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Preface

The following report is a written version of an abstract "Differential Cartography"

which was presented on August 21, 1991 at the XX General Assembly of the Internationa!

Association of Geodesy in Vienna, Austria, in a working session of the Special

Commission: Geodetic Aspects of the Law of the Sea under the chairmanship of Professor

Petr Vani~ek (Canada).

The abstract addresses the various properties of conformal projections of a sphere

and seeks to generalize them to an arbitrary smooth surface of revolution by using the

basic notions of a new discipline which we call differential cartography. In particular, it is

shown how the familiar properties of the classical Mercator projection may be carried over

from a sphere, or spheroid, to an arbitrary surface of revolution.
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"DIFFERENTIAL CART()GRAPHY"

Joseph Zund

Summary:

The various properties of conformal projections of a sphere and a surface of

revolution are derived using the notions of differential cartography. It is shown that

familiar properties of the Mercator projection may be carried over from a sphere to an

arbitrary surface of revolution.



Differential cartography may be regarded as a reformulation of mathematical

cartography from the viewpoint of differential geometry. Mathematical cartography may

be roughly reduced to two types of problems: the

Direct Problem: Construct a projection, hence a map, having certain specified properties;

and the

Indirect Problem: Given certain properties, determine all projections having these

properties.

In practice, the Direct Problem has primarily been the one which has attracted the most

attention. Many fascinating projections are known and their number seems limitless, and

restricted only by the ingenuity of their discoverers. However, such projections need not

immediately reveal the underlying structural features which govern their construction.

The Indirect Problem is concerned with remedying this situation. Few general results are

known, and differential cartography is intended to provide a general approach for handling

this problem. Indeed, our primary goal in the present paper is to understand the Mercator

projection, its principal properties, and the degree of generality intrinsic in its

construction. In particular, we will show that this conformal projection can be extended

from spheres to arbitrary surfaces of revolution which include spheroids as a special case.

This projection was employed in 1569 by Gerardus Mercator in his world atlas:

Nova et accurata orbis terrae descriptio ad usum navigantium emendate accommodata.

His world map measured 2 x 1.32 meters, extended from latitude 80° N to 66 3'S,

exhibited parallels and meridians intersecting at right angles, and a special latitude law of

scale especially devised to yield the loxodrome property. A loxodrome, or rhumb line, on

a sphere is a curve which intersects the meridians at a constant angle, and corresponds to

the mariner's task of sailing courses of constant heading. Mercator's problem was to find a

projection having the loxodrome propertr., that such courses project into straight lines on a

planar map.

Mercator's methodology is unknown, but it was undoubtably graphical since in his



time none of the mathematics (e.g. logarithms and the differential/integral calculus) was

available. The angle-preserving character, or conformalit., of his projection was only

gradually recognized, however it is now recognized as a fundamental property of this

projection. For example, each loxodrome intersects every meridian at a constant angle,

and under a conformal projection angles are preserved; it necessarily follows that the

images of the parallels and meridians are orthogonal, and the image of a loxodrome

intersects the meridians at the given fixed angle. Hence, one may immediately conclude

that the images of many loxodromes at such fixed angles are parallel straight lines.

Our approach employing differential cartography is essentially a modem rendition

of classical theory. Lambert (1772) first suggested the construction of maps based on the

use of the angle-preserving property. Euler (1777) then gave the detailed mathematical

theory of the Mercator projection, and then proved the impossibility of obtaining an

isometric, i.e. distance-preserving, representation of the sphere on the Euclidean plane.

Lagrange (1779) considered the general problem of conformal projections for surfaces of

revolution. The term 'conformal' was introduced by Gauss (1822, 1843) who studied the

mapping problem for a pair of arbitrary surfaces, indicated the geodetic applicatibns, and

the rich connection with the theory of functions of a complex variable. The results in

Section 2 are implicit in the work of Lagrange and Gauss. They were well known in the

last century, but are not commonly employed in contemporary accounts. Section 3

considers the extension of these results for surfaces of revolution. I have not found them

explicitly stated in the classical literature, however they are in the spirit of Lagrange and

Gauss and would have been no surprise to them. Our exposition concludes with a

discussion in Section 4.

