Distributed Systems Branch Information Processing

and Displaying Division

Looession ?or

HTIS GRAI
DTIC TAB [

Unanaou1e od 0
JIu s t i1r i c a t i1 o n - - - -- -

By
D i 6 t ibuA~l oL/__..- ------

va llabillity CodeS

Avail andlocr
Dist Ispecie;.

D'.'[• --- D IL

LH

CONTENTS

1.0 INTRODUCTION ... 1

2.0 EXPERIMENT COMPONENTS .. 3

2.1 TRACK SIMULATION MANAGER 3

2.1.1 Integration of Track Simulation Manager 3

2.1.2 Track Simulation Manager Operations 5

2.2 TRACK REPORT MANAGER 6

2.2.1 Integration of Track Report Manager 7

2.2.2 Track Report Manager Operations 7

2.3 SENSOR MANAGER ... 9

2.3.1 Integration of Sensor Manager 10

2.3.2 Sensor Manager Operations 10

2.4 TARGET SIMULATION MANAGER 12

2.4.1 Integration of Target Simulation Manager 12

2.4.2 Target Simulation Manager Operations 13

2.5 TARGET FILTER MANAGER 14

2.5.1 Integration of Target Filter Manager 14

2.5.2 Target Filter Manager Operations 14

2.6 WEATHER MANAGER .. 15

2.6.1 Integration of Weather Manager 15

2.6.2 Weather Manager Operations 16

2.7 TIMER MANAGER .. 16

2.7.1 Integration of Timer Manager 17

2.7.2 Timer Manager Operations 17

2.8 SITUATION REPORT MANAGER 19

2.8.1 Symbolic Version of Situation Report Manager 20

2.8.2 Integration of Situation Report Manager 20

2.8.3 Situation Report Manager Operations 20

2.9 SIMULATION DATA MANAGER 21

2.9.1 Simulation Data Manager-Query Processing 21

2.9.2 Simulation Data Manager-Relational Database Support 22

2.9.3 Integration of Simulation Data Manager 22

2.9.4 Simulation Data Manager Operations 23

2.10 JDL STATUS DISPLAY MANAGER 24

i

2.10.1 Diamondtool Versions of JDL Status Display Manager 24

2.10.2 Motif Version of JDL Status Display Manager 24

2.10.3 JDL Status Display Manager Operations 27

2.11 USER INTERFACE ... 27

2.11.1 Integration of User Interface 27

2.11.2 SunCore Version of User Interface 28

2.11.3 X Window Version of User Interface 29

3.0 EXPERIMENT DEMONSTRATION 31

3.1 DEMONSTRATION SETUP 31

3.1.1 Hardware Configuration 31

3.1.1.1 Minimum Demonstration Layout 31

3.1.1.2 Recommended Demonstration Layout 31

3.1.2 System and Software Configuration 33

3.1.3 Network Connectivity .. 34

3.2 AUTOMATIC STARTUP OF EXPERIMENT MANAGERS 35

3.3 MANUAL STARTUP OF EXPERIMENT MANAGERS 35

3.3.1 JDL Status Display Manager 35

3.3.2 Timer Manager Startup 36

3.3.3 Track Report Manager Startup 36

3.3.4 Track Simulation Manager Startup 37

3.3.5 Target Simulation Manager Startup 38

3.3.6 Target Filter Manager Startup 38

3.3.7 W eather Manager Startup 39

3.3.8 Sensor Manager Startup 39

3.3.9 Situation Report Manager Startup 40

3.3.10 Simulation Data Manager Startup 40

3.3.11 Summary of Manual Startup 40

3.3.12 Experiment Simulation Startup 42

3.4 USER INTERFACE ACTIVATION 42

4.0 REFERENCES ... 43

APPENDIX A ... 44

A. 1: TRACK REPORT MANAGER DATA OBJECT REPRESENTATION ... 44

A.2: SENSOR MANAGER DATA OBJECT REPRESENTATION 46

A.3: TARGET SIMULATION MANAGER DATA OBJECT
REPRESENTATION .. 47

ii

A.4: TARGET FILTER MANAGER DATA OBJECT REPRESENTATION ... 48

A.5: WEATHER MANAGER DATA OBJECT REPRESENTATION 49

A.6: TIMER MANAGER DATA OBJECT REPRESENTATION 50

A.7: SITUATION REPORT MANAGER DATA
OBJECT REPRESENTATION 51

A.8: SIMULATION DATA MANAGER DATA OBJECT
REPRESENTATION .. 53

A.9: JDL OBJECT REPRESENTATION 54

APPENDIX B ... 56

B.1: SAMPLE navyfile DATA FILE 56

B.2: SAMPLE armyfile DATA FILE 57

B.3: SAMPLE initmedtargs COMMAND DATA FILE 57

B.4: SAMPLE initmedsensor COMMAND DATA FILE 61

APPENDIX C ... 62

C.A: SAMPLE rootmenu COMMAND FILE FOR AUTOMATIC
STARTUP ... 62

C.2: SAMPLE CONFIGURATION COMMAND FILES FOR
AUTOMATIC STARTUP .. 63

C.3: SAMPLE jdlmgrstart COMMAND FILE FOR AUTOMATIC
STARTUP .. 66

C.4: SAMPLE jdllinktime COMMAND FILE FOR AUTOMATIC
STARTUP .. 67

C.5: SAMPLE jdllinkdisp COMMAND FILE FOR AUTOMATIC
STARTUP .. 69

C.6: SAMPLE jdlsimstart COMMAND FILE FOR AUTOMATIC
STARTUP .. 70

FIGURES

1. JDL Tri-Service Distributed Technology Experiment 4

2. Phase I Diamondtool JDL Status Display Manager 25

3. Phase 11 Diamondtool JDL Status Display Manager 25

4. Motif version of JDL Status Display Manager 26

5. SunCore version of User Interface graphical display 28

6. X version of the User Interface graphical display 30

7. Sample demonstration layout .. 32

8. DRI: network connectivity ... 34

iii

1.0 INTRODUCTION

The Tri-Service Distributed Technology Experiment is an unclassified activity initi-
ated under the auspices of the Joint Directors of Laboratories (JDL) by the Networks
and Distributed Processing (N&DP) subpanel. The concept of the experiment centers
around a demonstrable, short-term, and low-cost computer system application at three
sites:

Naval Command, Control and Ocean Surveillance Center (NCCOSC), RDT&E
Division (NRaD) San Diego, CA1
Rome Laboratory (RL), Rome, NY2
Communications-Electronics Command (CECOM), Ft. Monmouth, NJ.

The intention of the experiment is to overlap technology programs at each service
and to use existing resources and internal manpower. The general objectives of the
experiment are to emphasize activity among the three services (Navy, Air Force, and
Army):

Service Cooperation: Demonstrate that services can operate together to
provide research support and development.

Service Data Sharing: Demonstrate that service applications and data can be
merged and shared in a distributed environment.

Service Resource Sharing: Demonstrate that existing service resources can be tied
together and shared for the benefit of all without
superseding local control.

Interservice System Survivability: Demonstrate that a distributed system resulting from
merged resources can operate in a volatile environ-
ment.

The system used to support the Tri-Service Distributed Technology Experiment is
the Cronus distributed computing environment. Cronus, developed by BBN Systems
and Technologies Corporation, is a software system that provides an environment for
the development and operation of distributed computing applications. It is designed
specifically for a command and control (C2) environment. Cronus operates on a variety
of different hardware bases and operating systems. It runs at user level, above the
host's native operating system.

A JDL Cronus testbed was established at each site, using existing Cronus testbeds.
The Tri-Service Distributed Technology Experiment was an integration of two Cronus
applications running at NRaD and RL, along with new JDL components.

This document describes the functionalities of the tri-service components that make
up the experiment and how to demonstrate the experiment. It is assumed that the user
is familiar with the Cronus distributed computing environment and its debugging tool,
tropic.

I NRaD was previously the Naval Ocean Systems Center (NOSC).
2 Rome Laboratory was previously Rome Air Development Center (RADC).

1

Section 2.0 describes the components of experiment. Section 3.0 describes the setup
and startup of the experiment demonstration.

Appendix A (A.1 through A.9) contains data object representation files for the ex-
periment components.

Appendix B (B.1 through B.4) contains sample data files.

Appendix C (C.1 through C.6) contains sample command files for automatic
startup.

2

2.0 EXPERIMENT COMPONENTS

The Tri-Service Distributed Technology Experiment consists of new JDL compo-
nents and two existing applications (see figure 1): the Distributed Operating System
Experiment (DOSE) designed and implemented by NRaD and the C2 Internet Experi-
ment (C2Inet) developed by BBN and adapted by RL. The DOSE application provided
three components to the experiment: Track Simulation Manager (Parser Manager),
Track Report Manager, and Graphics Map Client. The Track Simulation Manager and
Track Report Manager simulate Navy on-board ship scenarios, where radar track infor-
mation is being logged and exchanged within a battle group. The Graphics Map Client
displays the information graphically on a map. The C2Inet application provided four
components to the experiment: Sensor Manager, Target Simulation Manager, Timer
Manager, and Weather Manager. The Sensor Manager, Target Simulation Manager,
and Weather Manager emulate an Air Force airborne or satellite observation post,
where raw observations are generated, processed, and reported. The Timer Manager
provides clock synchronization for the components. The components of these applica-
tions were adapted and integrated into the experiment.

CECOM contributed a new component, Situation Report Manager, which provided
Army data for the experiment. RL implemented an additional new Air Force compo-
nent, Target Filter Manager, to manage sensor data. Two new tri-service components,
Simulation Data Manager and JDL Status Display Manager, were implemented to dem-
onstrate that individual service data and resources can be shared in a distributed envi-
ronment.

2.1 TRACK SIMULATION MANAGER

The Track Simulation Manager is an adaptation of the DOSE application compo-
nent, Parser Manager. In the DOSE application, the primary function of the Parser
Manager is to convert Link 11 binary messages into ASCII text. Due to the sensitive
nature of the Link 11 data formats, there is a classified and an unclassified version of
the Parser Manager. In the unclassified version, the operation of parsing blocks of bi-
nary data is not implemented. Instead, previously parsed track information is stored in
a data file, trackfile, to be read by the Parser Manager. The track information is passed
to the Track Report Manager for storage in its object database. The Parser Manager
does not save information about the individual tracks. The Parser Manager is written in
the C language and can run on UNIX and VMS (MicroVAX) machines.

The unclassified version of the Parser Manager was adapted to provide a demon-
stration scenerio of Navy data for the JDL Tri-Service Distributed Technology
Experiment.

2.1.1 Integration of Track Simulation Manager

As described in section 2.1, the Track Simulation Manager is the unclassified
version of Parser Manager adapted for the tri-service experiment. In the tri-service

3

DOSE C21aM

Parser Gri b TE m
MM"- Display

Tracki

Mission;• Targeot

Figure 1. JDL Tri-Service Distributed Technology Experiment.

experiment, the Track Simulation Manager continues to send track information to the
Track Report Manager by invoking the operation TrackUpdate.

A new scenerio of Navy tracks was created in a data file called navyfile in which
the tracks appear in the Mediterranean Sea region. For demonstration purposes, the
Navy tracks comprise five unique tracks.

Two new operations were added to the Track Simulation Manager as part of the
integration of the manager to the experiment: LinkToDisplay and LinkToaemer. The
LinkToDisplay operation links the Track Simulation Manager to the JDL Status Display

4

Manager. The Track Simulation Manager notifies the display manager about its interac-
tion with the Timer Manager and Track Report Manager by invoking the JDL library
routines DisplayStartOp and DisplayFinishedOp (these routines in turn invoke the JDL
Status Display Manager operations StartOp and FinishedOp, respectively). The
LinkToTimer operation links the Track Simulation Manager to the Timer Manager with
a specific timer object. The Track Simulation Manager requests time from the Timer
Manager by invoking the operation GetTime. The time value is compared with each
simulation time field (a new field in the data file) in the navyfile. If the simulation time
field is equal or less than the time from the Timer Manager, the Track Simulation
Manager reads the track information associated with the time.

2.1.2 Track Simulation Manager Operations

The Track Simulation Manager performs 10 operations. The operations Getdlrp,
ParseBlock, and Setdlrp are not implemented in the unclassified version of this
manager. Four flags control the mode of operation of the Track Simulation Manager:
SetDemoFlag, SetDisplayTextFlag, SetGraphicsFlag, and SetSendtrmFlag. Each flag
can be turned on and off with a default setting as described below. All the Track
Simulation Manager operations are invoked via tropic.

Getdlrp: This operation can be used to check the value of the Data Link Reference
Point (DLRP). The DLRP is a reference point on the globe for all other world coordi-
nates. The operation returns the present DLRP latitude and longitude information (in
minutes). Getdlrp is not implemented in the unclassified version of the Track Simula-
tion Manager.

LinkToDisplay: This operation notifies the JDL Status Display Manager as to where
the Track Simulation Manager was activated (host machine and site location) by
invoking the JDL library routine LogWithDisplay (which in turn invokes the JDL Status
Display Manager operation HereIAm).

LinkToTimer: This operation links the Track Simulation Manager to a specified timer
object (Timer Manager) for simulation time.

ParseBlock: This operation parses the block of Link 11 data contained in the array of
Link 11 messages and attempts to send the parsed ASCII data to a Track Report
Manager. Parsed data is sent in blocks to reduce the number of invocations on the
Track Report Manager. ParseBlock is not implemented in the unclassified version of
the manager.

ReadTracks: This operation was created to replace the ParseBlock operation in the
unclassified version of the Track Simulation Manager (Parser Manager). ReadTracks
reads already parsed track information from an ASCII data file, navyfile (see appendix
B.1). The file groups the track information into blocks. Each block contains a varied
amount of track information. At the beginning of each block is a number that indicates
the number of tracks in that block. Each line in the file represents the data that define
the track: track number, latitude of the track (minutes), simulation time (seconds),
longitude of the track (minutes), depth or height of the track (feet), latitude of DLRP

5

(minutes), longitude of DLRP (minutes), type of track (S = ship, A = aircraft, U = sub-
surface ship), category of track (F = friendly, H = hostile, U = unknown), Greenwich
mean time, track quality, latitude direction (N = north, S = south), longitude direction
(E = east, W = west), course, speed (dm/hr), range from DLRP (nautical miles), and
nuclear status (Y = yes, N = no, U = unknown, x = unreported).

SetDemoFlag: In the original DOSE application, this operation was implemented to
provide the Parser Manager the capability to avoid timeout errors and overloading the
Track Report Manager in a demonstration situation. When the flag is set on, the man-
ager will calculate and set a timeout variable based on a prediction of the time the
Track Report Manager will take to process each piece of track information. The Parser
Manager (Track Simulation Manager) will sleep according to the timeout variable
between invocations on the Track Report Manager. The timeout variable usually
defaults to 30 seconds. The flag is set to off by default.

SetDisplayTextFlag: This operation sets the display text flag on or ,f. When the flag
is set on, the Track Simulation Manager will print the parsed messages to a terminal.
This flag is usually turned on to debug the Track Simulation Manager and check for
correctness of parsing information. This flag is set off by default.

Setdlrp: Due to the nature of the Link 11 data, the user must set the DLRP prior to
sending data to the Parser Manager. The parameters of the operation are the latitude
and longitude (in minutes) of the new DLRP. This operation is not implemented in the
unclassified version of the Track Simulation Manager.

SetGraphicsFlag: The original Parser Manager has a graphics capability (using the
SunCore graphics tool) that displays monitoring information about its status and the
data flowing through it. This operation sets the graphics flag on or off. This flag
should only be turned on when the manager has access to a graphics monitor. At-
tempting to turn the flag on without a graphics monitor will cause the manager to exit.
If the flag has been turned on previously, this operation will clear the monitor of any
existing graphical displays. The default setting for the flag is off. This operation is not
used by the tri-service experiment.

SetSendtrmFlag: The Track Simulation MWaager passes track information to the Track
Report Manager for storage. It is not necessary to have the Track Report Manager run-
ning for debugging and testing purposes of the Track Simulation Manager. However, if
the Track Report Manager is not running, the Track Simulation Manager will attempt
to invoke it, resulting in repeated timeouts. SetSendtrmFlag allows the user to set the
operation flag off, which signals the Track Simulation Manager not to send track
information to the Track Report Manager. This flag is set on by default.

2.2 TRACK REPORT MANAGER

In the DOSE application, the Track Report Manager services the Parser Manager
and Graphics Display Client. It manages a database of data objects that are replicated
with each copy of the Track Report Manager to maintain availability and survivability
of the data objects. The replication strategy of version voting is provided by Cronus,

6

which is responsible for maintaining consistency and resolving conflicts between repli-
cated object databases. The Track Report Manager objects are defined to be automati-
cally replicated (the objects are replicated when created).

Each data object is a record of track information sent by the Parser Manager. The
representation of the data object is the canonical type, TrackObject, which is comprised
of two subtypes, TrackReport and TrackReportPlus. TrackReport defines the subset of
track information needed to describe the track location and characteristics for the
Graphics Display Client to display on the map. TrackReportPlus defines additional track
information (see appendix A.1).

The track information received by the Track Report Manager is either new or an
update to an existing track object. The Track Report Manager searches through its ob-
ject database using the track number (trknum) as the key. If the track number is not
found, an object is created storing the new track information and added to the data-
base. Otherwise, the existing information of the track object with the matched track
number is overwritten with the updated information.

The Track Report Manager is written in the C language. It is implemented to run in
a UNIX environment.

2.2.1 Integration of Track Report Manager

In the tri-service experiment, the Track Report Manager continues to manage and
store Navy track information received from the Track Simulation Manager; however, it
no longer services the Graphics Display Client. In the tri-service experiment, the Track
Report Manager was adapted to send navy track information to the Simulation Data
Manager by invoking the JDL library routines StoreSinData and UpdateSimData
(these routines in turn invoke the Simulation Data Manager operations StoreData and
UpdateData, respectively).

