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Solution of a Class of Sturm-Liouville
Problems Using the Galerkin Method with

Global Basis Functions
C. Bottcher (*), M.R. Strayer (*), M.F. Werby (**)
(*) Center for Computationally Intensive Physics,
Oak Ridge National Laboratory, Oak Ridge,
TN 37831, USA
(**) Naval Research Laboratory Detachment,

Theoretical Acoustics Branch, Stennis Space
Center, MS 39529-5004, USA

ABSTRACT

Many problems in physics and engineering can be reduced to the Sturm-
Liouville ( S-L ) Problem. For some classes of the S-L problem we develop
a method that can rapidly result in computational solutions. Let us assume
that we can write the problem as follows:

d 2U .(r)r----+ [K(r) - X i]U i(r) =- 0

where L is an eigenvalue and K(r) is some well behaved (i.e. positive
definite) function of r. Now let k correspond to some average value of K(r)
over the domain of K(r). The boundary conditions are general. Then we
easily solve the following problem:

dr 2 ir + [k - Xj1i] i(r) = 0O.dr

This yields global basis functions. We determine an efficient method
to obtain solutions of the form:

or
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N
Ui= . a.

1=1 iv

in which we determine the best expansion coefficients aq as well as the
eigenvalues Li's in terms of the li's and the ali's. We also develop several
perturbation methods from the technique. The method is then applied to
typical problems found in acoustics and quantum mechanics.

I. INTRODUCTION

One of the most interesting problems of the Sturm-Liouville class pertains
to the solution of the vertical component of the normal mode of sound in
a wave guide.1, 2 We shall discuss a general method, based on separation of
variables, which is ideally suited for a range-independent wave guide but
has been extended to certain range-dependent problems by mode coupling. 3 ' 4

It is safe to say that this appealing method has been explored by a large
number of researchers, and several numerical strategies have been advanced
to find solutions. Generally, one is required to solve the vertical component
of the problem subject to a variety of environmental constraints. The range
part of the solution is analytical. The vertical solutions are, in fact, eigen-
functions that fall into the category of a Sturm-Liouville problem.5 For the
isovelocity case the eigenvalues for a layered bottom and a pressure release
surface are simple to find, and the solutions in the water column are simple
sine function. For variable velocity profiles the water column can be
represented as a sum of isovelocity layers that have discrete changes at the
isovelocity interface or the problem can be solved numerically. For certain
classes of velocity profiles (with linear behavior) the Airy function, which
seems likely to be one of the fastest of the techniques, can be employed.

One may ask the question, "So why another method?" The principal
reason is, that for certain applications it is desirable to obtain the normal
mode solution in closed analytical form. The motivation behind this research
is to formulate the normal mode solution in such a manner that the solution
can be written in the form of a spherical representation. This formulation
is required for some problems pertaining to scattering from objects in a
waveguide. It is quite easy to see that the isovelocity case is just such a
representation. This fact suggests that a perturbation about the isovelocity
solution be attempted. However, conventional perturbation theory is too
limiting r I works only with very small departures from the isovelocity
case.

The purpose of this work is to develop a method using the isovelocity
solution as a set of basic functions that span the solution space that adequately
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represents the exact eigenvalue problem. This method uses Sturm-Liouville
theory and completeness. A nice outgrowth of the method to be developed
is to show why the old perturbation theory is limited and how to extend it
by adding a simple term, so that the new perturbation method will work for
more severe variations from the isovelocity case.

If. THEORETICAL DEVELOPMENTS

An updated perturbation method

We write the exact solution for unperturbed cases as follows:

d- i+ Ik-t J=O (I
dz2

and the desired solution as follows:

d 2U, f2(Z 1+ ÷ 2 _.% U, = 0 (2)
d2z

For convenience, rewrite Equation 2 as follows:

dUi + [ko - Xj] Uj = QU1  (3)
dz2

where Q k; k -k 2 (z) + Xi - Xi= q + A ,i and where q(z) = (z) and

A k,, = ki)O-

For the isovelocity case we can rewrite Equation I as

d-- + a2 i = 0 (4)
dz2

whr 2 = 2

Impose the following orthonormality conditions:

WJ Vi) =84 and U6 U) = 8j. (5)
P--
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Assume closure so that we can express:

N

Ui-= I aijWj. (6)
j=l

Insert Equation 6 into Equation 5 and make use of the Galerkin weighted
residual method we arrive at

N i O2 2 N
7 aij ( - a wj -- aij (q(z) + A .j)j, (7)

where i = 1, 2, 3, ... N.

By integrating the overlap of Equation 7 with A~i we obtain:

N
Xi = ;.i - qi - aij qjj (8)

i~j

where aij - ai. This yields the Eigenvalue Correction Equation.aii"

Integrate the overlap of Equation 7 with Vjk to obtain:

N
siak x- a,2 - AXkJ X. qjk lij = qik (9)

joi
wherek=l, 2,3, ... Nandi*k

This is an eigenvalue equation. We can use the expansion for the
eigenvalue above to rewrite the equation as follows:

N

Aik a-ck + kJ 7 qjk Aij =qik, (10)
j*(i.k)

where k = 1, 2, 3 ... N, i * k, and the diagonal terms are.

