T == s T m 7 e |

- AD-A257 813
\“!‘mmlml\ Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on September 15, 1992,

Compiler Name and Version: Meridian Ada, Version 4.1.3

Host Computer System: BEN TC2000
under nX 3.0.1

Target Computer System: BBN TC2000
under nX 3.0.1

Customer Agreement Number: 92-06-12-MSS

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
920915W1.11268 is awarded to Meridian Software Systems, Inc. This
certificate expires two years after the ANSI adoption of
ANSI/MIL-STD-1815B.

This report has been reviewed and is approved.

/2

A2 -
Validation Facility
Steven P. Wilson
Technical Director
ASC/SCEL
Wright-Patterson AFB OH 45433-6503

Organization
& Diredtor, ter and Software Engineering Division
Institute for Defense Analyses
Alexandria VA 22311

%(’o;téyémgram Office

Dr. John Solomond, Director
Department of Defense
Washington DC 20301

92 * 7

REPORT DOCUMENTATION PAGE OPM No. 07040188

Pubiic reporting burden for this collection of information is estimated to average 1 hour per reaponse, inciuding the me for reviewing instructions, searching exisiing data sources gathering and maintaining the data
needed, and reviewing the collaction of information. Send comments regarding this burden estimae or any other aspect of this collection of information, including suggestions for reducing this burden, to
Headquarers Service, Directorate for information Gperations and Reporis, 1215 Jeflerson Davis Highway. Sulls 1204, Arlington, VA 222024302, and to the Office of information and Reguiatory Altairs, Office of

Management and Budget, Washington, DC 20603,

[7-AGENCY USE ONLY (Leave Biank) 2. REPORT DATE 3. REPORT TYPE AN S COVERED
Final: 15 Sept 1992
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS '\
Validation Summary Report: Meridian Software Systems, Inc., Meridian Ada, Version a
4.1.3, BBN TC2000 under nX 3.0.1 (Host & Target), 920915W1.11268
6. AUTHOR(S)
Wright-Patterson AFB, Dayton, OH
USA
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Ada Validation Facility, Language Control Facility ASD/SCEL REPORT NUMBER
Bldg. 676, Rm 135 HOLCF C0089
Wright-Patterson AFB, Dayton, OH 45433
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY
Ada Joint Program Office REPORT NUMBER
United States Department of Defense
Pentagon, Rm 3E114
Washington, D.C. 20301-3081
11. SUPPLEMENTARY NOTES
[72a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)
Meridian Software Systems, Inc., Meridian Ada, Version 4.1.3, BBN TC2000 under nX 3.0.1 (Host & Target), ACVC 1.11

_DTIC

3

ELECTE F®
NOV 121992 §

13, SUBJECT TERMS - 5. NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val.

Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSIMIL-STD-1815A, AJPO. 16. PRICE COD

17, SECURITY GLASSIFICATION] 16. SECURITY CLASSIFICATION] 19. SECURITY CLASSIFICATION . [20. LIMITA TRA

OF REPORT OF ABSTRACT
UNCLASSIFIED UNCLASSIFED UNCLASSIFIED
NSN 7540-01-280-550 Standard Form 298, (Rev. 2-89)

Prescribed by ANSI Sid. 239-128

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 920915W1.11268
Meridian Software Systems, Inc.
Meridian Ada, Version 4.1.3
BBN TC2000 under nX 3.0.1 =>
BBN TC2000 under nX 3.0.1

(FINAL)

Prepared By:
Ada validation Facility
ASC/SCEL
Wright-Patterson AFB OH 45433-6503

92-06-12-MSS

NEPECTED 4
e QALY

Accesion For

e s ot i e ¢

DTIC TAB
Urannounced
Jastification

)

NTIS CRA&I o
0

g

By

Distribution]

Availabitity Codes

) Avail and|or
Dist Special

A-l

HOLCF C0089

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on September 15, 1992.

Compiler Name and Version: Meridian Ada, Version 4.1.3

Host Computer System: BEN TC2000
under nX 3.0.1

Target Computer System: BBN TC2000
under nX 3.0.1

Customer Agreement Number: 92-06-12-MSS

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, validation Certificate
920915W1.11268 is awarded to Meridian Software Systems, Inc. This
certificate expires two years after the ANSI adoption of
ANSI/MIL-STD-1815B.

This report has been reviewed and is approved.

7,
A
Validation Facility

Steven P. Wilson

Technical Director

ASC/SCEL

Wright-Patterson AFB OH 45433-6503

Institute foY Defense Analyses
Alexandria VA 22311

Ada Joint Program Office

Dr. John Solomond, Director
Department of Defense
washington DC 20301

DECLARATION OF CONFORMANCE

Customer: Meridian Software Systems, Inc.
Ada Validation Facility: = ASD/SCEL, Wright-Patterson AFB OH 45433-6503

ACVC Version: 1.11

Ada Implementation:

Compiler Name and Version: Meridian Ada, Version 4.1.3

Host Computer System: BBN TC2000
nX 3.0.1
Target Computer System: Same as Host

Customer’s Declaration

I, the undersigned, representing Meridian Software Systems, Inc., declare that Meridian
Software Systems, Inc. has no knowledge of deliberate deviations from the Ada Language
Standard ANSI/MIL-STD-1815A in the implementation listed in this declaration. I declare that
Meridian Software Systems, Inc. is the owner of the above implementation and the certificates
shall be awarded in the name of the owner’s corporate name.

/7/#\,«3 7’\5‘ Date: 25 A'V’\ 17

Stow€ Boyd, Présidentl)
Meridian Software Systems, Inc.