One new operation was added to the Track Report Manager as part of the integra-
tion of the manager to the experiment, LinkToDisplay, which links the Track Report
Manager to the JDL Status Display Manager. The Track Report Manager notifies the
JDL Status Display Manager about its interaction with the Track Simulation Manager
and Simulation Data Manager by invoking the JDL library routines DisplayStartOp,
DisplayFinishedOp, DisplayMsgTo, and DisplayGotAnswer (these routines in turn
invoke the JDL Status Display Manager operations StartOp, FinishedOp, MsgTo, and
GotAnswer, respectively). The following section describes the operations available on
the Track Report Manager.

2.2.2 Track Report Manager Operations

The Track Report Manager performs 12 operations. Only four of these operations
are used in the tri-service experiment: InitializeDB, LinkToDisplay, SetTextFlag, and
TrackUpdate. The other operations are enhanced software designs based on the DOSE
application. The InitializeDB operation must be invoked each time the Track Report

7

Manager is started before any other operation is performed on the manager.
LinkToDisplay and SetTextFlag are invoked for demonstration purposes; thus, they are
optional. TrackUpdate is automatically invoked by the Track Simulation Manager. All
the operations are invoked via tropic except the operation TrackUpdate, which is in-
voked by the Track Simulation Manager.

FlushAllTracks: This operation is invoked by the DOSE version of the Graphics Map
Client to retrieve all the track information in the Track Report Manager object data-
base. The Track Report Manager does not service the Graphics Map Client in the
tri-service experiment; thus, this operation is not used.

GetCurrentTracks: This operation is invoked by the DOSE version of the Graphics
Map Client to retrieve the most current set of track information from the Track Report
Manager object database that the client has not seen. The Track Report Manager does
not service the Graphics Map Client in the tri-service experiment; thus, this operation
is not used.

GetNextTrack: This operation was one of the original operations invoked by the DOSE
version of the Graphics Map Client to retrieve the track information of the next track
number in the queue. This operation is not implemented.

GetObiectDBStatus: To monitor the status of replicated Track Report Managers, a
Database Monitor Client (of the DOSE application) invokes the GetObjectDBStatus
operation, which returns the number of objects managed by each Track Report
Manager and the epoch number of the last update of the objects in the database. The
Track Report Manager does not service the Database Monitor Client in the tri-service
experiment; thus, this operation is not used.

GetTInfo: For debugging purposes, the GetTInfo operation returns the information
about the tasks currently running.

GetTrack: This operation is invoked by the DOSE version of the Graphics Map Client
to retrieve the full track information of a specified track number from the Track
Report Manager object database. The Track Report Manager does not service the
Graphics Map Client in the tri-service experiment; thus, this operation is not used.

InitializeDB: The Track Report Manager manages two object types, TrackReportData
and TrackTableIndex. TrackReportData is the type definition for the track objects that
the Track Report Manager manages. TrackTableIndex is the type definition for the
TrackTable, which is a list of track entries. Each track entry consists of a unique track
number, an object unique identifier (UID) that identifies the track object associated
with the track number, and a version number that records the last time the track object
was updated. The TrackTable is used as a reference to the track objects maintained by
the Track Report Manager's object database. The InitializeDB operation removes the
data in the object database of type TrackReportData to ensure a clean database when
first running the Track Report Manager. The operation also creates a new object for
the type TrackTableIndex that stores the TrackTable. The UID of the TrackTable object
is stored in the Track Report Manager's generic object as a reference to identify which

8

(nongeneric) object maintains the TrackTable. InitiaUzeDB must be invoked before any
other operations are invoked on the Track Report Manager.

InitOueue: This operation was one of the original operations invoked by the DOSE
version of the Graphics Map Client to initialize a newly allocated queue with its host
identifier (ID). This operation is not implemented.

LinkToDisplay: This operation notifies the JDL Status Display Manager as to where
the Track Report Manager was activated (host machine and site location) by invoking
the JDL library routine LogWithDisplay (which in turn invokes the JDL Status Display
Manager operation HereIAm).

SetMonitorFla2: For demonstration purposes, the Track Report Manager has a graph-
ics capability (using the SunCore graphics tool) that displays the flow of operation
invocation from Parser Manager and Graphics Map Client (for the DOSE application).
SetMonitorFlag allows the user to activate the Track Report Manager graphics by set-
ting the flag to on. The flag is set to off by default. This operation is not used in the
tri-service experiment.

SetTextFlag: For debugging purposes, SetTextFlag is invoked to provide textual display
of the tracks the Track Report Manager received from the Track Simulation Manager
for checking the correctness of the information. The flag is set to off by default.

TrackUpdate: The Track Simulation Manager passes an array of track information to
the Track Report Manager by invoking the TrackUpdate operation. Each track is
searched in the TrackTable using the track number as the search key. If the track num-
ber is not found in the TrackTable, this operation will create a new object to store the
new track information. The track number and the UID of the newly created object are
entered in the TrackTable for future reference. If the track number is found in the
TrackTable, the object UID associated with the track number is used to locate the track
object in the Track Report Manager's object database, in which the new track informa-
tion overwrites the old information. The version number in the TrackTable associated
with this track number is incremented to reflect the update of the track object.

2.3 SENSOR MANAGER

The primary role of the Sensor Manager is to acquire target information from the
Target Simulation Manager, Weather Manager, and Timer Manager that is used to gen-
erate a series of sensor detections containing real detections and simulated noise. This
list is stored in the C2Inet application component Mission Data Manager (see figure 1).

The Sensor Manager objects represent observation platforms that are mobile except
when acquiring information. These observation platforms are simulated by associating
several data structures with an object. Each object has a schedule that determines the
region of space that is observed for some duration of time. These schedules can be
stacked into a list so that the sensor object will move from place to place during the
simulation. In addition to the schedule, a sensor also contains a parameter that con-
trols its resolution, where a smaller resolution will produce more accurate observations
at an increased cost in storage requirements (see appendix A.2).

9

While a Sensor Manager can contain many sensor objects, only one object can be
active (operating) at a time. Once a sensor is operational, it will invoke operations on
the Timer Manager (to determine the schedules it should use), the Target Simulation
Manager (to determine the targets in its observed region), and the Weather Manager
(to add realism to the resolution accuracy). Once target and weather information is
received, the sensor maps out a series of real and false detections for a discrete
interval of time.

The Sensor Manager is written in the C language. It is implemented to run in a
UNIX environment.

2.3.1 Integration of Sensor Manager

In the tri-service experiment, the Sensor Manager was adapted to forward its infor-
mation to the new Target Filter Manager (where real and false detections are
separated) by invoking the operation FilterDetections. The sensor also stores the
detections in a local constituent operating system (COS) file. This file serves as a
backup copy of data should the Target Filter Manager ever fail or be inaccessible. This
pattern continues until the sensor reaches the end of its schedule. At the end of the
schedule, the sensor is deactivated. The Sensor Manager continues to obtain target,
timer, and weather information from the Target Simulation Manager, Timer Manager,
and Weather Manager by invoking the operations TargetsInRegion, GetTime, and
ShowForecastNearLocation, respectively.

The initialization of the Sensor Manager is activated by the new command file,
initmedsensor (see appendix B.2). In the tri-service experiment, the sensors are
initialized in the Mediteranean Sea region.

Three new operations were added to the Sensor Manager as part of the integration
of the manager to the tri-service experiment: KeepRawData, LinkToDisplay, and List-
Sensors. The LinkToDisplay operation links the Sensor Manager to the JDL Status Dis-
play Manager. The Sensor Manager notifies the display manager about its interaction
with the Target Filter Manager, Target Simulation Manager, Timer Manager, and
Weather Manager by invoking the JDL library routines DisplayStartOp and Display-
FinishedOp (these routines in turn invoke the .DL Status Display Manager operations
StartOp and FinishedOp, respectively). The ListSensors operation is a rename of the
C2inet operation GetUIDs. The following section describes the operations available on
the Sensor Manager.

2.3.2 Sensor Manager Operations

The Sensor Manager performs 12 operations. All the operations are invoked via
tropic.

Create: This operation generates a new sensor object given the label (Name), charac-
teristic (SensorType), and resolution (Resolution) of the sensor (see appendix A.2).
The new object is catalogued in the default Cronus directory of the Sensor Manager.

10

The catalog name is a concatenation of the creation host name and the sensor label.
The sensor schedule is not defined at creation. In order to adjust the schedule, a sepa-
rate operation, MoveTo, must be invoked. The Create operation returns the UID of the
newly created object.

Edit: This operation replaces the data in the current sensor object with the operation
parameter (Schedule).

GetDetections: This operation returns the full set of detections that a sensor has made
while on the current mission. If the sensor is not active, no list is returned.

KeepRawData: This operation initiates the recordkeeping of the raw sensor output on
disk. This datafile can be kept for survivability demonstrations on systems where disk
space is not an issue, since the file can grow to be many megabytes in size. Once this
operation is activated, it is active for the duration of the manager.

LinkToDisplay: This operation notifies the JDL Status Display Manager as to where
the Sensor Manager was activated (host machine and site location) by invoking the
JDL library routine LogWithDisplay (which in turn invokes the JDL Status Display
Manager operation HereLAm).

LinkToTimer: This operation orients the Sensor Manager onto an individual timer
object (TimerObj). Until the timer object is replaced by another operation, the Sensor
Manager will attempt to obtain simulation time from the timer object. Until the timer
object is set, the Sensor Manager will refuse to operate a sensor.

ListSensors: This operation provides a list of all the sensor objects that are currently
resident in the manager object database. The UIDs, as well as the sensor labels and
characteristics, are listed in an array form. Each index for each list points to informa-
tion about the same object. ListSensors returns a list for each of the following: the
Cronus identifiers for the objects, the names of the objects, and the characteristics of
the objects.

MoveTo: This operation adds an observation frame to the schedule of the sensor. The
observation frame is placed at the end of the schedule and is checked to verify that it
is correctly time oriented within the schedule.

OperateSensor: This operation selects the target object and activates its schedule. This
operation will not complete until either a sufficient error has occurred or the entire
schedule has been exhausted; however, once some initial processing has been com-
pleted, the manager will send a NULL reply to the invoker. The mode of operation for
the sensor is of the following. A sensor will wait until the first observation frame in its
schedule becomes active by requesting simulation time updates from the Timer Man-
ager. Once active, it will query the Target Simulation Manager and Weather Manager
at the intervals defined by the observation frame. It takes both the target and weather
information to create a set of real and imaginary targets that represent the natural effi-
ciency of a real sensor. The real and imaginary targets are placed in a COS file and
sent to the Target Filter Manager for processing. Each observation frame creates a new
MissionData object and a new COS file. The COS file is not linked into the Cronus

11

file system. At the end of an observation frame, the manager will wait until the next
frame becomes active, or the sensor will become deactivated if there are no more
observation frames in the sensor.

ReportStatus: This operation returns information regarding the current performance of
the manager. The duration of time that the manager has been active (MgrRunTime) is
given, along with the currently active sensor object (ActiveSensor). Connection statistics
are maintained and displayed with respect to the Timer Manager, Target Simulation
Manager, Target Filter Manager, and Weather Manager. These statistics report the
number of connection attempts, failures, errors, and timeout values.

SetDetectionThreshold: This operation sets the threshold of the sensor to the operation
parameter (Threshold). The threshold determines the level of signal that must be pre-
sent for the sensor to determine whether a target is going to be reported.

ShowSchedule: This operation returns the entire sensor object (Schedule). Within the
object is the sensor schedule, which dictates the regions of space that the sensor is
observing during the simulation.

2.4 TARGET SIMULATION MANAGER

The Target Simulation Manager provides data to the Sensor Manager in the form of
a list containing target positions defined within the sensor's observed region of space,
and the current simulation time. Targets are considered to be any unit of matter that
the sensor might detect. Thus, airplanes, tanks, troops, and other items are able to be
simulated. Motion of targets is accomplished through the use of a track list that de-
fines a series of path segments. Each path segment is accompanied by a measure of
time that is used to determine the individual path segment active at any point in simu-
lated time. The Target Simulation Objects are replicated, with the maximum number of
copies set at three. Anyone can read from any Target Simulation Manager, but it takes
all copies to update any object. The number of replicated copies may be changed by
altering the type definition (targsim.typedef) file.

The Target Simulation Manager interacts with the Timer Manager for the current
simulation time. Simulation time is used in determining the location of individual
targets when the TargetslnRegion operation is being performed.

A target is comprised of name and description represented by the canonical type,
TARGETvariable (see appendix A.3). The Target Simulation Manager is written in the C
language. It is implemented to run in a UNIX environment.

2.4.1 Integration of Target Simulation Manager

The Target Simulation Manager maintained its original functionality in the tri-
service experiment, providing target detections to the Sensor Manager and obtaining
simulation time from the Timer Manager by invoking the operation GetTime.

The initialization of the Target Simulation Manager is activated by the new com-
mand file, initmedtargs (see appendix B.3). In the tri-service experiment, target data are
initialized in the Mediteranean Sea region.

12

One new operation was added to the Target Simulation Manager as part of the inte-
gration of the manager to the tri-service experiment, LinkToDisplay. The
LinkToDisplay operation links the Target Simulation Manager to the JDL Status Dis-
play Manager. The Target Simulation Manager notifies the display manager about its
interaction with the Sensor Manager and Timer Manager by invoking the JDL library
routines DisplayStartOp, DisplayFinishedOp, DisplayMsgTo, and DisplayGotAnswer
(these routines in turn invoke the JDL Status Display Manager operations StartOp,
FinishedOp, MsgTo, and GotAnswer, respectively) The following section describes the
operations available on the Target Simulation Manager.

2.4.2 Target Simulation Manager Operations

The Target Simulation Manager performs seven operations. All the operations are
invoked via tropic except the operation TargetsInRegion, which is invoked by the Sen-
sor Manager.

Create: This operation creates a target object. It requires the name of the target
(Name), the description of the target (TargType), the threat characteristic/intent -f the
target (Threat), the time the target first appears (StartTime), and the location of the
target when it appears (Location). The target forms an initial condition whereby the
first entry in its path starts at location (0,0,0) for time zero and continues to location
(Location) for time StartTime. The first optional parameter (StartFromOrigin) deter-
mines whether the object is visible before the StartTime given in a previous parameter.

DumpSegments: This operation returns the path list that describes the motion of the
target. The path list is represented as a series of segments (Tracks) starting from time
zero and moving forward to the last segment in the path list. The name (Name), de-
scription (TargType), and classification (Class) of the target are also returned.

LinkToDisplay: This operation notifies the JDL Status Display Manager as to where
the Target Simulation Manager was activated (host machine and site location) by in-
voking the JDL library routine LogWithDisplay (which in turn invokes the JDL Status
Display Manager operation HereIAm).

LinkToTimer: This operation allows the manager to lock onto a particular simulation
time object. Once done, the manager can successfully get the current simulation time.
If the manager needs a time without being linked to a simulation time object, it will
use the generic timer object.

MoveTo: This operation adds another segment to the path list that describes the
motion of the target. The new segment is formed by taking the last known position in
the path list and using it as the starting point of the new segment. The new segment
terminates at location (EndLocation) for time (EndTime).

ReportStatus: This operation returns the current position of the object. The Timer
Manager is queried for the simulation time, then, the currently active segment is
located and the position of the target within the segment is made by straight line
approximation.

13

TargetsInRegion: This operation searches the entire object database looking for targets
that fit the search profile defined by the input parameters that define both a region of
space (Area) and the time span (StartTime, EndTime) of interest. The operation
returns a list that identifies the objects that fit the profile.

2.5 TARGET FILTER MANAGER

The Target Filter Manager receives all detections from the Sensor Manager, filters
out false detections, and stores real and semi-real targets within the Simulation Data
Manager. A detection is identified as either real or false based on the TargetUID field.
Detections that have a valid UID in the TargetUID field are considered to be real tar-
gets. Detections that have a NULL TargetUID field are considered to be false targets.
Real targets are stored in the Simulation Data Manager. False targets are stored inter-
nally and checked against any future false detections. A false target is logged as a
semi-real target if it (1) is detected twice within a 50-mile-square region of its original
location, (2) has the same TargetDescription, and (3) has the same TargetType. Semi-
real targets are stored within the Data Manager as unknown threats. They are updated
only if another false detection is found within a 50-mile-square region of its previous
location. The Target Filter Manager does not have replicated objects; however, there
are multiple instances of the manager operating in the simulation at the same time.

The Target Filter Manager object is represented by the canonical type, FILTERreport
(see appendix A.4). The manager is written in the C language. It is implemented to
run in a UNIX environment.

2.5.1 Integration of Target Filter Manager

The Target Filter Manager is a new JDL component that interacts with the Sensor
Manager and Simulation Data Manager. The target information received from the
Sensor Manager is sent to the Simulation Data Manager by invoking the JDL library
routines StoreSimData and UpdateSimData (these routines in turn invoke the
Simulation Data Manager operations StoreData and UpdateData, respectively).

The LinkToDisplay operation links the Target Filter Manager to the JDL Status
Display Manager. The Target Filter Manager notifies the display manager about its
interaction with the Sensor Manager and Simulation Data Manager by invoking the JDL
library routines DisplayStartOp, DisplayFinishedOp, DisplayMsgTo, and
DisplayGotAnswer (these routines in turn invoke the JDL Status Display Manager
operations StartOp, FinishedOp, MsgTo, and GotAnswer, respectively). The following
section describes the operations available on the Target Filter Manager.

2.5.2 Target Filter Manager Operations

The Target Filter Manager performs three operations. All the operations are
invoked via tropic except the operation FilterDetections, which is invoked by the
Sensor Manager.

14

FilterDetections: This operation takes the incoming array of detections and transforms
them into a set of real and semi-real targets that are stored in the Data Manager.

