
AD-A257 743

NAVAL POSTGRADUATE SCHOOL
Monterey, California

4 ECO4199•.

THESIS
A Clearinghouse for Software Reuse: Lessons Learned from the

RAPID/DSRS Initiatives

by

Gerard R. Harms
and

Tina H. Van Hook

September 1992
Thesis Advisor: Tung X. Bui
Co-Advisor: Myung Suh

Approved for public release; distribution is unlimited

92-30840

UNMMFI
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFICATION I b. RESTRICTIVE MARKINGS
UNCLASSIFIED

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution is unlimited.
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PE:OFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Naval Postgraduate School (If applicable) Naval Postgraduate School

137

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

Ba. NAME OF FUNDING/SPONSORING Tb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8c. ADDRESS (City, State, andZIP Code) 10. SOURCE OF FUNDING NUMBERS

Program Element No. Project NO. Task No. Work Unit Accesion
Number

11. TITLE (Include Security Classification)

A Clearinghouse for Software Reuse: Lessons Learned from the RAPID/DSRS Initiatives

12. PERSONAL AUTHOR(S) Harms, Gerard R. and Van Hook, Tina H.

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (year, month, day) 15. PAGE COUNT
Master's Thesis From To September 1992 49
16. SUPPLEMENTARY NOTATION
The views expressed in this thesis are those ofthe author and do not reflect the official policy or position of the Department of Defense or the US.
Government.
17. COSATI CODES 18. SUBJECT TERMS (continue on reverse if necessary and identify by block number)

FIELD GROUP SUBGROUP Software Reuse, Code Reuse, Reusable Software Components

19. ABSTRACT (continue on reverse if necessary and identify by block number)

Information Systems executives within the Department of Defense (DoD) activities are being challenged to develop innovative ways in which
information technology can contribute to the streamlining of DoD organizations. Software Reuse is a key strategy in developing information
systems that will meet the future needs of DoD organizations. This thesis examines the concepts, implementation strategies, and issues relating
to the creation of a clearinghouse to facilitate and promote software reuse. Specifically it studies the Defense Software Repository System
(DSRS), a DoD version of the Reusable Ada Products for Information Systems Development (RAPID) effort.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
1 UNCLASSIFIEDAJNLIMITED 13SAME AS REPORI DIC USERS UNCLASSIFIED

22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area code) 22c. OFFICE SYMBOL
Tung X. Bui 646.2174

DD FORM 1473,84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE'
All other editions are obsolete UNCLASSIFIED

Approved for public release; distribution is unlimited.

A Clearinghouse for Software Reuse:
Lessons Learned from the RAPID/DSRS Initiatives

by

Gerard R. Harms
Lieutenant Commander, United States Navy

B.S., University of Villanova, 1978

and

Tina H. Van Hook
Lieutenant, United States Navy

B.B.A., University of San Diego, 1985

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL

September 1992

Authors: ____ _

Gerard R. Harms

Tina H. Van Hook

Approved by: _ _-_ _ _ _ __1

Tung X. Bui, Thesis Advisor

- gyungttih, CdAdvisor

David R. Whipple,%Chli'man
Department of Administrativ Siecs

ABSTRACT

Information systems executives within Department of Defense (DoD) activities are

being challenged to develop innovative ways in which information technology can

contribute to the streamlining of DoD organizations. Software reuse is a key strategy in

developing information systems that will meet the future needs of DoD organizations.

This thesis examines the concepts, and issues relating to the creation of a clearinghouse

to facilitate and promote software reuse. Specifically it studies the Defense Software

Repository System (DSRS), a DoD-wide version of the Army Reusable Ada Products for

Information Systems Development (RAPID) effort.

Aocession For

NTIS GRA&I

Unanonnced
Ju't rIc't oio-

DTIZ-' 'ý-rrD By---
Distribution/

AvailabilltY Codes

ivais apnd/or

iii Det ISpec LaJL

TABLE OF CONTENTS

I. SOFTWARE REUSE 1

A. INTRODUCTION 1

B. PURPOSE OF RESEARCH 1

C. RESEARCH METHODOLOGY 2

D. RESULTS OF RESEARCH 2

E. APPENDIX 3

LIST OF REFERENCES 35

INITIAL DISTRIBUTION LIST 47

iv

I. SOFTWARE REUSE

A. INTRODUCTION

This thesis is part of a larger study sponsored by the Director of Defense

Information (DDI) in which a series of case studies are being conducted to focus on the

sound practices of MIS implementation in DoD. This particular case study examines the

concept of software reuse and focuses on the DoD Defense Software Repository System

(DSRS) initiative. DSRS is a DoD version of the Army's Reusable Ada Products for

Information Systems Development, and their methodology for software reuse. It will

also identify critical success factors in implementing a DoD-wide policy on code reuse.

B. PURPOSE OF RESEARCH

The DoD Corporate Information Management (CIM) initiative promotes the use of

Information Technology to improve business processes and the management of

information resources. Software reuse has been identified by the Office of Defense

Information as a key strategy intended to help DoD respond to variable threats in a

rapidly changing environment with less resources. The integration of software reuse

practices into lifecycle development of DoD systems will be a critical factor in achieving

significant reduction in the amount of time required to develop complex systems.

Equally important is the anticipated increase in system reliability and decrease in dollars

spent for systems maintenance following implementation. The DSRS goal is to obtain

general purpose, adaptable software components that have maximum potential for reuse.

They have established procedures and guidelines to certify reusable software components.

C. RESEARCH METHODOLOGY

This thesis is a case study that reviews recent literature on software reuse, conducts

on site field interviews with CIM, RAPID, and DSRS personnel, and derives lessons

learned from the RAPID/DSRS effort achieved to date.

This study focuses on the RAPID/DSRS effort and the methodology for software

reuse. RAPID/DSRS provides a comprehensive and structured framework for software

reuse that could be of potential benefit to all users. Procedures to certify reusable

software components proposed by RAPID will also be discussed.

D. RESULTS OF RESEARCH

The results of this research, and all references are contained in the Appendix.

