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ABSTRACT

Standard linear quadratic regulator (LQR) designs guarantee a certain level
of robustness. However, optimizing a generalized quadratic criterion produces

coupled state and input terms and there are no longer any guarantees of good

robustness properties. This thesis identifies how this problem arises and then

presents several suboptimal, but robust controller design options which provide

the control systems engineer with the ability to perform a trade-off between

performance and robustness. The effectiveness of these methods is

investigated and the trade-offs between performance and robustness are

evaluated using computer simulation of a statically unstable fighter aircraft
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I. INTRODUCTION

Modem weapons systems are becoming more and more complex and are

constantly pushing the limits of technology. Performance, in terms of agility and

faster response, are demanded at the same time that reliability and operation in

a wider variety of environments and applications are required. All of this

highlights the importance of the design of the underlying control systems of the

weapon.

Many times a choice must be made as to the minimum level of reliability or

robustness acceptable at the expense of a certain amount of performance. For

a single-input single-output (SISO) linear quadratic optimal control system in

which there is no cross-coupling of the states of the system and the control

inputs, there are well defined and guaranteed levels of robustness. However,

for a multivariable or multi-input multi-output (MIMO) system, while the

guarantees still apply, the measurement of the robustness of a system is not

necessarily well defined. In addition, for a system with cross-coupling of the

states and inputs, which can occur when the performance measure is in the

generalized quadratic form, there are no longer any guarantees on the

robustness. An optimized system of this type may be vulnerable to even minor

uncertainties or deviations from the model used to design the control system.

Design techniques do exist for working with these problems, but they are

typically of a graphical nature and do not easily provide a way to measure and

vary the trade-off between performance and robustness. The goal of this thesis

then is to develop a design method for using one variable parameter to quickly

and easily get a measure of this trade-off. The focus will be confined to



generalized linear quadratic, finite-dimensional, multi-input multi-output systems.

It is assumed that full state feedback is available so observers will not be

necessary. In addition, measurement and plant noise will be ignored for this

development, so techniques such as Kalman filtering will not be necessary.

After developing several methods for designing suboptimal robust controllers,

these will be simulated using a statically unstable fighter aircraft which provides

a convenient MIMO model. Also, the required performance will be chosen

such that the cross-coupling of the states and the control inputs will occur.
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II. BACKGROUND LINEAR QUADRATIC THEORY

Standard linear quadratic (LQ) control theory is well understood and many

tools exist for designing these systems. As long as the states and the inputs are

not coupled in the performance function, these systems have very good and

well defined properties of stability and robustness. However, when there is a

coupling between the states and the control inputs, the robustness of the system

is no longer guaranteed. This chapter presents a quick review of the pertinent

aspects of the standard theory, points out where and how the .-ross coupling of

the states and inputs occurs, and the problems this creates.

A. STANDARD LINEAR QUADRATIC CONTROL THEORY

A linear finite-dimentional time-invariant dynamic system can be described

in a compact form by input and output equations

.i = Ax + Bu, (2-1)

and

y = Cx, (2-2)

where x is an nxl state vector, u ia an mxl control input vector, y is a px/

output vector, and A, B, C, and D are system matrices of the necessary

dimensions. Feedback control laws can be used to either stabilize the system

or modify its response to meet the specifications of a particular application.

Assuming that all states of the system can be measured, a feedback control

law is computed as a linear combination of the states

3



u = -Kx, (2-3)

where the feedback gain matrix K is determined from the type of problem and

the method of control desired. This closed-loop system is depicted in Figure 2.1

Optimal control is a design method which computes K by minimizing a cost

function (or maximizing a performance function). The cost function is a real-

I I III I

Figure 2.1 Closed-Loop Linear System

valued function of the state of the system and the control input, both of which

can vary with time. Cost functions take the general form

J = fof(x(t),u(t),t)dt. (2-4)

Application of optimal control requires the specifications of the control problem

of interest to be formulated in terms of an appropriate cost function. Minimum

time control, terminal control, minimum control effort, minimum squared error,

and combinations of these are just a few of the possibilities.

One cost function which has been found to be particularly useful is

quadratic control which takes the form

4



1=t7[x * (Qxot+ u*(t)Ru(t4•Itr (2-5)

where * denotes the complex conjugate transpose, Q is a positive semi-definite

nxn matrix, and R is a positive definite mxm matrix. Kalman [Refs. 1 &2] found

that the optimal feedback control law for minimizing this cost function is

u0pt (t) = - R-B*Pxopt (t)

= -Kxopt(t), (2-6)

where K = R-)B*P is determined by finding a positive definite solution P for the

Steady-State Riccati Equation (SSRE),

PA + A*P- PBR-1B*P+ Q =O. (2-7)

Many algorithms are available for finding P and the feedback gain vector K. If

the system is completely controllable, P is unique and the closed-loop system

S=(A- BK)x (2-8)

will be stable.

