
AD-A257 813
SCertificate information

The following Ada implementation was tested and determined to pass ACVC

1.11. Testing was completed on September 15, 1992.

Compiler Name and Version: Meridian Ada, Version 4.1.3

Host Computer System: BIN TC2000
under nX 3.0.1

Target Computer System: BBN TC2000
under nX 3.0.1

Customer Agreement Number: 92-06-12-MSS

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
920915wI.11268 is awarded to Meridian Software Systems, Inc. This
certificate expires two years after the ANSI adoption of
ANSI/MIL-STD-1815SB.

This report has been reviewed and is approved.

Ada Validation Facility
Steven P. Wilson
Technical Director
ASC/SCEL
Wright-Patterson AFB OH 45433-6503

Ad Vti 0n1zrg nlat ion
tDredoE, er and Software Engineering Division

Institute for Defense Analyses
Alexandria VA 22311

WJoint Program Office
Dr. John Solomond, Director
Department of Defense
Washington DC 20301

92-29312
9 7 Ilhllllll)-:3 /9(

REPORT DOCUMENTATION PAGE O'AID
Pubkhc racolkt burden fo this €oVbcthn oI kdomjallon mttiaed to wvwm i hour Iw pnm, kiw 1, i. h lI e for rmvl's-q knw nklCMnswcing -x0m, daomw. gothkdg ,d m*akm0kW*Vig
ruadmd. a m' r ftgVi. cobctln oi kI••mt. Sewd comme•tw mr t •o bmn uator any Uw upea d tc -Cs - -nc ddnt. kv1dri meaftbO , bk ft Wdsm to W a~utb
Heedqum~ lServico. Direclor.le for Wnablonn 0Cw#= and F 1215 Jiftemon wVb HWMy. &u*e 1204. Malpon. VA 2=430= uud to 1he d w fc bnloikommn end ,ftwgmor opics d
MenegMenMI and BudgK Wash .on. DC 0 103.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I Final: 15 Sept 1992
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Validation Summary Report: Meridian Software Systems, Inc., Meridian Ada, Version
4.1.3, BBN TC2000 under nX 3.0.1 (Host & Target), 920915W1 .11268

6. AUTHOR(S)

Wright-Patterson AFB, Dayton, OH
USA

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Ada Validation Facility, Language Control Facility ASD/SCEL REPORT NUMBER

Bldg. 676, Rm 135 HOLCF C0089
Wright-Patterson AFB, Dayton, OH 45433

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGNMONITORING AGENCY

Ada Joint Program Office REPORT NUMBER

United States Department of Defense
Pentagon, Rm 3E1 14
Washington, D.C. 20301-3081

11, SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

Meridian Software Systems, Inc., Meridian Ada, Version 4.1.3, BBN TC2000 under nX 3.0.1 (Host & Target), ACVC 1.11

DTICSi)E ECTE'l

NOV 12 1992U

14. SUBJECT TERMS 15. NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val. 16._PRICECODE

Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. 16 PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMITATION OF ABSTRACT
OF REPORT OF ABSTRACT

UNCLASSIFIED UNCLASSIFED UNCLASSIFIED

NSN 7540-01-2W0-$50 SlandaW d Form 298, (Rev. 2-89)
Piemcraed by ANSI Sid. 239-128

92-06-12--MSS

Ada C0OMPILER
VALIDATICN SUWRY REPORT:

Certificate Number: 920915M1.11268
Meridian Software Systems, Inc.

Meridian Ada, Version 4.1.3
BBN TC2000 under nX 3.0.1 -> Acceeion For

DE TC2000 under nX 3.0.1 NT- CR,--

DTIC TAB
(FINAL) Urnaixunoun~ced [

By
Distribution I

Availability Codes

Prepared By: Dist Special

Wright-Patterson AFB OH 45433-6503

DOWF C0089

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on September 15, 1992.

Compiler Name and Version: Meridian Ada, Version 4.1.3

Host Computer System: BEN TC2000
under nX 3.0.1

Target Computer System: BBN TC2000
under nX 3.0.1

Customer Agreement Number: 92-06-12-1SS

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
920915W1.11268 is awarded to Meridian Software Systems, Inc. This
certificate expires two years after the ANSI adoption of
ANSI/MIL-STD-1815B.

This report has been reviewed and is approved.

Ada Validation Facility
Steven P. Wilson
Technical Director
ASC/SCEL
Wright-Patterson AFB OH 45433-6503

Ad ae v al d t ~ - gan i za t ion
t reo'or :ter and Software Engineering Division

Institute-fo Defense Analyses
Alexandria VA 22311

Ada Joint Program Office
Dr. John Solomond, Director
Department of Defense
Washington DC 20301

DECLARATION OF CONFORMANCE

Customer: Meridian Software Systems, Inc.

Ada Validation Facility: ASD/SCEL, Wright-Patterson AFB OH 45433-6503

ACVC Version: 1.11

Ada Implementation:

Compiler Name and Version: Meridian Ada, Version 4.1.3

Host Computer System: BBN TC2000
nX 3.0.1

Target Computer System: Same as Host

Customer's Declaration

I, the undersigned, representing Meridian Software Systems, Inc., declare that Meridian
Software Systems, Inc. has no knowledge of deliberate deviations from the Ada Language
Standard ANSI/MIL-STD-1815A in the implementation listed in this declaration. I declare that
Meridian Software Systems, Inc. is the owner of the above implementation and the certificates
shall be awarded !i the name of the owner's corporate name.