2

Appendix

A Clearinghouse for Software Reuse: Lessons Learned from
the RAPID/DSRS Initiatives

Tung X. Bui
Gerard R. Harms

Myung Suh
Tina H. Van Hook

Department of Administrative Sciences
Information Technology Management Curriculum

Monterey, California

September 1992

3

Acknowledgments

The authors would like to thank Mr. Paul Strassman, Director of Defense

Information, OASD (C31), for sponsoring the Case Study Series on implementation

practices of information systems in DoD. The case study on software reuse could not

have been realized without the support of the Army Reuse Center and the Corporate

Information Management Center for Software Reuse Operations. We appreciate the

support of Ms. Ginny Parsons at the Center for Reuse Operations.

We would also like to thank the faculty members and students at the Naval

Postgraduate School who participated in the study and gave much support. Many thanks

go to Professor Dani Zweig whose expertise in software reuse was very much needed.

Also our thanks to LCDR Gillian Duvall, USN; LT Cheryl Blake, USN; Professor

Daniel R. Dolk, LT Greg Hayes, USN; Professor Martin Mc Caffrey, Professor

Sterling Sessions, and especially LT Christine Donohue and LT Mary Jo Elliot who spent

much of their time assisting in the format. We appreciate the support from all who

helped us in this effort.

Table of Contents

1. Executive Summary 1

II. Software Reuse: Doing More With Less 3

A. Beyond Code Reuse 3

B. Desirable Characteristics of a Reusable Software Component 5

C. Productivity Gains with Reuse 6

EIl. A Clearinghouse for Software Reuse 9

A. Toward the Concept of a Clearingh6use for Reuse 9
1. The RSC Donor-Recipient Cycle 9

a. Mechanism for Creating RSCs - the Donor's
Perspective 9

b. Mechanism for Retrieving and Using an RSC - the
User's Perspective 10

2. Motivations for a Clearinghouse 10
a. Economic Incentive 11
b. Managerial Incentive 12

B. Activities of the Clearinghouse 13
1. Defining Reusable Domains 14
2. Searching for RSCs 14
3. Certifying RSCs 14
4. Creating a User-Friendly Library 15
5. Supporting RSC Users 15

IV. DSRS - A Clearinghouse for Software Reuse 17

A. CIM and Reuse 17

B. RAPID - The Army's Software Broker 18
I. History and Mission 18
2. RAPID Implementation Plan 19

ii

3. RAPID Staff Organization 20
a. Defining Reusable Domains 22
b. Searching for RSC Donors 22
C. Certifying RSCs 23
d. Creating a User-Friendly Library 24
e. Supporting the User 25

C. DSRS - Toward a the DoD-wide Reuse Program 26
1. The DoD Reuse Organizational Structure 26
2. Current Status of the DSRS Effort 26

V. Lessons Learned 29

A. A Clearinghouse is a Necessary Condition for Software Reuse in
D oD 29

B. A Clearinghouse is a Productivity Multiplier 29

C. The Clearinghouse Must Populate its Repository with Quality
RSC s 30

D. High-Level DoD Management Must Provide Incentives for
Reuse 31

Glossary of Terms 33

References ... 35

i11

I. Executive Summary

To be successful in meeting the strategic challenges of today's rapidly changing

world, Information Technology managers must become proficient at doing more with

less. Information has become a strategic resource for many organizations. To manage

it, development activities are asked to deliver more software, more quickly and with

lower fault tolerances than ever before. As the demand for new software steadily

increases, so does the demand for supporting assets to maintain the system. In this

environment of fiscal austerity, Program Managers are facing these accelerating

requirements with budgets that remain stagnant or even dwindle from year to year.

Software reuse can make a substantial contribution towards an organization's

efficiency and effectiveness in satisfying these requirements. Experts estimate that as

much as half the code written for information systems is reusable in other development

efforts. In the Department of Defense (DoD), where expenditures for administrative

systems will approach 5 billion dollars this year, the potential savings generated through

a comprehensive reuse program are staggering.

The Army recognized the potential for returns on an investment in reuse and

initiated the Reusable Ada Products for Information System Development (RAPID)

program in 1987. Their approach centered on a library of reusable software components

made available to software development teams. Software modules that satisfactorily

completed a quality review were categorized and loaded to the repository. Users could

then browse library assets selecting those modules that satisfied new development

requirements.

RAPID's most significantly contributed to the reuse effort by establishing an

infrastructure (i.e. the repository framework, cataloging systems retrieval systems, etc.),

1

for implementing a reuse methodology. DoD, committed to the concept of reuse and its

potential savings adopted the RAPID Program as its own and established the Defense

Software Repository System (DSRS) in 1991. The DSRS now supports users in all

branchcs of the service providing a repository for contributions and distribution of

software components.

Though the application of a reuse technology in DoD is still in its early stages of

growth, the experience of both RAPID and the DSRS provide some valuable insights:

The concept of a central clearinghouse to process the intake and distribution of
software is critical to the success of a DoD-wide initiative.

Use of such a clearinghouse can provide substantial increases in development
productivity.

To enhance user confidence and the perpetuation of the reuse approach,
repository supervisors must ensure only quality components are admitted to the
library.

Utilization of the clearinghouse could be significantly enhanced through
the introduction of a DoD-wide incentive program.

2

H. Software Reuse: Doing More With Less

Reuse of prior work is certainly not a new concept. When electrical engineers

set out to develop a new circuit board, they often reuse pre-fabricated integrated circuits,

made available to them through technical catalogs, to accelerate the development process.

Likewise, corporate executives rely heavily on standard text documents to prepare legal

and business documents. In the software environment, with billions of lines of codes and

thousands of implemented information systems, existing software modules could be

recycled to avoid the exorbitant costs of "re-inventing the wheel".

Software reuse can be defined as the application of one or more previously

developed software component(s) to a new system or to an expansion of an existing

system. Often times, a significant portion of almost any new program contains logic that

essentially duplicates the code found in other programs. Software developers for large

organizations are just beginning to appreciate the potential benefits of reuse and are now

seriously integrating reuse practices into the software development process.

A. Beyond Code Reuse

To date, efforts to reuse software have been primarily focused at the code level.

Code reuse is the simplest form of reuse. A reusable code component consists of

functions, procedures, or packages. Once developed, this component is tested, certified,

and stored in a repository so that it can be accessed by programmers for new software

development projects.