The terminology employed in our work essentially follows that employed in

classical differential geometry, e.g. in the textbook of Struik (1961), however even in the

mathematical literature the usage of some terms is not uniform. Unfortunately, often the

mathematical usage of many tenns is not consistent with that utilized in cartography.
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2. The Mercator Projection of a Sphere

The following discussion is given with some detail since it illustrates the basic

approach which will be presented in Section 3.

Let S2 denote a unit sphere in ordinary Euclidean 3-space E3. We choose the

Gaussian parametrization of S2 , in terms of the longitude co and latitude 0. Then the

line element, or the first fundamental form, of S2 is

ds 2 = cos2€ do)2 + do2  (1)

and ((o, 0) determines an orthogonal parameter net on S2. This net can be put in a

non-trivial isometric, or isothermic, form (see page 171 of Struik (1961)) by rewriting (1)

in the form
ds2 = cos2 o Ida)2 + sec2 -do2} (2)

which amounts to choosing a unit scale along the parallels or co-curves, and a variable

scale on the meridians or O-curves on S2'

It is now convenient to replace (ao, 0) by a pair of real isotropic parameters

(•, q). These are obtained by employing a complex factorization of (2):

ds2 = cos 2 0 (do) + i seco dO) (do - i sec 0 do)

and introducing the complex variable

+ in. (3)

Then

dC = d4 + id= dto + i seco do

and so upon omitting the constants of integration we have

C=O
(4)

1= Jseco dO = log tan (0/2 + ir4)

Thus the isotropic isothermic form of ds 2 becomes

ds2 = sech2 t (d 2 + dr/2 (5)

since coso = sech "1.

We now consider a conformal projection, or tra.nfstr/m tion, T of S 2 onto the



Euclidean plane E2 , where 'hats' are used on quantities to emphasize that they occur as
A A A

T-images. Upon choosing Cartesian coordinates (x. y) in E.), the line element is

accordingly

dA2 = dx 2 +dy. (6)

It is well-known from complex function theory that conformal transformations are defined

by analytic functions, indeed the conformality of a transformation may be taken as

defining the analyticity of the function describing it. Let F denote an analytic function

of ý, then it is easy to check that
A^ 22 2ds2

ds =dF 2 - cosh2 rt IFCdI ds (7)

where the subscript on F indicates differentiation. The analyticity of F is guaranteed by

the Cauchy-Riemann equations, which become F_ = 0 where the bar denotes complex

conjugation. Since in differential geometry a conformal transformation between a pair of
A

surfaces S and S is defined by their metric tensors being proportional, the same

Gaussian parametrization must he taken on both surfaces. In our case this requires
A A

identifying (4, ij) and (x, y) so (4) yields

A
x = ""

A (8)
y := log tan (0/2 + Yr/4).

A A

The linear distortion e1 of T : S2 -4 E2 is defined by E1 ds/ds, and so by (7)

r = cosh 17 IFCI = seco IFýI (9)

The most familiar kinds of conformal projections T in mathematical cartography then

correspond to the following choices of the analytic function F:

a) F = ý, T = TM (Mercator)-,

b) F = ce , where c is a constant, T = TI (stereographic); (10)

c) F = ceik" where c is a constant and k > 0 is a real number, T = TL (Lambert).

Note that for TM, F is merely the identity function -- a deceptively simple result based

on a rather complicated ý as in (4) -- and E I = sec0.
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The basic results about TM may now be stated as follows:
A

(i) TM: S2 _ E2 has the loxodrome property;
A

(ii) The only T : S2 -4 E2 having the loxodrome property is T = TM.

