

PL-TR-92-2167 INSTRUMENTATION PAPERS, NO. 343

THE DIVISION OF A CIRCLE OR SPHERICAL SURFACE INTO EQUAL-AREA CELLS OR PIXELS

Irving I. Gringorten Penelope J. Yepez

30 June 1992

ESUI

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

92

PHILLIPS LABORATORY Directorate of Geophysics AIR FORCE SYSTEMS COMMAND HANSCOM AIR FORCE BASE, MA01731-5000

"This technical report has been reviewed and is approved for publication"

Chief

DONALD D. GRANTHAM, Chief Atmospheric Structure Branch

ROBERT A. MCCLATCHEY, Direc

Atmospheric Sciences Division

This report has been reviewed by the ESD Public Affairs Office (PA) and is releasable to the National Technical Information Service (NTIS).

Qualified requestors may obtain additional copies from the Defense Technical Information Center.

If your address has changed, or if you wish to be removed from the mailing list, or if the addressee is no longer employed by your organization, please notify PL/IMA, Hanscom AFB, MA 01731-5000. This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific document requires that it be returned.

REPORT DOCUMENTATION PAGE			Form Apprised OMB_NO_0704-0188
Public reporting burden for this collection of inf gathering and maintaining the data needed, and collection of information, including suggestions Davis Highway, Suite 1204, Arlington, VA 22202	ormation is estimated to average 1 educ per I completing and reviewing the collection of i for reducing this burden to Washington Hea 4302, and to the Office of Management and	response, initiality the time for revie nformation - Send Comments regardin dauarters Services, Directorate for Ini Budget, Paperwork Reduction Project	wir gerstellen eine einen eine stern zugat aus zweisen Ig fils geur zahl het metralter eine Ustern gezeit stern Jahr auf die Upprater eine anglereberts, 2013 unterson 10 24 9 298 Wassin dit mit, US 23 3
1. AGENCY USE ONLY (Leave blan	k) 2. REPORT DATE	3. REPORT TYPE AND	DATES COVERED
A TITLE AND SUBTITLE	30 June 1992	Scientific, Ir	EUNDING NUMBERS
The Division of a Circle or Spherical Surface Into Equal-Area Cells or Pixels		rface Into	PE = 62101F PR = 6670 TA = 09
6. AUTHOR(S)			WU = 14
lrving l. Gringorte Penelope J. Yepez	n		
7. PERFORMING ORGANIZATION N/	AME(S) AND ADDRESS(ES)	8	PERFORMING ORGANIZATION
Phillips Laboratory/GPAA Hanscom AFB			PL-TR-92-2167
Massachusetts 01731-5000			IP, No. 343
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			D. SPONSORING / MONITORING AGENCY REPORT NUMBER
11. SUPPLEMENTARY NOTES Irving I. Gringorten is a Science Division at Hans	retired employee of the A	ir Force Phillips Lab	ooratory, Atmospheric
222 DISTRIBUTION / AVAILABILITY STATEMENT			
Approved for Public Release;			
Distribution Unlimi			
13. ABSTRACT (Maximum 200 word	(s)		
The need to partition in several problems deali the horizontal extent of surrounding the station v picture is conveniently as cell within the circle. Sin are map, the proposed n	a circular area into maing with mapping pheno precipitation surrounding within approximately 192 nalyzed bye the presence nee the spherical surface nethod of dividing the ci- apping of a spherical sur	ny equally sized cells mena within a circle g a station is usually kilometers 120 mile or absence of a rad of the earth can be p rcle into equally size face such as the nort	s or pixels had arisen b. A radar picture of cy of the circular area es) radius. The radar ar echo in each small portrayed on a equal- ed pixels is especially hern hemisphere.
applicable for detailed m			
Applicable for detailed m 14. SUBJECT TERMS Equal-A.ea cells, S	pherical surface, Map	ping	15. NUMBER OF PAGES 12 16. PRICE CODE
14. SUBJECT TERMS Equal-A.ea cells, S 17. SECURITY CLASSIFICATION OF REPORT	pherical surface, Map 18. SECURITY CLASSIFICATION OF THIS PAGE	ping 19. SECURITY CLASSIFICA OF ABSTRACT	15. NUMBER OF PAGES 12 16. PRICE CODE TION 20. LIMITATION OF ABSTRAC

•

Acknowledgements

The authors acknowledge the encouragement of Albert R. Boehm of ST Systems Corporation and the technical advice of James T. Willand of ST Systems Corporation in the writing of this paper.