Savings associated with code reuse can be realized in two ways: (a) each time

a portion of code is reused, resources otherwise devoted to coding can be saved; (b)

3

further savings are also realized in the testing phase. In general, the "payoff" for reusing

a chunk of code is directly proportional to the size of the chunk.

As the size of the code segment increases, it becomes more difficult for the

programmer to identify a good match with specified functions. A large segment of code

usually offers many functionalities. However, the greater the functionalities embodied

in the new segment, the more difficult it is for the developer to succinctly describe the

functional specifications of that segment. Larger components also tend to be more

specialized or idiosyncratic and are therefore less likely to be compatible with a given

set of requirements specifications.

Reuse at the analysis and design level implies that the developer must ignore

coding details, and focus on the computational intent of larger chunks of code that

compose the system. Instead of looking at the coding style (e.g., the date/calendar code

segment), the developer should examine how functional structures and specifications

(i.e., date and calendar functions) are used in the .context of the application. Reusable

components at higher levels include logical data models, functional descriptions and

diagrams (e.g., data flow diagrams or entity relationship diagrams).' Although

component reuse at the code level is better understood and by far the most prevalent

form of reuse at other levels, one can witness an acceleration in the reuse of the other

types of software components.

For a given organization, there tends to be a family of application software that

shares some common design characteristics. If these similar software design components

could be reused, the developer would be free to concentrate on implementation of the

unique functionalities of the software. Since design does not yet contain detailed

decisions for implementation, a component's potential for reuse is greater. I Reusable

design should provide pointers to the appropriate pieces of reusable code, reusable test

Neider, 1987

2Lenz, 1987

4

cases, and documentation. As a result, design reusability tends to provide much higher

leverage than simply reusing code.

Technically, existing software can be reused in a variety of ways. The spectrum

includes sharing of code, algorithms, routines in application families, and subsystems.

Reuse can be applied to all phases of the software development life-cycle, including:

0 Requirements specifications

* High-level design

0 Detailed design

0 Coding and unit testing

* Integrating testing

* Documentation

* Maintenance

B. Desirable Characteristics of a Reusable Software Component

Reusable Software Components (RSCs) can be extracted from public domain

software, commercial off-the-shelf software, contractors, and government sources. A

desirable reusable software component should include the following characteristics:

• Flexibility: The developer should be able to adapt/modify the RSCs to fit in with
the overall architecture of the software to be built. The smaller the component
in terms of functionality, the more flexible it is but the less functionality it
provides.

Expandabiity: The developer should be able to tailor RSCs to specific
requirements that might surface well after initial requirements were defimed.

* Biggerstaff and Lubars, 1991

'Lenz, 1987

5

Portability: The RSCs should be able to operate under multiple operating
environments (physical hardware, operating systems, and runtime environments)

Language Independence: The components above the implementation level should
be programming language independent so that they are reusable in any
programming language environment.

C. Productivity Gains with Reuse

Software reuse provides a number of benefits. Reusing software should help the

information systems developer:

Improve software development productivity: Software reusability is viewed widely
as a major opportunity for improving software productivity.5 At industry's
present rate of growth, a 20 % improvement in productivity is projected to result
in a savings of $45 billion in 1995 for the U.S. alone.6

Achieve shorter development time: When a developer is able to reuse previously
generated software in a new application, he/she frees up assets that can be
devoted instead to development of the system's unique modules. The savings in
time and resources translates to a development environment that is more
responsive to the requirements of a dynamic world.

Increase software reliability: Preexisting software, if it has been employed to any
extent, has already been field tested and fine tuned. This offers the opportunity
of deploying modules whose expected error rate is significantly lower than that
of a newly developed module.

Ensure enhanced maintainability: Reuse of well-structured and well-documented
software will also lead to improved maintainability and portability in that
alterations will be required only on the source component located in the central
repository. With studies indicating a significant number of companies spending
between 60 and 80 percent of their software dollars on maintenance, 7 this area
may well generate the most significant dollar savings.

Biggerstaff and Richer, 1987

'Boehm, 1987

SBiggerstaff and Lubars, 1991

6

Software reusability is now recognized as a major opportunity for improving

software productivity. Software costs were estimated in 1990 to be $125 billion for the

U.S. alone. With such a magnitude in software costs, even a modest improvement

thourgh reuse can translate into tremendous savings.

7

8

MI. A Clearinghouse for Software Reuse

A. Toward the Concept of a Clearinghouse for Reuse

To effectively reuse software, RSC donors and recipients must incur non-trivial

technical and administrative overheads. They need a central organization, say, a

clearinghouse, to relieve them of these overhead costs. It is through the clearinghouse

that the interactions between the users and donors can be assured.

1. The RSC Donor-Recipient Cycle

In many instances, an RSC will come from existing systems or systems currently

under development. For an RSC to be reusable beyond its development site, it is

important to distinguish the point of view of the donor from that of the recipient. A

donor is one who identifies reusability of an RSC, develops the RSC that satisfies

reusability specifications, and makes the RSC available in a library or repository. A

recipient is a developer who reviews RSC available in the library and selects those that

most closely support his requirements. Mechanisms for implementation as well as issues

involving incentives or technical problems, for example, will vary depending on the

orientation as donor or recipient.

a. Mechanism for Creating RSCs - the Donor's Perspective

When a program manager participates in the process of contributing software, he

assumes a donor's perspective to reuse. He needs to identify and describe the

9

functionalities embedded in candidate RSCs. He also needs to carry out testing and

documentation for those RSCs.

A willing donor is one who is able to look beyond the immediate costs both in

time and resources and commit to the long-range reuse strategy. To alleviate this effort,

help from external source(s) is usually required unless the donor himself is in the

business of software production and can reap the benefits of donated RSCs.

b. Mechanism for Retrieving and Using an RSC - the User's Perspective

In contrast to the donor's orientation where benefits from reuse are anticipated at

some point in the future, RSC users realize an immediate advantage. To maximize the

benefits of reuse, the user must possess skills and experience to:

* Find RSCs (cataloging, search and retrieval mechanisms)

* Understand RSCs' characteristics

* Adapt RSCs to his functional requirements

From the user's perspective, reuse will be attractive only if the overall effort to

reuse a piece of software is less than the effort required to create it from scratch. If a

user has to invest an unacceptable amount of time in searching and evaluating repository

components, he will likely opt to develop the component himself instead. Thus, it is

critical that an RSC library be made available to the users. This repository has to

contain RSCs that correspond to the user's requirements and needs.