The proof of (i) is immediate. A loxodrome C on S2 intersecting the meridians

at an angle z) in the (4, q) parameters satisfies do/dr = tan 0, and so is given by an

isotropic equation

C: =fltan 0 +cl

which is equivalent to

co cot 6 = log tan (0/2 + ir/4) + c2

and whose T-image is
A A A

C: y = x cot * + c3
A A

where c1, c2 , c3 are constants. The equation of C is a straight line in E2. Note that
A

although C encircles a pole of S2 in spiral-like fashion an infinite number of times, it

has a finite length. For examnle if P and Q are the respective initial and final points on

C, then the length of C is

L(C) = (0Q - Op)sec 6.

Hence if P lies on the equator (Op = 0), and Q is the (North) pole (0Q = n/2) and

L(C) = sec 0.
A

Finally, we note that for TI, the T-image of C is an equi-angular spiral in E2.

The proof of (ii) is more subtle and depends on the properties of isothermic and

isotropic parameter systems. These include the fact that all pairs of real isothermic

parameters are related by analytic functions, and that isotropic parameters provide a

particularly convenient parametrization of S2' Indeed, a necessary and sufficient

condition that a transformation T between a pair of surfaces be conformal is that their

isotropic curves correspond. This is the content of our equation (8).
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3. The Mercator Projection for Surfaces of Revolution

We now extend the results of Section 2 for an arbitrary surface of revolution SR.

We suppose that SR is generated by the revolution of the graph of a smooth function f

of a radial variable about an axis I in E3. Choosing I to be the z-axis, this radius

variable becomes x2 + y2 and is denoted by p. Then the longitude wo and p may be

taken as Gaussian parameters of SR' and in terms of the parameter net (w, p) the line

element of SR becomes

ds2 = p2 dw 2 + (I + f' 2)dp 2  (11)

where the dash denotes differentiation with respect to p. An isothermic *orm of ds 2 is

given by

ds2 = p2{dto2 + (I+f' dp 2 } (12)

and the corresponding isotropic parameters (4, ij) are

(13)

17 f ý+,2dp.

As in (3) we may introduce the complex variable ý, and taking g to be the inverse

function, p := g(r/), of the second equation in (13) we have the isotropic isothermic form

of ds 2:

ds2 = p 2(d42 + dr2)

= g 2(d42 + d21 ) (14)
= g 2 jd•12

A

Let T S R -E E2 denote a conformal transformation, so as in Section 2 we have

ds2 -7 IF~I2 ds2  (15)
g

where
A

x
A (16)
y := fl.

6



The linear distortion of T is then

E JF~lF . (17)1 9 F I•¢7

Note that in (17) the function g characterize the particular form of SR' and F is an

,,rbitrary analytic function of ý.

The analysis in Section 2, including the specializations of F, indicated in (10)

carry over to define TM, T , and TL respectively. Hence, we immediately have the

basic results:
A

(i) TM : SR -. E2 has the loxodromel property,
A

(ii) The only T: SR -# E2 having the loxodrome property is T = TM-

The proofs of (i) and (ii) are completely analogous to the reasoning given in Section 2

when (4) is replaced by (13). It would be truly remarkable that the above results were not

established by the mathematical cartographers of the nineteenth century. However, we

have been unable to locate specific references in the literature which establish this. In any

case, our approach which is based on differential cartography and properties of analytic

functions may well be new.

4. Disussion

The results in Section 3 may be surprising, however, and if this is so, it is because

the familiar results on the Mercator projection in Section 2 are not usually discussed as a

Indirect Problem. The viewpoint of differential cartography, indeed la raison d'erre for it,

is to provide a geometric approach to mathematical cartography. In this respect, the key

ingredients leading to the results (i) and (ii) are the emphasis on the isothermal form and

isotropic parameters for the surface line element. These notions are purely of a geometric

character and their full power, e.g. their connection with complex function theory, would

seem to be evident only within the framework offered by differential cartography.

tThe notion of a loxodrome can be generalized for an SR to be a curve which

intersects a pencil of planes at a constant angle. The axis I of SR is then taken

as the axis of the pencil which consists of meridional planes.

