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A procedure for three-dimensional nonlinear material modelling of fiber-reinforced laminated composites
is presented. The material modelling procedure has a two-level hierarchical structure. At the bottom level,
constitutive information about the fiber and the matrix phases are synthesized using a micromechanical
model to yield the effective stress-strain response of a unidirectional lamina. At the top level, a three-di-
mensional lamination scheme is employed which assembles the laminae within a sublaminate, and delivers
the effective stress-strain response of the sublaminate. Local stresses and strains in a lamina or in fiber
and matrix phases can be recovered from the effective values at any stage. The material modelling proce-
dure enables the use of standard displacement-based finite elements. The matrix material is characterized
using nonlinear-elastic Ramberg-Osgood relations. Micromechanical failure criteria are used for determin-
ing various modes of failure, including compression kink-banding. The accuracy of the micromechanical
model is demonstrated by comparing its predictions with results from other micromechanical models and
experimental data. Examples are also presented for laminated structures; the results are in good agreement
with analytical and experimental results available in the literature.
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CHAPTER 1

INTRODUCTION

1.1 General

A composite may be defined as (Lee [1]) a multi-phase material formed by com-

bining materials differing in composition and form, in a manner that they remain bonded

together and retain their identities and properties. The constituents of a composite act in

concert to provide improved specific or synergistic properties not obtainable by one of the

components acting alone.

Composite materials are ideally suited for products and applications where high stiff-

ness-to-weight and strength-to-weight ratios are desirable, such as in aircraft and spacecraft

structures. Composites are resistant to corrosion and fatigue, and typically have good impact

tolerance. All these attributes make the use of composites an attractive option for a wide

range of applications, and consequently there has been a steady rise in the use of composites

in the aerospace industry, automobile industry, and sporting goods industry. A detailed ac-

count of various applications of composite materials may be found in [2].

Composites may be broadly classified as (Lee [1]):

"* Fibrous (composed of fibers in a matrix)

"* Laminated (layered, of different materials)

"* Particulate (composed of particles or flakes in a matrix)

"* Hybrid (combinations of any of the above types)

The present study focuses on developing analysis procedures for unidirectionally

fiber-reinforced laminated composites. Such a composite consists of unidirectionally

fiber-reinforced laminae, stacked together, with the fiber direction in each lamina being

possibly different, to achieve the desired properties in each direction.

1
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A typical unidirectional fiber-reinforced lamina is about 0.005-0.01 inches in thickness

and its cross-section may contain numerous fine fibers arranged in a random order; al- 3
though to facilitate analytical modelling, it is conveniently assumed that the fibers are ar-

ranged in neat packing-geometries, such as triangular, square, or hexagonal. R
When structural analysis procedures for structures made of traditional materials of 9

construction such as steel are compared with analysis procedures for laminated structures,

two important differences stand out:

"* Unlike most metals, a fiber-reinforced lamina tends to be trans-

versely isotropic, with the axis of isotropy being parallel to the fiber

direction. Furthermore, the lamina can exhibit nonlinear response, S
particularly when subjected to shear stress in the plane of lamina.

" In shell and plate structures made of metals, there is rarely a varia-

tion of material properties in the thickness direction. Whereas, in 3
laminated plates and shells, the material properties vary from ply to

ply because of the different orientation angle of each ply. I
These two important differences affect the way in which the analysis of laminated i

composites is accomplished: the first bears on the constitutive modelling of a lamina, and

the second on the structural modelling of the laminated structure. These two important I
considerations are described in greater detail in the following sections in order to bring

out the motivation and aims of the present study.

1.1.1 Constitutive Modelling of the Lamina I
This entails a description of the material behaviour, including a suitable strength

theory or criteria employed to define the onset of various modes of failure in the material. S
The constitutive theories used to model the behaviour of composite materials may be clas- g
sified as Micromechanical or Macromechanical in nature. Micromechanical theories pre-

dict the overall behaviour of a composite lamina from the known properties of the indi- 3
2 1



vidual constituents, i.e. the fiber and the matrix, and their detailed interaction. This

usually involves considering a Representative Volume Element of the composite consisting

of the fiber phase and the matrix phase. Principles of mechanics are applied to determine

the local stress and strain fields within the representative element and the local fields are

averaged to yield the effective or equivalent homogeneous properties of the composite

lamina. Macromechanical theories on the other hand consider the lamina to be a homo-

geneous anisotropic material whose properties are to be determined.

One advantage of using a micromechanical theory is that no apriori knowledge of

the lamina response is needed, since this response is predicted from the properties of the

constituent fiber and matrix phases. The constituents themselves are homogeneous, and

the vast amount of knowledge accumulated regarding the behaviour of homogeneous

materials can be directly employed to construct the effective response of a composite

lamina. A second advantage is that since only the properties of the constituents are

required, the effect of using different fiber matrix combinations and different fiber

volume fractions can be easily studied. Also, the interaction of the fiber and the matrix

material can be accurately modelled.

1.1.2 Structural Modelling of Laminates

The laminated nature of composite structures resulting from the stacking together

of laminae poses a problem because of the discontinuities in material properties across

the interface of two laminae with different fiber orientations. To address this problem,

various laminated plate theories have been proposed. The simplest of these theories is the

Classical Laminated Plate Theory (CLPT), which is an extension of the classical Kirchhoff

plate theory to laminated composites. Similar extensions to Mindlin plate theory have

been proposed, and are referred to as First-order Shear Deformation Theories (FSDT)

for laminates. CLPT and FSDT predict the response of thin to moderately thick laminates

quite well. The perceived need for further refinement and accuracy in the analysis of thick
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a
laminates led to the development of Higher-order Shear Deformation Plate Theories 1

(HSDT), in which the assumed displacement-field is of a still higher polynomial order in 1

the thickness direction than in the FSDT. Aside from the finite elements based on these

various laminated plate theories, various types of hybrid elements based on hybrid I
stress-strain formulations have also been proposed. It is easy to see that with this

approach, in order to extend the capabilities of the existing finite element analysis

packages to include laminated composite structures, a major effort would be required to i
develop a separate element library, containing elements specifically for the analysis of

laminated composite structures. 3
The present investigation is aimed at developing efficient and accurate procedures

for constitutive modelling of fiber-reinforced composites which enable the use of stan-

dard displacement-based finite elements to model laminated structures. The aims and

objectives of he present study are formally outlined in the next section.

1.2 Objectives

The aims of this study are as follows:

"* To model the response of laminated composites using the properties I
and the state of its basic constituents, i.e. fiber and matrix. This

basically means that some sort of micromechanical constitutive 3
theory is needed to describe the material behaviour of the compos- S
ite. As previously stated, micromechanical theories have certain

advantages over macromechanical theories, since they provide de- 1

tailed information about the state of the basic constituents, and offer

greater flexibility in modelling various types of nonlinearities ob-

served in composites. 1

"* It is desired that the micromechanical theory chosen should be accu-

rate, and at the same time, simple enough to render its incorporation 3
4 1



in a general structural analysis finite element package to be practi-

cal.

e The micromechanical model chosen should have sufficient flexibil-

ity to enable the modelling of different types of nonlinearity and

damage mechanisms.

e The modelling, or the analysis procedure, should be such that the

equilibrium requirements on tractions az 2' e laminae interfaces are

not violated.

* This material modelling of the laminated composite is to be done

in such a manner that the standard displacement-based finite ele-

ments can be used for analyzing laminated composite structures.

Having outlined the aims of the present study, a review of the constitutive theories

employed to describe the behaviour of composites will be presented next.

I 1.3 Constitutive Theories for Composites

In the present study it was decided to employ a micromechanical theory, therefore

in the following review of constitutive theories, greater emphasis is placed on microme-

chanical theories.

1 1.3.1 Micromechanical Theories

The field of micromechanics has been an area of much research activity. The bulk of

the earlier literature is devoted to micromechanical theories aimed at determination of

effective elastic moduli of a composite lamina from the properties of constituent phases. The

simplest micromechanical model for determination of effective elastic moduli is the

Mechanics of Materials model (Fig. 1.1), in which the constituent phases are assumed to be

either connected in a series (Reuss) arrangement, or in a parallel (Voigt) arrangement. The

latter arrangement of constituents is also commonly referred to as the Ruie of Mixure

approach. A description of the Mechanics of Materials approach can be found in the works

* 5
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of Jones [3] and Harris [4]. The axial stiffness and the axial Poisson's ratio of a unidirectional

composite is quite accurately predicted by the Mechanics of Materials approach. To deter- 5
mine the transverse direction properties, the fibers and the matrix are assumed to be

connected in series; the resulting estimates of transverse modulus are considerably lower I
than the experimentally observed values, and in fact, the estimates so obtained define the

Reuss Lower Bound on the transverse modulus of a unidirectional composite. To remedy this I
situation Combination Type models have been proposed, in which the constituents are 5
arranged in such a manner that a portion of them is acting in series and the remainder is

acting in parallel with one another. An example of this approach is the micromechanical I
model proposed by Shaffer [12]. Shaffer's model resulted in some improvement over the

Reuss Lower Bound for transverse modulus. The model could also be extended to consider 5
the response of the composite in the plastic range, i.e after the onset of yielding in the matrix. g

In other related works by Evkall [15] and Abolin'sh [16], the increased transverse 3
direction stiffness of unidirectional composites as compared to the prediction by the

Mechanics of Materials approach was investigated. Abolin'sh [16] pointed out that

when a unidirectional composite is stressed in the direction transverse to the fibers, the

matrix is restrained in the fiber direction, because it is attached to the fiber which has I
high axial stiffness. Thus the apparent stiffness of the matrix is greater than the stiffness I
of the pure matrix in bulk. When this apparent or effective stiffness of the matrix phase

is taken into account, the resulting transverse direction stiffness of composite is greater

than that given by the Reuss Lower Bound. This approach is referred to as the Restrained

Matrix Concept. I

Other available schemes include the Self-consistent Field method,which includes I
the Two-phase model [19,20,21] (Fig. 1.2) and the Three-phase model [17,18,22,23] (Fig.

1.3). In the two-phase model version of the Self-consistent scheme, the effective

properties of the composite are determined by solving two problems. First, an inclusion 3
6 5



of the fiber phase is considered to be imbedded in a medium whose properties are

equivalent to the unknown properties of the composite. A uniform state of stress or

strain is then prescribed at a distance sufficiently far from the inclusion. The average

stresses and strains in the inclusion are expressible in terms of the elastic moduli of the

composite. The same problem is then repeated for the inclusion made up from the

matrix phase of the composite. The average stresses or strains in the two phases are then

combined to yield the effective moduli of the composite. Among the short-comings of

the Two-phase model cited in literature are: that it is appropriate only for low fiber

volume fractions, it results in poor representation of the microstructure of the

composite, and it does not take into account the interaction among the constituent

I phases.

I The Three-phase variant of the Self-consistent field method, as applicable to

S fiber-reinforced composites, is attributed to Hill [17,18] in which solutions for four of the

five elastic moduli associated with transversely isotropic composite lamina were given.

I The correct solution for the fifth property ( shear modulus in the plane of isotropy) was

given later by Christensen and Lo [23]. The model consists of a fiber surrounded by a

I matrix shell, embedded in a medium whose properties are equivalent to the composite.

L This model is a more reasonable representation of the microstructure of the composite

lamina, as compared to the Two-phase model.

Hashin and Rosen [25] presented the solution for effective moduli of a composite

I comprised of circular fibers of varying diameters arranged in a random manner. The

resulting composite is transversely isotropic in an overall sense. The assumed micro-

I structure and the corresponding representative volume element are shown in Fig. 1.4.

The model is referred to in the literature as the Composite Cylinder Assemblage (CCA)

model. Closed-form expressions for E1 ,K23 , Gi and vi were presented; closed form

S expressions forG23 ,E 2 and v23 could not be obtained, and these quantities could only

17
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be bounded. The results presented by Hashin and Rosen [25] contained some errors;

these were subsequently presented in correct form by Dow and Rosen [26], and by 3
Hashin [10,28]. An interesting relation between the Three-phase model and the CCA

model was observed by Hashin [9]: the expressions for E1 ,K23 , GI and vi obtained I
by Hermans [22] for the Three-phase model are exactly the same as given by the CCA

model. Hermans' derivation of the expression for G23 contained some errors which

were removed later by Christensen and Lo [23], who gave the result for G23 in the form 3
of a root of a quadratic. It was concluded by Hashin [27] and Christensen and Lo [23]

that the Three-phase model and the CCA model are related to one another, although a

rigorous proof of the equivalence of the two methods was not given.

Various bounds on the effective elastic moduli of fiber-reinforced composites

have been proposed. These include the bounds given by the CCA model [25,26] and the

general bounds established by Hill [17] and Hashin [24]. 3
To study the effect of fine details of the microstructure of a composite, such as the 3

shape of the fibers and the fiber packing geometry, upon the effective elastic moduli,

various numerical studies have been conducted, e.g. Foye [29], Adams and Doner [30,31] 1
and Chen and Cheng [32,33]. These numerical procedures usually employ either the

finite element method or the finite difference procedure in order to model a representa- m

tive volume element of the composite in detail. The effective moduli of the composite are m

determined by applying appropriate displacement constraints and loadings on the bound-

aries of the representative volume element to correspond to uniform nominal strain. Such

numerical procedures are far too complicated and computationally intensive for the

purpose of structural analysis of composite structures. However, they provide useful and m

accurate results which can be used to assess the accuracy of other proposed micromechan- p
ical models. Also, they provide useful insights into the behaviour of composites as

affected by the interaction of the fiber and the matrix at the fiber/matrix interface. 3
8a5



This completes the over-view of micromechanical models used for predicting the

linear-elastic properties of fiber-reinforced composites. For detailed discussion and

description of various models, the reader is referred to the works of Chamis and

Sendekyj [8] and comprehensive reviews by Hashin [9] and McCullough [11]. Next, an

account of the micromechanical models which have been used to describe the nonlinear

behaviour of fiber-reinforced composites is given.

The earliest work to describe the nonlinear behaviour of fiber-reinforced materi-

als in the context of micromechanics is by Hill [18]. Hill employed the Self-consistent

field method to obtain the instantaneous moduli of a composite cylinder under axisym-

metric loading conditions; bounds on the instantaneous moduli were also obtained.

A number of finite element based micromechanical studies have been conducted

by various researchers to investigate the nonlinear behaviour of fiber-reinforced compos-

ites, e.g. Foye [5], Adams [6], and Adams and Crane[7J. Initial yield surfaces for

various metal matrix composites subjected to mechanical and thermal loadings were

investigated by Dvorak et al.[39,40], using the finite element method. Their results

showed that matrix yielding in fibrous composites usually starts at the fiber/matrix

interface. The initial yield surface was found to be an irregular ellipsoid, with its longest

axis inclined towards the hydrostatic axis in the stress space. The important factors

affecting the onset of yielding were found to be the ratio of fiber modulus to matrix

modulus and the fiber volume fraction. It was found that relatively small temperature

changes can cause yielding. An interesting find reported by them was that unlike homoge-

neous metals, the application of hydrostatic loading results in yielding of the composite.

Dvorak and Bahei-El-Din [41] employed the Self-consistent field method to

study the elastic-plastic behaviour of fibrous composites. The Self-consistent scheme

was modified to correct some of the problems associated with the Two-phase version of

L this method, as reported by Hutchinson [38], who observed high estimates of initial yield

9
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stresses and low estimates of plastic strains. The unmodified and modified Self-consistent I
schemes gave similar results for axisymmetric loading. For the case of longitudinal shear 3
loading the modified self-consistent scheme performed well, whereas the unmodified

scheme gave values of initial yield stresses substantially greater than the finite element 3
predictions. The extension of the Self-consistent schemes to handle non-symmetric

loadings was found to be difficult.

In an effort to devise a micromechanical model which is simple, yet applicable to I
general stress states, Dvorak and Bahei-EI-Din [41,42] proposed the Vanishing Fiber

Diameter Model, in which the composite is modelled as a continuum reinforced by fibers

of vanishingly small diameter without changing the fiber volume fraction. In this manner 5
the axial strain in both phases was constrained to be the same, thus incorporating the

restrained matrix approach. The transverse direction stresses in the fiber and the matrix 3
were assumed to be the same - note that this is tantamount to arranging the fiber and

matrix phases in series for loading in transverse direction, hence their observation [43]

that some of the moduli given by this model at times fell below the Hashin-Rosen 3
bounds[25].

Min and Crossman [50] presented a Mechanics of Materials based micromechani-

cal model for describing the nonlinear behaviour of fiber-reinforced composites sub- n

jected to thermomechanical loadings. The fiber and the matrix phases were assumed to be

in a state of plane-stress. The predictions from the model showed reasonable agreement I
with the experimental data in most cases.

Sun and Chen [55] proposed a simple micromechanical model to investigate

elastic-plastic behaviour of fibrous composites. The fiber was assumed to be linearly I
elastic, and the matrix was modelled as elastic-plastic material following the J2 flow-

rule. A macromechanical orthotropic plasticity model was also proposed to describe the

lamina response. The authors suggested that the micromechanical model could be used 3
10 3



to predict the responses of desired fiber matrix combinations, following which the macro-

mechanical model could be calibrated and tuned to match the micromechanical predic-

tions. The macromechanical model was used in a finite element based on First-order

Shear Deformation Theory to predict the response of notched and tapered laminates [56].

In the development of the micro-model, the constituent phases were assumed to be in the

state of plane-stress; thus the three-dimensional nature of the stress field was not

accounted for. The matrix restraining effect of the fibers was also not fully accounted for.

A micromechanical theory based on the analysis of a typical repeating cell

representing a unidirectional composite was presented by Aboudi [7,51,52,53,54]. The

composite is assumed to be comprised of square fibers arranged in a doubly periodic

array as shown in Fig.(1.5). The representative cell is divided into four subcells; one

fiber subcell and three matrix subcells. The theory proceeds by assuming a linear

displacement field in each subcell, and the continuity of displacements and tractions at

the fiber/matrix interface is satisfied in an average sense. The theory has been

successfully used to describe the nonlinear response of fiber-reinforced composites by

using the unified viscoplastic theory of Bodner and Partom [69] to describe the matrix

material. The theory is referred to as Method of Cells, and is quite accurate, but requires

a considerable amount of calculation.

A combination type micromechanical model based on Mechanics of Materials was

presented by Pecknold [57]. The model is quite simple in description, and the predictions

of elastic moduli showed excellent agreement with results from detailed numerical analy-

ses. The model can portray the three-dimensional stress state of the constituent phases,

and can be used for general loading conditions. The three-dimensional matrix restraint

effect is also incorporated in this model.

11
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1.3.2 Macromechanical Theories I
In macromechanical analyses of laminates, a lamina is modelled as an anisotropic I

homogeneous material; consequently it can not provide information about the state of

stress and strain in the constituent phases. Hill's anisotropic plasticity theory [58,59],

originally intended to model the orthotropic behavior of rolled metals, has been modified 3
and extended by many researchers to describe the behaviour of fibrous composites. Hill

used a general quadratic yield criterion; however, the yield criterion was not based on I
stress invariants, and consequently the criterion is applicable only in the principal axes of

the material. The usual idealizations that hydrostatic stress states do not influence the

yield criterion and that the plastic flow is incompressible were retained. 5
Griffin et al. [60] developed a three-dimensional finite element analysis program

for analysis of composite materials. Hill's anisotropic yield criterion was employed along

with isotropic hardening. To account for nonlinear deformation characteristics of com- 3
posites, Ramberg-Osgood type relations were assumed with no stress interaction. I

Petit and Waddoups [61] proposed a method for predicting the nonlinear beha-

viour and strength of laminated composites. The response of the lamina to each stress

component was assumed to be independent of stresses in other directions (such materials

are referred to as quasi-linear materials). The bimodularity of the lamina in tension and i
compression was also modelled. Maximum Strain criteria were used to determine failure 5
in a lamina. After failure, the lamina was gradually unloaded in the mode in which the

failure had occurred. The analysis was conducted by combining the laminae using the 3
framework of Classical Laminated Plate Theory. Their analysis captured the nonlinear It
behaviour of laminates fairly well, but the strength predictions made by their procedure

ranged from good to poor. The authors emphasized the need for conducting more tests to 3
give their procedure a statistical basis as well. The presentation of results and other data

pertaining to the behaviour of laminates investigated by them was quite comprehensive, i
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and their work still remains as one of the well documented investigations into the

behaviour of laminated composites.

Hahn and lMai [62,63] proposed constitutive equations for a lamina in plane-stress

from consideration of the complementary energy density function. The complementary

energy density was expressed as a fourth order polynomial in the in-plane stress compo-

nents. Modifications were made to the general expression so that only shear nonlinearity

remained and the response to the other stress components was linear-elastic. The model

has been successfully used to describe the nonlinear behaviour of laminates.

Hashin et al. [64] modelled the nonlinear response of unidirectional composites

subjected to transverse and shear loadings, using Ramberg-Osgood type relations for the

transverse direction and for the case of shear loading. The constitutive relations of the

lamina were incorporated into the Classical Laminated Plate Theory, to obtain responses

of laminates with various stacking sequences. Their predictions of nonlinear response and

failure were in good agreement with predictions from other methods and experimental

data.

Dvorak and Rao [65] developed an axisymmetric plasticity theory for fiber-rein-

forced composites. The yield function was constructed from stress invariants valid for

transversely isotropic materials. The composite was assumed to be plastically deformable in

the fiber direction, and capable of exdibiting plastic dilatation. A simple hardening rule and

an an associated flow rule were also proposed.

Pipkin and Rogers [66] presented a continuum theory for finite plane deformations

of composites reinforced by inextensible fibers. The composite was assumed to be

incompressible and the fibers were assumed to be continuously distributed. These

assumptions are restrictive enough to render some of the problems of deformation

kinematically determinate, and if a displacement boundary value problem is prescribed,

the displacement field within the composite is determinable without the consideration of

13
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constitutive relations for the composite. However, the solution of a traction boundary

value problem would require information about the constitutive relations for the compos- 3
ite. The theory was later extended by Mulhern et al. [67] to include plastic deformations. I

Mulhern et al. [67] idealized the composite as transversely isotropic, comprised of

rigid-perfectly-plastic matrix reinforced by inextensible fibers. The composite material 3
was assumed to be incompressible, non-hardening and rigid-plastic. The yield function

was formulated in terms of the five invariants of the stress tensor. In a later work by I
Mulhern et al. [68], the theory was extended to include elastic-perfectly plastic matrix and

elastic fibers.

1.4 Choice of Constitutive Theory

A broad consensus on constitutive modelling for composites has not yet emerged. i
Here, the merits and demerits of both types of constitutive theories are briefly discussed, I
and the factors influencing the choice of the constitutive theory selected in this study are

presented.