IdentifiedTarget: This operation is sent to all TargetFilter managers to notify them that
a target is being tracked and maintained by another TargetFilter manager. This infor-
mation is used when one manager takes over the targets of another manager because
of failure.

LinkToDisplay: This operation notifies the JDL Status Display Manager as to where
the Target Filter Manager was activated (host machine and site location) by invoking
the JDL library routine LogWithDisplay (which in turn invokes the JDL Status Display
Manager operation HereIAm).

RemoveObiectHistory: This operation will clear any memory that the Target Filter
Manager has about any previous targets that it has seen.

ReportStatus: This operation returns information regarding the total number of detec-
tions processed; percentage of real, semi-real, and fake targets; the total number of
operations processed; which sensor sent the operations; and how many operations were
sent per sensor.

2.6 WEATHER MANAGER

The Weather Manager provides data to the Sensor Manager in the form of a
weather forecast. These forecasts can either be created before or during the simulation.
The Weather Manager interacts with the Timer Manager for the current simulation
time.

The Weather Manager manages two objects, WeatherData Object and WeatherFore-
cast Object. The WeatherData Object provides the anchor node in the JDLSimulation
Type hierarchy for the weather forecast (jdlfcast) and weather report (jdlwxrpt) objects.
The WeatherForecast Object contains basic weather information for a map location as
well as date information to assist in determining the importance and availability of
weather information. While users may create weather forecast objects, all operations
are generic in nature; thus, no user ever has direct access to an individual forecast
object (see appendix A.5).

The Weather Manager is written in the C language. It is implemented to run in a
UNIX environment.

2.6.1 Integration of Weather Manager

The Weather Manager maintained its original functionality in the tri-service experi-
ment, providing weather information to the Sensor Manager and obtaining simulation
time from the Timer Manager by invoking the operation GetTIne.

One new operation was added to the Weather Manager as part of the integration of
the manager to the tri-service experiment, LinkToDisplay. The LinkToDisplay opera-
tion links the Weather Manager to the JDL Status Display Manager. The Weather
Manager notifies the display manager about its interaction with the Sensor Manager

15

and Timer Manager by invoking the JDL routines DisplayStartOp, DisplayFinishedOp,
DisplayMsgTo, and DisplayGotAnswer (these routines in turn invoke the JDL Status
Display Manager operations StartOp, FinishedOp, MsgTo, and GotAnswer,
respectively). The following section describes the operations available on the Weather
Manager.

2.6.2 Weather Manager Operations

The Weather Manager performs six operations. All the operations are invoked via
tropic except the operation ShowForecastNearLocation, which is invoked by the Sensor
Manager.

Create: This operation creates a weather forecast object instance.

LinkToDisplav: This operation notifies the JDL Status Display Manager as to where
the Weather Manager was activated (host machine and site location) by invoking the
JDL library routine LogWithDisplay (which in turn invokes the JDL Status Display
Manager operation HereIAm).

LinkToTimer: This operation allows the manager to lock onto a particular simulation
timer object. Once done, the manager can successfully get the current simulation time.
If the manager needs a time without being linked to a simulation timer object, it will
use the generic timer object.

RemoveOutdatedForecasts: This operation forces the manager to search through its
object database in search of expired forecasts. The optional parameter (RemoveFrom)
defines a reference time to be used in the elimination process. If RemoveFrom is
specified, the manager will remove all outdated forecasts from the beginning of time to
the time specified. If RemoveFrom is not specified, the manager will get the current
simulation time and remove all forecasts from the beginning of time to the current
simulation time. This operation returns the total number of forecasts that were deleted.

ReportStatus: This operation returns a message regarding the Uptime of the manager
and some statistical data indicating the managers success in communicating with the
Timer Manager.

ShowForecastNearLocation: This operation forces the manager to search through its
object database in search of a forecast that meets the requirements of the two parame-
ters (neither of which are optional). Location defines a coordinate point on the map
(two dimensional). Time defines the simulation interval time of interest. This operation
will return the forecast closest to or containing the point of interest. If there are multi-
ple entries, the forecast last accessed by the manager will be returned.

2.7 TIMER MANAGER

In the C2Inet application, the primary function of the Timer Manager was to pro-
vide simulation time for the Sensor Manager, Target Simulation Manager, and Weather
Manager. The Timer Object contains timing information for various simulations that

16

may be running with Cronus. Each individual timer object represents a simulation
clock that may be manipulated in a wide range of operations. In general, simulation
time can be viewed as the interval of time that has elapsed since the start of the timer
object. The .generic object serves as a global timekeeper, maintaining the current con-
stituent system time.

Simulation timers (individual timer objects) can be stopped, started, and reset to
their initial values. In addition, simulation timers can scale themselves to produce
simulation clocks that run faster or slower than the constituent system time clock.
Thus, when applications use the timer objects to drive application events, the simula-
tion time provided by the timer objects can speed up or slow down the application for
demonstration, observation, or debugging.

Each timer object represents a different simulation clock. The simulation clock
database is represented by the canonical type, TIMERobject (see appendix A.6).

The Timer Manager is written in the C language. It is implemented to run in a
UNIX environment.

2.7.1 Integration of Timer Manager

In the tri-service experiment, the Timer Manager continues to provide simulation
time to the Sensor Manager, Target Simulation Manager, and Weather Manager; in
addition, it provides simulation time to the Track Simulation Manager, Situation Report
Manager, and JDL Status Display Manager.

One new operation was added to the Timer Manager as part of the integration of
the manager to the tri-service experiment, LinkToDisplay. The LinkToDisplay opera-
tion links the Timer Manager to the JDL Status Display Manager. The Timer Manager
notifies the display manager about its interaction with the aforementioned managers by
invoking the JDL routines DisplayStartOp, DisplayFinishedOp, DisplayMsgTo, and
DisplayGotAnswer (these routines in turn invoke the JDL Status Display Manager
operations StartOp, FinishedOp, MsgTo, and GotAnswer, respectively). The following
section describes the operations available on the Timer Manager.

2.7.2 Timer Manager Operations

The Timer Manager performs 20 operations. All the operations are invoked via
tropic except the operation GetTime, which is invoked by the Track Simulation
Manager, Sensor Manager, Target Simulation Manager, Weather Manager, Situation
Report Manager, and JDL Status Display Manager for simulation time.

Create: This operation creates a simulation timer object instance.

GetHostTime: This operation returns the current constituent operating system date and
time.

GetTime (generic): This generic operation returns the interval of time elapsed since the
manager has started.

17

GetTimne: This operation returns the interval of time elapsed since the timer object was
started.

LinkToDisplay: This operation notifies the JDL Status Display Manager as to where
the Timer Manager was activated (host machine and site location) by invoking the JDL
library routune LogWithDisplay (which in turn invokes the JDL Status Display Manager
operation HereIAm).

ReportStatus (generic): This generic operation returns information on the current
working parameters of the generic timer object.

ReportStatus: This operation returns relevant information on the performance (the
current simulation time (Elapsed), the current constituent system time (GlobalTime)),
and current state (Attributes) of the timer object.

Reset: This operation sets the measurement values so that the effective time returned
by the GetTime operation is the ResetValue (initially zero). Reset will automatically
stop the timer object if it is running. After a Reset operation, the affected timer object
must be manually started.

SetOualitv: This operation is currently not implemented. When the Timer Manager
becomes replicated, this operation will serve to set the quality factor that determines
the best manager suited to synchronize the other replicated copies.

SetRate: This operation alters the speed of the simulation time clock. Default values of
1 for both the multiplier and divisor functions allow the simulation clock to count in
step with the natural progression of time. If SetRate is called without parameters, the
current multiplier and divisor rates are reset to the default value of 1. If the Rate-
Multiplier parameter is supplied, the simulation clock will quicken by the factor of the
RateMultiplier. If the RateDivisor parameter is supplied, the simulation clock will slow
by the factor of the RateDivisor. The simulation clock will scale its counting to accom-
modate RateMultiplier and RateDivisor values that are simultaneously nondefault.

SetResetValue: This operation sets the ResetValue of the timer object to the date
parameter (Time). The ResetValue is used to determine the initial starting value of the
timer object after a Reset operation has been executed. The timer object will count
forward from ResetValue when the timer object is started after a reset.

SetStepIncrement: This operation sets the granularity of time that passes within a
single cycle of the simulation clock. The StepIncrement parameter establishes the
amount of time (either seconds, minutes, or hours) upon which the clock iterates.

SetStop]ime: This operation establishes a time when the simulation clock will auto-
matically terminate its timekeeping function. Once set, the ony way to cancel this func-
tion is a Reset operation on the timer object. The StopTime parameter will set the
time for the simulation clock to automatically stop.

SetSynchInterval: This operation is currently not implemented. When the Timer
Manager becomes replicated, this operation will serve to set the update interval for
keeping copies of the generic timer object base-time measurement synchronized.

18

SetTime (generic): This generic operation sets the base-time measurement to the date
parameter (Time). If Time is not present, the base-time measurement will be set to the
current constituent host time. The base-time measurement is used by the nongeneric
timer objects as a reference point for calculating their individual simulation times.

SetTime: This operation sets the reference-time measurement to the date parameter
(Time). If Time is not present, the reference-time measurement will be set to the base-
time measurement of the generic object. The reference-time measurement is used by
the timer objects in calculating their individual simulation times.

Start: This operation signals the simulation clock to begin. The simulation clock
resumes counting from the time at which it was stopped. The only exception to this
rule occurs if the simulation clock has been reset. If reset, the simulation clock starts
from the default (ResetValue) position. The StopTime parameter, if supplied, will set
the time for the simulation clock to automatically stop.

Step: This operation will, by default, increment the simulation clock by one iterative
value. The Count parameter, if supplied, will set the number of cycles that the clock
can continue without stopping. Once the count has been exhausted, the simulation
clock will stop. Also, the StepIncrement parameter, if supplied, will establish the
amount of time that passes in a single cycle of the clock. It is important to note that
the StepIncrement parameter is valid beyond this step iteration. The StepIncrement that
the clock uses in normal timekeeping is CHANGED. Upon receipt of the Step opera-
tion, the simulation clock is stopped, the step interval is computed, the clock is set to
stop at the computed step interval, and the clock is started.

Stop: This operation signals the simulation clock to halt. The simulation clock will only
resume counting with the issue of a Start operation.

Synchronize: This operation is currently not implemented. When the Timer Manager
becomes replicated, this operation will serve to update the copies of the generic timer
object base-time measurement.

2.8 SITUATION REPORT MANAGER

The Situation Report Manager simulates information on ground-based forces, both
friendly and hostile. The information to be managed is that which would be useful to
an Army user in a Division-level command post. This information is divided into unit-
level status reports known as Situation Reports. The Situation Report Manager object is
represented by the canonical type, SituationReportData (see appendix A.7).

Similar to the Track Simulation Manager, the Situation Report Manager obtains its
data from a file, armyfile. The Situation Report Manager invokes the Timer Manager
for time and checks the armyfile to see if it is time to read the Army data. Similar to
the Track Report Manager, the Situation Report Manager stores the data it retrieves
from the armyfile into its own object database. It passes the Army data to the Simula-
tion Data Manager for storage.

When associative access of the object database (accessing Cronus objects by content
rather than by identifier) was available, the Situation Report Manager was reimple-

19

mented with the capability. The SituationReport type was redefined as a subtype of
CronusQuery rather than Object. The operation LocateSitRep was rewritten to use the
SelectMatchingObjects library routine.

2.8.1 Symbolic Version of Situation Report Manager

The Situation Report Manager was initially implemented in the C language. To gain
experience with the Symbolic implementation of Cronus, a Lisp version of the
Situation Manager was designed. These two versions of the Situation Report Manager
enhance the heterogenity environment for the tri-service experiment.

As part of the design of the Lisp version of the Situation Report Manager and as
part of a rethinking of its overall functionality, two newv operations were added: Create
and Update. Create is a generic operation used to create new SitRep objects, and the
Update operation updates existing SitRep objects. The benefit of implementing these
operations is to give the Situation Report Manager a more general form, and thus,
provide the manager the capability to survive outside of the tri-service experiment.

2.8.2 Integration of Situation Report Manager

The Situation Report Manager is a new JDL component that interacts with the
Timer Manager and Simulation Data Manager. The Situation Report Manager obtains
simulation time from the Timer Manager by invoking the operation GetTime. Situation
Reports are sent to the Simulation Data Manager for storage by invoking the JDL li-
brary routines StoreSimData and UpdateSimData (these routines in turn invoke the
Simulation Data Manager operations StoreData and UpdateData, respectively).

The LinkToDisplay operation links the Situation Report Manager to the JDL Status
Display Manager. The Situation Report Manager notifies the display manager about its
interaction with the Timer Manager and Simulation Data Manager by invoking the JDL
library routines DisplayStartOp and DisplayFinishedOp (these routines in turn invoke
the JDL Status Display Manager operations StartOp and FinishedOp, respectively).
The following section describes the operations available on the Situation Report
Manager.

2.8.3 Situation Report Manager Operations

The Situation Report Manager performs nine operations. All the operations are
invoked via tropic.

Create: This operation performs the creation of Situation Report objects containing the
specified information.

LinkToDisplay: This operation notifies the JDL Status Display Manager as to where
the Situation Report Manager was activated (host machine and site location) by invok-
ing the JDL library routine LogWithDisplay (which in turn invokes the JDL Status Dis-
play Manager operation HereIAm).

20

LinkToTimer: This operation allows links the manager to a simulation timer. Until the
timer object is set, the manager will refuse to read Situation Reports.

LocateSitRep: This operation locates the Situation Report object for the specified unit.

ReadSitReps: This operation the manager to read situation reports from a data file,
armyfile (see appendix B.2).

ReportStatus: This operation returns information on the current status of the Situation
Report Manager.

SetDisplavTextFlag: This operation sets the display text flag on or off. This flag is set
to off by default. When the flag is set on, the Situation Report Manager will print the
incoming reports to a terminal. This flag is usually set on to debug the Situation
Report Manager.

SetSendDMFlag: This operation sets the send to Data Manager flag on or off. This
flag is set on by default. When the flag is set on, the Situation Report Manager will
attempt to send the status reports to the Data Manager. This flag is usually turned off
for debugging the Situation Report Manager. This is especially useful when the Data
Manager is not running and the attempt to invoke it will result in repeated timeouts.

Update: This operation allows the update of the information in a Situation Report.

2.9 SIMULATION DATA MANAGER

The Simulation Data Manager was designed to manage data from the joint services
(Navy, Air Force, and Army). The Track Report Manager, Target Filter Manager, and
Situation Report Manager use the Simulation Data Manager to report data in their own
application-unique forms. In the initial phase design of the Simulation Data Manager,
the tri-service data is stored in the manager's object database. The structure of the
basic data object is represented by the canonical type, SIMdata (see appendix A.8).
The data stored and managed by the Simulation Data Manager is displayed on the
User Interface.

Cronus Release 1.5 provided two new as~ociative access capabilities: query process-
ing and relational database support. The Simulation Data Manager was reimplemented
to provide both capabilities.

2.9.1 Simulation Data Manager-Query Processing

The query processing capability allows clients to invoke operations that identify
collections of objects by attribute instead of by their Cronus-unique identifier. Queries
are constructed using a subset of the standard Structured Query Language (SQL) used
by many relational database systems. These SQL-like query capabilities allow the client
program to formulate adhoc queries and send them to the appropriate object manager
for processing.

The operations QueryForData and QueryForObjects are implemented to allow the
User Interface to acquire data from the Simulation Data Manager by using query
processing.

21

2.9.2 Simulation Data Manager-Relational Database Support

In previous releases of Cronus, the one mechanism available for storage and re-
trieval of Cronus objects was the object database. In Cronus Release 1.5, the number
of data storage and retrieval options have been expanded to provide direct support for
accessing relational database management systems (DBMS) through Cronus. A set of
new Cronus managers that encapsulate the various commerical relational databases
was implemented to support this capability. The new SQLDefs, DBDefs, and
DBSession object types define and implement the set of operations that are available
across all the supported relational databases. For each database supported, an object
type is defined that is a subtype of DBDefs and of DBSession. These subtypes imple-
ment a small number of database-specific customizations that accommodate differences
between the various relational database products. The currently implemented relational
databases are Informix, Oracle, and Sybase. Other databases may be added later after
subtypes are defined and implimented for them.

The operations QueryForData and QueryForObjects are implemented to allow the
User Interface to acquire data from the Simulation Data Manager via Informix, Oracle,
or Sybase. These operations replace the operations RetrieveData and RetrieveObjects.
The operations StoreData and UpdateData were reimplemented to store and update
data in a relational database (Informix, Oracle, or Sybase).

2.9.3 Integration of Simulation Data Manager

The Simulation Data Manager is a new JDL component that interacts with the
Track Report Manager, Target Filter Manager, Situation Report Manager, and User
Interface.

The Simulation Data Manager receives data as objects from the Target Filter, Situ-
ation Report, and Track Report managers. Once the objects are received, the data
(common to all three services) are broken out and stored in a table in the relational
database. The service-specific data are then stored in another table in the relational
database. Updates are handled in a similar manner to the store. When information is
needed from the database (usually by the User Interface), the operations Query-
ForData and QueryForObjects are called. In both of these operations, a SQL query is
sent through Cronus to the relational database, and the results are returned to the
operation in SelfDescribingTuples (a Cronus structure). The QueryForData operation
returns the SelfDescribingTuples to the query requester, who then must unpack the
SelfDescribingTuples. The operation QueryForObjects is used for queries on the com-
mon data because this operation unpacks the SelfDescribingTuples it receives and
packs an array with the data. The QueryForObjects operation was created so that the
User Interface would not have to be changed.