7



Three conclusions are immediately suggested by the analysis given in Sections 2

and 3. First, by viewing the conformal projection as being defined by an analytic function

F of a complex variable, it is clear that the three cases indicated in (10) represent only the

simplest choices of F. Indeed, on function-theoretic grounds it could be argued that these

choices are almost the simplest possible analytic functions. Hence, the Mercator,

stereographic, and Lambert projections by no means exhaust the possibilities. Thus, the

use of conformal projections in mathematical cartography is hardly a fully explored

technique, until other choices of F are investigated.

The second conclusion is that the results for SR offer the possibility of replacing

the spheroid by a pear-shaped globe having a hump at the North pole and a depression at

the South pole provided that these irregularities can be regarded as being axially

symmetric. In any case, one could devise a conformal projection which could be more

accurate than the usual spheroidal model. Indeed, one could employ TM in such a case

by taking the base parallel not as the equator (0 = 0), but as a higher latitude 0 = 0.

Recently Vani~ek and Sjiberg (1991) have considered an analogous generalization of

zonal harmonics in seeking a new description of the gravity field of the Earth.

Finally, (ii) of Sections 2 and 3 show that for conformal transformations TM is

the only projection having the loxodrome property. However, this property requires that
A

angle 0 be preserved under a mapping of S2' or SR1 into E2, hence it is meaningful

only for a conformal transformation. Thus, we may conclude that the loxodrome property

can hold only for a conformal transformation T, and as already noted by our item (ii) we

must have T = TM. In other words, the loxodrome property uniquely characterizes

Mercator transformations.

I am indebted to Professor Petr Vani~ek for his suggestion to investigate this

question, and to Bernard Chovitz for his careful scrutiny of a preliminary version of the

manuscript and several useful discussions.

x



References

Euler, L. (1777). De representatione superficei sphaericae super plant), Acta acad. scient.
Petropolitanae 107-132 = Leonhardi Euleri Opera Omnia, Commentationes
Geometricae III, editit A. Speiser, Orell Fiissli, Turici (1955) 248-275.

Gauss, C.F. (1822). Allgemeine AulThsung der Aufgahe die Theile einer gegebenen
Fliche auf einer gegehenen FlUchen so abzubilden, dass die Abbildung dem
Abgebildeten in den kleinsten Theilen ihnlich wird, Astron. Abh. herausgegeben v.
H. C. Schumacher, Heft III = Carl Friedrich Gauss Werke, Bd 4, Konigl. Ges. der
Wiss. zu GOttingen (1880), 189-216.

Gauss, C.F. (1843). Untersuchungen Oiber Gegenstlinde der H1iheren Geodaesie, Erste
Abhandlung, Abh. der Kdnigl. Ges. der Wiss. zu G~ittingen 11 = Carl Friedrich
Gauss Werke, Bd. 4, Konigl. Ges der Wiss. zu G~ittingen (1880), 259-3(X).

Lagrange, J.L. (1779). Sur la construction des cartes gdographiques, Nouv. Mum. de
r'Acad. royale des Sci. et Belle-Lett. de Berlin = Oeuvres de Lagrange, t. 4,
Gauthier-Villars (1869), 637-692.

Lambert, J.H. (1772). Anmerkungen und Zusdtze zur Entwerfung der Land und
Himmelscharten aus Beytrage zum Gebraiiche der Mathematik und deren
Anwendung, 3 Teil, Verlag der Buchhandlung der Realschule, Berlin, 105-107;
expanded by A. Wangerin in Ostwald's Klassiker der exakten Wissenschaft'n, Nr
54, Leipzig (1894); English translation by W.R. Tobler: Notes and comments on
the composition of terrestial and celestial maps, Michigan Geographical
Publications, No. 8, Ann Arbor (1972), 125 pp.

Struik, D.J. (1961). Lectures on classical differential geometry, second edition,
Addison-Wesley Publishing Co., Reading; reprinted by Dover Publications Inc.,
New York (1990).

Vani•ek, P. and Sjdberg, L. (1991). Reformulation of Stokes's theory for higher than
second-degree reference field and modification of integration kernels, J.
Geophysical Res. 96 B4, 6529-6539.

9