2. Motivations for a Clearinghouse

As discussed in the previous section, reuse is an appealing concept but its

implementation requires a sustained economic and managerial effort that goes beyond that

of an individual participating software developers. The creation of a clearinghouse for

reuse is required to assume and direct much of this effort, provide broader visibility of

10

useful software, promote standardization, and yield greater savings of maintenance

dollars.

a. Economic Incentive

Before software reuse can begin to pay off, an up-front investment is required.

There will generally be costs involved in the preparation of the software prior to its

induction into the library. Whether software is written for future reuse or taken from

somewhere else, it requires formatting, testing, and documentation. Providing untested

and undocumented RSCs is counterproductive. If the user needs to perform significant

modifications to adapt the component, the benefit of reuse may be lost.

In the short run, management of organizations that desire to donate software

cannot be expected to support up-front costs for making RSCs. The fear that reusability

will lead to reduction in their budget and staff is also a source of resistance among

managers and programmers.' Programmers are often penalized for taking the extra time

to make software reusable.

It is thus important that a clearinghouse for reuse be built to absorb the cost of

establishing RSCs and - more importantly - maintaining a library of reusable software

components. The cost of a library depends on its size and the tools used to populate,

organize, access, and maintain RSCs.

A clearinghouse for reusable software has significant advantages. With its

resources dedicated to reuse, the clearinghouse can assume the essential and unique role

of networking multiple libraries owned by various participating organizations developing

similar software, thus yielding economies of scale. It can also develop its own RSCs if

they cannot be found anywhere else. The economics of software reuse vary significantly

W g1

with the problem domain and the development technology employed within an

organization. 9

It is expected that the cost savings of reusing thoroughly tested and documented

software will be even more significant in the long-run. However, the long-term benefits

of reuse are often hampered by short-sightedness of many RSC donors and users. It is

the mission of the clearinghouse to correct this short-term perspective, and play an active

role in reconciling conflicting interests between individual RSC donors and recipients."1

b. Managerial Incentive

Researchers tend to agree that the lack of a clear reuse strategy has been one of

the major factors inhibiting widespread software reusability." The absence of an

appropriate high-level reuse strategy results in project managers and programmers being

unmotivated to reuse software. Reuse will not happen by itself: it needs to be promoted

with incentives.

Top management of participating organizations must understand management's

critical role in addressing non-technical issues such as legal and proprietary rights,

compensation for RSC developers, and internal cost apportionment methods for

purchasing reusable components associated with software reuse."' Contract issues

concerning ownership and rights to the developed software arise. Contracts must be

' Barnes, 1987

10 Who pays the added development cost involved in designing the software for reuse? Ideally, the
organization that profits from the reuse should pay for it, but it does not always work this way. For
example, a contractor might be asked to make his software reusable with little recognition of the added
cost required. As a consequence, he earns a lower profit. Furthermore, the software component could
then be given to a competitor to be reused, thus allowing the competitor to capitalize on the initial
contractor's efforts. It can work in the contractor's favor as well: the customer might pay an added cost
for highly reusable software without realizing it, so that the contractor can reuse the software in his own
future programs.

Biggerstaff and Richer, 1987

'2 Banker and Kaufman, 1990

12

tailored to meet the needs of both donors and users in order to provide an incentive for

reuse.

Management that invests in the development of a meaningful incentives program

will enhance their organization's chances of implementing a successful reuse

environment. For example, the National Aeronautics and Space Administration (NASA),

in a move to encourage development of higher quality software by contractors, has

instituted financial rewards for certain types of library resident routines. Developers are

compensated forextracting software from the library instead of being paid solely by the

quantity of new code they create. This provides the contractor with incentive to utilize

the methodologies of reusable code.13

GTE provides another example. GTE Data Services places major emphasis on

incentives and has introduced a program that rewards authors, project managers, and

reusers. Programmers receive both cash bonuses (when an asset was accepted into the

repository) and royalties each time an asset is reused in a new application. Budget

increases and promotions for project managers are directly linked to high percentage

reuse in deliverables undcer their cognizance. GTE considers the incentive program a key

factor in their reuse success which translates into an estimated savings of $1.5 million

during the program's first year of operation and a projection of $10 million by the end

of the fifth year."'

B. Activities of the Clearinghouse

The following are the main activities that the clearinghouse should perform on

behalf on the reuse community:

* Cashin, 1991

1, Prieto-Diaz, 1987

13

1. Defining Reusable Domains

Since software comes from a variety of domains, there is a need to identify

software components that share basic functionalities. This can be achieved by a process

known as domain analysis. The purpose of domain analysis is to determine

commonalities within the application domain, focusing on areas with the greatest potential

for reuse and in greatest demand by future software developers. It is an iterative process

involving an intense examination of the domain of interest."5 Without a well-performed

domain analysis, RSCs cannot properly be identified.

2. Searching for RSCs

The search for RSCs is a non-trivial effort. Potential sources (e.g., existing

governmental systems, public domain software, or commercial off-the-shelf software)

have to be identified. Of particular concern during this component search is a donor's

reputation or track record for producing quality software.

3. Certifying RSCs

Certification refers to the process designed to solve and eliminate concerns

programmers and managers have about using RSCs that originate from outside their own

work. Such concerns include quality, maintainability, liability for defects, and

testability. A certified RSC must function as it is intended to function. Evaluation is a

very important part of the certification process. It begins as candidate RSCs are

identified and continues through the remainder of the life cycle. Evaluation can eliminate

" Softech, RAPID Center Reusable Software Component Procedures, June 1990

14

unsatisfactory components, identify re-engineering needs, produce documentation, and

initiate essential metrics. 16

4. Creating a User-Friendly Library

A library system is needed for users to identify, retrieve, and use RSCs.

Software selected for incorporation in the library must be integrated with other repository

components via an identification scheme. The cataloging system implemented should be

easy for the user to understand, and should provide alternative search patterns for the

user to search for the perfect component. Lastly, the indexing system should be

adaptable in the event that future components are not easily tailored to existing

categories.