10 Pasteur Street

Irvine, CA 92718

TABLE OF CONTENTS

INTRODUCTION

.1 USE OF THIS VALIDATION SUMMARY REPORT 1-1
.2 Rsmmso e o & & & e ©® ¢ o e e ° o & o s o o 1-2
03 ch TEST CLHSSES e 8 o6 © & e o & o o s e s o o o 1_2
.4 DEFINITIm OF m @ o ©® & o e o @ e o o o o o o 1-3
CHAPTER IMPLEMENTATION DEPENDENCIES
1 mm TESTS e @ e @ ® o e ° o o o o & o o e 2-1
02 IWPLICABLE TESTS. e e @& e @ o o o @ o s & s & @ 2-1
03 TEST mIFIC&TImS. e @ e o e o @ © e o e e o o o 2-4

PROCESSING INFORMATION

mmm e @ & @& ® o _,e e * & o o s o o 3-1
SUMMARY OF TEST RESULTS « + o ¢ o o o « o s o o « 3=2
TEST mwo e o e e ® e o ¢ o o & & s o s o 03-2

WWww w [SH SN S N | ol ol ol d [l
L

L]
W=

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

CHAPTER 1
INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures ([Pro90] against the Ada Standard [Ada83) using the
current Ada Compiler Validation Capabjlity (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
[Pro90]}. A detailed description of the ACVC may be found in the current
ACVC User'’s Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
~onconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada validation Organization

Computer and Software Engineering Division
Institute for Defense Analyses

1801 North Beauregard Street

Alexandria VA 22311-1772

1-1

INTRODUCTION

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Pro?: '
ANSI/MIL-STD-1815A, February 1983 and ISO 87.

(Pro90]) Ada Compiler Validation Procedures, Version 2.1, Ada Joint
Program ice, August 1990.

(UG89) Ada Compiler Validation Capability User’s Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes: A,
B, C, D, E, and L. The first letter of a test name identifies the class to
which it belongs. Class A, C, D, and E tests are executable. Class B and
class L tests are expected to produce errors at compile time and link time,
respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK FILE are used for this purpose. The package REPORT
also provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class

B tests are not executable. -Each test in this class is compiled and the

resulting compilation listing is examined to verify that all violations of

the Ada Standard are detected. Some of the class B tests contain legal Ada

:gde whicf:?edmst not be flagged illegal by the compiler. This behavior is
s0 ver .

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately c-mpiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values — for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described in
the preceding paragraph, removing withdrawn tests (see section 2.1), and
possibly removing some inapplicable tests (see section 2.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each test of
the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user’s gquide and the template for the validation summary
(Aacve) report.

Ada An Ada compiler with its host computer system and its target
Implementation computer system.

Ada Joint The part of the certification body which provides policy and
Program guidance for the Ada certification system.

Office (AJPO)

Ada The part of the certification body which carries out the

Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization

(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada

Implementation
Computer A functional unit, consisting of one or more computers and
System - associated software, that uses common storage for all or

part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user-designated programs; performs
user—-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

1-3

Conformity

Customer

Declaration of
Conformance

Host Computer
System

Inapplicable
test

IS0

LRM

Operating
System

Target
Computer
System

Validated ada
Compiler

Validated Ada
Implementation

validation

Withdrawn
rest

INTRODUCTION

Fulfillment by a product, process, or service of all
requirements specified.

An individual or corporate entity who enters into an agree-
ment with an AVF which specifies the terms and conditions
for AVF services (of any kind) to be performed.

A formal statement from a customer assuring that conformity
is realized or attainable on the Ada implementation for
which validation status is realized.

A computer system where Ada source programs are transformed
into executable form.

A test that contains one or more test objectives found to be
irrelevant for the given Ada implementation.

International Organization for Standardization.

'fhe Ada standard, or Language Reference Manual, published as
ANSI/MIL-STD-1815A-1983 and ISO 8652-1987. Citations from
the LRM take the form "<section).<subsection>:<paragraph>."

Software that controls the execution of programs and that
provides services such as resource allocation, scheduling,
input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardware implementations are possible.

A computer system where the executable form of Ada programs
are executed.

The compiler of a validated Ada implementation.

An Ada implementation that has been validated successfully
either by AVF testing or by registration [Pro90].

The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

A test found to be incorrect and not used in conformity
testing. A test may be incorrect because it has an invalid
test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming

lanquage.

1-4

CHAPTER 2
IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 2 August 1991.

E28005C B28006C C32203a C34006D C355081 C35508J
C35508M C35508N C35702A C35702B B41308B C43004A
C45114A C45346A C45612a C45612B C45612C C45651a
C46022A B49008A B49008B A74006A C74308A B83022B
B83022H B83025B B83025D c83026a B83026B C83041Aa
B85001L C86001F €94021A C97116A 980038 BA2011A
CB7001A CB7001B CB7004A CCla23a BC1226A CC1226B
BC3009B BD1B02B BD1BO6A AD1B08A BD2A02A CD2A21E
CD2A23E CD2A32A CD2A41A CD2A41E CD2A87A CD2B15C
BD3006A BD4008A CD4022a CD4022D CD4024B CD4024C
CD4024D CD4031A CD4051D CD5111A CD7004C ED7005D
CD7005E AD7006A CD7006E AD7201A AD7201E CD7204B
AD7206A BD8002A BD8004C Cp9005a CD9005B CDhA201E
CE21071 CE2117A CE2117B CE2119B CE2205B CE2405A
CE3111C CE3116A CE3118a CE3411B CE34128B CE3607B
CE3607C CE3607D CE3812a CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test’s inapplicability may
be supported by documents issued by the 1SO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

2-1

IMPLEMENTATION DEPENDENCIES

The following 201 tests have floating-point type declarations
requiring more digits than SYSTEM.MAX DIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..2 (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..2 (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

C35713B, C45423B, B86001T, and C86006H check for the predefined type
SHORT FLOAT; for this implementation, there is no such type.