This expression will prove useful later. The Hk's are the higher order
terms and are negligible in many cases. The diagonal terms are almost
always greater than the off-diagonal terms. As a first iteration via Gauss-
Seidel we obtain

qik - qik

act2 + qkk -A Xk CEi-2 - Hk (I1)
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where
N

Hi aij qij (12)
j•i

The term Hk can be a big improvement over the ordinary perturbation
term in that often Hk > qik. Thus, we expect that generally we will have
convergence if the master matrix (defined by Eq. 10) is diagonally strong.
Further, this expression shows that the old theory overestimated the expansion
coefficient.

The new complete perturbation expansion for the eigenvalue is now

Oi N•- ii qij qji
i 1 qii 2 2 (13)i~j 0ai -aj + Hj"

This expression indicates that the first-order correction is still the same but
that the higher-order corrections are over/underestimated in the old theory.

A solution to the eigenvalue problem and an eigenvalue approach

Reorder the above equations selectively to arrive at
Qa = la (14)
0where Qij =-qij i * j and Qii = X - qii.

We thus have an eigenvalue problem for the l's. In Equation 14 the
matrix Q is real, symmetric, and diagonally strong. A rather good strategy
to solve this eigenvalue problem is to use the Householder method to
reduce Q to tridiagonal form. For an n x n matrix, this only takes n-2
orthogonal"iransformations. Since the eigenvalues of this very stable and
fast reduction method are unchanged, we need only to find the eigenvalues
of a tridiagonal matrix, which can be done in n operations. We have also
tried the more general QR algorithm for the above problem; although we
arrive at the same set of eigenvalues, the method is understandably somewhat
slower. The quantity a in the above expression is rotational (unitary for
complex eigenvalues) and should correspond to the expansion coefficients
required in reconstructing the exact eigenvalues. Indeed, the fact that matrix a
is rotational or unitary under certain conditions guarantees that the newly
constructed eigenvalues are orthogonal, as is required for Sturm-Liouville
problems.

However, there are some difficulties when one tries to retain a from
the process using either the QL or QR algorithms. One problem is that the
relative phases between the eigenfunctions are not retained, which leads to

_...p.-
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erroneous results when summing the normal mode series. The second problem
appears to be the accumulation of numerical errors for large numbers of
normal modes. Thus, we use the above method just to obtain the eigenvalues
and revert to the master equation that defines a along with Hk to obtain the
expansion coefficients. This method seems to work well. Interestingly, the
new perturbation method yields rather close agreement with the exact method
for fairly strong perturbations, while the old perturbation method performs
poorly. The next section presents examples.

III. NUMERICAL EXAMPLES

For the example we chose a pressure release surface with a water
column of 300 m over a fluid half-space. The velocity profile (Fig. 1)
varies from 1510 m/s at the surface to 1476 m/s at 100 mn linearly to
1520 m/s at the bottom. The fluid half-space has a compressional speed of
1600, a density of 1.6, and an attenuation of 0.5 dB/m. Absorption in the
bottom is treated by the standard perturbation treatment.

100 m

+" " "'- 1476 m/s

200 m

1520 mn/s

-,, 1600 m/s, 1.6 g/cc

Figure 1. Diagram of the waveguide configuration and
parameters used in the example.

w.I
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We try several strategies for obtaining the isovelocity spanning eigen-
functions. The wisest and safest strategy is to choose the isovelocity to
correspond to the smallest value of the velocity profile, in this case, 1476.
This value guarantees that we will not miss any modes. It is all right to
span the solution space with a larger number of isovelocity eigenfunctions.
The boundary condition at the water-ocean bottom interface will exclude
imaginary modes if they are encountered. One might also choose the
isovelocity as the average value along the water column. The advantage
here would be to reduce errors in the predicted eigenvalues, but such a

choice obviously might exclude the highest order modes. As a final strategy
we choose a small isovelocity value of 1400 m/s to determine the robust-
ness of the method and to see whether or not we could account for some
of the continuum which we have ignored. This last strategy did not yield
a correct answer.

We also compared our results with Michael D. Collins' finite-element
normal mode code. We employed a Taylor's expansion of the inverse of
the variable velocity about the isovelocity and dropped all but the linear
terms to obtain analytical integrals. This approach introduced an error of
a few parts per thousand, so that a comparison with other methods should
only be accurate to about three places. Table 1 compares the seven eigen-
values for a 50-Hz signal for the low and the average reference velocities
to those predicted by Collins' code. The two reference velocities yield
essentially exact agreement. Agreement with the Collins value is within
the accuracy tolerance of a few parts per thousand. We also list the eigenvalues
for the isovelocity case using the lower reference number. A comparison
of the eigenfunction using the two reference wave numbers are in very
good agreement. Figure 2 illustrates the seven modes constructed using the
lower wave number. It is clear, as expected, that channeling occurs at
100 m. We ran the code for this problem to 400 Hz, and 58 modes and the
results were apparently successful.