Date: 12ýStow6"Boyd, President1

Meridian Software Systems, Inc.
10 Pasteur Street
Irvine, CA 92718

TABLE OF CONTENTS

CHAPTER 1 INTROCV"TON

1.1 USE OF THIS VALIDATION S ARY REPORT 1-1
1.2 REFERECES. 1-2
1.3 ACVC TEST CLASSES 1-2
1.4 DEFINITION OF TERMS1-3

CHAPTER 2 IMPLEMENTTICN DEPDENDCIES

2 .1 WITHDRAWNq TESTS 2-1
2.2 nwpPLiCABLE TESTS. 2-1
2.3 TEST CODIFICATINS 2-4

CHAPTER 3 PROCESS INFOGMATI

3.1 TESTING E 3-1
3.2 SMMARY OF TESTESUL 3-2
3. 3 TEST EXECUITICtI 3-2

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPEDIX F OF THE Ada STANDARD

CHAPTER 1

INThCWXTCNX~

The Ada implementation described above was tested according to the Ada
Validation Procedures (Pro90] against the Ada Standard [Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
(Pro90). A detailed description of the ACVC may be found in the current
ACVC User's Guide [UG891.

1. 1 USE OF THIS VALIDATION SUMAY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
z'onconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Computer and Software Engineering Division
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311-1772

1-1

INTWUJCTION

1.2 REFER•NCES

[Ada83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro90] Ada Compiler validation Procedures, Version 2.1, Ada Joint
Program Office, August 1990.

[UG89] Ada Compiler Validation Capability User's Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes: A,
B, C, D, E, and L. The first letter of a test name identifies the class to
which it belongs. Class A, C, D, and E tests are executable. Class B and
class L tests are expected to produce errors at compile time and link time,
respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK FILE are used for this purpose. The package REPORT
also provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately c-ipiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values - for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

nwnC'rzTON

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described in
the preceding paragraph, removing withdrawn tests (see section 2.1), and
possibly removing some inapplicable tests (see section 2.2 and [UG891).

In order to pass an ACVC an Ada implementation must process each test of
the customized test suite according to the Ada Standard.

1.4 DEFINITICN OF TERMS

Ada Compiler The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation sumuary
(ACVC) report.

Ada An Ada compiler with its host computer system and its target
Implementation computer system.

Ada Joint The part of the certification body which provides policy and
Program guidance for the Ada certification system.
Office (AJPO)

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization
(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Computer A functional unit, consisting of one or more computers and
System associated software, that uses common storage for all or

part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

1-3

INTRODUCTICM

Conformity Fulfillment by a product, process, or service of all
requirements specified.

Customer An individual or corporate entity who enters into an agree-
ment with an AVF which specifies the terms and conditions
for AVF services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for

which validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to be
test irrelevant for the given Ada implementation.

ISO International Organization for Standardization.

LEM The Ada standard, or Language Reference Manual, published as
ANSI/MIL-STD-1815A-1983 and ISO 8652-1987. Citations from
the LRM take the form "<section>.<subsection>:<paragraph>."

Operating Software that controls the execution of programs and that
System provides services such as resource allocation, scheduling,

input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardware implementations are possible.

Target A computer system where the executable form of Ada programs
Computer are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration [Pro90J.

Validation The process of checking the conformity of an Ada compiler to
the Ada progra-muing language and of issuing a certificate
for this implementation.

Withdrawn A test found to be incorrect and not used in conformity
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programing
language.

1-4

CHAPTER 2

IMPIQELETATIM DEPEIDEN1CIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 2 August 1991.

E28005C B28006C C32203A C34006D C355081 C35508J
C35508M C35508N C35702A C35702B B41308B C43004A
C45114A C45346A C45612A C45612B C45612C C45651A
C46022A B49008A B49008B A74006A C74308A B83022B
B83022H B83025B B83025D C83026A B83026B C83041A
B85001L C86001F C94021A C97116A C98003B BA2011A
CB7001A CB7001B CB7004A CC1223A BC1226A CC1226B
BC3009B BD1B02B BD1B06A AD1BO8A BD2AO2A CD2A2lE
CD2A23E CD2A32A CD2A41A CD2A41E CD2A87A CD2BI5C
BD3006A BD4008A CD4022A CD4022D CD4024B CD4024C
CD4024D CD4031A CD4051D cD5111A CD7004C ED7005D
CD7005E AD7006A CD7006E AD7201A AD7201E CD7204B
AD7206A BD8002A BD8004C CD9005A CD9005B CDA201E
CE21071 CE2117A CE2117B CE2119B CE2205B CE2405A
CE3111C CE3116A CE3118A CE3411B CE3412B CE3607B
CE3607C CE3607D CE3812A CE3814A CE39028

2.2 InAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test's inapplicability may
be supported by documents issued by the ISO and the AJPO known as Ada
Comnentaries and ccmonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

2-1

IP4FL94TATION DEPENDE4CIES

The following 201 tests have floating-point type declarations
requiring more digits than SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

C35713B, C45423B, B86001T, and C86006H check for the predefined type
SHORTFLOAT; for this implementation, there is no such type.

C35713C, B86001U, and C86006G check for the predefined type
LONG_FLOAT; for this implementation, there is no such type.

C35713D and B86001Z check for a predefined floating-point type with a
name other than FLOAT, LONG FLOAT, or SHORTFLOAT; for this
implementation, there is no such type.

A35801E checks that FLOAT' FIRST. . FLOAT' LAST may be used as a range
constraint in a floating-point type declaration; for this
implementation, that range exceeds the range of safe numbers of the
largest predefined floating-point type and must be rejected. (See
section 2.3.)