B. ROBUSTNESS PROPERTIES OF LQ DESIGNS

To design a control system, a mathematical model of the system of interest

must be developed so that analytical techniques may be applied. Linear

differential equations (2-1) and (2-2) comprise one such model. In addition, the

model must be of a form that is accurate enough to give a reasonable

representation of the system, yet simple enough that it leads to practical

analytical solution techniques. Unfortunately, no useful mathematical model is

capable of exactly representing a system. Usually differences will arise from

5



non-linearities in a system which is represented by a linear model or from the

use of first or second order models as approximations of systems with higher

order dynamics. In addition, parameter variations from operating conditions,

environmental conditions, measurement errors, etc. may all contribute to

uncertainties in the operation of the actual plant.

It is important to design a control system that can perform well over as

much of the expected range of uncertainty as possible. A system that is

insensitive to or tolerant of parameter variations and model uncertainties is

termed robust. For (SISO) systems, robustness is usually measured in terms of

three parameters (as depicted in Figure 2.2):

"* Gain Margin -- A measure of how much the open-loop gain may be
increased before the system becomes unstable.

"* Gain Reduction Tolerance (GRT) -- A measure of how much the open-
loop gain may be reduced before the system becomes
unstable.

"* Phase margin -- A measure of how much the open-loop phase delay may
be increased before the system becomes unstable.

Ira

Gain Margin 
IMA

x
GRT 1

Phase Margin

eR

Figure 2.2 Definitions of Robustness Measures [After Ref. 3]
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The optimal control system shown in Figure 2.1 has an open-loop

frequency-domain transfer function

G(s) = (sl- A)- 1 B, s = jeo (2-9)

and a loop gain

L(s) = KG(s)

= K(sI- A)- 1 B

= R-'B*P(sI - A)-fB. (2-10)

The robustness of this LQ system can be determined by algebraic manipulation

of (2-7). First, add and subtract sP and then regroup terms:

sP - sP + PA + A*P + Q - PBR-lB*P = 0 (2-11)

-P(sl - A) - (-sl - A *)P + Q - PBR-IB* P = 0. (2-12)

Then multiply by G*(s) = B*(-sI-A *)-I from the left and G(s) = (si-A)-'B from

the right to get

-B* (-sl - A)- PB - B*P(sI - A)-1 B + B* (-si - A* )-Q(sI - A)- B

- B*(-sI- A*)-lPBR- B*p(sl - A)-FB = 0 (2-13)

Noting that B*P(sJ-A)']B = RL(s), (2-13) can be rewritten

-EL (s)R - RL(s) + G* (s)QG(s) - L! (s)RL(s) = 0 (2-14)

or

[I + L(s)]*R[I + L(s)] = R + G* (s)QG(s). (2-15)

7



Since Q is positive semi-definite and G*(s)QG(s) is quadratic in G(s), the

right hand side of (2-15) is greater than or equal to R. Therefore, the Nyquist

plot of this system must remain outside of a unit circle centered at (-1, jO) as

shown in Figure 2.3. The optimal linear quadratic controller is guaranteed to

Im

Unit Circle

Re

Figure 2.3 Robustness of an LQ System [After Ref. 3]

have an infinite gain margin, at least 600 of phase margin, and a minimum of

50% GRT.

C. THE GENERALIZED QUADRATIC CRITERION

A more general formulation of the quadratic control problem includes

frequency shaping of the cost function. This allows frequency dependent

performance requirements to be included in the system specifications. System

performance can be improved, but robustness may be reduced.

8



A frequency shaped cost function can be generated by first transforming

(2-5) into the frequency domain using Parseval's theorem,

J = .f[x* (joj)Qx(jco) + u* (jow)Ru(jco)}dO). (2-16)

The frequency shaping is accomplished by making Q and R functions of

frequency,

j = -2fI[x (jwo)Q(jo))x(jco) + u" (jwo)R(jwo)u(jo)]dco. (2-17)

When Q(jwo) and R(jwo) meet the additional constraints that they are rational

functions of jo and decomposable into

Q(jo) = Q, + ri*(j o)Q2* + Q2rl(jco) + l*(jo)Qf(jco), (2-18)

where Hl(jco) is a qxn matrix of rational functions of jo and Q1, Q2, and Q3 are

nxn, nxq, and qxq, constant matrices respectively, an optimal controller can be

obtained for this cost function by augmenting the plant to eliminate the

frequency dependance of the weighting matrices and then applying standard

LQ procedures. [Ref. 4]

The augmentation is accomplished by first defining

i(jfto) = H-(jwo)x(jwo) (2-19)

and

i(jCO) = i(jo)u(jM). (2-20)

Then

9



il= DzI + Ex, (2-21)

xi = Lazi + Mx, (2-22)

and

i2 FZ2 + HU, (2-23)

ii NZ2 + JU. (2-24)

The first term in (2-17) can now be rewritten using (2-18), (2-19), (2-21), and

(2-22) as

x * (jow)Q~jo)x(jco)) x* (jow)Q ( jw u)x() + x* (jWof* (jco))Q2x(jco))

+x*(jo.,)Q2 fl(jo.,)x(jao) + x* (jco)l* (jco)Q3 fl(jco)x(jo.))