5. Supporting RSC Users

A productive reuse environment cannot be maintained without the confidence of

the user. This confidence is achieved in several ways. Most notably, the RSC

certification process contributes to this effort by ensuring both the quality and

standardization of each component in the repository. Additionally, RSC users' concerns

and needs should be periodically surveyed to ensure efforts are continually focused on

the needs of the customer.

In summary, the implementation of a clearinghouse offers several advantages:

The clearinghouse can perform domain analysis over a broad range of
applications, that will likely increase the accuracy of the domain model and its
relevance for future application development.

"16 Metrics assist managers in measuring various things and allow engineers to apply predictive
algorithms. Metrics include size, productivity, efficiency, and quality characteristics such as portability,
maintainability, and reusability. Metrics also provide a prediction of problem areas and alternative
solutions.

15

With its central position, the clearinghouse has the authority and expertise to
enforce a strict reuse discipline. Certification procedures can be put in place to
ensure uniform quality of RSCs. This directly influences user confidence in the
clearinghouse.

* As the clearinghouse imposes a standardized reuse procedure, it offers the
opportunity to serve a larger community.

16

IV. DSRS - A Clearinghouse for Software Reuse

A.CIM and Reuse

Launched in October 1989, the DoD Corporate Information Management (CIM) initiative

seeks to improve DoD business processes and the management of information resources.

To achieve this goal, CIM is calling for functional interoperability between systems,

standards compliance, and efficiency in software development through reliance on

reusable software components, commercial off-the-shelf products, and computerized

application development aids.

CIM promotes two types of repositories: software reuse repository and hardware reuse
repository."' The objectives of software reuse repository are to:

*Develop a central DoD-wide RSC clearinghouse

*Establish a data dictionary for DoD

eBuild an integrated repository for C31 software

On the other hand, the hardware reuse repository seeks to:

eShorten acquisition cycle by leasing

*Introduce a standard bus architecture for scalable processors

*Provide for central technology renovation

*Rationalize capacity and security management practices

eDistribute capacity by means of survivable networks

Software reuse is considered to be one of the key strategies intended to help DoD in

responding to variable threats in a rapidly changing environment with less resources.

Strassman, 1991

17

The Office of the Director of Defense Information set the following goals for software

reuse:
1

0 100% reusable data with an infinite life for data definitions

0 More than 80% reusable code with more than 20 year life on software elements

0 80/20 development/maintenance ratio

0 Technology asset life two to three times larger than the technology innovation
cycle.

The goal of implementing a DoD-wide repository of reusable components has

culminated in the recent establishment of the Defense Software Repository Service

(DSRS). Under the administration of the Center for Software Reuse Operations

(CSRO),19 the DSRS provides automated access to more than 1550 government or

commercially owned/developed RSCs. This repository is available to all DoD, other

government agencies, and authorized contractors.

The design and implementation of DSRS is based on a pilot operation initiated by

the Army's Reusable Ada Product for Information System Development (RAPID). This

chapter reports some of the experiences gained by RAPID, and subsequently DSRS.

B. RAPID - The Army's Software Broker

1. History and Mission

The Army recognized the tremendous potential of software reuse. It called for the
establishment of a software reuse clearinghouse offering Army/DoD users a centralized

repository of reuse components by initiating the RAPID project in 1987.20

Strassman, 1991

19 CSRO has been set up within the Defense Information System Agency's Center for Information
Management.

10 RAPID was located at the U.S. Army Information Systems Software Development Center,
Washington (SDC-W).

18

With Ada as the programming language mandated by Congress, RAPID sought

to promote the reuse of Ada software to reduce the cost of system development and

maintenance through the use of previously developed tested and implemented

components. Ada is a programming language designed to facilitate reusability because

its reusability guidelines are structured to include design for reuse, parameterization, and

domain analysis. 2" Ada code is portable in that code written anywhere is potentially

reusable for another system. It is well suited to the integration of system components

from multiple sources.

RAPID defines its missions as follows:

Achieve the Department of Defense (DoD) initiative of reusable, maintainable,
and reliable software

Develop, maintain, and administer a comprehensive reuse program

Lower software lifecycle costs by increasing productivity and quality.

Initially intended for management information systems (e.g., financial, logistics,

and personnel systems applications), RAPID expanded its domain to additional

application areas (e.g., telecommunications). In 1991, it had more than 960 reusable

components stored in a central repository available to all Army/DoD units. RAPID

would then issue software to both DoD users and contractors working on DoD projects

as government-furnished equipment (GFE).

2. RAPID Implementation Plan

RAPID was initiated at SDC-W as a pilot prototype reuse program in July 1987

when the Phase I contract was awarded. This initial phase produced the foundation

needed to provide a reusability program within SDC-W. Table 1 depicts the chronology

of the phases of the RAPID project.

21 Banker and Kaufman, 1990

19

RAPID PROJECT PHASES

PHASE I: Design and Development (July 1987 - April 1989)

* RAPID Center Concepts and Organization
* Reuse Policies and Procedures
• RAPID Center Library System

PHASE 11: Pilot Operation (May 1989 - December 1990)

0 Operate Active RAPID Center
0 Support SAC-W Customers
0 Policy and Procedure Refinement
* Library Population
0 Training Program
0 Domain Analysis

PHASE IM: Implementation (January 1991 - September 1991)

* Expand to all ISEC Development Centers
* Expand to Other Organizations
* Continue Library Population and Enhancements

PHASE IV: CIM Operation (October 1991 - October 1996)

* Individual Service focused Support
* Expand Domain Analysis Customers
* Continue Library Population

3. RAPID Staff Organization

Under the supervision of a center manager, the RAPID staff is composed of

technical consultants, systems analysts, software engineers, configuration management

specialists, quality assurance personnel, administrative assistants, and librarians. The

staff's mission is to encourage design methods and architectures that build from reusable

20

components. Systems analysts and software engineers provide vital support for RAPID's

role as a software clearinghouse while other positions, such as RAPID's administrative

assistants, are more heavily weighted towards user assistance or RSC cultivation.