C45423A, C45523A, and C45622A check that the proper exception is
raised if MACHINE OVERFLOWS is TRUE and the results of various
floating-point operations lie outside the range of the base type; for
this implementation, MACHINE OVERFLOWS is FALSE.

C45531M..P and C45532M..P (8 tests) check fixed-point operations for
types that require a SYSTEM.MAX MANTISSA of 47 or greater; for this
implementation, MAX MANTISSA is leis than 47.

B86001Y uses the name of a predefined fixed-point type other than type
DURATION; for this implementation, there is no such type.

CA2009C and CA2009F check whether a generic unit can be instantiated
before its body (and any of its subunits) is compiled; this
implementation creates a dependence on generic units as allowed by
AI-00408 and AI-00506 such that the compilation of the generic unit
bodies makes the instantiating units obsolete. (See section 2.3.)

LA3004A..B, EA3004C..D, and CA3004E..F (6 tests) check pragma INLINE
for procedures and functions; for this implementation, pragma INLINE
has no effect unless the program is compiled and linked using global
optimization.

2-2

IMPLEMENTATION DEPENDENCIES

CD1009C checks whether a length clause can specify a non-default size
for a floating-point type; this implementation does not support such
sizes.

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A840 use length clauses
to specify non-default sizes for access types; this implementation
does not support such sizes.

BD8001A, BD8003A, BD8004A..B (2 tests), and AD8011A use machine code
insertions; this implementation provides no package MACHINECODE.

AE2101C and EE2201D..E (2 tests) use instantiations of package
SEQUETIAL 10 with unconstrained array types and record types with
discriminants without defaults; these instantiations are rejected by
this compiler.

AE2101H, EE2401D, and EE2401G use instanti:tions of package DIRECT 10
with unconstrained array types and record types with discriminants
without defaults; these instantiations are rejected by this compiler.

The tests listed in the following table check that USE ERROR is raised
if the given file operations are not supported -for the given
combination of mode and access method; this implementation supports
these operations.

Test File Operation mode File Access Method

CE2102D CREATE IN FILE SEQUENTIAL 10
CE2102E CREATE OIUT FILE SEMIMIAL_-IO
CE2102F CREATE INOITr FILE DIRECT 10
CE2102I CREATE IN FILE DIRECT-IO
CE2102J CREATE OUT FILE DIRECT-IO
CE2102N OPiE IN FILE SEQUmqTIAL 10
CE21020 RESET IN-FILE SEQUENTIALIO
CE2102P OPEN OUT FILE SEQUENTIAL-IO
CE2102Q RESET OUT-FILE SEQUT-IOL10
CE2102R OPENq INOjT FILE DIRECT 10
CE2102S RESET INT_-FILE DIREC--IO
CE2102T OPEN IN FILE DIRECT--IO
CE2102U RESET IN-FILE DIRECT-IO
CE2102V OPE OUT FILE DIRECT-IO
CE2102W RESET OUT-FILE DIRECT-IO
CE3102E CREATE IN FILE TEXT 15
CE3102F RESET Any Mode TEXT-IO
CE3102G DELETE TEXT 10
CE31021 CREATE OUT FILE TEXT0-IO
CE3102J OPEN IN TILE TEXT-IO
CE3102K OPEN OWT FILE TEXT-IO

2-3

IMPLEMENTATION DEPENDE4CIES

The following 16 tests check operations on sequential, direct, and
text files when multiple internal files are associated with the same
external file and one or more are open for writing; USEERROR is
raised when this association is attempted.

CE2107B..E CE2107G..H CE2107L CD2110B CE2110D
CE2111D CE2111H CE3111B CE3111D..E CE3114B
CE3115A

CE2203A checks that WRITE raises USE ERROR if the capacity of an
external sequential file is exceeded;- this implementation cannot
restrict file capacity.

CE2403A checks that WRITE raises USE ERROR if the capacity of an
external direct file is exceeded; this implementation cannot restrict
file capacity.

CE3304A checks that SET LINE LEGTH and SET PAGE LENGTH raise
USE ERROR if they specify an Tnappropriate value for the external
file; there are no inappropriate values for this implementation.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the
page number exceeds COUNT'LAST; for this Tuplementation, the value of
COUNTI'LAST is greater than 150000, making the checking of this
objective impractical.

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 9 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the
way expected by the original tests.

B22003A B83033B B85013D

A35801E was graded inapplicable by Evaluation Modification as directed by
the AVO. The compiler rejects the use of the range
FLOAT' FIRST.. FLOAT' LAST as the range constraint of a floating-point type
declaration because the bounds lie outside of the range of safe numbers
(cf. LRM 3.5.7:12).

EA1003B was graded passed by Processing Modification as directed by the
AVO. This test checks whether legal units of a compilation are accepted
if one of the compilation units is illegal. This test was processed with
compiler option "-fI", which forces the compiler to generate code for
legal units of a compilation.

2-4

IMPLEMENTATICN DEPENDENCIES

CA2009C and CA2009F were graded inapplicable by Evaluation Modification as
directed by the AVO. These tests contain instantiations of a generic unit
prior to the compilation of that unit's body; as allowed by AI-00408 and
AI-00506, the compilation of the generic unit bodies makes the compilation
unit that contains the instantiations obsolete.

BC3204C and BC3205D were graded passed by Processing Modification as
directed by the AVO. These tests check that instantiations of generic
units with unconstrained types as generic actual parameters are illegal if
the generic bodies contain uses of the types that require a constraint.
However, the generic bodies are compiled after the units that contain the
instantiations, and this implementation creates a dependence of the
instantiating units on the generic units as allowed by AI-00408 and
AI-00506 such that the compilation of the generic bodies makes the
instantiating units obsolete-no errors are detected. The processing of
these tests was modified by re-compiling the obsolete units; all intended
errors were then detected by the compiler.