DTIC QUALITY INSPECTED L

The Division of a Circle or Spherical Surface Into Equal-Area Cells or Pixels

1. INTRODUCTION

The task is to divide a circular area, such as a PPI-radar scope picture, into equal units of area or cells. Although the units could be few and large, generally an area must be partitioned into many small cells or pixels. If the pixels can be made sufficiently small, then mapping a phenomenon such as areal rainfall becomes a matter of assigning a single value (for example, rainfall amount) to each pixel.

A flat circle can be used for mapping properties such a clouds on a sky dome, or properties on the spherical surface of the earth. ¹ Rossow and Garder addressed this problem and developed and approximate solution for the equal-area net grid.²

The procedure presented in this report, however, yields exact equal-area pixels.

2. METHOD

The proposed method begins by dividing the circle (Figure 1) of overall radius R into a central unit circle of radius δr and M rings, each ring of thickness $2\delta r$, where

$$(2M+1)\delta r = R \tag{1}$$

The unit area δA is that of the central cell

$$\delta A = \pi (\delta r)^2. \tag{2}$$

The circle that includes the first ring has radius $3\delta r$, and the area A_1 within this circle is given by $A_1 = 9\pi (\delta r)^2$.

The area in the first ring, or annulus, $\delta A_1 = 8\pi (\delta r)^2$. If the ring is now divided into 8 equal cells, each cell will be equal in area to the central unit cell δA .

Received for publication 26 June 1992

¹Gringorten, Irving (1981) Mapping the Climate Environmental Research Papers, No. 723. Air Force Geophysics Laboratory, AFGL-TR-81-0015 (AD-A102904)

²Rossow, W.B., and Garder, L. (1984) Section of a Map Grid for Data Analysis and Archival. Journal of Climate and Applied Meteorology, 23:1253-1257.

Figure 1: Division of a Circular Area into Circles and Then Equal-Area Pixels, Showing Numbering of Pixels

Likewise, the second ring will have outer radius $5\delta r$ and it can be divided into 2×8 cells, each having area δA . Similarly the *mth* ring can be divided into 8m cells, each having the area δA . The total number of cells I_m up to and including the *mth* ring will be

$$I_m = (2m+1)^2$$
(3)

for a total area A_m of

$$A_m = (2m+1)^2 \pi (\delta r)^2.$$
(4)

Figure 1 depicts the division of a circle into five rings, for a total of 121 equal-area cells. The shapes of the cells begin with the small circle at the center: cell number 1. In the first ring the 8 cells are shaped like pieces of pie with the tips eaten away. In the remaining rings the shapes of the elementary units converge onto the rectangular shape of length $2\delta r$ and width $\pi(\delta r)/2$.

The cells are numbered, beginning with the number 1 for the central cell. and increasing by 8m with the *mth* ring (m = 1, 2, 3, ...).

Problem 1: To find a cell number I, given the polar coordinates (r, θ) , when the incremental length δr is known.

The cell number I is determined as follows:

Where the symbol INT(x) denotes the integer part of the number x always less than x), then the number of the last whole ring n is given by

$$n = INT(n') \tag{5}$$

and n' is defined by

$$(2n'+1)\delta r = r. \tag{6}$$

The number of the ring in which (r, θ) is located is (n + 1). The total number of cells I_r in the *n* rings is

$$I_r = (2n+1)^2. (7)$$

The number of cells I_{θ} remaining in the (n+1)th ring is

$$I_{\theta} = INT(I_{\theta}) + 1 \tag{8}$$

where

$$I'_{\theta} = (theta/2\pi)(8n+8) \tag{9}$$

if θ is in radians, and $= (\theta/360)(8n+8)$ if θ is in degrees.

Finally the cell number I in which (r, θ) is located is:

$$I = I_r + I_\theta \tag{10}$$

Problem 2: To find the polar coordinates (r, θ) of the middle of a cell, given the cell number I and the incremental unit of length δr .

The number of whole rings n is:

$$\boldsymbol{n} = INT(\boldsymbol{n}') \tag{11}$$

where n' is given by

$$(2n'+1)^2 = I \tag{12}$$

(Note: If n' is a whole number then make n = n' - 1).

The radial distance r to the central point of the cell is

$$r = (2n+2)\delta r \tag{13}$$

The number of cells I_r up to, and including, the *n*th ring is

$$I_r = (2n+1)^2 \tag{14}$$

Hence the remaining number of cells I_{θ} is

$$I_{\theta} = I - I_r \tag{15}$$

which places the central point of the last cell at angle θ such that

$$\theta/2\pi = (I_{\theta} - 1/2)/(8n + 8) \tag{16}$$

if θ is in radians.