(x* (jw))i (jw-))[ Q1 Q21](xJw)')

LIQ; Q3 -i(jO))

= (x*(jo)) z~iUO))[' MJ IQ 1  Q2 ][J OJxc) (2-25)

Similarly, the second term becomes:

U,(jwo)R(jco))u(jow) =(z2(jw)) u*(iw))L J R1 R u1 w (2-26)

Finally, the whole system and the cost function can be written as:

10



=A z +Bu(2-27)

and

T; F2 0 0 II-'

00 Wl W2Z2J

=~(x %; Z; u Q[ S I(X z1 Z2 U)Tdo), (2-28)

where

Fl = Qi+ M*Q2+ Q2M +M*Q3M,

F'2 =Q2L+M *Q3L,

F3 = =!3

W, = N *R3N,

12= N* R3 J+ N* R2,

V13~ = R + R2J +J*R2 + JRAJ

Fl 1 2 0]

-00 IF,

R= W3.



Note this state augmentation procedure has generated a cross-state-input

matrix S which has serious implications for the robustness of this control

system. The gain and phase margins and gain reduction tolerance of the

standard LQ system are no longer guaranteed.

D. ROBUSTNESS FOR A GENERALIZED QUADRATIC

CRITERION

The addition of frequency shaping in the cost function generated a cross-

state-input term. A procedure very similar to those performed on (2-9) through

(2-15) is developed below to identify the effect of S on the robustness of the

system. First, the following definitions are made to simplify the expression:

x
x = zI] (2-29)

Furthermore, define

u' =-R-B* Px, (2-30)

and

u = u' - R-S*x. (2-31)

Then

i=Ax+Bu

= Ax + B(u' - R-S'x)

= (A - BR"'S*)x + Bu'

= A'x + Bu'. (2-32)

12



From (2-28),

x* Qx + x*Su + u* S*x + u*Ru

= x*Qx + x*S(u' - R-1 S*x) + (u'- R-IS*x)* Sx

+(u'- R-S*x)* R(u' - R-'S*x)

= x* (Q- SR-lS*)x + u'*Ru

= x*Q'x + u/*Ru. (2-33)

Using the above definitions, the SSRE becomes

PA'+ A'*P+ Q -PBR-'B*P

= P(A - BR-S*) + (A - BR-lS*) * P + Q

_SR-S* - PBR-lB*P

= PA + A*P+ Q-(PB+ S)R-'(PB+ S)* =0. (2-34)

Finally,

U = U' - R-S*x

= -R-B* Px - R-S*x

= -R-(B*P+S*)x, (2-35)

and

K = R-1 (B*P+ S*) = R-'(PB+ S)* (2-36)

Now, given the modifications as in (2-29) through (2-36) the analysis of the

system proceeds just as in the standard LQ case:

G(s) = (sI- A)-FB, (2-37)

13



and

L(s) = KG(s) = K(sI - A)-1 B. (2-38)

Using (2-36),

L(s) = R-1(PB+ S)* (sl- A)- 1 B. (2-39)

Adding and subtracting sP to the SSRE and rearranging yields

-P(sI - A)- (sI - A*)P+ Q-(PB+ S)R-4 (PB+ S)* = 0. (2-40)

Multiplying from the right by G(s) and from the left by G *(s) and rearranging

terms as was done in (2-14) and (2-15) results in

[I+L(s)]* R[I+ L(s)]= R+ G*(s)QG(s)+S*G(s)+G*(s)S. (2-41)

Comparing (2-41) with (2-15), there are two new terms as a result of the

cross-state-input matrix S. The standard optimal LQ system was guaranteed

an infinite gain margin, 50% GRT, and 600 of phase margin. If these two new

terms in (2-41) result in reducing the magnitude of the right hand side, they will

effectively reduce the robustness of the system. Of course, the converse may

also be true. In some systems, the right hand side may be increased and

robustness will correspondingly increase. The effects of S will depend on the

particular system and the required frequency shaping in the cost function.

14



III. MODEL UNCERTAINTY AND ROBUSTNESS

MEASURES FOR MULTIVARIABLE SYSTEMS

Multi-input multi-output (MIMO) systems introduce significantly greater

complexity into the control design problem. The additional inputs and outputs

provide a designer with much more flexibility in the solution to the problem of

stabilizing a system, but they also complicate the subject of defining the

robustness of the system. This chapter presents some concepts used for

MIMO systems and develops the robustness measure to be used for this thesis.

A. MODEL UNCERTAINTY FOR MIMO SYSTEMS

Since no design model will exactly match the physical plant, it is important

to consider these model uncertainties for control system design. The form used

in representing them depends on the degree to which the physical mechanisms

of the uncertainties are understood or known. In general, representations can

be placed into two categories based on the amount of structure in the

uncertainty. Highly-structured representations are those in which the amount of

parameter variation can be confined within well defined limits for models at

various operating points. An example would be the aerodynamic coefficients of

a missile for different altitudes and velocities. Less-structured representations

usually place bounds on the uncertainty of the plant transfer function. Doyle

[Ref. 5] gives two general ways of representing this:

G'(jo)) = G(jo)) + AG(jw), (3-1)

where

15



U[AG(jw)]<l0 (,() for Vw _0 (3-2)

and

G'(jco) = G(jco)[ I+ A(jco)], (3-3)

where

U[A(jco)] <IM,,(0) for V CO 0. (3-4)

The maximum singular value i is defined by

U[A] a iaxjj)Ax[[- a VZa [A*A] (3-5)