2-5

OIATE 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For technical information about this Ada implementation, contact:

William E. Crosby
Meridian Software Systems, Inc.
10 Pasteur Street
Irvine CA 92718
(714) 727-0700

For sales information about this Ada implementation, contact:

Meridian Software Systems, Inc.
Attn: Jim Smith
10 Pasteur Street
Irvine CA 92718
(714) 727-0700

Testing of this Ada implementation was conducted at the customer's site by
a validation team from the AVF.

3-1

PROCESSING INFORMATICN

3.2 SU•4ARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC [Pro90].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various
categories. All tests were processed, except those that were withdrawn
because of test errors (item b; see section 2.1), those that require a
floating-point precision that exceeds the implementation's maxim=
precision (item e; see section 2.2), and those that depend on the support
of a file system - if none is supported (item d). All tests passed,
except those that are listed in sections 2.1 and 2.2 (counted in items b
and f, below).

a) Total Number of Applicable Tests 3786
b) Total Number of Withdrawn Tests 95
c) Processed Inapplicable Tests 88
d) Non-Processed I/ Tests 0
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 289 (c+d+e)

g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were loaded onto a Sun 3 system and then transferred via an
NFS ethernet to the host computer system.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

Test results were transferred via the NFS ethernet to a Sun 3 system and
were printed from that system.

Testing was performed using conmand scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing
during this test were:

3-2

PROCESSING InFOmf(N

Switch Effect

-fE Generate error file for the Ada listing utility.

-fI Ignore compilation errors and continue generating
code for legal units within the same compilation
file (for test EA1003B).

-fQ Suppress "added to library" and "Generating code

for" information messages.

-fw Suppress informative warning messages.

-1 Produce a listing file.

The following switches appear as modifiers to the -1 command,
in the form -lcps:

-c Produce continuous form Ada listings (no page
headers).

-p Obey PRAGMA PAGE directives within program even
though the -c flag says not to generate page
breaks.

-s Output Ada listing to the standard output file
instead of to a disk file.

Test output, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3-3

APPD4IX A

MAR= PARAMEIERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in .UG891. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximu= input-line length, which is
the value for SMAX IN LEN-also listed here. These values are expressed
here as Ada string aggregates, where "V" represents the maximum irput-line
length.

Macro Parameter Macro Value

$MAX_IN_LEN 200 - Value of V

SBIGIDI (1..V-l -> 'A', V -> '1')

$BIGID2 (l..V-l -> 'A', V-> '2'0)

$BIGID3 (1..V/2-> 'A') & '3' &
(l..V-l-V/2-> 'A')

$BIGID4 (l..V/2 -> 'A') & '4' &
(l..V-l-V/2 -> 'A')

SBIGINT LIT (l..V-3-> '0') & "298"

$BIGREALLIT (l..V-5-> '0') & "690.0"

$BIG_STR'm 1 ,", & (l..V/2 -> 'A') & '"'

$BIG_STING2 &" & (i..V-l-V/2 -> 'A') & '1' & '"'

$BLANKS (l..V-20 -> '

$MAX LEN IM BASED LITERAL
- - - - "2:" & (l..V-5-> '0') & "11:"

A-1

MAO PARAMETERS

Macro Parameter Macro Value

$MAX LDE REALBASEDLITERAL
"16:" & (l..V-7 -> '0') £ "F.E:"

$NAX_STRINGLITERAL '"' & (l..V-2 -> 'A') & '"'

The following table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro Value

$ACC_SIZE 32

$ALIGHNENT 4

$COUINT•LAST 2_147_483_646

$DEFAULTJME SIZE 1024

$DEFAULT_S•_R•UNIT 8

$DEFAULT SYS_ NAE BBN_WC

$DELTADOC 2.0**(-31)

$ETRYADDRESS 16#0#

$ENTRY_ADDEESSi 16#1#

$ENTRYADCRESS2 16#2#

$FIELD LAST 2_147_483_647

$FILETERMINhTCR ' 0

$FIXE • AME NOSUCHFI• D WPE

$FLOAT_ NI NOSUC FLOATTYPE

$1R -STRING

$FORM_STRING2 "CANOT RESTRICTFILECAPACITY"

$GREATER THAN DU3RAT1ION
90_000.0

A-2

MhCR PARAMETERS

Macro Parameter Macro Value

$GREATER THAN DMTION BASE LAST
TO_00 _000.0

$GREAUTHAN FLoAT BASE LAST
- 1.'E+308

$GREATER THN FLORT SAFE LAI=
- 1.UE308

$GREATER_ THANSHORT FLOAT SAFELARGE
- 1.0E308

$HIGH PRIORITY 20

$ILLEGALEXTERNAL FILE AMIEl
- ODIRECTRY/FILDENN=

$ ILLEGALEXCTERNALFILE NAME2
7WODIRECTORY,'rILuIME2

$INAPPROPRIATE LINE LENGTH
-1

$ INAPPROPRIATEPAGE LEGTH
-1

$INCLUDEPRAGM(PRAGN•A INCLUDE ("A28006DI.ADA")

$INCLUDEPRAGIA2 PRAGIA INCLUDE ("B28006F.ADA")