The LinkToDisplay operation links the Simulation Data Manager to the JDL Status
Display Manager. The Simulation Data Manager notifies the display manager about its
interaction with the aforementioned managers and User Interface by invoking the JDL
library routines DisplayStartOp, DisplayFinishedOp, DisplayMsgTo, and

22

DisplayGotAnswer (these routines in turn invoke the JDL Status Display Manager
operations StartOp, FinishedOp, MsgTo, and GotAnswer respectively). The following
section describes the operations available on the Simulation Manager.

2.9.4 Simulation Data Manager Operations

The Data Manager performs 12 operations. The operations QueryForData,
QueryForObjects, RetrieveData, and RetrieveObjects are invoked by the User Inter-

face for simulation data to be displayed. The operations StoreData and UpdateData
are invoked by the Track Report Manager, Target Filter Manager, and Situation Report
Manager to store and update Navy, Air Force, and Army data being stored by the
Simulation Data Manager. All the other operations are invoked via tropic.

CloseDatabase: This operation closes the database session.

DeleteAllInDatabase: This operation deletes all the records in the database.

LinkToDatabase: This operation attaches the Data Manager to one of three databases:
Informix, Oracle, or Sybase. The manager will not operate without the invocation of
this operation. LinkToDatabase will return an error code if it cannot successfully attach
and open the database specified.

LinkToDisplav: This operation notifies the JDL Status Display Manager as to where
the Simulation Data Manager was activated (host machine and site location) by
invoking the JDL library routine LogWithDisplay (which in turn invokes the JDL Status
Display Manager operation HerelAm).

OueryForData: This operation returns a self-describing tuple that matches the input
parameters. The type of database (Informix, Oracle, Sybase) is returned for use in
compatibility issues.

OuerForObjects: This operation makes calls to the database (table datainfo) and
returns an array filled with the simulation data that matches the input parameters.

Remove: This operation removes a mission object from the database. The operation is
not being imported from the generic RemoveOperation because there are internal
storage values that must be released when an object is removed. This is a skeleton
operation, having been made obsolete by the relational database version.

ReportStatus: This operation returns the database that is connected to the Data
Manager.

RetrieveData: This operation returns an array filled with the simulation data that
matches the input parameters. This is a skeleton operation, having been replaced by
QueryForData.

Retrieve01ijets: This operation returns an array filled with the simulation data that
match the input parameters. This is a skeleton operation, having been replaced by
QueryForObjects.

StoreData: The operation StoreData creates an empty object and places it in the Tri-
Service Data Manager Object database. The UID is used for the key fields in the tables

23

of the relation database. The UKD, latitude, longitude, altitude, type, source, threat,
category, are incorporated into a SQL Insert statement. The SQL statement is the sent
to the relational database. After the general information is stored, the sending manager
type is deciphered. The octetbuffer is converted to the original type (such as TrackOb-
ject, SituationReport, DECTIONdata). From the type, the data are taken to form the
SQL Insert Statement. The SQL Insert Statement is sent to the relational database.
StoreData returns the UID of the new mission object.

UpdateData: The operation UpdateData receives updated data from the managers, us-
ing the UID as a key for the data. SQL UPDATE statements are sent to the database
with the new information. The UID is then returned to the calling procedure.

2.10 JDL STATUS DISPLAY MANAGER

Separation of components is an inherent property of distributed systems. The JDL
Status Display Manager was designed to display the distribution of the experiment
application components among the three sites. The manager provides a view into the
layout of the experiment by showing location, interaction pattern, and elementary state
information (e.g., busy, input-queue-entry, output-queue-entry) for each component.

2.10.1 Diamondtool Versions of JDL Status Display Manager

The JDL Status Display Manager was implemented by using the Diamond User
Interface Toolkit, developed by BBN. The toolkit is a collection of tools and sub-
routines that permit a programmer to use user-interface primitives such as menus,
scroll-bars, and dialog boxes. It also responds to window-system events such as closing
the window into an icon, partially concealing (or unconcealing a window), etc.

In the first design phase of the manager, each component of the experiment has an
individual box on the display. Each box is color coded to match the host within which
the experiment manager resides. Input/output (1/0) boxes represent message activity
between components of the simulation. The JDL Status Display Manager was only able
to display one instance of each experiment managers and client (figure 2).

A second-phase design of the JDL Status Display Manager provides display of
multiple instances (replication and duplication) of managers and clients. The compo-
nent Target Filter Manager was added to the display (Target Filter Manager was not
available during the first-phase design of the JDL Status Display Manager). There is
also a display box showing "SimulationProgress" (figure 3).

2.10.2 Motif Version of JDL Status Display Manager

The Diamond User Interface Toolkit is an unsupported BBN product, which
prompted a parallel design of the JDL Status Display Manager with implementation
based on X Window system and Motif Widget set. Motif is currently the most popular
graphical user interface style for the X Window system (which is rapidly becoming an
industry standard). The use of Motif in the tri-service experiment will align the JDL

24

Z imr WI Ir~sm Ik

fl~~~ o n R ep
l a590

-shiv

Sr 2 0 im~at

Weather~e 0 1

Figure 3. Phase Ii Diamondtool JDL Status Display Manager.

Tim25

tri-service with emerging industry standards as well as major programs (NTCS-Afloat)
at NRaD.

The Motif version of the JDL Status Display Manager communicates to a separate
process issuing drawing commands as a result of progressions in the simulation. The
JDL Status Display Manager and its associated X/Motif application evolved into two
executables because of performance considerations in having a Cronus manager handle
its usual work as well as another X task.

In its current state of development, the JDL Status Display Manger receives simula-
tion progress updates from the other experiment managers and translates these updates
into drawing commands to the X/Motif display. Replication of managers is shown more
easily in the Motif version. The display can be enhanced much more easily to include
new options such as requesting information about a particular manager on a particular
host and popping up a window that contains the results (figure 4).

Status

TTS~

Figure 4. Motif version of JDL Status Display Manager.

26

2.10.3 JDL Status Display Manager Operations

The JDL Status Display Manager performs seven operations. The operations
FinishedOp, GotAnswer, HereIArn, MsgTo, and StartOp are invoked by the experi-
ment managers and User Interface to register their location and activities with the JDL
Status Display Manager. The operations LinkToTimer and Reset are invoked via tropic.

FinishedOp: This operation is invoked by a simulation component that has finished
processing an operation request.

GotAnswer: This operation is invoked by a simulation component that has received an
answer to its operation request.

HerelArn: This operation registers the individual simulation components with the
display manager. It appropriately clears all of the 1/0 boxes and sets the manager
display box to the proper color.

LinkToTimer: This operation attaches the Status Display Manager to a timer object for
acquiring simulation time.

MsgTo: This operation is invoked by a simulation component that is invoking an
operation on another simulation component.

Reset: This operation resets the display to an initial state (with no colors).

StartOp: This operation is invoked by a simulation component that is processing an
operation request.

2.11 .USER INTERFACE

In the DOSE application, the Graphics Display Client is a worldwide, dynamically
scaled map package. The software uses SunCore, a graphics package for Sun work-
stations, to construct the map from a digital map database. The Graphics Display
Client invokes the Track Report Manager for Navy data to be displayed on a world
map.

In the tri-service experiment, the Graphics Display Client was adapted as the User
Interface. The User Interface was modified and enhanced with the capability to display
Navy, Air Force, and Army information.

2.11.1 Integration of User Interface

In the tri-service experiment, the User Interface obtains Navy, Air Force, and Army
information from the Simulation Data Manager by invoking the operations QueryFor-
Data and QueryForObjects (query processing version of the Simulation Data Manager)
and RetrieveData and RetrieveObjects (relational database version of the Simulation
Data Manager). The Navy, Air Force, and Army data are displayed symbolically as
unclassified icons in the Mediteranean Sea region of the world.

The User Interface notifies the JDL Status Display Manager as to where it was
activated (host machine and site location) by invoking the JDL library routine

27

LogWithDisplay operation (which in turn invokes the JDL Status Display Manager

operation HereIAm).

2.11.2 SunCore Version of User Interface

The SunCore version of the User Interface is a single window display of a world
map with button panels to control the display of the map and the type of information
obtained from the Simulation Data Manager. The User Interface is mouse controlled.

When the User Interface is first activated, the name of the experiment and the sites
participating in the experiment are displayed on the monitor screen. Clicking on the
left button of the mouse will display a menu choice of automatic data update mode or
manual data update mode. In automatic update mode, the User Interface will automati-
cally invoke the Simulation Data Manager for new data update every 30 seconds. In
manual update mode, the user controls when to request new data update for display.
After the user chooses the type of update mode by clicking the mouse icon on the
appropriate choice, a menu choice of different regions of the world (e.g., Mediterra-
nean, Asia, etc.) is displayed. Again the user chooses the map region by clicking the
mouse icon on the appropriate choice. The chosen map region is then displayed on the
screen along with display control panels, data icon information, and map information
(figure 5). The tri-service experiment scenario takes place in the Mediterranean Sea
region.

NEW DATA COMING IN THU DEC 14 W49-.0 1,. A.ITOMATIC UPDATE JDI. TUSERAVCE E"PERWW.1

• :' CECOU, RA N',OS

Figur5Snor vsionoua FITf c`a .

2 8-a" @ .0m
A

Fig-.Vo S nor veso fUe neFaegphaldsay

A2O8W S

There are two panels at the top of the map. The left panel notifies the user as to
when new data have arrived. The right panel indicates the type of update mode that is
currently active. The user can click the mouse icon on the panel and it will toggle be-
tween automatic data update mode and manual data update mode.

There are two main control panels on the right side of the map: Source Filter and
Map Control. The Source Filter panel allows the user to choose the type of data to be
obtained from the Simulation Data Manager and displayed on the map: only Air Force
data, only Army data, only Navy data, or tri-service data. Clicking the mouse icon on
any of the buttons will display a subpanel, Display Capabilities. This subpanel provides
the user different means of displaying the specified service(s) data: Status (number of
and different types of data icons on the map), Select (filter data to be displayed on the
map according to threat identification and classification types), Weather (textual report
of the weather condition in the region), Identify (textual report on the position, classifi-
cation, etc. of a selected icon on the map), New Data (invokes the Simulation Data
Manager for the most recent update of new data), and Refresh (refreshes the data and
map in case distortion and inconsistency of data occurs).

Map Control allows the user to manipulate the map display. The user can change
the color of the land (Color), fill or outline the land (Fill), change the center of the
map (Center), tilt the map (3-D button for the purpose of displaying air and subsurface
data), redisplay the full screen (Redisplay), change the radius for panning and zooming
purposes (Radius), and change the region of the world (Region).

2.11.3 X Window Version of User Interface

GOTS is an automated command, control, communications, and intelligence (C31)
system that has been designed for tactical situation assessment. Its function is to
receive, manage, process, and display data that are reported on objects (ships, aircraft,
etc.) being tracked by various sensor systems. A portion of GOTS, the optional GOTS
environment, is being used by the JDL Tri-Service Experiment to develop a new User
Interface. The Map Server and Open Software Foundation (OSF)/Motif are the pieces
of the GOTS alternate environment being used in developing a tactical User Interface.

The Map Server generates all maps for applications connected to the Map Server.
Multiple Map Windows are supported. The Map Server's primary role is to provide
application programs with the ability to plot a variety of graphics objects onto the dis-
play through a simple library of C or Ada functions. Once plotted, these objects will
be remembered and redisplayed whenever the map is repainted. The Map Server pro-
vides a menu ("Map Options") that allows the user to manipulate the map display. For
example, the user has several centering and zooming options as well as the option of
using an orthographic projection rather than a Mercator projection. In essence, much of
the foundation for a good user interface is provided by the Map Server and application
developers need only add application-specific code.

In its current state of development, the JDL User Interface requests a map from the
Map Server which it then reparents to its hierarchy of user interface components

29

(Widgets). Map events and Widget events are then forwarded to the application in the
same fashion from the X server that is taking care of the display. Currently, the User
Interface is able to manage the objects on the screen (hi-liting, deleting, hiding) in
terms of single objects (one icon on the screen) or in groups of objects (many icons of
the same type). It also has the ability to query (via the Simulation Data Manager) a
database for information about a specific icon on the display. A query string can also
be constructed using a menu to instruct the Simulation Data Manager to filter out cer-
tain types of data it normally would forward to the User Interface.

The X version of the User Interface will provide a better-looking, easier-to-use
interface to the tri-service experiment as well as use emerging industry standards (X,
OSF/Motif) (figure 6).

MapOpUm•fr•.i gmL Objeab fmbols Col. ,

Z- A- 4-
P1.db.4 a qP

Wadd V10.

no Cmoal.

Hood P..

Map P,,,,. •,

wD-•D -, - ,

D-& UaM.@,..~

Kolo

Figure 6. X version of the User Interface graphical display.

30

3.0 EXPERIMENT DEMONSTRATION

3.1 DEMONSTRATION SETUP

The three basic requirements needed to set up the tri-service demonstration are
hardware, software, and network communications. The following sections describe the
requirements needed to support the demonstration.

3.1.1 Hardware Configuration

The tri-service experiment address the issue of heterogeneity, i.e., the integration of
a variety of dissimilar resources. The intention of the experiment is to use existing
resources available at the three sites. Cronus, which operates on a variety of different
hardware bases and operating systems, provided the "glue" to bring the different sys-
tems at NRaD, RL, and CECOM together to demonstrate the experiment. The hard-
ware bases used at the three sites comprised the following:

Hardware Family Operating System

Sun Workstations SunOS (UNIX)
(Sun 3, Sun 4, Sun 386i)
Masscomp Realtime UNIX
Symbolics Genera
DEC VAX VMS/Ultrix
HP HP

3.1.1.1 Minimum Demonstration Layout

The minimum requirement needed to demonstrate the Tri-Service Distributed Tech-
nology Experiment is two machines, of which at least one has a display monitor. The
monitor requirement is for the JDL Status Display Manager and User Interface, which
are graphical display components. Ideally, the User Interface's map display embodies
an entire display monitor; however, the map can be displayed in a GraphicsTool win-
dow (Sun Workstation) with the JDL Status Display Manager on one monitor. The
other experiment components can be distributed among the two machines running in
the background.

The minimum requirement of the hardware layout is feasible in a one-site or two-
site demonstration but fails to truly demonstrate the full potential of the distributed
capability of the experiment. Section 3.1.1.2 describes the ideal recommended layout to
demonstrate the tri-service experiment.

3.1.1.2 Recommended Demonstration Layout

The ideal recommended layout to demonstrate the Tri-Service Distributed
Technology Experiment would be one machine per experiment component in a

31

three-site demonstration (figure 7). In addition, the JDL Status Display Manager and
User Interface each would have their own monitor for their graphical displays. It is
recommended that the JDL Status Display Manager and User Interface be displayed on
color monitors; however, these two graphical components can be displayed on mono-
chrome monitors.

CECOM RL

C M

TWBNet

NOSC

Figure 7. Sample demonstration layout.

Many other possible layouts can be used to demonstrate the Tri-Service Distributed
Technology Experiment based on hardware availability and the number of participating
sites. If hardware availability is limited and multiple experiment components have to
be on the same machine, it is recommended that these components do not perform
operations on each other. For example, it is not recommended to have the Track Simu-
lation Manager and Track Report Manager running on the same machine in which the
Track Simulation Manager invokes the TrackUpdate operation on the Track Report
Manager. Such intra-invocation fails to demonstrate the distributed capability of the
experiment. The Timer Manager and Track Report Manager can be on the same
machine because they do not interact with each other (see figure 1 showing intercom-
munication links among the experiment components). In addition, it may be necessary
to have multiple components on the same machine when demonstrating replication and

32

duplication of components when addressing survivability capability. For example, the
Track Report Manager and Target Simulation Manager have replication capability and
multiple copies of these managers can be running on different machines in conjunction
with other components.

3.1.2 System and Software Configuration

Cronus provides every object with a unique name when the object is created. This
name is guaranteed to be unique over the entire collection of Cronus objects on all
hosts. It is a structured 96-bit string, of which 80 bits make the object unique and 16
bits identify the object's type. These numbers are the Cronus Unique Identifiers
(UIDs). Cronus generates the 80-bit unique numbers (UNOs) that are part of UIDs.
The Cronus configuration for the Tri-Service Distributed Technology Experiment is
UNO30.

Every Cronus manager has to be assigned a unique type number associated with its
type definition name. The following defines the type definition of the experiment
managers and-their abbreviation names:

260 JDLSimulation jdlobj
261 JDLTimer jdltime
262 JDLTargetSimulation jdltarg
263 JDLWeatherData jdlwxdata
264 JDLWeatherForecast jdlfcast
265 JDLSimulationData jdldata
266 JDLSensor jdlsens
267 JDLStatusDisplay jdldisp
268 JDLTargetFilter jdltfil
270 JDLSimulationDataAAObject jdldataaa
271 JDLSimulationDBDataObject jdldatadb
320 JDLTrackSimulation jdltrack tracksim parser
321 JDLTrackReportData jdltrm trackrpt trm
322 JDLTrackTablelndex jdltrmidx trmidx
540 JDLSituationReport jdlsit sitrep

Each JDL system at each site has a jdldemo account. Once the user logs in, he is
in the jdl directory. Under the jdl directory are two main directories, DEMO and
TESTBED. The DEMO directory contains subdirectories of the experiment component
software that is demonstrable. The TESTBED directory contains subdirectories of the
experiment component software that is being implemented, modified, and tested. The
subdirectories structure is the same in DEMO and TESTBED:

commands: This directory contains initialization files for the Air Force components.
jdlobj: This directory contains definition code to the JDL objects.
sensor: This directory contains the source code for the Sensor Manager.
simdata: This directory contains the source code for the Simulation Data Manager.
sitrep: This directory contains the source code for the Situation Report Manager.