IxI=1

Neither (3-1) and (3-2) nor (3-3) and (3-4) attempt to give any indication of the

causes of the uncertainties. The additive uncertainty representation, (3-1) and

(3-2), bounds the matrix G' within a region Ia. about G The multiplicative

uncertainty representation, (3.3) and (3-4) (which is preferred here since it

applies the same uncertainty to both uncompensated and compensated transfer

functions), confines the matrix G' to a normalized neighborhood, In, about G

This type of uncertainty can be incorporated into the system model as shown in

Figure 3.1. Knowledge about and experience with the uncertainties affecting a

particular system are the determining factors in the magnitude of Im.
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Figure 3.1 System with Unstructured Uncertainties

B. ROBUSTNESS MEASURES FOR MIMO SYSTEMS

Many methods have been investigated and developed for measuring the

robustness of MIMO systems. The principal region and minimum singular

value techniques will be discussed here.

1. Principal Region

Postlethwaite [Ref 6] has developed a method of extending the gain

and phase margin concept to MIMO systems through the definition of a

principal region. The principal region is found by polar decomposition of the

loop transfer matrix L(s):

L(s) = U(s)HR(s) (3-6)

and

L(s) = HL(s)U(s), (3-7)

where U(s) is unitary and HR(s) and HL(s) are positive semi-definite Hermitian

matrices with the same eigenvalues. Principal gains (or singular values) are

defined as the eigenvalues of HR(s) or HL(S) and the principal phases are
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defined as the phases of the eigenvalues of U(s). The maximum and minimum

principal gains, Ormax and armin, and the maximum and minimum principal

phases, bmax and Pmin, for each s, form a curvilinear rectangle in the Nyquist

plane. Combining all the rectangles for values of s on the Nyquist D contour

forms the principal region. A gain margin, phase margin, and gain reduction

tolerance can be defined, as depicted in Figure 3.2, at the boundary of the

principal region.

Im

GRT= I-- -ReG =

"•?• Principal Region

xI

Figure 3.2 Principal Region and Stability Margins for MIMO
systems [After Ref. 4]
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This method generates graphical information which does not easily

lead to defining a single parameter which may be used to adjust performance

and robustness. However, the use of just the minimum singular values, while a

more conservative approach, provides similar robustness information and does

lend itself to the goal of this thesis.

2. Minimum Singular Value

A measure of the robustness of a system with the uncertainties

described above can be obtained as follows:

z = KG(I+ A)e (3-8)

and

e = r - z. (3-9)

Then

e = r - KG(I + A)e, (3-10)

(I + KG(I + A))e = r, (3-11)

and

e = (I + KG(I +&A))-'r

= (I + KG + KGA)- r

=[(I + KG)(I +(I + KG)-KGA )-r

= II+JKG)1KGAJ (I+KG)-F r. (3-12)
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Using the small gain theorem and (3-12), a sufficient condition to

guarantee closed-loop stability is

Ij (I+KG)-KG HI1 AIl<] (3-13)

or equivalently

[(I+ KG)-'KG F.r[ A 1<1. (3-14)

Using (3-4),

1"U[ (I+ KG)-'KG 1<- (3-15)

Equation (3-15) can be written in a more convenient form using some results of

matrix theory. First,

(I + KG)-KG=(I+(KG)-)-', (3-16)

so (3-15) becomes

[(1 + (KG)-•)-/] </. (3-17)
'IM

and, using

1

[A]= -- (3-18)

equation (3-17) becomes
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I (3-19)
g[ I+(KG)-] im

or

g[I + (KG)-' > Im. (3-20)

Therefore, the robustness measure to be used here is defined as

Jr = 9[l +(KG)-'], (3-21)

i.e., Jr is the minimum singular value for the system in the frequency range of

interest. Jr is a single number which gives a measure of the robustness of the

system. For the standard optimal LQ system, Jr is guaranteed to be 2 0.5.

Therefore, the robustness of a system can be computed and directly compared

to the standard optimal system and a determination made as whether or not it is

satisfactory.

As stated before, this method is very conservative. There are the

same number of singular values as the dimension of the system and it is unlikely

that the uncertainties in the model will affect the whole system equally across

all the states. Therefore, some models may very well have much more

robustness than what is predicted by this method.
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IV. ROBUST SUBOPTIMAL DESIGN

The general idea for the suboptimal robust design is to trade off optimality

(i.e., performance) for a greater degree of robustness. In the case of the

generalized linear quadratic control system, this means computing the feedback

gains, K = R-(PB + S)*, by modifying Q, R, or S in (2-41).

A number of design possibilities exist and seven options investigated under

this thesis work are presented below.

A. ROBUSTNESS DESIGN OPTIONS

Equation (2-41) is repeated here as it serves as the basis for evaluating

robustness:

(I + L)* R(I + L) = R + G*QG + S*G + G°S, (4-1)

where L and G are understood to be functions of s =jco. In addition, using the

relation

(R + S*G)* R-(R + S*G) = R + S*G + G*S + G*SR- 1SG, (4-2)

equation (4-1) can be rewritten as

(I + L) R(I + L) = G*(Q - SR-S*)G +(R + S*G)* R-(R + S*G). (4-3)

Note that the right side is guaranteed to be greater than or equal to zero if

Q- SR-'S° >0. (4-4)
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The greater the right side of (4-3) the better the robustness and it certainly

needs to be greater than zero to guarantee stability. All options are presented

using a tilde, -, to indicate the modified parameters.