The primary advantage of macromechanical theories is that they require less

computational effort. The macromechanical theories are well-enough developed to

adequately describe nonlinear response to mechanical loadings. Therefore, structural 5
analysis of composite structures based upon macromechanical theories is a viable option.

However, much work needs to be done to extend these theories to incorporate the effects I
of complex load histories, temperature changes, strain rate sensitivity and creep etc. u

Micromechanical theories, besides requiring more computational effort, require

the in situ properties of the constituent phases which have to be determined (back-calcu- 1
lated) out from tests on laminates. The advantage associated with micromechanical

theories is that issues like complex loading histories, thermal effects, and creep and strain

rate sensitivity can be addressed with less difficulty. The idea of predicting the response of 3
14 3



composites starting from the basic constituents is intrinsically appealing since the effect of

using different fiber/matrix combinations can be studied.

In the present study a micromechanical model is used to describe the behaviour of

fiber-reinforced laminated composites. A newly proposed micro-model by Pecknold [57]

is investigated and further developed. Preliminary results from this model are very

encouraging. It is very simple in description and in the course of this study was found to be

comparable in accuracy to Aboudi's Method of Cells.

A brief account of previous studies employing micromechanical models for analy-

sis of composite structures is presented in the next section.

1.5 Previous Studies Using Micromechanics
In Structural Analysis

The earliest study of which the author is aware which employs micromechanics for

general structural analysis of composites is by Bahei-EI-Din et al. [43,44,45]. The Vanish-

ing Fiber Diameter model was employed in a three-dimensional finite element analysis

program to model the response of laminated plates. The matrix material was described by

the von Mises yield criterion with the Prager-Ziegler kinematic hardening rule. Among

the problems investigated were biaxial loading and unloading of laminated plates, and

loading of a plate with a hole; stress and strain distributions, and the development of

plastic zones in the vicinity of the hole. The results showed fair agreement with experi-

ments and with detailed finite element solutions. The strains in the fiber direction were

well predicted; however, the strains in the transverse direction were over-predicted,

which is a characteristic of the Vanishing Fiber Diameter micro-model.

Adams and Crane [37] used the finite element method to study the response of a

representative volume element of a composite lamina. Nonlinear behaviour of the matrix

was taken into account, and special procedures were developed so that a more general

state of stress could be applied to the representative volume element. This micromechan-
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ical modelling procedure was employed in conjunction with Classical Laminated Plate

Theory to determine the nonlinear response of simple laminates. Their micromechanical 3
modelling procedure is of interest because it is one of the first attempts at incorporating

micromechanics into structural analysis for composites, but it requires extensive computa- I
tional resources, and its implementation for structural analysis purposes would be prohib-

itively expensive. A similar procedure was used by Wu et al. [46] to study the response of

metal matrix laminates subjected to thermal loading. The analysis was performed by

incorporating the Periodic HexagonalArray (PHA) model of Dvorak and Teply [47] into a

general purpose finite element analysis program (ABAQUS [48]). The PHA model is 3
based on the assumption that the microstructure of a composite lamina consists of

hexagonal fibers arranged in a hexagonal packing geometry; this microstructure can be I
represented by a triangular representative volume element. The effective response of a

lamina was obtained by finite element analysis of the representative volume element. The

laminate response was then calculated bymodelling each lamina as a solid element. It was 1
reported by Wu et al [46] that the laminate analysis required sizable computational

resources, since obtaining the effective lamina response itself required the solution of a

finite element problem.

Rufin et al. [49] developed a computer program (MLAP) which employed the

Vanishing Fiber Diameter model of Dvorak and Bahei-EI-Din [42,45] in conjunction 3
with Classical Laminated Plate Theory to predict the response of metal matrix compos-

ites. They observed that, in general, MLAP tended to underestimate the elastic moduli of

the composites and overestimate the magnitude of plastic strains. These errors were not 5
significant in the fiber direction, but were more pronounced in the transverse direction.

They attributed this discrepancy between the experimental results and MIAP results to 3
two factors: the limitations of the Vanishing Fiber Diameter micro-model and the nonlin-

ear nature of matrix hardening, which could not be captured by MLAP since it assumed I
linear matrix hardening.
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Arenburg [70,71] examined the behaviour of fiber-reinforced metal matrix com-

posites using Aboudi's Method of Cells. The nonlinear matrix behaviour was modelled by

the unified viscoplasticity theory of Bodner and Partom[69]. The effective lamina consti-

tutive relations provided by the Method of Cells were incorporated into a First-order

Shear Deformation Plate Theory. Results were presented for tensile response of notched

coupons, plates in bending, and moment-curvature responses of laminates. The numeri-

cal results showed good agreement with experimental results.

1.6 Outline of the Analysis Procedure

Fig. 1.6 shows a laminated plate structure discretized by finite elements. A typical

element within the structure is also shown. Stiffnesses, strains and stresses are tracked at

sampling points (material points) within each element. This information is provided by

the material model, which interfaces with the main analysis program. The interface is

called a standard interface since the laminated heterogeneous nature of the structure is

hidden from the main analysis program, and the information being transferred between

the material model and the main analysis program is essentially the same as would be

required for the analysis of a structure made from a homogeneous material.

Obviously, the standard procedures for sampling the stiffness and stress are not

applicable since the material in the neighborhood of a material point is heterogeneous. This

problem can be solved if the material in the neighborhood of the material point is

represented by an equivalent homogeneous, possibly anisotropic, material. In this study, a

material modelling strategy is presented which is based on this homogenization procedure.

As shown in Fig. 1.6, the proposed material model has two components:

(1) The Micro-model, which describes the response of a unidirectional lamina.

The stress and strain fields within the fiber and matrix phases are combined

appropriately to yield effective stresses and strains in the lamina. Similarly,

the effective lamina constitutive relations are developed from the constitu-
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tive relations of fiber and matrix. The three-dimensional nature of the

stress-field in the constituent phases is accounted for, to better represent 3
the fiber'natrix interaction phenomenon.

(2) The Sublaminate model, which generates the response of a group of lami- n

nae, by combining the stress and strain fields within each lamina to yield 3
overall stresses and strains. The constitutive properties of a group of lami-

nae are combined in an appropriate manner to yield the constitutive prop- I
erties of an effective homogeneous material, which represents the group

of laminae. A three-dimersional lamination scheme taking into account

the in-plane and out-of-plane stresses has been employed in the present

study, since the out-of-plane stresses play a decisive role in initiation of de-

lamination, and should be accounted for. 5
After the stresses, strains and constitutive properties of the effective homogeneous I

material representing the group of laminae has been determined, this information is

passed to the structural analysis package. This process of homogenization of fields within 3
a fiber and matrix to obtain the response of a lamina, followed by homogenization of the

various fields within a group of laminae to determine the response of a ply cluster I
(sublaminate), may be referred to as the composition process.

At the end of the composition process, we have the stresses, strains and effective

properties of an equivalent material representing a sublaminate. This information is 3
passed to the structural analysis program through a standard interface. This is especially

advantageous, since it makes available a large number of the elements contained in the I
element-libraries of most structural analysis packages. This provides the capability to

analyze laminated structures without the investment of the considerable effort required to

develop special purpose elements. 3

1



During loading of the structure, changes in strains occur at the material points.

This change is communicated to the material model through a standard interface. The

effect of this change is propagated down, first to the sublaminate model, and then to the

micro-model, where the stresses, strains, and the properties of the fiber and the matrix

may be updated. This process of propagating the effect of change at the material point

down to the basic constituents may be referred to as the decomposition process.

Within this general scheme, any type of micro-model and sublaminate model can

be used. In this study the micromechanical model proposed by Pecknold [57] is employed

because of its simplicity. As a part of this study the micro-model was investigated and was

found to be comparable in accuracy to the refined micromechanical models, such as the

one presented by Aboudi [7,51,52,53,54,.

In the following chapter the development of the micro-model is presented.

Examples are presented to demonstrate its accuracy. Chapter Three presents the subla-

minate model. In the fourth chapter, the procedure adopted for updating the stresses at a

material point is presented. In the fifth chapter, numerical examples are given; results are

presented for predictions of nonlinear response of laminae and laminates subjected to

uniform loadings, strength response of laminae and their initial yield surfaces are

presented. The results from the proposed material model are compared to predictions

from other micromechanical models. Chapter Six presents structural level applications,

i.e. examples of laminated structures which were solved by the material modelling proce-

dure developed in this study. Chapter Seven is devoted to conclusions from the present

study and recommendations for future work.
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CHAPTER 2

MICRO-MODEL I
I

L this chapter the first component of the material model, i.e. the micro-model, is 5
described. The micro-model describes the response of a unidirectional lamina, starting I
from the fiber and the matrix constitutive descriptions. The micro-model employed here

is the one proposed by Pecknold [57]. The assumptions made in order to obtain the

effective stiffness of the lamina are stated, and the important features of the model are

high-lighted. Constitutive relations used to model the nonlinear behaviour of the matrix 3
material are presented. Micro-failure criteria for determination of various failure modes

and procedure for incorporating the effect of damage are also presented. Examples are I
presented to demonstrate the accuracy of the micro-model by comparing its predictions

of effective elastic moduli to results obtained from detailed numerical procedures and

other established methods. 3
2.1 Description of the Micro-model

The proposed micromechanical model is based on the assumption that the internal

microstructure of the fiber-reinforced lamina consists of square fibers arranged in a I
doubly periodic array, as shown in Fig. 2.1. Following Shaffer's [12] approach, it is

assumed that the stress acting parallel to the x3 axis is taken up by two strips of

material: one is a strip of pure matrix enclosed by lines/ /and mm, and the other is a strip 3
of material enclosed by lines mm and nn. The material in the second strip consists of

fiber and matrix phases acting in series. Together the two strips are assumed to be

acting in parallel to withstand the transverse loading. For axial loading ( loading in the 3
fiber direction), both the fiber and the matrix phases are assumed to be acting in

parallel. i
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Also shown in Fig. 2.1 is the representative unit cell which corresponds to the

I assumed geometry of the idealized composite. The unit cell is further subdivided into

three subcells; one fiber subcell, denoted by f, and two matrix subcells, denoted by mA

and nN respectively. The dimensions of the unit cell are 1 unit square, hence the name

unit cell. The dimensions of fiber and matrix subcelis are given in terms of quanti-

ties Wk and Wi6, which are defined as

WI = N , W. = I - W, (2.1)

where Vi = Fiber Volume Fraction.

In the following section the assumptions made in homogenizing the stresses and

strains will be presented. however before that, for the sake of convenience, the three

subcells are grouped to define two elements: Material EJementA, consisting of the fiber

subcell f and the series-or-parallel connected matrix subcell mA, and Material Element

B, consisting of the remaining matrix subcell mB.

2.2 Stress and Strain Homogenization in Unit Cell

The effective stresses and strains in the lamina are determined from the subcell

values in two stages: first, fiber subcell f and matrix subcell MA are used to construct

Material Element A; then Material Element A and Material Element B are used to con-

struct the unidirectional lamina. The procedure that is used is shown in Fig. 2.2 by means

of spring analogs.

The stress and strain homogenization procedure is now set down more formally in the

next section.

2.2.1 Homogenized Stresses and Strains In Material Element A

Within Material Element A, the axial (11) components are treated differently

from the remaining components. In order to express the equilibrium and compatibility

conditions compactly, the stress and strain vectors are partitioned as follows:
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o'L Eli EL.

f r 2 6223
4. = Y2 -(2.2)

033 OT /T (2.2)
123 Y233
113 Y'13

Thus OrL and EL are (lx1), and O.T and ET are (5xl) matrices. Note that the components U
of the vectors are not listed in conventional order. Although this particular ordering of g
components is not necessary for micro-model computations, it is most convenient for

subsequent computations at the sublaminate model level. 5
It is assumed that the axial (fiber) direction strain (eL ) are the same in the fiber and u

the matrix, and the remaining five "transverse" stress components ('T) are the same in

the fiber and the matrix. These relations are expressed compactly as I

f mA (2-3a)

The complementary stress and strain components (i.e. a7L and ET ) in Material Element A

are weighted averages of these stress and strain components in the fiber and the matrix,

i.e. I

{} +.. WI{. } (2.3b) I

aC A MAI

2.2.2 Homogenized Stresses and Strains in Unit Coll

Material Elements A and B are connected in parallel for all component direc- I
tions, i.e. their strains are the same and the unit-cell-average stresses are weighted 3
averages of the stresses in Elements A and B, i.e.,
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{el= {E = {E} (2.4a)

{Ir}= al al (2.4b)

in which the stresses and strains are (6xl) vectors, the subscript C stands for the

unit-cell averages.

Eqs. (2.3) and (2.4) are the homogenization relationships that completely define

the micromechanical model. These relationships are also valid for incremental stresses

and strains. The development of the tangent stiffness of the unit cell follows as a

consequence of assumptions made in these relations. The tangent stiffness of the unit

cell is also the tangent stiffness of the lamina since the unit cell represents the idealized

composite lamina.

2.3 Tangent Stiffness

The tangent stiffness relates incremental (unit--cell-average) stresses and strains.

The tangent stiffness of the unit cell is built up from tangent stiffness relations for the

two constituent phases; these may be linear relationships or they may reflect various

types of nonlinearities.

The incremental stresses and strains within a material are related to each other by

relations of the form

de11l Sit SU SU S" so So. " oli a,1

dnS, 3 Sn SM W NM dft a

de,, 'sM S44 S4 s46 dol aT

ys SW S, dr,2( 0d 
dr1 , 0k dy,3• Nso



I

where I
a1 , a2 , a 3 = Coefficients of thermal expansion in x,, x2 and x3  I

directions respectively.
AT = Change in Temperature.

The above equation can be compactly written in partitioned form in accordance with Eq.

(2.2) as 5
{ }[ SitSit-! s Z} + AT {a} (2.6)

The tangent compliance matrix is now partially inverted to provide relations of the form

I
rd 'P11 pit irdeL PGL

d-, __ d_-L I + AT (2.7a)

in which Pii is (1xi), Pit is (lxW), and Ptt is (5x5), and they are given by:

Pu = (1/SU)

Pit = - (i/SI) • Sit (2.7b) 5
Pit = St- (1/SII) Sti Sit

Pa, and Par2 define the vector of partially inverted thermal compliances, and are given I
by

=aL = - (I/Su) ai

Par - aT + Pa1 Sd (2.7c)

2.3.1 Material Element A 3
With the tangent relations for fiber subcell f and matrix subcells mA expressed in

the form of Eq. (2.7a), the homogenization relation Eqs. (2.3) can be applied to give the

partially-inverted tangent compliance for Material Element A as 3
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rL 1H P r &L PaLldo~l I deT . (2.8a)
- pit I J 4 Ar 1

where

-•--- = wf ---T .... + W. :i~;
-Pi I P IA L t I Pit Jf (2.8b)

+ -..

Pal WfI {Par I Par L

The partial inversion is now completed to give the tangent stiffness of Material

Element A as

ddL C11  Ci dEL
- ----- AT { (2.9a)

d, Ca C~t
in which

Ctt =Pt,

Cit = Pit Ctt

C1 I = PU + Cu PTt (2.9b)

Pr = - Ptt Par.

AL= PaL +P& Pr

Eq.(2.9a) can be written compactly as

{doi= [ C A d + AT 1A (2.10)

2.3.2 Material Element B

The tangent compliance relations for Material Element B, which consists of a

single matrix subcell, is inverted to give the tangent stiffness relation
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{da= [ C] B{de} +AT{1} (2.11)1

2.3.3 Unit Cell

The stress and strain homogenization relations (Eqs. (2.4)) are now applied to 3
give the tangent stiffness relation for the unit cell as

{dal}= [C] { IE + AT{ (2.12a)1

where I
[C] c= Tangent Stiffness of Unit Cell

ICIC= WS[ C]A+ W,[ C]B (2.12b) 3

{p}C B (2.12c)I

It should be mentioned here that the assumed microstructure of the composite, as

shown in Fig. 2.1, corresponds to a material possessing tetragonal symmetry, the 3
stiffness matrix of which is described by six independent moduli. However, because of

the simplifying nature of the homogenization relations assumed here the stiffness matrix I
given by Eq. (2.12a) corresponds to that of a transversely isotropic material, which is

characterized by five independent moduli. This is in fact advantageous, since it is known

that a unidirectionally reinforced lamina tends to be transversely isotropic. In the next 3
section the procedure for determining equivalent effective moduli of the composite

lamina is illustrated. The information regarding the effective moduli of the lamina is not 1
needed for the analysis of the lamina or the laminate; this information is presented only

to facilitate comparison of the predicted moduli of composite laminae with other micro-

mechanical models. 3

I



2.4 Elastic Moduli and Coefficients

of Thermal Expansion

With the stiffness matrix of the composite lamina determined from Eq. (2.12a),

the effective elastic moduli of the composite can then be calculated by inversion of the

stiffness matrix or with the help of following useful relations, which are valid for

transversely isotropic materials. If C1, C12, C23 etc. are the terms of the stiffness matrix

of the composite, then

K23-- (C + G
1

G(

Gn - Gn - G, - C33

E -C11 _Ca 

(2.13a-f)

,,- v.- ' - i 2

va~~~ M "= = I ,a

E2 - E3 - 4GKK" + ipG23

where

4K23 + v(2.13g-h)

K 23, G23, E 2 and ,23 are the plane strain bulk modulus, shear modulus, transverse

Young's modulus and Poisson's ratio in the x2 -x3 plane, respectively. El and G1 are

the Young's modulus and the shear modulus, in the direction parallel to the fibers and v1

is the Poisson's ratio when a uniaxial stress is applied in the direction of the fibers.

Coefficients of thermal expansion for the composite lamina can be extracted by

inverting Eq. (2.12a), yielding

{delc= S ]S {dc}IC + AT {a }c (2.14a)
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where 1
[s Ic = Tangent Compliance of Composite= [c]-

al, I
a2

a - 0 = Coefficients of Thermal expansion (2.14b)ja C m a3  of Composite lamina.
0

10 I S~I

,C

and a1, a2 and a3 are coefficients of thermal expansion in xi, x2 and x3 directions re-

spectively. I

Having described the procedure for obtaining effective lamina stiffnesses and 3
compliances, attention is now focused on the procedure for incorporating and modelling

various types of nonlinearities in the lamina response. It is often assumed that the fibers I
within a lamina behave linearly up to the point of fracture, and that the observed nonlin-

earity in lamina response is caused by the nonlinear response of the matrix material. With

this in mind, constitutive descriptions for the matrix material are presented in the next

section.

2.5 Constitutive Descriptions of Matrix Nonlinearity I
Nonlinear matrix behaviour can be an important factor, since a degrading shear 3

modulus may result in premature buckling of composite shells. Furthermore, matrix

softening in shear may interact with or initiate kink-banding. It has also been observed 3
that the nonlinear response of thick laminates is essentially reversible over a substantial

loading range (Camponeschi [72,73]). Keeping these considerations in view, a nonlinear I
elastic description for the matrix material is proposed as a reasonable first step towards 3
describing the nonlinear response of composite laminae. A Ramnberg-Osgood type

stress-strain relation is proposed here, and is described in the next section. 3
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I 2.5.1 Ramberg-Osgood Relations

3 A Ramberg-Osgood type stress-strain relation which is valid for general multi-

axial stress states may be expressed as

l=i + -I- p 5u + . (•) sy (2.15)

I The first term on the right hand side is the elastic strain, the second term corresponds to

nonlinear pressure-volume change and the third term corresponds to the nonlinear shear

softening effects. In the above expression K and G are elastic bulk and shear moduli,

a, b, po, To, n and m are material constants to be determined and

3 Si1 mci 1- P 6 1J (2.16)

P. s IPI , U - S S4j

The quantityp is recognizable as one-third of the first invariant of the stress tensor, and

I r, is the second invariant of the deviatoric stress tensor.

3 The incremental form of Eq. (2.15) is

Sde, =de -+ m (-) dp 6j + (- ds)

b -n (r) 3= dsM (2.17)

where Yj are the normalized deviator stresses defined as,

' re (2.18)

Eqs. (2.15) and (2.17) can be expressed in matrix form as

I {EJ = [SIJ + C2 IS 2]] 7} (2.19)

1 del}= d, [SI] + d 2 [S 2 ] + d3 [S3] {da} (2.20)
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The the stress and strain vectors are ordered as in Eq. (2.2), and the matrices U
S1, S2, S3 are:

1 1 Symm 0 1 Symm

[S 0 0 0 0 0 2
1 1 1 0 , [$2] 0 0 0 1 I
0 0 0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0 0 0 0 2

'(2.21)

/122

[s2fi• • r3 I
27123

and the functions ci, c 2 and di, d2, d3 are given by I

c, = (1+ a,) - 1 (l+bi)

C2 =" ( +bi

d, = (I (+Ma,) - -- I b

d2 = C2 (2.22a-g)
d3 = I n-

2G 2

a, a (P)
b- b (-\r0/ I

The standard Ramberg-Osgood relations as described above can be used to de-

scribe the nonlinear response of most metal matrix composites. However, in their stan- I
dard form the Ramberg-Osgood relations also result in significant nonlinearity in re-

sponse to transverse loading. The limited experimental data available for polymer matrix

composites seem to suggest that even though the lamina response is quite nonlinear in 3
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shear, no significant nonlinearity exists in response to transverse normal loading. The

above-mentioned relations for matrix behaviour cannot accommodate both these beha-

viours simultaneously. Therefore, modifications are proposed to the above proposed

IRamberg-Osgood relations, to be used in the case when nonlinearity exists only in shear

response. The modified constitutive relations for the matrix material are presented in the

Snext section.

i 2.5.2 Modified Ramberg-Osgood Relations

The suggested modifications are as follows Since nonlinear behaviour only in

- shear is sought, the pressure-volume change term can be dropped from consideration,

and the response to normal loading in all three directions can >v assumed to be linear.

The detailed description of the modifications made to the Ramberg-Osgood relations is

3 as follows.