33

statdisp: This directory contains the source code for the JDL Status Display Manager.
targfil: This directory contains the source code for the Target Filter Manager.
targsim: This directory contains the source code for the Target Simulation Manager.
timer: This directory contains the source code for the Timer Manager.
trackrpt: This directory contains the source code for the Track Report Manager.
tracksim: This directory contains the source code for the Track Simulation Manager.
ui: This directory contains the source code for the User Interface.
weather: This directory contains the source code for the Weather Manager.

3.1.3 Network Connectivity

The network connectivity for the three sites is over the Defense Research Internet
(DRI) via the Terrestrial Wideband Network (TWBNet) (figure 8). The DRI is a na-
tional network for research and has replaced the ARPANet. In the DRI, local-area net-
works (LANs) are connected directly to the backbone network. TWBNet, developed and
installed by BBN, is the first phase of the DRI. It uses the cross-country T1 trunks
from the DARPA National Networking Testbed (NNT) to support high-speed network-
ing (fiber-optic technology), to provide connectivity among academic and government
sites, and to support a testbed for Internet protocol development and experimentation
with applications.

TWBIe e t

Figure 8. DRI: network connectivity.

34

3.2 AUTOMATIC STARTUP OF EXPERIMENT MANAGERS

The Tri-Service Distributed Technology Experiment provides an automatic startup
command file, rootmenu (see appendix C.1). The rootmenu drives the automatic startup
of the experiment managers in a window menu format for the Sun workstation. It is
located in the bin subdirectory of the jdl directory.

Using the step menu, the user first selects the hardware configuration to be used in
the demonstration. The configuration identifies at which physical site each of the soft-
ware managers will run and the specific host machine at that site at which the man-
ager will reside. There are five configuration files: config.CERLNO, config.CERL,
config.RLNO, config.RL, and config.NO (see appendix C.2). The config.CERLNO file set-
ups the hardware configuration for demonstration at all three sites (CECOM, RL,
NRaD). A two-site demonstration is defined in the files, config.CERL (CECOM and RL)
and config.RLNO (RL and NRaD). The config.NO and config.RA files define one-site
demonstration configuration at NRaD and RL, respectively.

After setting up the hardware configuration, the next step is to start up the experi-
ment managers. The starting of the managers are defined in the file jdlmgrstart with a
parameter of all, AF, ARMY, or NAVY (see appendix C.3). The parameters indicate to
start all the managers, only the Air Force managers, only Army manager, or only Navy
managers. The jdlmgrstart file starts the service of each manager on the machine speci-
fied in the hardware configuration (e.g., config.CERLNO). Each manager is started by
using the Cronus command startservice.

After the managers under the designated condition are started, the appropriate
managers are linked to the Timer Manager for simulation time by calling the jdllinktime
command file (see appendix C.4). The user has the option to link the managers to the
JDL Status Display Manager, which is defined in the command file jdllinkdisp (see
appendix C.5). Once everything is set, the experiment simulation is started in the file
jdlsimstart (see appendix C.6).

3.3 MANUAL STARTUP OF EXPERIMENT MANAGERS

The manual startup is for users who either cannot use the automatic startup com-
mand file (e.g., window menu format for the Sun workstation is unavailable) or wishes
to use only the startup portion of the experiment (e.g., for testing purposes). The user
should first decide what type of demonstration will be given; that is, one-site, two-site,
or three-site demonstration. If it is going to be either a two-site or three-site demonstra-
tion, then the user needs to decide how the components are going to be distributed
among the sites; that is, which manager or client running at which site.

There are two options to activate the managers manually:

Option A - A manager can be activated via the Cronus command startservice if the
manager is installed on the host the user wishes to run the manager. The user can exe-
cute the following Cronus command to find out where the experiment managers have
been installed at the three sites:

35

% cronus /showkernel /all

Option B - A manager can be activated in the directory it resides in if the manager is
not installed on the host the user wishes to run the manager. (Option B is described in
a UNIX environment.)

3.3.1 JDL Status Display Manager

Option A

% cronus startservice jdldisp@host

@host is the hostname of the machine on which the JDL Status Display Manager is
installed.

Option B

% cd statdisp
% jdldisp /dbcreate=O
% jdldisp &

To start the JDL Status Display Manager, go to the directory that contains the exe-
cutable jdldisp. The JDL Status Display Manager is a Cronus manager; thus, the object
database for its object type needs to be created. Check the directory for the file
objectdb.267. If the file does not exist, execute /dbcreate to create the object database.
The manager can either be activated in the background (jdldisp &) or in the fore-
ground (jdldisp /interactive). Once the manager is activated, a graphics display will
appear on the monitor screen.

3.3.2 Timer Manager Startup

Option A

% cronus startservice jdltime@host

@host is the hostname of the machine on which the Timer Manager is installed.

Option B

% cd timer
% timer /dbcreate=O
% timer &

To start the Timer Manager, go to the directory that contains the executable timer.
Check if the objectdb.261 file exists in the directory. It is the object database for the
Timer Manager. If the file does not exist, the object database for its object type needs
to be created by executing /dbcreate. The manager can either be activated in the back-
ground (timer &) or in the foreground (timer /interactive).

3.3.3 Track Report Manager Startup

Option A

36

% cronus startservice jdltrm@host

@host is the hostname of the machine on which the Track Report Manager is installed.

Option B

% cd trackrpt
% trackrpt /dbcreate=O
% trackrpt &

To start the Track Report Manager, go to the directory that contains the executable
trackrpt. The Track Report Manager stores Navy data in its object database. The
object database should be removed and recreated for each demonstration. The Track
Report Manager manages two databases (types 321 and 322). If objectdb.321 and
objectdb.322 exist in the directory, remove them and then execute /dbcreate to create
the new object databases. The Track Report Manager can be activated in the back-
ground (trackrpt &) or in the foreground (trackrpt /interactive). A foreground activation
will print debugging and error messages from the manager onto the screen. In the
background, messages from the manager will be stored in the log.txt file.

The Track Report Manager has replication capability. To activate other Track
Report Managers on other host machines (Cronus will not allow, multiple copies of a
Cronus manager to run on the same host machine) is similar to activating the first
Track Report Manager, except that /dbreplicate is used instead of Idbcreate.

% cd trackrpt
% trackrpt /dbreplicate=O
% trackrpt &

3.3.4 Track Simulation Manager Startup

Option A

% cronus startservice jdltrack@host

@host is the hostname of the machine on which the Track Simulation Manager is
installed.

Option B

% cd tracksim
% tracksim /dbcreate=O
% tracksim /interactive

To activate the Track Simulation Manager, go to the directory that contains the exe-
cutable tracksim. Check if the objectdb.320 file exists in the directory. It is the object
database for the Track Simulation Manager. If the file does not exist, the object data-
base for its object type needs to be created by executing /dbcreate. The Track Simula-
tion Manager can be activated in the background (tracksim &) or in the foreground
(tracksim /interactive). A foreground activation will print debugging and error messages
from the manager onto the screen. In the background, messages from the manager will
be stored in the log.txt file.

37

3.3.5 Target Simulation Manager Startup

OptionA

% cronus startservice jdltarg@host
@host is the hostname of the machine on which the Target Simulation Manager is
installed.

Option B

% cd targsim
% targsim /dbcreate=O
% initmedtarg
% targsim &

To activate the Target Simulation Manager, go to the directory that contains the
executable targsim. Check if the objectdb.262 file exists in the directory. It is the object
database for the Target Simulation Manager. If the file does not exist, the object data-
base for its object type needs to be created by executing /dbcreate. If the user needed
to create the manager's object database, the target data also need to be created by
executing the command file initmedtargs (see appendix B.3). This command file creates
target data and stores data objects in the Cronus directory ":jdl:targets."

If the object database already exists, the user only needs to activate the Target
Simulation Manager either in the background (targsim &) or in the foreground (targsim
/interactive). In the foreground, any messages from the manager will be printed on the
monitor screen. In the background, any messages will be stored in the log.txt file.

3.3.6 Target Filter Manager Startup

Option A

% cronus startservice jdltfil@host

@host is the hostname of the machine on which the Target Filter Manager is installed.

Option B

% cd targfil
% targfil /dbcreate=O
% targfil &

To activate the Target Filter Manager, go to the directory that contains the executa-
ble targrfl. Check if the objectdb.268 file exists in the directory. It is the object data-
base for the Target Filter Manager. If the file does not exist, the object database for
its object type needs to be created by executing Idbcreate. The Target Filter Manager
can be activated in the background (targfil &) or in the foreground (targfil /interactive).
A foreground activation will print debugging and error messages from the manager
onto the screen. In the background, messages from the manager will be stored in the
log.txt file.

38

3.3.7 Weather Manager Startup

Option A

% cronus startservice jdlfcast@host

@host is the hostname of the machine on which the Weather Manager is installed.

Option B

% cd weather
% weather /dbcreate=O
% weather &

To activate the Weather Manager, go to the directory that contains the executable
weather. Check if the objectdb.264 file exists in the directory. It is the object database
for the Weather Manager. If the file does not exist, the object database for its object
type needs to be created by executing /dbcreate. The Weather Manager can be acti-
vated in the background (weather &) or in the foreground (weather /interactive). A
foreground activation will print debugging and error messages from the manager onto
the screen. In the background, messages from the manager will be stored in the log.txt
file.

3.3.8 Sensor Manager Startup

Option A

% cronus startservice jdlsen@host

@host is the hostname of the machine on which the Sensor Manager is installed.

Option B

% cd sensor
% sensor /dbcreate=O
% initmedsensor
% sensor &

To activate the Sensor Manager, go to the directory that contains the executable
sensor. Check if the objectdb.266 file exists in the directory. It is the object database
for the Sensor Manager. If the file does not exist, the object database for its object
type needs to be created by executing Idbcreate. If the user needs to create the
manager's object database, the sensor data also need to be created by executing the
command file initmedsensor (see appendix B.4). This command file creates sensor data
and stores the data object in the Cronus directory ":jdl:sensors".

If the object database already exists, the user only needs to activate the Sensor
Manager either in the background (sensor &) or in the foreground (sensor /interactive).
In the foreground, any messages from the manager will be printed on the monitor
screen. In the background, any messages will be stored in the log.txt file.

39

3.3.9 Situation Report Manager Startup

Option A

% cronus startservice jdlsit@host

@host is the hostname of the machine on which the Situation Report Manager is

installed.

Option B

% cd sitrep
% sitrep /dbcreate=O
% sitrep &

To start the Situation Report Manager, go to the directory that contains the executa-
ble sitrep. The Situation Report Manager stores Army data in its object database. The
object database should be removed and recreated for each demonstration. If
objectdb.540 exists in the directory, remove it and then execute dbcreate to create a
new object database. The Situation Report Manager can be activated in the background
(sitrep &) or in the foreground (sitrep /interactive). A foreground activation will print
any messages from the manager onto the screen. In the background, messages from
the manager will be stored in the log.txt file.

3.3.10 Simulation Data Manager Startup

Option A

% cronus startservice jdldata@host

@host is the hostname of the machine on which the Simulation Data Manager is
installed.

Option B

% cd simdata
% simdata /dbcreate=O
% simdata &

3.3.11 Summary of Manual Startup

The following is a summary of the two options startup of the tri-service experiment
manually as described above.

Option A

"% cronus startservice jdltrm@host
"% cronus startservice jdltrack@host
"% cronus startservice jdlsit@host
"% cronus startservice jdlsen@host
"% cronus startservice jdltarg@host

40

% cronus startservice jdltfil@host
% cronus startservice jdlfcast@host
% cronus startservice jdltime@host
% cronus startservice jdlstatdisp@host
% cronus startservice jdldata@host

Option B

% cd statdisp
% jdldisp /dbcreate=O
% jdldisp &

% cd timer
% timer /dbcreate=O
% timer &

% cd trackrpt
% trackrpt /dbcreate=O
% trackrpt &

% cd tracksimn
% tracksim /dbcreate=O
% tracksim &

% cd targsim
% targsim. /dbcreate=O
% initmedtargs
% targsimn &

% ed targfil
% targfil /dbcreate=O
% targfil &

% cd weather
% weather /dbcreate=O
% weather &

% cd sensor
% sensor /dbcreate=O
% initmedsensor
% sensor &

% cd sitrep
% sitrep /dbcreate=O
% sitrep &

% cd simdata
% simdata /dbcreate=O
% simdata &

41

3.3.12 Experiment Simulation Startup

After the managers have been activated, go into tropic to set up the experiment
simulation.

% cronus tropic
command: on bjdltrm}@host InitializeDB
command: on {jdltime}@host create
command: set timer on $obj
command: on {jdltrack}@host LinkToTimer $timer
command: on {jdlsit}@host LinkToTimer $timer
command: on {jdltarg}@host LinkToTimer $timer
command: on {jdlsens}@host LinkToTimer $timer
command: on {jdlfcast}@host LinkToTimer $timer
command: on {jdltrm}@host LinkToDisplay
command: on {jdltime}@host LinkToDisplay
command: on {jdltrack}@host LinkToDisplay
command: on {jdlsit}@host LinkToDisplay
command: on {jdltarg}@host LinkToDisplay
command: on Udlsens}@host LinkToDisplay
command: on {jdlfcast}@host LinkToDisplay
command: on {jdltfil}@host LinkToDisplay
command: on Ujdldata}@host UnkToDisplay
command: on ":jdl:sensors:noscscooby.MedSea" Operatesensor 0
command: on {jdlsit}@host ReadSitRep armyfile
command: on {jdltrack}@host ReadTracks navyfile
command: on $timer start

3.4 USER INTERFACE ACTIVATION

The User Interface is a Cronus client that invokes the Simulation Data Manager for
tri-service data for display. Because it is not a Cronus manager, the User Interface can
only be activated in the directory it resides in.

To activate the User Interface, go to the directory that contains the executable
graphics (ui directory) and activate the executable.

% cd ui
% graphics

Successful activation of the User Interface will display the name of the Tri-Service
Distributed Technology Experiment.

42

4.0 REFERENCES

Berets, J. C., and R. M. Sands, Introduction to Cronus, Report No. 6986, BBN Systems
and Technologies Corporation, January 1989.

BBN Systems and Technologies Corporation, RELEASE NOTICE Cronus Release 1.5, 1
May 1990.

BBN Systems and Technologies Corporation (The Diamond Group), Diamond Multime-
dia Toolkit, 16 February 1989.

Gadbois, M. J., Distributed Operating System Experiment (DOSE) Application User's Man-
ual, Technical Document 1801, Naval Ocean Systems Center, February 1990.

Gadbois, M. J., and M. F. Barrett, JDL Tri-Service User Interface Source Code, Technical
Document 1733, Naval Ocean Systems Center, January 1990.

Gadbois, M. J., and A. M. Newton, "Tri-Service Distributed Technology Experiment,"
1990 Symposium on Command and Control Research Proceeding, 12-14 June 1990.

GOTS 1.0.5 Programming Guide (Alternate Environment), Space and Naval Warfare Sys-
tems Command (SPAWAR), PMW 162 Naval Tactical Command System (NTCS),
21 January 1991.

Newton, A. M., Installation and Operational Instructions for the C2 Internet Application,
Rome Laboratory, Internal White Paper, 23 August 1989.

43

APPENDIX A

APPENDIX A.1: TRACK REPORT MANAGER DATA OBJECT REPRESENTATION

File Name: trLkt.def

canrype TRACKOBJECT
representation is TrackObjec:
record

track_rpt: TRACKREPORT
annote "track report information";

track-rpt-plus: TRACKREPORTPLUS
aumote "additional track report information";

end TRACKOBJECT
annote Each Track Report Manager object contains the full

information about a track";

cantype TRACKREPORT
representation is TrackReport:
record

trk_num: U161
annote "track range of track number in octal

0000 Illegal number
0001-0076 PU address
0077 Illegal number
0100-0176 RU address
0177 PU/RU collectadr
0200-7776 track numbers
7777 intemal - illegal";

lat track: F32
annote 'latitude of track (minutes).

range of latitude
-5400 to 5400 minutes";

long track: F32
annote "longitude of track (minutes).

range of longitude
-10800W to 10800 minutes";

bearing: F32
armote "bearing from dhrp (degrees).

values of bearing
0 to 360 degress";

lat dlrp: F32
annote "latitude of dlrp (minutes).

range of latitude
-5400 to 5400 minutes";

Iongldlrp: F32
annote "longitude of dlrp (minutes).

range of longitude
-1080 to 10800 minutes":

dep high: F32
annote "depth or height (feet).

range of depth/height

0 to - 127,000 feet";
platfonn_type: ASC

annote "type of platform,
values of data type

A = Air
L = Land
S = Surface
U = Subsurface
x = Unreported";

44

cat: ASC
armote "identity or catagory.

values of cazagoty
F = Friendly

H = Hostile
I l=tntercepor

N = Nonsubarine
S = Special
U = Unknown
x = Unrepoirted";

end TRACKREPORT:

cantype TRACKREPORTPLUS
representation is TrackReportPlus:
record

time: S321
anmote "greenwich me.m time";

trkqa: UI61
nnote "track quality.

values of track quality
0 to 7";

lat-tdir. ASC
annote "direaion north or south,

values of latitude direction
N = North, S = South".

long tdir: ASC
annote "direction east or west,

values of longitude direction
E = East. W = West";

course: F32
annote "course (degrees).

values of course
0 to 360 degrees";

speed: F32
annote "speed (divr),

range of speed
0 to -3571-7/8 dm/hr';

range: F32
annome "range from dlrp (naul miles)";

nudear. ASC
annote "nuclearnon-nuclear,tmknown,

values of nucler

Y = Yes, nuclear
N = No, not nuclear
U = Unknown
x = Unreported*;

end TRACKREPORTPLUS;