C35713C, B86001U, and C86006G check for the predefined type
LONG_FLOAT; for this implementation, there is no such type.

C35713D and B860012 check for a predefined floating-point type with a
name other than FLOAT, LONG FLOAT, or SHORT FLOAT; for this
implementation, there is no such type.

A35801E checks that FLOAT'FIRST..FLOAT'LAST may be used as a range
constraint in a floating-point type declaration; for this
implementation, that range exceeds the range of safe numbers of the
largest predefined floating-point type and must be rejected. (See
section 2.3.)

C45423A, (C45523A, and C45622A check that the proper exception is
raised if MACHINE OVERFLOWS is TRUE and the results of various
floating-point operations lie outside the range of the base type; for
this implementation, MACHINE OVERFLOWS is FALSE.

C45531M..P and C45532M..P (8 tests) check fixed-point operations for
types that require a SYSTEM.MAX MANTISSA of 47 or greater; for this
implementation, MAX MANTISSA is less than 47.

B86001Y uses the name of a predefined fixed-point type other than type
DURATION; for this implementation, there is no such type.

CA2009C and CA2009F check whether a generic unit can be instantiated
before its body (and any of its subunits) is compiled; this
implementation creates a dependence on generic units as allowed by
AI-00408 and AI-00506 such that the compilation of the generic unit
bodies makes the instantiating units obsolete. (See section 2.3.)

LA3004A..B, EA3004C..D, and CA3004E..F (6 tests) check pragma INLINE
for procedures and functions; for this implementation, pragma INLINE
has no effect unless the program is compiled and linked using global
optimization.

2-2

IMPLEMENTATION DEPENDENCIES

CD1009C checks whether a length clause can specify a non-default size
for a floating-point type; this implementation does not support such
sizes.

CD2A84A, CD2AB4E, CD2AB4I..J (2 tests), and CD2A840 use length clauses
to specify non-default sizes for access types; this implementation
does not support such sizes.

BD8001A, BD8B003A, BD8004A..B (2 tests), and AD8011A use machine code
insertions; this implementation provides no package MACHINE CODE.

AE2101C and EE2201D..E (2 tests) use instantiations of package
SEQUENTIAL IO with unconstrained array types and record types with
discriminants without defaults; these instantiations are rejected by
this compiler.

AE2101H, EE2401D, and EE2401G use instantiztions of package DIRECT I0
with unconstrained array types and record types with discriminants
without defaults; these instantiations are rejected by this compiler.

The tests listed in the following table check that USE ERROR is raised
if the given file operations are not supported for the given
combination of mode and access method; this implementation supports
these operations.

Test File Operation Mode File Access Method

CE2102D CREATE IN FILE SEQUENTIAL IO
CE2102E CREATE OUT FILE SEQUENTIAL_IO
CE2102F CREATE INOUT FILE DIRECT IO ~
CE21021 CREATE IN FILE DIRECT IO
CE2102J CREATE OUT FILE DIRECT 10
CE2102N OPEN IN FILE SEQUENTIAL IO
CE21020 RESET IN FILE SEQUENTIAL IO
CE2102P OPEN OUT FILE SEQUENTIAL IO
CE2102Q RESET OUT_FILE SEQUENTIAL 10
CE2102R OPEN INOUT FILE DIRECT IO
CE2102s RESET INOUT FILE DIRECT IO
CE2102T OPEN IN_FILE DIRECT 10
CE2102U RESET IN FILE DIRECT 10
CE2102v OPEN OUT _FILE DIRECT IO
CE2102w RESET OUT_FILE DIRECT 10
CE3102E CREATE IN FILE TEXT_I0
CE3102F RESET Any Mode TEXT 10
CE3102G DELETE _— TEXT_I0
CE31021 CREATE OUT_FILE TEXT IO
CE3102J OPEN IN FILE TEXT_IO
CE3102K OPEN OUT_FILE TEXT_IO

2-3

IMPLEMENTATION DEPENDENCIES

The following 16 tests check operations on sequential, direct, and
text files when multiple internal files are associated with the same
external file and one or more are open for writing; USE ERROR is
raised when this association is attempted.

CE2107B..E CE2107G..H CE2107L CD2110B CE2110D
CE2111D CE2111H CE3111B CE3l11lD..E CE3114B
CE3115a

CE2203A checks that WRITE raises USE ERROR if the capacity of an
external sequential file is exceeded; this implementation cannot
restrict file capacity.

CE2403A checks that WRITE raises USE ERROR if the capacity of an
external direct file is exceeded; this implementation cannot restrict
file capacity.

CE3304A checks that SET LINE , LENGTH and SET PAGE LENGTH raise
USE ERROR if they specify an 1Inappropriate value for the external
file; there are no inappropriate values for this implementation.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the
page number exceeds COUNT’LAST; for this implementation, the value of
COUNT’LAST is greater than 150000, making the checking of this
objective impractical.

2.3 TEST MODIFICATIONS
Modifications (see section 1.3) were required for 9 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the
way expected by the original tests.

B22003A B83033B B85013D

A35801E was graded inapplicable by Evaluation Modification as directed by
the AVO. The compiler rejects the wuse of the range
FLOAT'FIRST..FLOAT’LAST as the range constraint of a floating-point type
declaration because the bounds lie outside of the range of safe numbers
(cf. LRM 3.5.7:12).

EA1003B was graded passed by Processing Modification as directed by the
AVO. This test checks whether legal units of a compilation are accepted
if one of the compilation units is illegal. This test was processed with
compiler option "-fI", which forces the compiler to generate code for
legal units of a compilation.