It is assumed that the response to ain, 0ý0, and (733 is essentially linear, i.e.,

. = A. , for i - (2.23a)

I The response in shear is described as

CU + 2-! (0 s0  , for i (22b)

The definition of re is changed to

I M 5 QssU 9 for i j (2.24)

I The incremental strains are given by

dy -d" , for i-, (2.25a)

I and

de - + dsd

b n-I Y# YrA"dsm for i ,i (2.5b)

35



I

where the normalized deviator stresses are defined in similar fashion as before, but with

respect to the new definition of re given in Eq. (2.24). 1
Eqs. (2.23) and (2.25) can be expressed in matrix form as: 3

fEJ c [S1 ] M + C. [S2] ]a} (2.26) u
1 de}- [SI] + c2 [s 2] + d3 [S ]I Ida} (2.27) 1

where the matrices SI, S2. S3 are defined as:

1 1

I Syrmm 0 1 Symm

[Si] 0 0 0 [S21 0 0 2(1+bl)
1 1 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 2(1+bi)

0 0 0 0 0 0. 0 0 0 0 0 2(1 +b)

'0•

0

] F i T 2u2 (2.28)
02r23

and the functions c1, c2 and d3 are given by

II
C2 = 2

s _L n- I(2.29a-d)

2G 2

bh * b ( z)

It should be noted that because of the modifications made in the definition of r, the

modified Ramberg-Osgood relations are no longer based on invariants of stress, and are

applicable only in lamina coordinates. 3
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2.6 Failure Criteria

Numerous macromechanical criteria at the lamina level have been proposed,

which view the lamina as an effective homogeneous anisotropic material, and describe the

failure surface as a stress polynomial, e.g. the "Ibai-Wu Tbnsor Polynomial" criterion

[88], and the "Quadratic Stress Polynomial" criterion proposed by Hashin [89]. A com-

prehensive survey of macromechanical failure criteria can be found in the works of la

[90] and Nahas [91].

Aboudi [52] employed the Method of Cells to predict the off-axis strength of

unidirectional composite laminae. Failure of the composite lamina was predicted by
S using micro-failure criteria for the fiber and matrix phases. The lamina was subjected to

off-axds loading, and stresses within the various subcells of the unit cell representing the

lamina were monitored. Amaximum stress failure criterion was applied to the constituent

phases, to define the failure of the lamina. Aboudi's analytical results were in good

agreement with experimental results.

Here, an attempt is made to employ micromechanical failure criteria to detect

damage and failure in the lamina, since the stresses and strains in the constituent fiber and

matrix phases are readily available through the micro-model. Attention is focused on

in-plane failure mechanisms only. A brief description of these damage mechanisms and

failure modes along with the criteria defining their initiation are presented in this section.

2.6.1 Fiber Fracture In TensionI] A unidirectional lamina subjected to tensile loading in the fiber direction may fail

by fiber fracture. If Xr) denotes the tensile strength of the fiber, then the fiber fracture

mode of failure is determined by

(711 >= Xf Fiber Fracture (2.30)
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2.6.2 Matrix Shearing I

If S(m) is the shear strength of the matrix, then the matrix shearing failure criterion is I

max( I "' , I 1mB)I) L, Se") =: Matrix Sftea ring& V P_ (2.31)1
T12 2r12

2.6.3 Matrix Cracking In Transverse Tension I
The criterion determining matrix cracking in transverse tension is taken as

m A (a) ,Ym)=>Matrix Cracking in (2.32)I
% O72 Transverse Tension

where Y•m) is the tensile strength of the matrix material. U
2.6.4 Matrix Crushing In Transverse Compression I

The failure of a lamina in transverse compression is assumed to be a result of 3
compressive failure of the matrix material. If a2(2n and a(04 are compressive stresses in222

the matrix subcells, and Y(m) denotes the compressive strength of the matrix material,

then the compressive failure of the lamina in transverse direction may be determined by

the following criterion

max(I("(l ,l I 1) , Y > • Matrix Crushing in (233)

"62( I Transverse Compression

2.6.5 Matrix Cracking In Axial Tension 5
One possible damage mechanism in fiber-reinforced composites is cracking of the

matrix due to axial tension. Although not envisioned as a very serious damage mode, nor a I
very commonly occurring one, its consideration may be warranted in composites with low 3
fiber volume fraction. The criterion indicating axial direction matrix cracking may be

taken as 3
38



max( (mOW Yt~) => Matrix Cracking in '(2.34)
an "al AWAIa Tension

2.6.6 Lamina Failure by Kink-banding

In axial compression, the failure is assumed to be triggered by fiber micro-buck-

ling resulting in kink-banding. At this time (1992) no adequate analytical formulations

exist which can predict with consistent accuracy the compressive strength of unidirectional

I composites in compression. A number of micromechanics-based analytical formulae

have been proposed, e.g. Rosen [92], Argon [93], Budiansky [94], and Hahn and Williams

[95], but they do not correlate well with the experimental results. Although the various

analytical models for prediction of compressive strength have not shown good quantita-

tive agreement with experimental results, they have served to identify the important pa-

rameters influencing the compressive strength of composites. Based on these works the

important parameters influencing the compressive strength of unidirectional composites

appear to be matrix shear modulus, fiber misalignment, fiber diameter, fiber volume

I fraction, and fiber/matrix interface strength.

Here, a modified form of the analytical formula suggested by Hahn and Williams

I [95] is employed for estimating the compressive strength of the lamina. The compressive

I strength of a unidirectional lamina with no defects or fiber misalignment is given by Hahn

and Williams as:

I - G12 (2.35)

I
where, Vf is the fiber volume fraction and G,2 is the in-plane shear modulus of the lamina

I If the lamina stress-strain relations are nonlinear, then, the tangent shear modulus G12 T

I should be used in the above relation and the critical compresivestress is given as
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' - Vf Gi2T (2.36)

I
In the present analysis, micro-buckling resulting in kink-banding failure is assumed to

occur if the axial compressive stress on the lamina exceeds the critical micro-buckling I
stress given by Eq. (2.36), i.e.,

11 i.. . * •Leading t (2.37) 3
Micro-buckling Kink-banding

2.7 Damage Modelling I
Due to the aforementioned failure modes, some degree of stiffness degradation and

stress relief takes place within the lamina. The assmnptions made about lamina stiffness

degradation and stress relief are discussed here. 3
If tensile fiber fracture mode is detected then, the fiber tangent compliance matrix 3

is modified as follows:

S11 S12S13 S14 S15 S16 Df;1IS 11 0 0 0 0 0s,, sSn s S24 sm S26 "•'s,•,sn,,sýSW
s�NIS. S. SS. S.s (238)
S3 "ISUS5 S I

Sy Mm S .. S4  S Fiber Symmi S. lS45 SO 3
o S, Sm Fracture sW SS&

Ls66if La N I

where Dfn1 is the stiffness reduction factor which serves to reduce the fiber axial stiffness

and is arbitrarily assumed. Since the tensile fiber fracture failure corresponds to the

opening of cracks, the axial stress in the fiber is also relieved, 3
= 0 (2.39)
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In the case of matrix cracking in the axial direction, the matrix tangent compliance

matrix is modified as follows

S so so s" So so S11 0 0 0 0 0
N S22  N333 S24 S 2 S3 6 Sn N53  % S " S34. S33 (2 40

_SW ss S3 S6SW. s3 sM sU

Symm S,. S4 $' Axial Matrix Symm SN SO S46

Si \S cracks - SW S5
LS MAI mIB LS MA, n%

where D.11 is the stiffness reduction factor which serves to reduce the axial stiffness of the

matrix Since axial tensile matrix cracking corresponds to opening of cracks, the axial

stress in the matrix subceils is relieved,

S= o (2.41)

M-ansverse matrix cracking is a common phenomenon in fiber-reinforced compos-

ites and it can cause significant stiffness degradation or even complete failure in lami-

nates. "Imansverse cracking can occur due to transverse tensile stresses or in-plane shear

stresses, or perhaps due to the combined effect of the two stresses. If the lamina fails in the

transverse direction in tensile matrix cracking mode, or a matrix shearing mode, then the

matrix tangent compliance matrix is modified as follows.

S11 S12 S~ 13 S1 S 16 SO 1  ~ ~ S4  1  1
S,\ S,, 1 S,, S,,S, $D'] S 22 0' 0• $ 0 0t ,

SN3 S -S3S D, .3 3  0 0 00 (2.42)
N S44 $ 4$ S4 Transverse S3  0 (4

Symm N 5  S Matrix Cracking Symm S,4 S45 S4
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where D.22 and D.44 are stiffness reduction factors which reduce the stiffness of the

matrix material in the transverse direction and in in-plane shear respectively. If the

failure mode is transverse matrix cracking due to tension, then since it corresponds to

opening of cracks the transverse direction stress in the matrix is also relieved, I
('& or ' (2.43)

Since the stresses in matrix subcell mA are related to stresses in the fiber via the constraint

Eq. (2.3a) , the a2(2) stress in the fiber is also reduced to zero,

22 (f)- (2.44)I

The mechanics of lamina compressive failure in the tasverse direction are not

sufficiently clear as yet, and there exists a paucity of experimental data regarding the

behaviour of unidirectional composites loaded in transverse compression. If compression

failure of matrix is indicated by Eq. (233), then the matrix tangent stiffness is reduced in 3
accordance with Eq. (2.42); but, since no opening of cracks is envisioned in this case, no

stresses are relieved in the components of the unit cell. I
Failure in a lamina can also take place due to compressive failure of the fiber or I

kink-banding. This is considered as a catastrophic failure, and the tangent stfesses of

the constituent phases are reduced according to Eqs. (2.38-2.40,2.42); but no stress reliev-

ing is carried out.

In the next section numerical examples will be presented, and the predictions of the

elastic moduli of composites based on the micro-model are compared to predictions from 3
other established procedures.

2.8 Results for Elastic Moduli I
The micro-model is the most important component of the material modelling

procedure, and may be considered the kernel upon which the accuracy of the overall

scheme depends. Therefore it is necessary that the accuracy of the micro-model be ex- 3
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amined in detail. The first step is examination of the accuracy of the elastic moduli

predicted by the model. With this in mind, the results from the micro-model are com-

pared with a number of procedures, such as the Composite Cylinder Assemblage (CCA)

model of Hashin and Rosen [9,10,25,26], numerically obtained results of Chen and

Cheng [33] and Pickett [34], and predictions from Aboudi's Method of Cells [7,54].

2.8.1 Comparison with CCA Model

The CCA model model of Hashin and Rosen gives closed form expressions for

El ,K3 , Gi and v, whereas closed form expressions for G23 ,E 2 and v23 could not

be obtained; these quantities could only be bounded.

As mentioned in the previous chapter, the Three-phase model of Hermans [22]

and Christensen and Lo [23] is related to the CCA model. Again, it was noticed by

Hashin [9] that the expressions for Ei ,K23 , G, and vi obtained by Hermans are

exactly the same as given by the CCA model, whereas Hernans' derivation for the

expression for Gz3 contained some errors. These errors were removed later in the work

of Christensen and Lo [23] and the result for G(3 was given in the form of a root of a

quadratic. Once the value of G23 is calculated from the Three-phase model re-

sults, E2 and Yn can be determined by using Eqs. (2.13).

Figs. 2.3-2.5 show the comparison of the effective elastic moduli as predicted by

CCA model and by the micro-model. Results are presented primarily for the transverse

moduli, since these are the ones which are the most difficult to predict, and they

therefore serve as a measure of accuracy of the method. In instances where the CCA

model does not give definite expressions for the effective moduli of the composite,

Christensen and Lo's results are employed along with Eqs. (2.13). The assumed

properties of the fiber and matrix are the same as used by Hashin and Rosen [25] and

are given in Table 2.1 for convenience.
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Fig. 2.3 shows the variation of the transverse Young's modulus with fiber volume H
fraction. Results based on Christensen and Lo's solution and the micro-model are

practically coincident. In fact the micro-model results have been slightly offset to

improve the readability of the graph. Both results are within the bounds given by the

CCA model. Also shown in Fig. 2.3 is the transverse modulus obtained by applying a

combination type model to the unit cell shown in Fig. 2.1, i.e. by using the second analog I
model shown in Fig. 2.2, while relaxing the matrix restraint effect induced by the

compatibility of fiber direction strain in the fiber and matrix. The difference between

the combination model and the Reuss lower bound arises from the fact that, in obtaining

the Reuss lower bound, all of the matrix material is lumped in series with the fiber

phase, whereas the combination model assumes that a portion of the matrix (Material

Element B) is acting in parallel with the rest of the material of the unit cell. The latter

arrangement results in increased stiffness. The difference between the micro-model

values and the combination model values arises from the matrix restraining effect 3
induced by the fibers. I

Fig. 2.4 shows the longitudinal shear modulus G1 and the transverse direction

shear modulus G(3 as given by the various analytical models and the micro-model. An I
interesting fact is observed in this result: the values of the longitudinal shear modulus

Gi and the transverse shear modulus Gi3 are practically the same according to both

analytical models for the case when the constituent phases are isotropic. In fact, the 3
micro-model predictions for the two shear moduli are exactly the same in this case. The

values of shear moduli given by the analytical methods and the micro-model are in goodI

agreement over the entire range of the fiber volume fraction.

Fig. 2.5 shows the micro-model results for v23 , the bounds given by the CCA

model and the values given by Christensen's results in conjunction with Eqs. (2.13). The

micro-model results and Christensen and Lo's [23] results lie -within the CCA bounds, 3
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with Christensen and Lo's results tending to favour the lower bound and the micro-mo-

del results lying closer to the upper bound.

2.8.2 Comparison with Detailed Numerical Procedures
and Aboudi's Method of Cells

Chen and Cheng [33] determined the transverse moduli of a fiber-reinforced

composite with fibers arranged in a hexagonal packing arrangement, using a series-type

elasticity solution. Fig. 2.6 shows the transverse Young's modulus and axial shear

modulus for a composite lamina as a function of fiber volume fraction. The properties

of fiber and matrix constituents are given in Table 2.2. The micro-model predictions are

in excellent agreement with the results of Chen and Cheng [33].

Fig. 2.7 shows estimates of transverse and axial shear moduli for a graphite/epoxy

lamina from the micro-model, the numerical procedure of Chen and Cheng [33], and

Aboudi's Method of Cells [7]. The assumed properties of the graphite fibers and epoxy

matrix are given in Table 2.3. The results from the three procedures are in excellent

agreement.

Pickett [34] presented numerically obtained estimates for elastic moduli of a glass/

epoxy lamina. The assumed properties of the glass fibers and epoxy matrix are presented

in Thble 2.4. Fig. 2.8 presents the variation of elastic moduli of glass/epoxy with fiber

volume fraction. Results are presented for the micro-model, Pickett's procedure [34], and

Aboudi's micromechanical model [7]. The micro-model results compare very well with

the results by Pickett and predictions from Aboudi's model.

Figs. 2.9-2.11 show variation of elastic moduli with fiber volume fraction for a

graphite/epoxy composite. Experimental results were presented by Kriz and Stinchcomb

[74]. Results from the micro-model and Aboudi's Method of Cells [7] are also presented,

and are in excellent agreement. The agreement between analytical predictions of elastic

moduli and experimental results is very good in all the cases except for the transverse
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Poisson's ratio, in which case the analytical results seem to slightly over-predict the Pois-

son's ratio. 3
2.9 Results for Thermal Expansion Coefficients

In this section, the predictions of effective coefficients of thermal expansion from 1
the micro-model are compared with results from Aboudi [54]. Figs. 2.12 and 2.13 show

the coefficients of thermal expansion in the axial and transverse directions for a glass/e-

poxy composite. The properties of the the glass fibers and epoxy matrix are the same as 1

used by Aboudi [54], and are presented in Table 2.6 for convenience. Figs. 2.14 and 2.15

show the coefficients of thermal expansion of a graphite/epoxy composite. The properties

of the fiber and the matrix are given in Table 2.7.

Examination of the results shows that the presence of even a small amount of fiber

in the matrix results in a sharp decrease in the axial coefficient of thermal expansion,

whereas the effect of fibers in reducing the coefficient of thermal expansion in the trans-

verse direction is limited. In fact it is seen that for low fiber volume fractions there can 1

even be an increase in the transverse coefficient of thermal expansion. This seemingly

anomalous behaviour is a result of the constraining effect of the fibers. When fibers,

which are axially stiff and have small thermal expansion coefficients, are added to a rela-

tively more compliant matrix with a large expansion coefficient, the effect is a sharp drop

in the axial thermal expansion coefficient even for low fiber volume fractions. This is due 1

to high fiber stiffness in axial direction, but the tendency of the matrix to expand in the the

axial direction is channeled into the transverse direction, causing an increase in the effec-

tive transverse-direction expansion coefficient. As the fiber volume fraction increases, 1

the transverse expansion coefficient gradually decreases, more or less linearly.

The predictions of thermal expansion coefficients from the proposed micro-model 1

and from Aboudi's refined micromechanical model are in excellent agreement, and the

micro-model properly portrays the anomalous behaviour of unidirectional composites in

the case of transverse thermal expansion. 1
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E V
(MpOSi)

E-Glass 10.5 0.2

Epoxy 0.4 0.35

Table 1.1 Elastic properties of E-glass fibers and epoxy

matrix used in comparing Micro-model, CCA I
model [26] and the Three-phase model results.

4I
I

E-Glass/Epoxy

. ..... CCA Upper and Lower Bounds I
2 Dow and Rosen [261

ulm 3 - ..- ...- Three-phase model
Micro-model /

Cobnto model

- ---e-s Lower Bound i

0 , , I i I i I ii

0.0 0.2 0.4 0.6 0.8 1.0
Fiber Volume Fraction V fI

Fig. 2.3 Comparison of transverse modulus calculated from the Micro-
model, CCA model [26], and the Three-phase model[23] Ini

conjunction with Eq (2.13). I
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I 2.0

E-Glass/Epoxy
G I -CCA Model.
Dow and Rose [261

1.5 - " - G23 Three-Phase Model,IO)_4 Christensen and Lo [231
0 G 1 and G023 Micro-model

0 1.0
75

o

w 0.5
Cl)

0.0 I , I , , I
0.0 0.2 0.4 0.6 0.8 1.0

Fiber Volume Fraction Vf

SFig. 2.4 Shear moduli calculated from Micro-model, CCA

model [261 and the Three-phase model[23].I

I 0o

0.

C
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0

0.

> 0.2
0 . E-Glass/Epoxy

I • . CCA Model,

r0.1 Dow and Rosen (26e
----- Three-Phase Model

•Micro-Model
I 0.0 1 1

0.0 0.2 0.4 0.6 0.8 1.0

Fiber Volume Fraction Vf

Fig. 2.6 Transverse Poison's ratio calculated from Micro-model,

CCA model (26), and the Three-phase model[23] in

conjunction with Eq. (2.13).
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E, E2 G12  V12 V3
(Mpsi) (Mpsi) (Mpsi)

Fiber 50 2 10 0.2 0.15

Matrix 0.6 0.6 0.222 0.35 0.35

Table 2.2 Elastic properties of fibers and matrix used in comparison of Micro-model

predictions and results of Chen and Cheng[33J.

I
I

2.5

Chen and Cheng [33]
Micro-model I

2.0

1.53a .- I

w1 I
'U G

0.0 I I I , I

0.0 0.2 0.4 0.6 0.8 1.0
6 Fiber Volume Fraction Vf

Fig. 2.6 Comparison of Micro-Model results with numerically
obtained results of Chen and Cheng[331.

I
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E2 G2 V12 V2 3

(Msil) (Mpsi) (Mpsi)

Graphite 24 2 4 0.3 0.15

Epoxy 0.6 0.6 0.231 0.3 0.3

Table 2.3 Elastic properties of graphite fibers and epoxy matrix used in comparison

of Micro-model predictions, results of Chen and Cheng [33) and Aboudi's
Method of Cells [7)

2.5

- Graphite/Epoxy

2.0 Chen and Cheng [33]
Aboudi [7]
Micro-model

CL

a 1.5IE
0

S1.0

0.5

0.*0, II , I, I

0.0 0.2 0.4 0.6 0.8 1.0
Fiber Volume Fraction Vf

Fig. 2.7 Comparison of Micro-model results with numerically

obtained results of Chen and Cheng[331 and Aboudi's

Method of Cells [7].
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I
B. v

(Mpsi) 3
Glass 10 0.2

Epoxy 0.496 0.34

Table 2.4 Elastic properties of glass fibers and epoxy

matrix used In comparing Micro-model

predictions and results of Pickett [34) and

Aboudi [7]. I
1

3.5 I I

Gloss/Epoxy I
3.0 Aboudi [7] /

Micro-model /
S2.5 G2  " e 34"
L 0

2.0 E
0 G

1 .5 -
1.0 I

0.51

0.0 I
0.0 0.2 0.4 0.6 0.8 1.0

Fiber Volume Fraction Vf

Fig. 2.8 Comparison of Micro-model results with numerically obtained

results of Pickett[341 and Aboudi's Method of Cells [7]. 1

1
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EI E2  G12'12 ft3
(Gpa) GAM) (Gpa)

Graphite 232 15 24 0.279 0.49

Epoxy 5.35 5.35 1.975 0.354 0.354

Table 2.5 Elastic properties of graphite fibers and epoxy matrix used in

comparison of Micro-model Predictions and results from Aboudi's
Method of Cells M7).

25 '

Graphite/Epoxy

20__ Aboudl (71
20 Micro-model

1/0
o==~~ ~ 1012_••'

5

I0 00. I , I ,

i0.0 0.2 0.4 0.6 0.8 1.0
Fiber Volume Fraction Vf

Fig. 2.9 Comparison of transverse Young's modulus and axial shear modulus
predictions from Micro-model and Aboudi's Method of Cells [7].
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* Expebrwmen
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0 1 I .I n. I I

0.0 0.2 0.4 0.6 0.8 1.0

Fiber Volume Fraction Vf I
Fig. 2.10 Comparison of transverse shear modulus predic-

tions from Micro-model and Aboudi's Method of

Co/is [(7.

0.6

!o., I
j0.41

>S €•-ap.to/epnoxyI

C 0.3
-Mcro-model

SExperiment.lKrlz and S'wncl'ornb [74]
0.2 -1- , I

0.0 0.2 0.4 0.6 0.8 1.0

Fiber Volume Fraction Vf I
FIg. 2.11 Comparison of transverse Polsson's ratio predic-

tions from Micro-model and Aboudi's Method of I
Cells [(7.
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E v a

(GPo) 10'/0C

G/ass 72.38 0.2 5

Epoxy 2.75 0.35 54

I Table 2.6 Properties of glass fibers and epoxy matrix used in
comparing predictions of coefficients of thermali expansion from Micro-model and Aboudi's Method
of Cells (54).

I °
1 70 , , I

1 60
50

1 0~40
0

I 30 GisEpx
20 Micro-modal

10

I0
0.0 0.2 0.4 0.6 0.8 1.0I ~Fiber Volume Fraction Vf
Fig. 2.12 Prediction of axial thermal expansion coefficient

of glass/epoxy from Micro-model and Aboudi's

Method of Cells (54).
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70

s0 Gns/lEpoxy I
0 ,Aboud 1541

50 hcro-modela

40

.30

201

10 i

0.0 0.2 0.4 0.6 0.8 1.0

Fiber Volume Fraction Vf

Fig. 2.13 Prediction of transverse thermal expansion coeff1-

dent of GlasslEpoxy from Micro-Model and I
Aboudi's Method of Cells[54]. !