Table 1. Eigenvalues for waveguide problem at 50 Hz.

FEMODE NMEIG NMEIG NMEIG
mode (M.Collins) (Lower) (Ave) (ISO)

1 0.2113 0.2116 0.2116 0.2126
2 0.2091 0.2086 0.2087 0.2119
3 0.2072 0.2069 0.2070 0.2107
4 0.2054 0.2054 0.2055 0.2092
5 0.2034 0.2032 0.2033 0.2070
6 0.2008 0.2007 0.2006 0.2044

7 0.1978 0.1974 0.1974 0.2012

71 1 II.I I I
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We now want to compare the exact solution with both the old and new
perturbation theories. In all cases we use the lower reference isovelocity to
generate results. A good test of the method is to examine the expansion
coefficients for the three cases (Tables 2, 3, and 4). The exact expansion
coefficients (Table 2) and those from the old perturbation theory (Table 3)
are widely different, but the coefficients from the new method agree reasonably
well with the exact method. A better idea of the agreement can be seen by
comparing the exact eigenvalues (Fig. 2) with those produced by the new
method illustrated in Figure 3. Visual agreement is also quite good. The
old perturbation theory does not even reproduce the correct modal ordering.

Table 2. Normal mode expansion coefficients (exact).

Mode 1 2 3 4 5 6 7 8

1 1.000 0.384 -0.102 -0.241 -0.151 0.014 0.086 0.056

2 0.258 1.000 0.126 -0.168 -0.126 -0.035 -0.031 0.039
3 -0.095 0.129 1.000 0.133 -0.134 -0.095 -0.028 0.006
4 -0.121 -0.162 0.128 1.000 0.149 -0.124 -0.106 -0.032
5 -0.680 -0.116 -0.127 0.148 1.000 0.129 -0.134 -0.119
6 0.001 -0.036 -0.094 0.128 0.134 1.000 0.111 -0.110
7 0.034 0.029 -0.028 -0.111 -0.141 -0.111 1.000 0.119

Table 3. Normal mode expansion coefficients (old perturbation).

Mode 1 2 3 4 5 6 7 8

1 1.000 2.085 -0.402 -0.102 -0.050 0.0005 0.005 0.0006
2 -2.085 1.000 0.928 -0.367 -0.072 -0.029 0.002 0.008
3 0.402 -0.928 1.000 0.652 -0.259 -0.053 -0.018 -0.007
4 '0.102 0.367 -0.652 1.000 0.510 -0.198 -0.054 -0.010
5 0.050 0.072 0.259 -0.510 1.000 0.383 -0.158 -0.062
6 -0.0005 0.029 0.053 0.198 -0.383 1.000 0.287 -0.114
7 -0.005 -0.002 0.018 0.054 0.158 -0.287 1.000 0.217

Table 4. Normal mode expansion coefficients (new perturbation).

Mode 1 2 3 4 5 6 7 8

1 1.000 0.338 -0.164 -0.080 -0.063 0.0009 0.013 0.002
2 0.258 1.000 0.163 -0.157 -0.055 -0.034 0.003 0.019
3 -0.124 0.160 1.000 0.154 -0.142 -0.049 -0.052 -0.013
4 -0.056 -0.151 0.151 1.000 0.155 -0.135 -0.062 -0.017
5 -0.046 -0.052 -0.138 0.154 1.000 0.143 -0.131 -0.085
6 0.0006 -0.033 -0.048 -0.135 0.145 1.000 0.131 -0.114
7 0.010 0.003 -0.025 -0.061 -0.131 0.129 1.00 0.117
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Figure 3. The seven normal modes (solid curves) from the new perturba-
tion method for 50 Hz The dashed curves are from the isovelocity case.
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As frequency increases, channeling becomes more pronounced for the
lower modes. This seems to create some problem with the new perturbation
method because at that point the governing matrix begins to depart from
a diagonally strong matrix so that Gauss-Seidel cannot be used in a first
iteration. However, a second or third iteration may be adequate for that
case, and it could be done rapidly by computer. This problem existed for
only the two lowest modes at 400 Hz. The higher modes agreed quite well
for the new perturbation method and the exact method.fi

IV. COMMENTS

The expansion method presented here is useful for formulating a normal-
mode solution in a closed mathematical form. An outgrowth of the
development was a new perturbation theory that is more powerful than an
earlier one commonly used in quantum mechanics. The method is quite
fast, however, and calculated 58 modes in about two minutes on a Vax 8650.
With further development and testing, it may prove to be a very useful
general method. Another advantage of the method would be its use in a
range-dependent normal-mode development.

It is also possible to develop a deep-water model by matching the
expansion wave functions at some point in the water column (when the
velocity profile has a constant slope) to an Airy function.
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