45

APPENDIX A.2: SENSOR MANAGER DATA OBJECT REPRESENTATION

File Name: sensor.tYRedef
cantylx SENSORVARIABLE

representation is SENSORvariable:
record

Name: ASC;
Type: SENSORTYPE;
xyResolution: S161;
FrmDefs: array of FRNMDEF;

end SENSORvariable
annote -The sensor is fully described by the SENSORvariable structure. It

contains: the label for the sensor (Name). the characteristic of the
sensor (Type), the resolution parameter for the sensor (xyResolution)
in deciseconds, and the list of sensor schedules (FrmDefs).';

cantype SENSORTYPE
representation is SENSORtype:

{ radar. infrared. sigmt I
annote "SENSORtype is an enumerated type that designates the characterstics

of the sensor.":

cantype FRMDEF
represenation is FiMdef:
record

tStart EINTERVAL;
tEnd: EINTERVAL;
tInc: EINTERVAIL

Location: LOCATION3D; (See Appendix A.9)
Region: EREGION; (See Appendix A.9)

end FRMdef
armote "A frame is the fundamental unit of observation used by the sensor.

he FRMdef structure defines the frame unit. Each frame is defi-ed
by: the starting time (tStart), the ending time (tEnd), the interval
of time between observations (tint), the location of the sensor
(Location), and the region of space that is being observed (Region).";

46

APPENDIX A.3: TARGET SIMULATION MANAGER DATA OBJECT
REPRESENTATION

File Name: tazgsim.tvpedef

cantyre TARGETVARIABLE
representation is TARGETvariable:
record

Name: ASC;
TargType: TARGETIYPE;
TargID: TARGETIDENT;
TargVal: ETHREAT;
ControlNum: U161;
Fi'stVisible: EBOOLg

Paths: array of ESEGMENT; (See Appendix A.9)
end TargetVariable
amnote "A target is comprised of: (l) a name, (2) a type, (3) an identity

keyword, (4) a threat rating, (5) a control number (this is a PATCH
used to make these objects compatible with the NAVY Userinterface
client. The NAVY interface should be changed to identify and log
objects based on the UID not a control number), and (6) a list of
line segments. Each segment is considered to be the path that the
target travelled during a particular time interval.";

cantype TARGETIYPE
representation is TARGETtype:

(Jeep. Tank, Airplane, Building. Airfield, Truck. Bridge.
PowerPlant, Railroad, Dam. Ship. Missile)

annote "An enumerated type to describe the type of target being represented.";

cantype TARGETIDENT
representation is TARGETident:

{AirTARGET. MobileGroumdTARGET,
StationaryGroundTARGET, BaseTARGET. UnknownTARGET)

annote "An enumerated type to describe the target identity.';

cantype ETHREAT
representation is THREAT:

(Friendly, Hostile. Unknown)
annote "An enumerated type to describe the intentions of the target.";

47

APPENDIX A.4: TAPGET FILTER MANAGER DATA OBJECT REPRESENTATION

File Name: targfil.typedef

canrype FELTERREPORT
represenatuon is FILTERreport:
record

TotalDetections: U161;
RealDetections : U161;
SemiR:alDetections: U161;
FakeDetections: U161;
OpsProcessed: U161;
SensorStaus: array of SENSORDATA;

end FILTERreport
annote "This cantype record holds all of the statistical information

for the Taget Filter ReportStarus - the total nmnb,. f
dActons processed. % of real. sanui-real, and false
detections, the total number of operations processed, and
who sent those operatiotns along with a count of the
number of operations sent.";

cantype SENSORDATA
representaion is SENSORdata:
record

SetsorlD: ASCQ
NumOps : U161;

end SENSORdata
armote "This cantype record holds Sensor IDN and the number of

operations sent by the respective Sensors.";

48

APPENDIX A.5: WEATHER MANAGER DATA OBJECT REPRESENTATION

File Name: weather.typedef

type JDLWeatherForecastObject

cantype WXCASTDATA
representation is WXCASTdata:
record

ForecastDate: EINTERVAL;
BeginValidPeriod: ETINTERVAL;
EndValidPeriod: EINTERVAL;
ForecastData: WXINFO;

end WXlnfo
annote "A weather forecast is comprised of: (i) weather information for a

map location. (2) a date when that forecast was made, and (3) dates
that define the utility of the information.";

type JDLWeatherDataObject

cantype WXINFO
representation is WXinfo:
record

Location: LOCATION2D (See Appendix A.9)
Ceiling: U161;
CloudCoverage: CLOUDCOVERAGE;
CloudTypes: array of CLOUDTYPE;
SurfaceVisibility: U321;
VisibilityRestricLions: ASC;
Weather. WEATHERTYPE;
BarometricPressure: U161;
Temperature: S161;
DewPoint: S161;
SurfaceWindDirecion: U161;
AvgSurfaceWindSpeed: U16I;
MaxSurfaceWindSpeed: U161;

Remadcs: ASC;
Station: ASC;

end WXinfo
annote "The weather information contained in a concise package. This can

become the basis for either a weather report or a weather forecast.";

cantype CLOUDCOVERAGE
representation is CLOUDcov:

(zero, light, heavy)
annote "An enumerated type to describe the amoumt of cloud coverage.";

cantype CLOUDTYPE
reprsesatation is CLOUDtype:

(cimis, nimbus, cumulus, strarus,
cirrocumulus, stratocumulus, altocumnulus,
cirrostratus, nimbostratus, altostrats.
cumulonimbus)

annote "An enumerated type to describe the type of cloud coverage.";

cantype WEATHERTYPE
representation is WEATHERtype:

(clear, clouds, fog, rain, snow

annote "An enumerated type to describe the general weather condition.'%

49

APPENDIX A.6: TIMER MANAGER DATA OBJECT REPRESENTATION

File Name: timer.tvpedef

cantype TIMERSTATUS

representation is TlMERstatus:
record

HoslTime: EDATE:
GlobalTune: EDATE,
Adjustmnt: EINTERVAL;
AdjAvg: S321;
AdjDev: $321;
AdjSamples: S321;
Synclnteival: U161;
TimeUntilSync: U161;

end TIMERstaxus
annote "Status information that is normally maintained by the manager and

reported upon requesL";

cantype TIMEROBJECT
representation is TIMERobject:
record

TinerTimeRef: EDATE,
GlobalTumeRef: EDATEh
InitialValue: EDATE,
StopT-ne: EDATh,
StepIncrement: EINTERVAL;
Running: EBOOL;
AwaitingStop: EBOOLI
RateMultiplier. U 161;
RateDivisor. U 161;

end TIMERobject
annote "The simulation clock database, with all information needed to

produce a simulation time. Each object represents a different
simulation clock.";

50

APPENDIX A.7: SITUATION REPORT MANAGER DATA OBJECT
REPRESENTATION

File Name: sitrep.tvpedef
cantype SIT REP

representation is SituationReport_Data:
record

Classification: UNIT_(1CASS;
Unit.Name: ASQ
Unit_Number: U321

asmote "Manager-generated number (needed for user interfac,).";
Unit Type: UNITTYPE;

UniLLatitude: F32;
Unit_Longitude: F32;
Mission: UNILMISSION;
Subord_coirmn: EBOOL

arnote "Implemented as a boolean, it is really a YES/NO answer.";
EneenyContact: UNITCONTACT;
WeaponStat.Crews: U161

annote "Percentage of crew available * 100.";
WeaponStatEquipment: U161

annote "Percentage of equipment availabel * 100.";
EvaLStarus: UNITSTATUS;
Epoch: EINTERVAL;

DMUid: EUID
annote "UID of Data Manager object containing this report.";

end SITREP
annote "Contains the information necessary for a situation report for a given unit.";

cantype UNIT-CLASS
representation is UnitClassificationEnum:

(UNKNOWN. HOSTILE, FRIENDLY)
annote "describes the possible classifications (friendly, hostile, or unknown)

of a Unit.';

cantype UNITTYPE
representation is UnitTypeEnum:

{MECHINFANTRY, ARTILLERY. CAVALRY)

annote -delineates the types of units reported on by this manager.
For purposes of the JDL experiment, the complete list has been reduced
to these three values.";

cantype UNITMISSION
representation is UnitMissionEnum:

(OFFENSE, DEFENSE, DIR.SUPPORT. GEN-SUPPORT)
remote "possible missions a unit can perform.";

cantype UNITCONTACT
representation is UnitEnemyContactEnum:

(NONE. LIGHT. HEAVY)
amote "possible levels of enemy contact';

cantype UNIT-STATUS
representation is UnitStawsEnum:

(BLACK. RED. YELLOW. GREEN)
annote "possible commander's evaluation of unit status.";

51

cantype SRSrATUS
representation is Situafion_Repoy._Status:
record

Up..Since= EDATE
aimote "Datedume manager was stared.";

Linkedj_To_Timer. EBOOL
annote "Is the manager linked to a simulation timer.";

Timer. EUID
annote "Associated timer object for this manager.-;

ReadinLSitReps: EBOOL
annoze "Is dt manager present reading Situation Reports from a data file.";

end SR_STATUS
armote "Status information returned by ReponStamso operation.-;

52

APPENDIX A.8: SIMULATION DATA MANAGER DATA OBJECT

REPRESENTATION

File Name: simdata.tkedef

cantype SIMDATA
representation is SlMdata:
record Position: LOCATION3D; (See Appendix A.9)

S(See AppnixA9)
DataType: DATATYPE(Appendx
Source: DATASOURCE; (See Appendix A.9)
ThreatID: ASC;
Category: ASC;

Contents: ESTORAGE; (See Appendix A.9)
end SIMdata
annote "The SlMdata structure will form the basic data object for the JDL

simulation. The objective is to provide an interface for quickly
looking up data that the Userinterface needs, while maintaining the
object that has been entrusted to the DataManager. For quick
retrieval of information, the Position, DataType, and Source entries
are designed to allow the Userinterface to frame data search
requests. These options should map directly to the options displayed
on the Userinterface screen. The Contents entry allows the manager
that stores data to store an arbitrary set of data (e.g. an object
or a simple set of tracks) for use by the simulation or by the
Userlnterface.";

cantype SIMtREF
representation is SIMref:
record

ObjUID: EUID;

Position: LOCATION3D1 (See Appendix A.9)
DataTypr: DATATYPE, (See Appendix A.9)
Source: DATASOURCE, (See Appendix A.9)
ThreatID: ASC;
Category: ASC;

end SIMef
annote "The SIMref structure is used bye calling processes to access the

essential elements of the RetrieveObjects search operation. More
detailed information can be obtained about individual simdata
objects by using the RetrieveData operation.";

cantype DATABASES
representation is DATAbases:

SINFORMIX, ORACLE, SYBASE, NODB }
annote "Identify the database that will be used by the SimulationData

manager.",

53

APPENDIX A.9: JDL OBJECT REPRESENTATION

File Name: jdlobj.tvpedef

cantype LOCATION2D = 26001
representation is LOC2D:
record

Latitude: S321;
Longitude: S321;

end Loc
annote "Two dimensional point in the simulation. Longitude and Latitude are

in deciseconds.";

cantype LOCATION3D = 26002
representation is LOC3D:
record

Latitude: S321;
Longitude: S321;
Altitude: S321;

end Loc3D
annote "Three dimensional point in the simulation. Longitude and Latitude are

in deciseconds. Altitude is in feeL";

cantype EREGION = 26003
representation is REGION:
record

LowerLeft: LOCATION3I>.
UpperRight: LOCATION3D1

end EREGION
annote "A thrde dimensional cubic region in the simulation.";

cantype ESEGMENT = 26004
representation is SEGMENT:
record

Stattmie: EINTERVAL;
StanLoc: LOCATION3D;
EndTime: EINTERVALý
EndLoc- LOCATION3D;

end ESEGMENT
annote "A straight line representation of a target path.";

cantype TARGETDATA = 26005
representation is TARGETdata:
record

TargetUID EUID;
TargetLocation: LOCATION3D;
TargetDescription: ASC;
TargetType: ASC;
TargetNt•m: U161;
ThreatValue: ASC;

end TARGETdata
annote "This represents a generic format for simulation targets. A target

is defined to be any object that is detected by a sensory object
in the simulation. Most of the fields ame ASCII to allow users to
customize the information contained within.';

54

cantype DETECTIONDATA = 26006
rresentation is DETECTIONdata:
record

OrigmUUm EUHD
OriginName: ASQ
Tunet EINTERVAL
snr. U161;
Target- TARGETDATA;

end DETECTIONdata
annote "This repesents raw data that has been seen (detected) within the

simulation. It is the common unit of data passed by all detection
devices (such as sensors). Dexteions are point based, but, each
point provides enough information to reassemble scatered data.";

cantype DATATYPE = 26007
representation is DATAtype:

(WeatherDat, TrackData, TargetData. SituationReport)
annote "DATAtype is an enumerated type that describes the type of information

passed through the simulation. It ultimately should correspond to
the type of information viewable at the user interface. Data
sent to the SimulationData manager MUST be identified with an
approriate DATAtype.r;

cantype DATASOURCE = 26008
representation is DATAsource:

(AirForce, Army, Navy)
annote "DATAsource is an enumerated type that describes the service sites

nf the JDL simulation.";

cantype ESTORAGE = 26009
representation is STORAGE:
record

ctype: U 161;
dength: S321:
cdata: OVEC;

end STORAGE
annote "The STORAGE structure holds the contents of ONE and ONLY ONE

canonical type. Whether this is used to transport an object
or store relevant data. the essential information for conversion
back into the internal format is present within the structure.";

cantype CONNECTSTAT = 26010
representation is CONNECTstat:
record

ConnAnempts: S321;
ConrnTimeouts: 321;
CousErmts: S321;

end CONNECTstat
annote "Provides debugging and statistical information on the simulation

when used with some library tools. Used primarily by the sensor
manager, but, could be used by any manager wishing to keep track of
its ability to talk to other managers.";

55

APPENDIX B

APPENDIX B.1: SAMPLE navyfile DATA FILE

1 1 2490.00 0.00 241.36 0.00 2700.00 9300.00 S F 065 0 N K 320 20.59 41.32 x

1 1 2400.00 30.00 264.12 0.00 2700.00 9300.00 S F 145 6 N E 319 19.93 56.09 x

1 1 2490.00 60.00 280.00 0.00 2700.00 9300.00 S F 205 6 N Z 319 19.93 20.86 x

2 5 2575.00 0.00 267.31 0.00 2700.00 9300.00 S r 210 6 N K 319 19.93 33.82 x

1 2500.00 90.00 266.42 0.00 2700.00 9300.00 s F 265 6 N K 319 19.93 42.46 x

5 25S5.00 30.00 267.31 0.00 2700.00 9300.00 S r 270 6 N Z 319 19.93 33.02 x

1 2510.00 120.00 233.45 0.00 2700.00 9300.00 S F 325 6 N Z 319 19.93 36.31 x

2 2600.00 60.00 267.31 0.00 2700.00 9300.00 S F 330 6 H Z 319 19.93 33.82
I 2620.00 140.00 267.31 0.00 2700.00 9300.00 S F 330 6 N E 319 19.93 33.$2 x

S 2620.00 10.00 267.31 0.00 2700.00 9300.00 S F 390 6 N E 319 19.93 33.82 x
3 2260.00 1020.00 248.68 1000.00 2700.00 9300.00 U U 440 6 N Z 319 19.93 S4.02 x
1 2530.00 160.00 267.31 0.00 2700.00 9300.00 S F 445 6 N K 319 19.93 33.62 A

5 2630.00 110.00 267.31 0.00 2700.00 9300.00 S F 450 6 N K 319 19.93 33.82 x
3

6 2270.00 1010.00 246.68 1000.00 2700.00 9300.00 U U 500 6 N E 319 19.93 54.02 x

1 2540.00 190.00 267.31 0.00 2700.00 9300.00 S F S0S 6 N K 319 19.93 33.62 x

5 2640.00 135.00 267.31 0.00 2700.00 9300.00 S F 510 6 N K 319 19.93 33.82 x

2

1 2540.00 220.00 267.31 0.00 2700.00 9300.00 S F 565 6 N K 319 19.93 33.62 x

5 2645.00 165.00 267.31 0.00 2700.00 9300.00 S F 570 6 N E 319 19.93 33.82 x

2 25.00 19S.00 267.31 0.00 2700.00 9300.00 S F 630 6 M Z 319 19.93 33.92
1 2560.00 250.00 267.31 0.00 2700.00 9300.00 S F 625 6 N K 319 19.93 33.82 x

5 2645.00 215.00 267.31 0.00 2700.00 9300.00 S F 630 6 N K 319 19.93 33.82 A

5 2645.00 225.00 267.31 0.00 2700.00 9300.00 S F 690 6 N E 319 19.93 33.62 x
2

5 2645.00 255.00 267.31 0.00 2700.00 9300.00 S F 750 6 N K 319 19.93 33.62 A

2 2570.00 300.00 248.60 700.00 2700.00 9300.00 A F 75S 6 N K 319 19.93 54.02 x

3

6 2260.00 1000.00 248.68 1000.00 2700.00 9300.00 U U 790 6 N Z 319 19.93 54.02 x
2 2570.00 330.00 246.66 1000.00 2700.00 9300.00 A F 605 6 N K 319 19.93 54.02 A

5 2645.00 225.00 267.31 0.00 2700.00 9300.00 3 F 810 6 N E 319 19.93 33.82 .

2 2570.00 360.00 248.68 3000.00 2700.00 9300.00 A F 655 6 N E 319 19.93 54.02 x

2
2 2565.00 390.00 244.68 6000.00 2700.00 9300.00 A F 905 6 N E 319 19.93 54.02 x

10 2645.00 305.00 246.66 900.00 2700.00 9300.00 A F 915 6 N E 319 19.93 54.02 A

2
2 2565.00 410.00 248.66 10000.00 2700.00 9300.00 A F 955 6 N K 319 19.93 54.02 x

10 2645.00 330.00 248.68 1500.00 2700.00 9300.00 A F 965 6 N K 319 19.93 54.02 .