I

E, E2  G12 Piz f a, a2

(GPa) (GPa) (GPa) 10-/° C 101/ °C

Graphite 388 7.8 6.8 0.23 0.45 -0.68 9.74 g
Epoxy 3.45 3.45 1.27 0.35 0.35 36 36 I

Table 2.7 Properties of graphite fibers and epoxy matrix used In comparison of
coefficients of thermal expansion predictions from Micro-model and Aboudi's

Method of Cells [54).

I
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40 GraphltelEpoxy

- Aboud 1641
Micro-model

"-% 30

o 20

10
-0 L

0.0 0.2 0.4 0.6 0.8 1.0

Fiber Volume Fraction Vf

Fig. 2.14 Prediction of axial thermal expansion coefficient

of graphite/epoxy lamina from Micro-model and
Aboudi's Method of Cells [54).

50 ' I . . " I " I

Grphte/Epoxy

40 - - Aboud 1641
NkvmodW

%30

20

10

0 A j .

0.0 0.2 0.4 0.6 0.8 1.0

Fiber Volume Fraction Vf

Fig. 2.15 Prediction of transverse thermal expansion coeffi-

cient of graphitelepoxy from Micro-model and

Aboudi's Method of Cells [541.
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CHAPTER 3

SUBLAMINATE MODEL I
I

A group or a cluster of laminae, from among the total number of laminae consti- I
tuting the laminate, is called a sublaminate. The micro-model combines the stresses and I
strains within the fiber and matrix phases to yield the stresses, strains and stiffness of an

effective homogeneous lamina. This information is then passed onto the sublaminate

model, as shown in Fig. 3.1, which schematically describes the working of the sublaminate

model. The sublaminate model then combines the stress and strain fields within each I
lamina to yield the stresses, strains and stiffness of an equivalent homogeneous anisotropic

mater/al, which represents the sublaminate.

Quite often, within the stacking sequence of a laminate, a typical repeating pattern I
is identifiable. This is usually the case for thick-section composites, where the symmetry I
resulting from using the same pattern throughout the laminate thickness is desirable in

order to avoid the high curing stresses which would otherwise arise. An example of a

thick-section laminate with a repeating pattern is a [02/90]v. laminate, which consists of

02/90 pattern, repeated 32 times through the thickness of the laminate for a total of 96

individual laminae. Here, it can be reasonably assumed that the material in the vicinity of 3
a typical material point consists of 3 plies arranged in this basic pattern. If these layers are

replaced by an equivalent homogeneous material then we can employ standard finite ele-

ments and the usual sampling procedures at the material points to analyze this particular

laminate. The prospective advantages of this method also become obvious now, since we I
can carry out the analysis by sampling at discrete locations through the laminate thickness, a
as compared to ply-by-ply type analysis procedures which require considerably more

computational effort and storage, in order to track the nonlinear response of a laminate. 3
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The method of representing the cluster of plies forming the sublaminate by an

equivalent homogeneous continuum may be referred to as "Equivalent Continuum Mod-

elling." In the next section the general ideas behind the method are presented.

3.1 Equivalent Continuum Modelling

The idea of equivalent continuum modelling has been applied in many different

areas of mechanics and to materials other than laminated composites. Here, discussion is

focused upon the method as it has been applied to laminated composites.

The basic procedure for obtaining the properties of an equivalent continuum rep-

resenting a laminated material is as follows. The actual laminated material is replaced by

an equivalent homogeneous material. The properties of this equivalent material are de-

termined by requiring that the actual material and the equivalent material behave in the

same way when subjected tn certain fundamental patterns of stresses or strains. These

fundamental patterns of stre&;s or strains may be thought of as calibrating stress or strain

fields. The properties of the equivalent material so obtained can be used to analyze the

structure under consideration and should yield reasonably accurate results, provided that

the stress and the strain fields at the material points of the structure are not too different

from the calibrating stress and strain fields.

3.2 Previous Work and Adopted Procedure

Pagano [75] gave expressions for the effective elastic moduli of laminated compos-

ites, using a three-dimensional lamination scheme. Pagano considered all the laminae

within the thickness of the laminate. It was suggested that moduli so determined could be

used for the purpose of structural analysis, as opposed to laminated plate type analysis

procedures, which operate on a ply-by-ply basis. Once the displacement field is known,

the detailed ply-by-ply solution can be determined from it. A similar procedure was

employed by Sun and Li [76] to determine the effective elastic moduli of a typical repeat-

ing sublaminate within the thickness of the laminate. It was suggested that since the lami-
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nate was made up from this repeating sublaminate, the elastic moduli of the laminate

would be the same as the elastic moduli of the sublaminate. I

A sublaminate model for determining equivalent elastic properties of a sublami- I
nate from the properties of constituent laminae was presented by Pecknold [57]. The

choice of the calibrating stress and strain fields in Pecknold's work is essentially the same I
as the one employed by Pagano [75] and Sun and Li [76]; therefore it was suggested by

Pecknold that the results obtained by sublaminate model [57] should be identical to re-

sults from procedures proposed by Pagano and Sun and Li. However, the formulation I
presented in Pecknold's work is quite simple, and this author is in agreement with the as-

sertion made in Pecknold's work [57] that the formulation presented in the works of Paga- 5
no [75] and Sun and 11 [76] is such that it obscures the essential simplicity of the basic

ideas which are involved. Therefore, in the present study the sublaminate model as pro-

posed by Pecknold [57] has been employed. In this chapter, certain characteristics of the

stress and strain distributions within laminated composites are first discussed, since these n

have a bearing on the type of calibrating stress and strain fields which are permissible. I
The procedure for obtaining the equivalent continuum properties of the sublaminate is

then formally outlined. I
3.3 Characteristics of Stress and

Strain Fields in Laminates I
Fig. 3.2 shows a sublaminate in assembled and disassembled forms. The coordi- I

nate axes attached to sublaminate are referred to as laminate coordinate axes; the primed

coordinate axes attached to the lamina are the lamina coordinate axes. The kth lamina has 3
also shown on its surface various stresses referred to the laminate coordinate system. The

11, 22, and 12 components of stress and strain are referred to as in-plane stresses and n

strains. Correspondingly the 33,23, and 13 components of stress and strain are referred to 3
as out-of-plane stresses and strains. The vectors of stress and strain can be partitioned

using this classification of stresses and strains as follows: 3
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5 Referring to Fig. 3.2, if there exists a perfect bond between two laminae at their

interface, then the compatibility of displacements at the interface requires, not only that

3 the displacements Ul, U2, U3 be continuous, but also that the in-plane derivatives of

these displacements be continuous. This in turn translates into the requirement that the

in-plane strains should be continuous at the lamina interface, i.e.,

-EI} I l (3.2)

Interface Iterface

The equilibrium of tractions at the interface requires that the out-of-plane stresses be

continuous across the lamina interface, i.e.,

II. IO- (3.3)

Interface /eace

These two requirements can be written compactly as

---- -- (3.4)

1 I-- erface I-fnteace

The nature of the remaining components of stress and strain, i.e. the in-plane

stresses and out-of-plane strains, is dictated by these requirements, and is explained as

U follows.

Referring again to Fig. 3.2, it is obvious that if the elastic moduli of various laminae

are referred to the global coordinates, then there will often exist a discontinuity in elastic

I moduli at the lamina interface, since the fiber orientations in the two layers forming the

3 61



U

interface may be different. If this is the case, and the requirement of the continuity of

in-plane strains is imposed, then obviously there would be a discontinuity in the in-plane 3
stresses at the lamina interface. If the requirement of the continuity of the out-of-plane

stresses is imposed at the interface, then the out-of-plane strains may be discontinuous. I
The magnitude of the discontinuities in the in-plane stresses and out-of-plane strains de- II
pends upon the degree of mismatch between the elastic moduli of the two layers forming

the interface and upon the nature of the imposed loading. i

The problems encountered by conventional displacement-based finite elements, g
such as the elements based on First-order Shear Deformation Theory and Higher-order

Shear Deformation Theories for laminates, can now be better realized. These elements

employ smooth strain distributions within a single element. This results in assumption of

smoothly varying out-of-plane strains through the laminate thickness. The computed 5
out-of-plane stresses may then exhibit discontinuities at the laminae interfaces, violating I
the requirement of continuity of out-of-plane stresses. Accurate assessment of out-of-

plane stresses in some cases may be important, since these stress components play an im-

portant role in causing delaminations.

In the following section the transformation of stresses, strains, and material prop-

erties from lamina coordinates to laminate coordinates is described. 3
3.4 Transformation of Stresses and Strains 1

The stresses, strains, and stiffness matrix of a lamina in lamina coordinates are

denoted by o', E', and C', respectively. The same quantities when referred to the lami-

nate coordinate system are denoted by or, c, and C, respectively. The axes X3 and X3'

are colinear, the fiber orientation angle is denoted by 0, and the superscript k denotes the

kth lamina. The stress and strain transformation laws are 3
{ -[T-Ek] {E = [TJk] {cr} (3.5)
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where the strains and stresses, in the vector of strains {E } and stresses {a } , are arranged

I according to the convention employed in Eq. (2.5)

5 The transformation laws describing the transformation of the lamina stiffness ma-

trix and compliance matrix from lamina coordinates to laminate coordinates follow from

5 Eq. (3.5) and the invariance of strain energy under coordinate transformation.

[C] [Tk ETk [ C] ET'ýkI (3.6)

* S] [ T~k] T[ S] [T"k]

The strain and stress transformation matrices, [ Te ] and [ T,, are defined as:

I"11" 2  mI2  ll4' 1  0 0 0

12 2  
2 l 12 0 0 0

I I0 0 0[TkE 2/1/2 2mIm2 (l1m, + tL2n!). 0 0 0

0 0 0 1 0 0m2 12(0.7a)

II
0 0 0 I 0 M 2  12

L 0 0 0 1 0 in1 11
w h erem2 2mlia r i 0 0 0

122 M2z 2/42% II 0 0 0

Tk] 1,X 2 m-Mc s ( mz + liml1 l -0 --0 - n0 (3.8)0 1 0 0
0 0 0 I0 M2 12I0 0 0 I0 MI 1I

where, 11, 32, ml, M2 are direction cosines, given by

I ~ 12 _ COS( X1, X2, ) _ _-Sin(O k) , M2 _ COS( X2,X2' ) _ COS(Ok)(.)
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Some additional useful relations between the strain and stress transformation ma-

k ktrices [ TE, ] and [ T ] are I

[T~ekI 1  [Tc~k]T , [Tork] 1 = [TEk] T (3.9)

3.5 Calibrating Stress-Strain Fields I

In order to determine the equivalent stiffness of the sublaminate, it must be sub-

jected to some specified calibrating patterns of stresses and strains. Also, preferably, the I
equivalent stiffness of the sublaminate should be determined in such a manner that the g
stress and strain continuity requirements specified in Eq. (3.4) are satisfied. If it is as-

sumed that stresses and strains in each lamina within the sublaminate are constant, then I

the following calibrating pattern of stresses and strains can be proposed, which also satis-

fies the requirements in Eq. (3.4): !

--- = - , fork = I,... N (3.10)Il a . U I
where r and Uo are homogenized in-plane strains and out-of-plane stresses in the
equivalent continuum representing the sublaminate, and Nis t h e number of laminae com-

prising the sublaminate. Eq. (3.10) suggests that the calibrating stress and strain fields
chosen are uniform in-plane strains and uniform out--of-plane stresses.I

In the next section, homogenization relations will be presented for the remaining 3
components of stress and strain in the equivalent material.

3.6 Homogenized In-plane Stresses and Out-of-plane Strains I
The in-plane stresses and out-of-plane strains in the equivalent continuum are 3

defined as

- ± +__Jt (3.11)
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I where I* is the thickness of the kth lamina, t is the thickness of the sublaminate, and N is

I the number of laminae in the sublaminate.

Eqs. (3.10) and (3.11) are sufficient to completely characterize the sublaminate

model. The above relations also apply to incremental stresses and strains. In the nextI section these relations are employed to obtain the tangent stiffness of the equivalent con-

tinuum representing the sublaminate.I
i 3.7 Tangent Stiffness of Sublaminate

The tangent stiffness relations for a lamina are given by Eq. (2.12). In the lamina

coordinate system, they take the form

Idol k = [ C,]] d}k+ AT Ifik (3.12)

I Eq. (3.12) is transformed to the laminate coordinate system using Eqs. (3.5-3.8) to yield

kk
Id I = [ L IE AT 1#1k (3.13)

The vector of thermal properties {f'} transforms like the vector of stresses, i.e.,

3 {kl - [TEk] T{ k (3.14)

I
The lamina stiffness relations in laminate coordinates can be written in partitioned

I form, in accordance with Eq. (3.1) as

doJ [Co, Cooi dEo

I The above lamina tangent stiffness relation is now partially inverted to give
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L-d,,1 i a 1 .0 1 -j Lp.,J
I ~ ~~~ [-T p- AT -(3.16)

where

Pio Cio Poo I
Pi5 = Cii - Pio Coi (3.17)
Ppo=-Poo~o I
PP,= A+ Pp, foI

The partially inverted stiffness relations for the individual laminae within the sublami-

nate are assembled according to Eqs. (3.10) and (3.11) to form partially inverted stiffness I
relations for the sublaminate:

-1 + AT -P0L~- LFIooJ l(do l.o

where

Fri 10 N :i:(f -"i "io1'
ioI-F- 0 -1 ,oo ,,I L-,r Pi Pooj

F k (3.19)

The partially inverted stiffness relations (Eq. (3.18)) can now be partially re-in-

verted to obtain the tangent stiffess relations for the equivalent material representing the

sublaminate,

--- i}b } + A} (320)

I
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where

IU 0
io - io coo

I~ i r0 i= KO (3.21)

[0 +- 1 , . ý°r°

If the elastic moduli of the sublaminate are of interest, they can be obtained from the com-

I pliance matrix of the sublaminate, which is found by inversion of the stiffness matrix in

S Eq. (3.20).

I
I
I

I
I
I
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Fig. 3.1 Schematic representation of the functioning of

the Sublaminate model

I
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Fig. 3.2 Strew~s on laminae and the various coordinate systems.
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CHAPTER 4 1
THE STRESS UPDATE I

I
The solution of finite element models of nonlinear structural systems is usually

obtained by applying the loading in an incremental manner. In addition, after application I
of each load increment, stresses are corrected and equilibrium iterations are normally

performed to ensure equilibrium to within a specified tolerance. As the loading is applied

to the structure, its geometry and the properties of the material may change, making the

response of the structure nonlinear. These changes in material properties are monitored

at the material/sampling points within each element. The effect of material property I
changes is reflected in the element stiffness matrices, which in turn convey the effect of

these changes to the structure equilibrium equations, when element stiffness matrices are

assembled to form the structure stiffness matrix. The segment of the structural analysis 3
program which provides the constitutive description of the material at a sampling point

and serves to update the material properties and the stresses at the sampling point is called 3
the material model.

Specifically stated, within the framework of finite element analysis, the material

model is called upon to perform the following important tasks :

1) Update the stresses at the material points, as the strains change. g
2) Update the tangent stiffness of the material at the material points, if re-

quired.

3) Record and indicate other changes in the state of the material, such as the

onset of yielding or failure etc. I
4.1 Solution of Nonlinear Structural Systems u

The solution of nonlinear systems is usually carried out by a combined incremen-

tal-iterative scheme, such as the Newton-Raphson or the Modified Newton-Raphson 5
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method. The loads are applied in increments P,, P,,. , and at each load step equilib-

rium iterations are performed to satisfy equilibrium to within specified tolerance. The

equilibrium equations of the structure are cast in an incremental-iterative form as

K, AUd•+ - PnP+x - I1ij4) = Rý+1 (4.1)

in which KT is the tangent stiffness matrix of the structure, I,, + 1 is the internal resis-

tance vector and R + 1 is the residual load. The superscripts i and i + 1 refer to itA and

i+lth iterations. After each iteration the previous estimate of nodal deflections is up-

dated as

"=(l U " AU+AV (4.2)

The graphical interpretation of the incremental-iterative scheme is shown in Fig. 4.1.

4.1.1 Role of the Material Model

The tangent stiffness matrix of the structure KT and the internal resistance vector

lR are formed by assembling element tangent stiffness matrices K! 9) and internal resis-

tances vectors i1 . The element stiffness matrices and internal resistance vectors are

evaluated using a numerical integration scheme such as Gaussian quadrature. The nu-

merical integration scheme requires the material tangent stiffnesses and stresses at the

material points, as is indicated in the following Eqs. (4.3):

f B(,)TC) B(,)dV4) = AT CT Bi I Jii

-- , (4.3)

- JB(c)1 &) c de) - > W5 Bio; I Ji

wherewhr NP NP Number of Material Points or Sampling

Points within the element.
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=• - Weighting Factor associated with the ith 1
Material Point. I

= Jacobian Matrix defining the mapping from element
coordinates to parametric coordinates. 5

The function of the material model becomes clear when Eqs. (4.3) are considered. Corre- 5
sponding to a deflected state, strain increments, previous stresses and strains, and history

parameters are passed to the material model, which then updates the stresses, material 5
tangent properties, and history parameters at the material point. Geometric nonlineari-

ties, if present, are reflected in the strain-displacement matrix B. I

The procedure for obtaining the equivalent tangent stiffness of the material at the I
material point has been described in detail in Chapters 1-3, and is quite straight-forward.

The stress update, however, is more involved as a consequence of the "two-level micro-

structure" employed in the material modelling procedure. The problems associated with 3
updating the stresses at a material point will be outlined in detail in the next section.

4.2 Outline of the Stress Update Problem

Suppose that during the incremental-iterative solution scheme, a change AU U
takes place in the nodal displacements. The displacement increment causes an increment 3
of strain Ac- at a material point The state of strains at the material points within the

elements is directly updated, i.e., 3
" -- E + AE (4.4) 5

The stresses, however, cannot be updated directly by adding the predicted increments of

stresses A" based on tangential estimates to the previous state of stress, since this would I
result in a cumulative error as the solution proceeds. This problem is a direct consequence

of nonlinear material behaviour, as is illustrated in Fig. 4.2, which shows the difference

between the stress increment based on tangential estimate AVY and the true stress incre- 5
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ment AV. What is sought is an accurate estimate of the true stress increment A• consistent

with the material constitutive description and the imposed strain increment Ay.

The procedure for deterpii g the true increment of stress AU corresponding to

an increment of strain Ar is more complicated than for metal-plasticity. This is a result of

the two-level microstructure of the material model employed here. The problem posed in

updating the stresses at a material point is described in Fig. 4.3, which shows the equiva-

lent homogeneous material at a typical material point undergoing an increment of strain.

The problem is to find the corresponding true increment of stress in the equivalent materi-

al, and update the state of stress there. For this, the effect of the strain increment has to be

cascaded down to the micromechanical level, where the stresses in the fiber and matrix

phases are updated. Once the stresses in the fiber and matrix have been updated, the

tangent stifftess and stress in the equivalent material can be evaluated using the stress and

strain homogenization procedure in the micro-model and the sublaminate model. Forthe

homogenization procedure to be valid, it is essential that the homogenization relations are not

violated during the process of transferring the effect of the strain increment to the fir and the

matri phases. This means that the same homogenization relations used to define the Micro-

model and the Sublaminate model now act as constraints which must not be violated during

the stress update procedure. Fig. 4.3 shows these constraints/homogenization relations,

which have to be satisfied at the micro-model level and the sublaminate model level. It is

important to note that the constraints are hybrid constraints, i.e. the constraints are speci-

fied on the strains as well as the stresses.

4.3 Stress Update Procedure

The procedure adopted here to solve the stress update problem is a relaxation type

procedure. The general strategy employed is that some of the constraints are imposed

while temporarily relaxing the complementary set of constraints. Residuals are then cal-

culated by determining the imbalance in the constraints which are violated. The out of
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balance constraints are satisfied by redistributing the residuals to remove the imbalance.

The procedure can be repeated a number of times, until the desired degree of accuracy is 3
achieved.

The solution scheme is a five-step process. Description of these steps and the

specific tasks performed during each of these steps is presented in the following sections. 5
4.3.1 Tangential Update (Step 1)

In this step the effect of the strain increment AE, prescribed over the equivalent

material at a material point, is transferred to the fiber and matrix phases at the micro-mo- 3
del level using tangential estimates based on material properties at the end of last con-

verged load step. The algorithm for the Tangent Update procedure is presented schemat- I
ically in Fig. 4.4, and the description of the various operations performed in this step

follows next.

Given the strain increment Al prescribed over the equivalent material at a materi- I
al point, the in-plane strains within each lamina of the sublaminate are known via con-

straint (SI); but the out-of-plane strains within the individual laminae are not known. At

the same time the continuity of out-of-plane stresses has to be assured. Keeping both 3
these considerations in mind, the tangential prediction of the increment of out-of-plane

stresses Aao is accepted for the time being as a reasonably good estimate of the actual I
increment in out-of-plane stresses.

After the in-plane strains and out-of-plane stresses have been transformed to the

lamina local coordinates, the complementary out-of-plane strains can be determined by I
forming the partially inverted tangent stiffness of the lamina as shown in Fig. 4.4, and in

the following relation kI
A "J 

(4.5)
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I The complete set of strains in a lamina is now known. The strain in the lamina is equiva-

U lent to the strain in the unit cell, and by virtue of constraint (M1) is equal to the increment

of strain in material elements A and B. The increment of stresses in material elements A

3 and B can be readily estimated by forming the respective tangent stiffnesses of material

elements A and B,

IIA- (4.6)

3 Within material element A the state of stress and strain within the fiber subcell f

and the matrix subcell mA can be estimated first by invoking constraint (M3) and then

I determining the remaining stress and strain increments by using the partially inverted

compliance relations for the fiber and the matrix subcell mA.

f ,Au f, MMA f, MA

I
This completes the Tangent Update step of the stress update procedure.

4.3.2 Constitutive Relations Update (Step 2)

I After the Tangent Update step, the tangential estimates of stresses and strains

within the various subcells of the unit cell are known. At this point all constraints are

satisfied. However, if the material is nonlinear, the estimated stresses and the strains

I within the subcells are not consistent with the material constitutive description. Some of

the stress or strain components have to be altered to make the stresses and strains consis-

I tent with the material constitutive description. The manner in which this is done is that

some of the tangential estimates of stress and strain components are accepted, and the

remaining components of stress and strain are determined, such that they are consistent

I with the constitutive description of the material.
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For matrix subcell mB the tangential estimate of strain is accepted, and the corre-

sponding set of stresses {[],. which is consistent with the constitutive description, is deter- 5
mined. The procedure which is used is subincrementation, in which the prescribed strain

increment is divided into a pre-determined number of smaller subincrements. At the end

of each subincrement the tangent stiffness of the material is updated, and a subincrement I
of stress corresponding to the next subincrement of strain is calculated. The subincre-

ments of stress are summed to give the increment in stress, which is added to the previous 5
state of stress to give the value of stresses at the end of the prescribed strain increment.