$INTEGERFIRST -2147483648

$INTEGER_LAST 2147483647

$INTEGER LASTPLUS•1 2147483648

InTRWFACELANGUAGE C

$LESS _THANDRATION -90_000.0

SLESS_THAN D_)RATION BASE FIRST
- -10 000 000.0

$LINE TMtIR ASCII .LF

$LCW _PRIORITY 1

$MACHINECODESTRTEKENT`
NU•.LL

A-3

MACRO PARAMETERS

Macro Parameter Macro Value

$MACHINE CODE_TYPE INSTRUCTICN

SMANTISSADOC 31

$MAX_DIGITS 15

SMAX_INT 2147483647

$MAXINT PLUS_1 2147483648

SMININT -2147483648

$NAME BYTEIW1'

$NAME_LIST BBN_NX

SNAME SPECIFICATION1 /usr/t/Vor1d/acvc/val/X2120A

$NAMESPECIFICATICN2 /usr/t/world/acvc/Val/X2120B

$NAMESPECIFICATION3 /usr/t/world/acvc/val/X3119A

SNEG_BASEDIN'T 16#*Frn'FFE#

$NEW N SIZE 1024

SNEWSTOR UNlIT 8

$NEW SYS NAME BWMNX

SPAGE_TER ITOR ASCII. LF&ASCII.1FF

$RECORDDEFINITION NEW INTEGER;

$RECORDNMAN NO)_SUCH MACHINECODETYPE

$TASKSIZE 32

$TASK _STAGESIZE 2048

STICK 1.0

SVARIABLE ADDRESS FNDECL .VAR. ADDRESS

$VARIABLEADDRESS1 FCNDECL.VAR. ADDRESS1

SVARIABLEADRESS2 FCNDECL.VAR._ADDESS2

$SYtJRPRA•MA NO SUCHPRAM

A-4

APPENDIX B

COMPILATICN SYSTEM OPTICNS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.

B-1

MWXaTIQ S!313 or="~

l MIDZAN AM CUOK OPTIMSO

- fD Generate debugging output. Mhe -tD Option causes the
compiler to generate the appropriate code and data for
operation with the Meridian Ada Debugger.

- fe Annotate assembly lanquaqe listinq. The -fe option
causes the compiler to annotate an assembly language
output file. The output is supplemented by comments
containing the Ada source statements corresponding to the
assembly language code sections written by the code
generator. To use this option, the -s option must also
be specified, otherwise the annotated file is not emitted.

orE Generate error log file. The -fi option causes the
compiler to generate a log file containing all the error
messages and warning messages produced during compilation.
The error log file has the same name as the source file,
with the extension .err. For example, the error log file
for simple.ada is simple.err. The error log file is
placed in the current workinq directory. In the absence
of the -tE option, the error log information is sent to
the standard output stream.

- fI Ignore compilation errors and continue generating code
for legal units within the same compilation file.

-f•L Generate exception location information. The -fL option
causes location information (source file names and line
numbers) to be maintained for internal checks. This
information is useful for debugging in the event that an
"Exception never handled" message appears when an
exception propagates out of the main program. This flag
causes the code to be somewhat larger. If -fL is not
used. exceptions that propagate out of the main program
will behave in the same way, but no location information
will be printed with the "Exception never handled"
message.

--fN Suppress numeric checking. The -fN flaq suppresses two
kinds of numeric checks for the entire compilation:
divisioncheck and overflow check. These checks are
described in section 11.7 of the LRM. This flaq reduces
"..%. size of the code.

-. Q Suppress "added to library" and "Generatinq code for"
.niormation messages normally output by the compiler.

-fs Suppress all checks. The -fs flaq suppresses all

B-2

automatic checking, including nsmeri checking. This
flag is equivalent to using prague suppress on all chocks.
This flag reduces the size of the code, and is good for
produciAg "produiction quality* code or for b--Marking
the compiler. Note that there is a related adf option,
-M to suppress only certain kinds of numeric checks.

-fU Inhibit library update. The -fTU option inhibits library
updates. This is of use in conjunction with the -s
option. Certain restrictions apply to use of this option.

-_f Compile verbosely. The compiler prints the name of each
subprOgram, package, or generic as it is complied.
Information about the symbol table space reasining
following compilation of the nasid entity is also printed
in the form "f1nXl1.

-fv Suppress warning messages. With this option, the
compiler does not print warning messages about ignored
praqmas exceptions that are certain to be raised at
run-time, or other potential problems that the compiler
is otherwise forbidden to deem as errors by the LRi.

-9 The -q option instructs the compiler to run an additional
optimization pass. The optinizer removes '.moon
sub-expressions, dead code and unnecessary jumps. it
also does loop optimizations.

-K Keep internal form file. This option is used in
conjunction with the Optimizer. Without this option, the
compiler deletes internal form files following code
generation.

-Imodif iers
Generate listing file. The -1 option causes the compiler
to create a listing. optional modifiers can be given to
affect the listing format. You can use none or any
combination of the following modifiers:

c Use continuous listing format. The listing by
default contains a header on each page. Specifying
-Ic suppresses both pagination and header output#,
producing a continuous listing.

P Obey praqma page directives. Specifying -1p is only
meaningful if -1c has also been given. Normally -Ic
suppresses all pagination, whereas -Lcp suppresses
all pagination except where explicitly called for
within the source file with a praqua page directive.

s Use standard output. The listing by default is
"written to a file with the same nane as the source
file and the extension .1st, as in simplo.lst from
simple.ada. Specifying -Is causes the listing file

B-3

MWXATIcEI SYSMMg OpZ

to be vritten to th standard output strsamý instead.

t Generate releant text output only. The listing by
default contains the eWIr sUMre program as vell
as interspersed error amessages and werairzug messages.
Specifying -lt causes the €Cmpiler to list only the
source lines to vhich error messages or yarning
messages apply, folloed by the messages thGmlves.