2-4

IMPLEMENTATION DEPENDENCIES

CA2009C and CA2009F were graded inapplicable by Evaluation Modification as
directed by the AVO. These tests contain instantiations of a generic unit
prior to the compilation of that unit’s body; as allowed by AI-00408 and
AI-00506, the compilation of the generic unit bodies makes the compilation
unit that contains the instantiations obsolete.

BC3204C and BC3205D were graded passed by Processing Modification as
directed by the AVO. These tests check that instantiations of generic
units with unconstrained types as generic actual parameters are illegal if
the generic bodies contain uses of the types that require a constraint.
However, the generic bodies are compiled after the units that contain the
instantiations, and this implementation creates a dependence of the
instantiating units on the generic units as allowed by AI-00408 and
AI-00506 such that the compilation of the generic bodies makes the
instantiating units obsolete——no errors are detected. The processing of
these tests was modified by re-compiling the obsolete units; all intended
errors were then detected by the compiler.

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For technical information about this Ada implementation, contact:

William E. Crosby

Meridian Software Systems, Inc.
10 Pasteur Street

Irvine CA 92718

(714) 727-0700

For sales information about this Ada implementation, contact:

Meridian Software Systems, Inc.
Attn: Jim Smith

10 Pasteur Street

Irvine CA 92718

(714) 727-0700

Testing of this Ada implementation was conducted at the customer’s site by
a validation team from the AVF.

3-1

PROCESSING INFORMATION

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC [Pro90].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various
categories. All tests were processed, except those that were withdrawn
because of test errors (item b; see section 2.1), those that require a
floating-point precision that exceeds the implementation’s maximum
precision (item e; see section 2.2), and those that depend on the support
of a file system — if none is supported (item d). All tests passed,
except those that are listed in sections 2.1 and 2.2 (counted in items b
and £, below).

a) Total Number of Applicable Tests 3786

b) Total Number of Withdrawn Tests 95
c) Processed Inapplicable Tests 88
d) Non-Processed I/0 Tests 0
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 289 (c+d+e)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were loaded onto a Sun 3 system and then transferred via an
NFS ethernet to the host computer system.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

Test results were transferred via the NFS ethernet to a Sun 3 system and
were printed from that system.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing
during this test were:

3-2

PROCESSING INFORMATION

Switch Effect
-fE Generate error file for the Ada listing utility.
-fI Ignore compilation errors and continue generating

code for legal units within the same compilation
file (for test EA1003B).

-fQ Suppress "added to library" and "Generating code
for" information messages.

~fw Suppress informative warning messages.

-1 Produce a listing file.

The following switches appear as modifiers to the -1 command,
in the form -lcps:

-C Produce continuous form Ada listings (no page
headers).

-p Obey PRAGMA PAGE directives within program even
though the -c flag says not to generate page
breaks.

-5 Output Ada 1listing to the standard output file

instead of to a disk file.

Test output, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3-3

APPENDIX A
MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters aré explained in {UG89]. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for S$MAX IN LEN-—also listed here. These values are expressed
here as Ada string aggregates, where "V" represents the maximum imut-line

length.

- Macro Parameter Macro Value
$MAX IN LEN 200 — Value of V
$BIG ID1 (1..V=1 => 'A’, V=) 717)
$BIG_ID2 (1..V=1 => 'A’, V =) 727)
$BIG_ID3 (1..v/2 => 'A’) & '3’ &
(1..V=1-V/2 => 'A’)
$BIG_ID4 (1..v/2 => 'A’') & "4’ &
(1..V=1-V/2 => 'A’)
$BIG_INT LIT (1..v-3 => '0’) & "298"
$BIG_REAL__LIT (1..v-5 => '0’) & "690.0"
$BIG_STRING1 ' & (1..V/2 => 'A’) & '™
$BIG_STRING2 ' & (1..V-1-V/2 => 'A’) & ‘1" & '’
$BLANKS (1..V=20 => * 7)

$MAX LEN INT BASED LITERAL
"2:" & (1..v=5=> 0’) & "11:"

A-1

MACRO PARAMETERS

Macro Parameter

Macro Value

$MAX LEN REAL BASED LITERAL

$MAX STRING LITERAL

The following table 1lists all
respective values.

Macro Parameter

"16:" & (1..Vv=7 => '0’) & "F.E:"

rmr g (1..V-2 => 'A’) & "7

of the other macro parameters and their

Macro Value

$ACC_SIZE
SALIGNMENT
$COUNT_LAST
$DEFAULT MEM SIZE
$DEFAULT STOR UNIT
SDEFAULT SYS NAME
$DELTA DOC
$ENTRY_ADDRESS
$ENTRY_ADDRESS1
$ENTRY_ADDRESS2
$FIELD_LAST
$FILE_TERMINATOR
$FIXED NAME
$FLOAT NAME
$FORM_STRING
$FORM_STRING2

32

4

2 147 483 646

1024

8

BEN NX

2.0%#(-31)

1640%

16414

16424

2 147_483_647

-
NO_SUCH_FIXED TYPE
NO_SUCH_FLOAT TYPE
e

"CANNOT_RESTRICT FILE CAPACITY"

$GREATER THAN DURATION

90_000.0

A-2

MACRO PARAMETERS

Macro Parameter Macro Value

SGREATER THAN DURATION BASE LAST
10_000_000.0

SGREATER THAN FLOAT BASE LAST
1.8E+308

$GREATER THAN FLOAT SAFE LARGE

1.0E308
SGREATER THAN SHORT FLOAT SAFE LARGE

1.0E308
$HIGH PRIORITY 20
$ILLEGAL EXTERNAL FILE NAMEL

7NODIRECTORY/FILENAMEL
$ILLEGAL EXTERNAL FILE NAME2

/NODIRECTORY/FILENAME2
SINAPPROPRIATE LINE me1;m
$INAPPROFRIATE PAGE mem
$INCLUDE PRAGMAL PRAGMA INCLUDE ("A28006D1.ADA")
SINCLUDE PRAGMA2 PRAGMA INCLUDE ("B28006F1.ADA")
$INTEGER FIRST -2147483648
SINTEGER LAST 2147483647