The consistent stresses within matrix subcell mB are then given by I

{}m~n = { MB + M~ m{ /m (4.8)
O'ms~~1 -- "[ I-£=I(i)CT ]MB AoM~m l

where M is the number of subincrements within the increment. The subincrementation 5
procedure is illustrated in Fig. 4.5, and is adopted here because of its simplicity. The

accuracy of the subincrementation method can be improved by increasing the number of 3
subincrements; alternatively, more accurate procedures such as Runge-Kutta could be

used. m

Within material element A the fiber is linear-elastic, and therefore the tangential m

estimates of stresses and strains within the fiber are consistent with one another. It should 3
be noted that a nonlinear constitutive relation could be used for the fiber, subincrementa-

tion scheme would then be used here also. Within matrix subcell mA the tangential 5
estimates of longitudinal strain EL and transverse stresses c1T are accepted, and the com-

plementary set of stresses and strains is determined by subincrementation:

m01 + f'nJ m [ flAE4•9/M (4.9)

elm [()ETJ _ L ' /4 5
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I After determining the consistent set of stresses and strains in the various subcells of the

I unit cell, the material properties and stresses within the various subcells of the unit cell are

updated.

I 4.3.3 Residual Calculation (Step 3)

The difference between the tangential estimates of stresses and strains, and the

consistent stresses and strains results in violation of some of the constraints at the micro-

I model level and at the sublaminate model level. The process of residual calculation entails

determining the amount of imbalance in those constraints which are violated, and calcu-

I lating the corrective quantities needed to remove the imbalance. The process of residual

U calculation is shown in Fig. 4.6; it starts at the micro-model level and progresses upwards

to the sublaminate model level.

1 At the micro-model level, within element B (matrix subcell msn) the difference

between the tangential estimates of stresses and the consistent set of stresses defines a

stress residual {1oJ... Since the in-plane strains in material element B are in accordance

I with constraints (Sl), only the residual 16O1.3 pertaining to out-of-plane stresses need be

considered, and is given as

{•o'} ---{6}B = {6o}m - {}. (4.10)
'B "a m

Stress
Residual

Similarly, within matrix subcell mA, the difference between the consistent strains and

3 tangential estimates define a strain residual {6ETIJ,, given by:

I =m = {A (4.11)
Strain
Residual

The strain residual within matrix subcell mA translates into a strain residual within

*material element A as
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"{ET} = Wm {&T} 
(4.12)

Strain
Residual

The strain residual in material element A is the amount of strain mismatch between the

material elements A and B, which ought to be removed to satisfy constraint (Ml). This

would require application of a corrective stress to element A given by

{6 A,_ {T}A-- [ rCT] {T}A (4.13) 3
Stress
Correction I

This stress correction would have to be applied to element A in order to satisfy constraint

(Ml), but the application of this stress correction is deferred for the time being. 3
In material element A the stress correction terms tao}A pertaining to out-of-plane 3
stresses are calculated from {[6,}A by selecting only the out-of-plane stress terms.

The out-of-plane stresses within the lamina are now in violation of constraint (Si),

and the amount of imbalance from the initial tangential estimate is given by 3
S(4.14)

Stress
Residual 3

The out-of-plane stress residual in the lamina would result in an out-of-plane strain

correction term, given by 3
k k = [ pk - OI k(4.15)

Strain
Correction 3

where [pk] is the partially inverted lamina tangent compliance. The effect of the lamina

strain correction term calculated in Eq. (4.15) is to be carried back to the fiber and the

matrix phases, but its application is deferred until the next step. 3
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I The strain correction contributions from all the laminae within the sublaminate

E are summed up to yield a strain residual at the sublaminate level, given by

3 {6Z} = t 4" {. (4.16)
Strain k = I

Residual
Corresponding to the sublaminate strain residual, an out-of-plane stress correction term

I is calculated as

f U1I = - (4.17)

Stress
Correction

This out-of-plane stress correction term is applied to the sublaminate to remove the

U strain residual in the sublaminate. This is explained in the next step of the stress update

procedure.

I 4.3.4 Residual Application (Step 4)

The schematic algorithm for application of residuals to satisfy the out-of-balance

I constraints is shown in Fig. 4.7. The stress correction term determined in Eq. (4.17) is applied

i to the sublaminate, and its effect is transferred to the micro-model level. The procedure is

essentially the same as that followed in the "ngent Update (Step 1) with a slight modifica-

I tion. the residuals calculated in the preceding step of the Residual Calculation, and whose

application was deferred, are also taken into account while distributing the residuals.

U 4.3.5 Updated Stress Calculation (Step 5)

After all the constraints are satisfied to within acceptable tolerances, the effective

stress at the material point is calculated by using the stress homogenization relations used in

I the definition of the micro-model and the sublaminate modeL The procedure employed is

shown schematically in Fig. 4.8. After the updated stresses have been calculated, this infor-

I mation is passed on to the main analysis program.
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4.3.6 Overall Stress Update Algorithm U
The overall stress update algorithm consists of the five previously described steps;

step 5 is the last step in the procedure, and is taken only when the constraints are within

specified tolerances. The check for satisfaction of constraints is made after Step 3 (Resid- 3
ual Calculation). If the constraints are not satisfied, some of the steps have to be repeated.

The flowchart of the stress update procedure is shown in Fig. 4.9. 1
As is shown in Fig. 4.9, the prescribed strain increment A" at a material point is 3

received as input from the main structural analysis program. Step 1 (Tangent Update),

Step 2 (Constitutive Properties Update), and Step 3 (Residual Calculation) are per- I
formed, following which a decision is made about the convergence of residuals. In order

to ensure that the out-of-plane strain residual {(.} is small, the following convergence

criterion is used, U
A s Tolerance (4.18)

If the above convergence criterion is satisfied, then the updated stresses are calculated I
and the results are conveyed to the main program. If the convergence criterion is not

satisfied, then Step 4 (Residual Redistribution) is carried out, and Step 2 and Step 3 are

repeated.

4.4 Comments on the Stress Update Procedure I
The procedure presented in this chapter for obtaining the updated stresses was found 3

to be quite accurate. After the stresses are updated all the constraints are satisfied, with some

error remaining in the constitutive relations. This is partly the result of the subincrementa- 3
dion procedure adopted here, and also because of the fact that the relaxation type scheme

adopted here is iterative in nature. Subincrementation is an approximate solution scheme, I
and therefore the results obtained contain some error. More refined integration schemes can

be used for integration of constitutive relations; however, this would result in making the

stress updating scheme more complex. 3
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CHAPTER 5

RESPONSE OF LAMINAE AND LAMINATES
TO UNIFORM LOADINGS

In this chapter some applications are presented with the objective of evaluating

the accuracy of the modelling procedure and demonstrating its potential. It is desirable to

separate the two issues of structural modelling and modelling of the material behaviour.

For this reason, the performance of the material model is evaluated in modelling and

predicting the response of fiber-reinforced laminae and laminates under homogeneous

I loading conditions, i.e. when there is no spatial variation in the effective stresses and

strains. Results are presented for:

I e Response of various types of laminae, comprised of different fiber/

imatrix combinations, subjected to off-axis loading, and laminates

subjected to uniaxial loading. Only the effects of matrix stress-

I strain nonlinearity are taken into account, since the applied loading

is not high enough to cause damage.

I e Prediction of the off-axis strength of various types of laminae

I . Initial yield surfaces of composite laminae subjected to different

stress fields.

I . Stress-strain response of laminates to the point of ultimate failure.

I In this case both the effects of matrix nonlinearity and other damage

mechanisms are taken into account. Micromechanical criteria are

I employed for damage detection and incorporating the effect of

damage.
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5.1 Nonlinear Response of Laminae and Laminates I

Aboudi [53], using the Method of Cells, modelled the nonlinear response of vari- I
ous types of laminae and laminates, comprised of different fiber/matrix combinations. A

standard Ramberg-Osgood description was adopted for the matrix material. The stress-

strain response of laminae and laminates predicted by Aboudi showed fairly good agree-

ment with experimentally observed results. Here, the proposed material modelling proce-

dure is used to predict the responses of the laminae and laminates studied by Aboudi [53], 1
using the same elastic properties and constitutive description for the constituent fiber and

matrix phases as used by him.

5.1.1 Response of Boron/Epoxy Laminae and Laminates I

Fig. 5.1 shows the response of a Boron/epoxy lamina in shear. It is worth mention-

ing that the shear strain along the abscissa is the tensorial shear strain E12 and not the

engineering shear strain, commonly denoted by 7,2. The elastic properties of the Boron I
fibers and epoxy matrix are given in Ihble 5.1, and are the same as the ones used by

Aboudi [53]. I
As can be seen from Fig 5.1, the results from the present formulation and Aboudi's

Method of Cells are in excellent agreement. There is discrepancy between the theoretical I
predictions and experimental data in the vicinity of r,2 = 0.75% ; Aboudi attributed this

to error in experimental data obtained from the 150 off-axis coupon. I
Figs. 5.2 and 5.3 show the response of off-axis coupons (0 = 300, 450), subjected to

uniaxial tension; results are shown for analytical predictions from Aboudi's Method of

Cells, and the proposed material modelling procedure, along with experimental data from

Cole and Pipes [78]. The predictions form both of the analytical procedures agree well I
with the experimental data. The predictions of ?'11 from both analytical procedures show 3
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I excellent agreement, but the Z22 strains predicted from the present formulation are slight-

I ly less than the ones predicted by Aboudi.

Figs. 5.4 and 5.5 show the response of symmetric angle-ply laminates to uniaxial

loading. Results are presented for [+ 30/ - 30k and [+ 45/ - 45]s laminates. In both cases

the predictions from the present method are in excellent agreement with results from

Aboudi [53]. However, for the [+ 45/ - 45k laminate the theoiretical predictions show a

I deviation from the experimentally observed results of Pipes, Kaminski and Pagano [80].

I 5.1.2 Response of E-Glass/Epoxy Laminates

Fig. 5.6 presents the shear stress-strain response of E-glass/epoxy lamina. The

I approximated shear stress-strain response attributed to Lifshitz was obtained by Aboudi

S [53] by integrating the following expression for the axial tangent shear modulus GT,2 of

the lamina, reported by Lifshitz [82]:

-2T -- 6 - 692r12 + 3267242 - 539248'12 (5.1)

Also shown in Fig. 5.6 is the shear stress-strain response of the lamina as modelled by

Aboudi's Method of Cells and by the present material modelling procedure. The assumed

properties of E-glass fibers and epoxy matrix are given in Table 5.2, and are consistent

with the properties used by Aboudi [53]. As can be seen from Fig. 5.6, the results from the

two analytical modelling procedures are in excellent agreement with each other and with

the derived experimental results.

Figs. 5.7 and 5.8 show the response of [+ 30/ - 30ks and [+ 41/ - 41k laminates

when subjected to uniaxial tension. The curves representing the experimental results of

I Jfshitz [821 are actually he upper and lower bounds of the experimentally observed

results. The response of the [+ 41/ - 41k laminate shows significant nonlinearity. The

agreement between the analytical predictions and the experimental results is very good.
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5.1.3 Response of Graphite/Polylmide Laminae U
Fig. 5.9 shows the response of graphite/polyimide off-axis coupons. Experimental

results were presented by Pindera and Herakovich [83]. Results from Aboudi's Method

of Cells and the present material modelling procedure are also presented, and are seen to I
be in excellent agreement with each other. The agreement between analytical predictions

and experimental data is fair. The properties of graphite fibers and polyimide matrix used I
in the analytical predictions are given in Table 5.3.

5.2 Off-Axis Strength of Composite Laminae

Off-axis strengths of various types of fiber-reinforced composite laminae were

predicted by Aboudi [52], using the Method of Cells. Failure of the composite lamina was

predicted by using micro-failure criteria for the fiber and matrix phases. The lamina was

subjected to off-axis loading, and stresses within the various subcells of the unit cell

representing the lamina were monitored. A maximum stress failure criterion was applied

to the constituent phases, to define the failure of the lamina. Aboudi's analytical results I
were in good agreement with experimental results.

In this section, predictions of off-axis strength from the present method will be

compared with the results from Aboudi's work [52]. It was assumed by Aboudi that an

off-axis lamina loaded in uniaxial tension can fail in one of the following three modes:

Fiber fracture, Matrix Shearing, and Matrix Cracking in transverse tension. The micro- I
failure criteria determining these modes of failure have already been presented in Chap-

ter Two.

5.2.1 Strength of Boron/Epoxy Lamina

Fig. 5.10 shows the off-axis strength of a boron/epoxy lamina with variation in

fiber orientation angle. Results are presented for analytical predictions from Aboudi's I
[52] Method of Cells and the present modelling procedure. Experimental results from

Pipes and Cole [77] are also presented. The elastic properties and strengths of boron

fibers and epoxy matrix are given in Tahble 5.4. It is seen that the predictions of both 3
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analytical procedures agree very well over the full range of fiber orientation angle. The

present model not only predicts the off-axis strength with good accuracy, but also success-

fully delineates the transition from fiber fracture mode to matrix shearing mode and

matrix tensile failure mode. The agreement between analytical predictions and exper-

imental results is quite good.

5.2.2 Additional Examples of Off-Axis Strength of Laminae

The off-axis strength of a graphite/polyimide lamina is shown in Fig. 5.11. The

experimental results were reported by Pindera and Herakovich [83]. The properties of

graphite fibers and epoxy matrix used in the analyses are listed in Table 5.5. Excellent

agreement between the results from Aboudi [52] and the present method is seen again.

Fig. 5.12 shows the off-axis strength of AS/3501 graphite/epoxy lamina with varia-

tion in fiber orientation angle. The experimental results were reported by Ma and Hahn

[6]. The properties of graphite fibers and epoxy matrix, used in the micromechanics based

predictions of strength are listed in Table 5.6.

The off-axis strength of a Kevlar/epoxy lamina is shown in Fig. 5.13. The exper-

imental results are from the work of Pindera et al. [84], and the elastic properties of Kevlar

fibers and epoxy matrix used in micromechanical analysis are given in TIble 5.7.

Fig. 5.14 shows the off-axis strength of E-glass/epoxy lamina; the properties of

E-glass fibers and epoxy matrix are presented in Table 5.8. It is interesting to note that in

this case the zone in which the fiber fracture mode occurs is very small; the transition from

fiber failure mode to the matrix shear failure mode occurs at about an off-axis angle

0 o 10. This is due to the relatively low shear strength of the epoxy matrix.

Fig. 5.15 shows the variation in off-axis strength of a boron/aluminum lamina as

the fiber orientation angle changes. The experimental results presented are from the work

of Becker et al. [86]. The elastic properties of the boron fibers and aluminum matrix are

given in Table 5.8. The three distinct modes of failure, and the transitions from one mode
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of failure to another are dearly visible in Fig. 5.15. The region in which the fiber fracture

mode governs is significantly large compared to the previously presented examples,

because the shear strength of the aluminum matrix is relatively high.

5.3 Initial Yield Surfaces of U
Metal Matrix Composites

Metal matrix composites are increasingly being used in aerospace applications,

where the use of stiff fibers, such as boron or graphite in a light-weight metallic matrix

like aluminum, results in a light, yet stiff and strong material. The fibers in a composite

can usually be assumed to be elastic; and the yielding observed in metal matrix composites I
is attributable to yielding of the metallic matrix. It is of interest to see if the present

micro-model can predict the initiation of yielding in metal matrix composites; therefore

in this section, results for initial yield surfaces of metal matrix composites under different

stress states are presented. I
Results for initial yield surfaces of fiber-reinforced laminae and laminates under

different stress states were presented by Dvorak et al. [40], using the finite element meth-

od to model a representative volume element of a composite lamina. Pindera and Aboudi

[87] used the Method of Cells to obtain the initial yield surfaces of the composite laminae I
studied by Dvorak et al. In this section the results of Dvorak et al. and Pindera and Aboudi

are compared to results obtained from the proposed modelling procedure.

To predict the onset of yielding in matrix material, the von Mises yield criterion is i
used, which is described as follows. Yielding is supposed to occur if the following condi-

tion is satisfied, I
F(aij) a 0 (5.2)

where

F(aj) = - (53)
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re is the square root of the second invariant of the deviator stress tensor sij and ayWi) is

the yield stress of the matrix in uniaxial tension. Eq. (5.3) may be expressed in terms of

stresses as

F(1) =(all_22)2+ (all-_33+)2 + (a22_-a)2]

+3(0} 02 2 W (5.4)

The above yield criterion is applied to both matrix subcells, mA and mB, and

yielding is assumed to occur if the above yield criterion is satisfied in either of the two

matrix subcells. Specifically stated, yielding is assumed if either of the two following

criteria are satisfied,

(no)F(o, ") o
(5.5a-b)

(MR)F(aO~, )) O

Fig. 5.16 shows the initial yield surface of a boron/aluminum lamina in ( 3, 3)

stress space; the stresses are normalized with respect to the yield stress of the matrix o (Y).

The properties of the boron fibers and aluminum matrix are given in "lble 5.9. The results

from the present material model show very good agreement with results from Aboudi's

Method of Cells and the finite elements based results of Dvorak et al. However, the yield

surface predicted by Aboudi's Method of Cells contains corners which are not predicted by

the detailed finite element approach.

Fig. 5.17 shows the initial yield surface of the same boron/aluminum lamina in

(au, U22) stress space. The results from the present material model agree very well with

the results from Aboudi's Method of Cells and the finite element based results.
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Fig. 5.18 shows the initial yield surface of the boron/aluminum lamina in

(U11,U22 = U33) stress space. It is noticed that in the vicinityof the hydrostatic stress state,

both the Method of Cells and the present micro-model perform poorly and predict yield

stress states which are significantly higher than the finite element based results. However,

the results from both models improve as the imposed stress states move away from the

hydrostatic stress state.

5.4 Response and Ultimate Strength of
Boron/Epoxy Laminates

Petit and Waddoups [61] presented a method for modelling the nonlinear response I
of laminated composites in which the nonlinear stress-strain behaviour was taken into

account, but no interaction between stresses was recognized. Furthermore the bimodu-

larity of the lamina in tension and compression was taken into account. The laminate

response was derived by assembling the laminae comprising the laminate within the

framework of Classical Laminated Plate Theory. A maximum strain criterion was n

employed to detect the onset of failure in a lamina, and the lamina was then gradually

unloaded by giving it a negative tangent stiffness in the loading direction being considered

(longitudinal, transverse or shear).

5.4.1 Micromechanical Modelling of Boron/Epoxy Lamina

The response of the boron/epoxy lamina as reported by Petit and Wddoups [61] is I
now modelled using the proposed material model. Fig. 5.19 shows the shear response of

the boron/epoxy lamina; also shown is the response predicted by the material model. The

properties of the constituent boron fibers and epoxy matrix were inferred from lamina I

responses under various loading conditions (Fig. 5.19-5.23), and are listed in 1Tble 5.10.

It should be mentioned that the properties of the fibers and the epoxy matrix are to be U
used in the "Modified Ramberg-Osgood Relations" (Eqs. (2.23-2.29), Chapter 2). Modi-

fled Ramberg-Osgood relations are used in order to eliminate excessive nonlinearity in

transverse direction loading which is not observed in experimental results.
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5.4.2 Failure Criteria and Damage Modelling

The employed micro-failure criteria for the various failure modes have already

been presented in chapter 2 (Section 2.6). The procedure for modelling the effects of

damage have also been described in chapter 2 (Section 2.7). The stiffness reduction

factors used in the analysis are listed in "[hble 5.10.

Results for the response of boron/epoxy laminates are presented in the next section.

5.4.3 Response of Boron/Epoxy Laminates in Tension

Figs. 5.24-5.27 show the responses of boron/epoxy laminates subjected to uniaxial

tension. Results are presented for the proposed material model, analytical predictions,

and the experimental results of Petit and Waddoups [61].

Fig 5.24 shows the response of a [0/90]s laminate in tension. The response pre-

dicted by the proposed material model agrees well with the experimental results and the

analytical results of Petit and Waddoups. According to the present analysis procedure,

tensile matrix cracking in the transverse direction takes place in the 900 plies at the stress

level of 70 ksi, resulting in some loss of stiffness and load redistribution. This is consistent

with the analytical results of Petit and Wddoups. The ultimate failure of the laminate

occurred by fiber fracture in the 00 plies at 92 ksi; the ultimate strain being 0.6 %.

Experimental results indicate failure at 100 ksi, with a strain at failure of 0.71%.

The response of a [ + 30/ - 30] s laminate is shown in Fig. 5.25. The present proce-

dure indicates some nonlinearity in response, but not as much as is indicated by Petit and

Waddoups. Also, shear failure of the matrix in the plies is predicted, whereas the analysis

conducted by Petit and Waddoups indicated the mode of failure to be compressive failure

of the matrix in the transverse direction.

Fig. 5.26 presents the response of a [ + 60/ - 60]s laminate. The indicated mode of

failure from the present analysis is tensile matrix cracking in the transverse direction at 15
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ksi, the ultimate strain being 0.6%. The experimental results indicate an ultimate stress of

17.5 ksi, and strain at failure of about 0.8%.

Fig. 527 shows the behaviour of a [ + 45/ - 45/9031 s laminate. The indicated mode

of failure is tensile matrix cracking of the 900 plies in the transverse direction, followed

by matrix shearing failure in the 450 plies. The predicted ultimate strength is 22 ksi at the 5
ultimate strain of 0.44%. The experimental results indicated the mode of failure to be

matrix cracking of the 900 plies in the transverse direction at 20 ksi.

5.4.4 Response of Boron/Epoxy Laminates in Compression
The response of a [0/90]s laminate in compression is shown in Fig. 52.8. The I

present analysis predicted failure of the 00 plies by compressive failure of the matrix in the

transverse direction at about 230 ksi. This resulted in a slight loss of stiffness, but did not

cause complete loss of load carrying capacity. The laminate finally failed at 275 ksi by m

micro-buckling of the 00 plies. Experimental results indicate that the laminate failed at

255 ksiby failure of the 00 plies.

Compression response of a [ + 20/ - 20] s laminate is shown in Fig. 5.29. No nonlin- I
earity is observed in the laminate response, and the analytical procedure predicts laminate

failure by tensile failure of the plies in the transverse direction at 117 ksi. The [ + 30/- 30]s s

laminate fails in a similar fashion (Fig. 530). The shapes of the analytical response curves

and the experimental results show very good agreement Experimental results indicated the

failure stress to be 44 ksi, as compared to 50 ksi predicted by Petit and Wddoups, and 60 ksi I
predicted by the present material model and micromechanical failure criteria.