Support personnel for the program consisted of 16 government employees and 8

contractor personnel. The following describes some specific positions of these staff

members:

a. The RAPID Manager. Continually monitors the success of the RAPID program

and the results of specific operations. He keeps extensive reports that help evaluate the

costs of the program as well as the savings to developers.

b. Technical Consultants: Perform the domain analysis, attend design reviews, stay

abreast of projects, advise project staffs, and assist the developer in identifying potential

areas of reuse. They help search for RSCs, and provide guidance, support, and

documentation to programmers.

c. System Analysts and Software Engineers: Identify high-value RSCs that are to be

added to the library. They evaluate, test, and document all RSCs before being added to

the library. They also provide maintenance and enhancements to the RCL (Rapid Center

Library) software system.

d. Configuration Management Specialists: Ensure that all configuration activities are

performed for each library component, including problem report tracking, controlling

changes, and releasing new versions or enhancements.

e. Quality Assurance Specialists: Ensure that all RSCs are of high quality through

frequent reviews. They develop and administer testing as well as establish and enforce

metrics.

f Administrative Assistants: Prepare all RAPID Center Library System reports and

perform follow-up interviews with the users.

g. The Librarian: Maintains the RSC data base and performs normal operator

functions.

21

4. RAPID Activities as a Clearinghouse

a. Defining Reusable Domains

For a clearinghouse to operate effectively, domain analysis must be performed.

As a continuing process, it not only identifies components that may be reused, but also

directs developers to areas where reuse emphasis should be placed so that new

components can be found during post-deployment support.

As part of the initial steps to establish RAPID, a high-level domain analysis was

done in 1987 that covered management information systems. During the pilot operation,

RAPID realized the need to support multiple domains. Therefore, policies, procedures,

and guidelines were revised to extend their potential applicability beyond MIS.

Object-oriented methods were adopted for domain analysis. As a standardized

method, they proved to be effective in identifying reuse opportunities, and for grouping

RSCs according to the level of abstraction or funcilonal category.

b. Searching for RSC Donors

Once the reusable types of software components are identified through domain

analysis, it must be determined where those components will come from. This is a

responsibility of the RAPID engineers. These personnel would turn to a variety of

sources to identify potential candidates including:

* COTS Software

* Government-owned Software

* Public Domain Software

Of the 960 RSCs currently in the repository, more than 780 have been developed

commercially. Of the 170 government owned components, less than 30 were developed

by the RAPID in-house engineers.

22

COTS software tends to be a more appealing source for several reasons. It is

well-tested before release, and is often accompanied by substantial documentation.

Typically, the software has been in use for a substantial period of time before it is

identified as a candidate RSC. It is thus likely to be highly reliable.

Roughly 85% of the RSCs in the Army repository are code. The remaining

component types include such software as design components, documentation

components, and functional specifications. Although originally conceived to house Ada

code, the repository does contain RSCs written in other languages such as COBOL, C

and FORTRAN.

c. Certifying RSCs

The certification process begins with a quality evaluation of the candidate RSC

once it is identified. The evaluation process not only determines basic attributes such as

the lines of code or number of packages but also estimates the reuse potential for the

component. It also estimates the level of re-engineering needed to ensure quality

standard.

The certification includes testing on a variety of platforms. Re-engineering is not

done for commercial off-the-shelf components whenever code changes may invalidate the

license. COTS RSCs are entered into the RAPID Center library after the applicable

RAPID Center documentation standards are met.

The RAPID Center assigns a certification level as "the level of confidence" in the

quality of the RSC; it ranges from level I to level V, as described below:

Level I: Depository - No formal testing and documentation

Level U1: Reviewed - Some testing and documentation

Level Ill: Tested - Test Suites Validated and some documentation

Level IV: Documented - Fully tested and documented; meets all standards and
guidelines

23

Level V: Secure - Currently not used

Level V certification is reserved for future use to cover secure components in

accordance with DoD CSC-STD-001 -83, Trusted Computer System Evaluation Criteria.

Policies and procedures for secure components will be developed whenever such RSC

become available.

Ideally, every component in the library would be tested and documented to the

extent that a Level IV certification could be assigned. This has not been the case

however, and a significant number of RSCs were accepted into the library at the lower

certification levels. Of the more than 780 COTS components in the repository, only 285

were certified at Level H, while the remaining components (COTS) were at Level IV.

A similar breakout of government-owned components could not be obtained, but it was

confirmed that a number of these components were certified at Levels I and II.

d. Creating a User-Friendly Library

RAPID uses a flexible faceted classification scheme to store and retrieve RSCs.

Using the PC-based, menu-driven system, the user could initiate a search for an RSC by

entering parameters or "facets" that describe the RSC. The nine facet classification

descriptors listed below, allow the user substantial control over the repository search:

* Component Type

* Language

• Unit Type

* Function

* Algorithm

• Environment

* Object

* Data Representation

24

* Certification Level

To conduct a search, the Function, Language and Certification Level descriptors

must be provided. The use of the other facet terms is optional. To enhance the search

capability, the RAPID search mechanism also provided the user with a "thesaurus list"

that helps identify facet terms (known as "synonym terms") that appeared to be

comparable to the user's description. The system also provided links (i.e.,

"Relationships") between RSCs so that the user can browse or extract related

components.

RAPID maintained RSC metrics on reusability, maintainability, reliability,

portability, actual usage, and outstanding problem reports. Based on these metrics, the

users could choose to rank components and select the most appropriate ones.

e. Supporting the User

User support and feedback is an essential aspect of clearinghouse activities. In

addition to the assistance from its central office, RAPID offered a remote site program

where its personnel spend a period of time at the user's site to assist in establishing a

local reuse repository infrastructure (e.g., reuse planning, hardware and software

selection, RSC creation and population).

Formal training was also part of RAPID's support of the users. Programs have

been developed at three levels; Executive, Management and Software Engineering. This

training is available at both the Army Reuse Center and remote sites.

The RAPID librarian solicited the RSC recipient's feedback, approximately ninety

days after the RSC extraction. The inquiry was intended to check whether or not the

RSC was used or if any problem was encountered. The expectation was that such user

feedback provided on a continuous basis would ultimately result in a more responsive

library. Furthermore, this feedback would provide some clues in assessing the

effectiveness as well as the costs of reuse.

25

C. DSRS - Toward a the DoD-wide Reuse Program

The DoD surveyed software reuse efforts within the department and keyed on the

Army's RAPID (Reusable Ada Products for Information System Development) initiative.