S$INTEGER LAST PLUS 1 2 147 483 648
$INTERFACE LANGUAGE C
SLESS_THAN DURATION -90 000.0

$LESS_THAN DURATION BASE FIRST
-10_000_000.0

SLINE TERMINATOR ASCII.LF
$LOW_PRIORITY 1

$MACHINE_CODE_STATEMENT
NULL;

A-3

MACRO PARAMETERS

$PAGE_TERMINATOR

$RECORD_DEFINITION

$RECORD_NAME

$TASK SIZE
$TASK_STORAGE SIZE
$TICK

$VARIABLE ADDRESS
$VARIABLE ADDRESS1
$VARIABLE ADDRESS2
$YOUR_PRAGMA

Macro Parameter Macro Value
$MACHINE CODE TYPE INSTRUCTION
$MANTISSA_DOC 31
$MAX DIGITS 15
$MAX_INT 2147483647
$MAX_INT PLUS 1 2_147_483 648
$MIN_INT -2147483648
SNAME BYTE_INTEGER
$NAME LIST BBN_NX
SNAME_SPECIFICATIONL /usr/t/world/acvc/val/X2120A
SNAME SPECIFICATION2 /usr/t/world/acvc/val/x2120B
$NAME SPECIFICATION3 ,usr/t/world/acvc/val/X3119A
$NEG_BASED INT 164FFFFFFFE}
SNEW_MEM_SIZE 1024
$NEW_STOR UNIT 8
$NEW_SYS_NAME BBN NX

ASCII.LPF&ASCII.FF

NEW INTEGER;
NO_SUCH_MACHINE CODE_TYPE
32

2048

1.0

FONDECL.VAR ADDRESS
PONDECL.VAR_ADDRESS1
FONDECL.VAR_ADDRESS2
NO_SUCH_PRAGMA

A-4

APPENDIX B
COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.

B-1

-£D

-£N

MERIDIAN ADA COMPILER OPTIONS

Generate debugging output. The ~£D option causes the
compiler to generate the appropriats code and data for
operation with the Meridian Ada Debugger.

Annotate assembly lanquage listing. The -fe option

causes the compiler to annotats an assembly language
ocutput file. The output is supplesented by comments
containing the Ada source statasents corresponding to the
assembly language code sections written by the code
generator. To use this option, the -5 option must also
be specified, otherwise the annotated file is not emitted.

Generate error log file. The -fE option causes the
compiler to generate a log file containing all the error
messages and varning nessages produced during compilatien.
The error log file has the same name as the source file,
with the extension .err. For example, the error log file
for simple.ada is simple.err. The error log file is
placed in the current working directory. In the absence
of the -fE option, the error log information is sent to
the standard output streanm.

Ignore compilation errors and continue generating code
for legal units within the same compilation file.

Generate exception location information. The -fL option
causes location information (source file names and line
numbers) to be maintained for internal checks. This
information is useful for debugging in the event that an
"Exception never handled” message appears when an
exception propagates out of the main program. This Zlag
causes the code to be somewhat larger. If ~fL is not
used, exceptions that propagate out of the main program
Will behave in the same way, but no location information
#ill be printed with the "Exception never handled"
message.

Suppress numeric checking. The -fN flag suppresses two
kinds of numeric checks for the entire compilation:
division_check and overtlow_check. These checks are
described in section 11.7 of the LRM. This flag reduces
the size of the code.

Suppress "added to library" and "Generating code for"
-aformaticn messages normally output ty the compiler.

Suppress all checks. The -fs flag suppresses alil

B-2

-fw

automatic checking, including mumeric checking. This :
flag is equivalent to using pragma suppress on all checks.
This flag reducas the size of the code, and is good for
producing "production quality® code or for benchmarking
the compiler. Note that there is a related ada option,
~fN to suppress only certain kinds of numeric checks.

Inhibit library update. The -fU option inhibits library
updates. This is of use in conjunction with the -S
option. Cartain restrictions apply to use of this option.

Compile verbosely. The compiler prints the name of each
subprogram, package, or gensric as it is compiled.
Information about the symbol table space remaining
following compilation of the named entity is also printed
in the form "[nK]".

Suppress varning messages. With this option, the
compiler does not print warning sessages about ignored
pragmas, exceptions that are certain to be raised at
run~time, or other potential problems that the compiler
is otherwvise forbidden to deem as errors by the LRM.

The -g option instructs the compiler to run an additional
optimization pass. The optimizer removes common
sub-expressions, dead code and unnecessary jumps. It
also does loop optimizations.

Keep internal form file. This option is used in
conjunction with the Optimizer. wWithout this option, the
compiler deletes internal form files following code
generation.

-lmodifiers

Generate listing file. The -1 option causes the compiler
to create a listing. Optional modifiers can be given to
affect the listing format. You can use none or any
combination of the following modifiers:

c Use continucus listing format. The listing by
default contains a header on each page. Specifying
-lc suppresses both pagination and header output,
producing a continuous listing.

=} Obey pragma page directives. Specifying -lp is only
meaningful if -lc has also been given. Normally -lc
suppresses all pagination, wheresas -icp suppresses
all pagination except where explicitly called for
within the source file with a pragma page directive.

s Use standard output. The listing by default is
Yritten to a file with the same name as the source
file and the extension .lst, as in simple.ist from
simple.ada. Specifying ~ls causes the listing Zile

B-3

to be writtean to the standard output stream instead.

t Generats ralevant taxt output only. The listing by
default contains the entire source program as vell
as interspersed error messages and varning messages.
Specifying ~1t causes the compiler to list only the
source lines to wvhich error msessages or varning
nessages apply, followed by the messages themselvaes.