The predicted response and experimental results for a [ + 60/ - 60]s laminate are m

given in Fig. 5.31. A significant amount of nonlinearity is observable in the response. The 3
present analysis indicates failure at 41 ksi due to compressive failure of the matrix in the

transverse direction, which is consistent with the experimental results and the analytical 3
predictions of Petit and Wddoups. The present analysis, however, predicts an elastic-
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plastic type response, whereas the analytical results of Petit and Waddoups show a more

gradual transition to the point when the laminate loses all stiffness.

5.4.5 Comments on Modelling of Laminate
Stress-Strain Response

Modelling the response of fiber-reinforced laminated composites up to the point

of ultimate strength i- a challenging problem, made difficult by a number of factors. The

experimentally observed ultimate strengths of unidirectional composites show a consider-

able amount of scatter, indicating that statistically reliable properties should be used in

the analysis to obtain better statistical correlation between the predicted laminate

strength and the experimentally observed values. Keeping in view the observed scatter in

the experimentally obtained ultimate strength values of laminated composites, the true

measure of the performance of an analysis procedure for predicting the strength of com-

posites would be its better statistical correlation with experimental results.

The choice of the failure criteria adopted in the analysis procedure can significantly

affect the quality and accuracy of the predicted results. The failure mechanisms exhibited by

composites are many and quite complex.. Although numerous failure criteria have been

proposed for strength prediction of composites, much work needs to be done in this area to

develop criteria which are accurate and take into account the complex mechanisms of failure

associated with composites.

Finally, the manner in which the effects of damage are accounted for in the lami-

nate analysis also significantly affects the predicted response of the laminate. Damage

mechanisms tend to dissipate the stored strain energy in the laminate and result in stif-

fness degradation. The manner in which the stiffness degradation and strain energy dissi-

pation is modelled would influence the calculated response of the laminate. The field of

Damage Mechanics aims to provide damage evolution laws and framework for incorporat-
ing the effects of damage. It is felt that incorporating a suitable damage theory would

result in improved analytical predictions of laminate response.
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E v Toa n
(GPa) (MPa) 5

Boron 413.6 0.15 -- -

Epoxy 5.2 0.35 157.6 0 5.74 4

Table 5.1 Elastic properties of boron fibers and epoxy matrix, along with Ramberg- I
Osgood parameters for epoxy matrix. Fiber volume fraction = 0.5 I
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Fig. 5.1 Shear stress-strain response of boron/epoxy lamina as predicted by I
Aboudi's Method of Cells and the proposed material model, along with
experimental results of Pipes and Cole. 3
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Fig. 5.2 Uniaxial stress-strain response of 300 off-axis boron/epoxy lamina as

predicted by Aboudi's Method of Cells and the proposed material

model, along with experimental results of Cole and Pipes.
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Fig. 5.3 Unlaxial stress-strain response of 450 off-axis boronlepoxy lamina
as predicted by Aboudi's Method of Cells and the proposed material1 model, along with experimental results of Cole and PIpes.
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Fig. 5.4 Unlaxial Stress-Strain Response of [+301-30]s Boronlepoxy laminate,
as predicted by Aboudi's method of cells and the proposed material
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Fig. 5.5 Uniaxial Stress-Strain Response of [+451-45]s Boronlepoxy laminate, 3
as predicted by Aboudi's method of cells and the proposed material

model, along with experimental results of Pipes, Kaminski and Pagano.
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E V To a b n
(GPa) (MPa)

E-Glass 73 0.22

Epoxy 6 0.35 106 0 3.33 3

Table 5.2 Elastic properties of E-glass fibers and epoxy matrix, along with Ramberg-

Osgood parameters for epoxy matrix. Fiber volume fraction = 0.64

125

100

75 T12

I X2
i- 50 L mm

E-Glass/Epoxy
25 - ,- ----- Aboud [531I Material Model

Ufsht and Glat 1811
0 1 1 1

0.0 0.6 1.2 1.8 2.4 3.0
Tensorial Shear Strain 12 (%)

Fig. 5.6 Shear stress-strain response of E-glasslepoxy lamina as predicted by

Aboudi's Method of Cells and the proposed material model, along with
derived experimental results of Ufshitz and Gilat.
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i

E-GlasslEpoxy 5z
[+ 30/-30]s

100 -ud 1531
Mateia Model
Ufehitz [821

0 'iI , iI * I I

0 1 2 3 II
Fig. 5.7 Unlaxlal stress-strain response of [+3 01- 3 0]S E-glasslepoxy

laminate, as predicted by Aboudi's Method of Cells and the proposed i
material model, along with experimental results of iUfshitz.

= -t tttt t
250

200 £2

E-Glass/Epoxy I,
0 [+ 41/-411S

------ Aboud [531
50 Materlal Model

Ufhftz 1821

0 1 1

0 1 2 3 4

N (%)

Fig. 5.8 Unlaxial stress-strain response of [+4 5 1-4 51s E-glasslepoxy 3
laminate, as predicted by Aboudi's Method of Cells and the proposed

material model, along with experimental results of Lfshltz.
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El VI E2  V23 G12  
To a b

(GPa) (GPa) (GPa) (MPa)

Graphite 222 0.33 29.5 0.73 24.1 -

Polyimide 3.1 0.39 3.1 0.39 1.1 186.9 0 5.61 4

I Table 5.3 Elastic properties of graphite fibers and polylmide matrix, along with Ramberg-

Osgood parameters for polyimide matrix. Fiber volume fraction = 0.61I
I

400 tttt

IA
3000 loI r

I 200 0- 15°

0 --0
100 po-p Graphite/Polyimide

Materalw Model
. .Pndra and Herakovlch [831

01
0.0 0.2 0.4 0.6 0.8 1.0

Fig. 5.9 Unlaxial stress-strain response of 100,150 and 300 off-axis graphitelpolyimilde

laminae, as predicted by Aboudi's Method of Cells and the proposed material
model, along with experimental results of Pindera and Herakovich.
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E V XXý jtm) SWm)

(GPa) (MPa) (MPa) (MPa)

Boron 400 0.2 2566 I
Epoxy 5.2 0.35 93 87

Table 5.4 Elastic properties and strengths of boron fibers and epoxy
matrix. Fiber volume fraction = 0.5 I

I
3

1500 Boron/Epoxy '11
,Aboud 521 tttt I

Metg"u Model
U Pk..and Cole(7EM

a,-

CS 500 A

0 30 60 90

0 (Degrees)

Fig. 5.10 Off-axis strength of boronlepoxy lamina as predicted by Aboudi's Method of Cells I
and the proposed material model, along with the experimental results of Pipes and
Cole. 3

I
1o6 1



IEV E2  V3 G12  X.111 17(m) (

(GPa) (GPa) (GPa) (MPa) (MPa) (MPa)

Graphite 222 0.33 29.5 0.73 24.1 2517

Polyimide 3.1 0.39 3.1 0.39 1.1 - 69 71

Table 5.5 Elastic properties and strengths of graphite fibers and polylmide matrix.
Fiber volume fraction = 0.61

2000
Graphite/Polyimide

------- - ---------Aboudl 1621__ _ tttt
Materlal Model

15006 Pindra and Horakovloh 1831

x2

1o

ee

03

0 30 60 90

0 (Degrees)

Fig. S.11 Off-axis strength of graphitelpoly1mide lamina as predicted by Aboudi's Method of
Cells and the proposed material model, along with the experimental results of
Pindera and Herakovich.
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I
(GPa) (GPa) (GPa) (MPa) (MPa) (MPa)

AS13501 213.7 0.2 13.8 0.25 13.8 2250 3
Epoxy 3.45 0.35 3.45 0.35 1.3 - 62.9 108

Table 5.6 Elastic properties and strengths of graphite fibers and epoxy matrix.
Fiber volume fraction = 0.66

I
I

1750
ASI3501 Graphite/Epoxy

1500 AbOU 1521tt t
Materia Model

C Tea and Hahn 161

1250 A

S750 x

500

250 0

0
0 30 60 90

0 (Dlegrees)

Fig. 5.12 Off-axis strength of AS13501 graphitelepoxy lamina as predicted by Aboudi's
Method of Cells and the proposed material model, along with the experimental
results of Tsai and Hahn. 3

I
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E1  V1  1xr)) sCm)
(GPa) (GPa) (GPa) (MPa) (MPa) (MPa)

Kevlar 124.1 0.35 4.1 0.35 2.9 2031 -

Epoxy 3.45 0.35 3.45 0.35 1.3 62.9 108

Table 5.7 Elastic properties and strengths of Kevlar fibers and epoxy matrix.
Fiber volume fraction = 0.55

1250
Kevlar/Epoxy 611

--------------- Aboued 15211000 
• Plndra et a,. [84] 

L

Material Model

~750

(5X 

A

250 

x,

0
0 30 60 90

e (Degrees)

Fig. 5.13 Off-axis strength of Keviarlepoxy lamina as predicted by Aboudi's Method of Cells
and the proposed material model, along with the experimental results of Pindera et al.
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Ey,(m S~m)

(GPa) (MPS) (MPa) (MPa) 3
E-Glas 73 0.22 1990

Epoxy 3.45 0.35 40.4 45.5 3
Table 5.8 Elastic properties and strengths of E-glass fibers and epoxy

matrix. Fiber volume fraction = 0.60

U
I
I

1500 - E-Glass/Epoxy

SAboudi 1521,.,o ,,,• .,,,,,t ttt
1250 - MaterialModeltt

-1000 
Hasm~ and Flown 1851

7500 I

2500 5
0 

I0 30 60 90
e (Degrees)

Fig. 5.14 Off-axis strength of E-glasslepoxy lamina as predicted by Aboudi's Method of I
Cells and the proposed material model, along with the experimental results of
Heshin and Rotem. 3

I
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E v X; )
(GPa) (MPa) (MPa) (MPa)

Boron 400 0.2 2313.8

rum' 72.5 0.33 155.6 167.4

Table 5.8 Elastic properties and strengths of boron fibers and 6061-0
aluminum matrix. Fiber volume fraction = 0.46

1500
Boron/6061-O Aluminum 1

--- Aboudl [521A
1250 Material Model It

•Becket et al. [861 • €

1000X

0)i 750 0I-

CO 5 0 0  , A IX

250 -

0
0 30 60 90

0 (Degrees)
Fig. 5.15 Off-axis strength of boronI6061-0 aluminum lamina as predicted by Aboudi's

Method of Cells and the proposed material model, along with the experimental
results of Becker at al.
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I

E v a(i)
(GPa) (MPa) I

Boron 413.7 0.21 3
Aluminum 72.5 0.33 262

Table 5.9 Elastic properties of boron fibers and aluminum matrix for I
calculation of initial yield surfaces of composite lamina.
Fiber volume fraction = 0.3 3

Boron/Aluminum

-- - ------- F. E. Resufti. Dvorak et al. (391
--- dera and Aboud 1871
Material Model 5

7 335

1.0O1

- 0.0 I
I I

--2.0 1

-2.0 -1.0 0.0 1.0 2.0 3
Fig. 5.16 Initial yield surface of a boron/aluminum composite as predicted

by Aboudi's Method of Cells and the proposed material model,

along with finite element based results of Dvorak et al.
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'022 Boron/Aluminum
F. E. Resuits. Dvorak ot al. [39]

- Pindera and Aboud [871

Material Model

3.0

2.0

1.0

Ei

-- 0.0 _

I
I

I
I

-2.0
'%%

- 3 .0 , I , I I I

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

Fig. 5.17 Initial yield surface of a boronlaluminum composite as predicted

by Aboudi's Method of Cells and the proposed material model,

along with finite element based results of Dvorak at al.
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a22 Boron/Aluminum 5
SF. E. Results, Dvorak et al. [40]
---- Pindera and Aboudl [871

Material Model

20 
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I * I

161
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8 I

-4.
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-16I
-14

-20

-20 -16 -12 -8 -4 0 4 8 12 16 20

Y= Uj3ay

Fig. 5.18 Initial yield surface of a boron/aluminum composite as predicted

by Aboudi's Method of Cells and the proposed material model,
along with finite element based results of Dvorak et al.
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i

E v To a b n(f) m) y(m) S(m)

(Ksi) (KSi) (Ksi) (Ksi) (Ksi) (Ksi)

Boron 59985 0.25 - - - - 372 - -

Epoxy 1000 0.35 13.5 0 1.0 4 15.5 50.0 21.0

Table 5.10 Elastic properties of boron fibers and epoxy matrix, along with Ramberg-Osgood parameters
for epoxy matrix used in modelling response of boronlepoxy laminates tested by Petit and
Waddoups [611. Fiber volume fraction = 0.5

Stiffness reduction factors Df11 , D 11 , D-22, D44 = 0.001

20 -

18 - T12

__ 16 I

13 4 - Boo/px

12 Maer- Mode
10 ICa,I Boron/Epoxy

SPetit and Waddoups [611g2 Material Model

0 1

0.0 2.0 4.0 6.0 8.0

Shear Strain, Va (%)

Fig. 5.19 Shear stress-strain response of boronlepoxy lamina as modelled by
the proposed material model, and by Petit and Waddoups.
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- -- - -Petit and Waddoups [611
- Material Model

0 IF , I * I , I ,

0.0 0.2 0.4 0.6 0.8

Tensile Strain, F11 (%)

Fig. 5.20 Response of boronlepoxy lamina in axial tension, as modelled by the

material model, and by Petit and Waddoups.

1
14 5

12 
...... 5Wo [

0 ,X2

2ytemtra oeadb Petit and W addoups. 61
06 I I X,F~~g. 8.21 Response of boron/epoxylanantrseseesiasmdld

by the m~~~~~~aterial moeadboPttadW d elps

1165



3 600
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o Boron/Epoxy
100 Petit and Waddoups [611

I Material Model

0 I , I I ,

0.0 0.5 1.0 1.5 2.0

Compressive Strain, 1 (%)
Fig. 5.22 Response of boronlepoxy lamina in axial compression, as modelled

by the material model, and by Petit and Waddoups.
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Materia Modiel

I 0I I I1
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Compressive Strain, 22 (%)

Fig. 5.23 Response of boronlepoxy lamina In transverse compression, as modelled

by the material model, and by Petit and Waddoups.
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120

100 Fiber fracture in 00 Plies 0, 3
8o Matrix failure in 900 Plies 5
60

AD 40 -Boron/Epoxy lo/gols . l I
20- .,a.,=wa., Petit and Waddoups [61

Material Model I
0

0.0 0.2 0.4 0.6 0.8

Tensile Strain, 1ri1 (%)

Fig. 5.24 Response of a [O1O9S boronlepoxy laminate In uniaxial tension

as predicted by the material model, along with prediction and

experimental results from Petit and Waddoups. I,
120 Matrix shear failure in Plies 1

100 tttt I
g 80 1-" I

60 -:

40 Boron/Epoxy
S~[+ 30/- 30]s

'20 - mfcl Petit and Waddoups 1611

Material Model

0 . I . I , I , -1 . I

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 3
Tensile Strain, 1lt (%)

Fig. 5.25 Response of a [+3 0 1- 3 0]s boronlepoxy laminate In uniaxial tension

as predicted by the material model, along with prediction and

experimental results from Petit and Waddoups.

118 3



I
1 20
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Tensile Strain, 911 N%

Fig. 5.26 Response Of a 1+6 01- 6 01s boron/epoxy laminate In Uniaxial tension
as predicted by the material model, along with prediction andI experimental results from Petit and Waddoups.

I Tensile matrix cracking in 611
900 plies followed by matrix f f I
shearing in 450 pliesI
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10 [+ 45/-45/9031S X,
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0 * * I * I , I * I
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Fig. 5.27 Response of a [+4 51 - 4 519 O3]s boron/epoxy laminate In uniaxial
tension as predicted by the material model, along with prediction and

experimental results from Petit and Waddoups.
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Fg. 5.28 Response of a [0/90]S boronlepoxy laminate In unlax3al compression as

predictedl by the material model, along with prediction and experimental
results from Petit and Waddoups.
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Fig. 5.29 Response of a [+201-20]S boronlepoxy laminate In unlaxlal compression 3
as predicted by the material model, along with prediction and experimental

results from Petit and Waddoups.
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Fig. 5.30 Response of a I+3 01- 3 0]s boronlepoxy laminate In uniaxial compression

as predicted by the material model, along with prediction and experimental
results from Petit and Waddoups.
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Fig. 5.31 Response of a [+601-60]S boronlepoxy laminate In unlaxial compression as
predicted by the material model, along with prediction and experimental

results from Petit and Waddoups.
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CHAPTER 6

ANALYSIS OF LAMINATED STRUCTURES I
I

The material model was incorporated in the finite element analysis package PO-

LO-FINiTE [96] developed at the University of Illinois. Since the material model is I
linked to the structural analysis program through a standard interface, a wide variety of

elements in POLO-FINitE's element library are readily accessible. However, in this

study only the 2-dimensional and 3-dimensional isoparametric elements were employed. 3
A number of example problems were solved, and results are presented for.

"• A thick-walled laminated cylinder in compression and in circumfer- I
ential bending. 3

"* Notched metal matrix laminates in tension.

" Bending of a simply supported plate. N
"• Compression of a notched laminate up to the point of failure, using I

micromechanics-based criteria for damage detection and loss of

stiffness.

The predictions from the proposed material model are compared with experimen- 3
tal data and analytical predictions from sources in the literature.

6.1 Response of Thick-walled Cylinder
in Compression and Bending 3
The geometry of the thick cylinder under consideration is shown in Fig. 6.1. It is

similar to the cylinders tested at the David 'Iylor Research Center (DTRC) (Garala [97]) 3
in an ongoing program to determine the compression behaviour of laminated cylinders.

The loading cases which are considered are shown in Fig. 6.2: axisymmetric pressure pro-

ducing compressive response in the cylinder wall; and an ovaling pressure with p2 cos 20 3
inI



variation which produces primarily circumferential flexure. A state of plane strain is im-

posed in the cylinder axis direction in both cases. Exact elasticity solution for a cylinder

composed of anisotropic laminae subjected to axisymmetric pressure is given by Lekhnits-

kii [98]. For cross-ply laminated cylinders subjected to harmonic loading around the cir-

cumference exact elasticity solutions were presented by Ren [99]. The results from the

material modelling procedure will be compared with these exact elasticity solutions.

The cylinder consists of 96 plies of AS4/3501-6 prepreg tape arranged in the stack-

ing sequence [0z/9011(•s. The experimentally observed properties of the prepreg tape were

reported by Camponeschi [72,731 and are listed in "hble 6.2. Also listed in 1Uble 6.2 are

the elastic properties of the prepreg tape as predicted by the micro-model portion of the

material model. The assumed properties of the graphite fibers and the epoxy matrix are

given in Tible 6.1. The micro-model predicts the lamina properties quite well; better fits

with experimental results can be obtained by further tuning the fiber and the matrix prop-

erties.

"Thble 6.3 lists the equivalent elastic properties of a typical repeating sublaminate

( [02/90] ) identifiable within the laminate stacking sequence. The results labelled "Sub-

laminate Model" are obtained by using the experimentally observed lamina properties as

an input to the sublaminate model. The results labelled "Material Model" are from the

complete material model, consisting of both micro-model and sublaminate model, with

the constituent properties of Table 6.1 as input.

The two loading cases described above are analyzed using the finite element meth-

od in conjunction with the material modelling procedure. The results from the material

modelling procedure are referred to as "Homogenized responses" since the material

modelling procedure is based on homogenization of stresses, strains and the properties of

the material comprising the cylinder. Exact homogenized responses are obtained by em-

ploying the material modelling procedure in an exact elasticity formulation. The accuracy
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of the finite element solution is assessed by comparing the finite element results to the U
exact homogenized responses. To examine the implications of the homogenization pro-

cess, the homogenized responses are compared to the results obtained from the exact ply-

by-ply elasticity solution. 3
The finite element solution was carried out by providing as input the properties of 3

the graphite fibers and the epoxy matrix along with the stacking sequence of the typical

repeating sublaminate ([02/90]). The material model generated the response of the equiv-

alent material representing the typical repeating sublaminate via the micro-model and

the sublaninate model. The exact homogenized responses were obtained by assuming U
that the cylinder is composed of a homogeneous material with the properties same as 3
those of equivalent material representing the ([02/90]) sublaminate.

6.1.1 Through-thickness Stress and Strain Distributions I
Figs. 6.3 and 6.4 show the through-thickness stress and strain distributions in the

case of axisymmetric compressive loading. In this case only a small circumferential seg-

ment of the cylinder was modelled, since it is an axisymmetric problem. For the cylinder in 3
bending, one-quarter of the cylinder was modelled. The finite element mesh employed is

shown in Fig 6.5: two elements are provided through the thickness in order to accurately I
capture the expected parabolic distribution of the shear stresses and strains. The stress

and strain distributions for the case of cylinder in bending are shown in Figs. 6.6 and 6.7.

For the stress and strain quantities that are continuous through the laminate thick- 3
ness (ce , a, andr, ), the homogenized responses are almost identical to the response cal-

culated by exact ply-by-ply solution. Furthermore these continuous stress and strain

quantities are not only continuous at the laminae interfaces but also smoothly varying 3
throughout the laminate thickness.

For the discontinuous stress and strain quantities ((7e, er and e•0 ), it is of interest to 3
note that although they may vary markedly from ply to ply, the distribution for each family 3
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of plies with the same orientation is smooth, forming two envelopes of response. The ho-

mogenized response is a weighted mean of the exact ply-by-ply response. The homogeni-

zatidon procedure provides excelent estimates of the exact pl-by-ply responses of confinuous

svess and strain quantities. The complementary discontinuous stresses and strains can then

be recovered using the individual properties.

6.2 Response of Notched Metal Matrix
Laminates in Tension

The material model is used to predict the response of notched metal matrix lami-

nates. Experimental results for notched laminates were presented by Shukow [100]. The

geometry of the test specimens and the strain gauge locations are shown in Fig. 6.8. The

specimens were formed from bc ron/aluminum laminae arranged in stacking sequences of

[ + 45/ -45] 2s and [0/ + A5/ - 45/90] s respectively. The response of these notched lami-

nates was investigated analytically by Arenburg [70], who used Aboudi's Method of Cells

[7] in conjunction with First Order Shear Deformation Plate Theory for laminates to pre-

dict the laminate response. He used Bodner-Partom unified viscoplasticity theory [69] to

characterize the aluminum matrix. In the present study the matrix material is character-

ized using Ramberg-Osgood relations (Chapter 2, Section 2.6.1), as illustrated in the next

section.

6.2.1 Characterization of Boron/Aluminum Lamina

Since micromechanics is employed here to predict the lamina behaviour, material

characterization in this context entails determination of the appropriate properties of the

constituent fiber and matrix phases such that the lamina behaviour is accuratelypredicted.