If angular measurements are made in degrees, the

$$\theta/360 = (I_{\theta} - 1/2)(8n + 8). \tag{17}$$

Equations (13), (16), or (17) provide the coordinates (r, θ) .

Problem 3: Application to the earth's northern hemisphere.

This procedure can be applied readily to a spherical surface which can be projected onto a flat circular equal-area map. For the northern hemisphere the map's center represents the north pole and the outer perimeter represents the equator. In the Lambert Azimuthal Equal-area projection the parallels of latitude appear as concentric circles centered at the north pole, and the meridians of longitude appear as straight lines radiating outward from the center.

Let R_e be the radius of the spherical earth. That is,

$$R_e = 3437.75$$
nm = 6371.00km.

The area of the northern hemisphere A is

$$A = 2\pi R_e^2. \tag{18}$$

The equal-area map (given a scale factor of 1.0) must have an overall radius R such that

$$R = R_e \sqrt{2} \tag{19}$$

If we choose to divide the circular map into M rings, the incremental value δr is defined by

$$(2M+1)\delta r = R. \tag{20}$$

The mth ring will have and outer radius r_m such that

$$r_m = (2M+1)\delta r. \tag{21}$$

The map radius r that corresponds to a parallel of latitude ϕ is:

$$r = R_e \sqrt{2(1 - \sin \phi)}.$$
 (22)

The map angular coordinate θ that corresponds to a meridian of longitude λ , is for positive longitude (east),

$$\boldsymbol{\theta} = \boldsymbol{\lambda} \tag{23}$$

for negative longitude (west), $\theta = \lambda + 2\pi$ (in radians), and $\theta = \lambda + 360$ (in degrees).

The division of the northern hemisphere into equal cells, and the numbering of the cells, proceeds as in the previous section.

Suppose the northern hemisphere is to be divided by parallels of latitude to make five rings M = 5, each ring with a width approximately 18°. Then the total number of cells I will be 121 [Eq (3)]. The incremental length δr on the corresponding equal-area map [Eq (20)] is:

$$\delta r = 819.08 \,\mathrm{km} = 441.97 \,\mathrm{nm}. \tag{24}$$

The latitudinal circles that divide the hemisphere into the five rings will correspond [Eq (20)] to the map radii r:

$$r = m(\delta r)$$

for m = 1, 3, 5, 7, 9, 11, for which Eq. (22) gives the parallels:

$$\phi = 82.63^{\circ}, 67.76^{\circ}, 52.50^{\circ}, 36.52^{\circ}, 19.30^{\circ}, 0 (equator)$$

For the location of Boston $\phi = 42.5^{\circ}$, $\lambda = -71.0^{\circ}$, Eqs (22) and (23) give r = 2769 nm, $\theta = 289^{\circ}$. With the given polar map coordinates (r, θ) , Eqs (5) and (6) will provide the ring number (n + 1 = 3) and Eqs (7), (8), (9), and (10) will provide the cell number (I = 45).

Problem 4: Climatology using equal-area cells.

Suppose it is appropriate to study the climate in the northern hemisphere in very small pixels, such as $(5 \text{ km})^2$. The approximate number of pixels *I'* will be given by the total area of the northern hemisphere divided by the elemental area (25 km^2) :

$$I' = 10, 187, 524.$$

The number m of rings is rounded to 1595 [Eq. (3)]. This, in turn, modifies the total number of cells to

$$I = 10, 182, 481$$

so that the area [Eq. (2)] of each cell δA is recalculated to be 25.01km². The incremental length δr is given by Eq. (2):

$$\delta r = 2.822 \mathrm{km}$$

For a point given by latitude and longitude, its cell number can be determined using Eqs (22), (23), (5), (6), (7), (8), and (10). Information can be stored in cells and referenced by the cell numbers.

3. CONCLUSION

The complexity involved in dividing a circle into equal-area pixels is warranted by the applications of such a technique. It can be applied to the earth's spherical surface, and also to a sky dome. The mapping technique provides a method for the equal division of the earth's surface in preparation for areal analysis around a central point, usually the north pole.

References

1. Gringorten, Irving (1981) Mapping the Climate Environmental Research Papers, No. 723, Air Force Geophysics Laboratory, AFGL-TR-81-0015 (AD-A102904).

2. Rossow, W.B., and Garder, L. (1984) Section of a Map Grid for Data Analysis and Archival, Journal of Climate and Applied Meteorology, 23:1253-1257.