1. Option I: S=0

The first option is to simply ignore the cross-state-input matrix by

setting S = S -0. Equation (4-1) would be reduced to

(I+L)*R(I+L) =R÷ - QG, (4-5)

which is the same as (2-15) for the standard LQ situation. However, this is just

a special case of option IV.

2. Option II: Qd=Q÷SSg*, k=R--I

These substitutions yield

(I + L)* R(I + L) = k + G'QG + S*G + G*S (4-6)

or

(I+ L)* (R+I)(I + L) =R+G*QG +(J+ S*G)*(J+-S*G). (4-7)

Here the terms on the right hand side have either been forced into quadratic

forms or are positive, ensuring that robustness is improved.

3. Option III: R=pR

This is a straight-forward introduction of a multiplicative parameter

into (4-1) which gives

(I+ L)*"R(I + L) = R+ G*QG + S*G + G*S

- pR + G*QG + S*G + G*S (4-8)
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or

(I+ L)* R(I+L)=R+ I (G QG+S *G+G *GS). (4-9)
P

As p is increased, the right side approaches R. If the robustness of the

system had originally been degraded by S, theoretically, the best that could be

achieved by this option is exactly the minimum guaranteed by the standard LQ

system.

4. Option IV: S=pS, p< 1

As in option HI, this is also a simple substitution using a multiplicative

parameter. This time, however, it is applied directly to S:

(I+ L)* R(I+ L)= R+G*QG+ S*G+c*S

= R+ G*QG +p(S*G + G*S) (4-10)

Note that when p = 0, (4-9) reduces to

(I + L)* R(I + L)= R+G*QG, (4-11)

the standard optimal LQ case and option I is therefore, a special subset of this

option.

5. Option V: R=pR, Q=Q+(p-1)SR- 1S, p.>

Substituting into (4-3):

(I+L)*R(I+L)=G*[Q-SR-IS*]G+(k+S*G)*R-(k+S*G). (4-12)

This results in
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(I+ L)*pR(I+L) = G*[Q+(p- 2)SR-lS*]G

+(pR + S*G)* (pR)-'(pR + S*G) (4-13)

or

(I+L)*R(I+L)= IG*[Q+(p-2)SeR-S*]GP

+(R+ I S*G)* R-(R+I S*G). (4-14)
P P

As p is increased, (4-14) approaches

(I+ L)* R(I+ L) = R+ G*SR-lS*G. (4-15)

Again, the term with S has been made quadratic in order to improve

robustness.

6. Option VI: Q=pQ

Here, a simple substitution of a multiplicative parameter into (4-3):

(I+ L)* R(I+ L)=G* [I -SR-lS*]G

+(R+S*G)*R-l(R+S*G) (4-16)

or

(I+ L)* R(I+ L) = G*[pQ- SR-lS*IG

+(R + SG)* R-(R + S*G). (4-17)

Note that the right side is guaranteed to be greater than or equal to zero only if

pQ- SR-S* 0 0. (4-18)
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For optimal LQ theory, Q is only required to be positive semi-definite. For this

option, there is no guarantee that pQ-SR-'S* can be made greater than zero

unless Q is positive definite.

7. Option VII: Q=Q+pSR-S*, p:1

Substituting Q into (4-3) yields:

(I+ L) R(I + L)-= G*[- SR-S*IG

+(R+ S*G)* R-'(R+ S'G)

- G [Q+(p - )SR-IS*]G

+(R + S*G)* R-1(R + S'G) (4-19)

Again, the right side is greater than or equal to zero for p Ž 1.

This list certainly does not exhaust the possibilities, but it does provide many

avenues for investigation of the robustness of an MIMO system optimized by a

general quadratic criterion. It should also be noted that when Q, R, or S is

modified, the control system is no longer optimal.
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V. A NUMERICAL EXAMPLE AND SIMULATION

To explore the utility of the theory so far developed, a numerical example

will be presented and the control systems using the various options in the

preceding chapter will be designed and simulated. The model to be used is the

one used by Chen [Ref. 3]. The development and explanation of this model is

briefly summarized here. The simulations will use a wind gust as the

disturbance input to the system to test the transient response of various

suboptimal designs.

A. STATICALLY UNSTABLE AIRCRAFT MODEL

The model for this simulation is the F-20 Tigershark designed by Northrop

Corp. The aircraft is designed to be extremely agile, and as a result, is highly

unstable in the absence of a control system. In addition, the simulation will be

based on a special flight mode called fuselage-pitch-pointing (FPP) mode. The

fuselage-pitch-pointing concept provides the ability to alter the pitch without

changing the flight path (Figure 5.1). Another interesting flight mode called

direct lifting (DL) is shown in Figure 5.2, where the aircraft's altitude can be

changed without changing the pitch.