The elastic properties of boron fibers and aluminum matrix provided by Arenburg

[70] are listed in Thble 6.4. The task of determining appropriate Ramberg-Osgood pa-

rameters for the aluminum matrix such that lamina nonlinearity is accurately portrayed

was accomplished in the following way. Fig. 6.10 shows the response of a [ + 45/- 45] 2s
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unnotched laminate in tension. Appropriate Ramberg-Osgood parameters were as-

sumed for the aluminum matrix to match the predicted response with the experimental

data. The employed Ramberg-Osgood parameters are listed in Table 6.4; Fig. 6.9 shows

the uniaxial stress-strain response of the aluminum matrix. Before proceeding with the I
analysis of the notched laminates some additional examples are presented for unnotched

laminates to show that the material characterization is not limited to the case examined in

Fig. 6.10.

Fig. 6.11 shows the predicted response of a [0/ + 45/ - 45/90] s laminate. The ex-

perimental results suggest a change in stiffness at about 10 ksi. This is accurately predicted

by the material model and is due to the softening of the aluminum matrix in the 90" plies. 3
Fig. 6.12 shows the response of a [0/9012s laminate. A definite knee is again observed in

the predicted response due to the yielding of the 90" ply. The agreement between pre- I
dicted and the experimentally observed responses is very good up to 80 ksi, after which the 3
laminate failed. Table 6.6 presents the "predicted" initial elastic moduli of the

[ + 45/ - 45] 2s and [0/ + 45/ - 45/90] s laminates. The predictions from the material mod- 3
el are in very good agreement with the analytical predictions from Arenburg [70] and the

experimental data from Shukow [1001.

6.2.2 Response of [+45/-4512, Notched Laminate 3
The geometry of the test coupon is shown in Fig. 6.8. The symmetry of the test

specimen is exploited so that only a quarter of the specimen is modelled (Fig. 6.13) using I
20 node solid elements with 2 x 2 x 3 Gauss rule 3

Fig. 6.14 shows the axial strain ?ýIj at the edge of the hole and at the far-field strain

gauge locations, as a function of applied stress. Experimental results from Shukow [100] I
are also shown. The analytical results for far-field strain are in excellent agreement with 3
the experimental results. For the strain at the edge of the hole, the analytical results from

the present study are in very good agreement with the analytical results of Arenburg [70]; 3
M I



however, both sets of analytical results start diverging from the experimental results in the

vicinity of 0.6% strain. Beyond this point both analytical models start underestimating the

axial strain. Arenburg attributed this to geometric nonlinearity effects and possible dela-

minations, which are not accounted for in the analyses. Another source of the discrepancy

could be fiber/matrix debonding, which has also not been accounted for in the analysis.

6.2.3 Response of [0/+45/-45/90]. Notched Laminate

The finite element mesh employed to analyze this laminate is shown in Fig. 6.15. It

is more refined in the region near the hole because preliminary investigations indicated

that the stress gradients near the hole were much greater here than in the [+ 45/ - 4512s

notched laminate.

Fig. 6.16 shows the computed strains at the edge of the hole and at the far-field

strain gauge. The far-field strain is in good agreement with the analytical predictions

from Arenburg [701, and is essentially the same as the stress-strain response of the

[0/ + 45/ - 45/90] s unnotched laminate (Fig. 6.11). The axial strain at the edge of the hole

is overestimated compared to analyic;al results of Arenburg and the experimental results

of Shukow. A possible reason for the discrepancy between the analytical predictions is

that different constitutive descriptions were employed in the two studies to describe the

matrix material nonlinearity. Arenburg used Bodner-Partom unified viscoplasticity

theory to describe the matrix material, whereas here Ramberg-Osgood relations are used

for characterizing the matrix nonlinearity.

6.3 Bending of Simply Supported
Square Plate

Analytical results for the response of a simply supported square plate subjected to

a uniformly distributed transverse load (Fig. 6.17) were presented by Arenburg [70]. The

plate is 10.0 inches square and its thickness is 0.1 inch, resulting in a span to thickness ratio

of 100, so that it can be characterized as a thin plate. The plate is made of boron/alumi-
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num laminae; the fibers in all the laminae are orientated in a single direction ( i.e. a [O°]T

laminate). The properties of the boron/aluminum lamina (1hble 6.4) are same as the ones

used to make the previously investigated notched and unnotched laminates. Only a quad-

rant of the plate is modelled for finite element analysis, using Q3DISOP solid elements. I
The finite element mesh and the imposed boundary conditions are also shown in Fig. 6.17.

The effects of geometric nonlinearity were not by accounted Arenburg, and are neglected

in this study as well.

Fig. 6.18 shows the center deflection of the plate as a function of the applied trans- 3
verse load. Results are presented from the study conducted by Arenburg, and from the

present study in a number of cases with different meshes and Gauss integration rules. In I
these cases the parameters varied were, the number of elements through the thickness,

and the order of Gauss integration rule; the cases considered can be classified as follows:

* 1 Element through the thickness with 2 x 2 x 2 Gauss rule (case (1)).

* 1 Element through the thickness with 2 x 2 x 3 Gauss rule (case (2)). 3
* 2 Elements through the thickness with 2 x 2 x 3 Gauss rule (case (3)) 1

The maximum number of Gauss points that can be employed in the 3
thickness direction with Q3DISOP element is restricted to 3, so in

order to have additional Gauss points in the thickness direction, 2 3
elements are employed through the thickness with 2 x 2 x 3 Gauss

rule. I

An interesting phenomenon is observed in the results presented in Fig. 6.18; i.e. I
the results from the different combinations of meshes and integration rules do not seem 3
to be converging monotonically to an exact solution, rather the convergence seems to be

non-monotonic. This is a result of material nonlinearity and the sensitivity of the com- 3
n I
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puted response to the location of the integration points associated with the different

Gauss rules.

Fig. 6.19 shows the location of the Gauss sampling points throughout the thickness

in the various cases considered. If the cross-section is undergoing flexure, the flexural

5 stresses will be higher near the top and bottom surfaces of the plate. Case (1) will yield a

lower stiffness value for the element than case (2), because in case (2) the sampling points

3 are nearer to the top and bottom surfaces of the plate where they detect the onset of non-

linearity earlier than in case (1). The integration/sampling points near the plate mid-sur-

face do not detect significant straining and therefore do not influence the results much.

3 Hence we see more softened response for case (2) as compared to case (1). In case (3)

there is an additional layer of Guass points between the Gauss points near the plate mid-

surface and the top and bottom surfaces of the plate. The Gauss points in the additional

layer are sufficiently far from the top and bottom of the plate and detect the onset of non-

I linearity later than the extremal Gauss points in case (2). This explains the slightly stiffer

response predicted in case (3) (Fig. 6.18). The results from case (3) are accepted as more

accurate than cases (1) and (2), since the number of Gauss points in the thickness direction

3 is greater and their distribution through the thickness is more reasonable.

The maximum load intensity is 12 ksi. At this load level, the analytical results of

Arenburg predict the deflection at center of the plate to be 0.411 in., whereas the accepted

3 solution in the present study (2 elements through-thickness with 2 x 2 x 3 Gauss rule) pre-

dict the center deflection to be 0.446 in.

Fig. 6.20 shows the variation in the maximum stresses at the plate top surface as the

3 applied load increases. The maximum Oll and u22 stresses occur at the plate center,

whereas the maximum shear stress r12 occurs at the comers of the plate. The agreement

I with the results presented by Arenburg is fairly good. The present analysis shows more

3 softening in the u22 response than predicted by Arenburg. This is accompanied by an

* 2
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elevation of the all stress in order to balance the applied load. The calculated shear m

stresses r12 from the two studies are in excellent agreement. 3
6.4 Compressive Strength of Notched Laminate

Chang and Lessard [102,103] conducted an ex-rimental and analytical investigation

into the compressive strength of notched laminates composed of T300/BP976 graphite/e-

poxy laminae. The lamina was modelled as an orthotropic material exhibiting nonlinearity

only in the in-plane shear response, using the relation suggested by Hahn and Mai [62,63].

Failure criteria for predicting the in-plane failure modes of a lamina were also given. After a 3
lamina failed, its stiffness was reduced to reflect the damage. The laminate response was

obtained by assembling the individual laminae within the frame work of Classical Laminated I
Plate Theory. 3

The material modelling procedure developed in the present study is used to predict

the compression response of one of the notched laminates studied by Chang and Lessard I
[102,103]. The geometry of the selected notched laminate is shown in Fig. 6.21. The test 5
specimen has an extensometer attached to it which measures the shortening over the gau-

ge-length of 1.0 inch. 3
The characterization of the 17300/BP976 lamina is described in the next section. 3

6.4.1 Characterization of T300/BP976 Lamina

The elastic moduli of the T300/BP976 lamina are given by Chang and Lessard

[102]. From these lamina properties and the information available in the literature, the in

situ elastic moduli of the constituent graphite T300 fibers and the BP976 epoxy matrix

were estimated, and are given in Table 6.7. The properties of the T300/BP976 lamina used I
by Chang and Lessard are given in Table 6.8. The predictions of lamina properties by the 3
material model are also presented in Table 6.8. Fig. 6.22 shows the shear response of the

lamina according to Chang and Lessard. Modified Ramberg-Osgood relations (Chapter 3
1 3



2, Eqs. (2.24-2.30)) are used to model this response; the parameters are presented in

Table 6.7.

The micromechamcal failure criteria employed in the analysis along with the proce-

dure for damage modelling has been described in (Chapter 2, Sections 2.7-2.8). The micro-

failure criteria predict the strengths of the lamina very well (Ibble 6.8). The only exception is

the axial compressive strength, for which the fiber micro-budding criterion grossly over-pre-

dicts the actual compressive strength of the lamina. This discrepancy may be a result of fiber

misalignment in the lamina; it may also be that a failure mechanism other than the fiber

micro-budding such as fiber compressive failure precipitates the failure.

6.4.2 Response of [(+45/-45)s1], Notched Laminate

The notched laminate shown in Fig 621 is analyzed using the the mesh shown in Fig.

6.23. The properties of the of fiber and the matrix along with the stacking sequence of the

typical repeating sublaminate (+ 45/-45) is provided as input for the material model.

Fig. 624 shows the load-shortening response of the notched laminate. The response

is quite nonlinear since the + 45/45 stacking sequence produces primarily shear stresses

within the laminae. The analysis does not predict any damage up to 2400 lbs, at which point

fiber micro-budding is predicted around the periphery of the hole. Application of additional

load results in matrix shearing failure in elements lying in the vicinity of the 450 direction

starting from the region of maximum stress concentration. The effect of matrix shearing fail-

ure is modelled by reducing the lamina in-plane shear stiffness. The loss of lamina shear

stiffness results in prediction of fiber micro-budding Figs. 625-627 show the predicted

state of damage at various load-levels. The predicted ultimate load is 3320 lbs, which is

about 11% more than the collapse load of 3000 lbs predicted by Chang and Lessard [102].

The present investigation employed madmum stress failure criteria at the micromechanical

level: It is speculated that application of interaction type failure criteria at the microme-

chanical level would result in further improvement in the predicted results.
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FIg. 6.1 Geometric dimensions of the thick-walled cylinder.
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Fig. 6.2 (a) Cylinder in compression, (b) Cyiinder in cIrcumferential bending.
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EI E2____ ___ ___ ___ __ V23

_________ (MpsI) (MpSI) (Mpsi)

Graphite 27.0 2.5 5.0 0.30 0.25

Epoxy 0.728 0.728 0.26 0.40 0.40

Table 5.1 Elastic properties of graphite fibers and epoxy matrix.

3Source ElE 2  G1 nV1
Experment (Mpsl) (Mpsl) (MPsl) 1 (Mp90l2

CamponeschJ 16.48 1.0080.5.34.4
[72,73)

Micro-model 16.50 1.56 0.87 0.53 0.337 0.468

1 From 1*4512S tension testI2 From literature

Table 6.2 Properties of AS413501-6 prepreg tape.
Fiber volume fraction = 0.60

source EE2 E3  G12 G1 G3 V113 V'23

Experiment, (Mpsl) (Mpsi) (Mpsl) (Mpsi) (Mpsi) (Mpsi)

Camponeschi 11.63 - - - - - 0.069 0.469 -

[ 72,731
Subiaminate 11.53 6.47 1.80 0.87 0.73 0.63 0.073 0.448 0.519

Material
Model 1.60 6.58 1.85 0.82 0.69 0.60 0.08 0.455 0.467

3Table 6.3 Equivalent elastic properties of 10d901 repeating sublaminate.
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Fig. 6.3 Response of laminated cylinder In compression,
continuous quantities (Ee ,aOr)

I
134



'0.5 . .. .. . . 10,000 psi

M~ -A

-nlaminate

SI2e Exaczt Hamogenized

- - - -m * S• Fly-by-Ft

-150 -100 -50 0 50 100 150

Hoop Stress a. (ksl)

0.5

-0.5
-0.5 0.0 0.5

Radial Strain E, (%)
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Mig. 6.5 Finite element mesh employed in calculating the response of I
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Fig. 6.6 Response of laminated cylinder in bending,

continuous quantities (e#, or, re)
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I

E v TO a b n
(Mpsl) (Ksi)[ Boron 58.0 0.2---

Aluminum 8.69 0.25 6.0 0 1.0 5

Table 6.4 Elastic properties of boron fibers and aluminum matrix, along with Ramberg-

Osgood parameters for aluminum matrix. Fiber volume fraction = 0.44 I

Ell E2 2  G12  V12I
(Mpsi) (Mpsi) (Mpsi)

Material 30.40 16.70 6.51 0.223 I
Model
Arenburg [70) 30.39 16.03 6.51 0.229

Experiment 30.59 19.20 6.50 0.218 I
LShukow (100)1

Table 6.5 Elastic properties of boron/aluminum lammna.I

25 I,, I

2)0

* I
10

IT 5 Akxnfrium
- Rambe.rg-Osgood Desrotion,

- = 6 K'i, n = 5

0 1 2 3 41
Tensile Strain Ell (%)

Fig. 6.9 Back-calculated unlaxial stress-strain response of I
in situ aluminum matrix. I
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20

•" X2X
15

S10 Boron/Aluminum
[+ 45/-4512S

- Arwb•wg (701
5 Mmater Model

X Suikow (1001

0I 1 I * I

0.0 0.5 1.0 1.5
Strain, r'l (%)

Fig. 6.10 Response of l+451-45129 boron/aluminum laminate as predicted

by the material model, along with predictions from Arenburg, and
experimental data from Shukow.

70

611

60 t t tt
~50

' 40

30
Boron/Aluminum

20 10/ + 45/-45/90]s X,
--- e- rWrg (701

10 - Material Model
x Shuiow 11001

0 I * I , I * I

0.0 0.2 0.4 0.6 0.8
Strain, ?ýI (%)

Fig. 6.11 Response of [01+451-4519018 boronlaluminum laminate as predicted

by the Material Model, along with predictions from Arenburg, and
experimental data from Shukow.
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100 - I

80 BorIo

20 --- -" AbouC [7),Bigelow "0 W.V[1011

0.0 0I3 0.5 0.8

St~ain, r'i1 (%)I

Fig. 6. 12 Response of [019012s boronlatumninum laminate as predicted by the

IVI20 eil oe, ln wit prditonsfomAou [dexeimna

Ell (Mpsi) V12I
Mate r Material Arenburg [70] Experiment,

L e Model Shukow 1100 Modal Shukow [100[

45]2S 17.77 17.67 17.36 0.366 0.358 0.373

[0/ 1* 45/901S 20.92 20.70 21.25 0.253 0.249 0.267I

Table 6.8 Elastic properties of boronlaluminum laminates. p

I
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C L ~1  Strain Gauge at Edge of Hole
" X3" 0 TFar-Field Strain Gauge
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Fig. 6.14 Response of [ ,451-45)2s notched boronoaluminum laminate.
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Fig. 6.16 Response of [0+451-45190]s notched boronlaluminum laminate. 3
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Fig. 6. 17 Geometry of the square plate, and the finite element meshI of the plate quadrant.
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Fig. 6.18 Coenter deflection of simply supported square plate. 3
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Fig. 6.18 Location of Gauss integration points in the thickness direction,
for the various cases considered.
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Fig. 6.21 Geometry of the notched laminate tested by Chang and Lessard (102,103),
stacking sequence [(+ 45/-45)4s
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E, VI E2  V23  G12  TO b n xtr CM) S(M
(MSpa) (Mpsi) (Mpsl) (Ksi) (Ksi) (Ksi) (Ksi) 3

Graphite 33.8 0.2 3.0 0.42 1.7 - - - 347.0 - -

BP976 0.925 0.25 0.925 0.25 0.37 9.25 1.0 4 7.5 42.0 17.0 1
Epoxy

Table 6.7 Elastic properties of T300 graphite fibers and BP976 epoxy matrix, along with Ramberg- 5
Osgood parameters for the matrix used in modelling the response of 7300/BP976 lamina.

Fiber volume fraction = 0.66

Stiffness reduction factors Df11 , D. 11 = O.o0, Dk22, D.44 = 0.25 5
I
I

source El V E2 V23  G12  Xt 1 Yt y S3
(Mpsi) (Mpsi) (Mpsi) (Ksl) (Ksi) (Ksi) (Ksi) (Ksi)

Chang et al. (102) 22.7 0.23 1.88 - 1.01 220.0 231.0 6.46 36.7 15.5 1
Material 22.63 0.213 1.94 0.367 0.89 220.0 590.0 6.5 37.0 15.5 3

The predicted compressive strength as calculated from micro-buckling criteria is much higher,

probably because of some other failure-mechanism, such as fiber compressive failure.

Table 6.8 Elastic properties and strengths of graphite T3001BP976 lamina as given by Chang and

Lessard (102), and predictions from the material model.
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Fig. 6.22 Shear stress-straln response of T3001/P976 graphitelepoxy lamina

according to the material model, and Chang and Lessard [1021.
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.6.24 Load-shortening response of t[(+ 45/-45)& notched laminate.
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Fig. 6. 25 State of damage in [+45/ -45)6] notched laminateI

at the Icad-level of P = 2750 Ibs
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Fig. 6.26 State of damage In [(+ 45/ - 45)s notched laminate

at the load-level of P u 3200 lbs

I157



I
I
I

Applied Load-level P = 3320 lbs (Collapse-load) I

S FiberlMatrix
Shearing

II t Fiber Suckling

• I

Fi. '!

II

Pig. 6.27 state of damage In f( + 45/ -45)61s notched laminateI

at the load-level of P = 3320 Ibs (Collapse-load)
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

The objective of the present study was to develop general and accurate proce-

dures for analysis of fiber-reinforced laminated structures which also allow the use of

standard displacement-based finite elements. The stress and strain fields in laminated

composites can exhibit discontinuities; procedures were sought which take this phenome-

non into account.

A micromechanical constitutive theory was used to characterize the composite

lamina. The material model has a two-level hierarchical structure. At the bottom level,

the Micro-model synthesizes the constitutive information about fiber and matrix phases to

yield the effective stress-strain response of a unidirectional lamina. At the top level the

Sublaminate model, using a 3-D lamination scheme, assembles the laminae forming the

smallest repeating stack within the laminate to deliver the effective stress-strain response

of the laminate. Local stresses and strains in a lamina or in fiber and matrix phases can be

recovered from the effective values at any stage. The material modelling procedure en-

ables the use of standard displacement based finite elements for the analysis of fiber-rein-

forced laminated composites.

In this study the micromechanical model presented by Pecknold [57] is employed

and enhanced to model the behaviour of unidirectional lamina. It was found to yield very

accurate results in spite of its simplicity.

Several conclusions based on the results of this study are discussed next.
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7.1 Conclusions U
General conclusions about the overall modelling procedure are presented first.

Next, conclusions regarding the micro-model are presented. Finally, some observations

on micromechanical modelling of fiber-reinforced composites are presented. I
7.1.1 General

The material modelling procedure successfully enables the use of standard displa-

cement-based finite elements for the analysis of laminated composites. The general 3
scheme has sufficient flexibility in it so that different types of constitutive descriptions for

the fiber and matrix constituents can be incorporated easily. The modelling procedure

satisfies the equilibrium requirements on the tractions at the laminae interfaces. I
7.1.2 Micro-model

The micro-model is the kernel on which the accuracy of the overall modelling I
scheme depends. Therefore, the micro-model (Pecknold [57]) was investigated in detail;

conclusions are presented below.

The micro-model is quite simple in its description, but accurately accounts for the I
three-dimensional matrix restraining effects of the fiber reinforcement. The micro-mo-

del is valid for general multi-axial stress states. The elastic moduli of composite laminae

predicted by the micro-model show excellent agreement with results from detailed nu-

merical schemes and experimental data; it was found to be comparable in accuracy to

Aboudi's Method of Cells [7], but is much simpler. The predicted effective coefficients of 3
thermal expansion were also in very good agreement with results from Aboudi's Method

of Cells.

The micro-model gives accurate results for nonlinear response of composite lami-

nae. The results obtained compared very well with experimental data.

The results for off-axis strengths of composite laminae were in very good agree-

ment with experimental data. The micro-model predictions of initial yield surfaces of 3
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metal matrix composites compared very well with finite element based results and with the

Method of Cells; the only exception being the case when the composite lamina is sub-

jected to a hydrostatic stress state, in which case both the micro-model and the Method of

Cells performed poorly. However, the results improved as the applied stress state moved

away from the hydrostatic stress state.

7.1.3 Comments on Micromechanical Modelling

Micromechanics based material models are a viable option for characterizing the

behaviour of composite materials and can be successfully used for analyzing structures

made from such materials. The advantage of micromechanics based material models is

that they predict the behaviour of composites from the fundamental properties of its basic

constituents and also represent the microstructure of the composite to some extent.

Therefore, they can accommodate relatively complex aspects of composite material beha-

viour, such as debonding at the fiber/matrix interface and matrix cracking. The complex

constitutive description of composites can be obtained by synthesizing comparatively sim-

ple constitutive descriptions of its constituents and their interaction.

The problems associated with the material modelling procedure are those usually

associated with the use of micromechanics. For example it is known that the in situ prop-

erties of the matrix material can be quite different from the properties of matrix material

in bulk. Direct measurement of the in situ properties of the matrix and fiber are at this

time (1992) not possible, and these properties have to be back-calculated from the lamina

properties determined from simple tests.

In this study micromechanical failure criteria were employed for determining fail-

ure in the lamina. Only the in-plane failure mechanisms were considered and the failure

mechanisms such as delaminations were not considered. Maximum stress failure criteria

were successfully employed to determine failure modes such as fiber fracture in tension,

3 matrix cracking in transverse direction, and matrix crushing in compression. For predic-

U 161



I

tion of axial compressive strength of lamina a micromechanics based criterion suggested U
by Hahn and Williams [95] was investigated, but was found to overestimate the axial com-

pressive strength.