The default listing file generted has the same name as
the source file, vith the exteslion .-lt. For example,
the default listing file produced for simple ada has the
name simple.lat. nhe listing file is placed in the
current vorkinq directory. Note: -I also causes an
error log file to be produced, as vith the -fZ option.

-L library-name

Default: ada.lib

Use alternate library. The -L option specifies an
alternative name for the program library.

-K No compile. This option causes the ada command to do a
"dry run" of the compilation process. The command
invoked for each processing stoep is printed. This is
similar to the -P option, but no actual processing is
performed.

-? Print compile. This option causes the ada command to
print out the command invoked for each processinq stoep
as it is performed.

-S Produce assembly code. Causes the code generator to
produce an assembly lanquage source file and to halt
further processing.

B-4

Caw LATICH SYSTEM OPTIONS

LINKER OPTIWNS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customr. Unless specifically noted
otherwise, references in this appendix are to linker documentation and not
to this report.

B-5

MJURDIAN AD& LIZ OpTIONS

-A Aqgressively inlino. This option instructs the optinizer
to aggressively inline subproqrams when used in addition
to the -G option. Typically, this means that subprograms
that are only called once are inlined. If only the -G
option is used, only subprograms for which pragma inline
has been specified are inlined.

-c cOmpiler-program-name

Default: (as stored in program library)

Use alternate compiler. The -c option specifies the
complete (non relative) directory path to the Meridian
Ada compiler. This option overrides the compiler
program name stored in the program library. The -c
option is intended for use in cross-compiler
configurations, although under such circumstances, an
appropriate library configuration is normally used
instead.

--f Suppress main program generation step. The -f option
suppresses the creation and additional code generation
steps for the temporary main program file. The -f option
can be used when a simple change has been made to the
body of a compilation unit. If unit elaboration order
is changed, or if the specification of a unit is changed,
or if new units are added, then this option should not be
used.

-q Perform global optimization only. The -g option causes
bamp to invoke the global optimizer on your program.
Compilation units to be optimized globally must have been
compiled with the ads -K option.

-G Perform global and local optimization. The -G option
causes bamp to perform both global and local optimization
on your program. This includes performing praqma inline.
As with the -g option, compilation units to be optimized
must have been compiled vith the ads -K option.

-: Link the program with a version of the tasking run-time
which supports pre-emptive task scheduling. This option
produces code which handles interrupts more quickly, but
has a slight negative impact on performance in general.

-L ibrary-name

B-6

c MWIATCa SYS~Ur OPPGS

Default: ada. lib

Use alternate library. The -L option specifies the name
of the program library to be consulted by the bamp
program. This option overrides the default library name.

-n No link. The -n option suppresses actual obJect file
linkage, but creates and peroras code generation on the
main program file.

-N No operations. The -N option causes the bamp command to
do a "dry run"; it prints out the actions it takes to
generate the executable program, but does not actually
perform those actions. The same kind of information is
printed by the -P option.

-o output-file-name

Default: file

Use alternate executable file output name. The -a option
specifies the name of the executable program file written
by the bemp command. This option overrides the default
output file name.

-P Print operations. The -P option causes the bemp command
to print out the actions it takes to generate the
executable program as the actions are performed.

-v Link verbosely. The -v option causes the bamp command to
print out information about what actions it takes in
building the main program.

-w Suppress warninqs. This option allows you to suppress
warnings from the optimizer.

B-7

APPENDIX C

APPEN4DIX F OF THE Ada STANDAPD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which
are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2 147 483 648 .. 2 147 483_647;
type SHORT INTEGER is range -32768 .. 32767; -
type LING INTEGER is range -2 147 483 648 .. 2_147_483647;
type BYTEINTEGER is range -i78 ._ 127;

type FLOAT is digits 15

range -1.79769313486231E+308 .. 1.79769313486231E+308;

type DURATION is delta 0.0001 range -86400.0 .. 86400.0;

end STANDARD;

C-1

APPENDIX F OF THE Ada STANDARD

This ap•endix bsts inplementation-dependent characteristics of Merdian
Ada. Note that there are no preceding appendices. Thus appendix is called
Appendix F in order to comply with the Reference Manuai for the Ada
Programming LAnguage" (LRM) ANSI/ML-STD-1815A wruch stat that
this appendix be named Appendix F.

Implemented Chapter 13 features include length clauses, enumerataon
representation clauses, record representation ciauses. address clause,
interrupts, package system- machine code insertions, pragma interface,
and unchecked programming.

F. I Pragmas
The impiernented pre-definea pragmas are:

elaborate See the LRM section 10.5

".%ntarfface See section F.1.1

list See the LRM Appendix B

pack See section F.1.2

page See the LR.M Appendix B

prxority See the LRM Appendix B

suppress See section F.1.3

".nline See the LRM secnon 0.3.2. This pragxna is not actuallv effective
unless you compile/Link your vrogram using the global
optimizer.

The remaining pre-defined pragnmas are accepted, but presently ignored:

controlled optimize system name
shared storae uniut mmory_size

Named parameter notation ior pragmas is not supported.

When Wlegai parameter iorms are encountered at commie time. the
compiler issues a warning message rather than an error. as required by
the Ada language defuiunton. Refer to the LRM Appenoi, B for additional
information aoout the pre-defined pragmas.