These are not the intuitive ways of flying an aircraft and therefore, would

not be the normal modes of operation. Instead, it might be used in special

circumstances such as bombing runs or during dogfights where the ability to

rapidly change altitude or pitch of the aircraft independently may provide

significant advantage over an adversary. In addition, the FPP mode provides a

good MIMO model for investigating robust, suboptimal controller design.
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0

Flight Path 1 lgtPt

Figure 5.1 Pitch Pointing, Constant Flight Path

Figure 5.2 Direct Lifting, Constant Pitch

A linearized pitch-axis model for the F-20 at Mach 0.5 and an altitude of

10,000 feet is:

-0.834 0.996 0 -0.2 -0.093-1-

= 2.755 -0.89 0 ql+F-11.4 2.03 3f (5-1)
0 1.0 O_.e0 0 0

y = q (5-2)
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The state variables are angle of attack a, pitch rate q and pitch angle 0, as

shown in Figure 5.3.

Figure 5.3 Definitions of State Variables a, q, and 0

The two control inputs are stabilizer position '5h and trailing edge flap position

3f. This model has three poles located at s = 0, -2.519 and 0.795.

The design problem is to develop an FPP control system that will reject

turbulence and yet provide good robustness. This thesis will focus on a

regulator type of control which will endeavor to maintain the states of the

system at desired values in the presence of disturbances to the system. An

appropriate frequency-shaped quadratic cost function which accomplishes

these objectives is

JC=_ [150a2 +q2 +50(6-a)+ (o30 +0.04+ ))]dco. (5-3)

Turbulence is typically manifested by disturbance at frequencies < 30 rad/sec.

Therefore, the cost function is designed with a high pass filter on the control
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inputs to allow greater control effort at low frequencies and to penalize control

effort at higher frequencies. In addition, flight path angle y = 0 - a is heavily

weighted to limit deviations from the flight path. Turbulance however, is a

transient phenomenon, therefore this optimization focuses more on rejecting

these transitory disturbances in pitch rate, pitch, and angle of attack than on

steady-state deviations from the flight path.

For this problem, the frequency dependent weighting matrix on the control

is selected to be

R~co =•jc+ o) 2o

=jo)+30 0) jo) )2] (5-4)

o 0 (o.o4) ¥o) 3(

and it can be readily decomposed into

o j0+ J) 0 0+ 0) 0o
S]+ +3 jo +30 0 o +30

+ jo9+ 300 j0] t+ 30
10 0 0 0.0 0 0 ' ( 5-5

0 jo + 30] jo; + 30]'

which meets the criteria of (2-22).

Following the augmentation procedure described in Chapter II, this system

can be expressed in a frequency-independent format. First, expand the input

terms of (5-3) into the form:
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[ 4h S 1.0o 0041;0 (5-6)
Ls+30 s+30 0 0.0 [ +30f5

Now define

u, S s-0'6h = 1-s' 30 45h, (5-7)
U1 s+30 s ~ +301)s 57

and let

30
s+30 (5-8)

This results in the new state equations:

Zl = -30z, + 303h (5-9)

and

U) = -Zj + 6h. (5-10)

Similar steps for 3h result in:

i2 = -30Z 2 + 303f (5-11)

and

U2 -Z2+ +Sf (5-12)

Thus the new augmented system is
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"6 -0.834 0.996 0 0 0 a

q 2.755 -0.89 0 0 0 q

0= 0 1.0 0 0 0 0

0 0 0 -30.0 0 z1

z2J L 0 0 0 0 -30. 0 z2j

-0.2 -0.093

+ 0 0 8  (5-13)

30.0 0

0 30.0

and the frequency-independent cost function is

JC =J0 [a q 0 Zj Z2 '61 35f

200 0 -50 0 0 0 0 La

0 1 0 0 0 0 0 q

-50 0 50 0 0 0 0 0

0 0 0 1 0 -1 0 z, dt. (5-14)

0 0 0 0 0.04 0 -0.04 z2

0 0 0 -1 0 1 0 85h

0 0 0 0 -0.04 0 0.04 J5,f
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B. SIMULATIONS

The simulations will use a vertical wind gust with a maximum velocity of

62.5 feet per second. This disturbance 6 will be introduced into the system as

shown in Figure 5.4. The wind gust effectively changes the direction of the

incident wind and consequently the angle of attack of the aircraft, as indicated

in Figure 5.5.

Figure 5.4 Wind Gust Disturbance Inputs

Flight path

Wind gust

Figure 5.5 Angle of Attack
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All performance Jc and robustness Jr values for theses simulations are

computed using the rectangular wind gust. For comparison purposes, the

optimal system response is presented first.

1. Optimal System

Optimization of this control problem results in

"K -11.1747 -1.2199 -0.5267 -0.3593 -0.01691

K= -37.0471 3.1484 35.2571 -0.6706 -0.5002j'

c = 3.9678,

J, = 0. 3529,

and Figure 5.6 shows the minimum singular values, as defined in (3-21), as a

function of frequency. Note that within the range of frequencies expected for

turbulence (_< 30 rad/sec), the plot drops below 0.5. Figures 5.7 and 5.8 show

that the response to turbulence is quite good. However, with a robustness of

0.3529, GRT is only 35 percent, leaving a much reduced margin for errors or

2
.6 ........................ ... . ... .........

1. ....... :.....r. ." .....................

1. ........ ......... -.................. ..