In the author's opinion, micromechanics based material modelling procedures I
have great potential, and as the problem of scarcity of experimental studies is solved and 3
better experimental procedures are developed, the area of micromechanics should see

significant improvement. Therefore, micromechanics based structural analysis proce- 3
dures deserve continued investigation.

7.2 Recommendations

Here, some possible changes and enhancements that can be made to the material 3
modelling procedure are presented. The suggested recommendations concern mostly the

micromechanical modellin& I
"* In order to investigate problems involving thermal loading, strain 3

rate effects and creep, incorporation of a unified viscoplasticity

theory, such as the Bodner-Partom theory [69] would indeed be very I
useful.

"* In this study relatively simple failure criteria were employed at the

micromechanical level to determine the onset of failure. Apossible

improvement would be to employ interaction type criteria, which

take into account the interaction of stresses, and at the same time I
provide information about the mode of failure. 3

" The manner in which the effect of localized damage is incorporated

is an important consideration. Accurate modelling of the effect of I
damage is needed for accurate prediction of the laminate response 3
and the ultimate load carrying capacity of composite structures. The

field of Damna8e Mechanics provides damage evolution laws and pro- 3
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cedures for incorporating the resulting deterioration and loss of stif-

fness in a material. In the present study simple procedures were

employed to simulate the effect of damage. Incorporation of con-

cepts and procedures from the area of damage mechanics within the

micro-model may result in further improvements in the predictions

from the material modelling procedure.

j Deterioration in the bond between the fiber and the matrix at the

interface can significantly affect the overall properties of the com-

posite lamina. This has been demonstrated by Aboudi's Method of

Cells. The capability to model fiber/matrix interface failure should

also be incorporated in the micro-model.

I
I
i
I
I
I
I
I
I
I
I 163



1

BIBLIOGRAPHY lI
1. Lee, S. M., Reference Book for Composite Technology, Lee. S. M. editor, Vol. 1-2,

Technomic, 1989.

2. Handbook of Composites, Lubin, G. editor, Van Nostrand Reinhold Co., 1982.

3. Jones, R. M., Mechanics of Composite Materials, McGraw-Hill Book Co., 1975.

4. Harris, B., Engineering Composite Materials, The Institute of Metals, London, 1986. 1

5. Christensen, R. M., Mechanics of Composite Materials, Wiley-Interscience, New-

york, 1979.

6. Tsai, S. W. and Hahn, H. T., Introduction to Composite Materials, Technomic, West-

port, 1980. 5
7. Aboudi, J., Mechanics of Composite Materials - A Unified Micromechanical Approach,

Elsevier, 1991.

8. Chamis, L. C. and Sendeckyj, G. P., "Critique on Theories Predicting Thermoelas-

tic Properties of Fibrous Composites," J. Composite Materials, Vol. 2, 1969, pp.
332-358.

9. Hashin, Z., "Analysis of Composite Materials - A Survey," ASME J. Appl. Me-

chanics, Vol. 50, 1983, pp. 481-505.

10. Hashin, Z., "Theory of Fiber Reinforced Materials," NASA Report CR-1974,

1972.

11. McCullough, R. L., "Micro-Models for Composite Materials - Continuous Fiber
Composites," in The Delaware Composites Design Encyclopedia, Vol. 2 (Micromechan- 3
ical Materials Modeling), Carlsson, L. A. and Gillespie, J. W. editors, Technomic
Publishing Co., 1990. 1

12. Shaffer, B. W., "Stress-Strain Relations of Reinforced Plastics Parallel and Normal

to Their Internal Filaments," AIAA Journal, Vol. 2, 1964, pp. 348-352. 1
13. Halpin, J. C. and Tsai, S.W., "Effects of Environmental Factors on Composite

Materials," Air Force Technical Report AFML-TR-67-423, June, 1969. 1
14. Ashton, J.E., Halpin, J. C. and Petit, P. H., Primer on Composite Materials: Analysis,

Technomic Publishing Co., 1969.

164



15. Evkall, J. C., "Structural Behavior of Monofilament Composites," AIAA/ASME 7th

Structures, Structural Dynamics and Materials Conference, Palm Springs, California,

1966, p. 250.

16. Abolin'sh, D. S., "Compliance Tensor for an Elastic Material Reinforced in One

Direction," Polymer Mechanics, Vol. 1, 1965, pp. 28-32.

17. HIll, R., "Theory of Mechanical Properties of Fiber-Strengthened Materials: I.

Elastic Behaviour," J. Mechanics and Physics of Solids, Vol. 12, 1964, pp. 199-212.

18. Hill, R., "Theory of Mechanical Properties of Fiber-Strengthened Materials: II.
Inelastic Behaviour," L. Mechanics and Physics of Solids, Vol. 12, 1964, pp. 213-218.

I 19. Hill, R., "Theory of Mechanical Properties of Fiber-Strengthened Materials: MI.
Self-Consistent Model," J. Mechanics and Physics of Solids, Vol. 13, 1965, pp.
189-198.

20. Budiansky, B., "On the Elastic Moduli of some Heterogeneous Materials," J. Me-

chanics and Physics of Solids, Vol. 13, 1965, p 223.

21. Whitney, J. M. and Riley, M. B., "Elastic Properties of Fiber Reinforced Composite

Materials," AIAA Journal, Vol. 4, 1966, pp. 1537-1542.

22. Hermans, J. J., "The Elastic Properties of Fiber Reinforced Materials When the

Fibers are Aligned," Proceedings Koninklijke Nederlandse Akademie van Wetenschap-
pen, Series B, Vol. 70, 1967, pp. 1-9

23. Christensen, R. M. and Lo, K. H., "Solutions for Effective Shear Properties in
Three Phase Sphere and Cylinder Models," J. Mechanics and Physics of Solids, Vol.

27, 1979, pp. 315-330.

24. Hashin, Z., "On Elastic Behaviour of Fiber Reinforced Materials of Arbitrary
Transverse Phase Geometry," J. of Mechanics and Physics of Solids, Vol. 13, 1965,
pp. 119-134.

25. Hashin, Z. and Rosen, B. W., "The Elastic Moduli of Fiber Reinforced Materials,"
ASME J. Appl. Mechanics, Vol. 31, 1964, pp. 223-232.

26. Dow, N. F. and Rosen, B. W., "Evaluations of Filament-Reinforced Composites
for Aerospace Structural Applications," NASA Report CR-207, April 1965.

27. Hashin, Z., "Assessment of the Self Consistent Scheme Approximation: Conduc-

tivity of Particulate Composites," J. Composite Materials, Vol. 2, 1968, pp. 284-300.

165



U

28. Hashin, Z., "Analysis of Properties of Fiber Composites With Anisotropic Constit- l
uents," ASME J. Appl. Mechanics, Vol. 46, 1979, pp. 543-550.

29. Foye, R. L., "An Evaluation of Various Engineering Estimates of the Transverse

Properties of Unidirectional Composites," SAMPE, Vol. 10, 1966, p. G-31

30. Adams, D. F. and Doner, D. R., "Longitudinal Shear Loading of a Unidirectional
Composite," J. Composite Materials, Vol. 1, 1967, pp. 152-164.

31. Adams, D. F. and Doner, D. R., "Transverse Normal Loading of a Unidirectional

Composite," J. Composite Materials, Vol. 1, 1967, pp. 4-17. n

32. Chen, C. H. and Cheng, S., "Mechanical Properties of Fiber-Reinforced Compos-

ites," J. Composite Materials, Vol. 1, 37, 1967, pp. 30-41. 3
33. Chen, C. H. and Cheng, S., "Mechanical Properties of Anisotropic Fiber-Rein-

forced Composites," ASME J. Appl. Mechanics, Vol. 37, 1970, pp. 186-189. 1
34. Pickett, G., "Elastic Moduli of Fiber Reinforced Plastic Composites," in Fundamen-

tal Aspects of Fiber Reinforced Composites, Schwartz, R. T. and Schwartz, H. S. edi-
tors, Interscience Publishers, 1968.

35. Foye, R. L., "Theoretical Post-Yielding Behaviour of Composite Laminates Part I 3
- Inelastic Micromechanics," J. Composite Materials, Vol. 7, 1973, pp. 178-193.

36. Adams, D. F., "Inelastic Analysis of a Unidirectional Composite Subjected to 1
Transverse Normal Loading," J. Composite Materials, Vol. 4, 1970, pp. 310-328.

37. Adams, D. F. and Crane, D. A., "Finite Element Micromechanical Analysis of a

Unidirectional Composite Including Longitudinal Shear Loading," Computers and
Structures, Vol. 18, 1984, pp. 1153-1165.

38. Hutchinson, J. W, "Elastic-Plastic Behaviour of Polycrystalline Metals and Com-
posites," Proc. of the Royal Society (London), Series A, Vol. 319, 1970, p. 247. 3

39. Dvorak, G. J., Rao, M. S. M. and Tam, J. Q., "Yielding in Unidirectional Compos-

ites Under External Loads and Temperature Changes," J. Composite Materials, Vol.
7, 1973, pp. 194-216.

40. Dvorak, G. J., Rao, M. S. M. and Tam, J. Q., "Generalized Initial Yield Surfaces 3
for Unidirectional Composites," ASME J. Appl. Mechanics, Vol. 41, 1974, pp.
249-253. 1

41. Dvorak, G. J. and Bahei-El-Din, Y. A., "Elastic-Plastic Behaviour of Fibrous

Composites," J. Mechanics and Physics of Solids, Vol. 27, 1979, pp. 51-72.

1663



42. Dvorak, G. J. and Bahei-El-Din, Y. A., "Plasticity Analysis of Fibrous Compos-
ites," ASME J. Appl. Mechanics, Vol. 49, 1982, pp. 327-335.

43. Bahei-El-Din, Y. A. and Dvorak, G. J., "Plastic Yielding at a Circular Hole in a

Laminated FP-AI Plate," in Modern Developments in Composite Materials and Struc-

tures, Vinson, J. R. editor, ASME, 1979, p. 123.

44. Bahei-E1-Din, Dvorak, G. J. and Utku, S., "Finite Element Analysis of Elastic-

Plastic Fibrous Composite Structures," Computers and Structures, Vol. 13, 1981, pp.

321-330.

45. Bahei-El-Din and Dvorak, G. J., "Plasticity Analysis of Laminated Composite
Plates," ASME J. Appl. Mechanics, Vol. 49, 1982, pp. 740-746.

46. Wu, J. F., Shepard, M. S., Dvorak, G. J. and Bahei-El-Din, "A Material Model for

the Finite Element Analysis of Metal Matrix Composites," Composites Science and

Technology, Vol. 35, 1988, pp. 347-366.

47. Dvorak, G. J. and Teply, J. L., "Periodic Hexagonal Array Model for Plasticity

Analysis of Composite Materials," in Plasticity Today: Modeling, Methods and Appli-

cations, W. Olszak Memorial Volume, Sawczuk, A. and Bianchi, V., editors, Elsevier

Science Publishers, Amsterdam, 1985, pp. 623-642.

48. ABAQUS User's Manual, Version 4.5(a), Hibbit, Karlson and Sorensen, Inc., Prov-

idence, RI, 1985.

49. Ruf'm, A. C., Rimbos, P. G. and Bigelow, S. D., "Point-Stress Analysis of Continu-

ous Fiber-Reinforced Composites Materials with an Elastic-Plastic Matrix," Com-

puters and Structures, Vol. 20, 1985, pp. 375-385.

50. Min, K. B. and Crossman, F. W., "History Dependent Thermomechanical Proper-

ties of Graphite/Aluminum Unidirectional Composites," Composite Materials: Test-

ing and Design(Sixth Conference), ASTM STP 787, Daniel, I. M., editor, American

Society for Testing and Materials, 1982, p. 371.

51. Aboudi, J., "A Continuum Theory for Fiber-Reinforced Elastic-Viscoplastic Com-
posites," Int. J. Engineering Science, Vol. 20, 1982, pp. 605-621.

52. Aboudi, J., "Micromechanical Analysis of Strength of Unidirectional Fiber Com-

posites," Composites Science and Technology, Vol. 33, 1988, pp. 79-96.

53. Aboudi, J., "The Nonlinear Behaviour of Unidirectional and Laminated Compos-

ites - A Micromechanical Approach," J. Reinforced Plastics and Composites, Vol. 9,

1990, pp. 13-32.

167



I

54. Aboudi, J., "Micromechanical Analysis of Composites by the Method of Cells," 3
Appl. Mechanics Rev., Vol. 42, 1989, pp. 193-221. i

55. Sun, C. T., and Chen, J. L., "A Micromechanical Model for Plastic Behaviour of

Fibrous Composites," Composites Science and Technology, Vol. 40, 1990, pp.

115-129.

56. Sun, C. T, and Yoon, K. J., "Elastic-Plastic Analysis of AS4/PEEK Composite

Laminate Using One-Parameter Plasticity Model," J. Composite Materials, Vol. 26,

1992, pp. 293-308.

57. Pecknold, D. A., "A Framework for 3-D Nonlinear Modeling of Thick-Section U
Composites," DTRC-SME-90/92, David Taylor Research Center, Bethesda, MD,

1990. I
58. Hill, R., "A Theory of the Yielding and Plastic Flow of the Anisotropic Metals,"

Proc. of Royal Society (London), Series A, Vol. 193, 1948, pp. 281-297.

59. Hill, R., The Mathematical Theory of Plasticity, Oxford University Press, 1950.

60. Griffin, 0. H., Kamat, M. P. and Herakovich, C. T., "Three-Dimensional Finite

Element Analysis of Laminated Composites," J. Composite Materials, Vol. 5, 1981,

pp. 543-560.

61. Petit, P. H, and Waddoups, M. E., "A Method of Predicting the Nonlinear Behavior

of Laminated Composites," J. Composite Materials, Vol. 3, 1969, pp. 2-19.

62. Hahn, H. T. and Tsai, S. W., "Nonlinear Elastic Behaviour of Unidirectional Com-

posite Laminae," J. Composite Materials, Vol. 7, 1973, pp. 102-118.

63. Hahn, H. T., "Nonlinear Behaviour of Laminated Composites," J. Composite Mate-

rials, Vol. 7, 1973, pp. 257-271.

64. Hashin, Z., Bagchi, D. and Rosen, B. W., "Nonlinear Behaviour of Fiber Compos- 3
ite Laminates," NASA CR-2313, 1974.

65. Dvorak, G. J. and Rao, M. S. M, "Axisymmetric Plasticity Theory of Fibrous Com- i

posites," Int. J. Engineering Science, Vol. 14, 1976, pp. 361-373.

66. Pipkin, A. C. and Rogers, T. G., "Plane Deformations of Incompressible Fiber-

Reinforced Materials," ASME J. Appl. Mechanics, Vol. 38, 1971, pp. 634-640.

67. Mulhern, J. F., Rogers, T. G. and Spencer A. J. M., "A Continuum Model for Fiber i

-Reinforced Plastic Materials," Proc. of Royal Society (London), Series A, Vol. 301,

1967, pp. 473-492. 3
1683



68. Mulhern, J. F., Rogers, T. G. and Spencer A. J. M., "A Continuum Theory of a

Plastic-Elastic Fibre-Reinforced Material," Int. J. Engineering Sciences, Vol. 7,

1969, pp. 129-152.

69. Bodner, S. R. and Pa-om, Y., "Constitutive Equations for Elastic-Viscoplastic

Strain Hardening Materials," ASME L. Appl. Mechanics, Vol. 42, 1975, p. 385

70. Arenburg, R. T., "Analysis of Metal Matrix Composite Structures Using a Micro-

mechanical Constitutive Theory," Ph.D Dissertation, Virginia Polytechnic Institute

and State University, Blacksburg, Virginia, 1988.

71. Arenburg, R. T. and Reddy, J. N., "Applications of the Aboudi Micromechanics

Theory to Metal Matrix Composites," in Mechanics of Composite Materials and Struc-

tures, ASME AMD-Vol. 100, Reddy, J. N. and Teply, J. L. editors, 1989.

72. Camponeschi, E. T. Jr., "Compression of Composite Materials - A Review,"

DTRC-SME-89167, David Taylor Research Center, Bethesda, MD, 1989.

73. Camponeschi, E. T. Jr., "Compression Testing of Thick-Section Composite Mate-

rials," DTRC-SME-89173, David Taylor Research Center, Bethesda, MD, 1989.

74. Kriz, R. D. and Stinchcomb, W. W., "Elastic Moduli of Transversely Isotropic

Graphite Fibers and Their Composites," Exp. Mechs., Vol. 19, 1979, pp. 41-49.

75. Pagano, N. J, "Exact Moduli of Anisotropic Laminates," in Mechanics of Composite

Materials, Sendeckyj, G. P., editor, Academic Press, 1974, pp. 23-44.

76. Sun, C. T. and LU, S., "Three-Dimensional Effective Elastic Constants for Thick

Laminates," J. Composite Materials, Vol. 22, 1988, pp. 629-639.

77. Pipes, R. B. and Cole, B. W., "On the Off-Axis Strength Test for Anisotropic

Materials," J. Composite Materials, Vol. 7, 1973, pp. 246-256.

78. Cole, B. W. and Pipes, R. B., "Filamentary Composite Laminates Subjected to

Biaxial Stress Fields," Technical Report AFFDL-TR-73-115, Air Force Flight Dy-

namics Laboratory, 1974.

79. Petit, P. H., "Ultimate Strength of Laminated Composites," Report AFML-

FZM-4977, Air Force Materials Laboratory, 1967.

80. Pipes, R. B., Kaminski, B. E. and Pagano, N. J., "Influence of the Free Edge upon

the Strength of Angle-Ply Laminates," ASTM STP 521, American Society for Test-

ing and Materials, 1973, pp. 218-228.

169



I

81. Lifshitz, J. M. and Gilat, A., "Experimental Determination of the Nonlinear Be-

havior of Fiber-Reinforced Laminae under Impact Loading," Experimental Mechan-

ics, Vol. 19, 1979, pp. 444-449.

82. Lifshitz, J. M., "Nonlinear Matrix Failure Criterion for Fiber-Reinforced Compos-

ite Materials," Comp. Tech. Rev, Vol. 4, 1982, pp. 78-83.

83. Pindera, M. J. and Herakovich, C. T., "An Endochronic Theory for Transversely

Isotropic Fibrous Composites," VPI-E-81-27, Virginia Polytechnic Institute and

State University, 1981.

84. Pindera, M. J., Gurdal, Z., IHidde, J. S. and Herakovich, C. T., Mechanical and i
Thermal Characterisation of Unidirectional Aramid/Epoxy. CCMS-86-08,

VPI-86-29, Virginia Polytechnic Institute and State University, 1986. i

85. Hashin, Z. and Rotem, A., "A Fatigue Failure Criterion for Fiber Reinforced

Materials," J. Composite Materials, Vol. 7, 1973, 448-464. i
86. Becker, W., Pindera, M. J. and Herkovich, C. T., Mechanical Response of Unidi-

rectional Boron/Aluminum under Combined Loading. CCMS-87-06, i
VPI-E-87-17, Virginia Polytechnic Institute and State University, 1987.

87. Pindera, M. J. and Aboudi, J., "Micromechanical Analysis of Yielding of Metal 3
Matrix Composites," Int. J. Plasticity, Vol. 4, 1988, pp. 195-214.

88. Tsai, S.W. and Wu., E.M., "A General Theory of Strength for Anisotropic Materi- 3
als," J. Composite Materials, Vol. 5, 1971, pp. 58-80.

89. Hashin, Z., "Failure Criteria for Unidirectional Fiber Composites," ASME J.

Applied Mechs., Vol. 47, 1980, pp. 329-334.

90. Tsai, S. W., "A Survey of Macroscopic Failure Criteria for Composite Materials,"

J. Reinforced Plastics and Composites, Vol. 3, 1984, pp. 40-62.

91. Nahas, M.N., "Survey of Failure and Post-Failure Theories of Laminated Fiber- 3
Reinforced Composites," J. Composites Technology and Research, Vol. 8, 1986, pp.

138-153.

92. Rosen, B. W., "Mechanics of Composite.Strengthening," in Fiber Composite Materi-

als, American Society for Metals, Metals Park, Ohio, 1965, pp. 37-75.

93. Argon, A. S., "Fracture of Composites," in Treatise on Materials Science and Tech-

nology, Vol. 1, Herman, H. editor, Academic Press, 1972, pp. 79-114.

94. Budiansky, B., "Micromechanics," Computers and Structures, Vol. 16, 1983, pp.

3-12.

170



I

I 95. Hahn, H. T. and Williams, J. G., "Compression Failure Mechanisms in Unidirec-

tional Composites," Composite Materials: Testing and Design(Seventh Conference),

ASTM STP 893, Whitney, J., editor, American Society for Testing and Materials,

1986, pp. 115-139.

96. POLO-FINiTE User's Manual, Civil Engineering Systems Laboratory, University

of Illinos at Urbana-Champaign, Urbana, IL

97. Garala, H. J., "Structural Evaluation of 8-inch Diameter Graphite-Epoxy Com-

posite Cylinders Subjected to External Hydrostatic Compressive Loading,"

DTRC-891016, David Taylor Research Center, Bethesda, MD, 1989.

98. Lekhnitskii, S. G., Anisotropic Plates, Translated from the second Russian edition

by Tsai, S. W. and Cheron, T., Gordon and Breach Science Publishers.

99. Ren, J. G., "Exact Solutions for Laminated Cylindrical Shells in Cylindrical Bend-

ing," Composites Science and Technology, Vol. 3, 1987, pp. 169-187.

100. Shukow, S. I., "Acoustic/Mechanical Characterization of Boron/Aluminum Com-

posite Laminates," M.S. Thesis, University of Delaware, June 1978.

101. Biglow, C. A., Johnson, W. S. and Naik, R. A., "A Comparison of Various Micro-

mechanics Models for Metal Matrix Composites," in Mechanics of Composite Materi-

als and Structures, ASME AMD-Vol. 100, Reddy, J. N. and Teply, J. L. editors,

I 1989, pp. 21-31.

102. Chang, Fu-Kuo and Lessard, L. B., "Damage Tolerance of Laminated Composites

Containing an Open Hole and Subjected to Compressive Loadings: Part I - Analy-

sis," J. Composite Materials, Vol. 25, 1991, pp. 2-43.

1 103. Chang, Fu-Kuo and Lessard, L. B., "Damage Tolerance of Laminated Composites

Containing an Open Hole and Subjected to Compressive Loadings: Part II - Ex-

periment," J. Composite Materials, Vol. 25, 1991, pp. 44-64.

I
I
I
I

I 171