F.1.1 Pragma Interface
ne form oi pragma interface in Mendian Ada is.

praqma i.nterfacei(._luate. sum'oiTram [, :f:nK-narae)

zBN r.A C.,•o,,er user s Guice ;vo 8/281/92 Page ;7;

C-2

APPENDIX F OF TH Ada STMNIMM

A~oribx F irmictenyo s~Opongwrw Chaacgtwac

mgiaige This is the interface language, one of the names assembly,
butiL~ c, or iatemuaL The names builtin and internal are
reserved for use by Meridian compiler mainitainers in
run-time support packagms

sumpogram This is the name of a subprogram to which the pragma
i=ntft no. applies.

linic-name Thus is an optional string liberal specifying the name of the
non-Ada subprogram corresponding to the Ada
subprogram named in the second parameter. If link-namei is
omitted, then Link-name defaults to the value or subprogram
translated to lowercase. Depending on the language
specified. son* automatic modiifications may be made to
the link-namte to produce the actual object codie symbol
name that is generated whenever re! .erence are made to
the corresponding Ada subprogram. The object code
symbol generated for iink-name is always transiatea to
u pper case.

It is appropriate to use the optional linic-narm parameter to
pragmra i~ntawfaos only when the interface subprogram
has a name that does not correspond at all to its Ada
identifier or when the interface subprogram name cannot
be given using rules for constructing Ada identrifiers te.g..
if the name contains a '$' characteri.

The characteristics of object code svmbols generated for each intertace
ianguage are:

assembly The object code symbol is the same as linkc-name.

builtin The object code symbol is the same as link-name, but orefixed with
two underscore characters Cs..)This language inte'rrace
is reserved for special interfaces defined by Mlend ian
Software Systemis. Inc. The builtin interface is vresentlv
used to declare certain low-level nm-rune operations
whose names must not conflict with programrner-aenned
or language system defined names.

c The obiect code symbol is othe same as iink- name. but with one
underscore character ("-") prepe. ded. This is the
convention used by the C compiler.

internal No ob * ect code symbol is generated for an internai language
interiace; this language interrace is reserved for speciai
interfaces defined by Meridian Software Svstems. inc. The
internal interiace is presently used to declare certain
macnine-fevei bit operations.

No automatic data conversions are pertormed on parameters oi an%-
nterrace subprograms. It is up to the programmner to ensure that cailing
,:onventions match and that any necessary aata conversions taKe riace
when cailing intertace subprograms.

z *g -; 4vove 8128,W a8N rX Cmorneer user s GtAae

C-3

APPENDIX F OF THE Ada STANDARD

A pragma Lntozf ace may appear wlidti the Mww deiara" Vate
the suvpropam to wruch the prapna i-nteziam aVPpb folicwMg th
suovirogarn deciaratioti. a&na prior to the first use oi the subprogram A
pragma 3.ztarzfam that appues to a suDprogram cieciared int a package
specifcation must occur within the same package specincanon as the
suopropram cieciaration; the pragma interfacis may not appear in the
pacxage Dociv in this case. A pragui 3.nzewfaw dieclaration ior either a
private or nionprivate suiaoropa eirta a peri the private
van of a pacKage specification.

?ragnma iritezf aoce ior iibrary units is not suppordc.

Refer to the LR-M section 13.9 for additionai iniormation aoout pragma
:n amfc.

F. 1.2 Pragma Pack
?ragma pack is iminpernrieteci for composite tyrpes irecorais anda arrays).

7ragrna pack is vermnited followtng the composite tvre tieciaration to
Wf3ifl v loriies. Provided that the oraerna occurs witrun tne same
Jaeciarac .,e varr as the comvosite -vpe aeciaration, .oerore anv ooiec or
.,ompoonents or the composite, t-vte are deciareci.

Note that the aeciarative pant restrction means that tinc type aeciaration
and accorivrivianvg pragma pacit cannot be stint across a paci~hge
somicincation aria boov.

The effect oi pragma pack is to minimize storage consumption by
Jiiscrete component types wniose ranges perrrut pac~ing. L..se or pragma
pack does not defeat ailocations or alignment storage gaps r . r some
record types. Pragma pack does not affect the representations or real
-%pes. Pre-aeftned integer tyrpes, aria access types.

F. 1.3 Pragma Suppress
2raeina suppress is impiiementea as aescnoea in mne LRAI section 11I..
*-it tnese auuerences:

0 Presertirv. division -check aria overflow check must De sutipressea
via a comvuer flag, -zfN: pracma suppress is icriorea for these two
* umenc cnecKs.

10 1 e optionat "ON =>' parameter name notation tor rraena
suppress is ignored.

* nhe or'nonai second parameter to rra ema suppress is ignored; the
- razma alwavs atvpiles to tne entire scope in %%nich ii appears.

.2 Attributes
AU attributes aescriveo in the LR M Appenasx A are surt'orteO.

=ýN rK :zrmv,,ef user s Gu.ooe eOVge 8 '28/W rage 18 7

C-4

APPEDIX F OF THE Ada STANDAP

F.3 Standard Types
Additional standard tes awe defined Ir Mendian Ada:

*byte..mteger

* short_.tteger

* lon.Linteger
The standard numeric types am defined as:

type byte integer is rane -123 .. 127:

type asort integer is range -32763 .. 32767:

type integer is range -2147463648 .. 2147413647:

type long_.iLnt.ger is range -2147483646 .. 2147463647:

type float is digits 15
range -1.79769313496231Z+306 .. 1.797693134162311+300:

type duration is delta 0.0001 range -66400.0000
16400.0000;

F.4 Package System
The specification ot package system is:

package system is
type address is new lonq_.inteqer:

type nam is (ibb ni);
systai-nam : constant name :a bbn nz:

storage tIn•t : constant : 6:

mm'ry sze : constant :- 1024:

-- System-Dependent Mamd Numbers

mUn_ mnt : constant :a -2147433643:
MAx mnt constant : 2147483647:
sax dgqits : constant S 15:
mar mantis.sa constant : 31,
fimne delta constant : 2.0 ** (-31);
tick constant : 1.0:

-- Other Systemo-Dependent Declarations

subtype priority is integer range 1 .. 20:

-he 'aiue ot systemnmemry size is presenthv meaningtess.

zoge ".; ;.Voeo -2/ 1;7,V 48 rnx Cot'nomr user s GC.%ioe

C-5

APPEN4DIX F OF THE Ada STANDARD

F.5 Restrictions on Representation Clauses
F.5. 1 Length Clauses

A size srmecificattan t' ci.:. is rewected if fewer bits are spiecified than
can accommiodate the tp.The minimum SUNe of, a composite type may
be subitec to application~ of pragmea Peck- It is tiermittaii to svecify
Precise sums for unsigned Inteer ranges, e.g., 8 for the range* 0.. 355.
However, because of reawirements imposed by the Ada language
2iefinition. a hull 32-bit range of unsigned vtirues. i.e. 0. . (2 "32) - 1.
cannot be defined. even using a size speciricanon.

Thie sciecificationcor collection size it, storae@ sizei is evaluated at
run-time wries the scope or the type to wnich thie iength clause appites is
entered, and is thereiore submct to retection ivia sitoraqe_egrori basea
on available storage at the time the ailocatton is naoe. A codection may
inciude storage used for run-time administration or the codection. and
therefore snouid not be expiected to accommoaate a specific numbner of
obtects. Furthermore, certain classes of obtects such as unconstrained
discrirninant array compionents of recoras niav be adocateai outside a
given coilection, so a coilection may accomrnocate more ooteu than
trugrit be extpecteci.

7heI specification of storage ior a task activation it storages izei is
evajuateci at run-time whien a task to wnich the length ciause arp. pi is
activated, and is therefore subtect to r evection ivia storage .rrorl
based on available storage at the tune the allocation is maoe. Storage
reserved for a task activation is separate from storage neeced for any
.:oilections defuieo within a task body.

The specificatioin of small for a rixed point type it, sall I is subjet oniv
.0 restictions defined in the LRM section 13.2.

F.5.2 Enumeration Representation Clauses
The intemai couc for the literai of an eriumeranon rvtie narnea in an

,?numeration representanon ciause must r'e inthije range c't
stanciarn. zntaqr.

T he vaiue oi an intemnai code may be obtained by appiying an
apvpropriate instaniation or unckheec 0'Convers ion to an integer typ~e.

F.5.3 Record Representation Clauses
The storagre unit offset I the at static-stmvie-cx,'essicn r'art) is mven in
,erms or S-bit storagze units ana must be even.

* bit r'osinon i the range panti avviiea to a discrete tvr'e ccmponerit may
vin tne ran ee 0 ... S. wttn 0 being mne ieast sienincant rit or a
-mr'onent. A range specification may not smeitv a size smader than can

.iccommociate tne component. A range scecincanion tor a component not

.'ccomminoaaing Ott r'acxing may nave a nipner uoper rouna as
aopropnate te~g., C. . -1 tor a atscnmiunant stz--na component). Refer to

x3 -~c~motter user s G~ioe -oei

C-6

APPEINDIX F OF THE Ada STANDARD

Appernbx F WPM Charaqwsvus

fth tftd~mfda nprnieatio of a prven comporit In determinng the-

Corponeiw of discrete types for which bit positions are specified may
not straddle 16-bit word boundaries.

The value of an alignmunt clause (the optional at mod can) must evaluate
to 1, 2.4, or 8, and may not be smaller than the highest alignment
required by any component of the record. On the CLIX operating system.
this means that some records may not have aigumm t clauses smaller
than 2.

F.5.4 Address Clauses
An address clause may be supplied for an ob:ect (whether constant or
variable) or a task entry, but not for a subprogram, package, or task unit.
The meanmg of an address clause supphea for a task entry is given in
section F.5.5.

An address expression for an object is a 32-bit segmented memory
address of type sysa. adzessu.

F.5.5 Interrupts
A task entrv's address clause can be used to associate the entrv with a
UNIX signal. Values in the range 0. .31 are meaningful. and represent
the interrupts corresponding to those vaiues.

An interrupt entry may not have any parameters.

F.5.6 Change of Representation
There are no restrictions for changes of representation effected by means
of type conversion.

F.6 Implementation-Dependent Components
No names are generated by the innplementation to denote
unpiementation-devencient components.

F.7 Unchecked Conversions
There are no restrictions on the use of unehecked converz•on.
Conversions oetween oviects wnose sizes co not conruorm may result in
storage areas with undefined vaiues.

-age :34 7obg 80120M ,BN r'x Cornover user s Guae

C-7

44

- APPENDIX F OF THE Ada STANDARD

F.8 Input-Output Packages
A summary of the implemen ton-dependent Input-output
characteistics is:

" In cals to open and areams., the fiorm parameter must be the eqmpi
suing (the default value).

"* More than one internal file can be associated with a single external
file for reading only. For writing, ony one Internal file may be
asmociated with an external file; Do not use reset to get around this
tule.

"* Temporary sequential and direct files are given names. Temporary
files are deleted when the are closed.

"* File I/0 is buffered; text files associated with terminal devices are
brne-buffered.

"* The packages sequn•.tal_ 0 and diLrect 3.o cannot be
Instantiated with unconsuained composite types or record types
with discnrimnants without defaults.

F.9 Source Une and Identifier Lengths
Source lines and identifiers in Ada source programs are presently Limited
to 200 characters in length.

aBN nX Comnoer User s Guoae vwo 81282 Page 185

C-8