1.2 ....... ..... ".'.'..... .'' '.. . ..... ." . ' '.. ..... .. " - ' - / 1
11 . ... . :... :. :-: :-:::.:... ...,.- :-- ..:- -:::-:... .. .-. -.: ...: : ......... "'"•' •i

0.8 ........ ....

0. .. .... ........ ......0.4 .........i i :i. .. i ii i! iii° ..
0.2-

10-2 10-1 100 101 102
co (rad/sec)

Figure 5.6 Minimum Singular Values of the Optimal System
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uncertainties. A suboptimal design will be able to trade off some of the desired

performance in order to recover greater tolerance of model and parameter

erTor.

2. System with Q=Q+SS, R=R+I

This simple modification to Q and R results in the singular values

shown in Figure 5.9, with
=[-6.2110 -1.2014 -1.9775 0 -0.0008]

[-5.1028 0.4075 6.3684 0 -0.0179'

JC = 11.1382,

Jt, =0.8049.

7i

6 ...... i.... ...i. i.: i l ....... i . .i ...i.: :. ii....... ::.... :..•. i. .~ ....... . . .. .,. .
51 ...... i" i " ' ' '' ii....... ....... ...' 'ii' i ........i....... ' '; i' i ...... i... ~ " '

4 ...... i....., .. ..i...:.i. ... .... i... ..- :- ---i -....... ... . 7....io ii. ....... ......... .---.

I ...... ..... i ... .i .i.i. i................ ...i. ..i.i.... ..... . ... .. .i ... ! ....... ... ....

010.2 10-1 100 101 102

0o (rad/sec)

Figure 5.9 Minimum Singular Values Using Q= Q + SS, R=R+I

This is a significant increase in robustness. Unfortunately, it also produces a

significant loss of performance, as depicted in Figures 5.10 and 5.11. There is

nearly an order of magnitude increase in pitch angle, at least twice as much

pitch rate, and a significant drop in response time. Additionally, there is no
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adjustable parameter available for selecting some intermediate pint between

this and the optimal system.

-50 1__ __ _ _ 2_3_4_0_1_2 
_3

Time (sec) Time (sec)

0 00

-40 1 2 3 4 jt :2,0 1 2 3 4
Time (sec) Time (see)

Figure 5.11 Tranulare Gust Response ofQ= Q + SS* R = R + I

t % ... .. .. .. ... ... . .. .... .. ..



3. System with A = pR

This option provides for adjustment of the amount of trade off. As can

be seen in Figures 5.12 and 5.13, some improvement in robustness is obtained,

but the maximum for this system is only 0.4583 for p = 3.4. This option appears

to provide very limited and insufficient improvement.

l6~
14

12
"10

2 0 2 4 6 8 10 12 14 16 18 20
P

Figure 5.12 Performance vs p for Al=-pR

o.46 .

......... ........... .. ... ... .....
° -• .. ./ ... ..... . ...................... .................. .. ...... .......6 .... ..

o .•o[ ... i .............. ....... ......... ........ i................. ..............

0 204 5 10 15 20

p

Figure 5.13 Robustness vs p for A pR
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4. System with S =pS, p< 1

This option ap w-s to hold great promise. Comparing Figures 5.14

and 5.15 with 5.12 and 5.13, this scheme provides significantly greater increase

in robustness for a much smaller loss of performance. Moreover, the use of a

simple multiplicative parameter p allows control engineers to adjust the amount

8"5o• ....... i ............. . . . ......... • ...... .. ! ......... !........

-0.8 -0.6. - ........4 - 0 .2 . 41

p

Figure 5.14 Performance vs p for S =pS, p< 1

Figur 5*"*. 15.Robustness.vs.p.for.......p...

397. . . ........

60 . .. .... ...... ... .......

.0. ..6. .. . .. .... ..

03.5-1 -0.8 -0.6 -0.4 -0.2 '0 0.2 0.4 0.6 0.8 1

P

Figure 5.14 Prfobrstnes vs p for S=pS, p :5 1
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engineers to adjust the amount of trade-off. Figures 5.16 and 5.17 demonstrate

the response to the two disturbances.

10

5 .... .....

.< 0

4)

0 0.5 1 1.5 2 2.5 3 3.5 4

3

-2........... .. '

0 0.5 1 1.5 2 2.5 3 3.5 4

20

-1 . . . . . ........... . " .

-201._ _ _ . _ _ __ _ _

0 0.5 1 1.5 2 2.5 3 3.5 4
Tune (sec)

Figure 5.16 Square Gust Response for S=pS, p -s 1
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5. System with R=pR, ()=Q+(p-1)SR-1 S , pŽl

Figures 5.18 and 5.19 show that although Jr does get above 0.5, there

is still limited improvement for the increased cost. Apparently applying the

modifications directly to the control weighting matrix provides little benefit. The

responses to the disturbances are presented in Figures 5.20 and 5.21.

2

18

~1

105

0.4........................................ .......... .......

10.3 - 5 10 15 20

Figure 5.19 Probustnes vs p for A,=pR, Q•=Q+(p-l)SR-'S, pŽ1

425 .....20"30 5 10 15 20

P

Figure 5.18 Prformstnes vs p for A pR, ) Q + (p -1)SR-'S*, p>l1
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6. System with Q=pQ

From Figures 5.22 and 5.23 it appears that the cost is increasing nearly

linearly with p. However, for 1 < p < 5 the robustness increases dramatically

while the cost only goes up to about 25. This isn't as good as using option IV,

where the cost increased far less for a comparable increase in robustness, but it

does show increased robustness with a variable parameter. Figures 5.24 and

100

90 .. 0.15..20

09O

• 0.051152

445

80 .. ...... .......... ............ .. .. ......