The default listing file generated has the same name as
the source file, with the extangion .lst. PFor exampla,
the default listing file produced for simple.ada has the
name simple.lst. ™e listing fi{le is placed in the
current working directory. Nots: =1 also causes an
error log file to be produced, as with the -fE option.

-L library-name

Default: ada.lib

Use alternate library. The -L option specifies an
alternative name for the program library.

No compile. This option causes the ada command to do a
“dry run® of the compilation process. The command
invoked for each processing step is printed. This is
similar to the =P option, but no actual processing is
performed.

Print compile. This option causes the ada command to
print ocut the command invoked for each processing step
as it is performed.

Produce assembly code. Causes the code generator to

produce an assembly language source file and to halt
further procsssing.

B-4

COMPILATION SYSTEM OPTIONS

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted

otherwise, references in this appendix are to linker documentation and not
to this report.

B-5

COMPILATION SYsTen OPTIONS

MERIDIAN ADA LINKER OPTIONS

Aggressively inline. This option instructs the optimizer
to aggressively inline subprograms vhen used in addition
to the -G option. Typically, this means that subprograms
that are only called once are inlined. 1If only the -G
option is used, only subprograms for which pragma inline
has been specified are inlined.

~C compiler-program-name

-9

Default: (as stored in prograam library)

Use alternate compiler. The -c option specifies the
complete (non relative) directory path to the Meridian
Ada compiler. This option averrides the compiler
Program name stored in the program library. The -c
option is intended for use in cross-compiler
configurations, although under such circumstances, an
:ppropriatc library configuration is normally used
nstead.

Suppress main program generation step. The -f option
suppresses the creation and additional code generation
steps for the temporary main program file. The -f option
can be used when a simple change has been made to the
body of a compilation unit. If unit elaboration order

is changed, or if the specification of a unit is changed,
or if new units are added, then this option should not be
used.

Perform global optimization only. The -g option causes
bamp to invoke the global optimizer on your progran.
Compilation units to be optimized globally must have been
compiled with the ada -K option.

Perform global and local optimization. The -G option
causes bamp to perform both global and local optimization
on your program. This includes performing pragma inline.
As with the -g option, compilation units to be optimized
must have been compiled with the ada -K option.

Link the program with a version of the tasking run-time
which supports pre-emptive task scheduling. This option
pProduces code which handles interrupts more quickly, but
has a slight negative impact on performance in general.

-1 library-name

-n

o]

-V

-W

Default: ada.lidb

Use alternate library. The -L option specifies the name
of the progras library to be consulted by the bamp
program. This option overrides the default library name.

No link. The -n option suppresses actual object file
linkage, but creates and perforas code generation on the
nain program file.

No operations. The -N option causes the bamp command to
do a "dry run®; it prints out the actions it takes to
generate the executable program, but does not actually
perform those actions. The same kind of information is
printed by the -P option.

output-file-name

Default: tfile

Use altarnate executable file ocutput name. The -o option
specifies the name of the exscutable program file written
by the bamp command. This option overrides the default
output file name.

Print operations. The -P option causes the bamp command
to print out the actions it takes to generate the
executable program as the actions are performed.

Link verbosely. The -v option causes the bamp command to
print out information about what actions it takes in
building the main progras.

Suppress varnings. This option allows you to suppress
warnings from the optimizer.

B-7

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which
are not a part of Appendix F, are:

package STANDARD is
type INTEGER is range -2 147 483 648 .. 2 147 483 647;
type SHORT INTEGER is range -32768 .. 32767;
type LONG INTEGER is range -2 147 483 648 .. 2 147 483 647;
type BYTE INTEGER is range -128 .. 127;

type FLOAT is digits 15
range -1.79769313486231E+308 .. 1.79769313486231E+308;

type DURATION is delta 0.0001 range -86400.0 .. 86400.0;

c-1

APPENDIX F OF THE Ada STANDARD

This appendix lists impiementaton-dependent charactenstics of Mendian
Ada. Note that there are no preceding appendices. This appendix 1s called
Appendix F in oraer to comply with the Reference Manuai for the Ada
Programmung Language® (LRM) ANSI/MIL-STD-1815A wiuch states that
thus appendix be named Appendix F.

Implemented Chapter 13 features include length clauses. enumeration
representation clauses, record representation ciauses, address clauses,
interrupts, package svstem, maciune code inseruons, pragma intertace,
and unchecked programmung,

S ———
F.1 Pragmas
The impiemented pre-defined pragmas are:

elaborate Seethe LRM section 10.5

interface SeesechonF.l.1

list See the LRM Appendix B
pack See section F.1.2
page See the LRM Appendix B

priority Seethe LRM Appendix B
suppress See sechion F.1.3

inline See the LRM secnon 0.3.2. This pragma 1s not actuallv effecuve
unless vou compile/Link vour program using the giobal
optuTuzer.

The remaining pre-defined pragmas are accepted. but rresently 1gnored:

controlled optimize system name
shared storage_unit memory_ size

Named parameter notation for pragmas 1S Not supportead.

When iilegai parameter forms are encountered at compiie time. the
compiler 1ssues a warrung message rather than an error. as requured by
the Ada language defiruton. Refer to the LRM Appendix B for additionai
information aoout the pre-defined pragmas.