3
6 2290.00 990.00 248.60 1000.00 2700.00 9300.00 U H 990 6 N K 319 19.93 54.02 x

2 2555.00 440.00 248.66 10000.00 2700.00 9300.00 A F 1005 6 N K 319 19.93 54.02 x
10 2645.00 360.00 246.68 2500.00 2700.00 9300.00 A F 1015 6 N K 319 19.93 54.02 .

3
2 2550.00 470.00 246.68 10000.00 2700.00 9300.00 A F 1055 6 N K 319 19.93 54.02 .

10 2640.00 390.00 246.60 S000.00 2700.00 9300.00 A F 1065 6 N E 319 19.93 54.02 x

6 2310.00 980.00 248.66 1000.00 2700.00 9300.00 U " 1070 6 N K 319 19.93 54.02 .

2 2540.00 490.00 248.66 10000.00 2700.00 9300.00 A F 110S 6 N Z 319 19.93 54.02 A

10 2635.00 420.00 246.66 8000.00 2700.00 9300.00 A F 1115 6 N K 319 .19.93 54.02 A

6 2320.00 960.00 246.68 1000.00 2700.00 9300.00 U H 1120 6 N E 319 19.93 54.02 .
2

2 2535.00 S10.00 246.66 10000.00 2700.00 9300.00 A F 1155 6 N K 319 19.93 54.02 .

10 2630.00 450.00 248.68 6000.00 2700.00 9300.00 A F 1165 6 N K 319 19.93 54.02 .

2
2 2530.00 530.00 243.68 10000.00 2700.00 9300.00 A F 1205 6 N K 319 19.93 54.02 x

10 2620.00 400.00 246.68 6000.00 2700.00 9300.00 A F 1215 6 N K 319 19.93 54.02 x

1
2 2520.00 550.00 246.68 10000.00 2700.00 9300.00 A F 1235 6 N K 319 19.93 54.02 x

2 2510.00 570.00 242.60 10000.00 2700.00 9300.00 A F 1305 6 N Z 319 19.93 54.02 a

56

APPENDIX B.2: SAMPLE armyfile DATA FILE

00:0":20.000 Infantry #1 2800 760HOYMY 100 100
00.: . O.000 Infant r"#1 2795 165HIOYNy 1 00 10
00:09:25.000 Infantry 01 2790 7?70HIOYY 100 100
00:11:25.000 Infantry 91 2785

7
7SHIOY y 100 100

00:12:35.000 Infantry #1 2780 700HIOYNY 100 100
00:13:25.000 Infantryfl2 2695 7SOFIDYNG 100 100
00:14:10.000 Infantry #1 2775 780KHIOYNY 1000 100
00 :15:10.000 Infantry #2 2700 7 lIODYNG 100 100
00:16:00.000 Cavalryl 2690 940HCOYKY 100 100
00:16:005.0000 Infantry #1 2770 78OHIOYWY 100 100
00:16:50.000 Infantry #2 2705 70OFIDYNG 100 100
00:17:00.000 Cavalry 12 2690 840FCSYNG 100 100
00:17:40.000 Infantry 01 2765 7SOHIOY", 100 100
0 0:17: 50. 000 Cavalry_11 2685 940HCOYMY 100 100
00 1:: 30. 000 Infantry 02 2710 76OFIDYNG 100 100
00:18:40.000 Infantry-#1 2760

7
OHIOYKY 100 100

00:1$:40.000 Cavalry h1 2680 935HCOY)tY 100 100
00:19:45.000 Infantry #2 2715 740FIDYNG 100 100
00:20:05.000 Cavalry T1 2680 93SHCOYNY 100 100
00:20:10.000 Infantry 01 2755 740HIOYL~t 100 100
00:20:25.000 Cavalry T2 2685 8sOFCSYNG 100 100
00:21:00.000 Infantry #2 2720 760FIDYLR 100 100
00:21:50.000 1nfantry-#1 2750 7 0HIOYLR 100 100
00:22:00.000 Cava 1ry•'1 2675 93SIHCOYhFY 100 100
00:22:05.000 Cavalry_#2 2680 55rFCSYNG 100 100

APPENDIX B.3: SAMPLE initmedtargs COMMAND DATA FILE
SRevision$
#1 /bin/csh
set noglob

echo'"
echo *SAVE CURRENT CRONUSDIRECTORY - SET TO TARGETSIMULAT1ON DIRECTORY"
set DIR='cronus getwdir'
cronus setwdir :jdl.targeu

echo" "
echo "SET ACL OF GENERIC OBJECT"
cronus tropic << xxxEOFxxx
on IgroupI LookupGroup JDLSimulation
on (jdltarg) addtoacl ((4GroupUID all))
quit
xxxEOFxxx

echo " "
echo "CREATING TARGET"

set TYPE--Ship
set NAME=EnemyShipl
set CLASS=Hostile
set LAT= 1332000

set LONG=612000
set ALT=O

cronus tropic << xxxEOFxxx
newtype jdltarg
on (jdltarg} create SNAME STYPE SCLASS '00:00:30" (SLAT. SLONG. SALT) /Stan
on :jdl:targets CreateEntry \SObjecz /EntryName=$NAME
xxxEOFxxx

echo Catalogued target is: :jdl:targets:SNAME
echo Set AccessControl and Add Segments for that target.

57

cronus tropic << xxxEOFxxx
on (group) LookupGroup JDLSimulation
on $NAME addtoacl (eSGroupUJD all))
on SNAME moveto "00:01:20" (1344000. 600000. 0)
on SNAME moveto "00.02:20" (1356000. 588000. 0)
on SNAME moveto "00-03:20" (1368000. 576000, 0)
on SNAME moveto "00:04:20" (1380000. 564000. 0)
on SNAME moveto "00:05:20" (1383000. 552000,0)
on SNAME moveto "00-06:20" (1386000. 540000. 0)
on SNAME moveto "00:07:20" (1392000. 534000, 0)
on SNAME moveto "00:11:40" (1392000, 522000, 0)
on SNAME moveto "00:13:50" (1404000. 510000, 0)
xxxEOFxxx

echo" -

echo "CREATING TARGET"

set TYPE=Airplane
set NAME=EnemyPlane I

set CLASS=Hostile

set LAT=1392000
set LONG=534000

set ALT=0
cronus tropic << xxxEOFxxx
newtype jdltarg
on (jdltarg) create SNAME STYPE SCLASS "00.907:30- (SLAT, SLONG, SALT) /noStart
on :jdl.targets CreateEntry \SObject /EntryNane=$NAME

xxxEOFxxx

echo Catalogued target is: :jdl:targets:$NAME
echo Set AccessControl and Add Segments for that target.

cronus tropic << xxxEOFxxx

on (group) LookupGroup JDLSimulation
on SNAME addtoacl ((\SGroupUID all))
on SNAME moveto "00-08:20" (1404000, 540000, 500)
on SNAME moveto "00:09:20" (1416000, 540000, 1000)
on SNAME moveto "00:10:10" (1434000.546000,2000)
on SNAME moveto "00:11:00" (1446000.558000, 3000)
on SNAME moveto "00: 11:50" (1464000,576000, 6000)
on $NAME moveto "00:12:40" (1488000.594000. 8000)
on $NAME moveto "00:13:30" (1512000. 612000, 10000)
on SNAME moveto "00:14:20" (1536000, 612000, 10000)
on SNAME moveto "00:15:10" (1560000. 600000, 10000)
on SNAME moveto "00:16:00" (1572000, 576000, 10000)
on SNAME moveto "00:16:50" (1566000, 564000. 10000)
on SNAME moveto "00:17:40" (1554000, 552000. 10000)
on SNAME moveto "00:18:30" (1542000. 528000, 10000)
on SNAME moveto "00:19:20" (1527000, 522000, 10000)
on $NAME moveto "00:20:10" (1500000,516000, 10000)

on SNAME mnoveto "00:21:00- (1476000. 516000, 10000)
xxxEOFxxx

echo" "
echo "CREATING TARGET"
set TYPE=Airplane

set NAME=EnemyPlane2
set CLASS=Hostile

set LAT= 1392000

set LONG-534000
set ALT=O
cronus tropic << xxxEOFxxx

newtype jdltarg
on (jdltarg) create SNAME STYPE SCLASS "00:10:20- (SLAT. SLONG, SALT) /noStart
on :jdl:targetu CreateEntry \SObject /EntryName=SNAME
xxxEOFxxx

58

echo Catalogued target is: :jdl:targeus:SNAMB
echo Set AccessControl and Add Segments for that targeL

cronus tropic << xxxEOFxxx
on (group) LookupGroup JDLSimulation
on SNAME addwoacl ((WGroupUID all))
on $NAME moveto "00:11:10" (1398000.516000.700)
on SNAME moveto"00:12:00" (1410000.498000. 1100)
on SNAME moveto "00:12:50" (1422000,492000. 1700)
on SNAME moveto "00:13:40" (1440000,474000.3000)
on SNAME moveto "00:14:30" (1452000, 456000. 8000)
on SNAME moveto "00:15:20" (1464000, 438000, 10000)
on $NAME moveto "00:16:10" (1476000,420000. 12000)
on SNAME moveto "00:17:00" (1488000,408000, 14000)
on SNAME moveto "00:17:50" (15000O0, 396000, 16000)
on SNAME moveto "00:18:40" (1503000,408000, 16000)
on SNAME moveto "00:19:30" (1506000.426000, 16000)
on SNAME moveto "00:20:20" (1500000,444000, 16000)
on SNAME moveto "00:21:10" (1488000. 456000, 16000)
on SNAME moveto "00:22:00" (1476000.468000, 14000)
xxxEOFxxx

echo ' "
echo "CREATING TARGET"
set TYPE=Airplane
set NAME=BaselPlane
set CLASS=Friendly
set LAT=1707000
set LONG=312000
set ALT=0
cronus tropic << xxxEOFxxx
newtype jdltarg
on (jdltarg) create $NAME STYPE SCLASS "00:13:30" (SLAT, $LONG, SALT) /noStast
on :jdl:targets CreateEntry \SObject /EntryName.=NAME
xxxEOFxxx

echo Catalogued target is: :jdl:targets:SNAME
echo Set AccessControl and Add Segments for that target.

cronus tropic << xxxEOFxxx
on (group) LookupGroup JDLSimuiation
on SNAME addtoacl (MSGroupUlD all))
on SNAME moveto "00:13:55" (1698000, 324000, 800)
on SNAME moveto "00:14:45" (1686000, 336000. 1500)
on SNAME moveto "00: 15:30" (1674000. 348000, 5000)
on SNAME moveto "00:16:30" (1662000. 360000, 9000)
on SNAME moveto "00: 17:00" (1650000, 372000, 12000)
on SNAME moveto "00: 18:00" (1638000. 384000. 14000)
on SN AME moveto "00: 19:00" (1626000, 3960in, 20000)
on SNAME moveto "00: 19: 50" (1614000, 408000. 22000)
on SNAME moveto "00:20:30" (1602000, 4200C0, 22000)
on SNAME moveto "00:21:30" (1590000. 432000. 22000)
xxxEOFxxx

echo" "
echo "CREATING TARGET"
set TYPE=Airplane
set NAME=Base2Plane
set CLASS=Friendly
set LAT=1680000
set LONG= 144000
set ALT=O
cronus tropic << xxxEOFxxx
newtype jdhtarg
on (jdltarg) create SNAME $TYPE SCLASS "00:14:10" (SLAT, SLONG. SALT) noStart
on :jdl:targets CreateEntry \$Object /EntryName=SNAME
xxxEOFxxx

59

echo Catalogued target is: :jdl:targets:SNAME
echo Set AccessControl and Add Segments for that target.

cronus tropic << xxxEOFxxx
on (group) LookupGroup JDLSimulation
on $NAME addtoacl ((MSGroupUID all))
on $NAME moveto "00:14:40" (1674000, 150000. 800)
on SNAME moveto "00:15:30" (1668000, 168000. 1500)
on SNAME moveto "00: 16:30" (1662000, 186000. 7000)
on $NAME moveto "00:17:00" (1656000, 198000. 10000)
on $NAME moveto "00:18:00" (1650000, 216000, 15000)
on SNAME moveto "00:18:40" (1644000, 234000, 18000)
on SNAME moveto "00:19:50" (1638000, 252000, 18000)
on SNAME moveto "00:20:20" (1632000, 270000. 18000)
on SNAME moveto "00:21:10" (1626000, 288000, 18000)
on SNAME moveto "00:22:00" (1620000. 306000, 18000)
xxxEOFxxx

echo""
echo "CREATING TARGET"
set TYPE=Airfield
set NAME-BaseOne
set CLASS=Friendly
set LAT=17070•0
set LONG,-312000
set ALT=0
cronus topic << xxxEOFxxx
newtypejdltarg
on (jdltarg) create SNAME STYPE SCLASS "00.00:.30" (SLAT, SLONG, SALT) /Start
on :•jdliargets CreateEntry \SObject /EntryName=SNAME
xxxEOFxxx

echo Catalogued target is: :jdl:targets:SNAME
echo Set AccessControl and Add Segments for that target

cronus tropic << xxxEOFxxx
on (group) LookupGroup JDLSimulation
on SNAME addtoacl (C,$GroupU1D all))
on SNAME moveto "00:59:00" (1707000,312000, 0)
xxxEOFxxx

echo" "
echo "CREATING TARGET-
set TYPEAirfield
set NAME=BaseTwo
set CLASS=Friendly
set LAT= 1680000
set LONG- [44000
set ALT=0
cronus tropic << x.xxEOFxxx
newtype jdltarg
on (jdlthrg) create SNAME STYPE $CLASS "00:00:30" (SLAT, SLONG, SALT) /Start
on :jdl:targets CreateEntry \SObjcz /EntryNarne=SNAME
xxxEOFxxx

echo Catalogued target is: :jdl:argeu:SNAME
echo Set AccessControl and Add Segments for that target.

cronus tropic << xxxEOFxxx
on (group) LookupGroup JDLSimulation
on SNAME addtoacl ((GroupUID all))
on SNAME moveto "00"59:00" (1680000,144000, 0)
xxxEOFxxx

echo "
echo "RESTORING ORIGINAL CRONUS WORKINGDIRECTORY"
Cronus setwdir SDIR

60

APPENDIX B.4: SAMPLE initmedsensor COMMAND DATA FILE

$RevisionS
#1 /bin/csh
set noglob

echo "
echo "SAVING rMONUS WORKINGDIRECrORY"
set DIR = "conus gewdir"

echo - -

echo "CREATE SENSOR OBJECT (MedSea)"
cronus tropic << EOF
on (group) LookupGroupUID JDLSimulation
set cgroup GroupUID
on (jdlsens AddToAcI ((Scgroup all))
on .jdlsens) create MedSea radar 1000
set sens obj
on \Ssezns AddToAcl (MScgroup all))
on \Ssens MoveTo 0:00:10 0:25:00 0:00:45 ((1260000,120000.0).(1748000,240000,10000)) (1440000.360000,50000)
quit
EOF

echo""
echo "RESTORING ORIGINAL CRONUS WORKINGD1RECTORY"
cronus setwdir SDIR
exit 0

61

APPENDIX C

APPENDIX C.1: SAMPLE rootmenu COMMAND FILE FOR AUTOMATIC
STARTUP
9
"Command Windows - MENU

"Commands " MENU

"Command Tool" andtool -Wf 000 -WL"" -WI "Commands"

"Shell Tool" shelhool -Wf 0 0 0 -WL
"Commands " END

"-DOS Window" dos .Wf 0 87 137
"System Messages" cmdtool -Ws 512 128 -Wf 255 200 0 -C -WI iusrf-nclude/images/console.icon -WL -"

"Command Windows" END

"JDL" MENU

"Set Config" MENU
"CECOM-RADC-NOSC" setconfig config.CERANO
"CECOM-RADC" setconfig config.CERA
"RADC•-NOSC" setconlig config.RANO

"Set Config" END
"Start Managers" MENU

"TriService" jdlmgrstart all
"AF Only" jdlmgrstan AF
"ARMY Only" jdlmgrstart ARMY
"NAVY Only" jdlmgrssaru NAVY

"Start Managers" END
"LinkTo Timer" MENU

"ALL" shelhtool -Wf 255 0 0 -W1 "JDL Simulation Time" jdllinktime all
"Sensor" shelhtool -Wf 255 0 0 -WI "JDL Simulation Time" idilinktime jdlsens

"TargetSim" shelhtool -Wf 255 0 0 -WI "JDL Simulation Time" jdllinktime jdlharg
"Weather" shelltool -Wf 255 0 0 -WI "JDL Simulation Time" jdllinktime jdlfcast
"SitReport" shelltool -Wf 255 0 0 -W1 "JDL Simulation Time" jdllinksine jdlsit
"TrackSim" shelltool -Wf 255 0 0 -WI "JDL Simulation Time" jdllinktime jdltrack

"LinkTo Tuner" END
"LinkTo Display" jdllinkdisp
"Begin Simulation" MENU

"TriService" jdlsimstart all
"AF Only" jdlsimsrart AF
"ARMY Only" jdlsimstart ARMY
"NAVY Only" jdlsimstan NAVY

"Begin Simulation" EN)
"Stop Managers" MENU

"TriService" jdbngrssop all
"AF Only" jdlmgrstop AF
"ARMY Only" jdlmgrstop ARMY
"NAVY Only" jdlmgrstop NAVY

"Stop Managers" END
"JDL" END

62

"Services" MENU
"Redisplay All" REFRESH
"Lock Screen" lockscreen
"Save Screen Layout" save_screenlayout" cas /dev/null

"Display Clock" MENU

<Iusrfancludefimageslclock.icon> clock
<Jusrrincludefirnages/clock. rom.icon> clock -r