409

0.3 0 5 10 15 20
P

Figure 5.22 Prformstnes vs p for (•=pQ
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5.25 show that the responses for both types of disturbance are still quite good.

5 ..... . ..... . ....

0

0 0.5 1 1.5 2 2.5 3 3.5 4
2

2.=`- -1

10.............................. ..... . ....

..-10....... ........................... ................

-21
0 0.5 1 1.5 2 2.5 3 3.5 4

Tie(s0

Fiur 5.....4. Square Gust.Respone.for......

04



2 -- _ _ _

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 ... ... ... _.. ... ..

.0. . . .. . . . .. .. . . . . . . . . . . .. . . . . .. . . . . .

1

,a O.5~~~ ~ ~ ~ ...... '..... ..... ..... ........... .....

-1.51
0 0.5 1 1.5 2 2.5 3 3.5 4

6

-2 ...... .................. ;' ....
4~ N .

-47



7. System with Q=Q+pSR-iS*, p2l

Figures 5.26 through 5.29 show that this option gives excellent results,

similar to and slightly better than option IV. Using p = 10 gives a robustness of

nearly 0.8 and increases the cost to only about 11.7. It would appear that

options IV and VII would be the best choices for suboptimal robust control

design.
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Figure 5.27 Prfobustnes vs p for Q = Q+ pSR-1S*, p Ž1
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Figure 5.28 Square Gust Response for Q=Q+pSR-I$*, p 21
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C. FURTHER INVESTIGATION OF OPTION IV

As shown in the previous section, this suboptimal design displayed

significant promise. In this section, the effects of p are further studied.

Equation (2-32) is repeated here:

[rl T2  0 0-X
T 2  T3  0 0 lIZ[o o o~ wu

=.IJ*(x z~I Z* u')[I RI(x Zi Z2 u)T dco. (5-15)

It is evident that multiplying S by p is in effect multiplying I!2 by p. But,

W2 = N*R.J+ N*R*, (5-16)

and therefore

pT2 = p(N* R3J + N*R2*)

= pN*R3J + pN*R2

= N*R3J+ V* R2. (5-17)

Since N is produced by the augmentation of the inputs as given in (2-28), the

physical result then, is a modification of 1( co), the frequency shaping of the

control inputs.

For the aircraft system in this example, (5-10) and (5-12) give

u* = Nz1 + J8 h

= -Z) + 8 h (5-18)
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and

"U2 = NZ2 + JIf

= -Z2 + 6f. -(5-19)

Working backwards through the augmentation procedure,

U1 j_ 3o0, "'6h
s +30)

((s+ 30)J-30)N'1
-~s+30

=s+ 30 -3 0(p))8(
= ( +7- .:~~8 (5-20)

and

U2 s + 3030(p)) 8 , (5-21)

For p =1, (5-20) and (5-21) reduce to the original high-pass filter and the

resulting response and robustness are those of the optimal system. Decreasing

p to -1 in several steps alters the frequency shaping as shown in Figure 5.30.

Evidently, this aircraft system is more robust if low-pass filtering is used on the

control inputs.

Another interesting point is that p had to be limited to [-1, 1] for this

system. Outside these limits, Q = Q-SR-'S* was no longer positive semi-

definite as required by optimal control theory to ensure a stable close-loop

system.

52



-0.5 .. .

10

-2.53



VI. CONCLUSION

The frequency shaping in the generalized quadratic cost function can be

converted to the standard linear quadratic control form by state augmentation.

However, this process generates coupling between the states and the control

inputs and eliminates the guaranteed good robustness characteristics of LQ

optimal designs. This thesis has explored and developed a design technique for

improving the robustness of these systems. This technique involves

modification of the stability equations to regain robustness at the expense of

optimality. The following modifications were studied:

* Option I: S=0

sOptionil: -=Q+SS*, Rf=R+I

sOption Il: A = pR

*OptionIV: S=pS, p_<1

* Option V: 1=pR, 0=Q+(p-1)SR-lS*, p

* Option VI: Q=pQ

* Option VIi: = Q + pSR-'S*, P > 1

All of these involve modifications to the weighting matrices in the cost function.

The unstable aircraft model used in the simulations in this thesis responded best

to Options IV and VII.

This thesis provides control systems designers with the ability to perform a

trade-off between optimized performance and robustness. This is accomplished

through the introduction of an adjustable parameter in the governing stability
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equations. This approach provides a direct and straight-forward tool which

designers can easily apply to their specific control problems.

In addition, some areas identified for future research include:

"* Analysis of the physical meaning of the changes made by each of the
design options, similar to that done in Chapter V for Option
IV.

"* More comprehensive comparison of all the options with each other to
identify their similarities and differences in response for
various values of p.

"* Study of the effectiveness of this technique for systems in which
observers or Kalman filters are necessary due to the use of
partial state feedback.
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