It was clear that this program, though still in its early stages of development, was built

upon a methodology that closely aligned with DoD's vision for the future regarding

reuse, and its role in software development. Tapping on this positive learning

experience, DoD established in 1991 the Defense Software Repository Service (DSRS).

1. The DoD Reuse Organizational Structure

As described in Figure 1, DSRS is under the management and supervision of the

Center for Software Reuse Operations (CSRO). CSRO is a component of the Defense

Information Systems Agency (DISA). DSRS is a distributed operation with four remote

centers supporting DoP -e Aices and the Defense Logistics Agency."2 DSRS supports

reuse efforts at ren' .t centers, and ensures that these efforts are complementary and not

duplicative. Pr.,dominantly staffed by contractor employees, 7 contract personnel fill

billets in project management (1), engineering (4), configuration management (1), and

librarian (1). Government personnel fill positions in customer service (1) and liaison

with other government sites (1).

2. Current Status of the DSRS Effort

DSRS has adopted as its core not only RAPID's library of RSCs (at the time

about 840 components), but its infrastructure as well (i.e., classification/retrieval system,

RSC certification methodology, etc.). A. the same time, DSRS also accepted RSCs from

previously established Navy and Air Force repositories. To date, DSRS more than 1550

2 The reuse remote centers are located at the following sites: Army Reuse Center is located in the
Information Systems Command, Falls Church, VA; Navy Reuse Center at the Naval Computers and
Telecommunications Station, Washington Navy Yard, D.C.; Air Force Reuse Center at the Standard
Systems Center at Gunter Air Force Base, Ala.; Marine Corps Reuse Center at the Development Center,
Quantico, Va.

26

CIM Reuse Organization

CIM Exec CSRO
Agent Reuse
ci- CIM

Central Program Software Tools and Policy,
Reuse Admin & Ware- Methods Plans and
Activity Budget house Advocacy

Navy USAF USMIC Army DLA

Reuse Ctr Reuse Ctr Reuse Ctr Reuse Ctr Reuse Ctr

On site Reuse Support

Fig 1: CIM Reuse Organization

components comprising over two million lines of code. RSCs are composed of
communications packages, graphics programs, man-machine interfaces, Ada bindings,

data structures, and Ada development tools.

DSRS operates on a MicroVax 4000-300 running VMS operating system.'

Users can access DSRS from a terminal with VT1OO emulation through dial-up modem

or via the Defense Data Network (DDN), although full networking capability via DDN

is not expected until January 1993. Currently, when a user searches for an RSC, he has

to access not only the DSRS central repository but also the ones located at the services.

It is planned that all repositories will be interconnected to form an integrated DSRS

repository by the end of 1993.

"The DSRS hardware platform is an upgrade of the RAPID configuration.

27

CSRO seeks to improve the user-friendliness of the DSRS interface. Currently,

on-line help is made available to familiarize the user with the system. DSRS also has

a feature called "Session Maintenance" that allows the users to keep track of his/her

interaction with the repository system. A graphical user interface is being studied to

replace the character-based and menu-driven interface. Finally, CSRO puts in place a

Customer Assistance Office (CAO) to support users.

28

V. Lessons Learned

A. A Clearinghouse is a Necessary Condition for Software Reuse in
DoD

DSRS has been established to respond to a widely recognized need for a centralize

repository of reusable components in DoD. Given that donors and recipients are

separated by organizational and geographical boundaries, there must be a marketplace

to facilitate the exchange of RSCs. A DoD clearinghouse that allows networking of all

of its remote sites is expected to further enhance RSC usability. As such, a

clearinghouse contributes to the proliferation of software reuse. Without a clearinghouse

bridging the gap between RSC donors and recipients, the software reuse effort would fall

apart.

B. A Clearinghouse is a Productivity Multiplier

Early signs of success can already be observed, as evidenced by the

implementation of the Retired Army Personnel System (RAPS) and the Air Force

Logistics Material Automated Retrieval System II (LOGMARS).

The Retired Army Personnel System (RAPS) is a report generator system that was

a pilot study by developers and the Army Reuse Center. The goal from a reuse

standpoint, was to integrate reusable software components into the systems development

life-cycle and create a reusable system. Although the lines of code (LOC) in RAPS are

not substantial, the fact is that reusable modules accounted for a significant percentage.

Also of significance is the use of design components as well as implementation RSCs:

* In the design phase four of ten system components were reused.

* Implementation activity involved the reuse of 88 of 130 subunits. This accounted
for 63.9% of LOC dedicated to implementation.

29

* Reuse of the testing packages for reused modules was also employed.

The time savings calculated as a result of reuse in RAPS development amounted to more

than 125 days.

Similar success was obtained by the Air Force with its LOGMARS-lI:

* Released worldwide in February 92, LOGMARS-11 is a PC-based inventory
control system used in supply warehouses. The system consists of 18,600 lines
of Ada code, of which 5,600 LOC were extracted from DSRS. An additional
6,300 LOC came from existing in-house modules.

Also developed was a bar-coded label printing subsystem used for warehouse
material and benchstock. Two modules consisting of over 2,500 LOC (28% of
total system code) were extracted from DSRS. Five other modules, including
those for screens and forms generation, were reused from LOGMARS-LI.
Overall, 73% of the subsystem code consisted of reused code.

As the utilization of the clearinghouse's RSCs has started to show signs of

success, it is expected that more RSCs will be demanded in the future. With a well-

populated repository, the clearinghouse would serve as a productivity multiplier.

C. The Clearinghouse Must Populate its Repository with Quality
RSCs

In response to the growing appreciation of reuse, RSCs are being inducted into

the repository at a rapid pace. The clearinghouse must ensure that RSC quality is not

compromised in the process. RSC users are reluctant to utilize components of uncertain

quality developed by unknown sources. They would accept nothing but "error-free"

RSCs. The clearinghouse must carefully weigh the benefits of accelerating the

population growth of RSCs, against the potential damage that might be caused if users

experience problems with RSCs.

30

D. High-Level DoD Management Must Provide Incentives for Reuse

A fully functioning repository populated with pertinent components is a necessary

but not sufficient condition to promote a successful reuse program. Some inducement

to reuse software is required as well. To carry the necessary weight and visibility, these

incentives must be promulgated from the highest authority within DoD.