F.1.1 Progma Interface

The torm of prragma intertace 1n Mendian Ada s

pragma interface(.Jmguage. supprogram [, lnk-mame))

23N rx Comoner user s Guice teveec 8/28/72 Page i73

Cc-2

APPENDIX F OF THE Ada STANDARD

Appendix f_'mpiementation-Depencent Charoctersics
where:
{anguage This is the interface language, one of the names assembly,

subprogram

{ink-name

builtin, ¢, or internal. The names builtin and internal are
reserved for use by Mendian compier mamntainers in
run-ume support packages.

This 13 the name of a subprogram to whuch the pragma
interface appiies.

This 1s an optional stnng literal specifving the name of the
non-Ada subprogram corresponding to the Ada
subprogram named in the second parameter. if link-name 1s
omutted, then link-name defauits to the value of subprogram
transiated to lowercase. Depending on the language
specified, some automatic modificanons may be made to
the link-name to produce the actuai obyect code svmbol
name that 13 generated whenever references are made to
the corresponding Ada subprogram. The object code
svmbol generated for iink-name 1s alwavs transiated to

upper case.

it is appropnate to use the opuonal link-name parameter to
pragma interface oniv when the intertace suoprogram
has a name that does not correspond at all to 1ts Ada
identfier or when the interface subprogram name cannot
be given using rules for construcung Ada 1dennfiers ie.g.,
|f the name contamns a ‘S’ character).

The charactenstics of object code svmbols generated for each interface

ianguage are:
assembly

builtin

internai

The obyect code svmbeol is the same as iink-name.

The obnect code symbol is the same as link-name. but prefixed with
two underscore characters (“__"). Thus language interrace

1S reserved for special interfaces defined bv Mendian

Software Systems, inc. The builtin interface 1s presently

used to declare certain low-ievel run-nme operanons

whose names must not conflict with programmer-denned

or ianguage svstem definea names.

The obrect code svmbol 1s othe same as iink-name. but with one
underscore character (”_") prepended. This 1s tne
convenuon used by the C compuler.

No obrect code svmbol 1s generated for an internai language
intertace; thus language interiace 1s reserved for speciai
interfaces defined bv Mendian Software Svstems. inc. The
internai interface 1s presentiy used 10 deciare certain
macntne-tevei bit operaaons.

No automauc data conversions are performed on parameters of anv
nterrace subprograms. [t is up to the programmer to ensure that cailing
‘onvenuons match and that anv necessary aata COnversions take riace
when cailing interrace suobprograms.

=oge 50

oveeq 8/28/92 28BN nX Comorer user s Guioe

APPENDIX F OF THE Ada STANDARD

Atfringes-

A pragma interface mav appear within the same deciarative part as
the subprogram to winch the pragma antarface appues, followmg the
SuDDrogram deciaranon, and pnor to the frst use of the suoorogram A
pragma antarface that appues to a subprogram deciared in a package
SDecIficaton must occur withun the same package specincanon as the
SUDProgram deciaratorn the pragma interfacs mav not abpear m the
Dackage DOV In this case. A pragma intarfacs deciaranon for exther a
Drvate of nonprivate subprogram deciaranon mav appear in the private
£art ot a package specificanon.

“ragma interface for hbrary unts is not supported.

Refer to the LRM secton 13.9 for additionai informanon about pragma
intarface.

F.1.2 Pragma Pack

“ragma pack 1s umpiemented for composite tvpes iTecoras and arrays).

“ragma pack 1s permmutted following the composite n're aeciaranon to
WRICH 1' TOpues, provided that the pragma occurs witun tne same
Jeciarauve part as the composite tvpe deciaranon. perore any opects or
~omponents of the composite tvpe are declarea.

Note that the deciaranve part restmcnon means that the rvpe deciaranon
and accompanving pragma pacxk cannot be spiit across a package
specincauon ana boay.

The effect of pragma pack 1 t0 mirumize storage CoONsuMpuon by
Jdiscrete component tvpes wnose ranges permut pacKing. L se of pragma
Pack does not defeat allocanons of aiignment storage gaps for some
record tvpes. Pragma pack does not affect the representations or real
Vpes. pre-defined integer tvpes. and access tvpes.

£.1.3 Pragma Suppress

“ragma suppress is impiemented as aescribed 1n tne LRM secaon 11.7,
with these aifferences:

® [resentiv, division_check ana overflow_check must be suppressea
12 a compuer fiag, - £N: pragma suppress is ignorea for these rwo
mumeric cnecks.

® Theopuonai “ON =>' parameter name notanon [or rragma
SUppress Is 1gnored.

® The ortonai second parameter to Dragma suppress 1s ignored: the
Tragma awavs arpiues 1o tnhe ennre score n wnich it appears.

e

.2 Attributes

Al atmnibutes gescnoea in the LRM Appenaix A are surporied.

IEN rx Zocmoner user s Guge

‘oveea 8/28/92 “oge 18!

C-4

APPENDIX F OF THE Ada STANDARD

Appencix F imprementation-Dependent Charactenstics

L
F.3 Standard Types
Additional standard types are defined in Mendian Ada:
® byte_integer
® short_integer

® long_integer
The standard numenc tvpes are defined as:

type byts_integer is range ~-128 .. 127;

type short_integer 1s range -32768 .. 32767:
type integer 18 range ~2147403648 .. 2147403647;
type long_integer is zange -2147403648 .. 2147483647;

type float is digats 15
range -1.79769313486231KE+308 .. 1.797693134862315+308:

type duration is delta 0.0001 range -86400.0000
86400.0000;

e -~
F.4 Package System

The specification of package systams:

package systes is
type address is new long_integer:

type name is (bbn nx);

systam_hame : constant name := bbn_nx:
storage_unit : constant := 8:
IAmOTy_Size : constant := 1024:

~= System-Dependant Named Numbers

mn_int : constant s -2147483640:
max _int : constant = 2147403647
max_digits : constant := 15:

RMAX mantissa : constant := 31;
fine_delta : congtant s 2.0 ** (-31);
tack : constant = 1.0:

-- Other Systea-Dependent Declarations
subtype priority ia integer range 1 .. 20:

The vaiue of system.mamory size s presently meaningiess.

cage ‘iZ ‘eveea 91792 38N nX Compuer User s Guice

c-5

APPENDIX F OF THE Ada STANDARD

Resmictions on Represenration CIases

L
F.5 Restrictions on Representation Clauses

F.5.1 Length Clauses

A size specificaucn (t’ saze) 15 reyected if fewer bits are specified than
<an accogunodate the tvpe. The qurumum size of a cOmposite tvpe mav
De suiect to application of pragma pack. [t is pernutted to speafy
Precise sizes for unsigned integer ranges, e.g., 3 for the range 0. . 2885,
However, because of requirements umposed bv the Ada language
defirution, a full 32-bit range or unsigned vziues, 1.e. 0. . (2v932) -1,
cannot be defined. even using a size specificanon.

The speciicanon of coliection size (t’ storage_size) s evaluated at
run-tume when the scobe of the rvpe to which the iength ciause appues 13
entered, and 1s therefore suect to reeCtON (Via storage_error) basea
on avaiable storage at the ume the ailocation is maage. A colecton mayv
Inciude storage used for run-nme admirustranon ot the colecnon, and
thererore snouid not be expected to accommoaate a specinc numper of
otrects. Furthermore. certain ciasses of obrects such as unconstrained
discnimunant array components ot records mav be ailocatea outnde a
Zven coilection. so a coilection mav accommunodate more ooects than
Tught be expected.

The specification of storage for a task aCuvation (t’ Storage_size) s
evaiuated at run-nme when a task to wrnich the iength ciause appiies 1s
activated. and 1s therefore supect to revection (via storage ‘ttot’
based on available storage at the ime the ailocanon 1s maae. Storage
reserved for a task activanon 1s separate trom storage neeaed for anv
coilectons defined wittun a task bodyv.

The specification of stall for a nxed point tvpe (t* small) is subject oniv
:0 restncuons defined in the LRM section 13.2.

F.5.2 Enumeration Representation Clauses

The internai code for the hiterai of an enumeranon rvpe named n an
2numeranon representation ciause must be 1n the range of
stanaara.integer.

The vaiue of an internai code mav be ootainea bv appiving an
appropnate instannanon of unchecked_conversion 10 an integer tvpe.

F.5.3 Record Representation Clauses

The storage urut offset (the at static_simpwe_cxrression part is given mn
:erms ot 8-bit storage units ana must de even.

“ bit rosinon 1the range part) appitea 1o a discrete npe cCCMDONent mav
“ein the range 0. . _Z, witn U being the least signincant citor a
<SMponent. A range Specicanon mav Not specifv a size smailer than can
Jccommodate the component. A range sDeciNCanon 1or a component not
4cCOMMOAAnN Oit CACKINE Mav nave a nigner upper douna as
appropnate te.g, . . 31 lor a aiscnmunant string comoonent). Refer 1o

8N rx

Comoner Lser s Suoe

‘ovees 8/28/92 sage g2

C-6

APPENDIX F OF THE Ada STANDARD

F_imoiernentat Charocrernstics

the inernal data representation of a given component in deternurung the-
componenteize wvd-ssaigrang offsets.

Components of discrete tvpes for which bit positions are speaified may
not straddle 16-bit word boundanes.

The value of an alignment clause (the optional at mod part) must evaluate
to 1, 2, 4, or 8, and may not be smailer than the tughest ahgnment
requured by any component of the record. On the CLIX operatung system,
this means that some records may not have alignment clauses smailer
than 2.

F.5.4 Address Clauses

An address clause may be supplied for an object (whether constant or
vanable) or a task entry, but not for a subprogram. package, or task urut.
The mearung of an address clause suppiiea for a task entry 1s gaven 1n
section F.5.3.

An address expression for an object 1s a 32-bit segmented memory
address of tvpe systaem. address.

F.5.5 Interrupts

A task entrv’s address clause can be used to associate the entrv with a
UNIX signai. Values in the range 0. . 31 are meaningrul, and represent
the interrupts corresponding to those vaiues.

An interrupt entry may not have any parameters.

F.5.6 Change of Representation

There are no restrictions for changes oi representation effected bv means
of tvpe conversion.

2
F.6 Implementation-Dependent Components

No names are generated bv the impiementation to denote
unpiementation-dependent components.

D,]
F.7 Unchecked Conversions
There are no restnctons on the use of unchecked_conversion.

Conversions between ooects winose s12es Go NOt CONIOrM mav resuit in
storage areas with undefined vaiues.

oge (34 eveeo 8/28/972 38BN nx Comoner user s Guioe

Cc-7

<

APPENDIX F OF THE Ada STANDARD

_Source Lne and identilestercrs:

F.8 Input-Output Packages

A summary of the impiementation-dependent input-output
charactenistics 1s:

In calls io open and create, the form parameter must be the empty
stnng (the defauit value).

More than one internai file can be associated with a single external
file for reading only. For wnting, oniv one internal file may be
associated with an external file; Do not use reset to get around this
rule.

Temporary sequential and direct files are given names. Temporary
files are deieted when they are ciosed.

File I/0 is buffered; text files associated with terrmunal devices are
Lne-buffered.

The packages sequential_io and direct_io cannot be

instantiated with unconstrained compostte tvpes or record types
with discnimunants without defaulits.

F.9 Source Line and Identifier Lengths

Source lines and identifiers in Ada source programs are presently limited
to 200 characters in length.

28N nx Compder User s Guige

ROVEeQ 8/28/92 Poge 185

c-8