"Display Clock" END
"Printing" MENU

"Check Printer Queue" sh -c "echo; echo'---------'; echo 'Printer queue'; lpq; echo'---------'@"
"Print Selected Text" sh -c "get_selection I lpr; echo 'Selection printed'.@"
"Print Screen" sh -c "echo 'Saving screen imnage'.@ ; screendumplrasfilter8tolllpr -v ; echo Screen printed'@"

"Printing" END
" cat /devlnull
"User Defaults" defaultsedit -Wf 255 200 0
"Color Editor" coloredit -Wf 0 0 0
"Default Font" MENU

"Tiny Font" changefont /usr/lib/fonts/fixedwidthfonts/screen.r.7 "the tiny font"
"Standard Font" changefont /usr/1ib/fonts/fixedwidthfonts/screen.r.13 "the standard font"
"Bold font" changefont/usr/lib/fonts/fixedwidthfonts/screen.b.14 "the Bold font"

"Large Font" changefont /usr/lib/fonts/fixedwidthfonts/cour.b. 18 "the large font"
"Default Font" END

"Services" END

"-Exits" MENU

"Logout" EXIT

"-Exits" END

APPENDIX C.2: SAMPLE CONFIGURATION COMMAND FILES FOR
AUTOMATIC STARTUP

File Name: config.CERLNO

#! /bin/csh -f

Modified on 07/23/91 by SMH
Modified on 09/04/91 by L. Dunham for NOSC

setenv TIMER cecom-devi

setenv SIMDAT nosc-scrappy

setenv WEATHR rl-hydrus
setenv TGTSIM rl-phobos

setenv SENSOR rl-orion
setenv TGTFILI ri-orion

sseinv TRKSIM nosc-astro

setenv TRKRPT nosc-peabody

setenv SITREP cecomn-shiva

63

File Name: conrig.CENO

#1 /bin/csh -f

Modified on 07118/91 by SMH

seIezw TIMER cecon�-devi
SIMDAT nose-scrappy

setenv WEATHR cecom-vishnu
selew TG13IM nosc-peabody
sezeny SENSOR eceom-gita
serenv TOTFILl eceom-devi

TGTFIL2 nose-bandit

sezeny TRKSIM nose-peabody
sezenv TRKRPT nose- scooby

SITREP cecom-shiva

File Name: config.CERL

N! jbin/csh -f

N Modified on 07/18/91 by SMH

sezeny TIMER eceom-deva
sezeny TRKRPT cecom-giza

setenv SITREP cecom-sisiva

sezcnv SIMDAT ri-anon
setenv WEATHR ri-hydrus
sezenv TGTS1M ri-phobos
selenv SENSOR ri-orion
sesenv TGTF1L1 ri-corvus
*sctenv TGTF1L2 ri-orion
sezalv TRKSIM ri-orion

File Name: confi�.NORL

N! /bin/csh -f

#Modified on 07/16/91 by SMH
N Modified on 09/16/91 by LRD

setenv TIMER nose-bandit
setenv SIM DAT nose-peabody

seteny WEATHR rl-hyui' s
seteny TOTSIM ri-phobos
sesenv SENSOR ri-anon
setenv TGTFIL1 ri-corvus
selenv TGTFIL2 ri-orion

sescnv TRICS[M nose-peabody
setenv TRKRPT nose-scooby

sexenv SITREP nosc-aszro

64

File Name: conrig.CE

N! /bin/csh -f

#Modified on (17/18/91 by SMH

scsenv TIMER cecomn-devi
setenv SIMDAT cecom-shiva

setenv WVEATHR cecom-vishnu
setenv TGTIM cecom-devi
sctenv SENSOR cecom-gita
setenv TGTFIL cecom-devi

setenv TRKSIM cecom-vishnu
Selenv TRKRPTr c~ecom-gita

setenv STRnEP cecomr-shiva

File Name: config.RL

#! /bin/csh -f

Modified by SMH 07/16/91

setreny TIMER ri-orion

setenv SIMDAT ri-corvus

setenv WVEATI{R ri-hydrus
setenv TGTSfM rI-phobos
setenv SENSOR ri-orion
setenv TGTFIL 1 ri-corvus
setenv TGTFIL2 fl-orion

setenv TRKSIM ri-orion
Setenv TRKRPT ri-orion

setenv SITREP ri-corvus

File Name: confi2.NO

#! /binlcsh -f

Modified on 07/16/91 by SMH
N Modified on 09/04/91 by L.Dunhamn

sesenv TIMER nosc-bandit
setenv SIM-DAT nosc-scrappy

setenv WEATHR nosc-peabody
setenv TGMhM nosc-scrappy
setenv SENSOR nosc-scooby
setenv TGTFIL I nosc-peabody
setenv TGTFIL2 nosc-bandit

setenv TRKSIM nosc-peabody
setenv TRKRPT nosc-scooby

setenv SITREP nosc-su-o

65

APPENDIX C.3: SAMPLE jdlmgrstart COMMAND FILE FOR AUTOMATIC
STARTUP

#1 /bin/csh -f

set naglob

cd SJDL..ROOTIDEMO/bin
source config

(echo "JDL: Starting Managers") > /devlconsole

Set startup =S

N Start the generic services that will always be needed
(echo " TIMIER on STIMER") > /dev/console
(cronus startservice jdltisne @STIMER) >& Idev/console
(echo" SIMDATA on SS1MDA~) >/dev/contsole
(cronus startservice jdldata @SSIMDAT) >& /dev/console

Start remaining services based on demo conditions
if (($startup= "ALL") I ($startup = "all")) then

(echo" WEATHER on SWEATHR") > /devlconsole
(cronus startservice jdlfcast @SWEATHR) >& /dev/console
(echo" TARGETSIM on STGTSIM") >/dev/console
(cronus startservice jdltarg @STGTSIM) >& /devlconsole
(echo" SENSOR on SSENSOR") > /dev/console
(cronus startsse ice jdisens @SSENSOR) >& /dev/console
(echo - TRACKSIM on STRKSIM") > /dev/console
(cronus startservice jdltrack @STRKSIM, >& /devlconsole
(echo"- TRACKREPORT on STRKRYF-) > /dev/console
(croaus startservice idlznn @STRXRP7) >& Idev,'consoie
(echo" SMITUAIONREP on SSITREP")> Idev/console
(croflus starisezicejdlsit @SSrTREP) >& /dev/console

else
switch ($startup)

case AF :
(echo" WEATHER on SWEATHR") > /dev/console
(cronus startservice jdlfcast @SWE-ATHR) >& /dev/console
(echo"- TARGETIM on STGT'SIM-) > /dev/consoie
(cronus startserice jdltarg @STGTSfM) >& /devfconsole
(echo " SENSOR on SSENSOR") > /dev/console
(cronus startservice jdlsens @SSENSOR) >& /dev/console
breAksw

case ARMY:
(echo" SITUATIONREP on SSITREP") >/dev/console)

(cronus startservice idlsit @SSITREP) >& /dev/console
breaksw

case NAVY:
(echo" TRACKS[M on STRKSIM") > /dev/console
(cronus ssunservioejdltradk @STRKSIM) >& /dev/console
(echo" TRACKREPORT on STRKRPT") >/dev/con sole
(cronus startservice jdltrm @STRKRPT) >& /dev/console
breaksw

endsw
end if

(echo "JDL: Managers Starte") > /dev/console

66

APPENDIX C.4: SAMPLE jdllinktime COMMAND FILE FOR AUTOMATIC

STARTUP

/bin/csh -f

set noglob

cd SJDLROOT/DEMOibin
source config

if (I S$THMERUID) then
echo "JDL: TIMER_U1D variable not set in environment"
echo -n "Do you wish to establish a simulation timer? (yes~no)"

set reply = S<
if ($reply 1= "yes") exit

else
echo "Current TIMERUID is set at: STIMERUID"
echo -n "Do you wish to change the simulation timer? (yes.no)"

set reply = $<
if (Sreply 1= "yes") goto SETMGRS

endif

echo - -

echo "Broadcasting for Simulation Timers..."
cronus tropic "on (idltime)@broadcast ListObjects"

echo -n 'Enter Timer Selection:"
set timer = $<
echo "setenv TIMER]UID Stimer" >> config
setenv TIMERUID Stimer
SET MGRS:
echo" ";echo""
echo "Resezuing the SimulationTimer"
(echo "JDL: Resetting the SimulationTimer") > /dev/console
tropic "on STIMER_UID Reset" >& /dev/console

echo" "

echo "Linking Managers to SimulationTimer"
(echo "JDL: Linking Managers to SimulationTimer") > /dev/console

67

set mgr = SI

if ((Smgr = "ALL") I (Smgr ="A I')) theni
echo"- WEATHER"
tropic 'on (idLfcassl@SWEATH-R LinkToTimer STIMER-UID"
echo"- TARGETSIM"
tropic 'on (jdhaig)1@$TGTSlM U-nkToTuner SIMMER.LID"
echo" SENSOR"
tropic "on tidisens)@SSENSOR LinkTo imner STIMER UID"
echo"- TRACKSIM"
tropic "on (jdhnck)@STRKSIM UinkToTimnCr STIMERUID"
echo " SITREPORT"
tropic "on (jdlsit)@$SSIREP LinkTol-uner STIMER UTID"

else
switch (Snsgr)

case jdlfcass:
ec~ho". WEATHER"
tropic "on [jdlfcast)@SWEATHR LinkToT imer STIMEkUllD"
breaksw

case jdlfcast:
echo" TARGETSIM"
tropic "on Ujdharg)@STGTSIM LinkToTuner STIMIER_UID"
breaksw

case jdlfcaut:
echo " SENSOR"
tropic "on {jdlsens)@SSENSOR LinkToTizner STMER._UID"
breaksw

case jdlfcust:
echo" TRACKSWM
tropic "on fjdluack)@.VrRKSIM LinkToTimecr STIMERJJID"
breaksw

case jdlfcast:
echo " SrrREPORI"
tropic "on (jdlsit)@SSITREP LinkToTuner STIMERUTID"
breaksw

endsw
endif

(echo "JDL: Managers Linked to SimulationTirner") > /devlconsole

68

APPENDIX C.5: SAMPLE jdllinkdisp COMMAND FILE FOR AUTOMATIC
STARTUP

#1 /bin/csh -f

ed SJDLROOT/DEMO/bin
source config

(echo "JDL: Linking Managers to Display") > /dev/Console

(echo" WEATHER") > /dev/console

tropic "on (jdlfeas)@S`WEATHR LinkToDisplay" >& /devlconsole
(echo -TARGEISIM") > 18ey/console
tropic "on Udarg)@STGTSIM LinkToDisplay- >& Ideviconsole
(echo -SENSOR") > /dev/console
tropic "on (jdlsens)@SSENSOR LinkToDisplay" >& /dev/console
(echo" TRACKSIM") >/dev/console
tropic "on (idlrack)@STRKIM LinkToDisplay" >& /8ev/console
(echo ' SITREPORT") > /8ev/console
tropic "on tjdlsit)@$SIrMEP LinkToDisplay" >& /dev/console
(echo "TIMER") > /davlconsole,
tropic "on (jditimel(@STIMER UinkToDisplay" >& /devkconsole
(echo " SZMDATA") > 14ev/console
tropic "on (idldatal@$SSMDAT LinkToDisplay' >& /dev/console
(echo " TRACICRPT > /dev/console
tropic "on Ujdltrm)@~STKRPT LiakToDisplay" >& Idev/console

(echo "JDL: Managers Linked to Display") > /devlconsole

69

APPENDIX C.6: SAMPLEjdlsimstart COMMAND FILE FOR AUTOMATIC
STARTUP

#1 /bin/csh -f

set noglob

cd SJDLROOT/DEMO/bin
source config

(echo "JDL: Starting Simulation") > /idev/console

set stanup = $1

Start the simulation clock
(echo" Starting Simulation Clock") >/dev/console
(tropic "on STIMER_UID Start") >& Idev/console

Start services based on demo conditions
if (($strtup = "ALL") I (Sstartup = "all")) then

(echo" Starting AF) > /dev/console
(tropic "on 'V.jdii '.ors$SfSENSOR).MedSeaV\ operae 0" >& /dev/console)&
(echo" Starting NAVY) > Idevlconsole
(tropic "on (idItrmi) nitializeDB" >& Idevlconsole)&
(tropic "on {jdltrack) ReadTracks navyfile" >& /dev/console)&
(echo" Starting ARMY) > /dev/consoie
(tropic "on [Adisit) ReadSitReps armyfile" >& Jdev/console)&

else
switch ($startp)

case AF :
(echo" AF Started") > /dev/console
(tropic "on "V'jdl:s esrs'S.SENSOR).MedSaV" operate 0" >& Idev/cmsoie)&
breaksw

case ARMY:
(echo" ARMY Started") > /dev/console
(tropic "on (idlsit) ReadSitReps annyfile" >& /dev/console)&
breaksw

case NAVY:
(echo" NAVY Started")> Idev/console
(tropic "on Ujdltnrn InitializeDB" >& /devlconsole)&
(tropic "on (jdltrack) ReadTracks navyfile" >& /dev/console)&
breaksw

endsw
endif

(echo "IDL: Managers Started") > /dev/console

70

REPORT DOCUMENTATION PAGE OMFo,. 074o18

Public reporting burden for this collection of Information Is estimated to average 1 hour per response. Including the time for revetng Instructlonis. searching existing data sotucers gathelrng and
maintaining the data needed. and completing and reviewing thecollectlion of information. Send comments regardlng this burden estimate or any oher aspect otthis collection of Information. including
suggestlonsfor reducing this burden, toWashington Headquantem Services, Directorate for Information Operations and Reports. 1215 Jefferson Davis Highway, Suite 1204. Arlington, VA 22202-4302.
and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188), Washington. DC 20503.

1. AGENCY USE ONLY (Leave b 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

March 1992 Final
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

JDL Tri-Service Distributed Technology Experiment AN: DN888630

8. AUTHOR(S) PE: 62232N

L. R. Dunham, M. J. Gadbois, and M. F. Barrett PROJ: CDB3

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Naval Command, Control and Ocean Surveillance Center (NCCOSC) REPORT NUMBER

RDT&E Division (NRaD) NRaD TD 2332
San Diego, CA 92152-5000
9. SPONSORINGIMONITORiNG AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

Office of Naval Technology
800 North Quincy Street
Arlington, VA 22217-5000
11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILrIY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maxmum 200 words)

The Tri-Service Distributed Technology Experiment is an unclassified activity initiated under the auspices of the Joint
Direc&rs of Laboratories (JDL) by the Networks and Distributed Processing (N&DP) subpanel. The concept of the experiment
centers around a demonstrable, short-term, and low-cost computer system application. The intention of the experiment is to
overlap technology at each service (Navy, Air Force, and Army) and to use existing resources and internal manpower.

This document describes the functionalities of the tri-service components that make up the experiment and how to demon-
strate the experiment. It is assumed that the user is familiar with the Cronus distributed computing environment and its debug-
ging tool, tropic.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Tri-Service Distributed Technology Experiment 80
16. PRICE COOE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAME AS REPORT

NSN 7540-01-280-5500 Standard Worm 29W (FRONT)

UNCLASIHFI

21k& NAME OF RESPONSIBLE INDIIOUAL 21b. TELEPHONE (/cde@AM Code 21 OFFIE SYMBOL

R. Johnston (619) 553-4096 Code 413

NSN 754?-01-280-5500 St log 2& (mACIM

UNCLASSIFIED

INITIAL DISTRIBUTION

Code 0012 Patent Counsel (1)
Code 01 R. T. Shearer (1)
Code 144 V. Ware (1)
Code 40 R. C. Kolb (1)
Code 402 J. Maynard (1)
Code 405 V. J. Monteleon (1)
Code 41 A. G. Justice (1)
Code 413 R. E. Johnston (10)
Code 413 L. Dunham (30)
Code 413 L. Anderson (1)
Code 413 M. Butterbrodt (1)
Code 413 W. Gex (1)
Code 413 S. Conners (1)

Code 413 J. Nguyen (1)
Code 413 C. Pedrano (1)
Code 413 D. Small (1)
Code 413 J. Baker (1)
Code 413 A. Mollet (1)

Code 413 M. Woodward (1)
Code 42 R. E. Pierson (1)
Code 421 M. C. Mudurian (4)
Code 423 J. P. Schill (1)
Code 423 R. Crepeau (1)
Code 4306 R. J. Jaffee (1)
Code 4601 R. R. Eyres (1)

Code 752 T. Hufford (1)
Code 804 R. D. Peterson (1)
Code 952B GIDEP Office (1)
Code 961 Archive/Stock (6)
Code 964B Library (2)

Defense Technical Information Center NCCOSC Washington Liaison Office
Alexandria, VA 22304-6145 (4) Washington, DC 20363-5100

Center for Naval Analyses Navy Acquisition, Research & Development
Alexandria, VA 22302-0268 Information Center (NARDIC)

Washington, DC 20360-5000
Office of Asst Secretary of Defense

Washington, DC 20363-5100 (3) Naval Sea Systems Command
Washington, DC 20362-5101

Office of Naval Technology
Arlington, VA 22217-5000 (2) Office of Naval Research

Arlington, VA 22217-5000 (2)
DARPA
Arlington, VA 22203-1714 (4) National Security Agency

Fort Meade, MD 20755
Space & Naval Warfare Systems Cmd
Washington, DC 20363-5100 (2) Commander in Chief, Pacific Fleet

Pearl Harbor, HI 96860-7000 (2)
Rome Laboratory/C3AB
Griffis AFB, NY 13441-5700 (3) U.S. Army HQCECOM

Fort Monmouth, NJ 07703 (2)

INITIAL DISTRIBUTION (Cont'd)

Computer Sciences Corp. BBN Systems & Technologies
Eatontown, NJ 07724 Cambridge, MA 02138 (5)

BBN Systems & Technologies BBN Systems & Technologies
Arlington, VA 22209 (2) San Diego, CA 92110 (2)