While many DoD organizations' involved in software reuse have recognized this

issue, there is no policy regarding financial incentives. It is imperative that incentives

research continue and these critical issues be resolved in order to implement a competent

reuse strategy.

2CSRO recognizes the critical issue of reward, and is working closely with organizations such as

the Joint Avionics Working Group (JIAWG), and the Ada Joint User's Group (AdaJUG) both of which
are conducting extensive research on incentive issues.

31

3

32

Glossary of Terms

ADA - Programming language that facilitates reuse. Ada is the primary programming
language in the Department of Defense.

ADAMAT - A static source code analyzer that produces 150+ metrics on the quality of
Ada code as it pertains to reliability, maintainability, and portability.

CASE (Computer Aided Software Engineering) - Collective resource to a family of
software productivity tools.

CODE REUSE - The most common form of software reuse in which source code is
reused.

DESIGN REUSE - Reuse of a type of reusable software component such as logical data
models, functional descriptions, and diagrams.

DOMAIN - A group or family of related systems that share a set of common capabilities
and/or data.

DOMAIN ANALYSIS - The thorough examination of a domain that produces a
representation of the domain and identifies common domain characteristics, primary
functions, and objects.

FACETED CLASSIFICATION SCHEME - Components are classified by selecting the
most appropriate terms from each facet to best describe the component.

FOURTH GENERATION LANGUAGE - Programming language that uses high-level
human-like instructions to retrieve and format data for inquiries and reports

GRANULARITY - The size of the chunk of code.

IMPLEMENTATION REUSE - Reuse of a type of reusable software component such
as package specifications, package bodies, subsystems, and test suites.

METRICS - Numeric measures that characterize RSCs.

OBJECT-ORIENTED DESIGN - Method for generating reusable software components.
It uses data types as the base for modularization and defining objects.

33

REPOSITORY - Storage area for reusable software component.

REUSABLE SOFTWARE COMPONENT - Originally a source code component
consisting of functions, procedures, or packages. Now it includes requirements, design,
implementation, templates, and generic architectures.

REUSABILITY - Ability for a software component to be reused.

34

References

Apte, "Reusability Based Strategy for Development of Information
Systems:Implementation Experience of a Bank" MIS Quarterly, December,
1990.

Banker, and Kauffmann, "Reuse and Productivity in an Integrated
Computer Aided Software Engineering (CASE) Environment: An Empirical
Study at the First Boston Corporation", July, 1991.

Banker, and Kauffmann, "Factors Affecting Code Reuse: Implications for
a Model of Computer Aided Software Engineering Development
Performance", December, 1990.

Barnes, and Bollinger, "Making Reuse Cost Effective", IEEE Software,
January, 1991.

Biggerstaff, and Lubars, "Recovering and Reusing Software Designs", American
Programmer, March, 1991.

Biggerstaff, "Reusability Framework, Assessment, and Directions", IEEE
Software, March, 1987.

Biggerstaff, "An Assessment and Analysis of Software Reuse", July, 1991.

Burton, "The Reusable Software Library", IEEE Software, July, 1987.

Caldiera, and Basili, "Identifying and Qualifying Reusable Software Components",
Computer, February, 1991.

Cashin, "To Move Beyond a Metaphor, Reusability Needs to Get Real",
Software Magazine, October, 1991.

Ferguson, "Reuse and Reengineering", American Programmer, March, 1991.

Fischer, "A Cognitive View of Reuse and Redesign", IEEE Software, July,
1987.

35

Gargaro, "Reusability Issues in ADA", IEEE Software, July, 1987.

Horowitz, "An Expansive View of Reusable Software" IEEE Transactions
in Software Engineering, September, 1984.

Jones, "Reusability in Programming: A Survey of the State of the Art", IEEE
Transactions in Software Engineering, September, 1984.

Jones, and Prieto-Diaz, "Building and Managing Software Libraries", IEEE
Software, February, 1988.

Kaiser, "Melding Software Systems from Reusable Building Blocks", IEEE
Software, July, 1987.

Reusability", MIS Quarterly, June, 1990.

Langergan, "Software Engineering with Reusable Designs and Code", IEEE
Transactions in Software Engineering, September, 1984.

IEEE Software, July, 1987.

Meyer, "Reusability: The Case for Object Oriented Design", IEEE
Software, March, 1987.

Nieder, "RAPID: Implementing a Comprehensive Reuse Program", Dec 1987

Prieto-Diaz, "Classifying Software for Reusability" IEEE Software, January 1987

Prieto-Diaz, and Ruben, "Implementing Faceted Classification for Software
Reuse", Communications of the ACM May 1991 International Conference
on Software Engineering Special Report (ICSE-12),

Rothrock, "RAPID Reuse - Year 2000", Dec 1990

SOFTECH, "ISEC Reusability Guidelines", December 1985

Standish, "An Essay on Software Reuse" IEEE Software Engineering, September,
1984.

Syms, and Braun, "Software Reuse: Customer vs. Contractor Point-
Counterpoint", March, 1991.

36

Tracz, "Reusability Comes Of Age", IEEE Software, July, 1987.

Tracz, "Legal Obligations for Software Reuse", American Programmer,
March, ,

Vogelsong, and Rothrock, "RAPID, Lessons Learned during Pilot
Operations", Dec 1988

Vogelsong, "RAPID, An Operational Center of Excellence for Software
Reuse", Dec 1988

Wartik, "Fillin: A Reusable Tool for Object Oriented Software", IEEE Software,
March, 1986.

Woodfield, Embley, and Scott, "Can Programmers Reuse Software", IEEE
Software, March, 1986.

37

INITIAL DISTRIBUTION LIST

No. Copies

1. Dudley Knox Library, Code 0142 2
Naval Postgraduate School
Monterey, CA 93943-5002

2. Prof. Myung Suh, Code AS/Bd 1
Naval Postgraduate School
Monterey, CA 93943-5000

3. Prof. Tung X. Bui, Code AS/Bd 2
Naval Postgraduate School
Monterey, CA 93943-5000

4. LT Tina H. Van Hook 2
1238 Churchill Place
Coronado, Ca 92118

47

